Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 142 kayıt bulundu.

Parazitolojiye Giriş

Öğrencilerin Öğrenmesi Beklenilen Noktalar 1.Parazitler anlatılırken, parazitizmin özünü anlamak. 2.Parazitolojide kullanılan terimler (terminoloji) ile aşina olmak 3.Taxanomic şemaları kullanarak parazitleri sınıflandırmak 4.Hedeflenen paraziti bilimsel (genus-cins, species- tür) ve halk arasındaki adı ile tanımak, patalojisini, ekonomik etkisini ve kullanılan ilaçlara cevabını öğrenmek. 5.Her parazit için asıl konakçıyı yada konakçı gurubunu bilmek. Hedeflenen parazitin hangi konakçı yada konakçıları etkilediğini öğrenmek. 6.Aksidental (kaza ile oluşan parazitlik) yada rezervuar (kaynak) parazitliğin anlamlarını ve bunların önemini öğrenmek. 7.Her parazitin, tür veya aile olarak asıl konakçı ve hedef konakçılarını öğrenmek 8.Parazitlerin konakçı spektrumunu (konak olarak seçtikleri hayvan türlerinin neler olduğunu) öğrenmek 9.Aksidental (kaza sonu) konakçı ve rezervuar (kaynak) konakçı anlamlarını ve bunların etkilerinin neler olduğunu öğrenmek. 10.Parazit yayılmasındaki rotaları (bulaşma yolları) anlamak ve tanımlayabilmek. oDirek bulaşma, başka bir konakçı kullanmadan oluşan yayılma (bulaşma) oBiolojik (gelişme olan developmental) arakonakçı (intermediate hosts), yada vektörler kullanarak, biolojik yada mekanik oParatenic konakçı (gelişme olmayan - nondevelopmental) yada taşımacı konakçı (transport hosts). 11.Parazit türlerinin dağılımını (ülke ve dünyada) anlamak: oParazitler cosmopolitan (birden fazla kaynaktan köken alan) yada universal (tüm dünyaya yayılan) oCoğrafik yapı yada vektör dağılımına bağlı olarak belli bölgelerle sınırlanmış oMevsimsel değişilerden etkilenme durumları 12.Görülen paraziti tanımak ve teşhis etmek.: oTeşhis için uygun morfolojik karakterlerini kullanarak oParazitin hayat siklusundaki evreleri, yumurtası, kisti , larvası gibi tanıyarak. oLaboratuvar tekniklerini kullanarak örnekte paraziti bularak oParazitin yerleştiği konakçıyı, konakçının hangi organ veya doku kısmına yerleştiğini bilerek tahmini teşhis yapabilmek. 13.Parazitlerin hedef konakçılardaki asıl enfeksiyon bölgelerini, bu bölgelere hangi göç yolları ile ulaştıklarını öğrenip açıklayabilmek. 14.Klinikpatoloji semptomlarına (belirtilere) gözlemleyerek patofizyolojik ve immunolojik cevapları açıklayabilmek. Bu sayede konakçının asıl konakçımı yoksa aksidental konakçı mı olduğunu açıklamak. 15.Anti paraziter ilaçları bilmek: oKimyasal (chemical) sınıfı oEtki genişliği (spectrum) hangi parazitleri etkilediği oHedef parazitin hangisi olduğu oİlacın paraziti nasıl (hangi yolla) etkilediği oİlacın etkili, yeterli dozları oHangi yolla kullanılması gerektiği (IM, SC, IV, oral, vb ) oGüvenliği (Terapötik endeksi) oİlacın kullanılmaması gereken (kontraendike- contraindication) durumlar oTavsiye edilen özel uygulama proğramı 16.Konakçı hayvanların ve çevrelerinin parazitlerden nasıl arındırılacağı konusunda tavsiye edilen kontrol ölçülerini detayları ile bilmek. 17.Paraziter zoonozların halk sağlığındaki önemini anlamak.  

http://www.biyologlar.com/parazitolojiye-giris

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili- 3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde 3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit

Kromozom nedir

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleride değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur. Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pekçok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor. Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.kromozom Alzheimer, ağır işitme 2.kromozom Belleğin oluşumuyla ilgili bilgiler 3.kromozom Akciğer kanseri 4.kromozom Çeşitli kalıtımsal hastalıklar 5.kromozom Akne, saç dökülmesi 6.kromozom Diyabet, epilepsi 7.kromozom Kronik akciğer iltihabı, şişmanlık 8.kromozom Erken yaşlanma 9.kromozom Deri kanseri 10.kromozom Bilinmiyor 11.kromozom Diyabet 12.kromozom Metabolizma hastalıkları 13.kromozom Göğüs kanseri, retina kanseri 14.kromozom Alzheimer 15.kromozom Doğuştan beyin özrü 16.kromozom Crohn hastalığı 17.kromozom Göğüs kanseri 18.kromozom Pankreas kanseri 19.kromozom Bilinmiyor 20.kromozom Bilinmiyor 21.kromozom Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.kromozom Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.kromozom (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 24.kromozom (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

http://www.biyologlar.com/kromozom-nedir-1

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili-3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit-1

Canlılarda Üreme ve Çoğalma

Üreme:Canlıların soylarının devamı için kendilerine benzer yavrular meydana getirmelerine denir.Eşeyli ve eşeysiz olarak iki şekilde olur. Eşeysiz üreme:Eşey hücrelerine gerek olmadan yapılan üreme şeklidir. Yavrular tamamen ana bireye benzerler. Eşeysiz üreme çeşitleri: 1.Bölünme:Monera, protista ve mantarlarda görülür. 2.Tomurcuklanma:Maya hücrelerinde ve bazı protistlerde görülür. 3.Sporlanma:Parazit bir hücreli, mantar ve bazı ilkel bitkilerde görülür. 4.Vejetatif üreme:Ana bitkiden ayrılan kısmın bölünme özelliği kazanmasıyla olur. Çelik, daldırma, aşı gibi çeşitleri vardır. Mitoz bölünme esasına dayanır. Eşeyli üreme:Farklı iki cins gametin birleşmesi ile yeni bir canlının oluşmasıdır. Kalıtsal yönden farklı canlılar oluşur. Zigot:Gametlerin birleşmesi sonucu(döllenme) oluşan yapıdır. Zigottan sonraki bölünmeler mitoz bölünmedir. İzogami:Şekil ve büyüklük bakımından aynı olan gametlerin birleşmesidir. Yeşil su yosunu ve ulotrix'te görülür. Anizogami:Yapı ve büyüklük bakımından farklı olan iki gametin birleşmesidir. Alg ve mantarlarda görülür. Oogami:Büyük ve hareketsiz yumurta hücresi ile küçük ve hareketli sperm hücresinin birleşmesi ile olan üremedir. Memeliler ve gelişmiş bitkilerde görülür. Hermafroditlik:Bir organizmanın hem erkek hem de dişi eşey organlarını barındırmasıdır. Partenogenez: Döllenmiş yumurtanın gelişerek tam teşekküllü bir bireyi oluşturmasıdır. Bu birey cinsiyet olarak erkek olup, vücut hücreleri haploit kromozom sayısına sahiptir. Döllenen yumurtalardan mutlaka dişi bireyler oluşur. Arılar ve bitki bitlerinde görülür. Metagenez:Eşeyli üremenin ardından eşeysiz üremenin gerçekleşmesidir. Sıtma mikrobu, deniz anası, eğrelti ve karayosunlarında görülür. Tohumsuz Bitkilerde Üreme Açık tohumlular:Üremeleri kozalak içinde açıkta bulunan tohumlarla gerçekleşir. Tozlaşma rüzgarla olur. Kapalı tohumlular:Tohum taslakları ovaryum içerisinde saklanır. Üreme yapıları çiçekte bulunur. Çiçekli Bitkilerde Eşeyli Üreme Bir çiçeğin genel yapisı Pistiı: Dişi organ Stamen:Erkek organ 1.Polen oluşumu: Erkek organ başcığındaki polen keseleri içinde 2n kromozomlu polen ana hücrelerinden mayoz ile n kromozomlu 4 tane mikrospor çekirdeği oluşur. Bunların mitoz geçirmesi ile n kromozomlu iki çekirdek taşıyan (generatif ve vejetatif çekirdek) yapı oluşur. Bu yapıya polen(çiçek tozu) denir. Polen çimlenirken vejetatif çekirdekten polen tüpü oluşur. Generatif çekirdekten sperm çekirdekleri oluşur. Her türün poleni kendine özgü bir şekle sahiptir. 2.Yumurta hücresi oluşumu: Dişi organ yumurtalığındaki tohum taslağı içinde 2n kromozomlu tohum taslağının ana hücresi mayoz geçirerek n kromozomlu 4 tana makrospor oluşturur. Makrosporların 3 tanesi erir, kalan 1 tanesinin çekirdeği arka arkaya 3 mitoz geçirerek 8 çekirdekli bir yapı olan EMBRİYO KESESİ ni meydana getirir. Bir kutuptaki 3 çekirdekten ortadaki yumurta çekirdeğigelişerek yumurta çekirdeği halini alır ve döllenmeye hazır durumdadır. Ortadaki 2 çekirdekte endospermi oluşturacak olan polar (kutup) çekirdeklerdir. Diğer çekirdeklerden 3 ü antipot, 2 si sinerjit adını alır ve kaybolur. 3.Tozlaşma:Erkek organların başçığındaki polenlerin su, rüzgar, böcek gibi faktörlerle dişi organın tepeciğine taşınmasıdır. Sperm çekirdeği(n)+Yumurta(n)¾® Zigot(2n)® Embriyo ; &nbs p; Döllenme Sperm çekirdeği(n)+Polar çekirdekler(2n)®Triploit çekirdek(3n)®Endosperm Tohum döllenmeden sonra oluşur. Tohum taslağınınörtüleri kalınlaşarak tohum kabuğunu yaparlar. Tohum embriyo+endosperm+tohum kabuğundan oluşur. Tohum taslağı sayısıkadar tohum oluşur. Dişi orga ve çiçek tablası, besin depolayarak tohumun çevresinde meyvayı oluştururlar. Tohumun yapısında şunlar bulunur: -Embriyo(embriyonik kök=radikula ve embriyonik gövde=plumula)= 2n kromozomlu -Çenek (kotiledon)= 2n kromozomlu -Endosperm (besi doku)= 3n kromozomlu -Kabuk (testa)= 2n kromozomlu ÜREME VE GELİŞME Üreme:Canlıların soylarının devamı için kendilerine benzer yavrular meydana getirmelerine denir.eşeyli ve eşeysiz olarak iki şekilde olur. Eşeysiz üreme:Eşey hücrelerine gerek olmadan yapılan üreme şeklidir. Yavrular tamamen ana bireye benzerler. Eşeysiz üreme çeşitleri: 1.Bölünme:Monera, protista ve mantarlarda görülür. 2.Tomurcuklanma:Maya hücrelerinde ve bazı protistlerde görülür. 3.Sporlanma:Parazit bir hücreli, mantar ve bazı ilkel bitkilerde görülür. 4.Vejetatif üreme:Ana bitkiden ayrılan kısmın bölünme özelliği kazanmasıyla olur. Çelik, daldırma, aşı gibi çeşitleri vardır. Mitoz bölünme esasına dayanır. Eşeyli üreme:Farklı iki cins gametin birleşmesi ile yeni bir canlının oluşmasıdır. Kalıtsal yönden farklı canlılar oluşur. Zigot:Gametlerin birleşmesi sonucu(döllenme) oluşan yapıdır. Zigottan sonraki bölünmeler mitoz bölünmedir. İzogami:Şekil ve büyüklük bakımından aynı olan gametlerin birleşmesidir. Yeşil su yosunu ve ulotrix'te görülür. Anizogami:Yapı ve büyüklük bakımından farklı olan iki gametin birleşmesidir. Alg ve mantarlarda görülür. Oogami:Büyük ve hareketsiz yumurta hücresi ile küçük ve hareketli sperm hücresinin birleşmesi ile olan üremedir. Memeliler ve gelişmiş bitkilerde görülür. Hermafroditlik:Bir organizmanın hem erkek hem de dişi eşey organlarını barındırmasıdır. Partenogenez: Döllenmiş yumurtanın gelişerek tam teşekküllü bir bireyi oluşturmasıdır. Bu birey cinsiyet olarak erkek olup, vücut hücreleri haploit kromozom sayısına sahiptir. Döllenen yumurtalardan mutlaka dişi bireyler oluşur. Arılar ve bitki bitlerinde görülür. Metagenez:Eşeyli üremenin ardından eşeysiz üremenin gerçekleşmesidir. Sıtma mikrobu, deniz anası, eğrelti ve karayosunlarında görülür. Tohumsuz Bitkilerde Üreme Açık tohumlular:Üremeleri kozalak içinde açıkta bulunan tohumlarla gerçekleşir. Tozlaşma rüzgarla olur. Kapalı tohumlular:Tohum taslakları ovaryum içerisinde saklanır. Üreme yapıları çiçekte bulunur. Çiçekli Bitkilerde Eşeyli Üreme Bir çiçeğin genel yapisı Pistiı: Dişi organ Stamen:Erkek organ 1.Polen oluşumu:Erkek organ başcığındaki polen keseleri içinde 2n kromozomlu polen ana hücrelerinden mayoz ile n kromozomlu 4 tane mikrospor çekirdeği oluşur. Bunların mitoz geçirmesi ile n kromozomlu iki çekirdek taşıyan (generatif ve vejetatif çekirdek) yapı oluşur. Bu yapıya polen(çiçek tozu) denir. Polen çimlenirken vejetatif çekirdekten polen tüpü oluşur. Generatif çekirdekten sperm çekirdekleri oluşur. Her türün poleni kendine özgü bir şekle sahiptir. 2.Yumurta hücresi oluşumu: Dişi organ yumurtalığındaki tohum taslağı içinde 2n kromozomlu tohum taslağının ana hücresi mayoz geçirerek n kromozomlu 4 tana makrospor oluşturur. Makrosporların 3 tanesi erir, kalan 1 tanesinin çekirdeği arka arkaya 3 mitoz geçirerek 8 çekirdekli bir yapı olan EMBRİYO KESESİ ni meydana getirir. Bir kutuptaki 3 çekirdekten ortadaki yumurta çekirdeğigelişerek yumurta çekirdeği halini alır ve döllenmeye hazır durumdadır. Ortadaki 2 çekirdekte endospermi oluşturacak olan polar (kutup) çekirdeklerdir. Diğer çekirdeklerden 3 ü antipot, 2 si sinerjit adını alır ve kaybolur. 3.Tozlaşma:Erkek organların başçığındaki polenlerin su, rüzgar, böcek gibi faktörlerle dişi organın tepeciğine taşınmasıdır. Sperm çekirdeği(n)+Yumurta(n)¾®Zigot(2n)® Embriyo Döllenme Sperm çekirdeği(n)+Polar çekirdekler(2n)®Triploit çekirdek(3n)®Endosperm Tohum döllenmeden sonra oluşur. Tohum taslağınınörtüleri kalınlaşarak tohum kabuğunu yaparlar. Tohum embriyo+endosperm+tohum kabuğundan oluşur. Tohum taslağı sayısıkadar tohum oluşur. Dişi orga ve çiçek tablası, besin depolayarak tohumun çevresinde meyvayı oluştururlar. Tohumun yapısında şunlar bulunur: -Embriyo(embriyonik kök=radikula ve embriyonik gövde=plumula)= 2n kromozomlu -Çenek (kotiledon)= 2n kromozomlu -Endosperm (besi doku)= 3n kromozomlu -Kabuk (testa)= 2n kromozomlu Çimlenme:Embriyonun topraktan su alarak ilk kök ve fotosentez yapabilecek ilk yaprakları oluşturmasına kadar geçen büyüme evresidir. Tohumun olgunlaşmasından çimlenmesine kadar geçen süreye UYKU HALİ denir. Uykudaki tohumlar canlıdır fakat metabolizmaları minimum seviyededir. Çimlenme için yeterli H2O,sıcaklık, O2 ve enzimler gereklidir. Bitkilerde Gelişme Çimlenmeden sonra ışık, CO2, H2O ve mineral maddelerin yardımıyla bitkisel dokuların oluşmasıdır. Yüksek yapılı bitkilerde gelişme tohum içinde başlar. Gelişme eşeyli üreyen organizmalarda 3 temel olayla gerçekleşir: 1.Hücre bölünmesi 2.Büyüme 3.Farklılaşma Yüksek yapılı bitkilerin embriyosundaki çenekler, tohum içindeyken endospermden besin depo ederler. Çenekler bitkinin fotosentez yapmaya başlayıncaya kadar ki gelişimi sırasında emriyoyu besler. Kapalı tohumlu bitkilerden tek çenekliler genellikle tek yıllık ve otsu bitkilerdir. Çift çenekliler genellikle iki veya daha çok yıl yaşayan odunsu bitkilerdir. Açık tohumlu bitkiler ise çok çeneklidir. HAYVANLARDA ÜREME Üreme sistemi+boşaltım sistemi ürogenital sistem adını alır. Erkekegamete sperm(n)i dişi gamete yumurta(n) adı verilir. Hayvanlarda üç şekilde üreme-gelişme görülür: 1.Vivipar:İç döllenme ve iç gelişme yapan canlılardır (memeliler) 2.Ovipar:İç döllenme yaparlar fakat gelişme kabuklu yumurta içerisinde olur. (kuşlar, bazı sürüngenler) 3.Ovovivipar:Gelişme ana vücudunda ve yumurta içerisinde olur. Belli bir süre sonra canlı yumurtayı ve ana vücudunu terk eder ve doğuyormuş gibi gözükür. (bazı sürüngenler ve bazı balıklar) İç döllenme:Kara hayvanlarında görülür. Döllenme dişinin vücudu içinde olur. Bu nedenle az sayıdaki üreme hücresi tür sürekliliği için yeterlidir. Bazı canlılar suda yaşamalarına karşın, yavru sayısını koruyabilmek için iç döllenme yapabilirler (köpek balığı, lepistes) Başkalaşım(metamorfoz):Çok yumurta oluşturan bazı canlılarda yumurta içindeki besin maddesi (vitellüs) çok az olduğundan embriyo gelişimini tamamlamadan yumuırta larva halinde çıkar, dışarıda gelişerek ergin birey halini alır. Bu olaya metamorfoz denir. Kurbağalarda görülür. Balık ve kurbağalarda üreme: Dış döllenme görülür, yumurtalarında kabuk oluşmaz. Dişilerde yumurtalıkta oluşan Müller kanalı yardımıyla kloak tan dışarı atılır. Erkeklerde ise testislerde oluşan spermler Wolf kanalı yardımı ile kloaktan dışarı atılır. Wolf kanalı,hem spermleri hem de boşaltım maddelerini taşır. Sürüngen ve kuşlarda üreme:İç döllenme dış gelişme görülür. Embriyo gelişimini yumurta içinde tamamlar. Bazı yılan türlerinde faklılık görülebilir. Erkeklerde wolf kanalı yalnız spermleri taşır. Boşaltım maddeleri ise ayrı bir kanal ile kloak tan dışarı atılır. Sürüngen ve kuş yumurtasındaki embriyonik örtüler: 1.Kabuk:Yumurtayı kuraklığa, bakterilere karşı korur.O2 ve CO2 alışverişini sağlar. 2Koryon:Embriyoyu korur ve gaz alışverişine imkan sağlar. 3.Amniyon kesesi:Embriyoyu basınca ve sıcaklık değişimlerine karşı korur. İçindeki sıvı hareket serbestliği sağlar. 4.Allantoyis:Embriyonun artık maddelerni toplar, memelilerde körelmiştir. 5.Vitellüs kesesi:Embriyonun besin maddesinin bulunduğu kesedir. Memelilerde yoktur. Memelilerde üreme:İç döllenme, iç gelişme gözlenir. Gagalı ve keseli memeliler de yavru gelişimini ana vücudu içinde gerçekleştirir, besini yumurtadan alır. Plasentalı memelilerde, emriyo dişinin uterusu(döl yatağı) içinde gelişir. Vitellüs yeterli olmadığından beslenme, plasenta adı verilen özel bir yapı aracılığı ile anne kanından karşılanır. Plasenta:Koryon uzantıları ile, uzantıların uterusa değdiği bölge plasentayı oluşturur. Plasenta, embriyoya besin ve O2 sağlar, CO2 ve diğer artık maddelerin anne kanına geçmesine yardımcı olur. Amniyon zarının kenarlarının birleşmesi ile oluşan GÖBEK BAĞI embriyo ile plasenta arasında bağlantıyı oluşturur. İçinde kan damarları bulunur. İNSANDA ÜREME SİSTEMİ Erkek üreme sistemi: Testisler ince kıvrımlı SEMİNİFER tüpçüklerinden oluşurlar. Oluşan spermler buradan epididimis'e oradan da vasdeferns (sperm kanalı) a açılır. Vasdeferens de üretra(idrar kanalı) ile birleşip dışarı açılır. Spermatogenez testislerdeki seminifer tüpçüklerinde gerçekleşir. Spermlerin üretradan atılması seminal sıvı ile sağlanır. Bu sırada idrar yolu kasılıp tıkanmıştır. Seminal sıvı prostat-cowper bezi ve seminal keseciklerin salgılarından oluşur. Hormon kontrolü hipofiz bezinden salgılanan FSH ve LH hormonlarında yapılır. FSH spermatogenezi LH ise testislerden testesteron hormonu salgılanmasını kontrol eder. Testesteron hormonu ise sperm olgunlaşmasını, ses kalınlığını ve kıllanmayı sağlar. Dişi üreme sistemi. Yumurtalıklar (ovaryum), yumurta kanalı (fallopi tüpü) ve bajinaadı verilen kısımlarından oluşur. Vajinanın döl yatağına olan açıklığına servix denir. Döllenme fallopi tüpünde olur. Döllenmiş yumurta ilk mitoz bölünmeleri fallopi tüpünde geçirir. Ovaryum ve uterusta meydana gelen değişiklikler düzenli devreler halinde tekrarlanır. Bu üreme devre MENSTRUASYON PERYODU denir. 4 aşamada incelenir: 1.Folikül evresi:Hipofizden salgılanan FSH (folikül uyarıcı hormon) etkisi ile ovaryumdaki çok sayıda folikülden biri olgunlaşır. Folikül hücresinden östrojen hormon etkisi ile uterusta mitoz hızlanır, kan ve doku sıvısı artar. Folikül ovaryum yüzeyine kadar gelir bu evre 10-14 gün sürer. 2.Ovulasyon evresi:Hipofizden LH(lüteinleştirici hormon) salgılanması ile folikül yırtılarak içindaki yumurta ovaryumdan atılır. Atılan yumurta fallopi tüpüne geçer. 3.Corpus Luteum evresi:LH etkisi ile yırtılan folikül hücreleri sarı renkli yağ damlacıkları taşıyan lütein hücreleri halini alır. Bu yeni yapıya corpus luteum adı verilir. Lütein hücrelerinden salgılanan progesteron hormonu döllenmiş yumurtanın uterusa tutunmasını sağlar. Bu evre 10-14 gün sürer. Gebelik döneminde corpus luteum bozulmadığı için progesteron salgılanmasıda devam eder. Hipofizden salgılanan LTH (lüteotropik hormon) corpus luteumun östrojen ve progesteron hormonlarının devamını sağladığı gibi süt bezlerinin gelişmesi ve analık içgüdüsünün oluşmasında görevlidir. 4.Menstruasyon evresi: Döllenme yoksa sinirsel uyartılar olmadığından corpus luteum bozulur. Dolayısıyla progesteron seviyesi düşer. Uterus iç çeperi parçalanır. Doku parçaları, döllenmemiş yumurta, bir miktar kanla birlikte vajinadandışarı atılır. Ortalama 3-5 gün sürer. Daha sonra tekrar folikül evresi başlar. Hipofiz bütün üreme sistemini düzenler. Hipofiz hormonlarının salgılanması beynin hipotalamus bölgesinden çıkan RF(releasing faktör) tarafından düzenlenir. Hipofizden salgılanan OKSİTOSİN hormonu doğum sırasında uterus kasılmasını ve daha sonra sütün akmasını sağlar. Geri besleme (feed back):Bezlerin birbirlerini etkileyerek kandaki hormon miktarını düzenlemelerine geri besleme denir. Hayvanlarda Gelişme Gelişme evreleri: 1.Segmentasyon (Bölünme) 2.Gastrulasyon(Hücre hareketi) 3.Nörülasyon(Sinir borusu faklılaşması) 4.Organogenez(Organlaşma) Gelişmenin ilk devrelerinde zigotta görülen hızlı mitoz bölünmelere SEGMENTASYON denir. Blastomer:İlk bölünme ile meydana gelen hücrelerin her birine blastomer adı verilir. Segmentasyonu MORULA, BLASTULA ve GASTRULA olmak üzere üç evre izler. Gastrula evresindeki embriyonik tabakalardan oluşan doku, organ ve sistemler şunlardır: 1.Ektoderm:Sinir sistemi, deri, saç, tırnak. 2.Mezoderm:İskelet-kas sistemi, taşıma, lenf, boşaltım ve üreme sistemi 3.Endoderm:Sindirim sistemi, solunum sistemi. Rejenerasyon:Canlı organizmalarda kesilen veya kopan bir parçanın yeniden yapılmasıdır. Rejenerasyon da hücre bölünmesi ve hücre farklılaşması vardır. Basit yapılı canlılarda rejenerasyon üreme olarak kabul edilir. Doku kültürü (Hücre kültürü):Bir hücrenin içinde çeşitli besin maddeleri bulunan bir kültür ortamında yetiştirilmesi yöntemidir. Embriyonik indüksiyon:Embriyodaki tabakaların birbirini etkileyerek organ ve sistemlerin nasıl oluştuğunun açıklanmasıdır.

http://www.biyologlar.com/canlilarda-ureme-ve-cogalma

Havuz balığı (Carassius carassius)

Havuz balığı (Carassius carassius)

Havuz balığı (Carassius carassius), sazangiller (Cyprinidae) familyasına ait bir balık türü. Havuz balığı sazan'a çok benzer. ikisini ayırt etmek için havuz balığının daha yüksek olan sırtına, ve sazan balığında var olan bıyıkların eksik olmamasına dikkat etmek gerek. Renkleri çoğunlukla metalik sarı, bazende gri ya da yeşilimsi olur. Havuz balığı çok yavaş büyür. Boyları 15-25 en çok 60 cm. ve 2–3 kg. ağırlıkta olur. Havuz balığı ile sazan balıkları birbirleri ile çiftleşebilirler. En büyüklerinin diğer küçük balıkları yedikleride görülmüştür. Trakya, Marmara bölgeleri, Kızılırmak, Yeşilırmak deltaları ve Çoruh havzasında yayılış gösterir. Avrupa'da da çok yaygındır. Su içindeki otlar, dip hayvanları ve sinek larvalarıyla beslenir. Mayıs-Haziran arası 14-20 C° sularda 150-300 000 yumurtasını otların üzerine bırakır. Suyun kirliliği ve oksijen toleransına dayanıklı bir balıktır. Hatta 5 güne kadar hiç oksijen içermeyen suda hala hayatta kalabildigi tespit edilmiştir. Kurak zamanlarda yasadığı küçük göl kurusa bile, kendini çamura gömüp belli bir süre hayatta kalabilir. Bu yüzden hatta cok kirli sularda, ve çok küçük göllerde bile yaşayabilir. Büyüklerinin eti lezzetlidir. Bazı batı ülkelerinde üretimi yapılmaktadır. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya:Cyprinidae (Sazangiller)Cins:     CarassiusTür:     C. carassius

http://www.biyologlar.com/havuz-baligi-carassius-carassius

Portör Testleri Nedir? Kimlere Portör Muayenesi Yapılır?

Portör Testleri Nedir? Kimlere Portör Muayenesi Yapılır?

Gıda sektörü çalışanları ile kreş ve yuvalarda görevli olanlarda portör testlerinin yapılması yasal bir zorunluluktur. Bu testler Sağlık Bakanlığınca yetkilendirilmiş merkezlerce yapılmaktadır.

http://www.biyologlar.com/portor-testleri-nedir-kimlere-portor-muayenesi-yapilir

Cestoda (YASSI SOLUCANLAR) Özellikleri

CESTODA (YASSI SOLUCANLAR) - Sestodlar; vücutları yassı, halkalara ayrılmış şerit şeklindeki PLATHYHELMINTH'lerdir. - Boyları 2-4 mmden 20-25 mye kadar varan değişik ölçülerde olabilir.(Diphylobotrium latum 20-25 m. , Taenia saginata 5-10m. ) - Halka sayısı ise 3'ten 8-10bine kadar çok farklı sayılarda olabilir. (D.latum 8-10 bin halka, E.granulosus 3 halka) Cestodlarda vücut, şekil ve fonksiyon yönünden 3'e ayrılır: SCOLEX:Ön uçta bulunur. Yuvarlak / badem biçimlidir. Yapışma görevi vardır. 3 Yapışma organeli vardır: Bothria: Pseudophyllidea'da görülür. 2- 4 adettir. Yanda bulunur. Acetabula: Cyclophyllidea'da görülen çekmenlerdir. Kadeh ya da kase biçiminde, kassal yapılı, 2-4 adet, karşılıklı yer almış oluşumlardır. Bazısında çekmenler bulunabilir Rostellum: Yine Cyclophylladea'da anteriorda bulunur. Uzayıp kısalabilen, üzerinde 1 ya da 2 sıralı çengel taşıyan bir yapıdır. PROLİFERASYON BÖLGESİ: Scolex'ten hemen sonra, halkalara ayrılmamış ve halkaların oluşturulduğu kısımdır. Bazı sestodlarda yoktur (Moniezia). STROBILA: Boyundan sonra gelir. Halkalar: genç (üreme organı henüz yok) olgun (üreme organı gelişmiş) gebe (yumurtalarla dolu) Psedophylleidea'da halkaların sadece genç ve olgun formları varken, Cyclophylleidea'da 3 form da görülür. Vücut tabakaları: En dışta kutikula, onun altında kas tabakası vardır. Bunun altında da Ca granüllerinden zengin paranşim bulunur. Sindirim sistemi: Yoktur. Tüm vücut yüzeyince osmotik absorbsiyonla besinlerini alırlar. Solunum sistemi: Yoktur. Dolaşım sistemi: Yoktur. Boşaltım sistemi: Osmo-regulator sistem de denir. Tüm halkalarda ortaktır. Halkaların yanlarınd aseyreden 2şer (dorsal, ventral) toplama kanalı ve bunların halka posterirorlarındaki bağlantılarında ibarettir. Boşaltım kesesi yoktur. Paranşime dağılmış kirpikli hücreler vasıtasıyla atık maddeler toplanır, bunlar ana boşaltım kanallarına bağlanırlar. Tıklar dışarıya boşaltım deliğinden atılırlar. Sinir sistemi: İyi gelişmemiştir. Tüm halkalar için ortak bir sistem vardır. 1) Merkezi sinir sistemi (scolex'teki ganglionlar topluluğudur) 2) Sinir lifleri (MSS'ten 2 büyük, çok sayıda küçük sinir çıkar) Dölerme sistemi: Her halka için müstakildir. (1/2 adet). Hermafroditizm görülür. Protandri vardır ( önce erkek genital organları gelişr daha sonra dişi genital organları gelişir; körelmede de aynı sıra izlenir). Bu sistem en gelişmiş ve de en önemli sistemdir. Bunun nedeni ise sestodların komplike olan biyolojileri sırasında hiç olmazsa milyonlarcası üretilen yumurtadan sadece birkaçının olgun şerit haline gelebilmesidir. Döllenme halka içi, halkalar arası ya da parazitler arası olabilir. Erkek dölerme organları 1. testis (çok sayıda, halkanın dorsalinde, sperm üretir) 2. vasa efferentis (ince kanallardır) 3. vas deferens (spiral şeklindedir) 4. vesicula seminalis (sperm depolanır) 5. prostat bezleri 6. canalis ejaculatorius 7. cirrus (penis) 8. genital atrium Dişi dölerme organları 1. ovarium (tek loblu, ventrale doğru, yumurta üretir) 2. oviduct 3. ootype (genişlemiş kısım, yumurta döllenir ve gelişir) 4. Mehlis bezleri (kabuk oluşmu için gerekli) 5. vitellojen bezler (yumurta sarısı için gerekli) 6. receptulum seminis (sperm depolanır) 7. uterus (ootype'den köken alır, yumurta kapsülü ve paruterin organ) 8. vagina 9. genital atrium Pseudophylleidea'da uterus deliği varken, Cyclophyllidea'da yoktur. Yumurtalar: Çeşitli tiplerde olabilir. Pseudophyllidea yumurtaları tramatod yumurtalarına benzer. Yumurta sarısı ile doludur. Cyclophyllidea yumurtalarının içinde 3 çift çengele sahip onkosfer bulunur. Gelişim: İndirektir. Cyclophylidea tek ara konak (mesocestoides hariç), Pseudophylidea iki ara konak kullanır. Larva şekilleri: Cyclophyllidea 1) Cysticercus 2) Coenurus 3) Hidatik kist 4) Strobilocercus 5) Cysticercoid 6) Tetrathyridum Pseudophyllidea 1) Coracidium 2) Procercoid 3) Plerocercoid Cyclophyllidea Cysticercus: İnce çeperli, suyla dolu küçük bir kese ve içinde invagine tek scolex'ten ibaret larva formudur (0,5-1 cm). Taenia cinsina bağlı türlerde görülür. Ör: Taenia saginata (insan-barsak) / Cysticercus bovis (sığır-kas) Coenurus: İnce çeperli, içi su ile dolu, büyücek kese (ceviz/tavuk yumurtası büyüklüğünde). İçinde çok sayıda invagine scolex vardır. Ör: Multiceps multiceps (köpek barsak) / coenurus cerebralis (sığır-beyin) Strobilocercus: İnvagine olmamış bir scolex ve henüz dölerme organları gelişmemiş halkalar (strobila) taşıyan larva formudur. Ör: Hydatigera taeniaformis (kedi-barsak) / Strobilocercus fasciolaris (kemirgen-karaciğer) Hidatik kist: (Echinococcus)En kompleks yapılı cestod larva formudur. Su ile dolu ve çapı 20-25 cm'ye ulaşabilen bir kesedir. Çeperi biri lamelli tabaka, diğeri ise çimlenme yeteneğinde doğurgan tabakalardan yapılmıştır. Bu tabakadan yüzbinlerce invagine scolex (protoscolex) meydana gelir. Ör: Echinococcus granulosus (köpek-barsak) / Hidatik kist (memeli- karaciğer, akciğer) Cysticercoid: Omurgasız arakonaklarda gelişir. Büyük, invagine scolex ve kuyruk taşıyan larva formudur. Cercocystis (kuyruklu) ve cryptocystis (kuyruksuz) formları vardır. Ör: Dipylidium caninum (köpek-barsak) / larvası pire ve bitlerde gelişir. Tetrathyridium (Dithyridium): Ön kısmı daha geniş, arkaya doğru incelmiş, basık, kırışık yapıda, tek parça ve ön tarafta invagine tek scolex taşıyan larva formudur. Ör: Mesocestoides lineatus (köpek-barsak) / larvası çeşitli canlılarda gelişir. Pseudophyllidea Coracidium: Trematodlardaki miracidium'a benzeyen, suda serbest yüzebilen , kirpikli, 3 çift çengelli larva formudur. Procercoid: Coracidium'dan sonraki larva formudur. Coracidium'un girdiği kabukluda aldığı formdur. Tek parça, uzunca bir larva formu olup, posteriorunda boğumla ayrılmış, 3 çift çengel taşıyan yuvarlak bir kısım taşır. Önde cephalic invaginasyon vardır. Plerocercoid: Uzun, tek parça, ön uzunda olgunlarınkine benzer 2 bothria taşır. Artık embriyonik çengellerin kaybolduğu larva formudur. Ör: Diphyllobothrium latum (köpek-barsak) Procercoid_kabuklunun vücut boşluğunda Plerocercoid_tatlı su balıklarının kan ve diğer organlarında SINIF: CESTOIDEA ALT SINIF: CESTODA (EUCESTODA) TAKIM: PSEUDOPHYLLIDEA Yumurta: kapaklı , 3 çift çengelli onkosfer sonradan gelişir Morfoloji: - Scolex badem biçiminde - Yapışma organeli; bothria - Halkalar genç, olgun - Genital delik halka ventralinde - Uterus deliği var Gelişme: 2 ara konak, 3 larva şekli var TAKIM: CYCLOPHYLLIDEA Yumurta: Kapaksız, üç çift çengelli onkosfer var. Morfoloji: - Scolex yuvarlak, oval - Yapışma organeli; rostellum, çekmen(acetabula), - Halkalar genç, olgun, gebe - Genital delik halka lateralinde - Uterus deliği yoktur. Gelişme: 1 ara konak, 6 larva şekli var. PSEUDOPHYLLIDEA AILE: DIPHYLLOBOTHRIAE Tür: Diphyllobothrium latum Son konak: İnsan ve balık iyen carnivora Yerleşim: İnce barsaklar Morfoloji: 20-25 m boya ulaşabilir. 2 tane bothria vardır, scolex badem biçimlidir, genital delik halkanın ventralinde, yumurtalar 52-70x32-45m boyutunda, sarımısı kahverenginde, kapalı. Biyoloji: Yumurta dışkı ile dışarı çıkarılır. Suda coracidium gelişir ve serbest kalır. 1.ara konak çeşitli Crustacae (Cyclops, Diaptomus gibi su pireleri)'de gelişen procercoid 2.ara konak olan tatlı su balıklarınca alınır ve bunlarda plerocercoid gelişir (kas ve diğer organlarda). Balıkların çiğ ya da az pişmiş olarak yenmesi sonucu etken son konaklarca alınır. Önemi: Etken, yaşam süresi olan 10 yıl boyunca 7 km'lik halka oluşturabilir. D.latum vit B12'yi absorbe eder ve bu durum sonucunda enfeste canlılarda pernisiyöz anemi şekillenir. Etkene bağlı vakalar Türkiye'de bildirilmiştir ama ülkemizde çiğ ya da az pişmiş balık tüketilmediğinden bu vakalar da kesin değildir. Diphylobotrium latum Tür: Ligula intestinalis Son konak: Olgunları su kuşlarının barsağında, larvaları (plerocercoidler) tatlı su balıklarında ligulose'a neden olur. Biyoloji: D.latum ile aynı biyolojiye sahiptir. Önemi: Balıklarda paraziter kastrasyon nedenidir. Bunu, organlara basınç yaparak, antigonadotropik hormonlar salgılayarak yapar. Hasta balıklarda karın şişer, hantallaşırlar, yüzemezler, karınları patlar ve ölürler. Hastalığa ülkemizde baraj göllerindeki balıklarda rastlanır. İnsan sağlığı açısından tehlikesi yoktur. Ayıklandıktan sonra balıklar yenebilir. İtalya'da plerocercoidler tüketilmektedir. Mücadele: 1.ara konakla mücadele olanaksızdır. 2.ara konak olan balıklarla mücadele edilir. Hasta olanlar, ölenler ve karınları patlayan balılardan serbest kalan plerocercoidler su yüzeyinden toplanır. Diagramma ve Schistocephalus gibi cinsler de vardır. Spirometra erinacei, köpek, kedi gibi hayvanların incebarsaklarında parazitlenirken, Spirometra mansoni 1.ara konak olarak Crustacae'yi, 2.ara konak olarak balık, kurbağa ve yılanları, bazen de 3.ara konak olarak herhangi bir omurgalıyı kullanır. Sparganose: Plerocercois=spargonum Bazen D.latum, Spirometra gibi parazitlerin plerocercoidleri 1) sudaki kabukludayken insanlarca kabuklunun yenmesi ile alınır, 2) kurbağa, fare, yılan, balık gibi canlıların etleri ampirik tedavi yöntemleriyle yara,göz vs. üzerine tatbik edilerek primitif olarak insanların yaralarına ya da gözlerine bulaşır. Plerocercoidlerin bulunduğu kısımda irritasyona bağlı olarak kızartı, kaşıntı, şişkinlik, iltihaplanma görülür. CYCLOPHYLLIDEA AILE: ANOPLOCEPHALIDAE Tür: Anoplocephala perfoliata Son konak: Tek tırnaklılar Yerleşim: İnce barsakların alt kısımları, colon ve caecum Morfoloji: 8x1-1,5 cm. Scolex küçük, rostellum yok. Çekmenler arkasında küpe benzeri yapılar var. Yumurtalar 80m boyutunda ve Moniezia yumurtasına benzer. Onkosferi çevreleyen embriyoforun ucundaki kollar uzun ve kavuşur. Tür: Anoplocephala magna Son konak: Tek tırnaklılar Yerleşim: İnce barsak, jejenum Morfoloji: Atların en büyük şerididir. 70-80x1,5-2 cm. Yumurtaların boyutu 50 m. Scolexte küpe benzeri çıkıntı yoktur. Tür: Paranoplocephala mamillana Son konak: Equide Morfoloji: 1-4x5 cm. yumurtalar 50m boyutunda. Küpe benzeri çıkıntılar yok. Çekmenler yarık biçiminde. Embriyoforun uçları kısa ve ayrık.Atların en küçük şerididir. Ara konak: Oribatidae fam. bağlı akarlardır. Biyoloji: Yumurtayı yiyen akarlarda 4 ayda cysticercoid gelişir. Cysticercoidleri alan atlarda 6-10 haftada şeritler gelişir. Patojenite: Meradan yazın alınan hastalık Eylül Ekim ayında ortaya çıkar. Taylar 100%, erginler 60% hastalığa duyarlı. Genellikle az sayıda parazit bulunur. En patojeni A.magna'dır. Kataral -hemorajik enterite sebep olurlar. A.perfoliata ve P.mamillana az patojendir. İliocecal lokalizasyon önemlidir. Sağaltım: Niclosamide Tür: Moniezia expansa Son konak: Ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 6m x 1,5-2 cm. her halkada 2 tane genital atrium vardır. Testisler halka ortasında dağılmış ya da iki yanda toplu halde bulunabilir. Interproglottidal bezler halka posterior boyunca seyreder. Yumurtalar 50-60 m boyutundadır. Tür: Moniezia benedeni Son konak: Özellikle büyük ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 0,5-4m x 2 cm. Interproglottidal bezler sadece ortada. Tür: Thysaniezia ovilla Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1,5-4,5m x 8-9 mm. Halkalarda 1 tane genital delik var. Testisler boşaltım kanallarının lateralinde. Yumurtaların 5-15'i birarada paruterin organ içinde bulunur. Tür: Stilesia globipunctata Son konak: Ruminantlar (koyun, keçi) Yerleşim: İnce barsaklar Morfoloji: Her halkada 1 tane genitel atrium vardır. 40-60cm x 2-2,5 mm. Testisler boşaltım kanallarının medialinde seyreder. Her halkada 2 tane paruterin organ bulunur. Tür: Avitellina contripunctata Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1-3m x 2-2,5 mm. Her halkada 1 tane genital delik vardır. Testisler boşaltım kanallarının her iki yanında gruplar halinde bulunur. Her halkada 1 tane paruterin organ vardır. Tür: Thysanosoma actinoides Son konak: Ruminantlar Ara konak: Oribatida ailesine bağlı akarlar. Yerleşim: İnce barsaklar, seyrek olarak safra ve pankreas kanalları Morfoloji: 35-40 cm x 8 mm. Her halkada 2 tane genital atrium vardır. Testisler halka posterioru ve ortasında bulunur. Halka posteriorlarında saçaklı yapılar vardır. Yumurtalar paruterin organ içinde bulunur. Biyoloji: Akarlar 0,5-1 mm boyutundadır. Sert kabuklu, gözsüz, serbest olarak toprakta yaşayan, organik kalıntı ve dışkı ile beslenen, bitki kök ve sap kısımlarında yoğun olarak bulunan akarlardır. Akarlarda 3 ayda vücut boşluğunda cysticercoid gelişir. Akarların otlarla birlikte alınımı ile 1,5-2 ayda şeritler gelişir. * Thysaniezia, Stilezia, Avitellina ve Thysanosoma cinslerinde yumurtada onkosferi çevreleyen armut biçimli bir embriyofor yoktur. * Anoplocephalidae ailesindeki parazitlerin olgunları tedavi edilmezse 3-4 ay yaşarlar. Cysticercoidleri akarlarda 1-1,5 yıl boyunca yaşarlar. Akar ölünce onlar da ölürler. Bu akarlar için nemli, uzun, kaba otlu meralar uygundur. Anoplocephalose: 1) mera kontaminasyonu 2) kontaminasyonun devamı ile meydana gelir. Kronik form: En çok görülen formdur. Anemi, zafiyet, yapağı bozulması, ölüm, dehidrasyon, diyare, konstipasyon ve barsaklarda atoni görülür. Akut form: Seyrek görülür. Sinirsel belirtiler (dönme, çırpınma, titreme ve diş gıcırdatma) ile seyreder. Subklinik form: Bakımlı sürülerde görülür. Semptomsuz seyreder. Sindirim sistemi belirtileri (kötü kokulu ishal) görülebilir. Yayılış: 60%'a varabilir. Teşhis: Dışkıda şerit ya da halkaya rastlanabilir. Dışkı muayenesinde yumurta/yumurta kapsülü görülebilir. Otopside olgun şeritlere rastlanır. Sağaltım: Niclosamide, Praziquantel, Albendazol, Nebendazol AILE: DAVAINEIDAE Tür: Davainea proglottina Son konak: Tavuklarda (en yaygın şerit) Ara konak: Sümüklüböcekler (cysticercoid gelişir) Yerleşim: İnce barsaklar (duodenum) Morfoloji: 1,5-5 mm uzunlukta. Halka sayısı 4-9. Rostellumda 2 sıra çengel var. Çekmenlerinde de çengel vardır. Yumurtalar ince çeperli, 30-40 m çapında Tür: Railettina tetragona Son konak: Tavuk, hindi ve diğer kanatlılar Ara konak: Kara sinek ve karıncalar Yerleşim: İnce barsaklar (duodenum) Morfoloji: 6-25 cm x 1-4 mm. Rostellumda tek sıralı çengeller vardır. Çekmenlerinde de çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina echinobothrida Son konak: Kanatlılar Ara konak: Karıncalar Yerleşim: İnce barsaklar Morfoloji: 9-25 cm x 1-4 mm. Çekmenlerinde çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina cesticillus Ara konak: Kaprofaj böcekler Morfoloji: 4-13 cm x 1-3 mm. Kokon içinde tek bir yumurta bulunur. Çekmenler çengelsizdir. AILE: HYMENOLEPIDIDAE Tür: Hymenolepis lanceolata Son konak: Ördek ve kazlar Ara konak: Tatlı sudaki crustacea Yerleşim: İnce barsak Tür: Hymenolepis cariocea Son konak: Tavuklar (sıklıkla görülür) Ara konak: Kaprofaj böcekler Tür: Hymenolepis contaniana Son konak: Tavuk ve hindiler Ara konak: Kaprofaj böcekler Morfoloji: 2-5 mm'den 7-8 cm'ye kadar değişen boylardadırlar rostellumda çengel olabilir ya da olmayabilir. Yumurta 3 katlı koruyucu içindedir. Tür: Hymenolepis diminuta Son konak: Fare, sıçan ve insanlar Ara konak: Çeşitli arthropoda (cysticercoid gelişir) Yerleşim: İnce barsaklar Morfoloji: 20-60 cm uzunluktadırlar. Scolexte 4 çekmen vardır. Rostellum çengelsizdir. Yumurtalar ovalimsi, gri-açık kahverengi, 2 kabuklu (dış ve iç) ve 3 çift çengelli onkosfere sahiptir. Tür: Hymenolepis nana Son konak: İnsan, fare ve sıçanlar Yerleşim: İnce barsaklar Morfoloji: "Cüce şerit" de denir. 2.5-4 cm uzunluktadır. Yumurtaları ovaldir. Açık renkli, grimsidir. 2 kabukludur ve içinde 3 çift çengelli onkosfer vardır. İç kabuğun kutuplarında filamentler vardır. Biyoloji: 1) Direkt 2) İndirekt (ara konak olarak arthropodları kullanır) AILE: DILEPIDIDAE Tür: Ametobotaenia cuneata Son konak: Tavuk, ördek Ara konak: Yer solucanları Yerleşim: İnce barsaklar Morfoloji: 2,2-4 mm x 1-1,5 mm. 12-24 adet halka vardır. Scolexte tek sırlaı çengel taşıyan rostellum vardır. Çekmenler çengelsizdir. Tür: Choanotaenia infundibulum Son konak: Tavuk, hindi vb. Ara konak: Karasinek, çekirge, kaprofaj böcekler Yerleşim: İnce barsaklar Morfoloji: 5-23 cm uzunluktadır. Tek sıra çengel taşıyan rostellum vardır. Çekmenleri silahsızdır. Yumurtaları 60-65 x 40-45 m boyutunda, filamentlidir. KANATLILARDA ŞERİT ENFEKSİYONLARI: En önemlisi Davaniea proglottina'dır. küçük olmasına rağmen 50%lere varan ölümler meydana getirir. Patojen kısmı scolextir. Çünkü hem çekmenlerde hem de rostellumda çengeller vardır. Davainea yumurtaları dirençsizdir. Rutubetli, sıcak ve gölgeli yerlerde 5 gün yaşayabilir. Cysticercoidleri sümüklüde en az 1 yıl canlı kalabilir. Ara konak olan sümüklüde 1000'den fazla cysticercoid bulunabilir. Ağır enfestasyonlarda duodenum mukozasında yangı, hemoraji ve ödem görülür. Klinik semptomlar ise zafiyet, anemi, ishal ve mukusta artıştır. Railettina türleri içinde en patojeni Railettina echinobothria'dır. Barsaktaki yangı şekli NODÜLER ENTERİTtir. Barsak içine gömülü scolex etrafında kazeöz nodüller şekillenmiştir. Sağaltım: Niclosamide (Mansonil, Şeridif, Tenyavet)...............................................50-200mg/kg 2-6 gün boyunca..................................................................................................................20 mg/kg Fenbendazol (Panacur) 5 gün boyunca...............................................................................20 mg/kg Mebendazol (Mebanvet)....................................................................................................10 mg/kg Praziquantel (Droncit)....................................................................................................................... Bithional (Actomer)...............................................................................................................0,2 g/kg AILE: TAENIADAE Tür: Echinococcus granulosus Son konak: Olgunları........................köpek, kurt, çakal vb.'nin incebarsakları (kedilerde seksüel olgunluğa erişemez) Larvaları.........................bütün evcil memelilerde (ruminant, sus, eq.,insan...) başta karaciğer ve akciğer olmak üzere, dalak, böbrek, pankreas, kalp, beyin, kemik iliği, bağlayıcı doku aralıkları ve dokularda. Morfoloji: Olgunlar..........................2-6 mm uzunlukta, vücut genellikle 3 halkadan oluşur. Son halkanın uzunluğu vücudun diğer bölümlerinin uzunluğundan daha fazladır. Genital atrium halka posteriorundadır. Ovarium böbrek biçimindedir. Yumurtalar......................Taenia yumurtası formundadır (yuvarlak/oval). Küçük ve kalın kabukludur. Kabuk enlemesine çizgilidir. 3 çift çengelli onkosfer taşır. KİST HYDATİK (EKİNOKOK KİSTİ): 2 tip kist vardır. 1. Uniloculer kist (kistler tek tektir,daha çok koyun ve insanda görülür) 2. Multicystic/Multivesicular kist (birbirine komşu kistlerdir. Her birni ayrı boşluğu ve sıvısı vardır. Özellikle sığırlarda görülür) Biçimleri yuvarlağımsı (yumuşak, hacimli dokularda) yada mevcut boşluk ya da aralıkları dolduran (ör:kemik iliği) gibidir. Büyüklükleri dokularda konakçı reaksiyonları ile sınırlandırılır (çocu başı ya da portakal büyüklüğünde olabilirler). Göğüs ya da karın boşluğunda iseler büyüklükleri sınırlandırılamaz (20 cm çapına varan kistler görülmüştür). Lokalizasyon; ruminantlarda 70% karaciğerde, 25% akciğerde, 5% de diğer dokularda olmaktadır. Gelişme hızları yavaştır. 6 ayda ancak birkaç mm çapında içi sıvı ile dolu kistik yapı şekillenebilir. Protoscolexler 12 ayda şekillenir. Protoscolex taşıyanlar fertil kist, taşımayanlar ise infertil kist adını alır. Sığırda 90%, domuzda 20%, koyunda ise 8% kistler infertildir. 2 şekilde gelişim tamamlanır: 1- PASTORAL SİKLUS: Evcil karnivorlarla evcil ruminantlar konaktır. Köpek, koyun, deve, Ren geyiği. 2- SILVATIC SİKLUS: Son konak yabani karnivor, ara konaklar ise yabani ruminantlardır. Avusturalya'da dingo-kanguru. Hindistan, Pakistan, Seylan'da çakal-geyik. Bu iki epidemiyolojik siklus bağımsıuz seyreder. Ancak avcılık yolu ile kırılabilir. Kanada'da Kariba(geyik)-köpek. Kırsaldan ormansala geçiş şu şekillerde olur: - Kistli evcil ruminantlar köpeklerce yenir § Enfekte av ve çoban köpeklerinin ormanda dolaşması ve buralara dışkısını bırakması ile yabani rum. enfeste olabilir. Ormandan kırsala geçiş ise şöyle olur: § Evcil ruminantlar ormanlık yörede otlarken yabani köpekgillerin bıraktıları dışkılardan yumurta alırlar. § Av veya çoban köpekleri enfekte yabani ruminantların kistlerini yer. Önemi: Hayvanlarda; - Kistler pek klinik belirtiye yol açmaz (normal doku kalmamasına rağmen) - Enfekte havanlarda karkas ağırlığı azalmaktadır - Enfekte organlar(karaciğer, akciğer, dalak) kısmen ya da tamamen imha edilir (ekonomik kayıp). İnsanlarda; Çoğunlukla klinik belirti göstermese de lokaliza olduğu organ ya da dokuya göre normal fonksiyonları bozar, ağrı yapabilir. Kistler kendiliğinden ya da ameliyat sırasında patlayabilir. Bu da anafaktik şok ya da sekonder hidatidose (echinococcose)'a neden olur. Teşhis: Hayvanlarda serolojik testler yetersizken, ancak kesim sırasında teşhis mümkündür. İnsanlarda klinik belirtiler (organların çalışmalarında aksamalar, şişlik, ağrı), röntgen, serolojik testler(KFT, FAT, ELISA, HA, presipitasyon) ve alerji testi (Casoni) ile teşhise gidilir. Sağaltım: Operasyon ile yapılır. Öncesinde Mebendazol-Albendazol kullanılır. Hastalığın prepatent süresi 4-5 haftadır.

