Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 146 kayıt bulundu.

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Arid zon ve Çöl Toprakları

Aridizoller: Arid topraklar yılda 0-25 veya 0-50 cm yağış alan topraklardır. Sıcaklık ve yağış ilişkisi en önemli etmendir. Günlük, aylık ve mevsimsel açılımlar evapotranspirasyon, vejetasyon ve toprak mikroflorasını yakından etkiler. Vejetasyon seyrek ve kısa ömürlüdür. Toprakta organik madde birikimi yok veya çok azdır. U.S. Soil Conservation Service çöl topraklarını - Aridisol’leri okrik epifedonu ve tipik olan argillic-killi, natric-tuzlu, cambic; kalsik, jipsik veya salik; duripan tanı tabakalarından biri veya birkaçını içeren topraklar olarak 1967’de sınıflandırmıştır. Örneğin Mohave’daki loam - münbit toprak 100cm derinliktedir ve en altında kireç depozitleri, üstünde kahverengi, sıkı münbit kil tabakası 30-35 cm. dir, üstünde 25 cm. lik prizmatik çakıl blokajın üzerini 5-10 cm kahverengi kil, kumlu münbit ince tabaka ve kırmızımsı kumlu münbit tabaka, en üstünü ise kahverengi münbit tabaka örter. Aridizol oluşumunda rüzgarın önemli rol oynadığı, kaçan toz ve kumun cilalaması sonucu oluşan çakıllar ve kayaçlar görülür. Aridizollerde CaCO3 ve diğer tuzlar uçuşan ve yağmurda sabitleşen ince toz ve kumlardan yıkanarak aşağı süzülür. Yağış şiddeti ve süresi ile permeabilite ve ısı arasındaki dengeye göre bir derinliğe kadar inip yerleşir. Genelde denge yüzeye yakın bir yerde oluştuğundan kireçlenme ve heterojen dağılımı tipiktir. Jips te sıklıkla görülür. Entizoller: Aktüel yağışlar alan yamaçlardan gelen alüvyal çökelmeler arid toprakların incelenmesini daha da zorlaştırır. Topoğrafik yapıya göre bu kil, silt ve kum tabakalarının kalınlıkları büyük değişimler gösterir. Tüm bu etkenler genellemelerin ne kadar zor olduğunu gösterir. Litozoller, Regozoller: Arid ve yarıkurak bölgedeki entizoller olup, tabakalanmayan alüvyallerle birlikte erozyona uğrmakta olan yamaçlar, sel taşkını düzlükleri gibi erozyon materyali birikim noktalarında görülür. Çöllerde aktüel allüvyonlar-fluventler, ortentler-ince kolüvyal-alüvyal materyal, Psamentler-kumullar, kumluk alanlar önemli yer tutar. Üzerinde efemeral dahi olsa hiç vejetasyon bulunmayan alanlar topraksız sayılır. Bu konularda geniş yayınlar Arizona Univ. Office of arid Land Studiesweb sitesinde yer almaktadır. Alt tabakalar: B tabakalarıdır, fakat bir kısmı A tab.ları arasına sokulabilir özelliktedir. Arjilik: Silika kil minerallerinin hakim olduğu, erozyonun kil tabakasını açığa çıkartmış olabildiği veya üstte doğrudan yerel, veya taşınmış kil tabakasının bulunduğu üst tabaka. Genelde B, A’an daha killidir. Kambik: açık renkli, organik maddece fakir veya çok fakir, ince ve prizmatik daneli, A1 tabakası olmadığından yüzeyden görülen ve genelde CO3’ca zengin tabaka. Natrik: CEC’inin %15 veya fazlasını Na’un doldurduğu yüzey altı partikül tabakası. Prizmatik, kolonlu veya bloğumsu yapı tabakası. Salik : Soğuk suda jipsden daha yüksek çözünürlüğü olan tuzlarca enaz %2 - 25 ağ/ağ. veya daha zengin olan 5-10 cm.lik yüzeyaltı tabaka. Jipsik: Kalsik tabakaya benzer, farkı kireç yerine CaSO4-jipsce zengin oluşudur.En az 15 cm.dir ve C tabakası veya altındaki tabakadan en az %5 daha fazla jips içerir. Genel kalınlık ve jips içeriğinin en az %602ını içerir. Duripan: Bu alt tabakanın çimentosu silistir. Asitle köpürmez, genellikle demir oksitler ve karbonatlar da çimentoda yer alır. Arid topraklarda üstleri opal ve silika mikrokristalleri ile örtülüdür. Silika çimentolu kum taneleri de içerirler. Dünyada Sahra, Lut gibi gerçek, sıcak çöller azdır. 15 - 45. enlemler arasında kalanların büyük çoğunluğu steptir. Ana faktörler yağış, nem ve sıcaklık ile farkları ve topraktır. Kuru hava bu sıcaklık farklarına neden olur. Yıllık hava sıcaklığı açılımı 60, günlük olarak da 35 dereceyi bulabilir. Çölleşme rüzgarı getirir, örneğin Sahra’da 100km.ye kadar fırtınalar görülür, 15-30km hızında sürekli rüzgarlar tipiktir. Buharlaşma sıcaklık değişimi, kuruluk ve türbülansa neden olur. Sahra’da 2.5-6m, çoğu çölde 3m cıvarındadır. Tipik olarak çöllerde Bağ.nem yazın % 20-30, kışın %50 cıvarındadır, ancak vahalarda ise %90 a kadar çıkabilir. Aydınlanma/bulutluluk oranı Sahra’da %4 - 31 oluşu nedeniyle dehidrasyona ve ısınmaya neden olur. Sahra’da ortalama ışık+ısı gücü 1kW’dır ve 10000km2 ye 25 katrilyon kWh enerji düşerki 2 milyar ton yakıt eşdeğeridir. Kuraklık temelde sıcaklık ve yağışa bağlıdır ve vejetasyonu sınırlar. Canlılar açısından önemli olansa yağış/evaporasyondur. Yeraltısuyu çok derinde değilse ve porozite yeterli ise genelde varlığını yüzeydeki jips, kalsiyum ve klorürlerden oluşan tuzluluk ile ve jips kristalleri, seyrek de olsa bitkiler, özellikle Chenopodiaeae halofitleri ile belli eder. Fakat suyun çok saf olup bu tür tuzlanmaya neden olmaması da mümkündür. Toprakta su tutulma miktarı yağış sonrası giren suyun evaporasyonla kaybedilenden kalan olup arid zonda tipik olarak su üst toprak tabakalarında kalır. Aşağı iniş oranı ve derinliği tekstür ve tarla kapasitesine bağlıdır. Killi toprağın tarla kapasitesi kumlu toprağın tipik olarak 5 katı olduğundan 50mm.lik yağış kumlu toprakta 50, killi toprakta 10cm.yi TK’ine ulaştırır. Kayalık alanda çatlaktan sızabilen su ise 100cm.ye kadar inebilir. Yağış sonrası buharlaşma başlar. Killerde üst 5cm.lik tabaka hızla kurur. Süzülen suyun %50’si bitkilerce kullanılır,kum da 5 cm. kurur fakat suyun ancak %10’u buharlaşır. Kayalarda ise böyle bir kayıp sözkonusu olmaz. Sonuçta nemli iklimdekinden farklı olarak killi toprak bitkilere yararlı değildir. Üstü taşlık toprak ise en uygun yapıyı oluşturur. Ancak vadi ve çukurlardaki birikim, eğimle kayıp gibi jeomorfolojik yapı bu durumu etkiler. Necev çölünde killi toprakta bitkilerin 35mm su kullanabildiği, bu miktarın kumlut oprakta 90, kayalıkta 50mm, vadilerde 250mm olduğu görülmüştür. Bu nedenle derin kök gelişimi ancak permeabilitesi yüksek toprakta görülür, killi toprakta kök yatay gelişebilir. Kumlu ve taşlı topraklarda bu derinlik taban suyuna kadar ulaşabilir ve derin köklenebilen bitkiler kolayca gelişir. Irak’taki Basra çölünde taban suyu 15m. derinliktedir ve nehirlerce beslenir. Yıllık 120 mm.lik yağış ancak yüzeysel nemlenmeye yeterli olduğundan bitki kökleri taban suyuna erişemez ve yağışlar sonrası zayıf ve geçici bir efemeral örtü oluşur. Yerli halkın kuyular aracılığı ile çektiği su ile sulananan sebze tarımı tuzlanma nedeniyle 1 yıl ömürlü olmaktadır. Bu bitkilerin arasına serpiştirilen çok kolay köklenen Tamarix çelikleri yüzey suyunun taban suyuna ulaşabileceği kadar sulanarak köklerinin hızla geliştirilmesi ile ağaçlara dönüşmesi ormanlaştırılmıştır. Acacia tortilis’in arid zondaki kumlu topraklarda, yıllık 50 - 250mm. yağışlı Sudan steplerinde geliştiği, killi topraklarda ise ancak 400mm.lik yağışta bulunabildiği saptanmıştır. A. mellifera otsu örtü savanası da kumlu toprakta 250-400, killi toprakta ise yıllık 400 - 600mm. yağışla gelişebilmektedir. İklimsel olarak kurak alan yağışa karşı buharlaşmanın fazla, vejetasyonun zayıf ve örtünün <%25 olduğu bölge olarak tanımlanırsa da dünyanın çeşitli yerlerindeki kurak alanlar birbirine fazla benzemezler: Tropik kuşakta aylık sıcaklık ortalamaları fazla farklı değildir. Subtropik kuşakta yıl boyunca değişen sıcaklıklar donlara da neden olur. Ilıman zonda kışlar çok soğuk, yazlar sıcaktır. Vejetasyonu sınırlayıcı ana etmen aylık ve özellikle mesimlik yağış toplamlarıdır. İki yağış mevsimi olan bölgeler , yalnız kışın veya yazın yağış alan yöreler, azve rastlantısal olarak yağış gören yerler ve hiç almayanlar. Buralardaki vejetasyon üzerinde yöresel floranın değişen oranlarda etkisi vardır ve belli familyalar dominanttır. Örneğin K. Amerika’da Cactaceae, G. Amerika’da buna ek olarak bazı Bromeliaceae cinsleri, Holarktik’te Chenopodiaceae, en kurak Avustralya çöllerinde Atriplex vesicaria ve Kochia sedoides hakimdir. İklim yanında edafik faktörlerin farklılığı önemlidir. Aylık yağış ve sıcaklık seyri, kurak dönemlerin 10C / 20mm.lik birimlerinin oranı olarak sıc.ın yağışı aştığı dönemler esas alınarak kurak alan haritaları yapılır.

http://www.biyologlar.com/arid-zon-ve-col-topraklari

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:KANSER TEDAVİSİNDE BAKTERİLER VE NANO ROBOTLAR     Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:Her bir bakteri 4 pikoNewtonluk kuvvet uygulayabilecek kuyruk organellerine sahip. Tek başına küçük olmasına karşın 5000 tanesini birlikte çalıştırdığınız zaman bir piramit yaptırabiliyorsunuz.Hayvanlar üzerindeki ilk klinik deneyler2011 yılının başında Mantel ve ekibi, hazırladıkları tüm sistemi gerçek anlamda ilk kez bir canlıda denediler, tek bir farkla bu kez bakterileri es geçtiler. MRI kullanarak yönlendirdikleri bir mikro taşıyıcı sistemi karaciğerinde tümör olan bir tavşana doxorubicin adlı bir kemoterapi ilacı taşımak için kullandılar. Bu taşıyıcı sistem iddia edildiği gibi vücut içerisinde yok olacak cinste bir polimerden üretilmişti. Polimerin tasarımı, farklı hızlarda çözünecek şekilde yapılmıştı, böylece yeterli dozda ilaç iletimi sağlanıyordu. Her bir taşıyıcının yüzde otuzu manyetik nano taneciklerken kalan yüzde yetmişi ilaçtı. Mantel sadece kemoterapi değil, radyoterapi ilaçları olan radyoaktif maddelerin de iletiminin mümkün olduğunu belirtti [5].Bazı kan damarları “Y” şeklinde çatallandıklarından geleneksel ilaç iletim sistemlerinin yaklaşık yüzde 50 ihtimalle tümörlü dokunun olduğu yöne, yüzde 50 ihtimalle de karaciğerin alakasız bir bölgesine gidip yan etkiye sebebiyet veriyorlar. İşte Mantel’in bu sistemi manyetik kontrolü sayesinde hiçbir çatallanmadan etkilenmeyecek bir özelliğe sahip olduğu için fark yaratıyor. Ayrıca hiçbir kan damarına zarar vermiyor. Geleneksel kemoterapide kateter (sonda) ile yapılan bir ilaç sevkiyatı, kateterin tümöre çok yaklaşıncaya kadar karaciğerin dibine kadar sokulması ve bu sırada da tabii ki bir çok damara zarar verilmesi anlamına geliyor. Bu sebeple de hastalar günlerce, hatta haftalarca damarlarının iyileşmesini bekliyorlar ki, yeni bir doz daha alabilsinler. Ancak manyetik mikrotaşıyıcı robotlar kullanıldığında, sondanın damarlara bu kadar yakınlaşmasına gerek kalmıyor. Zarar görmeyen damarlar sayesinde de hasta arka arkaya günler içerisinde birçok dozu az az ancak hızlı bir şekilde alabiliyor. Bu şekilde de kimyasal zehirlenmelerin önüne geçiliyor.Ekip, 2011 yılının sonunda tekrar bakterili nanobot sisteminin testlerine yöneldi. Ancak Mantel’in görüşüne göre bu metodlar her ne kadar hayvanlar üzerinde etkili olsa da pratik hayatımızdaki uygulamalarından 4-7 yıl uzaktayız.Not: Konuyla ilgili daha fazla bilgi sahibi olmak isteyenlere Sylvian Mantel’in İngilizce altyazılı Fransızca bir TEDx sunumunu seyretmelerini öneriyorum.Kaynaklar:[1] http://apl.aip.org/resource/1/applab/v90/i11/p114105_s1?isAuthorized=no[2] http://www.technologyreview.com/computing/21619/?a=f[3] http://www.newscientist.com/article/dn17071-bacteria-take-fantastic-voyage-through-bloodstream.html[4] Sylvain Martel, Mahmood Mohammadi: A robotic micro-assembly process inspired by the construction of the ancient pyramids and relying on several thousand flagellated bacteria acting as micro-workers. Intelligent Robots and Systems, pp 426-427,  2009.[5] http://www.healthimaginghub.com/feature-articles/digital-radiography/2945 Yazar hakkında: Gökhan İncehttp://www.acikbilim.com/2012/07/dosyalar/kanser-tedavisinde-bakteriler-ve-nano-robotlar.html

http://www.biyologlar.com/kanser-tedavisine-bakteriler-ve-nano-robotlar

SUCUL VE BATAKLIK ORTAMINDAKİ BİTKİ GRUPLARI

Bir göl kıyısındaki bitkilere bakıldığında yaşam ortamlarına göre üç grup altında sınıflandırılabilir. a) Suda yüzen bitkilerin oluşturduğu grup:Hidrofit topluluk. b) Kıyıya yakın bir kısmı su içinde , bir kısmı karada gelişen bitki grubu:Amfibi topluluk. c)Islak nemli ortamlarda gelişen bitki grubu: Helofit topluluk. a)Hidrofit topluluklar: Tamamen sucul ortamlarda yaşamaya uyum göstermiş türlerden oluşur.Genellikle bitkinin kök, gövde ve yaprakları su içinde , sadece çiçekleri suyun dışında gelişir.Bu topluluğa durgun sular ve akarsularda rastlanır. 1) Akarsulardaki hidrofit topluluklar: Genellikle sayıları azdır.Zira zeminin hareketli oluşu bu bitkilerin gelişimini zorlaştırır.Gruptaki bitkilerin yaprakları su akımına karşı direnci azaltmak için ince yapıdadır.Örneğin çeşitli Ranunculus ve Bryophyta 'dan Fontinalis türleri gösterilebilir. 2)Durgun sulardaki hidrofit topluluklar durgun sular bitkilerin tutunup gelişmesine daha uygun olduğu için bu grupta pek çok topluluk vardır. Göllerde ve akarsuların sakin kesimlerinde bu gruptan çeşitli Ranunculus, Potamogeton ve Sagittaria türleri topluluklar oluşturur ve yaprakları iki şekillilik (Dimorfizim) gösterir.Bu bitkilerin su altındaki yaprakları şeritsi ve uzun oldukları halde su üstünde gelişenleri genişlemiş, bazılarının kenarları yuvarlaklaşmıştır. Bazik sularda çeşitli Potamageton türlerinin yanı sıra Elodea ve Nymphaea türlerinin yer aldığı görülür.Ayrıca bu sularda çok sayıda yüzer halde bulunan su mercimeklerine ( Lemma türleri) rastlanır.Asidik sularda ise daha çok Myriophyllum , Alisma türlerin oluşturduğu türler ve kestane (Trapa natans ) toplulukları görülür. b)Amfibi topluluklar: Bu grup bitkiler öncekilerden farklı olarak daima su içinde bulunmazlar.Özellikle kurak periyotlarda bitkinin bir kısmı su dışında kalır.Bu bitkilere göller ve sulak alanlar kıyı zonunda, menderes oluşumu gözlenen akarsuların kenarlarında rastlanır. 1)Kıyı ve bataklık zonundaki amfibi bitki toplulkukları :Bu zonda bir çok tür topluluklar oluşturur. Toprağın ph derecesine göre topluluk tipleri değişir. Az asitli toprakta Alisma ve Aquisetum türlerinin oluşturduğu topluluklar daha çok gelişim gösterir. Daha asitli topraklarda ise Juncus türlerine rastlanır. Bu topraklarda besleyici tuzlar çok zengin olmadığından bitki boyları daha az gelişmiştir. Toprağın asiditesinin yanı sıra , toprak kalitesi de bitki topluluğunun tipine etki etmektedir. 2)Alüvyonlu topraklardaki amfibi bitki toplulukları:Bu bitkilere menderes oluşturan akarsuların alüvyonlu topraklardan oluşan teraslarında , suların çekildiği yaz ve sonbahar başında rastlanır. Bu topraklar besleyici tuzlar yönünden zengin olduğundan bitkiler de boyca iyi gelişmişlerdir.Örneğin Polyganum türlerinin oluşturduğu topluluklar. c)Islak ve nemli alanlardaki topluluklar : Bu grup bitkiler geniş alanlar oluşturur ve büyük boyutludurlar.Bu nedenle diğer iki grupta yer alanlara oranla daha çok tanınırlar.Bu grupta bataklık ve turbalıklarda gelişen helofit topluluklar baskındır. 1) Helofit topluluklar:Alüvyonlu veya turbalık zeminlerde gelişmelerine bağımlı olarak çeşitli türler vardır. Alüvyonlu zeminlerde birbirini takip eden bu iki topluluk göze çarpar.İlk tipler küçük boyutlu türlerden oluşur.Bu topluluklar suyun ve akıntının hızını keserek ikinci tip toplulukların gelişimini sağlar.İkinci tip topluluklar büyük boylu olup oldukça yoğun bir doku oluşturur.Örneğin kargı, kamış ve digerleri Typha, Scirpus türleri. Turbalıklardaki bitkisel topluluklar öncekilere göre oldukça farklıdır ve çeşit yönünden fakirdir.Equisetum fluviatilis'e çok rastlanır.Bu kesimlerde rizom gövdeli oldukça alçak boylu bitki gelişimi gözlenir. 2)Kamış( Carex) toplulukları durgun su ( göl, gölet) ve akarsuların durgun kesimlerde yoğun doku oluştururlar.Rizom gövdeleri vertikal ve horizonal gelişerek su içinde adeta bir ağ oluşturarak su sirkülasyonunu yavaşlatırlar. Kaynak:Su Bitkileri Ege Ün.Su Ürünleri Fak.Yayınları Dizin No 28 No 61 S.Cirik,Ş.Cirik,M.C.Dalay

http://www.biyologlar.com/sucul-ve-bataklik-ortamindaki-bitki-gruplari

KUŞCENNETİ MİLLİ PARKI

KUŞCENNETİ MİLLİ PARKI

İli : BALIKESİR Adı : KUŞCENNETİ MİLLİ PARKI Kuruluşu : 1959 Alanı : 24.047 ha. Konumu : Milli park; Marmara Bölgesi’nde, Balıkesir ili, Bandırma ilçesi içerisindeki Kuş Gölü’nün (Manyas Gölü) kuzeydoğusunda yer alır. Ulaşım : Bandırma’ya 19 km uzaklıkta bulunan milli parka, Balıkesir-Bandırma karayolu ile ulaşılır. Kaynak Değerleri :           Kış mevsiminin sonlarına doğru Kuş Gölü’nün suları yükselmeye başlar ve kuzeybatı kıyısındaki , küçük söğüt korusunu ve etrafındaki sazlıkları kaplar. Kışın bahara döndüğü günlerde soğuk devreleri güney ülkelerinde geçiren göçmen kuşlar, yuva kuracak yer olarak sessizlik içindeki Kuşcenneti Milli Parkı’nı seçerler. Yuvalarında yumurtlar, kuluçkaya yatarlar. Yavrular gözlerini burada açar, beslenir, büyür, serpilir ve gelecek yıl yine gelmek üzere uzaklara uçarlar.         Göl suları, söğüt korusu ve sazlıkların sağladığı beslenme, güvenlik ve ba-rınma olanakları ile elverişli iklim şartları, Avrupa-Asya kıtaları arasında büyük kuş göçlerini bu küçük yurt köşesine yönelterek, yörenin milletlerarası seviyede ün kazanmasına neden olmuştur.          Kaşıkçıdan balıkçıllara, çeltikçiden karabataklara, saz bülbülünden pelikan-lara, kuğudan kazlara, ördeklere kadar kuluçka yapan, kışlayan ve göç sırasında uğrayan 239 kuş türünden 2-3 milyon kuş her yıl buraya uğramaktadır.           Kuşcenneti Milli Parkı’nın, ülkemizdeki diğer milli parklardan farklı özel bir yeri vardır. Milletlerarası düzeyde önem taşıyan milli parktaki kuş zenginliği ve milli park tanımı içindeki başarılı koruma uygulaması nedeniyle, 1975 yılında Avrupa Konseyi’nce A sınıfı Avrupa Diploması verilmiştir. 1981-1986-1991 ve 1996 yıllarında bu diploma yenilenmiştir.           2003 ve 2004 yıllarında yapılan arazi çalışmaları ile Kuşcenneti Milli Parkının sınır genişletme çalışmalarına başlanmış ve 06.06.2005 tarihli ve 2005/8955 sayılı yayınlanan Resmi Gazete ile sınırları genişletilerek 24047 ha ulaşmıştır.  Görünecek Yerler : Milli Parkta, kuş yaşamının ilgi çekici dönemlerini izleme imkanı, Mart-Temmuz ve Eylül-Ekim ayları arasındadır. Gözetleme kulesinden geniş bir çevre gözetlenebilir. Mevcut Hizmetler : Müze ve idare merkezinde kuşlar hakkında geniş bilgi verilmektedir. Milli parkta bilimsel araştırmalar yapmak, park yönetiminin iznine bağlıdır. FLORA Manyas Gölü ve yakın çevresinde 34 familyaya ait 92 bitki türü tespit edilmiştir. Göllerdeki sucul vejetasyon üç ana zon altında incelenmektedir. Karasal zon vejetasyonu tohumlu ve odunsu bitkilerle karakterize olmaktadır. Zengin bitki örtüsüne sahip olan Kuşcenneti Milli Parkında baskın tür söğüttür. Geçiş zonu köklü su üstü bitkileri ile karakterize olmaktadır. Beşparmak otu, ılgın, hasırotu, kamış, saz ve ayakotu gibi türler bu zonun başlıca temsilcilerini oluşturur. Sucul zondaki bitki türleri köklü ve köksüz olmakla birlikte su yüzeyinde serbest yüzen sucul bitkiler içerir. Manyas Gölünde bu zona ait yaygın türler aklar ot, hatmi, yaban yasemini, nane, köygöçüren, düğünçiçeği, süsen ve kırkboğumdur. FAUNA Gölün planktonlar ve dip canlıları bakımından zengin oluşu,gerek çeşitlilik ve gerekse yoğunluk bakımından çok yüksek düzeyde yaban hayatının barınmasına olanak sağlamaktadır.Gölde 266 ü aşkın kuş türü ile 23 balık türünün bulunması bunun en iyi göstergesidir. Gölde tespit edilen türlerin bazıları sazan, yayın, turna, tatlısu kefali, filise, gümüş, havuz balığı, tatlısu kolyosu, kayabalığı ve kızılkanattır. Göl ve çevresi sürüngenler ve çift yaşamlılar bakımından oldukça zengindir. Yapılan araştırmalarda göl ve yakın çevresinde 4 tür semender, 6 tür kurbağa, 4 tür yılan, 2 tür kertenkele ve 2 tür kaplumbağa’nın bulunduğu kaydedilmiştir. Milli parkın karakteristik canlı türünü kuşlar teşkil eder. Ördek, kaz, sakarmeke, tepeli batağan, yeşilbaş, elmabaş patka, su tavukları, küçük akbalıkçıl, erguvani balıkçıl, çeltikçi, alacabalıkçıl, gece balıkçılları, saz bülbül ve kamış bülbülleri, ak mukallit, sarı asma, çulha kuşu önemli türlerdendir. Milli parkın en baskın sukuşu türü karabataklardır. Kuş Gölü’nde gruplar halinde gözlenen ak pelikanlar da göç döneminde bölgenin en önemli konuklarıdır ve çoğunlukla Kuş Cenneti’nin batı kıyılarında dinlenirler. http://www.milliparklar.gov.tr

http://www.biyologlar.com/kuscenneti-milli-parki

Fosil Yaşlarının Hesaplanması

Arkeolojide kullanılan tarihlendirme yöntemlerini radyoaktif olan ve radyoaktif olmayan diye kabaca iki bölüme ayırmak mümkündür. Radyoaktif olan yöntemler yine kendi içinde iki ayrı bölümde incelenir. Bunlardan birincisi radyoaktif maddelerin miktarının zamanla azalmasına dayanan, Karbon-14 ve Potasyum/Argon gibi yöntemlerdir. İkincisi ise, radyoaktiviteden dolayı çıkan enerjinin madde içinde biriktirilmesi olayına dayanır ki elektron spin rezonans bu tür tarihlendirme yöntemlerine bir örnektir. Uzun zamandır yaş tayininde kullanılagelen bu gruptaki termolüminesans (TL) yöntemiyle aynı prensibi paylaşmasına karşın ESR yönteminin TL yöntemine göre bazı üstünlükleri vardır. Bunlar şöyle sıralanabilir: 1. Ölçüm sırasında ESR merkezleri bozulmadığı için ölçü istenilen sayıda aynı örnekle tekrarlanabilir. 2. ESR yüzeysel olaylara karşı daha az duyarlı olduğu için kullanılan maddenin taneciklerinin belirli bir büyüklükte olma şartı yoktur. 3. Örnek hazırlama ve oda sıcaklığında ölçü alma işlemleri çok daha kolaydır. 4. Tekstil vs gibi organik maddelerin incelenmesinde de bu yöntem başarı ile kullanılmaktadır. ESR Yöntemi : Radyoaktif elementler kararsız olup parçalanarak kimyasal olarak farklı özellikte elementlere dönüşürler. Bu oluşum sırasında farklı adlarda (alfa, beta, gama) enerji taşıyan parçacık veya ışınım salarlar. Böyle radyoaktif elementler birçok kayaç ve minarellerin kristal yapısında eser miktarda bulunur ve saldıkları enerji taşıyan parçacıklar yapıdaki elektronları bağlı bulundukları yerlerden koparırlar. Normalde elektronlar bağlı oldukları çekirdek etrafında dolanırken kendi eksenleri etrafında da dönerler (spin hareketi) ve zıt yönde spio hareketi yapan elektron çiftleri şeklinde bulunurlar. Bunlardan birinin yerinden koparılması halinde geride tek elektron kalır. Buna çiftleşmemiş elektron da diyebiliriz. Böyle bir elektronun spin hareketi bu elektrona manyetik bir özellik kazandırır ve bu elektron bir mıknatıscık olarak düşünülebilir. Bu özelliğe sahip maddelere paramanyetik maddeler denir. Bir manyetik alana konmadığı takdirde madde içindeki bu mıknatıscıklar gelişi güzel yönlerde dağılmışlardır ve hepsi aynı enerjiye sahiptirler. Madde manyetik alana konduğunda bu mıknatıscıklar ya manyetik alan yönünde ya da buna zıt yönde yönlenirler. Manyetik alan H ise, H M kadar artacak, H nın aynı yönündenın zıt yönünde yönlenenlerin enerjileri elektronunH) azalacaktır. Burada yönlenenlerin enerjileri ise aynı miktar ( : Bohr magneton ve g: = : spin kuvantum sayısı, manyetik momenti olup elektronun çekirdek etrafında dolanmasının ve spin hareketinin mıknatıs özelliğine katkı derecesini gösteren faktör. Böylece elektronlar manyetik alanla aynı yönde yönlenenler veya zıt yönde yönlenenler olarak iki gruba ayrılırlar. H kadar enerji farkıİki grubun enerjileri farklı değerdedir ve aralarında g vardır. Enerjisi bu enerji farkına eşit olan bir elektromanyetik dalga maddeye gönderilirse düşük enerjiye sahip olan elektronlar bu enerjiyi alıp yüksek enerjili elektron grubuna dönüşürler. Diğer bir deyişle, H manyetik alanı yönünde yönlenmiş elektron mıknatısları elektromanyetik enerjiyi alınca H manyetik alanının zıt yönünde yönlenirler. TERMOLÜMİNESANS YÖNTEMİ İLE ARKEOLOJİK YAŞ TAYİNİ Keramik, pişmiş tuğla, yanmış çakmaktaşı ve obsidyen, volkanik, kül, meteor, curuf, sarkıt ve dikit gibi kalsit oluşumları ve benzeri inorganik obje ve malzemelerin içerisinde şifreli saat gibi çalışan fiziksel mekanizmalar vardır. Bu şifreli saat bir arkeolojik zaman-ölçer aygıtı gibi çalışır; hem sıfırlama özelliği vardır hem de otomatiktir. Temel problem, saatin şifresini çözerek gerçek zamanı, yani arkeolojik yaşı bulmaktır. Saati inceleyip şifresini çözen fiziksel yöntemlerden biri de termolüminesans (TL) yöntemidir. Burada amacımız TL yöntemini ve bu yöntemin arkeolojideki uygulamalarını kısaca anlatmak; bir başka deyişle saatin çalışma prensiplerini ve şifresinin çözüm tekniğini genel çizgileriyle sunmaktır. Yalnız yöntemi anlatmaya başlamadan önce TL olayının ne olduğunu, böyle bir amaç için nasıl kullanılabildiğini kısaca görelim. Termolüminesans : Bazı maddeler ısıtıldıkları zaman ışıma yaparlar. Bu fiziksel olaya ısıtma ile ışıma anlamına gelen termolüminesans (TL) denir. Hemen belirtelim ki, TL olayı başka bir olayın sonucunda oluşmaktadır. Maddelerin içlerinde ve çevrelerinde eser miktarda uranyum (U) toryum (Th) ve potasyum (K) gibi )) ve beta (radyoaktif elementler vardır. Bunlardan çıkan radyasyonlar [alfa ( ) ışınları] maddenin atomları ile etkileşerekparçacıkları ile gama ( enerjilerini yitirirler. Bu enerjinin bir kıssmı madde içinde birikir ve maddenin 300 0C – 500 0C ye kadar ısıtılma durumunda ışık olarak çıkar. Çıkan ışık miktarı maddenin biriktirdiği radyasyon enerjisi miktarına bağlıdır. Ne kadar çok enerji birikirse o kadar çok ışık çıkar. Hiç enerji birikmemiş ise, veya biriken enerji herhangi bir nedenle, örneğin ısınma ile, boşalmış ise, doğal olarak hiç ışık görünmeyecek yani hiç TL olmayacaktır. Demek oluyor ki TL, maddenin etkileştiği toplam radyasyon miktarı (dozu) sonucunda biriken enerjinin ve bu enerjinin birikmesi için geçen sürenin dolaylı bir ölçüsüdür. Yöntemin temel problemi de bu sürenin bulunmasıdır. Maddede enerji birikimi şu şekilde olmaktadır: maddenin atomları ile etkileşen radyasyonlar atomları bağlı elektronların bazılarını koparır ve enerji kazandırırlar. Bu elektronların bir kısmı kazandığı enerjiyi anında geri vererek eski yerlerine veya benzer yerlere geri dönerler. Bir kısmı ise maddenin kristal yapısınd çeşitli nedenlerle oluşan ve tuzak denilen yerlere bağlanırlar ve böylece eski yerlerine dönen elektronların tersine radyasyondan aldıkları enerjiyi geri vermeyip bu tuzaklarda biriktirmiş olurlar. Biriken enerjinin saklanabilme süresi, yani elektronların tuzaklarda kalma süreleri çevre şartlarına ve tuzak özelliklerine bağlıdır. Birkaç dakikadan bir milyon yıla kadar elektronları tutabilen tuzaklar vardır. Doğal olarak bizi ilgilendiren uzun ömürlü tuzaklardır. Çünkü, ancak bu tuzaklar baştan itibaren yakaladıkları tüm elektronları korurlar ve böylece radyasyonla sağlanan enerji tam olarak birikmiş olur. İleriki satırlarda da belirttiğimiz gibi, bu tarihleme için sağlanması gereken koşullardan biridir Karbon 14 izotopu ile nasıl yaş tayini yapılır? Onbinlerce yıl önce yaşamış olan canlıların kalıntıları bulunduğunda, hangi yıllarda yaşamış olduğu karbon-14 yöntemi ile saptanır. Bütün yaşayan organizmaların yapılarında karbon bulunmasından dolayı böyle bir yöntem geliştirilmiştir. Çekirdekte meydana gelen radyoaktif bozunma oranı sabittir. Onbinlerce yıl öncesine ait karbon içeren maddeler de C-14 ün yarılanma süresinden hareket edilerek bulunur. C-14 ün yarı ömrü 5730 yıldır. C-14 kozmik ışımalar bombardımanı sonucunda oluşur. Kozmik ışınlar uzaydan gelen radyasyonlardır ve alfa parçacıkları, protonlar ve daha ağır iyonlar içerir. Bu radyasyonlar atmosferin üst tabakasında çarpışarak nötronlar gibi değişik parçacıklar oluşturur. Nötron ile nitrojen-14 çekirdeğinin çarpışması ile karbon-14 çekirdeği meydana gelir. Karbon dioksit ve karbon-14 alt atmosferde karışır. Canlı organizmalarda atmosferdeki O2 yi kullandıkları için yapılarında C-12’nin yanı sıra belirli oranlarda C-14 ihtiva ederler. Ancak bu canlı organizmalar öldükleri andan itibaren yapılarındaki C-14 ile atmosferdeki C-12 arasında var olan denge bozulur. C-14 radyoaktif bozunmaya uğrar ve C-14 ün C-12 ye olan oranı giderek düşmeye başlar. Bu yol ile karbon izotopları arasındaki bu oransal değişim, bir çeşit saat görevi görür. Buradan hareketle canlıların ne zaman öldükleri bilgisini elde edebiliriz. Bugün yaşayan bir organizmadaki C-14'ün C-12'ye oranı 1/1012 dir. Eğer son 50.000 yıl içerisinde karbon izotoplarının oranının değişmediğini varsayarsak, herhangi bir ölü organizmanın, fosillerin vb. yaş tayinini yapmak mümkün. Bunun için C-14'ün radyoaktif bozunması sonucu oluşan beta ışımalarını ölçmek yeterli. C-14 → N-14 + eֿ Örneğin, volkanik patlamalar sonucu yanmış bir ağaç fosilinin yaşını tespit edelim. Bu fosilde 1 gram karbonda 1 dakikada 7,0 C-14 bozunması olduğu bilinsin. Günümüzde yaşayan bir organizmanda 1 gram karbonda 1 dakikadaki C-14 bozunması 15,3 tür. C-14 ün yarı ömrünün (t1/2) 5730 yıl olduğunu biliyoruz. t zaman sonra bir örnekteki çekirdek miktarını k = 0,693 / t1/2 olarak düşüneceğiz. Log Nt/N0=-kt/2,303=-0,693t/2.303 t1/2 <=> t=(2,303 t1/2 /0,693)xlog N0/Nt N0/Nt oranını bulmak için atmosferdeki C-14 ve C-12 oranının sabit kaldığını varsaymak gerekir. Aslında bu varsayım tam olarak doğru değildir. Bilim adamları, binlerce yıl önce doğada (atmosferdeki CO2 nin içerisinde) bulunan C-14 miktarının şimdikinden daha fazla olduğunu düşünüyor. Son yüzyılda yapılan atmosferik nükleer testler ve fosillerin yakıt olarak kullanılması da bu görüşü kuvvetlendiriyor. N0/Nt = 15,3 / 7,0 = 2,2 ve t1/2 = 5730 yıl olduğuna göre, fosilin yaşı yaklaşık olarak: t = (2,303 t1/2 / 0,693) x log N0/Nt = (2,303 x 5730 / 0,693) x log2,2 = 6500 yıl olarak bulunur. KAYNAK: maydalin.com  

http://www.biyologlar.com/fosil-yaslarinin-hesaplanmasi

Rektum Kanserinin Tedavisindeki Gelişmeler Umut Verici

Anadolu Sağlık Merkezi’nin düzenlediği “Onkoloji Sempozyumu” uluslararası hekimlerin de katılımı ile gerçekleşti.  Kanser tedavisinde gelinen nokta ve burada  kullanılan teknolojilerin vurgulandığı sempozyumda rektum kanserinin tedavisindeki yeni umutlar paylaşıldı. Rektum kanserinde PET/BT’nin ilk evrelemede tümörün hangi tabakaya kadar yayıldığını (derinlik/penetrasyon) ve tümöre bitişik küçük lenfnodlarındaki metastazı göstermede etkin bir yöntem olduğunu belirten Anadolu Sağlık Merkezi Nükleer Tıp Uzmanı Dr. Kezban Berberoğlu, “Değeri düşük olsa da en önemli katkısı pelvis içinde bulunan diğer lenf nodlarını ve hastalığın uzak yayılımını değerlendirmede oldukça etkilidir. Metastatik hastalarda kemoterapi öncesi tedavi etkinliğini değerlendirmede daha sonraki çalışmalarla kaşılaştırma yapılabilmesi için mutlaka başlangıçta yapılmalıdır. Bu sayede hastanın fayda görmeyeceği cerrahiden hastayı korur. PET/BT’nin diğer önemli rolü rekürrens şüphesi olan hastalarda CEA yüksekliği veya BT’de şüpheli lezyon bulunanlarda rekürrensi saptamada rutin olarak kullanılmaktadır. “Rektum kanserinde son dönem cerrahi yaklaşımlar Rektum kanserinin tedavisinde cerrahinin rolüne dikkat çeken ABD Austin Diyaknostik Kliniği’nden Dr. Francis Buzad, tedavide multidisipliner bir yaklaşım olması gerektiğini vurguladı. Cerrahın yanı sıra  radyolog, onkolog ve diğer branşlarla birlikte değerlendirilmesi gerektiğini belirten Dr. Buzad, “Hastanın geldiği hekime ulaştığı evreye göre tedavi de farklılaşmaktadır.  Doğal olarak cerrahinin uygulama zamanı da bu doğrultuda farklılaşmaktadır. Eğer, hastada rektum kanseri erken dönemde teşhis edilmişe, tanı konar konmaz cerrahi operasyona alınır. Ancak ileri evrelerde tanı konmuşsa, bu hastalar için cerrahi öncesinde kemoterapi ve radyoterapiden yararlanılıyor. Bunların dışında bu hastalarda endoskopi, rektoskopi gibi birçok tanı yöntemi kullanılıyor ve tümörün yerine göre, uygulanacak cerrahi opsiyonlar da değişiyor. Tedavide temel hedef hastayı tümörden kurtarmak.  Ancak bunu yaparken de hastanın anal fonksiyonlarını da korumayı amaçlıyoruz.” diye konuştu.   Rektum kanserinin cerrahisinde son yıllarda önemli gelişmeler yaşandığını belirten Dr. Buzad, sözlerine şöyle devam etti: “Son yıllarda cerrahi anlamda yaşanan en önemli gelişmelerden birinin robotik cerrahi olduğunu söylemek mümkün. Özellikle de bu konudaki deneyim arttıkça görüyorum ki genel cerrahi branşında opere edilebilecek her hasta da Vinci ile ameliyata uygun. Hastalar 3-5 günde normal yaşama dönebiliyorlar. Robot sonrası daha hızlı iyileşme sağlandığı için takip eden tedavileri kişi daha rahat tolere edebiliyor.”  Biyoteknoloji dönemi başlıyor Tanı ve teknolojide yaşanan gelişmelerin daha rahat cerrahi operasyonlara olanak sağladığını belirten Dr. Buzad, “Cerrahi mevcut halinden en fazla biraz daha gelişebilir. Ancak çok yakında biyoteknoloji gelecek. Gelecekte  tümörün hiç oluşmaması için çalışacağız. Şu anda üzerinde çalıştığımız florasan diye yeni bir sistem var. Bu sistemde; tümöre kimyasal bir madde enjekte ediliyor. Böylece özel bir kamera sayesinde tümör daha iyi görüntülenebiliyor ve daha başarılı bir ameliyat gerçekleşiyor. Ayrıca ameliyat sonrasında da daha iyi sonuçlar elde ediliyor.  Bu sistemin şimdilik damarların görüntülenmesiyle ilgili olarak FDA onayı var. Çok yakında sistemin kendisinin de FDA onayını alması bekleniyor” diye konuştu.Görüntülemede  en önemli yeri manyetik rezonans alıyor Rektum kanserinin tanısında dijital muayene ve rektosigmoidoskopinin  birincil rolünü koruduğunu belirten Anadolu Sağlık Merkezi Radyoloji Uzmanı Dr. Oktay Karadeniz ise yeniliklerle ilgili şu bilgileri verdi: “Rektum kanserinde radyolojik görüntülemede  en önemli yeri manyetik rezonans görüntüleme almaktadır. Çok kanallı, paralel görüntüleme yapan  faz sıralı sargılar sayesinde rektum detaylı olarak  incelenebilmekte ve geniş bir alan görüntülenebilmektedir. Bu sayede komşu organlar değerlendirilebilmekte, evrelendirmede önemli rol oynayan bölgesel lenf nodları  da incelenmektedir. Barsak katmanının yüksek rezolüsyonda incelenmesi sayesinde tümörün sınırları ve uzanımı detaylı olarak incelenmekte ve patoloji ile birebir aynı sonuçlar elde edilebilmektedir.Tüm bu bulgular ışığında hasta için en faydalı tedavi seçeneği belirlenmektedir (cerrahi veya kemoradyoterapi). Kemoradyoterapi sonrası  tedaviye yanıt ve cerrahi sonrası lokal nüks takibi için yine MR kullanılmaktadır. MR  ile difüzyon tekniği kullanılarak lezyonun  hücre yoğunluğu incelenmekte ve tedaviye yanıtın değerlendirilmesi difüzyon haritası eşliğinde yorumlanmaktadır. Rektum kanserlerinin  en sık karaciğere metastaz yapması  nedeniyle karaciğer görüntülemesi gerektiğini belirten Dr. Karadeniz, “MR yüksek yumuşak doku kontrastı sağlaması sayesinde tercih edilmekte olup  duyarlılığı en yüksek modalitedir.Teknolojideki gelişmeler sayesinde 10-15 saniyelik nefes tutmalı sekanslar ve serbest nefes alma sırasında görüntü elde edilebilmesi ile çekim kolaylıkla  gerçekleştirilebilmektedir. Ayrıca son yıllarda geliştirilen MR  kontrast maddelerin bir kısmı karaciğer hücrelerine özel olup metastazların belirlenmesindeki duyarlılığı daha da artırmaktadır.” diye konuştu. Karaciğer metastazlarında CyberKnife Karaciğer metastazlarında CyberKnife’ın önemine değinen Prof. Dr. Kayıhan Engin, karaciğerin primer kanseri (hepatoselüler ca.) ve karaciğerdeki safra yolları kanserinin (intrahepatik kolanjio ca.) öncelikli tedavisini cerrahi yöntemin oluşturduğunu belirtti. Cerrahi uygulanan, özellikle tümörü küçük olan hastaların uzun süre yaşayabildiğini belirten Prof. Dr. Engin, “Ancak %30 hastada cerrahi uygulanabiliyor. Diğer hasta grubu cerrahi şansını kullanamıyor ve birçok sistemik tedaviye rağmen yaşam süresi kısa oluyor. Aynı şekilde karaciğerin metastatik hastalıklarında da cerrahi yaklaşım çok daha az oluyor ve kemoterapi ile yeterince etkili olunamıyor. Klasik radyoterapi bu hasta gruplarında karaciğerin hareketli olması ve sağlam karaciğer dokusunun radyasyondan etkilenerek zarar görmesinden dolayı uygulanamıyor veya çok sınırlı olgulara çok sınırlı dozlar verilebiliyor. Bu dozlar da tümör üzerinde istenilen etkiyi gösteremiyor. Radyocerrahi sistemle sağlam dokular maksimum korunabilse bile teknik olarak kafatası dışında uygulanamıyor ve hareketli organlara planlama yapılamıyor. Oysa Cyberknife ile hareketli organların radyocerrahisi küçük bir müdahale ile mümkün olabiliyor. Sağlam dokular maksimum korunurken tümör dokusuna diğer klasik yöntemlerle verilemeyen yüksek dozlar da verilebiliyor. Böylece cerrahi yapılamayan primer veya metastatik karaciğer kanserlerine etkili dozlarda radyocerrahi yapılarak yaşamlarını uzatma şansı doğuyor.” diye konuştu.   http://www.medical-tribune.com.tr

http://www.biyologlar.com/rektum-kanserinin-tedavisindeki-gelismeler-umut-verici

Novel stem cell line avoids risk of introducing transplanted tumors

Novel stem cell line avoids risk of introducing transplanted tumors

Human pluripotent stem cells (hPSC) can become any type of cell in the adult body, offering great potential in disease modeling, drug discovery and creating replacement cells for conditions ranging from cardiovascular to Alzheimer's disease. But that promise comes with a risk: the possibility that transplanted hPSCs might also develop as unwanted tumors. In a new study published November 10, 2015 in the online journal eLIFE, researchers at University of California, San Diego School of Medicine describe a new "progenitor cell" capable of unlimited expansion and differentiation into mature kidney cells, but without the risk of forming tumors. "This work nicely complements recent advances in tissue engineering and the goal of rebuilding or recreating functional organs, such as what we've seen with the creation of 'mini-kidneys'," said senior author Karl Willert, PhD, associate professor in the Department of Cellular and Molecular Medicine at UC San Diego. "It represents a novel source of cells." Willert, with co-corresponding author David Brafman, PhD, at Arizona State University, and colleagues engineered an in vitro microenvironment that permitted homogenous expansion of hPSC progenitor cells from the mesoderm - one of the three primary germ layers in early embryonic development. A germ layer is a primary layer of cells that form during embryogenesis. Progenitor cells are early descendants of stem cells, with more limited differentiation capacity. Analyses showed that these newly created "mesoderm progenitors" lacked tumor-forming potential, but retained the capacity to differentiate into specific kinds of tissue, such as cells that comprise the adult kidney. The researchers said the ability to generate expandable populations of progenitor cells with limited differentiation presents several advantages over the use of undifferentiated human stem cells: First, cultures derived from the latter often harbor undifferentiated cells that retain the potential to seed tumor growth. Second, development and manipulation of lineage-restricted progenitors is less elaborate. It's easier to create mature cell populations for research or therapeutic use. Third, because progenitor cells are limited in what kind of cell they can be, they are less likely than stem cells to differentiate into an unwanted cell type. "Our cells can serve as building blocks to generate kidneys that may one day be suitable for cell replacement and transplantation," said Willert. "I think such a therapeutic application is still a few years in the future, but engineered kidney tissue can serve as a powerful model system to study how the human kidney interacts with and filters drugs. Such an application would be of tremendous value to the pharmaceutical industry." Willert noted that the progenitor cells developed are likely capable of differentiating into other cell types of the intermediate mesodermal lineage as well, most notably the germ line to generate eggs and sperm in a dish. "We have only characterized their potential to differentiate into cells that contribute to the kidney. We are now investigating to what extent these cells can generate other tissues and organs that derive from intermediate mesoderm, including reproductive organs." He said colleagues are also pursuing similar bioengineering-based approaches to generate other similar expandable progenitor cell populations capable of differentiation into mature cell types derived from other germ layers. Source: University of California - San Diego http://www.biologynews.net

http://www.biyologlar.com/novel-stem-cell-line-avoids-risk-of-introducing-transplanted-tumors

Passiflora incarnata ( Çarkıfelek)

Orjinal Adı: Passiflora incarnata Diğer Adları: Fırıldak çiçeği, Saat çiçeği Bilgi :Çarkıfelekgiller familyasının örnek bitkisidir. Anayurdu Tropikal Amerika'dır. Oradan dünyaya yayılmış 400 kadar türü vardır. Ülkemizde bazı yerlerde süs bitkisi olarak kimi türleri yetiştirilmektedir. Gölgeli ve nemli duvar dipleri ve kameryeleri sevip sarmaşarak yetişen otsu ya da ağaçsı sarmaşıktır. 5-7 parçalı koyu yeşil yaprakları almaşık dizilişli; yaz boyunca açan tekerlek biçimindeki gösterişli çiçekleri erguvani, pembe ya da kırmızı renkte ve iridir. Bitki, tohumuyla ya da gövde çelikleriyle çoğaltılır Çarkıfelek bitkisi harmin, harmol, harman ve passiflora adı verilen alkaloitleri; flavon, glisosit ve sterol adlı diğer maddeleri içerir. Bazı türlerinin meyveleri çiğ olarak yenebildiği gibi, içki ve şerbet yapımında da yararlanılır. Tibbi Etkileri ve Kullanımı Zehir ve insan bedenine zararlı olabilecek maddeler içermeyen çarkıfelek bitkisi, güvenle kullanılarak şu tıbbi etkileri sağlar: • Kişinin yaşadığı gerginlik ve endişelilik hallerini giderir. • Sinirleri yatıştırır. • Sinirsel ve kronik uykusuzluklara deva olur. • Parkinson hastalığı ve isteri gibi durumlarda sinirsel nöbetleri gidericidir. • Zona hastalığı gibi sinir ağrılarında da yatıştırıcı olur. Bütün böyle durumlar için ilkbahar sonu ile yaz ortası arasında bitkinin çiçek açmamış ya da çiçekleri olgunlaşıp meyveye dönüşmüş dallarından toplanan yaprakları, gölge ve havadar bir yerde kurutulur ve infüzyonu hazırlanır: 1 tatlı kaşığı kuru yaprak üzerine 1 bardak kaynar su dökülerek 15 dakika süreyle demlendirilir. Uykusuzluğu gidermek için, akşamları yatmadan önce bu infüzyondan bir bardak; rahatlama sağlanması ve diğer şikâyetlerin giderilmesi için istendiği zaman alınmak üzere, günde iki bardak içilir.

http://www.biyologlar.com/passiflora-incarnata-carkifelek

Her Yıl 36 Erkekten Biri Prostat Kanserine Yakalanıyor

Her Yıl 36 Erkekten Biri Prostat Kanserine Yakalanıyor

Türk Radyoloji Derneği Genel Sekreteri ve Avrupa Ürogenital Radyoloji Derneği Prostat Kanseri Çalışma Grubu Üyesi Doç. Dr. Ahmet Tuncay Turgut, MR görüntüleme ve multiparametrik MR teknolojisindeki gelişmeler sayesinde prostat kanserinin kolaylıkla saptandığını belirtti. MT- Prostat kanseri görülme sıklığı nedir ve toplum sağlığı açısından taşıdığı önemden söz eder misiniz? Yapılan araştırmalarda, gelişen hayat standartları sayesinde yaşam beklentisinin artmasına paralel olarak özellikle 65 yaş üzerinde olmak üzere kanser vakalarında önümüzdeki otuz yıl içinde üç kat artış meydana geleceği hesaplanmıştır. Bu durum ağırlıklı olarak bir ileri yaş hastalığı olan prostat kanseri için de geçerlidir. Prostat kanseri genel olarak orta yaşı geçmiş erkeklerde en sık tanı konan kanser olup tüm kanser vakalarının %11'inden ve kanserden ölümlerin % 9'undan sorumludur. Çok çarpıcı bir veriyle devam etmek gerekirse, yapılan araştırmalar her 6 erkekten birinin yaşamı boyunca prostat kanserine yakalanacağını göstermiştir. Prostat kanseri tüm dünyada erkeklerde kansere bağlı ölüm nedenleri arasında akciğer kanserinden sonra ikinci en sık sorumlu tutulan neden durumundadır. Bu durumda her 36 erkekten birinin prostat kanseri nedeniyle hayatını kaybettiği düşünülmektedir. Tüm dünyada yılda yaklaşık 900 bin hasta prostat kanseri tanısı alırken, her yıl 258 bin hasta prostat kanseri nedeniyle hayatını kaybetmektedir. Benzer şekilde ABD’de 2012 için öngörülen yeni olgu sayısı 241 740, ölüm sayısı ile 28 170’dir. Mevcut artışın devam etmesi durumunda 2030 yılında dünyada her yıl 1,7 milyon yeni olgu ve 500.000 ölüm görüleceği düşünülmektedir. MT - Prostat kanseri için kimler risk altındadır? Prostat kanseri için bilinen en kuvvetli risk faktörü genetik faktörlerdir. Bu nedenle ailesinde prostat kanseri öyküsü olanlar prostat kanseri için risk altındadır. Ayrıca diğer bazı kanser türleri için olduğu gibi prostat kanserinin de batı tipi yaşam tarzı, hazır gıdaların fazla tüketimi gibi alışkanlıklarla artış gösterdiği düşünülmektedir. MT - Prostat kanserinin belirtileri nelerdir? Genellikle 40 yaşın üstündeki erkeklerde görülen prostat kanseri erken dönemde belirti vermeyip tanı ancak rutin kontroller sırasında yapılan tetkiklerle konulabilmektedir. Hastalık sıklıkla sinsi şekilde ilerledikten sonra geç dönemde kendini göstermektedir. Bu nedenle birçok hastada prostat kanseri genellikle ileri evrede yakalanmaktadır. Bu dönemde hastalık önce prostata komşu organlara ardından kan ve lenf yolu ile lenf düğümleri, kemik ve akciğerlere sıçrayabilmektedir. Başlıca belirtiler arasında yer alan idrardan kan gelmesi, meniye kan karışması gibi bulguların varlığı hastalığın ilerlediğini akla getirirken metastaz halinde ise kemiklerde ağrı görülebilmektedir. MT - Prostat kanseri için erken tanının önemi hakkında bilgi verebilir misiniz? Geçmişte, erken tanı araçları henüz yaygın değilken birçok erkek ilerlemiş kanser tanısı almaktaydı ve hastalar teşhisten bir kaç sene sonra ölmekteydiler. Bu nedenle 1970’lerde hastalığın tanısı sonrasında 5 yıllık yaşam süresi %70’lerin altındaydı. Oysa günümüzde prostat kanseri erken evrede yakalandığında ve doğru tedavi uygulandığında başarı oranı % 90’lara yükselmektedir. Yapılan araştırmalarda tarama yoluyla prostat kanserinden ölüm oranlarının %30 oranında azaldığı hesaplanmıştır. Beklendiği üzere hastalığın erken teşhis edilmesi halinde tedavi başarısı artacaktır. Tanı anında kanser sadece prostata sınırlı ise hastanın tamamen iyileşme şansı çok yüksektir. Bu nedenle prostat kanseri tanısıyla ilgili yaklaşımın esasını, hastalığın prostatın içinde sınırlıyken yani hiçbir klinik belirtisinin olmadığı dönemde tespit edilmesi oluşturmaktadır.  Hiçbir yakınması olmasa bile erkeklerin 50 yaşından itibaren yılda bir kez prostat kanseri taraması için başvurması önerilmektedir. Bir diğer önemli nokta ise hastalığın tedavisinin tamamen evreye göre planlanıyor olması nedeniyle evrenin doğru olarak saptanması gerekliliğidir MT - Türkiye’de durum nedir? Türkiye’deki durum da aslında dünya ile paralellik göstermekte olup, prostat kanseri görülme sıklığı   % 20 civarındadır. Yapılan çalışmalarda ülkemizde de prostat kanserinde belirgin artış olduğu, prostat kanserinin erkeklerde akciğer kanserinden sonra ikinci sıraya yerleştiği anlaşılmıştır. Bu artış tüm dünyada olduğu gibi ülkemizde de kişilerin doktora görünme sıklıkları, yapılan kan testlerinin artışı, tanı koymada kaydedilen gelişmeler gibi faktörlerle yakından ilişkilidir. Bununla birlikte Batı ülkelerinden kısmen farklı olarak erken tanı oranının hala önemli ölçüde düşük olduğu söylenebilir. Bu durum hastalığa yönelik farkındalığın görece düşük olması ve özellikle kültürel faktörlerle ilişkili olmak üzere hekime başvurma oranının istenen düzeyde olmaması ile açıklanabilir.  Maalesef toplumun geneli herhangi bir yakınması olmaması nedeniyle kontrol amacıyla doktora başvurmamaktadır. MT - Prostat kanseri tanısı nasıl konmaktadır? Prostat kanseri taraması için iki temel yöntem parmakla prostat muayenesi ve kanda PSA denilen bir maddenin ölçümüdür.  Kan PSA düzeyinin artışı tipik olarak prostat kanserinin potansiyel varlığına dair ilk belirtidir.  Bunu takiben gerçekleştirilen uygulama ultrason rehberliğinde prostat bezinin özel iğnelerle genellikle 12 örnek alımını içerecek şekilde örneklenmesi işlemidir. MT - Prostat kanseri tanısı için neden yeni tekniklere gereksinim duymaktayız? Her şeyden önce iğneyle parça alınması işleminin kanseri saptamaya yönelik duyarlılığı %40-50 oranındadır.  Ayrıca PSA düzeyinde artışın prostat kanseri dışındaki bazı sebeplere de bağlı olabilmesi sebebiyle rutin PSA taraması pek çok gereksiz biyopsiye yol açmaktadır. Önemli bir problem de biyopsi ile kanser tanısı elde edilmemesine rağmen anormal olarak yüksek kalan veya yükselmeye devam eden PSA değerleri nedeniyle prostat kanseri şüphesinin devam ettiği çok sayıda hastaya biyopsi tekrarları uygulanma zorunluluğunun bulunmasıdır. Bu da sosyal güvenlik sistemine ciddi bir ek maliyet getirmekte, tanısal bakımdan belirsizliklere neden olmaktadır.  Diğer önemli bir dezavantaj ise iğne biyopsilerinin tümörün sınırlarını tam olarak ortaya koymada yeterli oranda başarılı olmaması, bir başka deyişle hastalığa yaklaşımda çok önemli bir parametre olan kanser evresinin biyopsi ile doğru olarak belirlenemiyor olmasıdır. Prostat kanseri tanısını doğrulamaya yönelik olarak gerçekleştirilen biyopsi uygulaması invazif bir işlemdir. Hastaların bir kısmı bu işlemi inanılmaz derecede ağrılı olarak nitelendirmektedir; bir çalışmada hastaların %20’si yeni bir biyopsi işlemi gerektiği takdirde işlemi yaptırmayı kabul etmeyeceklerini belirmişlerdir. Ayrıca işlem bazı hastalarda işlem sonrasında kanama ve enfeksiyon gelişmesi gibi komplikasyonlara yol açabilmektedir. Söz konusu yan etkiler beklendiği üzere işlem sırasında alınan parça sayısı ile doğru orantılıdır. MT - Peki çözüm nedir? Giderek artan sayıda hastaya biyopsi uygulanması gerekliliğinin ortaya çıkması ve örneklem hatası riskinin olmasına bağlı olarak negatif bir biyopsi sonucunun otomatik olarak kanserin olmadığı anlamına gelmemesi gerçeğinden hareketle MR incelemesi elde edilen bulguların rehberliğinde yapılan biyopsi uygulamasının önemli yararlar sağladığı görülmektedir. Multiparametrik MRG ile sağlanan yararların başında tümörün davranış paterninin belirlenmesi gelmektedir. Prostat kanserinin hasta açısından hangi düzeyde (düşük, orta ve yüksek) risk oluşturduğunun öngörülmesinde/belirlenmesinde ultrason rehberliğinde biyopsi işleminin doğruluk oranları %50’ler düzeyinde iken bu oran multiparametrik MRG ile %95’lere yükselmektedir. Ayrıca yüksek PSA nedeniyle gerçekleştirilen biyopsi işleminde kanser saptanmamasına rağmen PSA’daki yükselmenin devam etmesi gibi kuvvetli kanser şüphesinin varlığı söz konusu olduğunda, multiparametrik MRG sonrasında gerçekleştirilen biyopsi ile % 40’lar düzeyinde prostat kanseri saptanmakta olup bunların yaklaşık %90’ı klinik olarak önemli kabul edilen tiptedir. Tümörün yerini tam olarak belirleyebilen yöntem sayesinde ultrason eşliğinde alınan 12 örnek yerine 1-2 örnek alınması bile yeterli olabilmektedir. Ayrıca MR ile kanserin görüntülenmesinde sağlanan başarı MR incelemesi ile prostatında anormal bulgu saptanmayan hastalarda biyopsi yapılması gerekliliğini azaltmaktadır.  Tabi burada önemli olan gerçekleştirilen MR incelemesinin uygun teknikle yapılması ve bulgulara yönelik değerlendirmenin tekrarlanabilir olma özelliğini taşıması, bir başka deyişle standart hale getirilmesidir. Bununla ilgili Avrupa Ürogenital Radyoloji Derneği  tarafından bu yılın başında yayınlanan kılavuz ve PI-RADS (Prostat Görüntüleme Raporlama ve Data Sistemi) adı verilen yapılandırılmış raporlama sistemi Amerikan Radyoloji  Koleji  tarafından da kullanılmaya başlanmıştır. MT - Bu yöntem Türkiye’de kullanılmaya başlandı mı? Ülkemizde de henüz çok yaygın olmamakla birlikte multiparametrik prostat MR incelemeleri gerçekleştirilmektedir. Türk Radyoloji Derneği adı geçen uygulamayı yaygınlaştırmaya sağlamaya yönelik çalışmalarını sürdürmektedir. Kadınlarda meme kanseri taramasına yönelik olarak mamografinin kullanılmasına benzer şekilde yakın gelecekte erkeklerde de prostat kanseri tanısına yönelik olarak manyetik rezonans görüntülemenin kullanılmasının gündeme geleceğini düşünüyoruz. http://www.medical-tribune.com.tr

http://www.biyologlar.com/her-yil-36-erkekten-biri-prostat-kanserine-yakalaniyor

TÜRKİYE'DE YAŞAYAN YILAN TÜRLERİ

TÜRKİYE'DE YAŞAYAN YILAN TÜRLERİ

1.Familya:Boidae Eryx jaculus: Mahmuzlu Yılan; Genel Özellikler: Boğa Yılanları ailesinden (en büyük yılan türleri ailesi) olan bu türün en büyük özelliği zehirsiz olmaları ve avlarını boğarak öldürmeleri. Benekli olan sırt bölgesinin rengi genel olarak kahverengi ve tonlarında olur. Beneklerinin rengiyse sarımsı beyaz. Karın bölgesi kirli beyaz, bazen küçük koyu benekler olabilir. Besinlerinin büyük bir kısmını fare gibi kemiriciler oluşturur. Bunun yanında küçük sürüngenleri, salyangozları da yiyebilirler. Kemiricilerle beslendikleri için fare sayısının artmasını engellerler. Bundan dolayı oldukça yararlıdırlar. Sabahleyin ve akşamüzeri aktiflik gösterirler. Dişiler bir defada 14 cm boylarında 18-20 kadar canlı yavru doğurur (Ağustos ve Eylül). Su ihtiyacını bitkilerin üzerindeki çiylerden karşılar. Rahatsız edilmedikleri sürece insanlara saldırmazlar. Boyları 1 metre kadar olabilir. Habitat: Kurak yerlerdeki kumlu, taşlı yerlerde yaşarlar. Aktif olmadıkları zaman taş altları ve kemirici yuvalarında saklanırlar. Kuma gömüldükleri de olur. Yüksekliği 1200 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya, Güney ve Batı Anadolu, Şanlıurfa civarı ve Doğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Türkiye'de iki tane alt türü bulunur; a- Eryx jaculus turcicus (Oliver, 1801) b- Eryx jaculus familiaris Eichwald, 1831 2.Familya:Colubridae Coronella austrica: Avusturya Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kırmızımsı kahverengiyle sarımsı kahverengi arasında değişir. Belirginliği az olan beneklerinin rengiyse siyah. Karın bölgesiyse grimsi kahverengiden kırmızımsı renge kadar değişir. Ayrıca burun bölgesinden başlayıp, gözün üzerinden geçen ve boyuna doru uzanan bir şerit bulunur (temporal bant). En çok yedikleri besin kertenkeleler. Bunların yanında kemiriciler, avlayabildikleri kuşlar, küçük yılanları da yerler.Tırmanıcı özellikleri var. Sabahları ve öğleden sonraları aktiftir. Öğle uykuları var. Az hareketli ve sakin bir türdür. Kış uykusuna da yatarlar. Bu hayvanlar üreme işlerini doğurarak yaparlar (ovovivipar). Ancak doğurma memelilerdeki gibi olmaz. Yavru anne karnında bir yumurta içinde gelişir (plasenta yok) ve dışarıya öyle bırakılır. Dişiler bir defada 4-13 yavru doğururlar. Ağustos ya da Eylül'de yumurtadan çıkan yavrular 3 (erkekler) ve 4 (dişiler) yılda erginleşir. Boyları 75 cm kadar olabilir. Habitat: Ormanlık yerlerin kenarlarındaki taşlıklarda, kumluklarda, çayırlıklarda, çalılık yerlerde yaşarlar. Ağaçlarda da görülürler. Yüksekliği 2350 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun kuzeyinde (Trakya dahil) daha çok olmak üzere, Orta ve Batı bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Dolichopis caspius (Coluber caspius): Hazer Yılanı, Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengimsi gri ve gri rengin diğer tonlarında olabilir. Sırtta ayrıca koyu renkli benekler bulunur. Ayrıca sırttaki pulların kenarları beyaz renkli olur. Beneksiz olan karın bölgesi sarımsı beyaz renkte. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 5-8 kadar yumurta bırakabilirler. Boyları 180 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 2000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Sinop'tan Mersin'e kadar olan hattın batısında kalan yerlerde habitatın uygun olduğu alanlarda yaşarlar. Dolichopis jugularis (Coluber jugularis): Kara Yılan; Genel Özellikler: Gençlerin sırt bölgesinin rengi genel olarak açık kahverenginin tonlarında olur. Sırttaki beneklerin rengi koyu kahverengi ya da siyah. Üzerindeki pulların kenarlarıysa siyah renkli. Karın bölgesi kirli beyaz ve kenarlara doğru küçük benekli. Erginlerin sırt kısmı parlak siyah. Başın üst tarafında kırmızımsı lekeler bulunur. sırttaki pulların ortasında kırmızımsı bir çizgi bulunur. Kırmızımsı olan karın bölgesinde küçük siyah benekler bulunur. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler.Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 7-11 kadar yumurta bırakabilirler. Boyları 200 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 2000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Akdeniz, Ege (İzmir'e kadar) ve Güneydoğu Anadolu Bölgesi'nde habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Hızlı hareket eden bu hayvan insandan genellikle kaçmaz ve korkutmak için "tıss" diye ses çıkarır. Zehirsiz olan bu tür kendini savunmak için saldırabilir ve insanı ısırdığında kolay kolay bırakmaz. Dolichopis schmidti(Coluber schmidti): Kırmızı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak genç bireylerde grimsi kahverengi ve uzunlamasına koyu kahverengi ya da siyah benekli. Gençler büyüdükçe benekler kaybolmaya başlar. İyice erginleştikten sonra parlak kırmızı ve beneksiz olurlar. Genç bireylerde karın bölgesi sarımsı beyaz, erginlerdeyse sarımsı beyaz ya da kırmızımsı olur. Gündüzleri aktiflik gösterirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 6-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Boyları 160 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 500-1700 metre arasında olan yerlerde bulunurlar. Türkiye'deki Dağılım: Doğu, Güneydoğu, ve İç Anadolu bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Hemorrhois nummifer (Coluber nummifer): Sikkeli Yılan; Genel Özellikler: Vücudun genel yapısına bakıldığında, boyun kısmının vücudun diğer bölgelerine oranla oldukça ince olduğu görülür. Sırt bölgesinin rengi genel olarak sütlü kahverengi ve kahverenginin diğer tonlarında olur. Sırtta ayrıca, kenarları siyahımsı olan koyu kahverengi, yuvarlağımsı ve ayrı ayrı iri benekler bulunur. Vücudun yan taraflarında, baştan kuyruğa doğru uzanan, sırttakilerden daha küçük olan benekler bulunur. Bunlar kuyruk bölgesinde birleşerek bir şerit oluşturur. Gözle ağzın arka kısmı arasında siyah bir şerit de var. Karın bölgesi çok az benekli olup kirli beyaz bir renkte olur. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kuş ve kuş yumurtalarıyla, kertenkelelerle (özellikle Gekolar) beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Oldukça hızlı hareket edebilirler. Gündüzleri aktiflik gösterirler. Temmuz ayında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 5-10 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 20 cm kadar olur. Boyları 130 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu, kurak yerlerdeki taşlık ve çalılık yerlerde, evlerin yakınında yaşarlar. Toprak evlerin çatılarında da görülürler. Yüksekliği 2300 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Marmara, Ege, Akdeniz bölgeleri, İç Anadolu'nun batısında habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Saldırgan bir yapıları var. Rahatsız edildiklerinde ya da savunma amaçlı saldırırlar. Hemorrhois ravergieri (Coluber ravergieri): Kocabaş Yılan; Genel Özellikler: Vücudun genel yapısına bakıldığında, boyun kısmının vücudun diğer bölgelerine oranla oldukça ince olduğu görülür. Sırt bölgesinin rengi genel olarak sütlü kahverengi ve kahverenginin diğer tonlarında olur. Sırtta ayrıca, kenarları siyahımsı olan koyu kahverengi, yuvarlak olmayan ve zikzak yapmış (şerit gibi) iri benekler bulunur. Vücudun yan taraflarında, baştan kuyruğa doğru uzanan, sırttakilerden daha küçük olan benekler bulunur. Bunlar kuyruk bölgesinde birleşerek bir şerit oluşturur. Gözle ağzın arka kısmı arasında siyah bir şerit de var. Karın bölgesi çok az benekli olup kirli beyaz bir renkte olur.Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kuş ve kuş yumurtalarıyla, kertenkelelerle (özellikle Gekolar) beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Oldukça hızlı hareket edebilirler. Gündüzleri aktiflik gösterirler. Temmuz ayında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 5-10 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 20 cm kadar olur. Boyları 130 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu, kurak yerlerdeki taşlık ve çalılık yerlerde, evlerin yakınında yaşarlar. Toprak evlerin çatılarında da görülürler. Yüksekliği 2300 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu ve Güneydoğu Anadolu bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Rahatsız edildiklerinde ya da kendilerini korumak için saldırabilirler. Platyceps collaris (Coluber rubriceps): Toros Yılanı; Genel Özellikler: Sırt bölgesinin rengi arka tarafları sarımsı kahverengi, baş taraflarıysa grimsi kahverengi olur. Başın üst kısmıysa kırmızımsı kahverengi. Vücudun ön yan taraflarında siyah ya da koyu kahverengi benekler bulunur. Bu benekler arkaya doğru gittikçe küçülür ve kaybolur. Boyun tarafındaki ilk iki benek genelde birleşir ve halka oluşturur. Gözün arka ve ön tarafları siyah renkli. Karın bölgesiyse sarımsı beyaz olup beneksizdir. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kertenkelelerle ve böceklerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Çok hızlı hareket edebilirler ve ağaçlara da tırmanabilirler. Gündüzleri aktiflik gösterirler. Ekim'le Nisan ayı arasında kış uykusuna yatarlar. Haziran ve Temmuz aylarında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 3-5 kadar yumurta bırakabilirler. Boyları 100 cm kadar olabilir. Habitat: Kuru yerlerde, çalılık ve taşlık alanlarda yaşarlar. Tarlalarda, bahçelerde ve ev yakınlarında da görülürler. Yüksekliği 1700 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Marmara, Ege ve Akdeniz Bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Platyceps najadum (Coluber najadum): İnce Yılan; Genel Özellikler: Vücut yapıları diğer yılanlara göre oldukça ince. Sırt bölgesinin rengi arka tarafta kırmızımsı kahverengi ve kahverenginin diğer tonları, ön taraftaysa grimsi. Vücudun ön tarafının yanlarında kenarları beyaz olan iri siyah benekler bulunur. Bu benekler kuyruğa doğru gittikçe küçülür. Baş taraftaki ilk iki benek bazen birleşik olabilir. Benek bulunmayan karın bölgesi, kirli beyaz ya da sarımsı olabilir. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kertenkelelerle ve böceklerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Çok hızlı hareket edebilirler ve ağaçlara da tırmanabilirler. Gündüzleri aktiflik gösterirler. Ekim'le Nisan ayı arasında kış uykusuna yatarlar. Haziran ve Temmuz aylarında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 3-5 kadar yumurta bırakabilirler. Yavrular 2 ya da 3 yılda erginleşebilirler (sıcaklığa bağlı olarak). Boyları 140 cm kadar olabilir. Habitat: Kuru yerlerde, çalılık ve taşlık alanlarda yaşarlar. Tarlalarda, bahçelerde ve ev yakınlarında da bulunabilirler. Yüksekliği 1700 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun İzmir-Ağrı hattının güneyinde kalan kısımlarıyla, Trakya ve Doğu Karadeniz bölgesinde habitatın uygun olduğu alanlarda dağılım gösterirler. Platyceps ventromaculatus (Coluber ventromaculatus): Benekli Yılan; Genel Özellikler: Bu hayvana ilk bakıldığında göze çarpan koyu renkli (siyah ya da kahverengi) benekleri. Bu benekler kuyruğa doğru gittikçe küçülür. Sırtın zemin rengiyse grimsi kahverengi ve tonlarında olur. Karın bölgesi daha açık renkli olur. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 6-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Boyları 150 cm kadar olabilir. Habitat: Bitki örtüsünün az olduğu kurak, taşlık ve çalılık yerlerde yaşarlar. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 1000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Şanlıurfa'da Suriye sınırına yakın olan bölgelerde habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis aurolineatus: ??? Eirenis barani: Baran Cüce Yılanı; Genel Özellikleri: Dorsali sarımsı kahverengi, ventrali beyaza yakın ve lekesizdir. Bazı fertlerde dorsal taraf lekelidir. Ense kısmında bulunan siyah bant gençlerde daha barizdir. Yaş ilerledikçe kaybolur. Habitat: Az bitkili taşlık bölgelerde taş altlarında yaşar. Böceklerle beslenirler. Türkiye'deki Dağılımı: Anadolu Diyagonali, Niğde, K.Maraş, Bolkarlar, Adana, Hatay ve Suriye’de dağılış gösterir. Eirenis collaris: Yakalı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengi ve tonlarından zeytini yeşile kadar değişir. Ense kısmında büyük siyah bir benek vardır. Ortası açık renkli, kenarları siyah olan sırt pulları vardır. Beneksiz olan karın bölgesiyse sarımsı beyaz olur. kış uykuları vardır. Genel olarak böceklerle, örümceklerle, küçük kemiricilerle, seyrek olarak da kertenkelelerle beslenirler. Dişiler bir defada 4-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 10 cm kadar olur ve 2-3 yılda erginliğe ulaşırlar. Boyları 40 cm kadar olur. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 1600 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Akdeniz bölgesinin doğusunda, Güneydoğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis coronella: Halkalı Yılan; Genel Özellikler: Oldukça küçük boyludurlar. Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında (sarımsı) olur. Boyun kısmında 1-2 tane halka halini almış büyük koyu kahverengi benekler bulunur. Bu benekler arka tarafa doğru, küçülerek ve belirginliği azalarak devam eder. Çok küçük noktalı olan karın bölgesi, sarımsı beyaz renkte olur. Genel olarak böcekler ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 35 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını taş altlarında geçirirler. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis decemlineatus: Çizgili Yılan; Genel Özellikleri: Boyu yaklaşık 1 m kadar olup, dorsali gri kahverengi ve üzerinde 2 çift ince siyah boyuna çizgi bulunur. Yaşla birlikte bu çizgiler silikleşir. Başın üzeri lekesizdir. Ventral sarımsı renktedir. Habitat: Açık arazilerde, taşlık yerlerde yaşarlar. Türkiye'deki Dağılımı: Yurdumuzun Güneydoğu ve doğu kısımlarında (Adana, Van, Gaziantep ve Van) yaygındır. Eirenis eiselti: ??? Eirenis hakkariensis: Hakkari Cüce Yılanı; ??? Eirenis levantinus: Levant Cüce Yılanı; ??? Eirenis lineomaculatus: Bodur Yılan; Genel Özellikler: "Bodur Yılan" denmesinin nedeni kısa boylu ve kalın vücutlu oluşu. Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında olur. Sırta siyah ya da koyu kahverengi küçük benekler bulunur. Bu benekler vücudun yan taraflarında daha küçük olur. Ayrıca boynun sırt tarafında, halka şeklinde koyu bir benek bulunur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 35 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Akdeniz ve Güneydoğu Anadolu (Adana, Hatay, -Amik Ovası-) bölgelerinde, habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis modestus: Uysal Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında (özellikle sarımsı) olur. Genç bireylerde, boynun hemen arka kısmında büyük siyah ya da koyu kahverengi bir benek bulunur. Bu büyüdükçe belirginliğini yitirir ve yaşlılarda görülmez. Sırttaki pulların kenarları ortaya göre daha koyu renkli olur. Karın bölgesi sarımsı beyaz olur. Dişiler bir defada 3-8 kadar yumurta bırakabilir (taşlık yerlerdeki oyuklara). Genel olarak böcekler, örümcekler ve solucan gibi omurgasız hayvanlarla beslenirler. Boyları 70 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında, bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis punctatolineatus: Van Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengi ve tonlarında olur. Sırtın ön taraflarında küçük siyah benekler bulunur. Bu benekler arka tarafta birleşerek ince bir şerit oluşturur. Beneksiz olan karın bölgesi sarımsı beyaz olur. Dişiler bir defada 6-8 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 50 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu'da Akdamar Adası (Van Gölü İçinde), Van ve Hakkari civarında habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis rothi: Kudüs Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ya da yeşilimsi kahverengi olur. Baş (ensede) bölgesinde siyah bir benek bulunur. Bu benek ensede bulunan halka şeklindeki benekten ince açık renkli bir halkayla ayrılır. Vücudun diğer kısımlarında başka benek bulunmaz. Karın bölgesiyse sarımsı beyaz olur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 40 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu bölgesinde (Şanlıurfa, Mardin, Siirt, Hakkari) habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis thospitis: ??? Elaphe dione: Step Yılanı; ??? Elaphe sauromates (Elaphe quatuorlineata sauromates): Sarı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı gri ve tonlarında olur. Sırttaki bir ya da iki sıralı beneklerin rengi, koyu kahverengi ya da siyah olur. Şakak bölgesinde çizgi (temporal bant) bulunur. Gençken belirgin olan benekler ve temporal bant, yaşlandıkça belirginliğini kaybeder. Benekli olan (koyu kahverengi ya da siyah) karın bölgesi sarımsı beyaz renkte olur. Dişiler bir defada 6-16 kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını boğarak öldürürler. Akşam karanlığında ve çok sıcak olmayan günün tüm saatlerinde aktiftirler. Ağaçlara tırmanabilirler. Çok sakin hayvanlar olup ancak kendilerini güvende hissetmezlerse saldırırlar. Boyları 150 cm kadar olabilir. Habitat: Sık ormanlık olmayan yerlerdeki taşlık ve çalılıklarda, tarlalarda, bahçelerde yaşarlar. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Zamenis hohenackeri (Elaphe hohenackeri): Kafkas Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverenginin tonlarında olur (grimsi, sarımsı). Sırtın ortasında beyazımsı bir şerit ve bu şeridin her iki yanında, koyu kahverengi (sarımsıda olabilir) ya da siyah benekler bulunur. Bu beneklerin rengi kuyruğa doğru gittikçe açılmaya başlar. Ense kısmında U biçiminde büyük bir benek daha bulunur. Başın üst kısmında küçük siyah noktalardan çok bulunur. Şakak bölgesindeki çizgi oldukça belirgin. Kırmızımsı ya da portakal renginde benekler bulunan karın bölgesi grimsi siyah bir renkte olur. Dişiler bir defada 3-7 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Genel olarak fare gibi küçük kemiricilerle, kertenkelelerle ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 75 cm kadar olabilir. Habitat: Genel olarak açık araziler, ormanlık yerler, tarlalar, bahçeler yaşam alanları içinde. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Türkiye'de iki tane alttürü bulunuyor. a- Elaphe hohenackeri hohenackeri (Anadolu'nun Sinop Hatay hattının doğusunda kalan yerlerde, uygun habitatlarda ) b- Elaphe hohenackeri taurica (İç Anadolu'nun güneyiyle, Orta ve Doğu Akdeniz Bölgelerinde uygun habitatlarda) Zamenis longissimus (Elaphe longissima): Eskülap Yılanı, Küpeli Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak siyah ve tonlarında. Gençlerde sarımsı kahverengi ya da grimsi gibi daha açık renkli olur. Sırttaki beneklerin rengiyse beyaz. Başın ense kısmında hilal şeklinde sarımsı büyük bir benek bulunur. Şakak bölgesindeki çizgi (temporal bant) gençlerde oldukça belirgin. Karın bölgesi sarımsı olur. Dişiler bir defada 5-8 kadar yumurta bırakabilirler (kütük altlarına, gazeller içine, vs). Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını boğarak öldürürler. Ağaçlara tırmanabilirler. Çok hızlı hareket edebilirler. İnsan kolay alışabilirler. Boyları 150 cm kadar olabilir. Habitat: En çok bulundukları yerler ormanlık ve çalılık yerlerdeki taşlık alanlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya ve Karadeniz (Giresun'dan batısı) bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Zamenis situla (Elaphe situla): Ev Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverenginin tonlarında (sarımsı, kırmızımsı, grimsi) olur. Sırt tarafta uzunlamasına çizgiler (baştan kuyruğa kadar) ya da benekler bulunur. Benekler yuvarlağımsı olup kenarları siyah, iç kısmı tuğla kırmızısı olur. bunlar bazen birleşip zikzak oluşturabilir. Vücudun yan taraflarında, küçük siyahımsı benekler bulunur. Şakak bölgesindeki çizgi (temporal bant) oldukça belirgin. Karın bölgesinin ön taraflarında küçük siyahımsı benekler bulunabilir ve karın sarımsı beyaz olur. Karın bölgesi bazen, koyu kahverengi ya da siyah olabilir. Dişiler bir defada 2-5 kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Akşam karanlığında ve çok sıcak olmayan günün tüm saatlerinde aktiftirler. Tavanlara ve duvarlara tırmanabilirler. Saldırmaları ancak kendilerini güvende hissetmediklerinde olur. Boyları 90 cm kadar olabilir. Habitat: Çalılık yerler, taşlık alanlar, tarlalar, bahçeler başlıca yaşam alanları. Ayrıca evlerde de çok bulunurlar. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun kuzeyinde ve batısında habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix natrix: Yarı Sucul Yılan, Küpeli Su Yılanı; Genel Özellikler: Sırt kısmının deseni oldukça farklılık gösterir. Genel olarak renk kahverengi, grimsi ve bu iki rengin tonlarında olur. Sırt kısmında iki tane boylamasına uzanan çizgi bulunur. Bu çizgilerin etrafında koyu renkli benekler bulunur. İnce kahverengi benekleri olan başın üst kısmının rengi, grimsi kahverengi. Ense kısmında belirgin bir biçimde bulunan yarım ay şeklinde olan sarı (bazen kırmızı) bir benek bulunur. Vücudun yan taraflarında küçük siyah benekler bulunur. Karın bölgesi genel olarak sarımsı beyaz. Ender olarak siyah üzerine sarımsı beyaz benekli görülebilir. En bilinen özelliği yarı sucul olmaları. Gündüzleri aktiflik gösterirler. Yakalandıklarında ısırmazlar ancak kötü kokan bir gaz salgılarlar. Kendilerini savunma amaçlı olarak ölü taklidi yapabilirler. Genel olarak (yarı sucul olduğundan) küçük balıklar, kurbağalar, semenderler ve çeşitli kemiricilerle beslenirler. Kış uykusuna birçoğu bir araya gelerek yatar (nehir kenarlarında). Dişiler bir defada 6-13 kadar yumurta bırakabilirler. 4-8 haftalık kuluçka döneminden sonra yumurtadan çıkan yavrular, iklim şartlarına göre 1-3 yıl içinde erginleşirler. Ortalama boyları 100 cm (en fazla 150 cm) kadar olur. Habitat: Genel olarak, nehir, akarsu, dere ve göl kenarlarında, bu yerlere yakın çayırlıklarda yaşarlar. Ayrıca suya da çok fazla girerler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix tesselata: Su Yılanı; Genel Özellikler: Biyolojik özellikleri N. natrix türüne çok benzer. Sırt kısmının deseni oldukça bu türde de farklılık gösterir. Genel olarak yeşil ve yeşilin tonlarıyla, grimsi ve sarımsı kahverengi renklerinde olur. Sırt kısmında koyu renkli benekler bulunur. Başın üst kısmında benek bulunmaz. Ense kısmında belirgin bir biçimde (ters "V") bulunan olan siyah bir benek bulunur. Başın arkasında N. natrix'te bulunan yarım ay şeklindeki benek bunlarda bulunmaz. Karnın ön tarafı küçük siyah benekli, genel olarak sarımsı ya da pembemsi beyaz. Arka tarafıysa siyahımsı olup benekleri pembemsi beyaz. Besleneme durumlarına baktığımızda N. natrix'le aynı. Küçük balıklar, kurbağalar, semenderler ve çeşitli kemiricilerle beslenirler. Ama ondan daha fazla balık tüketirler. Kış uykusuna birçoğu bir araya gelerek yatar (nehir kenarlarında). Dişiler bir defada 5-25 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular, iklim şartlarına göre 1-3 yıl içinde erginleşirler. Ortalama boyları 120 cm kadar olur. Habitat: Genel olarak, nehir, akarsu, dere ve göllerde su içinde ve kenarlarında yaşarlar. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix megalocephala: Hemşin Yılanı; ??? Pseudocyclophis persicus: İran Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ya da yeşilimsi kahverengi olur. Baş (ensede) bölgesinde siyah bir benek bulunur. Bu benek ensede bulunan halka şeklindeki benekten ince açık renkli bir halkayla ayrılır. Vücudun diğer kısımlarında başka benek bulunmaz. Karın bölgesiyse sarımsı beyaz olur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 40 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu bölgesinde (Şanlıurfa, Mardin, Siirt, Hakkari) habitatın uygun olduğu yerlerde dağılım gösterirler. Rhynchocalamus melanocephalus: Toprak Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi, sarımsı kırmızı. Bazen de yeşil ve yeşilin tonlarında da görülür. Sırt bölgesinde benekler bulunmaz. Başın üst tarafında iki tane siyah benek bulunur. Ayrıca ensede de bir tane büyük benek bulunur. Bu beneğin baş kısma doğru olan bölümü V şeklinde olur. Karın bölgesinin rengiyse sarımsı beyaz. Bu hayvanın sayısı çok az olduğundan ve oldukça az rastlanıldığından dolayı biyolojileriyle ilgili araştırma yapılamamış. Genel olarak böcekler ve diğer küçük omurgasızlarla beslenirler. Küçük boylu ve kazıcı olan bu yılanların boyu 40 kadar olur. Habitat: Kurak bölgelerde, taşlık alanlarda yaşarlar. Yüksekliği 1200 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Cizre (Mardin), Adana ve Hatay civarında habitatın uygun olduğu yerlerde yaşarlar. Rhynchocalamus barani: Amanos Yılanı; ??? Spalerosophis diadema: Urfa Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ve tonlarında olur. Bunun yanında yeşilimsi ve gri renkler de görülebilir. Sırtta koyu renkli büyük benekler bulunur. bu benekler baş ve ense kısmında da görülür. Karın bölgesi sarımsı beyaz olur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Yavruları böceklerle beslenir. Boyları 180 cm kadar olabilir. Habitat: Bitkisi az olan yerlerde, yarı-çöl özelliği gösteren bölgelerde, kumlu topraklarda ve bozkırlarda yaşarlar. Yüksekliği 500-1000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu'da (Birecik -Şanlıurfa- ve Ceylanpınar) habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Oldukça az rastlanırlar ve sayıları da oldukça azalmıştır. Malpolon monspessulanus: Çukurbaşlı Yılan; Genel Özellikler: Renklenme yaşlı bireylerle gençler arasında farklılık gösterir. Genel olarak gençlerde, baş bölgesi sarımsı kahverengi ve küçük siyah benekli. Sırt kısmı, grimsi ya da kahverenginin tonlarında, beneklerse siyahımsı. Beneklerin kenarlarında bazen beyaz çizgiler bulunabilir. Karın bölgesi beyazımsı siyah noktalı olur. Yaşlandıkça beneklerin tümü belirginliğini yitirmeye başlar ve soluklaşır. Zamanla sırt kısmı yeşilimsi gri kahverengi, karın kısmıysa, gri benekli sarımsı beyaz olur. Şakak bölgesindeki çizgi (temporal bant) oldukça belirgin. Dişiler bir defada 4-12 (en büyük bireyler 20) kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yavruları, küçük yılanlar ve çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 200 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu taşlık alanlar, çalılık yerler, tarlalar başlıca yaşam alanları. Ayrıca bahçeler ve sulama kanallarının yanında da bulunurlar. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Karadeniz bölgesi dışında kalan tüm bölgelerde habitatın uygun olduğu yerlerde dağılım gösterirler. Telescopus fallax: Kedi Gözlü Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak gri, kahverengi ve bu renklerin tonlarında olur. Sırtta koyu renkli büyük benekler bulunur. Beneklerin rengi kuyruğa doğru gittikçe açılır. Başın üst kısmı da koyu renkli olur. Karın bölgesi sarımsı beyaz noktalı olur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Sabahleyin erken ve akşam geç saatlerde avlanmaya çıkarlar. Oldukça dik yerlere rahatlıkla tırmanabilirler. Dişiler bir defada 3-7 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Boyları en fazla 100 cm kadar olabilir. Habitat: Taşlık bölgeler, yamaçlar, güneş alan yerler, yol kenarları, eski evler ve harabeler başlıca yaşama alanları. Yayılış yüksekliğine baktığımızda 1600 metre yüksekliğe kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güney, Batı ve Güneydoğu Anadolu habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Zehirli olan bu yılanlar insanlar için tehlikeli değil. Zehir dişleri ağzın arkasında olduğu için ısırsalar bile zehri boşaltamazlar. Zehri sadece avlarını bayıltmada kullanırlar. Telescopus nigriceps: Siyah Bantlı Kedi Gözlü Yılan; ??? 3.Familya: Leptotyphlopidae Leptotyphlops macrorhynchous: İpliksi Yılan; Genel Özellikler: Çok ince bir vücuda sahip olan yılan türü. Gözleri körelmiş olup üzeri deriyle kaplanmıştır. Bir çok özelliği Kör Yılan'a benzer. Sırt bölgesinin rengi genel olarak pembemsi kahverengi ya da sarımsı kahverengi olur. Karın bölgesiyse sarımsı. Birkaç tanesi bir arada bulunarak yaşarlar. Genelde toprak altında yaşayan bu hayvanlar akşam saatlerinde kısa bir süre dışarı çıkarlar. Yumuşak toprağın içinde sert olan başları sayesinde ilerleyebilirler. Kuyruklarının ucunda insan için zararlı olmayan küçük bir diken bulunur. Genel olarak böcek larvaları, solucanlar ve karıncalarla beslenirler. Üremeleri iyi bilinmemekle birlikte, dişilerin bir defada 4 tane yumurta bıraktıkları düşünülüyor. Ortalama boyları 20 cm (en fazla 25 cm) kadar olur. Habitat: Açık olan yerlerde, yumuşak ve nemli toprakların içinde taş altlarında yaşarlar. Yüksekliği 500 - 1000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu Bölgesinde Birecik (Şanlıurfa) ve Kızıltepe (Mardin)'de habitatın uygun olduğu yerlerde yaşarlar. 4.Familya: Typhlopidae Typhlops vermicularis: Kör Yılan; Genel Özellikler: Solucana çok benzerler. Gözleri körelmiş olduğundan "kör yılan" denmekte. Sırt bölgesinin rengi genel olarak, sarımsı kahverengi, pembemsi kahverengi olur. toprak altlarında bulunduklarından saydamsı bir görünüşü var. Karın bölgesiyse sarımsı. Oldukça hızlı hareket edebilirler. Kuyruklarının ucunda insan için zararlı olmayan küçük bir diken bulunur. Genel olarak böcek larvaları, solucanlar ve karıncalarla beslenirler. Üremeleri iyi bilinmemekle birlikte, dişilerin bir defada 4-8 kadar yumurta bıraktıkları düşünülüyor. Ortalama boyları 25 cm (en fazla 35 cm) kadar olur. Habitat: Yumuşak toprakların içinde, taş altlarında bulunurlar. Nemli yerleri daha çok tercih ederler. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu bölgesi dışında olan bölgelerin hepsinde habitatın uygun olduğu yerlerde dağılım gösterirler. Rhinotyphlops episcopus: Sivriburun Yılan; ??? 5.Familya: Viperidae Macrovipera lebetina (Vipera lebetina): Koca Engerek; Genel Özellikler: Sırt bölgesinin rengi genel olarak grimsi kahverengi ve bu rengin tonlarında olur. Sırtta bazı yerlerde birleşik koyumsu benekler (bazen belirsiz) bulunur. Bunların yanında (sırtın ortalarında) kenarları koyu renkli, iç kısımları tuğla kırmızısı ya da sarı renkte beneklerde bulunur. Başın üst kısmında bazen küçük siyah benekler bulunabilir. Kuyruk ucu sarımsı. Beyazımsı ya da pembemsi olan karın bölgesinde nokta halinde siyah benekler bulunur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler, kuşlar, yılanlar ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını sabahın erken saatlerinde ya da geceleyin avlarlar. Yemeden önce zehirleyerek öldürürler. Hareketleri oldukça ağır olan bu hayvanlar gündüzlerini daha çok dinlenerek geçirirler. Genel olarak canlı doğururlar (5-7 kadar). Bazı bölgelerde de yumurtlarlar (4-7 kadar). Yumurta 1 ay içinde açılır. Boyları 150 cm kadar olabilir. Habitat: Ovalarda, taşlık yerlerde, terk edilmiş evlerde, harabelerde, bahçelerde ve tarlalarda yaşarlar. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu ve Güneydoğu Anadolu'da, Doğu Akdeniz bölgesinde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Türkiye'de yaşayan en uzun, kalın ve zehirli olan yılan türü. İnsanlara, sadece kendilerini korumak için saldırabilirler. Zehirleri insanlar için oldukça tehlikeli olabilir. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdiklerinden için soyları tehlike altındadır. Montivipera albizona (Vipera albizona): ??? Montivipera bulgardaghica(Vipera bulgardaghica): ??? Montivipera raddei (Vipera raddei): Ağrı Engereği; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar iç sarımsı ya da tuğla renginde olan büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Gündüzleri oyuklarda ve taş altlarında saklanan bu hayvanlar, avlanma işlerini gece yaparlar. Kendilerini koruma amaçlı saldırabilirler. Oldukça ağır hareket ederler ama saldırırken çok hızlı olabilirler. Boyları ortalama 70-80 cm (en fazla 100 cm) kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan, az bitkili yerlerde yaşarlar. Yüksekliği 1000-3000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu'da Kars, Ağrı, Iğdır, Hakkari ve Van civarında habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri etkili olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. Montivipera wagneri (Vipera wagneri): Vagner Engereği; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar iç sarımsı ya da tuğla renginde olan büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları ortalama 50-80 cm kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan, az bitkili yerlerde yaşarlar. Yüksekliği 1200-2000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Kars'ta habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu tür çok dar bir alanda yayılış gösterdiği için soyları tehlike altındadır. Montivipera xanthina (Vipera xanthina): Şeritli Engerek; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar uzanan siyah ya da koyu kahverengi büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Gündüzleri oyuklarda ve taş altlarında saklanan bu hayvanlar, avlanma işlerini gece yaparlar. Kendilerini koruma amaçlı saldırabilirler. Oldukça ağır hareket ederler ama saldırırken çok hızlı olabilirler. Boyları ortalama 70-80 cm (en fazla 100 cm) kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan yerlerde yaşarlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Orta, Güney ve Batı Anadolu'da habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri etkili olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. Vipera ammodytes: Boynuzlu Engerek; Genel Özellikler: "Boynuzlu" denemesinin nedeni burun ucunun gergedan boynuzu gibi küçük ve yukarıya doğru olmasından. Sırt bölgesinin rengi genel olarak gri, sarı ve kahverengi renklerinin tonlarında olur. Sırtta ayrıca koyu kahverengi, baklava deseni benzeri zikzak desenler bulunur. beneklerin ortası kenarlara göre daha açık olur. Kuyruğun uç kısımları genç bireylerde sarımsı pembe renkli olur. Başın üst kısmında küçük ve belirgin benekler bulunur. Karın bölgesi sarımsı beyaz ve küçük benekli olur. Genel olarak küçük kemiriciler, avlayabildikleri kuşlar, diğer yılan türleri ve kertenkeleler başlıca besinlerini oluşturur. Kemiricileri ve kuşları zehirleyip öldürerek, diğerlerini canlı olarak yerler. Kemiricilerle beslendikleri için yararlıdırlar. Hareketleri oldukça yavaştır. Eylül-Ekim'den Mart-Nisan'a kadar kış uykusuna yatarlar. İlkbaharda çiftleşen dişiler, Ağustos ayında 5-14 kadar yavru doğururlar. Boyları genel olarak 50-60 cm (erkekler en fazla 90 cm) kadar olur. Habitat: Yunanca'da ammos kum, dytes gömülen anlamında. Bu hayvanın tür adına "ammodytes" denmesinin nedeni, yaşama alanı olarak kumlu bölgeleri tercih etmesi. Ama Türkiye'de kumlu yerlerden daha çok küçük boylu bitkilerin altlarında, orman açıklıklarında, çalılık ve taşlık yerlerde yaşarlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya, Batı, Kuzeydoğu, Doğu ve Güneydoğu Anadolu Bölgesi'nde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri insanlar için tehlikeli olabilecek kadar kuvvetli. İlk ısırışta zehrin büyük bir bölümünü aktarır. İnsanla karşılaştığında ilk olarak kaçmaya çalışırlar. Eğer sıkıştırılırlarsa başlarını havaya kaldırarak tıslarlar ve kendilerini çok tehlikede hissederlerse saldırabilirler. Türkiye'de V. a. montandoni Boulenger 1904, V. a. meridionalis Boulenger 1904, V. a. transcacasica Boulenger 1904 olmak üzere üç tane alt türü bulunur. Vipera barani: Baran Engereği; Genel Özellikler: "Baran Engereği" denmesinin nedeni Prof. Dr. İbrahim Baran'dan (herpetolog) dolayı. Şimdiye kadar yapılan çalışmalar bu türün sadece Türkiye'de bulunduğunu gösteriyor. Bu nedenle endemik bir tür. Sırt bölgesinin rengi genel olarak siyah ya da grimsi kahverengi. Kuyruk ucu sarımsı. Bazen sırt biraz açık renkli olur. Bu halde benekler zikzaklı olur. Genel olarak küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 55 cm kadar olur. Habitat: Kısa boylu bitkilerin altında, taşlık yerlerde yaşarlar. Yüksekliği 400 metreye (bilinen) kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Sakarya'da, Torosların Silifke civarındaki yerlerde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu tür çok fazla avlandığından ve dar bir alanda yayılış gösterdiklerinden için soyları tehlike altındadır. Vipera kaznakovi: Kafkas Engereği; Genel Özellikler: Sırt bölgesinin rengi genel olarak siyah, gri, sarı ve kırmızı renklerin tonlarında olur. Sırtın büyük bir bölümünü kaplayan ve baştan kuyruğa kadar uzanan zikzaklı bir şerit bulunur. Bu şerit bazen parçalı halde de olabilir. Vücudun yan tarafları küçük benekli ya da noktalı olur. Beyaz benekli olan karın bölgesinin rengi, siyah ve tonlarında olur. Genel olarak küçük kemiriciler, kertenkeleler ve çeşitli omurgasızlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları genel olarak 50-60 cm kadar olur. Habitat: Ormanlık yerlerin taşlık bölgelerinde yaşarlar. Rutubeti yüksek olan yerleri severler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Ülkemizde sadece Hopa (Artvin) civarında habitatın uygun olduğu alanlarda yaşarlar. Not: Başlarının arka tarafları oldukça şişkin olduğundan zehir bezleri de büyüktür ve bundan dolayı zehirleri, insanlar için oldukça tehlikeli olabilir. İlk ısırışta zehrin büyük bir bölümünü aktarır. Ayrıca kaçak olarak yapılan ihraçtan dolayı soyları tehlike altında ve korunmaları gerekiyor. Vipera pontica: Çoruh Engereği; ??? Vipera anatolica (Vipera ursinii anatolica): Anadolu Küçük Engereği; Vipera eriwanensis (Vipera ursinii eriwanensis): Küçük Engerek; Genel Özellikler: Sırt bölgesinin rengi genel olarak soluk kahverengi, grimsi, sarımsı ya da açık yeşil. Sırtta baştan başlayıp kuyruğa kadar devam eden, zikzaklı ya da dalgalı koyu renkli bir şerit bulunur. bu şeridin kenarları iç taraflarına göre daha koyu renkli olur. Vücudun yan taraflarında da baştan kuyruğa kadar uzanan koyu benek sıraları bulunur. Baş kısmında iki tane büyük benek bulunur. karın bölgesin sarımsı beyaz ve bunun üzerinde küçük siyah noktalar bulunur. En çok yedikleri besin çekirge. Bunun yanında diğer böcekleri ve az olarak da kertenkeleleri ve küçük kemiricileri de besin olarak alırlar. Kaya ve taş altlarında, kemirici hayvanların yuvalarında kış uykusuna yatarlar. Dişiler yazın sonlarına doğru (bir defada 10 kadar olmak üzere) doğururlar. Yeni doğan yavrular 13-14 cm kadar olur. Boyları 40-50 cm kadar olur. Habitat: Genel olarak açık yerlerin, taşlık ve otluk bölgelerinde yaşarlar. Ormanlık ve ağaçlık yerlerde az da olsa bulunabilirler. Yüksekliği 3000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Kuzeydoğu Anadolu'da ve Akdeniz Bölgesinde sadece Elmalı (Antalya) civarında habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. 6.Familya:Elapidae Walterinnesia aegyptia: Çöl Kobrası; Genel Özellikler: Hayvanın tüm vücudu siyah renk ve tonlarında. Zehirli olan bu hayvanın zehir dişleri çenenin önünde. Zehirleri engerek yılanlardan (hematoksik zehir etkisi) farklı olarak nörotoksik (sinirler üzerine zehirleyici) bir etki yapar. En küçük yavrular bile zehirleyebilir. Genel olarak, küçük kemiriciler, kuşlar, diğer sürüngen türleri ve çeşitli omurgasızlarla beslenirler. Avlarını zehirleyip öldürdükten sonra yerler. Gece aktiflik gösterirler. Boyları en fazla 200 cm kadar olabilir. Habitat: Bitki örtünsün az olduğu yerlerde, çöl ve yarı çöl özelliği gösteren yerlerde, kum içinde yaşarlar. Türkiye'deki Dağılım: Şanlıurfa ve civarında habitatın uygun olduğu alanlarda yaşarlar. Not: Zehirli olan bu türün ülkemizde var olduğuna ilişkin ilk bilimsel kayıt Eylül 2000'de (Dr. İsmail H. Uğurtaş tarafından) verilmiştir.   Bilgiler; www.biltek.tubitak.gov.tr ve reptile.fisek.com.tr/ sitelerinden alıntıdır.

