Yayınım - Difüzyon ve Geçişme - Osmoz
Yayınım olayında ise olayın başladığı ve bittiği veya dengeye vardığında atom ve moleküller arası ilişkileri farklıllık gösterir. Uçucu maddelerin sıvı veya katı formdan gaz faza geçerek yayınması ve suyun buharlaşması buhar basıncı farkı sonucunda başlayıp yürüyen bir yayınım olayıdır ve DH = 0 olduğunda net, gözlenebilir, ölçülebilir yayınım durur.
İki kapalı kap arasında yayınımı sağlayacak bir açıklık oluştuğunda gazların bağıl basınç oranları, yani herbirinin özgül toplam enerjileri arasındaki farka göre değişen şekillerde yayınım gösterirler. Kısmi, oransal gaz basıncı ile difüzyon basıncının doğrusal ilişkisi nedeniyle bir karışımda yer alan maddelerin yayınım oranları değişir. Ayrıca her birinin sıcaklık ve karşı basınç değişimlerine tepkileri de farklılık gösterir. Tüm bu farklılıkların temel nedeni atom ve moleküler yapılarının, ağırlıklarının yani özelliklerinin farkından doğan termik hareketlilik ve serbest enerji farklılığıdır. Bu da maddeye has bir özellik olduğundan yayınım - difüzyon sabitesi adını alır.
Difüzyon hızı geçişi sağlayan açıklığın veya seçiciliği olmayan membranın alanı, yayınım konusu maddenin iki taraftaki derişim farkı ve yayınım sabitesine bağlıdır. Yayınımın da itici gücü ısıl hareketlilik olduğundan sıcaklık artışı ile hızı artar, daha kısa sürede dengeye ulaşır, fakat denge noktası sıcaklıktan bağımsızdır.
Difüzyonu başlatan ve yürüten derişim farkı olduğundan yayınıma konu iki taraf arasındaki uzaklık artışı olayın yürüme hızını global olarak azaltır. Çünkü yayınım moleküler düzeyde derişim farkı dilimleri halinde yürür. Bu nedenle de hücre ve organel düzeyindeki hızı çok yüksektir.
Üç gaz formundaki besin olan su buharı, O2 ve CO2 için 20 derece sıcaklıkta ölçülen yayınım sabiteleri saniyede yayınım alanı olarak sırası ile 0.25, 0.20 ve 0.16 cm2 dir, yani katıların sıvı ortamdaki yayınım sabitelerinden ortalama 10(4) kat fazladır. Bunun da nedeni gaz ortamında çok daha seyrek olan moleküllerin ısıl hareketle çarpışma nedeniyle zaman ve enerji kaybının çok daha az oluşudur.
Bu tabloya karşın fotosentez hızının ışık ve sıcaklık tarafından sınırlanmadığı durumlarda karbon dioksidin kloroplastlara kadar yayınımı için geçen sürenin sınırlayıcı olduğu belirlenmiştir. Aynı şekilde terleme hızının hücre çeperlerinden su buharı yayınım hızı tarafından sınırlandığı ve bu şekilde de bitkilerin stomalarından gereksiz su kaybını önleyen bir mekanizma olarak yarar sağladığı saptanmıştır.
Elektrostatik yüklü maddeler ile kolloidal maddelerin çözeltiler arasında yayınımları gazların ve gazlarla aynı davranışı gösteren yüksüz maddelerinkinden farklıdır. Çünkü hareketlilikleri zıt yüklü tanecikler arasındaki çekim kuvvetlerinin rastlantısal olarak değişen etki düzeyine bağlı olarak değişir.
Canlılarda ise çözeltide serbest olarak bulunan ve yapısal, sabit durumda yüklü moleküller söz konusudur. Bu karmaşık ilişkiler de bitkilerde yayınım olayının orta lamel ve hücre çeperlerinin elektrostatik yapılarına bağlı değişimler göstermesine neden olur. Bu ilişkiler hücre veya doku düzeyinde hücre çeperlerinin permeabilitesi - geçirgenliği ölçülebilir terimiyle belirtilir. Yüklü madde yayınımı yük durumları ile sabit ve hareketli olan maddelerin yük durumu arasındaki denge nedeniyle miktar ve hız açısından belli bir seçicilikle karşılaşmış olur.
Geçişme - Osmoz difüzyonun özel bir halidir. Yarıgeçirgen, seçici zar yanlızca çözgeni veya çözgenle birlikte çözeltideki bazı çözünmüş maddeleri geçirirken bazılarını geçirmemesinin sonucudur.