http://www.biyologlar.com/cestoda-yassi-solucanlar-ozellikleri

Sürüngen preparasyonu nasıl yapılır

SÜRÜNGENLER Sürüngenler (Reptilia), amfibilerle kuşlar arasında yer alan bir omurgalı grubudur. Kara hayatına uyum sağlamışlardır. Derileri kuru ve derilerinde salgı bezi yok denecek kadar azdır. Derilerinin üzeri keratin tabakası ile örtülüdür. Keratin tabaka vücudun değişik yerlerinde pul ve plaklar halinde yapılar oluşturur. Bu tabaka zaman zaman atılarak yenilenir. Sürüngenlerin bir kısmı 4 bacaklı, bir kısmı da bacaksızdır. Bacaklı olanlarda bile vücut yere değecek kadar alçaktır. Sürüngenlerin büyük bir kısmı karada, bazıları da suda yaşarlar. Ancak suda yaşayanlar da akciğerleri ile solunum yaparlar. Sürüngenlerde genellikle çiftleşme organı bulunur. (Tuatara hariç) Bu nedenle de döllenme içte gerçekleşir. Çoğu yumurta bırakır. Yumurtalar dayanıklı elastiki kabuklu yahut kuş yumurtası gibi kolayca kırılabılir tiptedir. Bazı sürüngen türleri canli doğurur, (ancak memelilerde olduğu gibi yavru anasına bir bağ ile bağlı değildir) gelişmelerinde de bir larva devresi bulunmaz. Yumurtadan çıkan yavrular minyatür erginlere benzerler. Sürüngenler genellikle diğer hayvanları avlayarak beslenirlerse de, bazı kara kaplumbağaları ile bazı kertenkele türlerinin esas besinlerini bitkisel maddeler teşkil eder. Derileri kuru olup,keratin pullar ve plakalarla örtülüdür.Derilerinde kuşlarda olduğu gibi çok az salgı bezi bulunur.Bunlarda kurbağalarda olduğu gibi dış kulak bulunmaz.beş parmaklı iki çift ekstremiteye sahiptirler.Bununla beraber,bazı kertenkele ve yılanlarda ön ve arka ekstremiteler kaybolmuştur.Bu yüzden bu hayvanlar yerde sürünerek hareket ederler.Sürüngenler iç organları kaburgalar tarafından korunan ilk omurgalılardır.Bunların akciğerleri ve kalpleri kurbağalardan daha gelişmiş olarak bulunur.Sürüngenlerin en önemli özelliği,kurbağalardan farklı olarak iç döllenme yapmaları ve buna uygun üreme organlarının gelişmesidir.   Sürüngenlerin yumurtası,kuşların yumurtası gibi vitellus bakımından çok zengin ve derimsi kabukludur.Yumurta içerisinde gelişen embriyoda amnion,karion,allantois ve vitellus yapıları bulunur.Bu yapılar memelilerin embriyo gelişiminde de görülür. Sürüngenler de kurbağa ve balıklarda olduğu gibi değişken sıcaklı hayvanlardır. Pental Sodyum (20 kat sulandırılmış) enjekte edilerek bayıltıldıkdan sonra dissekte edilmiş, önce göğüs ve karın boşluğundaki organlar stereomikroskop altında yüzeysel olarak incelenmiştir. Daha sonra akciğer, karaciğer ve diğer iç organlarla birlikte ince ve kalın bağırsak içinde fizyolojik su bulunan mumlu petri kutularında açılarak stereomikroskopta kontrol edilmiş, . ag – anterior genials alias perisai dagu depan f – perisai frontal in – perisai internasal l – perisai loreal la – perisai supralabial atau labial atas la' – perisai infralabial atau labial bawah m – perisai mental n – perisai nasal p – perisai parietal pf – perisai prefrontal pg – posterior genials atau perisai dagu belakang pro – perisai preokular pso – perisai presubokular pto – perisai post-okular r – perisai rostral so – perisai supraokular t – perisai temporal anterior dan posterior v – perisai ventral yang pertama (terdepan) REPTİLLER İLE AMFİBİALAR ARASINDA ÇOK FAZLA PREPARASYON FARKI YOKTUR. Bu laboratuvar çalışmamıza kadar incelediğimiz hayvan örnekleri omurgasız hayvanlar grubuna aittiler. Bu çalışmamızda ise Omurgalı hayvanlardan bir örnek inceleyeceğiz. Vertebrata'nın (omurgalılar) Amphibia (kurbağalar) klasisinin Anura (kuyruksuz kurbağalar) takımına mensup Rana ridibunda (su kurbağası) su içinde, su kenarlarında nemli yerlerde yaşar. Amfıbiler, suda yaşayan balıklar ile kara omurgalıları arasında orta bir yer işgal ederler. Tamamen karada ya da tamamen suda yaşayan formları olduğu gibi, hem karada hem de suda yaşayanları vardır. Bu ara durum ve kara hayatına geçiş ile ilgili organ sistemlerindeki değişiklikler kurbağada açıkça görülür. Kurbağanın vücudu baş ve gövde olmak üzere iki kısımdan meydana gelir. Başla gövde arasında bir sınır, farklılaşmış bir boyun bölgesi yoktur. Vücut pulsuz olup, çıplak, yumuşak ve kaygan bir deri ile örtülüdür. Deride mukus salan çok sayıda bez bulunur. Ergin hayvanda kuyruk tamamen kaybolmuştur. Gövdede iki çift ekstremite vardır. Başın önünde geniş bir ağız bulunur. Üst çenenin hemen ön tarafında bir çift dış burun deliği ve onların arkasında iki büyük göz vardır. Hareketli göz kapaklan üst, alt ve alt göz kapağının devamı gibi duran gözü yan yanya örten yan göz kapağından ibarettir. Ancak bu üçüncü göz kapağının kendi başına hareket yeteneği yoktur. Gözlerin arkasında orta kulağı örten 3-4 mm çapında yuvarlak iki kulak zan bulunur. Kurbağalarda dış kulak yoktur. Erkek kurbağalarda kulak zarının gerisinde ince bir zardan yapılmış bir çift dış ses kesesi bulunur. Erkek kurbağaların gövdeleri dişilere göre biraz daha ince uzundur. Dişilerde ise gelişmiş ovaryumlar nedeniyle gövdenin eni boyuna göre daha gelişmiştir. Bütün tetrapodlarda karada yürümeye elverişli (balıkların pektoral ve pelvik yüzgeçlerine karşılık) dört ekstremite vardır. Kurbağaların ön ekstremiteleri kısa olup, dört parmaklıdır. Birinci parmak körelmiştir. Erkek bireylerde ön ekstremitede çiftleşme mevsiminde ikinci parmağın yan tarafında büyük siyah bir şişkinlik (nasır) ortaya çıkar. Uzun olan arka ekstremiteler beş parmaklıdır. Birinci parmak en kısa, dördüncü ise en uzundur. Parmaklar arasında yüzme derisi gerilidir. Vücudun son ucunda iki arka ekstremite arasında kloak açıklığı vardır (Şekil 1). Şekil 1. Bir erkek kurbağanın dış görünüşü 1. dış burun deli ği 2. ağız 3. ön ayak 4. nasır (a) 5. yüzme perdesi 6. arka ayak 7. dış ses kesesi (a) 8. orta kulak zarı 9. göz Ağız içinde üst çenede oldukça küçük, sivri ve çok sayıda diş bulunur. Ayrıca damakta vomer dişleri vardır. Ön tarafta bulunan oval iki açıklık iç burun delikleridir. Alt çenede göze ilk çarpan yapı dildir. Dil çeneye ön taraftan tespit edilmiş olup, serbest kalan ucu çatallıdır. Dilin uzama ve kasılma yeteneği çok fazladır. Alt çenede diş yoktur. Yutağa (farinks) östaki borusu açılır. Burada bulunan glottis (küçük dil), besinlerin akciğerlere girmesine engelolur (Şekil 2). Şekil 2. Kurbağada ağızın iç yapısı ı. vomer dişleri 2. iç burun deliği 3. üst çene dişleri 4. göz çukurları 5. östaki borusu açıklıgı 6. farinks açıklıgı 7. ses kesesi açıklıgı (erkekte) 8. glottis (küçük dil) 9. dil 10. dil bağlantısı Kurbağada pleuroperitonal ( göğüs-kann ) boşlukları içinde ilk göze çarpan organ, kahve renkli ve yaprak şeklindeki loplardan yapılmış olan karaciğerlerdir. Karaciğer sağ, orta ve sol lop olmak üzere üç parçadan oluşmuştur. Orta lop sağ ve sol loptan birbirine bağlayan küçük bir parçadır ve bu yan loplar tarafından örtülmüştür. Orta lobun sol lop ile birleştiği yerde yeşil renkli yuvarlak bir safra kesesi vardır. Sol lobun altında da büyükçe bir mide yer alır. Midenin ön ucu çok kısa bir yemek borusu ile birleşir. Midenin sivri olan arka ucu ise bağırsağa açılır. Bu kısım midenin pilor bölgesidir. incebağırsak uzun ve kıvrıntılı bir boru halindedir. Mideden sonra gelen ilk kısım on iki parmak bağırsağı (duedenum) dır. İnce bağırsağın son kısmı sonbağırsak (rektum) dır. İncebağırsaktan daha geniş ve çok daha kısa olan bu kısım kloaka (dışkılık) açılır. Mide ile duedenum arasında pankreas yer alır. Kalp tam göğüs kemiğinin altındadır. Perikard boşluğu içine yerleşmiş durumdadır. Perikard boşluğu perikard zarı ile sınırlanır. Kalp iki kulakçık ve bir karıncıktan meydana gelir. Sağ kulakçığa anteriör ve posteriör vena cava (ön ve arka toplardamarlar)ların açıldığı sinüs venosus bağlanmıştır. Ventrikulustan ise truncus arteriosus 'tan ayrılan aort yaylan çıkar. Balıklara göre bu yaylarda bir azalma görülür. Yalnızca III. IV. ve VI. yaylar kalmış olup, III. den başa giden carotid 'ler, IV. den systemik yaylar (sağ ve sol aorta), VI.dan ise pulmonar arterler (akciğer atardamarları) meydana gelmiştir. Kirlenen kan pulmonar arterler ile temizlenmek üzere akciğerlere gider ve burada temizlendikten sonra tekrar kalbe döner. Böylece esas vücut dolaşımından başka bir de kalp ile akciğerler arasında küçük dolaşım meydana gelmiştir. Kurbağaların solunum organları gayet kısa bir soluk borusu ile bir çift akciğerden meydana gelir. Akciğerler gevşek bir dokudan yapılmıştır. Kirli kahve renkli iki kese şeklindedir. Sönük oldukları zaman ancak bir santimetre boyunda ve üçgen şeklindedirler. Kurbağalarda ayrıca kuvvetli bir deri solunumu vardır. Kurbağaların boşaltım organları böbrekleridir. Vücudun dorsal duvarına yakın, bir çift olarak bulunurlar. Koyu kırmızı renkli, uzunca oval yapılı, 1.5-2 cm uzunluğunda ve mezonefroz tipindedirIer. Bunların ventral yüzlerinde altın sarısı renginde ve şerit şeklinde böbrek üstü bezleri bulunur. Karın boşluğunun kuyruk ucunda ise beyaz renkli, ince duvarlı, büyük bir kese şeklinde idrar kesesi vardır. Bu kese kısa bir boyun bölgesi ile kloakın ventral duvarına açılır. Erkek kurbağalarda boşaltım organı ile üreme organları arasında sıkı bir ilişki vardır. Spermler ile boşaltım maddeleri müşterek bir kanaldan (üreter ya da wolf kanalı) dışarı atılırlar. Testisler san-beyaz renkli, yuvarlağımsı ve bir çift olarak böbreklere yakın bulunurlar. Dişilerde de bir çift ovaryum bulunur. Yumurta hücreleri ayrı bir kanalla (ovidukt) dışarı atılırlar. Bu yumurta kanalının kloaka açılan son kısım kısa bir şekilde genişlemiştir. Üreme mevsiminde içinde yumurta birikmiş durumdadır (Şekil 3). Şekil 3. Diseksiyonu yapılmış bir kurbağada içorganların görünüşü 1. alt çene 2. dil sağ atrium 4. ventrikulus 5. testis 6. böbreküstü bezi 7. böbrek 8. idrar torbası 9. sonbağırsak 10. yüzme perdesi 11. mezenter 12. incebağırsak 13. pankreas 14. mide 15. dalak 16. karaciğer 17. safra kesesi 18. akciğer 19. glottis 20. yutak 21. üst çene Kurbağaların sinir sistemleri, merkezi sinir sistemi beyin ve omurilik ile çevre sinir sistemi sinirlerden meydana gelir. Kurbağada beyin, ön, orta ve arka olmak üzere üç kısımdan meydana gelir. Ön beyinde koku alma siniri (olfaktorius sinirler)nin çıktığı iki bulbus olfaktorius lobu, iki beyin yarım küresi (cerebrum) ile diencephalon bulunur. Diensefalonun üzerinde epifiz bezi yer alır. orta beyinde ise görme sinirlerinin çıktığı optik loplar yer alır. Arka beyinde de cerebellum ve medulla oblangata yer alır, bundan sonra da omurilik uzanır (Şekil 4). Şekil 4 . Kurbağada beyin yapısı ı. olfaktorius siniri 2. olfaktorius lobu 3. cerebrum 4. göz sİniri 5. optik lop 6. kranial sinirler 7. Cerebelluın 8. krania! sinirler 9. Medulla oblangata 10. omurilik İzlenecek Yol Ø Kurbağanın iç organlarını incelemeye geçmeden önce, içinde kloroform ya da etere batırılmış pamuk bulunan bayıltma kabında kurbağayı bayıltırız. Bayılmış ve hareketsiz duruma gelmiş kurbağayı küvet üzerine alarak dıştan inceleyiniz. Dıştan görünen organ ve yapıları çizerek gösteriniz. Ø Üst çenenin alt çene ile birleştiği yerden kasları hafifçe keserek ağzı açarız. İç burun deliklerinden bir iğne sokarak dış burun deliklerine kadar uzandıklarını tespit ediniz. Dili bir pensle kaldırarak tespit edildiği yeri görünüz. Dişler, göz şişkinlikleri, farinks, glottis ve östaki borusu açıklıklarını görerek ağzın içten görünüşünün şeklini çiziniz. Ø Beyin ve omurilik hariç, kurbağanın tüm sistemleri ventral taraftan disseke edilebilir. Bu sistemleri ortaya çıkarabilmek için kurbağanın vücut boşluğunun açılması gerekir. Deri ile vücut çeperi arasında geniş lenf boşlukları olduğundan bu açılış iki safhada yapılmalıdır. Birincisi derinin kesilmesi, ikincisi ise vücut çeperinin kesilmesidir. * Bu işlemi yapmak için kurbağayı küvet üzerine sırt üstü yatırınız. Dört bacağından da toplu iğne ile küvete tespit ediniz. Bu sırada kurbağada ayılma belirtileri görürseniz, kloroformlu ya da eterli pamuğu başının üzerine koyarak iyice bayılmasını sağlayınız. Ø Arka üyelerin birleştiği yerden başlayarak göğüs kemiği hizasına kadar sadece deriyi düz bir çizgi şeklinde kesiniz. Göğüs kemiği hizasında kesitinizi iki yan tarafa doğru uzatınız. Açtığınız deriyi iki yan tarafa yatırıp iğneleyiniz. Bu durumda ventral vücut duvarını yapan kaslar ortaya çıkar. Göğüs kemiği hizasından aşağıya kadar tam orta istikamette uzanan büyük bir kan daman ile bu damarın iki yan tarafında göğüs kemiği karşısından başlayarak aşağıya giden ve tekrar yukarıya dönerek deriye yayılan bir çift kan damarı göze çarpar. Ortadaki damar vena abdominalis (karın bölgesi toplardamarı), iki yan taraftakiler vena cutenea magna dır. Ø Vena abdominalisin sağ tarafından kas tabakasını göğüs kemiği hizasına kadar kesiniz. Bundan sonra göğüs kemiği kaidesinden sağ ve sol tarafa doğru vena cutenea magnaya kadar küçük birer kesim yapınız. Bu şekilde ayırdığınız kas tabakasını sağa ve sola yatırıp iğneleyiniz. Ø Bu şekilde açılan pleuroperitonal boşluk içinde ilk göze çarpan organ karaciğerdir. Karaciğerin loplarını ayırt ediniz. Orta lobu görmek için sağ ve sol lopları yukarı kaldırarak bu parçayı ortaya çıkarınız. Bunun sol lop ile birleştiği yerde yeşil renkli, yuvarlak safra kesesi vardır. Sol lobun ön dış parçasını da kaldırarak büyükçe olan mideyi ortaya çıkarınız. Yemek borusunu ancak bütün iç organların incelenmesi bittikten sonra görebilirsiniz. Sindirim sistemine ait diğer parçaları on iki parmak bağırsağı. İncebağırsak, pankreas ve rektumu bulup inceleyiniz. Ø Kalbi iyi görebilmek için göğüs kemiğini kesiniz. Kurbağa henüz ölmemişse kalbin hareketini görebilirsiniz. Kalp tam göğüs kemiğinin altındadır. Perikard zarını sıyırarak kalbi açığa çıkarınız. Alt tarafta üçgen şeklinde ve daha açık renkte görünen kısım ventrikulustur. Daha koyu renkli iki siyah çıkıntı ise sağ ve sol atriumdur. Ventrikulus ile sağ atriumun dış taraftan sınırladığı bölgede toplu iğne başı kadar bir şişkinlik vardır. Bullıus cordİs adını alan bu bölgeden kalın bir kan damarı truncus arterİosus çıkar. Yüreği küt uçlu bir pensle yukarı doğru kaldırıp ventral tarafına bakınız. Üçgen şeklinde, ince çeperli bir bölge sinüs venosus tur. Buraya ön taraftan büyük bir damar girer. Ø Akciğerler ilk bakışta karaciğer loplarının altında olduklarından görülmezler. Karaciğer loplarını kaldırıp akciğerleri meydana çıkararak sünger görünümündeki bu yapıları inceleyiniz. Ø İç organları vücut duvarına bağlayan mezenterleri inceleyiniz. Sindirim sistemi organlarını ortaya çıkararak görebildiğiniz tüm iç organları gösteren bir şekil çizip isimlendiriniz. Ø Sindirim sistemine ait organları karın boşluğunun dışına çıkarınız. Kurbağa dişi ise bağırsakları çıkarmadan önce onların yan taraflarına taşmış ovaryumlar böbrekleri görmeyi engeller. Bunun için bir tarafın ovaryum ve yumurta kanalını kesip çıkarınız. Yedinci ile sekizinci omur hizasından arkaya doğru uzanan böbrekler birbirine çok yakın olarak dururlar. Üzerlerinde böbreküstü bezleri görülür. Böbreklerden geniş, beyaz iki kanal (üreter) kloaka doğru uzanır. Bu kanallar boşaltım maddelerini, erkeklerde ise aynı zamanda spermleri taşırlar. Ø İdrar kesesini bulunuz. Bunun üreterden ayrı olarak kloaka açıldığını görünüz. İdrar kesesi bacakların birleştiği yerde, kloakın hemen önündedir. Eğer patlamamışsa kolayca farkedilir. Patlamış durumda ise aynı bölgede bir zar halinde görebilirsiniz. Ø İçorgan1arın incelenmesi bitince beyinin diseksiyonu için hayvanın başının dorsali size dönük olacak şekilde çeviriniz. Ø Başın dorsalini kaplayan deriyi bistüri ile yüzünüz. Bunun için hayvanın kafasını sol elin baş ve işaret parmakları arasında tutunuz. Sağ elin 3.4.5. parmaklarını kurbağanın sırtına yaslayıp, bistüri bıçağı hayvanın kafatasına teğet tutmaya çalışarak dikkatli bir şekilde kesim yapınız. Bu şekilde gevşettiğiniz cranİuın (kafatası)'un tavanını yukarı doğru kaldırınız. Kurbağada taze beyin dokusu çok yumuşaktır. Bu nedenle beyini zedelememek için bistürinin kesim sırasında devamlı olarak kafatasına teğet tutulması gerekir. Kranium açıldıktan sonra ilk göze çarpan kısım optik loplardır. Diseksiyon makasının bir ucunu kraniumun bir kenanndan içeri doğru sokarak makası her defasında çok az ileri iterek bir seri küçük kesimler yapınız. Bu şekilde kafatasının yan kenarlarını keserek kafatası tavanının geri kalan kısmını temizleyiniz. Bistüri yardımıyla bu açıklığı genişleterek beyinin dorsalinin tamamının ortaya çıkmasını sağlayınız. Beyinin son kısmı meddulla oblangatayı görebilmek için kafatasının hemen arkasındaki ilk bir kaç omuru her iki yandan neural yaylannı kesip, omurların dorsal kısımlarını uzaklaştırınız. Bu durumda beyinin tamamı ve omuriliğin başlangıcı ortaya çıkmış olur. Dorsalden beynin görüntüsünü kısımlarını belirterek çiziniz. Ø Omurilikten çıkan sinirleri incelemek için tüm iç organları çıkarılmış, alt çene ve ağzın ventral kısmı kesilmiş ve iyice temizlenmiş hayvanda, omurilikten çıkan parlak beyaz renkli 10 çift sinirin ventral uzantılarının omurlar arasından çıkışını görmek mümkündür. Kaynak: biyoloji.ogu.edu.tr/gbII/rana.mht

http://www.biyologlar.com/surungen-preparasyonu-nasil-yapilir

İNSANLARDA HIDATIDOSIS'IN BULAŞMA YOLLARI:

I. Enfekte dışkının gıda ya da sularlar alınması (çiğ yenen sebze, meyve vs.) II. Enfekte toprak veya kumlarla oynayan çocukların ellerinin enfekte köpek dışkısıyla bulaşması ve ellerin yıkanmadan ağza götürülmesi III. Köpeklerin sevilmesi sırasında köpek türlerinde bulunan yumurtaların ele bulaşması IV. Enfekte köpek dışkısının toz haline gelerek, içindeki yumurtaların rüzgarla yiyeceklere bulaşması ya da insanların ağız veya burunlarından girmesi V. Bazen sineklerin enfekte dışkılara konarak oradaki yumurtaları vücutlarıyla yiyeceklere taşımaları Canlı köpekte parazitin varlığını ortaya koymak için; Aracoline hydrochloride 1-2 mg/kg verilir. Dışkıda parazitler (gebe halka) büyüteçle aranır. İnsanda; karaciğerde.......sarılık, sindirim bozukluğu (ishal, iştah azalması) akciğerde..........kronik bronchopneumoni kalpte................kalp yetmezliği beyinde.............encephalitis kemikte.............iskelet bozukluğu, topallık, spontan kemik kırılması görülürken, vurma, çarpma, düşme nedeniyle kistlerin patlaması sonucu sekonder kist oluşumu, hafif allerjik reaksiyonlar ya da anaflaktik şok şekillenebilir. Tür: Echinococcus multilocularis (alveolaris) Son konak: Tilki, kurt, köpek, kedi Ara konak: Tarla fareleri ve diğer kemiriciler Yerleşim: Olgunları ince barsaklarda, larvaları ara konakların çeşitli organ ve dokularında® Ø Karnabahar görünümünde Ø Kesit yapıldığında süngerimsi Ø Çok bölümlü, bölümler arası bağlantılı Ø İçindeki sıvı jelatinimsi Ø Yayılışı konakçı reaksiyonuna bağlı Prepatent süre: 6-8 hafta Morfoloji: 1-2 x 3-7 mm (daha da küçük olabilir). 3-5 halkalı. Son halkanın büyüklüğü vücudun geri kalanından kısa. GA anteriorda. Ovarium üzüm salkımı biçiminde. Yumurtaları Taenia yumurtası özelliğinde. Ø İdeal son konak tilki ve ideal ara konak tarla faresidir. Biyoloji: Genellikle sylvatic (yabani) gelişim gösterir. İnsanlar tilkilerin dışkısı nedeniyle enfekte olabilir. Yayılışı: Türkiye'de olgunu tilkilerde bildirilmiştir. Larvası da insanlarda görülmüştür. Sığır ve mandalarda görülüp görülmediği hakkında bir bilgi yoktur. ECHINOCOCCUS İLE MÜCADELE: - Enfekte köpekler sağaltılmalı (5,5 haftada bir) - Sahipsiz köpekler imha edilmeli - Mezbaha artıkları yok edilmeli (köpeklerin yemesi önlenmeli) - Kaçak kesimler önlenmeli - Kurban bayramında kesimler usulune uygun yapılmalı (artıklar gömülmeli) - Hastalık tanıtılmalı (halkın kültürü ve ekonomik durumu ile ilgili olarak radyolarda, Tvde, okullarda, köylerde...) Tür: Dipyllidium caninum Son konak: Karnivorlar. Ara konak: Bit ve pireler Yerleşim: İnce barsaklar Morfoloji: 20-50 cm. Halkalar salatalık ya da kavun çekirdeği görünümünde. Rostellumda 3-4 sıra halinde çengel vardır. Çengeller gül dikeni biçimindedir. Halkalarda 2 tane genital organ takımı olduğundan mikroskopta bakıldığında petek görünümünedir. Dışarıya atılan halkalar kontraksiyon halinde olduklarından büzüşürler ve boncuk gibi görünürler. Yumurtalar (2-20 adet) kokon içindedir. Biyoloji: Ara konakta cysticercoidler gelişir. Hayvanlar bit ya da pireyi yerse veya insanlar tesadüfi olarak bunları alırsa enfestasyon şekillenir. Bitte gelişme 1 ay sürerken bu süre pirede birkaç ayda tamamlanır. Prepatent süre 2-3 haftadır. Semptom: Çok sayıda parazit ishal, zayıflama ya da sinirsel bozukluklara (konvulsiypn, epileptik nöbet, kusma) neden olur. Arıca hareketli halkalar,irritasyon sonucu anuste kaşıntıya, kaşınan hayvanın sürtünmesi sonucu da anal bez yangısına neden olabilir. Tedavi: Hem şeride hem de bit ya da pireye karşı tedavi uygulanmalıdır. Tür: Dipyllidium nölleri Son konak: Karnivorlar Yerleşim: İnce barsaklar Morfoloji: 4-5 cm. Rostellumda 3-4 sıralı çengel vardır (öndekiler çengel, arkadakiler gül dikeni).Yumurtalar tek başlarına bir kokon içinde bulunurlar. Biyoloji: J.pasqualei'ye benzer. Tür: Joyeuxiella pasqualei Son konak: Kedi ve diğer karnivorlar. Ara konak: Kaprofaj böcekler. Kertenkele paratenik ara konaktır. Morfoloji: 20-30cm. Rostellumda 16 sıra çengel vardır (gül dikeni biçiminde). Yumurtalar tek başlarına bir kokon içinde bulunurlar. Biyoloji: Prepatent süre 83 gündür. Tür: Joyeuxiella echinorhyncoides Morfoloji: Rostellumda 25 ya da daha fazla çengel sırası vardır. AILE MESOCESTOIDAE Tür: Mesocestoides lineatus Son konak: Köpek, tilki, nadiren kedi. Ara konak: I. kaprofaj böcekler (cysticercoid) II. amphibia, sürüngen, kanatlı, kedi,köpek Yerleşim: Olgunları ince barsakta, larvaları göğüs/karın boşluğunda Morfoloji: 0,5-2,5 m x 3 mm. GA halka ortasında. Biyoloji: Prepatent süre 16-20 gün. Karnivorlar hem son konak hem de II. ara konak olabilirler. Larvalarına tetrathyridium denir. (Tetrathyridiım elongatum, Dithyridium elongatum(Bailieti)). AILE TAENIIDAE Tür: Taenia solium (silahlı cestod) Son konak: Olgunları insanlarda Larvaları domuzda (Cysticercus cellulosae) Morfoloji: 2-5m X 8-12mm. Scolex'te 4 tane çekman vardır. Rostellumda 2 sıralı çengeller vardır. Her halkada 40 000 yumurta bulunabilir. Yumurtalar kalın kabukludur, kabukta redial dizilimli çizgiler vardır. 3 çift çengel taşır. Çapı 40m'dur. Biyoloji: Uzun ömürlü parazitlerdir. Tedavi edilmezlerse 25 yıl kadar yaşayabilirler. Enfekte insan dışkısı ile yumurtalar dışarı atılır. Domuzlar yumurtaları alır. Yumurtalar barsakta açılır, onkosfer serbest kalır. Dolşıma geçip, başta çizgili kaslar (kalp, dil, diyafram, ön ve arka bacak kasları) olmak üzere akciğer, karaciğer, böbrek ve beyinde Cysticercus cellulusae'ler gelişir. İnsanlar sistiserkli domuz etini çiğ/az pişmiş olarak yediklerinde enfekte olurlar. Praptent süre 1.5-2 aydır. Patojenite: Olgunları insanlarda sancı, kronik hazımsızlık, konstipasyona neden olur. Larvaları domuzda genellikle kilinik belirti göstermes. Dil felci, kasılmalar, burun bölgesinde duyarlılığa nedne olabilir. Önemi: Cysticercus cellulosae'lar insanlarda gelişebilir. 1. Enfekte kişiler hijyen kurallarına uymalıdır. 2. Otoenfeksiyon (ters barsak peristaltiği ile) önemlidir. İnsanlarda derialtı, göz, beyin, kalp ve kaslarda sistiserkler gelişebilir. Yayılış: Amerika ve Avrupa'da sorun değildir. Geri kalmış ülkelerde önemlidir. Türkiye'de domuz eti yenmediğinden pek sorun değildir. Tür: Taenia saginata (silahsız cestod) Son konak: Olgunları insanların barsağında Larvaları sığırların çizgili kaslarında Morfoloji: 4-10m 8-15mm. Rostellum ve çengel taşımaz. Halk arasında "abdest bozan şeridi" olarak bilinir. Her halkada 100 000 kadar yumurta bulunur. Larvaları Cysticercus bovis'tir. Sığırlarda iri bezelye büyüklüğünde, dil, boyun, kalp, diyafram ve m.masseterica'da, omuz ve but kaslarında yerleşir. Enfektif kalma süresi 6-7 aydır. Biyoloji: Enfeste insan dışkısıyla yumurtalar dışarı saçılır. Sığırlar otlarken yumurtaları alırlar. Sindiirm sisteminde serbest kalan onkosfer dolaşım ile kas ve organlara taşınır. 4 ayda sistiserkler gelişir. İnsanlar sistiserkli çiğ/az pişmiş sığır etini yediklerinde enfekte olurlar. Patojenite: Olgunları insanlarda açlık hissi, karın ağrısı, diare, seyrek olarka kolit ve apandisit. Larvaları insanlarda genellikle klinik belirti yapmaz. Kaslarda zayıflık, sertlik, salivasyon artışı, iştahsızlık görülebilir. Larvalar insanlarda seyrek olarak gelişebilir. Teşhis: İnsanlarda olgunları - dışkıda halka - dışkı bakısında yumurta Sığırda larvalar - ancak kesim sonrası Koruma: 1. etler iyi pişirilmeli 2. enfekte kişiler sağaltılmalı 3. mezbaha kontrolleri iyice yapılmalı 4. kaçak kesimler önlenmeli 5. kanalizasyon tertibatları tam olmalı 6. sistiserkli etler başka türlü değerlendirilmelidir. a. 57°C'de sistiserk ölür (iç ısı) b. -3°C'de 3 gün c. -8°C'de 4 saat d. -15°C'de 2 saat e. -30°C'de 30 dk. 7. pastırma, sucuk, çiğ köfte usulune uygun olarak hazırlanmalıdır. Yayılışı: T.saginata %1-2 İzmir, %18 Ankara Cysticercus bovis %1-2 İstanbul, %25-30 Doğu ve Güneydoğu Tür: Taenia hydatigena Son konak: Köpek, kedi, tilki gibi karnivorlar. Ara konak: Rum., maymun (omentum'da, mesenterium'da) Morfoloji: 5mm X 70 cm boyutlarındadır. Rostellum'da iki sıra çengel vardır. Larvası Cysticercus tenuicollis 7-8cm çaplıdır. Üzüm salkımı gibidir. Biyoloji: Enfekte köpek dışkısı ile yumurta saçılır. Ara konaklar otlarla yumurtayı alır. Sindirim sisteminde serbest kalan onkosfer dolaşım ile karaciğere gelir. Karaciğer parankiminde 1-1.5 ay boyunca göç geçirir. Karaciğer kapsülünü delip peritona düşer. Önemi: Olgunları patojen değildir. Karaciğerde göç geçirenler hepatitis cysticercosa'ya neden olurlar. Hastalık akut fasciolosise benzer. Karaciğerin üzeri fibrin membranlarla kaplıdır. Karın boşluğunda kanlı bir sıvı vardır. Yayılış: Türkiye'de yaygındır. Tür: Taenia pisiformis Son konak: Olgunları köpek, kedi , tilki gibi karnivorlar. Larvası (Cysticercus pisiformis) tavşan ve diğer kemirgenlerde. Yerleşim: Kistler omentum, mesenterium ve diğer seröz zarlar üzerinde yerleşir. Bezelye büyüklüğünde, salkım biçimindedir. Tür: Taenia ovis Son konak: Olgunları köpek ve tilkilerde. Larvası Cysticercus ovis koyun ve keçilerde kalpte (pericardium altında), diyafram ve kaslarda. Tür: Taenia krabbei Son konak: Köpek Ara konak: Ren geyiği-_Cysticercus tarandi Yerleşim: İnce barsak Tür: Hydatigera taeniaformis Son konak: Kedi Ara konak: Kemirici-_Strobilocercus fasciolaris Yerleşim: Kedi-ince barsak, kemirgen-karaciğer Tür: Multiceps multiceps Son konak: Köpek ve diğer karnivorlar Ara konak: Rum., sus, nadiren insanlar_Coenurus cerebralis Yerleşim: Köpek-ince barsak, ara konak-MSS Klinik: Durgunlık, yemden kesilme, kilo kaybı, başı dayama arzusu, körlük, irtibatsızlık, kendi etrafında dönme Teşhis: 1)klinik belirti 2)çoban usulu 3)oftalmoskopla kontrol (fundus'ta optik dejenerasyon) Looping ill, listeriyoz, cerebrospinal nematodiasisle karıştırılabilir. Tür: Multiceps gaigeri Son konak: Köpek Ara konak: Rum_Coenurus gaigeri Yerleşim: Köpek-ince barsak, rum.-MSS Tür: Multiceps serialis Son konak: Köpek, tilki Ara konak: Tavşan-_Coenurus serialis Yerleşim: son konak-ince barsak, ara konak-subkutan ve intramusküler bağdoku Ayrım: M.gaigeri'den daha küçüktür. 4-5mm çaplıdır. Scolex'ler merkezi bir noktadan sıralar halinde çıkar. Ana kistten iç ve dış ikincil kistler gelişebilir. Yayılış: Olgunları köpeklerde bildirilmiştir (%2). Larvaları koyunların budunda, keçilerin de deri altında görülmüştür. Teşhis: Halkaları ve yumurtaları görülür. Sindirim ve sinir sisteminde bozukluklar görülür. Sağaltım: İlaçlar ara konaklarda etkili değildir. Carnivora tedavi edilmelidir. Carnivora'da şerit enfestasyonları: Taenia, Dipyllidium, Mesocestoides, Hydatigena, Joyeuxiella, Diphyllobothrium İlaçlar: Niclosamide (Şeridif, Tenyavet, Mansonil, Yomeson_hayvan ilaç kullanılmadan önce 12 saat kadar aç bırakılmalıdır. Etkisi, parazitlerde felç yapmasıdır ama kullanımdan önce konstipasyon olmamalıdır) Praziquantel (Droncit_1 aydan küçük köpeklerde kullanılmaz) Fenbendazol (Panacur) Nebendazol (Telmin)