http://www.biyologlar.com/turkiyede-yasayan-yilan-turleri

Gene Drive Technology: Where is the future?

Gene Drive Technology: Where is the future?

Gene drive technologies may one day help alleviate the burden caused by diseases transmitted by mosquitoes and other animal vectors.

http://www.biyologlar.com/gene-drive-technology-where-is-the-future

8 hücreli insan embriyosu gördünüzmü ?

8 hücreli insan embriyosu gördünüzmü ?

Erken bir insan embriyonunun renk geliştirilmiş taramalı elektron mikroskobunda çekilmiş fotoğrafı.

http://www.biyologlar.com/8-hucreli-insan-embriyosu-gordunuzmu-

Potasyum Siyanid Testi

Bu test, mikroorganizmaların potasyum siyanid (KNC) içeren besi yerlerinde canlı kalma ve üreyebilme durumlarını belirlemek için kullanılır. Aynı zamanda testten, mikroorganizma cins (Citrobacter freundii (+), Salmonella (-), Arizona (-) Klebsiella (-), Enterobacter (+) ve E. coli (-) ve türleri (P. aeruginosa (+) ve Alcaligenes faecalis (-) ayırmada da işe yarar. Siyanid (CN) , bir sitokromoksidase inhibitörüdür. Demir içeren enzimler siyanid tarafından bloke edilirler. Siyanid demirle birleşerek enzimi inaktive eder. Sitokrom oksidase de ağır metalli bir pigment olup (ferro sitokrom oksidase) siyanidle birleşerek elektron transport mekanizmasını sekteye uğratır ve respirasyon durur. Oluşan inhibisyonun derecesi siyanid’in miktarı ile ilgilidir. Bazı mikroplar, ortamda 0.001 M siyanid bulununca üremezler.Materyal 1) İçinde potasyum siyanid (1/13000 KCN) bulunan sıvı ortam ( pH 7.6 ve 1 ml).2) Mikroorganizmaların saf ve taze kültürleri 3) Kontrol pozitif (P. aeruginosa veya K. aerogenes) ve negatif (E. coli) suşlarının kültürleri4) Ekilmemiş tüpler MetotKültürlerden siyanidli brotha ekim yapılır ve 37 °C de 1-3 inkube edilir.Değerlendirme Pozitif olgularda tüpte üreme yoktur. Negatif durumlarda üreme meydana gelir. Sonuçlar kontrollerle karşılaştırılarak değerlendirilir.Dikkat edilecek noktalar1) KCN çok zehirli olduğu için, bu teste çok gerekli olduğu zaman başvurulmalıdır. KCN solusyonu, pipetle ağız yardımıyla çekilmemelidir. KNC dumanları da teneffüs edilmemelidir. Şırıngadan yararlanılır.2) Bazal ortamdaki pepton yoğunluğu %0.3 kadar olmalıdır. Yüksek konsantrasyon (%1) şüpheli sonuç verebilir (Salmonella 'larda).3) KCN 'li besi yeri buzdolabı sıcaklığında 3-4 hafta muhafaza edilebilir.4) Kültürlerden yapılan inokulasyonlar, bir bulanıklık oluşturmayacak durumda olmalıdır.5) Siyanidli besi yerleri, içerlerine ferro sulfate ve alkali ilave edildikten sonra otoklava konmalıdırlar.

http://www.biyologlar.com/potasyum-siyanid-testi-1

Scientists blueprint tiny cellular 'nanomachine'

Scientists blueprint tiny cellular 'nanomachine'

Scientists have drawn up molecular blueprints of a tiny cellular 'nanomachine', whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth. The scientists produced the structural map of this nanomachine - diacylglycerol kinase - by using a "hit and run" crystallography technique. In doing so, they have been able to understand how the tiny enzyme performs critical cellular duties - answering questions that have been on the table for over 50 years about this 'paradigmatic protein'. Kinases are key players in metabolism, cell signalling, protein regulation, cellular transport, secretory processes, and many other cellular pathways that allow us to function healthily. They coordinate the transfer of energy from certain molecules to specific substrates, affecting their activity, reactivity, and ability to bind other molecules. Diacylglycerol kinase, the focus of this study, plays a role in bacterial cell wall synthesis. It is a small, integral membrane enzyme that coordinates a particularly complex reaction: its lipid substrate is hydrophobic (repelled by water) and resides in cell membranes, while its co-substrate, ATP, is entirely water soluble. How it does this had remained a mystery for decades, but the newly produced blueprints have answered these questions. "How this diminutive nanomachine, less than 10 nm tall, brings these two disparate substrates together at the membrane interface for reaction is revealed in a molecularly detailed crystal structure. It is the smallest known kinase, and seeing its form with crystal clarity is now helping us to answer questions that formed from over 50 years of work on this paradigmatic protein," said Professor of Membrane Structural and Functional Biology at Trinity College Dublin, Martin Caffrey. Figuring out how this tiny machine works at the molecular level was enormously facilitated by our use of one of the brightest X-ray sources on Earth, the X-ray free-electron laser at the Stanford Linear Accelerator Center. Professor Caffrey added: "This instrument produces bursts of X-rays just femtoseconds (a quad-trillionth of a second) long. With these short bursts we were able to obtain structural information about the enzyme before it vaporized through radiation damage in what I tritely refer to as 'Hit and Run' serial crystallography." According to Petra Fromme, the director of the Center for Applied Structural Discovery at Arizona State University's Biodesign Institute and a co-author of the current study, "this is the first structure of a protein that is a membrane-integral enzyme and important biocatalyst in the cell." (Biocatalysts speed up the rate of critical biological reactions.) The tiny kinase is one of the research targets for the NIH funded Center for Membrane Proteins in Infectious Diseases at ASU, which is devoted to unraveling the molecular basis of viral and bacterial proteins involved in diseases as well as the human proteins defending the body from pathogen attack. The ASU team contributed to the work with expertise in crystal growth and sample injection, as well as data collection and evaluation. In the future, the scientists hope to extend their free-electron laser work to make 'X-ray movies' of this remarkable nanomachine, so as to watch how it 'does chemistry' in atomic detail in real time. The article describing the work has just been published in the leading journal Nature Communications. Source: Arizona State University http://www.biologynews.net

http://www.biyologlar.com/scientists-blueprint-tiny-cellular-nanomachine

Malonat testi

Bu test, mikroorganizmaların besi yerlerine konan malonat'tan karbon kaynağı olarak yararlanabilme yeteneğini ölçmede kullanılır. Mikroorganizma cinslerini (Arizona (+), Salmonella (-), Klebsiella ve Enterobacter (+), E. coli (+) ayırmada işe yarar.Materyal1) Sodyum malonat buyyonu (açık yeşil renkte, pH 6.7, tüpte 5 ml)2) Mikroganizmaların saf ve taze kültürleri3) Kontrol pozitif (K. aerogenes) ve negatif (E. coli) suşlarının kültürleri4) Yeterince ekilmemiş besi yeriMetotKültürlerden buyyonlara ekim yapıldıktan sonra 37°C de 2-3 gün inkube edilir. Tüpler her gün gözle kontrol edilir.DeğerlendirmeMikroorganizma tarafından malonatın kullanıldığı durumlada ortamın pH'sı 7.6 yükselebilir. Böyle alkali ortamda Prusya mavisi renk ortaya çıkar (pozitif reaksiyon). Herhangi bir reaksiyonun olmadığı durumlada, besi yerinin orijinal rengi (açık yeşil) muhafaza edilir (negatif reaksiyon). Glikozun fermentasyonu durumunda sarı renk meydana gelir (pH 6.0).Dikkat edilecek noktalar1) Bazı malonat pozitif mikroorganizmalar hafif alkali oluşturabilirler. Bunları değerlendirmede güçlük çekilir. Bu zaman inokule edilmemiş tüplerle kontrol edilir. Hafif mavilikte olsa pozitif olarak değerlendirilir.2) Bazı malonat negatif bakteriler sarı renk meydana getirirler (glikoz fermentasyonu).

http://www.biyologlar.com/malonat-testi-1

PGT Metodları

Polar Body Biyopsisi: Maternal olarak kalıtılan genetik bozukluklar için birinci polar bodynin (BPB) prekonsepsiyonel genetik analiz için kullanılması Verlinsky ve arkadaşları tarafından yoğun olarak çalışılmıştır. BPB, birinci mayotik bölünme sırasında oluşur ve başarılı fertilizasyon veya normal embriyonel belişme için gerekli değildir. IVF’da yapıldığı gibi preovulatuar oositler aspire edilir. Sekonder oositin genetik durumu BPB’nin genotipi çalışılarak anlaşılır. Kromozomal crossing over söz konusu değilse, aspire edilen BPB’de mutant alel varlığında oositte normal alel olacaktır. Bu durumda oosit IVF için kullanılacak ve daha sonra transfer edilecektir. Polar body genetik analizinin bir takım dezavantajları vardır. En önemli olanı direkt oositin genotipinin çalışılmıyor olmasıdır. Çünkü crossing over söz konusu olduğunda tanısal hata olacaktır. Crossing over honolog kromozomlar arasında DNA değişimidir ve sentromerden uzaklaşıldıkça ihtimali artar. Bu durumda, ikinci polar body veya blastomer biyopsisi gibi ileri testlere ihtiyaç vardır. Yine IVF çalışmalarında görüldüğü gibi zonanın diseke edilmesi polispermi riskini artırmaktadır, böyle bir durum polar bodynin aspire edilmesi halinde de görülebilir. Ayrıca polar cisimcik üzerinde polimeraz chain reaksiyonu (PCR) çalışması diğer tek hücre PCP çalışmalarından daha zor olabilmektedir. Polar body biyopsisi aspirasyon ve extrusion metodlarıyla yapılabilir. Sonuç olarak BPB’nin önemi, bize fertilizasyon öncesi bilgi vermesidir. Klivaj Stage Embriyo Biyopsisi: Embriyonun gelişimini bozmadan mikromanipülasyon yöntemi ile blastomer biyopsisi yapmak mümkündür. Elde edilen blastomerler genetik anomali ve sex tayini için kullanılmaktadır. İnsan embriyosundan blastomer biyopsisi ilk olarak 1989 yılında Londra’da Hammer-Smith Hastanesinde Handyside ve arkadaşlarınca yapılmıştır. 4 veya 8 hücreli embriyoda hücre sayısının yarısı oranında blastomer biyopsisi yapmak embriyo gelişimini etkilemektedir, fakat 8 hücreli embriyodan 3 adet blastomer alınması embriyo gelişimini bozmamaktadır. Blastomer biyopsisi sırasında zonada delik açıldığından dolayı implantasyon oranında artış olduğu da gösterilmiştir. Blastomer biyopsisi aspirasyon veya extrusion metodlarıyla yapılmaktadır. Bu konuda yoğun çalışmaları olan Tarin ve Handyside, optimal biyopsi metodları olarak, extrusion yönteminin varyasyonları olan displacement ve push metodlarını önermişlerdir. Ayrıca, en uygun biyopsi zamanı olarak da genetik analiz için enfazla DNA’nın elde edilebildiği, 1-3 blastomer biyopsisinin yapılabileceği 3. gün 8 hücreli embriyo safhasını önermişlerdir. Blastosit (Trofekdoderm) Biyopsisi: Gardner ve Edwards blastosit byopsisini tavşanlarda sex tayini için ilk kullananlardır. Blastosit evresinde hücreler, embriyoyu oluşturacak iç hücre kütlesi ve plasentayı oluşturacak dış hücre kütlesi, trofektoderm olarak ikiye farklılaşırlar. Trofektoderm esas olarak plasentayı oluşturduğu ve fetusun gelişiminde rol almadığı için fetusa zarar gelmeden hücresinin bir miktarı örneklenebilir. 5-6. günlerde blastositten 10-30 trofektoderm hücre biyopsisi yapılabilir. Fakat 10 hücrenin üzerinde biyopsi alınması human chorionic gonadotropin miktarını azaltacaktır. Bu düşüş, transfer sonrasında gebeliği desteklemek için dışarıdan gonadotropin verilmesiyle desteklenebilir. Biyopsi için, iç hücre kütlesinin karşı tarafında zona pellusidaya bir delik açılır; 12-18 saat sonra bu boşluktan herniye olan hücreler stereo-dissecting mikroskop altında mikroneedle ile ayrılır. Başka biyopsi yöntemleri de vardır. Blastosit biyopsisinin polar body veya 4-8 hücreli embriyo biyopsisine üstünlükleri: 1) Genetik tanıda kullanmak için daha çok hücre elde edilir. Bu da tanının doğrulanması için testlerin tekrarlanmasına ve güvenirliğin artmasına izin verir. 2)Biyopsi sırasında sadece extra-embriyonik hücreler alınır, böylece fetusa yönelik potansiyel risk en azdır. 3) Blastosit evresinde embriyonik gen ekspresyonu oldukça belirgindir, böylece daha önceki evrelerde uygulanmayan biyokimyasal metodlar genetik hastalıkların tanısı için kullanılabilir. 4) Kriyopreservasyon daha iyi tolere edildiğinden çiftler daha sonraki IVF siklusları için bu embriyoları kullanabilirler.

http://www.biyologlar.com/pgt-metodlari

Virus throws a wrench in the immune system

Virus throws a wrench in the immune system

The cytomegalovirus (CMV) is a member of the herpesvirus family. Although most people carry CMV for life, it hardly ever makes them sick. Researchers from the Helmholtz Centre for Infection Research and from the USA have now unveiled long term consequences of the on-going presence of CMV: Later in life, more and more cells of the immune system concentrate on CMV, and as a result, the response against other viruses is weakened. These research results help to explain why the elderly are often more prone to infectious diseases than young people.   The viral immunologist Professor Luka Cicin-Sain, head of the junior research group "Immune Aging and Chronic Infections" at the HZI in Braunschweig, Germany, and his colleagues have now published their discovery in the open access journal PLoS Pathogens. In the article, they describe that even months after infection with CMV, mice still show weaker responses against other viruses such as the flu virus. Most adults are infected with CMV, yet this infection goes unnoticed. Usually that is of no consequence, because in the vast majority of cases, this herpesvirus does not make them sick. Only for people with a weak immune system, like organ recipients, AIDS patients, or unborn babies infected during pregnancy, the infection is dangerous. In everyone else, the virus becomes latent and persists in the body, but is kept at bay by the immune system. "In young people this lasting activation of the immune system might even be beneficial, because an active immune system may defeat other infections rapidly. But a bright candle burns down faster", says Cicin-Sain, to clarify that the immune defence will wear out over the years. In elderly, the immune system loses function and its changes that present a clear loss of immune protection are summarily termed the "Immune risk profile", shortly IRP. A relationship between IRP and the presence of CMV has been observed in several clinical studies. However, up to now it was unclear whether IRP is a consequence of the CMV infection or, vice versa, the IRP resulted in increased susceptibility to CMV infection. The results of Cicin-Sain's group and his American colleagues from the Oregon Health and Science University in Portland and from the College of Medicine of the University of Arizona in Tucson show that the on-going CMV presence contributes to immune ageing. "Of course the immune system ages without CMV as well", Cicin-Sain explains. On the other hand, CMV is a permanent guest that demands a growing amount of attention from the T cells, an important group of immune defence cells. The longer the mice were infected with CMV, the more of these cells were engaged with the cytomegalovirus and were missing for the fight against other pathogens. Accordingly, the immune system of CMV-infected mice could not respond well to other infections, for instance to the flu- or the West-Nile-virus. "We believe that the large number of CMV-specific T cells in the lymph nodes is likely to impair the activation of the remaining cells", the researcher concludes. What accelerated the immune defence in the young organism now becomes a burden in an old organism and takes its toll. Luka Cicin-Sain thinks a little further and summarizes: "Our results clearly show how important it would be to develop a vaccine against the cytomegalovirus, despite its low direct impact on human health." Source : Helmholtz Centre for Infection Research http://www.biologynews.net

http://www.biyologlar.com/virus-throws-a-wrench-in-the-immune-system

Dünya’da Organik Yaşamın Başlangıcı

Unlu bilim dergisi SCIENCE, 25 Haziran 1999 tarihli sayisini, “Evrim Kuramina ve Evrim Kuraminin Gercekligine” ayirdi (1). Bu sayi icin giris yazisi yazan unlu evrimci Stephen Jay Gould soyle demekte: “Evrim bir gercektir ve ancak gercek bizi bagimsizliga kavusturabilir!” ve Gould eklemekte, “Darwin’in ilk teorileri aciklandigi zaman, aristokrat bir soylu ‘Darwin’in soylediklerinin dogru olmadigini umalim; ama tutun ki dogru, o zaman tum dunyaya yayilmamasi icin dua edelim!’ demisti; ne yazik ki, 21. Yuzyila girerken, bu sahisin soyledikleri cikti: Evrim Kurami dogru, ama dunyanin cogunlugu, en azindan ABD ulusunun buyuk kismi tarafindan bilinmiyor ” (2). Gercekten de, 21. Yuzyila girerken, Evrim Kuraminin gercekligi hakkinda onca yayin yapilmasina, onca kanit bulunmasina karsin, bilim insanlari ile halk arasinda Evrim Kuramini degerlendiris acisindan ucurumlar mevcut. Bu konudaki en buyuk zorluk, oncelikle, Evrim Kurami ile ilgili bazi biyolojik, kimyasal, fizyolojik, paleontolojik bilgilerin anlasilabilmesi icin yogun bir bilim egitimine, detayli anlasilmis bazi kavramlara gereksinim duyulmasi. Ikinci onemli zorluk ise, Evrim Kuramini aciklarken ifade edilen bazi kavramlarin (ornegin milyon yillarda gelisen evrim, dogal seleksiyon, biyokimyasal protobiogenesis vb) gunluk hayatin mantigi ve yasantisi acisindan pek de kolay anlasilamamasi. Bu konuda Amerikan Ulusal Bilimler Akademisinin (National Academy of Sciences) son yayinladigi halk kitabi “Science and Creationism” (Bilim ve Yaratiliscilik), bu konudaki en yetkili agiz tarafindan son noktayi koyuyor ve Evrim Kuraminin bir gercek oldugunu savunuyor (3, 4). Turkiye’de de “Islamci Bilimsel Yaratiliscilarin aktivitelerine ” karsi TUBA ve bir grup bilim insani da bazi aciklamalar yapmisti (5, 6, 7). ABD’de ve diger Hristiyan ulkelerde oldugu gibi, Turkiye’de de ortaya cikan “Bilimsel Yaratiliscilik” akimlari, bilim ile yaratilisciligi birbirine bagdastirmaya calisiyordu (8); ustelik Evrim Kuramini savunan bilim insanlarina karsi dev bir karalama kampanyasina giriserek, bilim insanlarini sindirmeyi amacliyordu. Bu konuda yazdigim yazilar nedeniyle ben de, diger bilim insanlari gibi buyuk saldirilara maruz kaldim (4, 9, 10). Turk bilim insanlari olarak, gerek halki gerekse diger bilim insanlarini ve aydinlari bu konuda bilgilendirmek konusunda cok ciddi sorumluluklar tasidigimiza inaniyorum. Bu sorumluluklardan birisi, “kendini bilimsel elit zumreolarak gorup, bilimsel yaratiliscilari yanit verilmeyecek kadar kucumsemek yerine”, onlari iddia ettikleri her hipotezde curutmek ve yapmakta olduklari carpitmalari ve bilimsel sahtekarliklari, halkin onunde anlasilir bir dille ve bilimsel kaynaklarla yuzlerine vurmak! Dunya’da yasamin baslamasi ile ilgili en onemli sorulardan ve problemlerden birisi, primordial (ilk) kosullarda canlilarin ana yapi taslari olan organik molekullerin nasil meydana gelebilecekleri konusuydu. Bilimsel yaratiliscilarin hipotezlerine gore, tum organik madde ve biyolojik yasam bir anda, dogaustu bir gucun “OL!” demesiyle belirli bir hedefe ve cok akilli bir dizayna gore yaratildi. Bilim ise bu konuda farkli bir goruse sahip, ozellikle son yillarda yapilan calismalar dunya’da ilk organik maddenin olusumu konusunda yeni bir bakis acisi getirdi (11, 12, 13, 14, 15). STANLEY MILLER DENEYINDEN GUNUMUZE Dunya’da yasamin baslamasi icin, yasamin temel taslari olan organik maddelerin, amino asitlerin ve DNA ile RNA’nin yapisinda var olan nukleik asitlerin bir sekilde dunya ortaminda (okyanuslarda, gollerde, sicak su kaynaklarinin aktigi yerlerde) bol miktarda var olmasi gerekmekteydi. Bu konuda dogru fikir yurutebilmek icin, 4.5 milyar yil once soguyarak, var olan dunya gezegeninin atmosferi ve icerdigi elementler konusunda dogru tahmin yapmak gerekliydi. Bu konudaki ilk tahminleri Oparin (16 ), Haldane (17), Urey (18) yapmislardi. Onlara gore ilk dunya atmosferi metan (CH4 ), amonyak (NH3), su buhari (H2O) ve molekuler hidrojenden (H2) olusmaktaydi. Ilk atmosferde oksijen (O2) bulunmadigi pek cok arastirici tarafindan fikir birligi ile kabul edilmistir. Ama en onemli sorun dunyanin genclik gunlerine ait bilgi alinamamasidir. Bilinen en yasli kayalar olan Gronland’daki Isua kayalari bile 3.8 milyar yil yasindadir. Yaklasik 700 milyon yil- 1 milyar yillik doneme ait hic bir iz, kanit ve bilgi yoktur; bu da ilk atmosfer veya ortam konusunda tahmin yapmayi cok guclestirmektedir. Tahminler, olasi modellere gore yapilmaktadirlar ve spekulasyonlardan ibarettirler. William Rubey (19 ), Holland (20 ), Walker (24) ve Kasting’e (25) gore ise, baslangicta cok az miktarda amonyak mevcuttu; atmosferde baslica karbon dioksit (CO2), nitrojen (N2), su buhari (H2O), biraz da karbon monoksit (CO) ve hidrojen gazi (H2) vardi. Son yillarda bu gorusun bilim ortamlarina hakim olmasina ragmen, kimse 4 milyar yil oncesine gidip, ortamda amonyak olup, olmadigini gozlemlememistir. Ayrica, uzaydan her yil 40 000 ton toz yeryuzune dusmektedir, gerek bu tozda, gerekse uzaydan gelen meteoritlerde HCN (hidrojen siyanit), CO2, Formaldehid, CO (karbon monoksit), amino asitler ve organik maddeler bulunmustur; gunde uzaydan dunyaya 1999 verilerine gore dokulen tozla birlikte 30 ton organik madde dusmektedir (13, 21, 22, 23). Dunya kosullarinda amonyakin ve organik madde sentezinin cok az olmasi durumunda bile organik maddeleri olusturan bilesenlerin ve bizzat organik maddelerin uzaydan yeterli miktarda gelme olasiliklari her zaman vardir. Ilk atmosfer kosullarinda hemen hemen hic oksijen olmadigi hesaba katilirsa, organik maddenin”yaratilmadan” dunya ortaminda ilk gazlar ve cozunmus iyonlardan sentezlenmesi de mumkundur. Oksijensiz donem 2-2.5 milyar yil kadar surmus, siyanobakterilerin atmosfere verdikleri oksijen sayesinde atmosferde ilk dunya canlilari icin bir zehir olan oksijen miktari mavi gezegende artmistir (9). Chicago Universitesinde, Harold Urey’in ogrencisi Stanley Miller 1953′te dunyayi yerinden sarsan unlu deneyini gerceklestirdi 26. Urey’in varsayimina uyan (metan, amonyak, hidrojen ve su) gaz kosullarinda, 150-200 bin voltluk akimi gazlarin bulundugu ozel aparattaki karisimdan gecirdi, sonuc cok sasirticiydi pek cok temel organik madde bu enerjinin verdigi etki sonucunda gazlari bir reaksiyonla birlestirmis, Glisin, Alanin, Aspartik asit, Glutamik asit (bu dordu temel amino asitler), Formik asit, Asetik asit, Propionik asit, Ure, laktik asit, ve diger yag asitlerini olusturmustu (26, 27). Deney Pavlovskaia ve Peynskii tarafindan Rusya’da; Heyns, Walter, Meyer tarafindan Almanya’da; Abelson tarafindan ABD’de, cok farkli bilesikler ve gaz ortamlarinda tekrarlandi; oksidasyonun engellendigi ve metan, amonyak ve su buharinin oldugu kosullarda hep amino asitler ve organik maddeler olustu (28); Gabel ve Ponnamperuma, cok farkli enerji ortamlarinda (isi, radyasyon, lineer akseleratorden cikan parcaciklar, mikrodalgalar vb) benzer sonuclar buldular, ayrica bazi seker molekullerini de primordial ortamda sentezlemeyi basardilar (28). Genetik materyeli tasiyan DNA ve RNA’nin temel taslari olan nukleik asitlerin bazilari da ilk atmosfer sartlarinin farkli bicimlerde ele alindigi kosullarda kimyasal olarak sentezlendi ve nukleik asitlerin temel yapi taslarinin primordial ortamda yeterli temel madde ve enerji sonucunda kendiliginden olusabilecegi gosterildi (9, 11, 12, 13, 14, 28, 29, 30). Yaratiliscilar, ilk dunya kosullarinda amonyak olmadigini, Miller’in ise soguk tuzak denilen bir yontemle amino asitleri elde ettigini, Miller’in kosullarinin bilincli olarak cok yapay hazirlandigini ve sonuclarin bilimsel bir sahtekarlik oldugunu soylemektedirler. Oncelikle Miller’in duzenegi tabii ki yapaydir; ama biyokimya’da yapay olmayan kosullarda kontrollu deney yapilamaz ki; soguk tuzak denilen ve reaksiyon urunlerini sogutan bir duzenek kullanilmis olabilir; ama doga’da bunun bir benzerinin var olmadigini soylemek, ustelik de 3.5-4.5 milyar yil oncesinde gelisen olaylardan cok emin ifadelerle bahsetmek ancak, Yaratiliscilar gibi bilimi ayaklar altina alan, cikaracaklari sonuclara onceden fikse olmus insanlarda gorulebilen bir dusunce hatasidir. Ornegin okyanuslarin tabanlarindaki sicak su kaynaklarinin birden soguyarak okyanusa karismasi bahsedilen “soguk tuzagi” dogal kosullarda olusturabilir; dogadaki bugun tahmin edilemeyen pek cok yapi bunu meydana getirebilir. Nitekim, sadece sicak su kaynaklarinda mevcut bu isinin bile sig okyanus sahillerinde suda cozunmus amonyum (NH4), metan (CH4), karbon dioksiti (CO2) (veya su yuzeyindeki atmosferdeki gazlari da katarak) reaksiyona sokabilecegini gosterir. Organik maddelerin ve ilk yasamin denizlerdeki, gollerdeki, volkanik ortamlardaki sicak su kaynaklarinin bulundugu yerde olustugu konusunda pek cok fikir de ortaya surulmustur (12, 21, 30 ). Ortamda amonyakin cok az olmasi kosullarini Miller tekrar irdelemistir (21). Primordial kosullarda, atmosferin redukleyici (elektron kazandirma) ozellikte oldugu dusunulmektedir, ama kesinlesmis bir bulgu yoktur. Atmosferde varolan amonyak’in bir kisminin amonyum (NH4 ) iyonu olarak okyanuslarda cozunecegi bilinmektedir (29); atmosferde cok az miktarda amonyak olmasi kosullarinda bile, su ortamlarinda ya da sicak su kaynaklarinin oldugu, okyanusun sig ve atmosferle bulustugu sahillerde amonyum iyonu, atmosferde cok az miktarda bulunan amonyak, metan gazi ve karbon dioksitle reaksiyona girecek ve organik bilesikleri olusturacaktir (21) . Miller, eser miktarda amonyakin bulundugu ortamlarda yaptigi deneylerde bile organik maddelerin ve amino asitlerin sentezlenebildigini gormustur (21). Yaratiliscilarin baska bir iddiasi, Miller deneyinde sag elli (D-dextro izomeri) ve sol elli (L-levo izomeri) amino asitlerin esit miktarlarda sentezlendigi, halbuki yasamda gorulen 20 cesit amino asitin tumunun sol elli oldugu, oyleyse organik maddenin ve canli yasamin belli bir amacla ve dizaynla yaratilmis olmasi gerektigidir. Oncelikle, 1993′te Arizona State Universitesinden John R. Cronin uzaydan gelen meteoritlerde ve donmus tozda daha fazla L-aminoasitlerine rastlandigini ispatlamistir 13; bu, dunyada varolan ve amino asitlerle reaksiyona giren maddelerin zamanla sol elli amino asitleri tercih etmesini saglayabilir (13). Ikincisi, molekuler yapilardaki zayif kuvvet(weak force) birbirinin ayna goruntusu olan molekullerde (yani izomerlerde) farklidir. Bu bir molekul icin cok ufak bir farktir, ama molekuller bir araya gelince etki buyur. Yani bir molekulun reaksiyona girerken veya suda cozunmus bulunurken icinde bulunan molekuler bag yapma yetenekleri ve belli bir konfigurasyonda dururken gereksimleri olan enerji onlarin doga tarafindan secilmelerini saglamaktadir. Doga tasarruf etmekten yanadir ve genelde en az enerji formunu tercih eder; L ve D formlari arasindaki enerji farki cok az da olsa, yapilan hesaplara gore en az enerji ile durabilen izomer, yaklasik 100 bin yilda dogada % 98 olasilikla baskin bulunan izomer formunu olusturacaktir (31). Ucuncu ve guclu bir olasilik, primordial kosullarda, su anda bilmedigimiz ve ilk dunya kosullarinda var olan ve sol elli amino asitlere baglanamayan bir X maddesinin ozellikle D-(sag elli) amino asitlerle birleserek kelat (cozunmeyen bilesik) olusturmasi ve onlari gol veya okyanus dibine cokertmesidir. Bu ise sol elli amino asitlerin bir anda dogal seleksiyonla artmasini ve dogada daha fazla kullanilabilir hale gelmesini cok kolay saglayabilir. Fakat kimse 4 milyar yil onceye gitmemistir; o gunden bu gune de tek iz kalmamistir; bilimsel yaratiliscilar ne soylerlerse soylesinler, 4 milyar yil onceye ait kesin kanitlarla Evrimcilerin karsisina gelmeden Evrimcilerin hic bir soyledigini curutmus sayilamazlar; ustelik, bilimsel yaratiliscilarin buyuk bir cogunlugu, binlerce kanita ragmen, dunyanin 4.5 milyar yasinda degil, cok daha genc olduguna inanmaktadir (10 bin yil gibi)… Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 1013 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir (13). Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) DUNYADA ORGANIK YASAMIN BASLAMASI / UZAYDAN GELEN ORGANIK MADDE Son bulgular, pek cok organik maddenin uzaydan gelen tozda, meteorlarda bulundugunu ispatlamistir. Dunya’da okyanuslarda ve atmosferde amonyum, metan, karbon dioksit, amonyak’tan sentezlenebilen organik maddenin, uzaydan da gelebilecegi NASA’nin arastirmalarinin kesin bir sonucudur (13). Eger gunde 30 ton organik madde uzaydan dusen tozla dunyaya karismaktaysa (kuyruklu yildizlarla, meteorlarla gelenleri saymiyoruz) yilda, (10 4) ton (10000 ton) cesitli organik madde dunyada okyanuslara karisir. Bu ilk bir milyar yil icin 10 9 x 10 4= 10 13 ton (10′un yaninda 13 sifir) ya da 10 000 000 000 000 ton organik madde eder. Bu miktarda organik madde, dunyada girdikleri reaksiyonlar da isin icine katilirsa, kesinlikle ilk yasamin tohumlarini atabilir. Halley, Hale-Bopp, Hyakutake isimli kuyruklu yildizlarda pek cok organik madde oldugu kanitlanmistir 13. Bir kuyruklu yildiz, gunes sisteminin sicak bolgelerinden gecerken, bir kismi erir, gaz ve toz olarak dunyanin (veya basak gezegenlerin) cekimine kapilip, zamanla dunyaya duser. NASA’daki bilim adamlari, ER2 tipi ucakla, yaklasik 62 000 feet yukseklikte bu tozlari toplayabilmektedirler. Scott Sandford, bu partikulleri analiz ettiginde % 50′den fazla organik kokenli karbona rastlamistir (13). Meteoritlerde ise, ketonlara, nukleobazlara, quinonlara (klorofil benzeri yapilarda yer alir), karboksilik asitlere, ve 70 farkli cesit amino asite rastlanmistir. Dunya’daki yasantida kullanilan amino asit sayisi ise sadece 20′dir, yani uzay bize ihtiyacimiz olandan cok daha fazlasini hediye etmektedir ! (13) Daha ilginc bir bulgu ise Louis Allomandola’nin uzay kosullarinin simulasyonunu yaptigi deneylerden gelmistir (13, Bununla ilgili Scientific American’daki Temmuz 1999, resimleri kullanabilirsiniz). Bu deneyler cok dusuk isilarda ve sicakliklarda, ultraviyole radyasyonunun kimyasal baglari yikabilecegini; hatta icinde donmus metanol ve amonyak (uzayda bulundugu oranda) bulunan buzlasmis toz kitlelerinde, ultraviyole isinlarinin ketonlari, nitrilleri, eterleri, alkolleri, hatta heksametilentetramini (HMT) olusturabilecegini gostermistir. HMT asidik ve ilik ortamda amino asitleri olusturur. Bu deneyler son yillarda gerek NASA, gerekse universitelerdeki bilim insanlari tarafindan tekrarlanmis benzer sonuclar bulunmustur (13). Bu su demektir: uzayda donmus buz kitleleri olarak seyahat eden molekuller statik degillerdir; uzaydaki farkli isinlarin ve ultraviyole enerjisinin etkisiyle surekli iclerindeki kimyasal yapi degisime ugramaktadir, bu degisim, ozellikle daha yuksek isili, isinli ve enerjili gunes sistemi bolgelerine girince artmaktadir. Yani gerek uzaya dagilan tozlar, gerek meteorlar, iclerinde dunya gibi uygun kosullara sahip gezegene ulasinca yasamin temel taslarini olusturacak tum bilesenleri, organik maddeleri fazlasiyla tasimaktadirlar. Ustelik 4.5 milyar yillik dunya tarihini, kolay anlayabilmek icin, 1 saatlik bir zaman dilimi olarak alirsaniz, doga ilk 55 dakikayi, bu temel yapi taslarini ve tek hucreli yasami olusturmak icin harcamis, geri kalan bes dakikada da diger tum bitkileri, cok hucreli organizmalari meydana getirmistir. SONUC: Dunya’da organik yasamin baslamasi icin, buyuk olasilikla temel yapi taslari hem uzaydan gelmis hem de milyarlarca yilda, uzaydan gelenlerin de etkisiyle dunyada okyanuslarda, sicak su kaynaklarinin okyanusa karistigi yerlerde, batakliklarda, volkanik yapilarin okyanusla birlestigi yerlerde vb. ortamdaki serbest enerji sayesinde sentezlenmislerdir. Amino asitler, nukleik asitlerin yogunlastigi ortamlarda thermal proteinler ve RNA, oto-katalitik RNA buyuk olasilikla ilk genetik bilginin sekillenmesinde rol oynamislardir (11, 12, 14, 30) . Burada su temel unsurlar unutulmamalidir: 1. Bahsedilen sureler insan zekasinin kavrayabilecegi surelerin cok otesindedir. Bahsedilen sureler, milyon degil, milyar yillardir. Dort milyar yil, 50 yillik bir insan jenerasyonu goz onune alinirsa yaklasik 80-100 milyon jenerasyon demektir. Homo sapiensinortaya cikisindan beri ise sadece yaklasik 500 jenerasyon gecmisti. 2. Dogada kararli yapilarin olusmasi cok zordur. Belki bir tek kararli yapinin olusmasina karsi, binlerce katrilyon kararsiz yapi bozunup gitmektedir; biz bilgiyi bu gune kadar gelebilen kararli yapidan alabilmekteyiz; kararli yapilarin gelismesini saglayan reaksiyon ve biyolojik olay sayisi ise neredeyse sonsuzdur . Dr. Umit Sayın Cumhuriyet Bilim ve Teknik Dergisi Kaynakça: 1) Science, 25 Haziran, 1999, 284 (5423):2045-2220. 2) Ibid., pp: 2087. 3) NAS, “Science and Creationism: A view from the National Academy of Sciences”, 1999, National Academy Press. 4) Umit Sayin, “ABD’de Bilimsel Yaratiliscilibgin Coküsü”, Bilim ve Ütopya, Aralik 1998. 5) TUBA bülteni, 10:2, 1998. Ayrica TUBA’nin web sayfasina (www.tuba.org.tr) bakabilirsiniz. 6) “Kamoyuna Duyuru” (Birinci Bildiri), Cumhuriyet Bilim ve Teknik, 7 Kasim 1998. 7) “Bilime Gerici Saldiri” (Ikinci Bildiri), Cumhuriyet Bilim ve Teknik, 30 Ocak 1999. 8 ) Harun Yahya, “Evrim Aldatmacasi”, Vural Yayincilik, 1997. 9) Ümit Sayin, “Yaratilmayis: Yasam Nasil Basladi”, Bilim ve Ütopya, Ekim 1998. 10) Ümit Sayin, “Uctu Uctu Dinozor Uctu”, Bilim ve Utopya Kasim 1998. 11) Albert Eschenmoser, “Chemical Ethiology of Nucleic Acid Structure”, Science, 25 Haziran, 1999, 284 (5423):2118-2123. 12) Andre Brack, editor, “The Molecular Origins of Life”, Cambridge University Press, 1998. 13) Max P. Berstein, Scott A. Sandford, Louis J. Allamandola, ” Life’s Far-Flung Raw Materials”Scientific American, Temmuz 1999, 281:42-49. 14) Leslie E. Orgel, “The Origin of Life on Earth”, Scientific American, Ekim 1994, 271:76-83. 15) Gerald F. Joyce, “Directed Molecular Evolution” Scientific American, Aralik 1992, 267:90-97. 16) A.I. Oparin, “Origin of Life”, Mc Millen, New York.1938 17) J.B.S. Haldane. “Origin of life”, Rationalist Annual, 1929 18) H.C. Urey. “On the early chemical history of the earth and the origin of life”, Proc. Natl. Acad. Sci., 1952. 19) W.W. Rubey, “Development of the hydrosphere and atmosphere, with specail reference to probable composition of the early atmosphere”. In Crust of the Earth, ed. A. Poldervaart HDpp:631-650,1955. 20) H.D. Holland, “The chemical evolution of the atmosphere and oceans”. Princeton University Press, 1984. 21) Stanley Miller, ” The Endogenous Synthesis of Organic Compounds”, [ Andre Brack, editor, "The Molecular Origins of Life", Cambridge University Press, 1998.] isimli kitapta. sayfa: 59-85 22) C.F. Cyba, C. Sagan, ” Endogenous production , exogenous delivery and impact-shock synthesis of organic molecules: an inventry for the origins of life”, Nature, 355:125-132, 1992. 23) C.F. Cyba, P.J. Thomas, L., L. Brookshaw, and C. Sagan. ” Cometary delivery of organic molecules to the early Earth”, Science, 249:366-373, 1990 24) J.C.G. Walker , “Evolution of atmosphere”, Macmillen: New york, 1977 25) J.F. Kasting. ” Earth early atmosphere” Science, 259:920-926, 1993.. 26) S.L. Miller, “Production of amino acids under possible primitive Earth conditions” Science, 117:528-529, 1953. 27) S.L. Miller, and H. C. Urey, “Organic compound synthesis on the primitive Earth”, Science, 130:245-251, 1959. 28) Cyril Ponnamperuma, “The Origins of Life”, Thames and Hudson, 1972. 29) J.L. Bada and S.L. Miller, “Ammonium ion concentration in the primitive ocean” Science, 159:423-425, 1968. 30) Richard Montanesky, “The Rise of Life on Earth”, National Geographic, Mart 1998. S: 54-81. 31) Ian Stewart, “Nature’s Numbers”, Basic Books, New York, 1995. www.uzelgi.com

http://www.biyologlar.com/dunyada-organik-yasamin-baslangici

ONPG (β-Galaktozidaz) Testi

Laktozlu bir besiyerinde geliştirilmiş olan kültürden bir öze dolusu alınarak 0,25 ml fizyolojik tuzlu su ile süspanse edilir. Bu süspansiyonun üzerine 0,25 ml Ortho Nitrofenol β-D-Galaktopronosid (ONPG) Peptonlu Su besiyeri ilave edilerek optimum sıcaklıkta 3-4 saat inkübasyona bırakılır. Bu sürenin sonunda tüplerde sarı rengin meydana gelmesi pozitif, renk değişikliğinin olmaması ise negatif olarak değerlendirilir.ONPG, enterik bakterilerde β-galaktozidaz varlığının belirlenmesi amacı ile kullanılır. Özellikle laktozu fermente edebilen Salmonella arizonae ve Citrobacter 'in diğer Salmonella türlerinden hızlı bir şekilde ayrımında faydalanılır. Salmonella arizonae β-galaktozidaz pozitif, diğer Salmonella türleri ise negatiftir.ONPG Peptonlu Su hazırlamak için (a) çözeltisi olarak ; 100 ml distile su içinde 10,0 g Tripton ve 5,0 g NaCl eritilerek pH 7,5 'e ayarlanır ve 121 oC 'da 15 dakika süre ile sterilize edilir. (b) çözeltisi ise O-Nitrophenyl-β-D-Galaktopyranosid 'den 0,6 gram alınarak 100 ml 0,01 M Sodyum Fosfat Tampon (pH 7,5) da çözülür. 0,45 μm porlu filtreden geçirilerek sterilize edilir. Daha sonra 30 ml (a) ve 10 ml (b) çözeltisinden alınarak karıştırılarak aseptik koşullar altında steril tüplere 2 'şer ml dağıtılır.

http://www.biyologlar.com/onpg-galaktozidaz-testi

Zamanın Ölçülmesi

Zamanın ne olduğunun tanımlanması bir zorluk çıkarırken, onun ölçülmesi zorluk çıkarmaz. Bilimciler zamanın ne olduğunu açıklamaz, kendilerini zamanın ölçülmesi ile sınırlarlar. Bu iki kavramın birbirine karıştırılmasından sonu gelmez bir kafa karışıklığı ortaya çıkar. Bu yüzden, Feynman şöyle diyor: Belki de, zamanın (sözlük anlamında) tanımlayamayacağımız şeylerden biri olması gerçeğiyle yüzleşip, yalnızca, onun ne olduğunu zaten bildiğimiz bir şey olduğunu söylememiz en iyisidir: Zaman, ne kadar beklediğimizdir! Her halükârda sorun zamanı nasıl tanımlayacağımız değil, onu nasıl ölçeceğimizdir.[10] Zamanın ölçülmesi zorunlu olarak bir referans sistemini ve zamanla değişim gösteren herhangi bir olguyu gerektirir; örneğin dünyanın dönüşü ya da bir sarkacın salınımı. Dünyanın kendi ekseni etrafında günlük dönüşü bir zaman ölçeği sunar. Radyoaktif elementlerin bozunumu uzun zaman aralıklarını ölçmek için kullanılabilir. Zamanın ölçülmesi öznel bir unsur içerir. Mısırlılar gün ve geceyi on ikiye bölmüşlerdi. Sümerler 60’lık bir sayı sistemine sahiplerdi ve bu nedenle de saati 60 dakikaya ve dakikayı da 60 saniyeye böldüler. Metre, dünyanın kutuplarından ekvatora kadar olan uzaklığının 10 milyonda biri olarak tanımlanmıştı (her ne kadar bu tam olarak doğru olmasa da). Santimetre metrenin 100’de biridir, vesaire. Bu yüzyılın başında, atomaltı dünyanın araştırılması iki doğal ölçüm biriminin keşfedilmesine yol açtı: Işığın hızı c, ve Planck sabiti h. Bunlar doğrudan ne uzunluk, ne kütle ne de zamandır, her üçünün birliğidir. Bir metrenin, Fransa’daki bir laboratuvarda saklanan bir çubuğun üstüne çizilen iki çentik arasındaki uzaklık olarak tanımlanmasında uluslararası bir anlaşma söz konusudur. Daha geçenlerde, bu tanımın hem kullanışlı olabilecek kadar kesin olmadığı hem de olması gerektiği kadar sürekli ya da evrensel olmadığı anlaşıldı. Bu günlerde yeni bir tanımın benimsenmesi düşünülmektedir; seçilmiş bir tayf çizgisinin üzerinde hemfikir olunmuş (keyfi) dalga boyları sayısı. Diğer taraftan, zamanın ölçülmesi, ele alınan cisimlerin ömrüne ve ölçeğine göre değişir. Açıktır ki, zaman kavramı referans sistemine göre değişecektir. Dünyadaki bir yıl, Jüpiter’deki bir yılla aynı değildir. Zaman ve uzay düşüncesi de, insanoğlu ile tüm ömrü birkaç günden ibaret olan bir sivrisinek için ya da ömrü trilyonlarca saniye olan bir atomaltı parçacık için (şüphesiz böylesi varlıkların herhangi bir şey hakkında bir fikre sahip olabileceklerini kabul edersek) aynı değildir. Burada işaret ettiğimiz şey, zamanın farklı bağlamlarda anlaşılma tarzıdır. Eğer belli bir referans sistemini veri kabul edersek, zamanın görülme tarzı farklı olacaktır. Bu durum pratikte bile belli ölçülerde görülebilir. Örneğin zamanı ölçmenin normal yöntemleri, atomaltı parçacıkların ömürlerinin ölçülmesinde kullanılamaz, ya da “jeolojik zamanları” ölçmek için farklı ölçütler kullanılmalıdır. Bu bakış açısından, zamanın göreli oluğu söylenebilir. Ölçme zorunlu olarak ilişkililiği içerir. İnsan düşüncesi özünde göreli olan birçok kavram barındırır, örneğin “büyük” ya da “küçük” gibi göreli büyüklükler. İnsan bir fille karşılaştırıldığında küçüktür, ama bir karıncaya göre büyüktür. Büyüklük ve küçüklük, kendilerinde, hiçbir anlam taşımazlar. Saniyenin milyonda biri, sıradan koşullarda, çok kısa bir zaman uzunluğu olarak görülür ama atomaltı düzeyde son derece uzun bir zamandır. Diğer uçta, milyon yıl, kozmolojik düzeyde son derece kısa bir zamandır. Uzay, zaman ve hareket düşüncelerinin hepsi maddi âlemdeki değişimleri ve ilişkileri gözlemlememize dayanır. Ne var ki, zamanın ölçülmesi, farklı tipte meseleleri ele aldığımızda son derece değişir. Uzay ve zamanın ölçülmesi kaçınılmaz olarak, evrendeki olayların ilişkilendirilebileceği belli bir referans sistemine –dünya, güneş ya da herhangi bir başka durgun noktaya– göredir. Maddenin her türden farklı değişime maruz kaldığı bugün artık açıktır: farklı hızları içeren konum değişimi, farklı enerji düzeylerini içeren hal değişimi, doğum, bozunma ve ölüm, örgütlenme ve dağılma, ve diğer birçok dönüşümler, her biri zaman aracılığıyla ifade edilebilir ve ölçülebilir. Einstein’da, uzay ve zaman yalıtık olgular olarak ele alınmaz ve gerçekten de bunları “kendinde şey” olarak ele almak mümkün değildir. Einstein’ın geliştirdiği görüşe göre, zaman, sistemin hareketine bağlıdır ve zaman aralıkları öyle değişir ki, verili sistemdeki ışık hızı harekete göre değişmez. Uzamsal ölçekler de değişime tabidir. Eski klasik Newtoncu teoriler, günlük amaçlarımız açısından ve hatta evrenin genel işleyişine ilişkin iyi bir yaklaşım olarak halen geçerliliklerini korurlar. Newton mekaniği halen yalnızca astronomiye değil, mühendislik gibi pratik bilimler de dahil olmak üzere bilimin çok çeşitli dallarına uygulanabilir. Düşük hızlarda, özel göreliliğin etkisi ihmâl edilebilir. Meselâ saatte 250 mil hızla hareket eden bir uçağın davranışları incelenirken yapılan hata, yüzde birin on milyarda biri kadardır. Ne var ki, belli sınırların ötesinde Newton mekaniği çöker. Örneğin, parçacık hızlandırıcılarında karşımıza çıkan hızlarda, Einstein’ın kütlenin sabit olmadığı ve hıza bağlı olarak arttığı şeklindeki öngörülerini dikkate almamız gerekir. Normal gündelik zaman ölçümü anlayışıyla, bazı atomaltı parçacıkların son derece kısa ömürleri yeterince ifade edilemezler. Meselâ, bir pi-mezon parçalanmadan önce saniyenin yalnızca 1016 da biri kadarlık bir ömre sahiptir. Benzer şekilde, nükleer bir titreşimin periyodu, ya da tuhaf bir rezonans parçacığının ömrü 10–24 saniyedir, yani yaklaşık olarak ışığın bir hidrojen atomunun çekirdeğini geçme süresi kadar. Burada başka bir ölçme ölçeği zorunludur. Çok kısa zamanlar, diyelim ki 10–12 saniye, bir elektron osiloskobuyla ölçülür. Daha da kısa zaman aralıkları lazer teknikleriyle ölçülebilirler. Ölçeğin diğer ucundaki çok uzun zaman aralıkları ise radyoaktif “saat” ile ölçülebilir. Bir bakıma, evrendeki her atom bir saattir, çünkü ışığı (yani elektromanyetik ışınları) yutar ve kesin olarak belli frekanslarla tekrar dışarı yayar. 1967’den beri, zamanın kabul edilmiş uluslararası resmi standardı atomik (sezyum) saate dayandırılmıştır. Bir saniye, Sezyum-133 atomlarının özel bir atomik yeniden düzenlenişleri sırasında yaydıkları mikrodalga radyasyonun 9.162.631.770 titreşimi olarak tanımlanır. Bu son derece kesin saat bile mutlak kusursuzlukta değildir. Yaklaşık olarak 80 farklı ülkedeki atomik saatlerden farklı ölçümler alınır ve en kararlı saatlerin lehine zamanı “ağırlıklandırarak” bir sonuca varılır. Bu yöntemlerle, bir günde saniyenin milyonda birine varan bir kesinlikle zaman ölçümüne ulaşmak mümkündür. Günlük amaçlarımız bakımından, dünyanın dönüşüne ve güneş ve yıldızların görünen hareketine dayandırılan “normal” zaman tutma yeterlidir. Ancak modern ileri teknoloji alanındaki tüm bir dizi işlem açısından, meselâ gemilerdeki ve hava taşıtlarındaki belli radyo sefer yardımları açısından, bu yöntem yetersiz hale gelmekte ve ciddi hatalara yol açmaktadır. Bu düzeylerde görelilik etkileri kendini hissettirir. Deneyler göstermiştir ki, atomik saatler deniz seviyesinde, yerçekiminin daha zayıf olduğu yüksek irtifalardakinden daha yavaş çalışmaktadırlar. 30.000 feet yükseklikte uçan atomik saatler saatte bir saniyenin üç milyonda biri kadarlık bir süre ileri giderler. Bu da Einstein’ın öngörüsünü yüzde birlik bir hatayla doğrular.

http://www.biyologlar.com/zamanin-olculmesi

Beyin Krizi Nedir? Nasıl Önlenebilir?

Beyin Krizi Nedir? Nasıl Önlenebilir?

Beyin krizi, çağımızın en büyük hastalıkları arasında gösterilir. Kanser ve kalp rahatsızlıkların sonra ölümle sonuçlanan 3. büyük hastalıktır.Beyin krizi orta ve ileri ki yaşta görülen bir hastalıktır. Bu hastalık ölümcül olmasına rağmen önlenebilir yapıya sahiptir. Beyin krizi beynin bir bölgesinde kansızlığa veya bir bölgesinde oluşan kanama sonucu meydana gelir. Bu olay devamında genellikle felç ile sonuçlanmaktadır. Beyin krizi, beyin damar hastalığıdır. Bu yüzdendir ki, doktorların belirlediği azami süreç içerisinde kontrollere gidilmesinde fayda vardır. Önlenebilir hastalık olmasına karşın, ön teşhis değerleri hastalığın durumu açısından çok önemlidir.”Tıkanan Damar” ve ”Kanayan Damar” bu hastalığa neden olur.1. Tıkanan Damar: Beyin krizi, beynin ihtiyacı olan damarın kan akımı pıhtılaşma sonucu kanı taşıyamadığı ve beyin o kanı alamadığı için çıkar. Kan akımına engel olan bu pıhtı, beyin krizlerinde en çok sebep olan bir nedendir. Beyin ihtiyacı olan kanı alamaması, beyinin gerekli işlevlerini aksatacak ve beyin krizi dediğimiz bu hastalığı zaman içerisinde ortaya çıkaracaktır.2. Kanayan Damar: Nadir olan bu durum, zayıflamış damarların yırtılması yada çatlaması sonucu beyin içine dolan kanın etrafa yayılması sonucu görülür. Belirtilen iki durum, beyinde oluşan kan akışının yeterli olmadığı ve damar yırtıkları sonucu ortaya çıkan beyin krizinden kaynaklandığı gördük. Bu hastalık sonucunda; hafıza kaybına,davranış bozukluğuna, beyinde kalıcı hasara, felce ve sakatlığa neden olabilir.Beyin krizini önlemek için neler yapılmalıdır?İlk önce ‘Beyin Krizi’ belirtileri bilmek ve doğru yorumlamak çok önemlidir. Beyin krizinin belirtileri sadece bir tanesi görülse bile, doktora gidilmelidir. Beyin krizi bu hastalığı ortaya çıkarmadan önce belirtileri, bir haberci niteliğindedir. Bu belirtiler sadece birkaç dakika sürebileceği gibi, saatlerce de sürebilir. Belirtilerin sadece çoklu yada tekli görülebilir. Siz ve çevrenizdekiler bu belirtiyi gördüklerinde hemen doktora gidilmelidir. Belirtiler kısa sürse ve geçmiş olsa bile bunu ihmal edilmemelidir. Gelecekte çıkan beyin krizi hastalığın habercisi olabilir.Beyin krizinin belirtileri nelerdir? *Yüz, kol, bacak ve vücudun yarısında aniden ortaya çıkan kuvvetsizlik veya uyuşma *His bozukluğu *Konuşmada zorluk veya konuşulanları anlamada zorluk çekmek *Bir veya iki gözde görmede bulanıklık, görüntü azalması veya çift görme *İzah edilemeyen denge bozukluklarıYukarıda belirtilerin her biri, beyin krizinde ortaya çıkan belirtilerdir. Beyin krizi öncesi , ”Geçici İskemik Atak” denilen küçük beyin krizleri azda olsa meydana gelebilir. Geçici olarak kanın beyine ulaşmaması durumunda ortaya çıkar. Bu geçici hastalık beyin krizinin habercisi olabilir. Geçici iskemik atak (TIA), damar tıkanıklığı sonucu beyine gidemeyen kandan dolayı meydana gelir. Kesinlikle küçümsenecek bir durum değildir. Büyük krizin haberci niteliğini taşıyabilir. Oluşacak bu durumlara karşı önlem alınması ve gerekli tedavi, kontrolleri yapılması gerekmektedir. Bunlar arasında değiştirilmesi mümkün olmayan faktörlerde vardır. İnsanın yaşı ilerledikçe beyin krizine yakalanma oranı artar. Beyin krizine yakalanma oranı, erkeklerin kadınlara göre daha çoktur. Ve siyahilerin beyaz ırklı insanlara göre daha çok bu hastalığa yakalandığı anlaşılmıştır. Değiştirilmesi, tedavisi mümkün olan belirli risk faktörleri vardır.Bunlar; Yüksek Kan Basıncı: Tansiyon yüksekliği, beyin krizine en fazla neden olan faktördür. Bu risk faktörünün çok görülmesine karşın, düzenli tansiyon kontrolü yapılması durumunda beyin krizini önlemesine mümkündür. *Sigara içilmesi, beyin krizine yakalanma oranını iki katı kadar artar. Sigara içmek, beyin krizine de olumsuz yönde etkiler. *Fazla kilo sahip insanlar, şeker hastalığına, damar tıkanıklığına, tansiyon yüksekliğine yol açar. Bu durum beyin krizini etkileyen faktördür. *Daha önce geçici iskemik atak yaşayan hastalar beyin krizine yakalanma oranı daha yüksektir. Ancak doktor kontrolünde alınan ilaçlar bu tehlikeyi önemli ölçüde azaltır. *Kalp hastalıkları, düzensiz kalp ritmi (atrial fibrilasyon) gibi hastalıklar beyin krizi tetikleyicisidir. Bu hastalık durumunda da ilaç alımı hayati öneme sahiptir. *Hareketsiz kalmak da beyin krizine neden olabilir. Düzenli yürüyüş veya spor yapılması bu açıdan çok önemlidir. Beyin Krizi Önlenebilir!Beyin krizi acil bir durumdur. Hiçbir yerde vakit kaybetmeyin ve hemen doktora gidilmelidir. Hastalığı ne kadar önce tanırsak o kadar iyi olacaktır. Beyin krizinde birçok tedavi uygulaması vardır. Umutsuzluğa kapılmamak gerekir. Damar tıkanıklığına bağlı beyin krizi sonrası ilk 3-6 saat içerinde sakatlıklar olmaktadır. Bu yüzden en erken hastaneye gidilmesi hasarları azaltmaya yardımcı olur. Beyin krizi, tedavisi için acil bir nitelik kazanması gerekmektedir. Gerek hastalığın erken tespiti yapılması gerekse hastalığın tipini (tıkanan damar, kanayan kadar) öğrenmek tedavinin kurtulması için çok önemlidir. Tedavilerin erken öngörülmesi yapılacak tetkikler ve alternatifler tedavileri de belirlemeye yardımcı olur. Hastaneler beyin krizine tanı koymak için bazı tektikler yapılmaktadır. Bunlar; Beyin Tomografisi, Magnetik Rezonans, Manyetik Rezonans Anjio, Transkraniyal Dopler, Karotis Duplex Görüntüleme, Spect, Beyin Anjiografisi, Transözofagal Ekokardiografi. Bunların dışında ”kan tetkikleri, EKG ve EKO” gibi risk faktörleri belirmeye yarayan yöntemlerdir.Beyin Krizi TedavileriBeyin kriz tedavileri gün geçtikçe gelişen teknoloji, biyolojik gelişimler ile tedavi süreçlerini kısaltmaya yardımcı olmuştur. Beyin krizinde ilaç tedavisi gün geçtikçe gelişmekte ve krizin beyinde yaptığı hasarı en aza indirmeye çalışan bir çok yeni ilaç üzerinde çalışılmakta bir kısmı ise kullanılmaktadır. Damar tıkanıklığına bağlı oluşan beyin krizi damarda oluşan pıhtıyı çözmek için, ilaçlar üzerinde yoğunlaşmaktadır. Damardaki pıhtıyı eriten ilaçlar, (tpa) tedavi sürecinde kullanılır. Kriz sonrası ilk 3 saat çok önemlidir. Beyin krizlerinden hemen sonrası ancak bu ilaç kullanımı yapılması gerekmektedir. Beyin koruyucu ilaçlar veya ajanlar, beyinde oluşan hasarı en aza indirgemeye yönelik ilaçlardır. Bu ilaçların etkisini gösterdiği, bilim adamlarının yaptığı yoğun araştırmalar sonucunda elde edilmiştir. Bir diğer tedavi, kullanılan Antikoagulanlar’dır. Yüksek risk taşıyan hastalar için kullanılması öngörülen bu ilacın hem geçici beyin krizi (geçici iskemik atak) hemde büyük beyin krizi geçirenlerin kullanması büyük önem kazanmaktadır. Antikoagulanlar, ilaçlar ağızdan ve damardan verilir. İlaç dışında cerrahi yöntemde sıkça kullanılır. Beyinde tıkanan damarlarda daralma ve tıkanmaları cerrahi yöntemle sorunu çözebilir.Hasta bakımı yapılan tedavi süreci kadar önem taşımaktadır. Beyin krizi veya cerrahi müdahale sonrası, hastanın solunum, dolaşım, kalp fonksiyonları sık sık kontrol edilmesi gerekmektedir. Anormal bir durum karşısında hemen doktora başvurulmalıdır.Yazar: Ismet Göksel Berberhttp://www.bilgiustam.com

