Ekolojik Fırsat: Adaptif Yayılmanın Tetikleyicisi
Ekolojik fırsat, türlerin farklılaşmasında hayati bir öneme sahip olup adaptif yayılmanın başlamasında anahtar bir rol oynamaktadır.
Özellikle evrimin işlevsel sürecinin Darwin (1859) tarafından tanımlanmasından bu yana, türlerin gezegenimizde nasıl çoğaldığı uzun bir süredir biyologların ilgisini çekmektedir. İnsanlar, dünyanın birçok bölgesinde farklı ekolojiye ve biçimlere sahip benzer organizmaların çeşitliliğini gözlemleyebilirler. Örneğin; Kuzey Amerika’da biçim, renk ve vücut uzunluklarına göre belirgin bir biçimde farklılaşan Lampropeltini (Görsel 1) familyasına ait 35 keme yılanı türünden herhangi birisiyle kolaylıkla karşılaşabilirsiniz. Bu grup içerisindeki türler; beslenme alışkanlığı olarak sürüngen yumurtaları, diğer yılanları, kertenkeleleri, kuşları ve küçük memeleri ve ayrıca yaşam alanı olarak da çölleri, otlak alanları, tropik yağmur ormanları ve yaprak döken kuzey ormanlarını içeren geniş bir yelpazedeki ekolojiyi tercih etmektedirler. Biçim ve ekolojideki bu aşırı farklılık karşısında, tüm bu çeşitlenmelerin zaman içerisinde nasıl ortaya çıktığını sorabilirsiniz. Tüm bu türlerin biçimsel ve ekolojik farklıkları standart ve değişmeyen bir hızda mı başlayıp çoğalmakta yoksa uygun, boş bir ortam ortaya çıktığında mı hızlı bir biçimde bu alanı doldurmaktadırlar?
Görsel 1: Yeni Dünya Keme Yılanlarını temsil eden türler (Lampropeltini). Sol üstten saat yönüne doğru: Pituophis catenifer, Lampropeltis triangulum, Pantherophis alleghaniensis, L. splendida, Rhinocheilus lecontei, Pantherophis guttatus. © 2012 Nature Education Sol üstten saat yönüne doğru olan fotoğrafların hak sahipliği sırasıyla: E. Myers; R. A. Pyron; R. A. Pyron; S. Ruane; S. Ruane; S. Ruane. Tüm hakları saklıdır.
Paleontologlar, ilk başta akraba bir gruptan ortaya çıkan biçimsel olarak farklı çok sayıdaki türün, fosil kayıtlarında genellikle hızlı bir şekilde ortaya çıktığını söylemişlerdir (Simpson, 1944, Sloss, 1950, Foote 1993). Bu modeli sıklıkla, soy tükenmesi ortaya çıktıktan itibaren en sonunda taksonlarda nihai bir azalmaya sebebiyet veren, akabindeki daha genç stratigrafik tabakaların içinde var olan söz konusu gruptaki yeni türlerin sayısında bir düzeltme (dengeleme) takip eder. Bu model ile ilgili süreci tanımlayan Simpson (1953); akraba olan bir grubun taksonunun, çok farklı ekolojilerle çeşitli birçok biçim üreterek ve hızlı bir şekilde türleşerek boş ortamları dolduracağını öne sürmüştür. Mevcut ortam hantallaştığında ise türleşme hızı yavaşlamaya başlayacaktır. Bu erken ve hızlı türleşme modeline, evrimsel açıdan bol miktarda mevcut kaynakla karşılaşan doğal seçilimin sakinleşmesi olarak tanımlanan ekolojik fırsatın (EF) sebep olduğu düşünülmektedir (Schluter 2000, Glor 2010, Yoder ve ark. 2010). Bu nedenle, dünyanın en olağanüstü adaptif yayılmalarının birçoğu, birçok şartta ancak akraba olmayan taksonlar tarafından kullanılabilecek kaynakların tüketimini gerçekleştiren taksonları içerir. Anakarada bülbül ve ağaçkakanların doldurduğu yaşam alanlarını adalarda ispinozların doldurması ve dünyanın herhangi başka bir yerinde bulunan plasentalı memeliler tarafından doldurulmuş homolog ekolojik rollere ayrılmış olan Avustralya’nın keseli memelileri bu kavrama örneklerdir (Schluter 2000, Phillips ve ark. 2006).