http://www.biyologlar.com/insanlarda-hidatidosisin-bulasma-yollari

Aracnida (=Aracbnoidea ) Sınıfı

Bu sınıfta hekimlik açısından önemli olan keneler, uyuz etkenleri, akrepler ve örümcekler bulunur. Arachnida sınıfındaki artropodların erişkinlerinde 4 çift bacak bulunur. Ayrıca antenleri ve kanatlan da bulunmadığı gibi vücutta baş ve thoraxın birleşmesiyle oluşmuş cephalothorax ve abdomen olmak üzere iki kısımdan oluşmuştur. Yine arachnidlerde ağız organellerinin yan taraflarında cheliser adı verilen kesici organel bulunur. Daha önce bahsedilen insecta sınıfındaki artropodların ise erişkinlerinde 3 çift bacak, anten, kanat ( bazılarında yok) bulunur, bunların vücutları üç parçalı olup, caput, tharox ve abdomenden oluşmuştur ve chelicer ( şelişer ) leri yoktur. Arachnida 'larda caput ve thoraxın birleşmesiyle oluşan cephalothoraxa “prosoma”, abdomene ise " opisthosoma" adı verilir. Prosoma' da iki kısma ayrılır. Ağız organellerinin bulunduğu kısma "gnathosoma" ( = capitulum ) ve bacakların çıktığı kısma ise "podosoma" adı verilir. Podosoma ve opisthosoma' dan meydana gelen yani bacakların çıktığı kısma ve abdomene birlikte "idiosoma"adı verılır. Podosomada "propodosoma"( 1 ve 2.çift bacaklar kısmı) ve "metapodosoma" (3 ve 4. çift bacaklar kısmı) olarak ikiye ayrılır. Gnathosoma ve propodosoma'nın ikisine birden "proterosoma" metapodosoma ve opisthosoma'nın ikisine birden ise "hysterosoma"adı verilir. Gnathosoma üzerinde makas şeklinde olan chelicerler, en önde bulanan ve bir çift bacak şeklinde görülen pedipalpler ve hypostom bulunur. Chelicerler konak derisini delmeye ve kesmeye yarayan iki tane hareketli oluşumlardır. Pedipalpler ise artropodun yiyeceğini yakalamasında ve dokunma duyusu olarak görev yaparlar. Hypostom'un üzere dişler gibi oluşumlarla kaplıdır. Bu yapıları ile konak derisine girdiği zaman geriye çekilmesini engeller ve konaktan kan emmeye yarayan bir oluşumdur. Erişkin arachnidlerde ve nymhlerde 4 çift bacak, larvalarında ise 3 çift bacak bulunur. Bu sınıftaki türlerin tümü kanatsız artropodlardır. Göz bazılarında vardır, bazı türlerde ise bulunmaz. Göz eğer varsa basit göz biçimindedir. Solunum genellikte trachealarla olur. Ancak bunlar bir çift stigma ile dışarı açılırlar. Çoğunlukla erkekleri dişilerinden küçüktür ve dorselden bakıldığında bazı türleri direkt olarak ayrılırlar, yani sexuel dimorfismus vardır. Biyolojik gelişmelerinde erişkin -yumurta -larva -nymph -erişkin dönemleri görülür. Yumurtadan çıkan larvalar erişkinlere genellikle benzerler. Daha sonraki nymph dönemi ise sexuel organlarının olmayışı dışında erişkinlere benzemektedir. Bu nedenle bu sınıftaki parazitlerin gelişmelerinde yarım metamorfoz (= hemimetabola ) görülür. Sindirim kanalları birtakım divertiküllere ve kollara ayrılmıştır. Bu özelikleri ilede gıda deposu olarak görev yaptıkları gibi sindirim bezi olarakta fonksiyon yaparlar. Arachnida Sınıfının Sınıflandırılması Bu sınıf altında üç önemli takım bulunur. Bunlar, Order: Scorpionidea (=akrepler ) Order: Araneidea ( = örümcekler ) Order: Acarina (=kene, uyuz etkenleri ve diğer akarlar) Order: Scorpionidea Akreplerde vücut yapıları cephalo- thorax ve abdomen şeklindedir. Vücudun ön tarafında ve ağzın iki yanında bir çift chelicer ve onun gerisinde yine bir çift pedipalpleri bulunur. Pedipalpler makas şeklinde tutucu organellerdir. Bunların gerisinde ise 4 çift bacak vardır. Abdomenleri ise preabdomen ve postabdomen olmak üzere iki kısımdan oluşmuştur. Bunlardan preabdomen geniş yapıda olup, 7 segmentlidir. Postabdomen ise daha ince yapılı olup, 6 segmentden meydana gelmiştir. Kuyruk adıda verilen postabdomenin son halkası yuvarlağımsıdır ve uç kısmında zehir bezesini taşıyan bir iğne ( telson) bulunur. Akreplerin büyüklüğü 3 cm' den 8 cm 'ye kadar değişir. Vücudun en geniş yeri 1 cm, en dar yeri ise kuyruk kısmı olup, 3 -4 mm'dir. Renkleri siyah, solgun sarı, kahverenkli ve bazen yeşil renkli olabilir. Akreplerde vücut segmentasyon gösterir ve bunlarda dimorfismus yoktur. Scorpionidea 'lar sıcak ve kurak bölgelerde bulunurlar. Gececi parazitler olup, gündüzleri duvar ve tahta çatlakları arasında, kuytu yerlerde saklanırlar. Dişileri ovipardır. Ancak genellikle ovovivipardırlar. Yani uterusta şekillenen yumurtalar içinde gelişen yavrular çıkar. Akreplerin son halkasının uç kısmında bulunan iğne zehir bezeleri ile bağlantılıdır. Bu iğne ile bir canlıya soktuğunda zehiri derhal boşaltır. Zehirin felç edici etkisi vardır. Akrepler genellikle evlere girerler. Tropikal bölgelerde yaşayan bazı türleri insan ve hayvanlar için çok zehirli olup, ölümlere yol açabilirler. Akrepler kanivor artropodlardır, gıdalarını pedipalplerindeki kıskaçları ile yakalarlar. Bazı akrep türleri konaklarını soktukları yerlerde sadece lokal olarak şişliklere ve ağrılara neden olduğu halde, çok zehirli olan türleri sinir sistemi bozukluklarına, konvulsiyonlara, solunum güçlüğü ve kalpte bozukluklara neden olurlar. Akrep zehirlemesine scorpionismus ( = skorpionizm ) adı verilir. Zehirlenmelerin tedavisinde en iyi yol özel antitoksin akrep serumu kullanılmasıdır. Order: Araneidea Örümceklerde vücut cephalo-thorax ve abdomenden oluşmuştur. Abdomende segmentasyon gözükmez ve bir boğumla cephalothorax'dan ayrılmıştır. Ağızlarının yan tarafında iki eklemli ve nihayeti bir iğne ile sonlanmış olan chelicerleri vardır. Bunlar zehir bezeleri ile irtibatlıdır. Zehir iğneleri vasıtası ile canlı artropodları ısırır, zehirini akıtarak daha sonrada yerler. Pedipalpleri duyu organı olarak görev yaparlar ve ergin erkeklerde çiftleşmeye hizmet ederler. Bazı türlerinde dimorfismus görülür ve dişileri erkeklerinden biraz daha büyük olup, abdomenleri daha yuvarlaktır. Örümceklerin bazıları toprak altında bazılarıda taşların altında ve ağaç kovuklarında yaşarlar. Çoğalmaları akrepler gibidir. Araneidea takımında bulunan bazı örümcek türleri insan ve hayvanlarda zehirleyici etki gösterir. Bu canlılarda ağır hastalıklar ve ölümlere yol açabilirler. Bunların toxinleri bir neurotoxin olup, özellikle merkezi sinir sitemini etkilerler. Bazı türleri ise lokal nekrozlara neden olurlar. Zehirli olan cinsleri; Latrodectus ve Loxosceles' dir. Bu örümcek cinslerinin chelicerleri ile insan ve hayvanların derilerini delerek dokulara zehir akıtmaları sonucu oluşan yerel nekroz ve genel belirtilerle karekterize olan artropod zehirlenmesine “araneismus" yada örümcek ağılaması (=örümcek zehirlenmesi) adı verilir. Latrodectus cisindeki türlerin sokması sonucu zehiri merkezi sinir sitemini etkiler ve sistemik belirtilere yol açar. Buna "Latrodectismus" yada sistemik araneismus (sistemik arachnidismus) denir. Latrodectus'ların dişisi 10-20 mm, erkeği ise 4-7 mm büyüklüğündedir. Siyah renklidirler. Abdomen üzerinde kırmızı benekler bulunur. Bunlar kuru ve çorak yerlerde, duvar çatlaklarında, ağaç kovuklarında ve kemirgen yuvalarında yaşarlar. Bu türlerin dişileri çiftleştikten sonra erkeğini öldürdüğü için bunlara kara dul adıda verilmektedir. Loxosceles türlerinin sokması sonucu hemoliz oluşur ve ısırılan yerde nekroz meydana gelir, ortaları düşer ve yerlerinde yaralar oluşur. Bu türlerden ileri gelen zehirlenmede lokal reaksiyonlar oluşur. Bu nedenle bu türlerin oluşturduğu zehirlenmeye "Loxoscelismus" ya da nekrotik araknidizm adı verilir. Loxosceles türleri sarı esmer renkte olup, bunlar genellikle evlerde, karanlık ve nemli yerlerde yaşarlar. İnsanları yüzünden, boynundan, omuz yada kolundan sokarlar. Sokulan yerde önce şişlik, içleri kanla dolu kabarcıklar daha sonrada nekrozlar oluşur. Örümcek sokmalarında ilk yardım olarak önce zehir emilir, sokulan yer kanatılır, bölge üstten sıkılır ve kan emilerek tükürülür. Yara amonyak yada potasyum permanganat ile yakılır. Serumlar verilir. Order: Acarina Bu takımda keneler ve uyuz etkenleri başta olmak üzere hekimlik yönünden önemli olan ektoparazitler bulunmaktadır. Acarina takımında bulunan artropodları inceleyen bilim dalına " akaroloji" adı verilir. Acarina takımındaki türlerin vücutları iki kısımdan oluşmuştur. Bunlar capitulum ( gnathosoma ) ve idiosoma' dır. Hatta bazı türlerde vücutları tek parçalı gibidir. Bu artropodların vücutlarında segmentasyon yoktur veya çok belirsizdir. Ağız organelleri besinleri yakalamaya yarayan bir çift pedipalp, kesici bir çift chelicer ve bunlar arasında sokmaya yarayan bir adet hipostom (rostellutrı)' dan ibarettir. Erişkinlerinde ve nymph'lerinde 4 çift, larvalarında ise 3 çift bacak bulunur. Erkek ve dişiler arasında sexuel dimorfismus vardır. Acarina 'larda solunum trachealarla olur yada bütün vücut yüzeyinden olur. Sinir sistemleri basittir ve göz bazılarında vardır. Bu gruptaki parazitler deri hastalıklarına (uyuz) neden olmaları ve birçok enfeksiyon etkenlerine vektörlük yapmaları (keneler) yönünden büyük önem taşırlar. Acarina takımında 6 alttakım bulunur. Bunlar; l-Suborder : Metastigmata 2-Suborder : Mesostigmata 3-Suborder : Prostigmata 6-Suborder : Holothyroidea 4-Suborder : Astigmata 5-Suborder : Nostostigmata 6-Suborder : Holothyroidea Bunlardan son iki alttakımın ekonomik önemleri yoktur. İlk 4 alttakım özellikle Veteriner Hekimlik yönünden önemli olan artropodları içerir. Suborder : Metastigmata Bu alttakımda keneler yer alır. Stigmaları 4. veya 3. coxae'nın hemen yanında yada arkasında bulunur. Acarina takımının genel özelliklerini taşırlar. Hipostomları üzerinde uçları geriye dönük olan dişler bulunur. Vücutları yekpare bir kese şeklinde olup, gnathosoma ve idiosomadan ibarettir. Larvalarında 3 çift, nymph ve erişkinlerinde 4 çift bacak bulunur. Nimfler olgunlarından genital organlarının olmayışı ile ayrılırlar. Erişkin ve doymuş bir dişi kenenin uzunluğu 2 cm'ye kadar ulaşabilir. Bu alt tabında Ixodidae ve Argasidae aileleri vardır. Familya: lxodidae ( Sert keneler veya mera keneleri) Bu ailede bulunan artropodlar mera keneleridir. Bu kenelerde vücut yapısı"capitulum ve idiosomadan oluşmuştur. İlk bakışta erkek ve dişi keneler birbirlerinden kolaylıkla ayrılırlar. Yani sexuel dimorfısmus vardır. Erkekleri dişilerinden daha küçüktür ve bütün vücutları kitin tabakası ile örtülüdür. Kenelerin dorsalinde bulunan bu sert kitini plaka scutum adını alır. Scutum erkeklerde vücudun bütün dorsal kısmını kaplarken, dişilerde, nymph ve larvalarda capitulum'un arkasında ve vücut dorsalinde küçük bir yaka şeklindedir. Ağız organelleri capitulum 'un ön tarafında yer almıştır. Capitulum; basis capituli ve bundan çıkan bir çift chelicer, chelicer kılıfı, hipostom ve bir çift palpden oluşmuştur. Chelicerler hypostomu üstten örterler ve deriyi kesmeye, delmeye yararlar. Chelicerler tarafından açılan deriye chelicerler ve hypostom birlikte girer ve daha sonra hipostom üzerindeki küçük dişcikler geriye doğru açılarak hipostomun deriden çıkması önlenir. Hypostom kenenin konaktan kan emmesini sağlayan organeldir. Chelicer'lerin yan taraftarında his organeli olarak görev yapan bir çift palp bulunur. Başın arkasında ve vücudun kenar kısmında bazı türlerde bir çift göz mevcuttur. Gözler scutumun marginal kenarına bitişik yer alırlar. lxodidlerin bazı türlerinde göz bulunmaz. Vücudun ventralinde ise bacaklar, ön tarafta genital delik, arka tarafta anüs, çeşitli oluklar, stigmalar ve erkeklerde kitinsel plaklar bulunur. Bacaklar sırası ile coxae, trochanter, femur, tibia, pretarsus ve tarsus'dur. Tarsus'un uç kısmında iki adet tırnak bulunur. Tırnakların ventral yüzünde ise disk şeklinde düz yüzeylere tutunmaya yarayan pulvillum vardır. Genital delik median hat üzerinde ve ikinci coxaların ön kenarı hizasında olup, enine bir yarık şeklindedir. Nymph 'lerde genital delik kapalı olduğu halde larvalarda henüz şekillenmemiştir. Anüs vücudun arkasında yer alır ve çeşitli plaklarla kuşatılmıştır. Stigmalar 4. coxanın arkasındadır ve larvalarda bulunmaz. Bunlarda solunum vücut yüzeyi ile olur. Ixodidlerin bazı türlerinde scutumun üzeri adeta nakışla işlenmiş gibi süslüdür. Yine bazı türlerin vücudunun arka kenar kısımlarında festoons (festum) adı verilen oluşumlar vardır. Bu ailedeki keneler vücutlarının dorsalinde kitini sert bir plaka taşımalarından dolayı “sert keneler" veya biyolojilerini merada geçirdiklerinden dolayıda "mera kenelerı" olarak adlandırılırlar. Mera kenelerinin erkekleri en fazla 3-4 mm büyüklüğünde olduğu halde, dişileri kan emdiklerinde 1 cm büyüklüğüne ulaşırlar. Dişilerde scutum önde bir yaka şeklindedir. Vücudun geri kalan kısmı deri ile kaplıdır. Bundan dolayı dişiler fazla miktarda kan emebilirler. Erkeklerde ise bütün vücut kitinle kaplandığı için çok az miktarda kan emerler ve vücut genişleme göstermez. Keneler sexuel olarak çoğalırlar. Genital organlar dişilerde 2 adet ovaryum, uterus ve genital deliğe açılan vajinadan ibarettir. Ovaryum bir çok yerlerde kör keseler halinde olan sindirim kanalı ile ilişki halindedir. Bu durum kan parazitleri ile enfekte kenelerin bu parazitleri sindirim kanalından ovaryuma ve oradanda yumurtalara geçirebilmesi bakımından önem taşır. Erkeklerde genital organlar bir çift testis ve genital deliğe açılan vasa deferensden oluşmuştur. Keneler bütün hayatları boyunca kan emmek zorunda olan artropodlardır. Sindirim sistemleri hipostomdan başlar ve bir çok kör keseler halinde bağırsaklarla devam eder. Ixodidae ailesindeki kenelerin biyolojileri Mera keneleri ilkbahar sonlarından başlar ve sonbahar sonlarına kadar aktivite gösterirler. Hayvanlarda kulak içi, kulak kepçesi, yüz, karın altı, perianal bölge ve bazende vücudun diğer kısımlarında yerleşirler. Erkek ve dişiler genellikle bir arada bulunurlar ve çoğunlukla kopulasyon kan emme esnasında olur. Erişkin. dişi keneler yumurtalarını toprak veya meraya bırakırlar. Daha çok çatlak ve yarıklara, taş altlarına ve ağaç oyuklarına bırakırlar. Yumurtalar kahverenginde ve oval şekildedirler. Türlere ve kan emmelerine göre değişmek üzere 2-18 bin yumurta bırakırlar. Yumurtlama vücudun ventral ön tarafında bulunan genital delikte olur ve bunlar yapışkan bir madde ile birbirlerine yapıştırıldıklarından bir yumurta kitlesi şeklindedirler. Erişkin dişi bir kere yumurtlar ve daha sonra kuru bir hal alır ve ölür. Yumurtadan çıkan larvalar (uygun ısı ve rutubette türlere göre değişmek üzere 3-7 günde larvalar çıkar) çayır ve otların üst kısımlarına tırmanarak, ön ayakları ile o yörede bulunan konaklara tutunurlar. Kenelerde her türün seçtiği konak türleri varsada, aç kaldıklarında başka konaklardanda beslenebilirler. Konağa tutunan larvalar kan emerek doyarlar ve gömlek değiştirerek nymph safhasına geçerler. Nymph 'ler kan emerek gömlek değiştirirler ve bunlardanda erişkinler oluşur. Erişkin keneler kan emdikten sonra çoğunlukla konak üzerindeyken çiftleşme olur. Kopulasyondan hemen sora erkekler yere düşer ve ölür. Döllenmiş dişi kene ise kan emer, doyar ve toprağa düşerek yumurtlar ve ölür Yukarıda anlatılan biyolojik gelişme genel olarak görülen bir gelişme şeklidir. Ancak lxodidae ailesindeki kene türlerinin kullandıkları konak sayılarına göre bu biyolojik gelişme değişmektedir. Sert keneler gelişmelerinde kullandıkları konak sayısına göre 3 grupta toplanırlar. 1- Bir konaklı keneler Eğer kene biyolojik gelişmesini bir konakta tamamlıyorsa bu kenelere bir konaklı keneler denir. Kenenin kan emmiş doymuş dişisi (döllenmiş ) konağı terkeder toprağa düşer, yumurtlar ve sonra ölür. Uygun ısıda yumurtalar içinde embiryo gelişir ve 3 çift bacaklı larva halini alır. Bu larvalar beyaz renkli yumurta kabuğundan dışarı çıkarak etrafta bulunan otlar üzerine tırmanırlar. Bunlar toplu iğne başının ¼’ü büyüklüğündedirler. Larvalar arka iki çift bacaklarını otlara salarlar ve ön bir çift bacaklarını ise havada sallarlar. Bu civardan geçmekte olan konaklara tutunurlar ve doyuncaya kadar konaktan kan emerler. Bu durumda toplu iğne başı büyüklüğünde ve gri bir görünüm kazanırlar. Hypostomlarını deriden çekerler ve konağın üzerinden ayrılmaksızın gömlek değiştirme evresine girerler. Bu safhada larvanın üzerindeki deri beyazlaşır ve onun vücudunun içinde nymph meydana gelir. Nympler larvanın üstderisi olan kabuğu açarak dışarı çıkarlar. Nympler şekil bakımından erişkinlere benzerler ancak genital organlar gelişmemiştir. Bu nymph 'lerde üzerinde bulundukları aynı konaktan tekrar kan emmeye başlarlar. Doyduklarında küçük bir saçma tanesi şeklindedirler. Bunlarda hypostomlarını deriden çekerler ve bulundukları konağı terketmeden bulundukları yerde gömlek değiştirme safhasına geçerler. Nymplerin üzerini örten deri bir kabuk şeklini alır ve onun içinde de erişkin kene şekillenir. Erkek ve dişi olarak şekillenen bu keneler nymphin gömlek şeklini almış üst derisini açarak dışarı çıkarlar. Yine aynı konaktan kan emmeye başlarlar. Kan emme esnasında kopulasyon olur, dişiler doyuncaya kadar kan emdikten soma konağı terkederek toprağa düşer, yumurtlar ve ölürler. Yani bu tip kenelerde kene yumurta hariç bütün yaşam dönemlerini aynı konak üzerinde geçirir. Aç larva olarak tutunduğu konaktan doymuş dişiler olarak ayrılırlar. Tüm gömlek değiştirmeler konak üzerinde olur. Örneğin; Boophilus annulatus ve Boophilus decoloratus türleri bir konaklı kenelerdir. 2-) İki konaklı keneler Bu tür keneler biyolojik evrimini tamamlayabilmesi için iki konak kullanır. Bu konaklar aynı veya ayrı türler olabilir. Konak üzerinde kan emmiş ve doymuş olan dişiler toprağa düşer yumurtlar ve ölürler. Yumurtadan çıkan larvalar oradan geçmekte olan 1. konak bir canlının üzerine tutunurlar. Doyuncaya kadar kan emerler ve hypostomlarını geriye çekerek, aynı konak üzerinde gömlek değiştirirler ve nymph olurlar. Aç olan bu nymphler aynı konaktan kan emerler ve doyduktan sonra toprağa düşerler. Toprakta gömlek değiştiren nymphlerden erişkinler oluşur. Aç olan erişkin keneler bu yörede bulunan 2. bir konağa tutunurlar, kan emerler ve doyduktan sonra kopulasyon olur. Döllenmiş dişiler bu konağı terkeder toprağa düşer ve yumurtladıktan sonra ölürler. Yani aç larva olarak tutunduğu konaktan doymuş nymph olarak ayrılır. İlk gömlek değiştirme 1. konakta, 2. gömlek değiştirme toprakta olur. Örnek: Hyalomma türleri, Rhipicephalus everts;ve Rhicephalus bursa türleri iki konaklı kenelerdir 3-) Üç konaklı keneler Bu tip keneler gelişmelerini tamamlayabiImek için üç konağa ihtiyaç duyarlar. Yumurtadan çıkan larvalar 1. konağa tutunurlar. Bunlar kan emer ve doyduktan sonra toprağa düşerler. Toprakta gömlek deyiştirdikten sonra aç nymphler oluşur. Bu aç nymphler kan emmek üzere 2. bir ayrı veya ayrı konağa tutunurlar. Kan emip doyan nymphler konağı terkeder ve toprağa düşerler. Toprakta gömlek değiştirdikten sonra aç erişkinler oluşur. Aç erişkin keneler kan emmek için 3. bir aynı veya ayrı konağa tutunurlar. Kan emerler, doyarlar ve çiftleştikten sonra dişiler toprağa düşer yumurtlar ve ölürler. Yani her gelişme döneminde ayrı bir konaktan beslenirler ve her gömlek değiştirme olayı toprakta olur. Örneğin; lxodes ricinus, Rhipicephalus appendiculatus, Haemaphysalis ve Dermacentor türleri gelişmeleinde üç konak kullanırlar. Ixodidae ailesine bağlı olarak bulunan kene cinsleri şunlardır. Genus: Ixodes Genus: Haemaphysalis Genus: Boophilus Genus: Dermacentor Genus: Hyalomma Genus: Amblyomma Genus: Rhipicephalus Genus: Ixodes Ixodes 'lerin palpleri ve hypostomları uzundur. Anal oluk belirgin ve anüsü önden kuşatır. Scutum nakışlı değildir. Göz ve feston bulunmaz. Erkeklerin ventral yüzü birbirinden belirgin sınırlarla ayrılmış 7 alandan oluşur. Palpleri uzun raket şeklinde ve üzerinde kıllar bulunur. Bu cinste bulunan türler; lxodes ricinus, lxodes hexagonus, I. pilosus, l persulcatus ve l rubicundus'dur. Bunlardan en önemli olan tür I. ricunus olup, çoğunlukla sığır ve koyunlardan kan emerler. Avrupa'da ve Türkiye'de yaygındır ve üç konaklı kenedir. Özellikle ılıman ve rutubetli iklim bölgelerinde bulunur. Ixodes ricinus türü konağından kan emerek verdiği zararın yanısıra Babesia bovis, Babesia divergens'i sığırlara, Anaplasma ovis'i koyunlara ve Babesia canis'i köpeklere bulaştınrlar. Aynca Louping-ill virusuna, Rusya ilkbahar yaz encephalitisine ve Coxiella burnettii'ye vektörlük yapmaktadırlar. Genus:Boophilus Bunların ağız organelleri kısadır. Palpleri kısa ve çıkıntılı olup, hipostoma eşit yada kısadır. Göz ve çift anal plakları vardır. Festonları bulunmaz. Boophilus cinsinde bulunan türler; Boophilus annulatus, B. decoloratus, B. calcaratus ve B. microplus' dur. Bunlardan ülkemizde en yaygın olarak görülen tür B. annulatus'dur. Tek konaklı kenedir ve genellikle sığırlardan kan emerler. Sığırların önemli kan protzoonlarından olan Babesia bigemia, B. bovis, Anaplasma marginale, A.centrale ve Borrelia theileri (spirochaetosis)'ye vektörlük yaparlar. Genus: Hyalomma Hyalomma'ların ağız organelleri uzundur. Palpleri uzun olup, 2. palp segmenti çok uzundur. Göz, anal ve subanal plaklar vardır. Scutum koyu renklidir ve nakışIı değildir. Festonlar düzensizdir ve bir bölümü birbiriyle kaynaşmıştır. Bu cinste bulunan önemli türler; Hyalomma anatolicum excavatum, H. anatolicum anatolicum, H. marginatum ve H. detritum' dur. Yurdumuzda görülmektedirler ve yaygın kene türleridir. İki konaklı keneler olup, ruminant ve tektırnaklılardan kan emmerler bunlar konaklarına Theileia annulata, Theileria parva, T.dispar, Babesia caballi, B.equi, Coxiella burnetii (Q humması etkeni), Rickettsia bovis ve Rickettsia canari'yi naklederler. Genus: Rhipicephalus Palpleri ve hypostomları kısadır. Göz ve anal plakları vardır. Anal oluk belirgindir. Basis capituli dışa doğru çıkıntılıdır. Bu cinsteki türler feston taşırlar. Bulunan önemli türler; Rhipicephalus bursa, R sanguineus ve R appendiculatus' dur. Bulardan R. bursa çoğunlukla koyunlardan kan emerler. Bu tür Babesia ovis, Theileria ovis, Babesia bovis, Babesia equi, B. caballi, Anaplasma marginale, Rickettsia avina, Coxiella bumetii ve koyunlarda Nairobi hastalığı virusunu konaklarına bulaştırır. R. bursa türü gelişmelerini iki konakta tamamlarlar. R. sanguineus türü ise genellikle köpeklerden kan emer ve üç konaklı kene olup, ülkemizde yaygındır. Babesia canis, B.vogeli, Hepatozoon canis, Pasteurella tularensis, Rickettsia, Coxiella ve Borrelia türlerine vektölük yaparlar. R.appendiculatus ise Afrikanın tropikal bölgelerinde yaygındır ve sığırlardan kan emerek bunlara Theileria parva'yı taşırlar. Ayrıca T.mutans, B. bigemina ve Hepatozoon canis'e vektörlük yaparlar. Bu üç türden ayrı olarak Rhipicephalus capensis ve R. everisi türleri de bulunmaktadır. Genus: Haemophysalis Palpleri kısa ve 2. palp segmenti basis capituliden daha geniştir. İkinci palp segmenti uzunluğuna oranla iki misli daha geniştir. Göz ve anal plakları bulunmaz. Anal oluk belirgin değildir yada bulunmaz. Anal oluk anüsü arkadan kuşatır. Feston taşırlar. Üç konaklı kenelerdir. Bu cinse bağlı olarak Haemaphysalis punctata, H. parva, H. longicornis ve H. leachi türleri vardır. H. punctata ve H. longicornis ruminantlardan kan emerler. Bunlar B. bigemina, B. motasi, Anaplasma marginale, Anaplasma centrale ve Theileria türlerini naklederler. H. leachi türü ise köpeklerden kan emer. Sarı köpek kenesi adını alır. Köpeklere B. canis, Coxiella bumetii ve Rickettsia conori ' yi bulaştırırlar. Genus: Dermacentor Bu cinsteki kene türlerinin palpleri kısa ve basis capitulinin hizasındadır. Palpleri geniştir. Gözleri vardır, anal plakları yoktur. Scutumları renkli ve nakışlıdır. Bu cinse bağlı türlerin çoğunluğu üç konaklıdır. Genellikle tektırnaklılardan ve köpeklerden kan emerler. Bulunan türler; Dermacentor andersoni, D. reticulatus, D, marginatus, D. niveus, D. occidentalis ve D. variabilis'dir. Bunlardan D. marginatus ve D. reticulatus ülkemizde yaygındır. Bu türler Babesia caballi, B. equi ve B. canis'e vektörlük yaparlar. Genus: Amblyomma Palpleri uzun ve hipostomları kalındır. Gözleri vardır ve anal plakları yoktur. Scutumlarının üzeri nakışlıdır. Festonları vardır ve bunlar arasında kaynaşma yoktur. Türkiyede görülen türü Amblyomma variegatum'dur. Üç konaklı kenedir. Sığırlara Theileria mutans'ı bulaştırır. Bu cinse bağlı olarak A. americanum, A. hebraeum ve A. maculatum türleride bulunur. Ixodidae ailesine bağlı olarak bulunan bu cinslerden başka sürüngenlerde bulunan Aponomma ve evcil ve yabani hayvanlarda bulunan Rhipicentor cinsleride bulunmaktadır. Familya: Argasidae Bu ailedeki keneler mesken keneleri olarak bilinirler. Mesken keneleri ahır, ağıl ve kümesIerde bulunur ve buraya giren hayvanlardan kan emerler. Genel morfolojik ve biyolojik özellikleri yönünden mera kenelerine benzerler. Ancak bazı farklılıklarda vardır.Ixodidae ailesi ile aralarındaki bu farklılıklar verilerek mesken kenelerin özellikleri anlatılacaktır. Morfolojik Farklılıklar 1. Ixodidae'lerde capitulum dorsalden bakıldığında vücudun ön tarafında bir çıkıntı yapmış şekilde görüldüğü halde, Argasidae'lerde larva dönemleri hariç capitulum ventralde yer alır ve bu nedenle dorsalden bakılınca görülmez. 2. Ixodidae'lerde scutum vardır. Erkeklerde scutum tüm vücudu örter ve fazla kan ememezler. Bunların dişi, larva ve nymph 'lerinde scutum önde yaka şeklindedir ve fazla kan emerler. Argasidae'lerde ise scutum yoktur. 3. Ixodidae'lerin erkeklerinin ventralinde görülen kitini plaklar, Argasidae'lerde yoktur. 4. Ixodid 'lerin palpleri köşelidir. Argasid 'lerin ise silindiriktir. 5. Ixodidae ailesindeki kenelerin ayak uçlarında pulvillum adı verilen yastıkçıklar bulunur. Bu nedenle bunlar cam ve fayans gibi düz zeminlere tırmanabilirler. Ancak Argasidae'lerde pulvillum yoktur. 6. Ixodidae'lerin dorsalinde bulunan scutum nedeni ile özellikle kan emmiş olan erkek ve dişiler arasında sexuel dimorfismus vardır. Argasidae'lerde ise böyle bir farklılık bulunmaz. 7. Ixodidae'lerin arka taraflarında feston vardır. Argasidae'lerde yoktur. 8. Mera kenelerinin bazı türlerinde göz vardır. Gözler büyüktür ve scutumun ön kenarının iki yanında bulunur. Mesken kenelerinde göz vardır. Bunlarda vücudun ventralinde ve ön kısmının iki yanında bulunur. 9. Ixodidlerde stigmalar büyüktür ve 4. coxanın arkasındadır. .ArgasidIerde ise stigmalar küçüktür ve 4. coxanın önündedir. ıo. Ixodidlerde erkek ve dişi büyüklük ve scutumun konumuna göre ayrılır. Erkekler dişilere göre daha küçüktür. Scutum erkeklerde tüm vücudu örter. ArgasidIerde ise erkek ve dişi genital deliğin morfolojik özelliğine göre ayrılır. Erkeklerde genital delik at yarık şeklinde olduğu halde, dişilerde enlemesine bir yarık şeklindedir. ll. Sert kenelerin dişilerinde basis capituli üzerinde poros area vardır. Yumuşak kenelerin dişilerinde poros area yoktur. Biyolojik Farklılıklar l. Ixodidae aileasindeki keneler doğada, özellikle açık yerlerde ve meralarda gelişmelerine karşılık, Argasidae türleri ahır, ağıl ve kümes gibi kapalı ve örtülü yerlerde gelişirler. Bunun için Ixodidae ailesindeki kenelere mera keneleri, Argasidae ailesindeki kenelere ise mesken keneleri adı verilir. 2. Mera kenelerinin hemen hepsi memelilerin parazitidirler. Ancak 2 ve 3 konaklı olan bazı türleri kanatlılardan da kan emebilir. Bunun aksine Argasidae türlerinin bir kısmı genellikle sadece kanatlılardan bir kısmı ise memelilerden kan emerler. 3. Ixodidae türleri konakçıya tutunduğunda iyice doyuncaya kadar kan emer, gömlek değiştirir. Yumurtlar ve ölür.Ancak argasidae türleri konaklarından azar azar ve kısa süreli olarak kan emerler ve her seferinde nisbeten az sayıda (200-300 adet) yumurtlar. Fakat yumurtlamadan soma ölmezler ve bir kaçkez yumurtlayabilirler. 4. Ixodidae türleri konaklarından doyuncaya kadar sabit olarak kalırlar. Argasidae türleri ise geçici ve gezicidirler. 5. Mera kenelerinde bir nymph safası vardır. Argasidae'lerde ise bir kaç nymph safhası vardır ve bunlarda bütün gömlek değiştirmeler konak dışında meydana gelir. 6. Mera keneleri açlığa mesken kenelerine göre daha dayanıksızdırlar Ixodidler 1-2 yıl, Argasidler ise 9-10 yıl aç kalabilirler. Argasidae ailesindeki keneler vücutlarının üzerinde kitini plakların olmamasıyla "yumuşak keneler" ve biyolojik gelişmelerini barınaklarda geçirdiği içinde "mesken keneleri" olarak adlandırılırlar. Argasidae ailesindeki kenelerin larva. nvmoh ve eriskinlerinin avrımı: Organ Larva Nymph Erişkin Bacak 3 çift 4 çift 4 çift Peritrem Yoktur Vardır Vardır Capitulum Anteroterminal Anteroventral Anteroventral Genital Delik Yoktur Yoktur Vardır * Erkeklerde dar ve yarım ay şeklinde, dişilerde ise kabarık, geniş ve enine bir yarık şeklindedir. Argasidae ailesinde bulunan kene cinsleri: Genus: Argas, Genus: Ornithodoros (= Ornithodorus), Genus: Otobius Genus: Argas Bu genustaki keneler genel olarak kanatlıların parazitidirler. Vücutları ince yapılı, ovalimsi, dorso-ventral yassı, ön uçları daralmış ve arka uçları geniş ve yuvarlağımsıdır. Bu kenelerin dorsal ve ventral yüzünü ayıran bir çizgi bulunur. Bu çizgi Argaslarda oldukça ince olup, kenenin kan emip doymasına rağmem keskin bir şekilde kalır. Gözleri yoktur. Dorsal yüzlerinde çok sayıda ufak ve yassı dairemsi çukurlar bulunur. Argas cinsine bağlı olarak bulunan türler; Argas percicus: Kanatlılardan (tavuk, bindi, kaz gibi) kan emerler. Ördeklerde kene toksikozuna neden olmaktadır. Argas reflexus: Güvercinlerin parazitidir. Argas sanchezi: Kanatlılardan kan emer. Agas radiatus, Argas miniatus ve Argas mianensis türleride kanatlı keneleridirler. Bunlardan en yaygın olanları A. persicus ve A. reflexus' dur. Argas türleri kan emecek kanatlı bulamadıklarında evcil memelilerden ve insanlardan da kan emebilirler. Biyolojik gelişmeleri Argas türlerinin erginleri kanatlı barınaklarının tahta aralıkları, tünek çatlakları ve çatısında güvercin barındıran veya kuş bulunduran evlerin çatı kısımlarında bulunurlar. Buralarda çatlak ve yarıklara saklanırlar. Buralarda çiftleşirler. Döllenen dişi kan emmek için konağına saldırır, kan emer ve doyduktan sonra konağından ayrılarak çatlak ve yarıklara çekilirler ve buralarda yumurtlarlar. Dişiler kan emek için birkaç kez konağına saldırır ve her kan emişten sonra yumurtlar. Yumurtalardan uygun ısıda yaklaşık 3 hafta sonra larvalar çıkar. Larvalar konaklarına tutunarak kan emer ve doyduktan sonra kanağı terkeder ve bir hafta içinde gömlek değiştirir. Bunun sonucu oluşan 1. nymph'ler tekrar kanaklarına saldırır, kan emer doyar ve konaklarından ayrılarak değişik yerlere saklanırlar. Buralarda yaklaşık bir ay içinde 2. nymph olur. Bunlarda konaklarından kan emer, doyar ve konaklarını terkederek gizlenirler. Argas persicus'da 6-8 hafta sonra, A. reflexus'da ise bir yıl sonra erişkin kene haline gelirler. Bu kenelerin kan emme süreleri 2 saat kadardır. Konaklarından sadece geceleri kan emerler. Ayrıca ülkemiz iklim şartlarında kışın aktivite göstermezler. İlkbaharda havalar ısınınca aç döllenmiş dişi kan emerek biyolojik gelişmeyi başlatır. Argasidae ailesindeki kene türleri kümesIerde bulunan kanatlıların üzerine gelerek bütün gelişme dönemlerinde kan emerler. Özellikle geceleri hayvanları rahatsız ederler. Kanatlılarda huzursuzluğa ve dolayısı ile verim düşüklüğüne neden olurlar. Ayrıca ağır enfestasyonlarda anemi şekillenir. Yine A. persicus türü ördeklerde kene felcine neden olabilir. Argas türleri Anaplasma marginale, Aegyptionella pullorum, Borrelia anserina'nın (Spirochaetosis etkeni ) vektörlüğünü yaparlar. Bu cinse bağlı keneler kümesIere giren insanlarada saldırabilir ve kan emerler. Genus:Ornithodorus Bu cinste bulunan kenelerin yan kenarları yuvarlağımsıdır. Lateralde vücudun dorsal ve ventral yüzünü ayıran çizgi bulunmaz. Vücut dorso-ventral olarak yassılaşmıştır. Aç iken vücudu ince ve kenarları yukarı doğru kıvrılmıştır. Kan emmiş olanlarda ise kenarları yuvarlaklaşmıştır. Elipsoidal şeklinde olup, bazı türlerinde vücudun iki yanının ortası hafif içeri doğru çekik (konkav)dir. Erişkinlerin dorsalinde değişik kıvrımlar vardır. Göz çoğu türlerde bulunur. Bu cinse bağlı türler; Omithodorus laharensis, O. Moubata, O. turicata'dır. Bunlardan yaygın olan ve Türkiye'de de görülen tür O. lahorensis'dir. Bunlar ağıllarda saklanırlar. Toprak veya balmumu renginde olup, koyun ve keçilerden kan emerler. Ayrıca diğer hayvanlardan ve insanlardan kan emebilirler. Koyun ve keçiler bütün yaz mevsimini merada geçirip kış geldiğinde ahır veya ağıllara alındığında keneler bunların üzerine gelirler. Bunun için Ornithodorus 'lara kış kenesi adı verilir. Biyolojileri: Erişkinleri ağıllarda bulundukları çatlak ve yarıklarda çiftleştikten sonra erkekler ölür, dişiler kan emmek için konaklarına tutunurlar ve kan emerler. Doyduktan sonra konaklarını terkeder ve saklanırlar. Saklandıkları yarıklarda yumurtlarlar. Mayıs-Ağustos aylarında yumurtalarını bırakırlar. Yumurtadan yaklaşık bir ay sonra larvalar çıkar. Sonbahar başlarında çıkan larvalar, bu mevsimde havaların soğumasıyla ağıla sokulan hayvanlara saldırır ve kan emerler. Doyduktan sonra konağı terketmeksizin gömlek değiştirir ve l.nymph'ler oluşur. Daha sonra sırası ile konak üzerinde 2.ve 3. nymph'ler meydana gelir. Kan emip doymuş olan 3. nymph 'ler konaklarını terkederler ve saklanma yerlerinde gömlek değiştirerek erişkinler oluşur. Larvadan 3 nymph safhasına kadar olan dönem bir ay kadar sürer. Bir dişi kene bir kopulasyondan sonra hiç çiftleşmeden 2 yıl fertil yumurta bırakabilir. Erişkinler kan emmeden 10-l2 yıl yaşayabilirler. Ornithodorus türleri de geceleri konaklarından kan emerler. Bunlar her gelişme formlarında hayvanların boyun, sırt, vücudun yan taraftan ve kuyruk sokumu bölgesimde yapağı yada tiftik arasında bulunarak bu bölgelerin derisinden kan emerler. Bunun için hayvanlara ilk bakıldığında keneler görülmezler. Keneleri görmek için yapağı aralanarak el bu kısımlarda dolaştırılır ve parmak uçları ile kenelerin varlığı anlaşılır. Çok sayıda olduklarında hayvanlarda kondüsyonun düşük olduğu kış aylarında kan emerek anemiye sebep olurlar ve ekonomik kayıplara yol açarlar. Ornithodorus lahorensis Rickettsia, Tularemi ve bazı Trypanosoma türlerini taşırlar. Ayrıca bu cinse bağlı türler Q- humması etkeni olan Coxiella bumetii'yi naklederler. Konakçı bulamadıklarında insanlara saldırarak kan emerler ve onlarda bazen toksikasyon, felç ve ölümlere yol açabilirler. Genus: Otobius Otobius megnini türü Kuzey ve Güney Amerika, Güney Afrika ve Hindistan' da bulunur ve kulak kenesi olarak adlandırılır. Larva ve nymph 'leri çoğunlukla köpeklerin kulaklarında parazitlenir. Ancak diğer evcil hayvanlar, yabani hayvanlar ve insanlarda bulunabilir. Larvaları doyduklarında hemen hemen küreseldirler. Nymphleri orta kısımlarında daha geniştir. Bu cinsin erişkinleri parazit değildir. Erişkinleri beslenmezler ancak dişileri 500-600 kadar yumurtayı yiyecek depolarının altlarına, taş ve duvar çatlaklarına bırakırlar. Bunlar konaklarından kan emerek irritasyona ve yangıya neden olurlar. Sekunder bakterilerin işe karışması ile de daha da komplike olurlar. Verim düşüklüğüne neden olurlar. Ağır enfestasyonlarda kulak içinde paket halindeki larva ve nymphlerin görülmesi ile tanı konulur. O. megnini'den ayrı olarak tavşanlarda bulunan diğer bir türde O. lagophilus' dur. Özellikleri O. megnini 'ye benzer. Kenelerin Zararlı Etkileri 1. Kan emmeleri veya kan emdikten sonra kanamanın uzun bir süre devam etmesi sonucu anemiye neden olmaları. Bu etkileri ağır enfestasyonlarda görülür. Tek bir dişi kene günde 0.5- 2 ml kan emebilir. Böylece kenelerle enfeste hayvanlarda verim düşer ve hatta ölüm olayları görülebilir 2. Kenelerin konakları üzerinde yaralayıcı etkileri vardır. Kene kan emmek için deriyi soktuğunda deriyi delerek yaralanmalara ve dermatozlara neden olurlar. Ağır enfetasyonlarda bu yaralar piyojen bakterilerle sekunder olarak enfekte olurlar ve kene piyemisi şekillenir. Ayrıca bu gibi enfekte yaralar myiasis etkenlerini ortama davet eder. Myiasis etkenleri yumurta ve larvalarını buralara bırakırlar. Böylece sekunder hastalıklara ortam hazırlarlar. Deri kalitesi bozulur ve verim kaybı oluşur. 3. Kenelerin konakları için bir etkileride paralizIere neden olmalarıdır. Ixodes ve Dermacentor gibi kene türlerinin nymph ve özellikle erişkin dişilerinin tükrük salgısında bulunan toksin kene felcine neden olur. Arka ayaklardan başlayan ve öne doğru yayılan ve hatda ölümle sonuçlanan felç olayı oluşur. Bu toksin solunum ve sinir sistemini etkilemektedir. Kene felci ( tick parlysis) insanlarda özellikle çocuklarda ve evcil hayvanlarda görülmektedir. 4. Kene toksikozuna neden olmaları Hyalomma cinsine bağlı türler tarafından oluşturulur. Erişkin kene tarafından oluşturulan toxin ruminat ve dumuzlarda mukoz membranların hiperemisi ve yaş egzama ile karekterize terleme belirtilerine yol açar. Ayrıca Argas persicus türü ördeklerde kene toksikozuna neden olabilmektedir. 5. Kenelerin en önemli etkilerinden biride çeşitli hastalık etkenlerine vektörlük yapmalandır. Keneler protozoonlar, viruslar, bakteriler, riketsiyalar, spiroketler ve helmintlere biyolojik veya mekanik taşıyıcılık yaparlar. Paraziter enfeksiyonlardan Veteriner Hekimlik yönünden önemli olan Babesia ve Theileria etkenlerini nakletmeleri yönünden büyük önemleri vardır. Keneler bu hastalık etkenlerini iki şekilde naklederler.Bunlar; Transstadial nakil: Kenenin bir gelişme döneminde kan emerken aldığı hastalık etkenini bir sonraki gelişme döneminde kan emerken konağına aktarmasıdır. Üç konaklı keneler larva safhasında aldığı etkenleri nymph evresinde kan emdiği konağa aktarır. Nymph döneminde aldığı etkenleri ise erişkin safhada kan emdikleri konağa aktarırlar (iki konaklı kenelerde de bu durum görülür.). Hyalomma türlerinin Theileria annulata'yı nakletmeleri örnek olarak verilebilir. . Transovarial nakil: Tek konaklı kenelerde etkenler kenenin yumurtalarına geçer. Yumurtadan çıkan larvalar enfekte olduğu için bu dönemde kan emerken etkenleri konağa nakleder. Boophilus türlerinin Babesia türlerini nakletmesi transovarial nakildir. Kenelerin hastalık etkenlerini nakletmelerindeki yüksek potansiyeli şu özelliklerinden ileri gelir: 1. Sabit ve yavaş olarak kan emerler. Bu sırada konağı ile birlikte taşınarak geniş bir alana dağılırlar. 2. Çevre şartlarına oldukça dayanıklı olup, kolay kolay etkilenmezler. 3. Doğal düşmanları oldukça azdır. 4. Kene türlerinin çoğunluğu geniş bir konakçı spektrumuna (euroxene)sahiptir. Bu nedenle aç kalma ve ölme sorunları daha azdır. 5. Keneler uzun süre yaşarlar ve açlığa oldukça dayanıklıdırlar. 6. Kenelerin yüksek üreme güçleri vardır. Bazı türler 18.000'ne kadar yumurta bırakabilirler. 7. Birçok kene türü hastalık etkenlerini tansovarial olarak yeni nesillerine aktarırlar. Böylece bir enfekte keneden binlerce yeni enfekte nesiloluşur. Lyme hastalığı: Bu hastalığın etkeni spiroketalardan olan Borrelia burgdorferi'dir. Köpek, at, sığır, koyun, kedi ve insanlarda bildirilmiştir. Hastalığın vektörlüğünden birinci derecede sorumlu olan tür lxodes ricinus' dur. Bu mera kenesi türü etkenle bir defa enfekte olduktan sonra bütün ömürleri boyunca bulaşık kalırlar. Transstadial (%80) ve transovarial (%20) olarak nakledilirler. Lyme enfeksiyonunda ilk klinik belirti deride oluşan Erythema Chronicum Migrans (ECM)'dır. Bu klinik bulgu hastalık için patognomonik lezyon olup, deri döküntüsü şeklindedir. Buna yerel bir lenfbezi büyümesi, ateş ve halsizlik de eşlik edebilir. Ayrıca sinir sistemi, kalp ve kas iskelet sistemi ile ilgili belirtiler görülür. Suborder: Mesostigmata Mesostigmata alt takımındaki akarlar oldukça küçük olup, 1-2 mm büyüklüğündedirler ve kenelere benzerler. Vücutları gnathosoma ve idiosomadan ibarettir. Stigmaları bir çift olup, coxae'ların lateralinde yer alır. Bu alt takımda önemli olan aile; Familya: Dermanyssidae Bu aileye bağlı bulunan cinsler; Genus: Dermanyssus Genus: Pneumonysus Genus: Ornithonyssus Genus: Ophionyssus Genus: Allodermanyssus Genus: Varroa Genus: Dermanyssus Bu cinste bulunan ve yaygın olarak görülen tür Dermanyssus gallinae' dir. Bu türün erişkinleri 0.5-1 mm büyüklüğündedir. Vücudu oval şekilde ve ön tarafında ince uzun yapıda ağız organelleri bulunur. Vücudun dorsal kısmı yaka şeklinde küçük bir kitinle örtülüdür. Erişkinlerinde ve nymphlerinde 4 çift bacak bulunur. Uzun bacaklıdırlar. İdiosoma seyrek ve kısa kıllarla örtülüdür. Bu parazit tüm kanatlılardan kan emer ve fırsat buldukça da insanlara saldırabilir. Bu akarlar beyaz, gri veya siyah renkte olmalarına rağmen kan emince kırmızı renk alırlar. Bu nedenle tavukların kırmızı akan ya da "tavuk kırmızı biti" olarak adlandırılır. Bunlar kümesIerde hayvanların üzerinde ya da meskenlerde çatlak ve aralıklarda kum yığını halinde bulunurlar. Dişileri yumurtalarını buralara bırakır. Yumurtalardan çıkan larvalar gömlek değiştirirler ve I. nymph 'ler oluşur. Bunlar konaklarından kan emerler, gömlek değiştirirler ve 2. nymph'ler meydana gelir. Bunlarda kan emer ve gömlek değiştirerek erişkinler oluşur. Biyolojileri optimal şartlar altında 7 günde tamamlanır. Erişkinler kan emmeksizin 4-5 ay canlılıklarını korurlar. Dermanyssus gallinae'nin erişkin ve nymph'leri konaklarından kan emerler. Larvaları ise beslenmezler. Dermanyssus gallinae'nin erişkinleri ve nymph'leri değişik zamanlarda ve periyodik olarak kanatlılardan kan emerler. Gündüzleri ise kümesIerde saklanırlar. Evlerin çatısındaki güvercinlerde bulunduklarından buradan insanlara geçebilirler. Ayrıca kümese giren insanlara da saldırırlar. Bu parazitler özellikle yazın aktivite gösterirler ve uygun şartlarda çok çabuk ürerler. Konaklannı irrite ederek huzursuzlandınr ve kan emerek anemiye sebep olurlar. Bu durum yumurta verimlerinin düşmesine ve et verim kaybına yol açar. Ağır enfestasyonlarda ölüm olayları görülebilir. Bu ektoparazit türü kanatlıların spirochetosis etkeni olan Borrelia anserina'ya vektörlük yapar. İnsanları sokması sonucu deride kızarıklık, lokal olarak şişlikler, lokal ya da yaygın allerjik bozukluklar ve kaşıntıya neden olurlar. Bu parazit türüne kuş akarcığı adı da verilmektedir. Genus: Ornithonyssus (=Bdellonyssus, Liponyssus) Bunlar şekil ve biyolojileri bakımından Dermanyssus 'lara benzerler. Ancak bunların Vücudunda çok daha fazla uzun tüyler bulunur. Kanatlılardan, fare ve ratlardan kan emerler. Bunlara keme akarcığı adı verilir. Kan emmemişleri kirli sarı renkli olduğu halde, kan emrniş olanlan kırmızı - boz renktedir. Erişkinleri oval ve 1 mm uzunluğundadır. İnsanlara saldırdıklarında özelikle çocuklarda şiddetli yanma ve kaşıntıya neden olurlar. Bu cinste bulunan türler; Ornithonyssus sylviarum, O. bursa ve O. bacoti'dir. Fareler arasında rickettsia etkeni olan Rickettsia acari'yi naklederler. Genus: AlIodermanyssus Önemli tür Allodermanyssus sanguineus' dur. Bunlar fare ve ratlarda bulunurlar. Özellikle evcil rat ve farelerden kan emerler. Bunun için ev fare akarı adını alırlar. Biyolojileri Dermanyssus'lara benzer. Bu tür fare ve ratlar arasında veya bunlardan insanlara riketsiyal çiçek etkeni olan Rickettsia akari'yi vektörlük yaparak bulaştırırlar. Genus: Pneumonyssus Pneumonyssus cinsine bağlı türlerden P. caninum köpeklerin burun yollarında ve nasal sinuslarda, P.simicola ise maymunların bronşlarında parazitlenir. Biyolojileri iyi bilinmemektedir. Bulaşmanın direkt temasla olabileceği kaydedilmiştir. Genus: Ophionyssus Bilinen tür Ophionyssus natricis'diro Yılanların akarıdır. Sarımsı kahverengindedirler. Ancak kan emdiklerinde koyu kırmızı renk alırlar. Biyoloji ve beslenme özellikleri Dermanyssus 'lara benzer. Ağır enfestasyonlarda anemi, zayıflama ve ölüme yol açarlar. Ayrıca yılanların bakteriyel bir patojeni olan Aeromonas hydrophila 'yı mekanik olarak naklederler. Yılanların diğer akarları olan Entonyssus ve Entophionyssus cinsleri trachae ve akciğerlerde parazitlenirler. Genus: Varroa Species: Varroa jacobsoni (Arı akarı) Ergin dişileri 1.2 mm uzunluğunda ve 1.5 mm enindedir. Vücutları dorso-ventral olarak yassıdır. Dişi varroa 'lar enine ovalimsi, erkekler ise yuvarlağımsıdır. Erkek varroa 'lar 0.8 mm uzunlukta ve 0.7 mm enindedir. Dişi akarlar açık veya koyu kahverenklidirler, erkekler ise beyaz gri veya sarımtrak renklidirler. Ergin dişilerde sırt kısmı hafif dış bükeydir. Vücut sert kitini tabaka ile örtülüdür. Dorsalden bakıldığında ağız organelleri ve bacakları iyi görülmez. Vücut gnathosoma ve idiosoma olmak üzere iki kısımdan oluşmuştur. Ağız organelleri delici ve emici tiptedir. Bir çift cheliserleri vardır. ve bu arı derisinin delinmesinde rol oynar. Bunların kenarında bir çift pedipalp bulunur. Erişkin varroalarda 6 eklemli 4 bacak bulunur. Erkek akarların ağız organelleri hemolenf emmeye elverişli değildir. Dişileri ise uygun ağız organelleri ile arı yavrularının ve erişkin arıların hemolenfini emer. Varroa jacobsoni'nin vücudunun sırt kısmında ve yanlarında diken gibi kıllar bulunur. Bu kıllar akarın arı üzerinde durmasını sağlar. Bu tür arıların genellikle baş ve thorax arasına yerleşir. Solunum çok iyi gelişmiş olan trake sistemiyle olur. Biyolojileri: Varroa jacobsoni'nin biyolojisi ilkbaharda arı larvasının yetiştirilmeye başlamasıyla başlar ve sonbaharda son genç işçi arılar çıkıncaya kadar devam eder. Kışı ergin dişi olarak geçirir. Bu akar erkek arılar üzerinde yaşar. Üreme için özellikle erkek arı gözlerini seçer. Varroa 'ların erkek arıları tercih etmelerinin bir çok nedenleri vardır. Bunlar; erkek arı larvalarının kapalı göz içinde kaldıkları sürenin daha uzun olması, kovanda erkek arı gözlerinin daha çok peteklerin alt ve yan kenarlarında bulunması, erkek arı larvalarının dişilerden daha fazla besinle beslenmesi ve hormonal etki gibi faktörlerdir. Kışı ergin arılar üzerinde geçiren döllenmiş dişi parazitler ilkbaharda gelişmekte olan 5-6 günlük larvaların bulunduğu petek gözlerine, gözler kapatılmadan 1-2 gün önce girerler. Dişi akar larvanın hemolenfini emer ve 2-9 adet yumurtasını buralara bırakır. 2-3 defa bulunduğu yere yumurtlayabilir. Yumurtalardan 24 saat sonra 3 çift bacaklı larvalar çıkar. Bunlar 2 gün sonra gömlek değiştirerek 1. nymph (protonymph) olur. Bu 4 çift bacaklı 1. nymphler larvanın hemolenfini emer ve gömlek değiştirerek 3-5 günde 2. nymph (deutonimf) ler oluşur, 2. nymph dönemi 1-2 gün sürer ve bunlar arı pupasının kan sıvısı ile beslenirler. Bunlardan da erişkin akarlar oluşur. Dişi varroa 8-10, erkek erişkin ise 6-7 günde yumurtadan oluşur. Ergin erkek ve dişi akar petek gözlerinde çiftleşir ve erkekler kapalı göz içerisinde ölürler. Bunun için arılar üzerinde erkek varroalara rastlanmaz. Çiftleşmiş genç dişi varroalar ise gözler içerisinde genç arıya tutunarak beslenmelerini sürdürürler ve arıyla birlikte gözden çıkarlar. Döllenmiş olarak gözden çıkan varroalar 5 gün sonra yumurtlamaya başlarlar. Yani bu akarlar bir süre sonra tekrar yavru gözlerine dönerek yumurtlamaya başlarlar. Erişkin dişi akarlar yazın 2-3 ay, kışın ise 5-8 ay yaşamlarını sürdürürler. Varroa'ların üreme potansiyelleri çok yüksektir. Bir nesilden diğer neslin oluşmasına kadar geçen süre yaklaşık 7 gündür. Erkek arılarda ise biyolojik gelişme 24 gün olduğundan, bir nesil arı oluşana kadar varroalarda 3 nesil meydana gelmektedir. Varroaların yaşaması ve çoğalması için mutlaka bal arısının hemolenfini emmesi gerekmektedir. Bulaşması: Bulaşma daha çok arıdan arıya olmakla beraber bunda gezginci ancılığında rolü vardır. Türkiye'ye Bulga.rİstan'dan geçtiği ve Trakya yöresinden de Ege bölgesine yayıldığı ve göçer ancılar vasıtasıyla bütün illerin bulaşık olduğu bildirilmiştir. Bulaşmada arıcılarında rolü vardır. Bulaşık arı kolonilerinden sağlıklı ailelere yavru ve genç işçi arı verilmesiyle, ailelerin kontrolsüz birleştirilrneleri ile ve işçi arıların çiçekten çiçeğe konarken akarı oralara taşımasıyla olmaktadır. Klinik belirtiler: Arı varroasis'ine neden olan Varroa jacobsoni ergin an ve larvaların hemolenfini emdiği için, yavru arı ve ergin anlara zarar verirler. Arılar güçsüz düşerler ve akarlardan kurtulmak için büyük gayret sarfederler ve bunun sonucunda da huzursuz olur ve uzun bir can çekişmesinden sonra ölürler. Ölümler kovan dışında olur. Enfeste arılar iyi uçamazlar. Sıcak havalarda enfeste arılar kovan uçuş deliğinin önünde sürünürken görülürler. Bu akarlar beslenirken yaralar açarlar ve bu yaralardan bakteriyel etkenler arılara girerek septisemiden ölüme neden olurlar. Ayrıca varroasis'de etkenler erkek arılar üzerinde daha yoğun bulunduklarından, kovanda erkek arı sayısı belirgin sayıda azalır ve cinsel güçleri düşer. Yine ana arı ve işçi arıların ömürleri kısalır ve işçi arılar normalden daha küçük olurlar. Arı larvaları rahatsız oldukları için petek gözünden dışarıya çıkarlar ve kovan dip tahtasının üzerine düşerler ve hatta bunlardan oluşacak arılarda da anomaliler oluşur. Bazen ölü larvalar dışarıya atılamazlar ve gözler koyu renkli olup, deliklerin çerçevesi beyazlaşmıştır. Arılarda yüksek kayıplar kışın ortaya çıkar. Ana arının yumurtlama yeteneğinin azalması ve işçi arıların beslenme yeteneklerinin bozulması ile ekonomik kayıplara yol açarlar. Varrosis’ de teşhis: Kovanın dip tahtası üzerine konan kağıt üzerine düşen akarları toplayıp inceleyerek, kapalı erkek yavru gözleri ince uçlu bir pensle açılarak dışarı çıkarılan larvaların üzerinde akarlar aranarak konulur. Erişkin dişi akarları çıplak gözle görebiliriz. Ancak nymphler için büyüteç yada en iyisi stero -mikroskop altında incelenmeyle teşhis edilir. Ergin arılar üzerindeki varroaları görmek için ise 200 kadar arı örneği bir fırça ile toplanır. Kavanoza konan bu örnekler üzerine sıvı deterjanlı sıcak su dökülür. Arılar tel süzgeçle sallanarak ayrılır ve dipteki tortuda parazitler aranır. Ayrıca arılar etilasetat ile öldürülür, alkolde yıkanır ve akarın an üzerinden ayrılması sağlanır. Çöküntü stero- mikroskopta incelenir. Kontrol: Varroasis'e karşı kimyasal mücadele erken ilkbahar ve geç sonbahar aylarında yapılır. Bu zamanlarda kovandaki bal miktarı az olduğu için kullanılan ilacın bala geçmesi gibi bir sorunun da önüne geçmiş olunur. ilaçlama için en uygun zaman arıların kovana döndükleri güneş batımından sonraki akşam üzeri yapılır. Bunun için gaz halinde kullanılan fumigantlar, toz şeklinde kullanılan ilaçlar, kontakt etkili ilaçlar ve şurup, kek gibi oral yolla etkili ilaçlar olarak gruplandırılan insektisit ve akarisitler kullanılır. Bunun için ülkemizde kullanılan ilaçlar; Perizin (Diethyl-thiophosphate), Folbex-VA (Bromopropylate), Varation-TKV (Malathion % 0.1), Varroacide ( Amitraz ), Vamitrat- Va ( Amitraz ) ve Apistan ( trifuoromethyl, sentetik pyretroiddir )'dır. Kontrol'de ayrıca biyolojik mücadele ve fiziksel mücadele metotlarıda kullanılmaktadır. Suborder: Prostigmata Bu alt takımdaki parazitlerin stigmaları gnathosomanın kaidesinde bulunur. Bulunan aileler; Familya: Trombiculidae Familya: Cheyletiellidae Familya: Demodicidae Familya: Myobiidae Familya: Pediculoididae Familya: Psorergatidae Familya: Tarsonemidae Familya: Trombiculidae Bu aileye bağlı Trombicula, Neotrombicula ve Leptotrombicula cinsleri bulunur. Bu cinslere bağlı türler ise T.dicoxale, T.minor, T.sarcina, T.akamushi ve N. autumnalis'dir Bunlardan yurdumuzda koyun ve sığırlarda saptanmış olan tür Trombicula dicoxale'dir. Ayrıca ülkemiz için en önemli türlerden birisi de N autumnalis' dir. Bu ailede bulunan türlerin erişgin ve nymph 'leri mera ve çayırlarda, kırsal, çalılık ve taşlık yerlerde serbest olarak yaşarlar. Bu evreleri parazit değildir. Ancak larvaları insan ve hayvanlardan lenf sıvısı emerek parazitlenirler. Erişkinleri 2 mm büyüklüğünde, gnathosoma üçgen şeklinde ve vücut cephalo-thorax abdomen şeklindedir. Vücut abdomenden sonra bir boğumlanma ile ayrıImıştır. Erişkin ve nymph 'lerinde görülen bu boğumlanma larvalarda görülmez. Erişkinleri beyaz sarımtrak renklidir ve vücutları sık kıllarla örtülüdür. Şeliserleri tırnak biçiminde ve uçları sivridir. Larvaları 0.2 -0.5 mm büyüklüğünde ve vücut toparlağımsıdır. Larvaların üzeri ince tüylerle kaplı olup, sarıdan kırmızı turuncuya kadar değişen renkte ve dorsal kısımda küçük bir kitini plaka taşırlar. Biyolojik gelişmeleri şöyledir. Trombikulid yumurtaları erişkinler tarafından toprağa veya otlar üzerine ilkbahar aylarında bırakılır. Yumurtalardan 6 bacaklı larvalar çıkar. Bu larvalar bulunduğu ortamdaki kuşlara, reptillere ve memelilere saldırırlar. Larvalar fare gibi küçük omurgalı konaklarda kulaklara yerleşebilir. Buralarda şeliser ve hipostomlarını deriye sokarak beslenirler. Bu esnada tükrüğe benzer bir madde salgılarlar. Larvalar daha sonra yere düşer ve dinlenme dönemi olan deutonimfler oluşur. Daha sonra ikinci dinlenme dönemi olan tritonimfler meydana gelir ve bunlarda erişkin akarcıklar haline geçerler. Trombicula larvaları bulundukları yerlerde başta tavşan, kemirgenler ve kuşlar olmak üzere değişik memeli hayvanlara ve insanlara sadırırlar. Bunlar özellikle ayak kısımlarında, şeliserleri ile tutunduğunda dermatitlere neden olurlar. Uyuz benzeri belirtiler ortaya çıkar. Sokulan yerde ortaları solgun, kenarları hiperemik lezyonlar oluşur, bu lezyonlar zamanla nekrozlaşır. Bazen kırmızı papüller meydana gelir ve bunlar kaşıntılıdır. Larvaların yaptığı bu lezyonlara güz uyuzu yada çalılık uyuzu adı verilir. Zamanla lokal direnç nedeniyle 4-8 gün içinde larvalar kendiliğinden deriden yere bırakılır. Bu türlerden T akamushi insanlara akarcık tifusu etkeni olan Rickettsia tsutsugamushi'yi bulaştırırlar. Bu durum özellikle uzak doğuda önemlidir. Oluşan şiddetli kaşıntıya karşı soğuk su banyoları veya kompresleri, antihistaminikli kremler uygulanır. Kaşıntıyı önlemek için %5 benzocaine, %2 metilsalisilat, %0.5 salisilik asit, %72 etanol ve % 19.5 su karışımı kullanılır. Familya: Tarsonemidae Bu ailede bulunan akarlardan Tarsonemus hominis türü insanların ürogenital organlarında bulunmuştur. Bu türden ayrı olarak özellikle hekimlik açısından önemli olan ve arıcılık sektöründe sorun oluşturan ve arılarda görülen akar türü ise Acarapis woodi' dir. Acarapis woodi'ye yaşlı arılarda yani ergin arılarda 1. göğüs stigmasının gerisinde yer alan trachea ( soluk borusu) ve bunun dallarında rastlanır. Bunun için arıların trachea akarı olarak bilinir. Hindistan ve Pakistan'da yaygındır. Erişkin akar 80 -120 mikron büyüklükte olup, trcheada rahatlıkla hareket eder ve kanat köklerine yerleşerek arı hemolenfi ile beslenir. Uzun ve delici olan ağız yapısıyla trachea duvarım delerek hemolenfı emer. Döllenmiş dişi yumurtalarını tracheaya bırakır ve sırası ile larva, nimf ve erişkin safhaları görülür. Bulaşma arıdan arıya contact temasla olmaktadır. Klinik olarak trachea çevresinden hemolenfin akması sonucu kabuklaşma görülür. Oksijen değişimi engellendiği için arılar ölürler. Büyük kayıplar arıların kovanda bulunduğu kış başlangıcında meydana gelir. Enfestasyon ilkbaharda ortaya çıkar ve enfeste arılar uçamaz ve sürünerek yürürler. Teşhis için trachea açılarak üzerine lamel kapatılır ve mikroskopta erişkin yada larva formları aranır. Ayrıca enfeste arıların tracheaları kahverengindedir. Normalde soluk borusu beyaz renklidir. Mücadelede akarları tam anlamıyla eradike edebilmek için birer hafta arayla 7 kez ilaçlama yapılmalıdır. Fumigasyon şeklinde kullanılan ilaçlar tercih edilir. İlaçlama anında kovandaki tüm delik ve çatlaklar kapatılmalı ve ilaçlama sonrası hemen açılmalıdır. ilaç uygulaması 10 gün sonra tekrarlanmalıdır. Familya: Pediculoididae (= Pyometidae) Önemli tür Pediculoides (= Pyometes) ventricosus'dur. Dişileri 220, erkekleri ise 150 mikron uzunluğundadır. Dişilerin arka uçu kesemsi koniktir. Bu türün sadece dişileri insanlarda ve hayvanlarda parazitlenir. Tahıl ambarlarında yaşayan insektIerin yada bunların gelişme dönemlerinin üzerinde bulunurlar. Bu akarlar bitki tohumlarına saldıran böceklerle beslenirler. Özelliklede bu böceklerin larvalarıyla beslendikleri için faydalıdırlar. Ancak bu ambarlara giren insan ve evcil hayvanlara da saldırarak kaşıntılı dermatitlere neden olurlar. Özellikle tahlıların bol olduğu yaz aylarında ve harman zamanında yaygındırlar. Biyolojileri farklılık gösterir. Deriye tutunan dişinin uterusundaki yumurtalardan larvalar gelişir. Her dişide 100-300 kadar larva gelişebilir. Bu larvaların sadece % 3-4'ü erkektir. Bu erkekler de ananın genita! deliğine yakın dururlar ve genç dişileri delikten çıkma esnasında döllerler. Her erkek 30 kadar dişi ile çiftleşir. Daha sonra dişiler yeni konak ararlar. Yaz aylarında tahılların bol olduğu dönemlerde 3-4 ayda bir yeni nesiller gelişir. Biyolojik gelişme için en uygun sıcaklık 26-28oC'dir. 25derecede'de yaklaşık 10 günde yeni nesiller ortaya çıkmaya başlar. Bunların yalnız dişileri insanlara saldırarak uyuz benzeri belirtilere neden olurlar. Bunun için Piyometes ventricosus'un konakların derilerine yapışarak parazitlenmesi sonucu oluşan dermatite "arpa uyuzu" ya da "Acarodermatitis urticarioides" adı verilmektedir. Tahıl uyuzu etkenleri olan bu akarcıklar başlangıçta açıkta olan kol, yüz, el ve bacakları sararlar ve zamanla tüm vücuda yayılırlar. Deride önce kabarcıklar, veziküller ve kaşıma sonucu peteşiyel kanamalar ve kızarıklıklar görülür. Buralarda kaşıntı sonucu yaralar oluşur. Bu yaralardan yapılan preparatlarda akarların görülmesiyle tanı konulur. Familya: Cheyletidae (= Cheyletiellidae ) Bu ailede bulunan akarların kutikulaları yumuşaktır ve şeliserleri uzundu. Palpleri 3-5 eklemden oluşmuş olup, uçlarında iri kanca bulunur. Memelilerde ve kuşlarda ektoparazit olarak yaşarlar. Bazı türler ise doğada serbest olarak yaşarlar. Memelilerde bulunan cins; Genus: Cheyletiella Bu cinsdeki türler köpek, kedi ve tavşanlarda parazitlenirler. Bağlı türler; Cheyletiella parasitivorax: Tavşanlar konaklandır. C. yasguri: Köpeklerde C. blakei: kedilerde C.strandtmanni: Yabani tavşanlarda C. .furmani: Tavşanlarda bulunur. Bu türlerin büyüklüğü 0.4 x 0.25 mm kadardır. Bu konakların kılları arasında yaşarlar ve çok hızlı hareket ederler. Konaklarının lenf sıvısını emerek beslenirler. Dişi parazitler yumurtalarını iplik benzeri bir salgı içerisinde kıllara yapıştırarak bırakırlar. Yumurta içinde önce prelarvalar ve bunlardan larva oluşur ve yumurtayı terkederler. Daha sonra sırası ile I. dönem nymph ve erişkinler oluşur. Cheyletiella cinsindeki bu parazitler konaklarında kılların keçeleşmesine ve karışık bir görünüm kazanmasına ve nisbetende kıl dökülmesine neden olurlar. Tüm dünyada yaygın olarak bulunan bu parazitler hayvan bakıcılarına ve sahiplerine de geçebilmektedir. İnsanlarda kaşıntı ile seyreden bir dermatite neden olmaktadırlar. Kontakt temasla insanlara geçen bu akarlar irrtasyon, eriytem, vesicül ve pustullere yol açarlar. Bu türlerin enfestasyonlarının teşhisi için şüpeli kısımlardan kıllar alınır ve mikroskobik bakıda iplik benzeri maddeyle kıllar üzerinde bulunan yumurtaların görülmesiyle konulur. Yada lezyonlu kısımların bir sıvı yağ veya gliserin ile yumuşatılmasından sonra kazıntı alınır ve mikroskobik olarak incelenerek tanı konulur. Bunlardan başka en iyi tanı metodlarından birisi de, Cheyletiella türleri hareketli olduklanndan kıllar aralanır ve selefobant yapıştırılır. Daha sonra bu bant kaldırılarak bir lam üzerine yapıştırılır ve akarlar incelenir. Familya: Psorergatidae Genus: Psorergates Bu cinse bağlı bulunan ve koyunların derisinde parazitlenen tür Psorergates ovis' dir. Avustralya, Yeni Zellanda ve Güney Afrika'da yaygın bir türdür. Akarlar oldukca küçük ve küreselolup, 0.2 mm' den daha küçüktürler. P. ovis özellikle yapağısı bol merinos koyunlarında parazitlenirler. Koyunlarda kaşıntıya neden olurlar. Yünler matlaşır ve hayvanlar kaşıntıdan dolayı kendilerini yani yapağılarını ısırırlar ve yapağının yolunarak dükülmesine yol açarlar. Teşhisi uyuzun tanısında yapılan işlemler gibi yapılarak konulur. Familya: Myobiidae Bu aileye bağlı olarak Myobia musculi türü bulunur. Farelerde ve ratlarda parazitlenir. Laboratuvar hayvanlarında hafif bir dermatitise neden olur. Farelerde kıl kaybına yol açarlar ve bulaşma temasla olur. Büyüklükleri 350-500 mikron kadardır. Biyolojilerini 12-13 günde tamamlarlar. Konaklarında uyuz benzeri lezyonlar oluştururlar. Myobiidae ailesine bağlı diyer bir cins Syringophilus'dur. Kanatlılarda bulunur. Bu cinse bağlı Syringophilus columbae güvercilerin, S. uncinata türü ise tavus kuşlarının tüylerinin dip kısmında yerleşirler. Familya: Demodicidae Bu ailede bulunan ve tüm evcil hayvanlarda ve insanlarda rastlanan cins Demodex' dir. Demodex cinsindeki türlerin insan ve hayvanlarda meydana getirdiyi hastalığa "Demodicosis" adı verilir. Demodex'ler diğer uyuz etkenlerinden farklı yapıda bir vücut morfolojisine sahiptirler. Demedex türlerinde vücut caput, thorax ve abdomen olarak ayrılmıştır. Vücudun arka ucu geriye doğru kuyruk gibi uzamış ve kurtçuk şeklindedir. Abdomenin üzeri enine çizgilidir. Erişkinleri 0.1-0.4 mm uzunluğundadır. Şeliserleri kısa, kalın ve makas gibidir. Hipostom delik biçimindedir. Palpleri iki segmentlidir. Bacaklar 4 çift olup, thoraxdan çıkarlar ve çok kısa, kalın ve üç boğumludur. Ayrıca tarsuslarının uç kısımlarında birer çift kalın ve sivri tırnak bulunur. Çiftleşme organı 4. çift bacak koksaları arasında bulunur. Larvaları 3 çift bacaklıdır. Demodex cinsine bağlı bulunan türlerden insan ve domuzlarda bulunanlar hariç konak isimlerine göre adlandırılırlar. Bu türler ve konakları Demodex folliculorum: İnsan D. phylloides : Domuz D. ovis: Koyun D. canis: Köpek D. equi: Tektırnaklılar D. cati : Kedi D. caprae: Keçi D. bovis: Sığır D. cuniculi : Tavşan Bu türler konaklarının kıl folliküllerine ve yağ bezlerine yerleşerek folliküler uyuza neden olurlar. Biyolojik gelişmelerinde sırası ile yumurta -larva -1. nymph (protonymph) -2. nymph ı-- (deutonmyph) ve erişkin dönemleri bulunur. Gelişmelerini 9-14 günde tamamlarlar.