http://www.biyologlar.com/beyin-krizi-nedir-nasil-onlenebilir

Bal Arısı Kolonisi Ve Arı Irkları

A- Bal Arısı Kolonisi Bal arıları, koloni adı verilen topluluklar halinde yaşayan sosyal böceklerdir. Koloni hayatında yardımlaşma ve iş bölüşümü esas olup kolonideki her bireyin kendine özgü görevleri vardır. Kolonide bireyler arası iletişim, bireyler tarafından vücut dışına salgılanan ve diğer bireylere mesaj veren feromon adı verilen kimyasal maddeler vasıtasıyla gerçekleşir. Bir arı kolonisinde ana arı, işçi arı ve erkek arı olmak üzere üç farklı birey vardır. Ana arı ve işçi arılar dişi bireyler olup döllü yumurtalardan gelişirlerken erkek arılar dölsüz yumurtalardan gelişirler. Arı kolonilerinde kışın sadece dişi bireyler mevcut olup erkek arılar ilkbaharda yeni sezonla birlikte görülürler. B- Koloni Bireyleri ve Görevleri 1. Ana Arı ve Görevleri Normal koşullar altında her arı ailesinde sadece bir adet ana arı bulunur. Görevi, yumurtlayarak yeni nesillerin meydana gelmesini ve koloninin sürekliliğini sağlamaktır. Ana arının vücut yapısı ince ve uzun, rengi diğer bireylere göre daha açık ve parlaktır. Özellikle kolonide yavru yetiştirme aktivitesinin yüksek olduğu dönemlerde karın çok uzundur. Ana arı, genellikle kendisini çevreleyen, temizliği ve beslenmesiyle ilgilenen bir grup işçi arı arasında görülür. Yaşamı süresince sadece çiftleşme amacıyla ya da koloninin oğul vermesi durumunda kovan dışına çıkar. Kendi kendine beslenemez. Beslenmesi, bakıcı işçi arıların ağzına arı sütü vermeleri şeklinde olur. Tek görevi yumurtlamaktır. Ana arı işçi arıya göre daha uzun ve daha az çentiği bulunan iğneye sahiptir. Bu nedenle iğnesini batırıp çıkararak defalarca kullanabilir. Ana arı, iğnesini rakip ana arılara karşı kullanır. Ana arı; ana arı hücresi, ana arı memesi veya ana arı yüksüğü denilen özel bir göz içerisinde gelişir ve gelişme süresi 16 gündür. Hücreden çıktıktan sonra ortalama 1 hafta içinde güneşli, sıcak ve rüzgarsız bir günde ve öğleden sonra çiftleşme uçuşuna çıkarak havada erkek arılarla çiftleşir. Değişik nedenlerden dolayı yeterli sayıda erkek arıyla çiftleşemeyen ana arı daha sonraki günlerde 2-3 defa daha çiftleşme uçuşuna çıkabilir. Çiftleşmesini tamamlayan ana arı kovanına döner ve 2-3 gün sonra yumurtlamaya başlar. Ana arı kovan içi ve kovan dışı şartlara ve kalitesine bağlı olarak günde ortalama 1.500-2.500 adet yumurta yumurtlayabilir. Ana arı salgıladığı feromonla işçi arıları etrafına çeker, kolonide birliği ve düzeni sağlar. Feromon kokusunu algılayan işçi arılar kolonideki işleri düzenle yürütürler. Aynı zamanda bu feromonlar işçi arıların yumurtalıklarının gelişmesini ve kolonide yeni bir ana arı yetiştirmelerini önler. Herhangi bir nedenle ana arısız kalan ve ana arı yetiştirme olanağı bulunmayan bir kolonide işçi arılardan bazılarının yumurtalıkları gelişerek yalancı ana arı meydana gelir. Yalancı ana arılar sadece dölsüz yumurta yumurtlayabileceklerinden koloni zamanla erkek arılarla dolar ve söner. Ana arıların ortalama yaşam süreleri 3-5 yıl olmakla beraber 7 yıla kadar yaşayabilirler. Ancak artan yaş ile birlikte giderek daha az yumurtlarlar ve daha fazla oranda dölsüz yumurta bırakırlar. Bu nedenle teknik arıcılıkta genç, sağlıklı ve verimli ana arılarla çalışmak esas olduğundan kolonilerin ana arıları her 1-2 yılda bir değiştirilmelidir. 2. İşçi Arı ve Görevleri İşçi arılar, döllenmiş yumurtalardan meydana gelirler. Koloninin gücüne ve mevsime bağlı olarak kolonideki işçi arı sayısı kış aylarında 10.000-20.000 arasında değişirken, ilkbaharda sayıları giderek artar ve yaz aylarında 60.000-80.000 adet olabilir. Kolonilerin gücü, sahip oldukları işçi arı varlığı ile belirlenir. Başta bal üretimi olmak üzere diğer tüm arı ürünleri üretimi, ekonomik olarak ancak güçlü kolonilerle yapılabilir. Güçlü bir koloni için, kolonide genç ve kaliteli bir ana arının bulunması zorunludur. Normal koşullar altında yumurtlama hariç kolonideki bütün işler olağanüstü bir işbirliği içinde işçi arılar tarafından yapılır. İşçi arıların kolonideki başlıca görevleri; kovan temizliği, arı sütü ve balmumu salgılama, petek örme, yavru bakımı, kovanın havalandırılması, ana arının bakım ve beslenmesi, kovan bekçiliği, kovana nektar, polen, propolis, su taşıma ve balın olgunlaşmasını sağlama gibi görevlerdir. Ömürleri kısa olan işçi arılar, ağır bir çalışma temposu ve yıpranma nedeniyle ilkbaharla sonbahar arasındaki dönemde 35-40 gün yaşarken, kışlayan işçi arılar daha uzun süre yaşarlar. Kuluçka süresini tamamlayıp petek gözünden çıkan işçi arıların görevi hemen başlar. Ancak farklı görevler farklı yaşlarda yapılır. İşçi arının yaşı, görevin yerine getirilmesinde belirleyici olan en önemli faktördür. Yaşa göre yapılan ve kovan içi hizmet olarak adlandırılan bu görevler aşağıdaki gibi sıralanabilir. İşçi arı; 0-3 günlük yaşta; kendisini ve yavru gözlerini temizler ve yavrulu gözler üzerinde dolaşarak kuluçka sahasında gerekli sıcaklığın oluşmasını sağlar. 3-6 günlük yaşta; petek gözlerinden aldığı çiçek tozu ve bal ile hazırladığı karışımla yaşlı larvaları besler. 5-15 günlük yaşta; arı sütü salgılayarak genç larvaları besler. 12-18 günlük yaşta; balmumu üretip petek örer ayrıca kovan temizliğiyle de uğraşır. 18-20 günlük yaşta; kovan uçuş deliğinde ve uçuş tahtası üzerinde nöbet tutarak kovan bekçiliği yapar. İlk 20 gününü kovan içinde, kovan içi hizmetlerle tamamlayan ve 21 günlük olan işçi arılar artık kovan dışı hizmetler için hazırlardır. Ömürlerinin geri kalan kısmını kovan dışında ve arazide çalışarak kovana nektar, polen, propolis ve su taşırlar. Kovan dışı görevleri yapan bu arılara "tarlacı arılar" denir. Tarlacı arıların kovan dışı hizmetleri aşağıda sıralanmıştır. a) Polen Toplama Arılar beslenme ve özellikle yavru büyütmek için mutlaka polene ihtiyaç duyarlar. Polen protein, yağ, vitamin ve mineral madde kaynağıdır. Polen olmadan koloni kuluçka faaliyetini sürdüremez, işçi arılar arı sütü salgılayamaz. İşçi arı, çiçekleri dolaştıktan sonra vücudu üzerindeki poleni orta bacağındaki tüyler vasıtasıyla arka bacaklarında bulunan polen sepetine aktararak kovana getirir ve petek gözüne bırakır. Kovan içi hizmeti gören genç işçi arılar bu poleni göz içerisine çene ve başı ile yerleştirir ve dili ile de nemlendirirler. Bir polen yükü olan iki polen kümesini yapabilmek için 50-100 çiçeğin ziyaret edilmesi gerekir. Bir petek gözünün polenle dolması için 1500 yonca çiçeğinin ziyaret edilmesi lazımdır. Polen toplamak için günlük uçuş sayısı ortalama 6-8 olmasına rağmen bu sayı 45'e kadar çıkabilmektedir. İşçi arının arka bacağında taşıdığı bir polen kümesinin ağırlığı 12-25 mg arasında değişmektedir. Koloniye polen getiren arı, polen kaynağının yerini ve kovandan olan uzaklığını petek üzerinde "ARI DANSI" denilen özel bir dans yaparak diğer arılara tarif eder. b) Nektar Toplama Arıların bal yapmak üzere çiçeklerden topladıkları şekerli sıvıya nektar (bal özü) denir. Arı, bir çiçekte nektar olup olmadığını diliyle belirler. Ayrıca nektarın kokusunu da algılayarak nektar olup olmadığını anlar. Arı, nektarı bulduğu anda hızla kursağına (bal midesi) çeker, kursağını dolduruncaya kadar çiçekleri dolaşır. Arı, küçük çiçeklerden 1000-1500 çiçek ziyaret ederek kursağını doldururken bazen büyük çiçeklerden 100 ziyaretle kursağını doldurabilmektedir. Nektar taşıyan bir arının günlük sefer sayısı ortalama 8-10'dur. Bu sayı 24'e kadar çıkabilmektedir. Arının bir seferde taşıyabildiği nektar miktarı 30-50 mg'dır. Koloniye nektar getiren arı polen toplamada olduğu gibi petek üzerinde dans ederek nektar kaynağının yerini ve kovandan olan uzaklığını kendisini izleyen diğer arılara tarif eder. Getirdiği nektardan bir miktar kendisini izleyen arılara vererek taşıdığı nektarın şeker konsantrasyonu (yoğunluğu) hakkında bilgi verir. Arılar şeker konsantrasyonu yüksek olan nektarları tercih ederler. Nektar taşıyan arı, kovan içerisine girdiği zaman nektarı kovan içinde görevli arı veya arılara aktarır, onlar da petek gözlerine yerleştirirler. Nektarın bala dönüşümü için hem fiziksel hem de kimyasal değişime ihtiyaç vardır. Fiziksel değişim su oranının azaltılması, kimyasal değişim ise nektarda bulunan sakkarozun enzimlerle glikoz ve früktoza indirgenmesidir. c) Propolis Toplama Propolis toplayan arılar, propolis kaynağını çenesi ile ısırır, ön bacakları yardımıyla koparır ve polen sepetine atarak kovana getirirler. Kovan içerisinde diğer arılar propolisi çekerek küçük parçalar halinde alıp istedikleri yerlere yapıştırırlar. Arılar propolisi, kovan çatlak ve patlaklarının kapatılmasında, kovanın dezenfekte edilmesinde ve kovana giren ve dışarı atılamayan herhangi bir canlının propolisle kapatılarak kokuşmasının önlenmesinde kullanırlar. d) Su Taşıma Yaşayan bütün organizmaların suya ihtiyaç duymaları gibi arılar da suya ihtiyaç duyarlar. Arılar suyu, yavru büyütmede, kovan içini serinletmede ve nemlendirmede kullanırlar. Suyu kovana taşıyan arılar, kovan içine geldiklerinde getirdikleri suyu diğer arılara aktarırlar. Sadece bir arıya aktarabileceği gibi 18 arıya kadar dağıttığı da görülmüştür. Su kaynağının yeri, su taşıyan işçi arılarca nasanof feromonu ile işaretlenip diğer arılar tarafından daha kolay bulunması sağlanır. Su, sıcak ve kurak havalarda polen ve nektar gibi depolanmaktadır. Su depolama işi peteğin üst kısmına, bal mumu ile yapılan küçük bölmelere olur. Su taşıyan arılar 1 günde ortalama olarak 50 sefer yaparlar. Kovana taşınan su miktarı ortalama 25 mg olup 50 mg'a kadar çıkabilir. Dolayısıyla bir arı bir günde 1250 mg su taşıyabilir. Böylece kovana 1 litre suyun taşınabilmesi için 800 arının gün boyunca su taşıması gerekir. 3. Erkek Arı ve Görevleri Döllenmemiş yumurtalardan gelişen erkek arılar koloninin iri ve tombul bireyleridir. Çevre koşullarına ve koloninin gücüne bağlı olarak kolonilerde Nisan-Mayıs aylarından itibaren erkek arıları görmek mümkündür. En çok oğul mevsiminde görülen erkek arıların boyu, ana arının boyu kadar uzun değildir, fakat işçi arılardan ve ana arıdan daha geniş ve iridir. Erkek arılar çok kısa bir dile sahiptir. Bu nedenle çiçeklerden nektar alamazlar ve iğneleri olmadığı için kendilerini de koruyamazlar. Kolonideki erkek arı miktarı, sezona ve kolonideki koşullara bağlı olup oğul mevsiminde 500-2.000 arasındadır. Koloniler, ilkbahar ve yaz başlarında erkek arı yetiştirmeye başlarlar. Geç sonbaharda ve kış aylarında normal koşullarda kolonilerde erkek arı bulunmaz. Son derece obur olan erkek arıların başlıca görevi çiftleşme uçuşuna çıkan genç ana arılarla çiftleşmektir. Erkek arı, genç ve çiftleşmemiş ana arıyı havada yakalar ve onunla çiftleşir. Ana arıyla çiftleşen erkek arı çiftleşme organını kaybeder ve ölür. Ortalama yaşam süresi 55-60 gündür. İşçi arılar, ergin erkek arıları koloniden atmak veya erkek arı yumurta ve larvalarını tahrip etmek suretiyle kovandaki erkek arı sayısını düzenlerler. Erkek arı yumurtalarının ancak % 50-56'sının ergin arı olarak gelişmesine fırsat verilir. Erkek arılar, genellikle 5-7 günlük olunca uçarlar. Erkek arılarda en yoğun uçuş aktivitesi günün en ılık saatleri olan saat 14-16 arasında olup genellikle sıcaklık 18-20oC'in üzerine çıkmadıkça uçmazlar. Uçuş amacı; çevreyi tanıma, dışkılama veya çiftleşme olabilir. Günde ortalama uçuş sayısı 2-4 olup bu sayı 17'ye kadar çıkabilir. Uçuşa çıkmadıkları zamanlarda kovanda ballı çerçeveler üzerinde dururlar ve beslenirler. Yaz sonu veya sonbahar dönemlerinde işçi arılarca zorla kovandan dışarı atılarak ölüme terk edilirler. C- Arı Irkları Arı ırkları; büyüklük, renk, dil uzunluğu, vücudun kıl örtüsü, balmumu bezlerinin şekil ve büyüklüğü, kanat damar yapısı ve kanat büyüklüğü gibi morfolojik özelliklerle birbirlerinden ayrılırlar. Bu güne kadar yapılan taksonomik çalışmalarda dünyada 24 arı ırkı kesin olarak tanımlanmıştır. Bunlardan ancak bazıları ekonomik öneme sahip olup ekolojik şartların elverdiği her yerde yetiştirilirler. Ekonomik değer taşıyan arı ırkları içinde İtalyan, Kafkas ve Karniyol ilk sıralarda yer alırlar. 1. İtalyan Irkı İtalyan arısı (Apis mellifera ligustica) olarak da adlandırılan bu ırk, ılıman iklim kuşaklarında yetiştirilir. İnce karın ve nispeten uzun bir dile sahiptir. Bu ırkta kıllar sarı renkte olup bu durum erkek arılarda daha belirgindir. İtalyan ırkı arılar sakin yaradılışlıdırlar. Çoğalma kabiliyetleri fazladır. Yavru büyütme yeteneği fazla olup erken ilkbaharda kuvvetli koloni oluştururlar. Bol nektar toplayarak çok bal yaparlar. Oğul verme meyilleri zayıftır. Obur oldukları için kış mevsiminde fazla bal tüketirler. Kısmen uzun dilleri sayesinde yonca çiçeklerinden kolaylıkla yararlanırlar. Üstün petek örme özelliği İtalyan arısını, arılar arasında en iyi petek ve petekli bal üreten arı haline getirmiştir. Bu olumlu özelliklerine karşın yön tayin etme duyguları zayıftır ve yağmacılığa eğilimlidirler. 2. Karniyol Irkı Karniyol arısı (Apis mellifera carnica), ince yapılı ve uzun dillidir. Kısa ve sık bir kıl örtüsüne sahiptirler. Gri arılar da denilen Karniyol arısının kitini çok koyu renktedir ve genellikle 2. ve 3. halkalar üzerinde kahverengi noktalar, bazen de kahverengi çizgiler vardır. En sakin ve uysal arı ırkıdır. Yavru üretme kabiliyetleri çok iyidir. Küçük aileler halinde kışladıklarından yiyecek tüketimleri azdır. Polen miktarı yeterli olduğu sürece yavru büyütme uzun süre devam eder. Sonbaharda ailenin nüfusu süratle azalır. Çok sert iklim şartlarında bile kışlama yetenekleri iyidir. Oğul verme eğilimleri yüksektir. Yön tayin etme ve kovanlarını bulma duyguları kuvvetlidir. Yağmacılığa karşı meyilli değildirler. Çok az propolis kullanırlar ve bu yüzden yavru hastalıklarına karşı çok hassastırlar. Çevre şartları değişikliklerine uyma kabiliyetleri yüksektir. 3. Kafkas Irkı Kafkas arısı (Apis mellifera caucasica) biçim, büyüklük ve kıl örtüsü bakımından karniyol arısına benzer. Kitin rengi koyudur fakat birinci karın halkası üzerinde kahverengi noktalar görülür. Kafkas ırkı, bilinen arı ırkları içinde en uzun dile sahip olan ırktır. Uysallıkları ve petek üzerindeki sakinlikleri bu ırkın en tipik özellikleridir. Yavru verimleri yüksektir ve kuvvetli aileler meydana getirirler. Fakat en kuvvetli oldukları devre yaz ortasıdır. Oğul verme meyilleri zayıftır. Propolisi çok kullanırlar. Nosema hastalığına karşı hassasiyetleri dolayısıyla kuzey bölgelerinde kışlama durumları pek iyi değildir. Yağmacılığa meyillidirler. Bal verimleri yüksektir. 4. Yerli Irklar Anadolu arısı (Apis mellifera anatoliaca) olarak da isimlendirilen bu ırk, Anadolu'nun büyük kısmında yayılış göstermektedir. 1953 yılında ırk düzeyinde sınıflandırılmıştır. Anadolu arısı, İngiltere ve ABD'ne götürülerek bu ülkelerdeki ıslah çalışmalarında kullanılmıştır. Ege formu gibi değişik alt türlerinin olabileceği bildirilmektedir. Anadolu arısı esmer ve küçük yapılı arılardır. Olumsuz kış şartlarına çok dayanıklı olup yavru ve bal üretim kabiliyetleri yüksektir.

http://www.biyologlar.com/bal-arisi-kolonisi-ve-ari-irklari

GAMETLERİN OLUŞUMU

Hayvanların büyük çoğunluğunda erkek ve dişi birey ayrı ayrı olduğundan, dişiden dişi gamet, erkekden de erkek gamet oluşturulur. Omurgalılarda gametler, üreme organlarındaki diploid eşey ana hücrelerinin mayozla bölünmesinden meydana gelir. Eşey organlarına gonad denir. Bütün canlıların gametleri ister mayozla oluşsun, ister mitozla oluşsun mutlaka haploid kromozomludur. a. Sperm Oluşumu: Spermler, erkek gametler olup, erkek üreme organlarındaki (testisler) eşey ana hücrelerin mayozla bölünmesinden meydana gelirler. Spermler hareketli olup, yumurtaya göre çok küçüktürler (Omurgalılarda en az 200 defa küçüktür). Sitoplazmaları çok azdır. Her sperm ana hücresinden 4 adet sperm meydana gelir. Hücrenin baş kısmında bulunan akrozom spermin yumurta zarını eriterek, sperm çekirdeğinin yumurtaya girmesini sağlar. Çekirdek genetik bilgiyi taşır. Spermin boyun bölgesinde, başlangıçta iki tane sentriol vardır. Bir tanesi farklılaşarak kamçıyı oluşturur. Boyun bölgesine dizilmiş bulunan mitokondriler enerji sağlayarak motor görevi yaparlar. Kuyruk gövdenin devamı olup, spermin sıvı ortamda yumurtaya doğru hareketini sağlar. Spermler yumurtaya oranla daima fazla miktarda oluşturulurlar. Çünkü hareket ederek yumurtayı bulması gereken onlardır. Spermlerin ömürleri çok kısadır (ortalama birkaç gün kadar). b. Yumurta oluşumu: Dişi üreme hücresine yumurta denir. Dişi üreme organı olan ovaryumlardaki diploid eşey ana hücrelerinin mayozla bölünmesinden meydana gelir. Bir yumurta ana hücresinden ancak bir yumurta oluşur. Diğer üç hücre daha küçük olup, döllenme özelliğine sahip değillerdir. Bunlara kutup hücreleri denir. Parçalanarak atılırlar. Oluşturulmalarının sebebi, yumurtanın kromozom sayısını yarıya indirmektir. Daha küçük olmaları sitoplazma bölünmesinin eşit olmamasındandır. Sitoplazmanın çoğu yumurtada kalarak, daha sonra zigot için besin kaynağı (vitellüs) oluşturur. Yumurta hareketsiz olup, sperme göre çok büyüktür. Büyük olması besin maddesi (vitellüs) taşımasındandır. Gelişmesini dış ortamda yapan canlılarda yumurta çok daha büyüktür. Yumurtalar spermlere göre daha az sayıda oluşturulurlar. İNSAN EMBİRYOSUNUN GELİŞİMİ İnsan yumurtaları izolesital tiptedir. İnsanda yumurta hücresi 0.14 mm. çapındadır. Ovulasyonla ovudukta geçen yumurta döllenmeden önce birinci mayozu geçirmiş ve ikinci mayozun metafazında kalmıştır. Spermanın girmesiyle ikinci mayozu tamamlayarak ovum haline gelir. Yumurtanın bölünmesi holoblastiktir. Animal kutup, kutup hücrelerinin atıldığı yerle tespit edilir. Bunun karşısına gelen bölgede vejetatif kutuptur. Yumurta vitellüsün az olmasından dolayı embriyo çok erken safhada ananın dolaşım sistemi ile beslenmeye başlar. Yumurtanın etrafında zona pellusida adı verilen bir zar görülür. Oviduktun üst kısmında döllenen yumurta segmentasyon safhalarını geçirerek 6-9 günde uterusa ulaşır. Segmentasyon : İlk bölünme yumurta ovidukta ilerlerken zona pellusida içinde olur. Bölünme total ekual olup meydana gelen blastomerler birbiriyle eşiti büyüklüktedir ve segmentasyon ilerledikçe küçülürler. Bölünme her meydana gelen blastomer sayısının katları şeklinde devam eder. Zigot iki blastomerli döneme 24-30 saat içinde ulaşır. Dört blastomer 40-50 saatte, 8 blastomer 60 saatte ulaşır. Blastomerlerin sayısı 16 olunca morula safhası başlar. Dördüncü günde ulaşılan morula safhasında iki tip hücre ayırt edilir. Bu hücrelerden dışta olanları ile ilerde embriyoyu verecek olanları birbirlerinden ayrılarak aralarında bir boşluk meydana gelmeye başlar. Ortada kalan hücreler üst tarafta (animal kutup) toplanırlar. Bunlara embriyoblast hücreleri denir. Kenarda kalan hücrelere trophoblast hücreleri denir. 4 ve 5nci günler arasında meydana gelen bu olayda hücreler sayılmış bunlardan 8 tanesi embriyoblasta ait, diğer 99 hücre trophoblasta ait olarak bulunmuştur. Trophoblastların döşediği boşluğa blastosöl denir. Bu durumdaki embriyo da blastuladır (blastosist). Blastosist 6 ile 9ncu günlerde uterus mukozasına tutunur. Blastosist mukozaya tutunup endometrium içine girerken mevcut embriyoblasttan enine delaminasyonla endoderm ayrılır. Bu sırada mevcut olan blastosöl boşluğu da gastrosöl boşluğu olur. Bu durumdaki embriyoya (Şekil M-2) gastrula denir. Gastrulasyonda trophoblast iki tipe farklılaşır. Bunlardan dışta olanına sinsisyotrofoblast, içte gelişenine sitotrofoblast denir. Embriyonun epiblastı (ektoderm) ve hypoblastı (endoderm) iyice belirginleşir. Gelişme ilerledikçe sitotrofoblastla temasta olan ektoderm ondan ayrılmaya başlar ve ikisi arasında amnion (amniyon) boşluğu oluşur. Amniyon boşluğunun sitotrofoblast duvarı, onlardan gelişen amnioblast hücreleri ile çevrilir. Amniyonun tabanı periblasttan yapılmıştır. Gelişme ilerledikçe gastrula uterusun endometriumuna iyice gömülür. Daha sonra vitellüs kesesi ile bunun dışında bulunan heuser zarı arasında embriyo dışı sölom meydana gelir. Embriyo dışı sölom embriyo içi sölomdan daha önce farklılaşır. Üstte amniyon altta vitellüs kesesi ile çevrili olan embriyo diske benzediği için buna embriyonik disk adı verilir. Diskin dorzalindeki hücreler ektoderm, ventralindekiler endodermdir. Üçüncü hafta başında ektodermin üzerinde ilkel çizgiye doğru göç ederler ve bu çizgiden içeriye doğru involusyonla endoderm ektoderm arasına yerleşirler. Böylece üçüncü embriyonik örtü olan mezoderm oluşur (Şekil M-4). Gelişmenin devamında ektodermden farklılaşmış olan mezoderm dorsal, intermedial ve lateral mezoderm bölümleri ve mezenşime farklılaşır. Dorsal mezoderm önce ilkel çizginin sonra kısa bir müddet görülüp kaybolan notakordanın her iki yanında, ektoderm ile endoderm arasında kordon şeklinde uzanır. Bu kordon ileri safhalarda belirli bölgelerinden boğumlaşır ve buralardan bölünerek segmental somitleri yapar. İntermedial mezoderm somitlerin vetrolateralinde yer alır ve ilerde ürogenital sistemi yapar. İntermedial mezodermin yanlara doğru yayılması ile meydana gelen lateral mezoderm daha sonra dışta somatik mezoderm içte splanknik mezoderm olmak üzere ikiye ayrılır. İkisinin ortasında sölom meydana gelir. Embriyo içinde kalan söloma embriyo içi sölom dışında kalanına embriyo dışı sölom denir. Embriyo içi sölom, ilk vücut boşluğu, kalp, akciğerler, karaciğer ve karın boşluklarını meydana getirir. Embriyo dışı sölom ise amniyon, vitellüs kesesi, allatoisi içinde bulunduran boşluktur. Doğumla birlikte bu boşluğun görevi biter. Embriyonun lateral ve ventral kısımları ekstremiteler dahil somatopleuradan (ektoderm-somatikmezoderm), sindirim, solunum yollarının bağ dokusu, düz kasları ve seroza splanknopleuradan (endoderm-splanknik mezoderm) oluşur. Segmental somitlerin sklereton ve dermatoma ayrılmasından sonra bunlardan mezenşim farklılaşır. Mezenşim kökenini aldığı mezoderm tipine göre adlandırılır. Örneğin skleretomik mezenşim, dermatomik mezenşim gibi. Mezenşim bağ doku, kıkırdak doku, kemik, kan ve kalp damarlarının oluşumunda görev alır. EMBRİYO DIŞI BÖLGE : Dördüncü ve sekizinci haftalar arasında embriyonal diski dıştan saran, embriyo dışı sölomda büyük değişiklikler meydana gelir. Bunun sonucunda amniyon, koryon, vitellus kesesi, allantois, plasenta ve göbek bağı olmak üzere altı değişik yapı meydana gelir. AMNİYON : Trofoblastların iç tabakası olan sitotrofoblast temasta olduğu ektodermden ayrılarak ortada bir boşluk oluşturur. Embriyonik diskin üst kısmında meydana gelen bu boşluğa amniyon boşluğu denir. Amniyonun başlangıçta tavanı amniyoblastlar, tabanı ise ektodermden oluşmuştur. Daha sonra lateral mezodermin meydana gelip somatik ve splanknik mezoderme farklılaşmasıyla amniyon boşluğunun dış tarafı somatik mezodermle iç tarafı ektodermle çevrilir. Yani somatopleura ile çevrilir. Amniyonu meydana getiren hücreler amniyon sıvısı (liquor amnii) salgılayarak amniyon boşluğunu doldururlar. Böylece embriyonal diskin rahatça gelişebileceği ıslak ve yumuşak bir ortam hazırlanmış olur. İnsanda amniyon sıvısı gebeliğin altıncı ayında 1 litre kadardır ve saydamdır. Doğuma doğru bulanıklaşır ve azalır (Şekil M-5). KORYON : Plasentanın temelini oluşturan ve amniyon zarının dışında bulunan koryon , trofoblast hücreleri tarafından meydana getirilir. Önceleri embriyonun her tarafında hızlı gelişme gösteren bu zarın, bir süre sonra sadece plasentanın yapısına iştirak eden kısmı (Chorion frondosum) kıllı kalır. Diğer kısımları ortadan kalkarak düz yapı (chorion laeve) kısmını teşkil eder. Kıllı bir deriyi andıran kısım villuslardan yapılmıştır ve aralarında bol kan damarları vardır. Koryon bu kısmı ile plasentanın yapısına girer (Şekil M-5) VİTELLÜS KESESİ : İnsanda vitellüs kesesi vitellüs maddesi olmadığı için meydana gelmesine rağmen iş görmez. Vitellüs kesesi içte endoderm, dışta splanknik mezodermden oluşmuş splanknopleuradan yapılmıştır, vitellüs kesesi gelişmesinden hemen sonra üzerinde geniş bir damar ağı oluşarak vitellüs dolaşım sistemini oluşturur (Şekil M-5) ALLANTOİS : Sindirim borusunun dışa doğru amniyon ve koryon arasında gelişmesiyle meydana gelir. İnsanda allantois küçüktür ve koryonun damarlanmasını sağlayıp onunla birlikte ilerde oluşacak göbek bağının yapımına katılır. Doğumdan sonra allantoisin büyük bir kısmı atılır. Fakat sindirim kanalı ile birleşen kısmı vücut içinde kalır ve idrar kesesinin bir kısmı olarak farklılaşır (Şekil M-5) PLASENTA : Sadece memeli hayvanlarda ve insanda görülen bu organ embriyo gelişimi sırasında koryon, allantois ve uterus mukozasının farklı şekillerde kaynaşması ile meydana gelir. Plasenta bir taraftan uterus içinde gelişmekte olan embriyoya gerekli olan besin maddelerinin ve antikorların geçişini sağlarken, aynı zamanda embriyoda oluşan artık maddelerin de anne kanına verilmesinde görev yapar. Başka bir değişle uterus ile embriyo arasındaki metabolizma olaylarının gerçekleşmesi için gerekli bağlantıyı sağlayan bir organdır. Bu olaylar meydana gelirken anne kanı ile embriyo kanı birbirine karışmaz. Bunu koryon villusları sağlar. En basit bir plasentada anne ile embriyo arasındaki madde alış verişi şu tabakalar aracılığı ile olur. Annenin uterus kan damarları endoteli Annenin endoktriumu bağ dokusu Uterus endometrium epiteli Koryon villuslarının trofoblast tabakası Koryon villuslarının bağ dokusu Koryon villus damar endoteli Embriyo veya fetusa ait damarlar. Plasentanın görevleri : Plasenta uterus içinde gelişmekte olan solunum organıdır. Yani anne karnındaki oksijenin fötusa, fötus kanındaki karbondioksitin anne kanına geçmesini sağlar. Plasenta embriyo /fötüs için bağırsak ve böbrek görevi yapar. Plasenta vitamin deposudur. Özellikle A,D vitaminlerini depo eder. Plasenta bir endokrin organ gibi rol oynar. Gebelik süresince sinsisyotrofoblastlar tarafından östrojen, koryon progesteronu ve koryon gonadotropini salgılanır. İnsanda olgun plasenta bölümleri: Pars Fetalis : Koryon villuslarının oluşturduğu bu bölüm embriyoya aittir. Koryon plağı Koryon villusları : ( villuslar direk olarak anne kanı ile temas ederek plasenta zarını yapar) Bu da: Sinsityotrofoblast Bağ doku Feldka damarı endotekioü üç kısımda meydana gelir. 2. Pars materna : Anneye ait olan bu kısım üç bölümdür. Trafoblastlar (intervillus boşluklarını çevreler) Plasenta septumları Bazal plak (desudia bazelis) dir. GÖBEK BAĞI : Embriyo/fötusla anne arasındaki metabolik alışverişi plasentayla birlikte sağlayan yapıdır. Beyaz parlak, 2 cm kalınlığında 50-60 cm uzunluğundadır (bazen 10 cm bazen 150 cm olabilir). ZİGOTTAN İTİBAREN İNSAN EMBRİYOSU VE FÖTUSUNUN GELİŞİMİ : GÜN ÖZELLİKLER 8 saat Segmentasyon başlar 16 blastomerli safha yani morula 4-8 Embriyoblas ve trofoblast oluşarak blastosist oluşur 6-9 Blastosist uterus endometriumuna tutunur. Ektoderm ve endoderm oluşmaya başlar. Trofoblast sito ve sinsisyotrofoblasta farklılaşır. Amniyon kesesi ve desudia gelişir. Koryon üzerinde yer yer boşluklar oluşmaya başlar 10-12 Genç gastrula tamamen endometriyuma gömülür 13 Koryon villusları gelişir 2-3 hafta Baş-kıç uzunluğu 1,5 mm kadardır. Endoderm, ektoderm, mezoderm tam olarak oluşur. Embriyo dışı oluşumlar tümüyle görülür. Koryon ve plasenta gelişimine devam eder. Ağız, farinks, sindirim sistemi, solunum sistemi henüz oluşmamıştır. Vitellüs kesesi üzerinde kan adacıkları görülür. Somitler ve nöral plak oluşmaya başlar. 3,5 hafta Embriyonun baş-kıç uzunluğu 2,5 mm’dir. Ağız oluşumu başlar, fariks belli olur ve troid taslağı belirir. Ön, orta ve son bağırsak belirlidir. Solunum sistemi taslağı ortaya çıkar. Pronefröz böbrekler görülür. İlk kan damarları belirir. 1-16 arasında değişen somitler ortaya çıkar. Ektoderm tek katlıdır. Nöral oluk meydana gelir ve hızla kapanmaya başlar. Optik vesikül ve kulak vesikülü belirir. 10 4 hafta Embriyonun baş-kıç uzunluğu 5 mm’dir. El ayak taslakları ortaya çıkar. Baş ve kuyruk bölümleri kıvrılarak embriyo “C” şeklini alır. Ağızın olduğu bölgede dil taslağı görülür. Özofagus belirir. Mide taslak halinde ortaya çıkar. Karaciğer, safra kanalları, safra kesesi taslakları şekillenmeye başlar. Pankreas tomurcuk halinde belirir. Kloak büyür, trake, sağ ve sol akciğer tomurcuklar belirir. Pronefroz körelir ve hızla mezonefroz kanalcıklar farklılaşır. Kalp torba şeklinde oluşup atrium ve ventrikuluslar oluşmaya başlar. Aortlar sağlı sollu birleşir. Aort ile vena kardinalis endokart borusuna açılır. Bütün somitler oluşur (40-42 çift) ve skleretoma ait hücreler ilk omurları yapmaya başlar. Bütün somitlerden miyotom farklılaşır. Dermatom belirir. Ön, rota ve arka beyin ortaya çıkar. Diğer sinirler ve gangliyonlar oluşmaya başlar. Optik vesikül ve kulak vesikülü iyice belirlenir. Koku plakları görülmeye başlar. 11 1,5 aylık Embriyonun baş-kıç uzunluğu 12 mm’dir. Damak belirir. Diş, dudak tomurcukları görülür. Boyun, dış kulak, kol ve bacaklar iyice belirir. Farinks etrafındaki organlardan timus ve paratiroid bezleri ortaya çıkar. Tiroid tam biçimini alır. Mide ve bağırsak borusu dönme hareketi yaparlar. Karaciğer lopları belirir. Sağ ve sol akciğer lopları görülür. Üreter tomurcuğu, farklılaşmamış gonat taslakları ve dış organ çıkıntıları belirir. Müller kanalı ortaya çıkmaya başlar. Kalp son şeklini alır. Karaciğerde kan yapılmaya başlar. Kıkırdak doku görülür. Kol, bacak, kaburga taslakları belirir. Kafatası gelişir, kol ve bacak kasları belirir. Beynin beş bölgesi (ön, ara, orta, arka, son) iyice gelişir ve orta beyin gittikçe büyür. Göz çukurunda ektodermden retinanın dış pigment tabakası ve iç sinirsel tabakaları farklılaşır. Göz lensi gittikçe yoğunlaşır. Dış, orta ve iç kulak şekillenmesine devam eder. Kulak kepçesi oluşmaya başlar. 12 2 aylık Embriyonun baş-kıç uzunluğu 2,3-3 cm.dir. baş dikleşir ve fötal hayata geçiş başlar. Dil tam olarak oluşur. Dilin üzerinde tat alma merkezleri farklılaşmaya başlar. Dış kulak yolu ve bademcikler oluşur. Timus gelişir. Troidin foleküler yapısı oluşur. İnce bağırsaklar göbek kordonu içine yerleşir. Karaciğer büyür. Akciğerler gelişimini sürdürür. Perikart büyük bir kese haline gelir. Testisler ve ovaryumlar ayırt edilir (embriyonun cinsi belirir). Büyük damarlar son şeklini alır. Omurların kıkırdak modelleri oluşur ve ilk kemikleşme oluşur. Gövde, kol ve baş kasları iyice geliştiğinden artık embriyo hareketlidir. Deri iki katlı hücrelerden ibarettir. Beyin gelişimi devam eder, gözler orta hatta doğru yaklaşır. Dış, orta ve iç kulak son şeklini alır. 13 3 aylık Embriyoya anne ve babasına benzemesinden dolayı bu aydan itibaren fötus denir. Fötusun baş-kıç uzunluğu 5-6 cm. kadardır. Baş topuk uzunluğu ise 7cm.’dir. ağırlığı 20 gr.’dır. Baş tam olarak biçimlenir. Ağızda süt dişleri taslağı görülür. Damak bölümlerinin birleşmesi tamamlanır. Troid tam olarak gelişir. Bademcikler iyice belirir. Mide ve bağırsak kasları ortaya çıkar. Safra salgılanması başlar. Anüs oluşmaya başlar. Akciğerler son biçimini alırlar. Göbek bağının sölomla ilişkisi kesilmeye başlar. Dış genital organlar belirmeye başlar. Kemik iliğinde kan yapımı başlar. Notakorda hızla yok olur. Omurlar kemikleşir. Düz kaslar görülür. Epiderm hücreleri üç tabakalı hale gelir. Omurilik büyür. Sinir dokusunda miyelinleşmeler görülür. Göz karakteristik yapısını alır. Dış kulak yolu epitel hücreleriyle tamamen kapanır. 14 4 aylık Fötusta baş-kıç uzunluğu 10-11 cm, baş-topuk uzunluğu 15-16 cm.’dir. Ağırlığı 120gr.’dır. Yüz gerçek biçimini alır. Saçlar çıkar ve gövde giderek büyür. Sert ve yumuşak damaklar belirir. Hipofiz oluşur. Mide ve bağırsak salgı sistemleri gelişir. Akciğer lob ve lobçuklara bölünür. Böbrekler meydana gelir. Dişide uterus ve vajina gelişmeye başlar. Dalakta kan yapımı başlar. Miyokart yapımı da gittikçe kuvvetlenir. Kemiklerin çoğu oluşur. Bu arada eklemler de ortaya çıkar. Epidermisin bütün tabakaları oluşur. Vücut kılları gelişmeye başlar. Ter ve yağ bezleri gelişir. Beyin yarım küreleri daha da büyür ve beyincik çıkıntıları görülür. Göz, kulak ve burunda normal, tipik dış ve iç yapılar ortaya çıkar. Duyu organlarının farklılaşması tümüyle sona ermektedir. 15 5-10 aylar AY BAŞ-KIÇ BAŞ-TOPUK AĞIRLIK 15 cm 23 cm 300 gr 20 cm 30 cm 640 gr 23 cm 35 cm 1230 gr 27 cm 40cm 1700 gr 30 cm 45 cm 2300 gr 10 34 cm 50 cm 3250 gr Yedinci ayda göz kapakları açılır. Sekizinci ayda testisler scrotum’a iner. Vücutta yağ birikimi başlar ve buruşukluklar düzelir. 6-8 aylar arasında kalıcı diş taslakları belirir. 6/10 aylar arasında karaciğerde kan yapımı azalır. Buna karşılık kemik iliğinde kan yapımı artar. Tırnaklar 9 ncu ayda parmak uçlarında görülür. 10 ncu ayda beyinde miyelinleşme görülür. NÖRAL BORU VE NOTOKORDA : 24 saatlik embriyoda, nöral kıvrımlar nöral boruyu meydana getirmek üzere kıvrılmıştır. 27 nci saatte sefalik bölgedeki kıvrımlar medio-dorsal çizgide karşılaşırlar ve kenarları birleşerek nöral boruyu meydana getirirler. 27 saatlik embriyonun sefalik bölgesinde 3 primer beyin bölümü ayırt edilir. İlk üç nöromerden prosensefalon (ön beyin) oluşur. Ön beyinin gerisinde 4 ncü ve 5 nci nöromerlerden meydana gelen mezensefalon (orta beyin), Bunun da gerisinde 6-11 nci nöromerlerin oluşturdukları rombensefalon (arka beyin) yer alır. Rombensefalondan sonraki kısım medulla spinalisi oluşturur. 29-30 saatlik embriyoda ön beyinin yan kısımlarında meydana gelen bir çift optik veziküller, göz taslaklarını oluşturur. Nöral borunun en arkadaki somitlerin gerisinde kalan açıklığı, sinüs romboidalis adını alır. Bu açıklık 80 nci saatte kapanır. Nöral borunun ön kısmındaki nöropor, 33 saatlik embriyoda bir iz bırakarak kapanır. Notokorda, ön beyinin tabanında infundibulum denen yere kadar uzanır. Beyinin bütün kısımları notokordanın dorsalindedir. İnfundibulum ve beyin kısımları notokordanın önüne doğru çıkıntı yapar. 38 nci saatin sonundan itibaren bu beyin bölgelerinin farklılaşmasıyla ergin için karakteristik olan beş beyin bölümü meydana gelir. Telensefalon : 3 ncü günün sonunda prosensefalonun anterio-lateral duvarları iki yanda birer kese oluşturmak üzere dışa doğru çıkıntı yapar. Bu çıkıntılar beyin yarım kürelerini (serebral hemisferleri) oluşturur. Hemisferler dorsal ve posteriore doğru büyürler. Diensefalon : Bu bölümün lateral duvarlarında meydana gelen kalınlaşmalar (optik veziküller) farklılaşarak göz ve gözün kısımlarını meydana getirir. Optik veziküllerin karşısındaki ektodermden göz merceği oluşur. Diensefalonun dorsal orta çeperinde meydana gelen çıkıntı epifizi (pineal bezi) oluşturur. Alt orta kısmında bir çıkıntı halinde meydana gelen infundibulum, ektodermal invaginasyonla meydana gelen ratke kesesine doğru uzanır. Ektodermden ayrılacak olan ratke kesesi ile infundibulum bir araya gelerek hipofiz bezini oluştururlar. Mezensefalon : 2 nci gelişim gününde ön beyin ve arka beyinden belirli bir şekilde ayrıldığı görülür. Başlangıçta tüm çeperleri aynı kalınlıktadır. Fakat daha sonra dorsal çeperinin kalınlaşmasıyla dört çıkıntı oluşur. Bu çıkıntılardan önde olan ikisi görme ile ilgili olan optik lopları, arkadaki ikisi ise işitme ile ilgili merkezleri oluşturur. Metensefalon : Tavan kısmı genişleyerek serebellumu (beyincik) oluşturur. Miyelensefalon : Bu bölümün dorsal çeperi lateral ve ventral çeperinden daha incedir. Kan damarları açısından zengin olan bu bölüm medulla oblangata’yı meydana getirir ve omurilikle birleşir. Omurilik (medulla spinalis) : Beyin bölümlerinden sonraki kısım olan omuriliğin lateral çeperleri gelişme ilerledikçe kalınlaşır. Ventral ve dorsal çeperlerinde ise fazla bir kalınlaşma meydana gelmez. Ortadaki boru ince bir yarık şeklinde kalır. Nöral borunun en son kapanan kısımları ön tarafta nöropor arka tarafta da sinüs romboidalis’tir. Dolaşım sistemi : Embriyoda iki tip dolaşım görülür. Embriyo dışı dolaşım Embriyo içi dolaşım Embriyo dışı dolaşım : Bu dolaşım iki farklı dolaşım şeklinde belirir. Vitellus dolaşımı Allantois dolaşımı Vitellus dolaşımı : Embriyo dışında vitellus yüzeyinde vitellus kan damarlarının meydana gelmesiyle görülür. Gelişimin 24 ncü saati sonunda area opaca tabakasının iç kısmında kan adacıkları meydana gelmeye başlar. Genç embriyoda noktalar halinde belli olan bu adacıklar, vitellus üzerinde embriyo bölgesine doğru yayılarak bir ağ manzarası oluşturur. Buna area vasculosa denir. Kan adacıkları önceleri vitellus kesesi endodermi üzerinde gayri muntazam mezoderm hücre kümeleri halindedir. Bu evrede, lateral mezodermin somatik ve splanknik mezoderm şeklinde farklılaşmasıyla kan adacıkları, endoderme komşu olan splanknik mezodermin içine uzanır. Daha sonra, her bir kan adacığı hücreleri merkezden ayrılarak ortada boşluk oluştururlar. Boşluklar bir sıvı ile dolar. Boşluğun çevresindeki hücreler ilkel kan damarlarının endotel hücrelerini yaparlar. Merkezde kalan hücreler yapılarında hemoglobin sentezlemeye başlarlar. 33 ncü saate kadar, embriyo dışında pek çok kılcal kan damarının oluşmasıyla damar ağı meydana gelmiş olur. Bu damar ağı embriyoya kadar uzanarak, kalbe posteriorden açılan sağ ve sol omfalomezenterik toplar damarın dışa doğru büyümesi neticesinde bu sistemle bağlantı kurmuş olur. Böylece kanı kalbe getiren vitellus toplar damar dolaşımı (afferent dolaşım) tamamlanmış olur. Ancak, kanı dışarı doğru götüren vitellus atar damar dolaşımı (efferent dolaşım) henüz gelişmemiştir. Embriyo dışı bölgede kan damarları tamamlanıncaya kadar, embriyo içi kan damarlarında kan sıvısı bulunduğu halde kan hücreleri yoktur. Bu nedenle embriyo, bu süre zarfında gereksinim duyduğu besini doğrudan doğruya vitellustan absorbe eder. Embriyo içi dolaşım : Embriyo içi dolaşımda rol oynayan damarlar, embriyo içi atar ve toplar damarlardır. Embriyo içi atar damarlar : Kalbe bağlı kan damarları, kalp gelişimi sırasında kalp civarındaki mezoderm hücrelerinden meydana gelir. Bu evrede, hafifçe U harfi şeklinde kıvrılıp sağa doğru genişlemiş olan ventrikulustan trunkus arteriosus farklılaşır. Bu kısım ikiye ayrılarak öne doğru uzayıp bir çift ventral aort kökünü oluşturur. Ventral aort kökleri ön bağırsağın ucunda dorsale dönerek bir çift dorsal aort damarlarını yapar. 4 ncü günden itibaren dorsal aortlar baş bölgesinde internal karotid atar damarlarını, ventral aort damarları da eksternal karotid atar damarlarını yaparlar. Aort yayları (1 nci aort yayı) ventral ve dorsal aortları birbirine birleştirir. Embriyo içi toplar damarlar : Gelişimin başlangıcında embriyo içi dolaşımın önemli toplar damarları, kardinal toplar damarlarıdır. Bu damarlar, nöral tüpün ventro-laterallerinde simetrik olarak yerleşmiş bir çift toplar damar halindedir. Baş bölgesinden kanı toplayan damar çiftine anterior kardinal toplar damarları, arka bölgeden kanı toplayan damar çiftine ise posterior kardinal toplar damarları denir. Her iki lateralde bulunan kardinal toplar damarlar kalbin dorsalinde birleşerek sağ ve sol tarafta genel kardinal veya cuvier toplar damarını (ortak kardinal toplar damarları) oluştururlar. Sağ ve sol taraftaki cuvier toplar damarları ön bağırsağın yanından ventrale dönerek kalbin sino-atrial ucundan kalbe girerler. Böylece, embriyo içi ve embriyo dışı dolaşım arasında bağlantı sağlanmış olur. Bu damarlar birleşerek kalbin atriumuna açılmış olurlar. Allantois dolaşımı : Allantois kesesinin gelişmesinden sonra embriyo dışı dolaşımına allantois atar ve toplar damarları eklenir. Oluşan bu damarlar embriyoya allantois kesesi sapı ile bağlanırlar. Allantois toplar damarları sağ ve sol omfalomezenterik toplar damarlarıyla birleşerek sinüs venosusa açılırlar. Kalbin oluşumu : Perikard boşluğu içinde gelişen kalp, başlangıçta basit bir tüp şeklinde olup ön bağırsak kapısının önünde arka beyinin altında ve oluşan kulak taslağının yakınındadır. Perikard boşluğuna sığmak için kalbin orta bölgesi fazla genişler ve sağ tarafa bükülerek embriyo vücudunun yan kenarının ilerisine kadar uzanır. 36 ve 38 nci saatlerde atriumun başlangıç kısmı olan sinüs venosus belirgindir. Kalbin bölmeleri daha sonra oluşmaya başlar. Önce ventrikulus kısmı farklılaşır. Daha sonra atrium farklılaşarak ventrikulusun ventral kısmına eklenir. Kalbin orta kısmının fazla büyümesiyle kalp,U şeklini alarak embriyonun sağ tarafına doğru yatar. Bu kıvrılma sonunda atrium sağ ve dorsal tarafa geçer (60ncı saat). Daha sonraki eğilme ve bükülme hareketleriyle kalbin odacıklarına ayrılması sağlanır. Gelişimin 100 ncü saatinde sinüs venosus atriumdan ayrılır. Atrium ve ventrikulus sağ ve sol bölmelere ayrılarak kalp kapakçıkları gelişir. Kalbin gelişmesi : Kalp, 24 saatlik embriyoda ön bağırsak açıklığının hemen arkasındaki splanknik mezodermden meydana gelir. Ön bağırsak ve baş altı cebin (subsefalik cep) uzamasıyla oluşan uzantının içine giren sölom, perikardial bölgeyi oluşturur. Embriyoya ventralden bakıldığında, kalp ön bağırsağın ventralinde ve orta kısmında tüp şeklinde görülür. 24 saatlik embriyoda splaknik mezodermde görülen kalınlaşma bölgesindeki bazı hücreler, 25 nci saatte mezodermle endoderm arasındaki dar alana atılır. Bu hücreler perikardial bölgenin her iki tarafında kümeleşerek endokardium taslağını meydana getirirler. Bu taslak başlangıçta çifttir. Bu safhada kalbin dış örtüsü olan epikardium ve esas kalp kısmını verecek olan epi-miyokardiyum taslak halinde görülmeye başlar. Her iki endokardium taslağı miyokardium ve perikard boşluğu ile çevrilir. Vücut kıvrımları alttan embriyonun ön ucu ve ön bağırsağını, vitellus kesesinden ayrılmasını sağladığı sırada her iki taraftaki endokardium taslakları birbirine yaklaşarak birbirleriyle birleşirler. Sağ ve sol perikard boşluklarının splanknik mezoderm çeperleri, endokard tüplerinin üst ve altında birleşip kaynaşması tek bir perikard boşluğunu meydana getirir.

http://www.biyologlar.com/gametlerin-olusumu

Watching a forest breathe

Watching a forest breathe

Flux towers are equipped with inlets for "sniffing the air " above the forest, in addition to other instruments such as sonic anemometers for measuring wind

http://www.biyologlar.com/watching-a-forest-breathe

Mouse antibodies pinpoint Zika's weak spots

Mouse antibodies pinpoint Zika's weak spots

This image shows the mapping of the three distinct Zika virus DIII epitopes onto the mature virion

http://www.biyologlar.com/mouse-antibodies-pinpoint-zikas-weak-spots

Alveoller

Alveoller polihedral veya hegzagonal şekillidir ve tek duvara sahiptir. Bu duvar, solunum bronşiolleri, duktus alveolaris, atrium veya alveolar keselere açılarak havanın akışına izin verir. Yan yana bütün alveoller açıldığında yaklaşık 150 m 2 genişliğinde gaz değişim alanı oluştururlar. Alveoller sıkıca paketlenmişlerdir ve her bir alveolün duvarı tam değildir. Bunun yerine komşu alveoller birbirlerinden interalveolar septum ile ayrılmışlardır. Herbir alveol yassı, oldukça ince bir epitelle döşelidir. Bu epitel içerisinde iki farklı tip hücre bulunur. Bir interalveolar septum alveol içerisindeki hava basıncına dirençli olmalıdır ve hava basıncı solunumun değişik fazlarında farklılıklar gösterir. Septumun destek fonksiyonu retiküler ve elastik lif ağı tarafından sağlanmaktadır. Septum içerisinde oldukça zengin kapiller damar pleksusları yerleşmiştir. Bundan dolayı bir interalveolar septum her iki yüzeyde ince bir alveolar epitelle örtülüdür ve bu epitel hücreleri de bir bazal lamina üzerine oturmuşlardır. İnteralveolar septumun orta kısmında da zengin kapiller ağ içeren bağ dokusu yerleşmiştir. Alveolar epitel içerisinde iki esas tip hücre bulunur. 1- Tip I Alveolar Hücreler: Yassılaşmış yüzey epitel hücreleri ya da tip I Pnömosit adını da alan bu hücreler alveolar yüzeyde en yaygın bulunan hücre tipidir. Yaklaşık hücrelerin %90’ını oluştururlar. Fakat 0.2 mm.den daha az bir kalınlığa sahiptirler. Işık mikroskobik seviyede çekirdekleri ayırt edilebilir, fakat sitoplazmaları çok ince olduğu için net olarak izlenemez. Elektron mikroskopta bu hücrelerin apikal ve bazal yüzeylerinde mikropinositotik veziküllerin bulunduğu ve hücrelerin birbirlerine sıkı bağlantılarla bağlandıkları görülmektedir. 2- Tip II Alveolar Hücreler: Büyük alveolar hücreler, septal hücreler ya da tip II pnömositler olarak da isimlendirilen salgı hücreleridir, tek veya küçük gruplar halinde yassı hücrelerin aralarında yerleşmişlerdir. Hücreler kübik tiptedirler genellikle alveolar duvarın köşelerinde veya açı oluşturduğu bölgelerinde yerleşmişlerdir. Işık mikroskopta sferikal şekilli veziküler çekirdekleri ve vakuollü sitoplazmaları ile ayırt edilirler. Elektron mikroskobik seviyede bu hücrelerin tipik salgı hücreleri görünümünde olduğu, sitoplazmalarında granüler endoplazmik retikülüm, bir Golgi kompleksi, mitokondriyonlar, apikal sitoplazmalarında salgı granülleri ile apikal yüzeylerinde birkaç mikrovillus içerdikleri gözlenmektedir. Salgı granülleri 0.2-1 mikron çapında olup özlerinde birbirlerine paralel membran lamelleri şeklinde olan lamellar bir yapı gösterirler. Bu lameller yapılar fosfolipidleri (Dipalmitoilfosfatidilkolin), nötral lipidler ve sürfaktant proteinlerini (SP-A, SP-B, SP-C, SP-D) içerirler. Ekzositoz ile salgılanan bu granüller, alveolar yüzey üzerinde surfaktant olarak adlandırılan yüzey aktif ajanı oluştururlar. Surfaktant miyelin formunda alveolar boşluklar içerisine salınır. Daha sonra monomoleküler film halinde alveol yüzeyine yayılır. Tip II hücreler aynı zamanda mitoz bölünme gösterilebilirler ve alveolar epitel hücrelerine farklanırlar. Bu hücreler alveolar yaralanmalarda alveolar epiteli tamir etme yeteneğine de sahiptirler. Bunlara ilaveten alveolar epitel içerisinde birkaç fırçamsı hücreler de gözlenebilmektedir. İnterstisyum ve İnteralveolar Septum Komşu iki alveolü döşeyen pulmoner epiteller arasında interstisyum (Zona diffuza) bulunurken, epitel ile interstisyumun tamamı interalveolar septumu oluşturur. 15 İnterstisyum her iki tarafta bazal lamina tarafından sınırlanmıştır. Bazal laminanın üzerinde alveolar epitel bulunmaktadır. İnterstisyumda amorf temel madde, hücreler ve lifler bulunmaktadır. Hücre tipleri, mast hücreleri, makrofajlar, lenfositler, fibroblastlar veya septal hücrelerdir. Çoğunluğu septal hücreler oluştururlar. Bu hücreler akciğer bağ dokusunun oluşumunu, onarımını ve devamlılığını sağlarlar. Düzensiz şekilli olan bu hücreler interstisyumdaki elastik ve retiküler lifler arasında yerleşirler. İnteralveolar septumun büyük bir kısmını kaplayan kapillerler endotel hücreleri ile döşelidir ve birkaç perisit tarafından desteklenmiştir. Kapillerler bazal lamina ile sınırlanmıştır. Kapillerleri döşeyen endotelyal hücreler koyu yassılaşmış çekirdekler içeririler ve dar sitoplazmaları ile yüzey epitel hücrelerine (Tip I) benzerlik gösterirler. Yüzey epitelinden, kapiller lümenindeki kan hücreleri (eritrositler, granülositler, lenfositler ve monositler) ile olan ilişkileri nedeniyle ayırt edilirler. Kan hücrelerinin çoğu göç ederek interstisyumda kapillerlerin dışında yerleşebilirler veya epiteli geçerek alveolar boşluğu dahil olabilirler.

http://www.biyologlar.com/alveoller

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yüksekse stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu-1

Akromegali Nedir?

Akromegali Nedir?

Akromegali, beyin etrafında bulunan hipofiz bezinin ön lobundan aşırı miktarda büyüme hormonu salgılanması nedeniyle oluşan bir hastalıktır. Büyüme henüz tamamlanmadan, kemiklerin uzaması sona ermeden erken çağlarda oluşum gösterirse gigantizm adı verilen dev bir görünüm oluşur. Bozukluk büyüme çağının bitiminden hemen sonra baş gösterirse de kemiklerdeki büyümenin kapanması nedeni ile sadece el ve ayakların genişlemesi, çene ve burnun aşırı büyümesi ve sesin kalınlaştığı sıkça görülür.Belirtileri Nelerdir?Bu hastalıkta belirtiler ellerde ve ayaklarda oluşan aşırı büyüme ve şişlik nedeniyle yüzüklerin dar gelmesi veya ayakkabı numarasının yıllar içinde artmasıdır. Yüzde kabalaşmalar, dilde ve burunda büyümeler olur. Sık görülen diğer bir belirti de aşırı terleme ve ciltteki kalınlaşmadır. Hipofiz adenomunun baskısıyla görme bozuklukları oluşur. Horlama sık görülür. Kadın hastalarda adet düzensizlikleri oluşabilir ve erkeklerde ise cinsel sorunlar görülebilir. TedaviAkromegali hastalığı tanısı için; serumda büyüme hormonu düzeyinin ölçümü gerekir. Ayrıca ağızdan şeker yüklemesine takriben her yarım saatte bir ölçülen büyüme hormon değerleri hastalığın tanısı için kullanılır.Akromegaliye neden olan durumların gösterilmesi için hipofiz bezinin manyetik rezonans (MR) görüntülemesi mutlaka yapılmalıdır.Tedavideki amaç; büyüme hormonunu aşırı salgılayan hipofiz adenomunun tamamen imha edilmesiyle birlikte büyüme hormon değerlerinin normal seviyelere döndürülmesidir. Bu amaçla cerrahi tedavi, radyoterapi ve ilaçlar kullanılmaktadır.Cerrahi tedavi de oldukça etkilidir ve burundan girilerek hipofiz bezine ulaşılarak sebep olan adenom çıkarılır. Bazı hastalara cerrahi tedavi sonrasında radyoterapi tedavisininuygulanması gerekir. Ancak, radyoterapinin tam etkisinin görülebilmesi için 2 ile 5 yıl geçmesi gerekir.Kaynakça:http://www.sanal-hastane.com/akromegali-dev-hastaligi-akromegali-nedirhttp://tr.m.wikipedia.org/wiki/AkromegaliYazar: Ensar Türkoğluhttp://www.bilgiustam.com

http://www.biyologlar.com/akromegali-nedir

Arid zon ve Çöl Toprakları

Aridizoller: Arid topraklar yılda 0-25 veya 0-50 cm yağış alan topraklardır. Sıcaklık ve yağış ilişkisi en önemli etmendir. Günlük, aylık ve mevsimsel açılımlar evapotranspirasyon, vejetasyon ve toprak mikroflorasını yakından etkiler. Vejetasyon seyrek ve kısa ömürlüdür. Toprakta organik madde birikimi yok veya çok azdır. U.S. Soil Conservation Service çöl topraklarını - Aridisol’leri okrik epifedonu ve tipik olan argillic-killi, natric-tuzlu, cambic; kalsik, jipsik veya salik; duripan tanı tabakalarından biri veya birkaçını içeren topraklar olarak 1967’de sınıflandırmıştır. Örneğin Mohave’daki loam - münbit toprak 100cm derinliktedir ve en altında kireç depozitleri, üstünde kahverengi, sıkı münbit kil tabakası 30-35 cm. dir, üstünde 25 cm. lik prizmatik çakıl blokajın üzerini 5-10 cm kahverengi kil, kumlu münbit ince tabaka ve kırmızımsı kumlu münbit tabaka, en üstünü ise kahverengi münbit tabaka örter. Aridizol oluşumunda rüzgarın önemli rol oynadığı, kaçan toz ve kumun cilalaması sonucu oluşan çakıllar ve kayaçlar görülür. Aridizollerde CaCO3 ve diğer tuzlar uçuşan ve yağmurda sabitleşen ince toz ve kumlardan yıkanarak aşağı süzülür. Yağış şiddeti ve süresi ile permeabilite ve ısı arasındaki dengeye göre bir derinliğe kadar inip yerleşir. Genelde denge yüzeye yakın bir yerde oluştuğundan kireçlenme ve heterojen dağılımı tipiktir. Jips te sıklıkla görülür. Entizoller: Aktüel yağışlar alan yamaçlardan gelen alüvyal çökelmeler arid toprakların incelenmesini daha da zorlaştırır. Topoğrafik yapıya göre bu kil, silt ve kum tabakalarının kalınlıkları büyük değişimler gösterir. Tüm bu etkenler genellemelerin ne kadar zor olduğunu gösterir. Litozoller, Regozoller: Arid ve yarıkurak bölgedeki entizoller olup, tabakalanmayan alüvyallerle birlikte erozyona uğrmakta olan yamaçlar, sel taşkını düzlükleri gibi erozyon materyali birikim noktalarında görülür. Çöllerde aktüel allüvyonlar-fluventler, ortentler-ince kolüvyal-alüvyal materyal, Psamentler-kumullar, kumluk alanlar önemli yer tutar. Üzerinde efemeral dahi olsa hiç vejetasyon bulunmayan alanlar topraksız sayılır. Bu konularda geniş yayınlar Arizona Univ. Office of arid Land Studiesweb sitesinde yer almaktadır. Alt tabakalar: B tabakalarıdır, fakat bir kısmı A tab.ları arasına sokulabilir özelliktedir. Arjilik: Silika kil minerallerinin hakim olduğu, erozyonun kil tabakasını açığa çıkartmış olabildiği veya üstte doğrudan yerel, veya taşınmış kil tabakasının bulunduğu üst tabaka. Genelde B, A’an daha killidir. Kambik: açık renkli, organik maddece fakir veya çok fakir, ince ve prizmatik daneli, A1 tabakası olmadığından yüzeyden görülen ve genelde CO3’ca zengin tabaka. Natrik: CEC’inin %15 veya fazlasını Na’un doldurduğu yüzey altı partikül tabakası. Prizmatik, kolonlu veya bloğumsu yapı tabakası. Salik : Soğuk suda jipsden daha yüksek çözünürlüğü olan tuzlarca enaz %2 - 25 ağ/ağ. veya daha zengin olan 5-10 cm.lik yüzeyaltı tabaka. Jipsik: Kalsik tabakaya benzer, farkı kireç yerine CaSO4-jipsce zengin oluşudur.En az 15 cm.dir ve C tabakası veya altındaki tabakadan en az %5 daha fazla jips içerir. Genel kalınlık ve jips içeriğinin en az %602ını içerir. Duripan: Bu alt tabakanın çimentosu silistir. Asitle köpürmez, genellikle demir oksitler ve karbonatlar da çimentoda yer alır. Arid topraklarda üstleri opal ve silika mikrokristalleri ile örtülüdür. Silika çimentolu kum taneleri de içerirler. Dünyada Sahra, Lut gibi gerçek, sıcak çöller azdır. 15 - 45. enlemler arasında kalanların büyük çoğunluğu steptir. Ana faktörler yağış, nem ve sıcaklık ile farkları ve topraktır. Kuru hava bu sıcaklık farklarına neden olur. Yıllık hava sıcaklığı açılımı 60, günlük olarak da 35 dereceyi bulabilir. Çölleşme rüzgarı getirir, örneğin Sahra’da 100km.ye kadar fırtınalar görülür, 15-30km hızında sürekli rüzgarlar tipiktir. Buharlaşma sıcaklık değişimi, kuruluk ve türbülansa neden olur. Sahra’da 2.5-6m, çoğu çölde 3m cıvarındadır. Tipik olarak çöllerde Bağ.nem yazın % 20-30, kışın %50 cıvarındadır, ancak vahalarda ise %90 a kadar çıkabilir. Aydınlanma/bulutluluk oranı Sahra’da %4 - 31 oluşu nedeniyle dehidrasyona ve ısınmaya neden olur. Sahra’da ortalama ışık+ısı gücü 1kW’dır ve 10000km2 ye 25 katrilyon kWh enerji düşerki 2 milyar ton yakıt eşdeğeridir. Kuraklık temelde sıcaklık ve yağışa bağlıdır ve vejetasyonu sınırlar. Canlılar açısından önemli olansa yağış/evaporasyondur. Yeraltısuyu çok derinde değilse ve porozite yeterli ise genelde varlığını yüzeydeki jips, kalsiyum ve klorürlerden oluşan tuzluluk ile ve jips kristalleri, seyrek de olsa bitkiler, özellikle Chenopodiaeae halofitleri ile belli eder. Fakat suyun çok saf olup bu tür tuzlanmaya neden olmaması da mümkündür. Toprakta su tutulma miktarı yağış sonrası giren suyun evaporasyonla kaybedilenden kalan olup arid zonda tipik olarak su üst toprak tabakalarında kalır. Aşağı iniş oranı ve derinliği tekstür ve tarla kapasitesine bağlıdır. Killi toprağın tarla kapasitesi kumlu toprağın tipik olarak 5 katı olduğundan 50mm.lik yağış kumlu toprakta 50, killi toprakta 10cm.yi TK’ine ulaştırır. Kayalık alanda çatlaktan sızabilen su ise 100cm.ye kadar inebilir. Yağış sonrası buharlaşma başlar. Killerde üst 5cm.lik tabaka hızla kurur. Süzülen suyun %50’si bitkilerce kullanılır,kum da 5 cm. kurur fakat suyun ancak %10’u buharlaşır. Kayalarda ise böyle bir kayıp sözkonusu olmaz. Sonuçta nemli iklimdekinden farklı olarak killi toprak bitkilere yararlı değildir. Üstü taşlık toprak ise en uygun yapıyı oluşturur. Ancak vadi ve çukurlardaki birikim, eğimle kayıp gibi jeomorfolojik yapı bu durumu etkiler. Necev çölünde killi toprakta bitkilerin 35mm su kullanabildiği, bu miktarın kumlut oprakta 90, kayalıkta 50mm, vadilerde 250mm olduğu görülmüştür. Bu nedenle derin kök gelişimi ancak permeabilitesi yüksek toprakta görülür, killi toprakta kök yatay gelişebilir. Kumlu ve taşlı topraklarda bu derinlik taban suyuna kadar ulaşabilir ve derin köklenebilen bitkiler kolayca gelişir. Irak’taki Basra çölünde taban suyu 15m. derinliktedir ve nehirlerce beslenir. Yıllık 120 mm.lik yağış ancak yüzeysel nemlenmeye yeterli olduğundan bitki kökleri taban suyuna erişemez ve yağışlar sonrası zayıf ve geçici bir efemeral örtü oluşur. Yerli halkın kuyular aracılığı ile çektiği su ile sulananan sebze tarımı tuzlanma nedeniyle 1 yıl ömürlü olmaktadır. Bu bitkilerin arasına serpiştirilen çok kolay köklenen Tamarix çelikleri yüzey suyunun taban suyuna ulaşabileceği kadar sulanarak köklerinin hızla geliştirilmesi ile ağaçlara dönüşmesi ormanlaştırılmıştır. Acacia tortilis’in arid zondaki kumlu topraklarda, yıllık 50 - 250mm. yağışlı Sudan steplerinde geliştiği, killi topraklarda ise ancak 400mm.lik yağışta bulunabildiği saptanmıştır. A. mellifera otsu örtü savanası da kumlu toprakta 250-400, killi toprakta ise yıllık 400 - 600mm. yağışla gelişebilmektedir. İklimsel olarak kurak alan yağışa karşı buharlaşmanın fazla, vejetasyonun zayıf ve örtünün <%25 olduğu bölge olarak tanımlanırsa da dünyanın çeşitli yerlerindeki kurak alanlar birbirine fazla benzemezler: Tropik kuşakta aylık sıcaklık ortalamaları fazla farklı değildir. Subtropik kuşakta yıl boyunca değişen sıcaklıklar donlara da neden olur. Ilıman zonda kışlar çok soğuk, yazlar sıcaktır. Vejetasyonu sınırlayıcı ana etmen aylık ve özellikle mesimlik yağış toplamlarıdır. İki yağış mevsimi olan bölgeler , yalnız kışın veya yazın yağış alan yöreler, azve rastlantısal olarak yağış gören yerler ve hiç almayanlar. Buralardaki vejetasyon üzerinde yöresel floranın değişen oranlarda etkisi vardır ve belli familyalar dominanttır. Örneğin K. Amerika’da Cactaceae, G. Amerika’da buna ek olarak bazı Bromeliaceae cinsleri, Holarktik’te Chenopodiaceae, en kurak Avustralya çöllerinde Atriplex vesicaria ve Kochia sedoides hakimdir. İklim yanında edafik faktörlerin farklılığı önemlidir. Aylık yağış ve sıcaklık seyri, kurak dönemlerin 10C / 20mm.lik birimlerinin oranı olarak sıc.ın yağışı aştığı dönemler esas alınarak kurak alan haritaları yapılır.  

http://www.biyologlar.com/arid-zon-ve-col-topraklari-1

Klinik mikrobiyolojide kullanılan kültür yöntemlerini ile İn vitro kültür değerlendirmeleri kaç şekilde yapılmaktadır

Mikobakterilerin ikiye bölünmesi için gerekli süre 16-18 saat kadardır ve izole edilmeleri için besiyerlerinin uzun süre inkübe edilmesi gerekir.Zorunlu aerop olan mikobakterilerin bulunduğu ortamda oksijen miktarının azalması,üreme hızlarının da azalmasına neden olur.Uygun sıvı ve katı besiyerlerinde 7-21 gün gibi uzun bir sürede ürerler ve uygun üreme 35-37 °C’de sağlanır.Kültür süreleri ise 6-8 hafta kadardır. Mikobakterilerin izole edilmeleri ve çeşitli özelliklerinin incelenmesi amacıyla kullanılan konvansiyonel besiyerleri katı ve sıvı olmak üzere iki tiptir.Katı özellikteki besiyerlerini ise yumurta bazlı ve agar bazlı olmak üzere iki bölümde incelemek mümkündür.Tam yumurta yada yumurta sarısı içeren yumurta temelli besiyerleri arasında bugün en yaygın kullanılanı Löwenstein-Jensen (L-J) besiyeridir. Ancak Petragnani ve American Trudeau Society gibi besiyerleri de tercih edilebilir.Tipik koloni morfolojisi oluşturmaları ve daha bol üremeleri nedeniyle özellikle primer izolasyonda L-J besiyerinin kullanılması önerilir.Yumurta temelli besiyerlerinin opak görünümlü olmasına karşın,agar temelli besiyerleri şeffaftır.Bu nedenle,ekim yapılan besiyerleri 10-12 gün sonra mikroskop altında incelenirse ,oluşan kolonileri görmek mümkündür.Middlebrook 7H10 ve Middlebrook 7H11 en çok tercih edilen agar temelli besiyerleridir.Bunun yanısıra kontaminasyona neden olan mikroorganizmaların üremesini etkin bir şekilde engellemek amacıyla selektif besiyerleri olan,L-J Gruft,Mycobactosel LJ, Mitchison selektif 7H 11 de kullanılabilir. Primer izolasyonda besiyerlerinden en az birisinin selektif olması önerilir. Sıvı besiyerleri içinde yer alan Middlebrook 7H9 ve Dubos tween albumin, mikobakterilerin stok suşlarının subkültürlerinin yapılması,duyarlık deneyleri ve diğer in vitro deneylerde inokulum hazırlanması amacıyla kullanılır.Ayrıca bakteri sayısının az olduğu steril bölgelerden alınan klinik örneklerde,bakteriyi çoğaltmak ve dolayısıyla izolasyon şansını artırmak amacıyla da kullanılabilir.Middlebrook 7H9 sıvı besiyeri ,çoğu hızlı kültür sisteminde temel besiyeri olarak kullanılmaktadır. Günümüzde birçok laboratuvarda,konvansiyonel besiyerlerinin yanısıra tüberküloz etkeni bakterilerin izolasyon süresinin çok daha kısa ve izolasyon oranının çok daha yüksek olduğu hızlı kültür sistemleri rutin inceleme amacıyla kullanılmaktadır. Çoğunda sıvı besiyeri kullanılmakla birlikte,bifazik ve katı besiyerlerinin kullanıldığı sistemler de mevcuttur ve bu sistemlerde gaz basıncındaki değişiklikler,CO2 oluşumu ve oksijen kullanımı fluorometrik veya kolorimetrik olarak ölçülür. Primer izolasyonda sıvı besiyerlerine ilave olarak bir de katı besiyeri kullanılması Centers for Disease Control (CDC) tarafından önerilmiştir ve bu kombinasyonla mikobakterilerin izolasyon şansının arttığı bilinmektedir. Hızlı kültür sistemleri içinde yer alan yarı otomatize Bactec 460 TB (Becton Dickinson Diagnostic Instruments, Sparks,MD) sistemi, izolasyon, idantifikasyon ve duyarlılık deneylerinin uygulandığı bir sistem olarak uzun yıllardır başarı ile kullanılmaktadır.Sistemde izolasyonun yanısıra, Mycobacterium tuberculosis (M.tb.) kompleksi ile tüberküloz dışı mikobakterilerin (MOTT) ayrımı yapılabilmekte ve M.tb. kompleksi suşlarının primer antitüberküloz ilaçlara duyarlığı denenmektedir.Bactec 12B (Middlebrook 7H12) ve Bactec 13A (Middlebrook 7H13) olmak üzere iki tip besiyeri içeren bu sistem;besiyerlerinde bulunan C14 işaretli palmitik asitin kullanılması ve metabolizma sonucu oluşan 14 CO2 nin 0-999 sayısal değerleri arasında üreme indeksi(GI) olarak ölçülmesi prensibi ile çalışmaktadır.Ekim işleminden önce besiyerlerine polimiksin B,azlosilin, nalidiksik asit, trimetoprim ve amfoterisin B (PANTA) içeren antibiyotik karışımı ilave edilmelidir.Başarı ile kullanılmakla beraber,sistemde yeralan besiyerlerinin radyoaktif madde içermesi ve cihazdayapılan rutin kontroller sırasında meydana gelen çapraz kontaminasyon sorun oluşturmaktadır. Günümüzde alternatif izolasyon sistemlerinin geliştirilmesi için çalışmalar devam etmektedir.Myco-ESP(Extra Sensing Power)ΙΙ, (Trek Diagnostics,Inc. ,Westlake ,Ohio), MB/Bact T (Organon Teknika, Durham, NC) , Bactec 9000 MB (BD Biosciences,Sparks,MD) ve Bactec Mycobacterium Growth Indicator Tube (MGIT) 960 (BD Biosciences,Sparks,MD) mikobakterilerin tanısı için geliştirilmiş tam otomatize sistemlerdir.Sistemler arasında izolasyon oranı açısından önemli bir fark olmamakla birlikte,konvansiyonel katı besiyerlerine göre daha yüksek;Bactec 460 TB sistemine göre daha düşük oranda izolasyon sağladıkları bildirilmektedir.Mikobakterileri üretme süreleri açısından sistemler karşılaştırıldığında ,Bactec 460 TB sisteminin, ESP ΙΙ ve MB/BacT sistemlerine oranla daha avantajlı olduğu belirlenmiştir.Birçok çalışmada tam otomatize sistemlerde üretme süresi ortalama ≤ 14 gün olarak saptanmış ve en yüksek izolasyon oranının Bactec 460 TB ve katı besiyeri kombinasyonu ile sağlandığı bildirilmiştir.Kontaminasyon oranları açısından tam otomatize sistemler birbiri ile karşılaştırıldığında önemli bir fark bulunamamıştır ancak bu sistemlerde oran, Bactec 460 TB ve katı besiyerlerine göre daha yüksektir. Myco-ESP ΙΙ, selüloz sünger ve Middlebrook 7H9 sıvı besiyeri içeren bir sistemdir. Sistemde mikroorganizmaların üremesi sonucu oluşan gaz basıncındaki değişiklikler ölçülerek değerlendirme yapılır. Bilgisayar destekli bir sistemdir ve besiyerinde oluşan gaz basıncındaki değişiklik grafiksel olarak bilgisayarda görüntülenir. Besiyerlerine ekim yapılmadan önce, mikobakterilerin üremesini destekleyen oleik asit-albumin-dekstrozkatalaz (OADC) ve kontaminasyonu engellemek amacıyla antibiyotik karışımı ilave edilir. Sistem tüm klinik örnekler için uygundur. MB/Bac T, besiyerinin dip kısmında kolorimetrik bir sensor içeren ve oluşan CO2 düzeyini ölçerek üremeyi değerlendiren bir sistemdir. Bilgisayar desteği bulunan sistemde besiyerleri sürekli kontrol altındadır. Steril örnekler ekilmeden önce besiyerlerine reconstitution sıvısı ilave edilirken; steril olmayan örneklerin ekiminden önce antibiyotik karışımı ilave etmek gereklidir. Sistem kan dışındaki tüm örnekler için uygundur. Bactec 9000 MB, besiyerlerindeki oksijen kullanımının fluoresans ile belirlendiği bir sistemdir. Modifiye Middlebrook 7H9 sıvı besiyerlerine ekimden önce PANTA ilave edilir. Sistemde balgam ve diğer solunum yolu örnekleri için Myco/F sputa, kan ve diğer steril vücut bölgelerinden alınan örnekler için MycoF/lytic besiyeri kullanılır. Bactec MGIT 960 sisteminde kullanılan tüplerde, Middlebrook 7H9 sıvı besiyeri ve dip kısımlarında oksijene duyarlı rutenyum metal kompleksi içeren silikon bulunur. Klinik örnekler ekilmeden önce besiyerlerine OADC ve PANTA ilave edilir. Kullanılan besiyerlerinde herhangi bir üreme olmadığında oksijen varlığına bağlı olarak silokon tabakaya gönderilen UV ışınına karşı fluoresans oluşmazken; mikobakteri veya diğer mikroorganizmalar ürediğinde oksijenin kullanılması sonucunda UV ışınına karşı fluoresans oluşmakta ve oluşan fluoresans miktarı üreme indeksi olarak değerlendirilmektedir. Tam otomatize bir sistem olmakla birlikte, UV ışığı altında makroskobik olarak da değerlendirme yapılabildiğinden manuel olarak kullanılmaya da uygundur. Kan dışındaki diğer tüm klinik örnekler için kullanılabilmektedir. Fazla sayıda örneği aynı anda kontrol edebilen Bactec MGIT 960 ( 960 örnek), Bactec 9000 MB (240 örnek) , MB/BacT (240 örnek) ve ESP ΙΙ (128/256/384 örnek inceleyen üç farklı cihaz) genellikle yüksek kapasite ile çalışan laboratuvarlarda tercih edilmekle birlikte;daha düşük kapasite ile çalışan laboratuvarlar için Septi-Chec AFB (BD Biosciences, Sparks, MD), MGIT (BD Biosciences, Sparks, MD) ve MB Redox (Biotest Diagnostics Corp., Danville, NJ)gibi manuel sistemler önerilmektedir. Septi-Check AFB, sıvı (Middlebrook 7H9) ve üç tip katı (L-J, Middlebrook 7H11, çukulatamsı agar) besiyerinin kullanıldığı bifazik bir kültür sistemidir. Çukulatamsı agar kontaminasyonu belirlemek amacıyla kullanılır. Kültür işleminden önce besiyerine glukoz, gliserin, oleik asit, pridoksal HCI, katalaz, albumin, azlosilin, nalidiksik asit, trimetoprim, polimiksin B ve amfoterisin B içeren supleman ilave edilir. Klinik örneklerin ekiminden sonra besiyerleri ilk 24 saat ters olarak bekletilir ve süre sonunda dik konuma getirilir. Kültür süresince besiyerleri ara sıra hafifçe çalkalanarak sıvı besiyerinin katı besiyerlerine teması sağlanmalıdır. Sistem kan dışındaki tüm klinik örnekler için uygundur. Cihaz gerektirmeyen MB Redox sisteminde mikobakterilerin izolasyonu amacıyla antibiyotik karışımı ve renksiz tetrazolium tuzu içeren modifiye Kirchner besiyeri kullanılır. Tetrazolium tuzu mikobakterilerin redoks sistemi sayesinde, hücre yüzeyinde granüler formda biriken pembe, kırmızı ve menekşe renginde formazona indirgenir ve üreme sonucu oluşan mikrokoloniler renkli partiküller şeklinde makroskobik olarak görülebilir. Drancourt ve arkadaşları tarafından yapılan bir çalışmada, M.tuberculosis’in primer izolasyonunda %5 koyun kanlı agar kullanılabileceği de bildirilmiştir.

http://www.biyologlar.com/klinik-mikrobiyolojide-kullanilan-kultur-yontemlerini-ile-in-vitro-kultur-degerlendirmeleri-kac-sekilde-yapilmaktadir

TUNICATA (TULUMLULAR)

1. Familya : ASCIDIIAEA Ascidia mentula Müller, 1776 Ascidia virginea Müller, 1776 Ascidia involuta Heller, 1875 Ascidia conchilega Müller, 1776 Ascidiella aspersa (Müller, 1776) Phallusia fumigata Grube, 1864 Phallusia mammilata (Cuvier, 1815) 2. Familya : CIONIDAEEA Ciona intestinalis (Linnaeus, 1758) Diazona violacea Savigny, 1816 Rhopalaea neapolitana (Philippi, 1843) 3. Familya : CORELLIDAE Corella parallelogramma (Müller, 1876) 4. Familya : PEROPHORIDAE Perophora listeri Wiegman, 1835 5. Familya : CLAVELINIDAE Clavelina lepadiformis Müller, 1776 Clavelina nana Lahille, 1890 6. Familya : DIDEMNIDAE Didemnum maculosum(= asperum) (Milne-Edwards, 1841) Trididemnum tenerum (Verrill, 1871) 7. Familya : POLYCITORIDAE Distaplia rosea Della Valle, 1881 Polycitor crystallinus (Renier, 1804) 8. Familya : POLYCLINIDAE Aplidium conicum (Olivi, 1792) Aplidium proliferum (Milne-Edwards, 1841) Polycinella azemai Harant, 1930 9. Familya : MOLGULIDAE Ctenicella appendiculata Molgula manhettensis (De Kay, 1843) 10. Familya : PYURIDAE Halocynthia papillosa (Linnaeus, 1767) Heterostigma fagei Monniot C. & Monniot F., 1961 Microcosmus claudicans (Savigny, 1816) Microcosmus sulcatus (Coquebert, 1797) Pyura microcosmus (Savigny, 1816) 11. Familya : STYELIDAE Botryllus schlosseri (Pallas, 1766) Distomus hupferi (Michaelsen, 1904) Distomus variolosus Gaertner, 1774 Polycarpa gracilis Heller, 1877 Polycarpa pomaria (Savigny, 1816) Psammostyela delmarei Weinstein, 1961 Stolonica socialis Hartmeyer, 1903 Styela partida Styela plicata (Lesueur, 1823) 12. Familya : FRITILLARIDAE Appendicularia tregouboffi Fenaux, 1960 Fritillaria pellucida Busch, 1851 Fritillaria borealis Lohman, 1896 Tectillaria fertilis (Lohmann, 1896) 13. Familya : OIKLOPLEURIDAE Oikopleura dioica Fol, 1872 Oikopleura fusiformis Oikopleura longicaudata 14. Familya : THALIACEA Thalia democratica (Forskål, 1775) 15. Familya : DOLIOLIDAE Doliolina mulleri (Krohn, 1852) Doliolum denticulatum Quoy & Gaimard, 1834 Doliolum nationalis Bogert 1894 16. Familya : PYROSOMATIDAE Pyrosoma atlanticum Péron, 1804 (= Pyrosoma benthica Monniot & Monniot, 1966) 17. Familya : SALPIDAE Pegea confoederata (Forskål, 1775) (= Pegea socia) Salpa fusiformes Cuvier, 1804 Salpa maxima Forskål, 1775 Soestia zonaria (Pallas, 1774) (= Iasis zonaria) 18. Familya : DISTOMATIDAE Distoma adriaticum 19. Familya : SYDNYUMIDAE Sidnyum turbinatum Savigny, 1816

http://www.biyologlar.com/tunicata-tulumlular

Beyin (Serebrum)

