Çeşitlilik açıklanıyor
Darwin değişkenlerin nereden geldiğini söyleyememenin yanısıra yeni özelliklerin bir sonraki nesillerde nasıl yayıldığını da açıklayamadı. Yavrunun ebeveynlerin özelliklerinin karışımını aldığı karma kalıtıma (blending inheritance) inanıyordu. Ancak Darwin bile bu kuramın sorunlu olduğunu anlamıştı, çünkü eğer özellikler gerçekten karışmış olsaydı, herhangi nadir ve yeni bir özellik, bu özelliği taşımayan bireylerin nesiller boyu çoğalmasıyla giderek seyrelirdi.
Karma kalıtımla ilgili karışıklık 1900 yılında, Gregor Mendel'in 1850'lerde ve 1860'larda yürüttüğü ünlü bezelye yetiştirme deneylerinin yeniden ele alınmasıyla ortadan kalktı. Avusturyalı rahibin bahçesinde yetiştirdiği bezelye bitkileri, uzun veya kısa gövdeler, kırışık veya düz tohumlar gibi belirgin biçimsel farklar gösterdiler. Ters özellikleri olan safkan bezelye bitkileri bibiriyle döllendiğinde ortaya çıkan bitki genellikle iki ebeveynden birine benziyordu. Ancak sürdürülen döllenmeler sonucunda, bir özelliğin her iki çeşidi de ileriki nesillerde bozulmamış biçimiyle yeniden ortaya çıkıyordu, bu da değişik biçimlerin genetik blgilerinin karışmamış olduğunu gösteriyordu. Mendel'in deneyleri, kalıtsal değişkenlerin geçici ve birbirine karışabilen öğeler olduğu yolundaki genel kanıyı, görünebilir olmasa da var olan, ve ebeveynlerden yavrulara geçen gizli öğeler olduğu yönünde değiştirdi.
Kısa bir süre sonra, Mendel'in "genetik öğelerinin" şaşırtıcı bir biçimde hücrenin çekirdeğindeki kromozomların davranışlarında yansıdığı bulundu. "Türlerin Kökeni Üzerine"nin 50. yıl dönümünde, değişkenlerin kaynağı hala bilinmemesine rağmen, genetik bilgi fiziksel bir varlık haline dönüşüyordu, ve sonunda çekirdek içindeki teller biçiminde görünür hale geldi. Kitabın basımının 100. yıldönümünde, kromozomlardaki kalıtsal bilginin büyük bir asidik polimer olan "deoxyribonucleic acid" yani DNA'ya dayandığı bulundu. James D. Watson ve Francis Crick 1953'de DNA molekülünün yapısını ortaya çıkardılar, bu olayın kalıtımı ve çeşitliliği fiziksel olarak kavramamızda çarpıcı etkileri oldu.
DNA, omurgası şeker ve fosfatın yinelenen zincirlerinden yapılmış, uzun ve iki telli bir sarmaldır. Polimerin iki teli, dört olası kimyasal bazın karşılıklı eşlenmesiyle bir arada tutulur, bunlar; adenine, cytosine, guanine ve thymine'dir (A,C,G,T), ve aynı zamanda basit bir genetik dilin de temelini oluşturur. Tıpkı İngiliz alfabesindeki 26 harf gibi, DNA alfabesindeki dört harf, ebeveynden yavruya geçen değişik komutları heceleyerek, sarmalın bir telinde herhangi bir sırada dizilebilir.
DNA'nın yapısı
Çift telli sarmal yapı aynı zamanda genetik bilginin kopyalanması için de basit bir gereç oluşturur. C'ler her zaman G'lerle, ve A'lar da her zaman T'lerle molekülün ortasında birleşir; bu bağlar birbirini tamamlayan büyüklük, biçim ve karşılıklı kimyasal grupların tutunma özellikleri tarafından tayin edilir. Böylece, DNA sarmalının iki teli ayrıldığında her bir teldeki harflerin dizilimi telin diğerini inşa etmede bir şablon olarak kullanılabilir.
Watson ve Crick'in bulduğu DNA yapısı kendiliğinden olan çeşitliliğin fiziksel bir temeli olduğunu derhal gösterdi. Hücre bölünmesinden önce fiziksel zarar görme (örn.radyasyona maruz kalarak), veya DNA molekülünün kopyalanması sırasında gerçekleşen hatalar DNA'nın normal harf dizisini değiştirebilir. Mutasyonlar çok çeşitli biçimler alabilir; polimerin belli bir pozisyonundaki harfin yerine başka bir harf geçmesi, harf kümelerinin silinmesi, harflerin çoğalması ya da yeni harflerin sokulması, harf dizilerinin tersine çevrilmesi veya yerlerinin değişmesi gibi. Böylesi değişiklikler DNA yapısı önerildiğinde (1950'lerde) hala kuramsaldı. Ancak Darwin'in ünlü kitabı "Türlerin Kökeni Üzerine"nin 150. yıldönümü yaklaştığında, büyük ölçekli sıralama yöntemleri genomların tamamının okunmasını ve (Darwin'in önerdiği evrimsel sürecin ham maddesi olduğu anlaşılan genlere dayalı olan) genetik çeşitliliğin analiz edilmesini benzeri görülmemiş bir biçimde olanaklı kıldı.