Söz konusu model ilk kez fosil kayıtlarında fark edilmesine rağmen evrimsel biyologlar, aynı zamanda, ekolojik fırsatın mevcut türler üzerindeki etkilerini de gün yüzüne çıkarmışlardır. Araştırmacılar, zaman ayarlı moleküler soyoluşları (gelişimleri) kullanarak zamanla ortaya çıkan türleşme safhasını incelemişlerdir (Görsel 2). Eğer EF bir grubun ortaya çıkması sırasında mevcut olmuş ise, çoğu noktanın (türleşme olaylarının) sıklığının söz konusu grubun erken tarihlerinde kümelenmesini bekleriz (Purvis ve ark. 2009). Bir istatistik bunu “y” spektrumunu negatiften (türleşmenin erken tarihli patlama yapmasını temsilen), 0’a (zaman içerisindeki eşit türleşmeyi temsilen) ve pozitife doğru (türleşmenin geç patlak vermesini veya büyük, erken bir soy tükenmesini temsilen; Pybus & Harvey 2001) göstermektedir. Kuşlar, kertenkeleler ve yılanların içerisinde bulunduğu çeşitli organizmaların moleküler soyoluşlarını kullanan birçok örnek, erken türleşme patlamasının ekolojik fırsat ile bağlantısını göstermektedir. Bu gelişimsel modellerin analiziyle ilgili sayı ve verilerin yorumlaması gelişirken, soy tükenmesi ve yetersiz tür örneklemenin zaman içerisinde ortaya çıkan çeşitlenmelerin (türleşmeden tükenmeyi çıkararak) tahminleri konusunda yanlış modeller ortaya çıkarabileceğine dair endişeler de vardır (Purvis ve ark. 2009, Rabosky 2010). Yine de ekolojik fırsattan şüphelenilen durumlardaki erken ve hızlı çeşitlenmenin kuvvetli işaretleri hala genel geçerdir (Phillimore & Price 2009).
Görsel 2: Kladogenesisin üç modeli ve türlerin sayısının artışını gösteren soyoluşlar, zaman çizelgesi boyunca nesil sayıları ve gama değerleri. (A) Zaman içerisindeki eşit oranlar (hızlar), modellerin çeşitlenmesindeki boşluk hipotezi (γ=0.05). (B) Kladogenesisin ve türlerin çoğalmasının erken patlak vermesi, EF değerinin altında beklenilen model (γ=-3.39). (C) Türleşmenin geç patlak vermesi veya erken soy tükenmesi (γ=3.20). © 2012 Nature Education Edward Myers izniyle. Her hakkı saklıdır.
Moleküler soyoluşların ve fosil kayıtlarının, erken türleşmedeki belirtileri gösterebildiği açıkça görülmektedir. Ancak biçimsel farklılıklar da bir grubun tarihi boyunca yavaş ve hızlı bir şekilde değişir mi? Paleontolojik araştırma trilobit ve derisidikenlilerin biçimlerinin her grubun tarihinde en hızlı değişim gösterdiğine işaret etmektedir (Foote 1993). Son zamanlarda, soyoluşsal karşılaştırma yöntemleri, ekolojik fırsatın mevcut nesillerdeki biçimsel farklılaşma üzerindeki etkilerini incelemek üzere geliştirilmektedir (Harmon ve ark. 2003). Bu testler, organizmaların farklı ekolojilere hızlı bir şekilde uyum sağlayacağı ve biçimsel farklılık açısından çok farklı adalarda kendilerine yer bulacakları fikrine dayanmaktadır. Bu adalar içerisinde biçimsel farklılığın düşük seviyede olması beklenmektedir. Bu yöntemleri ele alan çalışmaların sonuçları erken türleşme ile taksonun, alt türler içerisinde değil de, bunlar arasında bir biçimsel farklılaşma ortaya çıkaracaktır (Harmon ve ark. 2003, Burbrink & Pyron, 2010). Bu da geçmişlerinde erken farklılaşan taksonların uygun boş alanları dolduracağını ve gelecekteki alt türlerin ekolojik farklılaşmasına da çok az fırsat tanıyacağını öne sürmektedir (Görsel 3). Yine de bazı karşılaştırmalı araştırmalar bir taksonun erken geçmişindeki biçimsel farklılaşma patlaması modeliyle çelişmekte; bunun yerine ise bir adaptif yayılma içerisindeki biçimsel evrimin seçilimle sınırlandırıldığını öne sürmektedir (Harmon ve ark. 2010).