http://www.biyologlar.com/aracnida-aracbnoidea-sinifi

DİNOZORLAR (Dinosauria)

Çoğunlukla İkinci jeolojik zamanda (Mezozoik dönem) havada, suda ve karada yaşamış ve soyu tükenmiş sürüngenlerin bir takımına verilen ad. Dinosaurus, yâni dinozor “Korkunç kertenkele” demektir. Et yiyeni, ot yiyeni, cücesi, devi, hantalı, atiği vardı. Paleontologların dinozor fosilleri üzerinde yaptıkları zaman incelemeleri, bunların I. jeolojik zamanın Permiyen devrinde, yâni bundan 270 ilâ 225 milyon yıl kadar önceki bir zaman diliminde, dünyâ sahnesine çıkmış olabileceklerini ortaya çıkarmıştır. Bunlar arasında 30 m uzunluk ve 80 ton ağırlığa ulaşanları mevcuttu. Uçan bâzı türlerinde kanat uçları arası 16 metreyi buluyordu. Serçe kadar olanları da vardı. Dinozorların muazzam cüsselerine rağmen, ayaklarının diğer sürüngenlerde olduğu gibi vücutlarının yanında değil de gövdelerinin altında oluşu hareket kabiliyetlerini kolaylaştırmıştır. Tyrannasaurus Rex (korkunç kertenkelelerin kralı) adındaki çeşidinin, saatte 70 km’lik bir hızla koşabildiği, Robert Bakker tarafından ispat edilmiştir. 250 milyon yıl kadar önce yaşadıkları sanılan dinozorlar, 65-70 milyon yıl önce, II. jeolojik zamanın son devri olan Kretase (veya tebeşir) devrinde birdenbire tükendiler. Dinozorlar, yıllardır soğukkanlı, aşırı büyümüş kertenkeleler olarak tanınmıştır. Son yıllarda yapılan incelemeler, davranışları hakkında kıymetli bilgiler ortaya çıkarmıştır. Bu bilgiler, 1978 yılında jeolog Jack Horner ile Bob Makela’nın ABD’de Montana’da 80 milyon yıl kadar önce fosilleşmiş 15 dinozor yavrusunu barındıran taşlaşmış bir yuvayı keşfetmesiyle elde edildi. Bu keşiften sonra iki jeolog her yıl bu bölgede kazılarına devam ederek, çeşitli devrelerinde iken fosilleşmiş birçok dinozor fosili ihtivâ eden on kadar yuva ve yüz kadar da dinozor yumurtası buldular. Yuvalarda farklı büyüklükte yavruların varlığı, dinozorların yumurtadan çıkan yavrularını belli bir gelişme devresine kadar besleyip koruduklarını ve yüksek bir analık şefkatine sâhib olduklarını ortaya koydu. Jeolog Horner, dinozorların soğukkanlı hayvanlar olmalarının da desteklediği hızlı bir bazal metabolizmaya sâhib olduklarını ve bu sebepten hızlı bir büyüme sergiledikleri iddia edilmektedir. Birçok araştırmalar ise, dinozorların gerçekte sıcakkanlı, yüksek vücut metabolizmaları olan hayvanlar oldukları eğilimine ağırlık kazandırmıştır. Bu yeni teoriye göre dinozorların tıpkı memeli hayvanlar gibi karmaşık fizyolojileri ile yeryüzünün değişik çevrelerinde yaşadıkları ileri sürülmektedir. Dinozorlar arasındaki teorilerin birbirinden farklı olmasında bu yaratıkların fizyoloji ve hayat tarzlarını incelemek için elde bulunan tek imkânın müzelerdeki dinozor kalıntılarından ibâret olmasının büyük payı vardı. Kalıntılara dayanarak ilmî sonuçlar bulmak imkânı yok gibidir. O yüzden dinozorlar hakkındaki bilgiler bir spekülasyondan ileri gidemiyordu. Günümüzde ise yapılan çalışmalar sonucunda dinozorlar hakkındaki bilgilerimiz artmış bulunmaktadır. Yavrularına karşı olan şefkatleri, sosyal alışkanlıkları, avlanma stratejileri, zekâ seviyeleri, beslenme rejimleri gibi çeşitli konularda net bilgiler elde edilmiş bulunmaktadır. Dinozorların nesli niçin tükendi? Bu konuda çeşitli hipotezler ileri sürüldü: İklimin soğuması, besin kaynaklarının değişmesi, oksijen azlığı, kozmik ışınların artması, memeli hayvanların saldırısı vs. Bugüne kadar bu hipotezlerin hiç biri herkesçe kabul edilmedi. California Üniversitesi Jeoloji Profesörü Walter Alvarez’e göre, 65 milyon yıl önce dünyâya birkaç yıldız çarptı. Meydana gelen toz bulutları güneşi sakladı. Dünyâda yaşanan uzun meteor kışının soğuğuna dayanamayan çeşitli canlılarla berâber dinozorlar da kayboldu. Alverez, teorisini yıldızlarda bulunan iridyum madeninin dinozor kalıntılarında bol miktarda görülmesine dayandırmıştı. Sovyet jeologu Vasili Yeliseyev ise, dinozorların raşitizm denen kemik yumuşaması hastalığından öldüklerini ileri sürmektedir. Dinozorlar yeryüzünde 180 milyon yıl kadar yaşadılar. Bu süre içinde dünyâ iklimi çok değişti ve ilkel Gondvana kıtası parçalanarak bugünkü kıtalar meydana geldi. Dinozorlar bu büyük değişmelere rağmen kendilerini yeni ortamlara uydurdu ve çoğalmaya devâm etti. Kretase devri sonlarına doğru (bundan 65 milyon yıl kadar önce) dinozorlar birden bire tükendi. Vasili Yeliseyev, Kongo Halk Cumhûriyetinin balta girmemiş ormanlarında incelemeler yaparken orman hayvanlarının savan hayvanlarından çok daha küçük olduğunu fark etti; gri gazel, tavşan büyüklüğündedir. Büyük kirpilerin ılık kuşaklarda yaşayanları çok iri olduğu hâlde orman kirpileri küçük bir aslan yavrusu kadardır. Orman zürafası (okapi) 1.5-2 m, savan zürafası ise 6 m yüksekliktedir. Cengel (balta girmemiş orman) su aygırları 1.5, savan su aygırları ise 4 m uzunluktadır. Fil avcıları, cengel fillerinin dişlerinin savan fillerine göre daha küçük ve kalitesiz olduğunu söylemektedir. Kongo köylerinde erişkin keçiler oğlak kadardır. Bütün bunların sebebi ne? Cengellerde yağmur suyu CO2 ve organik asitlerle yüklü olduğundan çok aşındırıcıdır, kayaları şiddetle aşındırır ve toprağın derinliklerine sızar, bu sırada topraktaki Na, K ve Ca gibi eriyen elemanları yıkayıp götürür. İskeletin gelişmesi içinse, kalsiyum tuzları gereklidir. Nemli ormanlarda yaşayan hayvanların küçük oluşu bununla ilgilidir. Buna karşı savanlara çok daha az yağmur düşer. Bu yağmur derinlere sızamadan buharlaşır, böylece savanlarda kalsiyum tuzları toprakta kalır; savan bitki ve hayvanları bu kalsiyumu kullandıklarından büyük olur. Peki bunların dinozorlarla ilgisi nedir? Kretase sonlarına doğru geniş kurak alanları su bastı. Dünyânın iklimi sıcak ve nemli bir hâl aldı, öyle ki kuzey kutbunda palmiyeler büyüdü. Denizlerin çok yayılması sonucu nemlilik çok arttı ve dinmeyen yağmurlar başladı. Bu büyük yağmurlar topraktaki Ca tuzlarını yıkayıp denizlere ve göllere götürdüler. Toprak kalsiyumca fakirleşince dinozorların kemikleri yumuşadı ve tonlarca ağırlığın altında eğrildi. Bu dev hayvanlar bundan öldü. Kazılarda eğrilmiş dinozor kemiklerine çok rastlanmaktadır. Dinozor yumurtalarının kabuklarının inceldiği ve kusurlu olduğu da anlaşılmıştır. Raşitizm önce ot yiyici dinozorları çökertti, bunlar et yiyici dinozorların kurbanı oldular. Et yiyici dinozorlar ot yiyici dinozorlar ölünce öldü, çünkü yiyecek bir şey kalmamıştı. Kalsiyumsuz kalmak kedi kadar küçük dinozorları etkilemedi, kaplumbağa ve kertenkeleler de kalsiyum eksikliğinden etkilenmedi. Küçük dinozorlarla memeliler arasında bir ölüm- kalım savaşı başladı ve memeliler bütün cüce dinozorları yiyip bitirdiler. Dinozorlarla ilgili bir diğer esrar da bâzı yerlerde üstüste yığılmış dinozor iskelet ve kemiklerine rastlanmasıdır. Âdetâ dinozorlar ölmek için belli bir noktaya toplanmışlardır. Böyle bir “dinozor mezarlığı” Büyük Sahra’da Agades civârında bulunmuştur. Bugün bunun açıklaması şöyle yapılmaktadır: Dinozorlar çok ağır oldukları için karada kolay yürüyemiyorlardı, ömürlerinin büyük bir kısmını herhalde suda geçirdiler. Ot yiyen dinozorların dişleri çok zayıf bulunmuştur ve bunların yalnız yumuşak su bitkileri yiyebildikleri düşünülmektedir. Büyük ihtimâlle dinozorlar sularda, özellikle ırmaklarda öldü; akıntıyla sürüklenen cesetler deniz ve göllerde birikti. Sâkin denizlerin dibinde kalan ve üstleri hızla örtülen iskeletler bütün halde bugüne kadar kaldı. Buna karşı dalgalı bir kıyıya erişen iskeletler parçalandı, kemikler aşındı ve birbirine karıştı. Kretase sonlarında denizler karaları istilâ etmeseydi bugün belki dinozorlar görülebilecekti. Milyonlarca yıldır devâm eden dünyâ ve onun üzerinde zamanla değişen hâdiseler insanlar için büyük bir ibrettir. Bir yaratıcının bulunduğuna işârettir.

http://www.biyologlar.com/dinozorlar-dinosauria

Sürüngenler ve Sürüngenlerin Genel Özellikleri

Sürüngenler ve Sürüngenlerin Genel Özellikleri

Sürüngenler (Reptilia), amfibilerle kuşlar arasında yer alan bir omurgalı grubudur. Kara hayatına uyum sağlamışlardır. Derileri kuru ve derilerinde salgı bezi yok denecek kadar azdır. Derilerinin üzeri keratin tabakası ile örtülüdür. Keratin tabaka vücudun değişik yerlerinde pul ve plaklar halinde yapılar oluşturur. Bu tabaka zaman zaman atılarak yenilenir. Sürüngenlerin bir kısmı 4 bacaklı, bir kısmı da bacaksızdır. Bacaklı olanlarda bile vücut yere değecek kadar alçaktır. Sürüngenlerin büyük bir kısmı karada, bazıları da suda yaşarlar. Ancak suda yaşayanlar da akciğerleri ile solunum yaparlar. Sürüngenlerde genellikle çiftleşme organı bulunur. (Tuatara hariç) Bu nedenle de döllenme içte gerçekleşir. Çoğu yumurta bırakır. Yumurtalar dayanıklı elastiki kabuklu yahut kuş yumurtası gibi kolayca kırılabılir tiptedir. Bazı sürüngen türleri canli doğurur, (ancak memelilerde olduğu gibi yavru anasına bir bağ ile bağlı değildir) gelişmelerinde de bir larva devresi bulunmaz. Yumurtadan çıkan yavrular minyatür erginlere benzerler. Sürüngenler genellikle diğer hayvanları avlayarak beslenirlerse de, bazı kara kaplumbağaları ile bazı kertenkele türlerinin esas besinlerini bitkisel maddeler teşkil eder. SÜRÜNGENLERİN ÇEVRE İLE OLAN İLİŞKİLERİ Doğada sürüngenlerin de düşmanları vardır. Bunlar yırtıcı kuşlar ve bazı memeli hayvan türleridir. Daha sonra açıklanacağı üzere günümüzde sürüngenlerin en büyük düşmanı insanlardır. Sürüngenler içinde bazı yılan türleri ile sadece iki tür kertenkele (Heloderma horidum, Heloderma suspectum) zehirlidir. Kertenkelelerden zehirli olan Heloderma türleri sadece Orta Amerika’da yaşar. Dolayısıyla Türkiye’de yaşayan hiçbir kertenkele türü, zehirli değildir. Ancak ülkemizdeki yılanlardan bir kısmı zehirlidir. Zehirli yılan türleri Türkiye’deki yılan türlerinin yaklaşık %23’ni teşkil eder. Buna rağmen tüm yılanlardan korkulur ve görüldükleri yerlerde de öldürülürler. Yine Türkiye’de, yılan görünüşünde bacaksız kertenkele çeşitleri de (örneğin Ophisaurus apodus, Anguis fragilis) yılan sanılarak öldürülmektedirler. Sürüngen türleri daha çok sıcak bölgelerde bulunurlar. Soğuk bölgelere gidildikçe tür sayıları azalır. Yine deniz seviyesinden yukarılara çıkıldıkça, buralardaki sürüngenlerin tür sayıları da azalmaktadır. Değişik ortamlara uyum sağlamış sürüngen türlerinden bazıları ağaçlarda, bazıları da suda yaşamaktadır. Sürüngenlerin insanlarla olan ilişkileri diger hayvan gruplarından biraz farklıdır. Çünkü daha önce de değinildiği gibi, bazı yılan türleri zehirli olduğundan insanların Çoğu yılanlardan korkarlar. Bu korku sonucunda da sadece %23’ü zehirli olan bütün yılanları gördükleri yerlerde öldürürler. Böylece yılan populasyonlarına büyük zarar vererek doğal dengenin bozulmasına sebep olmaktadırlar. İnsan aktiviteleri sonucunda sürüngenlerin yaşadıkları ortamlar kirletilmekte, daraltılmakta veya ortadan kaldırılmaktadır. Dolayısıyla sürüngenlere de en çok zarar veren canlı grubu insanlardır. Ayrıca yine insanlar bazı sürüngenlerin derilerini ayakkabı, çanta v.b. eşya yapımında kullandıklarından, bu türleri insafsızca ve plansız olarak avlamaktadırlar. Bilinçsiz avlama sonucunda da bazı türlerin nesilleri yok olacak kadar azalmaktadır. Sürüngenler eski jeolojik devirlerde (Mesozoik) çok gelişip çeşitlenerek Dünyaya hakim olmuşlardır. Ancak daha sonra azalmışlar ve günümüze de küçük bir grubu gelebilmiştir. Bundan dolayı da diğer hayvan gruplarına göre sayıları belirgin şekilde daha azdır. İNSANLAR ve SÜRÜNGENLER Türkiye’de yaşayan sürüngen (kaplumbağa, kertenkele, yılan) türlerinin çok büyük bir kısmı zehirsizdir. Yılan türlerinden iki tür; Malpolon monspessulanus (Çukurbaşlı Yılan) ve Telescopus fallax Kedigözlü Yılan) bir çift olan büyük zehir dişlerinin üst çenenin gerisinde olması nedeni ile ince vücut kısımlarını (parmak v.s.) ısırmadığı sürece zararsızdır. Bu türler daha çok fare v.s. küçük memeli hayvanları zehirleyip, tüketerek ziraata ve çevre sağlığına katkıda bulunurlar. Diğer sürüngen türleri de tarım zararlısı bir çok böcek, sivrisinek larvası ve küçük memeli (Tarla Faresi, Sıçan v.s.) türlerini besin olarak tüketmek suretiyle, biyolojik mücadelede önemli bir yere sahiptirler. Sazlık-bataklık çevrelerinin kimyasal kirlenmesi sonucu sucul kaplumbağa topluluklarının azalması ile orantılı olarak, aynı ortamda yaşayan çeşitli zararlı böcek ve larvaların sayısı artmaktadır ki, bunları yok etmek için oldukça pahalıya mal olan önlemlerin alınması gerekmektedir. Yine aynı şekilde kertenkele ve yılan türlerinin, tanınmamaktan kaynaklanan korku neticesinde bilinçsiz bir şekilde yok edilmesi, önceden de bahsedildiği gibi bir çok hastalık taşıyan sıçan ile tarım zararlısı fare ve böcek türlerinin ortamda sayıca artmalarına yol açmakta ve bunlarla mücadelenin gereği, ekonomik kaybın hiç de küçümsenemeyecek düzeyde olduğu bilinmektedir. Unutulmaması gereken bir konu da sürüngen türleri, insanlar ile ortak besin kaynaklarını paylaşmamakta ve özellikle kertenkele ve yılanlar kendisine zarar verilmediği veya ürkütülmediği zamanlarda insanlara hiçbir zararı dokunmamaktadır. Özellikle kırsal kesimde yaşayan kişilerin nadiren de olsa karşılaşabileceği varsayılan Koca Engereğin (Vipera lebetina) zehir dişlerinin üst çenenin ön kısmında olması ve bu yüzden kolay ısırabilmesi nedeni ile insanlar dahil, küçük ve büyük baş memeli hayvanlar için tehlikeli olabilir. Türkiye’deki yılan türlerinin bulunması ve zehirli veya zehirsiz bir yılan tarafından ısırılma ihtimali karşısında yapılması gerekenler ve alınacak önlemler yılanlar bölümünün zehirler kısmında belirtilmiştir.

http://www.biyologlar.com/surungenler-ve-surungenlerin-genel-ozellikleri

Hücre teorisi

1)Bütün canlılar hücrelerden meydana gelmiştir. 2)Hücreler bağımsız hareket ettikleri halde birlikte iş görürler. 3)Hücreler bölünerek çoğalırlar. Bilinen en büyük hücre deve kuşu yumurtasıdır.Bilinen en uzun hücre ise sinir hücresidir. Hücreler ökaryot ve prokaryot olmak üzere iki kısımda incelenir. Prokaryot hücre: Kalıtım maddesi etrafında çekirdek zarı bulunmayan ve ribozom hariç hücre organellerine sahip olmayan ilkel hücre tipidir. Bakteri ve mavi – yeşil alg örnek verilebilir. Ökaryot hücre Kalıtım maddesi etrafında çekirdek zarı bulunan ve hücre organellerine sahip olan gelişmiş hücre tipidir. Ökaryot hücre üç kısımda incelenir. 1) HÜCRE ZARI · Yağ,protein az miktarda karbonhidrattan oluşur.Hücre zarının yapısı akıcı-mozaik zar modeli ile açıklanır.Bu modele göre zar; yağ denizinde yüzen proteinlerden oluşmuştur. · Karbonhidratlar hücre zarındaki yağlarla birleşerek glikolipid, proteinlerle birleşerek glikoprotein şeklinde bulunur.Bunun sağladığı avantaj ise hücrelerin birbirini tanıması ve bağışıklıktır.Hücre zarının özgüllüğünü veren kimyasal madde glikoproteindir. Glikolipidi ve glikoproteini golgi sentezler. · Madde giriş-çıkışı proteinler üzerindeki porlardan olur. · Zarın özellikleri : Canlıdır,saydamdır,esnektir ve seçici geçirgendir. · Zardaki proteinler enzim görevi yapar. · Zarın görevleri : Hücreyi dağılmaktan korur. Hücreye şekil verir. Hücreyi dış etkilerden korur. Madde alışverişini sağlar. Zarın seçici-geçirgen olması onun canlı olduğunu gösterir. Hücre çeperi cansızdır,esnek değildir,tam geçirgendir.Hücrenin dayanıklılığını arttırır, hücreye şekil verir.Üzerindeki deliklere geçit denir. Selülozik yapıdadır. Prokaryot hücrelerde de bulunur ama yapısı selülozik değildir. 2) SİTOPLAZMA Hücre zarı ile çekirdek arasını dolduran, canlı, renksiz, yarısaydam, suda çözünmeyen bir sıvıdır. İki kısımdır. a) Sıvı kısım: Su,protein,yağ,karbonhidrat,mineral,vitamin,RNA çeşitleri,nükleotidler,ATP ve enzimler gibi organik ve inorganik maddelerden oluşmuştur Görevi: 1) Biyokimyasal reaksiyonlar için zemin oluşturmak 2) Organellere yataklık etmek. 3) Rotasyon ve sirkülasyon hareketleri ile organellerin hareketini sağlamak. b) Organeller:Özel yapı ve görevi olan sitoplazmik cisimlerdir. ENDOPLAZMİK RETİKULUM Hücre zarından çekirdek zarına kadar uzanan zarlı kanallar sistemidir. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. Hücre içine ve dışına madde taşır.Bazı maddeleri depolar.(Ca ve protein). Çekirdek zarı ve golgiyi yapar.Hücreyi bölmelere ayırarak,sitoplazmadaki asidik ve bazik tepkimelerin birbirini etkilemeden yapılabilmesini sağlar. Üzerinde ribozom bulunanlarına granüllü ER; bulundurmayanlara da granülsüz ER denir. Granüllü ER enzim salgılayan hücrelerde, granülsüz ER yağ sentezleyen hücrelerde çoktur. GOLGİ Çekirdeğe yakın bulunur.Hücre zarı yapımına katılır. Salgı maddelerin yapılması,paketlenmesi ve salgılanmasından sorumludur.Onun için süt bezi, tükrük bezi,ter bezi gibi salgı yapan hücrelerdeki sayısı diğer hücrelerdekilere oranla daha fazladır. Enzimleri paketliyerek lizozomu oluşturur.Hücre zarı yapımına katılır. Glikoprotein,lipoprotein,mukus,bağ dokusu ara maddesi ve ayrıca bitkilerde selülozlu maddeler salgılar. Memeli alyuvarı hariç bütün çekirdekli hücrelerde bulunur. LİZOZOM Büyük moleküllü besinleri parçalar.Kurbağa larvalarında kuyruğun kopması,salgılama dönemi biten memelilerde süt bezlerinin körelmesi,pasif kalan kasların küçülmesi,harap olmuş dokuların, yaşlı alyuvarların ve vücuda giren mikropların yok edilmesi lizozom sayesindedir. Fagositoz ve pinositoz yapan hücrelerde çoktur.ÖRNEK:Akyuvar hücresi ve tek hücreliler. Lizozom parçalanırsa hücre kendini sindirir.Buna otoliz denir. Lizozomun etrafındaki zar golgiden oluşur. İçerisindeki enzimler ribozomlarda üretilir. Üretilen enzimler ER ile taşınır. ER ile taşınan enzimler golgide paketlenerek lizozom oluşturulur. · Yani lizozomun oluşmasında ribozom,golgi ve ER etkilidir. NOT 1 : (Bazı kitaplara göre)Hayvanlara özgüdür.Bitkilerde ise lizozom benzeri yapılara fitolizozom denir. RİBOZOM Bütün hücrelerde bulunan en küçük organeldir. Protein ve rRNA’dan oluşur.Çekirdekçikte üretilir. Zarsızdır ve iki birimdir.Üst birim(büyük birim) protein,alt birimse(küçük birim) rRNA’dan oluşur. Protein ve enzim sentezler. Granüllü ER ve çekirdek zarı üzerinde,mitekondri ve kloroplastın sıvısında ve ayrıca sitoplazma da bulunabilir. Yoğun protein sentezi sırasında yan yana gelerek polizomları oluştururlar. Her canlıda ribozomların farklı olmasının sebebi rRNA’ ların farklılığındandır. Bir hücrenin canlılığını sürdürebilmesi için mutlaka ribozoma ihtiyacı vardır.(Enzimlerden dolayı) Enzim salgılayan bez hücrelerinde sayısı daha fazladır. MİTOKONDRİ Çift zarlıdır.İç zar kıvrımlıdır. Kıvrımlara krista,zarların arasını ve içini dolduran sıvıya matriks denir. Oksijenli solunum yaparak enerjinin üretildiği ve depolandığı yerdir. Enerji ihtiyacı fazla olan kas,sinir ve karaciğer gibi hücrelerde sayısı daha fazladır. Bulundukları hücrenin de enerjiye en çok ihtiyaç olan bölümlerinde toplanırlar. ÖRNEK:Sinirlerin sinaps bölgelerinde,spermlerin kuyruklarında ve kasların kasılma bölgelerinde,karaciğer hücrelerinde ve beyin hücrelerinde çok bulunur. Kendine ait DNA,RNA,ribozom ve ETS’si bulunur. Kendi DNA’sı olmasına rağmen hücre DNA’ sına bağımlıdır. Bitkilerde mesozom ve klorofil bulunduğundan dolayı mitokondri miktarı daha azdır. Prokaryotlarda ve memeli alyuvarında bulunmaz. SENTROZOM Bazı su yosunu,mantar,hayvan ve insan hücrelerinde bulunur. Sentriol denilen iki alt birimden oluşur. Hücre bölünmesi sırasında kendini eşleyerek zıt kutuplara çekilir ve iğ ipliklerinin oluşmasını sağlar. Hücre dışına uzanan kirpik,kamçı,sil gibi yapıları oluşturur. Sentrioller dikine duran dokuz çift tüpçükten oluşur. PLASTİDLER Sadece bitki hücrelerinde bulunan renk maddesidir.3 tiptir. a) Kloroplast Bitkiye yeşil rengini verir. Çift zarlıdır.İç zarı katmanlıdır.Bu katmanlara grana,içini dolduran sıvıya ise stroma denir. Fotosentez yaparak besin üretir. Kendine has DNA,RNA,ribozom ve ETS’si bulunur. Granalar içinde bitkiye yeşil rengini veren ve fotosentez için gerekli ışığı absorbe eden klorofil vardır. Bütün bitki hücrelerinde bulunmaz.ÖRNEK:Kökte. b) Kromoplast Bitkilerde meyve ve çiçeklerin rengini verir.Likopin(kırmızı),ksantofil(sarı) ve karoten (turuncu) olmak üzere üç çeşittir. Bitkilerde diğer renkler; koful öz suyunun asit veya baz oluşuna göre renk değiştiren aktokyan denen maddeler ile oluşturulur. c) Lökoplast Renksizdir.Genelde kök,gövde ve tohumda bulunur. Nişasta,yağ ve protein depolar. Işıkla karşılaşınca kloroplastlara dönüşür. KOFUL ER’dan,golgiden,hücre zarından ve lizozomdan oluşabilir. Hayvansal hücrelerde az ve küçük,bitkisel hücrelerde ise gençken küçük,yaşlandıkça büyürler.Çünkü tuzlu artıklar kofullarda biriktirilir. Hücre içi osmatik basınç ve pH’ı ayarlar. Kofulda bulunan su turgor basıncı oluşturarak hücreye diklik ve direnç verir. Metabolizmanın aktiflik derecesini belirler.Eğer koful büyük ve sitoplazmada miktarı çok ise metabolizma yavaşlar. Besin kofulu : Fagositoz ve pinositozla alınan besinlerin bir zarla çevrilmesiyle oluşur.Akyuvarlar mikropları fagositoz ve pinositozla aldığında dolayı,akyuvarlarda daha fazla sayıda besin kofulu bulunur. Kontraktil (vurgan) koful : Tatlı su tek hücrelilerinde bulunan daimi kofuldur.Fazla suyu dışarı atar. Boşaltım kofulu : Artık maddeleri ekzositozla dışarı atar. PEROKSİZOM Bitkisel ve hayvansal hücrelerde bulunan ve içerisinde katalaz enzimi bulunan organeldir. İçerisindeki katalaz enzimi H2O2 ‘yi H2O ve O2′ye parçalar. H2O2 hücre için çok tehlikelidir.Çünkü O2′nin reaksiyona girmesini yani solunumu önler. Sitoplazmanın pH derecesi 8,0′dır. Hücre Çeperi: Hücre zarı üzerinde selüloz birikmesi ile oluşur. Bitki hücresine sertlik ve desteklik verir. Bitki hücrelerinde bulunur.ölüdür.bazen yapısına bağlı olarak kütin, lignin mum gibi maddeler katılır. 3) ÇEKİRDEK Hücre bölünmesini sağlar.Kalıtım bilgisini taşır. Hücresel olayların yönetilmesinde ve karakterlerin sonraki nesillere aktarılmasında görevlidir4 bölümdür. A) ÇEKİRDEK ZARI · Çift katlı bir zardır. · Üzerindeki deliklere por denir.Bunlar hücre zarındaki porlardan daha büyüktür. · Hücre bölünmesi sırasında kaybolan bu zarın bölünmeden sonra yeniden yapılmasında ER ve golgi görevlidir   B) ÇEKİRDEK SIVISI · Homojen görünümlüdür.İçerisinde bol miktarda ATP,nükleotit,ribozom ve protein bulunur. C) ÇEKİRDEKÇİK · Bol miktarda RNA ve protein bulunur.Ribozom sentezi yapılır.Bakterilerde yoktur. D) KROMATİN İPLİK · Hücrede en çok bulunan maddedir. · DNA’nın kendisi olup kromozomları oluşturur.Kromozomlar DNA ve proteinden oluşmuştur. Kalıtsal karakterleri taşır.Üreme ve büyümeyi sağlar.Hücreyi yönetir. Kromozom sayısı, türlere göre değişkenlik gösterir. Örneğin insanda 46, soğanda 16 kromozom bulunur. Homolog Kromozom:Birisi anneden diğeri babadan gelen şekil ve yapısı aynı olan karşılıklı lokuslarında aynı karakter üzerine etkili genleri taşıyan kromozomlara denir. Homolog kromozom taşıyan hücrelere diploid( 2n) hücre denir.Üreme hücreleri gibi (n) kromozom taşıyan hücrelere haploid hücre denir.

http://www.biyologlar.com/hucre-teorisi

Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler

Biyolojik Mücadele

BİYOLOJİK MÜCADELE NEDİR? Zararlı böceklerin yaptığı zararları durdurmak veya azaltmak için onların doğal düşmanlarını doğada artıracak şekilde yapılan işlemlere denilmektedir. Zararlı böceklerin doğada mevcut doğal düşmanların yardımıyla ekonomik zarar düzeyinin altında tutulması işlemine biyolojik mücadele denmektedir. Biyolojik mücadelede hedef ilaçlı mücadelede olduğu gibi, zararlıları tümüyle yok etmek değildir. Biyolojik mücadelede, zararlı yoğunluğu ekonomik zarar düzeyinin altında tutulmakta, böylece söz konusu zararlıların doğal düşmanlarının doğada sürekliliğinin sağlanması hedef alınmaktadır. Doğal düşmanları üç grupta toplayabiliriz: 1) Predatör Böcekler Hayatı boyunca serbest olarak yaşayan, avını yiyerek veya vücut sıvısını emerek öldüren, çoğunlukla avından büyük boyda olan ve gelişmesini tamamlayabilmesi için birden fazla ava ihtiyacı olan organizmalardır. 2) Parazit Böcekler Yumurtasını konukçusunun içine veya üzerine bırakarak gelişmesini tamamlayıp, konukçusunu öldüren ve ergin oluncaya kadar, yalnız bir tek konukçuya ihtiyaç gösteren organizmalardır. 3) Entomopatojenler Konukçularını hastalandırarak öldüren mikroorganizmalardır. Biyolojik mücadele programlarının hazırlanabileceği bölgelerdeki kültür bitkilerindeki tüm zararlıların ve bu zararlıların doğal düşmanlarının saptanması gerekmektedir. Söz konusu doğal düşmanların birbirleriyle ilgilerinin çok iyi bilinmesi gerekir. Ayrıca bu doğal düşmanların konukçularına hangi şartlarda ne oranda etkili olduklarının da ortaya konması gerekir. Aslında biyolojik mücadele dışardan bakıldığında kimyasal ilaçlar ile yapılan mücadeleye nazaran çevreye zarar vermeyen, etkili ve kesin bir çözüm gibi görünmektedir. Fakat bahsettiğimiz konu dışarıdan görüldüğü kadar basit ve kolay bir konu değildir. Kaş yapayım derken göz çıkarma ihtimalini her an bünyesinde barındırır. Nasıl? Bir zararlıya karşı kullanacağınız predatörü iyi araştırmadan, araştırsanız dahi bir dizi deneme aşamasından geçirmeden doğaya, mücadelenin yapılacağı ortama saldığınızda sizi şu sonuçlar bekliyor olabilir: -Ortama saldığınız predatör sadece sizin zararlınızla değil de başka türlerlede besleniyor olabilir ki bu çok mühim bir durum olabilir. İlk başta zararlınıza karşı başarılı bir mücadele verirken karşısına çıkan iştah kabartıcı ve sizin için önemli, yararlı olan başka bir türe yönelerek bulunduğunuz ortamın ekolojik dengesini temelden sarsabilir. -Üreme kapasitesi çok fazla olup, yeni ortama da hızlı bir şekilde uyum sağlayıp çevresinde rekabete girdiği yerli türleri saf dışı bırakarak baskın tür haline gelebilir. Bu da ekolojiye ciddi bir darbe vurabilir. Bunun gibi ufak iki örnek bile göz önünde tutulduğunda biyolojik mücadelenin dışarıdan göründüğü gibi rahat bir şekilde başvurulabilecek bir çözüm yolu olmadığı görülebilir. Biraz da şuan Doç. Dr. Selçuk HAZIR'ın yürütücülüğünde devam ettirdiğimiz projeden bahsedeyim. Bu projede entomopatojen nematodları kullanmaktayız çeşitli tarım zararlılarına karşı. Bu zararlılardan bir kaçı; Tenebrio molitor: Un kurdu, depolanmış ürünlere zarar verir. Cossus cossus: Ağaç gövdelerinde ciddi zararlara yol açarlar. Polyphylla fullo: Manas (Kadı Lokması), bitki kökleri ve yumruları ile beslenirler. Ciddi zararlar ortaya çıkartabilirler. Nematodlar bu zararlılar ile karşılaştıklarında trake açıklığı, anüs, ağız gibi larvaların vücut boşluklarından içeriye sızıyorlar ve kendi bünyelerinde bulunan bakterileri larvaların iç kısımlarına ulaştırmış oluyorlar. Bu kısımda nematodların içindeki bakteriler dışarı çıkarak salgıladıkları enzimlerle larvaları içten çürütüyorlar. Nematodlar ölü larvanın içinde üreyerek çok gelişmiş reseptörleri sayesinde yakında bir su birikintisi(petride) algıladıklarında kadavra içinden çıkıp suya geçiyorlar. Şuan itibariyle yaptığımız deneylerde Aydın'daki topraklardan izole edilen 11 adet nematod kullandık ve bunlardan birkaçı larvalar üzerinde çok başarılı oldu. Kullandığımız nematodlar arasında Heterorhabditis bacteriophora, Steinernema weiseri ve Steinernema feltiae türleri var. Ve son bir not: Uluslararası katılımlı “Entomopatojenler ve Mikrobiyal Mücadele” sempozyumunun ikincisi Adnan Menderes Üniversitesi tarafından 24-27 Eylül 2009 tarihinde Muğla’nın Ortaca ilçesine bağlı Sarıgerme beldesinde yer alan JOY PEGASOS TROPICAL otelinde Doç. Dr. Selçuk HAZIR başkanlığında gerçekleştirilecektir. Gerekli bilgiler aşağıdaki linkten ulaşabilirsiniz:

http://www.biyologlar.com/biyolojik-mucadele-2

Tenia saginata / Tenia solium (sığır/domuz tenyası) Enfestasyonu:

Ten­ya, halk arasında “abdest bozan“, “şerit” olarak adlandırılır. İyi pişmemiş/çiğ sı­ğır/domuz etinin tüketilmesiyle bulaşır. Sı­ğır/domuz yumurtaları alır, parazitin larva­sı bu hayvanların dokularına yerleşir. İn­sanlar bu larva içeren etleri az pişmiş ya da çiğ tükettiğinde, bağırsaklarında erişkinleri gelişir. Bir süre sonra erişkin bağırsaklara sığmamaya başlayınca, olgunlaşınca parça parça kendini bırakır. Hastaların bunu engellemesi mümkün değildir. Bu nedenle abdest bozan adını almıştır. Sığır tenyasının yumurtasının ağız yoluyla alınması, iltihabi durum (enfeksiyon) gelişmesine neden ol­mazken, domuz tenyasının yumurtasının alınması insanların dokularına larvasının yerleşmesine neden olarak hastalık oluştu­rabilir. Belirti ve bulgular: Hastalık genellikle be­lirti vermez, hasta dışkısında “şerit” parça­cıklarını görünce doktora başvurur. Karın ağrısı, ishal, bulantı, halsizlik, kilo kaybı gö­rülebilir. Tanı: Dışkıda parazitin yumurta ve şerit parçacıklarının görülmesi ile tanı konur. Seloteyp denilen bir yöntem de parazit yu­murtalarını göstermek için kullanılabilir. Tedavi: Tek doz ilaç tedavisi yapılır (örn: niklozamid). Korunma: Etlerin iyi pişirilerek yenmesi, veteriner kontrolünden geçmiş etlerin tü­ketilmesine özen gösterilmesi, alınacak en önemli önlemlerdir.

http://www.biyologlar.com/tenia-saginata-tenia-solium-sigirdomuz-tenyasi-enfestasyonu

Trichuris Trichuria (kamçılı parazit) Enfestasyonu

Erişkini kamçıya ben­zediği için kamçılı parazit adını almıştır. Yumurtasının ağız yoluyla alınmasıyla has­talık oluşturur. Yumurtanın dış ortamda yaklaşık bir ay kadar gelişmesi gereklidir. Kalın bağırsaklara yerleşir. Belirti ve bulgular: Kanlı ishal, kilo kaybı, karın ağrısı, karın bölgesinde hassasiyet, gelişme geriliği kansızlık gözlenen belirti­lerdir. Ağır ishalli olgularda tüm makatın dışarı çıkması görülebilir. Tanı: Dışkı örneğinde yumurtalarını görül­mesiyle tanı konur. Tedavi: Tedavisinde parazit için ilaçlar kul­lanılır (örn: mebendazol, albendazol). Korunma: Suların dağıtılması konusunda doğru ve sağlıklı yöntemlerin kullanılması (doğru arındırma uygulanmalı), el yıkama­nın doğru ve sık olarak uygulanması öneril­mektedir. Çiğ tüketilecek sebze ve meyve­lerin iyice yıkanması gerekmektedir.

http://www.biyologlar.com/trichuris-trichuria-kamcili-parazit-enfestasyonu

Ancylostoma Duodenale / Necator Americanus (Kan­calı Kurt) Enfestasyonu

Sadece insanlarda parazit özelliği vardır (parazitlik yapar). Özellikle Doğu Karadeniz ve Akdeniz bölgelerinde saptanmaktadır. Larvanın deriden içeri gir­mesiyle hastalık başlar. Larva kan yoluyla karaciğer, kalp, akciğerleri geçer, akciğer keselerine (bronşlara) gelir öksürük sıra­sında yutulur ve ince bağırsaklarda erişkin formuna gelişir. Belirti ve bulgular: Deriden giriş bölgesin­de kaşıntı, deride reaksiyon oluşur. Akci­ğerlere göç sırasında zatürree (pnömoni) gözlenebilir. Bağırsaklarda kanamalara, ishale ve parazi­tin kan emmesinden dolayı kansızlık olu­şur. Tanı: Dışkıda yumurtaların görülmesiyle tanı konur. Tedavi: Kansızlık tedavisinin yanı sıra para­zit için mebendazol ve pirantel pamoat gi­bi bazı ilaçlar kullanılır. Korunma: Çok yaygın olarak saptandığı yerlerde deniz kenarında ve toprakta çıp­lak ayakla gezmemek alınabilecek önlemle­rin başında gelmektedir. Ayrıca Ancylostoma duodenale yumurtasının alınmasıyla da bulaşabileceği için tüketilecek çiğ sebze ve meyvelerin iyice yıkanması gerekmektedir.

http://www.biyologlar.com/ancylostoma-duodenale-necator-americanus-kancali-kurt-enfestasyonu

Enterobius Vermicülaris (Kıl Kurdu) Enfestasyonu

Çocuklarda en sık rastlanan parazittir. Erişkin şekli kıl gibi gö­rüldüğü için halk arasında “kıl kurdu” adını almıştır. Sadece insanlarda parazit özelliği vardır (parazitlik yapar). Tüm dünya üze­rinde yaygındır. Yumurtasının ağızdan alın­ması sonucu parazit kalın bağırsaklara yer­leşir ve dişisi geceleri makattan çıkarak günde yaklaşık 15.000 yumurta bırakır. Kü­çük çocuklarda makat kaşınması sırasında yumurtalar eller aracılığıyla ağıza taşınır ve çocuk kendi kendine tekrar iltihabı bulaştırır (enfekte eder) ve buna “otoenfeksiyon” denir. Bazı durumlarda yumurtalar makat çevresinde olgunlaşır larvalar makattan içe­ri girerek tekrar enfeksiyona neden olur, “retroenfeksiyon“. Etrafa yayılan (çarşaf, divan örtüsü, kanape vs.) yumurtaların ka­zara solunmasıyla, yutağa gelen yumurtalar yutularak enfeksiyon oluşabilir. Enterobius son derece bulaşıcı bir para­zittir. Belirti ve bulgular: En tipik belirtisi makat bölgesinde kaşıntıdır. Bunun yanısıra uyku­suzluk, sindirim sistemi bozuklukları, karın ağrısı, gerginlik ve sinirlilik saptanan bul­gulardır. Tanı: Dışkıda Enterobius vermicularis yu­murtası parazitolojik inceleme ile saptanır. Daha etkili olan yöntem ise “seloteyp yön­temidir” bir mikroskop camı (lam) üzerine yapıştırılmış olan seloteyp çocu­ğun veya şikayeti olan kişinin makat bölge­sine, sabah tuvalete gitmeden, yıkanma­dan, yataktayken bir kaç kere yapıştırılır, seloteyp tekrar bu cam (lam) üzerine yapış­tırılır ve parazitoloji laboratuarına gönde­rilir. İncelemede parazitin makat bölgesine bıraktığı yumurtalar görülür. Bazı durum­larda hasta kişilerin iç çamaşırlarında ya da makat bölgesinde çok küçük olan kıl kurt­ları görülebilir. Korunma: Başlıca korunma yolu ellerin yı­kanmasıdır. Ayrıca iltihabı almış (enfekte olan) bireyler tedavi edilerek yumurta bulaşının önlenmesi sağlanmalıdır.

http://www.biyologlar.com/enterobius-vermicularis-kil-kurdu-enfestasyonu

DENİZ TAVŞANLARI ( Nudibranch )

DENİZ TAVŞANLARI ( Nudibranch )

Nudibranch kabuğu olmayan bir salyangoz türüdür. Bu salyangoz çok parlak renklere sahiptir ve son derece göz alıcıdır.