Serebral hemisferlerde, gri cevher serebral korteks olarak yüzeyde ve ganglion ya da çekirdek (nukleus) olarak da beyaz cevherle çevrili vaziyette merkezi yerde bulunur. Hemisferlerin yüzeyi yüzeysel alanın genişlemesini sağlayacak şekilde kıvrıntılar gösterir. Katlantıların yüzeye doğru olan uzantıları gyrus, içe doğru olan çöküntüleri ise sulkus adını alırlar. Korteks yüzeyi yaklaşık 200.000 mm2’dir. Korteks kalınlığı ise 1,5 ile 4 mm arasında değişir. Korteks sinir hücrelerini, lifleri, nörogliayı ve kan damarlarını içerir. Hücrelerin çoğunluğu piramidal, yıldız (granüler hücreler) ve fusiform (iğ) şeklindedir. Bu hücreler lamina şeklinde düzenlenmişlerdir. Bir kesitte bu şekilde 6 tabaka ayırt edilir. Gri madde (cevher) içerisinde 50 milyar kadar nöron olduğu hesaplanmıştır. Sinir dokusundaki nöronların perikaryonlarını belirleyen boya metodlarının uygulanmasıyla, perikaryonların yerleşim düzeni yönünden 6 korteks tabakası tanımlanabilir. Bu şekilde tabakalara ayırma “hücresel yapı düzeni, sitoarkitektür” olarak adlandırılır. Perikaryondan çıkan uzantıları gösteren boyalar ise aynı 6 tabakadaki nöron uzantılarının düzenini belirler. Bu fibrilli yapı “fibrilli düzen, myeloarkitektür” olarak tanımlanır. Korteksin myelo ve sitoarkitektürü karşılıklı incelendiğinde tabakaların dıştan içe doğru şöylece sıralandıkları görülür. Sitoarkitektür Myeloarkitektür 1- L. zonalis (St. Molekülare) 1- L. tangensiyalis 2- L. granülaris eksterna 2- L. disfibroza 3- L. piramidalis eksterna 3- L. superradiata 4- L. granülaris interna 4- Striata Baillargeri eksterna 5- L. piramidalis interna (L.Ganglionaris)5-L.İnterradiata (içte strita Baillargeri interna) 6- Lamina multiformes 6- Lamina infrastriata 1- Moleküler tabaka; en yüzeyel kat olup pia materin hemen altında yer alır. Başlıca yüzeye paralel seyreden ve daha derindeki hücrelerden köken alan lifler ile birkaç küçük sinir hücresi perikaryonundan meydana gelmiştir. Buradaki sinir hücrelerinin perikaryonları iğ şeklinde, yassılaşmış ve çok kutupludur. Dendrit ve aksonları kısadır. Myeloarkitektür yönünden bu kat, yüzeye paralel olan uzantıların demetlerinden yapılı lamina tangensiyalistir. Tangensiyal kattaki fibrilli yapı, III. kattaki piramidal nöronların dendritleri ile yine aynı katta yer alan ters piramidal hücrelerin (Martinotti hücreleri) tabanlarından çıkan aksonlarının bu kata ulaşarak yüzeye paralel dallanmalar göstermeleri ile oluşur. 2- Dış granüler tabaka; küçük, üçgen şekilli sinir hücresi perikaryonlarını içerir. Bu nedenle granüllü görünür. Sinir hücreleri çok kutupludurlar. Dendrit ve aksonları kısadır, bulundukları katta kalırlar. III. katta yer alan piramidal hücrelerin dendritleri I. kata geçmek için bu II. katı katederler. Granüler hücrelerde dolu olduğundan, myeloarkitektür bakımından fibrilsiz bir yapıya sahiptir (Lamina disfibroza). 3- Dış piramidal hücre tabakası; bu tabakada büyük piramidal hücreler bulunur, bu hücrelerin perikaryonları piramid şeklinde ve 20-30 mikron kadar büyüklüktedir. Yüzeye bakan tepelerinden bir dendrit çıkar. Bu dendritler I. kata kadar uzanarak orada yüzeye paralel olarak dallanır. Tabandan çıkan aksonlar alttaki katları geçerek demetler halinde beyaz maddeye girerler (bağlayıcı ve komissural lifler). Bu katın myeloarkitektüründe de çokça uzantılar gözlenmez. Bu tabaka alttaki radyal çizgili katın üzerinde yer aldığından lamina super radiata diye bilinir. Ayrıca bu katta pek çok küçük granül hücreleri de bulunur. Bu tabakada ayrıca ters piramit şeklindeki Martinotti hücreleri de yer almaktadır; aksonları moleküler tabakaya kadar uzanır. 4- İç granüler tabaka; küçük, yıldız şekilli granül hücrelerinden oluşmuştur. Perikaryonların sıklığı buraya granüllü bir görünüm verir. Bu katın genişliği korteksin çeşitli bölgelerinde birbirlerinden farklıdır. Motor ve ön motor bölgesinde kalındır. Bu katın myeloarkitektüründe çoğunlukla talamustan gelen bağlayıcı (assosiasyon) liflerden oluşan “Dış Baillargeri Şeridi” gözlenir. 5- İç piramidal tabaka (Ganglionik tabaka); büyük ve orta büyüklükte piramidal hücrelerin bulunduğu tabakadır. Büyük piramidal hücrelere (40-60 mikron) Betz’in dev piramidal hücreleri denir. Piramidin üst ucundan çıkan dendritler III. katın piramidal nöronlarının dentritleri gibi I. kata çıkar ve orada yüzeye paralel olarak dallanırlar. Böylece I. katta, hem III. hem de V. kattaki piramidal nöronların dendritlerinin dalları yayılırlar. Myeloarkitektüründe, bu katın özellikle iç bölgesinde yine bağlayıcı liflerin uzantılarından oluşan iç Baillargeri şeridi yer alır. Dış ve iç Baillargeri şeritleri arasında Lamina İnterradiata bulunur. Büyük piramidal hücrelerin uzun aksonları beyaz maddeye geçer. 6- Multiform (polimorfik) hücre tabakası; çeşitli şekillerdeki hücreleri içerir. Yassı ve geniş perikaryonlu nöronların dendritleri II. ve III. katlara çıkar, aksonları ise beyaz maddeye girer. Bu tabakada ters piramidal hücreler (Martinotti) de bulunur. Bunların aksonları I. kata çıkan traktusler halinde gözlenirler. Aksonlardan ve kollateral uzantılardan oluşan yüzeye paralel uzantı demetleri de gözlenir. Böylece belirli bir çizgilenme biçimi olmayan yoğun, fibrilli bir yapı gösterir (Lamina infrastriata). Bu kat motor bölgelerde kalın, duyusal bölgelerde incedir. Bu 6 katlı, düzenli yapı korteksin hemen her bölgesinde aynıdır. Bu yapı düzenine sahip korteks izokorteks olarak anılır. Bazen korteks değişik hücresel bir düzenlenme gösterir ki buralara da allokorteks denir. Hatırda tutulmalıdır ki bütün tabakalar birbirleri ile kaynaşır ve ayrıca bütün tabakalar nörogliaya sahiptir. Dolayısı ile hücreler çıplak sinir liflerinden ve nöroglia hücreleri uzantılarından oluşan keçe şeklindeki bir ağ (ki bu ağa neuropil adı verilir) içerisinde yerleşmişlerdir. Serebral korteksin değişik bölgelerinde tabakaların kalınlıkları, o bölgelerin özel fonksiyonları ile ilgili olmak üzere farklıdır. Gri cevherin altında yer alan beyaz cevher bütün yönlere doğru seyreden myelinli lif demetlerinden meydana gelmiştir. Bu lifler şüphesiz nöroglia ile desteklenmiştir ve fonksiyonel olarak 3 gruba ayrılırlar: 1- Bağlayıcı lifler (Assosiyasyon lifleri) Aynı hemisfere ait korteksin değişik bölgelerini birbirine bağlayan liflerdir. 2- Komissural lifler Bir hemisfere ait korteks bölgelerini karşıt diğer hemisferin korteks bölgelerine bağlayan liflerdir. 3- Projeksiyon lifler Korteksi daha derindeki merkezlere bağlayan liflerdir. Beyin kesitinde; nöron perikaryonları ve glia hücreleri içeren, pia materle çevrili korteks tabakası izlenmektedir. Beyin kesitinde; glia hücreleri ve sinir lifleri içeren medulla tabakası görülmektedir. .

http://www.biyologlar.com/beyin-serebrum

İnfertilite Testlerine Biyolojik Bakış

Kadın İnfertilite Testleri Hormon Testleri Kadınlarda üreme ile ilgili hormonların düzeylerinin saptanması en önemli incelemelerin başında gelir. FSH, LH, Östradiol, Prolaktin, Testosteron, DHEA - S ve TSH, üreme ile ilgili önemli bilgiler vermekte olup, adetin 2 ile 4. günleri arasında yapılmaktadır. Özellikle FSH düzeyi yüksek olan hastalar tedavinin hızlandırılması açısından uyarılmalıdır, çünkü yüksek FSH düzeyleri yumurtalık fonksiyonlarının zayıflamakta olduğunun bir göstergesidir. Histerometri Tüp bebek programlarında uygulanacak tüm tedaviler için uterus (rahim)’un anatomik özelliklerinin bilinmesi çok önemlidir. Bu amaçla rahim ağzının boyu ve rahim içersinin boyunun ölçülmesi, rahim ağzından girilerek rahim tepesine değecek şekilde metal bir çubuk (histerometre) ile yapılır. Jinekolojik muayenenin bir parçası olarak tanımlanabilecek bu işlem esnasında hafif ağrı hissedilebilir. Laparoskopi Genel anestezi altında göbek altında 1-2 cm büyüklüğünde açılan bir delikten karın içine sokulan fiberoptik teleskop ile üreme organlarının detaylı olarak incelenmesi ve gerektiğinde düzeltici cerrahi girişimlerin uygulanabileceği bir yöntemdir. Tanısal değerinin yanında gerektiğinde endometriozis, yumurtalık kisti, dış gebelik, karın içi yapışıklıklar, myomlar gibi bir çok kadın hastalıklarının tedavisinde de kullanılmaktadır. Yumurtlama Takibi Günümüzde ovulasyon (yumurtlama) takibi için yapılan en duyarlı yöntem ultrasonografi (USG) ile yumurtalıkların görüntülenmesi ve yumurta gelişiminin takibidir. Adet kanamasının 3 veya 4. gününde yapılan USG, o dönemdeki yumurta gelişiminin takibi için temel oluşturmakta olup, bu dönemde görüntülenebilecek kistlerin saptanması açısından da önemlidir. Tetkik, adetin 8-10. günlerinden itibaren günlük olarak tekrarlanarak yumurtanın olgunlaşması (18-24 mm) izlenebilir. Bu çapa erişmiş olan yumurtalar ovulasyon aşamasına gelmiştir. Bu inceleme aynı zamanda infertil çiftlerde yumurtalıkların ve rahmin yapısı hakkında ciddi bilgi vermektedir. HSG (Rahim Filmi) İnfertilite tanısında en önemli testlerden biri olan histerosalpingografi (HSG) herhangi bir tedaviye başlamadan önce rahim içinin ve üreme kanallarının görüntülenmesini sağlayan en önemli tetkiklerden biridir. Rahim ağzından içeriye verilen boyalı sıvının rahim ve üreme kanallarından geçişinin görüntülenmesi tekniğidir. Üreme kanallarının tıkanıklık ya da yapışıklıklarında sıvı geçişi gözlenmez. Anestezi gerektirmeyen bu işlem hafif ağrılı olabilmektedir. Histeroskopi Rahim içinin değerlendirilmesinde kullanılan en etkili tanı yöntemidir. Sadece tanı amaçlı olmayıp, gerektiğinde aynı seansta rahim içinde ufak cerrahi müdahalelerin yapılabilmesine olanak vermektedir. ışlem çoğunlukla genel anestezi altında yapılır. Özellikle rahim içindeki perdeler (septum), polipler veya myomların tedavisi için kullanılabilecek basit ancak etkili bir işlemdir. Erkek için diğer infertilite testleri: Sperm MAR testi: Erkeğin spermlerindeki Ig A,M,G antikorlarının varlığını araştıran testtir. Özellikle infertilite nedenin immünolojik nedenlere bağlı olduğu düşünülüyorsa, bakılması gerekir. İmmünobead Testi: Erkeğin spermlerindeki antikorların varlığını araştıran testtir.İmmünolojik infertilite olduğu düşünülüyorsa, bakılması gerekir. Eosin ile canlılık testi: Semende var olan spermler hareketsiz ise eosin Y denilen bir boya ile boyanarak canlı olanlar ayıt edilir. Sperm HOST Test: Spermlerinin hepsi harekesiz olan hastalarda, spermlerin canlı mı yoksa ölü mü olduğunu anlamada kullanılır. Semende fruktoz: Fruktoz normalde menide var olması gereken bir maddedir. Yokluğu spermin çıkış kanallarında bir tıkanıklığı gösterir. Hemi-zona assay: Spermin yumurtanın koruyucu dış zarı olan ‘Zona Pellucida’ denen yapıya bağlanıp bağlanamamasına bakılarak, spermlerin fertilizasyon yetenekleri hakkında bilgi edinilir. Post Koital Test (Cervikal mukus testi): Kadının eşi ile ilişkisi sonrası rahim ağzından alınan cervikal mukusta, spermlerin canlılık ve hareketlerine bakılır. Özellikle immünolojik infertilite düşünülüyorsa önemlidir.

http://www.biyologlar.com/infertilite-testlerine-biyolojik-bakis

BÖBREK ÜSTÜ BEZLERİ VE HORMONLARI

BÖBREK ÜSTÜ BEZLERİ VE HORMONLARI

Böbreküstü Bezinin Görevleri Böbreküstü bezleri nelerdir, nerede bulunur? Böbreküstü bezlerinin salgıladığı hormonlar nelerdir, ne işe yarar, görevleri. Böbreküstü bezleri, adından anlaşılacağı gibi böbreklerin üstünde yer alır. Kabuk ve öz diye iki bölümde incelenirler. Kabuk bölgesinden “kortizol” hormonu salgılanır. Bu hormon aminoasitlerden glikoz sentezini uyarır. Kana yeterli kortizol salgılanmazsa deride renk maddelerinin sayısı artar ve garip bir kahverengileşme görülür. Buna “Addison” hastalığı denir. Bu hastalarda iştahsızlık, halsizlik ve kaslarda zayıflama görülür. Böbreküstü bezlerinin öz bölgesinden “adrenalin” hormonu salgılanır. Adrenalin; kan damarlarını daraltır, yürek atışını hızlandırır, karaciğerde glikojenin glikoza hidrolizini hızlandırır. Adrenalinin karaciğerde glikojenin glikoza parçalanmasını hızlandırması, kanda glikoz miktarının sabit tutulmasında önemli rol oynar. BÖBREK ÜSTÜ BEZLERİ ...Böbreklerin üst kısımlarına yapışmış olarak bulunan sarımtrak renkli olan iki bezdir.Diğer endokrin bezlerde olduğu gibi kan damarı bakımından zengin olan bu bezlerin böbreklerle doğrudan bir ilişkisi yoktur. ...Adrenal bezler(böbrek üstü bezleri) ,yapısı ve salgıladığı hormonları farklı olan 2 tabakadan meydana gelir. ...Adrenal bezlerin pembemsi görünümündeki dış kısmına kabuk(adrenal korteks) iç kısmına ise öz bölgesi(adrenal medulla) denir. ...Korteks hormonlarının az salgılanması durumunda kandaki ACTH miktarı artar.Bu durumda deri tunç rengini alır,kan basıncı azalır,iştahsızlık artar,kaslarda zayıflama ve genel halsizlik görülür.Sodyum ve klorun dışarı atılması artarken vücut sıvısında potasyum miktarı artar.(Addison hastalığı) ...Bu bezlerin kabuk kısmından hormon salgılanması hipofizin ön lobundan salgılanan ACTH hormonu ile düzenlenir. ...Böbrek üstü bezinin kabuk bölgesinden salgılanan hormonlar şunlardır: a.)Kortizol: ...Organizmada karbonhidrat ve protein metabolizmasını düzenler. ...Protein ve yağların glikozlara dönüşümünü hızlandırır. ...Bu sayede kandaki şeker oranının yükselmesini sağlar. ...Tedavi amaçlı olarak iltihaplanmalarda,alerji ve romatizma hastalıklarında kullanılır. ...Karaciğerde glikojen sentezini hızlandırır. b.)Aldosteron: ...Bu hormon böbrekteki idrar tüpçüklerinden ,sodyum ve klor iyonlarının geri emilmesini sağlar. ...Bu yolla kan ve hücre dışı sıvıların iyon derişimini düzenlemeye yardımcı olur. ...Fazla salgılanırsa kan basıncı yükselir ve doku sıvısının miktarı artar.Hormonun üretilememesi ölüme neden olur. Deniz suyu yutmuş bir insanda aldosteron miktarı azalır. c.)Adrenal eşey hormonları: ...Hem erkek hem de dişilerde böbrek üstü bezlerinin kabuk kısmından az miktarda eşeysel hormon salgılanır. ...Erkek çocuklarda ergenlikten önce fazla salgılanırsa çocuk normal zamanından önce ergenliğe girer. ...Dişilerde fazla çalışırsa sakal çıkar,ses kalınlaşır ve erkeğe ait özellikler oluşabilir. ...Adrenal eşey hormonlarının fazla salgılanması durumunda erkek çocuklarda ses kalınlaşması ve kas gelişmesi ile kıllanma görülür. ...Böbrek üstü bezinin öz bölgesinden salgılanan hormonlar şunlardır: ...Buradan salgılanan hormonlar metabolizmanın hızlanmasını sağlayan sempatik sinirlerin öz bölgesini uyarmasıyla salgılanırlar: Adrenalin (epinefrin): ...Heyecanlanma,korkma,öfkelenme,üzüntü hallerinde ve bazı ilaçların alınması durumunda kandaki miktarı artar. ...Bu durumda adrenalin etkisiyle kandaki şeker miktarı ve kan basıncı ve kan dolaşımı yükselir,hücrelerde enerji üretimi artar,sindirim yavaşlar. ...Kalp atışı hızlanır,damarlar genişler ve göz bebekleri büyür. ...Beyne daha fazla kan gider ve kanın pıhtılaşma zamanı kısalır.Yorgunluğa karşı direnç artar. ...Adrenalin hormonu, duran kalbin yeniden çalışmasında ve kan basıncının yükselmesinde kullanılır. ...Adrenalin hormonu etkisiyle derideki kılcal damarlar ise daralır.Korkunca derimizin sararmasının nedeni budur. ...Heyecan ve korku sırasında öncelikle hipotalamus uyarılır.Hipotalamus ürettiği düzenleyici faktörlerle (RF) hipofizi kontrol eder.Hipofiz geri besleme mekanizmasıyla ACTH üretir ve adrenal (böbrek üstü bezini ) kontrol eder.Bu hormon adrenal korteksten adrenalin salgılanmasına yol açar. ...Böbrek üstü bezlerinden salgılanan adrenalin glikojenin glikoza dönüştürülerek kandaki glikoz miktarının artmasına neden olur.Pankreas ise salgıladığı insülin ve glukagon hormonlarıyla kandaki glikoz seviyesini ayarlar.Karaciğer kanda fazla bulunan glikozun glikojene dönüştürerek depolar.Eğer kanda az miktarda glikoz varsa glikojen glikoza dönüştürülür.Sonuç olarak karaciğer,pankreas ve böbrek üstü bezleri kandaki glikoz seviyesini düzenlemede görev alırlar. b.)Noradrenalin (norepinefrin): ...Kılcal damarların kasılmalarını düzenleyerek kan basıncının yükselmesine neden olur.   Memelilerde, böbrek üstü bezleri (adrenal, suprarenal bezler olarak da bilinir) üçgen biçimini andıran iç salgı (endokrin) bezleridir. Anatomik olarak böbreklerin hemen üstlerinde bulunduklarından bu adı almışlardır. Kabuk (korteks) ve öz (medulla) olarak anılan iki ayrı katmandan oluşan bezlerin temel işlevi fizyolojik gerilim (stres) karşısında kortikosteroid (kabuk katmanı) ve katekolamin (öz katman) bireşimleyip kana salgılamaktır. Anatomik olarak, böbrek üstü bezleri, karnın karın zarı arkası (retroperitonal) bölgesinde bulunup, böbreklere göre ön-üst (anterosüperior) konumdadırlar. Bütünüyle yağ dokusuyla çevrelenmişlerdir, ve bu yağ dokusu da böbrek zarı (renal fasiya) ile çevrelenir. Bezlere giden ve bezlerden ayrılan atar ve toplar damar öbekleri her ne kadar kişiden kişiye değişkenlik gösterse de atar damarlar genellikle üçe ayrılır: Üst böbrek üstü atar damarı, (alt diyafram atardamarından ayrılır.) Orta böbrek üstü atar damarı, (karın bölgesi aorttan ayrılır.) Alt böbrek üstü atar damarı (böbrek atardamarından ayrılır.). Bezlerden gelen kanı toplayan damarlar ise birleştiği damar bakımından sağda ve soldaki bezlerde değişiklik gösterir: Sağ böbrek üstü toplar damarı alt ana toplar damara, Sol böbrek üstü toplar damarı ise alt diyafram toplar damarına ya da böbrek toplardamarına bağlanır. Tiroid bezi gibi böbrek üstü bezleri de gram başına en çok kan alan bölgelerdir. Bu da evrimleşmenin doğal bir sonucudur, çünkü bu tür endokrin organlar, bir canlının fizyolojik gerilim karşısında vücut dengesinin (homeostaz) bozulmadan işlevini sürdürebilmesi için çok önemlidir. Tıpkı öbür endokrin bezlerde olduğu gibi, bu bezlerin toplardamarlarında hormonlar çok derişiktir. Tıpta bu durumdan yararlanılarak, bu hormon düzeylerinin dengesizliklerinden kuşkulanıldığı durumlarda böbrek toplardamarındaki hormonların derişimi ölçülüp, bu incelemeler tanı konulmasında yardımcı nitelikte olabilir. İki ayrı katmana ayrılan böbrek üstü bezlerinin bu katmalarında da altkatmanlar söz konusudur: Kabuk bölgesi üç katmandan oluşur. Bunlar dıştan içe sırasıyla: Zona glomerulosa: Latince'de "yumakçık bölgesi" anlamına gelir, ve çoğunlukla aldosteron salgılar. Zona fasciculata: Latince'de "demet bölgesi" anlamına gelir, ve çoğunlukla kortizol salgılar. Zona reticularis: Latince'de "ağ bölgesi" anlamına gelir, ve çoğunlukla seks hormonlarını (dihidroepiandrosteron (DHEA) ve androstenedion) salgılar. Bu hormonlar öbeğine androjen denilmektedir. Öz bölge ise, kabuk bölgesinin aksine, tek bölgeden oluşmaktadır, ve burdaki gözelere Kromafin gözeleri denir. Kromafin, Yunanca'da "renke ilgi" anlamına gelir. Böyle adlandırılmasının nedeni, Krom tuzlarıyla boyandığında, bu gözelerin içindeki katekolaminlerin yükseltgenip, çoklu bileşik (polimer) haline dönüşmesi, ve elde edilen bileşiğin kahverengi olmasıdır. Kabuk katmanı ve hormonları Kabuk bölgesi, bezin yaşamsal önem taşıyan katmanıdır. Bu yapıdan hipofiz bezinden salgılanan adenokortikotropik hormon (ACTH) hormonunun etkisiyle başta kortizol olmak üzere çok sayıda hormon salgılanır. Kortizol salgılanma düzeni gün içinde gösterdiği değişiklikler açısından ilginç bir özellik taşır. Gün boyunca değişen derişimlerle kana salgılanan kortizol, akşam sıralarında ve uykuya dalıştan hemen sonraki saatlerde en az düzeydeyken, sabah kalkmadan önceki saatlerde ise en yüksek düzeydedir. Böbreküstü bezlerinden salgılanan öteki kabuk hormonları da kortizole benzer değişiklikler gösterir. Bu değişkenliğin nedeni, hipotalamustaki CRH salgılanmasına bağlı olan ACTH salgılanımının, aydınlık/karanlık döngüsüne ilişkin bilginin retinadan hipotalamusta bulunan çifte çekirdeklere (suprachiasmatic nuclei) iletilmesine bağlı olmasıdır. Ön görülebileceği gibi, koma, körlük ya da sürekli ışığa ya da karanlığa maruz kalma durumlarında bu değişkenlik de ortadan kalkar. Glukokortikoidler   Kortizol Zona Fasciculata bölgesinden salgılanan kortizolun (ana glukokortikoid) çok yönlü etkileri vardır. Tıpkı öbür steroid bileşikleri gibi, kortizol, etkisini erek gözenin çekirdeğine girerek, DNA'nın kalıt yazımından mesajcı RNA'yı bireşimleyerek, ve bundan da yeni protein bireşimleterek gösterir. Yukarıda da açıklandığı gibi Glukokortikoidler yaşamsal önem taşır. Glukokortikoidler etkilerini, şeker üretimi (glukoneojenez), damarların katekolaminlere yanıt vermeleri, yangının ve bağışıklık sisteminin baskılanması ve merkezi sinir sisteminin düzenlenmesi biçiminde gösterir. Glukoneojenezin uyarımı: Kortizolun en önemli etkinliklerinden ikisi glikojen depolanması ve glukoneojenezdir. Genel olarak, kortizol etkileri yıkıma (katabolizma) ağırlık verir. Kortizol, protein, yağ ve karbonhidrat yapım-yıkımını eş güdümlü bir biçimde şeker üretimini arttıracak şekilde düzenler: kaslardaki protein yıkımını arttırıp, yeni protein bireşimlenmesini baskılar, ve böylece karaciğerin şekere dönüştürmesi için serumda amino asit sağlamış olur. Benzer bir biçimde yağ yıkımını da arttırıp, karaciğerin şekere dönüştürmesi için serumda gliserol bileşiğini de sağlar. Son olarak, kortizol, şekerin dokularca kullanımını ve yakılmasını da engelleyip, yağ gözelerinin (adipoz) insüline olan duyarlılığını da azaltır. Tüm bunlardan dolayı, açlık sırasında yaşamda kalabilmek için glukokortikoidler çok önemlidir; beyin kandaki şekerden dolayı işlevini sürdürebilir. Kortizolun olağan düzeyinden düşük olduğu durumlarda kan şekeri düşer (hipoglisemi), ve yüksek olduğu durumlarda da kan şekeri artar (hiperglisemi). Yangıyı baskılayıcı etkileri: Kortizol bunu üç yolla gerçekleştirir: Lipokortinin bireşimlenmesini uyarır. Fosfolipaz A2 enzimini baskılayan lipokortin, bundan dolayı arachidonic asitin zar fosfoyağlardan serbest bırakılmasını önler. Arachidonic asit, yangıyı tetikleyen etmenlerin bireşimlenmesinde kullanılan önemli bir bileşiktir. Bu dolaylı yol ile kortizol, yangıyı baskılar. Kortizol, interlükin 2 (IL-2)'nin üretilmesini ve T lenfositlerinin çoğalmasını engeller. Kortizol mastositlerden histaminin, pıhtı gözelerinden (trombosit) serotonin salgılanmasını baskılar. Bağışıklık sisteminin baskılanması: yukarıda da açıklandığı gibi, kortizol interlükin 2 (IL-2)'nin üretilmesini ve T lenfositlerinin çoğalmasını engeller. Organ nakli gerçekleşmiş olan hastalarda organ reddini önlemek için glukokortikoidler ilaç olarak verilir. Damarların katekolaminlere yanıtını olanaklı kılar: Kortizol kan basıncının olağan değerlerde izlemesi için gereklidir, bunu damarcıklardaki (arteriyol) alfa-1 katekolamin alıcılarının etkinliğini arttırarak yapar. Böylece, kortizol damarcıkların büzülmesinde ve kan basıncının artmasında önemli rol oynar. Kortizol düzeyi olağanın altında olduğunda, hipotansiyon, olağan düzeyinin üstünde seyrettiğinde ise hipertansiyon gerçekleşir. Kemik oluşumunu baskılar: Bunu kemiklerde bulunan 1. tip kollajenin (bağ dokunun yapı maddesi) bireşimlemesini engelleyerek, kemik gözelerinin (osteoblast) çoğalmalarını engelleyerek, ve bağırsaktan kalsiyum emilimini azalatarak gerçekleştirir. Glomerüler süzme hızını (GFR) azaltmak : Kortizol, nefronlardaki getirici damarcıkları genişleterek böbreğe giden kan akışını, ve GFR'yi arttırır. Merkezi sinir sistemine etkisi: Özellikle limbik sistemde olmak üzere, merkezi sinir sisteminde glukokortikoid alıcıları bulunmaktadır. Glukokortikoidler, REM uykusununu azaltır, yavaş-dalgalı uyku evresini arttırır, ve genel olarak uyku zamanını azaltır. Mineralokortikoidler  Aldosteron İnsanlarda en çok bireşimlenen mineralokortikoid Aldosteron'dur. Yalnızca Zona Glomerulosa bölgesinden salgılanan hormon, tıpkı Zona Fasciculata'dan salgılanan kortizol gibi kolesterol molekülünden bireşimlenir, ve bu tepkimeler dizisindeki enzimler aynıdır. Zona Glomerulosa'da ek olarak Aldosteron sentaz adlı enzim bulunduğundan Aldosteron yalnızca bu bölgede bireşimlenir. Ancak, Zona Glomerulosa kortizol üretmez. Bunun nedeni, Zona Glomerulosa'da progesterondan kortizol bireşimlemesini sağlayan 17-alfa-hidroksilaz enziminin bulunmamasıdır. Aldosteron mineralokortikoid özelliği gösteren tek steroid değildir; 11-deoksikortikosteron (DOC) ve kortikosteron bileşikleri de mineralokortikoid kimyasal davranışlarını sergilerler. Bundan dolayı, mineralokortikoid bireşimlenmesindeki tepkiler dizisinde DOC'den sonraki bir aşamada eksiklik olursa (11-beta-hidroksilaz ya da aldosteron sentetaz enzimlerinde eksiklik), mineralokortikoid etkinliğinde bir azalma olmaz. Ancak tepkiler dizinde DOC'den önceki bir aşamada bir aksaklık çıkarsa (21-beta-hidroksilaz eksikliği), o zaman mineralokortikoid etkinliğinde azalma gerçekleşir. Mineralokortikoidler, etkilerini böbreklerin nefron yapısındaki uç borucuklarda (distal tubül) ve toplayıcı kanallarda gösterir: Na+ (sodyum) geri emilimini arttırıp, K+ (potasyum) atılımını ve H+ (proton) atılımını arttırır. Na+ geri emilimini ve K+ atılımını prinsipal gözelerde, H+ atılımını ise alfa-aracık gözelerinde gerçekleştirir. Bu sodyum geri emilimi, ve potasyum ve proton atılımı sonucu göze-dışı (ekstraselüler)hacim artıp, hipertansiyon, potasyum düzeyi düşüklüğü (hipokalemi) ve metabolik alkaloz gerçekleşir. Aldosteron düzeyi düştüğünde ise (örneğin böbreküstü yetmezliğinde) Na+ geri emilimi azalıp, K+ ve H+ atılımı da azalır. Bu durumda ise göze-dışı hacim azalıp, potasyum düzeyi yükselir (hiperkalemi) ve metabolik asidoz oluşur. Her ne kadar kortizolun da mineralokortkoid etkinliği olsa da (kortizol mineralokortikoid alıcılarına aldosteron'la aynı düzeyde ilgiyle bağlanabilir), böbrekte Aldosteron'un etki ettiği erek gözeler (prinsipal gözeler ve alfa-aracık gözeleri), kansıvındaki (plazma) kortizole "aldanmazlar." Bunun nedeni, bu gözelerde 11-beta-hidroksisteroid dihidrojenaz enzimi bulunmasıdır: bu enzim, kortizol'u kortizon'a dönüştürmekte, ve kortizol'un aksine, kortizon'un mineralokortikoid etkinliği yoktur. Bundan dolayı, kortizolun yüksek izlediği durumlarda bile, mineralokortikoid alıcıları bundan etkilenmez. Eşeysel hormonlar (androjenler) Yukarıda da belirtildiği gibi, kabuk bölgesi DHEA ve androstenedion bireşimlemektedir. Erkeklerde, bu bileşikler testiste testesterona dönüştürülmektedir. Erkeklerde, böbreküstü bezlerinin salgıladığı bu androjenlerin önemi azdır, çünkü testesteron testislerde kolesterolden bireşimlenir. Bunun aksine, kadınlarda böbreküstü bezlerinin ürettiği androjenler önemlidir, ve ergenlik çağında koltukaltı ve pubik bölgelerde kılların çıkmasından sorumludur. Öz katman Böbreküstü bezlerinin öz katmanı, özerk sinir sisteminin sempatik bölümünün bir sinir düğümüdür (ganglion). Sinir düğümü öncesi nöronların gövdeleri omuriliğin göğüs bölgesinde bulunmaktadır. Bu nöronların aksonları büyük splanknik sinirden geçerek böbreküstü bezinin öz bölgesine ulaşıp ve kromafin gözelerle sinir bağlanımı yapıp, asetilkolin salgılarlar. Asetilkolin, sinir düğümü sonrasındaki nöronların nikotinik alıcılarını etkinleştirir. Kromafin gözeler bunun üzerine dolaşıma adrenalin (epinefrin) ve noradrenalin (norepinefrin) salgılar. Sinir düğümü sonrasındaki nöronların genellikle noradrenalin salgılamalarına karşın, böbreküstü bezlerinin öz bölgesi çoğunlukla (%80) adrenalin, ve ancak %20 oranında noradrenalin salgılar. Bunun nedeni, öz bölgede feniletanolamin-N-metiltransferaz (PNMT) enziminin bulunması, ve bu enzimin sempatik sinir düğümü sonrası nöronlarda bulunmamasıdır (bu enzim noradrenalini adrenaline dönüştüren kimyasal tepkimeyi tetikler). Noradrenalinden adrenalin bireşimlenmesini olanaklı kılan kortizoldur. Kabuk bölgesinde bireşimlenen kortizol bu bölgeden ayrılan toplardamar ile öz bölgeye ulaşır ve bu tepkimeyi tetikler. Hastalıklar Böbreküstü bezlerinin kabuk bölgesinden kaynaklanan düzensizliklerin çoğu belirli bir katmandaki hormonun gereğinden az ya da çok bireşimlenmesinden kaynaklanır (kortizol, aldosteron ya da eşeysel hormonları). Bir hormonun olağan derişiminin altında ya da üstünde üretilip salgılanması kişide belirtilere neden olur, ve aynı zamanda o hormonun kansıvındaki ve idrardaki derişiminin de değişmesine yol açar. Ayrıca bir hormonun derişiminin az ya da çok olması o hormonun geri beslemesini de etkiler, ve yalnız bundan yararlanılarak incelemeler yapılabilir. Cushing Sendromu Cushing Sendromu, glukokortikoidlerin (kortizol hormonunun) olağanın üstünde bir düzeyde olduğu durumlarda ortaya çıkan belirtiler bütünüdür. Cushing Sendromunun alışılmış nitelikleri kilo artması, obezite, kan basıncının artması (hipertansiyon), ve derinin zayıflaması sonucu oluşan çizgilerdir. Conn Sendromu Conn sendromu, daha çok Mineralokortikoid fazlalığı olarak da bilinir. Belirtilerinin çoğu hipokalemiden (potasyum düzeyinin düşük olması) kaynaklanıp yorgunluk, kas güçsüzlüğü, ve kasınçlar olarak ortaya çıkar. Çoğu zaman, erken yaşta çıkan yüksek tansiyon ve bununla birlikte kendiliğinden ortaya çıkan düşük potasyum düzeylerinde bu düzensizlikten kuşkulanılır. Mineralokortikoid fazlalığı, Aldosteron'un (ya da başka bir mineralokortikoidin) özerk bir biçimde üretildiği (renin bu durumda düşük düzeydedir) birincil böbreküstü bezi hastalığından ya da renin düzeyinin yükselmesi (aldosteron salgılanımı arttırır) gibi böbreküstü bezleri dışında bir nedenden de kaynaklanabilir. Bu son duruma örnek olarak, kandolumlu kalp yetmezliği, karında sıvı birikimli siroz, böbrek atar damarı akımında azalma, renin üreten ur örnek verilebilir. Addison Hastalığı Böbreküstü bezlerinin kabuk bölümünün, özbağışıklık (bağışıklık sisteminin vücuttaki dokulara saldırması), verem ya da mantar bulaşımı nedeniyle zarar görmesine bağlıdır. Güçsüzlük, kansızlık, kilo yitimi, mide-bağırsak rahatsızlıkları, kan basıncı düşüklüğü, deride kararma, bazı hastalarda da aşırı sinirlilik ve aşırı duyarlılıkla gelişir. Eskiden ölümle sonuçlanabilirken, günümüzde yapay hormonlarla kesin olarak sağaltılmaktadır. Feokromositom Böbreküstü bezlerinin katekolamin salgılayan öz bölgesindeki Kromafin gözelerinde çıkan urlara feokromositom, ve sempatik sinir sistemi sinir düğümlerinde katekolamin salgılayan gözelerde çıkan urlara ise Paragangliom denilmektedir. Bu urların bulguları ve belirtileri birbirlerine benzedikleri için, çoğu tıbbi yetke bu iki uru birden feokromositom çatısı altında toplar. Buna karşın, bu iki urun ayırt edilmeleri önemlidir, çünkü beklenen gidişleri (prognoz), kötücül olma olasılıkları ve kimi zaman kalıtsal özellikleri ayrı olabilir.

http://www.biyologlar.com/bobrek-ustu-bezleri-ve-hormonlari

Kuşların Kökeni ve Evrimi

Yeryüzünde bizimkine nazaran çok uzun bir geçmişe sahip olan kuşlara, insanlık tarihi boyunca mitolojik figür, sanat esini, barış, güç, bilgelik sembolü olarak rastlamamız, kuşların insanlar için salt besin kaynağı olmamış olduğuna işaret eder. Ikarus’u hatırlarsak, kuşların birçok hikâyenin kaynağında yer almalarının nedeni belki de insanlığa hayranlık veren uçma yetenekleridir. Yine de kuşlarla ilgili en sürükleyici hikâyenin, zaman tünelinde milyonlarca yıl geriye giderek kuşların ve uçuşun kökenine dair ipuçları arayan paleontologlarca yaşandığını söylemek herhalde abartılı olmaz. Canlıların kökenine, birbirleriyle olan evrimsel akrabalıklarına ilişkin bilimsel çalışmalar çok sayıda fosilin incelenmesini gerektirir. Bu nedenle, kuşlara özgü yapılar olan tüylere ve içi boş, süngerimsi dokusu olan hassas kemiklere fosil kayıtlarında nadiren rastlanabilmesi, bu uzun ve karanlık tünelde cılız bir ışıkla çalışmak anlamına gelmiş çoğu kez. Uçuşun son derece sınırlayıcı fizyolojik ve anatomik talepleri olması sonucunda kuşlar, çok yüksek bir metabolizmaya ve çok sınırlı bir aerodinamik morfolojiye sahip olacak şekilde evrimleşmişlerdir. Tüylerinin altında anatomik olarak çok benzerlik gösteren kuşların sınıflandırılmasının ancak bir ya da birkaç belirleyici özelliğe dayanması, benzeştiren evrimin belki de en büyük yanıltmacalarını uçmanın getirdiği bu kısıtlamalar içinde yaratmış olmasıyla birleşince, kırlangıçlar ve ebabiller örneğindeki gibi birçok yanlış sınıflandırmayla karşılaşılmış. Tüm bunlara bir de sistematik çalışmalardaki yöntembilim farklılıkları eklenirse, kuşların kökenleri ve evrimlerinin aydınlatılabilmesi için ipuçlarının doğru değerlendirilmelerinin de bulunmaları kadar önemli olduğu anlaşılır. Kuşların yaklaşık 150-200 milyon yıl önce, Mesozoic çağda sürüngen atalardan evrimleşmiş olduğu tüm bilim dünyasınca kabul edilse de, tam olarak hangi dönemde ve hangi sürüngen kolundan evrimleştikleri günümüzde internet tartışma gruplarının bile konusu olan bir soru işareti. Münih yakınlarındaki Bavyera Bölgesinde bulunan ince taneli kireçtaşı, tarih sayfaları boyunca karşımıza ilk olarak banyolardan, çatı döşemelerine kadar birçok yerde kullanılmak üzere, özellikle ortaçağ boyunca yoğun şekilde çıkarılan değerli bir ihracat maddesi olarak çıkıyor. Ayasofya camiinin mozaiklerinde bile yer alan bu kireçtaşı, 1793’te litografi tekniğinin bulunmasından sonraki daha dikkatli ve ayrıntılı kazılar sırasında içinde tek bir tüy fosiline rastlanmasıyla birlikte bu kez bilim dünyası için önem taşımaya başlıyor. Kireçtaşına da ismini veren Solnhofen köyündeki taşocağında Jurassic döneme ait kireçtaşında tek bir uçuş tüyü fosilinin bulunduğu haberinin 1861 yılında Hermann von Meyertarafindan duyurulmasıyla, evrim biyolojisi alanının belki de en hararetli günleri başlamış oldu. Yaklaşık 6 cm boyundaki bu tek tüy, Sürüngenlerin hâkim olduğu dönemde kuşların yaşadığına dair bir kanıttı ve üstelik asimetrik yapısıyla modern zaman kuşlarının uçuş tüyleriyle benzerlik gösteriyordu. Bu fosil tüyün bulunuşunun üzerinden daha birkaç ay geçmemişti ki Hermann von Meyer bu kez tüyleri olan, sürüngenvari bir hayvanın iskeletinin eksiksiz bir fosilinin bulunduğunu bildirdi şaşkınlığı dinmemiş biyoloji çevrelerine. Bu fosil de yine aynı bölgede bulunmuştu ve yine Jurassic dönemine aitti. Hem sürüngen hem de kuş özellikleri taşıyan bu fosil, Meyer’in Archaeopteryxlithographica (litografi taşındaki eskil kanat) olarak adlandıracağı evrim biyolojisinin ünlü ikonasından başkası değildi. Bölgenin fosilleri, Taş Devri’nden beri önceleri süs eşyası, sonraları da para olarak o bölgede yaşayan insanlar tarafından değerli sayılmıştı. Bu fosillerin büyük koleksiyoncularından birisi de, muayene karşılığı bu fosilleri kabul eden Dr. C.F.Häberlein’di ve bu çok önemli Archaeopteryx fosili onun koleksiyonunda yer alıyordu. Önceleri resmedilmesine bile izin vermediği Archaeopteryx fosilini ancak 3 ay sonra açık arttırmaya çıkaran Häberlein, çılgın bir kapışma içinde geçen satış sonrasında bu önemli fosille birlikte koleksiyonundaki yüzlerce fosili İngiliz müzesine satarak çocuklarına yetecek büyüklükte bir servete sahip olmuş oldu. Müzenin iki yıllık bütçesini bu fosil koleksiyonu için harcamasına neden olan kişinin amansız bir evrim karşıtı olan anatomist Sir Richard Owen olması ise,Archaeopteryx’in ne denli önemli bir doğa tarihi fosili olduğunun bir kanıtıydı. Bir karga büyüklüğündeki Archaeopteryx fosili, uzun, kemikli sürüngenvari kuyruğundan çıkan tüyleri, uzamış ön uzuvları, asimetrik tüylerle kaplı kanatları, 3 hareketli, kıvrık parmağı, köprücük kemiklerinin birleşmesinden oluşmuş lades kemiği ve dişleriyle iki yüksek hayvan grubunun, sürüngenlerin ve kuşların arasındaki bir ara forma, dolayısıyla evrime işaret ediyordu. Zaten Charles Darwin de, sadece iki sene önce basılmış olan ve “doğal seçilim yoluyla evrim”i anlattığı “Türlerin Kökeni” adlı kitabında tam da böylesi ara formların var olduğunu varsayıyordu. Böylelikle Archaeopteryx, zincirin kayıp halkalarından biri olarak bir yandan Darwin’in “doğal seçilim yoluyla evrim” teorisinin kabul görmesini sağlarken, bir yandan da kuşların ve uçuşun kökenine ilişkin halen sürmekte olan tartışmalarının merkezine yerleşmiş oldu. Yine de o yıllarda Archaeopteryx’in bir ara form olarak kabul edilmesi bilim dünyasında bile çok çabuk gerçekleşmemiş, fosilin ortaya çıkmasıyla birlikte Darwin yanlısı, yaratılışçı, evrim yanlısı ama Darwin karşıtı birçok görüş ve iddia ortaya atılmıştı. Fosili hiç görmedikleri halde tüylendirilmiş bir sürüngen fosili olduğu iddiasını ortaya atan evrim karşıtı zooloji profesörleri ve yaratılışa tamamen sırtını dönmeden evrimin farklı bir biçimde gerçekleşebileceğini savunan anatomi uzmanları arasında dikkati çeken kişiyse, Darwin’in ve evrim teorisinin en büyük savunucusu, doğa bilimci Sir Thomas Henry Huxley olmuştu. Kuşların kökeni üzerine 1868 yılında yayınladığı makalelerle evrimi kanıtlama işine soyunan Huxley’e göre Archaeopteryx, sürüngen ve kuş arası özellikleriyle evrimi kanıtlayan mükemmel bir ara form örneğiydi. Gerçekten de iskeletin tüyleri bölgeye özgü ince taneli kireçtaşı tarafından hapsedilmese hiç kuşkusuz bir sürüngen fosiliyle karşılaştıklarını sanacak olan bilim insanları, şimdi kuşların kökenine ışık tutabilecek bir fosille karşı karşıyaydılar. Huxley’inArchaeopteryx’i ilk gerçek kuş olarak tanımlamakla kalmayıp, aynı bölgeden çıkarılan ve tavuk büyüklüğündeki bir teropod dinozoru olan Compsognatusfosiliyle karşılaştırarak benzerlikler bulması ise, kuşların atası olarak sürüngenlerin kabul edilmesini belki de pekiştirirken, kuşların atasının dinozorların bir kolu olduğunu savunan görüşü de doğurmuş oldu. Huxley bu küçük, iki ayaklı dinozorun tavuk benzeri leğen kemiği ve arka uzvu gibi kuşlara benzeyen özelliklerini göstererek aslında en başta Darwin’in evrim teorisinin bilim dünyasında kabul edilmesini sağlamış oldu. Huxley’in Archaeopteryx ve Compsognatus fosillerinden yola çıkarak kuşlara benzeyen sürüngenlerin ve sürüngenlere benzeyen kuşların varlığına dikkat çekmesiyle birlikte, Amerikalı profesörler de dâhil olmak üzere birçok bilim insanı önceleri benimsemedikleri evrim düşüncesine sahip çıkmaya başladılar. 1877 yılında, tüm dünyadaki bilim insanları hala Londra’daki Archaeopteryxfosiliyle ilgili tartışmalarını sürdürürken yeni bir Archaeopteryx fosili bulunduğu haberi yayıldı. Önceki fosilin bulunduğu yerden yalnızca 30 kilometre uzakta, Eichstatt yakınlarındaki bir taşocağında bulunan bu yeni Archaeopteryx fosili de yine bir fosil koleksiyoncusunun ellerindeydi ve bu koleksiyoncu da Doktor Haberlein’in oğlundan başkası değildi. İlk fosili İngilizlere kaptırmanın utancı içindeki Almanlar bu kez fosili almakta kararlıydılar ve uzun süren görüşmeler sonunda bu ikinci Archaeopteryx fosili Berlin’deki Humboldt Doğa tarihi müzesinde sergilenmeye başladı. Londra fosiline kıyasla daha eksiksiz olan bu yeni fosil örneği ayrıca, kanatları açık ve başı geriye doğru fosilleştiği için sürüngen-kuş arası özelliklerini de çok etkileyici ve belirgin bir biçimde gözler önüne seriyordu. Böylelikle Berlin’dekiArchaeopteryx fosili, bu çarpıcı hatlarıyla, en çok bilinen, çizimi yapılan fosil hayvan olmanın yanısıra en önemli doğa tarihi örneklerinden biri olarak kabul edildi. Birbiri ardına açığa çıkan bu iki Archaeopteryx fosilini bir üçüncünün izlemesiyse uzun bir süre sonra, 1956’da oldu. Londra fosilinin çıkarıldığı taşocağında bulunan bu üçüncü fosilde tüy izlerini ve birleşmiş bazı ayak kemiklerini görmek mümkün olduysa da, öncekilerden daha kötü bir şekilde günümüze ulaştığından tanımlanması iki yılı buldu. Bir süre Solnhofen yakınlarındaki, Maxberg müzesinde sergilendikten sonra Eduard Opitsh’in evinde tuttuğu fosil, Opitsh 1991’de öldüğünde mirasçılarınca bulunamayınca, fosilin çalınmış olduğu sonucuna varıldı. Halen Yale Üniversitesi bünyesinde çalışmalarını sürdüren ve kuşların dinozorlardan geldiği yolundaki teorinin doğru olduğunu düşünen ünlü paleontolog John Ostrom’un, 1970 yılında Avrupa’da pterosaur fosillerini çalışırken pterosaur olarak sergilenen bir Archaeopteryx fosiliyle karşılaşmasıyla, dördüncü Archaeopteryx fosili de gün ışığına çıkmış oldu. Aslında ilk tüy veArchaeopteryx fosilinden de önce, 1855 yılında diğer fosillerin bulunduğu bölgenin oldukça doğusundaki bir büyük taşocağında bulunmuş olan bu fosili, 1857’de uçan sürüngen pterosaur olarak adlandıran ise, ne ilginçtir ki, Hermann von Meyer olmuştu. 1860 yılından beri Hollanda’daki Teyler müzesinde sergilenmekte olan bu fosilin gövdesini çevreleyen silik tüy izlerinin farkına varan Ostrom, böylelikle daha uzun yıllar sürebilecek bir yanlışlığı önlemiş oldu. TeylerArchaeopteryx’inde araştırmacıların dikkatini çeken en ilginç nokta ise, bir tırnağın, üzerini kaplayan boynuzsu kılıfla birlikte mükemmel bir şekilde korunmuş olarak fosilleşmesi olmuştur. 1973 yılında Jura Müzesi kurucularından F.X.Mayr’ın bildirdiği, oldukça iyi bir şekilde fosilleşmiş olan bir diğer Archaeopteryx fosili de yine ilk başta yanlış tanımlanmış fosillere bir örnek oluşturuyordu. 1951 yılında Eichstatt’ın kuzeyindeki bir taşocağından çıkarılmış olan bu fosil genç bir Compsognatusdinozoru olarak tanımlanmıştı önceleri. Mayr’ın yirmi yıl sonraki incelemesinde ortaya çıkardığı silik tüy izleri, Archaeopteryx fosili sayısını beşe çıkarıyordu böylelikle. Mükemmel bir şekilde korunmuş kemikleri ve kafatasıyla buArchaeopteryx fosili Londra örneğinin üçte biri büyüklüğündeydi ve kimilerince bu farklılık fosilin ayrı bir cinsi temsil ettiği anlamına geliyordu. Eichstatt örneği olarak anılan bu fosil de Jura Müzesinde sergilenmeye başladı. Kasım 1987’de yine Jura Müzesi’nden Günter Viohl’un Solnhofen eski belediye başkanının koleksiyonunda keşfettiği altıncı Archaeopteryx fosili, tüm fosiller arasında en büyük olanıydı ve iyi korunmuş iskeletteki tüy izleri net olarak görülebiliyordu. Tam olarak nereden çıkarıldığı bilinmediği halde Solnhofen örneği olarak anılan bu fosil ise halen Solnhofen’deki Bürgermeister Müller Müzesi’nde sergilenmektedir. 1993 Nisan sonlarında, Peter Wellnhofer tarafından duyurulan yedinci ve şimdilik son Archaeopteryx fosili kaydı ise Londra ve Maxberg Archaeopteryxfosillerinin çıkarıldığı yerden geliyordu. Stratigrafi yöntemlerine göreArchaeopteryx fosilleri içinde en genci olan (en yaşlı olanı LondraArchaeopteryx’i) bu Archaeopteryx fosilinin en önemli özelliği ise diğer fosillerde karşılaşılmamış göğüs kemiğine sahip olmasıydı. Her ne kadar göğüs kemiği çıkıntılı bir yapı göstermese de, göğüs kemiğinde ilk defa kemikleşmeye rastlanmış olması bakımından bu bulgu Archaeopteryx fosillerinin uçuş yetenekleriyle ilgili çalışmalar için çok büyük önem taşıyordu. Teyler fosili kadar iyi korunmuş olan bu fosilin bir diğer özelliği ise alt bacağının (tibiası) ve arka ayaklarının diğer fosillere göre daha uzun olmasıydı. Bu özellikleri yüzünden fosil, Wellnhofer tarafından ayrı bir tür olarak kabul edildi ve Archaeopteryx bavarica olarak adlandırıldı. Son Archaeopteryx fosili dışındaki fosiller de kimi araştırmacılar tarafından, özellikle boyutlarındaki farklılıktan dolayı, ayrı tür olarak gösterilmişlerse de, milyonlarca yıl önce yaşamış kuşların tür ve cins sınırlarını belirlemenin güç olması nedeniyle bu görüşler genel olarak kabul edilmemiş ve günümüzde tümArchaeopteryx fosilleri bir cins altında ele alınarak tür bazındaki savlar soru işareti olarak kalmıştır. Solnhofen’in de içinde yer aldığı iç Avrupa, Jurassic dönemde palmiye tipi bitkilerin yer aldığı büyük, ılık deniz ve lagünlerle çevrili subtropikal bir bölgeydi. Archaeopteryx’in büyük olasılıkla lagünlerle çevrili adalarda yaşamış olması da, kimilerince, zaten fosillerde görülen dramatik büyüklük ve morfolojik farklılıkları açıklıyordu. Archaeopteryx fosillerinin bulunuş hikâyesi böyleyken, bu fosillere ilişkin olarak ortaya atılan ve yıllar içinde ortaya çıkan diğer bazı fosillerle de desteklenmeye çalışılan kuş-ata teorilerinin hikâyesi de, kuşlara biraz da soru sorarak bakmamızı sağlayacak kadar ilgi çekici. Özgür KEŞAPLI DIDRICKSON Kaynaklar : 1. Feduccia, A. 1999. The Origin and Evolution of Birds. Yale University . 2nd edition 2. Proctor, N.S.& Lynch, P.J. 1993. Manual of Ornithology, Avian Structure and Function. Yale University. 3. Feduccia, A. (2012). Riddle of the Feathered Dragons: Hidden Birds of China. Yale University Press, ISBN 0-300-16435-1, ISBN 978-0-300-16435-0 4. Foth, C. (2012). "On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology." Paläontologische Zeitschrift, 5. Owen, Richard. (1963). "On the Archeopteryx [sp] of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen [sp]". Philosophical Transactions of the Royal Society of London 153: 33–47. 6. Witmer, Lawrence M. (2009) "Feathered dinosaurs in a tangle"NATURE|Vol 461|1 October 2009 pg 601-602 7. Chiappe, Luis M. (2009). "Downsized Dinosaurs: The Evolutionary Transition to Modern Birds". Evolution: Education and Outreach 2 (2): 248–256. 8. Seeley, Harry G. (1901). Dragons of the Air: An Account of Extinct Flying Reptiles. London: Methuen & Co.. p. 239pp. 9. Nopcsa, Franz. (1907). "Ideas on the origin of flight". Proceedings of the Zoological Society of London: 223–238. 10. Camp, Charles L. (1936). "A new type of small theropod dinosaur from the Navajo Sandstone of Arizona". Bulletin of the University of California Department of Geological Sciences 24: 39–65.

http://www.biyologlar.com/kuslarin-kokeni-ve-evrimi

Göl Ekosistemi Nedir

Her göl üretim biyolojisi açısıdan ışık ve sıcaklık ilişkileri nedeni ile yatay ve dikey olarak kısımlara ayrılır. Fotosentez yapabilen bitkilerin bulunduğu tabaka “BESİN TABAKASF’dır. Işığın az veya hiç olmadığı bölümde fotosentez olmaz. Bu bölgeler bir gölün “PARÇALANMA ZONU”nu oluşturur. Buradaki canlıların besin­lerinin büyük bölümünü üstteki besin tabakasından gelen artıklar oluşturur. Her iki tabaka birbirinden, bir dengeleme yüzeyi ile ayrılır. BENTHAL de denen ZEMİN BÖLGESİNDE suyun sığlaştığı yerdeki KIYI veya LİTORAL ZON beslenme tabakasıdır. Zengin bitki kuşağı üretim zonunu ifade eder. En alttaki ışıksız derin zemine PROFUNDAL denir. Buraya PARÇALANMA TABAKASI adı verilir. Kıyı bölgesinin gölün serbest su bölgeleri, yani PELEJİAL zon izler. Buradaki tabakalanmada sıcaklığın yanında ışık da rol oynar. Işığın girebil­diği zona EPİLİMNION denir. Epilimniyondaki ışık ilişkileri, besin tabakasının ne kadar olacağını tayin eder. Burada yüzer fitoplanktonlar üreticiler olarak izlenir. Be­since zengin göllerde 5 m derinliğe kadar, üreticiler için yeterli ışık vardır. Işık yeşil bitkiler için büyümeyi sınırlayan bir etmendir. Epilimniyonu HtPOLİMNİON izler; ama ikisi arasında bir geçiş tabakası veya METALtMNİON bulunur. Bu tabakada 02 miktarı ve sıcaklık aniden düşer. Hipo-limnion ağır derin sudan oluşur ve ışık almayan parçalanma tabakasına aittir. Burada suyun sıcaklığı +4°C’nin biraz üstündedir. Suyun yoğunluğu da en yüksektir. Bu ta­bakayı da derin zemindeki PROFUNDAL izler, bu da parçalanma tabakasına dahildir. Göl dikine ve yatay tabakalanması ile birçok canlıya yaşama imkanı verir ve zengin ekolojik nişler oluşturur. Bir göl ekosisteminde yaklaşık 5 000-6 000 hayvan türü yaşar. Çeşitli biyotoplardaki farklı biyosönozlar arasındaki karşılıklı ilişkiler, göl ekosisteminin tamamını oluşturur. Gölde, türlerin artış ve azalışının uzun sürede ortalama bir değerde bulunduğu “biyolojik bir akıcı denge” vardır Göldeki Sirkülasyon Hareketleri ve Göl Eko sistemi hakkında bilgi Göldeki yaşama, ışıkla birlikte sıcaklık da etki yapar. Suyun yoğunluğu + 4°C’ de en yüksektir. Hem soğuk hem de sıcak suyun yoğunluğu az olduğu gibi ağırlığı hafiftir. Suyun sıcaklık kapasitesi fazla ve iletimi azdır. Sıcaklık su hareketleri ile nakledilir. Gölün yüzey suyu, güneş ışınlarıyla ısıtılırsa ısınan su hafifler ve daha soğuk ve ağır olan suyun üzerinde yer alır. Çeşitli derinliklerde sıcaklık ölçümleri yapıldığında, suyun sıcaklığının yukarıdan aşağıya doğru yavaş yavaş düşmediği gö­rülür. Üstteki hafif ve alttaki ağır suyun sınırında bir atlama tabakası yani META-LİMNION vardır. Burada sıcaklık birkaç m sonra çok kuvvetli olarak düşer. Değiş­ken olmayan tabakalanma nedeniyle yüzey suyu ile derin su arasında bir değişim ol­maz. Bu duruma YAZ STAGNASYONU (=DURGUNLUĞU) denir. Gündüz ve gece arasında sıcaklık farkları nedeniyle, yaz durgunluğu sırasında üst su tabakalarında yer değiştirme olur ve sıcaklık-oksijen oranları büyük ölçüde dengelenir Yüzey suyu sonbaharda soğur ve alttaki aynı sıcaklık ve yoğunluktaki su taba­kalarına doğru hareket eder. Rüzgar da çeşitli su tabakalarını karıştıran sirkülasyon (=dönme) hareketlerini destekler. Bu duruma TAM SİRKÜLASYON denir. Oksijen­ce zengin, C02 ve besince fakir yüzey suyu ve 0,’ce fakir, C02 ve besince zengin derin su arasında değişim olur. Sıcaklık daha da düşerse yeni bir tabakalanma oluşur. Artı 4°C’den daha soğuk olan yüzey suyu veya buz, sıcak derin su üzerine yerleşir. Hipolimnion bütün yıl boyunca dengeli ve +4°C’lik bir sıcaklığa sahiptir. Derin bir göl, düşük sıcaklıklarda bile donmaz ve içindeki canlılar böylece yaşayabilir. Üstteki buzun erimesi ile ısınan yüzey suyu dibe iner ve yeni bir sirkülasyon olur. Rüzgarın yolaçtığı akıntılardan sonbahardakine benzer tam sirkülasyonlar, ilk­baharda da yüzey suyunun derin su ile yer değiştirmesine yol açar. Gölde Madde Çevrimi ve göl ekosistem Alglerin fotosentezle ürettiği organik madde, hem kendileri hem de diğer can­lılar için besin kaynağıdır. Zooplanktonlar algleri yer. Bunlar tüketicilerin ilk basa­mağını, yani primer tüketicileri oluşturur ve bitkisel maddelerin bir bölümünü kendi vücutlarının yapımı, diğer kısmını da enerji kazanımı için kullanırlar. Besin zinciri etçil segonder konsumentler üzerinden ve yırtıcı balıklara, yani SON TÜKETİ-CİLER’e kadar devam eder. Göldeki besin zinciri, besin ağını oluşturur. Gölde üretilen biyomasın tamamı besin zinciri veya doğrudan doğruya parçala­yıcılara aktarılır. Organizmaların yıkım olayları yanında otolitik parçalanma proses­leri de vardır. Otolizden, ölen organizma hücrelerindeki enzimler sorumludur. Bunlar daha sonra difüzyonla suya geçer ve üreticiler tarafından tekrar besin maddeleri olarak kullanılır. Organizma kalıntıları bakterilerin besini olur ve onlarca anorganik madde­lere parçalanır. Parçalanma olayı kısmen epilimnionda olur, yani üreticiler için yeni besin maddesi olarak kullanılır duruma gelir. Bu çevrim kısa sürede biter. Ölen bitki ve hayvanların büyük kısmı, hipolimnionda, parçalanma tabakasında ve profundal bölgede yıkılır. Burada oksijen oranı, yıkım olaylarının oksidasyon veya redüksiyon olarak mı olaylanacağını belirler. Azot Dönüşümü Oksijence zengin, koşullarda ölen canlıların proteinleri, onları yıkan mantar ve bakteriler kanalı ile amonyum iyonu, C02 ve H20′ya kadar giden bir dizi ara basa­makta yıkılır. Amonyum NİTROSOMONAS cinsi bakterilerle NÎTRİT’e, nitrit de NİTROBAKTER cinsi bakterilerle NİTRA T iyonlarına kadar okside olur. Olayın ta­mamına NÎTRİFİKASYON denir. Burada serbestleşen enerji, kemosentetik olarak aktif olan bakterilerce, organik bileşiklerin sentezinde kullanılır. Besini zengin göl­lerde, oksijen kullanılan bu olaylar nedeni ile 02 tamamen tüketilebilir. Bu nedenle gölün ölümünden söz edilir. Bu yüzden gölde olan olaylar oksijence fakir veya oksi­jensiz ortamda gerçekleşen indirgenme olaylarıdır. Burada, örneğin nitrat iyonları, diğer bakteri gruplarının faaliyeti ile amonyum iyonlarına veya moleküler azota in­dirgenir. Kükürt Dönüşümü Oksijensiz protein parçalanmasında amonyum iyonuyla birlikte H2S de oluşur. Bu da aerob koşullarda Thiobacillus, Beggiatoa ve Thiothrix gibi kemoototrof bakte­riler tarafından sülfat iyonlarına okside olur. Anaerob koşullarda, sülfat iyonları tek­rar H2S’e indirgenir. Karbon Dönüşümü Su sisteminde, 02 noksanlığında solunumla serbestleşen C02, kemosentetik olarak aktif olan bakterilerce METANA dönüştürülür. Fosfor Dönüşümü Organik maddeden serbestleşen fosfat iyonları, su sistemindeki Fe (III) iyon­larına kimyasal olarak bağlanır. Böylece çözünemeyen Fe (III) fosfat oluşur. Bu, su sisteminin sedimentlerinde tesbit edilir. Sudaki 02 içeriği düşerse, çözünemeyen Fe (III) fosfat, çözünebilen Fe (II) fosfata indirgenir. Mineralizasyon nedir Ölen canlılar ve boşaltım ürünleri madde döngüsünde parçalanır. Yüksek mo­leküllü organik maddelerden, düşük moleküllü anorganik maddelere olan dönüşüme MİNERALİZASYON denir. Mineralizasyonun son ürünü olarak C02, Nitrat, Sülfat ve Fosfat iyonları açığa çıkar. Bunlar üreticilerce tekrar besin maddesi olarak kullanı­labilir. Anaerob yıkımında H2S, amonyak ve metan oluşur. H2S ve amonyak can­lılar için oldukça güçlü zehirlerdir. 02′in olmayışı halinde, ölen organizmalar kısmen parçalanır ve böylece su tabanında çürük madde çamuru oluşur. İdeal durumda yapım ve yıkım dengededir. Daha sonra üretilen herşey tekrar mineral ize olur ve sirkülasyon hareketleri ile madde döngüsüne gönderilir.

http://www.biyologlar.com/gol-ekosistemi-nedir

BAKTERİLERİN GENEL SINIFLANDIRILMASI

BAKTERİLERİN GENEL SINIFLANDIRILMASI Endospor yapan bakteriler Bacillus cinsi: B.anthracis, B.cereus, B.pumilus, B.subtilis Clostridium cinsi: C.tetani, C.perfiringens, C.botulinum, C.novyi, C.septicum Endospor yapmayan dallanan gram (+) çomakçılar Nocardia cinsi: N.asterodies, N.brasilensis Actinomadura cinsi: A.madurae Actinomyces cinsi: A.israelii, A.bovis Mycobacterium cinsi: M.tuberculosis, M.leprae Endospor ve dallanma yapmayan gram (+) Çomakçılar Corynebacterium cinsi: C.diphtheria, C.minutissimun, C.vaginale Lactobacillus cinsi Listeria monocytogenes Erysipelothrix rhusiopathie Gram (+) koklar Staphylococcus cinsi: S.aureus, S.intermedius (bu ikisi koagülaz +), S.epidermidis, S.haemaliticus, S.saprophyticus Streptococcus cinsi: S.pyogenes, S.agalactiae, S.faecalis (b hemoliz yaparlar), S.Sanguis, S.mitis (bu ikisi alfa hemoliz yapar), S.salivarius, S.pneumoniae Peptococcus cinsi: P.niger Peptostreptococcus cinsi: P.anaerobius Gram (-) koklar Neisseria cinsi: N.gonorrhoeae, N.meningitidis Branhamella cinsi: B.catarrhalis Moraxella cinsi: M.lacunata, M.bovis Zorunlu aerob gram (-) çomakçılar Pseudomonas cinsi: P.aeruginosa, P.mallei, P.pseudomallei, vs. Alcaligenes cinsi: A.faecalis Acinetobacter cinsi Brucella bakterileri: B.melitensis, B.abortus, B.suis, B.canis Bordetella cinsi: B.pertussis, B.parapertussis Francisella cinsi: F.tumarensis Legionella pneumophila Zorunlu anaerob gram (-) çomakçılar Bacteroides cinsi: B.fragilis, B.melaninogenicus, B.thetaitomicron Fusobacterium cinsi: F.nucleatum, F.necrophorum, F.gonidiaformans Leptotrichia cinsi Havalı ve Havasız ortamda üreyebilen gram (-) çomakçılar Vibrionaceae ailesi Vibrio cinsi: V.choleare, V.eltor, V.parahaemolyticus Chromobacterium violaceum Flavobacterium meningosepticum Enterobacteriaceae ailesi Escherichia coli Shigella cinsi: S,dysenteriae, S.flexineri, S.boydii Salmonella cinsi: S.typhi, S.paratyphi, S.typimurium, vs. Arizona cinsi (Fırsatçı Enterobakter Cinsi-FEC) Citrobacter cinsi (FEC) : C.freundii, C.diversus, Edwardsiella cinsi (FEC): E.tarda Klebsiella cinsi (FEC): K.pneumoniae, K.rhinoscleromatis, K.ozaenae Enterobacter cinsi (FEC): E.cloacae, E.aerogenes, E.agglomerans, E.gergoviae, E.sakazakii, vs. Hafnia alvei Serratia cinsi (FEC): S.marcescens, vs. Proteus cinsi (FEC): P.vulgaris, P.mirabilis Morganella cinsi (FEC): M.morganii Providencia cinsi (FEC): P.rettgeri, P.stuartii, P.alcalifaciens Yersinia cinsi: Y.pestis, Y.pseudotuberculosis, Y.enterocolitica Pasteurella cinsi Kingella cinsi Actinobacillus cinsi Cardiobacterium hominis Captocytophaga cinsi Eikenella corrodens Streptobacillus monififormis Haemophilus cinsi: H.influenzae, H.aegyptius, H.ducreyi, H.haemolyticus, H.aphrophilus, H.parainfluenzae, H.parahaemoliticus, H.paraphrophilus Calymmatobacterium granulomatis Spirillaceae bakterileri Camphylobacter cinsi: C.jejuni, C.fetus Spirillum cinsi: S.minor, S.voluntans Spiroketler (Gr (-) fakültatif anaerob veya anaerob) Treponema cinsi: T.pallidum, T.pertenue, T.carateum, T.orale, vs. Borrelia cinsi: B.recurrentis, B.duttoni, B.persika, vs. Leptospira cinsi: L.interrogans, L.biflexa Riketsiler Rickettsia cinsi: R.prowazekii, R.typhi, R.rickettsii, R.sibirica, R.conorii, R.akari, R.tsutsugamushi Coxiella cinsi: C.burnetti Rochalimaea cinsi: R.quintana Klamidiler (Bedsonia) Chlamydia cinsi: C.trachomatis, C.psittaci Mollicutes sınıfı Mycoplasma cinsi: M.pneumoniae, M.orale, M.buccale, M.salivarium