Görsel 3: Zaman içerisindeki biçimsel farklılaşma. Mavi çizgi aynı tür içerisindeki boş dağılımı, yeşil çizgi aynı tür boyunca dağılım gösteren farklılaşmayı, kırmızı çizgi ise ekolojik fırsat gereği farklılaşmaya işaret eden düşük alt tür başkalaşma modelini göstermektedir. © 2012 Nature Education Edward Myers izniyle. Her hakkı saklıdır.
Ekolojik fırsat ve hızlı türleşme boş yaşam alanlarına bağlıdır, ancak bu uygun ekolojilerin nasıl ortaya çıktığını henüz tartışmadık. Simpson (1953) tarafından öne sürülen, bir organizma için açık yaşam alanlarının nereler olduğu konusunda dört adet durum vardır: 1) Yeni ulaşılabilir kaynakların başlangıcı 2) Yeni bir kara parçasının işgali 3) Yırtıcıların veya rekabetçilerin soyunun tükenmesi 4) Önemli bir yeniliğin evrimi. Ek olarak, bu kaynaklar adaptif bir yayılma ortaya çıkarmak için birlikte de çalışabilirler. EF’nin ilk kaynağında ortaya çıkan bir grup organizmanın farklılaşması neticede başka alakasız bir tür grubu için ekolojik fırsat yaratabilir – yani bir önceki grubun yayılma süreci diğer grup için el değmemiş boş alanlar yaratabilir (Losos 2010). Bu durum, buğday bitleri ile çiçekli bitkilerin beraber evrimi hakkında olan yakın zamanlı bir çalışmada gösterilmiştir (McKenna ve ark. 2009). Buğday bitleri, son derece farklı ekolojileri olan otçul böceklerin (aşağı yukarı 62,000 tür) farklı bir grubudur. Araştırmacılar, buğday biti ile kapalı tohumlu bitkiler arasındaki ilişkinin evrimsel tarihini inceleyebilmek için buğday bitlerinin önemli ilişkilerini ve farklılaşma zamanlarını netleştirmeyi amaçlamaktadırlar. Fosil ve moleküler diziliş verisi kullanılarak zaman ayarlı bir soyoluş oluşturulmuştur. Bir önceki kapalı tohumlu bitkilerin Kretase dönemi boyunca olan baskınlığına karşı, büyük buğday biti türlerinin farklılaşma zamanları karşılaştırılmıştır. Sonuçlar, kapalı tohum bitkilerinin sayısındaki büyük artışın ve ilgili buğday bitlerindeki çeşitlenmenin orta Kretase dönemi boyunca neredeyse eş zamanlı olarak ortaya çıktığını göstermektedir (McKenna ve ark. 2009).