http://www.biyologlar.com/deniz-tavsanlari-nudibranch-

TOHUM KILIFLARINDAKİ ÖZEL MADDELER

Tohumların genel tasarımlarındaki farklılıkların yanısıra, kılıfları da tam ihtiyaç duyacakları özelliklere sahip olarak yaratılmıştır.Tohumun içindeki embriyo son derece değerlidir. Bu nedenle yeni bitki tam olarak gelişene kadar bu embriyonun özenle korunması gerekir. Bu koruma her bitki türüne göre değişiklik gösteren tohum kılıfları ile sağlanmıştır. Tohum kılıfını oluşturan maddenin dayanıklılığı oranında tohum dış ortamın olumsuz etkilerinden korunur . Bundan başka kılıfı oluşturan maddeler, tohumların su üzerinde durabilmesinde ya da rüzgarlarla uçmasında da etkendirler.Tohumların dış kılıfları, son derece çeşitli ve dikkat çekici özelliklere sahiptir. Bazı dış zarlar düşmanları uzaklaştırabilmek için acı bir madde ile kaplıdır. Bazıları ise "tanen" denilen bir madde bakımından zengindir ki bu madde tohumlardaki çürümeyi sınırlandırır. Birçok bitki türünün tohumlarında ise kılıflar bir tür jöle ile kaplıdır. Proteinlerle birleşmiş kompleks şekerlerden oluşan bu jölemsi madde, su ile karşılaştığında kolayca şişer. Bu sayede tohum kolayca nemli maddelerin üzerine yapışır. Bu özellik, ileride göreceğimiz gibi filizlenme sırasında önemli rol oynayacaktır. Resimde görülen jölemsi cisimler Ocimum basilicum adlı bir çeşit fesleğen türüne aittir. Bu fesleğenin tohum kılıfları su ile bağlantı haline geçtiğinde birkaç dakika içerisinde hemen jölemsi bir madde üretir. Böylece resimdeki ilginç şekli alırlar. Bu fesleğen türünün tohumları Tayland'da ve doğunun başka bölgelerinde özellikle meyva sularına katılarak kullanılır. (Grains de Vie, s.24) Üstte görülen Ipomoea murucoide'lerin ağır tohumları bu incecik tüyler sayesinde havada uçabilmektedir. Ayrıca tohumların rüzgarla birlikte yerde yuvarlanmasını sağlayanlar da bu tüylerdir. (Grains de Vie, s.25) Tohumların koruyucu dış katmanları (tohum kılıfları) genellikle çok serttir. Bu özellik tohumu karşılaşacağı dış etkenlere karşı korur. Örneğin; bazı tohumların gelişimlerinin son aşamasında dış yüzeylerinde dayanıklı mumlu bir yapı birikir, bu sayede tohumlar su ve gaz tesirine karşı dirençli olurlar. Tohum kılıfları bitkinin türüne göre değişik malzemelerle kaplanabilir; fasulye tanesinde olduğu gibi ince bir zarla ya da kiraz çekirdeğinde olduğu gibi odunsu ve sert bir kabukla örtülü olabilir. Suya dayanıklı olması gereken tohumların kabukları diğerlerine göre daha sert ve kalındır.12 Tohumlardaki tasarıma günlük hayatımızda sık karşılaştığımız bir bitkiden, fasulye tanesinden örnek verelim: Fasulye tanesi, türüne göre bir veya iki kılıf ile çevrilmiştir. Bu kılıflar tıpkı bir palto gibi tohumu dış ortamın soğuk hava, kuraklık, mekanik etkiler gibi zorlu şartlarından korur. Burası, aynı zamanda dış ortam ile olan bütün alışverişin de yapıldığı bölgedir. Kısacası, tohumun büyümesi konusunda bu kılıf önemli bir rol oynamaktadır. Fasulye tanesinin bulunduğu yerden koparıldığı noktada oval bir iz görülür. Bu, tanenin yani tohumun anne bitkiye olan bağlantı noktasıdır. Dikkatli bir şekilde incelendiğinde burada "micropyle" denen küçük bir delik olduğu görülecektir. Bu deliği işlevleri nedeniyle bebeklerdeki göbek bağına benzetmek mümkündür. Bu özel geçiş yerinden yumurtacığın içerisindeki dişi üreme hücresini döllemeye yarayan tüp girer. Ayrıca zamanı geldiğinde su, bu delikten içeriye girerek ve tohumun filizlenmesini sağlar. Tohum kabuklarının kalınlığı da -daha önce belirttiğimiz gibi- bitkinin türüne göre özel olarak ayarlanmıştır. Her bitkinin tohum kabuğu bulunduğu ortamda gelişmesine olanak verecek yeterliliktedir; ne çok kalındır ne de çok ince. Çünkü kabuğu çok kalın olan bir tohum bütün zorlu koşullarda yaşayabilir; ancak bir dezavantaj olarak aşırı kalın bir kabuk embriyonun dışarı çıkmasında bazı problemlere neden olabilir. Zayıf kabuğu olan bir tohum ise pek çok dış etken nedeniyle daha çabuk bozulabilir. İşte bu yüzden tüm tohumlar bulundukları ortama en uygun kabuk kalınlıklarına sahiplerdir. Tohumlardaki embriyonun korunmasında ve yayılmasındaki tek etken tohum kılıfları değildir. Bazı bitki türlerinde bu işlemler aynı zamanda meyve ile de yapılmaktadır. Örneğin resimlerde değişik evreleri görülen Nicandra physaloide çiçeğinde yumurtacık bir süre sonra içerisi tohumla dolu şişkin bir meyve haline gelir. Bu meyvenin üst kabuğunun bir bölümü soyulacak olursa tohumların ilk boyutlarının yani yumurtacık olan hallerinin 500 katına ulaştıkları görülecektir. Tohumlar, anne bitkiye göbek bağı olarak nitelendirilebilecek bir bağ ile bağlanmışlardır. (Grains de Vie, s.26) Ayrıca bitki tohumlarının tasarımlarını incelediğimizde şöyle bir detayla daha karşılaşırız. Tohumların kabukları, hayvanlarla taşınan tohumlarda dağıtımlarını yapacak olan hayvanların ilgi duyacağı kadar kolay delinebilme özelliğine sahiptirler. Ancak aynı zamanda bu kabuklar, kapladıkları tohumları bütün tohum yiyiciler için cazip hale getirmeyecek bir yapıdadırlar. Kiraz tohumu ve bu tohumun içindeki bilgiler doğrultusunda büyümüş, çiçek açmış, zamanı geldiğinde de meyve verecek bir kiraz ağacı görülmektedir. Yandaki resim ise bir tür yabani incir ağacına aittir. Metrelerce yükseklikteki bu dev ağaçlar da, meyvelerinin şekeri, kusursuz rengi ve lezzeti tam olan kiraz gibi ağaçlar da küçük tohumlardan çıkmaktadır. (Aşağıdaki resimde görülen insan elindeki küçük tohum yandaki incir ağacının tohumudur) Bu ağaçlarla ilgili bütün bilgiler eksiksiz bir şekilde tohumlarında kodlanmıştır. Üstelik milyonlarca yıldır aynı tohumlara aynı bitkiler kodludur ve bu sayede aynı tohumlardan aynı bitkiler çıkmaktadır. Allah tohumlara yerleştirdiği bilgi ile herşeye güç yetiren olduğunu bize göstermektedir. Buraya kadar anlatılanlardan da açıkça görüldüğü gibi basit bir dış görünüme sahip olan tohumların aslında detaylı bir tasarımı vardır. İçlerindeki maddelerin oranlarından içeriklerine ve koruyucu üst kaplamalarına kadar tüm tohumların özellikleri bulundukları iklim koşullarına, çevre şartlarına göre değişiklik göstermektedir. Peki bu çeşitlilik ve detaylar nasıl ortaya çıkmıştır? Bu sorunun cevabı ile ilgili olarak evrim teorisini savunan kitaplara baktığımızda ilginç bir durumla karşılaşırız. Evrimciler "Neden?", "Nasıl?" gibi sorulara cevap vermektense üstü kapalı ifadeler, göz boyama yöntemleri kullanmayı tercih ederler. Bu konuyla ilgili olarak tohumların üst kaplamaları hakkında Evolution isimli evrimci bir kitapta yazılanları ele alalım. Gördüğünüz kuru tohumlardan aşağıdaki resimlerde görülen rengarenk, mis gibi kokan çiçekler yetişmektedir. Bu, üzerinde düşünülmesi gereken önemli bir yaratılış gerçeğidir. Tohumun üst kaplaması çeşitli hayvanların azı dişlerine, bağırsak asitlerine ve enzimlere, oksijensiz atmosfere direnecek kadar dayanıklıdır. Ayrıca bu tohum kaplaması gerektiğinde uygun filizlenme koşulları oluşana kadar embriyoyu havadan, yanlış filizlenmesine neden olacak sebeplerden ve tohum yiyen hayvanlardan korumak için evrimsel olarak dizayn edilmiştir. Dikkat edilirse yukarıda tohumların kusursuz tasarımındaki dikkat çekici özelliklerden bazıları arka arkaya sıralanmakta, son satırlarda ise "evrimsel dizayn" ifadesi kullanılarak tohumların evrim ile oluştuğu havası yaratılmaya çalışılmaktadır. Ancak takdir edileceği gibi yukarıdaki paragraf tohumların nasıl ortaya çıktıkları sorusunu açıklamaktan son derece uzaktır. Çünkü burada sadece tohumlardaki tasarımın kusursuzluğundan bahsedilmektedir. Sona eklenen "evrimsel olarak dizayn edilmiştir" cümlesi ise gerçekte hiçbir anlam ifade etmemektedir. Ayrıca bu ifade kendi içinde de tutarsızdır. Zira, "evrim" ve "dizayn" kavramları birbirine taban tabana zıt kavramlardır ve evrimin bir dizayn ortaya çıkarması, bir şey tasarlaması düşünülemez. Çünkü evrim tesadüflere dayalı bir süreci savunur; "dizayn" yani "tasarım" kavramı ise bir aklın varlığını gösterir. Dolayısıyla bir yerde bir dizayn varsa bu durum evrim, tesadüf, rastlantı gibi kavramların bunda hiçbir etkisi olamayacağını ortaya koyar. Canlılardaki ve şu anki konumuz olan tohumlardaki dizayn da onların evrimin değil üstün bir aklın ürünü olduklarının en açık kanıtıdır. Bu durumu şöyle bir örnekle daha açık hale getirelim. Bir gün bir resim galerisine gittiğinizi ve burada bir salon dolusu tohum resmi ile karşılaştığınızı farz edelim. Her resimde farklı bir bitkinin tohumu ile ilgili detaylar çizilmiş olsun. Galerinin sahibine bu kadar çeşitli resmi kimin çizdiğini sorduğunuzu düşünelim. Eğer bu kişi size "bu resimlerin bir ressamı yoktur, bunlar tesadüflerin yardımıyla evrimsel olarak dizayn edilmiştir" dese ne düşünürsünüz? Elbette böyle bir cevabın son derece mantıksız ve akıl dışı olduğunu hemen anlar ve ressamın varlığı konusunda ısrar edersiniz. Cansız tohum resimlerinin "evrimsel dizaynına" inanamayacağınıza göre, tamamen canlı yapılarda, içinde bir bitkiye ait tüm bilgileri bulunduran, uygun şart ve ortamlarda filizlenerek dev ağaçları, yüz binlerce çeşit meyveyi, çiçeği meydana getiren tohumları, bilinçsiz ve şuursuz tesadüflerin var ettiğine de inanamazsınız. Görüldüğü gibi burada asıl olarak bu dizaynı kimin yaptığı, nasıl yaptığı, bitkinin bu dizayna uygun bir yapıya nasıl getirildiği ve bunun nasıl yerleştirildiği gibi soruların cevabının verilmesi gerekmektedir. 1-4) Manolya bitkisi geceleri yapraklarını az kapatır. Bu sayede böceklerin kendisini daha çok ziyaret etmesini sağlamış olur. 5) Çiçek solmaya başlar. Taç yapraklar artık bir çiçeğin yere düşecek çöpleri haline gelir. 6) Taç yapraklar solar. 7) Çiçeğin polenlenmiş yumurtası meyveye dönüşmeye başlar. 8) Meyve olgunlaştığında çok güzel kırmızı bir renk alır. 9) En sonunda olgunlaşmış meyveler patlayarak düşmeye hazır tohumlar haline dönüşürler. Bu tohumlar daha sonra yanda görülen ihtişamlı manolya ağaçlarını oluşturacaklardır. Sonuç olarak, tohumların yapısında evrimcilerin tesadüf iddiaları ile asla açıklanamayacak, çok açık bir tasarım ve plan vardır. Elbette ki bu plan şuursuz tesadüflerin sonucunda ya da başka herhangi bir nedenle ortaya çıkmamıştır. Her resmin bir ressamı olduğu gibi her tasarımı her planı yapan da biri vardır.

http://www.biyologlar.com/tohum-kiliflarindaki-ozel-maddeler

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik. Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor. Klonlar Klon, tek hücreden üremiş hücreler topuluğudur. İlkel kardeşlerimiz bakteriler, sürekli klonlar oluştururlar. Bir bakteri hücresini bir tabak yiyeceğin üzerine koyarsak, hemen bölünüp iki hücre, bu iki hücre bölünüp dört hücre olur ve bu böyle sürüp gider, iki gün içinde bakteri kütlesi çıplak gözle görülebilir hale gelir. Bu kütle bir klondur; bir tek orijinal hücreden üremiş milyonlarca yavru hücreden oluşur. Bu klondan bir tek yeni hücre alıp yine bir tabak yiyeceğin üzerine yerleştirirsek, birincisinde olduğu gibi bir klon oluşana kadar bölünecektir. Klon oluşturmak bakteri için oldukça kolay bir iştir, çünkü bütün hücreler birbirinin aynıdır. Daha gelişmiş bir organizmadan klon yapmak çok daha karmaşıktır. Ama teorik olarak mümkündür. Yaratıkların her hücresinde aynı DNA her şeyiyle tam bir bireyi oluşturmak için gerekli bilgiyi taşıdığına göre, tamamen teorik planda; herhangi bir hayvandan bir hücre alıp onu bir kap besinin üzerine veya beslenebileceği başka bir ortama koysak ve tam bir hayvan organizmasını üretmesini sağlasak, aslının kusursuz bir kopyasını geliştirmek için gerekli bütün bilgi, o tek hücrenin DNA'sında vardır. Bu olasılık, özellikle de insanın klon yoluyla oluşturulabileceği düşüncesi, yani bir tek insan hücresinden geliştirilmiş her şeyi tamam bir insan yaratmak, popüler yazarların hayal gücünü harekete geçirdi. Böyle bir olasılık gerçekleşmekten son derece uzaktır. Diğer yandan bir tek hücrenin aslında tam bir bireyi ortaya çıkarabildiğini biliyoruz; döllenmiş yumurta, tam bir yetişkin varlık olduğu zaman bu gerçekleşiyor. Ama olan biten tek yönlü bir işleme benziyor. Canlı yaratıklar, kolay kolay hücrelerinden herhangi birinin döllenmiş yumurta gibi bölünmeye başlayıp kendi tıpkı kopyalarını oluşturmasını sağlayamazlar, Bizim hücrelerimiz kendi uzmanlaşmış durumları üzerine sıkı bir denetleme uygularlar. Örneğin deri hücreleri deri hücresi olarak kalırlar, tıpkısı tıpkısına ayrı bir birey olmak şöyle dursun, değişip kas hücresi olmaya bile yeltenmezler. Hücrelerimizin, çevrelerinin etkisiyle mi böyle değişmez oldukları tartışılabilir. Bir hücreyi komşularından ayırsak, belki beklenmeyen bir davranışa yönelecektir. Böyle bir deney kurbağa larvası hücreleriyle aşağıda anlattığımız gibi yapılmıştır: Önce, kurbağa yumurtalarındaki hücre çekirdekleri ve dolayısıyla DNA'ları tahrip edilmiş, sonra genç larvaların rasgele bazı hücrelerinden alınmış çekirdekler, DNA'sız kurbağa yumurtası hücrelerine yerleştirilmiştir. Kısa sürede yumurtalardan yeni larvalar, hatta bazen kurbağalar gelişmiştir. Yani larvalar bir tek larva hücresinden üremiş birer klondurlar. Benzer klon yapma deneyleri, fareler ve başka hayvanlar üzerinde de yapılmış, ama başarıya ulaşılamamıştır. Klon başarısızlık, hücre karakterindeki dengeliliğini ortaya çıkartıyor. Her hücrenin DNA'sında bulunan, başka bir hücre olabilme potansiyeline karşın, hücreler bu potansiyel avantajı kullanmazlar. Genlerinin çoğu durdurulmuştur. embriyogenezi derinliğine araştırabilmek için genlerin ifade edilip edilmemesini neyin belirlediğini öğrenmeliyiz. Genlerin Başlatma - Durdurma Mekanizmasının Özelliği Hücreleri farklılaştıran gen çalıştırma mekanizması, insanın aklına keskin bir soru getiren ilginç bir bilinmeyendir. Genler nasıl harekete geçirilip durdurulabilirler? Daha önce de söylediğimiz gibi en açık yanıtlar en basit sistemlerden gelir. Yine, o alelade bakterilerin davranışlarına bakalım. Bazı hücreleri taze bir büyüme solüsyonu içine atıp, şeker olarak örneğin glukoz ekleyelim. Hücreler bölünmeye başlarlar ve sayılan hızla yükselir. Bu, glukoz tüketilene kadar sürer. Sonra büyüme durur. Aynı gözlemi, yine benzer bir hücre grubuyla bu sefer değişik bir şekerle, diyelim galaktozla deneyelim. Hücrelerin sayılan artar, ama glukozla olduğundan daha yavaş artar ve galaktoz bitince büyüme durur. Glukozun, daha hızlı tüketildiği için galaktozdan daha iyi bir besin olduğu sonucuna varırız. Ama her iki şeker de bakteri tarafından kullanılmıştır. Hiçbirini ziyan etmiyor bakteriler. Şimdi deneyi hem glukoz hem galaktoz kullanarak yineleyelim, ilginç birşey olur, glukozun tümü tüketilene kadar nüfus hızla artar. Sonra yirmi dakika kadar artış durur. Ve bu sürenin sonunda yeniden başlayıp galaktoz tüketilene kadar sürer. Hücrelerin glukozu yeğledikleri açıkça görülüyor. Ancak, yirmi dakikalık bir aradan sonra galaktozu kullanabilme yeteneğini kazanıyorlar. Bunun genleri harekete geçirmek ve durdurmakla ne ilgisi var? Bu basit sistemin analizi, 1950'lerin sonuna doğru, Fransız bilim adamları François Jacob ve Jacques Monod'ya gen ifadesinin denetlenmesi üzerine parlak bir ilham verdi. Şimdi bakterilerde mekanizmanın nasıl çalıştırılabildiği kanıtlanmış durumda; bu bizim gibi daha karmaşık organizmalarda da geçerlidir belki ama burası henüz kesinlikle bilinmiyor. Bakteriler, alışık olmadıkları bol şekerle uğraşırken içlerinde ne olup bitiyordu? Bakteri hücrelerinin glukoz kullanacak makineleri olduğu açıkça görülüyor, çünkü bu şeker verilir verilmez yemeye başladılar. Bu makine iki proteinden oluşuyor: Şekerin hücreye girmesini sağlayan bir enzim ve içeri girince onu hazmedecek bir enzim. İki enzim; iki gen. Bu makinenin galaktoz kullanan karşılığı henüz hücrede yok; veya en azından iki şekerin bulunduğu solüsyonda büyüme başladığı zaman yoktu. Glukoz tükenince galaktozu kullanacak makine kuruluyor. Glukozun bulunmaması, galaktoz kullanan makinenin geliştirilmesi için tetiği çekiyor. Glukoz, galaktozu kullanmak için gerekli enzimleri denetleyen genlerin ifadesini önlüyordu ve bastırıyordu. Glukoz bitince baskının etkisi kayboldu ve böylece galaktoz genleri, mesajcı RNA'ları yapmaya başlayıp proteine çevirebildiler. Bütün bunların bakteri için anlamını düşünün. Eli altındaki en iyi besini yiyor ve besin, bakteri içinde enerjinin başka besini kullanmak için enzimler yapılarak ziyan edilmemesini de ayarlıyor, iyi besin tükenince el altında yalnızca daha zayıf besin kalıyor. O zaman bakteri işe girişip bu besini kullanabilmesi için gerekli enzimleri yapıyor. Bakteriler Kendilerine Verilen Şeyleri Üretmezler Bahçenizde kendi kullanımınız için sebze yetiştiriyor olsanız ve birileri size düzenli olarak bu sebzelerden vermeye başlasa, belki de kendiniz yetiştirmekten vazgeçerdiniz. Bakteriler de buna benzer bir şey yaparlar. Kendi gereksindikleri amino asitleri yapabilirler (protein zincirindeki yirmi temel halka). Amino asitler olmadan, doğal olarak protein yapamayacaklardı ve üremeleri duracaktı. Eğer bakterilere hazır yapılmış amino asitler verirsek, içinde yaşadıkları solüsyona amino asitler eklersek, bakteriler kendi amino asitlerini yapmayı durdururlar. Amino asit armağanımız hücrelerin kendilerininkini yaparak enerji harcamalarını gereksizleştirir. Burada bir hayli enerji söz konusudur. Yirmi amino asidin her birini yapmak birkaç enzim gerektirir. Her enzim yapılışında, bir gen harekete geçirilmeli, mesajcı RNA yapılmalı, enzim proteinlerin yapıldığı ribosomlara gönderilmelidir. Genin böylece durdurulması yapı enerjisinde önemli bir tasarruf demektir. Enerji korumak, bütün canlı hücrelerde olduğu gibi, bakterinin de yaşamını sürdürebilmesi için son derece önemlidir. Gen İfadesinin Denetlenmesi İçin Şema İşte bakteriler üzerine çalışmalardan elde edilmiş gen ifadesinin genel resmi; 1. Genler harekete geçirilip durdurulabilirler. Bu, represör denilen protein moleküller tarafından yapılır. 2. Represörler, kendilerini genlerin ucuna bağlarlar. Böylece geni mesajcı RNA'ya geçirecek olan enzimin işini yapmasını engellerler. 3. Bu, genin yapmakla yükümlü olduğu proteinin yapılmasının istenmediği anlamındadır. 4. Represörler iki nedenle DNA'dan serbest bırakılabilirler: a) Glukoz gibi bir şekerin yokluğuyla (demek ki glukoz gene bağlanması için represöre yardım ediyor.) b) Bir amino asidin yokluğuyla. Şimdi daha önce anlattığımız glukoz-galaktoz. deneyinin açıklamasını görebiliriz. Glukoz bakterilerin eli altında bulunduğu sürece, onu yiyecek ve bu da galaktoz genleri represörünün galaktozu kapalı tutmasına yardım edecektir. Glukoz bitince, galaktoz geni represörleri işlevlerini yerine getirmezler, böylece gerekli enzimler yapılabilir ve galaktoz kullanılabilir. Aynı şekilde, bakterilere amino asitler verildiği zaman bu amino asitler, bütün amino asit yapmaya yarayan genlerin represörlerine yardımcı olup, genleri kapattırabilirler. Bakteri içinde işleri düzenleyen bu güzel sistemin insanlar dahil daha yüksek canlı biçimlerinde de işlediği görülüyor. Bu sistem genlerin ifadesini denetlemek için önemli bir yoldur. Ama İnsanlar Bakteri Değildir Bakteri hücreleri ile bizim gibi organizmaları daha karmaşık ve uzmanlaşmış hücrelerin kullandıkları yöntemler arasında, belirgin bir fark vardır. Bakteri hücreleri; çabuk tepki veren, esnek, çevredeki ciddî değişikliklere hızla kendini uydurabilen bir yaşam sürenler. Bu biraz, vahşî ormanlarda savaşarak varlığını sürdürmeye benzer; bir bakteri kendi başının çaresine bakar. Diğer yandan uzmanlaşmış hücrelerin yaşam biçimleri kalıcı olarak belirlenmiştir. Ömür boyu; "deri hücresi" deri hücresi olarak, "kas hücresi" kas hücresi olarak, "beyin hücresi" de beyin hücresi olarak kalır. Her hücre çeşidinde deri mi, kas mı, yoksa beyin mi olduğunu belirleyen bir kaç gen işletilir ve diğer bütün genler (diyelim ciğer, kemik ya da böbrek olmak için) durdurulur ve hücre neyse sonuna kadar da o olarak kalır. Bakteriler, buna göre genleri hızla ve kolayca harekete geçirip durdurabilecek araçlar gereksinirler. Uzmanlaşmış hücrelerde çoğu genler sürekli durdurulmuş, birkaçı da sürekli işletilir durumdadır. Bakterinin bu kolay çalıştırma-durdurma mekanizması, uzmanlaşmış hücrelerde kullanılana benzemeyebilir. Ne var ki şu anda elimizde en iyi anladığımız model, bakteri sistemidir. Hiç olmazsa teorik olarak, temelli durdurmayı veya çalıştırmayı sağlamak için kullanılmasını düşünmek zor değil. Biçimin Oluşumu Embriyogenezde temel problem olarak gen ifadesine bakıyorduk. Oysa ilk göze çarpan yan, biçimin oluşumu; heykel dökme sürecindeki hüner, yumurtadan bebeğe dönüşümün akıl almaz mimarî başarısı. Örneğin, bizi oluşturan tüm özel doku ve organlar, bir iskelete asılmıştır. Kemik, bütün diğer yapının yanı sıra embriyoda gelişir. Sıradan görünüşlü hücrelerden başlayarak, içinde kalsiyumun sert bir yapı oluşturmak için biriktirildiği yeni bir doku belirir. Bu doku sert ve olağanüstü güçlüdür, bir organizmanın ağırlığını ömür boyu taşıyabilecek nitelikte yapılmıştır. Kırıldığı zaman da yeniden kendini onarabilir. Böylesine bir yapısal biçimlendirme süreci nasıl ortaya çıkıyor? Bu anlaşılması zor bir problem ve yine bir model sisteme başvurmamız gerek. Bakteriler, insanlar gibi virüs enfeksiyonuna karşı dirençsizdirler. Her bakteri virüsünün (buna bakteri yiyen anlamında bakteriofaj denir) kutu gibi içinde DNA'nın saklandığı bir kafası ve enjektör iğnesi gibi kullandığı bir kuyruğu bu kuyruğun ucunda da bakterinin yüzeyini yakalayan örümcek gibi bacakları vardır. Sonra virüs kendisi bir enjektörmüşçesine -ki aslında öyledir de- DNA'sını kuyruğundan bakteriye geçirir. Virüsün DNA'sı bakteriye girer girmez idareyi ele alır.Bakterinin protein yapan makinesine, bundan böyle bakteri proteini yapılmayacağını belirten bir sinyal gider. Ribosomlar ve transfer RNA makinesi, virüsün kendi DNA'sından üretilen mesajcı RNA'lar tarafından çabucak kendi yararına işleyecek hale dönüştürülür. Kısa bir süre sonra, bakteri fabrikası virüs proteini parçalan yapmaya başlar. Yeni kafalar, kuyruklar ve bacaklar yapılır. Her şey virüsün DNA'sı tarafından yönetilir. Bundan kısa bir süre sonra, bakterinin içinde virüs kafalarının biriktiği görülür, yeni yapılmış virüs DNA'ları bunların içine yerleştirilir ve tamamlanmış virüsler ortaya çıkar. Her bakteri hücresinin içinde, yüz kadar virüs onu sıkı sıkıya dolduracak biçimde birikir. Zamanı gelince, virüsler bakterinin zarını yarıp, onu. öldüren bir enzim salgılayarak kaçarlar. Bütün bu vahşî yıkım yarım saatten az bir zamanda gerçekleşir. Bu olguda biçimin oluşumunun basit bir modelini görebiliriz. Ele geçirilen fabrikada, virüsün değişik parçaları, kendi DNA'sının verdiği talimatlarla, ufak bir bina yapar gibi bir araya getirilir. Bunun dikkatle programlanmış bir zaman aralığında, ortaklaşa gerçekleştirilen bir işlem olduğu görülebiliyor. Öyle ki genler virüsün değişik parçalarının yapımına bir sırayı izleyerek başlanmasını denetliyorlar. Doğru parçalar doğru sırada yapılıyorsa, belirli biçimin kendiliğinden bir anda oluşması çok güçlü bir olasılık gibi görünüyor. Bu modelin çok daha karmaşık, gerçek embriyogenez olgusuna ne kadar ışık tutacağı belirsiz. Ama modelin yararlılığı, bakteriden çok daha basit bir organizma olan virüsün gen kompozisyonu üzerine oldukça tam bir bilgi sahibi olmamızda yatıyor. Ayrıca, olayların sırasını denetleyip isteğimize göre ayarlayabiliyoruz ve çok karmaşık olmayan üç boyutlu bir biçimin oluşumunu bir elektron mikroskobuyla kolayca izleyebiliyoruz. Hücre Bölünmesini Başlatmak ve Durdurmak Embriyo hızla bölünen bir hücre kütlesidir. Bu korkunç hızlı büyüme işi, doğumdan sonra çocukluk boyunca gittikçe yavaşlayarak yetişkinliğe erişene kadar sürer. Yetişkinlikte hücre bölünmesi durur. Bir organizmanın bütününde; her organın, her dokunun hücreleri, büyümenin tamamlanmasına çok titiz ve dikkatli bir işbirliğiyle katılırlar. Hücreler büyümeyi ne zaman durduracaklarını nereden biliyorlar? Oluşumuna katkıda bulundukları organların tam büyüklüğe eriştiğini onlara söyleyen ne? Bu olgu, normal hücrelerin bedenin dışındaki davranışında da gözlemlenebilir. Birkaç normal hücre, bir cam kabın ortasına bırakıldıklarında, hemen yanlarındaki komşu hücrelerle sürekli ilişkili olarak bölünmeye başlarlar ve en uçtaki hücreler kabın kenarlarına dokununcaya kadar, kabın yüzeyini tek hücre kalınlığında bir tabaka halinde örterler. Kenara ulaşılınca bütün hücreler bölünmeyi durdurur. Bölünmeyi durduran sinyalin özelliği nedir? Bunun cevabını bilmiyoruz, ama araştırmayı sürdürüyoruz. Bilmecenin en azından bir bölümüne cevap getirebilecek, iddialı bir model sistemimiz var. Bu modelin uygulanabilme kolaylığına hayranım, üzerine yıllar harcadığım için ona karşı özel bir düşkünlüğüm var. Regenerasyon: Yenilenme Bir kurbağa yavrusunun kuyruğunu kesip onu yeniden suya bıraksam, yara çabucak iyileşir ve ondan sonraki üç haftada gerçekten ilginç olaylar olur: Tam ve mükemmel bir kuyruk. Bir salamenderin de buna benzer biçimde ayağını koparsam yerine yenisini yapar. Deniz yıldızı ve ıstakoz da öyle. Bu olguya regenerasyon: yenilenme denir. Bunun kendi bedenimizde de örneği vardır. Kopunca kollarımızı, bacaklarımızı yerine getiremeyiz ama karaciğerimiz bir kazada zarar görse, bir parçasının ameliyatla alınması gerekse karaciğer bir iki gün içinde eski büyüklüğüne erişir. Bu özel durumun, laboratuvarda benzerini yapabiliriz. Ameliyatla bir farenin karaciğerinin üçte ikisini alabilirim. Fare anesteziden birkaç dakikada ayılır, bir iki saat içinde yemeye başlar ve üç gün sonra karaciğerinin eksik üçte ikisi, normal ve sağlıklı olarak yerine gelmiştir; bir karaciğerin yapması gereken her şeyi yapmaktadır. Bütün bu olaylarda iki dramatik nokta görülür: Birincisi; hayvanın bir parçasının ayrılması, eskiden her şeyin sakin olduğu bu bölgede çok hızlı bir hücre bölünmesine yol açar. İkincisi; bu parça yerine gelince hücre bölünmesi durur. Şaşırtıcı olan; bu bölgedeki hücrelerin bölünmeye gerek olduğunu iş bitince durmak gerektiğini bilmeleridir! Bu hücrelerin içinde, onlara bölünmeye başlamalarını ve eksik organı tamamlamak için yeterince bölündükleri zaman durmalarım söyleyen nedir? Bir zamanlar bunun cevabım bulmak için, kopan parçanın yerine yeni hücreler üreten bir karaciğerden parçalar alıp, bunları normal, bölünmeyen karaciğer hücrelerine karıştırıyordum. Kopanı yerine getirmek için üreyen hücrelere, daha çok hücre yapmalarını söyleyen bir kimyasal sinyal varsa bunun normal hücreleri de etkileyip, onların daha hızlı protein yapmalarını sağlayacağını düşünüyordum. Diğer yandan, eğer normal hücreler yenileme hücrelerini yavaşlatacak bir kimyasal mesajı içeriyorlarsa, bunu da anlayabilecektim. İyi bir fikir, iyi bir model ama deneyler sonuçsuz kaldı. Sistem henüz çok karmaşık. Olanları bir türlü kavrayamıyoruz. Yaşamın kanunlarını açığa çıkartmakta üst üste sağlanan başarılardan söz eden öykümüzde; bir deneysel başarısızlığın yeri yok gibi gelebilir. Bence tersine; bu öykümüzün gerçekçiliğini arttırır. Aslında, şimdiye kadar bilim adamlarını yaptıkları deneylerin çoğu başarısızlıkla sonuçlanmıştır. Başarısızlıklarımızdan ders alıp, bize sonunda iyi bir ilham sağlayacak daha iyi deneyler tasarlayabiliriz. Meslektaşım Dr. Nancy Bucher, yenilenme olayı üzerine bilgiye belki de diğer bilim adamlarından çok daha fazla katkıda bulunmuştur. Önemli çalışmalarından bazıları, farelerden yapışık ikizler yapmayı içeriyordu İki fareyi iyi bir ortak dolaşımları olacak biçimde birbirine dikiyordu; kan ikisinin arasında kolayca dolaşıyordu. Sonra, farelerden birinin karaciğerinin üçte ikisini alıyor ve bu ciğerin eksik kısmı yerine gelene kadar, diğer farenin karaciğerinin de büyüyüp büyümediğine bakıyordu. Büyüdü! Bu; yenilenme yapan karaciğerin, kan dolaşımına bir şey kattığı ve bunun diğer farenin karaciğerine ulaşınca, onun da büyümesine neden olduğu sonucunu gösterdi. Nancy Bucher ve bir çok başka bilim insanları, bu maddenin ne olabileceğini anlamaya çalıştılar; ama henüz bir başarı elde edilmiş değil. Embriyogenez Üzerine Bilinmeyenler Bilinenlerden Çoktur Yinelersek, embriyogenez konusunda bazı ilginç şeyler üzerinde durduk. Bir arada kalabilecek yapışkanlığı elde etmek için bölünen hücrelerin özel yeteneklerinden; bir organizma oluşturmak için gerekli olan uzmanlaşma konusundan; biçimin oluşumundan ve son olarak uzun embriyogenez, sürecine dur emri veren, çocukluk ve yetişkinliğe ulaşma işleminin bittiğini bildiren sinyalden söz ettik. Bunlar son derece karışık olguların yalnızca bir iki önemli noktası. Cahilliğimiz hâlâ bildiklerimizi kat kat geçiyor. Bu hiç de şaşırtıcı değil. embriyogenez, bütün yeteneklerimizi kullanmamızı gerektiren bir probleme benziyor ve biyoloji biliminin temelinde yatıyor. Biraz heyecanlı, biraz da kışkırtıcı bir konu; çünkü, ilk bakışta çözülemeyecek hiçbir zor yanı yokmuş gibi görünüyor. Kısa bir süre sonra, daha önceki bölümlerde anlattığımız yaşamın evrensel kanunlarını kavradığımız gibi, embriyogenezi de anlayabileceğimize inanıyorum. Embriyogenezin anlamadığımız yanları, kanserin anlamadığımız yanlarına çok benziyor. Gerçekte, bazı araştırmacılar, kanserin açıklamasının, embriyogenezin anlaşılmasını gerektirdiğini düşünüyorlar. Kanser, bazı bakımlardan insanın embriyogenezindeki o çok üstün denetleme yeteneğini yitirdiği zaman ortaya çıkıyor gibi görünüyor. Örneğin, kanser hücrelerinin başıbozuk davranışları, hücre yapışkanlığının yok olmasıyla ilgili olabilir. Şimdi bu konuyu daha yakından incelemeliyiz.

http://www.biyologlar.com/embriyogenez

İN-VİTRO FERTİLİZASYON (IVF) ve MİKROENJEKSİYON (ICSI) NEDİR?

TÜB BEBEK (ivf) ve MİKROENJEKSİYON (icsi) NEDİR? İVF veya diğer adıyla "Tüp Bebek" terimi vücut içinde değil de laboratuar ortamında bir araya getirilen spermin kadın yumurtasını döllemesini ifade eder. Tüb bebek ile eş anlamlı kullanılan "İVF" neyi ifade eder? İVF, latince kökenli "İn Vitro Fertilizasyon" kelimelerinin baş harfleri kullanılarak elde edilen bir kısaltmadır. Burada in vitro "dış ortamda (tüp içinde) yapılan" , fertilizasyon ise "döllenme" anlamına gelmektedir. Döllenme sperm ve olgun yumurta hücrelerinin birleşmesine verilen "gebelik başlangıcı"dır. Yani ivf, laboratuar ortamında "tüp içinde döllenme" anlamına gelmektedir ve tıbbi terminolojide tub bebek ile aynı anlama gelmektedir. İngilizce'de de ivf olarak geçen tüp bebek işlemleri "in vitro fertilization" tümcesinin kısaltması olarak kullanılmaktadır. Kontollü Ovaryan Hiperstimulasyon (KOH) ve OPU (Oocyt pick up) ne demektir? Yumutalıkları çalıştırıcı ilaçlar verilerek kadındaki yumurtaların uyarılmasına "over stimulasyonu" adı verilir. Bu işlem bir takım ilaçlar ile kontrollü bir şekilde yapıldığı için "Kontrollü Overyan Stimulasyon (KOS)" veya "Kontrollü Ovaryen Hiperstimulasyon (KOH)" olarak da geçmektedir. Kontrolllü over hiperstimulasyonundaki amaç yumurtalıkların uyarıldıktan sonra "ovulasyon indüksiyonu" denilen yumurta atılımını (ovulasyonu) uyarmaktır. Ovulasyon oluşturulduktan sonra "yumurtaların toplanması" işlemine "oocyte pick up (OPU)" denir. İngilizce'de oocyte "olgun kadın yumurtası", pick up "toplama" anlamına gelmektedir. (Oocyte yerine Türkçe'de "oosit" kelimesi kullanılmaktadır ). ET (Embrio Transferi) ne demektir? Tüp içinde bölünerek oluşan dört veya altı hücreli ilk gebelik ürününe "embriyo (embrio)" adı verilmektedir. Embriyoların rahim içine bir katter (ince çubuk) aracılığı ile yerleştirilmesi işlemine "Embriyo Transferi" (embrio transferi) anlamında "ET işlemi" denilmektedir. Embriyo transferi (ET) ivf işleminin son ve en önemli aşamasıdır. Embriyo Transferi ile ilgili bilgiler için >>> Tüb bebek işlemleri tıpta ne kadar süreyle uygulanmaktadır? İVF (tub bebek) 30 yıldan uzun bir seredir tıpta uygulanılan bir infertilite (kısırlık) tedavisi yöntemidir. IVF ile ilk sağlıklı doğum 1978 yılında gerçekleşmiş ve İngiltere'de "Louise Brown" bu yöntemle dünyaya gelmiştir. Tüp Bebek (ivf) nasıl yapılır? Tüpbebek (ivf) işleminde yumurtalıkları uyarıcı ilaçlarla toplanılan kadına ait yumurtalar, özel kültür sıvısı içeren bir tüp içine alınarak ortama belirli sayıda hareketli sperm bırakılır. Bu şekilde spermin kendiliğinden yumurta içerisine girmesi beklenir. Anne vücut ortamını taklit eden bu cihazlarda (inkübatörlerde) bekletme işlemine "inseminasyon" denir. Daha sonraki aşamalar mikroenjeksiyon ile aynıdır. Mikroenjeksiyon (icsi) nedir? "Mikroenjeksiyon" (ICSI) işleminde ise sperm özel mikro-aletler yardımıyla yumurtanın içerisine direkt olarak yerleştirilmekte, adeta bir mikro enjektör vasıtası ile enjekte edilmektedir. Üstteki resimde bir mikro enjektör ile oosit (yumurta hücresi) tutucu pipetle sabitlendikten sonra delinerek içeriye sperm enjekte edilmektedir. Halk arasında mikroenjeksiyon (mikroenjeksion) işlemine "iğneli gebelik" adı verilmektedir. Bir çeşit tüpbebek uygulaması olan mikroenjeksiyon işlemi İngilizce'de "microinjection" olarak geçmektedir. Hem IVF hem de mikroenjeksion ile bu şekillerde vücut dışında elde edilen döllenmiş yumurtalar belirli bir süre özel besleyici sıvılar (kültür ortamı) içerisinde tutularak bölünmeye başlamaları beklenmekte ve daha sonra gelişen embriyolar belli bir safhadayken normal gelişimini sürdürebilmeleri amacıyla rahim içine yerleştirilmektedir. Kaynak: jinekolognet.com

http://www.biyologlar.com/in-vitro-fertilizasyon-ivf-ve-mikroenjeksiyon-icsi-nedir

BÖCEKLERDE DİĞER ÜREME ŞEKİLLERİ

A- Heterogonie: Döllemli ve döllemsiz çogalma sekilleri birbirini izlerse bu tip çogalmaya heterogonie adi verilir. Ör. Bazi Aphididae türleri (yaz boyunca döllemsiz olarak ürerler, sonbaharda erkek ve disi arasinda çiftlesme olur ve döllenmis kislik yumurta meydana getirilir). B- Polyembrionie: Germinogonie adi da verilen bu sekil üremede bir yumurtadan birden fazla (genellikle pekçok) yavru meydana gelir. Ör: Parazit Hymenoptera'lar (Braconidae ve Ichneumonidae). C- Hermaphroditismus: Ayni bireyin bünyesinde hem erkek hem disilik esey hücrelerinin olusup bunlardan yavru bireylerin meydana gelmesidir. Ör: (Homoptera-Coccoidea), Icerya purchasi. Böceklerde sperma diger havyanlarda oldugu gibi bir bas, bir boyun ve birde hareketli kuyruk kismindan ibarettir. Çesitli böceklerde büyüklük ve yapi degisiklikleri görülür. Böceklerde gelisme: Böcek Yumurtasi: Sentrolesital tiptedir. Bol miktarda vitellus yumurtanin çevresinde ince bir tabaka halindedir. Nukleus yumurtanin ortasindadir. Etrafini az miktarda sitoplazma çevirmistir. En dista korion yer alir. Sert ve dis etkilere karsi koyacak bir sekildedir. Spermanin yumurta içine girmesi için yumurta içersinde mikrofil denilen bir veya birden fazla delik vardir. Sperma buradan girerek yumurtayi döller. Yumurta; oval, çanak, sapli, sapsiz vs gibi çok degisik sekillerdedir. Sayisi da çok farklidir. Yumurtalar ya gelisi güzel bir kütle halinde veya düzenli bir sekilde yumurtlanir ve bu diger türlere göre sabit kalir. Yumurtalar genellikle yavrularin gelisip beslenebilecegi bir ortama konur. Böceklerin çiftlesmesi veya yumurtalarin döllenmesi, sperma veya spermataforun disi cinsiyet organina iletilmesi ile olur. Çiftlesme (Copulation) çok degisiktir. Bazilari uçarken (ari, sinek), bazilari yerde (kelebekler) ve diger bir kismida yüzerken çiftlesir. Çiftlesme süresi birkaç dakikadan, saat veya güne kadar degisebilir. Çiftlesme disinin yumurtlama zamaninda olur. Çiftlesmede eslerin durus tazlari da çok degisiklik gösterir. Fakat en farkli sekil Odonata'larda görülür. Erkek böcegin üreme organi 2. abdomen segmentinin ventralinde oldugu için, çiftlesme sirasinda abdomen sonundaki kiskaç ile disiyi boyun kismindan yakalar ve onu kendine yaklastirmaya zorlar. Disinin abdomenini erkegin 2. karin segmentine getirecek sekilde kivirir. Sonra disiyi yumurtlamaya zorlar. Bazi böceklerde çiftlesme bir kere oldugu halde bazilarinda birden fazladir. Böceklerde POLYGAMIE (bir erkegin birden fazla disi ile çiftlesmesi) ve POLYANDRIE (bir disinin birden fazla erkek ile çiftlesmesi) durumlari da vardir.

http://www.biyologlar.com/boceklerde-diger-ureme-sekilleri

BÖCEKLERDE EMBRİYO GELIŞİMİ

Yumurta döllendikten kisa bir süre sonra bölünmeye baslar. Yumurtanin bölünmesine segmentasyon denir. Segmentasyon sekli yumurta tipine göre degisir. Şöyle ki; böcek yumurtasi sentrolesital olup segmentasyonu da superficialdir. Bu segmentasyonda yumurtanin merkezinde bulunan nukleusun birbirini izleyen bölünmeleri sonunda çok sayida nukleus meydana gelir. Bu yavru nukleuslar yumurtanin çevresinde bulunan sitoplazmaya göç ederler. Çevredeki sitoplazma nukleus sayisi kadar bölünerek blastoderm adini alan tabaka meydana gelir. Bundan sonra blastodermin belirli yerinde kalinlasma olur ve yumurta boyunca uzun bir serit olusur. Bu kalinlasmayi bir çökme izler ve 2 tabaka (Ektoderm, endoderm) olusur. Gastrulasyon adini alan bu dönemden sonra meydana gelen tabakalar arasinda özel hücrelerin çogalmasi sonucu orta tabaka mezoderm meydana gelir. Bu sirada embriyo amnion ve serosa adli 2 zar tarafindan çevrelenmistir (Disda seroza içte amnion). Embriyonun segmentlere ayrilmasi gelismenin ilk devrelerinde baslar, segmentlerin olusumu degisik safhalarda olur. Bas protopod döneminde, thorax ve abdomen segmentleri polypod döneminde ve bacaklar oligopod döneminde meydana gelir. Böcek vücudunu olusturan çesitli organlar yapi itibari ile degisik embriyo tabakalarindan meydana gelir; Ektodermden: Deri, iskelet, ön ve art barsak, salgi bezleri, duygu organlari, solunum ve sinir sistemleri ve cinsel organlari, Mezodermden: Kan ve dolasim sistemleri, yag hücreleri, isik organlari, ovaryum ve testisleri, Endodermden: Orta barsak. Embriyo gelisiminden sonra meydana gelmis olan yavru yumurtayi kemirerek açtigi kisimdan veya özel yapili kapagi kaldirarak disariya çikar. Yumurta dönemi süresi degisiktir. Birkaç saat kadar kisa veya aylarca sürecek kadar uzun olabilir.

http://www.biyologlar.com/boceklerde-embriyo-gelisimi

PARAZİTLERİN PATOJEN ETKİLERİ

PARAZİTLERİN PATOJEN ETKİLERİ

1-Soyucu ve sömürücü etki: Parazitler gereksinmeleri olan besini, bulundukları organdan, barsak boşluğu, hücre veya dokudan veya kandan sağlarlar. 2-Toksik etki: Parazitlerin endo ve ekzo toksinleri, hücre ve dokularda etkisini gösterir. Çeşitli parazitler kanın pıhtılaşmasını durduran. eritrositleri eriten, eozinofili ve lökositoza neden olan çeşitli kimyasal maddeler salgılarlar. 3-Travmatik etki: Parazitlerin kendileri veya yumurtalarının çeşitli organelleri travmatik etki yaparlar. Çeşitli ağız organelleri, artropod'ların hortumları, dikenli yumurtası olan trematod'lar devamlı olarak dokularda yırtılmalara ve kanamalara sebep olurlar. Böyle durumlarda özellikle barsak boşluğunda yaralar oluşur, floraya dahil mikroorganizmler vücut içine girebilirler . 4-Mekanik etki: Parazitler çeşitli organlar üzerinde basınç ve tıkama gibi mekanik etkiler yaparlar. Örneğin, barsakta bir araya gelerek yumak oluşturan ascarisler barsaklarda tıkanmaya yol açabildikleri gibi Ductus choledocus'a girerek safranın barsağa akmasına engel olabilirler. 5-İrritatif (tahriş edici) etki:Organizmaya yabancı cisimlerin yaptıkları reaksiyonlara benzer. Parazitin etrafında iltihap reaksiyonu oluşur. Bu reaksiyon hayati önemi olan bir organda ise kötü sonuçlar doğurabilir. Örneğin Entamoeba histolyctica karaciğerde veya beyin dokusunda abse veya meningoansefalit iltihabi olaylara neden olur ve ölüme kadar yol açabilir. 6-Litik ve allerjik etki: Bazı parazitlerin kollagenaz, mukopolisakkaridaz, proteinaz gibi enzimleri vardır ve bu enzimlerle dokularda erimeye neden olurlar. Allerjik etki ise parazitin kendi vücuduna karşı veya onun salgılarına karşı oluşan reaksiyon sonucu oluşur. PARAZİT ENFEKSİYONLARININ BULAŞMA YOLARI 1- Besinler: Kirli besinler parazitlerin kist. yumurta ve larvalarını taşırlar. 2- Su: içme sularına pis suların karışması. 3- Toprak: Parazitler toprağa değen çıplak deriden girebilirler. 4- Deri: Parazitler vücudun çıplak kısımlarından ve eller aracılığı ile ağızdan girerler. 5- Eşya ve aletler: Çamaşırlar, yatak takımları,özellikle çocuklarda oyuncaklarla 6- Arthropodlar: Bu iki yolla olur: a) Mekanik Bulaşma: Taşıma yolu ile (karasinek). b) Biyolojik Bulaşma: Konak olan artropodun kan emerken bulaştırır.

http://www.biyologlar.com/parazitlerin-patojen-etkileri

SULARDAN BULAŞAN HASTALIKLAR ( SULARLA İLİŞKİLİ HASTALIKLAR )

SULARDAN BULAŞAN HASTALIKLAR ( SULARLA İLİŞKİLİ HASTALIKLAR )