http://www.biyologlar.com/bakterilerin-genel-siniflandirilmasi

MİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-Izmir Mollusca filumunun Bivalvia klasisi içinde yer alan Mytilidae familyası geniş bir yayılım alanına sahiptir. Bu familyanın en önemli türleri ise Mytilus galloprovincialis (kara midye veya Akdeniz midyesi) ve Mytilus edulis (mavi midye veya Avrupa midyesi), Modiolus barbatus (at midyesi) ve Perna sp., (Afrika midyesi)’dir. Ülkemiz sularında ise Mytilidae familyasının ekonomik olarak değerlendirilen yukarıdaki türlerden Mytilus galloprovincialis ve Modiolus barbatus olmak üzere 2 türü bulunmaktadır. Mytilus galloprovincialis İzmir’den Karadeniz sularına kadar toplanırken, Modiolus barbatus avcılığı en fazla Ayvalık ve civarından yapılmaktadır. Toplanan midyelerin bir kısmı taze veya işlenmiş olarak yurtiçinde değerlendirilirken önemli bir kısmı yurtdışına pazarlanmaktadır(Alpbaz, 1993; Alpbaz, 1997). 2-MİDYELERİN MORFOLOJİSİ VE BİYOLOJİSİ Mytilid kabukları mikro yapıya sahiptirler. Ilıman bölgelerde kabuk 2 veya 3 tabakalı argonit ve kalsitten oluşurken diğer bölgelerdeki kabuklar 2 tabaka argonit ve sedef tabakasına sahiptirler(Gosling, 1992). Genel olarak M. galloprovincialis’in kabukları ön(anteriör), arka(posteriör), ventral ve dorsal kenar olmak üzere dört kısıma ayrılabilir. Ön kenar çok kısa olup kabuklar burada birbirlerine bağlıdır. Ventral kenar bysus ipliklerinin çıktığı kenardır. Önden arkaya kadar düz bir yapıdadır. Ventralin tam tersi kenar ise dorsal kenarı oluşturur. Kavisli olması dikkat çekicidir. Posterior kenar ise midye kabuklarının açıldığı uç kısma denilmektedir. Anteriör-dorsal kenarda kabukların birbirine bağlı durmasını sağlayan boynuza benzeyen ligament yer alır. Ligament iki kabuk arasında düz bir oluk içersindedir. Ligament kabukların kapama kaslarının kapama kuvetlerinin tersi yönde bir kuvvete sahiptir. Ölen midyede kaslar kapama kuvvetini kaybettiklerinden ligamentin aksi yöndeki elastikiyetinden dolayı kabuklar açık kalır. Kabukların üzerinde umbodan itibaren küçük eliptik daireler şeklinde başlayan ve kenara paralel olarak devam eden büyüme çizgileri vardır. Midye uygun olmayan ekolojik şartlara maruz kaldığında büyüme çizgilerinde anormal bir sıklaşma, yukarı doğru kabarma veya aşağıya doğru çökme görülür. Midyelerin sağ kabukları sol kabuklarından 1mm kadar daha yüksektir (Uysal, 1970). Kabuğun ventralinde bysus yarığı vardır. Bu yarık periostrakum kıvrımlariyle örtülüdür. Hayvanın ventralinde bulunan periostrakum kıvrımları, kabuklar kapandığında yastık görevi görürler. Kabuklar kapandığında bysus ipliklerinin çıktığı bu alandan içeri su veya istenmeyen maddenin girmesini engellerler. Kabuklara içten bakıldığında kolayca fark edilebilen iki renk görülür. Orta kısım beyazımsı sedef parlaklığındadır. Kenarlara doğru renk koyu mavi olur. Bu iki kısım birbirinden manto çizgisi ile ayrılırlar. Manto kabuk üzerinde belirgin bir iz bırakır. Kabuklar kapama kası kesilerek açıldığında manto boşluğunda şu kısımlar göze çarpar: Kabuk içersine yerleşmiş ve buraya sıkıca bağlanmış manto lobları; anteriörde kabukların kenetlendiği gaga şeklindeki dişli kısmın hemen alt tarafında ligament ekseni üzerinde, ince yarık şeklinde bir ağız; ağız etrafında altta ve üstte birer çift olmak üzere 4 adet ağız kolu(palial palp) bulunur. Bunların birbirine bakan kısımları oluklu olup, üzerleri kirpikli epitel hücreleri ile örtülüdür. Ağızdan sonra özafagus ve ortaya yakın yerde ligament ekseni üzerinde, dil şeklinde koyu kahverengi kızılımsı renkte bir ayak ve ayağı öne, arkaya bağlayan kaslar görülür. Ayağın hemen arka tarafında bysus iplikleri, bunların çıktıkları ve bissogen bezlerinin bulunduğu bir şişkinlik yer almaktadır. Bu şişkinliği tabiben, genital kanalların bol olarak bulunduğu mesosoma, ayağın önüne ve arkasına doğru uzanan “V” şeklinde kaslar, özafagusun iki tarafında ve kasların üzerinde, serebral ganglionlar, anteriör kasların altında ve mide etrafında koyu kahverengi karaciğer bezleri bulunur. Bunların üzerinde vücudun iki tarafında labial palplerden posteriör kapama kasına kadar, bir çift bojanus organı uzanmaktadır. Bojanus organlarının dış kenarları boyunca, kenar bantları ile vücut duvarına tesbit edilmiş, uçları serbest birçok flamentten oluşan kitap yaprağı şeklinde iki çift solungaç, longitüdinal olarak ağızın dış kenarından posteriör kapama kasına kadar uzanır. Solungaç bantları ile posteriör kapama kası arasında üreme, boşaltım ve anüs açıklıkları, dorsalde ligamentin bittiği yerden posteriöre doğru uzanan perikard boşluğu ve bu boşlukta kalp bulunur (Uysal, 1970; Seed, 1976; Gosling, 1992). Midyeler 2-100µm boyutlarında olan organik ve inorganik her türlü partikülü süzerek beslenirler. Ortalama 7-8cm boyundaki bir midye saatte 10-15lt suyu süzme özelliğine sahiptir. Midyelerin filtrasyon hızı üzerine; -midye büyüklüğü, -partikül büyüklüğü, -partikül yoğunluğu, -partikül türü, -su sıcaklığı, -su akıntısı etkilidir(Bayne ve ark., 1976). Midyelerde beslenme az olduğunda büyüme yavaşlar veya durur. Et verimi düşer ve gonadlarda olgunlaşma tam olmaz, alınan döller dayanıksız ve küçük olur. Sıcaklığın 8-10oC civarında olduğu kış aylarında ise midyeler, partikül organik madde içerisinde yer alan ve canlı organizma olmayan kısmı ek besin olarak kullanmaktadırlar(Stirling ve Okumuş, 1995). Kabuklu su canlılarında büyümeyi sıcaklık ve besin durumu etkilemektedir(Seed, 1976; Langdon ve Newell, 1990). 3-ÜREME BİYOLOJİSİ Midyelerde çoğalma sistemi bütün vücuda yayılmış kanallar ve kanalcıklardan meydana gelir. Kanalcıkların uçları bağ dokuda ve genital organlarda son bulur. Bu kanal ve kanalcıklardan meydana gelen sistem, manto loblarının her tarafındaki bağ dokusu içersine yayılmış durumdadır. Üreme zamanlarında, genital organların bulunduğu manto dokusu tamamen cinsiyet hücreleri ile doludur. Bunlar mesosomada, perikardial boşluğun hemen altında, vücudun yan duvarlarında, karaciğerin hemen üzerindeki dokularda yayılırlar. Genel olarak üreme sistemi solungaçlar, kaslar ve ayak hariç vücudun her tarafına yayılmıştır. Mantonun anteriöründe yani karaciğerin üstünde , lateralde ve mesosomada mevcut kanallardan gelen kanalların birleşmesi ile oluşan genital kanal, mantonun iç yüzeyine , buradan arkaya döner; vücudun diğer tarfından gelen diğer kanal ile birlikte bir kanal halinde ventral kanalda solungaçların kenarına paralel olarak uzanır ve posteriör kapama kasının hemen yanından dışarı açılır. Burası canlının çoğalma organı açıklığıdır ve kontrolü altında açılıp kapanır(Seed ve Suchanek, 1992). Bütün mantoya yayılan genital organlarda ve vbağ dokusunda üreme mevsimlerinde , yoğun olarak cinsiyet hücreleri görülebilmektedir. İzmir Körfezi’nde midyeler Eylülden Mayıs-Hazirana kadar döl verebilmektedirler. Fakat en yoğun döl verimi Eylül-Ekim ve Mart-Nisan aylarında olmaktadır. Midyeler döllerini bıraktıktan sonra 1 ay içinde kendini tekrar toplayarak yeni döl üretmektedir. Midyeler ayrı eşeyli olup, olgun erkeklerde gonadlar krem-beyaz, dişilerde ise portakal sarısı tonlarındadır. Kabuklar kapalı iken cinsiyet ayrımı yapılamaz. Ancak midye kabuğunu su içinde hafif açtığında renklenme fark edilebilirse cinsiyetleri hakkında konuşulabilir. Yumurta bırakma süresi ve miktarı bulundukları ortamdaki besin türlerine ve bolluğuna, tuzluluk ve su sıcaklığına bağlı olarak değişmektedir. 3.1. Midyelerde Gonad Gelişim Safhaları Midyelerde gonad olgunlaşma süreci 4 aşamada tamamlanır: Dinlenme Safhası: Canlı bu safhada, seksüel dinlenme safhasındadır. Bağ dokusu iyi gelişmiştir. Manto fildişi rengindedir. Manto dokularında foliküller yoktur. Safha 1-Bu safhada, genital kanalların epitelial tabakalarından cinsiyet hücreleri meydana gelmeye ve foliküllerde gametogenez görülmeye başlar. Foliküller hızla artarak monto dokusunu kaplar. Erkekte çoğalma kanalcıklarında spermatidler, dişide germinal epitelyumdan tomurcuklanma ile meydana gelen oositler bulunur. Bu safhada, foliküllerin gelişme derecesine ve bağ dokusundaki glikojen miktarına göre, biraz değişiklik göstermesine rağmen manto rengi dişilerde kırmızı kahverengi veya portakal renginde, erkeklerin ise açık portakal sarısıdır. Safha 2-İyi gelişmiş foliküllerde olgun olmayan sperm ve yumurtalar bulunur. Foliküllerde yağ hücreleri görülür ve glikojen miktarı artar. Erkeğin mantosu kahverengi toprak renginde ve çok fazla foliküllerle kaplıdır. Dişinin mantoso portakal kırmızı tonlarında olup, bunun üzerinde kayısı renginde ovaryumlar tesbit edilir. Erkeğin mantosu dişininkinden daha düzgünce bir görünüştedir. Safha 3-Bu safhada midye olgundur. Mantonun bağ dokusu hemen hemen foliküllerle kaplıdır. Manto şişkincedir. Manto dişilerde portakal veya kırmızımsı, erkeklerde ise süt beyaz veya kirli beyazdır. Safha 4-Midyeler bütün cinsiyet hücrelerini dökmeye başlarlar. Bu esnada manto incelir ve şeffaflaşır. Üreme hücrelerini dökme aralıklı bir şekilde devam ederse, bu esnada erkeklerin mantosu beyazımsı, dişilerinki ise kırmızımsı olur. Üreme mevsiminde boşalan genital organlar, tekrar cinsiyet hücreleri ile doldurulur. Üreme hücrelerinin tekrar olgunlaşması ekolojik şartlara bağlı olarak, bir ayı geçmemek üzere değişir. Yaz aylarında folikül teşekkülü durur. Canlı bu dönemde seksüel dinlenme aşamasındadır. Midyeler ayrı eşeyli olmakla beraber çok nadir olarak hermafroditlik görülür (Lubet, 1959; Sugiura, 1962). Manto içersindeki dokularda gelişen sperm ve yumurtalar olgunlaşınca genital kanallardaki siller vasıtası ile dışarı atılırlar. Bu hücrelerin dışarı atılmasında bazı uyarılar etkili olmaktadır. Erkeler spermlerini ince uzun ip şeklinde su içine fışkırtarak 3-5cm mesafeye yayarlar. Sperm salımından sonra midye etrafındaki suyun rengi sütümsü bir renk alır. Dişiler de yumurtalarını üreme organı açıklığından ince uzun paketler halinde 2-3cm mesafeye yayarlar. Paketler halinde suya bıakılan yumurtalar kürevi bir şekil aldıktan sonra, birbirlerinden ayrılarak pembe veya kırmızı bir renkte zeminde birikirler. Üreme hücrelerinin bırakılması bazen devamlı olarak 2-3 saat ve bazen de aralıklı olarak 2-3 gün devam edebilir. Eğer cinsiyet hücrelerinin hepsi bırakılmaz içeride kalırsa, hücreler dejenere olur ve vücut taraından absorbe edilir(Field, 1922). Dalgalar ve su hareketleri suya bırakılan yumurta ve spermlerin yayılıp birbirine karışmasına ve döllenmenin olmasına neden olur. Ortalam bir dişi 5-12milyon arası yumurta üretebilir. Olgun yumurtalar alesital tipte, soluk kahverengi, küre şeklinde ve 60-70µm çapındadır. Yumurtaların ortasında kısmında nukleus, nucleus etrasında da yumurta granülleri yer alır. Spermler toplu iğne şeklinde olup, baş, boyun ve kuyruk bölgelerinden oluşur. Sperm 3.5-5µm’dur. Spermlere hareket sağlyan kuyrukları ise 40-60µm arasında değişen uzunluklara sahiptir. 3.2 Midyelerden Döl Alım Yöntemleri Doğal şartlar altında gonadları olgunlaşmış midyeler uygun şartlarda(sıcaklık, tuzluluk gibi) döllerini suya bırakırlar. Eğer gonadları dolu midyelerin dölleri bir seferde alınmak isteniyorsa bazı uyarı yöntemler(şoklar) uygulanarak midyenin döllerini suya bırakması sağlanır. Midyelerin ortam sıcaklığından 8-10°C düşük ve yüksek sıcaklıktaki sularda 1-2dk. bekletilmesiyle termik şok, bulundukları suya düşük voltta elektrik verilmesiyle elektrik şoku, addüktör kasının bir iğne ile uyarılması ile mekanik şok ve manto boşluğuna KCl solusyonu verilmesi ile kimyasal şok yapılmış olur. Şok yöntemler ile elde edilen fazla sperm solusyonu anaç tanklarına bırakıldığında uyarılmamış dişilerin döllerini bıraktıkları görülür. 3.3Yumurtaların İnkübasyonu ve Larva Özelikleri 20°C’de ilk bölünme döllenmeden yaklaşık 45 dak. sonra olur. Döllenmeden 24 saat sonra silli trakofora safhasına ulaşılır. Bu safhada büyüme ve hareket çok hızlı olup, larva sillerini kullanarak hareket eder. 30 saat sonra, trakofora larvasında sindirim sistemi ve dorsal bölgenin posteriör tarafında, kabuk bezinin faliyeti sonucunda kalınlaşan bir kabuk görülür. BU kabuk hızlı bir şekilde gelişerek önce tek, daha sonra sağ ve sol tarafta olmak üzere iki kabuk haline gelir. Önceleri küçük olan kabuklar döllenmeden 40 saat sonra tüm vücudu kaplar. 48 saat sonra kabuklar tamamen vücudu örterek, boyu 95 µm, eni 70µm ve kalınlığı 70µm “veliger” larva safhasına ulaşılır. Bu safhada bir velum üzerinde uzun bir kamçı ve bunun etrafında siller görülmektedir. Bir tehlike anında velum kabuk içine çekilerek kabuklar kapama kasları ile sıkıca kapatılır(Bayne ve ark., 1976). Midye larvaları yaklaşık olarak 2-4 hafta planktonik bir yaşam sürerek su sütununda aktif olarak yüzer ve beslenirler. Larva 140-150µm boya ulaştığında kabukların bağlandıkları noktada yuvarlanmış umbo görülür. Bu değişim ile larva, düz menteşeli durumdan umbo safhasına geçer. Larva 210-230µm boya ulaştığında umbo yavaş yavaş menteşeden yayılır ve küçük bir tomurcuk halini alır. Kabuk boyu 220-230µm’ye ulaştığında larvada bazı yapılar gelişmeye başlar. Göz noktası gelişir ve larva 245µm’ye ulaştığında kaybolur. Larva 195-210µm iken ayak oluşur ve 215-240µm boya ulaşan larvalarda ise ayak aktif hale gelir. Yaklaşık 260µm’ye ulaşan larvalar pediveliger denir ve bu aşamada metamorfoz geçirmeye hazırdırlar. Bununla beraber uygun bir substrat olmadığı taktirde metamorfoz 10°C’de 40 günün üzerinde 20°C’de 2 gün ertelenebilir. Metamorfozun gecikmesi durumunda büyüme çok azalır ve velum kısmen dejenere olur. Larva beslenemez ve yüzme bozulur. Ölüm oranı artar(Dare, 1976). 3.4 Larval Gelişim Midye larvaları 15–30 gün içinde metamorfoz aşamasına ulaşır ve yerleşmeye başlarlar. Larval yaşam süresi yeterli ve uygun besine, sıcaklığa, tuzluğa ve diğer değişkenlere bağlıdır. 3 haftalık bir larval dönem sonunda larva ağırlığı 0.1µg’dan 1.0µg’a ulaşır. Larva günlük olarak ağırlığının %30-60’ı kadar besine gereksinim duyar. Larva ölümleri su ortamında var olabilecek predatör organizmalardan kaynaklanabileceği gibi su kalitesindeki ekstrem değişikliklerden de kaynaklanmaktadır. Birçok vertebrate ve invertebrate bu hareketli larvaları besin olarak tüketebilmektedir. Bivalv larvalarının bulunduğu bir stoğun %3’nün poliket (Neptys ciliata) larvaları tarafından günlük besin olarak kullanılabilmektedir. Diğer ölümler ise aynı türün veya diğer suyu süzerek beslenen türlerin ergin bireyleri tarafından da bu larvalar filtre edilebilmektedirler. 3.4.1Büyümeye sıcaklığın etkisi Midye larvalarında kabuk boyuna göre büyüme eğrisi bazı verilerde linear olmasına karsın genelde sigmoidal şekildedir.Midye larvaları 5°C’de büyüme durur. Sıcaklık 10-16 arasında büyüme oranı artar ve yüksek sıcaklıklarda ise büyüme yavaşlar veya bazı populasyonlarda durur. Bu sıcaklık aralıkları populasyonların bulundukları bölgeye göre az değişiklikler gösterir. 3.4.2 Büyümeye tuzluluğun etkisi Bazı midye populasyonlarında büyüme ‰19’da durur, ‰30-32’de ise normal büyüme gösterirken, bazı pulasyonlarda ise ‰14 tuzlulukta bile büyümenin olduğu tespit edilmiştir. Midye larvalarının büyümesi üzerinde tuzluluk ve sıcaklık birbirleri ile ilişkili ve larvalar üzerinde etkili parametrelerdendir. Optimum larval büyüme 20°C’de ve ‰25-30 tuzlulukta olur. Büyüme sıcaklık 25°C‘ye çıktığında ve 10°C’nin altına düştüğünde, tuzlulkise ‰40 gibi yüksek veya çok düşük olduğunda azalmaya başlar. Midye larvalarının Büyüme istekleri dar tuzlukluk ve sıcaklık aralığındadır. Bu hayatta kalmaları için duydukları istekten daha dardır. 3.4.3 Larval Beslenme Midye larvaları süzebilecekleri büyüklükte olan her partikülü filtre edebilmektedirler. Kültür şartlarında bu süzülen maddelerin değerlendirilmesi ve değerlendirilenlerin de besinsel kalitelerinin iyi olması istenir. Larva besini olarak kullanılabilecek birçok alg hücresi üzerinde araştırmalar yapılarak bunlardan hangilerinin uygun besin olduğu tespit edilmiştir. Chlorella sp. hücre duvarının kalın olması ve metabolik artıklarının bivalve larvaları için toksik olması nedeni ile kabuklu larvalarının beslenmesinde tercih edilen bir fitoplankton türü değildir. Daha çok hücre duvarı olmayan flagellalı hücre türleri besin olarak tercih edilmektedir. Verilecek besin miktarı kültür sıcaklığına, larva sayısına ve alg kültür yaşına bağlı olarak değişir. Tek tür ile besleme yapmaktan ziyade karışık türler ile yapılacak besleme ile larvalar daha hızlı bir büyüme gösterirler. Isochrysis galbana, Monochrysis lutheri, Phaedactylum tricornutum, Dunaliella tertiolecta, Tetraselmis suecica, Chaetoceros calcitrans larva beslemede kullanılan başlıca fitoplankton türlerindendir(Bayne ve ark., 1976). 3.4.4 Metamorfoz ve Substrat Seçimi Pediveliger larvalar zemine iner ve ayağı ile sürünerek uygun yer arar. Midye kültür halatları gibi uygun bir substrat bulduğunda, pediveliger larvalarda yerleşme işlemi başlar. Bunun için bysal bez salgılarıyla kendini substrata yapışır. Bu işleme yerleşme adı verilir. Bu onun sesil hayata geçişinin başlangıcıdır. Midye kendini bysus iplikleri ile yapıştırdığında velum tamamen kaybolur ve suda yüzme aktivitesi sona erer. Midye larvaları filamentli yapıları yapışmak için tercih ederler. Düz, ürüzsüz bir zeminden çok pütürlü ve üzerinde fouling organizmaların tutunduğu yüzeyleri tercih ederler. Bu tercihlerinde kimyasall cezbedilicilikten çok, morfolojik cezbedici özelliği söz konusudur(Dare, 1976). 4-MİDYE YETŞTİRME TEKNİKLERİ Midyelerin üreme döneminin uzun olması nedeni ile doğal ortamdan yavru bireyler uygun sistemler ile kolaylıkla temin edilebilmektedir. Laboratuvar şartları altında başarılı bir şekilde yumurtlatılıp larva yetiştiriciliği yapılabilmesine karşın larva kültürü üreticilere ek bir maliyet getirmektedir. Bu sebeple tam kontrollü yumurtadan pazara yetiştiricilikten ziyade yarı kontrollu olarak yavru aşamadan pazara kadar kültür uygulamaları yapılmaktadır. Yumurta ve larva çalışmaları daha çok biyolojik, fizyolojik ve genetik çalışmalar için yapılmaktadır. Bir diğer yumurta ve larva üretim nedeni ise deniz balıkları ve krustase larvalarına zooplankton olarak ek beslemede kullanılmak amacıyla üretilmektedir. 4.1 Yavru Toplama Midye üreticileri için yavru toplama işlemi kültür içim önemli bir bölümü oluşturur. Yetiştiriciler ihtiyaç duydukları yavruları kendileri toplayabilecekleri gibi sadece bu iş ile uğraşan kişilerden de satın alarak yavru ihtiyaçlarını karşılamaktadırlar. Genellikle larva biyolojisinden yararlanarak pelajik-planktonik yaşamdan sesil yaşama geçerken midye stoklarının olduğu bölgelere midye larvalarının yapışmaları için cezbeden kollektörler bırakılır(Dare, 1976). Bu kollektörlere tutunan genç bireyler kültür alanlarına taşınarak uygun kültür sisteminde büyümeye alınırlar. Doğal ortamdan kollektörler vasıtası ile yavru midyelerin toplanmasında aşağıdaki konulara dikkat edilir: -Midye yataklarının olduğu bir bölge olmalıdır -Midyelerin üreme döneminde kollektörler denize bırakılmalıdır. -Fouling organizmaların az olduğu veya tutunmalarının az olacağı dönemde kollektörler denize bırakılmalıdır. Bu alanlara kollektörler bırakılmadan önce ön çalışmalar yapılmalı ve midyelerin ürediği fakat fouling organizmaların az olduğu zaman seçilmelidir. Eger fazla olursa midye yerine bu organizların toplanması gerçekleştirilmiş olur. -Yavruların tutunmak için tercih edecekleri kollektörler seçilmelidir. -Düz olmayan, pürüzlü ve filamentli yapılar kollektör olarak kullanılmalıdır. 4.1.1 Kollektörler ve Özellikleri Günümüzde midye yavrularının toplanması için kullanılan birçok kollektör materyali vardır. Bunlar doğal materyaller (bitki liflerinden hazırlanan halatlar, Manila halatları) ile sentetik (polypropilen ) halat ve sentetik (polyetilen) ağlardır. Kuzey Amerika’da denize sarkıtılan polipropilen halatlar ile denize bir perde gibi bırakılan farklı göz açıklığındakı polietilen ağlar kullanılmaktadır. Günümüzde en fazla kullanılan ve en iyi sonucu veren materyall hindistan cevizi liflerinden hazırlanan halatlardır. Bu halatlar filamentli yapısı nedeni ile midye yavru toplamada etkili sonuçlar vermektedir. Yavru toplamak için kazıklar kullanıldığında, bunların üzerinde balanusların ve kırmızı alglerin yapışmasını beklemek gerekmektedir. Midye spatları bu yapıların üzerine ağaç materyale oranla daha fazla tutunmaktadır. Kollektörlerin denize bırakılma zamanı kadar, denizdeki konumları da önemlidir. Halatlar denize dik durumdan ziyade deniz yüzeyine paralel olacak şekilde bırakılırlar. Kollektörlerin denize bırakılma derinliği de önemlidir. Midye yavruları su yüzeyine yakın yüzeylere yoğun miktarlarda tutunurlar. 3 m derinliğe bırakılan bir polipropilen halatın 1cm2’lik yüzey alanına tutuna yavru midye(spat) sayısı 100 iken 10 m derinliğe bırakılan halat üzerine tutunan spat sayısı 10’a düşmektedir. Bu sayı farklı bölgelerde değişebilir. Fakat derinliğe bağlı olarak midye spatlarının tutunma oranı azalır. İspanya’da Fuentes ve Molares (1994)‘de yaptıkları bir çalışmada 9 metreden 11.2 spat/4cm2, 5 metreden 29.1 spat/4cm2 ve 1 metreden ise 35.3 spat/4cm2 elde etmişlerdir. Eğer kollektör olarak ağlar kulanılıyorsa bu ağların göz açıklıkları önemlidir. 22mm göz açıklığındaki bir ağa tutunacak spat sayısıs 13mm göz açıklığındaki bir ağa göre çok daha az olacaktır. Bu şekilde tutunmanın fazla olduğu alanlarda spat toplama kontrol altına alınabilkir. Ayrıca Büyük gözlü ağlarda daha az midye tutuduğundan midyelerin büyümesi için daha geniş bir alan sağlar. Halatların uzunluğu ve çapları ülkeler ve spat toplayan üreticilere göre bazı farklılıklar gösterebilir. Maine’de13mm çapında ve Manila halatları kullanılırken, 16mm çapında ve 8m uzunluğunda polipropilen halatlar kollektör olarak kullanılmaktadır. Her üretici kendi şartlarında en iyi sonucu veren kollektörü tercih etmelidir. Bir bölgede ve ya ülkede başarılı bir şekilde kullanılan materyal aynı sonucu başka bir yerde göstermeyebilir. Diğer bir yavru toplama yöntemi ise dreçler ile midye yavrularının bol olduğu alanlarda avlanmasıdır. Pazara sunulmak üzere yapılan midye hasatları esnasında da var olan küçük bireyler ayrılarak tekrar büyümeleri için yetiştirme alanlarına bırakılmaktadırlar. İspanya’da kıyılardan midye yavruları elle toplanmaktadır. Yavru midyelerin yoğun olduğu alanlardan toplanan midyelerin zaman kaybetmeden kültür alanlarına taşınması gerekmektedir. Böylece midyeler daha az strese maruz kalırken büyüme ve yaşama oranları da yüksek olur. 4.2 Kültür Yöntemleri Avrupa’da midye kültürünün 700 yıl önce Fransa’dan ağaç kütükler ile yüklenen geminin 1235 yılında kaza yapması sonucu başladığı bilinmektedir(Mason, 1971). Gemiden kurtulan Patrick Walton adlı bir gemici üzerine ağ koyarak ağaç kütüklerini deniz kuşlarını yakalamak için kullanmıştır. Bu işlem için tam başarılı olamamıştır. Fakat bu esnada bu kütüklere fazla miktarda midyelerin turtunduğunu gözlemiştir. Böylece bu kazıkları midye toplamada ve büyütmede kullanarak besinini temin etmiştir. Küçük nbir değişiklik ile Waltson sistemi günümüzde kazık kültür sistemine dönüşmüştür. Bu sistem halen Fransa’nın batı kıyılarınsda kullanılan en etkili sistemdir. 13.yy’dan sonra Avrupa’da birçok midye kültür yöntemi geliştirilmiştir. Genel olarak 4 temel kültür yöntemi vardır. Bu yöntemlerin etkinliği ülkere göre değişiklik göstermektedir. Son yarım yüzyılda bu kültür yöntemlerine 1 yeni yöntem ilave olmuştur. Bu yüzen halatlarda yapılan midye kültürüdür. Kültür yöntemlerini genel olarak zeminde ve zeminden uzakta olmak üzere ikiye ayırabiliriz: 1- Zeminde -Dip Kültürü 2- Zeminden uzak -Kazık veya kütüklerde kültür -Raf kültürü -Sallarda kültür -Halatlarda kültür olarak sınıflamak mümkündür(Mason, 1971). 4.2.1 Kültür Alanının Seçimi Midye kültürüne başlamada önce yetiştiriciliği yapılacağı alanın dikkatle seçilmesi gerekmektedir. Kültür alanının midyelerin hızlı büyüyüp gelişmesine izin verecek sıcaklık, tuzluluk değerlerine,belli bir su akıntısına, yeterli ve uygun besin miktarına sahip olmalıdır. Toksik planton patlamaları ile evsel ve endüstriyel girdiler olmamalıdır. Uygulanak üretim sistemi arazi şartlarına uygun olmalı ve sistem deniz ulaşımı üzerinde kurulmamalıdır. 4.2.1.1 Dip Kültürü Bu yöntemde genel prensip midye yavrularının çok bol olan yerlerden toplanıp daha hızlı büyüyüp, daha fazla et dolgunluğuna sahip olacağı alanlara seyrek olarak bırakılmasına dayanır. 8-13mm büyüklüğündeki 1 yıllık olan midye yavruları doğal midye yataklarından dreçler yardımı ile toplanırlar. Taze olarak tüketime sunulacak olan güçlü addüktör kasına sahip kalın kabuklu midyeler gel-git etkisindeki deniz alanına bırakılırken ince kabuklu olup işlenecek midye yavruları 3-6m derinliğindeki kültür alanlarına tasınırlar. Bu midyeler bu alanlarda 18-24 ayda 7cm olan pazar boyuna ulaşırlar. Bazı Hollanda’lı üreticiler %30-40et verimi elde edebilmek için midyeleri 2.5-3 yıl sonra hasat etmektedirler. Bazı zeminler çamurlu yapıya sahip olabilir. Bu durumda midyelerin hasatı yine dreçler yardımı ile olur. Bu midyeler beslenmeleri esnasında bünyelerine bu çamur materyalinden de alırlar. Bu durumdaki midyeler pazara sunulmadan once taşlı veya çakıllı bir zemine yerleştirilerek var olan çamur birikintisinin temizlenmesi sağlanır(Hurlburt ve Hurlburt, 1980). Bu yöntem yaklaşık 150 yıldır Hollanda’da başarılı bir şekilde uygulanmaktadır. Ortalama midye yataklarından 5.5kg/m2 verimle 22ton/dönüm/yıl midye hasatı yapmaktadırlar. 4.2.1.2 Kazık veya Kütüklerde Kültür Fransa’nın Atlantik, Britany ve Normandy’nin kuzey kıyılarında yaygın olarak kullanılan bir kültür yöntemidir. Bu kıyılar rüzgarlara karşı korumasızdır. Gel-git çok fazla olduğu için su sıcaklığı 4-21°C arasında tuzluluğu ise ‰29-34 arasında sezona bağlı olarak değişmektedir. Bu aşırı gel-git’in yetiştiriciler açısından dezavantajı olduğu gibi avantajları da vardır. Sular çekildiğinde üreticiler midye kazıklarında çalışmalarını yaparlar(Goulletquer ve ark., 1994). Meşe ağacı en iyi kazık materyalidir. Genellikle 20cm çapında 3m uzunluğunda kazıklar kullanılmaktadır. Bu kazıklar deniz tabanına 1.5-2m dışarıda kalacak şekilde çakılırlar. Kazıkların alttan30cm’lik kısmına deniz yıldızlarının, yengeçlerinve diğer predatör organizmaların tırmanmasını engellemek için pürüzsüz plastik sarılır. Kazıklar 1m aralıklar ile dikilir ve her kazık sırası arasında 3m mesafe bırakılır. Bu aralıklar bölgeden bölgeye değişiklik gösterir. Bu kazık sıraları arasında sular çekildiği zaman at arabaları, traktörler, bisikletler ile gidilerek çalışmalar yapılır. Gel-git’in az olduğu bölgelerde ise ulaşım aracı olarak tekneler kullanılır. Kazıkların kültür alanı üstte kalan 1.5m’lik kısımdır. Walton’un gelmiş olduğu Aiguillon körfezi’nde 2.5 milyon kazık (Her sırada 50 kazığın kullanıldığı ve 50 000’den fazla sıranın olduğu) kullanılır. Toplam olarak Fransa kıyıları boyunca 1100km’lik bir alanda kazık kültürü yapılmaktadır(Bardach ve ark., 1972). Gel-git’in az olduğu alanlarda yavru midyeleri toplamak amacıyle doğal midye yataklarının olduğu yerlere halatlar(kollektörler) bırakılır. Birkaç hafta içinde midye yavruları bu halatlara yapışır. Yavru midyelerin tutunduğu bu halatlat kazıkların bulunduğu alanlara taşınır. Gel-git’in fazla olduğu bölgelerde ise yüksek su akıntısı (hareketi)olduğu için midye yavrularının tutunmasını engeller. Bu nedenle bu bölgelere yavru midyelerin tutunduğu halşatların taşınması çok önemlidir. Spatların tutunmuş olduğu kollektörler kazıklar üzerine tek tek sarılır. Bu sarma işlemi esnasında halat kazık üzerine bir çivi yardımı ile sabitlenir. Daha sonra “S” ve “Z” şeklinde sarılırlar. Bu midyeler çok kısa bir süre içinde büyüyerek kazığın tamanını kaplarlar. Başlangıçta kollektör üzerinde tutunmuş midye sayısı çok olduğu için büyüyen midyeler sıkışır. Midyelerin hızlı büyümeye devam edebilmeleri için kazıklardaki midlere kazınarak toplanır. Bu amaçla mekanik alatlerden yayalanıldığı gibi sular yükseldiğinde tekne ile kazıların yanına gidip kepçe benzeri bir kenarı bıçaklı bir aparat ile elle da toplanabilir. Bu işlem zaman alıcı ve işçiliği fazla olduğu için ekonomik durumu iyi olan üreticiler mekanik olarak çalışan aletlerden yararlanır. Bunlar alt kısmı açılabilir sert plastik ile kapatılıp açılabilen iki kapaktan oluşan bir büyük silindir tüptür. Tekneden elektronik olarak kontrol edilir. Alt kapaklar kapatılır. Bir vinç yardımı ile silindir kaldırılıp tekneden kazığı tamamen içine alacak şekilde geçirilir. Alt kapaklar yine tekneden kontrol edilerek sıkıca kapatılır. Vinç yardımı ile yukarı çekilirken midyelerde sıyrılarak bu silindir. İçine dolar. Tekneye alınan silindir içindeki midyeleri tanklara boşaltılır. Bu alet aynı zamanda midyelerin hasatında da kullanılmaktadır. Kazıklardan toplanan mnidye yavruları 15cm çapındaki ve 2m uzunluğundaki plastik ağdan hazırlanmış Bu esneyebilen silindirler tekrar aynı şekilde kazıkların üzerine sarılırlar. Bu işlemden sonra 6-7cm olan Pazar boyuna midyelerin ulaşması 12-18 ayı alır. Bu midyeler 20 kg’lık torbalar içinde pazarlanırlar. Midye kültür alanları Fransız hükümeti tarafından toksik organizmaların açısından takip edilir. Böyle bir tehlike görüldüğünde ise midye hasatı tehlike geçene kadar durdurulur. Midye kültür alanları hükümetten kiralanır ve çoğu aile işletmesidir. Birkaç büyük çiftlik dışında(75 000 kazık ile çalışan) genellikle 15 000-20 000 kazık ile üretimi gerçekleştiriler. Bir kazıktan 9,1-11,3kg/yıl canlı midye ve ya 4,5kg/yıl et hasatı yapılabilmektedir. Bir dönüm alandan bir yıl içinde 5 ton canlı midye veya 1 800 ton et üretimi yapılabilmektedir. Fransa’da midyeler taze tüketilir. Üretimin büyük bir kısmı iç tüketimi karşılamak için yapılır. Talebin fazla olduğu yıllarda ise komşu ülkelerden midye ithal ederler. 4.2.2 Sal Kültürü İspanya’nın Kuzeybatı Atlantik kıyılarında 5 körfez vardır. Bu körfezlerin kıyıları denize dik ve sarptır. Bunların toplam uzunluğu 24km genişliği ise 3-10km olup ortalama 30m(max.60m) derinliğe sahiptirler. Körfezlerin ağız kısımları adalar tarafından okyanus fırtınalarına ve dalgalarına karşı korunmaktadır. Yıllık yüzey su sıcaklığı 9-21°C ve tuzluluğu ise ‰35 ‘dir. Bu alanda Sal kültürü 30 yıldan beri uygulanmaktadır.(Figueras, 1989; Figueras, 1990; Fuentes ve Molares, 1994) Midye kültüründe kullanılan sallar oldukça basit malzelerden yapılmaktadır. İlk kullanılan malzemeler eski tekne gövdeleriydi. Daha sonraları sallar 4-6 köşeli duba ve ya yüzdürülen metal aksamdan yapılmaya başlamıştır. Günümüzde en yaygın kullanılan malzeme ise strafor ve fiberglas materyaldir. Ahşap salların ana bedeni oluşturan çerçeve 5cm2’lik yüzey alanına sahip okalüptüs ağacından hazırlanan krişlerden hazırlanmaktadır. Herbir kriş 45-50cm aralıklar ile ana bedene sıkıca bağlanmaktadır. Bu salların büyüklükleri değişmekle beraber ortalama 23m x 23m olacak şekilde hazırlanır ve bu sala 700 halat asılabilir. Ana beden yüzdürücüler ile alttan desteklenerek batması engellenir. Sallar her iki ucundan beton ağırlıklar ile deniz dibine yaklaşık 20 tonluk beton ağırlıklar ile sabitlenir. Böylece salın bir alanda sabit kalması sağlanmış olur. Sallara asılan halatları uzunluğu 9m’dir. Bu halların uzunluğu deniz tabanına değmeyecek şekilde ayarlanır. Böylece midyeler deniz yıldızlarının, yengeçlerin ve diğer dipte yaşayan predatör organizmaların zarar vermesi engellenmiş olur. Sonbaharda sahil boyunca taşlara tutunmuş olan yavru midyeler toplanır ve suda birkaç çinde eriyebilen rayon fileleri içerisine bir halat ile yerleşririlirler. Fileler sallardan sarkırılırlar. File eriyene kadar midyeler file içindeki halata bysus iplikleri ile tutunurlar.Bu midyeler bir yıl içinde 8-10cm boya ulaşırlar. İlkbaharda ise sallardan boş halat kollektörler sarkıtılarak yeni midye yavruları toplanmaktadır(Bardach ve ark.,1972). Midyeler halatlara tutunduktan sonra pazar boyuna ulaşması 18 ayı alır. İspanya bu şekilde sallarda yetiştirlen midyeler hızlı büyümeleri ve et oranlarının yüksek olması nedeni ile dünyaca bilinen en kaliteli midyelerdir. Midyelerin et verimi %35-50 arasında değişir. Kültür esnasında midyelerin birkaç kez seyreltilmesi gerekmektedir. Böylece hem midyelerin büyüme hızları düşmemekte hem de halatların aşırı ağırlıktan dolayı kopması engellenmiş olmaktadır. Bu işlem ile bir halat 2-3 halata bölünebilmektedir. Bu halatlar 13mm naylon veya 25mm esparto bitkisinden hazırlanmaktadır. Halatların her 40-50cm’sine 30cm boyunda ve 20mm kalınlığında tahta çubuklar yerleştirilerek halat üzerinde büyüdükçe ağırlaşan midye kümelerinin aşağıya kaymasını engellemektir. 9m uzunluğundaki bir halat 113kg /yıl midye üretir. 700 halatlı bir ise 80 ton kabuklu midye üretir. Bu da 41 ton midye eti demektir. Yoğun olarak midye üretiminin yapıldığı alanın 1 dönümünde ise 90 800kg midye eti yıllık olarak üretilebilmektedir. İspanyol midye üreticileri diğer canlıların kültürü ile uğraşan üreticilere göre midyelerin doğal ortamdan yararlanarak büyümesi, herhangibir ek masrafı ve yapay besleme sorunun olmaması nedeni ile 200 kat daha karlıdırlar. Bu halatların hasatı vinçli tekneler ile yapılır. Halatlar vinç ile kaldırılır teknede bulunan bir metal sepet içine Sal bağlantıları kesiler yerleştirilir. Hasat edilen midyeler İspanya içi veya dışına satılmadan önce kanunlarına göre mutlaka 24 saat depurasyon işlemine tabii tutulmalıdır. Bu basit depurasyon işleminde midyeler tanlara alınır. Hafif klor solusyonu içeren sürekli deniz suyuna 48 ssat maruz bırakılırlar. Böylece midyeler bünyelerinde bulunabilecek istenmeyen maddeleri bu ytemiz akışkanlı suya bırakarak etleri temizlenmiş olacaktır. Bu işlemden sonra midyeler bu klorlu sudan çıkarılır ve süzülür, 3 saat sularının akması beklenir ve 15 kg’lık fileler içerisinde soğutmanın olmadığı kapalı bir araç içinde 3 gün gibi uzun süre dayanabilirler. İspanya’da deniz alanı ve sallar hükümetten kiralanmaktadır. Bir aile ortalama büyüklükteki 2-4 midye salını rahatlıkla idare edebilmektedir. Büyük şirketler ise 20-30 Sal ile çalışmaktadır. İspanya üretiminin %95’i Galiçya körfezlerinden yapılmaktadır. Üretimin %25’ Fransa ve Italya’ya satılmaktadır. 4.2.3 Halatlarda Kültür Bu sistem deniz yüzeyine horizontal serilen ana halat bedeninden ve bunların yüzdürücülerinden oluşur. Bu ana bedene vertikal olarak hem kollektör amaçlı halatlar asılabileceği gibi hem de midyelerin bu halatlarda büyümesi sağlanabilmektedir. Horizontal olan ana bedeb 60m uzunluğunda olup 6m aralıklar ile 200lt’lik plak bidonlar ile yüzdürülmektedir. Bu ana beden tek olarak hazırlanabileceği gibi aralarındaki mesafe 1m olacak şekilde bir çift olarak da hazırlanabilmektedir. Bu anabedenler arası mesafe 3m olur. Vertikal halatlat ise 50cm aralıklar ile bağlanır ve uzunlukları 6,5m’dir. Bu halatların uzunluğu , aralarındaki mesafeler yine üreticilere göre değişiklikler göstermektedir(Figueras, 1989). Bu sistemlerde yavru toplama doğrudan sisteme asılan halat kollektörler ile yapılmaktadır. İlkbaharda halatlara tutunan midyeler 14-16 ay sonra 6-7cm boya ulaşırlar. Fazla tutunmuş midye yoksa bu midyelerde seyreltme işlemi yapılmaz. Bu sistemin en önemli avantajı ağır kış şartlatına karşı dayanıklı olmasıdır. Gelgit’in 1m gibi az olduğu yerlerde uygulannan bu istemde operasyon da vinçli tekneler ile yapılmaktadır. Kış şartlarının çok ağır geçtiği ülkelerde su yüzeyi buz tutmaktadır. Bu durumda ne midyeler ne de sistem hiçbir zarar görmez. Kışı ağır geçen İsveç’de yılda 1 dönümden 13 600-15 900kg midye eti elde edilebilmektedir. Kültür sitemleri ülkeler göre faklılıklar gösterebilir (Tablo 1). Bir ülkenin kullandığı sistemin tamamen aynısını yapmaktansa, kültürü yapılacak alanın şartlarına uygun sistem bazı modofikasyonlar ile kullanılabilir. Kültür alanında böyle bir sistemin küçük br modeli hazırlanarak midyelerin tutunma veya büyüme oranları ile sistemin dayanıklılığı test edilmelidir(Hickman, 1992). Kültür yöntemleri içerisinde bugün en fazla tercih edilen ve kullanılan sal ve halat kültürleridir. Aynı bölgede dipte yapılan kültüre göre sallarda veya halatlarda yapılan kültürün %50 daha fazla verim verdiği bilinmektedir. Bu sistemler ile deniz alanından maksimum bir verim alınırken zeminde var olan predatör canlılardan da midyeler korunmuş olmaktadır. Sal ve halat kültürlerinde ise foling organizmalar ile predatör balıklar problemi vardır. Foulingin fazla olduğu dönemlerde midye fileleri veya halatları sık sık kontrol edilmelidir. Eğer fazla miktarda fouling organizma midyeler üzerine yapışırsa onların su ile olan temaslarını engelleyecektir. Bu durumdaki midyelerde su alış verişi azalacağından sudan hem besinini hem de oksijenini sağlayamayan midyeler kısa bir süre sonra öleceklerdir. Bu organizmalar ile halatlara veya sallara binen yük artacak ve sistem batma tehlikesi ile karşı karşıya kalacaktır. Predatör organizmaların başında balıklar, yengeçler, deniz yıldızları ve deniz kuşları gelmektedir. Midyeleri besin olarak kullanarak zarar vermektedirler(Fuentes ve ark., 1994; Lök ve Köse, 1999). Entegre Kültür Uygulamaları Suyu süzerek beslenen midye gibi kabuklu su canlıları son yıllarda deniz balıkları kültür alanlarında birlikte kültür uygulamaları artmıştır. Bu sistemde ağ kafeslerden belli mesafeye(20-50m) yerleştirilen halat veya sal kültür sistemlerinde midye veya istiridye kültürleri yapılmaktadır. Balık besleme esnasında suda çözünenen yemler kabuklular tarafından değerlendirildiği gibi, yemlerin çözünmesi ile suya karışan azotlu bileşikler ile beslenerek çoğalan fitoplankton hücreleri de kullanılmaktadır. Böylece ağ kafeslerinin bulunduğu bölge kabuklular tarafından filtre edilip temizlenirken, yeni bir ürünün üretimi hiçbir yemleme yapmadan söz konusu olmaktadır (Hindioğlu, 1998) 5-Sonuç Kabuklu su ürünleri içerisinde ülkemizde en iyi bilinen tür midye olmasına karşın henüz bilinçli bir yetiştiricilik çalışması başlamamıştır. Bilimsel araştırmalar yanında ağ kafes üreticileri yüzdürücülere bol miktarda tutunan midyeleri basit sistemlerde kültür çalışmalarını denemeye başlamışlardır. Gelecekte ağ kafeslerde balık yetiştiriciliği ile birlikte kültür uygulamalarının başlaması ile hem çevre hem de kabuklu su ürünleri üretimi açısından yararlı olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E. Ü. Su Ür. Fak. Yay. 26-82. Alpbaz, A.G., 1997. Dünyada ve Türkiye’de su ürünleri yetiştiriciliğinin dünü, bugünü ve geleceği. Akdeniz Balıkçılık Kongresi. E.Ü.Su.Ür. Fak.Yay. 5-15. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Culture of mussels. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms . pp. 760-776. Bayne, B.L., Widdows, J., Thompson, R.J., 1976. Physiology: I. In: Bayne, B.L.(ed.). marine mussels: their ecology and physiology. Cambridge University Press. pp. 122-159. Dare, P. J., 1976. Settlement, growth and production of the mussel, Mytilus edulis L., in Morecambe Bay, England. Fish. Invest. (Ser.2), 28: 1. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Figueras, A. J., 1989. Mussel culture in Spain and France. World Aquaculture, 20(4): 8-17. Figueras, A., 1990. Mussel culture in Spain. Mar. Behav. Physiol., 16: 177-207. Fuentes, J., Reyero, I., Zapata, C., Alvarez, G., 1992. Influence of stock and culture site on growth rate and mortality of mussels (Mytilus galloprovincialis Lmk.) in Galicia, Spain. Aquaculture, 131-142. Fuentes, J., Molares, J., 1994. Settlement of the mussel Mytilus galloprovincialis on collectors suspended from rafts in the Ria de Arousa /NW pf Spain): annual pattern and spatial variability. Aquaculture,122: 55-62. Gosling, E.M., 1992. Systematics and geographic distribution of Mytilus. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp. 1-17. Goulletquer, P. T., Joly, J. P., LeGagneur, E., Ruelle, F.,1994. Mussel (Mytilus edulis) culture along the Normandy coastline (France) : Stock assessment and growth monitoring. ICES Statutory Meeting , Shellfish Committee, K: 10, p. 11. Hickman, R.W.,1992. Mussel cultivation. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp.465-510. Hindioğlu, A. 1998. Deniz balıkları yetiştiriciliği ile kabuklu kültürünün entegrasyonu. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı, Türkiye Kıyıları 98 Bildiriler Kitabı, 22-25 Eylül 1998 ODTÜ Ankara s. 261-271 Hurlburt, C.G., Hurlburt, S.W., 1980. European mussel culture technology and its adaptability to North American waters. In: Lutz, R.A.(ed). Mussel culture and harvest: A North American perspective. Developments in aquaculture and fisheries science, 7. Elsevier scientific publishing company,New York pp.69-98 Langdon, C. J., Newell, R. I. E., 1990. Utilization of detritus and bacteria as food sources by two bivalve suspension feeders, the oyster Crassostrea virginica and the mussel Geukensia. Mar. Ecol. Prog. Ser. 58: 299-310. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Lubet, P. E., 1959. Reserches sur le cycle sexuel et L’emission des Gametes Chez les Pectinides et les Mytilides. Rev. Trav. Ist. Pm. 23(4), pp. 396-545, Paris. Mason, J. 1971. Mussel cultivation. Underwater Journal 3: 52-59. Seed, R., 1976. Ecology. In: Bayne, B. L.(ed), Marine mussels: their ecology and physiology, Cambridge University Press, pp: 13-65. Seed, R., Suchanek, T.H., 1992. Population and community ecology of Mytilus. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp. 87-157. Stirling,H.P. ve Okumus, I., 1995. Growth and production of mussels (Mytilus edulis L.) suspended at salmon cages and shellfish farms in two Scottish sea lochs. Aquaculture, 134: 193-210. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole, 123: 203-206. Uysal, H., 1970. Türkiye sahillerinde bulunan midyeler “Mytilus galloprovincialis Lamarck” üzerinde biyolojik ve ekolojik araştırmalar. E.Ü. Fen Fak., İlmi Raporlar Serisi , No.79, 79p.

http://www.biyologlar.com/midye-biyolojisi-ve-yetistirme-teknikleri

Kurbağaların Özellikleri

Amphibia iki taraflı yaşayışı olanlar anlamına gelir [amphi: İki taraflı, bios: yaşam, hayat]. Derileri çıplaktır ve nemli kalması için bol salgı bezi içerir. Gelişmeleri genel olarak metamorfoz iledir. Erginlerin ekserisi etçildir. Kuraklık ve tuzluluğa tahammülleri yoktur. Bu sınıfın kapsamına, birbirinden oldukça farklı görünümde olan ve günümüzde yaşayan 3 tip hayvan dahildir: Bunlar: Kuyruksuz Kurbağalar (Anura= Salientia), Kuyruklu Kurbağalar (=Semenderler) (Urodela= Caudata) ve ilk bakışta yılan veya solucana benzeyen Bacaksız Kurbağalar Sınıfa Amphibia denmesi yaşam tarzı ile ilgilidir. Zira birçok türü hayatlarını kısmen suda, kısmen karada geçirir. Çoğu tür hem suda kısmen de karada yaşar. Bununla birlikte bütün hayatlarını tamamen suda (Typhlomolge, Perennibranchiata) veya karada (Mertensiella, Lyciasalamandra) geçirenler de vardır. Kara kurbağaları gençlik evrelerini suda, ergin evrelerini ise tamamen karada geçirirler. Ergin olarak karaya çıktığında çokları yine üreme zamanında suya gider. Genellikle dişi yumurtalarını suya bırakır. Kurbağaların Başlıca Özellikleri: 1. Fosil türler (Icthyostegaliagrubu) hariç, vücut üzeri tamamen çıplaktır: pul, tüy, kıl gibi deri türevleri bulunmaz. Yalnız Apoda(Bacaksız Kurbağalar)’da deri içinde küçük pullar vardır. 2. Derileri bol bez içerir. Bazı bezlerin saldığı mukus maddesi (sümüksü salgı) deriyi ıslak ve kaygan tutar (Mukus Bezleri). Ayrıca zehir salgılayan bezler de vardır (Seroz Bezler) (Şekil 2). Genelde süt renginde salgısı olan zehir bezleri, ancak basınç veya hayvanın hırpalanması halinde aktiftir. Sözgelimi,2 cm kadar olabilen bir ağaç kurbağası, Dendrobates’de zehir bezleri çok gelişmiş ve etkilidir. Orta Amerika yerlileri bu zehri ok zehri yapımında kullanır. 3. Balıklarla beraber omurgalıların Anamnia grubuna dahildir. Zira embriyoları çıplak olup amnion zarı yoktur. Vücut sıcaklığı çevreye bağlı olarak değişiklik gösterir (Poikilotherm). 4. Kalpleri 2 kulakçık (atrium) ve bir karıncık (ventrikulus) olmak üzere 3 gözlüdür. Perennibranchiata [perenni: daimi, her dem; branch: solungaç] grubu hariç, vücut ve akciğer olmak üzere iki ayrı dolaşıma sahiptirler. İlkine “Büyük Dolaşım”, ikincisine “Küçük Dolaşım” denir. 5. Perennibranchiata grubu hariç, genelde 4 tip solunum görülür. 1. Akciğer Solunumu (erginde), 2. Solungaç solunumu (larvada), 3. Deri Solunumu ve 4. Ağız içi-Yutak Boşluğu Solunumu (Buccopharyngeal) (ergin ve karasal formlarda) ile yapılır. 6. Bunlar sudan karaya geçen ilk omurgalı grubu olmasına rağmen, karasal olanlar dahi ergin safhada, üreme zamanı suya girerler. Çoğu halen yumurtalarını suya bırakır, gençlerin gelişmesi suda tamamlanır. İlginç bir özellik ise, yumurta karaya bırakılsa bile, sürüngen ve kuşlarda olduğu gibi sert kabuk bulunmaz, sadece yumuşak jelatinimsi kılıf bulunur. Yumurta suda bulunduğu için sert kabuğa ihtiyaç yoktur. Üreme zamanında erkek ve dişi arasında, iki eşey arasında Ascaphus cinsi (Anura takımı) ve Apoda takımı hariç, kopulasyon yoktur. Kucaklaşma denilebilecek ve günlerce sürebilen “Amplexus (Ampleksus)” görülür. Bu olaydan sonra kuyruksuz kurbağaların çoğunda (Ascaphus cinsi hariç), bazı semenderlerde (örneğin Sirenidae ailesinde) ve bacaksız kurbağalarda genelde dişi yumurtalarını, erkek de spermatozoitlerini genellikle suya bırakır ve döllenme suda olur. Diğer bir deyişle türlerin çoğunda dış döllenme vardır. Bununla birlikte Ascaphus cinsi kuyruksuz kurbağalarda, Sirenidae ailesi dışındaki semenderlerde ve bacaksız kurbağaların çoğunda dahili döllenme görülür. Gelişmelerinde genellikle bir “larva” (ergine benzemeyen gençlik safhası) safhası vardır. Nadiren bazılarında direkt gelişme görülür, yani doğan yavru erginin bir minyatürü gibidir (Plethodon). Ovipari her ne kadar sınıf içinde yaygın bir üreme şekli ise de pek çok türde, ovovivipari (Salamandra infraimmaculata), keza vivipari görülür (Mertensiella luschani*) ve larvalar çoğunlukla suya bırakılır. Bazılarında ise sucul larva evresi yoktur. 8. Amfibiler suda ve karada bulunur. Fakat karada yaşayanlar bile ancak rutubetli yerlerde barınabilirler. Kuraklığa dayanamazlar. Suda yaşayanları da tipik tatlısu hayvanlarıdır. Tuzluluğa toleransları yoktur. Denizde ve tuzlu göllerde hiç rastlanmaz. Ancak içlerinde çok az acısuya ve çok hafif tuzlu suya dayanıklı olanlar olabilir. Böyle ekstrem türlere örnek olarak, kurak bölgelere kadar toprak içine gömülme ile sokulan ve yağmur mevsiminde ortaya çıkan, geceleyin aktif Pelobates syriacus’u ve tuzlu sahillerde görülen Bufo marinus’u verebiliriz. 9. Beslenme erginlerde genellikle etçil (karnivor) olup boylarına göre çeşitli hayvanları: örneğin solucan, salyangoz, hatta büyük olanlar küçük balık, sürüngen ve küçük memelileri avlarlar (Rana goliath, Bufo spp.). Larval safhada beslenme gruba göre farklıdır. Semender larvaları erginleri gibi etçil, kuyruksuz kurbağa larvaları ise ilk safhalarda bitkiseldir, gelişme ile etçil beslenmeye geçerler. Buna uygun olarak bağırsak kısalır ve çene yapıları değişir. 10. Amfibiler deniz seviyesine yakın yerlerde yaşadığı gibi, bazıları yüksek dağlarda da bulunabilir. Örneğin Bufo viridis** Himalaya’da takriben 4500 m’de bile bulunmuştur. 11. Bu sınıfın ilginç olan bir tarafı da omurgalılar arasında orta bir yer işgal etmesidir. Yani tamamen suda yaşayan balıklar ile kara hayatına uymuş sürüngenler arasında bulunmasıdır. Bununla beraber sürüngenlerden de tipik su hayatına uymuş formlar (örneğin, su yılanları, deniz kaplumbağaları gibi) vardır. Fakat bunlar yine de kara hayatından tam uzaklaşmamış olup akciğerleriyle solunum yaparlar ve sert kabuklu yumurtalarını karaya bırakırlar. 12. Vokalizasyon (Ses Çıkarma) ve İşitme: Karasal formlarda ses çıkarma telleri çok iyi bir şekilde gelişmiştir. Ses üretimi kuyruklu ve bacaksız kurbağalarda son derecede kısıtlıdır. Urodela grubunda bazı plethodontid (akciğersiz) semenderlerin yumuşak sesleri, Siren ve Amphiuma cinslerinin kendilerine özgü ıslıkları; Ambystoma gibi bazı cinslerin çıkardığı ses tipleri korunma yahut orientasyonda yardımcı unsurlardır. Kuyruksuz kurbağaların çoğu eşlerini cezbetmede, bölgelerini duyurmada yada tehlike ifade etmede rol oynayan çeşitli sesleri çıkarabilen iyi gelişmiş vokal organlara sahiptirler. Tetrapodların çoğunda Larynx (Larinks, Gırtlak) apareyi aracılığıyla ses üretilir. Genelde bu yapı, ses tellerini içinde barındıran kıkırdak bir kapsülden oluşur. Bu aparey, akciğerlerle ağız boşluğu arasında yer alır. Ciğerleri terk eden hava, yapraksı ve ipliksi, bağ dokusundan yapılar, yani ses telleri ve bunlarla ilişkili kıkırdaklar üzerinden geçerek bu yapıların titreşmelerine neden olur. Bu titreşimler, hava sütununda “pulslanmalara” yol açar ki, biz bu olayı ses olarak algılarız. Anurlarda işlevsel larinks apareyleri hem dişi hem de erkek bireylerde mevcuttur, ancak bu yapılar erkeklerde çok daha iyi gelişmiştir. Ayrıca sadece erkek cinsiyette, ses rezonatörleri (amplifikatörleri) olarak iş gören ses keseleri vardır. Ses algılama amacıyla, akustik sinyallerin seçici olarak işleme tabi tutulabilmeleri için kuyruksuz kurbağalarda kendilerine özgü karmaşık bir reseptör ve periferal sinir sistemi gelişmiştir. Türlerin çoğunluğunda, primer ses reseptörleri dış kulaklardır; ancak ön üyeler de ses algılamada iş görür. Kuyruksuz kurbağaların çoğunda salgı bezi içermeyen, ince deriden yapılı, büyükçe Timpanik Zarlar (Kulak Zarları, Tympanum) dış kulağı oluşturur. Bu dış kulak, hava ile taşınan ses dalgalarının reseptörüdür ve ses dalgalarının basıncını orta kulaktaki Columella kemiğinin titreşimlerine dönüştürür. Bu titreşimler de iç kulak sıvısına aktarılır. Tympanum-Columella ikilisi, frekansı 1000 Hz’den yüksek ses dalgalarının algılanmasında işlevseldir. Frekansı 1000 Hz’den düşük ses dalgalarının algılanmasındaysa iç kulağın operkulumu ve buna bağlı kaslar (Musculus opercularis) iş görür (Şekil 4). Bu durumda ses dalgalarının reseptörü ön üyelerdir. Operkulum sadece amfibilerde işitmeye katılır. Daha yüksek omurgalılarda ise yoktur. Evrimleri: Amphibia, omurgalılar içinde sudan kara hayatına geçişi temsil eden bir gruptur. Yani ne sudan tamamen kurtulmuşlar, ne de karaya tam uyabilmişlerdir. Bu hayat tarzları bunların ilk geldiği ortamın su olduğunu gösterir. Paleontolojik bilgilere göre Amphibia, Crossopterygii denen balık grubundan orijinlenmiştir. Olasılıkla Devonien zamanında bu hayvanlar sudan karaya çıkmışlar ve kara ortamına ayak uydurmak için bunlarda bir takım değişiklikler olmuş ve yeni özellikler kazanmışlardır. Sudan karaya geçişte belli başlı 3 esas sistemde: 1. Solunum Sistemi, 2. Dolaşım Sistemi ve 3. Ekstremitelerde değişiklikler meydana gelmiştir. 1. Solunum Sistemindeki Değişiklik: Solunum sisteminde solungaçlar yerine akciğerler iş görmeğe başlamıştır. Bütün kara omurgalılarındaki akciğerler bazı balıklarda, örneğin Dipnoi (Çift Solunumlu Balıklar, Akciğerli Balıklar) grubunda, görülen hava keseleriyle homologtur (Homolog=orijini aynı olan, aynı yapıya sahip demektir). Zira her iki yapının da orijini sindirim borusunun ön kısmıdır. Dipnoi grubu kemikli balıklar, solungaçlardan başka hava kesesi ile solunum yapmağa ve doğrudan doğruya havanın O2’ninden faydalanmağa başlamışlardır. Kurbağalarda daha da ileri giderek, bu hava kesesi ilksel akciğer şeklini almıştır. Aşağı yukarı basit bir torba gibidir. 2. Dolaşım Sistemindeki Değişiklik: Balıkta tek dolaşım vardır. Kalpte daima kirli kan bulunur. Daha sonra temizlenmek üzere solungaçlara gönderilir, orada temizlendikten sonra dorsal aortaya geçip vücudun çeşitli yerlerine gider ve kirli olarak kalbe döner. Kurbağaların erginleri dahil akciğerli olan kara omurgalılarında ise kalbe kirli olarak gelen kan, temizlenmek için önce akciğerlere gönderilir ve oradan tekrar kalbe döner, buna “Küçük Dolaşım” denilmektedir. Ondan sonra kan kalpten vücudun diğer yerlerine gönderilir ve oralardan da tekrar kalbe döner, bu da “Büyük Dolaşım”dır. Kara omurgalıları için tipik olan bu çift dolaşım, tüm hayatları boyunca solungaçlara sahip olan Perennibranchiata grubu hariç, ilk kez Amphibia’da görülmeğe başlar. Yine balıkta tek olan kalpteki atrium, akciğerlerin gelişimiyle birlikte, ilk kez Amphibia’da iki odacıklı bir hal alır ve bu nedenle çift atrium bulunur. 3. Ekstremitelerdeki Değişiklik: Bilindiği gibi Chondrichthyes’ten (Kıkırdaklı Balıklar) itibaren balıklarda, pektoral (göğüs) ve pelvik (kalça) yüzgeçler olmak üzere, çift yüzgeçler görülür. Bunlar ancak suda hareketi sağlamaya yarayabilir. Halbuki Amphibia’da ekstremiteler hem karada yürümeye elverişli hem de vücudu yerden kaldıracak şekildedir. Fakat bugün yaşayan amfibiler ile bugün yaşayan balıklar arasında ekstremiteler bakımından karşılaştırma yapılacak olursa, bir benzerlik görmek zordur. Zira bugün yaşayan balıkların çoğundan, özellikle Teleost balıklardan, Amphibia bacakları çıkmış olamaz. Zira iskeletleri buna müsait değildir. Çünkü, çift yüzgeçler kemerlere birkaç kemikle bağlıdır. Yapılarında benzerlik yoktur. Bu nedenle amfibilerin bacaklarının orijinini başka grupta aramak gerekir. Balıklardan eski bir grup olan Crossopterygii’nin ekstremite iskeleti ile ilksel amfibi bacak iskeleti aynı yapıdadır. Her ikisinde de kemere bağlantı tek kemik iledir. Buna göre amfibi bacağı Crossopterygii yüzgecinden çıkmıştır. Çünkü ikisinde de homolog kısımlar vardır. Amphibia’nın Sınıflandırılması:Amfibilerin sınıflandırılması konusunda çok değişik sistemler bulunmaktadır. Storer ve ark. (1979), amfibileri 5 altsınıfaayırır: Bunlar Labyrinthodontia, Lepospondyli, Salientia (Anura), Urodela (=Caudata, Gradientia) ve Gymnophiona (=Apoda)’dır. Bununla birlikte bugün yaşayan amfibiler sadece son 3 altsınıf içinde bulunur. Diğerleri fosildir. Salientiaaltsınıfı içinde 2 takım (Ordo: Proanura ve Anura), Urodela altsınıfı içinde 1 takım (Ordo: Caudata= Gradientia) ve Gymnophionaaltsınıfı içinde ise yine 1 takım (Ordo: Gymnophiona= Apoda) takım bulunur. Salientia içinde alınan Proanura takımı da fosil amfibileri içerir. Dersimizin kapsamı dikkate alınarak, burada sadece aktüel temsilcileri olan gruplara değinilecektir. Bugün yaşayan kurbağalar 3 takım halinde olup, çoğu otör tarafından Lissamphibia [liss: düz, pulsuz) adı altında gruplandırılırlar. Bunlar: Ordo 1: Apoda(=Gymnophiona, Coecilia) (Bacaksız Kurbağalar) [pod: bacak; gymn: çıplak; ophio: yılan] Ordo 2: Urodela (=Caudata, Gradientia) (Kuyruklu Kurbağalar) [uro, cauda: kuyruk; gradien: yürümek] Ordo 3: Anura (=Salientia) (Kuyruksuz Kurbağalar) [salien: sıçramak: An, A: -sız, -suz, olmayan] * Günümüzde Lyciasalamandra luschani olarak da kabul edilir. **Epidalea veya Pseudoepidelea cinsi içerisinde ele alan otörler yanında Anadolu, Kıbrıs ve Ortadoğu’da bulunan populasyonların, kuzey komşu ülkelerde dağılış gösteren Bufo variabilis (=Pseudoepidelea variabilis) ile aynı olduğunu, moleküler genetik çalışmalara dayanarak iddia edenler de vardır.

http://www.biyologlar.com/kurbagalarin-ozellikleri

Sardunyalar (Pelargonium)

Anavatanı Güney Afrika olan sardunyalar hoş kokulu gür yeşilliği,parlak renkli demet demet çiçekleriyle şüphesiz dünyada en sevilen çiçeklerin başında gelir.Yetiştirilmesi, çoğaltılması kolay,çeşitleri zengin,çiçek açma zamanı çok uzundur.Öyle ki uygun şartlar altında o zarif çiçeklerini yıl boyunca bizden esirgemez. Sardunyalar dört ana gruba ayrılır: GENEL (Zonal) En yaygın olan tür budur.Tüylü yaprakları düzrenk veya ebruli ,yuvarlak dilimli,çiçekleri demetler halinde sarı ve mavi hariç her renkte,katmerli veya yalınkat olabilir.Boyu 30-60 cm.kadar,budanmazsa çok daha fazla uzayabilir.Çiçeklenme süresi çok uzundur.Çelik ve tohumdan kolaylıkla çoğalır. SAKIZ SARDUNYASI (Trailing) Bu sarkık dallı tür parlak etli yaprakları,beyazdan bordoya kadar değişen,katmerli veya yalınkat demetler halinde açan gösterişli çiçekleriyle bilinir.Esnek dalları 1 metreye kadar sarkabilir.Cüce türleri de vardır.Soğuğa karşı daha hassastır.Çelikten kolayca yetişir. CEYLAN (Regal) Halk arasında ceylan ve ye karagöz olarak adlandırılan bu tür,sivri uçlu tüylü yapraklara ve açelyayı andıran çok gösterişli çiçeklere sahiptir.Bu çiçeklerin ortaları siyah,kenarları çok canlı renklerde düz veya ebruli olabilirler.Boyu 30 cm. den bir metreye kadar uzayabilir.Tek dezavantajı çiçeklenme süresinin diğer türlere göre kısa oluşudur. ITIR (scented leaved)Çok eskiden beri evlerimizde yetişen ıtırın yalınkat ve pembe renkteki çiçekleri pek gösterişli değildir.Çiçeklerinden ziyade yapraklarının özel kokusuyla tanınmıştır.Garip şekilli,girintili çıkıntılı bu yapraklar cinsine göre gül,limon,nane ya da elma kokuludur.yaprakları hafifçe oğuşturduğunuzda o nefis aroması çevreye yayılır.Kurutulmuş halde pot pourri'lerde kullanılmaktadır. Kışa gerçekten dayanıklı tek sardunya türü, anavatanı Türkiye olan (pelargonium endlicherianum) dur. ÖZELLİKLERİ: ISI: Sardunyalar sıcağı sever. Kışın dışarıda donabileceği için aydınlık ,ama ısıtılmayan kapalı bir yerde muhafaza edilir. Bahçede yere ekilenler de kasım ayında dikkatlice sökülerek kasalara dikilir ve içeri alınır. IŞIK: Çok çiçek açması için bol güneş görmelidir. Gün içinde 1-2 saat gölge zarar vermez. SULAMA: Gerektiği zaman bolca sulanır.Tekrarı için toprağının epeyce kuruması beklenir.Aşırı sulama bitkiyi çürütür.Susuzluğa dayanır. Kışın suyu iyice azaltılır. NEM: Lüzum yoktur. İki yılda bir saksı değiştirmek yeterlidir.Bu işlem ilkbaharda yapılır.Çiçek zamanı 15 günde bir uygun türde sıvı gübreyle beslenir. Aşırı besleme çiçeği azaltır, yapraklarını çoğaltır. Sardunyalar şubat-mart ayında budanır.Fazla uzun dallarının kısaltılması yeterli olur. Çiçek mevsimini uzatmak için geçmiş çiçekleri düzenli olarak ayıklanmalıdır.Çoğaltmak için yazın bitkiden15 cm. boyunda çelikler kesilir.Bir gün dışarda bekletilip soldurulur.Önceden sulanmış saksılara ekilir.Tutuncaya kadar çok az sulanır. Genel sardunya tohumdan da kolaylıkla yetiştirilebilir. Kaynak: humeyraozdamar.net

http://www.biyologlar.com/sardunyalar-pelargonium

Kromofil Hücreler

A- Asidofiller (Alfa hücreleri): Toplam hücrelerin %40’ını oluşturur. İyi şekilde boyanabilen asidofiller normal preparatlarda kolaylıkla tanınırlar. Kromofoblardan daha büyük olup (14-20 mikron) hücre sınırları belirgindir. Sitoplazmalarında oldukça fazla bulunan küçük özel granülleri pek çok asidik boyalarla (eozin, asit fuksin, orange G ve azokarmin gibi) ile boyanabilirler. Seçici boyama metodları ve immunositokimya ile iki tip asidofil ayırt edilir. 1- Somatotroplar: Parankimal hücrelerin %50’sini oluştururlar. Sıklıkla gruplar halinde görülen bu asidofiller büyüme hormonu ( GH veya Somatotropin) salgılarlar. Dolayısı ile somatotroplar olarak adlandırılırlar. Elektron mikroskobide bu hücrelerin oldukça gelişmiş granüler endoplazmik retikülüme sahip oldukları görülür. Sitoplazmalarında 300-350 nm kadar çapa sahip çok sayıda elektron dens granül bulunur. Somatotropin özellikle kemik epifizlerine etki ederek genel vücut büyümesini sitimüle eder. Hipofizektomi sonucunda büyümede durma görülür ki hormon verilmesi ile büyüme normale dönebilir. Somatotropin salgılanmasında azalma hayvanlarda cüceliğe (dwarfism) ve anterior lobun bazı tümörlerinde olduğu gibi, aşırı salgılanması da çocuklarda devliğe (gigantism) neden olur. Eğer aşırı salgılanma epifiziyal disklerin kapanmasından sonra görülürse akromegali (kemiklerde kalınlaşma, el ve ayak ve çene kemiklerinde genişleme) denilen durum meydana gelir. Büyüme hormonu salgılatıcı hormon (GHRH) ve mideden izole edilen Ghrelin somatotroplardan GH salınımını stimüle ederken, Somatostatin GH salınımını inhibe eder. 2- Mammotroplar (Laktotroplar): Parankimal hücrelerin %15-20’sini oluşturur. Asidofil olan mammotroplar parankimal kordonlar içerisinde dağılmışlardır. Pars distalisin posterolateral bölgelerinde yaygın olarak bulunurlar. Gebelik sırasında ve gebelikten sonra sayıları büyük oranda artar. Sitoplazmalarında 550-600 nm çapında düzensiz granüller bulunur. Bu granüller somatotroplardaki granüllerden daha büyük çaplıdırlar. Bu hücreler Laktogenic hormonu (prolaktin, luteotropik hormon veya LTH) salgılar. LTH gebelikten sonra süt salgılanmasını başlatır ve devam ettirir. Ayrıca ovaryumda korpus luteumu stimüle ederek progesteronun salgılanmasını sağlar. Prolaktin salınımı dopaminin inhibitör kontrolü altındadır. Ayrıca tirotropin salgılatıcı hormon (TRH) ve vazoaktif inhibitör peptid (VIP) prolaktin sentez ve salınımını stimüle eder. B-Bazofiller (Beta hücreleri) : Toplam hücrelerin % 10’unu oluştururlar. 15-25 mikron arasında değişen bir çapa sahip olan bu hücreler, asidofillerden daha büyüktürler. Granülleri asidofil hücre granüllerinden daha az ve daha küçüktür (150-200 nm). Bu hücreler hematoksilen ile çok zayıf boyanır, fakat metilen mavisi ile koyu boyanırlar. Bazofiller en iyi PAS tekniği ile gösterilirler. Sekresyon granülleri içerisinde mevcut olan glikoproteinlerden dolayı kuvvetli PAS (+) dirler. 3 tip bazofil ayırt edilir; 1- Tirotroplar 2- Gonadotroplar 3- Kortikotroplar 1- Tirotroplar: Parankimal hücrelerin %5’ini oluşturur. Bu hücreler tirotropik hormonu (Tiroid sitimüle edici hormon, TSH) salgılarlar. TSH, tiroglobulin ve tiroid hormonlarınının salınımını stimüle eder. TSH salınımı prolaktin salınımını da kontrol eden tirotropin salgılatıcı hormon (TRH) ile kontrol edilir. Hücreler nisbeten büyük olup özellikle periferde konsantre olan pek çok granüllere sahiptir. Granüller dens ve küçük olup çapları 100-150 nm arasında değişir. TSH, tiroid hormonunun sentez ve salınımını stimüle eden glikoprotein yapısında bir hormondur. Hipofizektomi sonucunda tiroid atrofisi görülür ve hormon özü verilerek bu durum düzeltilebilir. Normal hayvanlarda TSH dışardan verildiğinde hipertiroidizmin bütün semptomları ortaya çıkar. Tiroidektomi sonucunda pars distalis içerisinde bazofil yüzdesinde artma meydana gelir. 2- Gonadotroplar: Parankimal hücrelerin %10’unu oluşturur. Bu hücreler iki tip hormon salgılar; a- Follikül stimüle edici hormon (FSH) b- Luteinleştirici hormon (LH) Bugün bu iki hormonun iki ayrı hücre tarafından mı yoksa tek bir hücre tarafından mı salgılandığı tam olarak bilinmemektedir. Hücreler büyük sferikal şekilli olup, iyi gelişmiş Golgi apparatusa ve yaygın granüler endoplazmik retikülüme sahiptir. Granüler endoplazmik retikülüm yoğun halde bulunur. Sekresyon granülleri oldukça fazladır ve çapları 200-300 nm arasında değişir. Bu hücreler genellikle sinuzoidlere yakın yerleşimli olarak bulunurlar. FSH dişide ovaryan folliküllerin büyümesini teşvik eder; erkekte ise testislerde seminiferöz epiteldeki Sertoli hücreleri tarafından androjen bağlayıcı protein (ABP) sentezini sitümüle eder ve bunun sonucunda spermatogenezis ilerler. Dişide, FSH genellikle LH ile birlikte etki eder ve folliküllerin son olgunlaşması, ovulasyon ve koprus luteum şekillenmesi sağlanır. Hipofizektomi sonucu gonadlarda atrofi görülür. FSH verilmekle semptomlar hemen hemen normale dönebilir, fakat tam iyileşmenin olabilmesi için FSH’a ek olarak bir miktar LH’nın de verilmesi gereklidir. LH tek başına hipofizektomi uygulanan hayvan ovaryumunda bir etkiye sahip değildir, yalnızca folliküllerin FSH ile sitimülasyonundan sonra etkide bulunur. Yırtılmış (rüptüre olmuş) folliküllerin korpus luteum haline dönüşmesi için LH şarttır. Erkeklerde luteinleştirici hormona interstisyel hücre sitimüle edici hormon (ICSH) da denir. Bu hormon interstisyel hücreleri (Leydig hücrelerini) stimüle ederek androgenlerin (testosteron) salgılanmasını sağlar. Testosteron sperm olgunlaşması, yardımcı üreme organlarının fonksiyonu ile sekonder seks karakterlerinin gelişimi ve devamı için gereklidir. Etki FSH verilmekle arttırılabilir. Kastrasyondan sonra, sıçan hipofizinde gonadotropik hormonlar artar ve bazofil hücreler büyüyerek vakuollü görünüm kazanırlar, bu hücrelere kastrasyon hücreleri denir. FSH ve LH salınımı hipotalamusta üretilen gonadotropin salgılatıcı hormon (GnRH) tarafından regüle edilir. 3- Kortikotroplar: Parankimal hücrelerin %15-20’sini oluşturur. Sitoplazmalarında 200 nm çapında granüller içeren geniş bazofillerdir. Eksentrik yerleşimli indentasyonlu bir çekirdek içerirler. Ayrıca sitoplazmada iyi gelişmiş bir Golgi kompleksi ve dağınık halde endoplazmik retikülüm bulunur. Pars distalisin ön orta kısmı boyunca yerleşmişlerdir. Kortikotroplar andrenokortikotropik hormon (ACTH), lipotropik hormon (LPH), melanosit stimulan hormon (MSH), β-endorfin ve enkepalin prokürsörü olan proopiomelanocortin (POMC) sentezler. ACTH suprarenal korteksin büyümesini ve zona fasikülata ile zona retikülaristen glukokortikoidlerin sekresyonunu aktive eder. Hipotalamus tarafından üretilen kortikotropin salgılatıcı hormon (CRH) ACTH salınımını regüle eder. İnsanda LPH’ın fonksiyonu henüz belirlenememiştir. Hipofiz bezinin anterior lobunda hormon üreten bu 5 tip hücreye ek olarak follkülo-stellat hücreler de yer almaktadır. Hormon üretmeyen, yıldız şekilli hücreler olan follikülo-stellat hücreleri, bir follikülo-stellat ağ oluşturarak gab junctionlar yoluyla pars tuberalisten pars distalise sinyal iletimini sağlamakta ve böylelikle hormon salınımını regüle etmektedir.

http://www.biyologlar.com/kromofil-hucreler

BÖBREK ÜSTÜ BEZLERİ (ADRENAL BEZLER, SUPRARENAL BEZLER)

Her bir böbreğin üst kutbuna birer adet olarak yerleşen, yağ doku içine gömülmüş suprarenal ya da adrenal bezler kabaca piramit şekilli yassılaşmış organlardır. Her biri 5 cm. uzunluğunda, 3 cm. genişliğinde ve 1 cm’den daha az kalınlıkta ve 7-10 gr. ağırlıktadır. Adrenal bezler steroid hormonları ve kateşolaminleri salgılarlar. Organın arterior yüzeyinde içeri doğru çöküntü şeklinde hilum görülür. Taze bir organın enine kesitinde iki bölge ayırt edilir: 1- Korteks (Substantia corticalis): Dışta yer alır. Bunun da en dış kısmı lipidlerin varlığından dolayı sarımsı renkte görülür. 2- Medulla (Substantia medullaris): En iç kısımda bulunan kırmızımsı-kahverengi bölgedir. Bu iki bölge farklı yapı, gelişim ve fonksiyonel özelliklerinden dolayı birbirlerinden belirgin şekilde ayrılmışlardır. Korteks mezodermden, medulla ise ektoderm (nöral krest) den gelişir. Alçak vertebralılarda bu iki doku tek bir organ şeklinde birleşmemiştir. Her bez bağ dokusundan yapılmış kuvvetli bir kapsül ile sarılıdır. Başlıca retiküler liflerden meydana gelmiş olan trabekülalar kapsülden köken alarak korteks içerisine radyal şekilde sokulur. Kapillerler, lenf damarları ve sinir lifleri kapsül ve trabekülalar içinde seyrederek bez içerisine girerler. Korteks Organın ¾’ünü oluşturur. Burada stroma az miktardadır. Bu nedenle sık hücreli bir yapı gösterir. Hücreler küme ve kordonlar şeklinde düzenlenmişlerdir. Bezin esas bölümü olan korteks hücrelerin dizilimine göre üç subtabakaya ayrılmıştır. 1- Zona Glomeruloza, en dıştaki ince tabaka, 2- Zona Fasikülata, ortadaki kalın tabaka, 3- Zona Retikülaris, en içteki medulla ile direkt ilişkili tabaka. Bu tabakalar arasında belirgin bir sınır yoktur. 1- Zona Glomeruloza: İnce bir tabaka şeklinde en dışta bulunan ve total kortikal hacmin % 13’ini oluşturan zona glomeruloza, ovoid gruplar halinde düzenlenmiş prizmatik epitelyal hücrelerden meydana gelmiştir. Normalde bu hücre gruplarının merkezi yerinde lümen bulunmaz. Hücre grupları arasında sinusoidal kan kapillerleri görülür. Hücrelerin koyu boyanan çekirdekleri bir ya da iki çekirdekcik içerir. Sitoplazmaları genellikle asidofil olmasına rağmen bazen bazofil materyal ve birkaç lipid damlacığı da içerirler. Bu hücreler sodyum, potasyum homeostasizi ve su dengesini sağlayan mineralokortikoidleri salgılarlar. Esas olarak salgılanan aldosteron ise; böbrek distal tübülü, gastrik mukoza, tükrük bezleri ve ter bezlerinde sodyum resorbsiyonu ve potasyum atılımında rol oynar. Zona glomerulosa renin-angiotensin-aldosteron sisteminin feedback kontrolü altındadır. Böbrekte jukstaglomerular hücreler düşük kan basıncı veya düşük kan sodyum seviyesine cevap olarak renin salgılar. Renin; Angiotensinojeni Angiotensin I’e dönüştürür. Angiotensin I de akciğerlerde angiotensin dönüştürü enzim (ACE) aracılığıyla Angiotensin II’ye dönüşür ve zona glomerulosa hücrelerinden aldosteron salınımını uyarır. Elektron mikroskopide, zona glomerulozayı oluşturan hücrelerin karakteristik özellikleri anastomozlaşan bir ağ şeklinde görülen iyi gelişmiş agranüler endoplazmik retikülüm (SER) tübülleri içermeleridir. Ayrıca çok sayıda lamellar kristalara sahip mitokondriyonlar, iyi gelişmiş Golgi kompleksi, bol granüler endoplazmik retikülüm (GER) ve serbest ribozom sitoplazma boyunca dağılmışlardır. 2- Zona Fasikülata: Orta hatta (tabakada) total kortikal hacmin % 80’ini oluşturan zona fasikülata en kalın tabaka olup büyük, düzensiz kübik hücrelerden meydana gelmiştir. Kübik hücreler genellikle iki hücre genişliğinde uzun radyal sütunlar şeklinde düzenlenmişlerdir. Hücreler çoğunlukla iki çekirdeğe sahiptir ve çekirdekler veziküler tiptir. Bazofil olan sitoplazmada, kolesterol, yağ asitleri ve nötral yağdan oluşan lipid damlacıkları bulunur. Lipid damlacıkları zona fasikülatanın 2/3 dış kısmında bulunan hücrelerde daha fazladır. Normal histolojik metodlarla lipid eridiğinden yerlerinde vakuoller oluşur ve hücreler süngerimsi bir görünüm kazanırlar. Bu nedenle bu hücrelere bazen spongiosit adı da verilir. 1/3 iç tarafındaki hücreler nisbeten lipid materyalden yoksundur ve daha bazofildir. Bu bölgede mitoza oldukça sık rastlanabilir. Hücreler yaygın SER, çok sayıda tübüler ve veziküler kristalı mitokondriyonlar, az miktarda GER, lizozom ve lipofüksin pigment granülleri içerirler. Plazma membranı kısa düzensiz mikrovilluslar şeklinde sinüzoidlerin subendotelyal boşluğuna uzanır. Glukoz ve yağ asiti metabolizmasını kontrol eden glukokortikoidlerin esas salınım yeridir. Glukoneogenesis ve glikogenesis regulasyonunu sağlarlar. CRH-ACTH sisteminin kontrolü altındadır. 3- Zona Retikülaris: Medulla ile direkt ilişkili korteksin en iç tabakası olan ve total kortikal hacmin % 7’sini oluşturan zona retikülariste hücreler kordonlar halindedir. Kordonlar anastomozlaşarak bir ağ meydana getirirler. Zona retikülaristeki hücrelerin esas fonksiyonu zayıf androjen ve dehidroepiandrosteron (DHEA) salgılamaktır. CRH-ACTH sisteminin kontrolü altındadır. Zona fasikülataya en yakın bulunan zona retikülaris hücreleri zona fasikülata hücrelerinden biraz farklılık gösterirler; genel olarak bu hücrelerin sitoplazmalarında daha az lipid damlacıkları bulunur, çekirdekler daha koyu boyanmıştır ve lipofuksin pigment granülleri içerirler. Medullaya yakın taraftaki zona retikülaris hücreleri boyanma özelliklerinden dolayı “açık” ve “koyu” olarak ikiye ayrılırlar. Açık hücrelerin çekirdekleri, daha yoğun boyanmış koyu hücrelerin çekirdeklerinden daha açık renge boyanır. Bu boyanma farklılıklarının önemi bilinmemektedir. Zona retikülaris hücreleri çok sayıda sekonder lizozomlar (pigment granülleri) ve diğer tabakalardakine benzer agranüler endoplazmik retikülüm içerir. Bu şekildeki korteks sınıflandırılması hücrelerin korteksteki genel düzenlenmesine ve organizasyonuna göre yapılmıştır. Hücrelerin yapılarına göre de, korteksi 4 tabaka halinde inceleyebiliriz: a- Dış tabaka; Z.glomerulozanın karşıtıdır. b- 2. tabaka; Z.fasikülatanın dış 2/3’üdür ve spongiositlerden meydana gelmiştir. c- 3. tabaka; Zona fasikülatanın 1/3 iç kısmı ve zona retikülarisin dış yarısını içeren bu tabaka lipid yönünden fakirdir. d- 4. tabaka; Zona retikülarisin iç yarısıdır (Juxtamedullar bölge). Bu jukstamedullar bölgeyi oluşturan hücrelerin çoğu yaşlanmış hücreler olup pigment granüllerini içerirler. Önceleri yeni hücrelerin Zona glomerulosada oluştuğu, sonradan zona fasikülataya göç ettiği ve neticede zona retikülariste dejenere oldukları düşünülürdü. Özellikle zona fasikülatanın dış bölgesinde olmak üzere bütün tabakalarda mitotik figürlerin görülmesi ve retikülarisin dışında korteks tabakalarında hücrelerin dejenerasyon göstermesi bu hipotezin doğruluğunu şüpheye düşürmektedir. Medulla Her ne kadar pek çok hayvan türlerinde medulla ile korteks arasındaki sınır belirgin ise de bu sınır insanlarda düzenli değildir. Medulla hücreleri ovoid ya da polihedral şekilli olup ya gruplar ya da anostomoz gösteren kısa sütunlar şeklinde düzenlenmiştir. Küme ya da sütunlar venül ve kapillerler ile çevrelenmiştir. Medulla hücreleri büyük ve vesiküler çekirdeğe sahiptir. Sitoplazmalarında ince granüller bulunur, bu granüller potasyum bikromat ile okside edildiğinde kahve rengini alırlar; bu olaya kromaffin reaksiyonu denir ve bu reaksiyonu gösteren medulla hücreleri de kromaffin (veya Pheochrome) hücreler olarak adlandırılır. Bu reaksiyonun en büyük nedeni granüllerde, kateşolaminler olan epinefrin ve noreprinefrin hormon prekürsörlerinin varlığıdır. Diğer taraftan bu granüller ferrik klorid ile boyandığında yeşil, osmik asit ile boyandığında kahve rengini alırlar. Elektron mikroskopide hücrelerin çok iyi gelişmiş granüler endoplazmik retikülüm, mitokondriyonlar ve Golgi kompleksine sahip oldukları görülür. Sempatik sinir lifleriyle taşınan impuls ile kromaffin hücrelerden kateşolamin salınır. Bu nedenle kromaffin hücreleri postsinaptik nöronlar eşdeğerdir denmesine rağmen aksonal uzantıları yoktur. Ancak kromaffin hücrelerle yapılan kültür çalışmalarda akson benzeri uzantılar ortaya çıkmıştır ve aksonal büyüme adrenal korteksten salınan glukokortikoidlerce inhibe edilebilmektedir. Sonuç olarak adrenal korteks kromaffin hücre morfolojisini etkilemekte ve nöral uzantıları engellemektedir. Hücreler, 100-300 nm çapında çok sayıda membranla çevrili granül içerirler. Norepinefrin içeren hücrelerde granüller oldukça elektron dens bir öze sahiptirler ve ekzositozis ile salınırlar. Bu ekzositozu kromaffin hücrelerle sinaps yapan presinaptik sempatik aksonlardan salınan asetilkolin tetikler. Epinefrin prekürsörleri içeren hücrelerde ise granüller homojendir ve daha az dens boyanırlar. Kromaffin hücrelerdeki granüller katoşolaminlerin yanı sıra ATP, enkefalinler ve kromograninler de içerir. Kromograninler kateşolaminleri bağlayan ve ekzositoz sırasında hormon salınımını sağlayan proteinlerdir. Reserpine gibi ilaçlar veziküllerde kateşolaminin azalmasına neden olmaktadır. Her bir kromaffin hücrenin bir ucunun venül, diğer ucunun da kapiller ile temasta olduğu söylenir. Medullada, kromaffin hücrelerinden başka bir miktar da sempatik ganglion hücreleri görülür. Ganglion hücrelerinin aksonal uzantıları salgı aktivitesini düzenlemek ve kan damarlarını innerve etmek üzere adrenal korteks parankimine ve innerve olan abdominal organların innerve etmek için bez dışında splenik sinirlere uzanır.

http://www.biyologlar.com/bobrek-ustu-bezleri-adrenal-bezler-suprarenal-bezler

Böbrek Üstü Bezlerinin Fonksiyonları

Korteks ve medulla fonksiyonel yönden belirgin bir şekilde birbirlerinden farklıdır. Korteks hayatın devamı için esasidir. Tüberkülosise bağlı olarak kortikal dejenerasyon (Addison hastalığı) veya korteksin çıkarılması halinde kortikal öz verilemez ise ölümle sonuçlanır. İnsanda korteks çeşitli esasi fonksiyonların devamı için şarttır. Korteks vücutta su ve elekrolit dengesini sağlar. Korteks yıkımını takiben vücutta plazma konsantrasyonu, aşırı sodyum atılımı ve hücreler arası sıvının hücrelere geçişi görülür. Korteks aynı zamanda karbonhidrat dengesini de sağlar. Kontrol bozulduğunda karaciğer ve kas hücrelerindeki glikojen deposu tükenir ve neticede hipoglisemi meydana gelir. Korteksin diğer bir fonksiyonu da hücrelerarası maddeleri idame ettirmektir. Korteksten kırkın üzerinde steroid bileşikleri izole edilmiştir, bunlardan en az yedisinin fizyolojik olarak aktif olduğu gösterilmiştir. Genel olarak steroidler aktivasyon tiplerine göre 3 kategoride incelenirler: 1-Mineralokortikoidler (Aldosteron ve Deoksikortikosteron): Elektrolit ve su dengesini kontrol ederler. 2-Glukokortikoidler (Hidrokortizon (Kortizol) ve Kortikosteron): Karbonhidrat metabolizmasını ayarlar ve bağ dokusu üzerinde etki ederler. 3-Gonodokortikoidler (asıl olarak Dehidroepiandrosteron ve androstenedion (Progesteron, Östrojen): Normalde çok az fizyolojik öneme sahiptir. Kortekste meydana gelen bazı tümörler maskulin ve feminin etkilere sahiptir. Mineralokortikoidler; aldosteron ve deoksikortikosteron zona glomeruloza hücreleri tarafından salgılanır. Aldosteron en önemli mineralokortikoiddir ve böbreğin distal tübüllerinden sodyumun reabsorbsiyonunu ve potasyumun atılımını artırır. Tükrük bezleri, ter bezleri ve intestinal mukozanın salgılarında sodyum emilimini stimule eder. Aldosteron sekresyonu plazmadaki sodyum ve potasyum düzeyleri ile kan basıncındaki değişikliklere duyarlı olan renin-anjiotensin sistemi tarafından kontrol edilir. Adrenokortikotropik hormon (ACTH) aldosteron sekresyonu üzerine ya çok az etkiye sahiptir ya da etkisizdir. Glukokortikoidler; korteksten salınırlar ve kromaffin hücrelerde norepinefrinin epinefrine dönüşmesini indüklerler. Glukokortikoidlerin en önemli üyesi olan kortizol veya hidrokortizon zona fasikülata ve muhtemelen zona retikülaris tarafından salgılanır. Glukokortikoidler kateşolaminlerle birlikte vücudu savaş ya da kaç (fight or flight) durumuna hazırlar. Glukokortikoidler karaciğerde glukoz oluşumunu artırır ve glukozun glikojen olarak depolanmasını sağlar. Ayrıca kanda glukoz ve aminoasit düzeylerinin artmasına sebep olur. Bu kortikosteroidler bağ dokusunu da etkileyerek immün ve inflamatuar cevapları supresse ederler. Lenfositlerin tahrip edilmesine sebep olurlar, lenfoid dokuda mitozu inhibe ederler ve akciğerler ve dalakta eosinofillerin tutunmasını hızlandırırlar. Yağ dokuda lipidleri gliserol ve yağ asitlerine yıkarlar. Diğer dokularda yağ doku oksidasyonunu sağlamak için glukoz oranını azaltırlar. Zona fasikülata ve zona retikülarisin salgı aktivitesi, adenohipofizden salgılanan ACTH tarafından düzenlenir. ACTH steroid sentez ve salınımını stimüle eder, suprarenal korteksin büyümesini ve kortekste kan akımının artışını sağlar. Ayrıca yara iyileşmesinde immun ve inflamatuar cevabı baskılarlar. Kortizolün sentetik formu olan hydrokortizon alerji ve inflamasyon tedavisinde kullanılmaktadır. Gonadokortikoidler; gonadokortikoidler veya seks steroidleri dişi seks hormonları olan östrojen ve progesteron ile çok sayıda androjenik hormonları içerir. Bu hormonlar primer olarak zona retikülariste üretilirler. Bu hormonların üretilen miktarları normalde o kadar küçüktür ki fizyolojik bir önemleri bulunmaz, bununla birlikte bazı korteks tümörlerinde bu steroidler fazla miktarda üretildiğinden maskulin veya feminin etkiler ortaya çıkabilir. Adrenogenital sendromda korteksin en iç tabakası hipertrofik hal alarak dolaşımdaki andojenlerin düzeyinin artmasına sebep olabilir. Bu durum erken puberteye ve hirşutizme sebep olabilir. Doğumdan sonra insan suprarenal korteksinde belirgin değişiklikler görülür. Doğumdan sonra iki hafta içinde korteksin ilk mezodermal göçle oluşan iç ya da sınır tabakasının (fötal korteks-fötal zon) çoğu kaybolur, kromaffin hücreler medullada toplanır, geriye yalnızca subkapsüler (daimi) korteks kalır. Subkapsüler korteks zona glomeruloza ve zona fasikülatadan oluşmuştur. Zona retikülaris 3. yıl sonunda tamamen gelişir. Fötal korteksin hormonlara bağlı olduğu düşünülür. Fötal adrenal bez de CRH-ACTH sisteminin kontrolü altındadır. Plasenta ile steroid salgılanması konusunda etkileşim içindedir ve bu yüzden fötal adrenal bez fötal-plasental ünitin bir parçasıdır. Adrenal bez gelişimdeki bir sorun konjenital adrenal hiperplaziye neden olur. Suprarenal medulla yaşam için esasi değildir. Kateşolaminler (catecholamines) olan epinefrin (adrenalin) ve norepinefrin (noradrenalin) kromaffin hücrelerden sentez edilir. Medulladaki sempatik gangliyon hücrelerinin stimulasyonuyla salınırlar. Bunların sitoplazmik granüllerdeki varlığı kromaffin reaksiyonu ile gösterilebilir. Bir hücre içerisindeki kromaffin granüllerinin miktarı o hücrenin salgı durumunu belirten bir indeks olabilir. Epinefrin ve norepinefrin kimyasal yönden birbirleri ile sıkı ilişki gösterirler. Her ne kadar her ikisi farklı etkilere sahip iseler de norepinefrin epinefrin prekürsörü olabilir. Epinefrinin metabolizma, artan oksijen kulanımı ve glukozun karaciğer glikojen depolarından uzaklaştırılması üzerine belirgin etkileri vardır. Epinefrin kan dolaşımını hızlandırır ve vücudu acil durumlara hazırlar. Norepinefrinin genel metabolizma üzerinde etkisi çok azdır. Norepinefrinin esas fonksiyonu kan basıncını devam ettirmek üzere adrenerjik sinir impluslarının kalp ve kan damarları üzerindeki etkilerinde aracı bir madde ya da mediatör olarak rol oynamasıdır. Epinefrinin diğer bir ek görevi de anterior hipofizin sekresyon aktivitesi üzerine olan etkisidir; ACTH salgısının artmasına neden olur. Kan Damarları ve Sinirleri Suprarenal bezler damar yönünden oldukça zengindir. Superior, middle ve inferior suprarenal arterlerden kan alır. Her beze giden arterlerin sayısı farklıdır ve inferior phrenic arter, renal arter ve aortadan köken alırlar. Arterler beze ulaştığında sayısız miktardaki arteriollere dallanır, organ kapsülünü delerek içeri girer ve kapsüler kapillerler subkapsüler pleksusu yapar. Kısa kortikal arterler kortikal sinüzoidal kapillerlere kan taşırlar. Sinüzoidal kapillerler pencereli endotelle döşelidir. Kortikal kapillerler jukstamedullar kavşakta toplayıca venlere drene olurlar. Toplayıcı venler sonunda birleşerek medullar veni oluştururlar. Uzun kortikal arterioller ise direkt olarak trabeküla bağ dokusundan medullar arterioller olarak medullaya giderler ve kapiller pleksüslere açılırlar, medullar kapiller sinusoidleri kanlandırırlar. Bu pleksuslar medullar hücreleri çevrelerler. Böylece medulla hem kortikal sinüzoidal kapillerlerden venöz kan hem de medullar arteriollerden arterial kan alır. Kortikal ve medullar sinusoidlerden çıkan venüller küçük adenomedullar toplayıcı venlere drene olurlar. Adenomedullar toplayıcı venler de sağ tarafta inferior vena cavaya, sol tarafta sol renal vene direkt drene olan daha geniş merkezi adrenomedullar venlere bağlanırlar. Kortekste venöz sistem bulunmaz. Lenfatik damarlar yalnızca kapsül içinde trabekülalarda ve büyük venleri çevreleyen bağ dokusunda görülür. Splanik sinirden köken alan çok sayıda myelinsiz sinir lifleri küçük bandlar halinde kapsüle girer. Birkaç lif kortekste sonlanır, burada kan damarları ile ilişkilidirler. Liflerin çoğu ise trabekülaları takip ederek medullaya gider ve medullar hücrelerle ilişkili preganglionik lifler şeklinde sonlanır. Her bir hücrenin innerve edildiği söylenmektedir. Splanik sinirin uyarılması epinefrinin fazla miktarda serbest bırakılmasına yol açar, buna karşılık görev yapmaması medullar hücrelerin salgılama aktivitesini inhibe eder.