El değmemiş bir yaşam alanının istilasındaki takson ve yırtıcıların rekabetindeki azlık EF’nin bir başka ve belki de en yaygın kaynaklarından birisini ortaya çıkarır. Galapagos ispinozları ve büyük antillerden olan kertenkeleler gibi ücra adalardaki kolonileşme ve bu boş kara parçalarında bunu takip eden farklılaşma, el değmemiş yaşam alanlarının istilası yoluyla EF’nin klasik örnekleridir. Diğer kaynaklar ise dağ sıralarının yükselmesi sonucu oluşan yaşam alanlarını (Hughes & Eastwood 2006) veya tamamen rekabetsiz kıtasal alanlara ayrılmasını içine almaktadır (Burbrink & Pyron 2010). EF’nin kıtasal ölçekte incelenmesi göz karartan bir iş olarak görünebilir, ancak bu kıtalar en geniş alanları ve en çeşitli yaşam alanlarını sağlamasından dolayı, yaşam çeşitliliğinin çoğuna kaynaklık edebilirler. Makalenin en başındaki örneğimize geri dönersek, Yeni Dünya keme yılanlarının çeşitliliği son zamanlarda ekolojik fırsat hipotezine hitap etmek için kullanılmaktadır. Bu grup, yaklaşık 24 milyon yıl önce kadar Asyalı bir atasından Kuzey Amerika’daki kolonileşmelerinin erken safhalarında hem tür sayısı hem de biçimsel açıdan farklılaşmışlardır. Bu kolonileşme, Yeni Dünya yılan nüfusunun benzer şekilde gelişmiş yılan türleri tarafından geniş çapta baskılanması sonucu ortaya çıkmıştır (Burbrink & Pyron 2010). Söz konusu hızlanmış erken farklılaşma oranları zaman içerisinde ciddi ölçüde yavaşlamıştır. Araştırmacılar, ekolojik fırsatın düşüşe geçmesi sebebiyle ekolojik alanların doyma noktasına gelmesinin, farklılaşmada nüfus yoğunluğuna bağlı etkilere sebep olmuş olabileceğini göstermişlerdir (Burbrink & Pyron 2010). Bu çalışmanın sonuçları, el değmemiş kara parçalarının istilasının hızlı farklılaşmayı teşvik edebileceğini ve bunun sonrasında gelen rekabetin ise, EF hipotezini daha da kuvvetlendirecek şekilde, biçimsel evrimi etkileyebileceğini göstermiştir (Burbrink & Pyron).
Ekolojik toplulukların bütünüyle yeniden organize olmasıyla sonuçlanan uç durumlarla birlikte rekabet içindeki hayvanların veya yırtıcıların yok olmasını takip eden bir olaydan sonra türlerin sıklıkla hızlı bir farklılaşma geçirdikleri uzun zamandır bilinmektedir (Wolfe & Upchurch 1986, Smith ve ark. 2010). Bazı araştırmacıların memelilerin farklılaşmasının çok daha sonra olduğunu söylemesine rağmen, EF’nin bu üçüncü kaynağının güzel bir örneği de Dünya üzerindeki yaşamın %76’sını sonlandıran ve ardından memelerin ortaya çıkışına sebep olan Kretase/Üçüncü zaman (K/Ü) evrensel toplu yok oluştur (Bininda-Emonds 2007). Bu olay memelilere birçok ekolojik role ayrılmasını ve vücut büyüklüğünde artış sağlayan ekolojik fırsatı sunmuştur (Smith ve ark. 2010). Son zamanlarda araştırmacılar, kara memelileri için kıtalar, soy ağaçları ve ekolojik birlikler boyunca tarih sürecinde en büyük vücut büyüklüğünü bulmak için fosil kayıtlarından elde edilen verileri incelemişlerdir. Sonuçlar maksimum büyüklüğün türleşmeden 40 milyon yıl sonrasında son halini aldığını ve bundan sonra sabit kaldığını göstermiştir. Araştırmacılar uçamayan dinozorların soyunun tükenmesinden sonra birçok yaşam alanının boş kaldığını ve bu alanların memelilerin farklılaşması ile doldurulduğuna işaret etmektedirler. Dahası, araştırmacılar memelilerin yayılmasının maksimum vücut büyüklüğünde ve ekolojilerde yakınsaklığa yol açtığını, bunun nedeni olarak da farklı yer ve zamanlarda benzer yaşam alanlarının farklı soyoluşsal nesillerle doldurulması olarak göstermektedirler (Smith ve ark. 2010).