Yrd. Doç. Dr. Hasan IRMAK S.B. Ankara Eğitim ve Araştırma Hastanesi GİRİŞ Günümüzde, dünya üzerindeki içme suyu kaynaklarındaki hissedilir derecedeki azalmalar, gelecekte sağlıklı içme suyu temininin ne denli önemli bir sorun olacağını gözler önüne sermektedir. Bir zamanlar, suyun doğadaki sürekli dönüşümü nedeni ile sonsuza kadar bitmeyecek bir kaynak olduğu düşünülürdü. Oysa artık su, dünyanın pek çok yerinde, endüstri ve kentsel gelişmedeki hızlı büyüme gibi nedenlerle sınırlı bir kaynak haline gelmiştir. Dünyanın pek çok ülkesinde çarpık kentleşme, plansız yapılaşma ve bilinçsizce oluşturulan çevre kirliliği sonucu yerüstü suları olduğu kadar yer altı suları da hızla tüketilmiş veya kirletilerek kullanılamaz hale getirilmiştir. Su zengini bir ülke olmadığımızdan, her geçen gün su kaynakları kirletilmekte ve dolayısı ile azalmakta olduğundan; gerekli önlemlerin alınmaması ve insanlarımızın su kullanımında dikkatli ve tasarruflu olmaması durumunda yurdumuzda da susuzluk çekeceğimiz günler uzak değildir. Bulaşıcı hastalıkların çoğu kirli sulardan kaynaklanmakta ve su ile yayılmaktadır. Dünya Sağlık Örgütü, her yıl iki milyondan fazla insanın su ile bulaşan hastalıklar yüzünden öldüğünü açıklamaktadır. SU METABOLİZMASI Gastrointestinal sisteme normal şartlarda günde ortalama 9 litre sıvı girer: • Oral alım ……………………………………………….: 2 litre • Tükürük …………………………………………………: 1 litre • Mide sıvısı ……………………………………………..: 2 litre • Safra-pankreas-ince barsak sıvıları ………: 4 litre Bu 9 litre sıvının; • 8 litresi ince barsaklardan, • 800 ml’si kolondan geri emilir. • Kalan 200 ml dışkıyla atılır. Günlük dışkı miktarı 150-250 gr. kadar olup bu miktarın % 80’i sudur. Su emiliminde %1-2’lik bir oynama bile, dışkının kıvam ve ağırlığında önemli değişikliğe yol açar. Su ile bağlantılı enfeksiyon hastalıkları, bulaşma yollarına göre dört ana grupta incelenebilir: 1. Sudan Kaynaklanan Hastalıklar: Özellikle ılıman ve sıcak iklimlerde insan ve hayvan dışkısı ile kirlenen sularda bol miktarda mikroorganizma bulunur. Aynı şebekeden su temin eden insanların enfekte olmaları nedeniyle salgınlar çıkar. Tifo, Kolera, Viral Hepatit bu gruba giren enfeksiyon hastalıklarıdır. 2. Su Yokluğundan Kaynaklanan Hastalıklar: Suyu çok kıt olan yörelerde kişisel hijyenin sürdürülmesi güçleşir. Vücudun, yiyecek maddelerinin ve giysilerin yıkanmayışı nedeniyle hastalık yayılma olasılığı artar.Trahom ve bazı barsak hastalıkları (Basilli Dizanteri) bu gruba girer. Bu hastalıkların önlenebilirliği, kullanılan su miktarının arttırılması ile ilişkilidir. 3. Suda Yaşayan Canlılarla Bulaşan Hastalıklar: Bazı parazit yumurtaları suda yaşayan omurgasız canlılarda (salyangoz) yerleşir ve gelişir. Olgunlaşan larvalar suya dökülür; suyun içilmesi ya da kullanılması sonucu enfeksiyona yol açarlar. Şistosomiyazis bu grubun tipik örneği olup; GAP bölgesinde sulu tarıma geçilmesi ile birlikte ülkemiz için büyük bir sorun haline geleceği düşünülmektedir. Halihazırda yurdumuzda daha çok Viral Hepatit ve Tifo’nun bulaşmasında rol oynayan midyeler bu canlılara örnek gösterilebilir. 4. Su ile Bağlantılı Vektörlerle Bulaşan Hastalıklar: Ülkemizde sivrisineklerin yol açtığı Sıtma bu gruba girer. Bu sorun durgun su birikintilerinin ortadan kaldırılması ve suyun borularla taşınması ile giderilebilir. Çeşit olarak da, sayı olarak da oldukça çok olan sularla ilişkili hastalıkların en önemlileri şunlardır: • İshal • Kolera • Hepatit • Tifo ve Paratifolar • Sıtma • Trahom • Anemi • Schistosomiasis • Onchocerciasis • Dracunculiasis (Guinea kurdu hastalığı) • Dengue humması ve Dengue hemorajik ateşi • Gıda zehirlenmeleri • Mantar hastalıkları • Paraziter enfeksiyonlar • Scabies • Leptospira enfeksiyonu • Viral enfeksiyonlar • Kamfilobakter enfeksiyonu • Japon Ensefaliti • Arsenik zehirlenmesi • Kurşun Zehirlenmesi • Siyanobakteri toxinlerine bağlı zehirlenmeler • Suda boğulma • Malnutrisyon İSHALLER İshal, dışkı miktarının ve sayısının fazlalaşması; kıvamının değişerek yumuşak, sulu bir görünüm alması olarak tanımlanır. Dünya Sağlık Örgütü ishali; 24 saatte 3’ten fazla veya her zamankinden daha sık ya da sulu dışkılama olarak tarif etmektedir. Yalnızca sık dışkılama, kıvam bozuk değilse ishal sayılmaz. İshaller genellikle gastrointestinal sistemin enfeksiyonuna bağlı olarak ortaya çıkar. Enfeksiyonun tipine göre sulu (Kolera) veya kanlı (dizanteri) olabilir. Gelişmekte olan ülkelerde hastaneye yatışların %30 nedeni ishaldir. İshalli hastaların %80’i akut ishal, %10’u persistan ishal ve %10’u dizanteridir. İshal tüm ölümlerin %4’ünden sorumludur. Dünyada her yıl 5 yaşın altındaki çocuklarda yaklaşık 1 milyar ishal vakası görülmekte ve bu çocuklardan yaklaşık olarak 2.2 milyonu ölmektedir. Ölenlerin çoğu iki yaşın altındadır ve ölüm nedeni genellikle dehidratasyondur. Ölümle sonuçlanan ishal vakalarının %50’si akut ishal, %35’i persistan ishal, %15’i ise dizanteridir. İshalin etkeni bakteriyel, viral ya da paraziter olabilir. Bunların da çoğunluğu kontamine sularla bulaşır. Kızamık, sıtma gibi hastalıkların seyri esnasında da ishal görülebilir. Ayrıca kimyasal ilaçların barsakları irrite etmesi sonucu da ishal gelişebilir. Ciddi ishaller; sıvı-elektrolit kaybının derecesine, kişinin immün sisteminin durumuna, beslenme özelliklerine göre hayatı tehdit edici olabilmektedir. Oldukça koyu ve hacimli bir dışkı ile karakterize az sıklıkta görülen bir ishal, büyük ihtimalle ince barsak hastalığına bağlıdır. Kalın barsak tipi diarede; sık sık ve az miktarda dışkılama ile birlikte, dışkıladıktan sonra geçen kramp tarzında ağrı bulunur. Korunma ve Tedavi İçme sularının arındırılması Sanitasyonun geliştirilmesi Kişisel hijyenin sağlanması Sağlık personelinin eğitimi Tedavide prensip olarak sıvı-elektrolit desteği ve beslenmeye devam edilmesi önemlidir. BASİLLİ DİZANTERİ (SHIGELLOSIS): Shigella adı verilen mikroorganizmaların neden olduğu, kanlı mukuslu diyare, karın ağrısı ve ateş ile seyreden bir kolittir. Ülkemizde sık görülen bir enfeksiyondur. En çok yaz ve sonbahar aylarında rastlanır. Shigella ile insanlar çok kolay infekte olur. Salmonella ve vibrioların hastalık oluşturabilmesi için 105 kadar bakterinin alınması gerektiği halde, sadece 200-300 shigella bakterisinin alınması ile dizanteri oluşabilir. Shigellosis, fekal-oral bulaşmanın en iyi örneği olarak, alt yapının yetersiz olduğu az gelişmiş ülkelerde sık görülür. Bakteriler; hastaların kullandığı tuvaletlerin kullanılması ile diğer insanlara bulaşabileceği gibi, lağım sularının karıştığı dere suları ile sulanan sebzelerin (maydonoz, marul v.s) çiğ yenmesi ile de bulaşır. Bakteri alındıktan 1-3 gün sonra karın ağrıları, patö kıvamda dışkılama ve hafif ateş görülür. Bir iki gün içerisinde dışkılama sayısı, günde 20-30’u bulur. Dışkı kanlı-mukuslu, şekilsiz ve miktarı azdır. Ateş her hastada yükselmez, yükselenlerde 3 gün kadar devam eder. Su ve elektrolit kaybı nedeni ile hastanın tansiyonu düşer. Halsizlik belirginleşir. Nadiren kansız su gibi dışkılama olabilir. Hastalık, antibiyotik verilmese de 2-3 hafta içerisinde kendiliğinden düzelmektedir. Ancak; antibiyotikler hastalığın 2-3 günde düzelmesini sağlar, dışkı ile bakteri atılımını önler. AMİPLİ DİZANTERİ (AMEBİASİS): Entamoeba histolytica’nın neden olduğu bulaşıcı bir kolittir. Dünya nüfusunun %10’undan fazlasının amip ile infekte olduğu tahmin edilmektedir. Doğu ve Güneydoğu bölgelerimizde sık görülür. 1989 -1995 yılları arasında 71.617 amebiyaz olgusu bildirilmiştir. İnsanlara fekal-oral yolla bulaşır. Bulaştırmada eller ve karasinekler de rol oynar. Amip’in dışkıda görülmesi kesin olarak patolojik kabul edilir. Hastalık kistlerle bulaşır. Oral yolla alınan kistler barsaklarda trofozoit haline dönüşürler ve sonuçta ülserler oluşur. 6-10 günlük kuluçka döneminden sonra bulantı, kusma, kramp tarzında karın ağrısı ve günde 8-40 arasında değişen sayılarda ishal ortaya çıkar. Hastalık çocuklarda yüksek ateşle birlikte, daha ağır ve fatal seyreder. Amipli dizanteri dışkısı kanlı-mukuslu, ancak cerahatsiz olup; berrak, parlak kırmızı renkte ve kırmızı jöleye benzer görünümdedir. Gaitanın mikroskopik incelemesinde bol miktarda eritrosit ile, amip kist ve/veya trofozoitleri görülür. GİARDİA İNTESTİNALİS: Duodenum ve safra yollarına yerleşen bir protozoondur. Bulaşma, kistlerinin oral yolla alınmasıyla olur. Sindirim bozukluğuna, kronik ishale, çocuklarda büyüme ve gelişme geriliğine yol açar. ASCARİS LUMBRİCOİDES (BARSAK SOLUCANI): Parazitin yumurtaları insan dışkısı ile kontamine olmuş toprakta; bununla kirlenmiş, iyi yıkanmamış, az pişmiş veya kirli sularla yıkanmış sebzelerde bulunur. Dünyada yaklaşık 1 milyar kişiyi infekte ettiği bildirilmektedir. Bulaşma, içinde larvanın bulunduğu yumurtanın oral yolla alınmasıyla olmaktadır. Klinikte Ürtiker, Karın ağrısı, İştahsızlık, Kusma, Ateş, Terleme, Burun kaşıntısı, Epilepsiye benzeyen nöbetler ve Gece korkuları görülür. Ascaris, gelişmekte olan ülkelerde nüfusun yaklaşık %10’unda bulunur. Dünyada ciddi ascaris enfeksiyonlarına bağlı olarak her yıl 60.000 kişi (çoğu çocuk) ölmektedir. Ascariasis’den korunmak için: – Dışkı ile kontamine toprakla temastan kaçınmalı, – Yemekten önce eller sabun ve su ile yıkanmalı, – Sebzeler temiz sularla yıkanmalı, – Besinler toprakla temastan korunmalı; yere düşen besinler tekrar yıkanmalı veya pişirilmelidir. ENTEROBİUS VERMİCULARİS (KIL KURDU): Özellikle çocuklarda olmak üzere dünyada oldukça yaygın bir parazittir. Genellikle çekumda olmak üzere kalın barsakta yerleşir. Travmatik etkiyle barsak mukozasında ülserasyonlara ve apandisite yol açabilir Gece artan anal kaşıntılar, Kilo kaybı, Karın ağrısı, İştahsızlık, Deri döküntüleri, Anemi, Burun kaşıntısı ve Diş gıcırdatma gibi belirtiler gösterir. SCHİSTOSOMİASİS: Şistosomiasis, su kaynaklı bir hastalıktır. Dünyada sıtmadan sonra, toplum sağlığını etkileyen ikinci sıklıktaki paraziter hastalıktır. Enfeksiyon, serbest yüzen larvanın ciltten girmesi ile ortaya çıkar. Enfeksiyon sonrası ciltte döküntü ve kaşıntı meydana gelir. Parazitin gelişmesine paralel olarak 2 ay sonra ateş, titreme, öksürük ve kas ağrıları ortaya çıkar. Çocuklarda büyüme ve gelişme geriliğine sebep olur. Hastalık en sık Afrika’da görülmektedir. Bununla birlikte İran, Irak, Suudi Arabistan, Yemen ve Uzak Doğu’da da görülür. Tüm dünyada 200 milyon insan enfekte olup; 600 milyon insan şistosomiasis infeksiyonu açısından risk altındadır Korunma: sanitasyonun düzeltilmesi, suların kontaminasyonunun azaltılması ve kontamine sularla temasın önlenmesi ile mümkündür. NORWALK VE BENZERİ VİRÜSLERİN NEDEN OLDUĞU GIDA ZEHİRLENMELERİ: Başlıca bulgular bulantı, kusma, ishal, kramp tarzında karın ağrısı, baş ağrısı, hafif bir ateş ve halsizliktir. Kaynak: iyi pişmemiş deniz ürünleri ve kontamine içme sularıdır. Oluşan tablo, 24 - 48 h içinde kendiliğinden düzelmektedir. CAMPYLOBACTER ENFEKSİYONU: Campylobacteriosis, dünyanın her yerinde görülebilen bir ishal etkenidir. En sık etkenler Campylobacter jejuni veya Campylobacter coli’dir. İnsanlara az pişmiş kontamine et, kontamine sular ve çiğ süt ile bulaşır. Ateş, baş ağrısı, halsizlik, kramp tarzında karın ağrısı ve kanlı-mukuslu ishal ort. 5 -7 gün sürer. Tüm dünyadaki ishal etkenlerinin %5-14’ünü Campylobacter’ in oluşturduğu düşünülmektedir. Hastalık, en çok çocukları etkilemektedir. KOLERA Kolera, insanlara su ve besinlerle sindirim kanalından bulaşan; kusma ile başlayıp, şiddetli diyare ile seyreden ince barsak enfeksiyonudur. Yaptığı büyük salgınlar ve bu salgınlarda görülen yüksek ölüm oranları ile eski çağlardan beri tanınan bir hastalıktır. 2000 yılında 140.000 vaka ve 5000 ölüm (WHO). Bu vakaların %87 si Afrika kıtasındandır. Kolera hastalığının etkeni Vibrio cholerae’dır. Vibriyonların dış etkilere karşı direnci azdır. Vibriyon 55oC’de 10-15 dakikada, kaynama derecesinde ise 1-2 dakikada ölür. Kuruluğa, güneş ışığına ve asitlere hiç dayanamaz. Mide asiditesi, vibrioları kısa sürede inaktive eder; bu durum birçok insanı kolera olmaktan kurtarır. Vibriolar çeşitli eşya ve besinler üzerinde birkaç saat ile birkaç gün arasında canlı kalabilirler. Temiz çeşme, nehir ve göl sularında haftalarca canlı kalabilmelerine karşılık; bakterilerden zengin nehir, deniz ya da kanalizasyon suları içinde birkaç günden fazla yaşayamazlar. İnsandan insana; hasta veya portör dışkıları ile enfekte olmuş içecek ya da yiyeceklerle bulaşır. Kontamine çiğ yenen sebze ve meyveler, midye ve istiridye gibi deniz ürünleri ile içme ve kullanma suları hastalığın yayılmasında önemli rol oynarlar. Ayrıca karasinek ve hamamböcekleri de yiyecekleri kontamine ederler. Kolera fekal-oral yolla bulaşan diğer hastalıklar gibi; • Alt yapısı yetersiz olan, içme ve kullanma sularının kanalizasyon sularına karışabildiği, • Sularının sık sık kesildiği, • Tuvalet atıklarının arıtma işleminden geçirilmeden akarsu, deniz ve göllere boşaltıldığı, • Kişisel hijyen kurallarının uygulanmadığı, • Sosyoekonomik yönden gelişmemiş ülkelerde büyük salgınlara yol açmaktadır. Kolera vibriyonlarının doğal kaynağı insanlardır. Ayakta gezen atipik ve hafif olgular hastalığın yayılmasına neden olur. Salgınlar genellikle deniz seviyesinden fazla yüksek olmayan yerlerde; yağışlı, nisbi nem ve hava sıcaklığının yüksek olduğu mevsimlerde; akarsuların ve kanalların geçtiği bölgelerde daha fazladır. Duyarlı bir kişide kolera oluşabilmesi için yeterli sayıda etkenin ağız yoluyla alınması gerekli olup, bu miktar ortalama 107 - 109 vibriyondur. Fizyolojik bir engel olan mide asiditesi herhangi bir sebeple zayıflar ve vibriolar bu engeli aşarlarsa, kendileri için elverişli bir ortam olan duodenum ve ince barsaklara ulaşmış olurlar. Kolera vibriyonlarının insan vücudunda yerleşip, çoğaldıkları organ ince barsaktır. Komşu organlara ve kan dolaşımına geçmezler. Kuluçka dönemi birkaç saat ile 7 gün arasında değişir; ortalama 2-3 gündür. Hastalık tablosunun oluşumundan, vibriyonların salgıladığı bir enterotoksin (kolerajenik toksin) sorumludur. Klinikte, kişiler sıhhatte iken, boşalır gibi bir kusma, karın ağrısı ve boşalır gibi diare ortaya çıkar. Hasta tuvalete gitmeye fırsat bulamaz. Zamanla kusmuk ve dışkının volümleri artar, renkleri açılır ve pirinç yıkantı suyu görünümünü alırlar. Hasta günde 8-10 hatta 15 litre sıvı kaybeder. Kusmalar nedeniyle ağızdan sıvı ve katı besin almak imkansızlaşır. Organizmada dokusal bir tahribat olmaz. Kaybedilen sıvı ve elektrolitler yerine konur ise 1-2 gün gibi kısa bir süre içinde şifa sağlanabilir. Bu tür olgularda gerekli tedavi uygulanmaz ise ölüm oranı % 50’ye kadar çıkabilmektedir. Korunmada hijyenik önlemler çok önemlidir. • İçme suları kesinlikle kaynatılmadan içilmemelidir. • Şehir şebekesindeki sular bilimsel olarak klorlanmalıdır. Kuyu ve akarsulardan sağlanan sular dezenfekte edilmelidir. • Sodyum hipoklorit çamaşır sularının içinde ortalama %5 oranında bulunmaktadır. Bu tür çamaşır sularından 1 lt suya 2-3 damla; yada 1 teneke suya 1 çorba kaşığı ilave etmek içme sularının dezenfeksiyonu için yeterlidir. • Çiğ sebze ve meyveler önce 1/5000’lik permanganat solüsyonunda 15 dakika veya Sodyum hipoklorit solüsyonunun 10 kat yoğun hazırlanmışında yarım saat bekletilmeli ve daha sonra iyice yıkandıktan sonra yenilmelidir. • Kanalizasyonlar ile irtibatlı deniz, göl ve nehirlerden sağlanan midye, istiridye ve balık gibi su ürünleri de bulaşmada önemli rol oynarlar. • Ayrıca sinek ve hamamböceklerine karşı etkili mücadele yapılmalıdır. • Salgınlar sırasında topluma, hastalığın bulaşma yolları hakkında bilgi verilmeli, • Karışık gıdalar almamaları, alkollü içeceklerle mide asiditelerini bozmamaları önerilmelidir. • Portör taraması yapılmalı; portör olarak kabul edilen kişilere bir günde oral yolla 8 g streptomisin verilerek bulaştırıcılıkları engellenmelidir. • Büyük salgınlarda okulların kapatılması, gereksiz seyahatlerin önlenmesi ve koleralı bölgeye gidip gelenlerin ülke sınırlarında ciddi şekilde kontrol edilmeleri sağlanmalıdır. • Halen kullanılmakta olan kolera aşısı, ısı ile öldürülmüş vibriyonların, fenollü tuzlu su süspansiyonu olup, bir mililitresinde 8 milyar bakteri bulunur. • SC veya IM yolla 3 - 4 hafta ara ile 2 kez uygulanır. • Aşıdaki antijen ölü bakterilerden yani endotoksinlerden oluşmasına karşılık, hastalık bir ekzotoksin olan kolerajenik toksin ile oluştuğundan aşının koruyucu etkisi zayıftır ve ancak %30-80 vakada koruyucu olur. • Koruma süresi 3-4 ay olup, rutin olarak uygulanmamaktadır. TRAHOM Trahom, bir göz enfeksiyonudur. Tekrarlayan enfeksiyonlar körlüğe yol açar. Hastalık; su kaynaklarının sınırlı, sağlık hizmetlerinin yetersiz olduğu yerlerde, kalabalık yerleşim birimlerinde ortaya çıkar. Aile içerisinde bulaşmalara sık rastlanır. Yaklaşık 6 milyon insan trahom nedeniyle kör olmuştur. SITMA Dünyadaki en önemli paraziter infeksiyon hastalığıdır. İnsanlara genellikle anofel türü dişi sivrisineklerle bulaşır. 45o kuzey ve 40o güney enlemleri arasında kalan, tropikal ve subtropikal bölgelerde; bataklıklara komşu alanlarda sık görülür. Yaygınlaşması su kaynakları ile yakından ilişkilidir. 40 yıl önce sadece Afrika’da sıtmaya bağlı olarak yılda 2.5 milyon kişi ölmekteydi. Sıtma günümüzde Afrika’da 5 yaş altındaki çocuk ölümlerinin ilk beş nedeninden biridir ve yılda ortalama 1 milyon çocuk bu hastalık nedeniyle hayatını kaybetmektedir. Buna karşılık Kuzey Amerika, Avrupa ve Avustralya’dan eradike edilmiştir. Sıtma, tarihte her zaman Anadolunun en önemli sağlık sorunlarından biri olmuştur. Sıtmaya, Güneydoğu Anadolu bölgemizde odaksal, diğer bölgelerde ise sporadik olarak rastlanmaktadır. Son zamanlarda anofellerin DDT’ye direnç geliştirip, Amik ve güneydoğu ovalarında hızla çoğalması, sıtma olgularının yeniden artmasına neden olmuştur. Sıtma olgusu saptanan illerin başında Diyarbakır, Batman, Adana ve Şanlı Urfa gelmektedir. Kuluçka süresi ortalama 14 - 30 gündür. Üşüme-titreme, yüksek ateş ve bol terleme ile karakterize sıtma nöbeti, akut sıtmanın en önemli belirtisi olup; yurdumuzda sık görülen vivax sıtmasında 48 saatte bir tekrarlar. Hastaların çoğunun dudakları uçuklar (herpes labialis). Sıtma küçük çocuklarda daha ağır seyreder. Gebelikte de daima ağırlaşmaya meyillidir; düşük (abortus) ve erken doğum sık görülür. Hasta kötü bir nöbet sonucunda ölmez ise bir süre sonra sıtma sessiz hale geçer. Tedavi edilmeyen olgularda tekrarlayan nöbetlerle anemi ilerler, dalak büyümeye devam eder, bazen karaciğer de büyür. Hasta halsizdir, çalışmak istemez, çeşitli mide-barsak rahatsızlıkları gelişir. Kadınlarda adet düzeni bozulur. Çocuklarda büyüme yavaşlar. Parmak ucundan alınan bir damla kanın boyalı mikroskobik tetkiki ile çok kısa sürede kesin teşhisi konulabilen bir hastalıktır. Her ateşli sıtma hastası yatırılmalı, bol sulu içecek (limonata vs) verilmeli, klinik belirtilere göre semptomatik tedavi (kan transfüzyonu, demirli preparatlar, beslenme vs) uygulanmalıdır. İlaç tedavisi; Chloroquine ve Primaquine adlı ilaçlarla yapılır. Korunmada; • Endemik bölgelerde taramalar yapılarak sıtmalılar belirlenmeli ve tedavi edilmelidir. • Nüfus hareketleri önlenmeli, • Endemik bölgeye gidenlere profilaktik olarak haftada bir, 2 tablet (300 mg baz) chloroquine veya 1 tablet (25 mg) pirimetamin verilmelidir. • Bilinçli ve etkili sivrisinek mücadelesi yapılmalıdır. Bu amaçla İnsektisitlerle (DDT, Malation, Fenitritation, Popoxur, vb); Şahsi korunma tedbirleri (Cibinlik, pencerelere tel, sinek kaçırıcı ilaçlar) ile erişkin sivrisineklere karşı tedbir alınmalıdır. • Larvalara karşı durgun sular ve bataklıklar kurutulmalı, nehir yatakları düzenlenmeli, özellikle pirinç ekimi bilimsel usullerle yapılmalı, • Ayrıca havuz ve göl gibi su birikintileri sık sık dalgalandırılıp, larvaların barınmasına elverişsiz hale getirilmeli, • Böyle su birikintilerinde larva yiyen Gambusia veya Respora cinsi balıklar yetiştirilmeli, • Kurutulamayan su birikintilerinde larvaların solumasına engel olmak için petrol ürünleri kullanılmalıdır. TİFO ve PARATİFO Tifo, Salmonella typhi bakterisinin sebep olduğu yüksek ateş, baş ağrısı, karın ağrısı, şuur bulanıklığı gibi belirtilerle karakterize, insanlara özgü, sistemik bir enfeksiyon hastalığıdır. Paratifo ise S. partyphi A, B ve C gibi bakterilerin yol açtığı, semptomların tifoya benzer ancak daha hafif olduğu klinik tablodur. Hastalık enfekte insanların idrar ve dışkıları ile kontamine olmuş gıda ve suların alınması ile bulaşır. Kanalizasyon sularının, içme ve kullanma sularına karışması sonucunda tifo salgınları görülür. Dünya çapında yılda 17 milyon insanın enfekte olduğu sanılmaktadır. Gıda işleriyle uğraşan portörlerden gıdalara bulaşarak, o gıdayı tüketenler arasında salgınlar ortaya çıkabilir. Tifo; hastaların kullandığı bardak, havlu gibi eşyaların tutulması ile ellerle de bulaşabilmektedir. Sinekler de ayaklarıyla tifo basillerinin gıda ve sulara bulaşmasında mekanik taşıyıcılık yapmaktadırlar. Tifo basili su, buz, toz ve kuru atıklarda haftalarca canlı kalabilir. ABD’de 1920 yılında 36.000 olan olgu sayısı, gıda hijyeni ve temiz su sağlanması gibi önlemler sayesinde 1968’den beri yılda yaklaşık 500 olguya kadar gerilemiştir. • Tifodan korunmada en etkili yöntem; içme ve kullanma sularının arıtılıp, temizlenmesi ve sağlıklı bir atık giderim sisteminin kurulmasıdır. • Taşıyıcıların gıda ve su ile ilişkili işlerde çalışmaları engellenmelidir. • Tifolu hastaların kullandığı tuvaletlerin dezenfekte edilmesi, bu hastalarla temastan sonra ellerin yıkanması korunmada çok önemlidir. • Tifodan korunma yöntemlerinden bir diğeri de bu hastalığa karşı aşılanmadır. Tifo Aşıları : 1. Ölü (inaktive) aşı: Asetonla inaktive edilen S. typhi ile hazırlanır. Koruyuculuğu % 50-70 arasındadır. 2. Zayıflatılmış (mutant) aşı: Hemen hiç patojen olmayan zayıflatılmış bir köken ile hazırlanmış olup, koruyuculuğu % 90’ dır. HEPATİTLER SARILIK; cildin, iç örtülerin (mukozaların) ve göz aklarının sararması ile belirginleşen ve birçok hastalık nedeni ile gelişebilen bir bulgudur. Ortaya çıkması için bilirubin yapımında artış, atılımında azalma ya da bu nedenlerin birlikte bulunması gerekir. “ HER SARILIK ≠ HEPATİT ” Cilt, göz akları ve dil altındaki her sarılık viral hepatite bağlanmamalıdır. Hepatitler dışında; • İlaçlar: Örn. göz anjiyosunda kullanılanlar. • Hemolitik kan hastalıkları, • Büyük hematomlar ve • Karaciğer enzim bozuklukları (Gilbert Sendromu) da sarılığa yol açabilir. Karaciğer, vücudun hemen her etkinliğinde düzenleyici, destekleyici, düzeltici rolü olan vaz geçilemez bir organdır. Bu organın çalışma düzeninin bozulmasına yol açan karaciğer hücresi iltihabına HEPATİT diyoruz. Buna yol açan nedenler; • Mikroorganizmalar (Bakteri, Virüs, Amip) • İlaçlar (Anksiyolitik, Kas gevşetici, Ağrı kesici) • Hormonlar (Steroidler) • Zehirler (Mantar zehirleri) • Birikim hastalıkları (Yağlanma) olabilir. Viral Hepatit Işık mikroskobu ile görülemeyecek kadar küçük, türüne göre değişen ve birkaç 10 nm irilikte, VİRÜS dediğimiz minicanlıların insan karaciğerinde oluşturdukları yaygın iltihaplanmaya VİRAL HEPATİT diyoruz. Normalde her insanda meydana gelmekte olan bilirubin, çalışma düzeni bozulan karaciğer hücreleri tarafından gereğince kandan alınıp safraya atılamaz ve sarılık oluşur. Viral Hepatitli hastalarda çoğu zaman karaciğerin kanı bilirubinden temizleme etkinliği tamamen bozulmaz ve sarılık tablosu ortaya çıkmaz (GİZLİ SARILIK). VİRAL HEPATİTE SEBEP OLAN VİRÜSLER: • PRİMER HEPATOTROP VİRÜSLER – HEPATİT A VİRÜSÜ (HAV) – HEPATİT B VİRÜSÜ (HBV) – HEPATİT C VİRÜSÜ (HCV) – HEPATİT D VİRÜSÜ (HDV) – HEPATİT E VİRÜSÜ (HEV) – HEPATİT G VİRÜSÜ (HGV) – HEPATİT TT VİRÜSÜ (HTTV) • SEKONDER HEPATOTROP VİRÜSLER – EBV,CMV,HSV,VZV,Coxsackie, Rubella,Rubeola, Adenovirüs, Sarı Humma, vd. – EKZOTİK VİRÜSLER:Marburg, Lassa, Ebola, HEPATİT A ve E Hepatit A ve E fekal-oral yolla bulaşır. Çoğunlukla insan dışkısı ile kontamine olmuş sularla bulaşmaktadır. Hepatit A virüsü; gelişmekte olan ülkelerde çocuk yaş grubunu enfekte ederken, gelişmiş ülkelerde daha ileri yaş grubunda enfeksiyona yol açar. Hepatit E ise, daha çok genç yaştaki bayanlarda görülür. Özellikle 3. trimestrdeki gebe kadınlar Hepatit E virüsüne duyarlıdır. HEPATİT A VİRÜSÜ • Isı, eter ve mide asidine direnci fazladır • Klor ve formalin ile inaktive olur • Su ve deniz suyunda 3-10 ay kadar yaşayabilir • Tüm dünyada tek serotipi vardır ve sadece insanlarda hastalık yapar • Alt yapı sorunu olan ülkelerin sorunudur • İnsan dışkısı ile kirlenmiş besinlerle bulaşır • Kabuklu deniz hayvanları ile de bulaşır • Sular; klorlama yetersiz ise bulaştırıcıdır • Bulaştırıcılık dönemi, sarılığın ortaya çıkmasından 2 hafta önce başlar. • İnkübasyon süresi 2-6 hafta (Ort:30 gün) dır. • Hastalık ateş, halsizlik, iştahsızlık, bulantı ve karın ağrısı belirtileri ile kendini gösterir. • Birkaç gün sonra idrar rengi koyulaşır, göz akları ve cilt sararır. • Hastalık 1-2 haftadan birkaç aya kadar sürebilir. • Toplumumuzda çocuk yaşta hastalanmaktayız • Yaş arttıkça tablo ağırlaşır ve sarılık görülme ihtimali fazlalaşır. • Kronikleşmez, ölüm çocuklarda çok nadirdir. • Hepatit A’da mortalite % 0.2-0.4 civarındadır. Ancak karaciğer nekrozu gelişen olgularda %70-90 ölüm görülebilir. • Altta yatan başka bir karaciğer hastalığının varlığında infeksiyon daha ağır seyreder. • Genelde ilk dikkat çekici bulgu, idrar renginin koyulaşmasıdır. İdrar, “az su içen normal insanlardaki gibi” koyu sarı/çay rengindedir. • Önce göz akları ve dil altı sararır; en son cilt sararır. • Karın sağ üst bölgesinde künt (batıcı olmayan) ağrı vardır ve bası ile artar. • Hastalarda güç kaybı, iştah azalması, bulantı-kusma bulunur. HEPATİT E VİRÜSÜ • Hemen hemen tüm özellikleri Hepatit A virüsüne benzemektedir. • Dışkı ile kirlenmiş sular ile geniş kitleleri içeren salgınlara yol açar. • Güneydoğu Anadolu Bölgesinde salgınlar yaptığı gösterilmiştir. • Gebelerde % 20 olasılıkla ölümcül tablolara yol açabilir. A ve E HEPATİTLERİNDEN KORUNMADA GENEL İLKELER • Su ve besin maddelerinin fekal kontaminasyonunun önlenmesi • Karasinek ve fare gibi mekanik taşıyıcılarla mücadele edilmesi • Kirli sulardan elde edilen deniz kabuklularının yenilmemesi • Hepatit geçiren hastaların izolasyonu • Hastanede yatan hepatitli hastalar için önlem alınması • KİŞİSEL HİJYEN KURALLARINA DİKKAT EDİLMESİ (EL YIKAMA) • İnfekte kişilerin okula, kreşe ve işe gönderilmemesi SİYANOBAKTERİYEL TOKSİNLER Cyanobacteria, tüm dünyada özellikle besin değeri yüksek durgun sularda görülebilen mavi-yeşil alglerdir. Bazı cyanobacter türleri ürettikleri toksinler, insanlara kontamine suyun içilmesi veya banyo yapılması sırasında bulaşır. Bu toksinlere maruziyet sonrası cilt irritasyonu, bulantı, kusma, karın krampları, ishal, ateş, boğaz ve baş ağrısı, kas-eklem ağrıları ve karaciğer hasarı görülebilir. Kontamine sularda yüzenlerde astım, göz irritasyonu, döküntüler, burun ve ağızda şişlikler gibi allerjik reaksiyonlar gelişebilir. Cyanobacteri toksinleri etkiledikleri vücut bölgesine göre hepatotoksinler, nörotoksinler , toksik alkaloidler (karaciğer ve böbrek hasarı) olarak sınıflandırılırlar. Mikroorganizma; durgun ve ılık sularda, besin değeri yüksek sularda, su kaynaklarında, havuzlarda, yaz ve sonbahar aylarında görülür. Tüm dünyada görülmekle birlikte; özellikle Amerika, Afrika, Avustralya, Avrupa, İskandinavya, ve Çin’de daha sık rastlanmaktadır. Korunma: • Göllerde ve su kaynaklarında besin değerini azaltmak (ötrofikasyon): atık suların kontrolu, su kaynaklarının tarım atıkları ile kontaminasyonunu azaltmak, • Sağlık çalışanlarının ve su kaynakları ile ilgilenen kişilerin eğitimi, • Kontamine suların detoksifikasyonu ve temizlenmesi ile mümkündür. ARSENİKOZ Arsenik, doğada su kaynaklarında kendiliğinden oluşabilen bir kimyasal maddedir. Arsenikten zengin içme suyunu uzun süre (5-20 yıl) kullanan kişilerde arsenik zehirlenmesi (arsenikoz) ortaya çıkar. Arseniğe bağlı olarak ciltte renk değişiklikleri, ayak ve el ayalarında siyah yamalar; cilt kanserleri; mesane, böbrek, akciğer kanserleri; damar ve periferik damar hastalıkları görülür. Dünya Sağlık Örgütü kriterlerine göre içme suyunda arsenik miktarı 0.01mg/litreyi aşmamalıdır. Arsenik oranı yüksek suların içme dışında çamaşır yıkama ve temizlikte kullanılmasında ya da bu suların cilde temasında sakınca yoktur. Koruyucu tedbir olarak: İçme sularındaki arsenik oranının 0.01mg/dl altında tutmak için kuyular daha derin kazılmalı; içme sularının tahlilleri rutin olarak yapılmalıdır. ANEMİ Anemi dünya çapında yaygın bir sağlık problemidir. En sık nedeni demir eksikliğidir. Demir eksikliğinin en sık nedeni ise beslenme bozukluğudur. Demir eksikliğinin yanı sıra hijyen, sanitasyon, kullanılan şebeke suyu ile ilişkili çeşitli enfeksiyonlar (şistosomiazis, sıtma, kıl kurdu) da anemiye yol açar. Sıtma aneminin önemli bir nedenidir. Dünya üzerinde 200-300 milyon insanı etkilemektedir. Endemik olduğu bölgelerde anemi olgularının yarısından sorumludur (WHO 2000) 44 milyon hamile kadın kıl kurdu ile enfektedir. 20 milyon insan ise şistosomiazis ile enfektedir. Suyla ilişkili anemiler, malnutrisyon ve su kaynaklı enfeksiyonlar sonucu gelişmektedir. Dünyada 2 milyar insan anemiktir. Anne ölümlerinin %20’sinden sorumlu olabilmektedir. Anemi pek çok tetikleyici faktörün sonucunda ortaya çıktığından anemiye yol açan nedeni (beslenme bozukluğu- demir eksikliği, folik asit, vit B 12 eksikliği) bulup, tedavi etmek önemlidir. Ayrıca su kaynaklarının temizlenmesi, sanitasyon ve hijyen, sıtma ve şistosomiazisin önlenmesi açısından çok önemlidir. SCABİES Scabies, bir cilt enfeksiyonudur. Etken Sarcoptes scabiei’dir. Hastalığın esas bulguları ellerde , parmak aralarında, dirsek, diz ve bileklerin cilt katlantılarında, göğüslerde ve omuzlarda görülen döküntülerdir. Genellikle geceleri artan kaşıntı vardır. Erişkin form, insan cildi üzerinde 1 ay kadar yaşayabilir. İnsan dışında çevrede ise ancak 48-72 saat kadar dayanabilir. Kalabalıkta hızla yayılır ve tüm dünyada rastlanır. Su kaynaklarının kirli ve kısıtlı olduğu, sanitasyonun yetersiz olduğu kalabalık yerleşim yerlerinde rastlanır. Tüm dünyada her yıl 300 milyon vaka bildirilmektedir. Korunma: - kişisel hijyenin sağlanması - uygun su kaynaklarının kullanımı Tedavide sıcak su, sabun ve akarisit kullanılır. Kıyafetler de sıcak su ve sabun ile sterilize edilmelidir. ONCHOCERCİASİS Onchocerciasis veya “nehir körlüğü” sularda yaşayan bir böceğin vektörü olduğu parazitik bir hastalıktır. Dünyanın körlüğe neden olan ikinci sık enfeksiyon hastalığıdır. Hastalık Onchocerca volvulus tarafından oluşturulur. Kara sineklerin ısırması ile insandan insana da bulaşır. Larvalar erişkin formlarına dönüşür ve fibröz nodüllere, cilt yüzeyine veya eklemlere yakın yerleşir. Erişkin formlar yarım metre uzunluğa kadar ulaşabilir, cilde uzanır, kaşıntıya ve ciltte depigmentasyona , lenfadenite, elefantiasise, görme bozuklığuna ve körlüğe yol açar. Hastalık Afrika’da, Guatemala’da, Meksika’nın güneyinde, Venezuella’da, Brezilya’da, Kolombiya’da, Ekvator’da ve Arap Yarımadası’nda görülür. Dünya çapında 18 milyon insan bu enfeksiyondan etkilenmiştir. 6.5 milyon insanda kaşıntı ve dermatit, 270 000 insanda ise körlük bildirilmiştir. Korunma: - kara sineklerin ve larvaların bulunduğu kaynakların ilaçlanması. LEPTOSPİROZ Leptospiroz, insan ve hayvanları etkileyen bakteriyel bir hastalıktır. Hastalığın erken döneminde yüksek ateş, şiddetli başağrısı, kas ağrıları, titreme, gözlerde kızarıklık, karın ağrısı, sarılık, cilt ve müköz membranlarda (akciğer dahil) kanama, kusma, ishal ve döküntüler görülür. Etken Leptospira adında bir bakteridir. İnsanlara bulaşma, enfekte hayvan ve insanların idrarı ile direkt temas veya kontamine olmuş sular ve bitkilerden olur. Hastalık köpeklerde, domuzlarda ve atlarda bulunabilir. Bakteri ellerdeki veya vücudun herhangi bir yerindeki kesiden; göz, ağız ve burun mukozasından direkt temas ile bulaşabilir. İnsandan insana geçiş nadirdir. Hastalık tüm dünyada yaygın olmakla birlikte kırsal alanda, bol yağış alan yerlerde ve tropikal bölgelerde sıktır. Veterinerler, hayvancılıkla uğraşanlar, çiftçiler, pirinç ve şeker kamışı tarlalarında çalışanlar, kontamine sularda yüzenler risk altındadır. Her yıl 100.000’de 0.1-1 kişide, nemli bölgelerde ise 100.000’de 10 kişide Leptospiroz vakası bildirilmektedir. Ancak asıl sayının bundan daha çok olduğu sanılmaktadır. Korunma: - infeksiyon kaynağının kontrolu (hayvanların aşılanması) - bulaşma yolunun kontrolu (suyla ve hayvanlarla uğraşırken koruyucu giysilerin giyilmesi, temiz içme sularının bulunması) - insan konakta hastalığın gelişmesini önlemek (aşılama, antibiyotik profilaksisi, doktor ve veterinerlerin bilgilendirilmesi) GUİNEA KURDU HASTALIĞI (DRACUNCULİASİS) Gine Kurdu hastalığı büyük bir nematod olan Dracunculus medinensis’in yol açtığı ağrılı bir enfeksiyondur. Genellikle ayakta bir lezyon olarak başlar. Erupsiyon oluşur; kaşınma, ağrı, ateş ve yanma hissi duyulur. Genellikle enfekte kişi ayağını ağrıyı dindirmek için suya sokar. Bu sırada veya suda dolaşırken ayaktan kurt binlerce yumurtasını suya bırakır. Yumurtalar suda çeşitli evrelerden geçtikten sonra enfekte edici hale dönüşür. Bununla kontamine olmuş suları içen kişilerin barsaklarında larva ortaya çıkar, barsak duvarından ciltaltı dokuya ulaşır; bir yılda bir metre kadar uzunluğa ulaşabilir. Hastalarda eklem ağrısı, artrit, ve bacaklarda kontraktürler görülebilir. Hastalığa sulu tarımla uğraşan kırsal bölgelerde, özellikle Afrika olmak üzere çeşitli Asya ülkelerinde rastlanır. Hastalık su kaynaklarının temizlenmesi ile İran ve Suudi Arabistan gibi ülkelerden eradike edilmiştir. Dünya Sağlık Örgütü, bu hastalığın eradikasyonu için hastalığın yayılmasını önleme, yeni vakaların tedavisi, sağlıklı suyun sağlanması, su kaynaklarının filtreden geçirilmesine yönelik programlar uygulamaktadır. DENGUE VE DENGUE HEMORAJİK ATEŞİ Dengue, sivrisineklerle bulaşan bir enfeksiyondur. Deng ateşi özellikle bebek ve çocukları etkileyen grip benzeri bir hastalık olup, nadiren ölüme yol açar. Deng hemorajik ateşi ise günümüzde pek çok Asya ülkesinde çocukluk çağı ölümlerine yol açabilen potansiyel olarak ölümcül bir komplikasyondur. Deng ateşinin kliniği hastalığın görüldüğü yaşa göre değişir. Bebeklerde ve küçük çocuklarda ateşli-döküntülü hastalık şeklinde; daha büyüklerde ise ateş, başağrısı, gözlerde ağrı, kas-eklem ağrıları ve döküntü tablosu görülür. Deng hemorajik ateşi ise yüksek ateş, hemoraji ve karaciğerde büyüme ile karakterize potansiyel olarak ölümcül bir komplikasyondur. Ani olarak yüksek ateş ve yüzde kızarma sonrası Deng ateşinin diğer bulguları ortaya çıkar. Ateş 40-41oC yi bulabilir. Febril konvülziyonlar gelişebilir. Deng genellikle tropikal ve subtropikal bölgelerde sivrisineklerin yaşadığı alanlarda görülür. Afrika, Amerika, Doğu Akdeniz, Güney ve Güney-Doğu Asya ve Batı Pasifik’ten vakalar bildirilmiştir. Her yıl 50-100 milyon vaka bildirilmektedir, bunların 500.000’i Deng Hemorajik Ateşine yakalanmıştır. Korunma: - Henüz Deng için aşı yoktur. En etkili korunma yöntemi sivrisineklerle mücadeledir. - Atıkların uygun düzenlemelere tabi olması, yerleşim yerlerinin yakınlarında su birikintilerinin oluşmasının önlenmesi, - Sivrisineklerden korunma için ilaçlama ve uygun giysilerin giyilmesi. MALNUTRİSYON Malnutrisyon, gelişmekte olan ülkelerde ciddi bir sağlık sorunudur. Kötü beslenme anlamına gelir. Yeterli beslenmeme dışında yanlış beslenme, enfeksiyonlar ve buna bağlı malabsorpsiyon sonucu da gelişir. Su kaynakları, hijyen, sanitasyon, infeksiyon hastalıklarının ve ishalin önlenmesi malnutrisyondan korunmada önemli başlıklardır. Özellikle çocuklarda ishal, beslenme bozukluğu, kirli sular, tekrarlayan hastalıklara yol açarak malnutrisyona neden olur. Malnutrisyon, gelişmekte olan ülkelerde 5 yaş altı çocuk ölümlerinin yarısında esas rolü oynar. Hastalığın ağır formları marasmus (kronik yağ, kas ve doku kaybı), kretenizm ve iyot eksikliğine bağlı beyin hasarı, vitamin A eksikliğine bağlı körlük ve artmış enfeksiyon riskidir. Kronik yeme bozukluğu yılda ortalama 792 milyon insanı etkilemektedir. Malnutrisyon tüm yaş gruplarını etkilemekle birlikte en sık temiz su, uygun sanitasyon, yeterli sağlık hizmetlerine ulaşamayan yoksul bölgelerde görülür. Korunma: - Su kaynaklarının kontrolu, sanitasyon ve hijyen kurallarının uygulanması, - Sağlıklı beslenme için sağlık eğitimi, - Yoksulların uygun, sağlıklı gıdalara ulaşmasını sağlamak ile mümkündür. EL YIKAMA • Kendimizi ve çevremizdekileri bulaşıcı hastalıklardan koruma amacıyla almamız gereken önlemlerin başında el yıkama gelir. • Elleri normal sabunla köpürterek ve ovarak yıkamak en iyi temizlik yöntemidir ve bu şekilde, hastalıkların bulaşması büyük ölçüde önlenebilir. • Kalabalık yerlerde mümkünse sıvı sabun kullanılmalı veya sabunluklar süzgeçli olmalıdır. • Aksi halde, sulu ortamda bekleyen yumuşamış bir sabun temizleme özelliğini kaybettiği gibi mikrop yuvası olmaktadır. • Toplu yaşam mahallerindeki sabunla elleri iki kez sabunlamakta yarar vardır; • Sabun, sabunluğa bırakılmadan önce suyun altına tutularak köpüğü akıtılmalıdır. BAZI HİJYEN KURALLARI • Başkalarının (hastaların) kan, tükürük, idrar, dışkı gibi atıkları ile doğrudan temas etmemeye özen gösterilmelidir. Bu gibi durumlarda eldiven giyilmelidir. • Hasta (hatta sağlıklı) kişilerin kullandığı malzemeler, öncelikle kirleri temizlendikten sonra sabunlu su (veya deterjan) ile iyice yıkanmalıdır. Mümkünse sterilize edilmeli ya da durulama sonrası dezenfektan solüsyon içinde bekletilmelidir. • İdrar veya dışkı ile bulaşmanın muhtemel olduğu hallerde, mümkünse hastalık iyileşene kadar hastanın kullanacağı tuvalet ayrılır (özellikle alafranga tuvaletlerde ayırma şarttır). • Tuvalet tek ise, o zaman hastanın tuvaleti her kullanımdan sonra bir dezenfektanla sil(in)mesinde yarar vardır. • Tarak, jilet, diş fırçası, şapka, iç çamaşırı, yatak takımları gibi özel eşyalar başkaları ile paylaşılmamalıdır; • Risk altındaki kişiler aşılanmalıdır. Özellikle çocukluk çağı hastalıklarını ve Hepatit B’yi geçirmemiş kişiler ile sağlık personelinin aşılanması gereklidir. Hastalıkların bulaşmasını önleyecek temel kural: KURU ve TEMİZ YERLERDE MİKROPLAR ASLA BARINAMAZ ! • Bu nedenle hiçbir zaman ortamı kirli ve ıslak (nemli) bırakmayınız. • Temizlik ve bulaşık bezlerini kapalı ortamda ıslak ve sıkılı halde bırakmayınız, daima havalı bir yere açarak asınız ve kuru muhafaza ediniz. KAYNAK: karaman.saglik.gov.tr

http://www.biyologlar.com/sulardan-bulasan-hastaliklar-sularla-iliskili-hastaliklar-

