Artificial intelligence expedites breast cancer risk prediction
Researchers at Houston Methodist have developed an artificial intelligence (AI) software that reliably interprets mammograms, assisting doctors with a quick and accurate prediction of breast cancer risk.
According to a new study published in Cancer (early online Aug. 29), the computer software intuitively translates patient charts into diagnostic information at 30 times human speed and with 99 percent accuracy.
"This software intelligently reviews millions of records in a short amount of time, enabling us to determine breast cancer risk more efficiently using a patient's mammogram. This has the potential to decrease unnecessary biopsies," says Stephen T. Wong, Ph.D., P.E., chair of the Department of Systems Medicine and Bioengineering at Houston Methodist Research Institute.
The team led by Wong and Jenny C. Chang, M.D., director of the Houston Methodist Cancer Center used the AI software to evaluate mammograms and pathology reports of 500 breast cancer patients. The software scanned patient charts, collected diagnostic features and correlated mammogram findings with breast cancer subtype. Clinicians used results, like the expression of tumor proteins, to accurately predict each patient's probability of breast cancer diagnosis.
In the United States, 12.1 million mammograms are performed annually, according to the Centers for Disease Control and Prevention (CDC). Fifty percent yield false positive results, according to the American Cancer Society (ACS), resulting in one in every two healthy women told they have cancer.
Currently, when mammograms fall into the suspicious category, a broad range of 3 to 95 percent cancer risk, patients are recommended for biopsies.
Over 1.6 million breast biopsies are performed annually nationwide, and about 20 percent are unnecessarily performed due to false-positive mammogram results of cancer free breasts, estimates the ACS.
The Houston Methodist team hopes this artificial intelligence software will help physicians better define the percent risk requiring a biopsy, equipping doctors with a tool to decrease unnecessary breast biopsies.
Manual review of 50 charts took two clinicians 50-70 hours. AI reviewed 500 charts in a few hours, saving over 500 physician hours.
"Accurate review of this many charts would be practically impossible without AI," says Wong.
Source: Houston Methodist
Bioinformatics
-
Giraffes more speciose than expected
-
Artificial intelligence expedites breast cancer risk prediction
-
Warbler genomes look to be 99.97 percent alike
-
Genomics solutions to the riddle of the tobacco hornworm sphinx moth
-
Every grain of rice: Ancient rice DNA data provides new view of domestication history
-
Quantitating the complete human proteome
-
Genome of 6,000-year-old barley grains sequenced for first time
-
How do you turn a mosquito's genes on and off?
-
Gene sequences reveal global variations in malaria parasites
-
Mapping the subway's microbiome
-
Genome 10K -- Vertebrate 'genomic zoo' to help protect our planet
-
Bird genomes contain 'fossils' of parasites that now infect humans
-
How the ant queen gets her crown: Uncovering the evolution of queen-worker differences
-
Genomes of chimpanzee parasite species reveal evolution of human malaria
-
Scientists using crowdfunding to sequence the genome of Joshua tree