Ayrıca, anahtar yeniliğin evrimi organizmaların yeni kaynakları kullanması için bir mekanizma olarak öne sürülmüştür. Böylelikle ekolojik fırsata erişim kazanmaktadırlar (Schluter 2000). Anahtar yenilik, bir taksona dış çevrede herhangi bir değişiklik yaratmaksızın çevresiyle farklı bir şekilde etkileşime geçmesini sağlayan yeni evrimleşmiş bir özellik olarak tanımlanır (Losos 2010, Yoder ve ark. 2010). Kuşlar, yarasalar ve uçan sürüngenlerdeki kanat oluşumu; gekoların yapışkan ayak yüzeyleri; otobur böcekler; kapalı tohumlular grubundaki nektarlı çiçek sürgüleri; pullu sürüngenlerdeki yumurtlama-doğurma gibi örnekleri içeren birçok özellik adaptif evrime yol açan anahtar yenilik olarak öne sürülmüştür (Hodges & Arnold 1995, Schluter 2001, Lynch 2009, Losos 2010). Ciddi ölçüde mevsim farklılıklarının görüldüğü yaşam alanlarındaki sıcaklıklarla baş etmek için doğurganlığı anahtar yenilik olarak gören hipotez, doğuran ve yumurta bırakan engerek toplulukları arasındaki farklılaşma oranlarını öğrenmek için soyoluşsal yöntemler kullanılarak test edilmiştir (Lynch 2009). Bunun sonucunda doğuran türlerin zaman içerisinde sabit bir oranda farklılaştığı; buna karşın, daha soğuk olan, Oligosen dönemin başında yumurtlayan türlerde ise farklılaşma oranında azalma olduğu bulunmuştur. Sıcaklıktaki bu evrensel düşüş, yumurtlayan engerek türlerindeki farklılaşma oranlarının azalmasından doğrudan sorumludur (Lynch 2009). Sonuçlar, evrensel soğumanın muhtemel olumsuz etkilerine karşı doğurmanın canlı-doğuran türlere [yumurtlayanlara kıyasla] bir koruma sağladığı ve bu yüzden de canlı-doğuran engereklerin daha soğuk iklimlerde farklılaşmasını teşvik eden bir anahtar yenilik olduğunu söylemektedir (Lynch 2009).
Ekolojik fırsat süreci kanalıyla adaptif yayılma, hem tükenmiş hem de var olan taksonları içine alarak hayatın çeşitliliğini önemli derecede açıklamaktadır. Adaptif yayılmanın tetikçisi işlevini gören ekolojik fırsat düşüncesi hem yaşayan hem de nesli tükenmiş organizmaları kullanan sayısız örnek ile gösterilmiştir. Ekolojik fırsat, bir grubun tür sayısı ve biçimsel özelliklerinde hızlı farklılaşmalar görmesine olanak verir. Ek olarak, alt türlerdeki biçimsel ayrılıkların grubun erken geçmişinde azalması beklenir çünkü ekolojik alan bu alt türler arasında paylaşılmıştır. Ne yazık ki, çeşitlilik testleri sınırlı sayıdaki takson grupları dahilinde gerçekleştirilmiştir. İleriki araştırmalar muhtemelen, bir taksonun evrimsel tarihine dair sağlam hipotezler oluşturmak için daha fazla takson ve bununla beraber daha fazla gen örnekleme (örn: gelecek nesil dizeleme işlemi) yapacaktır. Farklılaşma oranlarındaki farkları belirlemede sağlam moleküler soyoluşlara ihtiyaç duyulsa da bunlar, farklılaşma gidişatı ve nesil tükenme oranları açısından belirleyici olmayabilirler (Quental & Marshall 2010). Bu nedenle, farklılaşma sürecinin araştırılmasında, farklılaşma hızı ve biçimini daha iyi kavramak açısından, moleküler soyoluşlar ve fosil verilerinin daha iyi bir sentezi gerekmektedir.
Yazar: Edward A. Myers (Department of Biology, The Graduate School, The City University of New York) & Frank T. Burbrink (Dpt. of Bio., The College of Staten Island & Dpt. of Biology, The Grad.School, The Uni. of New York) © 2012 Nature Education
Orjinal Kaynak: Nature
Çeviren: Ozan Gençtoprak
Düzenleyen: Ayşegül Şenyiğit
Kaynaklar ve İleri Okuma:
Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507-512 (2007).
Burbrink, F. T. & Pyron, R. A. How does ecological opportunity influence rates of speciation, extinction, and morphological diversification in new world ratsnakes (tribe Lampropeltini)? Evolution 64, 934-943 (2010).
Darwin, C. On the Origin of Species by Means of Natural Selection, or The Preservation of Favored Races in the Struggle for Life. London, UK: John Murray, 1859.