Osmoza giren her bir madde kendi termodinamik sistemindeki entropiyi en üst düzeye çıkartacak şekilde hareket ettiğinden, membrandan geçemeyen molekülün yoğun olduğu tarafta geçebilen maddelerin derişimi artar. Bu birikme sonucunda toplam madde artışı ve sonucunda da membranın o yanında hacım artışı olur.
Hücreler arası madde aktarımında da bu şekilde özsuda çözünmüş ve membrandan geçemeyen madde derişimi artışı çözgen olan suyun oransal derişiminin azalmasına neden olduğundan su alınmasına neden olur. Sonuç olarak kütle akışı ve difüzyonda maddelerin akışı birbirinden bağımsız başlar ve yürürken osmozda maddelerin bağıl oranı etkilidir. Canlı hücre membranı suya karşı geçirgen özellikte ve özsuda çözünmüş madde miktarı yüksek olduğunda su alımı kendiliğinden yürür. Canlılar bu mekanizma sayesinde su alımını ortamda su bulunduğu sürece garanti altına almış olur.
Gözlenen hücreler ve organeller gibi canlı yapılarda net su alımının hücrenin çeperi, komşu hücrelerin veya dıştaki sıvı ortamın hücre üzerindeki karşı basıncının etkisi ile dengeye vardığında duruşudur, bu sayede yapının şişerek patlaması engellenmiş olur. Bu basınca da geçişme - osmoz basıncı, osmotik basınç denir. Çünkü büyüklüğü osmotik alımla sağlanan çözünmüş madde miktarı ile doğrudan ilişkilidir. Sonucu olarak da bir hücrenin hacminde değişime neden olan etkin osmotik basınç farkı yarı - geçirgenlik ve seçicilik sayesinde yayınımla sağlanabilecek olan madde hareketi miktarından çok daha yüksek olur.
Temeldeki denge ise aynı türden iyonların membranın iki yüzü arasındaki kimyasal potansiyel farkının sıfır olmasıdır ve hidrostatik basınç farkının bu dengeye katkısı ihmal edilebilecek kadar küçüktür. Ana değişken ise membranın iki yüzü arasındaki elektriksel potansiyel farkıdır ve küçük bir orandaki değişimi bile çok daha büyük orandaki kimyasal potansiyel farkını, yani derişim farkını dengeleyebilir. Gene bu mekanizma canlı hücreye membrandaki iyonik madde kompozisyonunu düzenleyerek kolayca iyon alımı olayını denetleme olanağı verir.
20. yüzyılın başlarında Nernst başta olmak üzere araştırıcılar tarafından kuramsal temelleri atılarak asrın ortalarında kesinleşen bu bulgular 1967 yılında Vorobie tarafından Chara tatlısu alginin K iyonu alımı üzerindeki deneylerle kanıtlanmıştır.
Hücre çeperi gibi hücrenin denetimi dışında kalan ve kütle akışı ile difüzyonun geçerli olduğu kısım için kullanılan terimlerden biri belirgin serbest alan (BSA) - “apparent free space”dir.
Su alımı için iç osmotik basıncın dış ortamdan yüksek, hücre özsuyunun hipertonik olması gerekir. Yani toplam çözünmüş madde derişimi daha yüksek olmalıdır. Bu durumda herbir maddenin difüzyon basıncı farklı olacağından su moleküllerini geçiren zardan su kendi kinetik difüzyon dengesini sağlayıncaya kadar geçiş yapar.
Hipertonik hücre turgor halindedir, sitoplazma çepere yapışık durumdadır. Çünkü osmotik basınç artışı çeperin karşı yöndeki basıncı ile dengelenmiştir. Hücre özsuyunun izotonik osmotik basınca sahip olması halinde bir kısım suyunu kaybeder ve sitoplazmanın çeperden ayrılmaya başladığı görülür. Bu duruma sınır plazmoliz adı verilir ve izotonik osmotik basıncın ölçümünde kullanılır. Hücrenin iç osmotik basıncının dış basınçtan daha düşük olduğu hipertonisite durumunda sitoplazma çeperden ayrılarak ortaya toplanmaya başlar, hücre plazmolize olur.
Hücrede plazmoliz ilerledikçe klasik deyimi ile emme kuvveti artar, daha yeni terminolojideki karşılıkları ile difüzyon basıncı eksikliği -“diffusion pressure deficit” - DPD” (DBE), su potansiyeli artar.