http://www.biyologlar.com/bobrek-ustu-bezlerinin-fonksiyonlari

Bitki Etiolojisi

Bitkilerde hastalığa neden olan etmenlerin sınıflandırılmaları, isimlendirilmeleri, yaşayış ve zarar şekilleri ve hayat dönemleri etioloji içinde ele alınmaktadır. Hastalık etmenleri iki grup altında incelenebilir. Olumsuz çevre ve yetiştirme koşullarının ele alındığı cansız hastalık etmenleri ve bitkiler üzerinde yada çevresinde çoğalarak bitki gelişimini sınırlayan canlı hastalık etmenleri, bu iki grubu oluşturmaktadır. Cansız hastalık etmenlerinin neden olduğu hastalıklar geri dönüşümlüdür; yani hastalığa neden olan olumsuz koşul ortadan kaldırıldığında hastalık belirtilerinde gerileme olabilir, bitki yeniden sağlıklı gelişimini sürdürebilir. Ayrıca, bu gruptaki hastalık etmenleri hastalıklı bitkiden sağlıklı bitkiye bulaştırılamaz. Canlı hastalık etmenlerinin yani, bitki patojenlerinin neden olduğu hastalıklarda ise, hastalık sebebi olan patojen ortadan kaldırılsa da bir kez oluşan belirtilerin düzelmesi, bitkinin eski sağlıklı haline dönmesi mümkün değildir. Canlı etmenler çeşitli faktörlerin etkisiyle hastalıklı bitkiden sağlıklı bitkilere kolayca bulaşabilir ve bu suretle hastalık bir bölge içindeki bütün bitkilere yada bir yerden bir yere taşınıp yayılabilir. Bitkilerde hastalık meydana getiren etmenleri şu şekilde sınıflandırılabilir; A- Cansız hastalık etmenleri; 1. Bitkiler için uygun olmayan sıcaklıklar, 2. Uygun olmayan nispi nem ve yağışlar, 3. Zararlı atmosfer olayları, 4. Işık azlığı veya fazlalığı, 5. Uygun olmayan toprak sıcaklığı, 6. Toprak reaksiyonu, 7. Toprak neminin azlığı veya fazlalığı, 8. Besin maddesi eksiklik veya fazlalıkları, 9. Zararlı endüstriyel atıklar, 10. Hatalı tarımsal uygulamalar, B- Canlı hastalık etmenleri; 1. Funguslar 2. Bakteriler, 3. Virüsler, 4. Parazit bitkiler ve yabancı otlar. 1. Cansız Hastalık Etmenleri Her bitki türünün kendi genetik yapısından kaynaklanan ekolojik istekleri vardır. Çevre faktörlerinden biri yada birkaçı uygun olmadığında bitki fizyolojisinde olumsuz değişiklikler meydana gelir ve hastalık durumu ortaya çıkar. Olumsuz faktörün şiddetine ve süresine bağlı olarak bitkilerde ortaya çıkan hastalık belirtileri bazen hafif olarak görülebilir, koşullar normale döndüğünde bitki sağlıklı gelişimini sürdürebilir, bazen de bitkinin ölümüne neden olabilecek kadar şiddetli olur. - Bitkiler için uygun olmayan sıcaklıklar Bitkilerin büyük bir çoğunluğu 15-30 °C dereceler arasında sağlıklı gelişmelerini sürdürürler. Farklı tür ve yaştaki bitkiler ile, değişik bitki organlarının sıcaklık istekleri ve buna bağlı olarak da ekstrem sıcaklıklardan etkilenmeleri farklılık göstermektedir. Genelde yüksek sıcaklık bitkilerde daha ani ve şiddetli zarar meydana getirmektedir. Fakat doğada bu tip zarar sık görülmez. Yüksek sıcaklıkta bitki fizyolojisinde önemli işlevi olan bazı enzimlerin ve bitki hücrelerindeki proteinlerin yapıları bozulur. Bitki hücrelerinin ani olarak su kaybetmesi sonucu protoplazmanın yapısı bozulur, hücre zarı yırtılır. Ayrıca hücrelerde bazı toksik bileşikler oluşur. Bütün bu etkiler sonucu bitkilerin değişik organlarında solma, kuruma, yanıklık gibi belirtiler ortaya çıkar. - Uygun olmayan nispi nem ve yağışlar Doğada bitkiler için asıl zararlı olan, toprak neminin eksik yada çok fazla oluşudur. Nispi nem o kadar önemli değildir. Fakat, ender de olsa nispi nem eksikliğinin de bitkilerde zararlı etkisi görülebilir. Nispi nem düşüklüğü, yüksek sıcaklık ve rüzgarla birlikte olduğunda, bitkilerde aşırı su kaybı nedeniyle, yaprak uçlarında ve kenarlarında yanıklıklar, genel solgunluk ve meyvelerde pörsüme ortaya çıkar. Saksı bitkilerinde, özellikle kaloriferli evlerde, nispi nemin % 15'e kadar düşmesi sonucu solgunluk, alt yapraklarda yanıklık, yaprak dökümü, çiçeklerde solma ve dökülme olur. Yüksek nispi nem bitkilerde doğrudan ve dolaylı zararlara neden olmaktadır. Nispi nemle birlikte toprak neminin fazla olması sonucu, bitkilerde parankima hücreleri uzayarak "entümesans" denilen çıkıntılar meydana gelir. Bunlar yaprakların alt yüzünde, dallarda, nadiren de çiçek, meyve ve meyve saplarında görülür. Yüksek nispi nemin dolaylı etkisi de fungusların enfeksiyonu için uygun ortam oluşturmasıdır. Bazı funguslar, özellikle mildiyö hastalığı etmenleri, ancak çok yüksek nispi nem koşullarında, yapraklar üzerinde su damlası olduğunda enfeksiyon yapabilirler. Aşırı nem sonucu oluşan sis de fungal hastalıkların gelişimini teşvik eder. Yağmur ise hasada yakın dönemde bitkiler için zararlı olur. Ekinlerin hasadını geciktirir ve tarlada kalan ekinlerde aşırı nemin etkisi ile başaklarda saprofit funguslar gelişir. Meyvelerde ise olgunlaşma döneminde kabuk çatlamaları görülebilir. Şiddetli yağmur ekinlerin yatmasına, bitkilerin yapraklarının yırtılmasına neden olur. Ayrıca hastalık etmenlerinin sporlarının taşınmasını sağlar. Dolu, aynı şekilde bitki dokularında yaralar açar, yaprak, çiçek ve meyveleri tahrip eder. Açılan yaralar patojenlere giriş kapısı olur. Kar ise fazla yağdığı zaman ağaçlar üzerinde ağırlık yaparak ince dalların kırılmasına neden olur. - Zararlı atmosfer olayları Hava hareketlerinin yani rüzgarın dolaylı etkisi, yine hastalık etmenlerinin sporlarını ve yabancı ot tohumlarını uzun mesafelere taşımak şeklindedir. Ayrıca hastalıklı bitkiler rüzgar vasıtasıyla sağlıklı bitkilere temas eder, böylece virüs hastalıkları bitkiden bitkiye mekanik olarak taşınır. Şiddetli rüzgarın zararı daha fazladır. Yaprak, çiçek ve meyve dökümüne, dalların kırılmasına, ekinlerin yatmasına neden olur.Yıldırımlar ise düştükleri alanlarda bulunan bitki örtüsünün yanarak tahrip olmasına neden olurlar. - Işık azlığı veya fazlalığı Bitkilerin gelişmesi için en önemli faktörlerden biri de ışıktır. Işık fazlalığı çok sık görülen bir durum değildir. Ancak yüksek, dağlık yerlerde, bazı bitkilerde zararlı olabilir. U-V ışınlar yeterince süzülemediği için yapraklarda yanıklıklara neden olur. Işık eksikliği daha sık görülen bir durumdur. Yeterli miktarda klorofil oluşamadığı için bitkilerin doğal yeşil rengi kaybolur, açık yeşil, sarı yapraklar oluşur. Bitki gelişimi geriler, boğum araları uzar, gövdeler incelir. Bazen yaprak ve çiçek dökümü olur. Işık azlığı nedeniyle ortaya çıkan bu duruma "etiolasyon" denir. Kapalı havalarda seralarda, sık ekilmiş bitkilerde veya meyve bahçelerinde ağaçlar altında yetiştiricilik yapıldığında bitkiler etiole olabilir. Evde yetiştirilen süs bitkilerinde de zaman zaman bu durum görülebilir. Etiole olmuş bitkiler zayıf geliştikleri için hastalıklara da kolaylıkla yakalanırlar. - Uygun olmayan toprak sıcaklığı Ortam sıcaklığına bağlı olarak toprak sıcaklığı da değişiklik gösterir. Toprak sıcaklığının fazla olması yumrulu bitkilerde, yumruların iç kısmında nekrozlara neden olur. Atmosfer ısısına bağlı olarak toprak ısısının normalin altına düşmesi tohumların çimlenmesini geciktirir. Bu da tohumların daha uzun süre toprak patojenlerinin saldırısına maruz kalmasına neden olur. Toprak içinde bulunan suyun donması da bitki köklerinin sıkışıp yaralanmasına veya ince köklerin kopmasına neden olur. Bu şekilde yaralanmış köklerden sekonder patojenlerin girişi kolaylaşır, bunlar da kök çürüklüğüne neden olurlar. Ayrıca toprak sıcaklığı toprakta bulunan mikroorganizmalar açısından önemlidir. Bunlardan bazıları sıcak topraklarda, bazıları ise nispeten serin topraklarda daha iyi gelişirler. Bunun sonucunda bazılarının popülasyonları artarken, diğerlerininki azalır. Eğer popülasyonu artan mikroorganizmalar bitki patojeni ise bitkilerin aleyhine bir durum ortaya çıkar. - Toprak reaksiyonu Toprakta anyon veya katyon halinde çok sayıda element bulunmaktadır. Bunların farklı bölge topraklarındaki miktarları değişiktir. Elementlerden bazılarının az, bazılarının daha fazla bulunması toprağın asit yada alkali karakterde olmasına neden olur. Bazı bitkiler asit’e, bazıları ise alkaliliğe duyarlıdır. Genellikle 4 ile 8 arasındaki pH aralığında bitkiler iyi gelişirler. Asit topraklarda bazı bitkilerde gelişme yavaşlar. Ayrıca, böyle topraklarda mineral tuzlar yüksek oranda çözündükleri için bitkilere toksik etki yaparlar, yada bitkilerin ihtiyacı olan elementlerin alımını engelliyerek besin noksanlığı belirtilerinin ortaya çıkmasına neden olurlar. Asit topraklarda toksisitesi görülen elementler bor, bakır, mangan, alüminyum ve demirdir. Bakır ve mangan toksisitesi aynı zamanda demirin bitki tarafından alımını önler ve demir noksanlığına neden olur. Sodyum tuzlarının, özellikle sodyum klorür, sodyum sülfat ve sodyum karbonatın toprakta fazla miktarda bulunması ise toprak pH 'sini yükseltir ve alkali zararına neden olur. Şekerpancarı, yonca gibi bitkiler alkali toksisitesine dayanıklı oldukları halde, buğday ve elma gibi bazı bitkiler oldukça duyarlıdırlar. Alkali zararı hassas bitkilerde kloroz, cüceleşme, yaprak yanıklığı, solgunluk ve fide ölümleri şeklinde görülebilir. Toprağın asit yada alkali karakterde oluşu toprakta bulunan patojenler açısından da önem taşır. Bakteriler asit’e oldukça dayanıksızdır, bu nedenle nötr veya hafif alkali toprakları tercih ederler. Funguslardan bazıları, örneğin Pythium türleri alkali topraklarda, Plasmodiophora brassicae gibi bazı funguslar ise asit topraklarda daha iyi gelişirler. - Toprak neminin azlığı veya fazlalığı Toprak nemi yada toprakta bulunan su miktarı ve buna bağlı olarak da toprağın hava kapasitesi bitkiler için hayati önem taşır. Bitkilerin normal olarak gelişebilmesi için toprakta yeterli miktarda su ve havanın olması gerekir. Bu dengenin bozulması, yani toprağın susuz kalması yada çok fazla miktarda su bulunması nedeni ile hava kapasitesinin düşmesi bitkilerde hastalıklara neden olur. Toprakların su tutma durumu toprak yapısı ile de ilgilidir. Ağır, killi topraklar fazla su tuttuğu için kökler yeterince hava alamaz, bitkiler zayıf gelişir ve kök çürüklüğüne neden olan patojenlerin saldırısına karşı koyamaz. Köklerin çürümesiyle bitkinin üst kısmına su iletimi durur. Bu durum bir süre devam ederse bitkiler tamamen solarak ölebilirler. Toprak havasının çok az olduğu koşullarda, anaerobik mikroorganizmaların gelişmesi sonucu nitrit’ler gibi bitkilere toksik olan maddeler oluşur. Bunun yanında, oksijen eksikliğinden zarar gören hücreler seçici geçirgenliklerini kaybederler ve toksik metaller bitki tarafından alınır. Bu nedenlerle bitkilerde solgunluk görülür. Fazla sulanan saksı bitkilerinde de toprak nemi fazlalığı sonucu zarar ortaya çıkabilir. En tipik belirti alt yapraklardan başlayan ani yaprak dökümüdür. Ayrıca yapraklarda sararma olur. Bazı bitkilerde gövdede ve yapraklarda kahverengi veya siyah sulu lekeler meydana gelebilir. Köklerde ise siyahlaşma ve ölüm görülebilir. Rutubetli dönemlerde fazla sulamanın etkisiyle bitkilerde şişkinlikler de görülebilir. Genellikle gövdelerde veya yaprakların alt yüzeyinde damarlar boyunca, yeşilimsi beyaz, daha sonra kahverengileşip mantarımsı bir yapıya dönüşen, büyüyüp çoğalan hücre kitlelerinden oluşan şişkinlikler oluşur. Bunları önlemek için bitkiler düzenli olarak toprak kurudukça azar azar sulanmalıdır. Killi toprakların aksine kumlu topraklar su tutmazlar, hava kapasiteleri yüksektir. Böyle topraklarda veya kayalık, eğimli arazilerde toprak rutubetinin azlığı nedeniyle bazı bitkiler zarar görebilir. Yapraklarda açık yeşil-san renk oluşumu, cüceleşme, yapraklarda küçülme ve azalma, çiçek ve meyve dökümü olur. Kuraklık devam ederse bitkiler ölebilir. Tek yıllık bitkiler kuraklığa daha hassastır. Bununla birlikte çok yıllıklarda da, gelişmede gerileme, yaprak ve filizlerde küçülme, yanıklık, yaprak dökümü, solgunluk ve ölüm görülebilir. Hafif kumlu topraklar nem içeriği açısından çok dengesizdirler. Toprakta suyun bir az, bir fazla olması, sulamanın dengesiz yapılması bitkilerde çeşitli hastalıklara neden olur. Domateslerde çiçek dibi çürüklüğü, salatalıklarda acılaşma, marullarda uç yanıklığı görülür. Yine domateslerde bir süre kurakta kaldıktan sonra olgunlaşma döneminde birden sulanırsa meyvelerde çatlaklar oluşur Elmalarda ise su düzensizliği sonucu acı çürüklük (bitter pit) denilen belirti ortaya çıkar. - Besin maddesi eksiklik veya fazlalıkları Bitkiler normal gelişmelerini sürdürebilmek için bazı elementlere ihtiyaç duyarlar. Azot, fosfor, potasyum, kalsiyum, magnezyum ve kükürt gibi bitkilerin fazlaca kullandığı elementlere makro elementler; demir, bor, mangan, çinko, bakır, molibden ve klor gibi daha az kullanılanlara ise mikro elementler denir. Bu elementlerin toprakta yeterli miktarda bulunmaması bitkilerde besin maddesi noksanlığı hastalıklarına neden olur. Bunların normalden fazla bulunması ise toprak reaksiyonunu nötrden uzaklaştırır ve bitkilere toksik etki yapar. Elementlerin fazlalığında meydana gelen zarar esasen, elementin hücre üzerindeki doğrudan etkisi sonucudur. Bunun yanında bir elementin fazlalığı diğer bir elementin bitki tarafından alımını yada fonksiyonunu engelleyebilir. Böylece bitki element eksikliğinden ötürü de zarar görür. Örneğin, normalden fazla sodyum, bitkilerde kalsiyum eksikliğine yol açmaktadır. Bitkiler için önemli elementler, bunların fonksiyonları ve eksiklik ya da fazlalıklarından ileri gelen hastalıklar şunlardır: Azot: Bitkiler tarafından fazla miktarda kullanılan bir elementtir. Bu nedenle yetiştiricilik sırasında gübre halinde toprağa verilmesi gerekir. Bitkiler azotu genellikle nitrat şeklinde, bazen de amonyak şeklinde alırlar. Bitki hücrelerindeki birçok maddenin içeriğinde; proteinlerde, enzimlerde, klorofilde ve solunum sisteminde bulunmaktadır. Azot noksanlığında bitkiler zayıf ve açık yeşil renkte gelişirler. Bitkiler bodurlaşır, çiçek ve meyve oluşumu azalır. Azot noksanlığı belirtilerini ortadan kaldırmak için toprağa düzenli olarak azotlu gübreleme yapılması gerekir. Rotasyonda baklagillere yer verilmesi topraktan aşırı azot kaybını önler. Gereğinden fazla azot vermek de sakıncalıdır. Bitkiler gevrek ve sert bir yapıda olur, vegetatif gelişme ağırlık kazanır, çiçeklenme ve meyve oluşumu gecikir. Ayrıca bitkiler hastalık ve zararlıların saldırısına hassas hale gelirler. Fosfor: Bitki hücrelerindeki birçok madde içinde; DNA ve RNA 'da, ADP ve ATP içinde enerji mekanizmasında, solunum enzimlerinde, fosfolipitlerde (zarlarda) ve bazı proteinlerin yapısında yer alır. Noksanlığında ortaya çıkan belirtiler azot noksanlığı belirtilerine benzer. Bitkiler yine zayıf, ince gelişir. Yapraklar normal yeşil rengini kaybeder, koyu donuk, mavimsi yeşil bir renk alır, antosiyan birikimi sonucu yer yer mor lekelenmeler görülür. Bazen alt yapraklarda bronzlaşma olabilir. Sürgünler ince, uzun, dik ve dönük gelişir. Fosfor normalden fazla olduğunda ise bitkiler çinkoyu alamaz ve çinko noksanlığı belirtileri görülür. Potasyum: Hücredeki birçok kimyasal reaksiyonda katalizör görevi yapar, enzimleri aktivite eder. Hücre geçirgenliğini, hücredeki iyon dengesini sağlar. Noksanlığında bitkilerde boğumlar arasında kısalma, sürgünlerde incelme, yaşlı yapraklarda kloroz ve uçlarda kahverengileşme, yaprak kenarlarına yakın kısımlarda kahverengi lekeler, etli dokularda uçlarda nekroz görülür. Şiddetli olduğunda geriye doğru ölümle sonuçlanır. Potasyum eksikliği daha çok süzek topraklarda ortaya çıkar. Toprağa potasyumlu gübre verilerek önlenir. Potasyum fazlalığında ise magnezyum noksanlığı ortaya çıkabilir. Magnezyum: Kloroplastlarda klorofilin yapı maddesi olarak, mitokondrilerde ve birçok enzimin yapısında bulunur. Noksanlığında tipik olarak klorofil kaybı sonucu kloroz görülür. Önce yaşlı , sonra genç yapraklarda damarlar arasında kloroz oluşur, yaprak kenarları yeşil kalır. Yaprak uçları ve kenarları yukarı doğru kıvrılıp sonunda yapraklar dökülebilir. Magnezyum noksanlığı genelde kumlu topraklarda ortaya çıkar. Potasyum fazlalığında da magnezyum bitki tarafından almayabilir. Şeker pancarı, patates, domates ve meyveler hassastır. Yaprağa veya toprağa MgS04 halinde birkaç uygulama şeklinde verilebilir. Kalsiyum: Hücre zarlarının geçirgenliğini ayarlar. Birçok enzimin aktivitesiyle de ilgilidir. Noksanlığında özellikle bitkilerin büyüme uçları, sürgünler zarar görür. Genç yapraklarda şekilsizleşme, kenarlarında kıvrılma ve nekroz, kahverengi benekler oluşur. Bitkilerin kök sistemleri de zayıf olur. Ayrıca değişik bitkilerde farklı belirtilere neden olur. Patateslerde uçtan itibaren siyahlaşma, çok sayıda şekilsiz yumru oluşumu, çileklerde uç kısımda yanıklık ve ölüm,elma ve daha birçok meyvede acı çürüklük, marulda uç yanıklığı, kirazlarda ve havuçlarda çatlamalar, bakla gibi büyük daneli baklagillerde tohum bağlamama veya tohumlarda çökme, buruşma, tahıllarda yeni çıkan yaprağın kıvrık kalması, domateslerde çiçek dibi çürüklüğü gibi hastalıklar oluşur. Elma ve domateslerde ışık şiddeti azaltılarak kalsiyum noksanlığı belirtileri azaltılabilir. Bunun dışında toprağa kireç uygulaması da olumlu sonuç verir. Bor: Hücre içindeki fonksiyonu tam olarak bilinmemekle birlikte, şekerlerin taşınması ve hücre duvarı oluşumunda, kalsiyumun kullanılmasıyla ilgili rolü olduğu düşünülmektedir. Noksanlığında uç sürgünlerindeki genç yaprakların dip kısımlarında renk açık yeşile döner, gövde ve yapraklarda şekil bozukluğu olur. Bitkiler bodurlaşır. Meyve, yumru, kök veya gövdelerde yüzey çatlakları yada öz çürüklükleri meydana gelir. Değişik bitkilerde farklı belirtiler ortaya çıkar. Kerevizlerde gövde çatlakları, şeker pancarında öz çürüklüğü, turunçgillerde sert meyve oluşumu, elmalarda rozetleşme, geriye doğru ölüm ve meyvelerinde mantarımsı öz, yoncada sarılık ve tütün, domates, keten ve daha birçok bitkide tepe ölümleri görülür. Eksikliği daha çok kumlu, kireçli topraklarda ortaya çıkmaktadır.Toprağa veya yapraklara boraks uygulaması yapılabilir. Bor, topraklarda gereksinimden beş kat fazla bulunduğunda bitkilere toksik etki yapar. Yapraklarda kloroz ve uçlarda koyu-kahverengi, siyah yanıklık olur. Patates, mısır, turunçgiller, çilek ve şeftali çok duyarlıdır. Kükürt: Bitkilerde bazı amino asitlerin ve ko-enzimlerin yapısında bulunur. Protein sentezinde rolü vardır. Eksikliğinde ortaya çıkan belirtiler azot eksikliği belirtilerine benzer.Tek fark genç yaprakların daha hassas olmasıdır.Yapraklar uçuk yeşil veya açık sarı renkte olur. Gerektiğinde toprağa kükürt verilerek noksanlık giderilebilir. Demir: Klorofil sentezinde katalizör olarak rol alır. Birçok enzimin, özellikle solunum enzimlerinin yapısında bulunur. Noksanlığında tipik olarak genç yapraklarda damarlar arasında kloroz ortaya çıkar, damarlar yeşil kalır. Şiddetli olduğunda damarlar da sararıp yapraklar tamamen kuruyabilir. Bitkilerin gelişmesinde gerileme olur. Demir noksanlığı daha çok kireçli topraklarda görülür. Demirli bileşikler kireç tarafından tutulup bitkinin yararlanamayacağı forma girdikleri için demir noksanlığı ortaya çıkar. Toprakta suyun fazla olması ve köklerin havasız kalmasıyla yada ışığın çok fazla oluşuyla hücre özsuyunun alkali hale gelmesi de demirin bitki tarafından alımını engeller. Alkali topraklarda toprağı asit hale getirmek için bol ahır gübresi kullanılmalı, fazla güneş ışığını önleyecek şekilde budama yapılmalı ve toprağa veya yapraklara demirli preparatlar verilmelidir. Bu amaçla, karaboya (FeS04,1-3 kg / ağaç) yada hazır demirli preparatlardan biri (Sequestrene 138 Fe, % 0.05 -% 1; Fetrilon, %0.1-0.3) kullanılabilir. Çinko: Şekerlerin oksidasyonuyla ilgili enzimlerin yapısında yer alır. Noksanlığında yaprak damarları arasında kloroz görülür. Daha sonra bu yapraklar nekrotikleşir ve morumsu renge dönüşürler. Boğum araları kısalır, yapraklar küçülür, şekilsizleşir, rozetleşme veya kamçılaşma belirtileri ortaya çıkar. Meyve verimi de düşer. Hastalık birkaç yıl devam ederse kamçılaşan sürgün ve dallar kuruyarak ağaç ölüme doğru gidebilir. Ağaçlara durgun dönemde %5'lik (100 litre suya 5 kg), yapraklı dönemde %1'lik çinko sülfat (100 litre suya 1 kg ZnS04 + 0.5 kg sönmemiş kireç) püskürtülerek noksanlık giderilebilir. Bakır: Birçok oksidatif enzimin yapısında yer alır. Noksanlığında bitkilerde değişik belirtiler ortaya çıkar. Tahıllarda genç yaprakların uçlarında kuruma, kenarlarında kloroz meydana gelir. Yapraklar tam olarak açılamaz, kıvrık kalır, solgunluk oluşur. Başaklar normalden kısa ve şekilsiz olur, daneler buruşur. Turunçgillerde, yumuşak ve sert çekirdekli meyve ağaçlarında, yazın sürgünlerde geriye doğru ölüm, yaprak kenarlarında yanıklık, kloroz, rozetleşme gibi belirtiler ortaya çıkar. Sebzeler ise normal gelişme gösteremez. Meyve ağaçlarını paraziter hastalık etmenlerinden korumak için atılan Bordo Bulamacı (CuSO4) veya diğer bakırlı preparatlar, bakır noksanlığını kısmen giderir.Toprağa da bakır sülfat uygulanabilir. Bakırın fazlası da bitkilerde toksik etki yapar. Yapraklarda yanıklıklara neden olur. Manganez : Solunum, fotosentez ve azot metabolizması ile ilgili enzimlerin yapısında yer alır.Noksanlığında, demir noksanlığına benzer şekilde yapraklarda kloroz ortaya çıkar.Yalnız farklı olarak damarların olduğu kısımlar kalın bir bant halinde normal rengini muhafaza eder.Ayrıca yapraklar üzerinde nekrotik lekeler oluşabilir. Şiddetli durumlarda yapraklar kahverengileşerek kururlar. Organik, turba, kumlu topraklarda, yüksek pH 'da mangan eksikliği görülür. Yapraklara MnS04 püskürtülmesi tavsiye edilir. Toprak asilliğinin çok yüksek olduğu yerlerde magnezyum ve kalsiyumun alamayışı nedeni ile mangan toksisitesi ortaya çıkar. Özellikle karnabahar, lahana ve arpa hassastır. Damarlar arasında düzensiz klorotik lekeler oluşur, daha sonra koyu kahve, mor veya siyah nekrotik lekelere dönüşür. Lekeler yaprak kenarlarında yoğundur ve yaprak kenarları içe doğru kıvrılabilir. Molibden: Nitraz redüktaz enziminin önemli bir yapıtaşı olduğu bilinmektedir. Azot fiksasyonunda da rolü vardır. Noksanlığında şiddetli sararma ve cüceleşme görülür. Özellikle kavun bitkisi hassastır, meyve vermez. Haçlıgillerde şekilsiz, parçalı yaprak oluşumuna neden olur. Diğer birçok bitkide ise yapraklarda damarlar arasında parlak san-yeşil beneklenmeler, yaprak kenarlarında kıvrılmalar ve sonunda yapraklarda kuruma ve çökme şeklinde belirtiler oluşur. Toprağa amonyum molibdat uygulanarak bu belirtiler önlenebilir. Bazı bitkilerde klor ve sodyum noksanlığı zararı görülebilir. Domates, marul ve lahana klor noksanlığına, semizotu ise sodyum noksanlığına duyarlıdır. Halojenlerin noksanlığında ortaya çıkan belirtiler birbirine benzer. Yapraklarda sararma, solgunluk ve yaprak kenarı nekrozu görülür. Toprak asitliğinin fazla olduğu durumlarda alüminyum toksisitesi görülebilir. Arpa, şekerpancarı ve fasulye buna duyarlıdır. Köklerde lobutlaşma, büyümede gerilik ortaya çıkar. Zararlı endüstriyel atıklar Dünyamızı saran atmosfer tabakasında; azot % 78, oksijen %21, karbondioksit, su buharı ve diğer gazlar ise %1'lik bir oranda bulunurlar. Ancak insan aktiviteleri sonucu değişik gazlar atmosfere karışarak, bu oranlar bitkilere zararlı olacak şekilde değişebilmektedir. Isınma, enerji üretimi ve endüstri faaliyetleri sırasında hidrojen florür, azot oksitleri, ozon, kükürt dioksit, peroksiasil nitratlar gibi gaz ve kurşun, demir oksit, bor partikülleri, yol tozları, çimento tozları gibi partikül halindeki kirleticiler atmosfere karışarak bitkilerde çeşitli zararlara neden olurlar. Kirleticilere karşı bitkilerin tepkisi, gözle görülür belirtilerin oluşması, büyümenin yada gelişmenin engellenmesi, fizyolojik ve metabolik dengenin bozulması ve belirli bazı elementlerin ve metabolitlerin birikmesi şeklinde olabilir. Etkinin şiddeti, bitkinin kirleticiye maruz kalma süresine, kirleticinin dozuna ve ışık şiddeti, nispi nem, toprak nemi, sıcaklık ve diğer kirleticilerin varlığına bağlı olarak değişmektedir. Birden fazla kirletici bir arada bulunduğunda değişik şekilde etkileşim gösterebilirler. Bazen birlikte etkileri, tek tek etkilerinin toplamına eşit olabilir ki, buna eklemeli etki denir (EAB=EA+EB). Bazen de birlikte etkileri, etki toplamından büyük olur ki buna sinerjitik etki denir (EAB>EA+EB), yada küçük olur, buna da antagonistik etki denir (EAB Doğada yaygın olarak bulunan kirletici gazlardan biri kükürtdioksittir (SO2). Fabrika bacalarından (bakır, gübre, demir-çelik, kurşun-çinko, petrol arıtım, deri işleme, kağıt vs.), otomobil eksozları ve diğer iç yanmalı motorlardan kaynaklanır. Birçok bitki, özellikle yonca, bezelye, pamuk, fasulye ve ibreliler hassastır. Kükürtdioksit 0.3-0.5 ppm konsantrasyonlarda fitotoksiktir. Düşük konsantrasyonları genel kloroza neden olur. Yüksek konsantrasyonlarda ise yapraklarda damarlar arasında kalan bölgeler beyazlaşır. Klorofili parçalayarak fotosentezi engellemektedir. Ozon stratosferde doğal olarak bulunur. Bunun dışında, otomobil eksozları ve diğer iç yanmalı motorlardan çıkan NC>2, güneşin ultraviole ışınlarının etkisiyle oksijenle reaksiyona girerek ozonu meydana getirir (NÛ2+02 güneş ışığı Os+NO). Ozonun 0.1-0.5 ppm'lik dozları birkaç saatte bitkilere zarar verebilir. Stomalardan yaprağa girerek hücrelerin ölümüne ve beyaz nekrotik alanların oluşumuna neden olur. Turunçgiller, yonca, fasulye, soya fasulyesi, asma, patates, tütün, buğday, çam ve kavak gibi bazı bitkiler ozona çok duyarlıdır. Ozonun oluşumu sırasında açığa çıkan NO, otomobil eksozlarından çıkan tam yanmamış hidrokarbonlarla birleşerek yine bitkilere toksik olan peroksiasilnitratlan (PAN) meydana getirir. Bunlar da Stomalardan yaprak dokusuna girerler ve 0.001-0.02 ppm kadar küçük dozları bile hassas bitkilere zarar verebilir. Yapraklar gümüşi bir renk alır. Bunun nedeni de yaprakların alt yüzünün parlak beyaz-bronz renge dönüşmesidir. Zarar gören yaprakların mezofil hücrelerindeki protoplastlar çöker, buraya hava dolar. Bu hava boşlukları yapraklara gümüşi rengi verir. Ispanak, domates, marul en hassas bitkilerdir. Azot oksitlerinin asıl kaynağı biyolojik olarak bakteriler tarafından oluşturulan NO 'dir. Fakat bu şekilde oluşan NO dünyada homojen olarak dağıldığı için bitkilere zarar vermez. Halbuki şömine, soba gibi ısınma araçlarından yada iç yanmalı motorlardan çıkan azot oksitleri belirli alanlarda yoğunluk kazanarak bitkilere toksik etki yaparlar. Bunların 2-3 ppm 'de fitotoksik oldukları belirlenmiştir. En duyarlı bitkiler; fasulye, domates, yulaf, buğday ve bezelyedir. Bitkilerdeki zararı SO2 zararına benzer. Yapraklarda renk açılması, bronzlaşma görülür. Ayrıca gelişmeyi de olumsuz yönde etkiler. Flor ve floritler, maden ve petrol işleyen fabrikalardan kaynaklanır. Mısır, şeftali, lale, fasulye gibi hassas bitkilerde 0.1 ppm 'de toksik etki yapabilir. Dikotiledonlarda yaprak kenarlarından, monokotiledonlarda yaprak uçlarından itibaren kahverengileşme olur. Rafineri ve cam fabrikaları çevresinde bazen Cl2 ve HCI zararı görülebilir. Klor 0.1 ppm 'de toksiktir. Yine yaprak kenarlarında yanıklıkla kendini gösterir. Kapalı yerlerde, soğutma depolarında amonyak ve etilen gibi gazlar da zararlı olabilirler. Meyvelerde değişik lekeler meydana gelir. Doğada gazların tek tek etkilerinden çok, kombine etkilerine rastlanır. Ozon, SO2 ve NO2 kombinasyonları en çok zarar oluşturan kirleticilerdir. SO2 ve NO2 , rüzgarla uzun mesafelere taşınabilirler ve sülfirik ve nitrit asitlere dönüşerek asit yağmurları şeklinde de etkili olurlar. Asit yağmurları doğrudan yapraklar üzerinde lezyonlar meydana getirerek zararlı oldukları gibi, toprağın kimyasal ve biyolojik yapısını değiştirerek dolaylı olarak da bitki sağlığını tehdit ederler. Gaz kirleticiler ve asit yağmurlarından başka partikül halindeki kirleticiler de bitkilerde önemli zararlara neden olmaktadır. Bunlardan en önemlileri çimento fabrikalarından çıkan çimento fırın tozları, kireç ocaklarından çıkan kireç tozları, kurşun ve bor partikülleri, mozaik fabrikaları tozları ve yol tozlarıdır. Bunlar bitki yapraklarının üzerini kaplayarak fotosenteze engel olur, bunun sonucunda bitki verimi düşer. Ayrıca pH 'yi etkileyerek normal hücre yapısının bozulmasına neden olur, bitki besin maddelerinin alımını engeller. Ülkemizde de sanayinin yoğun olduğu bölgelerde, çevreye zararlı gazların yayıldığı fabrikaların çevresinde bulunan tarım alanlarında önemli zararlar meydana gelmektedir. Örneğin Murgul ve Samsun 'daki bakır işletmeleri çevrede bulunan tarım alanlarında neden oldukları zararlar için üreticilere her yıl milyonlarca lira tazminat ödemektedirler. Hatalı tarımsal uygulamalar Pestisitlerin hatalı kullanımlarından dolayı bitkilerde çeşitli zararlar meydana gelmektedir, ilaçların tavsiye edilen normal kullanım dozlarının üzerinde kullanılması, uygulama zamanının iyi ayarlanmaması nedeni ile yanlış dönemde uygulanması, topraktaki kalıcılığının dikkate alınmaması, uygulama sırasında rüzgarla istenmeyen yerlere taşınması ve çevre koşullarının ilaçlamaya uygun olmadığı durumlarda, pestisitler kültür bitkilerine zarar verebilirler. Seçici özellikleri nedeniyle pestisitler içinde en çok herbisitlerin fitotoksisitelerine rastlanır. 2,4 D ester formülasyonlu herbisitler buharlaşma özelliklerinden dolayı rüzgarla taşınarak, uygulama alanının dışındaki geniş yapraklı kültür bitkilerini etkileyebilirler. Bu durumda yapraklarda şekil bozukluğu meydana gelir. Yaprak damarları birbirine paralel, yaprak kenarları ise parçalı bir görünüm alır. Diğer bazı herbisitler de yanlış kullanıldıklarında fotosentezi, lipit sentezini, hücre bölünmesini önleyebilirler. Bazı bitkilerde bir fungisit veya insektisite hassasiyet görülür, özellikle süs bitkilerinde ilaç kullanımına dikkat edilmelidir. Kabakgillerin bakirli, şeftalinin çinkolu ilaçlara hassas olduğu bilinmektedir. Ayrıca kükürtlü veya yazlık beyaz yağlı preparatlar 30 °C' nin üzerindeki sıcaklıklarda bitkilere toksik etki yaparlar. Derin dikim, derin veya sık ekim, aşın yada hatalı toprak işleme, gübreleme, sulama, budama işlemleri ve uygun olmayan koşullarda depolama gibi kültürel işlemler de bitkilerde birtakım zararlara yol açarlar. Derin dikim, ağaç köklerinin yeterince hava alamamasına ve bitkilerin kök çürüklüklerine daha hassas hale gelmesine neden olur. Kök sistemi görevini yapamaz. Bunun sonucunda ağaçların gövdelerinde zamklanma görülebilir. Ekimde derinlik önemlidir. Her tohumun istediği bir ekim derinliği vardır. Fazla yüzmek yada derin ekilen tohum normal çimlenemez veya toprak yüzeyine çıkamaz, yada gelişen bitki zayıf olur. Aynı şekilde sık ekimde bitkilerin zayıf gelişmesine neden olur. Sık ekim sonucu bitkilerin havalanması önlenecek ve fazla nem patojenlerin enfeksiyonuna uygun bir ortam oluşturacaktır. Aşırı toprak işleme topraktan fazla su kaybına neden olur. Sıra arası çapalamanın dikkatsiz yapılması bitki köklerinin yaralanmasına yada kopmasına neden olur. Aşırı veya düzensiz sulama bitkilerin sağlıksız gelişmesine yol açar. Hıyar gibi bazı bitkilerde acılaşma olur. Gübrelemenin az yada fazla olması da besin maddesi noksanlığı veya toksisitesi belirtilerini ortaya çıkarır. Aşın ve yanlış budama ağaçlarda zararlanmalara bunun sonucunda da verim düşüklüğüne neden olur. Budama yaralarının kapatılmaması sonucu buralardan giren patojenler bitkileri hastalandırır. Uygun olmayan koşullarda depolama bitkisel ürünlerde fizyolojik ve patojenlerin neden olduğu bozulmalarla sonuçlanır, ürünlerin kalitesi ve pazar değeri azalır. Bu bölümde ele alınan ve bunların dışında kalan tüm tarımsal işlemlerden her birinin uygun şekilde ve zamanında yapılmaması halinde bitkiler zayıf gelişir ve sekonder etmenlerin hücumuna duyarlı hale gelirler. 2. Canlı (Paraziter) Hastalık Etmenleri Funguslar, bakteriler ve virüsler bitkilerde hastalık meydana getiren canlı etmenlerdir. Parazit bitkiler ve yabancı otların da bitkilerin gelişmesini olumsuz yönde etkiledikleri için paraziter hastalık etmenleri içinde ele alınırlar. Bu grup içinde çok sayıda etmen olduğu için bunlarla ilgili çalışmaları kolaylaştırmak ve araştırıcılar arasında birlik sağlamak açısından, bunlar belli bir düzene göre isimlendirilmekte ve sınıflandırılmaktadır. Sınıflandırma birbirine benzeyen canlıları aynı kategoriler içinde ele almaktır. Canlıların sınıflandırılmasında belirli bazı kategoriler kullanılır: * Alem (Regnum veya Kingdom) * Bölüm (Şube) (Phylum, Division) * Sınıf (Classis) * Takım (Ordo) * Familya (Family.Familia) * Cins (Genus) * Tür (Species) Bu kategoriler arasında, gerektiğinde ara kategoriler de kullanılmaktadır. Bunlar; altbölüm, altsınıf, alttakım, altfamilya, altcins ve alttür olarak isimlendirilirler. Bu sınıflandırma kategorilerine verilen isimler Latince'den yada Yunanca'dan alındığı için isimlendirmelerde yine bu dillerden gelen bazı ekler kullanılır. * Alem - ae * Bölüm - mycota * Altbölüm - mycotina * Sınıf - mycetes * Altsınıf - mycetidae * Takım - ales * Familya - aceae Tür isimleri cins ve türün adı olmak üzere iki isimli (binomial) olarak kullanılır ve bunlar italik harflerle veya altı çizilerek yazılır. Alttür isimleri ise üçlü (trinomial) olarak yazılır, isimlerden sonra bu türün ilk tanımını yapan araştırıcının adı veya kısaltması yazılır. Eğer sonradan başka bir araştırıcı aynı türü başka şekilde isimlendirirse ilk tanımlayanın adı parantez içinde, son isimlendirenin adı ise en sonra yazılır (Örneğin: Bipolaris oryzae (Breda de Haan) Shoemaker). Bitkilerde hastalığa neden olan funguslar, bakteriler ve virüsler, canlılar aleminin iki ana grubu olan bitkiler ve hayvanlara hem benzer, hem de farklı özellikleri nedeniyle her iki gruba da dahil edilememiş, Protista adı altında ayrı bir alem olarak ele alınmışlardır. Protistler hücre yapıları birbirinden farklı iki alt gruba ayrılırlar: Prokaryonlar (ilkel protistler) ve Ökaryonlar (yüksek protistler). Prokaryonlar tek hücreli canlılardır. Stoplazmalan ya sadece hücre zarı ile, yada hücre zarı ve hücre duvarı ile çevrilidir ve küçük (70 S*) ribozomlar içerir. Genetik materyal yani DNA, bir zarla çevrili değildir, stoplazma içinde tek bir iplikçik halinde, serbest olarak bulunur. Ökaryonlar gelişmiş mikroorganizmaları içine alan gruptur. Hücrede, etrafı zarla çevrili gerçek bir çekirdek bulunur. DNA prokaryonlarda olduğu gibi tek bir kromozomdan ibaret değil, kromozom dizeleri halindedir. Stoplazma zarı, endoplazmik reticulum ile çekirdek zarına kadar uzanmaktadır ve stoplazma büyük (80 S) ribozomlar içerir. Bakteriler prokaryonlar arasında, funguslar Ökaryonlar arasında yer alırlar. Virüsler ise her iki gruba da dahil edilemeyen farklı yapıda canlılardır. Prokaryonlar ve Ökaryonlar gibi hücresel bir yapıları yoktur ve çoğalmaları için canlı bir hücreye gerek duyarlar. Bitki Patojeni Funguslar Funguslar klorofil içermeyen ve genellikle sporlarıyla çoğalan mikroorganizmalardır. Eskiden benzer bir takım özellikleri nedeniyle bitkiler aleminde ele alınarak, kök, gövde ve yaprak gibi organları olmayan bitkiler olarak tanımlanırlarken, günümüzde Protista üst alemi içinde, Mycetae (Fungi) adı verilen kendi alemleri içinde ele alınmakta ve kendilerine has özellikleri olan ayrı bir grup organizma olarak düşünülmektedirler. Yaklaşık 100.000 fungus türü tanımlanmıştır ve her yıl buna yeni türler eklenmektedir. Şapkalı mantarlar, kav mantarları, küfler ve mildiyö fungusları hemen herkes tarafından bilinmektedir. Fungusların bir çoğu insanlar için yararlıdır. Gıda olarak tüketilebilir veya gıda ve ilaç endüstrisinde kullanılabilirler. Yemeklik kültür mantarları taze olarak yada konserve veya çorba halinde hemen tüm marketlerde bulunabilmektedir. Ekmek, bira, şarap, soya sosu gibi gıda ve içeceklerin yapımında özel funguslar kullanılmaktadır. Birçok hayatı kurtaran penisilin adlı antibiyotik ise 1929 yılında Fleming adlı araştırıcının laboratuarında, kültürde çoğalan bir fungustan elde edilmiştir. Ayrıca funguslar bakterilerle birlikte çürüme olayının başlıca etkenleri olarak, organik maddenin parçalanması yoluyla bitkilerin beslenmesinde önemli ve mutlak bir rol alırlar. Tüm funguslar karışık yapıdaki organik besinleri daha basit bileşiklere ayırma ve bu bileşikleri enerji kaynağı olarak kullanma yeteneğine sahiptir. Çürümekte olan organik madde üzerinde yaşayabilen funguslar saprofit olarak isimlendirilirler. Funguslar; kitaplar, giyecekler, meyveler, deri, et, kağıt, depolanmış tohum ve diğer bitkisel materyal ve odun gibi çok değişik maddeleri parçalayabilirler. Bazı funguslar bitki kökleriyle simbiyotik (her iki organizmaya da fayda sağlayan bir ortak yaşam) bir birlik oluştururlar. Bu yapıya "mikoriza" (mycorrhiza) denir. Funguslar bitki köklerinin üzerinde (ektomikoriza) veya içinde (endomikoriza) yaşarlar. Fungus bitki köklerinden besin maddeleri ihtiyacını karşılarken, fosfor gibi belirli bazı besin elementlerini de bitki köklerinin alabileceği forma çevirir. Bazı mikoriza fungusları, zararlı patojenik fungusların bitki köklerini enfekte etmesine karşı bitkiyi koruyabilir. Zararlı funguslar insan , hayvan ve özellikle de bitkilerde hastalıklara neden olurlar. 8000 kadar fungus türünün bitkilerde hastalıklara neden olduğu ve her bitkinin bazı funguslar tarafından hastalandırıldığı bilinmektedir. Bazı bitki patojeni funguslar çok sayıda bitki türüne zarar verebilir, bazıları ise yalnızca bir tek konukçuya sahiptir. Bazı funguslar da yalnızca canlı bir konukçu üzerinde çoğalıp yaşayabilir, bunlara "obligat (mecburi) parazitler" denir. "Fakültatif parazitler" ise ölü organik madde ile beslenerek de yaşamlarını sürdürebilirler. Bitki paraziti bazı funguslar tarafından gıdalar üzerinde üretilen ve "mikotoksin" denilen bazı maddeler hayvanlara ve insanlara zararlıdır. Buğday, arpa, mısır gibi bazı gıdalar depolandığında, uygun sıcaklık ve nem mevcutsa bunlar üzerinde bazı funguslar gelişir. Mısır daneleri üzerinde Aspergillus flavus fungusunun gelişmesi sonucu aflatoksin üretimi gerçekleşir. Aflatoksin seviyesi yüksek olduğunda bu danelerden yapılan gıdayı tüketen hayvan veya insanlar zarar görür. Hububat tohumları üzerinde gelişen bazı Fusarium türleri de tehlikeli toksik maddeler üretirler. Claviceps purpurea fungusunun neden olduğu "çavdar mahmuzu" hastalığında ise daneler fungusun canlılığını sürdürmesini sağlayan yapılar olan sklerotlarla bulaşır ki bunlar da oldukça zehirli maddeler içerirler. Fungusların neden olduğu bitki hastalıkları her yıl ürün kaybına neden olmakta ve bu hastalıkları önlemek için kullanılan fungisitler için de milyarlarca lira harcanmaktadır. Morfolojik özellikleri Bir fungusun vücudu veya vegetatif dönemdeki yapısı "hif adı verilen (hyphae, çoğulu: hypha) dallanmış ipliksi yapılardan ibarettir. Hifler bir araya gelerek "misel" (mycelium, çoğulu: mycelia) meydana getirirler. Gelişmiş funguslarda hifler, "septum" (çoğulu: septae) denilen bölmelerle, içleri protoplazma dolu hücrelere bölünmüştür. Protoplazma yarı geçirgen stoplazmik zarla çevrili ve bir veya daha fazla çekirdek içermektedir. İlkel fungusların hifleri bölmesizdir, bunlar protoplazma içeren uzun tüpler şeklindedir ve mikroskop altında sıvı protoplazmanın hif içinde ileri geri akışı görülebilmektedir. Bir hif genellikle bir sporun çimlenmesi ile oluşur. En basit sporlar, bir çekirdek ve stoplazma içeren, mikroskobik boyutlarda tek hücreli yapılardır. İlkel fungusların sporları kamçıları ile yüzerek hareket etme kabiliyetindedir. Bir spor hücre duvarındaki ince bir yerden tüp yada iplik şeklinde bir çim borusu çıkararak çimlenir. Çim borusu gelişerek bir hife dönüşür ve hif de dallanarak miseli oluşturur. Gelişme büyük ölçüde hiflerin ucunda olur ve sıvı maddelerin doğrudan doğruya hücre duvarından emilmesi ile gerçekleşir. Miselyum genellikle fungusun geliştiği ortam içinde gizlidir. Gelişmekte olan hif uçları, en sert odun dokusu da dahil olmak üzere birçok bitki dokusunun hücre duvarından doğrudan bitki hücreleri içerisine girebilme yeteneğindedir. Bu giriş enzim" denilen ve gelişmeleri sırasında çıkardıkları organik maddeler yolu ile olur. Enzimler hücre duvarlarını ve diğer hücre kısımlarını oluşturan yapılan çözebilir veya parçalayabilirler. Fungusların konukçu dokuları içine girişi mekanik basınç yoluyla da olabilir. Bu amaçla hifler özel işleve sahip bazı yapılara dönüştürülürler. Hiflerin konukçu dokuları içine girebilmek için oluşturduğu ucu çivi şeklinde sivrilmiş yapılara "apressoryum" (appressorium, çoğulu: appressoria) denir. Appressorium konukçu epidermisi üzerine oluşturduğu basınçla epidermisi delerek doku içine girer. Fungus hiflerinin oluşturduğu özel yapılardan bir diğeri "haustoryum"dur (haustorium, çoğulu: haustoria). Tüp veya parmak şeklinde olan bu yapı, fungusun konukçu hücreleri içinden besin maddelerini alabilmesi için meydana getirilmektedir. Misel, konukçu bitkinin veya çürüyen organik maddenin üzerinde yada içinde oluşabilir ve fungusun teşhisine yarayan değişik yapı ve organları oluşturabilir. Fungus miselleri yoğun bir şekilde gelişerek fungal dokuları "plektenkima" (plectenchyma) meydana getirirler. Misellerin düzensiz ve sıkı bir şekilde bir araya gelerek oluşturdukları fungal dokulara "psödoparankima" (pseudoparanchyma) denir. Bu tip dokulara örnek olarak, bazı funguslarda oluşturulan ve "sklerot" (sclerotium, çoğulu: sclerotia) adı verilen dormant yada dinlenici yapılar verilebilir. Bunların boyutları birkaç hücreden (mikrosklerotlar) binlerce hücreye kadar değişebilir. Bazıları 4 kg ağırlığa kadar ulaşabilirken çoğu küçüktür. Renk (şeffaf, açık sarı, kahverengi, siyah) ve şekil (düzensiz şekilli, küresel, uzunumsu) bakımdan da değişiktirler. Funguslar, soğuk, kurak, sıcak veya konukçu yokluğu gibi olumsuz koşullarda sklerot halinde canlılıklarını koruyabilirler. Uygun koşulların yeniden ortaya çıkmasıyla sklerot konukçuyu enfekte edecek olan hifi oluşturur, yeni bir miselyum meydana getirir, yada başka bir üretken yapıya dönüşür. Fungus misellerinin biri birine paralel olarak sıkı bir şekilde bir araya gelerek oluşturdukları ip veya halat şeklindeki yapılara "rizomorf" (rhizomorph) denir. Rizomorf fungusun hem uygun olmayan koşulları geçirmesini, hem de bir konukçudan diğerine ulaşmasını sağlar. Misellerin düzenli ve gevşek bir şekilde bir araya gelerek oluşturdukları fungal dokulara ise "prosenkima" (prosenchyma) denir, içinde değişik çoğalma yapılarının oluştuğu "stroma" bu tip fungal dokulardandır. Fungus miselleri konukçu bitki dokuları üzerinde veya içinde gelişebilirler. Konukçu yüzeyinde gelişen funguslara "ektoparazit funguslar" denir Ektoparazit funguslar haustoryumları ile bitki hücrelerinden besinlerini alırlar. Bitki dokuları içinde gelişen funguslara ise "endoparazit funguslar" denir. Bunlarda misel gelişimi bitki hücreleri arasında (intercelluler) veya hücre içine girmek suretiyle olur (intracelluler). Üremeleri Funguslarda üreme, eşeyli ve eşeysiz olmak üzere iki tipte gerçekleşir. Eşeysiz veya aseksüel üreme, somatik yapının belirli bir dönemde kendi benzerlerini oluşturmasına denir. Eşeysiz üreme değişik fungus gruplarında dört farklı şekilde olabilmekte ve bunun sonucunda değişik tipte sporlar oluşmaktadır. Eşeysiz üreme tiplerinden biri olan "fragmentasyon"da, hiflerin uç veya orta kısımlarındaki hücreler hifden kopup ayrılmakta ve yeni bireyleri oluşturmaktadır. Hiflerin uç veya orta kısımlarındaki hücrelerin çeperleri kalınlaşıp, yuvarlaklaşarak hif den ayrılmasıyla oluşan sporlara "klamidospor" (chlamidospor) denir. Bunlar genellikle fungusların olumsuz koşulları geçirmek için oluşturdukları sporlardır. Belirli bir olgunluğa ulaşan hiçlerin uç kısımlarındaki hücrelerin tespih tanesi gibi koparak hinden ayrılmasıyla oluşan sporlara ise "arthrospor" denir. Bu iki spor tipi hif hücrelerinden yani, thallusdan oluştukları için bunlara "thallospor" da denilmektedir. Somatik yapısı tek hücreden oluşan funguslar, hücrelerinin uzayarak ortadan bölünmesiyle eşeysiz çoğalmayı gerçekleştirirler. Buna "bölünerek çoğalma" denir. Bazı funguslarda, protoplazma ve çekirdeğin hücrenin uç kısmında oluşan tomurcuk içine geçerek, tomurcuğun ana hücreden koparak ayrılmasıyla oluşan üreme şekli görülmektedir. Bu tip eşeysiz üremeye "tomurcuklanma" denir. Bazı funguslar ise doğrudan doğruya farklılaşmış miseller üzerinde yada misellerin oluşturduğu özel çoğalma yapıları üzerinde veya içinde, Spor oluşturmak suretiyle çoğalırlar. Funguslarda eşeysiz dönemde iki tip spor oluşumu görülmektedir. Dallanmış hiflerin ucunda bulunan ve içinde çok sayıda spor taşıyan kese şeklindeki çoğalma organlarına "sporangium" (çoğulu: sporangia), spor keseleri içinde oluşan sporlara ise "sporangiospor" denir. Nemli koşullarda yaşayıp gelişen funguslar bir veya birkaç kamçıya (flagellum, çoğulu: flagella) sahip hareketli sporlar üretirler, bunlara "zoospor" denir . Bununla birlikte fungusların çoğu rüzgar, yağmur sulan yada toprakla taşınan hareketsiz sporlar üretirler. Sporangium içinde oluşan hareketsiz sporlara "aplanospor" denir. Funguslarda eşeysiz dönemde oluşan ikinci tip sporlar ise "konidi"lerdir (conidium, çoğulu: conidia). Bunlar konidiofor (conidiophore) adı verilen farklılaşmış hiflerin ucunda oluşurlar, tek veya çok hücrelidirler. Konidiler bazen doğrudan doğruya hiflerin ucunda oluşur, bazen de daha kompleks yapılar içinde kitle halinde meydana gelirler. Stromatik doku içinde gömülü halde oluşan, kese şeklindeki konidi taşıyan organlara "piknit" (pycnidium , çoğulu: pycnidia) denir. Bazı fungus gruplarında konidiler "aservulus" (acervulus, çoğulu: acervuli) denilen yatak şeklindeki organlar içinde, bazılarında ise "sporodokyum" (sporodochium, çoğulu: sporodochia) adı verilen yastık şeklinde kabarık yapılar üzerinde oluşur. Bazen de konidioforlar çiçek demeti gibi yan yana gelerek uçlarında konidiler toplu halde oluşur, bu yapıya da "sinnema" (synnema) denir. Funguslarda seksüel (eşeyli) üreme üç aşamada; plasmogami, karyogami ve mayoz bölünme şeklinde gerçekleşmektedir. Plasmogami, farklı karakterde iki eşey hücresinin (gamet) veya eşey organının (gametangium, çoğulu: gametangia) plasmalarının birleşmesi olayıdır. Plasmogamide rol alan gametler birbirinin benzeri olabildiği gibi, birbirinden farklı büyüklük ve yapıda olabilirler. Karyogami ise iki gametin çekirdeklerinin birleşmesi olayıdır. Bundan sonra mayoz bölünme ile diploid çekirdek bölünerek haploid hücreler oluşturulur. Funguslar eşeyli ve eşeysiz üreme sırasında oluşturdukları özel yapı ve organlara göre sınıflandırılırlar. Bitki dokusuna girişleri ve bitkiden bitkiye taşınmaları Fungusların bitki dokularına girebilmeleri için yaralar yada doğal açıklıklar olması gerekmez. Fungus hifleri mekanik veya kimyasal yollarla sağlıklı bitki dokularına girebilme yeteneğindedirler. Fungus (liflerinin bitki dokusuna mekanik olarak girişi enfeksiyon çivisi yada apressoryum denilen sivri hif uçlarının basınçla bitki dokusunu delmesiyle gerçekleşir. Kimyasal giriş ise fungus emzimlerinin bitki hücre duvarlarını eritmesiyle olur. Bitki içine giren fungus hifleri hücreler arasında, hücreler içinde yada iletim dokularında yayılarak bitkiyi istila ederler. Fungusların bitkiden bitkiye taşınmaları aktif yada pasif taşınma şeklinde olur. Aktif taşınma, hareketli fungus sporlarının toprak suyunda yüzerek sağlıklı bitki köklerine ulaşmasıdır. Pasif taşınmada ise rüzgar, yağmur ve sulama suları, böcekler ve diğer hayvanlar, insanlar rol oynarlar. Aktif taşınma yalnızca hareketli zoosporları olan Myxomycetes, Chytridiomycetes ve Oomycetes sınırlarındaki funguslarda görülür. Bunların dışında kalan ve fungusların çoğunluğunu oluşturan gruplarda ise pasif taşınma söz konusudur. Fungusların ertesi yıla geçişleri toprakta yada bitki artıklarında kalan dayanıklı miseller, sklerotler, dinlenici sporlar veya eşeyli üreme sonucu oluşan dayanıklı yapılarla olur. Bitkilerde meydana getirdikleri belirtiler Funguslar bitkilerde çok değişik tipte belirtiler meydana getirirler. Bitki hücrelerini yada dokularını öldürerek neden oldukları nekrotik simptomlar; yaprak lekeleri, yanıklıklar, gövde veya dal kanserleri, geriye doğru ölüm, kök çürüklüğü, çökerten, gövde veya sap çürüklükleri, etli dokularda kuru veya yumuşak çürüklükler, antraknoz ve uyuz belirtileridir. Bundan başka lobut köklülük, gal veya siğil oluşumu, yaprak kıvırcıklığı gibi hiperplastik ve cücelik gibi hipoplastik belirtiler de oluştururlar. Funguslarla mücadele Mücadelede esasen kültürel tedbirler önem taşır. Sağlıklı üretim materyali kullanılması, hastalıklı bitki artıklarının imha edilmesi, ara konukçu ve vektörlerin ortadan kaldırılması, rotasyon ve dayanıklı bitki çeşitlerinin yetiştirilmesi gibi önlemler her hastalığın önlenmesinde etkili olabilecek uygulamalardır, Ama yinede bazı fungal hastalıklarla mücadelede kimyasal preparatların kullanılması gerekebilir. Toprak kökenli etmenler için toprak fümigasyonu, tohumla taşınan etmenler için sistemik fungusitlerle ilaçlaması, bitkinin toprak üstü kısımlarında zararlı etmenler için de yeşil aksam ilaçlaması önerilir. Funguslarda sınıflandırma ve bitkilerdeki önemli fungal hastalıklar Funguslar, eşeyli ve eşeysiz üreme sırasında oluşturdukları özel yapılar dikkate alınarak sınıflandırılırlar (Şekil 2.6). Mycota yani funguslar alemi iki bölüme ayrılır: Myxomycota ve Eumycota. * Bölüm 1. Myxomycota: Bunlara akışkan veya sümüksü funguslar denir. Bu grup funguslarda gerçek bir misel yapısı yoktur. Bunun yerine çıplak, amipsi, çok çekirdekli "plasmodium" denilen yapıya sahiptirler Bu bölümde bitki patojeni funguslar iki sınıfta toplanmıştır. * Sınıf 1. Myxomycetes: Miselleri yoktur. Yapılan plasmodiumdan ibarettir. Çoğalmaları hareketli zoosporlarla olur. * Takım 1. Physarales: İki kamçılı zoosporları vardır. Fuligo, Mucilago ve Physarum cinslerine bağlı funguslar otsu bitkilerde akışkan çürüklüğe neden olurlar. * Sınıf 2. Plasmodiophoromycetes * Takım 1. Plasmodiophorales: Plasmodiumlarim konukçu bitki kök ve gövde hücrelerinde oluştururlar, iki kamçılı zoosporları vardır. Plasmodiophora brassicae: Haçligillerde kök uru hastalığına neden olur. Polymyxa graminis. Hububatta kök çürüklüğü yapar. Polymyxa betae: Şeker pancarlarında kök çürüklüğüne neden olur. Spongospora subterranea: Patateslerde tozlu uyuz hastalığı etmenidir. Bölüm 2. Eumycota: Gerçek funguslar denir. Thallus, dallanmış ipliksi miselyumdan ibarettir. Beş altbölümde incelenir. Altbölüm 1. Mastigomygotina: Eşeysiz çoğalma zoosporlarla olur. Miselyum bölmesizdir. Sınıf 1. Chytridiomycetes: Zoosporlar tek kamçılıdır. Eşeyli üremede meydana gelen gametler morfolojik olarak birbirinin aynıdır. Takım 1. Chytridiales: Hücre duvarı vardır; fakat, gerçek bir miselyumu yoktur. "Rhizomycelium" denilen kök şeklinde uzantıları vardır. Olpidium brassicae : Lahanalarda kök çürüklüğü yapar. Physoderma maydis : Mısırlarda kahverengi leke hastalığı etmenidir. Synchytrium endobioticum : Patateslerde siğil hastalığına neden olur. Patates x virüsünün de vektörüdür. Urophlyctis alfalfae : Yoncalarda siğil hastalığı etmenidir. Sınıf 2. Oomycetes: Zoosporlar sporangium içinde oluşur. Zoosporlar çift kamçılıdır. Eşeyli üremeden sonra oluşan dinlenme sporları (oosporlar) morfolojik olarak birbirinden farklı gametlerin (dişi gamet: oogonium, erkek gamet: antheridium) birleşmesiyle oluşur. Takım 1. Saprolegniales : Zoosporlar uzun, silindirik sporangiumlar içinde oluşur. Aphanomyces spp. . Birçok bitkide kök çürüklüğüne neden olurlar. Takım 2. Peronosporales : Bu takımda önemli bitki patojenleri bulunmaktadır. Familya 1. Pythiaceae : Bu grupta, yaşamlarının bir kısmını toprakta geçiren fakültatif parazitler yer almaktadır. İki önemli cins vardır; bunlar Pythium ve Phytophthora cinsleridir. Pythium spp.: Bu cinse ait funguslarda zoosporlar vesicle içinde oluşur. Dünyanın her yerinde yaygın olarak bulunan bitki patojenleridir. Kültür bitkilerinde tohum, kök, gövde veya meyve çürüklüğüne neden olan 100 'den fazla türü vardır. Dünyada ve ülkemizde en yaygın türlerden biri P. ultimum 'dur. Pythium türlerinin bitkilerin fide döneminde neden oldukları tohum ve kök çürüklüğüne, çıkış öncesi veya sonrası "çökerten hastalığı" adı da verilmektedir. Sebze ve tütün fidelikleri hastalığın en çok dikkat çektiği yerlerdir. Fidelerde solgunluk ve sararma ortaya çıkar, bir süre sonra bu bitkiler kök boğazından devrilerek toprağa düşer ve ölürler. Sararmış bitkiler topraktan çekildiklerinde kolayca çıkarlar. Bunların kök boğazlarının inceldiği ve kahverengileştiği, ince köklerin tamamen tahrip olduğu görülür. Bunun sonucunda fidelikte yer yer boşluklar meydana gelir. Tohum ve fide ölümleri sonucu ekonomik kayıp ortaya çıkar. Hastalık ağır, fazla su tutan topraklarda, nemli ve serin koşullarda daha sık görülmektedir. Mücadelesi: Küçük alanlarda (fidelik ve seralarda) toprak dezenfeksiyonu önerilebilir. Ayrıca rekabetçi mikroorganizma yoğunluğunun artırılması etkili olabilir. Phytophthora türleri ise tek ve çok yıllık bitkilerde mildiyö, kök ve gövde çürüklüğü veya kök boğazı yanıklığı gibi değişik hastalıklara neden olabilirler. Çoğu obligat parazittir. Zoosporları doğrudan doğruya sporangium içinde oluşur. Ülkemizde bulunan önemli türler; domates ve patateste mildiyö hastalığı etmeni P. infestans, biberlerde kök boğazı yanıklığı etmeni P. capsici ve turunçgillerde kahverengi meyve çürüklüğü ve gövde zamklanma hastalıkları etmeni P. citrophthora 'dır. Phytophthora infestans: Patates mildiyösü (Geç yanıklık) Etmen Solanaceae familyasında bulunan bitkilerde, özellikle domates ve patateslerde zararlı olmaktadır. Hastalık, bitkilerin yaprak ve gövdelerinde, patateslerde bunlara ek olarak yumrularda etkili olur. Herhangi bir mücadele yöntemi uygulanamadığında ürünü tamamen yok edebilir. Zararın şiddeti çoğunlukla hava koşullarına bağlı olarak değişmektedir. Hastalığın ilk belirtileri alt yaprakların özellikle uç ve kenar kısımlarında oluşan yuvarlak yada düzensiz şekilli lekelerdir. Bunlar hızla gelişerek daha geniş, kahverengi nekrotik alanları oluştururlar. Yaprağın alt yüzeyinde ise lekeli kısımlarda beyazımsı gri renkte fungal gelişme dikkati çeker. Nemli koşullarda hastalık hızla ilerleyerek, yaprakların esmerleşerek çürümesine neden olur. Kuru havalarda hastalık daha yavaş gelişir, yapraklar kıvrılarak kururlar. Uygun koşullarda birkaç gün gibi kısa bir sürede hastalık yaprakları tamamen öldürebilir. Yumrularda önce dış tabakada kahverengileşme dikkati çeker. Bu koyu renkli lekeler hızla yumrunun iç kısmına doğru gelişir, geniş alanlar halinde sert, kahverengi çürük dokular meydana gelir. Hastalık depolanmış yumrularda gelişmeye devam eder; fakat, genelde sağlıklı yumrulara bulaşmaz. Nemli, ılık ve havalanması iyi olmayan depolarda hastalıklı yumrular sekonder bakteriler tarafından istila edilir ve yumuşak çürüklük oluşur. Etmen bulaşık yumrularda misel halinde kışı geçirir. Uygun koşullarda, tarlada kalan bulaşık yumrularda bulunan misellerinin ucunda sporangioforlar ve limon şeklinde sporangiumlan oluşur. Yağmur suları ve rüzgarla bunlar etrafa yayılır ve %90'ın üzerinde nispi nemde çimlenerek enfeksiyonu gerçekleştirirler. Daha nemli koşullarda sporangiumlar içinde oluşan çift kamçılı zoosporlar toprak suyunda yüzerek sağlıklı yumrulara ulaşır ve enfeksiyonu oluştururlar. Birbiriyle uyuşabilen ırklar bir arada bulunduğunda etmenin eşeyli çoğalma organları olan oogonium ve antheridiumlar oluşur; Bunların birleşmesiyle meydana gelen oospor dayanıklı bir yapıdır ve etmen bu şekilde toprakta canlılığını sürdürebilir. Mücadelesi: Öncelikle kültürel tedbirler alınmalıdır. Sağlıklı yumrular kullanılmalı, geç olgunlaşan çeşitleri yetiştirmekten kaçınılmalıdır. Nispeten dayanıklı çeşitler tercih edilmelidir. Hastalıklı bitki artıkları tarladan uzaklaştırılarak imha edilmelidir, ilk belirtiler ortaya çıktığında kimyasal mücadeleye başlanmalıdır. Hastalığın her yıl ve şiddetli olarak görüldüğü yerlerde ise, belirtiler görülmeden, günlük ortalama sıcaklığın 16 °C 'yi bulması kile ilaçlamaya başlanır ve 10-15 gün ara ile 2-3 ilaçlama yapılır. Kimyasal ı mücadelede, hazır bakirli preparatlar, yada organik veya sistemik fungisitlerden herhangi biri uygun dozda kullanılabilir. Familya 2. Albuginaceae (Beyaz paslar): Sporangiumlar zincir şeklinde oluşur. Obligat parazitlerdir. Albugo spp. : Lahana, turp, semiz otu gibi bitkilerde beyaz pas denilen hastalığa neden olur. Hastalık belirtileri bitkilerin bütün toprak üstü organlarında görülebilir. Yaprak yüzeylerinde, özellikle alt yüzeyde, beyaz veya krem-san renkte, değişik büyüklükte püstüller oluşur. Bazı bitkilerde yapraklar etli, kalın kıvrık bir yapıya dönüşür. Enfeksiyon şiddetli olduğunda yapraklar küçük kalır, hatta tüm bitki cüceleşebilir. Etmen genç gövde ve çiçekleri enfekte ederse sistemik enfeksiyon başlar ve anormal doku gelişmelerine neden olur. Çiçeklerde şişkinlik ve şekil bozukluğu görülür. Etmen hücre büyümesini, bölünmesini, klorofil ve nişasta oluşumunu teşvik eder. Miselleri konukçu epidermisinin altında hücreler arasında gelişir ve kısa, dik, lobut şeklinde sporangiumlar ucunda zincir şeklinde sporangiumlan oluşur. Oluşan Sporangiumlar konukçu bitki epidermisin! iterek küçük bir çıkıntı halinde görünmesini sağlar: Daha sonra da epidermisin yırtılmasıyla krem-beyaz sporangiumlar açığa çıkar. Pas hastalıklarını andıran bu görüntü nedeniyle hastalığa beyaz pas denir. Bazı konukçular üzerinde ve belirli koşullarda etmenin oogonium ve antheridiumlarmin birleşmesiyle oosporları meydana gelir ve etmen hastalıklı bitki artıklarından toprağa geçen oosporlarla kışı geçirir. Mücadelesi: Kültürel tedbirler mücadelede önemlidir. Etmenin konukçusu olmayan Cruciferae dışındaki bitkilerle yapılacak rotasyon etkili olur. Ayrıca çevrede bulunan ve etmene konukçuluk yapabilecek yabancı otlar ortadan kaldırılmalıdır. Familya 3. Peronosporaceae (Mildiyö funguslan): Sporangioforlann uç kısmında bulunan ve "sterigma" denilen küçük çıkıntıların ucunda limon şeklinde sporangiumlar oluşur ve bunlar rüzgarla taşınırlar. Obligat parazitlerdir. Bu familyada bulunan funguslar değişik bitkilerde mildiyö hastalıklarına neden olurlar. Bremia, Basidiophora, Sclerophthora, Sderospora, Peronospora, Pseudoperonospora, Plasmopara cinslerine bağlı türler farklı konukçularda zarara neden olurlar. Plasmopara viticola: bağ mildiyösü, Bremia lactucae: marul mildiyösü, Sderospora graminicola: buğdaygillerde mildiyö, Basidiophora entospora: Compositae familyasına bağlı bitkilerde mildiyö, Pseudoperonospora cubensis : hıyar mildiyösü etmenleridir. Peronospora tabacina: Tütün Mildiyösü (Mavi küf) Hastalık fide döneminde başlar. Genç tütün yapraklarının üst yüzeyinde önce küçük sarı lekeler halinde görülür. Nemli koşullarda lekelerin yaprağın alt yüzeyine gelen kısmında grimsi-mavi renkte etmenin misel, sporangiofor ve sporangiumlannda oluşan bir küf tabakası dikkati çeker. Uygun koşullarda (nispi nem yüksek olduğunda) hastalık tarladaki bitkilerde de görülür. Zamanla bitkilerin tüm yaprak alanı etkilenir, genç bitkiler ölebilir. Daha yaşlı bitkilerde ise yaprak lekeleri zamanla genişler, birbiriyle birleşir, başlangıçta sarı olan lekeler nekrotikleşir, kahverengiye dönüşür. Şiddetli enfeksiyonlarda yapraklar kahverengileşir ve kurur, bitki yavaş yavaş ölüme doğru gider. Etmen kışı tarlada kalan bitki artıkları üzerinde oospor halinde geçirir, ilkbaharda, uygun koşullarda oosporlar çimlenerek misel ve sporangiumlan oluşturur, bunlar enfeksiyonları başlatır ve sürdürür. Mücadelesi: Kültürel önlemler alınmalıdır. Ayrıca fidelikte ve tarlada koruyucu ve sistemik fungisitlerden biri kullanılır Altbölüm 2. Zygomycotina: Eşeyli çoğalmada oluşan zygospor, (+) ve (-) karakterli iki hifin birleşmesiyle oluşur. Miselleri bölmesizdir. Eşeysiz üremede ise sporangiumlar içinde hareketsiz aplanosporlar oluşur. Sınıf 1. Zygomycetes (Ekmek küfleri) Takım 1. Mucorales: Hareketsiz eşeysiz sporlar terminal sporangia içinde oluşur. Rhizopus nigricans: Meyve ve sebzelerde yumuşak çürüklük yapar. Mucorspp: Çürüyen gıdalar üzerinde oluşur. Choenophora cucurbitarum : Kabakta yumuşak çürüklük yapar. Takım 2. Endogonales: Mycorizal funguslardir. Sporlarını toprakta tek tek yada zygospor, klamidospor veya sporangia içeren sporokarplar (spor muhafaza organı) içinde oluşturur. Endogone ve Glomus cinclerine bağlı türler en yaygın mikorizal funguslardandır. Altbölüm 3. Ascomycotina : Eşeysiz çoğalma konidilerle olur. Eşeyli çoğalmada sporlar "askus" (ascus) denilen kesecikler içinde oluşur. Askuslar genellikle 8 adet askospor taşırlar, bunlar olgunlaşmca basınçla fırlatılırlar. Askuslar genellikle "askokarp" (ascocarp) denilen koruyucu organlar içinde oluşur. Sınıf 1. Hemiascomycetes : Askuslar açıkta oluşur, askokarp yoktur. Takım 1. : Endomycetales (Mayalar) Saccharomyces cerevisiae : Ekmek mayası Takım 2. Taphrinales : Askuslar çift çekirdekli askogen hücrelerden çıkar. Taphrina pruni: Eriklerde cep hastalığına, Taphrina cerasi: Kirazlarda cadı süpürg

http://www.biyologlar.com/bitki-etiolojisi

Agave Bitkisi

Âlem: Plantae (Bitkiler) Klad Angiosperms (Kapalı tohumlular) Klad Monocots (Bir çenekliler) Takım: Asparagales Familya: Agavaceae Cins: Agave Tür: Agave aboriginum Agave abortiva Agave abrupta Agave acicularis Agave acklinicola Agave affinis Agave × ajoensis Agave aktites Agave albescens Agave albomarginata Agave alibertii Agave aloides Agave amaniensis Agave americana – Amerika sabırı Agave angustiarum Agave angustifolia Agave angustissima Agave anomala Agave antillarum Agave applanata Agave arizonica – Arizona sabırı Agave arubensis Agave aspera Agave asperrima Agave atrovirens Agave attenuata – Kuğuboynu sabırı Agave aurea Agave avellanidens Agave bahamana Agave bakeri Agave banlan Agave barbadensis Agave baxteri Agave bergeri Agave bernhardi Agave boldinghiana Agave bollii Agave botterii Agave bouchei Agave bourgaei Agave bovicornuta Agave braceana Agave brachystachys Agave bracteosa Agave brandegeei Agave brauniana Agave breedlovei Agave brevipetala Agave breviscapa Agave brevispina Agave brittonia Agave bromeliaefolia Agave brunnea Agave bulbifera Agave cacozela Agave cajalbanensis Agave calderoni Agave calodonta Agave campanulata Agave cantala Agave capensis Agave carchariodonta Agave caribaea Agave caribiicola Agave carminis Agave caroli-schmidtii Agave caymanensis Agave celsii Agave cernua Agave cerulata Agave chiapensis Agave chihuahuana Agave chinensis Agave chisosensis Agave chloracantha Agave chrysantha Agave chrysoglossa Agave coccinea Agave cocui Agave coespitosa Agave colimana Agave collina Agave colorata Agave compacta Agave complicata Agave compluviata Agave concinna Agave congesta Agave conjuncta Agave connochaetodon Agave consociata Agave convallis Agave corderoyi Agave costaricana Agave cucullata Agave cundinamarcensis Agave cupreata Agave dasyliriodes Agave datylio Agave davilloni Agave de-meesteriana Agave dealbata Agave deamiana Agave debilis Agave decaisneana Agave decipiens Agave delamateri Agave densiflora Agave dentiens Agave deserti – Apaçi sabırı Agave desmettiana Agave diacantha Agave difformis Agave disceptata Agave disjuncta Agave dissimulans Agave donnell-smithii Agave durangensis Agave dussiana Agave eborispina Agave echinoïdes Agave eduardi Agave eggersiana Agave ehrenbergii Agave eichlami Agave ekmani Agave elizae Agave ellemeetiana Agave endlichiana Agave engelmanni Agave entea Agave erosa Agave evadens Agave excelsa Agave expatriata Agave falcata Agave felgeri Agave felina Agave fenzliana Agave ferdinandi-regis Agave filifera Agave flaccida Agave flaccifolia Agave flavovirens Agave flexispina Agave fortiflora Agave fourcroydes – Heneken Agave fragrantissima Agave franceschiana Agave franzosinii Agave friderici Agave funifera Agave funkiana Agave galeottei Agave garciae-mendozae Agave geminiflora Agave gentryi Agave ghiesbrechtii Agave glabra Agave glaucescens Agave goeppertiana Agave glomeruliflora Agave gracilipes Agave gracilis Agave grandibracteata Agave granulosa Agave grenadina Agave grijalvensis Agave grisea Agave guadalajarana Agave guatemalensis Agave guedeneyri Agave guiengola Agave gutierreziana Agave guttata Agave gypsophila Agave hanburii Agave harrisii Agave hartmani Agave haseloffii Agave hauniensis Agave havardiana Agave haynaldi Agave henriquesii Agave hexapetala Agave hiemiflora Agave hookeri Agave horizontalis Agave horrida Agave houghii Agave huachucaensis Agave huehueteca Agave humboldtiana Agave hurteri Agave impressa Agave inaequidens Agave inaguensis Agave indagatorum Agave ingens Agave inopinabilis Agave integrifolia Agave intermixta Agave intrepida Agave isthmensis Agave jaiboli Agave jarucoensis Agave karatto Agave kellermaniana Agave kerchovei Agave kewensis Agave kirchneriana Agave lagunae Agave langlassei Agave laticincta Agave latifolia Agave laurentiana Agave laxa Agave laxifolia Agave lechuguilla Agave lemairei Agave lempana Agave lespinassei Agave lindleyi Agave littaeaoides Agave longipes Agave longisepala Agave lophantha Agave lurida Agave macrantha Agave macroculmis Agave maculata Agave madagascariensis Agave mapisaga Agave margaritae Agave marmorata Agave martiana Agave maximiliana Agave maximowicziana Agave mayoensis Agave mckelveyana Agave medioxima Agave megalacantha Agave melanacantha Agave melliflua Agave mexicana Agave micracantha Agave millspaughii Agave minarum Agave missionum Agave mitis Agave monostachya Agave montana Agave montserratensis Agave moranii Agave morrisii Agave muilmanni Agave mulfordiana Agave multifilifera Agave multiflora Agave multilineata Agave murpheyi Agave nashii Agave nayaritensis Agave neglecta Agave nelsoni Agave nevadensis Agave nevidis Agave newberyi Agave nickelsi Agave nissoni Agave nizandensis – Bodur ahtapot sabırı Agave noli-tangere Agave obducta Agave oblongata Agave obscura Agave ocahui Agave offoyana Agave oligophylla Agave oliverana Agave opacidens Agave orcuttiana Agave ornithobroma Agave oroensis Agave ovatifolia Agave oweni Agave pachyacantha Agave pachycentra Agave pacifica Agave pallida Agave palmaris Agave palmeri Agave pampaniniana Agave panamana Agave papyriocarpa Agave parryi Agave parvidentata Agave parviflora Agave patonii Agave paucifolia Agave paupera Agave pavoliniana Agave peacockii Agave pedrosana Agave pedunculifera Agave pelona Agave perplexans Agave pes-mulae Agave petiolata Agave petrophila Agave phillipsiana Agave picta Agave planera Agave polianthiflora Agave polianthoides Agave portoricensis – Porto Riko sabırı Agave potatorum Agave potosina Agave potrerana Agave prainiana Agave promontorii Agave prostrata Agave protuberans Agave pruinosa Agave pseudotequilana Agave pugioniformis Agave pulcherrima Agave pulchra Agave pumila Agave punctata Agave purpurea Agave purpusorum Agave pygmae Agave quadrata Agave quiotifera Agave ragusae Agave rasconensis Agave regia Agave revoluta Agave rhodacantha Agave rigida Agave roezliana Agave rudis Agave rupicola Agave rutteniae Agave rzedowskiana Agave salmdyckii Agave salmiana Agave samalana Agave sartorii Agave scaphoidea Agave scaposa Agave scheuermaniana Agave schildigera Agave schneideriana Agave schottii Agave scolymus Agave sebastiana Agave seemanniana Agave serrulata Agave sessiliflora Agave shaferi Agave shawii Agave shrevei Agave sicaefolia Agave simoni Agave sisalana – Sisal Agave sleviniana Agave smithiana Agave sobolifera Agave sobria Agave sordida Agave striata Agave stricta Agave stringens Agave subinermis Agave subsimplex Agave subtilis Agave subzonata Agave sullivani Agave tecta Agave tenuifolia Agave tenuispina Agave teopiscana Agave tequilana – Tekila sabırı Agave terraccianoi Agave theometel Agave thomasae Agave thomsoniana Agave tigrina Agave titanota Agave todaroi Agave toneliana Agave tortispina Agave toumeyana – Toumey sabırı Agave trankeera Agave troubetskoyana Agave tubulata Agave underwoodii Agave unguiculata Agave utahensis – Utah sabırı Agave van-grolae Agave vandervinneni Agave ventum-versa Agave vernae Agave verschaffeltii Agave vestita Agave vicina Agave victoriae-reginae Agave vilmoriniana – Ahtapot sabırı Agave viridissima Agave vivipara Agave vizcainoensis Agave wallisii Agave warelliana Agave washingtonensis Agave watsoni Agave weingartii Agave wendtii Agave wercklei Agave wiesenbergensis Agave wightii Agave wildingii Agave winteriana Agave wislizeni Agave wocomahi Agave woodrowi Agave wrightii Agave xylonacantha Agave yaquiana Agave yuccaefolia Agave zapupe Agave zebra Agave zonata Agave zuccarinii Anayurdu Meksika olan, daha sonraları da Akdeniz Bölgeleri’’nin iklimine de rahatlıkla ayak uyduran gösterişli bir bitki türüdür. Bu bitkinin yapraklarından özellikle tekstil elyafı yapımda faydalanılmaktadır. İçeriğindeki besi suyundan da bazı alkollü içki yapımında faydalanılmaktadır. Agave bitkisinin farklı bölgelerde elliye yakın türü bulunmaktadır. Her bir çeşit agave’nin kendine has yapısı ve bir birine benzer olsa da, farklı renk tonları bulunmaktadır. Pek çok kişi ilk görüşte “aloe vera” ile benzerlik gösterdiğinden bu bitkileri birbiriyle karıştırmaktadırlar. Aralarında büyük benzerlikler bulunan sarısabır gibi, pek kalabalık olan yağlı bitkiler ailesindendir. Güzelliği ile göz alıcı bir rozet meydana getiren yeşil ve etli yapraklara sahiptir. Ayrıca yaprakları diken gibi sivri ve sert bir uçla son bulmaktadır. Sahip olduğu bu yaprakların uzunluğu gerekli yaşam ortamı oluştuğunda üç metrelik uzunluğa ulaşabilmektedir. Sahip olduğu bu yaprakların liflerinden sağlam sicimler ve halatlar örülmektedir. Bitkinin gövdesinin sahip olduğu bol ve tatlı olan besisuyundan da mayalama ve damıtma yoluyla, meskal denilen bir tür alkollü içki üretilmektedir. Ayrıca agaveden elde edilen bir tür şurup doğal tatlandırıcı görevi görmektedir. Özellikle şeker rahatsızlığı olan kişilerde agaveden üretilen tatlandırıcı kullanıldığında daha sağlıklı beslenme sağlamaktadır. Bütün çöl bitkileri gibi oldukça uzun bir ömre sahip olan agave, yüz yıl kadar yaşayabilmektedir. Bu kadar uzun süre yaşamasına rağmen ömrü boyunca sadece bir kere çiçek açmaktadır. Bitkinin cinsine ve yaşam ortamına göre, onbeş yılı geçtikten sonra bitkinin gövdesinden on metre yükseğe kadar bir sap uzanmaktadır. Bu sapın tepe noktasından her iki yanına doğru çok sayıda kırmızı ve sarı çiçekler açmaktadır. Bu çiçekler ve ortadan uzanan sapta yapraklarda ki gibi su tutma yeteneği olmadığı için bu çiçeklerin ömrü çok az olmaktadır. Yazar: Hikmet Akyol www.bilgiustam.com

http://www.biyologlar.com/agave-bitkisi

Kültür Suşları (Bakteri P R S)