Foote, M. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19, 185-204 (1993). Glor, R. E. Phylogenetic insights on adaptive radiation. Annual Review of Ecology, Evolution, and Systematics 41, 251-270 (2010).
Harmon, L. J. et al. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961-964 (2003). Harmon, L. J. et al. The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Systematic Biology 57, 562-573 (2008).
Harmon, L. J. et al. Early burst of body size and shape evolution are rare in comparative data. Evolution 64, 2385-2396 (2010). Hodges, S. A. & Arnold, M. L. Spurring plant diversification: Are floral nectar spurs a key innovation? Proceedings of the Royal Society B: Biological Sciences 262, 343-348 (1995).
Hughes, C. & Eastwood, R. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences of the United States of America 103, 10334-10339 (2006).
Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. The American Naturalist 175, 623-639 (2010).
Lynch, V. J. Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the cenozoic. Evolution 63, 2457-2465 (2009)
McKenna, D. D. et al. Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Sciences of the United States of America 17, 7083-7088 (2009).
Phillips, M. J. et al. Combined mitochondrial and nuclear DNA sequences resolve the interelations of the major Australasian marsupial radiations. Systematic Biology 55, 122-137 (2006).
Phillimore, A. B. & Price, T. D. Density-dependent cladogenesis in birds. PLoS Biology 6, e71 (2008).
Pybus, O. G. & Harvey, P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society B: Biological Sciences 267, 2267-2272 (2001).
Purvis, A. et al. "Temporal patterns in diversification rates," Speciation and Patterns of Diversity, 278-300. eds. R. K. Butlin, J.
R. Bridle & D. Schluter Cambridge, UK: Cambridge University Press, (2009). 8/2/2017 7/7
Quental, T. B. & Marshall, C. R. Diversity dynamics: Molecular phylogenies need the fossil record. Trends in Ecology & Evolution 25, 434-441 (2010).
Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816-1824 (2010). Schluter, D. The Ecology of Adaptive Radiation. Oxford, UK: Oxford University Press, 2001.
Simpson, G. G. Tempo and Mode in Evolution. New York, NY: Columbia University Press, 1944.
———. The Major Features Of Evolution. New York, NY: Columbia University Press, 1953. Sloss, L. L. Rates of evolution. Journal of Paleontology 24, 131-139 (1950).
Smith, F. A. et al. The evolution of maximum body size of terrestrial mammals. Science 330, 1216-1219 (2010).
Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23, 1581-1596 (2010).
Wolfe, J. A. & Upchurch, G. R. Jr. Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature 324, 142-152 (1986)
Evrim Ağacı: "Ekolojik Fırsat: Adaptif Yayılmanın Tetikleyicisi "
http://www.evrimagaci.org/article/tr/ekolojik-firsat-adaptif-yayilmanin-tetikleyicisi
Ekoloji Haberleri
-
2100 yılı için sığ kıyı ekosistemlerinin kaderini tahmin etmek
-
Ülkeler mercanlara yardım için 12 milyar dolar toplama sözü verdi
-
Dünyadaki biyolojik çeşitliliğin üçte ikisi toprakta yaşıyor
-
Derin denizlerin eşsiz güzellikleri "Mercan Resifleri"
-
Canlıların korunma statüleri,
-
Çevreye Etkin Bir Yaklaşım: Kişisel Karbon Ayak İzi Hesaplama ve Azaltma Stratejileri
-
Deterjanların Çevre Üzerindeki Etkileri ve Sürdürülebilir Yaklaşımlar
-
İnsan Türlerinin Melezleşmesi, İklimle Yakından İlişkiliydi
-
Yağmur yağacağını koklayabiliyor musun?
-
İklim değişikliği çocuk sağlığını riske atıyor
-
Kaplumbağa Fosili, 150 Milyon Yıl Önceki Habitatı Aydınlatıyor
-
El Nino geri döndü! Ne kadar kötü olacak?
-
Okyanuslar iklim değişikliği nedeniyle daha yeşil hale geliyor
-
İklim Değiştikçe İnsanlar Farklı Habitatlara Uyum Sağladı
-
Hailuogou buzul bölgesinde orman nasıl gelişti?