Bunun da nedeni serbest haldeki suyun serbest enerjisinin adsorpsiyon veya adezyon, kohezyon ile tutulmuş olan sudan az oluşudur. Hücrenin yeniden turgor haline geçme, deplazmolize olma, yani plazmoliz durumundan kurtulma eğiliminin sonucudur. Tam turgor halindeki hücrede ise iç ve dış basınçlar eşit olduğundan su potansiyeli, yani net su alımı sıfır olur. Burada devreye doğal olarak hücre çeperinin elastiklik derecesi de girer. Bu nedenle ve henüz alöronlar gibi susuz bir hacim oluşturan yapılar olmadığından hacme oranla su miktarı meristematik dokularda yüksektir.
Plazmoliz sırasında protoplazmanın tümüyle küçüldüğü, büzüldüğü deplazmolizde ise şiştiği görülür. Hücre özsuyunda serbest çözücü durumundaki suyun kaybından sonra sitoplazmik proteinlerin hidratasyon kaybı - dehidratasyonu sitoplazma hacminin değişmesine neden olur. Difüzyon basıncı eksikliğinin en yüksek olduğu tohumlar, dehidrate likenler gibi yapılarda su alımı ile deplazmoliz sertleşmiş alçıyı parçalayabilecek oranda hidratasyona ve deplazmolize neden olur. Hidratasyon termik hareketliliğin ve entropinin artışına neden olarak yapısal protein, sellüloz gibi moleküllerin zincirlerininin gevşemesine ve daha kolay bozunur hale gelmesine neden olur. Bu yüzden bir süre ıslatılmış olan bakliyat daha kolay pişer.
Hücreler arasında su alışverişinin debisi bu çerçevede çeper ve membranların geçirgenliği ile DBE farkına bağlıdır. Fakat izotonik çözeltiler arasında bile plazma membranları madde alışverişini sağlar. Su içinde yaşayan bitkilerde süreklilik gösteren bu durumda madde alışverişini sağlayan kütle akımı ve özellikle de elektroosmozdur.
Elektroosmoz bir iyon iletimi mekanizması ise de polarite nedeniyle hidrate olan iyonların yani kinetik taneciklerin çevrelerindeki su moleküllerini sürüklemesi sayesinde suyun da taşınmasını sağlar. Kinetik tanecikler iyonlar ile onları çeviren dipol su moleküllerinden oluşan, yani birarada termik hareketliliği olan tanecikler olup toplam kütlelerinin daha yüksek oluşu ve elektrostatik bağların zayıf oluşu nedeniyle termik hareketlilikleri yüksek taneciklerdir. Membranlardaki porlar boyunca yaratılan elektrik alanları, yani endotermik olarak belli bir yönde kutuplandırılan polar molekül dizilişleri üzerinden kayarak iyonik maddelerin taşınması gerçekleştirilir. Bu konu mineral madde beslenmesi içinde ele alınacaktır.
Su moleküllerinin iyonlara kendiliğinden yapışarak kinetik tanecikler halinde iletilmesi iyon kaynağı durumundaki hücrede serbest su derişimini azalttığından DBE artar.
Bu tür enerji gerektiren iyon ve su beslenmesine aktif madde alımı adı verilir. Örneğin tuzcul bitkiler, halofitler osmotik basıncı yüksek tuzlu topraklarda dahi beslenmelerini sağlarlar. Kserofitler çok kurak koşullarda kuru topraklardan su alabilirler. Aktif iyon alımı yaygın görülen bir olaydır, buna karşılık aktif su alımı özel durumlarda görülür. Bu nedenle aktif iyon alımı bitki yaşamında daha önemli yer tutar.
Fizyoloji
-
BESLENME FİZYOLOJİSİ
-
BİTKİ FİZYOLOJİSİNİN KONUSU VE DALLARI
-
Kalp
-
BÖBREK ÜSTÜ BEZLERİ VE HORMONLARI
-
Hayvan Fizyolojisi Laboratuvar Kılavuzu
-
Akciğer hacim ve kapasiteleri
-
Solunumda Hava Akışı ve Hacim
-
Kan basıncı ve nabız
-
Kan Basıncı ve tansiyon ölçülmesi ve Kan
-
Elektromiyografi
-
İskelet Kası: Genel Bilgi
-
Kalp Kapakçıkları ve Kalp Sesleri
-
Beynin çalışmadığı durumlarda dahi, kalp nasıl çalışıyor?
-
Elektrokardiyogram ve Kalp Sesleri
-
Stannius Bağları