Çeşitli organizmaların ve yavrularının DNA sıralamasını yaparak, ve nesilden nesile geçen uzun DNA zincirinde kendiliğinden olan değişiklikleri inceleyerek bilim adamları, böylesi mutasyonların oldukça düzenli bir biçimde gerçekleştiğini açık bir biçimde gösterdiler. (Doğaldır ki yalnızca tohum hücrelerinde olan mutasyonlar yavruya geçebilir ve bu şekilde saptanabilir.) Mutasyonların mutlak oranları türden türe değişim gösteriyor ancak her bir nükleotid, nesil ve baz-çifti yergeçimi (substitution) başına tipik ortalama 10-8 dir. Bu frekans küçük gibi görünebilir ancak pek çok bitkinin ve hayvanın çok büyük bir genomu vardır. Genomunda 100 milyon ve hatta 10 milyar baz çifti olan çok hücreli hayvanlarda, bazı spontone tek baz-çifti değişikliklerin kalıtsal bilginin bir sonraki nesile geçtiği her durumda gerçekleşmesi kuvvetli bir olasılıktır.
Bazı yergeçim tiplerinin diğerlerine göre olma olasılığı daha fazladır, bu durum DNA bazlarının kimyasal dengesine ve yapısal özelliklerine bağlıdır. Buna ek olarak bazı büyük (uzun) dizi değişimleri, tek baz-çifti değişikliklerinin genel ortalama oranından çok daha fazla sıklıkla gerçekleşir. Bir sırada sekiz veya daha fazla aynı harfi içeren ve homopolimer diye bilinen DNA dizileri DNA kopyalanması sırasında kopyalama hatalarına yol açmaya son derece eğilimlidirler. Mikrouydu diye bilinen ve iki, üç, veya daha fazla nükleotid dizisinden oluşan ve sürekli yinelenen bölgeler de böyledir.
Genomdaki tüm bu kendiliğinden oluşan değişiklikler, kendi türümüz de dahil olmak üzere, aynı türün içinde bile, eklene eklene çeşitliliğe neden olur. Tarihsel bir dönüm noktası olan 2003 yılında 3 milyar baz çiftinden oluşan insan genomunun tamamının referans dizisi, dört yıl sonra da Watson'un neredeyse tamamlanmış kişisel genomu belgelendi, böylece iki insana ait DNA dizilerinin birbiriyle karşılaştırlması olanaklı oldu, bu örnekler daha sonra Celera'nın kurucusu Craig Venter'in genom dizisi de katıldı. Bu üç dizinin yan yana karşılaştırılması ilginç bulguları ortaya çıkardı.
Öncelikle, her bireyin genomu, referans dizisinden yaklaşık olarak 3.3 milyon tek baz-çifti kadar değişim gösteriyordu, bu da ortalama her 1000 bazdan birinin değişik olduğuna karşılık geliyordu. Her ne kadar daha büyük DNA bölgelerindeki silinmeler ve eklemeler tek baz-çifti değişiklikleri kadar sık değilse de (genom başına bir kaç milyon yerine bir kaç yüz bin olay), bu olaylar genomlar arasındaki baz değişikliklerinin çoğunluğunu oluşturdular, yani en az 15 milyon baz-çifti etkilenmişti. Bir çok yeni genom bölgesinin de bireyler arasında değişik sayılarda kopyaları olduğu saptandı, bu da etkileri daha yeni yeni keşfedilmeye başlanan genom yapısındaki görülmemiş yapısal bir değişimi yansıtıyor. Sonuç olarak, insan genomlarının tamamı karşılaştırıldığında görülen dizisel değişimler ya protein kodlamasını ya düzenleme bilgisini ya da insanın 23.000 geninin önemli bir kısmının kopyalanmasını değiştiriyor, bu da bireyler arasında değişim gösteren pek çok özellik için büyük miktarda olası çeşitlilik kaynağı oluşturuyor.
Kaynak: evrimolgusu.blogspot.com
Evrim
-
Evrim nedir? Evrim süreci nasıl işler?
-
Atların Evriminde Parmaklar ve Toynak...
-
Mikro evrim nedir
-
Yumuşakçaların evrimi
-
Bitki Evrimi 5/5: Çayır İmparatorluğu
-
Bitki Evrimi 4/5: Çiçeklerin ve Tohumların Öyküsü
-
Evrim düşüncesinin tarihi
-
Bitki Evrimi 3/5: Kömür Çağı
-
Bitki Evrimi 2/5: Ormanların Doğuşu
-
Bitki Evrimi 1/5: Karaya İlk Çıkanlar
-
Mutasyon, Evrimsel Sürecin Hammaddesidir!
-
Evogram Nedir ?
-
Yeni Genetik Kombinasyonların Oluşumu ve Evrimin Türleri Değiştirme Mekanizması
-
Evrim'i Tetikleyen Mekanizmalar Nelerdir?
-
Darwin ve Doğal Seleksiyon