GENEL PARAZİTOLOJİ

Latince Para: Yanında, Sitos; Beslenme, Logos: Bilim, sözcüklerinden oluşan Parazitoloji bir canlının zararına yaşamaya denir.Medikal parazitoloji ; protozoonlar,helmintler ve artropodları inceler. Bunlardan protozoonlar, canlılar aleminde Protista aleminin yüksek protistler grubunda bulunurlar. Canlılar hücre yapılarına göre prokaryot ve ökaryot olmak üzere iki tiptedirler. Buna göre nükleus zarı bulunmayan, DNA'sı tek zincir halinde olan, mitokondri içermeyen hücrelere prokaryot hücre denmektedir. Basit protistler denen bakteriler ve mavi-yeşil algler prokaryot hücrelerdir. Nukleuslarında belirgin bir zar bulunan, en az üç kromozomları olan ve sitoplazmalarında mitokondri bulunan ökaryot hücre yapışma sahip protistlere ise yüksek protistler denir. Protozoonlar, mantarlar, kırmızı, yeşil ve kahverengi algler yüksek protistlerdir. Parazit, diğer bir canlının üzerinde veya içinde onun zararına olarak yaşayan canlıdır. Parazit bu şekilde kendini korur ve besinini sağlar. Parazitin üzerine adapte olduğu canlıya KONAK denir. Parazitolojinin konusu olan protozoonları protozooloji, helmintleri helmintoloji, artropodları entomoloji bilim dalları incelemektedir. Doğadaki canlılar arasındaki ilişkiler yalnızca parazitlikten ibaret değildir. Farklı canlıların birlikte yaşamasına simbiyoz denir. Simbiyoz yaşamın 3 çeşidi vardır: 1) Mutualismus: Birlikte yaşayan 2 canlı birbirlerine karşılıklı yarar sağlarlar. Buna örnek olarak geviş getirenlerin rumeninde yaşayan kirpikli(ciliata)ler verilebilir. Bu canlılar, konağın yediği sellülozu, salgıladıkları sellülaz ve sellobiyoz adlı enzimleri ile parçalayarak sindirirler ve çoğalırlar. Çok hızlı çoğalma yeteneğinde olan bu protozoonlar ortalama 24 saat yaşar ve bu süre sonunda ölürler. Ölen bu canlıların vücutlarındaki azot ve glikojen konak tarafından sindirilmekte ve konak canlı, gereksinimi olan total nitrojenin yaklaşık. 1/5'ini bu yolla temin etmektedir. 2) Kommensalismus : Birlikte yaşayan canlılardan biri, diğerinin besin artıkları ile beslenmekte, ancak diğerine zarar veya yarar sağlamamaktadır.Örnek olarak insan kalın barsağında yaşayan Entamoeba coli gösterilebilir. 3) Parasitismus: Küçük bir canlının, daha büyük bir canlı üzerinde veya içinde bu canlıya zarar vererek yaşamasıdır. Örnek insan ince barsağında yaşayan Ancylostoma duodenale kan emerek yaşar ve konak canlıya zarar verir. Canlı organizmaların cansız maddeler üzerinde yasayarak gelişmesi olayına saprofit'lik denir. Parazitin konağa gereksinmesine göre: 1) Zorunlu (Obligatuvar) Parazitlik: Bir canlının, yaşamının bir böümünü veya tamamını konakta yaşaması halidir, örnek; Ascaris 2) Fakültatif Parazitlik: Serbest olarak yaşayabilen bir canlının, yaşaması veya evrimi için gerekli olmadığı halde parazit yaşaması halidir.Örnek: Myiasis. Bu hastalıkta, doğada serbest yaşayabilen karasinekler (Muşça domestica), temiz bakılmayan yaralara yumurtalarını bırakır ve yumurtadan çıkan larvalar, yarada yaşayıp gelişebilirler. 3) Aksidental Parazitlik: Gerçekte serbest yaşayan canlının konağa tesadüfen yerleşip hastalık oluşturmasıdır. Örnek myiasis. Parazitlerin konakta yaşadıkları süreye göre 1) Geçici Parazitlik: Parazitin beslenmek, ya da herhangi bir şekilde faydalanmak üzere, bir süre için konakta bulunmasıdır. Örnek: Kan emici artropodlar. 2) Kalıcı Parazitlik: Parazitin konak vücudunda uzun süre yaşamasıdır. Bu, periyodik ve devamlı olmak üzere iki türlü olur: a) Periyodik Parazitlik: Parazitin evriminin bir döneminde konakta parazit olarak yaşamasıdır. Örnek, çengelli solucanların larvaları toprakta serbest olarak bulunur, buna karşılık erişkinleri insanda parazit yaşar. Olgunlaşmamış şekilleri parazit, erişkinleri serbest yaşayan canlılar da vardır ki bunlara protelien parazit adı verilir, örnek: Myiasis etkenlerinden Gastrophyius equi ve Hypoderma bovis'in larvaları at ve sığırlarda parazitlik yaparlar. b) Devamlı Parazitlik: Parazitin yaşamı boyunca parazit olarak yaşamasıdır. Örnek: Bit ve uyuz böceği. Parazitin yerleştiği organ ve konağa göre: 1) Özel (Spesifik) Parazitlik: Parazitin belli bir konağın belli organlarında parazitlik yapmasıdır. Örnek Taenia saginata, Ancylostoma duodenale insan ince barsağında yaşayan özel parazitlerdir. 2) Gezici (Erratik) Parazitlik: Parazitin her zaman bulunduğu dokudan veya boşluktan başka bir yerde bulunmasıdır. Örnek olarak Ascaric lumbricoides'in ince barsaklar yerine safra yolları, mide, karaciğer ve diğer organlarda bulunması verilebilir. 3) Şaşkın (Egare) Parazitlik: Parazitin kendisi için konak olan türden farklı türde bir canlıda bulunmasıdır. Örnek Fasciola hepatica koyun paraziti olan bir trematoddur. Ancak bazen insanda da bulunabilir. Canlılar çoğalmaları ve büyümeleri esnasında morfolojik ve fizyolojik değişikliklere uğrarlar.Değişikliklerin tümüne evrim denir. Bazı parazitlerin evrimlerini tamamlamaları için bir konak yeterlidir. Bunlara monoksen parazitler adı verilir. Örnek: A. lumbricoides. Bazı parazitlerin evrimlerini tamamlıyabilmeleri için ayrı ayrı ve biri diğerinden farklı konaklara gereksinmesi vardır. Bu parazitlere Heteroksen Parazitler adı verilir. Bu parazitlerde 2 çeşit konak vardır: 1-Son konak (kesin konak): Parazitin olgun hali yani genita organları faaliyette bulunan veya eşeyli üreyen şeklini barındıran konaktır. 2- Arakonak: Parazitin larva şeklidir, yani henüz erişkin hale gelmemiş şekillerinin yaşadığı konaktır. Vektör bir omurgalıdan diğer omurgalılara parazit taşıyan artropod veya omurgasız hayvana denir. Biyolojik vektör:Vektör parazitin aynı zamanda ara konağı ise denir Mekanik vektör :Paraziti vücudunun dış yüzeyi ile taşır ve bulaştırır. PARAZİTLERDE ÜREME VE ÇOĞALMA Üç gruba ayrırarak incelenir. A. Protozoonlar: Ökaryot hücreye sahip yüksek protistlerdir. 1-Aksüel üreme: a) İkiye bölünme : Ana hücrenin 2 ye ayrılması ve 2 yavru hücre oluşturmasıdır b) Tomurcuklanma : Ana hücrede olan küçük bir çıkıntıdan yeni bir yavru oluşmasıdır. c) Şizogoni : Bir çok bölümlere ayrılan çekirdeğin etrafına protoplazma çevrilerekyeni bireyler oluşmasıdır. 2-Seksüel üreme: a) Sporogoni : Erkek ve dişi bireyin (mikro ve makrogametosit, mikro ve makrogamet) birleşmesiyle zigot oluşması ve daha sonra bunun bölünmesidir. b) Konjugasyon : İki bireyin genetik materyel alışverişidir. B. Helmintler: Helmintler vücut yapılarına göre 4 gruba ayrılırlar: 1-Trematodlar: Tek halkadan oluşan yassı helmintlerdir. Şistozomalar dışındaki bütün türler hermafrodittirAyrıca trematodların larva şekillerinde pedogenesis adı verilen tomurcuklanma ile üreme şekli de vardır. Yumurtadan çıkan parazite miracidium adı verilir. Bu mirasidyum ara konağa girer ve orada Sporokist haline döner. Bu kistin içindeki tomurcuklanma işlevi sonucu bir tek yumurtadan çok sayıda larva oluşur. 2- Cestodlar: Vücutları enaz 3 segmentten oluşan yassı helmintler olan sestodlar, seksüel sıralı hermafroditizmle çoğalırlar. Ayrıca tomurcuklanma ile boyun bölgesinden yeni halkalar oluşur 3- Nematodlar: Eşeyli üremedir. Erkek ve dişi ayrı bireylerdir ve yaşamları boyunca aynı cinsiyette kalırlar. Hepsinin evriminde 3 şekildedir. a-Yumurta b- Larva c- Erişkin şekildir. 4- Annelidalar: Sülük adıyla tanınan parazitlerdir. Gerçek hermafrodittirler. C. Arthropodlar: Eklem bacaklılar adıyla tanımlanan hayvanlardır. Erkek ve dişileri ayrı bireylerdir. PARAZİT ENFEKSİYONLARININ BULAŞMA ARAÇLARI 1- Besinler: Kirli besinler parazitlerin kist. yumurta ve larvalarım taşırlar. 2-Su: içme sularına pis suların karışması. 3- Toprak: Parazitler toprağa değen çıplak deriden girebilirler. 4- Deri: Parazitler vücudun çıplak kısımlarından ve eller aracılığı ile ağızdan girerler. 5- Eşya ve aletler: Çamaşırlar, yatak takımları,özellikle çocuklarda oyuncaklarla 6-Arthropodlar: Bu iki yolla olur: a) Mekanik Bulaşma: Taşıma yolu ile (karasinek). b) Biyolojik Bulaşma: Konak olan artropodun kan emerken bulaştırır. PARAZİTLERİN PATOJEN ETKİLERİ 1-Soyucu ve sömürücü etki: Parazitler gereksinmeleri olan besini, bulundukları organdan, barsak boşluğu, hücre veya dokudan veya kandan sağlarlar. 2-Toksik etki: Parazitlerin endo ve ekzo toksinleri, hücre ve dokularda etkisini gösterir. Çeşitli parazitler kanın pıhtılaşmasını durduran. eritrositleri eriten, eozinofili ve lökositoza neden olan çeşitli kimyasal maddeler salgılarlar. 3-Travmatik etki: Parazitlerin kendileri veya yumurtalarının çeşitli organelleri travmatik etki yaparlar. Çeşitli ağız organelleri, artropod'ların hortumları, dikenli yumurtası olan trematod'lar devamlı olarak dokularda yırtılmalara ve kanamalara sebep olurlar. Böyle durumlarda özellikle barsak boşluğunda yaralar oluşur, floraya dahil mikroorganizmler vücut içine girebilirler . 4-Mekanik etki: Parazitler çeşitli organlar üzerinde basınç ve tıkama gibi mekanik etkiler yaparlar. Örneğin, barsakta bir araya gelerek yumak oluşturan ascarisler barsaklarda tıkanmaya yol açabildikleri gibi Ductus choledocus'a girerek safranın barsağa akmasına engel olabilirler. 5-İrritatif (tahriş edici) etki:Organizmaya yabancı cisimlerin yaptıkları reaksiyonlara benzer. Parazitin etrafında iltihap reaksiyonu oluşur. Bu reaksiyon hayati önemi olan bir organda ise kötü sonuçlar doğurabilir. Örneğin Entamoeba histolyctica karaciğerde veya beyin dokusunda abse veya meningoansefalit iltihabi olaylara neden olur ve ölüme kadar yol açabilir. 6-Litik ve allerjik etki: Bazı parazitlerin kollagenaz, mukopolisakkaridaz, proteinaz gibi enzimleri vardır ve bu enzimlerle dokularda erimeye neden olurlar. Allerjik etki ise parazitin kendi vücuduna karşı veya onun salgılarına karşı oluşan reaksiyon sonucu oluşur. KONAKLARIN-PARAZİTLERE KARŞI GÖSTERDİĞİ REAKSİYONLAR Konak, vücuduna giren parazite karşı çeşitli reaksiyonlarla cevap verir. Bu cevap 2 gurupta incelenir: A- Fonksiyonel reaksiyonlar: 1-Semptomatoloji, klinik 2-İmmun cevap (bağışıklık, anafilaksi, allerji) B- Somatik reaksiyonlar: 1-Hücresel reaksiyonlar(fagositoz) 2-Dokusal reaksiyonlar (iltihap, metaplazi, hiperplazi, neoplazi) PARAZİT HASTALIKLARINA KARŞI DİRENÇ Parazitlere karşı biri doğal bağışıklık ve sonradan kazanılmış bağışıklık olmak üzere 2 türlü direnç oluşur. 1-Doğal direnç: insan ve bazı hayvan türlerinin çeşitli parazitlere karşı direnci vardır, örnek, insan kuş malaryasına dirençlidir. Bu tip dirençte konağın, o parazit veya onun ürünleri ile önceden teması olmaz. Doğal direncin oluşumunda rol oynayan faktörler ; a) Vücudu örten deri ve mukozalar: Parazitin vücut içine girmesine engel olabilecek yapıya sahiptirler.Midedeki asit salgısı bir çok parazitin ölmesine neden olacak güçtedir ve bu nedenle hastalık oluşmasını engeller, örneğin, E histolytica'nın trofozoit şekilleri mide suyunda harabolur ve hastalık oluşmaz. Ancak bazı parazitlerin buna karşı savunması vardır ve kist şekilleri mide suyundan etkilenmez. b) Kan ve vücut sıvılarının parazit öldürücü etkisi: Kanda bulunan non-spesifik savunma maddeleri ve fagositler parazitleri tahribederek hastalık yapmalarım engellerler. c) Vücut ısısı: Bazı parazitler belli sıcaklıktaki vücut ısılarında yaşayabilirler d) Beslenme tarzı: Proteinden zengin besinlerle beslenenlerde antikor oluşumu kolay olmakta ve kişinin direnci artmaktadır. e) Hormonlar: Bazı hormonların azlığı veya fazlalığı yani hormonal dengenin bozulması konağın direncinin kırmakta ve hastalık oluşmasını kolaylaştırmaktadır, örnek, Diabetes mellitus enfeksiyonlara direnci azaltmakta,bunun sonucu kolayca enfeksiyon oluşmakta ve oluşan enfeksiyon çok güç iyileşmektedir. Ayrıca açlık, aşırı yorgunluk, başka hastalıklar ve psikolojik nedenler, doğal direncin düşmesine ve parazitlerin kolayca yerleşmesine neden olur. 2-Kazanılmış bağışıklık: Konağın daha önce parazitin kendisi veya onun ürünleri ile karşılaşması sonucu ortaya çıkan bir dirençtir. Burada parazite karşı antikorların ve hücresel cevap oluşur. Bu, 2 yolla olur: A. Aktif Bağışıklık Konağın kendisinin oluşturduğu bağışıklıktır. Bu tür bağışıklık yavaş yavaş oluşmakta ve uzun süre devam etmektedir.Geçirilen enfeksiyonlar veya aşılamalarla elde edilir. Paraziter enfeksiyonlarda aktif bağışıklık 2 türlü oluşmaktadır: a) Reenfeksiyona karşı bağışıklık; konağın bir enfeksiyonu geçirdikten sonra aynı türdeki parazit enfeksiyonuna karşı dayanıklılığıdır. Örnek, şark çıbanı çıkaranlar hastalık iyileştikten sonra bir daha aynı hastalığa yakalanmazlar. b) Süperenfeksiyona karşı bağışıklık (premunisyon bağışıklığı); konağın vücudunda enfeksiyon devam ettiği sürece aynı parazit türüyle tekrar enfekte olmamasıdır. Örnek, insan sıtma hastalığına yakalandığında, plasmodium vücutta bulunduğu sürece bir başka plasmodium ile enfeksiyona dirençlidir. B. Pasif Bağışıklık Başka bir tür canlının vücudunda oluşmuş olan antikorların hastaya veya hastalanması muhtemel kişiye verilmesidir. Hızla oluşur, fakat 2-3 haftada etkisiz hale gelir. Anneden fötusa plasenta yoluyla veya emzirme sırasında sütle geçen antikorlar bebeği bir süre enfeksiyonlardan korurlar. PARAZİT ENFEKSİYONLARINDA KLİNİK BELİRTİLER Bir parazitin hastalık belirtisi gösterebilmesi o parazitin türüne, vücuda giriş yerine, vücut içinde ve dokulardaki göç durumuna, yerleştiği sisteme veya organa, dokularda meydana getirdiği patolojik bozukluklara bağlıdır.Genel olarak her parazit hastalığında hastalık belirtilerinin ortaya çıkması için az veya çok, bir sürenin geçmesi gereklidir ki buna kuluçka (enkübasyon) dönemi denir.Parazitozlarda hastalık belirtileri genel belirtiler ve lokal belirtiler olmak üzere 2 grupta incelenir: 1-Genel Belirtiler: a) Ateş yükselmesi, b) Nabız değişiklikleri, c) Sinir sistemi bozuklukları: Baş dönmesi, kusma, hıçkırık, baş, bel ağrıları, uyuklama veya uykusuzluk, çırpınmalar, sayıklamalar şeklinde görülebilir. d) Deri ve mukozalarda döküntüler: özellikle sistemik hastalık yapan parazitler olmak üzere, çeşitli parazitozlarda, deri ve mukozalarda bir çok lezyon oluşur ve bunlar bazan hastalığın tanısında çok yararlı bilgiler verirler. Bu lezyonlar makul, papül, tüberkül, ürtiker, nodul, vezikül, bul, püstül, keratoz ve hiperkeratoz, kabuk, yara, ülser şeklinde olabilir. e) Kan değişiklikleri: Kandaki değişiklikler, parazitlerin kan yapıcı dokulara etkisi sonucu kan elemanlarında veya serumda bileşim değişikliklerine neden olabilirler. 2-Lokal belirtiler: Parazitin yerleştiği sistem veya organa göre ortaya çıkar. Örneğin, sindirim, ürogenital, solunum sistemleri ile ilgili belirtiler görülebilir. PARAZİTOZLARDA TANI Parazitozların tanısında klinik belirtiler yalnız başına yeterli değildir. Çünkü bu belirtiler birçok diğer hastalıkta da görülebilir. Bu nedenle hastalığın etkeni olan parazitin veya onun evrim dönemlerinden birinin görülmesi önemlidir. Bunun saptanamadığı vakalarda ise indirekt tanı yöntemlerine başvurulur. Ayrıca mümkün olduğu durumda parazitin kültürü yapılarak etkenin izolasyonuna çalışılır. A. Hastalık etkenini veya onun evrim dönemlerinden birinin görülmesi amacıyla kullanılan yöntemler ve muayene maddeleri şunlardır: 1-Kan 2-Dışkı 3-İdrar: 4- Deri kazıntısı: 5-Vagina salgısı 6-Doku sıvılan 7-Ponksiyon sıvıları 8-Balgam 9-Duodenum salgısı 10-Biyopsi materyeli 11-Otopsi materyeli B. Yukarda sayılan materyel, uygun olgularda kültür ortamlarına ekilir ve parazitin izolasyonuna çalışılır. C. Serolojik yöntemlerle tanı konulabilir. D. Deri testleri: Geç aşırı duyarlılık esasına dayanan testlerdir.

http://www.biyologlar.com/genel-parazitoloji

Parazitler ve tenyalar hakkında bilgi

Tanım ve Klinik Bulgular :Helmint yumurtalarının yutulması ya da larvalarının cildi delerek organizmaya girmesi sonucunda ortaya çıkan paraziter infeksiyonlardır. 1. Plathelmintler (Yassı Solucanlar): a) Sestodlar: Taenia’lar, Hymenolepis, Echinococcus. b) Trematodlar: Fasciola, Schistosoma. 2. Nemathelmintler (Yuvarlak Solucan): Ascaris, Enterobius, Ancylostoma Taenia : T.saginata, erişkin formu insanda bulunan, baş (skoleks) ile jejunuma tutunarak halkaları (proglottid) ile 10 m. uzunluğa kadar erişen ve insanların sindirdikleri besinlerle beslenen şeritsi bir parazittir. İnsan dışkısı ile dış ortama atılan yumurtaları ara konakçı olan sığırları bulaştırır ve sığırda larva infeksiyonlarına yol açar. İyi pişirilmemiş sığır etlerindeki larvaların yutulması ile insanna bulaşır. Temel yakınma dışkıda parazit halkalarının görülmesi ve daha nadir olarak da açlık karın ağrısıdır. Yumurtaları insanlar için bulaştırıcı değildir. Benzer bir parazit olan Taenia solium’un ise ara konakçısı domuzdur ve yumurtaları insanlar için bulaştırıcıdır. Diphrobothrium latum : Çiğ balık yenmesi ile insanlara bulaşır, incebarsaklara tutunarak 20-25 m. uzunluğa erişir. Çoğu olgu asemptomatikse de %2 olasılıkla B12 vtamini yetmezliği sonucu megaloblastik anemiye neden olabilir. Hymenolepis nana : Küçük (2-4 cm) bir fare ve insan parazitidir. Diğerlerinin aksine ara konakçı gerektirmeden hastalıklı insan dışkısın tarafından kontamine edilmiş besinlerdeki yumurtaların yutulması ile bulaşır. Bu nedenle aile içi bulaş söz konusudur. Halkalar barsakta parçalandığından dışkıda sadece yumurtası görülebilir. Çocuklarda daha sıktır. Karın ağrısı, enterit, anemi, asteni, sinir sistemi belirtileri ve konvülsiyonlara kadar varabilen semptom zenginliği vardır. Fasciola hepatica : Koyunların yapraksı parazitidir. İnsanlara iyi yıkanmamış çiğ sebzelerle bulaşır, safra yollarına yerleşerek portal siroza neden olur. Schistosoma: Kontamine sularda yaşayan serkaryaların cildi delmesi ile dolaşıma geçer, türe göre mesane (S. haematobium, S. japonicum), kolon (S. mansoni, S. japonicum) veya nadiren diğer visseral organlar ve medulla spinalis (S. mansoni) venalarına yerleşerek kronik irritasyon nedenli organ patolojilerine (kronik sistit, mesane kanseri, kronik ishal, karaciğer fibrozu, portal hipertansiyon) ve allerjik reaksiyonlara yol açar. Ascaris lumbricoides : Dış ortama atılan infekte insan dışkısındaki yumurtalar burada erginleşir ve yumurtaların insan tarafından yutulması ile bulaşır. Erişkinleri 20-25 cm. uzunluğunda bulunan yuvarlak, solucansı bir parazittir. Organizmadaki larva döngüsü sırasında geçtiği akciğerlerde allerjik pnömoni (Löeffler pnömonisi), barsakta serbest olarak yaşayan erişkin formu ise tıkanma ikteri, ileus ve malnutrisyon tablolarına yol açar. Enterobius vermicularis : Evrimi sadece insan ile sınırlı olan, insandan insana yumurtaların aktarılması ile bulaşan küçük bir nematoddur. Yutulan yumurtadan incebarsaklarda çıkan larva kolon mukozasına tutunarak yaşar. Dişilerin anüsteki yumurtlama döneminde gelişen irritasyonuna bağlı olarak anal kaşıntı ve sekonder infeksiyonlara neden olur. Ancylostoma duodenale, Necator americanus : Kancalı kurtlar olarak anılırlar. Kumlardaki hareketli larvanın çıplak ayaktan cildi delmesi ile insanlara bulaşır. Dolaşım yolu ile akciğere, oradan da özofagus yolu ile oral kavite ve özofagusa gelen larva yutulur, erişkin hale gelip incebarsaklara tutunur. Barsak kanamalarına neden olduğu için süregen kan kaybına bağlı demir eksikliği anemisi gelişir (pika anamnezi). Kanama bazen ciddi boyutlara ulaşabilir. Ayrıca; evrimi sırasındaki seyahatlerine bağlı olarak cilt, akciğer, gastrointestinal (bulantı, kusma, ishal) görülebilir. Trichuris trichiura : Yumurtasının yutulması ile bulaşır, kolona tutunarak yaşar. Allerjik reaksiyonlar, karın ağrısı, distansiyon, kanlı ishal, kilo kaybı, mental değişiklikler, ileus, anal prolapsus ve apendisit tabloları ile kendini gösterir. Strongyloides stercoralis : Kancalı kurtlarla aynı evrimi gösterse de önemli bir farkı, yumurtalarının barsaktayken açılması sonucunda immünitesi normal bireylerde peptik ülser benzeri yakınmalara neden olurken immünite problemi olanlarda çoğul otoinokülasyonlar sonucu karaciğer, kalp, beyin gibi birçok organı içeren belirtiler ile seyreden ve mortalitesi yüksek hiperinfeksiyon tablolarına yol açar. Bu hastaların salgıları da larva içerdiği için bulaştırıcıdır. Tanı Metodları : İntestinal parazitlerin büyük çoğunluğunun tanısı dışkı incelemesi ile konur. Bu amaçla yüzdürme ve çöktürme yöntemleri kullanılmaktadır. Daha ağır olan Schistasoma ve Ascaris yumurtalarını için en uygun yöntem çöktürme yöntemidir (Formol-Etil asetat) E.vermicularis yumurtaları için, dişi oksiyür gece saatlerinde rektum-anüs bölgesine yumurtladığından, sabah uygulanan Selofan-Bant Yöntemi en iyi sonuç verir. Şistozomyaz, fasyolyaz, askariyaz, kancalı kurt, trişuryaz ve strongyloides infeksiyonları gibi doku irritasyonu yapan parazitozlarda eozinofili önemli bir bulgudur.

http://www.biyologlar.com/parazitler-ve-tenyalar-hakkinda-bilgi

Parazit çeşitleri

Daha çok bilgi için: Parazitik ikizler ve Parazitik yapışık ikizler Parazitler host üzerindeki etkileşimlerine göre sınıflandırılırlar. Ciddi olanlarına köpeklerdeki kalp kurdu örnek verilebilir. Konağın dış yüzeyinde yaşayanlar Dış parazitler (örnek Akarlar) ve içinde yaşayanlar İç parazitler (tüm Parazitik kurtlar). Bazen taşıyıcı olan Ara konaklar üçüncül bir parazit veya hastalığı bulaştırabilirler. Hücreler içi parazitlere örnek çeşitli mikroplar olabilir. Saz ardıçkuşu tarafından büyütülen bir Ağaçkakan.Sıradışı parazitizme karıncayı yavaş yavaş içten yiyen Ophiocordyceps unilateralis olarak bilinen bir mantar verilebilir. Bu noktadan sonra mantar karıncanın beynine yerleşmeye başladığında bir çeşit zombiye dönüşen karınca mantarın yönlendirmesine göre yürümeye başlıyor. Özellikle Tayland’ın bazı bölümlerinde görülen bu mantar türünün ele geçirdiği karıncalar daima ormanların içlerine doğru yürüdükten sonra yerden yaklaşık 25 cm yukarıdaki mantarın üremesine elverişli yapraklara dişleri ile tutunup hareketsiz kalıyorlar. Bundan sonra mantar kurbanına başka parazitlerin de bulaşmasını engellemek için karıncanın etrafında bir koza örüyor ve ziyafetine devam ediyor. Mantarın karınca'nın beynini nasıl kontrol edebildiği ve en son olarak karıncanın çenesini kapalı tutan kasları yemesi ise bilim adamlarını şaşırtan bir detaydır. Kleptoparazitizm bir canlının diğer bir canlının av veya gıdalarından faydalanmasıdır, bu tür parazitime örnek olarak bitki bitinden çıkan şekerli salgıları sağmak için onları kültive eden karıncalar verilebilir aynı zamanda bu davranışa yakın bulunan Sosyal parazitlere diğer kuşları yavrularının babysitterliğe manupule ederek yetiştiren, yumurtasını bıraktığı genç kuluçkalı yuvada bakıcı konağı yumurta ve yavrularıyla ilgilenilmeyince bir ya da iki yumurtasını yuvadan atan bazende yıkarak zarar veren kuş, balık, böcek çeşitlerinin dahil olduğu Kuluçka parazitizmi 'örnek verilebilir. İşgal, mafya, savaş ve evrim senaryolarına konu olmuş bir parazitoloji çeşitidir. Eklembacaklı konağı yumurtalarını suya bırakacağı zaman boğulmaya teşvik ederek intihar ettiren Kılımsısolucanlar ya da Aykılı adı verilen Nematorpha türü ise söylentilerin aksine insanda yaşamaz. Tıp ve Alternatif Tıp'ta Çin aktarları parazitik solucanları afrodizyak, görmeyi artırmak vb faydaları için kullanmışlardır. Sosyo ekonomik düzeyi düşük kişilerde gelişmiş ülkelere göre özellikle kanser, enflamatuar bağırsak hastalıkları, kireçlenme gibi rahatsızlıkların daha az görülmesi Amerikalı bazı profesorlerin dikkatini çekmiş risk altındaki kişilere solucan yumurtaları verilmesi ile deneylere başlanmıştır. Bu araştırmalar tartışma aşamasında ve kansere yakalanmamış hastalar için geçerlidir. Östrojen salınımı azaltan kist hidatikin meme kanseri riskini düşürerek, erken alındığında bulunduğu bölgedeki kanser oluşumları'da tartışılmıştır. Bazı formuna önem veren balet, aktrist gibi sanatçılar tenya yumurtası yutarak obeziteye karşı sağlıklı olduğunu düşündükleri yöntemleri uygulamıştır. Bazı balık türleri sedefli, funguslu cilt hastalıklarında ve sülük çeşitleri kirli kanın temizlenmesinde, adi sinek kurtçuklarıda gangrenli ve toksik dokuları temizlemesinde kullanılmıştır, Bazı kuş türleri tüylerinin arasına yerleştirdikleri canlı karıncalar yardımıyla temizlenir. Adi sineğin larvasında bulunan toksinden bilimadamları güçlü yeni bir antibiyotik üzerine çalışmalarını sürdürmektedir bu yine hayvanseverlerinde tepkisine yol açmıştır. Bazı kuş türleri timsahın diş aralarındaki artıklarla beslenirken timsah ağzını açık bırakmaktadır. Bazı ufak balık türleri köpekbalıklarının üzerine yapışarak atık derilerdeki bakteri oluşumunu engellemektedir, köpekbalığı ve timsah gibi vahşi türlerin kendilerininde bu yaratıklara nezaketli davranmaları doğal seleksiyonda dayanışma olabileceği gibi zayıf bir bünye yada aç yeni bir parazit için yukarıda sayılan dostluklar her koşulda geçerli olmayabilir.

http://www.biyologlar.com/parazit-cesitleri

BİYOLOJİK MÜCADELE NEDİR?

Zararlı böceklerin yaptığı zararları durdurmak veya azaltmak için onların doğal düşmanlarını doğada artıracak şekilde yapılan işlemlere denilmektedir Zararlı böceklerin doğada mevcut doğal düşmanların yardımıyla ekonomik zarar düzeyinin altında tutulması işlemine biyolojik mücadele denmektedir Biyolojik mücadelede hedef ilaçlı mücadelede olduğu gibi, zararlıları tümüyle yok etmek değildir Biyolojik mücadelede, zararlı yoğunluğu ekonomik zarar düzeyinin altında tutulmakta, böylece söz konusu zararlıların doğal düşmanlarının doğada sürekliliğinin sağlanması hedef alınmaktadır Doğal düşmanları üç grupta toplayabiliriz: 1) Predatör Böcekler Hayatı boyunca serbest olarak yaşayan, avını yiyerek veya vücut sıvısını emerek öldüren, çoğunlukla avından büyük boyda olan ve gelişmesini tamamlayabilmesi için birden fazla ava ihtiyacı olan organizmalardır 2) Parazit Böcekler Yumurtasını konukçusunun içine veya üzerine bırakarak gelişmesini tamamlayıp, konukçusunu öldüren ve ergin oluncaya kadar, yalnız bir tek konukçuya ihtiyaç gösteren organizmalardır 3) Entomopatojenler Konukçularını hastalandırarak öldüren mikroorganizmalardır Biyolojik mücadele programlarının hazırlanabileceği bölgelerdeki kültür bitkilerindeki tüm zararlıların ve bu zararlıların doğal düşmanlarının saptanması gerekmektedir Söz konusu doğal düşmanların birbirleriyle ilgilerinin çok iyi bilinmesi gerekir Ayrıca bu doğal düşmanların konukçularına hangi şartlarda ne oranda etkili olduklarının da ortaya konması gerekir Söz konusu bölgedeki zararlıları baskı altında tutacak doğal düşmanlar yok ise, aşağıdaki yöntemler uygulanabilir 1 Doğal düşmanların bulundukları bölgelerden toplanarak konukçularının zarar yaptıkları yerlere salınması 2 Doğal düşmanların üzerinde bulundukları konukçularıyla birlikte faydalının bulunmadığı bölgeye salınması 3 Biyolojik mücadele etmenleri laboratuarda üretilerekkonukçularının zarar yaptığı bölgelere salınmasıdır 4 Biyolojik mücadelesi planlanan zararlının yurt içinde etkili doğal düşmanları yok ise yurt dışında var olan etkili doğal düşmanların getirilip laboratuarda üretimleri gerçekleştirilerek biyolojik mücadelede kullanılır Biyolojik mücadeleyi olumsuz yönde etkileyen faktörler vardır Bunlar: 1 İklim 2 Konukçu Uygunluğu 3 Karınca 4 Toz 5 Zararlı ve hastalıklara karşı kullanılan zirai ilaçlardır

http://www.biyologlar.com/biyolojik-mucadele-nedir

Doğurganlık - Fertilite Nedir

Kadında Doğurganlık Kadınlarda doğurganlık, gebe kalabilme ve bebek sahibi olabilmektir. Bir kadında doğurganlık13 yaş civarında adetlerin başlamasıyla başlar ve genellikle bu 45 yaş civarında sonlanır. Fakat potansiyel olarak doğurganlık yaklaşık 51 yaş civarına dek yani menapoza kadar sürer. Kız çocuğunun anne karnında 5 aylıkken sahip olduğu yumurta sayısı yaklaşık 6-7 milyondur, bu sayı doğumda 1-2 milyona düşer, çocukluk çağında yavaş yavaş azalarak ergenlik döneminden itibaren ayda bir yumurta yumurtlamak suretiyle bu azalma menopoza kadar aylık ortalama 350-400 yumurta harcayarak devam eder. Bu yumurtalar yumurtalıklar içerisinde follikül denen içi sıvı ile dolu boşluklarda saklanırlar. Küçük kız doğurganlık çağına girdiğinde aylık menstrual sikluslar (adet) başlar. Her siklus sırasında yumurtalık bir yumurta geliştirir. Nadiren birden çokta olabilir. Bu yumurta erkekten gelen sperm hücresi ile birleşirse gebelik oluşur. Yumurta hücresinin gelişimi beyinde hipotalamus ve hipofiz denen bölgelerden ve yumurtalıklardan salgılanan bazı hormonların ve kimyasalların ince dengesine bağlıdır. Erkekte Doğurganlık Erkekte doğurganlık. Kadını hamile bırakabilme yetisi anlamına gelir. Bunu sağlayabilmek için. Erkeğin üreme sisteminin sperm üretebilme ve depolayabilmesi ayrıca depolanan bu spermlerin vucut dışına taşınabilmesi gereklidir. Kadının hayatı boyunca üreteceği yumurta hücreleriyle doğmasına karşın erkek hayatı boyunca sürekli yeni sperm üretebilme yeteneğine sahiptir. Erkek. Puberteye eriştikten sonra . sperm depoları yaklaşık her 72 günde bir yenilenmektedir. Doğurganlık (fertilite) Terimleri: Fertilizasyon: Sperm ve ovumun birleşmek üzere biraraya gelmesi Konsepsiyon: Gebeliğin oluşması (döllenme) Gebelik: Ovum ve spermin birleşmesinden sonra. Kadın üreme sisteminde embriyo veya fetusun gelişmesi. Hayatın Temeli İnsanlar hayata tek bir hücre, döllenmiş yumurta ya da zigot olarak başlarlar. Bu hücrelerin herbirinin çekirdekciklerinde DNA denilen (deoxyribonucleic acid) ve biraraya gelerek genleri oluşturan bilgi kodları vardır. Bu genler'de kromozomlar olarak adlandırılan yapıları oluştururlar. Bir insan zigotu 23 çiftten oluşan 46 adet kromozom içerir. Bunların yarısı babadan diğer yarısı ise anneden gelir. DNA bilgi ile depolu olması yanında kendini kopyalama yeteneğine de sahiptir. Bu kopyalama yeteneği olmaksızın hücreler çoğalamazlar ve bilgileri kuşaklar boyunca iletemezler. Gebelik Şansını (Doğurganlığı) Artırmak İçin Neler Yapılabilir? Sigara Sigara kadınlarda fertiliteyi düşürebilir. Pasif içicilik de aynı şekilde etki eder. Sigara içimi ile alınan nikotin, yumurtalıklardaki hücreleri etkileyerek, kadının yumurtasının genetik anomalilere daha fazla eğilimli olmasına neden oluyor. Nikotin, yumurta hücrelerini bozmasının yanında menopozun beklenenden erken gelmesine de yol açabiliyor. Menopoz öncesinde de sigara içen kadınların yumurtalıkları sağlıklı yumurtalar üretmeye direnç gösterir hale gelir. Sigara kullanımı doğal gebe kalmayı zorlaştırırken, düşükleri hızlandırır. Gebelikte sigara ve alkol kullanan kadınlarda düşük oranının yüksek olduğu bildiriliyor. Erkeklerde de sigara içmekle sperm kalitesinin düşüşü arasindaki bağ gösterilmiş olup bunun fertilite üzerindeki etkisi henüz çok açık değildir. Sigaranin bırakılmasının genel olarak sağlık kalitesini yükselteceği açıktır. Eğer sigara kullanıyorsanız, tüm yaşantınız ve üreme sağlığınız için bırakmanızı öneririz. Stres Stresin infertilite üzerine etkisi belirgindir. Örneğin stres nedeniyle kadında anovulasyon (yumurtlamanın oluşmaması) olabilir. Çok açıktır ki Kısırlık tedavisi, ister klasik ister tüp bebek yöntemleri ile olsun, çiftler üzerinde büyük stres, kaygı, gerginlik, korku, uykusuzluk, iç sıkıntısı, depresyon gibi değişik derecelerde psikolojik baskılara neden olabilmektedir. Bazı kısırlık vakalarında çok kısa tedavi süresi veya ilk denemede gebe kalma gerçekleştiğinde bu tür psikolojik sıkıntılar daha hafif atlatılabiliyor. Diğer taraftan, uzun süredir tedavi görmelerine rağmen gebe kalamayan çiftlerde sorunlar daha ağır hale gelebiliyor. Tedavi süresince merkezimizde psikoloğumuzdan bu konuda destek almanız bu stresi yenmekte önemli katkı sağlayacaktır. Yapılan çalışmalar, stresi azaltmanın başarı şansınızı artırabileceğini göstermiştir. Kafein Yapılan çalışmalar günlük kafein alımının günde 50mg’ın altında tutulması gerektiğini göstermiştir. Böylece kafeinin gebelik şansını düşürücü etkisinden kaçınılabilir. Kafein, kahve, kola. çay ve çikolatada değişik miktarlarda bulunmaktadır. Kilo Kadının kilosunun boyu ile uyumlu olup olmadığını belirlemek için ‘vücut kitle indeksi (BMI)’ kullanılır. Bir kadının BMI’sı 20-24 arasındaysa normal, 25-29 arasındaysa kilolu, 30-39 arasındaysa yüksek kilolu, 40 ve üzerindeyse aşırı kilolu olarak değerlendirilir. Vücut-kütle indeksi (BMI) 30’un üzerinde olan bayanlara kilo vermeleri gebelik şansını artıracağı gibi gebe kalınması durumunda oluşacak aşırı kiloların sebep olduğu kilolu bebek doğurma, zor doğum ve sezeryanla doğuma gerek duyulma eğilimi gibi olumsuzluklar da önlenmektedir. Bunun yanısıra kilonun aşırı düşük oluşu da doğurganlığı olumsuz etkileyen faktörlerdendir. BMI’I 20nin altında olan bayanlarda menstrual siklus bozulabilmekte hatta bazı beslenme bozuklukları ve aşırı egzersiz ile oluşan ileri derecede kilo kayıplarında adetler tamamıyla kaybolmaktadır. Yapılan çalışmalar, düşük kilolu kadınların, ortalama 2.700 ila 3.600 kg aldıktan sonra yarısından fazlasınınkendiliğinden gebe kaldıklarını göstermiştir. Vitamin Desteği Yapılan çalışmalar, gebelik oluşmadan önce folik asit kullanımının, bebeklerde nöral tüp defekti görülme olasılığını neredeyse %50 azalttığını göstermiştir. Bu nedenle Gebe kalmayı planlayan kadınların Gebelikten 1-2 ay önce her gün en az 0.4 mg folik asit almalarını tavsiye ediyoruz. Marul, avocado. dere otu, ceviz, badem, brokoli, bezelye, ıspanak, kavun, , muz, portakal, lahana, yeşil biber, unlu mamuller ve ekmek çok iyi birer folik asit kaynağıdır. Yeterli folik asit alındığından emin olamıyorsanız, folik asit içeren multivitamin preparatlarını kullanabilirsiniz. Cinsel İlişki Planı Yirmisekiz günde adet gören bir hasta için ortalama yumurtlama günü 14. gün, 30 günde bir adet gören hasta için 16. gündür. Yani yumurtlama sonrası dönem sabit olup, genellikle 14 gündür. Bu nedenle yumurtlama dönemi düzenli adet gören hastalarda iki adet arası dönemden 14 çıkarılarak bulunabilir. Ancak yumurtlama günü +/- 3 gün değişiklik gösterebilir. Bu nedenle gebelik şansını artırmak için aktif cinsel ilişki dönemi uzatılmalıdır. Düzenli ve 28 günde bir adet gören hastalarda adetin 10-17 günlerinde (kanamanın 1.gününden saymak gerekir) iki günde bir ilişkide bulunulduğu takdirde sorun yoksa 6 ayın sonuunda çiftlerin %75’i gebe kalır.

http://www.biyologlar.com/dogurganlik-fertilite-nedir

Metazoa’ nın Yapı Planı ve Ortaya Çıkışı

Çok hücreli hayvanlarda hücreler görecekleri işe göre farklılaşarak dokuları, dokuların bir araya gelmeleri ile de belli bir işi yapmaktan sorumlu organlar oluşur Bu da hayvan gruplarında farklı yapı planlarının ortaya çıkmasına neden olur. Yapı planları her hayvan grubunda farklı olmasına karşın belli hayvanları bünyesinde barındıran hayvan gruplarında ise temel bir yapı vardır Bu filum içine giren hayvan alt kategorilerinde yapı, bu ana yapıdan az farklar içerir. Burada sorun böylesine yapı farklılığının ortaya çıkışının nedenidir. Bunun için konuyu iki yönden ele almak gerekir. Bunlardan birincisi olayın filogenetik yönü, diğeri de ontogenetik tarafıdır. Ontogenezi takip ederken canlının bugünkü oluşumunu görürüz. Ancak bu gelişim sırasında özünde anlam verilemeyen bir takım değişiklikler kısa da olsa ontogenez sırasında gözlenebilmektedir Bunlar araştırıldığında filogenezin bir parçası olarak karşımıza çıkmaktadırlar. Hayvan türü ortaya başka bir şekilde çıkmış, günümüze kadar değişerek ve bazen çatallanmalar göstererek gelmiştir. Eksik parçalar yerine konulduğunda bu hayvanın ortaya çıkışından günümüze kadar geçirdiği yaşam öyküsü (filogenezi) ortaya çıkmaktadır. Burada daha çok günümüzdeki yapıyı; oluşturan ontogenez öncelikle ele alınacak ama yeri geldiğinde filogeneze de değinilecektir. Üreme Çok uzun yaşayan bitkiler ve bazı hayvanlar da dahil hiçbir canlı ölümsüz değildir. Ölüm ile o organizmanın varlığı da sona erecektir. Ancak organizmanın ölümü bile onun devamını engellememelidir. Bunu sağlayan da üreme olayıdır Özünde üremeyi çoğalma gibi ele almamak gerekir. Burada esas amaç, canlının üzerinde taşı­dığı kalıtsal materyalin daha sonraki döllere aktarılmasıdır. Bunun için de üreme gibi^ bir olay gerçekleşir. Burada asıl olan populasyonun sahip olduğu genlerin bireysel ölümlerle yok olmaması, bir başka canlı bünyeye aktarılarak devamının sağlanmasıdır. Metazoa’ da biri eşeyli diğeri eşeysiz olmak üzre 2 tip üreme görülür. Metazoa da en yaygın üreme şekli eşeyli ya da seksüel üremedir. Burada farklı tipte eşey hücreleri gelişir. Gamet adı verilen bu hücrelerin diğer hücrelerden farkı, kalıtım materyalinin yarısına sahip olmalarıdır. Normalde her hücre biri anne diğeri babadan olmak üzere 2 kromozom takımına (2n, diploid) sahiptir. Normal diplo­id bir hücre meiosis (mayoz, redüksiyon) denilen hücre bölünmesi ile kromozom sayı­sını takım halinde yarıya (n) indirir ve gamet oluşur. Ancak olay bu kadar basit değildir. Özünde meiosis olan bu olay birbirini takip eden iki bölünme (oogenez ve spermatogenez gibi) şeklindedir Bunun için ayrıntılı bilgiler genel biyoloji ve diğer ilgili derslerde verilecektir. Gamet oluşumu kısaca gametogami olarak bilinir. Gametler oluştukları eşey bezlerine göre erkek ya da dişi gamet şeklinde farklılaşırlar. Bu da iki farklı kavram ortaya çıkarır. Biri her iki çeşit gameti üzerinde toplayan, diğeri de her birinden sadece birini üzerinde bulunduran bireyler. Erkek gametleri bulunduran erkek birey ile dişi gametleri üzerinde bulunduran dişi birey gibi iki farklı eşeyde aynı türe ait bir eşey farklılaşması olur. Bu ayrı eşeylilik ya da gonokorizm olarak bilinir. Gonokorizm büyük bir olasılıkla Metazoa’nın ilkin bir özelliğidir Burada şöyle bir soru akla gelebilir: Kromozom sayısı niçin yarıya indirilir? Kromozom sayısı yarıya indirilmezse, hücre bölündüğü zaman yavru hücreler­deki kromozom sayısı da yarıya inecektir. Bu da o türe ait özelliklerin yeni bireyde görülmemesine, belki de bu yeni yavrunun hiç yaşamamasına ya da çok ayrı bir formun ortaya çıkmasına neden olacaktır. Bu durumda mitoz aklımıza gelebilir. Hücre kromozom sayısını önce ikiye katlar sonra da bölünür ve yeni yavrular ilk hücrenin aynısı olur. Fakat burada tıpa tıp aynılık söz konusudur. Yani yeni yavrular birbirinin aynıdır. Buna klon adı verilir ve bu eşeysiz üremedir. Burada amaç kromozom sayısını yarıya indirdikten sonra tekrar birleştirilirken yeni yeni kombinasyonlara olanak sağlamaktır. Bunun sonunda da aynı anne babanın yavruları birbirinden farklılıklar gösterir. Varyasyon denilen bu olay sayesinde hayvanlarda böylesine bol bir çeşitlilik görülür. O halde önce yarıya indirilen kromozom sayısı, sonra bu yarımların birleşmesi (döllenme) olayı gerçekleşir. Böylece başlangıçtaki gibi yine 2 takım kromozoma sahip ancak farklı gen kombinasyonlarıyla bir döllenmiş hücre (zigot) oluşur. Döllenmenin özü iki aynı türe ait ve kromozom sayısı yarıya inmiş eşey hücre­sinin çekirdeklerinin birleşmesidir. O halde bu olayın iki aşaması vardır. Birinci aşama iki eşey hücresinin birbirini bulrVıası, diğeri de iki çekirdeğin birleşmesi ve 2n kromo- zomlu bir çekirdek (synkarion) oluşturmasıdır. Dişi eşey hücrelerinin Gynogamon adı verilen ve spermleri kendilerine çeken kimyasal salgıları, erkek eşey hücrelerinin androgamon adı verilen salgıları ile etkileşirler. Bu döllenmeyi hızlandırıcı rol oynar. Bu olay ilk kez deniz kestanesi yumurtasında Oskar Hertwig ve Richard Hertwig (1875) tarafından gözlenmiştir. Döllenme süreci ilk olarak su içinde ve vücut dışında, aynı anda suya bırakılan yumurta ve spermlerin birbirini bulması şeklinde olmaktaydı. Bunun en güzel örneğini çok sayıda deniz omurgasızlarında (özellikle Echinodermata da) ve balıklarda görmek­teyiz. Bu şekilde döllenmenin bir bedeli vardır. Bu bir risktir ve birçok yumurtanın döllenememesi ile eş anlamlıdır. Bu da kayıp demektir. Bunun için de daha çok sayıda yumurta ve sperm üretilmesi gerekir. Birçok organizma bu gibi durumlarda kayıpları azaltıcı önlemler alırlar. Böylece olay daha ekonomik duruma getirilir. Önlemlerin başında kuluçkayı koruma ve bakma davranışları gelir. Bazılarında kuluçka ve yavru bakımı çok kısa sürer. Bu ne kadar uzun sürerse, verim de o denli fazla olur. Bundan daha önemli bir durum erkek ve dişi hayvanın çift oluşturmasıdır. Bu­rada döllenme dişi hayvanın içinde olur. Bunun için spermlerin transferi gerekir ve birçok mekanizmalar gelişmiştir. Bunlardan biri erkek hayvanın sperma paketi (spermatofor) oluşturmasıdır. Birçok erkek hayvan sperma paketini dişinin belirli bir yerine bırakır. Dişi bu spermatofor içindeki spermlerden döllenebilir. Bazı türlerde ise sperm­ler direkt olarak dişi hayvanın eşeysel açıklığına bırakılır. Döllenme ovidukt ya da direkt olarak ovaryum içinde (iç döllenme) olur. Dişi ve erkeğin bu amaçla birleşmesi olayına kopulasyon adı verilir. Bazı türlerde saniyelerle ölçülen böyle kopulasyon olayları bazılarında saatlerce sürebilir. Bu tip kopulasyon olayı kural olarak daha çok kara hayvanlarında görülür. Başka türlere ait bireylerle kopulasyon bazı morfolojik farklılıklarla önlenmiştir. Erkeklerde dişiyi tutmak için birçok organ gelişmiştir. Örneğin makas, çengel, kıl grupları, vücut uzantıları, yakalama ve tutma organları gibi. Bu yapılar nedeniyle erkek ve dişi bireyler arasında morfolojik farklılıklar ortaya çıkar. Seksüel dimorfizm denilen bu olay sadece morfolojik farklılıklarla sınırlı kalmaz, değişik renklenme ve farklı vücut büyüklüğü gibi daha değişik özelliklerde de farklılıklara neden olur. Örneğin Bonelia viridis isimli deniz solucanının erkeği dişinin yanında adeta nokta gibi kalır (cüce erkek). Eklembacaklılarda genellikle kopulasyon aparatı geli­şir. Bununla spermler dişinin eşeysel açıklığına bırakılır. Bu aparat bazen oldukça komplike bir yapıda olur. Dişi ve erkek üreme organları genellikle bir anahtar kilit gibi birbirine uyumludur. Böylece başka türlerle döl alış verişi de önlenmiş olur. Bazen erkek organı dişinin negatifi gibi onunla uyumludur. Böylesine özel olan bu organlar türe özgü oldukları için çoğu kez tür ayırımında taksonomistler tarafından kullanılır. Örneğin çekirgelerin erkek kopulasyon organı olan aedeguslar. Eşeyli üremede normal olarak erkek ve dişi gametler ayrı ayrı bireylerde bulunur. Bu gibi durumlar için gonoko- rismustan söz edilir. Ama bazı durumlarda her iki gamet aynı birey üzerinde bulunur. Böyle bireylere erselik ya da hermafrodit denir. Bunlarda genel olarak erkek ve dişi gonadlar birbirinden ayrıdır ve olgunlaşma zamanları da farklıdır. Bireyde önce erkek daha sonra da dişi gonad olgun­laşır. Böylece birey, önce erkek sonra da dişi görevi (protandrik erselik) görür. Ender olarak aksi olur. Böylece bireyin kendini döllemesi olanaksız olur. ender olarak örneğin, kara salyangozlarında gonadlar aynı bez içinde olgunlaşırlar. Aynı anda olgunlaşan gonadlar, ürünlerini iki bireyin karşı karşıya gelmesiyle birbirlerine aktarırlar. Bunun en güzel örneğini toprak solucanlarında görmek olasıdır. İki toprak solucanı klitellum adı verilen yüksük gibi ve birkaç segmenti kapsayan vücut kısımları birbirine değecek hatta birbiri ile kaynaşacak şekilde, birinin ön ucu diğerinin aksi yönüne gelecek şekilde karşı karşıya gelir. Böylece her ikisinin farklı eşey bezlerinin açıklığı (dişi açıklığın karşısında diğerinin erkek eşey açıklığı gelir) karşı karşıya gelir. Böylece birbirlerini döllerler. Burada her birey diğeri için farklı eşey rolünü üstlenmiştir. Yumurtanın döllenmeden de geliştiği görülür. Partenogenez (yunanca parthe- nos=bakire, bakirenin döl vermesi anlamında kullanılır) adı verilen bu üreme birçok hayvanda (Rotatoria, Cladocera, Aphidina vs.) görülür. Bazılarında sadece bu tür üre­me görülürken, bazılarında eşeyli üreme zaman zaman yerini bu tür üremeye bırakır. Genellikle uygun olmayan koşullarda görülen bu olay döl değişimine neden olur. Böyle eşeyli partenogenetik üreme şekline heterogoni denir. Bunlarda parte- nogenetik evre kural olarak meiosis (redüksiyon) bölünmesi görülmez. Güney Avrupa’da yaşayan hayvanların bazılarında daha değişik bir durum görülür. Bu hayvanlar normalde eşeyli olarak ürerler. Ancak kuzeye doğru gidildikçe erkeklerin populasyondaki sayısı giderek azalır. Bu durumda dişiler partenogenetik olarak üremeye başlarlar. Ama aynı populasyon, aynı zamanda güney de ayrı eşeyli olarak üremeye devam eder. Şekil : Toprak solucanında eşeyli Ureme a-Şematik. b-Klitellumlardan birbiri ile kaynaşmış iki toprak solucanı. Köprü kurulan bölgelerden birbirine döl alışverişi yapılmakta At erkek eşey alıklığı (penis ve atrium) Dp salgı pupilleri, Hp temporer deri papilleri. Pr reccptaculum semınıs poru Hymenoptera ve bazı diğer hayvan gruplarında ise d rıh a değişik bir partenogenez görülür. Bu haploid partenogenezdır. Bunlarda normal olarak mayoz bölünmede haploid gametler oluşur. Haploid yumurtaların döllenmesi ile diplioid zigot oluşur, kraliçe arı ile işçi arılar böyledir. Burada isteğe bağlı bir durum da söz konusu olur, kraliçe arı erkekten aldığı spermleri sperm kesesinde (receptaculum seminis) toplar, bu kesenin ağzı kapalı olduğu sıralar yaptığı yumurtalar döllenmemiş olur. Bunlar erkek arılardır ve haploiddirler. Kraliçe yeni kraliçe ve işçi gereksiniminde kesenin ağzını açar ve bazı yumurtaların döllenmesine olanak sağlar Partenogenezin çok özel bir şekli de pâdogenez (yunanca paidos=çocuk, amos=düğün) olarak bilinir. Burada henüz (döllenmemiş) larva halinde iken üreme öz konusudur. Gal sinekleri buna iyi örnektir. Eşeysiz üreme ya da aseksüel üreme ana hücrenin özellikle tüm protozoonlarda boyuna ve enine olarak 2 ya da daha fazla sayıda bölünmesi şeklinde olur, letazoonlarda ana hücreden büyük ya da küçük hücre kompleksleri şeklindeki ayrılmalarla olur Daha sonra bu hücre kompleksleri yem bir birey oluşturur. Bu bir vejetatif üreme olarak ta ele alınabilir. Bu hayvanlar aleminde sık görülen ve ikincil bir üreme şeklidir Ekstrem durumlarda enine ya da boyuna bölünmelerle (bazı Actinaria e Turbellarıa da) de yeni bireyler oluşabilir. Sık görülen bir üreme şekli de tomurcuklanmadır. Genelde ana hayvanın vücudundan dışa doğru bir çıkıntı (tomurcuk) olur, bu çıkıntının ana hayvandan ayrılmasıyla yeni bir birey oluşur. Bu yolla çok sayıda eni birey meydana gelir. Bu yeni bireyler daha sonra vejetatif olarak üreyebilirler. Birçok türde örneğin tatlı su poliplerinde ve Actinia’larda tomurcuklar ana hayvandan ayrılarak tamamen serbest bir yaşama geçebilirler. Bir başka tür hayvanlarda ise tamamen aksine ana hayvandan ayrılmayan tomurcuklar adeta bir hayvan kolonisi oluştururlar. Koloni olarak genelde bir araya toplanmış hayvanlar akla gelir. Burada vejetatif olarak değil eşeysel olarak üremiş hayvanlar akla gelir, örneğin , Cirripedia (Crustacea) larvaları deniz kenarlarında yan yana durarak öylesine sıkı bir doku oluştururlar ti, daha sonra burada sadece onların erginlerini görmek olası olur. Kolonilere daha çok sayıda, değişik örnekler vermek olasıdır. Vejetatif çoğalmada da tomurcukların ana hayvanla birlikte kalarak onunla morfolojik ve fizyolojik birlikteliklerini sürdürdükleri görülebilir. Böylece bir hayvan stoğu oluşur. Bu yolla binlerce hayvan bir araya toplanabilir. Hayvan stoklarına sifonlu hayvanlar (Siphonophora), taş mercanlar (Madreporaria) ile diğer Anthozoa ve yosun hayvancıkları (Bryozoa) en tanınmış örnek olarak verilebilir. Bu oluşuklarda çok değişik yapıda hayvan bir araya geldikleri için bir polymorfizm den söz edilir. Eşeyli ve eşeysiz üreme birbiri ardı sıra da gerçekleşebilir. Döl değişimi ya da metagenez adı verilen bu olay en güzel örneğini Hydrozoada verir. Eşeysiz üremede bazen embriyo erken evrelerde dağılarak ikincil embriyoları onlar da üçüncül embriyoları meydana getirir. Buna polyembriyoni denir. Hymenopte­ra, Strepsiptera, Bryozoa da sık görülen bu olay bazen insanlarda da ikiz, üçüz (ya da daha fazla) olaylarında da görülür. Gelişim Süreci Çok hücreli hayvanların yaşamları çeşitli evrelerden oluşur Bunlar genellikle embriyonal, larval, gençlik ve ergin evrelerdir Bu 4 evreli gelişim şekli indirekt gelişim olarak nitelendirilir. Çünkü larval evre bazen birden çok sayıda basamaklarda gerçekleşir Bu evre genelde ilkin olarak özellikle denizel yaşam formlarında görülür Bazılarında larval evre olmayabilir. Bu durumda ise direkt gelişimden söz edilir. Bilindiği gibi organizmanın bireysel gelişimi, başından (zigottan) ergin hale ge­lene kadar ontogenez olarak isimlendirilir. Bu filogenetik gelişim ile birlikte ilişkilendirilerek, karşılaştırmalı gelişim süreci adı altında araştırılır. Özel zooloji ile çalışanlar için bu konudaki bulgular çok ayrı bir öneme sahiptir. Ontogenezin ilk basamağı embriyonal evredir. Bu evre zigotun bölünerek, serbest yaşayan form haline gelene kadar (bazılarında doğuma kadar) geçirdiği evredir Bu yumurtanın döllendiği yere bağlıdır. Dişi hayvan içinde döllenmiş ve embriyonal gelişimini orada tamamlamışsa sonuçta doğum söz konusudur. Döllenme vücut dışında olmuş ise, yumurta içinde tamamlanan gelişme yumurtadan çıkınca sona erecektir. Ontogenez, henüz bitmemiştir. Yeni yavru ergin hale gelip kendisi gibi bir yavru üretebilecek duruma geldiğinde ya da diğer bir anlatımla eşeysel olgunluğa eriştiğinde, ontogenez de son bulacaktır. Bu sırada olası larva ve genç evreler bazen anne hayvan (bazen vücut içinde) bazen de baba tarafından bir süre bakılır (yavru bakımı). Larval evre, kural olarak başkalaşım (metamorfoz) olayının bir parçasıdır, ergin hayvan ile larva arasında sadece morfolojik farklar değil, yaşam biçimi ve beslenme şekli bakımından da farklılıklar vardır. Çoğu kez yaşam alanları da farklıdır Gençlik evresi, indirekt gelişimde metamorfozun sona ermesiyle başlar Direkt gelişim ise embriyonal gelişim ile bu noktada birleşir ve bundan sonra devam eder. Bu her şeyden önce bir büyüme evresidir, özünde gençler ergin bireylerin adeta birer küçültülmüş kopyalarıdır Bazı hayvan gruplarında bu evre nymph olarak adlandırılır (örneğin Ephemeroptera). Larval ve genç evreler birlikte postembriyonal gelişim olarak isimlendirilir. Ergin evre, tüm organ sistemlerinin gelişmesi ve eşeysel olgunluğa erişilmesi ile başlar. Bir çok eklembacaklı hayvanda (Arthropoda) bu evreler değişik zamanlar­daki deri değişimleri ile kendini gösterir. Tüm hayvanlarda bu evre ölüm ile son bulur. Çok hücreli hayvanlarda gelişim, tek bir hücrenin arkası arkasına bölünmeleri ve sonuçta çok hücreli oluncaya kadar devamı ile olasıdır. Bu olay özünde tek aşamalı gibi görünse de kendi arasında 3 ayrı evre görülür. Bunlar seri bölünmeleri içine alan segmentasyon, deri tabakalarının oluşumu (gastrulasyon) ve doku, organ oluşumu (histogenez ve organogenez). Döllenme ve Segmentasyon Yumurta döllenir döllenmez bölünmeye başlar (yumurta bir de büyüdüğü .-.iman yüzeyin hacme oranı küçüldüğü için bölünür ve böylece yüzey genişletilmiş olur). Bölünme sonunda meydana gelen yavru hücreler, blastomer adını alır. Metazoa için tipik olan bu bölünmeler (segmentasyon) her hayvan turu icin farklı şekilde olur ve blastomerler yan yana kalırlar. Blastomerlerin çeperde dizilmeleri ile ortası boş bir küre oluşur. Bu blastuladır. Ancak her türlü yumurtada blastula böyle oluşmayabilir. Bölünme süreci, yumurtanın içindeki yedek besin (yumurta sarısı, vitellüs) miktarına, kalitesine ve yumurta içindeki dağılımına bağlıdır Bu durum da farklı yumurta tiplerinin ortaya çıkmasına neden olur Her yumurta tıpı ise farklı segmentasyon şekli gösterir. Yumurta sarısı az olan yumurtalara oligolesital, fazla olanlara da polylesital yumurta denir. Bu arada ne az ne de çok denilebilecek durumda olanları da vardır. Bunlar da mesolesital yumurta adını alırlar Yumurta sarısının miktarı dışında yumurta içindeki dağılımı da önemlidir demiştik. Yumurta içindeki homojen dağılım isolesital yumurtalarda görülür. Bu tip yumurtalarda sarı azdır ve hücre çekirdeği de ortadadır. Çekirdek adeta yumurtaya küsmüş gibi etrafında konsantre olmuş plazma ile bir köşeye çekilmiş durumda ise perilesital yumurta, çekirdek ortada ve etrafında yoğun plazma (Hpl) ve yumurtayı çepeçevre saran ayrı ve yoğun bir plazma (Ppl) var ise Centrolesital yumurta olarak adlandırılır. Besin maddesinin çok birikmesi halinde yumurta sarısı vejetatif kutupta toplanır, böylece çekirdek ve protoplazma animal kutupta yoğunlaşır. Bu durumda telolesital yumurta adını alır. Zayıf telolesital yumurtada protoplazma daha fazladır ancak kuvvetli telolesital de ise oldukça azdır.