Ulusal Tip Kültür Koleksiyonu Bakteri Suşları (P-R-S) RSKK NO MİKROORGANİZMA CİNSİ KAYNAK KOD TARİH 560 Pasteurella  septica NCTC  8391 - 04003 Pediococcus spp. ATCC   8081  - 06055 Pediococcus acidophilus ATCC 25741 2006 96022  Proteus vulgaris A.232  Pasteur Ens.  232 1996 96029  Proteus vulgaris  P. 7. 232 ABD  7232  1996  06034 Proteus vulgaris   ATCC 7829 2006 260 Proteus X 2  Pasteur Ens.      536 Proteus OX 19  Pasteur Ens. 54160 - 247 Proteus OX 19   İÜ - - 257   Proteus OX 2  ABD - - 260/2  Proteus OXK  - - - 260/3 Proteus OX2  - - - 422 Proteus P1 Bakterisin elde etmek için üretim suşu ABD - 1985 423 Proteus P2 Bakterisin elde etmek için üretim suşu  ABD  - 1985 424   Proteus P3  Bakterisin elde etmek için üretim suşu   ABD - 1985 425 Proteus P5  Bakterisin elde etmek için üretim suşu ABD - 1985 426 Proteus P6  Bakterisin elde etmek için üretim suşu ABD  - 1985 428 Proteus P9 Bakterisin elde etmek için üretim suşu ABD  - 1985 429  Proteus P10 Bakterisin elde etmek için üretim suşu ABD  - 1985 430 Proteus P11 Bakterisin elde etmek için üretim suşu ABD - 1985 431 Proteus P22   İndikatör suş  - - 1985 432 Proteus P26   İndikatör suş  - - 1985 433  Proteus P31  İndikatör suş   - - 1985 434  Proteus P36  İndikatör suş   - - 1985 435 Proteus P42  İndikatör suş  - - 1985 436  Proteus P218 İndikatör suş  - - 1985 437 Proteus P252  İndikatör suş   - - 1985 438  Proteus P273  İndikatör suş  - - 1985 439 Proteus P310  İndikatör suş - - 1985 97009 Proteus mirabilis  ATCC 43071 1997 06035 Proteus mirabilis ATCC 15146 2006 06037 Proteus mirabilis ATCC 14153 2006 737 Proteus mirabilis   Pasteur Ens. 235 - 98   Providencia reetgeri   Pasteur Ens. 3180 - 791 Providencia reetgeri  Roma - - 479 Providencia reetgeri - - - 561 Providencia stuartii  - - 1994 95104 Pseudomonas aeruginosa   Kopenhag  - 1995 590 Pseudomonas aeruginosa  ABD - - 95101  Pseudomonas aeruginosa NCTC 1999 1995 799  Pseudomonas aeruginosa Pasteur Ens. - - 03015 Pseudomonas aeruginosa ATCC  29212 2003 06021 Pseudomonas aeruginosa  ATCC  15442 2006 04030 Pseudomonas aeruginosa  ATCC 27853 2004 356 Pseudomonas aeruginosa DSMZ   - - 96033  Pseudomonas type Ic 1078  İngiltere - 1996 96036 Pseudomonas  type Id 1079  İngiltere - 1996 96108 Pseudomonas aeruginosa 1 bakterisin tiplendirme suşu  - - 1996 96109  Pseudomanas aeruginosa 2 bakterisin tiplendirme suşu  - - 1996 96110 Pseudomanas aeruginosa 3  bakterisin tiplendirme suşu - - 1996 96111  Pseudomanas aeruginosa 4  bakterisin tiplendirme suşu  - - 1996 96112 Pseudomanas aeruginosa 5 bakterisin tiplendirme suşu - - 1996 96113 Pseudomanas aeruginosa 7 bakterisin tiplendirme suşu  - - 1996 96114 Pseudomanas aeruginosa 9A bakterisin tiplendirme suşu - - 1996 96117 Pseudomanas aeruginosa 11 C bakterisin tiplendirme suşu  - - 1996 96115 Pseudomanas aeruginosa 12 D bakterisin tiplendirme suşu - - 1996 96116  Pseudomanas aeruginosa 13 E bakterisin tiplendirme suşu - - 1996 97011 Pseudomanas aeruginosa  pyosin üreten suş  İskoçya - 1997 1066  Pseudomanas aeruginosa No 1 (Gill.Gov. ind. Tip1)  - - - 1067   Pseudomanas aeruginosa No 2 (Gill.Gov. ind. Tip2) - - - 1068 Pseudomanas aeruginosa No 3 (Gill.Gov. ind. Tip3) - - - 1069  Pseudomanas aeruginosa No 4 (Gill.Gov. ind. Tip4) - - - 1070 Pseudomanas aeruginosa No 5 (Gill.Gov. ind. Tip5) - - - 1071  Pseudomanas aeruginosa No 6 (Gill.Gov. ind. Tip6) - - - 1072 Pseudomanas aeruginosa No 7 (Gill.Gov. ind. Tip7) - - - 06022 Rhodococcusequi ATCC 21107 2006 135 Salmonella choleraesuis Pasteur Ens.   - 1981  136 Salmonella choleraesuis Pasteur Ens. - 1981  32 Salmonella enterica subsp. enterica serovar Abortus equi Koch Ens. - - 35  Salmonella enterica subsp. enterica serovar Abortus equi  Pasteur Ens. - - 867 Salmonella enterica subsp. enterica serovar Abortus equi R1  ovis  - - - 95090 Salmonella enterica subsp. enterica serovar Anatum - - 1995 523 Salmonella enterica subsp.arizona - - 1987 50 Salmonella enterica subsp. enterica serovar Bredeney  - - -  137 Salmonella enterica subsp. enterica serovar Berta  - - - 527 Salmonella enterica subsp. enterica serovar  Bovis –Morbificans - - - 522 Salmonella enterica subsp. enterica serovar California Pasteur Ens. - - 520 Salmonella enterica subsp.enterica serovar Chester Pasteur  Ens. - - 170/9  Salmonella enterica subsp. enterica serovar Cubana  - - - 36 Salmonella enterica subsp. enterica serovar Derby  Pasteur Ens. - - 48 Salmonella enterica subsp. enterica serovar Derby - - - 88 Salmonella enterica subsp. enterica serovar Dublin Pasteur Ens. - - 04043 Salmonella enterica subsp. enterica serovar Dublin NCTC 9676    17  Salmonella enterica subsp. enterica serovar Essen  - - - 90  Salmonella enterica subsp. enterica serovar Gallinarum  - - -  535  Salmonella enterica subsp. enterica serovar  Gallinarum Pasteur Ens. - - 115 Salmonella enterica subsp. enterica serovar Give Pasteur Ens. - -  170/6 Salmonella enterica subsp. enterica serovar Havana  - - 46 Salmonella enterica subsp. enterica serovar  Heidelberg - - -  524  Salmonella enterica subsp. enterica serovar Heidelberg Pasteur Ens. - - 170  Salmonella enterica subsp. enterica serovar Kentucky Pasteur Ens. - -  112  Salmonella enterica subsp. enterica serovar London  - - 1015  Salmonella enterica subsp. enterica serovar London - - 04038 Salmonella serovar London NCTC 5777 2004 04037 Salmonella enterica subsp. enterica serotype Montevideo NCTC 5747 2004  02013 Salmonella enterica subsp. enterica serovarMinnesota  - - - 153  Salmonella enterica subsp. enterica serovarMinnesota - - -  74  Salmonella enterica subsp. enterica serovar Muenchen - - - 75  Salmonella enterica subsp. enterica servar Muenchen - - -  79  Salmonella enterica subsp. enterica serovar Montevideo - - - 1103 Salmonella enterica subsp. enterica serovar Montevideo       532 Salmonella enterica subsp. enterica serovar Moscow  - - -  68 Salmonella enterica subsp. enterica serovar Newport - - - 1016 Salmonella enterica subsp. enterica serovar Newport - - -  72 Salmonella enterica subsp. enterica serovar Oranienburg  - - - 77  Salmonella enterica subsp. enterica serovar Oranienburg - - -  96032 Salmonella enterica subsp. enterica serovar Paratyphi B - - 1996 760 Salmonella enterica subsp. enterica serovar Paratyphi B NCTC 8458 -  15  Salmonella enterica subsp. enterica serovar Paratyphi B  - - - 518 Salmonella enterica subsp. enterica serovar Paratyphi B Pasteur Ens.  - -  1128 Salmonella enterica subsp. enterica serovar Paratyphi B NCTC 10412 - 96030  Salmonella enterica subsp. enterica serovar Paratyphi C  - - 1996  525 Salmonella enterica subsp. enterica serovar Paratyphi C  - - - 04086 Salmonella. Paratyphi C        140  Salmonella enterica subsp. enterica serovar Pensacola  - - -  793 Salmonella enterica subsp. enterica serovar Pullorum  - - - 31  Salmonella enterica subsp. enterica serovar Reading  - - -  531 Salmonella enterica subsp. enterica serovar Rostock - - - 166 Salmonella enterica subsp. enterica serovar Rubislaw  - - -  16 Salmonella enterica subsp. enterica serovar Schleissheim - - - 30 Salmonella enterica subsp. enterica serovar Stanley  - - -  148  Salmonella enterica subsp. enterica serovar Senftenberg - - -  71 Salmonella enterica subsp. enterica serovar Thompson - - 1936  40 Salmonella enterica subsp. enterica serovar Thompson - - -  78 Salmonella enterica subsp. enterica serovar Tennessee - - - 67 Salmonella enterica subsp. enterica serovar Virginia - - -  73  Salmonella enterica subsp. enterica serovar Virchow - - - 04059 Salmonella enterica subsp. enterica ATCC 13311 2004 91     Salmonella enteritidis  Koch Ens. - -  92       Salmonella enteritidis Koch Ens. - - 96046 Salmonella enteritidis RSHMB - - 1090 Salmonella newington Pasteur Ens.     761 Salmonella enterica subsp. enterica serotype paratyphi NCTC  8002 - 516 Salmonella paratyphi  Pasteur Ens. - - 205/06068 Salmonella paratyphi A       04021 Salmonella paratyphi A NCTC 13   529 Salmonella paratyphi  H  - - -  521 Salmonella typhi Ty2  B  - - - 04032 Salmonella enterica subsp. enterica   NCTC  12416   2004  95091 Salmonella typhimurium - - 1995 19  Salmonella typhimurium - - 1996  579  Serratia marcescens Pasteur Ens.  - 1972 919  Serratia marcescens  - - -  1040 Shigella boydii 1 ABD - - 04039 Shigella boydii 1 CIP 52.48 2004  04040 Shigella boydii 2 CIP 82.50 2004 977 Shigella boydii 2   Pasteur Ens.  5475 -  1054 Shigella boydii 2 ABD - 1996 1059 Shigella boydii 2  ABD - -  1113 Shigella boydii 2  - - - 217  Shigella boydii 3 Pasteur Ens. - -  95076  Shigella boydii  3 - - 1995 989 Shigella boydii 3  Pasteur Ens.  54108 -  836 Shigella boydii 4  Pasteur Ens. 5476 - 96042(981) Shigella boydii 4   Pasteur Ens. 5476 -  837  Shigella boydi  5   Pasteur Ens. 5636 - 978 Shigella boydii 5   Pasteur Ens. 5636 -  96043 Shigella boydii 6  ABD      839 Shigella boydii 7  Pasteur Ens.  584 -  1041 Shigella boydii 7  ABD - - 1058 Shigella boydii 8   ABD - -  841  Shigella boydii 9   Pasteur Ens.  514 - 976  Shigella boydii 9   Pasteur Ens.  514 -  95079 Shigella boydii 9   ABD - - 842 Shigella boydii 10 Pasteur Ens. 515  -  973 Shigella boydii 10 Pasteur Ens. 515 - 843  Shigella boydii 11  Pasteur Ens. 516 -  864 Shigella boydii 11  NCTC  9359 - 04052 Shigella boydii 11 ehg CIP 51.6  2004  04011 Shigella boydii tip 12 CIP 58.23 2004 02002 Shigella boydii  12 Pasteur Ens. 5329 - 02006 Shigella boydii  12        979  Shigella boydii  13  Pasteur Ens. 58217 - 974   Shigella boydii  13   - - -  1055 Shigella boydii  13  - - -   1045 Shigella boydii  14 - - -  96053  Shigella boydii 14 - - - 06019 Shigella boydii  14 Pasteur Ens. 5817 2006 226 Shigella boydii  15 - - -  1043 Shigella boydii  15 - - - 04070 Shigella dysanteriae  2   NCTC 2966 2004  845  Shigella dysanteriae  2   Pasteur Ens. 5449 - 1124 Shigella dysanteriae  2 - - -  204  Shigella dysanteriae  2   Koch Ens.   - 1975 198 Shigella dysenteria    2   Pasteur Ens. - -  224  Shigella dysanteriae  2 - - - 04070 Shigella dysanteriae  3 NCTC 6340 2004  846 Shigella dysanteriae  3   Pasteur Ens. 5477 -  96048 Shigella dysanteriae  3 Pasteur Ens. 6758 - 199 Shigella dysenteriae  3  Pasteur Ens.  9771 -  96047  Shigella dysanteriae  4   Pasteur Ens. 5230 - 04072 Shigella dysanteriae  4 NCTC 9759 -  200    Shigella dysanteriae  5  Pasteur Ens. 1167 - 04073 Shigella dysanteriae  5  NCTC 9721   849 Shigella dysanteriae  6   Pasteur Ens.  5232 -  988  Shigella dysanteriae  6 Ankara Üni. - - 1125  Shigella dysanteriae  6 RSHMB - - 04074 Shigella dysanteriae 6 NCTC 9762   968  Shigella dysanteriae  7  Pasteur Ens.  9760 - 04064 Shigella dysanteriae  7 NCTC 9363   04068 Shigella dysanteriae  8  NCTC 8599    851 Shigella dysanteriae  8  Pasteur Ens. 53134 - 04060 Shigella dysanteriae  9  NCTC 9347   04061 Shigella dysanteriae 10  NCTC 9351   1036  Shigella dysanteriae  10 ABD  - -  04053 Shigella dysenteriae NCTC  4837 2004 06024 Shigella flexneri  ATCC 11836   96026 Shigella flexneri  1 - - -  96019 Shigella flexneri  1a Pasteur Ens.  5236 - 1046  Shigella flexneri  1a   ABD - -  859 Shigella flexneri  1b  Pasteur Ens.  5237 - 844 Shigella flexneri  2a  NCTC  9723 -  971 Shigella flexneri  2a Pasteur Ens. 5619   - 860 Shigella flexneri  2b  Pasteur Ens. 5239 - 205  Shigella flexneri  4 a - - -  987 Shigella flexneri  4b Pasteur Ens. 5243 - 214/A Shigella flexneri 4c  Pasteur Ens. - -  856  Shigella flexneri  5   Pasteur Ens.  54133 - 834  Shigella flexneri 4a NCTC  9725 -  972 Shigella flexneri  6 Pasteur Ens.  533 - 1051 Shigella flexneri  6 ABD - -  858 Shigella flexneri  10  Pasteur Ens.  5234 - 212 Shigella flexneri  Pasteur Ens. - -  865 Shigella flexneri  Londra  - - 186 Shigella flexneri  Bükreş - -  984 Shigella flexneri Tip x Pasteur Ens.  5234 - 182 Shigella schimitz - - -  878  Shigella sonnei  Londra - - 1039 Shigella sonnei  ABD - -  792 Shigella sonnei Roma - - 96021 Shigella sonnei  Pasteur Ens.  6462 -  862 Shigella sonnei  Pasteur Ens.  5226 - 96011 Shigella sonnei - - -  878 Shigella sonnei  Londra - - 04049 Shigella sonnei 212 CIP 104 223 2004  526 Staphylococcus aureus Pasteur Ens.  53156 -  95045 Staphylococcus aureus  ATCC  29740 1995 490 Staphylococcus aureus  ABD  - -  95046 Staphylococcus aureus NCTC  8325 1995 95047 Staphylococcus aureus ATCC 43300 1995  1001 Staphylococcus aureus - - -  95084 Staphylococcus aureus Pasteur  Ens.  1072  1995 06014 Staphylococcus aureus NCTC 6538   250 Staphylococcus aureus Wilde type  - - -  95106 Staphylococcus aureus Cowan 1-438  ATCC  12548  1995 96090 Staphylococcus aureus ATCC 25923  1996  97019 Staphylococcus aureus  ATCC 25923-12  1997 789 Staphylococcus aureus subsp.aureus Rosenbach (Wood)  - - -  714  Staphylococcus aurantiacus NCTC   4736 - 713 Staphylococcus aurantiacus NCTC  630 -  95051 Staphylococcus chromogenes ATCC  43764  1995 95058 Staphylococcus epidermidis  ATCC  12228 -  719  Staphylococcus epidermidis ATCC 12228 - 01015 Staphylococcus epidermidis - - -  95056 Staphylococcus haemolyticus  ATCC 29970 - 95050  Staphylococcus hyicas ATCC 11249 -  95055 Staphylococcus hominis  ATCC 27844-96065 - 95054 Staphylococcus sciuri  ATCC 29062-96066 1995  95053 Staphylococcus simulans   ATCC 27848 1995 95055 Staphylococcus xylosus   ATCC 29971 1995  95052 Staphylococcus warneri  ATCC  27836 1995 96005  Stenotrophomanas maltophila - - 1996  95064 Stenotrophomanas maltophila  - - 1995 512 Streptococcus agalactiae Pasteur Ens. 55118 - 96100 Streptococcus agalactiae ATCC  12401-20 1996 677  Streptococcus equi subsp. zooepidemicus - - - 622 Streptococcus equi subsp. zooepidemicus - - - 679 Streptococcus equi  Liverpool - - 676 Streptococcus mutans  - - 1986 95100 Streptococcus pneumoniae tip3  ABD - 1995 95105 Streptococcus pneumoniae - - 1995  95094 Streptococcus pneumoniae tip 1 Paris  - 1995  03019 Streptecoccus pyogenes ATCC 19615 2003 667/01017 Streptococcus thermophilus Etlik Vet.Fak. - 1985 03019 Streptococcus pyogenes ATCC  19615 2003 413/214 Streptococcus pyogenes  ABD - - 414/215 Streptococcus pyogenes - - -  409/210 Streptococcus pyogenes  Hamburg  - - 1007 Streptococcus zymogenes London  - 1975  1119 Streptomyces setonii  - - - Kaynak: RSHM

http://www.biyologlar.com/kultur-suslari-bakteri-p-r-s

Bitki Hastalıkları - Fitopatoloji

Bitki Koruma içinde yer alan anabilim dallarından biri olan fitopatoloji, kelime anlamı olarak bitki hastalıkları bilimi olarak ifade edilir. Bitki Koruma; Bitkilerde hastalığa neden olan canlı ve cansız faktörleri, hastalıkların oluşumunu, hastalık etmenleriyle hasta bitkiler arasındaki ilişkileri, bitkileri hastalık etmenlerinden koruma yolları ile bitki hastalıklarının tedavi yöntemlerini araştıran bilim dalıdır. Fitopatoloji, bitki hastalıklarını 5 ana bölümde incelemektedir. 1. Simptomatoloji: Hastalık belirtileri bilimi 2. Etioloji: Hastalık sebepleri bilimi 3. Patoloji: Hastalık oluşumu bilimi 4. Epidemiyoloji: Hastalık salgınları bilimi 5. Hijyen ve Terapi: Bitkileri hastalıklardan koruma ve tedavi yöntemleri 1. Simptomatoloji Cansız ve canlı hastalık etmenlerinin zararlı faaliyetleri sonucu bitki fizyolojisinde ortaya çıkan anormallikler, bitkilerde yapısal bazı değişikliklere neden olmaktadır. Bir bitkide, herhangi bir hastalık etmeninin etkisi sonucu, hastalığın belirli bir döneminde ortaya çıkan ve o hastalık için karakteristik olan belirtilerin tümüne birden "sendrom", sendromu oluşturan belirtilerin her birine ise "semptom" denir. Hastalık etmenleri bitkilerin kök,gövde,yaprak, meyve gibi değişik organlarında gözle görülebilir belirtiler oluşturabildikleri gibi hücre ve dokularda gözle görülemeyen ancak mikroskop altında incelendiğinde fark edilebilen belirtiler de meydana getirebilirler. Hastalıkların teşhisinde yol gösterdiği için önem taşıyan, gözle görülebilen morfolojik simtomlar üç grup altında incelenmektedir; nekrotik, hipoplastik ve hiperplastik semptomlar. 1.1. Nekrotik Simptomlar Protoplastların tahrip olması sonucu hücre veya dokuların ölmesi ile ortaya çıkan koyu renkli ölü alanlara "nekroz" denir. Hücre ölümlerinden hemen önce oluşan sararma, solgunluk ve sulanma gibi belirtilerde bu grup içinde ele alınmaktadır. Nekrotik simptomların başlangıçları şunlardır: Sararma (Kloroz) : Bitkilere yeşil rengini veren klorofil oluşumundan sorumlu kloroplastların tahrip olması sonucu, normalde yeşil renkte olan doku ve organların sarı renk almasıdır. Solgunluk: Bitkilerin transpirasyonla kaybettikleri suyu karşılayamamaları sonucu hücrelerinin turgorunu kaybederek pörsümesidir. Çeşitli sebeplerle bitki bünyesinden aşın su kaybı, iletim demetlerinin tıkanmasıyla su iletiminin aksaması yada topraktan yeterince su alamama gibi durumlarda solgunluk ortaya çıkar. Sulanma (Hidrosis): Çeşitli faktörlerin etkisiyle hastalanan hücrelerden çıkan suyun hücreler arasındaki boşluklara dolması sonucu, dokuların sulumsu şeffaf bir görünüm almasıdır. Bunu çürüklük, lekelenme gibi diğer nekrotik simptomlar izler. Yanıklık : Canlı veya cansız çeşitli hastalık etmenlerinin etkisi sonucu bitki dokularının hızla su kaybederek kurumasıdır. Lekeler: Bitkilerin yaprak, çiçek ve meyve gibi organlarında görülen ve genellikle daha koyu renkte bir sınırla çevrili olan, açık veya koyu renkli belirgin nekrotik alanlardır. Hastalık etmenleri değişik tip ve büyüklükte lekelere neden olabilirler. Bazen küçük lekeler birbirleriyle birleşerek daha büyük lekeler oluşturabilirler. Lekeyi oluşturan ölü doku çatlayıp dağılarak saçma deliği şeklinde delikler meydana gelebilir. Yaprak ve çiçeklerde yüzeysel lekeler oluşurken, dal ve meyvelerdeki lekeler daha çökük tipte olur. Kanser yaraları : Gövde veya köklerdeki kabuk ve korteks dokularında çeşitli etmenlerin etkisi ile oluşan sınırlı nekrozlara kanser yarası denir.Bu nekrotik yara dokusu genellikle kallusla çevrilidir ve bu şekilde etrafındaki sağlıklı dokudan ayrılır. Patojenlerin neden olduğu kanserlerde, patojenin ve yarayı kapatmaya çalışan kallus dokusunun karşılıklı faaliyetleri sonucu iç içe şişkinlikler şeklinde, derin ve açık kanser yaraları oluşur. Çökerten : Genç bitkilerde kök boğazında yani toprak seviyesine yakın gövde kısmında patojenlerin etkisi ile oluşan şiddetli nekroz sonucu bitkilerin aniden solarak kök boğazından kıvrılıp toprağa devrilmesidir. Bu hastalık fideliklerde daha dikkat çekicidir. Fideliğin bazı kısımlarındaki toprakta patojenlerin daha yoğun olarak bulunmaları ve etkinliklerinin fazla olması sonucu bu kısımlarda bulunan bitkilerin topluca devrilip ölmeleriyle fidelikte yer yer boşluklar meydana gelebilmektedir. Çürüklük : Tohum, soğan, yumru, kök, meyve gibi değişik bitki organlarında, dokuların yapılarının bozulması suretiyle dağılmasına "çürüme" denir. Çürüyen doku üzerindeki değişik renklerdeki gelişme ve çürüklüğün sulu yada kuru oluşu bize çürüklüğe neden olan etmenler hakkında fikir verebilir. Bazı meyve hastalıklarında, meyveler çürürken hızla su kaybederek büzüşür ve kururlar, buna "mumyalaşma" denir. Akıntı : Çeşitli nedenlerle zarar görmüş bitki dokularından çıkan sıvılara akıntı denir. Akıntılar, bitki hücre zarlarının erimesiyle hücre öz suyunun akması şeklinde olabildiği gibi bazı bakteriyel hastalıklarda nemli koşullarda yaralardan bakteri hücrelerini içeren sümüksü sıvının akması şeklinde de olabilir. Olumsuz çevre koşullarının neden olduğu fizyolojik bozukluklarda ise şekerli maddeler içeren bir akıntı görülür. Nemli koşullarda bu akıntı üzerinde saprofit fungusların çoğalmasıyla ortaya çıkan siyahlaşmaya ise fumajin denir. Geriye Doğru Ölüm : Çok yıllık bitkilerde sürgünlerde uçtan başlayıp aşağıya doğru gelişen geniş nekrozlar şeklindeki belirtiye denir. 1.2. Hipoplastik Simptomlar Bitki organ ve dokularının tam olarak gelişememesi ve hastalıklı kısımların normalden daha küçük yada açık renkli olmasına hipoplasya denir. Cüceleşme : Bitkilerin normal büyüklüklerine ulaşamaması halidir. Canlı ve cansız birçok etmen bitkilerde cüceleşmeye neden olabilir. Rozetleşme : Bitkilerde boğum aralarının uzayamaması halidir. Yapraklar kısa gövdelerin ucunda çiçek taç yaprakları gibi bir arada oluşurlar. Bu belirtiye kamçılaşma da denir. Durgunluk : Bitki organlarının tam olarak gelişememesi durumudur. Bitkinin çiçek veya meyvelerinin gelişememesi şeklinde belirli bazı organlarda oluşabildiği gibi bitkinin tümünü de etkileyebilir. Beyazlaşma (Albikasyon) : Bitkilerde klorofilin oluşamaması nedeniyle tamamen renksizleşme halidir. Bu durumda normalde yeşil olan renk beyaza döner. Sarılık (Kloroz) : Klorofilin tam olarak oluşamaması nedeniyle ortaya çıkan sararmadır. Etiolasyon : Yeterli miktarda ışık almayan bitkilerde yaprakların normalden küçük, gövdenin ince, uzun ve dokuların klorozlu veya beyazlaşmış olmasıdır. 1.3. Hiperplastik Simptomlar Bitkilerin bazı organlarında yada tamamında boy veya renk bakımından normalin üzerinde bir gelişme yada bitki organlarında şekil değişikliği olması, veya bazı organların zamanından önce gelişmesi hiperplastik simptomları oluşturmaktadır. Bir dokuyu oluşturan hücrelerin sayısındaki anormal artışa "hiperplasya", bunun sonucunda bir organın aşırı gelişmesine ise "hipertrofi" denir. Aşırı Büyüme (Gigantizm) : Hücre, doku yada organların aşırı büyümesidir.Yaprak, meyve veya yumrularda, epidermis ve altındaki dokuların aşırı gelişmesiyle kabarık, pürüzlü, sertleşmiş yapılar oluşur ki bu belirtiye uyuz denir. Hastalık etmenlerinin zararlı etkisiyle, gövde ve köklerde ortaya çıkan aşırı büyüme sonucu oluşan şişkinliklere "ur" veya "gel", yaprak damarları üzerinde oluşan kulak şeklindeki çıkıntılara ise "enasyon" denilmektedir. Anormal Renklenme : Normal olarak klorofil bulunmayan dokularda klorofil oluşumu, klorofil fazlalığı sonucu mavi-yeşil renk oluşumu veya antosiyanin pigmentlerinin fazlalığı nedeni ile kırmızı yada mor renk oluşmasıdır. Bazı Dokuların Zamanından Önce Oluşması : Sürgünlerin normal zamanından önce gelişmesi yada yaprak ve meyve saplarının dip kısımlarındaki süberin dokusunun erken oluşmasıdır, Dokularda Anormal Gelişme : Çiçek organlarının yaprak haline dönüşmesi, olgun bitkilerde fide yaprakları gibi küçük, genç yaprakların gelişmesi yada tohumların normalden farklı bir yerde oluşmasıdır. 2. Etioloji Bitkilerde hastalığa neden olan etmenlerin sınıflandırılmaları, isimlendirilmeleri, yaşayış ve zarar şekilleri ve hayat dönemleri etioloji içinde ele alınmaktadır. Hastalık etmenleri iki grup altında incelenebilir. Olumsuz çevre ve yetiştirme koşullarının ele alındığı cansız hastalık etmenleri ve bitkiler üzerinde yada çevresinde çoğalarak bitki gelişimini sınırlayan canlı hastalık etmenleri, bu iki grubu oluşturmaktadır. Cansız hastalık etmenlerinin neden olduğu hastalıklar geri dönüşümlüdür; yani hastalığa neden olan olumsuz koşul ortadan kaldırıldığında hastalık belirtilerinde gerileme olabilir, bitki yeniden sağlıklı gelişimini sürdürebilir. Ayrıca, bu gruptaki hastalık etmenleri hastalıklı bitkiden sağlıklı bitkiye bulaştırılamaz. Canlı hastalık etmenlerinin yani, bitki patojenlerinin neden olduğu hastalıklarda ise, hastalık sebebi olan patojen ortadan kaldırılsa da bir kez oluşan belirtilerin düzelmesi, bitkinin eski sağlıklı haline dönmesi mümkün değildir. Canlı etmenler çeşitli faktörlerin etkisiyle hastalıklı bitkiden sağlıklı bitkilere kolayca bulaşabilir ve bu suretle hastalık bir bölge içindeki bütün bitkilere yada bir yerden bir yere taşınıp yayılabilir. Bitkilerde hastalık meydana getiren etmenleri şu şekilde sınıflandırılabilir; A- Cansız hastalık etmenleri; 1. Bitkiler için uygun olmayan sıcaklıklar, 2. Uygun olmayan nispi nem ve yağışlar, 3. Zararlı atmosfer olayları, 4. Işık azlığı veya fazlalığı, 5. Uygun olmayan toprak sıcaklığı, 6. Toprak reaksiyonu, 7. Toprak neminin azlığı veya fazlalığı, 8. Besin maddesi eksiklik veya fazlalıkları, 9. Zararlı endüstriyel atıklar, 10. Hatalı tarımsal uygulamalar, B- Canlı hastalık etmenleri; 1. Funguslar, 2. Bakteriler, 3. Virüsler, 4. Parazit bitkiler ve yabancı otlar. 2.1. Cansız Hastalık Etmenleri Her bitki türünün kendi genetik yapısından kaynaklanan ekolojik istekleri vardır. Çevre faktörlerinden biri yada birkaçı uygun olmadığında bitki fizyolojisinde olumsuz değişiklikler meydana gelir ve hastalık durumu ortaya çıkar. Olumsuz faktörün şiddetine ve süresine bağlı olarak bitkilerde ortaya çıkan hastalık belirtileri bazen hafif olarak görülebilir, koşullar normale döndüğünde bitki sağlıklı gelişimini sürdürebilir, bazen de bitkinin ölümüne neden olabilecek kadar şiddetli olur. - Bitkiler için uygun olmayan sıcaklıklar Bitkilerin büyük bir çoğunluğu 15-30 °C dereceler arasında sağlıklı gelişmelerini sürdürürler. Farklı tür ve yaştaki bitkiler ile, değişik bitki organlarının sıcaklık istekleri ve buna bağlı olarak da ekstrem sıcaklıklardan etkilenmeleri farklılık göstermektedir. Genelde yüksek sıcaklık bitkilerde daha ani ve şiddetli zarar meydana getirmektedir. Fakat doğada bu tip zarar sık görülmez. Yüksek sıcaklıkta bitki fizyolojisinde önemli işlevi olan bazı enzimlerin ve bitki hücrelerindeki proteinlerin yapıları bozulur. Bitki hücrelerinin ani olarak su kaybetmesi sonucu protoplazmanın yapısı bozulur, hücre zarı yırtılır. Ayrıca hücrelerde bazı toksik bileşikler oluşur. Bütün bu etkiler sonucu bitkilerin değişik organlarında solma, kuruma, yanıklık gibi belirtiler ortaya çıkar. - Uygun olmayan nispi nem ve yağışlar Doğada bitkiler için asıl zararlı olan, toprak neminin eksik yada çok fazla oluşudur. Nispi nem o kadar önemli değildir. Fakat, ender de olsa nispi nem eksikliğinin de bitkilerde zararlı etkisi görülebilir. Nispi nem düşüklüğü, yüksek sıcaklık ve rüzgarla birlikte olduğunda, bitkilerde aşırı su kaybı nedeniyle, yaprak uçlarında ve kenarlarında yanıklıklar, genel solgunluk ve meyvelerde pörsüme ortaya çıkar. Saksı bitkilerinde, özellikle kaloriferli evlerde, nispi nemin % 15'e kadar düşmesi sonucu solgunluk, alt yapraklarda yanıklık, yaprak dökümü, çiçeklerde solma ve dökülme olur. Yüksek nispi nem bitkilerde doğrudan ve dolaylı zararlara neden olmaktadır. Nispi nemle birlikte toprak neminin fazla olması sonucu, bitkilerde parankima hücreleri uzayarak "entümesans" denilen çıkıntılar meydana gelir. Bunlar yaprakların alt yüzünde, dallarda, nadiren de çiçek, meyve ve meyve saplarında görülür. Yüksek nispi nemin dolaylı etkisi de fungusların enfeksiyonu için uygun ortam oluşturmasıdır. Bazı funguslar, özellikle mildiyö hastalığı etmenleri, ancak çok yüksek nispi nem koşullarında, yapraklar üzerinde su damlası olduğunda enfeksiyon yapabilirler. Aşırı nem sonucu oluşan sis de fungal hastalıkların gelişimini teşvik eder. Yağmur ise hasada yakın dönemde bitkiler için zararlı olur. Ekinlerin hasadını geciktirir ve tarlada kalan ekinlerde aşırı nemin etkisi ile başaklarda saprofit funguslar gelişir. Meyvelerde ise olgunlaşma döneminde kabuk çatlamaları görülebilir. Şiddetli yağmur ekinlerin yatmasına, bitkilerin yapraklarının yırtılmasına neden olur. Ayrıca hastalık etmenlerinin sporlarının taşınmasını sağlar. Dolu, aynı şekilde bitki dokularında yaralar açar, yaprak, çiçek ve meyveleri tahrip eder. Açılan yaralar patojenlere giriş kapısı olur. Kar ise fazla yağdığı zaman ağaçlar üzerinde ağırlık yaparak ince dalların kırılmasına neden olur. - Zararlı atmosfer olayları Hava hareketlerinin yani rüzgarın dolaylı etkisi, yine hastalık etmenlerinin sporlarını ve yabancı ot tohumlarını uzun mesafelere taşımak şeklindedir. Ayrıca hastalıklı bitkiler rüzgar vasıtasıyla sağlıklı bitkilere temas eder, böylece virüs hastalıkları bitkiden bitkiye mekanik olarak taşınır. Şiddetli rüzgarın zararı daha fazladır. Yaprak, çiçek ve meyve dökümüne, dalların kırılmasına, ekinlerin yatmasına neden olur.Yıldırımlar ise düştükleri alanlarda bulunan bitki örtüsünün yanarak tahrip olmasına neden olurlar. - Işık azlığı veya fazlalığı Bitkilerin gelişmesi için en önemli faktörlerden biri de ışıktır. Işık fazlalığı çok sık görülen bir durum değildir. Ancak yüksek, dağlık yerlerde, bazı bitkilerde zararlı olabilir. U-V ışınlar yeterince süzülemediği için yapraklarda yanıklıklara neden olur. Işık eksikliği daha sık görülen bir durumdur. Yeterli miktarda klorofil oluşamadığı için bitkilerin doğal yeşil rengi kaybolur, açık yeşil, sarı yapraklar oluşur. Bitki gelişimi geriler, boğum araları uzar, gövdeler incelir. Bazen yaprak ve çiçek dökümü olur. Işık azlığı nedeniyle ortaya çıkan bu duruma "etiolasyon" denir. Kapalı havalarda seralarda, sık ekilmiş bitkilerde veya meyve bahçelerinde ağaçlar altında yetiştiricilik yapıldığında bitkiler etiole olabilir. Evde yetiştirilen süs bitkilerinde de zaman zaman bu durum görülebilir. Etiole olmuş bitkiler zayıf geliştikleri için hastalıklara da kolaylıkla yakalanırlar. - Uygun olmayan toprak sıcaklığı Ortam sıcaklığına bağlı olarak toprak sıcaklığı da değişiklik gösterir. Toprak sıcaklığının fazla olması yumrulu bitkilerde, yumruların iç kısmında nekrozlara neden olur. Atmosfer ısısına bağlı olarak toprak ısısının normalin altına düşmesi tohumların çimlenmesini geciktirir. Bu da tohumların daha uzun süre toprak patojenlerinin saldırısına maruz kalmasına neden olur. Toprak içinde bulunan suyun donması da bitki köklerinin sıkışıp yaralanmasına veya ince köklerin kopmasına neden olur. Bu şekilde yaralanmış köklerden sekonder patojenlerin girişi kolaylaşır, bunlar da kök çürüklüğüne neden olurlar. Ayrıca toprak sıcaklığı toprakta bulunan mikroorganizmalar açısından önemlidir. Bunlardan bazıları sıcak topraklarda, bazıları ise nispeten serin topraklarda daha iyi gelişirler. Bunun sonucunda bazılarının popülasyonları artarken, diğerlerininki azalır. Eğer popülasyonu artan mikroorganizmalar bitki patojeni ise bitkilerin aleyhine bir durum ortaya çıkar. - Toprak reaksiyonu Toprakta anyon veya katyon halinde çok sayıda element bulunmaktadır. Bunların farklı bölge topraklarındaki miktarları değişiktir. Elementlerden bazılarının az, bazılarının daha fazla bulunması toprağın asit yada alkali karakterde olmasına neden olur. Bazı bitkiler asit’e, bazıları ise alkaliliğe duyarlıdır. Genellikle 4 ile 8 arasındaki pH aralığında bitkiler iyi gelişirler. Asit topraklarda bazı bitkilerde gelişme yavaşlar. Ayrıca, böyle topraklarda mineral tuzlar yüksek oranda çözündükleri için bitkilere toksik etki yaparlar, yada bitkilerin ihtiyacı olan elementlerin alımını engelliyerek besin noksanlığı belirtilerinin ortaya çıkmasına neden olurlar. Asit topraklarda toksisitesi görülen elementler bor, bakır, mangan, alüminyum ve demirdir. Bakır ve mangan toksisitesi aynı zamanda demirin bitki tarafından alımını önler ve demir noksanlığına neden olur. Sodyum tuzlarının, özellikle sodyum klorür, sodyum sülfat ve sodyum karbonatın toprakta fazla miktarda bulunması ise toprak pH 'sini yükseltir ve alkali zararına neden olur. Şekerpancarı, yonca gibi bitkiler alkali toksisitesine dayanıklı oldukları halde, buğday ve elma gibi bazı bitkiler oldukça duyarlıdırlar. Alkali zararı hassas bitkilerde kloroz, cüceleşme, yaprak yanıklığı, solgunluk ve fide ölümleri şeklinde görülebilir. Toprağın asit yada alkali karakterde oluşu toprakta bulunan patojenler açısından da önem taşır. Bakteriler asit’e oldukça dayanıksızdır, bu nedenle nötr veya hafif alkali toprakları tercih ederler. Funguslardan bazıları, örneğin Pythium türleri alkali topraklarda, Plasmodiophora brassicae gibi bazı funguslar ise asit topraklarda daha iyi gelişirler. - Toprak neminin azlığı veya fazlalığı Toprak nemi yada toprakta bulunan su miktarı ve buna bağlı olarak da toprağın hava kapasitesi bitkiler için hayati önem taşır. Bitkilerin normal olarak gelişebilmesi için toprakta yeterli miktarda su ve havanın olması gerekir. Bu dengenin bozulması, yani toprağın susuz kalması yada çok fazla miktarda su bulunması nedeni ile hava kapasitesinin düşmesi bitkilerde hastalıklara neden olur. Toprakların su tutma durumu toprak yapısı ile de ilgilidir. Ağır, killi topraklar fazla su tuttuğu için kökler yeterince hava alamaz, bitkiler zayıf gelişir ve kök çürüklüğüne neden olan patojenlerin saldırısına karşı koyamaz. Köklerin çürümesiyle bitkinin üst kısmına su iletimi durur. Bu durum bir süre devam ederse bitkiler tamamen solarak ölebilirler. Toprak havasının çok az olduğu koşullarda, anaerobik mikroorganizmaların gelişmesi sonucu nitrit’ler gibi bitkilere toksik olan maddeler oluşur. Bunun yanında, oksijen eksikliğinden zarar gören hücreler seçici geçirgenliklerini kaybederler ve toksik metaller bitki tarafından alınır. Bu nedenlerle bitkilerde solgunluk görülür. Fazla sulanan saksı bitkilerinde de toprak nemi fazlalığı sonucu zarar ortaya çıkabilir. En tipik belirti alt yapraklardan başlayan ani yaprak dökümüdür. Ayrıca yapraklarda sararma olur. Bazı bitkilerde gövdede ve yapraklarda kahverengi veya siyah sulu lekeler meydana gelebilir. Köklerde ise siyahlaşma ve ölüm görülebilir. Rutubetli dönemlerde fazla sulamanın etkisiyle bitkilerde şişkinlikler de görülebilir. Genellikle gövdelerde veya yaprakların alt yüzeyinde damarlar boyunca, yeşilimsi beyaz, daha sonra kahverengileşip mantarımsı bir yapıya dönüşen, büyüyüp çoğalan hücre kitlelerinden oluşan şişkinlikler oluşur. Bunları önlemek için bitkiler düzenli olarak toprak kurudukça azar azar sulanmalıdır. Killi toprakların aksine kumlu topraklar su tutmazlar, hava kapasiteleri yüksektir. Böyle topraklarda veya kayalık, eğimli arazilerde toprak rutubetinin azlığı nedeniyle bazı bitkiler zarar görebilir. Yapraklarda açık yeşil-san renk oluşumu, cüceleşme, yapraklarda küçülme ve azalma, çiçek ve meyve dökümü olur. Kuraklık devam ederse bitkiler ölebilir. Tek yıllık bitkiler kuraklığa daha hassastır. Bununla birlikte çok yıllıklarda da, gelişmede gerileme, yaprak ve filizlerde küçülme, yanıklık, yaprak dökümü, solgunluk ve ölüm görülebilir. Hafif kumlu topraklar nem içeriği açısından çok dengesizdirler. Toprakta suyun bir az, bir fazla olması, sulamanın dengesiz yapılması bitkilerde çeşitli hastalıklara neden olur. Domateslerde çiçek dibi çürüklüğü, salatalıklarda acılaşma, marullarda uç yanıklığı görülür. Yine domateslerde bir süre kurakta kaldıktan sonra olgunlaşma döneminde birden sulanırsa meyvelerde çatlaklar oluşur Elmalarda ise su düzensizliği sonucu acı çürüklük (bitter pit) denilen belirti ortaya çıkar. - Besin maddesi eksiklik veya fazlalıkları Bitkiler normal gelişmelerini sürdürebilmek için bazı elementlere ihtiyaç duyarlar. Azot, fosfor, potasyum, kalsiyum, magnezyum ve kükürt gibi bitkilerin fazlaca kullandığı elementlere makro elementler; demir, bor, mangan, çinko, bakır, molibden ve klor gibi daha az kullanılanlara ise mikro elementler denir. Bu elementlerin toprakta yeterli miktarda bulunmaması bitkilerde besin maddesi noksanlığı hastalıklarına neden olur. Bunların normalden fazla bulunması ise toprak reaksiyonunu nötrden uzaklaştırır ve bitkilere toksik etki yapar. Elementlerin fazlalığında meydana gelen zarar esasen, elementin hücre üzerindeki doğrudan etkisi sonucudur. Bunun yanında bir elementin fazlalığı diğer bir elementin bitki tarafından alımını yada fonksiyonunu engelleyebilir. Böylece bitki element eksikliğinden ötürü de zarar görür. Örneğin, normalden fazla sodyum, bitkilerde kalsiyum eksikliğine yol açmaktadır. Bitkiler için önemli elementler, bunların fonksiyonları ve eksiklik ya da fazlalıklarından ileri gelen hastalıklar şunlardır: Azot: Bitkiler tarafından fazla miktarda kullanılan bir elementtir. Bu nedenle yetiştiricilik sırasında gübre halinde toprağa verilmesi gerekir. Bitkiler azotu genellikle nitrat şeklinde, bazen de amonyak şeklinde alırlar. Bitki hücrelerindeki birçok maddenin içeriğinde; proteinlerde, enzimlerde, klorofilde ve solunum sisteminde bulunmaktadır. Azot noksanlığında bitkiler zayıf ve açık yeşil renkte gelişirler. Bitkiler bodurlaşır, çiçek ve meyve oluşumu azalır. Azot noksanlığı belirtilerini ortadan kaldırmak için toprağa düzenli olarak azotlu gübreleme yapılması gerekir. Rotasyonda baklagillere yer verilmesi topraktan aşırı azot kaybını önler. Gereğinden fazla azot vermek de sakıncalıdır. Bitkiler gevrek ve sert bir yapıda olur, vegetatif gelişme ağırlık kazanır, çiçeklenme ve meyve oluşumu gecikir. Ayrıca bitkiler hastalık ve zararlıların saldırısına hassas hale gelirler. Fosfor: Bitki hücrelerindeki birçok madde içinde; DNA ve RNA 'da, ADP ve ATP içinde enerji mekanizmasında, solunum enzimlerinde, fosfolipitlerde (zarlarda) ve bazı proteinlerin yapısında yer alır. Noksanlığında ortaya çıkan belirtiler azot noksanlığı belirtilerine benzer. Bitkiler yine zayıf, ince gelişir. Yapraklar normal yeşil rengini kaybeder, koyu donuk, mavimsi yeşil bir renk alır, antosiyan birikimi sonucu yer yer mor lekelenmeler görülür. Bazen alt yapraklarda bronzlaşma olabilir. Sürgünler ince, uzun, dik ve dönük gelişir. Fosfor normalden fazla olduğunda ise bitkiler çinkoyu alamaz ve çinko noksanlığı belirtileri görülür. Potasyum: Hücredeki birçok kimyasal reaksiyonda katalizör görevi yapar, enzimleri aktivite eder. Hücre geçirgenliğini, hücredeki iyon dengesini sağlar. Noksanlığında bitkilerde boğumlar arasında kısalma, sürgünlerde incelme, yaşlı yapraklarda kloroz ve uçlarda kahverengileşme, yaprak kenarlarına yakın kısımlarda kahverengi lekeler, etli dokularda uçlarda nekroz görülür. Şiddetli olduğunda geriye doğru ölümle sonuçlanır. Potasyum eksikliği daha çok süzek topraklarda ortaya çıkar. Toprağa potasyumlu gübre verilerek önlenir. Potasyum fazlalığında ise magnezyum noksanlığı ortaya çıkabilir. Magnezyum: Kloroplastlarda klorofilin yapı maddesi olarak, mitokondrilerde ve birçok enzimin yapısında bulunur. Noksanlığında tipik olarak klorofil kaybı sonucu kloroz görülür. Önce yaşlı , sonra genç yapraklarda damarlar arasında kloroz oluşur, yaprak kenarları yeşil kalır. Yaprak uçları ve kenarları yukarı doğru kıvrılıp sonunda yapraklar dökülebilir. Magnezyum noksanlığı genelde kumlu topraklarda ortaya çıkar. Potasyum fazlalığında da magnezyum bitki tarafından almayabilir. Şeker pancarı, patates, domates ve meyveler hassastır. Yaprağa veya toprağa MgS04 halinde birkaç uygulama şeklinde verilebilir. Kalsiyum: Hücre zarlarının geçirgenliğini ayarlar. Birçok enzimin aktivitesiyle de ilgilidir. Noksanlığında özellikle bitkilerin büyüme uçları, sürgünler zarar görür. Genç yapraklarda şekilsizleşme, kenarlarında kıvrılma ve nekroz, kahverengi benekler oluşur. Bitkilerin kök sistemleri de zayıf olur. Ayrıca değişik bitkilerde farklı belirtilere neden olur. Patateslerde uçtan itibaren siyahlaşma, çok sayıda şekilsiz yumru oluşumu, çileklerde uç kısımda yanıklık ve ölüm,elma ve daha birçok meyvede acı çürüklük, marulda uç yanıklığı, kirazlarda ve havuçlarda çatlamalar, bakla gibi büyük daneli baklagillerde tohum bağlamama veya tohumlarda çökme, buruşma, tahıllarda yeni çıkan yaprağın kıvrık kalması, domateslerde çiçek dibi çürüklüğü gibi hastalıklar oluşur. Elma ve domateslerde ışık şiddeti azaltılarak kalsiyum noksanlığı belirtileri azaltılabilir. Bunun dışında toprağa kireç uygulaması da olumlu sonuç verir. Bor: Hücre içindeki fonksiyonu tam olarak bilinmemekle birlikte, şekerlerin taşınması ve hücre duvarı oluşumunda, kalsiyumun kullanılmasıyla ilgili rolü olduğu düşünülmektedir. Noksanlığında uç sürgünlerindeki genç yaprakların dip kısımlarında renk açık yeşile döner, gövde ve yapraklarda şekil bozukluğu olur. Bitkiler bodurlaşır. Meyve, yumru, kök veya gövdelerde yüzey çatlakları yada öz çürüklükleri meydana gelir. Değişik bitkilerde farklı belirtiler ortaya çıkar. Kerevizlerde gövde çatlakları, şeker pancarında öz çürüklüğü, turunçgillerde sert meyve oluşumu, elmalarda rozetleşme, geriye doğru ölüm ve meyvelerinde mantarımsı öz, yoncada sarılık ve tütün, domates, keten ve daha birçok bitkide tepe ölümleri görülür. Eksikliği daha çok kumlu, kireçli topraklarda ortaya çıkmaktadır.Toprağa veya yapraklara boraks uygulaması yapılabilir. Bor, topraklarda gereksinimden beş kat fazla bulunduğunda bitkilere toksik etki yapar. Yapraklarda kloroz ve uçlarda koyu-kahverengi, siyah yanıklık olur. Patates, mısır, turunçgiller, çilek ve şeftali çok duyarlıdır. Kükürt: Bitkilerde bazı amino asitlerin ve ko-enzimlerin yapısında bulunur. Protein sentezinde rolü vardır. Eksikliğinde ortaya çıkan belirtiler azot eksikliği belirtilerine benzer.Tek fark genç yaprakların daha hassas olmasıdır.Yapraklar uçuk yeşil veya açık sarı renkte olur. Gerektiğinde toprağa kükürt verilerek noksanlık giderilebilir. Demir: Klorofil sentezinde katalizör olarak rol alır. Birçok enzimin, özellikle solunum enzimlerinin yapısında bulunur. Noksanlığında tipik olarak genç yapraklarda damarlar arasında kloroz ortaya çıkar, damarlar yeşil kalır. Şiddetli olduğunda damarlar da sararıp yapraklar tamamen kuruyabilir. Bitkilerin gelişmesinde gerileme olur. Demir noksanlığı daha çok kireçli topraklarda görülür. Demirli bileşikler kireç tarafından tutulup bitkinin yararlanamayacağı forma girdikleri için demir noksanlığı ortaya çıkar. Toprakta suyun fazla olması ve köklerin havasız kalmasıyla yada ışığın çok fazla oluşuyla hücre özsuyunun alkali hale gelmesi de demirin bitki tarafından alımını engeller. Alkali topraklarda toprağı asit hale getirmek için bol ahır gübresi kullanılmalı, fazla güneş ışığını önleyecek şekilde budama yapılmalı ve toprağa veya yapraklara demirli preparatlar verilmelidir. Bu amaçla, karaboya (FeS04,1-3 kg / ağaç) yada hazır demirli preparatlardan biri (Sequestrene 138 Fe, % 0.05 -% 1; Fetrilon, %0.1-0.3) kullanılabilir. Çinko: Şekerlerin oksidasyonuyla ilgili enzimlerin yapısında yer alır. Noksanlığında yaprak damarları arasında kloroz görülür. Daha sonra bu yapraklar nekrotikleşir ve morumsu renge dönüşürler. Boğum araları kısalır, yapraklar küçülür, şekilsizleşir, rozetleşme veya kamçılaşma belirtileri ortaya çıkar. Meyve verimi de düşer. Hastalık birkaç yıl devam ederse kamçılaşan sürgün ve dallar kuruyarak ağaç ölüme doğru gidebilir. Ağaçlara durgun dönemde %5'lik (100 litre suya 5 kg), yapraklı dönemde %1'lik çinko sülfat (100 litre suya 1 kg ZnS04 + 0.5 kg sönmemiş kireç) püskürtülerek noksanlık giderilebilir. Bakır: Birçok oksidatif enzimin yapısında yer alır. Noksanlığında bitkilerde değişik belirtiler ortaya çıkar. Tahıllarda genç yaprakların uçlarında kuruma, kenarlarında kloroz meydana gelir. Yapraklar tam olarak açılamaz, kıvrık kalır, solgunluk oluşur. Başaklar normalden kısa ve şekilsiz olur, daneler buruşur. Turunçgillerde, yumuşak ve sert çekirdekli meyve ağaçlarında, yazın sürgünlerde geriye doğru ölüm, yaprak kenarlarında yanıklık, kloroz, rozetleşme gibi belirtiler ortaya çıkar. Sebzeler ise normal gelişme gösteremez. Meyve ağaçlarını paraziter hastalık etmenlerinden korumak için atılan Bordo Bulamacı (CuSO4) veya diğer bakırlı preparatlar, bakır noksanlığını kısmen giderir.Toprağa da bakır sülfat uygulanabilir. Bakırın fazlası da bitkilerde toksik etki yapar. Yapraklarda yanıklıklara neden olur. Manganez : Solunum, fotosentez ve azot metabolizması ile ilgili enzimlerin yapısında yer alır.Noksanlığında, demir noksanlığına benzer şekilde yapraklarda kloroz ortaya çıkar.Yalnız farklı olarak damarların olduğu kısımlar kalın bir bant halinde normal rengini muhafaza eder.Ayrıca yapraklar üzerinde nekrotik lekeler oluşabilir. Şiddetli durumlarda yapraklar kahverengileşerek kururlar. Organik, turba, kumlu topraklarda, yüksek pH 'da mangan eksikliği görülür. Yapraklara MnS04 püskürtülmesi tavsiye edilir. Toprak asilliğinin çok yüksek olduğu yerlerde magnezyum ve kalsiyumun alamayışı nedeni ile mangan toksisitesi ortaya çıkar. Özellikle karnabahar, lahana ve arpa hassastır. Damarlar arasında düzensiz klorotik lekeler oluşur, daha sonra koyu kahve, mor veya siyah nekrotik lekelere dönüşür. Lekeler yaprak kenarlarında yoğundur ve yaprak kenarları içe doğru kıvrılabilir. Molibden: Nitraz redüktaz enziminin önemli bir yapıtaşı olduğu bilinmektedir. Azot fiksasyonunda da rolü vardır. Noksanlığında şiddetli sararma ve cüceleşme görülür. Özellikle kavun bitkisi hassastır, meyve vermez. Haçlıgillerde şekilsiz, parçalı yaprak oluşumuna neden olur. Diğer birçok bitkide ise yapraklarda damarlar arasında parlak san-yeşil beneklenmeler, yaprak kenarlarında kıvrılmalar ve sonunda yapraklarda kuruma ve çökme şeklinde belirtiler oluşur. Toprağa amonyum molibdat uygulanarak bu belirtiler önlenebilir. Bazı bitkilerde klor ve sodyum noksanlığı zararı görülebilir. Domates, marul ve lahana klor noksanlığına, semizotu ise sodyum noksanlığına duyarlıdır. Halojenlerin noksanlığında ortaya çıkan belirtiler birbirine benzer. Yapraklarda sararma, solgunluk ve yaprak kenarı nekrozu görülür. Toprak asitliğinin fazla olduğu durumlarda alüminyum toksisitesi görülebilir. Arpa, şekerpancarı ve fasulye buna duyarlıdır. Köklerde lobutlaşma, büyümede gerilik ortaya çıkar. Zararlı endüstriyel atıklar Dünyamızı saran atmosfer tabakasında; azot % 78, oksijen %21, karbondioksit, su buharı ve diğer gazlar ise %1'lik bir oranda bulunurlar. Ancak insan aktiviteleri sonucu değişik gazlar atmosfere karışarak, bu oranlar bitkilere zararlı olacak şekilde değişebilmektedir. Isınma, enerji üretimi ve endüstri faaliyetleri sırasında hidrojen florür, azot oksitleri, ozon, kükürt dioksit, peroksiasil nitratlar gibi gaz ve kurşun, demir oksit, bor partikülleri, yol tozları, çimento tozları gibi partikül halindeki kirleticiler atmosfere karışarak bitkilerde çeşitli zararlara neden olurlar. Kirleticilere karşı bitkilerin tepkisi, gözle görülür belirtilerin oluşması, büyümenin yada gelişmenin engellenmesi, fizyolojik ve metabolik dengenin bozulması ve belirli bazı elementlerin ve metabolitlerin birikmesi şeklinde olabilir. Etkinin şiddeti, bitkinin kirleticiye maruz kalma süresine, kirleticinin dozuna ve ışık şiddeti, nispi nem, toprak nemi, sıcaklık ve diğer kirleticilerin varlığına bağlı olarak değişmektedir. Birden fazla kirletici bir arada bulunduğunda değişik şekilde etkileşim gösterebilirler. Bazen birlikte etkileri, tek tek etkilerinin toplamına eşit olabilir ki, buna eklemeli etki denir (EAB=EA+EB). Bazen de birlikte etkileri, etki toplamından büyük olur ki buna sinerjitik etki denir (EAB>EA+EB), yada küçük olur, buna da antagonistik etki denir (EAB Doğada yaygın olarak bulunan kirletici gazlardan biri kükürtdioksittir (SO2). Fabrika bacalarından (bakır, gübre, demir-çelik, kurşun-çinko, petrol arıtım, deri işleme, kağıt vs.), otomobil eksozları ve diğer iç yanmalı motorlardan kaynaklanır. Birçok bitki, özellikle yonca, bezelye, pamuk, fasulye ve ibreliler hassastır. Kükürtdioksit 0.3-0.5 ppm konsantrasyonlarda fitotoksiktir. Düşük konsantrasyonları genel kloroza neden olur. Yüksek konsantrasyonlarda ise yapraklarda damarlar arasında kalan bölgeler beyazlaşır. Klorofili parçalayarak fotosentezi engellemektedir. Ozon stratosferde doğal olarak bulunur. Bunun dışında, otomobil eksozları ve diğer iç yanmalı motorlardan çıkan NC>2, güneşin ultraviole ışınlarının etkisiyle oksijenle reaksiyona girerek ozonu meydana getirir (NÛ2+02 güneş ışığı Os+NO). Ozonun 0.1-0.5 ppm'lik dozları birkaç saatte bitkilere zarar verebilir. Stomalardan yaprağa girerek hücrelerin ölümüne ve beyaz nekrotik alanların oluşumuna neden olur. Turunçgiller, yonca, fasulye, soya fasulyesi, asma, patates, tütün, buğday, çam ve kavak gibi bazı bitkiler ozona çok duyarlıdır. Ozonun oluşumu sırasında açığa çıkan NO, otomobil eksozlarından çıkan tam yanmamış hidrokarbonlarla birleşerek yine bitkilere toksik olan peroksiasilnitratlan (PAN) meydana getirir. Bunlar da Stomalardan yaprak dokusuna girerler ve 0.001-0.02 ppm kadar küçük dozları bile hassas bitkilere zarar verebilir. Yapraklar gümüşi bir renk alır. Bunun nedeni de yaprakların alt yüzünün parlak beyaz-bronz renge dönüşmesidir. Zarar gören yaprakların mezofil hücrelerindeki protoplastlar çöker, buraya hava dolar. Bu hava boşlukları yapraklara gümüşi rengi verir. Ispanak, domates, marul en hassas bitkilerdir. Azot oksitlerinin asıl kaynağı biyolojik olarak bakteriler tarafından oluşturulan NO 'dir. Fakat bu şekilde oluşan NO dünyada homojen olarak dağıldığı için bitkilere zarar vermez. Halbuki şömine, soba gibi ısınma araçlarından yada iç yanmalı motorlardan çıkan azot oksitleri belirli alanlarda yoğunluk kazanarak bitkilere toksik etki yaparlar. Bunların 2-3 ppm 'de fitotoksik oldukları belirlenmiştir. En duyarlı bitkiler; fasulye, domates, yulaf, buğday ve bezelyedir. Bitkilerdeki zararı SO2 zararına benzer. Yapraklarda renk açılması, bronzlaşma görülür. Ayrıca gelişmeyi de olumsuz yönde etkiler. Flor ve floritler, maden ve petrol işleyen fabrikalardan kaynaklanır. Mısır, şeftali, lale, fasulye gibi hassas bitkilerde 0.1 ppm 'de toksik etki yapabilir. Dikotiledonlarda yaprak kenarlarından, monokotiledonlarda yaprak uçlarından itibaren kahverengileşme olur. Rafineri ve cam fabrikaları çevresinde bazen Cl2 ve HCI zararı görülebilir. Klor 0.1 ppm 'de toksiktir. Yine yaprak kenarlarında yanıklıkla kendini gösterir. Kapalı yerlerde, soğutma depolarında amonyak ve etilen gibi gazlar da zararlı olabilirler. Meyvelerde değişik lekeler meydana gelir. Doğada gazların tek tek etkilerinden çok, kombine etkilerine rastlanır. Ozon, SO2 ve NO2 kombinasyonları en çok zarar oluşturan kirleticilerdir. SO2 ve NO2 , rüzgarla uzun mesafelere taşınabilirler ve sülfirik ve nitrit asitlere dönüşerek asit yağmurları şeklinde de etkili olurlar. Asit yağmurları doğrudan yapraklar üzerinde lezyonlar meydana getirerek zararlı oldukları gibi, toprağın kimyasal ve biyolojik yapısını değiştirerek dolaylı olarak da bitki sağlığını tehdit ederler. Gaz kirleticiler ve asit yağmurlarından başka partikül halindeki kirleticiler de bitkilerde önemli zararlara neden olmaktadır. Bunlardan en önemlileri çimento fabrikalarından çıkan çimento fırın tozları, kireç ocaklarından çıkan kireç tozları, kurşun ve bor partikülleri, mozaik fabrikaları tozları ve yol tozlarıdır. Bunlar bitki yapraklarının üzerini kaplayarak fotosenteze engel olur, bunun sonucunda bitki verimi düşer. Ayrıca pH 'yi etkileyerek normal hücre yapısının bozulmasına neden olur, bitki besin maddelerinin alımını engeller. Ülkemizde de sanayinin yoğun olduğu bölgelerde, çevreye zararlı gazların yayıldığı fabrikaların çevresinde bulunan tarım alanlarında önemli zararlar meydana gelmektedir. Örneğin Murgul ve Samsun 'daki bakır işletmeleri çevrede bulunan tarım alanlarında neden oldukları zararlar için üreticilere her yıl milyonlarca lira tazminat ödemektedirler. Hatalı tarımsal uygulamalar Pestisitlerin hatalı kullanımlarından dolayı bitkilerde çeşitli zararlar meydana gelmektedir, ilaçların tavsiye edilen normal kullanım dozlarının üzerinde kullanılması, uygulama zamanının iyi ayarlanmaması nedeni ile yanlış dönemde uygulanması, topraktaki kalıcılığının dikkate alınmaması, uygulama sırasında rüzgarla istenmeyen yerlere taşınması ve çevre koşullarının ilaçlamaya uygun olmadığı durumlarda, pestisitler kültür bitkilerine zarar verebilirler. Seçici özellikleri nedeniyle pestisitler içinde en çok herbisitlerin fitotoksisitelerine rastlanır. 2,4 D ester formülasyonlu herbisitler buharlaşma özelliklerinden dolayı rüzgarla taşınarak, uygulama alanının dışındaki geniş yapraklı kültür bitkilerini etkileyebilirler. Bu durumda yapraklarda şekil bozukluğu meydana gelir. Yaprak damarları birbirine paralel, yaprak kenarları ise parçalı bir görünüm alır. Diğer bazı herbisitler de yanlış kullanıldıklarında fotosentezi, lipit sentezini, hücre bölünmesini önleyebilirler. Bazı bitkilerde bir fungisit veya insektisite hassasiyet görülür, özellikle süs bitkilerinde ilaç kullanımına dikkat edilmelidir. Kabakgillerin bakirli, şeftalinin çinkolu ilaçlara hassas olduğu bilinmektedir. Ayrıca kükürtlü veya yazlık beyaz yağlı preparatlar 30 °C' nin üzerindeki sıcaklıklarda bitkilere toksik etki yaparlar. Derin dikim, derin veya sık ekim, aşın yada hatalı toprak işleme, gübreleme, sulama, budama işlemleri ve uygun olmayan koşullarda depolama gibi kültürel işlemler de bitkilerde birtakım zararlara yol açarlar. Derin dikim, ağaç köklerinin yeterince hava alamamasına ve bitkilerin kök çürüklüklerine daha hassas hale gelmesine neden olur. Kök sistemi görevini yapamaz. Bunun sonucunda ağaçların gövdelerinde zamklanma görülebilir. Ekimde derinlik önemlidir. Her tohumun istediği bir ekim derinliği vardır. Fazla yüzmek yada derin ekilen tohum normal çimlenemez veya toprak yüzeyine çıkamaz, yada gelişen bitki zayıf olur. Aynı şekilde sık ekimde bitkilerin zayıf gelişmesine neden olur. Sık ekim sonucu bitkilerin havalanması önlenecek ve fazla nem patojenlerin enfeksiyonuna uygun bir ortam oluşturacaktır. Aşırı toprak işleme topraktan fazla su kaybına neden olur. Sıra arası çapalamanın dikkatsiz yapılması bitki köklerinin yaralanmasına yada kopmasına neden olur. Aşırı veya düzensiz sulama bitkilerin sağlıksız gelişmesine yol açar. Hıyar gibi bazı bitkilerde acılaşma olur. Gübrelemenin az yada fazla olması da besin maddesi noksanlığı veya toksisitesi belirtilerini ortaya çıkarır. Aşın ve yanlış budama ağaçlarda zararlanmalara bunun sonucunda da verim düşüklüğüne neden olur. Budama yaralarının kapatılmaması sonucu buralardan giren patojenler bitkileri hastalandırır. Uygun olmayan koşullarda depolama bitkisel ürünlerde fizyolojik ve patojenlerin neden olduğu bozulmalarla sonuçlanır, ürünlerin kalitesi ve pazar değeri azalır. Bu bölümde ele alınan ve bunların dışında kalan tüm tarımsal işlemlerden her birinin uygun şekilde ve zamanında yapılmaması halinde bitkiler zayıf gelişir ve sekonder etmenlerin hücumuna duyarlı hale gelirler. 2.2. Canlı (Paraziter) Hastalık Etmenleri Funguslar, bakteriler ve virüsler bitkilerde hastalık meydana getiren canlı etmenlerdir. Parazit bitkiler ve yabancı otların da bitkilerin gelişmesini olumsuz yönde etkiledikleri için paraziter hastalık etmenleri içinde ele alınırlar. Bu grup içinde çok sayıda etmen olduğu için bunlarla ilgili çalışmaları kolaylaştırmak ve araştırıcılar arasında birlik sağlamak açısından, bunlar belli bir düzene göre isimlendirilmekte ve sınıflandırılmaktadır. Sınıflandırma birbirine benzeyen canlıları aynı kategoriler içinde ele almaktır. Canlıların sınıflandırılmasında belirli bazı kategoriler kullanılır: * Alem (Regnum veya Kingdom) * Bölüm (Şube) (Phylum, Division) * Sınıf (Classis) * Takım (Ordo) * Familya (Family.Familia) * Cins (Genus) * Tür (Species) Bu kategoriler arasında, gerektiğinde ara kategoriler de kullanılmaktadır. Bunlar; altbölüm, altsınıf, alttakım, altfamilya, altcins ve alttür olarak isimlendirilirler. Bu sınıflandırma kategorilerine verilen isimler Latince'den yada Yunanca'dan alındığı için isimlendirmelerde yine bu dillerden gelen bazı ekler kullanılır. * Alem - ae * Bölüm - mycota * Altbölüm - mycotina * Sınıf - mycetes * Altsınıf - mycetidae * Takım - ales * Familya - aceae Tür isimleri cins ve türün adı olmak üzere iki isimli (binomial) olarak kullanılır ve bunlar italik harflerle veya altı çizilerek yazılır. Alttür isimleri ise üçlü (trinomial) olarak yazılır, isimlerden sonra bu türün ilk tanımını yapan araştırıcının adı veya kısaltması yazılır. Eğer sonradan başka bir araştırıcı aynı türü başka şekilde isimlendirirse ilk tanımlayanın adı parantez içinde, son isimlendirenin adı ise en sonra yazılır (Örneğin: Bipolaris oryzae (Breda de Haan) Shoemaker). Bitkilerde hastalığa neden olan funguslar, bakteriler ve virüsler, canlılar aleminin iki ana grubu olan bitkiler ve hayvanlara hem benzer, hem de farklı özellikleri nedeniyle her iki gruba da dahil edilememiş, Protista adı altında ayrı bir alem olarak ele alınmışlardır. Protistler hücre yapıları birbirinden farklı iki alt gruba ayrılırlar: Prokaryonlar (ilkel protistler) ve Ökaryonlar (yüksek protistler). Prokaryonlar tek hücreli canlılardır. Stoplazmalan ya sadece hücre zarı ile, yada hücre zarı ve hücre duvarı ile çevrilidir ve küçük (70 S*) ribozomlar içerir. Genetik materyal yani DNA, bir zarla çevrili değildir, stoplazma içinde tek bir iplikçik halinde, serbest olarak bulunur. Ökaryonlar gelişmiş mikroorganizmaları içine alan gruptur. Hücrede, etrafı zarla çevrili gerçek bir çekirdek bulunur. DNA prokaryonlarda olduğu gibi tek bir kromozomdan ibaret değil, kromozom dizeleri halindedir. Stoplazma zarı, endoplazmik reticulum ile çekirdek zarına kadar uzanmaktadır ve stoplazma büyük (80 S) ribozomlar içerir. Bakteriler prokaryonlar arasında, funguslar Ökaryonlar arasında yer alırlar. Virüsler ise her iki gruba da dahil edilemeyen farklı yapıda canlılardır. Prokaryonlar ve Ökaryonlar gibi hücresel bir yapıları yoktur ve çoğalmaları için canlı bir hücreye gerek duyarlar. Bitki Patojeni Funguslar Funguslar klorofil içermeyen ve genellikle sporlarıyla çoğalan mikroorganizmalardır. Eskiden benzer bir takım özellikleri nedeniyle bitkiler aleminde ele alınarak, kök, gövde ve yaprak gibi organları olmayan bitkiler olarak tanımlanırlarken, günümüzde Protista üst alemi içinde, Mycetae (Fungi) adı verilen kendi alemleri içinde ele alınmakta ve kendilerine has özellikleri olan ayrı bir grup organizma olarak düşünülmektedirler. Yaklaşık 100.000 fungus türü tanımlanmıştır ve her yıl buna yeni türler eklenmektedir. Şapkalı mantarlar, kav mantarları, küfler ve mildiyö fungusları hemen herkes tarafından bilinmektedir. Fungusların bir çoğu insanlar için yararlıdır. Gıda olarak tüketilebilir veya gıda ve ilaç endüstrisinde kullanılabilirler. Yemeklik kültür mantarları taze olarak yada konserve veya çorba halinde hemen tüm marketlerde bulunabilmektedir. Ekmek, bira, şarap, soya sosu gibi gıda ve içeceklerin yapımında özel funguslar kullanılmaktadır. Birçok hayatı kurtaran penisilin adlı antibiyotik ise 1929 yılında Fleming adlı araştırıcının laboratuarında, kültürde çoğalan bir fungustan elde edilmiştir. Ayrıca funguslar bakterilerle birlikte çürüme olayının başlıca etkenleri olarak, organik maddenin parçalanması yoluyla bitkilerin beslenmesinde önemli ve mutlak bir rol alırlar. Tüm funguslar karışık yapıdaki organik besinleri daha basit bileşiklere ayırma ve bu bileşikleri enerji kaynağı olarak kullanma yeteneğine sahiptir. Çürümekte olan organik madde üzerinde yaşayabilen funguslar saprofit olarak isimlendirilirler. Funguslar; kitaplar, giyecekler, meyveler, deri, et, kağıt, depolanmış tohum ve diğer bitkisel materyal ve odun gibi çok değişik maddeleri parçalayabilirler. Bazı funguslar bitki kökleriyle simbiyotik (her iki organizmaya da fayda sağlayan bir ortak yaşam) bir birlik oluştururlar. Bu yapıya "mikoriza" (mycorrhiza) denir. Funguslar bitki köklerinin üzerinde (ektomikoriza) veya içinde (endomikoriza) yaşarlar. Fungus bitki köklerinden besin maddeleri ihtiyacını karşılarken, fosfor gibi belirli bazı besin elementlerini de bitki köklerinin alabileceği forma çevirir. Bazı mikoriza fungusları, zararlı patojenik fungusların bitki köklerini enfekte etmesine karşı bitkiyi koruyabilir. Zararlı funguslar insan , hayvan ve özellikle de bitkilerde hastalıklara neden olurlar. 8000 kadar fungus türünün bitkilerde hastalıklara neden olduğu ve her bitkinin bazı funguslar tarafından hastalandırıldığı bilinmektedir. Bazı bitki patojeni funguslar çok sayıda bitki türüne zarar verebilir, bazıları ise yalnızca bir tek konukçuya sahiptir. Bazı funguslar da yalnızca canlı bir konukçu üzerinde çoğalıp yaşayabilir, bunlara "obligat (mecburi) parazitler" denir. "Fakültatif parazitler" ise ölü organik madde ile beslenerek de yaşamlarını sürdürebilirler. Bitki paraziti bazı funguslar tarafından gıdalar üzerinde üretilen ve "mikotoksin" denilen bazı maddeler hayvanlara ve insanlara zararlıdır. Buğday, arpa, mısır gibi bazı gıdalar depolandığında, uygun sıcaklık ve nem mevcutsa bunlar üzerinde bazı funguslar gelişir. Mısır daneleri üzerinde Aspergillus flavus fungusunun gelişmesi sonucu aflatoksin üretimi gerçekleşir. Aflatoksin seviyesi yüksek olduğunda bu danelerden yapılan gıdayı tüketen hayvan veya insanlar zarar görür. Hububat tohumları üzerinde gelişen bazı Fusarium türleri de tehlikeli toksik maddeler üretirler. Claviceps purpurea fungusunun neden olduğu "çavdar mahmuzu" hastalığında ise daneler fungusun canlılığını sürdürmesini sağlayan yapılar olan sklerotlarla bulaşır ki bunlar da oldukça zehirli maddeler içerirler. Fungusların neden olduğu bitki hastalıkları her yıl ürün kaybına neden olmakta ve bu hastalıkları önlemek için kullanılan fungisitler için de milyarlarca lira harcanmaktadır. Morfolojik özellikleri Bir fungusun vücudu veya vegetatif dönemdeki yapısı "hif adı verilen (hyphae, çoğulu: hypha) dallanmış ipliksi yapılardan ibarettir. Hifler bir araya gelerek "misel" (mycelium, çoğulu: mycelia) meydana getirirler. Gelişmiş funguslarda hifler, "septum" (çoğulu: septae) denilen bölmelerle, içleri protoplazma dolu hücrelere bölünmüştür. Protoplazma yarı geçirgen stoplazmik zarla çevrili ve bir veya daha fazla çekirdek içermektedir. İlkel fungusların hifleri bölmesizdir, bunlar protoplazma içeren uzun tüpler şeklindedir ve mikroskop altında sıvı protoplazmanın hif içinde ileri geri akışı görülebilmektedir. Bir hif genellikle bir sporun çimlenmesi ile oluşur. En basit sporlar, bir çekirdek ve stoplazma içeren, mikroskobik boyutlarda tek hücreli yapılardır. İlkel fungusların sporları kamçıları ile yüzerek hareket etme kabiliyetindedir. Bir spor hücre duvarındaki ince bir yerden tüp yada iplik şeklinde bir çim borusu çıkararak çimlenir. Çim borusu gelişerek bir hife dönüşür ve hif de dallanarak miseli oluşturur. Gelişme büyük ölçüde hiflerin ucunda olur ve sıvı maddelerin doğrudan doğruya hücre duvarından emilmesi ile gerçekleşir. Miselyum genellikle fungusun geliştiği ortam içinde gizlidir. Gelişmekte olan hif uçları, en sert odun dokusu da dahil olmak üzere birçok bitki dokusunun hücre duvarından doğrudan bitki hücreleri içerisine girebilme yeteneğindedir. Bu giriş enzim" denilen ve gelişmeleri sırasında çıkardıkları organik maddeler yolu ile olur. Enzimler hücre duvarlarını ve diğer hücre kısımlarını oluşturan yapılan çözebilir veya parçalayabilirler. Fungusların konukçu dokuları içine girişi mekanik basınç yoluyla da olabilir. Bu amaçla hifler özel işleve sahip bazı yapılara dönüştürülürler. Hiflerin konukçu dokuları içine girebilmek için oluşturduğu ucu çivi şeklinde sivrilmiş yapılara "apressoryum" (appressorium, çoğulu: appressoria) denir. Appressorium konukçu epidermisi üzerine oluşturduğu basınçla epidermisi delerek doku içine girer. Fungus hiflerinin oluşturduğu özel yapılardan bir diğeri "haustoryum"dur (haustorium, çoğulu: haustoria). Tüp veya parmak şeklinde olan bu yapı, fungusun konukçu hücreleri içinden besin maddelerini alabilmesi için meydana getirilmektedir. Misel, konukçu bitkinin veya çürüyen organik maddenin üzerinde yada içinde oluşabilir ve fungusun teşhisine yarayan değişik yapı ve organları oluşturabilir. Fungus miselleri yoğun bir şekilde gelişerek fungal dokuları "plektenkima" (plectenchyma) meydana getirirler. Misellerin düzensiz ve sıkı bir şekilde bir araya gelerek oluşturdukları fungal dokulara "psödoparankima" (pseudoparanchyma) denir. Bu tip dokulara örnek olarak, bazı funguslarda oluşturulan ve "sklerot" (sclerotium, çoğulu: sclerotia) adı verilen dormant yada dinlenici yapılar verilebilir. Bunların boyutları birkaç hücreden (mikrosklerotlar) binlerce hücreye kadar değişebilir. Bazıları 4 kg ağırlığa kadar ulaşabilirken çoğu küçüktür. Renk (şeffaf, açık sarı, kahverengi, siyah) ve şekil (düzensiz şekilli, küresel, uzunumsu) bakımdan da değişiktirler. Funguslar, soğuk, kurak, sıcak veya konukçu yokluğu gibi olumsuz koşullarda sklerot halinde canlılıklarını koruyabilirler. Uygun koşulların yeniden ortaya çıkmasıyla sklerot konukçuyu enfekte edecek olan hifi oluşturur, yeni bir miselyum meydana getirir, yada başka bir üretken yapıya dönüşür. Fungus misellerinin biri birine paralel olarak sıkı bir şekilde bir araya gelerek oluşturdukları ip veya halat şeklindeki yapılara "rizomorf" (rhizomorph) denir. Rizomorf fungusun hem uygun olmayan koşulları geçirmesini, hem de bir konukçudan diğerine ulaşmasını sağlar. Misellerin düzenli ve gevşek bir şekilde bir araya gelerek oluşturdukları fungal dokulara ise "prosenkima" (prosenchyma) denir, içinde değişik çoğalma yapılarının oluştuğu "stroma" bu tip fungal dokulardandır. Fungus miselleri konukçu bitki dokuları üzerinde veya içinde gelişebilirler. Konukçu yüzeyinde gelişen funguslara "ektoparazit funguslar" denir Ektoparazit funguslar haustoryumları ile bitki hücrelerinden besinlerini alırlar. Bitki dokuları içinde gelişen funguslara ise "endoparazit funguslar" denir. Bunlarda misel gelişimi bitki hücreleri arasında (intercelluler) veya hücre içine girmek suretiyle olur (intracelluler). Üremeleri Funguslarda üreme, eşeyli ve eşeysiz olmak üzere iki tipte gerçekleşir. Eşeysiz veya aseksüel üreme, somatik yapının belirli bir dönemde kendi benzerlerini oluşturmasına denir. Eşeysiz üreme değişik fungus gruplarında dört farklı şekilde olabilmekte ve bunun sonucunda değişik tipte sporlar oluşmaktadır. Eşeysiz üreme tiplerinden biri olan "fragmentasyon"da, hiflerin uç veya orta kısımlarındaki hücreler hifden kopup ayrılmakta ve yeni bireyleri oluşturmaktadır. Hiflerin uç veya orta kısımlarındaki hücrelerin çeperleri kalınlaşıp, yuvarlaklaşarak hif den ayrılmasıyla oluşan sporlara "klamidospor" (chlamidospor) denir. Bunlar genellikle fungusların olumsuz koşulları geçirmek için oluşturdukları sporlardır. Belirli bir olgunluğa ulaşan hiçlerin uç kısımlarındaki hücrelerin tespih tanesi gibi koparak hinden ayrılmasıyla oluşan sporlara ise "arthrospor" denir. Bu iki spor tipi hif hücrelerinden yani, thallusdan oluştukları için bunlara "thallospor" da denilmektedir. Somatik yapısı tek hücreden oluşan funguslar, hücrelerinin uzayarak ortadan bölünmesiyle eşeysiz çoğalmayı gerçekleştirirler. Buna "bölünerek çoğalma" denir. Bazı funguslarda, protoplazma ve çekirdeğin hücrenin uç kısmında oluşan tomurcuk içine geçerek, tomurcuğun ana hücreden koparak ayrılmasıyla oluşan üreme şekli görülmektedir. Bu tip eşeysiz üremeye "tomurcuklanma" denir. Bazı funguslar ise doğrudan doğruya farklılaşmış miseller üzerinde yada misellerin oluşturduğu özel çoğalma yapıları üzerinde veya içinde, Spor oluşturmak suretiyle çoğalırlar. Funguslarda eşeysiz dönemde iki tip spor oluşumu görülmektedir. Dallanmış hiflerin ucunda bulunan ve içinde çok sayıda spor taşıyan kese şeklindeki çoğalma organlarına "sporangium" (çoğulu: sporangia), spor keseleri içinde oluşan sporlara ise "sporangiospor" denir. Nemli koşullarda yaşayıp gelişen funguslar bir veya birkaç kamçıya (flagellum, çoğulu: flagella) sahip hareketli sporlar üretirler, bunlara "zoospor" denir . Bununla birlikte fungusların çoğu rüzgar, yağmur sulan yada toprakla taşınan hareketsiz sporlar üretirler. Sporangium içinde oluşan hareketsiz sporlara "aplanospor" denir. Funguslarda eşeysiz dönemde oluşan ikinci tip sporlar ise "konidi"lerdir (conidium, çoğulu: conidia). Bunlar konidiofor (conidiophore) adı verilen farklılaşmış hiflerin ucunda oluşurlar, tek veya çok hücrelidirler. Konidiler bazen doğrudan doğruya hiflerin ucunda oluşur, bazen de daha kompleks yapılar içinde kitle halinde meydana gelirler. Stromatik doku içinde gömülü halde oluşan, kese şeklindeki konidi taşıyan organlara "piknit" (pycnidium , çoğulu: pycnidia) denir. Bazı fungus gruplarında konidiler "aservulus" (acervulus, çoğulu: acervuli) denilen yatak şeklindeki organlar içinde, bazılarında ise "sporodokyum" (sporodochium, çoğulu: sporodochia) adı verilen yastık şeklinde kabarık yapılar üzerinde oluşur. Bazen de konidioforlar çiçek demeti gibi yan yana gelerek uçlarında konidiler toplu halde oluşur, bu yapıya da "sinnema" (synnema) denir. Funguslarda seksüel (eşeyli) üreme üç aşamada; plasmogami, karyogami ve mayoz bölünme şeklinde gerçekleşmektedir. Plasmogami, farklı karakterde iki eşey hücresinin (gamet) veya eşey organının (gametangium, çoğulu: gametangia) plasmalarının birleşmesi olayıdır. Plasmogamide rol alan gametler birbirinin benzeri olabildiği gibi, birbirinden farklı büyüklük ve yapıda olabilirler. Karyogami ise iki gametin çekirdeklerinin birleşmesi olayıdır. Bundan sonra mayoz bölünme ile diploid çekirdek bölünerek haploid hücreler oluşturulur. Funguslar eşeyli ve eşeysiz üreme sırasında oluşturdukları özel yapı ve organlara göre sınıflandırılırlar. Bitki dokusuna girişleri ve bitkiden bitkiye taşınmaları Fungusların bitki dokularına girebilmeleri için yaralar yada doğal açıklıklar olması gerekmez. Fungus hifleri mekanik veya kimyasal yollarla sağlıklı bitki dokularına girebilme yeteneğindedirler. Fungus (liflerinin bitki dokusuna mekanik olarak girişi enfeksiyon çivisi yada apressoryum denilen sivri hif uçlarının basınçla bitki dokusunu delmesiyle gerçekleşir. Kimyasal giriş ise fungus emzimlerinin bitki hücre duvarlarını eritmesiyle olur. Bitki içine giren fungus hifleri hücreler arasında, hücreler içinde yada iletim dokularında yayılarak bitkiyi istila ederler. Fungusların bitkiden bitkiye taşınmaları aktif yada pasif taşınma şeklinde olur. Aktif taşınma, hareketli fungus sporlarının toprak suyunda yüzerek sağlıklı bitki köklerine ulaşmasıdır. Pasif taşınmada ise rüzgar, yağmur ve sulama suları, böcekler ve diğer hayvanlar, insanlar rol oynarlar. Aktif taşınma yalnızca hareketli zoosporları olan Myxomycetes, Chytridiomycetes ve Oomycetes sınırlarındaki funguslarda görülür. Bunların dışında kalan ve fungusların çoğunluğunu oluşturan gruplarda ise pasif taşınma söz konusudur. Fungusların ertesi yıla geçişleri toprakta yada bitki artıklarında kalan dayanıklı miseller, sklerotler, dinlenici sporlar veya eşeyli üreme sonucu oluşan dayanıklı yapılarla olur. Bitkilerde meydana getirdikleri belirtiler Funguslar bitkilerde çok değişik tipte belirtiler meydana getirirler. Bitki hücrelerini yada dokularını öldürerek neden oldukları nekrotik simptomlar; yaprak lekeleri, yanıklıklar, gövde veya dal kanserleri, geriye doğru ölüm, kök çürüklüğü, çökerten, gövde veya sap çürüklükleri, etli dokularda kuru veya yumuşak çürüklükler, antraknoz ve uyuz belirtileridir. Bundan başka lobut köklülük, gal veya siğil oluşumu, yaprak kıvırcıklığı gibi hiperplastik ve cücelik gibi hipoplastik belirtiler de oluştururlar. Funguslarla mücadele Mücadelede esasen kültürel tedbirler önem taşır. Sağlıklı üretim materyali kullanılması, hastalıklı bitki artıklarının imha edilmesi, ara konukçu ve vektörlerin ortadan kaldırılması, rotasyon ve dayanıklı bitki çeşitlerinin yetiştirilmesi gibi önlemler her hastalığın önlenmesinde etkili olabilecek uygulamalardır, Ama yinede bazı fungal hastalıklarla mücadelede kimyasal preparatların kullanılması gerekebilir. Toprak kökenli etmenler için toprak fümigasyonu, tohumla taşınan etmenler için sistemik fungusitlerle ilaçlaması, bitkinin toprak üstü kısımlarında zararlı etmenler için de yeşil aksam ilaçlaması önerilir. Funguslarda sınıflandırma ve bitkilerdeki önemli fungal hastalıklar Funguslar, eşeyli ve eşeysiz üreme sırasında oluşturdukları özel yapılar dikkate alınarak sınıflandırılırlar (Şekil 2.6). Mycota yani funguslar alemi iki bölüme ayrılır: Myxomycota ve Eumycota. * Bölüm 1. Myxomycota: Bunlara akışkan veya sümüksü funguslar denir. Bu grup funguslarda gerçek bir misel yapısı yoktur. Bunun yerine çıplak, amipsi, çok çekirdekli "plasmodium" denilen yapıya sahiptirler Bu bölümde bitki patojeni funguslar iki sınıfta toplanmıştır. * Sınıf 1. Myxomycetes: Miselleri yoktur. Yapılan plasmodiumdan ibarettir. Çoğalmaları hareketli zoosporlarla olur. * Takım 1. Physarales: İki kamçılı zoosporları vardır. Fuligo, Mucilago ve Physarum cinslerine bağlı funguslar otsu bitkilerde akışkan çürüklüğe neden olurlar. * Sınıf 2. Plasmodiophoromycetes * Takım 1. Plasmodiophorales: Plasmodiumlarim konukçu bitki kök ve gövde hücrelerinde oluştururlar, iki kamçılı zoosporları vardır. Plasmodiophora brassicae: Haçligillerde kök uru hastalığına neden olur. Polymyxa graminis. Hububatta kök çürüklüğü yapar. Polymyxa betae: Şeker pancarlarında kök çürüklüğüne neden olur. Spongospora subterranea: Patateslerde tozlu uyuz hastalığı etmenidir. Bölüm 2. Eumycota: Gerçek funguslar denir. Thallus, dallanmış ipliksi miselyumdan ibarettir. Beş altbölümde incelenir. Altbölüm 1. Mastigomygotina: Eşeysiz çoğalma zoosporlarla olur. Miselyum bölmesizdir. Sınıf 1. Chytridiomycetes: Zoosporlar tek kamçılıdır. Eşeyli üremede meydana gelen gametler morfolojik olarak birbirinin aynıdır. Takım 1. Chytridiales: Hücre duvarı vardır; fakat, gerçek bir miselyumu yoktur. "Rhizomycelium" denilen kök şeklinde uzantıları vardır. Olpidium brassicae : Lahanalarda kök çürüklüğü yapar. Physoderma maydis : Mısırlarda kahverengi leke hastalığı etmenidir. Synchytrium endobioticum : Patateslerde siğil hastalığına neden olur. Patates x virüsünün de vektörüdür. Urophlyctis alfalfae : Yoncalarda siğil hastalığı etmenidir. Sınıf 2. Oomycetes: Zoosporlar sporangium içinde oluşur. Zoosporlar çift kamçılıdır. Eşeyli üremeden sonra oluşan dinlenme sporları (oosporlar) morfolojik olarak birbirinden farklı gametlerin (dişi gamet: oogonium, erkek gamet: antheridium) birleşmesiyle oluşur. Takım 1. Saprolegniales : Zoosporlar uzun, silindirik sporangiumlar içinde oluşur. Aphanomyces spp. . Birçok bitkide kök çürüklüğüne neden olurlar. Takım 2. Peronosporales : Bu takımda önemli bitki patojenleri bulunmaktadır. Familya 1. Pythiaceae : Bu grupta, yaşamlarının bir kısmını toprakta geçiren fakültatif parazitler yer almaktadır. İki önemli cins vardır; bunlar Pythium ve Phytophthora cinsleridir. Pythium spp.: Bu cinse ait funguslarda zoosporlar vesicle içinde oluşur. Dünyanın her yerinde yaygın olarak bulunan bitki patojenleridir. Kültür bitkilerinde tohum, kök, gövde veya meyve çürüklüğüne neden olan 100 'den fazla türü vardır. Dünyada ve ülkemizde en yaygın türlerden biri P. ultimum 'dur. Pythium türlerinin bitkilerin fide döneminde neden oldukları tohum ve kök çürüklüğüne, çıkış öncesi veya sonrası "çökerten hastalığı" adı da verilmektedir. Sebze ve tütün fidelikleri hastalığın en çok dikkat çektiği yerlerdir. Fidelerde solgunluk ve sararma ortaya çıkar, bir süre sonra bu bitkiler kök boğazından devrilerek toprağa düşer ve ölürler. Sararmış bitkiler topraktan çekildiklerinde kolayca çıkarlar. Bunların kök boğazlarının inceldiği ve kahverengileştiği, ince köklerin tamamen tahrip olduğu görülür. Bunun sonucunda fidelikte yer yer boşluklar meydana gelir. Tohum ve fide ölümleri sonucu ekonomik kayıp ortaya çıkar. Hastalık ağır, fazla su tutan topraklarda, nemli ve serin koşullarda daha sık görülmektedir. Mücadelesi: Küçük alanlarda (fidelik ve seralarda) toprak dezenfeksiyonu önerilebilir. Ayrıca rekabetçi mikroorganizma yoğunluğunun artırılması etkili olabilir. Phytophthora türleri ise tek ve çok yıllık bitkilerde mildiyö, kök ve gövde çürüklüğü veya kök boğazı yanıklığı gibi değişik hastalıklara neden olabilirler. Çoğu obligat parazittir. Zoosporları doğrudan doğruya sporangium   Streptomyces scabies : Patates uyuzu Patateslerde yaygın bir hastalıktır. Özellikle nötr veya hafif alkali ve kumlu topraklarda görülür. Patatesten başka pancar, şekerpancarı gibi bazı bitkilerde de hastalık görülebilmektedir. Ürün miktarını ekonomik önemde azaltmamakla birlikte, kaliteyi düşürmektedir. Hastalığın en tipik belirtileri yumrular üzerinde küçük, kahverengimsi, hafif tümsek şeklinde, mantarsi lekelerdir. Bunlar zamanla genişleyip birleşerek yumru yüzeyinin büyük bir kısmını kaplayabilirler. Lekeler birkaç mm derinliğe ilerleyerek yumruyu etkiler. Etmen miselimsi iplikçikler veya sporlar halinde toprakta saprofit olarak yaşamını sürdürebilir. Vegetatif yapısı yassı dallanmış iplikçiklerden ibarettir. Sporlar ise silindirik yapıdadır ve spiral şeklinde, bölmeli bir hif üzerinde üretilirler. Sporların çimlenmesi ile vegetatif misel oluşur. Etmen toprak suyu veya bulaşık yumrularla taşınır. Doğal açıklıklardan veya yaralardan yumruyu enfekte eder, hücreler arasında veya içinde gelişir, hücrelerin ölmesiyle onlar üzerinde saprofit olarak yaşamaya devam eder. Aynı zamanda sentezlediği bazı kimyasal maddeler çevredeki hücreleri hızla bölünmeye ve birkaç kat hücreden meydana gelen bir mantar tabakası oluşturmaya teşvik eder. Mücadelesi: Sertifikalı, hastalıksız yumru kullanımı etkili bir önlem olarak tavsiye edilir. Dayanıklı çeşit yetiştirmek veya toprak pH 'sini kükürt uygulaması ile 5.3 civarında tutmak da yararlı olur. Kimyasal mücadelede PCNB ile toprak veya tohumluk ilaçlaması uygulanabilir. Kısım 5. Mollicutes : Hücre duvarı bulunmayan prokaryotlar Familya 1. Mycoplasmataceae ( Bitki patojeni MLO'lar) Asteryellovvs : yıldız çiçeklerinde sarılık hastalığı Tomato big bud : domates ve patateste iri yumru hastalığı Familya 2. Spiroplasmataceae Spiroplasma citri: Turunçgillerde palamutlaşma (Stubbom) Portakal, greyfurt gibi turunçgillerin üretimini tehdit eden bir hastalıktır. Yavaş geliştiği için başlangıçta teşhisi zordur. Hastalıklı bitkilerde verim düşer, çok küçük, pazar değeri olmayan meyveler oluşur. Ağaçların yaprak, meyve ve dallarında belirtiler ortaya çıkar. Bulaşık ağaçlarda dal ve sürgünlerin yukarı doğru gelişmesi ve boğum aralarının kısalmasıyla çalımsı bir görünüm dikkati çeker. Bazı sürgünlerde geriye doğru ölüm olur. Kabuk kalınlaşır ve bazen toplu iğne başı büyüklüğünde delikler oluşabilir. Ağaçlar cüceleşir ve tepe kısımları düzleşir. Yapraklar küçük, klorotik veya benekli ve bozuk şekilli olur. Bulaşık ağaçlar çiçek açar fakat az sayıda meyve oluşturur. Meyveler küçük ve bozuk şekillidir, meyve kabuğu, sapa bağlantı kısmından meyvelerin ortasına kadar normalden kalın, buradan meyvenin dip kısmına kadar ise incedir. Hastalıklı meyveler dökülür ve birçoğu mumyalaşır, acı veya ekşi lezzette ve kötü kokulu meyvelerdir, bozuk şekilli ve renkli, iyi gelişmemiş tohumlara sahiptirler. Etmen, hastalıklı turunçgil ağaçlarının floem kalbur borularından tespit edilmiştir. Özel seçici ortamlarda yetiştirilebilmiştir. Aşı gözü ve kalemi ile veya cüce ağustos böcekleriyle taşınır. Mücadelede indeksleme yoluyla hastalıksız aşı kalemi veya gözü kullanılması ve hastalıklı bitkilerin ortadan kaldırılması etkili olur. Genç bitkilerin kökleri tetrasiklin çözeltileriyle muamele edildiğinde bitkilerin korunduğu yada bulaşık alanlarda belirtilerin hafiflediği belirlenmiştir. Bitki patojeni viruslar Hastalık etmeni olarak virüslerin keşfi bilimsel açıdan büyük bir adımdır. Günümüzde insan, hayvan, bitki, fungus ve bakteri gibi değişik canlılarda virüslerin hastalık oluşturabildiği bilinmektedir. Sadece bitkilerde 500'den fazla virüs hastalığı saptanmıştır. Bitki virüs hastalıklarıyla ilgili ilk bulgular 1880'li yıllarda yapılan çalışmalarla ortaya konmuştur. Araştırıcılar bazı hastalıkların; hastalıklı bir bitkiden aşı kaleminin sağlıklı bir bitkiye aşılanmasıyla veya özsuyunun sağlıklı bitki dokuları üzerine sürülmesiyle bulaşabildiğin! tespit etmişlerdir. 1890'lı yıllarda tütünlerde mozaik hastalığına bulaşıcı bir canlı sıvının neden olduğu ileri sürülmüştür. Bundan çok sonra ancak 1935'de Stanley adlı bir araştırıcı mozaik hastalığı ile bulaşık tütün bitkilerinin yapraklarından küçük, beyaz kristaller halinde etmeni izole etmiş ve saflaştırmıştır. Hastalık etmeninin çoğalabilmek için canlı hücrelere ihtiyaç duyan bir protein olduğunu ortaya atan araştırıcı, bu buluşuyla 1946 yılında kimya dalında Nobel ödülünü kazanmıştır. Daha sonra yapılan araştırmalar virüslerin gerçekte protein ve nükleik asitten oluştuğunu, enfeksiyona nükleik asitin neden olduğunu, proteinin ise sadece onu koruma işlevini yüklendiğini ortaya koymuştur. 1945'de elektron mikroskobun keşfiyle, araştırıcılar virüs partiküllerini görebilmişler ve viruslar hakkındaki bilinmeyenler yavaş yavaş aydınlanmıştır. 1971'de ise protein kılıfı olmayan, sadece nükleik asitten ibaret olan hastalık etmenleri, yani "viroidler" tanımlanmıştır. Morfolojik özellikleri Viruslar, ışık mikroskobu ile görülemeyecek kadar küçük (enleri 200 nm'den küçük, boyları ise en fazla 2000 nm) ve konukçu organizmayı daha fazla virüs sentezlemeye teşvik eden bir dizi genetik koddan ibaret, obligat parazitler olarak tanımlanmaktadırlar. Hücresel yapıları yoktur. Tek veya çift sarmal RNA veya DNA partikülleri ile bunları saran koruyucu protein kılıftan oluşmuşlardır. Virüs partiküllerinin şekilleri değişik olabilir. Uzun sert çubuklar, kısa bakteri benzeri çubuklar, bükülebilir iplikçikler şeklinde olabildikleri gibi küre veya çok yüzlü (polihedral) de olabilirler (Şekil 2.10). Protein kılıf alt ünitelerden oluşmuştur. Değişik şekillere sahip virüs partiküllerinin protein ve nükleik asit içerikleri farklıdır. Çubuk veya ipliksi virüsler genelde daha az miktarda nükleik asit ve daha fazla miktarda protein içerirler. Küresel virüslerde ise aksine nükleik asit oranı daha yüksektir. Genel olarak bir virüs partikülünün % 5-40 kadarını nükleik asit, % 60-95'ini ise protein oluşturmaktadır. Bitki patojeni virüslerin büyük bir çoğunluğunda nükleik asit RNA'dir. Nükleik asiti DNA olan 25 kadar fitopatojen virüs saptanmıştır. Üremeleri (Replikasyonları) Virüslerde üreme, virüslerin konukçu hücrelerini kendi çoğalmaları için kullandıkları biyokimyasal bir olaydır. Bir virüs partikülü konukçu hücreye girdikten sonra önce nükleik asit protein kılıftan ayrılır. Konukçu hücresinde virüsün teşvikiyle RNA polimeraz ve RNA replikaz enzimleri salgılanır. Bu enzimler virüs RNA'sının benzerinin sentezlenmesini sağlarlar. Yeni oluşan virüs nükleik asitleri, üzerlerinde taşıdıkları genetik şifre yardımıyla, konukçu için gerekli proteinlerin sentezlenmesinde kullanılan bilgileri taşıyan ribozomları, virüs proteinlerini sentezlemeye teşvik ederler. Virüslerin konukçu metabolizmasındaki bu temel işleve karışmaları sonucu bitkilerde çeşitli hastalık belirtileri ortaya çıkmaktadır. Bitki dokusuna girişleri ve bitkiden bitkiye taşınmaları Virüsler konukçu bitki dokularına sadece yaralardan girebilirler. Söz konusu yaralar böcek emgileri yada dolu veya çeşitli tarım aletleri tarafından açılmış yaralar olabilir. Virüs bitki içine girdikten sonra hücreden hücreye geçerek hızlı bir şekilde çoğalır. Bazı virüsler ise doğrudan iletim demetlerine geçerek buradan bitkinin büyüme noktalarına (uç meristem) veya yumru, rizom gibi diğer kısımlarına ulaşırlar ve böylece sistemik enfeksiyonu gerçekleştirirler. Virüslerin bitki içindeki hareketleri virüse ve konukçuya bağlı olarak değişebilmektedir. Bazı sistemik enfeksiyonlarda virüsler bitkilerin bütün canlı hücrelerine yayılabilirler. Bazen de virüs bitki içinde virüssüz alanlar bırakarak ilerler. Bazı virüsler ise bitkinin bazı hücrelerini etkiler ve bu kısımda lokal olarak kalırlar. Virüsler hastalık oluşturdukları bitki dokularından dışarı çıkmazlar. Bu nedenle de bitkiden bitkiye taşınmalarında rüzgar veya su rol oynamaz. Virüs taşınmasında böcekler, akarlar, nematodlar, funguslar gibi bitki zararlıları etkili olmaktadır. Virüsleri konukçudan konukçuya taşıyan bu canlılara "vektör" denir. Böceklerden özellikle Homoptera takımının Aphididae, Cicadellidae ve Aleyrodidae familyalarına bağlı türler önemlidir. Akarlardan Tetranychidae ve Eriophyiidae familyalarına bağlı türler virüs taşınmasında rol oynamaktadırlar. Nematodlardan ise çoğu toprak kökenli Longidorus, Trichodorus, Paratrichodorus ve Xiphinema türleri önemli virüs vektörleridir. Funguslardan da yine toprak kökenli ve toprak suyunda yüzerek hareket eden zoosporlara sahip olan Olpidium, Spongospora, Polymyxa ve Pythium cinslerine bağlı türler virüsleri taşırlar. Bunlardan başka, parazit bir bitki olan küsküt de virüsleri bitkiden bitkiye bulaştırabilmektedir. Hastalıklı bitkilerden elde edilen tohum, yumru, rizom, soğan, aşı kalemi, aşı gözü gibi üretim materyalleri virüs taşınmasında önemli rol oynamaktadır.özellikle meyve ağaçları ve süs bitkilerinde bu şekilde taşınma önemlidir. Ayrıca bazı virüsler bulaşık bitki özsuyu ile mekanik olarak, yani hastalıklı bitki dokularının sağlıklı bitkiye teması ile de taşınabilmektedir. Bu taşınma şekli doğada çok yaygın olmamakla birlikte önemli bir bitki patojeni olan Tütün Mozaik Virüsü (TMV) bu şekilde taşınmaktadır. Mekanik taşınma virüslerin teşhisinde kullanılan indikatör bitkilere virüslerin bulaştırılmasında da önem taşımaktadır. Bitkilerde meydana getirdikleri belirtiler Virüslerin konukçularında meydana getirdiği en yaygın ve bazen de tek belirti bitki gelişimindeki azalma ve buna bağlı olarak bazı bitki organlarında yada bitkinin tümünde görülen cüceleşmedir. Virüsle bulaşık bitkilerde ortaya çıkan en belirgin simptomlar genelde bitkilerin yapraklarında görülmektedir. Bununla birlikte, bazı virüsler bitkilerin gövde.kök veya meyvelerinde tipik belirtiler oluşturabilirler. Virüslerin bitki içindeki yayılışlarına bağlı olarak lokal ve sistemik olmak üzere genel anlamda iki tip belirti görülmektedir. Lokal enfeksiyonlarda virüs sadece bitki dokusuna girdiği noktada küçük nekrotik lekeler oluşturur. Viral enfeksiyonların çoğunluğunu oluşturan sistemik enfeksiyonlarda ise virüs bitkinin tamamında etkili olarak sistemik belirtilerin ortaya çıkmasına neden olur. Sistemik belirtilerden en yaygın olanlar; mozaik ve halkalı lekelerdir. Yaprak, çiçek veya meyvelerde sağlıklı doku rengi yanında açık yeşil, san ve beyazın değişik tonlarında alacalı bir görünümün ortaya çıkması "mozaik" belirtisi olarak anılır. Beneklenme, çizgi ve damarlarda renk açılması gibi belirtiler, mozaik simptomunun hastalığın şiddetine ve yayılma şekline bağlı olarak ortaya çıkan değişik tipleridir. "Halkalı leke" ise bitki dokularında virüs enfeksiyonu sonucu oluşan halka şeklinde klorotik veya nekrotik alanlara denir. Bunlardan başka; yaprak damarlarında çekilme, yapraklarda şekil bozukluğu, çalılaşma, gövde nekrozu, gal oluşumu, odun dokusunda diken benzeri çıkıntılar, meyvelerde çatlama, sertleşme, tohum oluşmaması gibi belirtiler de virüs simptomlan arasındadır. Virüs belirtileri virüs hastalıklarının teşhisinde yardımcı olan kriterlerdendir. Ancak belirtiler, virüsün tipine, konukçunun hassasiyetine, yaşına ve çevre koşullarına bağlı olarak değişebilmektedir. Bazen bir bitkide virüs enfeksiyonu olduğu halde belirtiler ortaya çıkmayabilmektedir. Bu şekilde konukçusunda enfeksiyon yaptığı halde belirti oluşturmayan virüslere "latent virüsler" denir. Bazen de virüs latent olmadığı halde çevre koşulları uygun olmadığından simptomlar maskelenebilmektedir. Virüslerle mücadele Virüs hastalıklarının mücadelesi zordur. Herhangi bir bitki virüsle bulaştıktan sonra virüsün bitki dokularından arındırılması mümkün olmadığı ve bu bitki çevredeki sağlıklı bitkilere virüsün yayılmasında rol oynayacağı için mücadelede amaç virüsün bulaşmasını ve yayılmasını önlemektir. Bu bakımdan kültürel önlemler viruslarla mücadelede en çok başvurulan yöntemlerdir. En başta virusla bulaşık olmayan üretim materyalinin kullanılması gerekir. Bu amaçla son yıllarda özellikle turunçgil ve süs bitkileri yetiştiriciliğinde meristem doku kültürü tekniği yaygın olarak kullanılmaktadır. Fidelik, sera gibi küçük alanlarda toprak dezenfeksiyonu, çevrede bulunan ve virusa konukçuluk yapabilecek olan yabancı otların ortadan kaldırılmasını sağlaması bakımından yararlı olur.Aynca vektörlerle taşınan viruslarm yayılmasını önlemek için vektörler de ortadan kaldırılmalı, bunlara karşı etkin bir mücadele yapılmalıdır. Bazı bitkiler virüs enfeksiyonlarına karşı genetik olarak dayanıklıdırlar. Bazı bitkilerde ise viruslarm hafif enfeksiyon oluşturan ırkları aşılanmak suretiyle şiddetli enfeksiyona neden olan ırklara karşı bağışıklık oluşabilmektedir.Sonradan kazanılmış bağışıklık, biyolojik mücadele içinde ele alınmaktadır. Viruslara karşı fiziksel mücadele yöntemi olarak sıcaklık uygulaması iyi sonuç verebilmektedir. Bu amaçla, virusla bulaşık üretim materyali 35-54° C'de, virusa ve bitkinin türüne bağlı olarak, birkaç dakikadan birkaç saate kadar değişen sürelerde tutulabilir. Aynı şekilde, gelişmekte olan bitkiler de sera koşullarında yüksek sıcaklığa maruz bırakılarak bitki bünyesinde bulunan virüs partiküllerinin inaktive olması sağlanır. Virüs belirtilerinin şiddetini azaltan veya viruslan ortadan kaldirabilen bazı kimyasal maddeler bulunmasına karşılık, pratikte kimyasal mücadelede kullanılabilecek etkili bir preparat yoktur. Süt bazı viruslan, örneğin TMV'nu, inaktive ettiği için bazı bitkilere sulandırılmış süt püskürtülerek enfeksiyonlar azaltabilmektedir. Viruslarda sınıflandırma ve önemli viral bitki hastalıkları Viruslar Protista üstalemi içinde Vira (Viruslar) aleminde yer almaktadırlar. Fakat viruslarm sınıflandırma ve isimlendirilmeleriyle ilgili olarak tam olarak yerleşmiş bir sistem yoktur. Bu nedenle hala konukçulan ve bunlar üzerinde meydana getirdikleri belirtiler dikkate alınarak isimlendirilmektedirler. Örneğin; tütün bitkilerinde mozaik hastalığına neden olan virüs "tütün mozaik virüsü" olarak adlandırılmıştır. Bu şekilde verilen isimler genelde birkaç kelimeden oluştuğu için, kolaylık sağlaması amacıyla, virüslerin İngilizce isimlerindeki kelimelerin ilk harfleri alınarak ortaya çıkarılan kısaltma yaygın olarak kullanılmaktadır. Buna göre; tütün mozaik virüsü TMV, patates Y virüsü PVY, tütün nekroz virüsü TNV olarak isimlendirilmektedir. Bu kısaltmalara "akronim" (acronym) adı verilir. Viruslar değişik özellikleri dikkate alınarak gruplara ayrılmıştır. Sınıflandırmada kullanılan özellikler arasında; nükleik asit tipi, protein özellikleri, virüs partikülünün yapısı, fiziksel ve kimyasal özellikleri, bitkiden bitkiye taşınmalar! sayılabilir. Uluslararası komite tarafından bitki patojeni viruslar 27 grupta toplanmışlardır: 1. Luteovirus : Arpa sarı cücelik virüsü (BYDV), 2. Mısır klorotik cücelik virüsü : (MCDV), 3. Sobemovirus : Fasulye güney mozaik virüsü (SBMV), 4. Tütün nekroz virüsü : (TNV), 5. Tombusvirus : Domates cüce çalılık virüsü (TBSV), 6. Tymovirus : Lale sarı mozaik virüsü (TYMV), 7. Comovirus : Yem bezelyesi mozaik virüsü (CpMV), 8. Dianthovirus : Karanfil halkalı leke virüsü (CRSV), 9. Nepovirus : Tütün halkalı leke virüsü (TobRV), 10. Bezelye enasyon mozaik virüsü : (PEMV), 11. Yonca mozaik virüsü : (AMV), 12. Bromovirus : Brom mozaik virüsü (BMV), 13. Cucumovirus : Hıyar mozaik virüsü (CMV), 14. Ilarvirus : Tütün çizgi virüsü (TSV), 15. Kadife tütün benek virüsü : (VTMV), 16. Tobravirus : Tütün ratil virüsü (TRV), 17. Tobamovirus : Tütün mozaik virüsü (TMV), 18. Hordeivirus : Arpa bant mozaik virüsü (BSMV), 19. Potexvirus : Patates X virüsü (PVX), 20. Carlavirus : Karanfil latent virüsü (CLV), 21. Potyvirus : Patates Y virüsü (PVY), 22. Closterovirus : Turunçgil tristeza virüsü (CTV), 23. Rhabdovirus : Şekerpancarı yaprak kivircikliği virüsü (BLCV), 24. Domates lekeli solgunluk virüsü (TSWV), 25. Reovirus : Çeltik cücelik virüsü (RDV), 26. Geminivirus : Şekerpancarı tepe kivircikliği virüsü (CTV) : Şekerpancarında ekonomik önemde zarara neden olan bir virüstür. Fasulye, domates, ıspanak , kavun gibi bitkiler de konukçulan arasındadır. Domateslerde sarılık hastalığına neden olmaktadır. Etmenin oluşturduğu ilk belirtiler genç yaprakların damarlarında renk açılması ve şişmedir. Daha sonra yapraklar içe doğru kıvrılır. Genç bitkiler enfekte olursa gelişemez, bir süre kivirciklaşmiş cüce bir bitki olarak yaşar ve sonunda ölür. Gelişmiş bitkilerde de cüceleşme belirgindir ve çok miktarda küçük yaprak oluştururlar. Yapraklar kıvrılır ve damarları şişer. Yaprakların alt yüzünde meme gibi çıkıntılar oluşur. Bazen damarlardan yapışkan kahverengimsi bir akıntı çıkabilir. Hasta yapraklar önce koyu yeşil renktedir, sonra sarıya ve kahverengiye dönerler. Gelişmiş yapraklar enfekte olursa bunlarda kıvırcıklaşma olmaz, fakat sarararak ölürler. Hastalıklı bitkilerde sağlıklı bir kök gelişimi olmaz. Kesit alındığında iletim demetlerinin kahverengileştiği görülür. Etmen cüce ağustos böcekleriyle taşınmaktadır. Kuru yapraklarda 4 ay, kurutulmuş böcek vektörün vücudunda ise 6 ay enfeksiyon yeteneğini kaybetmeden kalabilmektedir. Bitkilerde floemde ve buna komşu parankima hücrelerinde çoğalmaktadır. Bulaşık bitki artıkları ve yabanciotlar üzerinde kışı geçirir. Mücadelesi: Dayanıklı çeşit yetiştirmek, yabanciot ve böcek vektörle etkin bir mücadele yapmak, başvurulan yöntemlerdir. 27. Caulimovirus : Karnabahar mozaik virüsü (CaMV) Günümüze kadar bitkilerde hastalık meydana getiren 10 kadar da viroid tesbit edilmiştir. Küre şeklinde tek sarmal RNA molekülleridir.Bunlarm konukçularmda nasıl hastalık oluşturduğu ve nasıl çoğaldıkları hala tam olarak anlaşılamamıştır. Bulaşık üretim materyaliyle veya mekanik olarak taşınmaktadırlar. Yüksek sıcaklığa viruslardan daha dayanıklıdırlar. Viroidlerin neden olduğu önemli bitki hastalıkları arasında; patates iğ yumru, turunçgil cücelik ve krizantem cücelik hastalıkları sayılabilir. Turunçgil Cücelik (Exocortis) Viroidi (CEV)Akdeniz, Ege ve Karadeniz Bölgesindeki turunçgil alanlarında değişik oranlarda bulunan ve portakal, limon ve Rize mandarinlerinde zarara neden olan bir hastalıktır. Etkilenen ağaçlarda ölüm nadiren görülür, meyve kalitesi de etkilenmez, fakat bulaşık kalemler hassas anaç üzerine aşılandığında verim önemli oranda azalır. Hastalıkla bulaşık ağaçların değişik seviyelerde cüceleştiği görülür. Bazı bitkilerde yaprak deformasyonu ve damar nekrozları oluşabilir. Belirti göstermeyen bulaşık ağaçlardan alınan kalemler hassas anaçlar üzerine aşılanırsa, anaçta kabuk çatlaması ve soyulmalar ortaya çıkar. Bazen bu durum toprak altındaki köklere kadar ulaşabilir ve büyük kökler ölebilir. Soyulan kabuk tabakasının altında zamklanma da olabilir.Etmen tek sarmal bir RNA molekülünden oluşan bir viroiddir. Işığa ve kimyasallara oldukça dayanıklıdır. Uzun süre kuru dokuda canlılığını koruyabilir. Taşınması çoğunlukla aşı yoluyla olur. Ayrıca aşılamada ve budamada kullanılan bıçak ve makaslarla mekanik olarak da taşmabilmektedir. Mücadele açısından bu malzemenin, sodyum hipoklorit gibi bir dezenfektanla temizlenmesi önemlidir. Ayrıca sürgün ucu aşılama tekniği ile hastaliksiz bitki elde edilebilir. Yabanciotlar ve Çiçekli Parazit Bitkiler Kültür bitkilerinde zarara neden olan canlı etmenler arasında yabanciotlar ve parazit bitkiler de bulunmaktadır. Bunlar hem kültür bitkilerinin besinine ortak olarak doğrudan zarar oluşturur, hem de hastalık etmenlerine konukçuluk ederek veya onları sağlıklı bitkilere taşıyarak dolaylı olarak da bitkisel verimin azalmasına neden olurlar. Kültür bitkilerinin yetiştirildiği alanlarda veya su kanalları, havaalanları, demiryolları gibi yerlerde bulunması istenilmeyen bitkilere yabanciot denilmektedir. Yabanciotlar yaşam süreleri bakımından; tek yıllıklar, iki yıllıklar ve çok yıllıklar olmak üzere 3 grupta ele alınmaktadır. Tek yıllık yabanciotlar yazlık tek yıllıklar ve kışlık tek yıllıklar olarak iki gruba ayrılmışlardır. Yazlık tek yıllık yabanciotlarm tohumlan ilkbaharda çimlenir. Bunlar gelişmelerini sonbaharda tamamlarlar ve tohumlarını oluşturarak kışı bu şekilde geçirirler. Kışlık tek yıllıkların ise tohumları sonbaharda çimlenir, gelişmeleri kış boyunca sürer, ilkbaharda hızlanır ve sonbaharda tohum vererek ölürler. Tek yıllık yabanciotlara örnek olarak, yabani hardal (Sinapis arvensis) ve tilki kuyruğu (Alepecurus myosuroides) verilebilir. İki yıllık yabanciotlar gelişmelerini iki yıl içinde tamamlar, ikinci yıl tohum vererek ölürler. Yabani havuç (Daucus carota) iki yıllık bir yabanciottur. Çok yıllık yabanciotlar ise 1-2 yıl içinde ölmez, stolon, rizom gibi yapıları ile yaşamlarını sürdürür, ayrıca tohum oluşturarak da yoğunluklarını artırırlar. Tarla sarmaşığı (Convolvulus arvensis), ayrık (Agropyron repens) ve köy göçüren (Circium arvense) çok yıllık yabanciotlardan bazılarıdır. Yabanciotlar morfolojik yapıları bakımından pratikte geniş yapraklılar ve dar yapraklılar olmak üzere 2 grupta ele alınırlar. Geniş yapraklı yabanciotlar botanikte çift çenekliler olarak isimlendirilmekte ve Dicotyledoneae sınıfında yer almaktadırlar. Dar yapraklılar ise tek çenekliler olup Monocotyledoneae sınıfında ele alınırlar. Yabanciotlarm yaşam süreleri, biyolojileri, tohum, stolon ya da rizomlan ile çoğalıp çoğalmamaları ve morfolojik özellikleri, yani dar veya geniş yapraklı olmaları oniarla mücadele açısından önem taşımaktadır. Yabancıotlar gelişimleri sırasında kültür bitkilerine, hasattan sonra da onları tüketen canlılara çeşitli şekillerde zarar vermektedirler. Bu zararlar şu şekilde sıralanabilir: 1. Yabanciotlar kültür bitkilerinin suyuna ortak olurlar. Kültür bitkilerine oranla çok daha fazla su tüketen yabanciotlar, özellikle yeterli miktarda su içermeyen topraklarda kültür bitkilerinin su alımını büyük oranda azaltırlar. 2. Kültür bitkilerinden daha kuvvetli kök sistemine sahip olduklarından topraktan daha fazla miktarda bitki besin elementi alırlar. Bu şekilde kültür bitkilerinin zayıf gelişmesine neden olarak verimi azaltırlar. 3. Yoğun olarak geliştikleri alanlarda yabanciotlar toprak sıcaklığını birkaç derece düşmesine neden olarak kültür bitkilerinin gelişimini olumsuz yönde etkileyebilirler. Kültür bitkilerinin gelişme ve olgunlaşma süreleri düşük toprak sıcaklığında daha uzun sürede olacağından, bitkiler olumsuz koşullardan, hastalık ve zararlılardan daha uzun süre etkilenirler ve verimleri azalır. 4. Yabanciotlar kültür bitkilerinden çok daha hızlı geliştikleri için kültür bitkilerinin yeterli ışık almasına da engel olurlar. Bunun sonucunda aynı tarlada gelişen kültür bitkilerinden bazıları daha az ışık alarak gelişmesi geri kaldığından, kültür bitkileri arasında heterojen bir gelişme söz konusu olmaktadır. 5. Bazı yabanciotlar salgıladıkları maddelerle çevrelerinde bulunan kültür bitkilerine olumsuz etkide bulunabilirler. Örneğin ayrık isimli yabanciot köklerinden salgıladığı maddelerle bazı kültür bitkilerinin çimlenme ve gelişmesini engellemektedir. 6. Yabanciotlar, ilaçlama, hasat gibi tarımsal uygulamaları da büyük ölçüde zorlaştırmakta, özellikle hasat sırasında kalite ve kantite bakımından kayıplara neden olmaktadır. 7. Kültür bitkilerine zarar veren hastalık ve zararlılara konukçuluk ederek onların yoğunluklarının artmasına ve böylece bitkilerde daha fazla zararlı olmalarına neden olurlar. 8. Sözü edilen tüm bu zararlılar nedeniyle mücadeleyi gerektirdiklerinden tarımda ilave yatırım ve işgücü ihtiyacı ortaya çıkarmak suretiyle ekonomik kayba neden olurlar. 9. Mücadele yapılmadığı takdirde hasat sırasında yabanciotlann ürüne karışmaları sonucu toksik maddeler içeren bazı yabanciotlar onları tüketen kişilerde zehirlenmeye neden olabilirler. Ayrıca otlaklarda bulunan bu zehirli bitkiler hayvanlarda da öldürücü etki yaparlar. 10. Tarım alanlarında sözü edilen bu zararları dışında, yabanciotlar havalanlan, karayolları, demiryolları, su kanalları ve binaların dış yüzeylerindeki çatlaklarda çimlenip gelişerek bunların çatlayıp bozulmasına neden olabilirler. Bu nedenle zaman zaman yol ve kanallarda bulunan yabanciotlarla da mücadele edilmesi gerekmektedir. Herhangi bir yerdeki yabanciot tür sayısı ve yoğunluğu, o bölgede hakim olan iklim faktörlerine, toprak özelliklerine ve orada yetiştirilmekte olan kültür bitkisi türüne bağlı olarak değişmektedir, iklim ve toprak istekleri bölgeye uyum sağlayan ve kültür bitkisi ile rekabet edebilecek türlerin yoğunluğu artacak, diğer türler ise zamanla azalacaktır. Kültür bitkisi değiştiğinde buna bağlı olarak yoğunluğu azalmış olan türlerden bazıları yeniden artış gösterebilir. Azalan türler tamamen ortadan kalkmazlar, tohumları toprakta çimlenmeden bir süre canlılığını koruyabilir. Yabanciot türüne göre değişen ve tohumların çimlenmeden toprakta bekledikleri bu süreye "dormansi" denir. Dormansi dönemi, tohumların olgunlaşmak için beklediği primer dormansi ile, çimlenmek için uygun koşulları beklediği sekonder dormansi olmak üzere 2 bölümde ele alınmaktadır. Tohumun çimlenmesinden sonra vegetatif ve generatif gelişme dönemleri gelir ve gelişimini tamamlayan yabanciot yeniden tohum oluşturarak dormansiye girer. Ülkemizde yetiştirilmekte olan çeşitli tarımsal ürünlerde verimi azaltan önemli yabanciot türleri şunlardır: * Sinapis arvensis: Yabani hardal, * Cirsium arvense: Köygöçüren, * Convolvulus arvensis: Tarla sarmaşığı, * Chenopodium albüm: Kazayağı (Sirken), * Papa ver rhoeas: Gelincik, * Galium aparine: Yapişkanotu, * Boreova orientalis: Sariot, * Bifora radians: Kokarot, * Avena spp.: Yabani yulaf, * Cynodon dactylon: Ayrık, * Echinocloa crus-galli: Dancan, * Sorghum halepense: Kanyaş (Geliç), * Yaşaması için gerekli besin maddelerini kendisi sentezleyen veya mineralleri topraktan alamayan, beslenip gelişebilmek için konukçu bitkilere gerek duyan ve bu bitkiler üzerinde parazit olarak yaşayan bitkilere "parazit çiçekli bitkiler" denir. Bunlardan bazılarının kök sistemleri gelişmiştir ve klorofil sentezi de yapabilirler, fakat su ve mineral maddeler bakımından konukçuya bağımlıdırlar. Bunlara "yarı parazitler" denir. Bazılarının ne kök sistemleri ne de klorofilleri vardır. Tamamen konukçuya bağımlı olan bu bitkilere ise "tam parazitler" denir. Ülkemizde 3 farklı familyadan 3 parazit bitki, kültür bitkilerinde zararlı olmaktadır. * Familya 1. Cuscutaceae * Cuscuta spp.: Küsküt * Küsküt tam parazit bir bitkidir. Yaprak ve kök gibi organlara sahip değildir. Bu nedenle besinini emeçleriyle konukçu bitkiden temin ederek yaşamını sürdürür. Tropik ve subtropik bölgelerde gelişebilen 100 'den fazla türü vardır. Gri veya kırmızı kahverengi tohumlar vardır. Tohumları toprakta 5 yıl kadar canlı kalabilir. Tohum çimlenince spiral şeklinde gelişen sarı renkli bir sürgün oluşturur. Sürgünün ucu konukçu bitkinin gövdesine temas edince, gövdenin etrafına sarılarak gelişir ve oluşturduğu "haustoryum" (haustorium) denilen emeçleriyle bitki özsuyunu emerek beslenir. Hızlı bir şekilde gelişerek çeverdeki bitkinin üzerini sarı veya turuncu, iplik benzeri gövdesiyle sararak ağ şeklinde örter. Sürgünleri konukçu bulamazsa birkaç hafta canlılığını sürdürebilir, beslenemediği için daha sonra ölür. Konukçulan arasında yonca, soğan, şekerpancarı, patates, tütün ve süs bitkileri sayılabilir. Bulaşık bitkiler iyi bir gelişme göstermez, verimleri düşer. Parazit yoğun olursa bitkiler ölebilir, ilkbahar sonu veya yaz başlarında parazit, kitle halinde beyaz, pembe veya sarımsı renkte çiçeklerini oluşturur. Birkaç hafta sonra oluşan tohumları toprağa düşerek burada hemen çimlenir ya da ertesi yıla kadar dormanside kalırlar. Küsküt tohumları suyla, tarım aletleriyle, hayvanlarla veya bulaşık tohumla uzak mesafelere taşınabilir. Bu parazit doğrudan zararı yanında bazı virüs hastalıklarını taşımak suretiyle de kültür bitkilerine zarar vermektedir. * Mücadelesi: Temiz tohum kullanımı, evcil hayvanların bulaşık alanlardan temiz alanlara hareketini önlemek, tarım aletlerinin bulaşık olmamasına dikkat etmek gibi kültürel önlemler başta gelmektedir. Bulaşık alanlarda küsküt tohum oluşturmadan önce kimyasal veya mekanik mücadele yapılması gerekir. Toprak ilaçlaması da tohumun çimlenmesinden hemen sonra paraziti öldürerek konukçuya ulaşmasını engeller. * Familya: Orobanchaceae * Orobanche spp.: Canavar Otu * Canavar otu, tek yıllık tam parazit bir bitkidir. Etli bir gövdesi, pul benzeri yaprakları ve çok sayıda, sarımsı beyaz veya leylak rengi güzel çiçekleri vardır. Birkaç milimetre uzunlukta oval tohum kapsülleri içinde yüzlerce küçük tohum oluşturur. Parazit bitki kışı tohum halinde geçirir. Tohumları olumsuz koşullarda toprakta 10 yıldan daha uzun süre canlı kalabilmektedir. Tohumların yakınında uygun bir konukçu bitki geliştiğinde tohum çimlenir ve konukçu bitkinin köküne doğru gelişir ve oraya tutunarak disk şeklinde "apressoryum" (appressorium) adı verilen bir kökçük oluşturur. Apressoryum kökü sararak penetrasyonu gerçekleştirir, ksileme ulaşarak su ve besin maddelerini buradan temin eder. Daha sonra toprak üzerinde parazitin gövdesi gelişir. Toprak altında ise sekonder kökler oluşarak çevredeki konukçulann köklerini enfekte eder ve yeni yeni gövdeler toprak üzerinde oluşmaya başlar. Aynı konukçu kökünde birkaç canavar otu aynı anda bulunabilir, iki aydan daha kısa bir süre içinde çiçek ve tohumları oluşarak tohumlar yeniden toprağa karışır. Konukçulan arasında tütün, domates, patates, yonca gibi bitkiler bulunmaktadır. Bitkiler sağlıklı gelişemez, cücelik görülür, verim azalır. Bazen üründe % 10-70 arasında değişen kayıplara neden olabilmektedir. * Mücadelesi: Tohumun bulaşması önlenmeli, konukçusu olmayan bitkiler yetiştirilmeli ve görülen parazit bitkiler tohum oluşturmadan imha edilmelidir. Küçük alanlarda metil bromitle toprak dezenfeksiyonu yapılabilir. Ayrıca glyphosate etkili maddeye sahip herbisitler de kullanılabilir. * Familya: Viscaceae * Viscum albüm: Ökse Otu Ökse otu klorofil sentezi yapabilen, yan-parazit bir bitkidir. Küçük yeşil yaprakları ve 1-2 cm çapında gövdesi, küçük çiçekleri ve içinde tek tohum taşıyan küçük meyveleri vardır. Yaprakları fotosentez yapabilir. Fakat su ve mineral maddeleri, kökleri olmadığı için haustoryum benzeri emeçleriyle, konukçu bitkinin dallarından temin eder. Kuşlar tohumlarını severek yedikleri için yapışkan tohumlarını ağaçların tepe kısımlarına dışkılarıyla bulaştırırlar. Tohum çimlenerek konukçu bitkinin gövdesini enfekte eder. Haustoryumlan ile beslenerek gelişir. Ağaçların gövdesinde enfekte olmuş kısımlarda şişkinlikler meydana gelir. Daha sonra bu kısımlarda ökse otu bitkileri gelişir. Bazen ağaçların değişik kısımlarında enfeksiyon sonucu ağaç üzerinde büyük kitleler halinde yeşillikler dikkati çeker. Özellikle kış aylarında ağaç sanki yaprak dökmemiş gibi görünebilir; fakat gelişmeleri geriler, enfekte olmuş kısımlarda gelişme bozukluğu ve ölüm görülebilir. Konukçulan arasında elma, kiraz, turunçgiller, ardıç gibi çok yıllık meyve ve süs ağaçlan bulunmaktadır. Mücadelesi. Bulaşık kısımlar budanarak imha edilmelidir. Yabancı otlarla Mücadele Yabancı otlarla mücadelede çeşitli yöntemler kullanılmaktadır. Bazen birden fazla yöntemin bir arada kullanılması daha iyi sonuç vermektedir. Öncelikle yabancı otların bulunmadığı alanlara taşınmalarını, bulundukları yerlerde de yoğunluklarını artırmalarını önlemek için dikkat edilmesi gerekli hususlar kültürel mücadele içinde ele alınır. Yabancı ot tohumlarının kültür bitkisi tohumuna karışmaları önlenmeli, temiz tohumluk kullanılmalıdır. Hasat artıkları da bol miktarda yabancı ot tohumu içerdiğinden, bunların tarlada bırakılmaması gerekir. Yabancı ot tohumları hayvan yemi olarak kullanılan kültür bitkisi tohumlarına karışabilir. Bunlardan bir kısmı sindirim sırasında canlılığını kaybeder; fakat, büyük bir kısmı gübre ile birlikte yeniden tarım alanlarına bulaşabilir. Bu nedenle hayvan gübresi iyice fermente olduktan sonra kullanılmalıdır. Ayrıca bulaşmada rol oynayabilecek tarım aletlerinin temizliğine de dikkat edilmelidir. Kültür bitkilerinin yabancı otlarla rekabette üstün olmaları için bazı kültürel uygulamalar etkili olabilmektedir. Örneğin kültür bitkilerini ekerken normalden biraz fazla tohum kullanmak, ekim tarihini öne alarak yada geciktirerek kültür bitkilerinin yabancı otlardan mümkün olduğunca az etkilenmelerini sağlamak, bu uygulamalar arasında sayılabilir. Rotasyonda rekabet gücü yüksek bitkileri kullanmak da oldukça etkili bir kültürel uygulamadır. Yabancı ot mücadelesinde, özellikle de kültür bitkilerinin bulunmadığı alanlarda, yabancı otları yakmak, su altında bırakmak, biçmek gibi mekanik uygulamalar tercih edilebilir. Fidelik, sera gibi küçük alanlarda az miktarda yabancı ot varsa bunlar elle yolunarak temizlenebilir. Sıraya ekilerek yetiştirilen kültür bitkilerinde ise yabancı ot temizliğinde çapalama oldukça etkili bir yöntemdir. Ancak iş gücünün pahalı olduğu yerlerde ve çok geniş alanlarda uygulanması zordur. Yabancı otların ortadan kaldırılmasında sıcaklık veya değişik dalga boyundaki ışığın yada elektromanyetik dalgaların kullanılması fiziksel mücadele içinde ele alınır. Bugün içinde pratikte uygulanan tek fiziksel mücadele yöntemi sıcaklık uygulamasıdır. Bu da, toprak üzerinin özellikle sıcak yaz aylarında koyu renk plastik örtülerle kapatılarak, örtü altında toprak sıcaklığının yükselmesini sağlamak suretiyle yapılmaktadır. Bu şekilde yabancı otlar ışık alamayacakları için de zarar görürler. Yabancı ot yoğunluğunun ekonomik zarar seviyesinin altında tutulması amacıyla, yabancı otlar üzerinde beslenen böcek veya patojenlerin kullanılması, biyolojik mücadele uygulamalarıdır. Bugüne kadar pratikte uygulanan çok az sayıda örnek olmasına rağmen, bu yöntemle ilgili olarak hala çok sayıda araştırma yapılmaktadır. Biyolojik mücadelede başarıya ulaşmış yabancı otlardan bazıları Frenk inciri (Opuntia sp.) ve Koyun kıran (Hypericum perforatum) 'dır. Frenk inciri ile savaşta bir kelebek (Cactoblastis cactorum), koyun kıran bitkisiyle savaşta ise iki kın kanatlı böcek (Chrysolina hypericive C. quadrigemina) kullanılmıştır. Patojenlerle ilgili olarak da başarılı örnekler vardır. Cyperus esculentus'a karşı Puccinia canaliculata, Malva pusilla'ya karşı ise Colletotrichum gloeosporioides fungusları biyolojik mücadelede kullanılmaktadır. Biyolojik mücadelede başarılı olabilmek için uygulanan zararlı veya patojenin yabancı otlara özelleşmiş olması gerekir. Ayrıca yabancı otun bulunduğu alana adapte olabilmelidir. Böyle bir adaptasyon söz konusu olursa biyolojik mücadelede kullanılacak etmenin bir kez bulaştırılması yeterli olacaktır. Aksi halde mücadele gerektiğinde kimyasallarda olduğu gibi tekrar tekrar uygulama yapma durumu ortaya çıkar. Şimdiye kadar genelde fungal patojenler bu şekilde uygulanmışlar ve "miko herbisit" olarak isimlendirilmişlerdir. Bir patojenin miko herbisit olarak kullanılabilmesi için laboratuvar koşullarında kolay ve ucuz bir şekilde üretilebilmesi ve preparat haline getirilebilmesi gerekir. Kimyasal preparatlarin çevre üzerindeki olumsuz etkileri nedeniyle biyolojik mücadele ve miko herbisit kullanımı önemini korumakta ve bu konuda çalışmalar sürdürülmektedir. Herbisit kullanılarak yabancı otların ortadan kaldırılması kimyasal mücadele olarak ele alınmaktadır. Şu anda yabancı otlara karşı en çok kullanılan mücadele yöntemidir. Kimyasal mücadelede kullanılan herbisitler iki kısma ayrılmıştır: Bunlar Total herbisitler ve Seçici herbisitlerdir. "Total herbisitler" kullanıldıkları alanda bulunan bütün bitkileri etkileyen herbisitlerdir. Bu nedenle daha çok yol ve meydanlarda ortadan kaldırılması istenen yabancı otlara karşı kullanılırlar. Kültür bitkilerinin bulunduğu alanlarda kullanılan ve kültür bitkilerine zarar vermeden sadece yabancı otları etkileyen herbisitler ise "selektif yani seçici herbisitlerdir". Selektif herbisitlerin seçiciliği çeşitli faktörlerden kaynaklanmaktadır. Bu faktörler 3 grupta incelenebilir: 1. Bitkinin özelliklerinden kaynaklanan selektivite: Kültür bitkisi ve yabancı ot arasında genetik yapıları bakımından ortaya çıkan farklılıklar selektiviteye neden olabilir. Aynı kimyasal maddeye bir bitki tepki göstermezken, aynı gruptan bir başka bitki bu maddeden etkilenebilmektedir. Aynı şekilde bitkilerin gelişme dönemleri, morfolojik yapılan ve fizyolojilerindeki farklılıklar da selektiviteyi ortaya çıkarabilir. Örneğin dar yapraklı bir kültür bitkisi herbisitten etkilenmezken, geniş yapraklı yabancı otlar kolaylıkla etkilenip ölebilirler. 2. Herbisitin özelliklerinden kaynaklanan selektivite: Herbisitlerin kimyasal yapıları, formülasyonları ve uygulama şekilleri selektivite de rol oynayabilir. 3. Çevre koşullarından kaynaklanan selektivite: Sıcaklık, nem, ışık, toprağın fiziksel ve kimyasal özellikleri herbisitlerin seçiciliği üzerinde önemli rol oynamaktadır. Herbisitler kullanım zamanlarına göre de gruplandırılmışlardır. Kültür bitkilerinin ekilisi ve toprak yüzeyine çıkışı dikkate alındığında herbisitler; Ekim öncesi (Pre-plant), Çıkış öncesi (Pre-emergence), Çıkış sonrası (Post-emergence), kullanılan herbisitler olmak üzere 3 grupta incelenirler. Ancak bazı herbisitler değişik zamanlarda da uygulanabilmektedirler. 3. Patoloji Bitkilerde hastalığın oluşabilmesi için öncelikle bir patojenle veya abiotik bir faktörle bitkinin karşı karşıya gelmesi gerekir. Bu karşılaşma anında yada sonrasında çevre koşullan uygun değilse; çok soğuk, çok sıcak ve kurak koşullarda hastalık etmeni canlı çoğalamayacağı için, hastalık oluşamaz. Hastalığın oluşabilmesi için bitkinin dispozisyonu uygun olmalı, bitki immun yani bağışık olmamalı, hastalık etmeninin virülensi yüksek olmalı, yani hipovirülent olmamalı ve çevre koşulları da hastalık oluşumuna uygun olmalıdır Bu üç faktörün etkileşimi bir üçgen halinde gösterilir ve buna "hastalık üçgeni" denir. Bu üç faktör ne kadar uygun olursa, hastalık o kadar şiddetli olur. 3.1. Hastalıkların Gelişim Devreleri Bitkilerde hastalığın oluşumu belirli evrelerde gerçekleşir. Bu olaylar zincirine "hastalık çemberi" denir. Hastalık çemberi bazen patojenin hayat çemberine bağlı olarak gelişir. Hastalık çemberindeki başlıca olaylar; inokulasyon, penetrasyon, enfeksiyon, inkubasyon ve fruktifikasyon 'dur. "inokulasyon" herhangi bir patojenin konukçu bitkiye temasıdır. Konukçu dokuları üzerine ulaşarak bitki ile temasa geçen patojenlere veya patojenlere ait spor, misel parçası gibi parçacıklara "inokulum" denir, inokulum, konukçu üzerinde çimlenerek enfeksiyonu başlatır. Bakteri, mikoplasma, virüs ve viroidlerde inokulum mikroorganizmanın tamamıdır; fakat, funguslarda bir spor, misel parçası, sklerot gibi çimlenerek fungusu oluşturabilecek herhangi bir yapıl olabilir, inokulum çeşitli çevresel faktörler yardımıyla taşınarak konukçu bitkiye ulaşır. Bitki yüzeyine ulaşan inokulumun bitki dokuları içine girmesine F "penetrasyon" denir. Patojenlerin bitki dokuları içine girişi yaralardan, doğal açıklıklardan veya doğrudan doğruya epidermisten olabilir. Bazen penetrasyonda vektörler rol oynayabilir. Penetrasyon mutlaka enfeksiyonlaI sonuçlanmaz. Konukçu bitki dayanikhysa, penetrasyon gerçekleşse bile bitki hastalanmayabilir, patojen hastalığı oluşturamadan ölür. Penetrasyondan sonra patojenin hassas konukçu hücre ve dokularına ulaşarak burada beslenmeye başlamasına ve gelişerek çoğalmasına "enfeksiyon" denir. Başarılı enfeksiyonlar konukçu dokularında belirtilerin ortaya çıkmasına neden olur. Ancak bazı enfeksiyonlarda bir süre belirti oluşmayabilir. Bu süre "latent dönem" olarak adlandırılır. Birçok hastalıkta belirtiler inokulasyondan birkaç gün veya birkaç hafta sonra oluşmaktadır. * Bazen bu süre birkaç yıl kadar da sürebilmektedir. İnokulasyondan feelirtilerin ortaya çıkmasına kadar geçen bu süreye "inkubasyon dönemi" denir. Enfeksiyondan sonra patojen konukçu dokularına veya organlarına yayılarak gelişmeye devam eder. Bazı patojenler hücreler arasında, bazıları hücre içinde, bazıları da iletim demetlerinde çoğalır ve yayılırlar. Birçok enfeksiyon lokaldir; yani, patojen konukçunun bir yada birkaç hücresinde veya bitki üzerindeki küçük bir alanda etkili olur. Bazı enfeksiyonlar ise sistemiktir; yani, patojen girdiği noktadan bitkinin tüm hassas hücre ve dokularına yayılır. Enfeksiyonlar sonucunda patojenlerin bitki dokuları içinde gelişerek, eşeyli veya eşeysiz çoğalma yapılarını oluşturmalarına "fruktifikasyon" veya "sporulasyon" denir. Koşullar hastalık oluşumuna uygun devam ettiği sürece hastalık çemberi tekrarlanır. Koşullar uygunsuz hale gelince patojenler dayanıklı yapılarını oluşturarak bitki artıklarında veya toprakta canlılıklarını sürdürür ve ertesi yıla bu şekilde geçerler. Patojenlerden bazıları hastalık çemberini bir yılda (monocyclic), bazıları birkaç yılda (polyetic) tamamlayabilir. Bazı hastalık etmenleri ise bir yıl içinde birkaç döl verebilir, defalarca hastalık çemberini tekrarlar ve inokulum miktarlarını kat kat artırırlar (polycyclic). 3.2. Patojenlerin Hastalık Oluşturma Mekanizmaları Tüm canlılar gibi bitkiler de hücrelerden oluşurlar. Çevreleri ile temasta olan yüzeyleri; köklerin epidermis hücrelerinde ve yaprak parankima hücrelerinin hücreler arası boşluklarında selülozdan, toprak üstü kısımlarında ise epidermis duvarını kaplayan kutikuladan ibarettir. Özellikle genç dokularda kutikulanın dışında mum tabakası bulunur. Patojenler bitki hücrelerini istila edebilmek için öncelikle bu dış tabakayı aşmak zorundadırlar. Funguslar ve parazit bitkiler genellikle appressorium oluşturarak mekanik bir basınçla kutikulayı ve hücre duvarını aşarlar. Fakat yine de patojenlerin bitki bünyesi içindeki faaliyetleri esasen kimyasaldır. Bitkilerde hastalıkların oluşumunda patojenler tarafından salgılanan enzim, toksin, büyüme düzenleyicisi ve polisakkaritlerin önemli rolleri vardır. Yumuşak çürüklüklerde enzimler, tütünlerde vahşi ateş hastalığında toksinler, kök uru oluşumunda ise büyüme düzenleyicileri yani hormonlar rol oynar Patojenlerden sadece virüsler ve viroidler bu maddeleri salgılayamazlar. Fakat bunlar, bitki hücrelerinde doğal olarak oluşan bazı maddelerin, bitkilere zarar verecek düzeyde salgılanmasını teşvik ederler. Enzimler bitki hücrelerindeki yapı maddelerini eritir, hücredeki ana gıda maddelerini parçalar yada doğrudan protoplasti etkileyerek işlevini engellerler. Toksinler doğrudan protoplasmayı etkiler, stoplasma zarının geçirgenliğini ve fonksiyonunu bozarlar. Hormonlar hücre bölünmesi yada hücre boyutları üzerinde etkili olurlar. Polisakkaritler ise sadece iletim demeti hastalıklarında rol oynar, su ve mineral maddelerin taşınmasını etkileyerek zararlı olurlar. 3.3. Bitkilerdeki Savunma Mekanizmaları Bitkiler patojenlerin saldırısına karşı kendilerini savunurlar. Savunmada bitkinin yapısal özellikleri yada bitki bünyesinde gerçekleşen biyokimyasal reaksiyonlar rol oynar. Savunma mekanizmalarının bir kısmı bitkide doğal olarak bulunur, bazıları ise patojenle temastan sonra oluşturulur. Bitkilerde doğal olarak bulunan savunma mekanizmalarından ilkini bitkinin yüzeysel yapısı oluşturmaktadır. Epidermis üzerinde mum tabakasının veya tüylerin olup olmaması yada bunların yoğunluğu, kütikulanın kalınlığı, stomaların açık kalma süresi, sayıları ve yapıları, bitkilerdeki morfolojik dayanıklılık unsurlarından bazılarıdır. Bitkilerde doğal olarak bulunan bazı kimyasal bileşiklerin de savunmada önemli rolleri vardır. Bir bitki türünde bazı kimyasal maddelerin bulunup bulunmaması yada bunların miktarları, bitkinin patojenlere karşı dayanıklı veya duyarlı olmasında etkili olur. Örneğin konukçuda polisakkarit, protein veya glikoprotein (lektin) yapısında maddelerin bulunması, patojenlerin konukçu bitkiyi tanıyarak appressorium yada enzimlerini oluşturmasını sağlar. Bitki bünyesinde patojenlerin gelişebilmesi için gerekli besin maddelerinin olup olmaması ve bunların konsantrasyonları da hastalık oluşumunda önem taşımaktadır. Bitkilerde doğal olarak bulunan ve patojenlerin gelişmesini önleyen kimyasal maddeler arasında, fenolik bileşikler ve taninler sayılabilir. Bunlar genç yaprak ve meyve hücrelerinde yüksek konsantrasyonlarda bulunan bileşiklerdir. Patojenlerin pektolitik enzimlerinin işlevini önleyerek etkili olurlar. Bitki dokuları yaşlandıkça hücrelerin içerdiği inhibitör madde miktarı ve buna bağlı olarak dayanıklılık azalır. Ayrıca bitkilerde bulunan bazı enzimler (glukanaz, kitinaz) patojenlerin hücre duvarının yapısını bozmak suretiyle savunmada rol oynarlar. Bitki bünyesinde doğal olarak bulunan savunma yapılarına ve kimyasal bileşiklere rağmen, bazı patojenler konukçularına penetrasyonu gerçekleştirerek değişik seviyelerde enfeksiyona neden olurlar Bitkilerde ise enfeksiyondan sonra, yani bitki patojen saldırısına uğradıktan sonra değişik savunma mekanizmaları devreye girer. Patojenin geliştiği bitki hücrelerinin yakınındaki hücrelerde birtakım değişiklikler ortaya çıkar. Bu hücrelerde dokusal savunma yapıları oluşur. Bazı bitkilerde enfeksiyon noktasının hemen ilerisinde, patojen tarafından salgılanan maddelerin teşvikiyle, birkaç tabaka halinde mantar hücreleri meydana getirilir. Mantar tabakası patojenin ve onun oluşturduğu zararlı bileşiklerin ilerideki sağlıklı hücrelere ulaşmasını önlemektedir. Ayrıca sağlıklı hücrelerden patojenin bulunduğu kısma besin maddelerinin geçişini de engelleyerek onun besinsiz kalmasına neden olur. Bazen, özellikle sert çekirdekli meyve ağaçlarının genç, gelişmekte olan yapraklarında, enfeksiyondan sonra, enfekte olan hücrelerin etrafında ayırıcı doku oluşturulur. Bunun sonucunda lekeli kısım koparak uzaklaşır. Böylece patojen uzaklaştırılarak yaprakların diğer kısımları sağlıklı kalmış olur. Enfeksiyondan sonra oluşan savunma yapılarından biri de bitkilerin iletim demetlerinde içe doğru meydana gelen ve "tylose" adı verilen çıkıntılardır. Bunlar iletim demetine komşu parankima hücrelerinin protoplastlarının aşırı büyümesi sonucu oluşur ve iletim demetini tamamen tıkayabilirler. Böylece patojen burayı aşıp yukarı doğru ilerleyemez. Enfeksiyondan sonra çok hızlı bir şekilde tylose oluşturan bitkiler solgunluk hastalıklarına dayanıklı olurlar. Bazı bitkiler ise enfeksiyondan sonra, zarar gören dokuların çevresine zamk salgılarlar. Zamk salgısı enfeksiyon noktasının etrafındaki hücrelerin içini ve hücreler arası boşlukları doldurarak, patojenin aşamayacağı bir engel oluşturur. Bitkilerde enfeksiyondan sonra hücresel bazı değişiklikler de söz konusudur. Patojenle karşılaşan parankima hücrelerinin duvarlarının dış tabakası şişkinleşir, hücre duvarı kalınlaşır veya yine hücre duvarının iç yüzeyinde "papilla" denilen çıkıntılar oluşur. Bunlar bazen appresoriumun hücre içine girişini önleyerek penetrasyonu geciktirirler. Bitki hücrelerinin protoplazmasının yoğunlaşarak tanecikli bir yapı kazanması özellikle fungal patojenlerin misellerinin hücre içinde gelişmesini önler. Patojenle karşı karşıya geldikten sonra bitkilerde ortaya çıkan savunma mekanizmalarından biri de aşırı duyarlılık reaksiyonudur (hypersensitive reaksiyon). Patojen hücre duvarından girdikten sonra hücre çekirdeğinin ve protoplazmasının yapısı hızlı bir şekilde bozularak hücre ölür. Böylece patojenin orada gelişerek çevredeki hücreleri etkilemesi önlenmiş olur. Patojenle karşılaştıktan sonra bitki bünyesinde bazı kimyasal bileşiklerin oluşması veya normalde bulunan bazı bileşiklerin miktarlarının artması, savunmada önemli rol oynar. Enfeksiyondan sonra birçok bitkide klorogenik asit, kafeik asit, skopoletin gibi fenolik bileşiklerin miktarlarının arttığı belirlenmiştir. Bunlar patojen enzim ve toksinlerinin işlevini önler, yüksek konsantrasyonları ise patojenlere toksik etki yapar. Daha önce bitkide bulunmayan, enfeksiyondan sonra oluşan ve patojenlere toksik etki yapan kimyasal bileşiklere ise "fitoaleksin" denir. Bunlar patojenlerin bitkiye girişinden sonra, kimyasal yada mekanik zararın başlangıcında oluşurlar. Patojenlerin hücre duvarında bulunan glukan, kitosan, glikoprotein ve polisakkaritler, bitkilerde fitoaleksin oluşumunu teşvik ederler. Fitoaleksinler, oluştukları bitki türüne göre isimlendirilmişlerdir, örnek olarak, fasulye bitkilerinde oluşan phaseolin, bezelyelerde pisatin ve pamukta gossypol verilebilir. 4. Epidemiyoloji Bir tarım alanında, gelişme mevsimi boyunca sadece birkaç bitkide düşük şiddette belirti görülüyorsa, bu durumda ekonomik önemde bir hastalık oluşumundan söz edilemez. Çevre koşulları hastalık oluşumuna uygun, konukçu duyarlı ve patojenin virülensi yüksek olduğunda ise hastalık geniş alandaki bitkileri şiddetli bir biçimde etkileyebilir. Bu şekilde hastalıkların bir gelişme döneminde belirli bir konukçu populasyonunda şiddeti gittikçe artacak ve yayılacak tarzda ortaya çıkmasına, yani salgın oluşturmasına "epidemi" denir. Hastalık epidemilerine neden olan faktörleri, epidemiyoloji bilimi incelemektedir. Hastalık oluşumuyla ilgili, yani konukçu, patojen ve çevreye bağlı faktörler aynı şekilde epidemilerin ortaya çıkmasında da etkili olurlar. 4.1. Epidemi Oluşumunda Etkili Faktörler Konukçunun belirli bir yoğunlukta ve hastalığa duyarlı olması, konukçuya bağlı faktörler olarak sayılabilir. Uygun konukçunun yeterli yoğunlukta olmadığı durumlarda hastalıkların salgın oluşturması söz konusu olamaz. Aynı şekilde konukçunun hastalık etmenine karşı duyarlı olması da gerekir. Dayanıklı bitkilerde hastalık etmenleri salgın oluşturacak kadar hızlı ve yoğun bir gelişme gösteremezler. Epidemilerin oluşabilmesi için patojenin hastalandırma gücünün, yani virülensinin yüksek olması gerekir. Ayrıca patojen söz konusu alanda yeterli miktarda inokuluma sahip olmalıdır. Kısa sürede ne kadar fazla sayıda inokulum konukçuya ulaşırsa, epideminin oluşma şansı o kadar yüksek olur. Ayrıca bir gelişme mevsiminde çok sayıda döl veren patojenlerin epidemi yapma şansı daha yüksektir. Fusarium, Alternaria gibi funguslar vegetasyon dönemi süresince birkaç döl verirler, bu nedenle epidemilere neden olurlar Tilletia ve Ustilago türleri gibi funguslar ise hayat döngülerini ancak bir yıl içinde tamamlayabildiklerinden, bunlarda inokulum yıldan yıla artış gösterir ve epidemiler birkaç yıl içinde oluşabilir. Hayat çemberini birkaç yılda tamamlayabilen patojenler ise daha uzun sürede epidemi oluşturabilirler. Patojenin üreme gücü, yani bir defada meydana getirdiği inokulum miktarı da önemli bir faktördür. Ayrıca söz konusu inokulum kolayca bir konukçudan diğerine taşınabilmelidir. Bu bakımdan sporları hava akımıyla taşınan patojenler daha avantajlıdır. Vektörlerle taşınan patojenlerin yayılarak epidemi oluşturabilmeleri için vektörlerinin yoğunluğu ve hareket yeteneği yüksek olmalıdır. Hassas konukçu ve virülent patojenin bulunduğu tarım alanlarında her zaman hastalık epidemileri oluşmaz. Bu da çevre koşullarının epidemilerin oluşumu üzerindeki etkisini göstermektedir. Çevre koşulları konukçunun yoğunluğunu, duyarlılığını, gelişme dönemini etkileyebildiği gibi, patojenin çoğalma oranını, spor yada inokulum sayısını, canlı kalma yeteneğini, virulensini, yayılma gücünü, spor çimlenmesini ve penetrasyonunu da etkileyebilmektedir. Ayrıca vektörün yoğunluğunu ve aktivitesini de etkiler Bitki hastalıkları epidemilerini etkileyen en önemli faktörler; nem, sıcaklık ve insanlar tarafından yapılan tarımsal uygulamalardır. Nem, konukçunun yeni ve hassas organlar oluşturmasını sağladığı gibi patojenlerin çoğalmasını da teşvik eder. Fungus sporları ve bakteriler su damlacıkları ile taşınır ve yine su içinde hareket ederler. Yeterli oranda nispi nem olmadığında birçok fungusun sporları çimlenip enfeksiyonu oluşturamaz. Nem, virüs ve mikoplazmalar üzerinde dolaylı bir etkiye sahiptir. Vektörün aktivitesini etkileyerek hastalığın yayılmasında rol oynarlar. Sıcaklık bitki gelişimi için uygun olmadığında, bitkinin dayanıklılığı üzerinde olumsuz etki yaparak hastalık epidemilerine neden olabilir. Bazen de patojenin inokulumunu, virülensini veya vektörleri etkileyerek epidemi oluşumu üzerinde rol oynar. Genelde düşük sıcaklık vektör aktivitesini ve patojenlerin inokulum miktarını azaltır. Fakat sıcaklığın asıl önemli etkisi patojen sporlarının oluşumu ve çimlenmesi üzerinde olur. Sıcaklık uygun olduğunda patojen en kısa sürede hayat döngüsünü tamamlar ve bir mevsim içinde çok sayıda döl verebilir. Monokültür tarım, hastalıkla bulaşık üretim materyali kullanma, hassas çeşit yetiştirme, aşırı azotlu gübreleme, yağmurlama sulama, gibi tarımsal uygulamalar da epidemi oluşumunu teşvik ederler. 4.2. Tek ve Çok Döngülü Hastalıklar Belirli bir zaman süresi içindeki artışları bakımından patojenler arasında belirgin farklılıklar vardır. Basit faizde olduğu gibi artış gösteren hastalıklarda başlangıçtaki inokulum miktarı önem taşımaktadır. Bunlar "tek döngülü", yani bir gelişme mevsiminde yalnız bir döl veren, hayat çemberini bir kez tamamlayabilen patojenlerin meydana getirdiği hastalıklardır. Çoğu toprak kökenlidir ve hastalığı başlatan primer inokulum toprakta veya bitki artıkları üzerinde bulunan dinlenici yapılardan (chlamidospor, sclerotium, vs.) oluşur. Bu patojenlerin neden olduğu epidemiler yavaş gelişir. Fakat aynı konukçunun, ortamda sürekli olarak bulunduğu durumlarda, inokulum yıldan yıla artarak, uzun vadede ciddi boyutlara ulaşabilir. Verticillium ve Fusarium türleri basit faiz şeklinde artış gösteren hastalıklara neden olan funguslardır. Böyle bir hastalığın zamana karşı artışı grafikle gösterilecek olursa, ortaya bir doğru çıkar. Hastalık oranı zamana bağlı olarak doğrusal bir artış göstermektedir . Bazı hastalıklarda ise, patojen bir mevsim içinde çok sayıda döl verdiği, hayat çemberini birkaç kez tamamlayabildiği için, kısa sürede daha hızlı bir artış gösterir. Phytophthora infestans, Erysiphe graminis gibi üreme gücü yüksek, yani fazla miktarda spor oluşturan ve döl sayısı fazla olan patojenler bileşik faiz şeklinde artış gösteren hastalıklara neden olurlar. Böyle bir hastalığın zamana bağlı olarak artışı sigmoid bir grafikle gösterilir. Başlangıçta sınırlı miktardaki inokuluma bağlı olarak yavaş bir artış görülür inokulumun belli bir oranda artmasından sonra konukçunun da yeterli miktarda bulunmasıyla hastalık oranı hızlı bir şekilde yükselir ve üçüncü fazda ortamda enfekte edilmemiş konukçu sayısının azalmasıyla epidemi yavaşlar ve hastalık artış oranı sabit kalır. Hastalık epidemileri matematiksel olarak, x = xoert formülüyle ifade edilirler. Bu formülde, x = herhangi bir zamandaki hastalık oranını, x0 = başlangıçtaki inokulum miktarını, r = ortalama enfeksiyon oranını, t = enfeksiyonun oluştuğu zaman süresini ve e = doğal logaritma tabanını ifade etmektedir. Belirli bir zaman dilimi içinde, bir hastalığın enfeksiyon artış oranı ise şu formülle gösterilir: r = 1/ t2-t1 log e x2/x1 Hastalıklarla mücadelede Xo,yani başlangıçtaki inokulum miktarı, yada r, enfeksiyon artış oranı azaltılmaya çalışılır. Tarla temizliği, hastalıklı bitki artıklarının imhası, tohum ilaçlaması gibi uygulamalar x0'ı, dayanıklı çeşit kullanımı ve yeşil aksam ilaçlaması ise r’yi azaltmaya yönelik uygulamalardır. Aynı konukçu bitkiye ait hastalıkların veya değişik konukçu-patojen ilişkilerinin karşılaştırılmasında da r değeri kullanılmaktadır. Bileşik faiz tipi hastalıklarda r değeri, basit faiz tipi hastalıklara göre belirgin ölçüde yüksektir. 5. Hijyen ve terapi Bitkilerde hastalık oluşumuna neden olan cansız ve canlı etmenlerin zararlı etkilerinden bitkileri korumak ve hastalanan bitkileri yeniden sağlıklı hale getirmek için çeşitli yöntemlere başvurulmaktadır. Bitki hastalıklarına karşı etkin bir mücadele yapabilmek için öncelikle hastalık etmeninin doğru olarak teşhis edilmesi gereklidir. Etmen tanındıktan sonra onun özellikleri ve hastalık oluşturma mekanizması dikkate alınarak nasıl bir mücadele programı uygulanması gerektiğine karar verilir. Uygulanacak olan yöntemin ekonomik ve kolay uygulanabilir olması da önemlidir. Hastalık etmenlerine karşı uygulanan başlıca mücadele yöntemleri; yasal, kültürel, mekanik, fiziksel, biyolojik ve kimyasal mücadeledir 5.1. Yasal Önlemler Canlı hastalık etmenlerine karşı uygulanan bir yöntemdir. Herhangi bir patojenin daha önce bulunmadığı bir alana girmesini önlemek için kanuni yasaklar düzenlenmiştir. Bir ülkede bulunmayan herhangi bir hastalık etmeninin bulaşmasını önlemek için dış karantina uygulanır. Etmenle bulaşık olma olasılığı taşıyan bitki veya bitki parçalarının ülkeye girişi kontrol altındadır. Hastalıksız olduğuna dair sertifika taşımayan bitkisel materyalin girişi yasaktır. Bununla ilgili olarak Avrupa ve Akdeniz Ülkeleri Bitki Koruma Organizasyonu (EPPO), düzenli olarak çıkardığı bültenlerle yeni tespit edilen hastalıklar ve bunlardan korunmak için yapılması gerekli düzenlemelerle ilgili bilgi vermektedir. Üye ülkeler ithal edilen bitkisel materyalle ilgili olarak bu düzenlemelere uymak durumundadırlar. Bulaşık olan bitkisel materyalin ithali kesinlikle yasaklanmış olan hastalıklar belirlenmiştir. Ayrıca ithal edilen bitkisel materyalin taşıması gerekli sağlık sertifikasının nasıl düzenleneceği de kararlaştırılmıştır. Bu işlemler ülkemizde 1957 'de kabul edilen 6968 sayılı Zirai Mücadele ve Zirai Karantina Kanunu çerçevesinde yürütülmektedir. Bu kanun, dış karantina yanında, ülke içinde hastalıkların bir bölgeden diğer bir bölgeye bulaşmasını önlemek için uygulanan iç karantina düzenlemelerini de içermektedir. Buna göre, turunçgil dal kanseri (Xanthomonas citri), çilek kök çürüklüğü (Phytophthora fragariae) gibi hastalık etmenleri dış karantina, bakteriyel solgunluk (Pseudomonas solanacearum) ayçiçeği mildiyösü (Plasmopara helianthi) gibi diğer bazı hastalıklar ise iç karantina listelerinde yer almaktadır. Ancak yasal önlemler hastalıkların yayılmasını önlemede tam anlamıyla etkili olamamaktadır, örneğin daha önce ülkemizde bulunmayan ve dış karantina listesinde yer alan Ateş Yanıklığı (Envinia amylovora) Hastalığı 1985 'de ülkemize de bulaşmıştır. 5.2. Kültürel Mücadele Bu mücadele yöntemi, bitkilerde hastalık oluşumunu etkileyebilecek, bitki yetiştiriciliğiyle ilgili tüm işlemleri içermektedir. Ekim, dikim, gübreleme, sulama, toprak işleme, budama, hasat gibi tarımsal uygulamaların hastalık oluşumunu azaltıcı ya da ortadan kaldırıcı tarzda yapılmasıdır. Ekim veya dikim zamanı hastalık etmeninin biyolojisi dikkate alınarak öne veya geriye alınmak suretiyle hastalık oluşumu önlenebilir. Salma sulama ile yayılabilecek bir toprak patojeninin zararını önlemek için yağmurlama sulamanın, bakteriyel bir hastalığın yayılmasını önlemek içinse salma sulamanın tercih edilmesi, kültürel mücadele içinde ele alınabilir. En etkili kültürel metotlardan biri de rotasyondur. Zarara neden olan hastalık etmeninin konukçusu olmayan bitki türlerinin bir süre yetiştirilmesi etmenin yoğunluğunu azaltır ya da tamamen ortadan kaldırır. Örneğin Gaeumannomyces graminis ile konukçulan olan Graminae bitkilerinin bir iki yıl yetiştirilmemesiyle etkin bir mücadele yapılabilir. Hastalıklı bitki artıklarının ortadan kaldırılması patojen inokulumunu azaltmak suretiyle etkili olur. Meyvelerde karaleke ve monilya hastalıkları bu şekilde azaltabilmektedir. Hububat pasları gibi bazı hastalıklarda ise patojenin ara konukçusu olan bitkileri ortadan kaldırmak etkili bir kültürel önlemdir. Örneğin, buğday tarlaları kenarında bulunan Berberis çalılarını ortadan kaldırmak kara pas hastalığını önemli oranda azaltabilmektedir. Bitki hastalıklarının önlenmesi yada azaltılması açısından önem taşıyan kültürel uygulamalardan biri de uygun gübrelemedir. Kültür bitkilerinin sağlıklı bir şekilde yetiştirilmesini sağlayarak onların hastalık etmenlerine karşı duyarlılıkları azaltılabildiği gibi, gübreleme yada uygun kimyasal maddelerin katılmasıyla toprak özellikleri patojenler için uygun olmayan hale de getirilebilir. Örneğin alkali ya da nötr koşulları seven Streptomyces scabies 'e karşı toprağın asitliğini artıran gübreler kullanılır. Haşatın uygun zamanda, uygun şekilde yapılması ve depo koşullarının, patojenlerin gelişimi için uygun olmaması da bitkileri ve hasat edilen ürünü hastalıklardan korur. Birçok odunsu bitkide dallara vurmak suretiyle yapılan hasat sonucunda açılan yaralardan patojenler rahatça girerek enfeksiyonları oluştururlar. Üretimde kullanılan bitkisel materyalin hastalıksız olması, en çok dikkat edilmesi gereken hususlardan biridir. Tohum, soğan, yumru, aşı kalemi, aşı gözü, fide, fidan gibi üretim materyalinin herhangi bir hastalık etmeni ile bulaşık olması hastalığın bir bölgede yaygın olarak ortaya çıkmasına, hatta daha önce bulunmadığı yerlere taşınmasına neden olur. Bu bakımdan kontrol edilerek sertifika verilmiş olan materyal tercih edilmelidir.

http://www.biyologlar.com/bitki-hastaliklari-fitopatoloji-1

 
3WTURK CMS v6.03WTURK CMS v6.0