http://www.biyologlar.com/metazoa-nin-yapi-plani-ve-ortaya-cikisi

Barsak Parazitleri

1. Plathelmintler (Yassı Solucanlar): a) Sestodlar: Taenia'lar, Hymenolepis, Echinococcus. b) Trematodlar: Fasciola, Schistosoma. 2. Nemathelmintler (Yuvarlak Solucan): Ascaris, Enterobius, Ancylostoma Taenia : T.saginata, erişkin formu insanda bulunan, baş (skoleks) ile jejunuma tutunarak halkaları (proglottid) ile 10 m. uzunluğa kadar erişen ve insanların sindirdikleri besinlerle beslenen şeritsi bir parazittir. İnsan dışkısı ile dış ortama atılan yumurtaları ara konakçı olan sığırları bulaştırır ve sığırda larva infeksiyonlarına yol açar. İyi pişirilmemiş sığır etlerindeki larvaların yutulması ile insanna bulaşır. Temel yakınma dışkıda parazit halkalarının görülmesi ve daha nadir olarak da açlık karın ağrısıdır. Yumurtaları insanlar için bulaştırıcı değildir. Benzer bir parazit olan Taenia solium’un ise ara konakçısı domuzdur ve yumurtaları insanlar için bulaştırıcıdır. Diphrobothrium latum : Çiğ balık yenmesi ile insanlara bulaşır, incebarsaklara tutunarak 20-25 m. uzunluğa erişir. Çoğu olgu asemptomatikse de %2 olasılıkla B12 vtamini yetmezliği sonucu megaloblastik anemiye neden olabilir. Hymenolepis nana : Küçük (2-4 cm) bir fare ve insan parazitidir. Diğerlerinin aksine ara konakçı gerektirmeden hastalıklı insan dışkısın tarafından kontamine edilmiş besinlerdeki yumurtaların yutulması ile bulaşır. Bu nedenle aile içi bulaş söz konusudur. Halkalar barsakta parçalandığından dışkıda sadece yumurtası görülebilir. Çocuklarda daha sıktır. Karın ağrısı, enterit, anemi, asteni, sinir sistemi belirtileri ve konvülsiyonlara kadar varabilen semptom zenginliği vardır. Fasciola hepatica : Koyunların yapraksı parazitidir. İnsanlara iyi yıkanmamış çiğ sebzelerle bulaşır, safra yollarına yerleşerek portal siroza neden olur. Schistosoma: Kontamine sularda yaşayan serkaryaların cildi delmesi ile dolaşıma geçer, türe göre mesane (S. haematobium, S. japonicum), kolon (S. mansoni, S. japonicum) veya nadiren diğer visseral organlar ve medulla spinalis (S. mansoni) venalarına yerleşerek kronik irritasyon nedenli organ patolojilerine (kronik sistit, mesane kanseri, kronik ishal, karaciğer fibrozu, portal hipertansiyon) ve allerjik reaksiyonlara yol açar. Ascaris lumbricoides : Dış ortama atılan infekte insan dışkısındaki yumurtalar burada erginleşir ve yumurtaların insan tarafından yutulması ile bulaşır. Erişkinleri 20-25 cm. uzunluğunda bulunan yuvarlak, solucansı bir parazittir. Organizmadaki larva döngüsü sırasında geçtiği akciğerlerde allerjik pnömoni (Löeffler pnömonisi), barsakta serbest olarak yaşayan erişkin formu ise tıkanma ikteri, ileus ve malnutrisyon tablolarına yol açar. Enterobius vermicularis : Evrimi sadece insan ile sınırlı olan, insandan insana yumurtaların aktarılması ile bulaşan küçük bir nematoddur. Yutulan yumurtadan incebarsaklarda çıkan larva kolon mukozasına tutunarak yaşar. Dişilerin anüsteki yumurtlama döneminde gelişen irritasyonuna bağlı olarak anal kaşıntı ve sekonder infeksiyonlara neden olur. Ancylostoma duodenale, Necator americanus : Kancalı kurtlar olarak anılırlar. Kumlardaki hareketli larvanın çıplak ayaktan cildi delmesi ile insanlara bulaşır. Dolaşım yolu ile akciğere, oradan da özofagus yolu ile oral kavite ve özofagusa gelen larva yutulur, erişkin hale gelip incebarsaklara tutunur. Barsak kanamalarına neden olduğu için süregen kan kaybına bağlı demir eksikliği anemisi gelişir (pika anamnezi). Kanama bazen ciddi boyutlara ulaşabilir. Ayrıca; evrimi sırasındaki seyahatlerine bağlı olarak cilt, akciğer, gastrointestinal (bulantı, kusma, ishal) görülebilir. Trichuris trichiura : Yumurtasının yutulması ile bulaşır, kolona tutunarak yaşar. Allerjik reaksiyonlar, karın ağrısı, distansiyon, kanlı ishal, kilo kaybı, mental değişiklikler, ileus, anal prolapsus ve apendisit tabloları ile kendini gösterir. Strongyloides stercoralis : Kancalı kurtlarla aynı evrimi gösterse de önemli bir farkı, yumurtalarının barsaktayken açılması sonucunda immünitesi normal bireylerde peptik ülser benzeri yakınmalara neden olurken immünite problemi olanlarda çoğul otoinokülasyonlar sonucu karaciğer, kalp, beyin gibi birçok organı içeren belirtiler ile seyreden ve mortalitesi yüksek hiperinfeksiyon tablolarına yol açar. Bu hastaların salgıları da larva içerdiği için bulaştırıcıdır.

http://www.biyologlar.com/barsak-parazitleri

Sürüngen ve kuslarda üreme

Iç döllenme dis gelisme görülür. Embriyo gelisimini yumurta içinde tamamlar. Bazi yilan türlerinde faklilik görülebilir. Erkeklerde wolf kanali yalniz spermleri tasir. Bosaltim maddeleri ise ayri bir kanal ile kloak tan disari atilir. Sürüngen ve kus yumurtasindaki embriyonik örtüler: 1.Kabuk Yumurtayi kurakliga, bakterilere karsi korur.O2 ve CO2 alisverisini saglar. 2Koryon Embriyoyu korur ve Gaz alisverisine imkan saglar. 3.Amniyon kesesi Embriyoyu basinca ve sicaklik degisimlerine karsi korur. Içindeki sivi hareket serbestligi saglar. 4.Allantoyis Embriyonun artik maddelerni toplar, memelilerde körelmistir. 5.Vitellüs kesesi Embriyonun besin maddesinin bulundugu kesedir. Memelilerde yoktur. Memelilerde üreme Iç döllenme, iç gelisme gözlenir. Gagali ve keseli memeliler de yavru gelisimini ana vücudu içinde gerçeklestirir, besini yumurtadan alir. Plasentali memelilerde, emriyo disinin uterusu(döl yatagi) içinde gelisir. Vitellüs yeterli olmadigindan beslenme, plasenta adi verilen özel bir yapi araciligi ile anne kanindan karsilanir. Plasenta Koryon uzantilari ile, uzantilarin uterusa degdigi bölge plasentayi olusturur. Plasenta, embriyoya besin ve O2 saglar, CO2 ve diger artik maddelerin anne kanina geçmesine yardimci olur. Amniyon zarinin kenarlarinin birlesmesi ile olusan GÖBEK BAGI embriyo ile plasenta arasinda baglantiyi olusturur. Içinde kan damarlari bulunur.

http://www.biyologlar.com/surungen-ve-kuslarda-ureme

Sivrisinek Evrelerinin Özellikleri

Sivrisinekler holometabol böceklerdir. Yani tam başkalaşım gösterirler. Hayat döngülerinde dört dönem bulunmaktadır. Yumurta evresi Sivrisinek yumurtaları 0.6-1 mm boyunda bir ucu sivri, diğer ucu daha küt olan iğ şeklinde yapılardır. Yumurtaların alt yüzleri üst yüzlerinden daha dış bükeydir (Şekil 6). Yumurtaların bir ucunun biraz yanında {Anopheles türleri) ya da ucunda (Culex ve Aedes türleri) küçük bir delik bulunur. Bu delikten dölleme hücresi girer ve yumurta döllenir (Horsfall, 1955). Yumurtaların ve yumurta bırakma şekillerinin farklı olmasından dolayı cinsler ve türler birbirlerinden kolayca ayrılırlar. Sivrisineklerin tek tek ya da paket olmak üzere gene! olarak iki tip yumurta bırakma şekilleri vardır Anopheles yumurtaları kayık biçimindedir. Uzun, iki ucu yukarıya biraz kıvrık ve iki yanında zarımsı yüzgeçler vardır. Bunların orta kısımlarında türlere özgü olarak enine yüzgeçler bulunur. Bu oluşumlar yüzey gerilimini artırdığı gibi, yumurtanın da suyun yüzeyinde yüzmesini sağlar An. sacharovi'nin yazın bıraktığı yumurtaların yalnız yüzgeç kuşağı vardır. Güzün bıraktığı yumurtalarda ise az gelişmiş yüzme hücreleri de bulunur. Anopheles cinsine bağlı türler yumurtalarını tek tek bırakırlar. Yumurtalar bazen suyun üzerinde dantel şeklinde kümeler yaparlar. Aedes türlerinin yumurtaları koyu renklidir. Üzerinde ağ şeklinde yapılar taşır ve suyun üzerinde yüzemez (Şekil 9). Bunlarda yumurtalar yağmur yağdığında, karlar eridiğinde ya da taban suyundaki dinamiğe bağlı olarak, su içerisinde kalacak bitkilerin ya da nemli ve kuru zeminlerin üzerine tek tek bırakılır. Kuraklığa karşı 4-7 ay dayanabilirler (Alten, 1993). Sular yükselince su birikintilerinin altında kalırlar. Larvalar kuru ortamlarda yumurta içerisinde birkaç günde gelişir; ancak, suyla karşılaşınca bir gün içerisinde yumurtadan çıkarlar (Horsfall, 1955). Cutex türlerinin yumurtaları birleşik halde su yüzeyinde sal gibi yüzerler. Bunlara yumurta paketleri denir. Aynı zamanda Culiseta cinsine bağlı türlerinde yumurtaları bu şekildedir. Yumurtaların inkübasyon yani yumurtanın içindeki embriyonun gelişip larva olarak yumurtadan çıkmasına kadar geçen süre, türlere, iklimsel koşullara, sınırlayıcı faktörlere, suyun fiziksel ve kimyasal özelliklerine göre farklılık gösterir (Alten, 1993; Şimşek, 1997). İnkübasyon süresi mücadele programlarının tam olarak planlanabilmesi için oldukça önemlidir. Özellikle su sıcaklığının yumurta inkübasyon süresi üzerinde önemli bir etkisi vardır.12° İle 32°C arasındaki sıcaklıklar yumurta inkübasyonu için uygun kabul edilse de, ideal sıcaklık 23-25°C arasındadır (Down, 1951). Çukurova'nın iklimsel koşullarında A. sacharovi yumurtaları 25°C'de 1-2 gün içerisinde açılabilmektedirler (Alten, 1989). Muğla-Sarıgerme'de 23°C'de doğa! koşullar altında yapılan denemelerde, C. pipiens türünün yumurtaları 2±0.01 gün içerisinde açılabilmektedirler (Alten, 1993). Aynı çalışma, laboratuvar koşullarında değişik sıcaklıklarda gerçekleştirildiğinde, örneğin 14 °C'de türün yumurtaları 4-5 günde açılmaktadır.Yani sıcaklık düştükçe ya da çok yükseldikçe yumurta açılma sürelerinde gecikmeler olabilmektedir. Bir genelleme yapılacak olursa tüm sivrisinek türleri için inkübasyon süresi 1-4 gün sürebilmektedir. Sivrisinekler ideal koşullar altında bir seferde çok sayıda yumurta veren canlılar arasındadır. Ayrıca yılda 2-4 (bazen 5) döl verdiklerini düşünürsek, önümüze çok yüksek bir üreme potansiyeli çıkmaktadır. Bir sivrisinek dişisi bir defada türlere göre değişmekle birlikte 35-450 yumurta bırakabilir. Yumurta miktarı dişinin beslenme şartlarına, yumurtlamak için uygun ortam bulmasına ve o andaki iklimsel koşullara bağlıdır. Anopheles türleri bir defada 200-400, Culex türleri 100-200, Aedes türleri ortalama 250, Culiseta türleri ise 250-300 yumurta bırakabilirler. Muğla-Dalaman'da yapılan bir çalışmada, temmuz ayında A. sacharovi türüne bağlı yarı kontrollü şartlarda bulunan bir populasyonda dişiler ortalama 367, maksimum 541 yumurta bırakmışlardır (Alten, 1996). Larva evresi Sivrisinek yumurtaları su yüzeyi ile yeterli süre temas ettikten sonra, larva (kurtçuk) yumurtayı alt yüzeyinden baş kısmındaki kesiciler yardımıyla keser ve dışarı çıkar. Sivrisinek yumurtasından çıkan bu genç canlılara larva denir. Gelişmelerinde üç kez gömlek değiştirirler ve dört evre geçirirler. Dördüncü evre larva 6-13 mm boyunda olabilir. Kimi türlerde, örneğin Culiseta longiareolata ya da Cu. annulata'da, 15 mm'ye kadar çıkabilir. Vücutları ince ve saydam bir kitinsel örtü ile örtülüdür. Başta ve vücutta çok sayıda seta adı verilen kıllar bulunur. Setalar tamamıyla çevre şartlarının algılanması ve su içinde dengenin korunması için görev yaparlar. Baş ve vücutta yer yer koyu renklenmeler görülür. Genellikle sırt kısımları güneş ışınlarını tutmak için koyu renkli, karın kısımları açık renklidir. Örneğin, dördüncü evre Anopheles larvasının üzeri sarımsı yeşil ya da kahverengimsi yeşil renktedir. Birinci ve ikinci evredekiler ise koyu kara renktedir. Culex larvaları parlak kahverengimsi-boz yeşilimsi renktedir. Culiseta larvaları açık ya da koyu parlak kahverengidir. Larvanın yüzeyi üzerine simetrik olarak dizilmiş kıllar bulunur. Bu kılların dizilişi türlere göre değişir. Sivrisinek larvalarının vücutları belirgin olarak birbirinden ayrılmış üç ayrı bölümden oluşmuştur (Şekil 11, 12, 13). Bunlar baş, gövde ve karındır. Sivrisinek türleri, larvalarının su içinde duruşları ve hareketleriyle de çok rahatlıkla ayrılabilirler. Anopheles larvaları su yüzeyine paralel durmaları ile su yüzeyine eğik olarak asılı duran Aedes ve Culex larvalarından kolayca ayrılırlar (Şekil 14). Anopheles larvalarının su yüzeyine paralel durmalarının nedeni sifonlarının olmaması ve solunumun stigmal olarak yapılmasından ileri gelir. Anopheles larvaları suyun hemen yüzeyinden, Culex ve Aedes larvaları daha aşağıdan beslenir. Anopheles türlerinin larvaları diğerlerinden başka bazı özellikleriyle de ayrılırlar. Karın segmentlerinin üst tarafında çift yapılı, yelpaze şeklinde yayılmış, suların alt yüzeyine yüzey gerilimi ile tutunmayı sağlayan tüy demetleri taşırlar. Başın 180° dönmesiyle larvalar anafor aygıtlarıyla suyun yüzeyindeki besin partiküllerini alabilirler. Başları diğer sivrisinek cinslerine ait larvalara göre daha uzundur ve vücutları çok sayıda tüyümsü kıllarla kaplıdır (Kirkpatrick, 1925 ). Larva evrelerinin süreleri genel olarak suyun sıcaklığına, iklimsel koşullara, fiziko-kimyasal özelliklere, besin maddesine ve pH'a bağlıdır. Ortalama tanımlar yapacak olursak, Culex larvaları 10°C'nin üzerindeki sıcaklıklarda gelişirler. Ancak ekstrem durumlarda bulunmaktadır. Örneğin, Culex laticinctus türü kışı larva evresinde geçirir ve buz tutmuş sularda bile, buzun üzerine çıkabilmiş bitkiler çevresindeki sularda çok yavaş olarak gelişmelerini sürdürebilirler (Alten, 1989). Anopheles larvaları 15°C'de 40-45 günde, 20°C'de 20-25 günde, 25°C'de 15 günde, 30°C'de 12 günde gelişmelerini bitirirler ve pupa evresine geçerler. Sıcaklık arttıkça larval gelişme daha kısa sürede tamamlanır. Sivrisinek larvalarının gelişmesi için ideal sıcaklık 25 °C'dir. Besin ve sıcaklık durumu en uygun olduğu zaman larva evre süresi 7-16 gün sürebilir. Sivrisinek larvaları suda çok devinimlidirler. Sürekli olarak su yüzeyine çıkarak hava alır, yeniden su içine dalarlar. Değişik sivrisinek türlerinin su içinde genel olarak yaşadıkları ve beslendikleri yerler, onların sivrisinek kommünitesi içinde değişik ekolojik düzeylerini belirler. Sivrisinek larvaları genellikle su içinde bulunan yosun, bakteri, protozoa, mantar sporları ve hatta diğer sivrisinek larvaları ile ya da kendi gömlekleriyle beslenirler. Biyolojik mücadelede kullanılan Bacillus thuringiensis kökenli birçok preparatın uygulanma prensibi, larvalar için patojen olan bu bakterilerin sudaki miktarının artırılmasına dayanmaktadır. Larvalar genellikle gölge olan sularda bulunma eğilimindedirler. Özellikle öğle sıcağında yaprak altlarına ya da suda bulunan yosunların altlarına girmeyi tercih ederler. Ancak, C. pipiens gibi, sığ ve sıcak, güneşli sularda bulunabilen türlerde vardır. Asla unutmamalıdır ki, sivrisinek larvaları çok geniş bir adaptasyon yeteneğine sahiptir. Yaşam ortamlarında her türlü ekst-rem koşula oldukça dayanıklıdırlar. Bu yüzden, çok geniş bir yayılma alanına sahip-tirler. Küçük bir su çalkantısında ya da suyun üzerine dışarıdan gelebilecek herhangi bir etkide suyun dibine kaçarlar ve belli bir süre İçin orada yaşarlar. Bu süre C. laticinctus larvaları için 20 dakikaya kadar sürebilmektedir. Larvaların yaşama ve gelişmesinde suyun fiziksel ve kimyasal özelliklerinin de büyük önemi vardır. Anopheles larvaları genellikle oksijeni bol, temiz, sığ sularda gelişirler (Bkz. 2.3). Kimi Anopheles türlerinin larvaları %0.5-0.8 tuzlu suda; A. sacharovi larvaları %1.2-1.5 oranında tuzlu suda bile gelişme gösterebilirler (Alten, 1989). Culex larvaları değişik su kalitesindeki habitatlarda yetişebilirler. C. pipiens larvaları, Aedes ve Culiseta cinslerine ait bazı türlerle birlikte 12 mg/lt amonyak içeren foseptik çukurlarında bile bulunabilmişlerdir (Boşgelmez ve ark., 1994). Su bitkilerinin de larvaların gelişmesinde önemli etkileri vardır. Örneğin, A. sacharovi larvaları özellikle su sümbülü (Potamogeion perfoliaius, P. fluviatilis ) türünden bitkilerin yoğun olduğu sularda oldukça bol bulunurlar. Bu bitkiler larvalara besin sağladığı gibi aynı zamanda korunak da oluşturmaktadır. Pupa evresi Dördüncü gelişim evresine gelmiş olan larva, önceleri çok devinimli, kısa bir süre sonra daha az devinimli olarak vücudu karın yönünde kıvrılmaya başlar ve ince, saydam ve koyukahverengi bir çeperle sarılarak pupa evresine dönüşür (Şekil 15). Pupalar yandan bakılınca virgül gibi görünürler. Pupanın içinde çok önemli histolitik ve histogenetik değişimler oluşarak sivrisineğin genetik tür özelliklerini taşıyan ergin oluşur. Pupanın vücudu iki bölümden oluşur. Önde çok büyük olan baş, gövde arkasında ise sırt-karın yönünde yassı olarak karın bulunur. Pupa önceleri çok devinimlidir. Ancak, daha sonra devinimi azalır. Bu evrede beslenme durur. Bu yüzden, sivrisinek sucul evre mücadelesinde, mücadele yapılacak suda populasyon-nun büyük çoğunluğu son dönem dördüncü evre larva ya da pupa evresinden olu-şuyorsa, ortamda insektisit kullanmanın anlamı yoktur. Çünkü bu evrelerde beslenme durmuştur. Çeperi yumuşak, ince ve saydam olduğundan içinde gelişen ergin kolayca görüle-bilmektedir. Suyun dalgalanması sonucu kendini bırakarak pasif hareketle aşağı iner. Uzun süre su dibinde kalabilirler. Pupanın gelişme süresi en fazla 5-6, ideal koşullarda 1-2 gün sürer. Başkalaşım yapacak pupalar yatay konuma geçerler ve vücutlarının ön kısımlarını sudan dışarıya uzatırlar. Hava alma ile pupa örtüsü içindeki iç basınç artar; buna bağlı olarak, vücudun ön kısmında orta çizgi "T" şeklinde boydan boya yırtılır ve ergin dışarıya çıkar. Dışarıya çıkma 5-6 dakika sürer Ergin ve genel özellikleri Sivrisinekler ergin evresini, yumurta, larva ve pupalardan farklı olarak karasal habitatta geçirirler. Habitat farklılığının yanı sıra, morfolojik olarakta birçok farklılığa sahiptirler. Bu evrede, kanatların varlığından dolayı, uçma özelliğini kazanırlar. Ayrıca, larva evresinde çiğneyici olan ağız parçaları, ergin evresinde altı iğneli sokucu-emici özellik kazanmaktadırlar. Yani, larva evresinde beslenmelerini yeme yoluyla yaparlarken, ergin evresinde sokma ya da kan emme yoluyla yaparlar. Her iki eşeyde (dişi ve erkek), genel olarak çiçek ve meyvelerin özsuyu ile beslenirken, aynı zamanda dişiler, yumurtaları geliştirebilmek için insan ve hayvanlardan kan emerler. Erginler, ince yapılı, başı küçük, birleşik gözleri iri, antenleri ve hortumu ince uzun, göğsü yuvarlağımsı ve yanlardan basık, kanatları dar-uzun, bacakları ince ve uzun, karnı yuvarlak ve uzun olan canlılardır. Boyları 3-13 mm dir. Vücutları ve uzantıları pullarla örtülüdür. Bu pulların dizilişi, renkleri ve dağılımı cinslerin ve türlerin birbirlerinden ayrılması için sınıflandırmada oldukça önemlidir. Ergin sivrisineklerin vücudu baş, gövde ve karın olmak üzere üç ana bölümden oluşur. Morfolojik özellikleri oldukça karmaşık olan bu yapıların ayrıntısına girmek bize göre bu kitabın konusu değildir ve sizlere ulaştırmak istediğimiz amacımızdan uzaklaşmamıza neden olabilir. Bu nedenle bu kısımda cinsler arasında yapısal ayırımı kolaylıkla sağlayan ve sınıflandırmada çok önemli olan bazı pratik farklılıklar üzerinde duracağız. Öncelikle sivrisinekler diğer böceklerden başlarının ön kısmında bulunan ve proboscis olarak adlandırılan sokma iğneleri ile ayrılırlar. Dişi ve erkekleri morfolojik olarak en kolay ayırma yolu, antenlerinin farklılığıdır. Sivrisinek türlerinin erkeklerinde antenler oldukça kıllı ve geniş görünüşlüdür. Oysa dişilerde kıllanma az ve daha dar görünüşlüdür. Antene ek olarak dişi ve erkekleri birbirinden ayıran en önemli farklardan bir tanesi, proboscis'in iki yanında bulunan ve palpus adı verilen dokungaçlardır. Palpuslar dişilerde proboscis'ten kısa, erkeklerde ise daha uzun ve kalındır. Anopheles cinsine bağlı sivrisinek erginleriyle diğer cinslere bağlı sivrisinek erginlerini birbirinden ayırmanın diğer bir yolu İse palpusların ve antenlerin cinse göre farklılaşmasıdır. Anopheles 'lerin hem dişilerinde hem de erkeklerinde palpusların boyu proboscisin boyu ile hemen hemen aynıdır. Oysa Aedes, Culex ve Culiseta gibi cinslere bağlı türlerde, palpuslar dişilerde proboscisden çok kısa, erkeklerde ise aynı boyda ya da biraz daha uzundur. Sivrisinek gövdesinin sırt kısmının karın kısmıyla ayrıldığı bölgede scutellum adı verilen bir çıkıntı bulunmaktadır (Şekil 17). Bu çıkıntı, sırt kısmında sivrisineğin eni boyunca yer almakta ve uçlarında türlere göre değişen sayıda kıl taşımaktadır. Bu kısmın morfolojik yapısı, sivrisinek cinslerinin birbirinden ayrılmasını sağlamaktadır (Şekil 23). Scutellum Anopheles erginlerinde lopsuz ve dışbükey, diğer cinslerde ise üç lopludur. Sivrisinek sınıflandırılmasında karın (abdomen) bölgesinin sırt kısmında bulunan dokuz adet segmentin birbirlerine bağlantı bölgelerinde bulunan pulların dizilim, şekli ve rengi de cinslerin ve hatta türlerin ayırımı için oldukça önemlidir. Anopheles cinsine bağlı türlerde bu bölgelerde pullanma yoktur. Keleş'lerde pullanma çok yoğundur ve genel olarak beyaz ve açık sarı renklidir. Bu cinste pullanma şekli genel olarak üçgen şeklindedir. Culex cinsinde ise pullanma gene! olarak daha kalın ve nettir. Pulların rengi sarımsı, kahverengimsi, kızıl ya da beyaz-sarı karışımı olabilir.

http://www.biyologlar.com/sivrisinek-evrelerinin-ozellikleri

Bal Arılarının Taksonomisi, Vücut Yapıları & Gelişme Dönemleri

Bal Arının Taksonomisi Dünyada 100.000 dolayında böcek türü taksonomik olarak sınıflandırılmıştır. Bu 100.000 tür içinde 23.000 dolayında arı türü bulunmaktadır. Bal arıları evrimleri süresince diğer böcek türlerinden farklılık göstererek kendilerine has morfolojik ve anatomik yapılarını geliştirmişlerdir. Örneğin bal arılarında polen toplamaya yarayan polen sepetçiklerinin oluşması, nektar ve polenle beslenmeye geçiş bu farklılaşmanın en tipik örnekleridir. Hayvanlar aleminin böcekler sınıfında yer alan bal arısının taksonomisi aşağıda verilmiştir. Alem (Kingdom) : Hayvanlar (Animalia) Şube (Phylum) : Eklembacaklılar (Arthropoda) Alt şube (Subphylum) : Antenliler (Antennata) Sınıf (Class) : Böcekler (Insecta) Takım (Order) : Zar kanatlılar (Hymenoptera) Familya (Family) : Arılar (Apidae) Cins (Genus) : Bal arıları (Apis) Tür (Species) : Bal arısı (Apis mellifera) Apis cinsi içinde "Batı" bal arısı olarak adlandırılan Apis mellifera dışında 3 tür daha bulunur ki bunlar "Doğu" bal arısı türleri olan; Apis cerana, Apis dorsata ve Apis florea'dır. Dünya bal üretiminde A. Cerana'dan kısmen yararlanılırken üretimin tamamına yakın kısmı A. mellifera kullanılarak gerçekleştirilmektedir. Diğer 2 tür ise kovana alınamamış olup doğal yuvalarda tek bir petek üzerinde yaşamaktadırlar. Arı taksonomisinde türden sonra ırklar yer almaktadır. Örneğin Anadolu ırkı, Apis mellifera anatolica olarak ifade edilir. Arının Vücut Yapısı Genel morfolojik yapısı bakımından diğer böceklere benzemekle birlikte, arının vücudu yumuşak yapıda olan yoğun bir kıl örtüsü ile kaplıdır. Arının vücudu baş, göğüs ve karın olmak üzere üç kısımdan meydana gelir. Başta gözler, duyargalar ve ağız parçaları bulunur. Baş, vücudun ikinci kısmı olan göğüse ince oynak bir boyunla bağlıdır. Göğüs ve karının dış kısmı segment denilen halkalardan oluşur. 1. Baş Arılarda baş önden bakıldığında bir üçgeni andırır. Başta; gözler, duyarga ve ağız parçaları bulunur. Gözler bir çift bileşik (petek) göz ile üç adet basit gözden ibarettir. Basit gözlerin her biri binlerce küçük üniteden oluşmaktadır. Bileşik göz; ana arıda 3.000, işçi arıda 4.000 ve erkek arıda 8.000'den fazla gözcüğün birleşmesinden meydana gelmiştir. Gözün her bir ünitesi bakılan cismin küçük bir kısmını görür ve bu görüntüler birleştirilerek cismin görüntüsü tamamlanır. Arılarda koku, tat ve dokunma-hissetme duyularını algılayan bir çift duyarga (anten) başta bulunmaktadır. Bu duyargalar oldukça kuvvetli kaslar yardımıyla her yöne hareket etme kabiliyetine sahiptirler. Duyargalar dişilerde 12, erkeklerde 13 halkadan meydana gelmiştir. Duyargalar içerisinde bulunan sinir uçları sayesinde arılar duyularına ek olarak rüzgar hızını ve hava sıcaklığını da algılayabilmektedirler. Arıların duyargaları o kadar hassastır ki 2 km mesafeden balın kokusunu algılayabilirler. Arılar; üst dudak, üst çene, alt çene ve alt dudak olmak üzere dört kısımdan meydana gelen yalayıcı-emici ağız tipine sahiptirler. Alt çeneleri yardımıyla koparıcı özellik gösterirler. Alt çene ve alt dudak birlikte uzanarak hortum şeklindeki “probozis”i oluştururlar. Probozis ve bunun uzantısındaki dil sıvı gıdaların alınmasını sağlar. Dil uzunluğu, arı ırkına göre değişmekle birlikte 6-7 mm arasındadır. Arının, üzeri kıllarla kaplı bulunan dil kısmı iç içe geçmiş sert halkalardan oluşur. Bu halkalar arasında zarımsı, dar ve tüysüz kısımlar vardır. Bu yapısından dolayı dil gerektiğinde uzayıp kısalabilme özelliğine sahiptir. Beslenme işlemi bittiğinde probozis kıvrılıp başın arka kısmına katlandığında dil eski haline nazaran oldukça kısa görünmektedir. İşçi arılar üst çenelerini polen almak, petek yapımında mum işlemek, herhangi bir şeyi tutup kavramak gibi işlerde kullanırlar. Arılarda hortum (dil) nektar, bal, şurup veya su gibi sıvı besinleri almak için kullanılır. Dil, arının emme işlevini yerine getiren organıdır. Baş, iç yapı itibariyle de önemli salgıların üretildiği kısımdır. İşçi arıların yutak üstü salgı bezleri genç yaşta arı sütü, daha ileri ki yaşlarda baldaki sakarozu parçalayan enzimleri salgılarlar. Çenede bulunan salgı bezleri ana arıda ana arı feromonunu, işçi arılarda ise alarm feromonunu salgılar. 2. Göğüs Arılarda göğüs hareketi dört segmentten meydana gelmiştir. Karnın ilk halkası göğsün son halkasıyla birleşmiştir. Göğüste bulunan üç segmentte her birinden bir çift olmak üzere, üç çift bacak ve iki çift kanat bulunmaktadır. Bu nedenle göğüs arının hareket merkezi olup güçlü kaslarla doludur. Bacaklar, arının hareket etmesini sağlaması yanında başka görevlere de sahiptirler. Öndeki bir çift bacak baş ve antenlerin temizliğini yapmada kullanılır. Orta bacaklar daha ziyade dayanmayı-tutunmayı sağlar. Aynı zamanda polenin göğüsten ve ön bacaklardan arka bacaklara aktarılmasını ve polen sepetine doldurulmasını sağlar. Üzerindeki sert tüyler nedeniyle bunlara "fırça" da denilmektedir. Arka bacaklar üzerinde bulunan polen sepetçiği polenin kovana taşınmasında kullanılır. Bal arılarında iki çift kanat bulunur. Kanatlar, çok ince zardan yapılmış olup kitinleşmiş damarlarla desteklenmiştir. Ön kanatlar, arka kanatlardan daha geniş, daha uzun ve daha damarlı olmakla birlikte uçuşta ikisi birlikte çalışmaktadır. Kanatlar uçmanın dışında uçuşu yönlendirmeyi de sağlarlar. Arılar kanatlarını kullanarak havada belirli bir noktada sabit kalabilmekte, uçuş yönlerini değiştirebilmekte ve ani olarak çeşitli yönlere dönüş yapabilmektedir. 3. Karın Arıların karın (abdomen) kısmında mide, bağırsak ve üreme organları gibi iç organlarla, balmumu, zehir ve nasanof salgı bezleri ile iğne bulunur. Bal arısı larvasında 10 adet abdominal segment vardır. Fakat birinci abdominal segment göğüsle birleşir ve ergin arıda 9 segment bulunur. Son karın segmentleri de iç içe girerler ve böylece işçi ve ana arıda 6 segment varmış gibi görünür. 8., 9.,10. segmentler küçülerek 7. segment içerisine gizlenmiştir. İşçi arıların 4, 5, 6 ve 7. karın halkalarında her birisinde sağlı-sollu bir çift mum salgı bezi (balmumu aynası) bulunur. İşçi arı hayatının balmumu yapma döneminde kalınlaşarak mum salgılama yeteneğini kazanır. Mum, sıvı olarak aynalar üzerine salgılanır ve mum ceplerinde katılaşarak küçük pulcuk haline geçer. Arılar, zincirleme birbirine tutunarak özel hareketlerle balmumu salgılarlar. Ayaklar yardımıyla ağıza götürülen balmumu pulcukları orada yumuşatılarak yoğrulmakta ve böylece petek gözlerinin yapımında kullanılmaktadır. Mum salgılama dönemini tamamlayan işçi arılarda mum salgı bezleri dumura uğrayıp birer sıra hücre tabakasına dönüşürler. İşçi arıların 7. abdominal segmentinin iç yüzeyinde ve sırt halkasının ön kenarına yakın kısmında büyük hücrelerden oluşan koku bezi (nasanof bezi) bulunmaktadır. İşçi ve ana arıda abdomenin sonunda iğne bulunur. İğne, iğne odacığından çıkan ince, sivri uçlu bir savunma organıdır. İşçi arıların iğnesi geriye doğru çentiklidir. Bu yüzden işçi arı sokmak üzere iğnesini bir yere batırdığında geri çekemez ve bunun sonucunda organını kaybederek ölür. Büyük halini görmek için resmin üzerine tıklayın H: Baş, Th: Göğüs, Ab: Karın, E: Bileşik göz, Ant:Anten, Lm: Labrum, Lb: Labium Md: Mandibula, Mx: Maksilla, Prb; Probobsis, Gls: Glossa (Dil), Tg: Tergit, W2 : Ön kanat, W3 : Arka kanat, Sp: Stigma, L1 : Ön bacak, L2 : Orta bacak, L3 : Arka bacak, Stn: Sternit C- Arının Biyolojik Gelişme Dönemleri Bal arıları yaşama bir yumurta olarak başlarlar. Ana arının petek gözlerine yumurtladığı döllenmiş yumurtalardan işçi arılarla ana arılar, dölsüz yumurtalardan ise erkek arılar meydana gelir. Bir arının gelişmesinde yumurta, larva ve pupa olmak üzere 3 farklı gelişme dönemi vardır. Arılarda yumurtadan ergine toplam gelişme dönemi; ana arıda 16, işçi arıda 21 ve erkek arıda da 24 gündür. 1. Yumurta Arı yumurtası, silindir şeklinde, uçları yuvarlak ve uzun ekseni boyunca eğri bir dışbükey görünümündedir. Petek üzerinde işçi arı yetiştirmek için yapılmış gözler (hücreler) küçük, erkek arı yetiştirmek için yapılanlar ise büyüktür. Ana arı, büyük göze dölsüz, küçük göze döllü yumurta bırakır. Yumurta, petek gözüne bırakıldığı zaman dikey konumdadır. Dikey konumda bırakılan yumurta yavaş-yavaş yana eğilerek üçüncü günün sonunda petek gözünün tabanında tamamen yatay bir konuma girer ve larvaya dönüşür. Bu özellikten faydalanarak petek gözündeki yumurtanın kaç günlük olduğu kolayca anlaşılır. Tüm arı bireylerinde yumurta dönemi 3 gündür. 2. Larva Bal arısı larvası gelişme dönemlerinde renk, şekil, hacim olarak çok hızlı ve önemli değişiklik gösterir. Bu dönemde vücudu oluşturan halkalar üzerinde gözenekler bulunur ve başta ağız parçaları oluşmuştur. Larva dönemine geçmeden az önce işçi arılar, yumurtanın yanına arı sütü koymaya başlamışlardır. Larvanın çıkışıyla birlikte göze oldukça fazla miktarda arı sütü bırakılır. Larva, yumurtadan çıktığı an arı sütü ile beslenmeye başlar. Bütün arı bireyleri larva döneminin ilk üç gününde 5-15 günlük işçi arılar tarafından salgılanan arı sütüyle beslenirler. Larvaya verilecek arı sütünün ölçüsü ve kalitesi bireylere göre değişir ve en çok arı sütünü ana arı larvaları tüketir. Ana arı larvaları, bütün larva dönemi boyunca işçi arı larvalarına göre, daha sık ve daha zengin arı sütüyle beslenirler. Döllü yumurta, bu beslenme farklılığından dolayı işçi veya ana arı olarak farklı bireyler şeklinde gelişebilmektedir. Yani döllü yumurtalardan meydana gelecek ferdin işçi veya ana arı olması onun larva dönemindeki beslenme şekline bağlıdır. 3. Pupa 6 günlük larva döneminde 5 kez gömlek değiştiren larva pupa dönemine girer. Yumurtadan itibaren 8. günün sonunda işçi arı larvası içeren gözün ağzı mühürlenir. Larva 9. gününde başındaki özel bir bezden salgıladığı salgıyı kullanarak bir kozaya dönüşür. Larva, 10. gününde bu kozasında hareketsiz olarak durur. Bu devre prepupa (pupa öncesi) devresi olarak adlandırılır. Prepupa 11. günde pupa olur. Pupa dönemi prepupa dönemiyle birlikte ana arıda 7, işçi arıda 12 ve erkek arıda ise15 gündür. Basit olarak arının; yumurta ve larva dönemi açık yavru, pupa dönemi de kapalı yavru olarak adlandırılır. Ana arı, işçi arı ve erkek arı için toplam açık yavru dönemi sırasıyla 8.5, 9 ve 9.5 gün olup benzer sıra içinde kapalı yavru dönemleri ise 7.5, 12 ve 14.5 gündür. Kapalı yavru dönemi süresinin erkek arılarda daha uzun olması özellikle varroa mücadelesi yönünden önem arz eder. Bu süreye bağlı olarak varroa, işçi arı kapalı yavru hücrelerine göre erkek arı kapalı yavru hücrelerinde daha fazla nesil üretir.

http://www.biyologlar.com/bal-arilarinin-taksonomisi-vucut-yapilari-gelisme-donemleri

Antosiyaninlerin çiçeklerin renklendirilmelerindeki rolleri

Antosiyanin ismi, Yunanca iki kelimeden, anthos (çiçek) ve kyanos (mavi) kelimelerinden oluşmuştur. E163 kodu ile bilinen antosiyaninler, suda iyi çözünebilen ve birçok meyveye, sebzeye ve çiçeğe etkileyici mavi, kırmızı ve mor renklerini veren pigmentlerdir. Bugün dünyada 200'ün üzerinde farklı antosiyanin kaynağı bulunmuştur. Antosiyaninler, pH değişimine karşı duyarlıdırlar. Çoğu antosiyanin, yüksek asitli koşulda kırmızıya, düşük asitli koşulda ise maviye döner. Antosiyanin pigmentleri, antosiyanidin ve glikozittir. Bu pigmentler suda çözünür ve gıdalarda kullanıma uygundur. Genel olarak ısıya ve ışığa karşı stabiliteleri yüksektir. Pastörizasyon ve UHT uygulamalarındaki yüksek sıcaklıklarda dahi stabildir. Özellikle üzüm kabuğundan elde edilmiş, yüksek polimerik yapıya sahip antosiyaninler, çok daha dayanıklıdır. Renklendirici olarak kullanılmasının yanı sıra, ürün bir polifenol olduğundan, son yıllarda, sağlığa yararları konusunda geniş çalışmalar yapılmıştır. Kırmızı şarabın her gün bir kadeh alınması şeklindeki tavsiyeler de, içerdiği antosiyaninlerden dolayıdır. Pigmentin bu özelliği, gelecekte fonksiyonel gıdalarda ve sağlıklı gıdalarda çok daha fazla kullanılacağını göstermektedir.   Gıda sektörü: İçecekler, dondurma çeşitleri, yenilebilir buzlar, jöleler, reçeller, şekerlemeler, süsleme ve kaplama malzemeleri, unlu mamuller, baık yumurtası, tüm çerezler, diyet ürünler, ek gıdalar, sıvı ve katı gıda katkıları, aromalandırılmış şaraplar, distile alkollü içkiler, kokteyller, meyve şarapları, elma şarabı, soslar, hardal, çeşni maddeleri, turşular ve şalgam suyu. Kozmetik sektörü: Cilt bakım ürünleri, saç bakım ürünleri. Antosiyaninlerin kullanımları için pH’nın düşük olması, bulanıklığın olmaması gerekir Alkolsüz İçecekler: Antosiyanin renk maddelerinin temel kullanım alanları alkolsüz içkilerdir. Koruyucu olarak SO2 içermeyen pH 3,4’ün altındaki berrak içecekler ideal uygulamalardır. Doğal renkleri ve antosiyanini hesaplarken, renk katkısı yapılacak gıdanın rengini belirlemeden önce, rengin sabitlenmesi için 24 saat beklemek akıllıca bir önlem olur. Antosiyaninlerin sülfit türevlerinden serbest bırakılmaları peryodu boyunca renkteki artışı görmek mümkündür. İçime hazır içeceklerde koyu kırmızı rengi vermek için 30 ile 40 ppm antosiyanin dozu yeterlidir. Antosiyaninlerin her zaman bulanık içeceklerde kullanımları uygun değildir. Ticari uygulamaları sınırlı olmasına rağmen, teknik olarak alkollü içecek ve sirke içeren ürünlerin antosiyaninlerle renklendirilmesi mümkündür. Meyveler: Antosiyaninler, meyve preparatlarında, marmelatlarda kullanılır. Meyvenin kalitesi ve özelliği önemlidir. Taze veya donmuş meyve, sülfitlenmiş ya da konserve meyveler tercih edilir. Konserve meyveler daha kahverengi olabilir. Antosiyaninler kahverengi alanda absorbe ettiklerinden (420-440nm) kahverengiliğin antosiyanin kullanarak maskelenmesi zordur. Şekerlemeler: Asit kullanılarak yüksek sıcaklıklarda kaynatılan şekerlemeler ve pektin jelleri, kırmızı rengin gözlendiği antosiyaninler için ideal uygulamalardır. Bazı antosiyanin ekstraktları, özellikle üzüm türevliler jelatinle birbirine uymazlar bu nedenle son üründe istenen rengi elde etmek için doğru uygulama biçimi seçimine dikkat edilmelidir. Üzümden elde edilen konsantre antosiyaninler, jelatin çözeltisine eklendiğinde bulanıklık veya çökelti oluşabilir. Konsantrasyon derecesinin artması daha fazla problem demektir. Rengi kullanmadan önce seyreltmek ve üretim denemelerini başarmadan önce jelatin uygunluğunu kontrol etmek gerekir. Kuru Karışımlar: Asidik tatlı karışım çeşitlerinde ve püskürtmeli kurutucuyla kurutulmuş toz içeceklerin renklendirilmesinde antosiyaninler kullanılır. (Küçük ve Ballıkaya, 2003)   Antosiyaninlerin Ekstraksiyonu Antosiyaninlerin çeşitli bitkisel kaynaklardan ekstraksiyonunda kullanılacak yöntemler, çoğunlukla ekstraksiyonun amacına ve antosiyaninlerin yapısına bağlı olmaktadır. Ekstraksiyon işlemleri için antosiyaninlerin yapısını ve stabilitesini etkileyen faktörlerin bilinmesi gerekmektedir. Ekstrakte edilen pigmentler kalitatif veya kantitatif olarak hemen analiz edilecekse yöntem pigmentleri mümkün olduğunca doğal durumlarına yakın tutacak şekilde seçilmelidir. Ekstrakte edilen pigmentlerin renklendirici veya gıda bileşeni olarak kullanılması durumunda maksimum pigment verimi, boyama kuvveti ve stabilite gibi faktörler de önem kazanmaktadır. Ayrıca ekstraksiyon ve temizleme işlemlerinin çok kompleks olmaması, zaman alıcı ve pahalı olmaması gerekmektedir . Antosiyaninler nötral veya alkali çözeltilerde stabil olmadığından ekstraksiyon işlemlerinde genellikle asidik çözeltilerin kullanılması önerilmektedir. Antosiyaninlerin ekstraksiyonunda geleneksel ve en yaygın yöntem bitkisel materyalin az miktarda mineral asit içeren ve düşük kaynama noktasına sahip olan alkol ile ekstraksiyonudur. Alkol olarak çoğunlukla metanol kullanılmakla birlikte metanolün toksik etkisinden dolayı, ekstrakte etme gücü metanole göre daha düşük olmasına ve yüksek kaynama noktasından dolayı daha zor konsantre edilmesine rağmen asitlendirilmiş etanol de gıda esaslı preparatların hazırlanmasında tercih edilmektedir. HCI ile asitlendirme düşük pH’yı korumaya yardımcı olmakla birlikte, bu gibi mineral asitlerin kullanımı, kompleks yapıdaki pigmentlerin doğal formunu değiştirebilmekte ve daha sonraki konsantrasyon aşamasında dayanıklı olmayan acil ve şeker kalıntılarında kayıplara neden olabilmektedir. Bu nedenle pek çok araştırmacı açillenmiş pigmentlerin bozunmasını en aza indirmek için çok düşük konsantrasyonlarda asit kullanımını önermişler, güçlü asit çözeltilerinin bazı bileşiklere zarar verdiğini bildirmişlerdir. Bu nedenle antosiyaninleri doğal formlarına yakın elde etmek için pek çok araştırmacı tarafindan başlangıç pigment ekstraksiyonunda nötral çözgenlerin kullanımı (% 60 metanol, aseton/metanol/su karışımları, n- butanol, soğuk aseton veya kaynamış su ) önerilmiştir. Ayrıca zayıf organik asitlerin de (çoğunlukla formik asit, asetik asit, sitrik asit ve tartarik asit) ekstraksiyon çözgenlerinde kullanıldığı bildirilmektedir. Rengin bitkisel materyalden yeterli ekstraksiyonu sağlandığında, alkol içeren çözelti düşük sıcaklıklarda konsantre edilmekte ve daha sonra gerekirse konsantratın kolon veya kağıt kromatografisi gibi tekniklerle saflaştırılması yoluna gidilmektedir. Antosiyaninlerin çeşitli bitkisel materyalllerden ekstraksiyonu üzerine günümüze kadar pek çok çalışma yapılmıştır. Bu konuyla ilgili literatür özetleri aşağıda verilmektedir. Bir çeşit erik meyvesinin (Prunus cerasifera) kabuğu ve yapraklarının antosiyanin kaynağı olarak kullanılabilme durumunun araştırıldığı Baker ve ark., 1974,nın çalışmasında siyanidin ve peonidin 3- glikozit ve 3-rutinozitleri içeren erik antosiyaninleri, asitlendirilmiş etanol kullanılarak ekstrakte edilmiş ve elde edilen ekstraktın organoleptik açıdan kabul edilebilir özelliklere sahip olduğu ifade edilmiştir. Antosiyaninler için en iyi kaynaklardan biri olan üzüm küspesinin kullanıldığı Tiinberlake ve Bridle, 1980, in çalışmalarında, ekstrakte edici çözgen olarak %0.1-1.0 oranında tartarik asit içeren metanol sonra tartarik asidin fazlası %40’lık KOH çözeltisi kullanılarak çöktürülmüştür . Metivier ve ark.(1980), antosiyaninlerin üzüm posasından ekstraksiyonunda kullanılan çözgen ve asidin ekstraksiyon derecesi ve oranı üzerine etkisini incelemişlerdir. Çalışmada çözgen olarak etanol, metanol ve su; asit olarak hidroklorik asit, sitrik asit, tartarik asit, formik asit ve propiyonik asit kullanılmış ve kullanılan ekstraksiyon çözgenleri arasında en iyi ekstraktantın metanol olduğu bildirilmiştir. %10 HCI içeren metanolün , etanolden %20 ve sudan %73 oranında daha etkili olduğu saptanmıştır. Metanol ekstraktındaki en yüksek pigment konsantrasyonuna 48 saat sonunda ulaşıldığı bildirilmiştir. HCI’nın oldukça korozif bir etkiye sahip olmasından dolayı çalışmada ekstraksiyon çözgeninde asit olarak organik asitler de denenmiştir. Organik asitle yapılan denemelerden elde edilen bulgulara göre sitrik asidin metanol ile ve asetik asidin su ile birlikte kullanıldığında daha etkili olduğu rapor edilmiştir. Pigment analizi Fuleki ve Francis (1968)’in uyguladığı yönteme göre pH 1 ve 4.5’da pH differential yöntem ile yapılmıştır. Bu çalışmada 100 g üzüm posasında 85 mg antosiyanin içeriği saptanmıştır. Kocabıyık ve Yurdagel (1987) de kırmızı üzüm cibresinden boyar bileşiklerin eldesi ve bunların gıdalarda kullanılabilirliği üzerinde çalışmışlardır. Araştırmada Carignane Grenache çeşidi üzümlerin artığı karışık cibre kullanılmış, cibredeki renk maddeleri sitrik asit içeren metanol ile ekstrakte edilmiştir. Ekstrakt süzüldükten sonra vakum altında konsantre edilmiş ve buzdolabı koşullannda depolanmıştır. Elde edilen doğal renk maddeleri gül reçeli, gül likörü, akide şekeri ve oksidasyona uğramış beyaz şaraplann roze formunun renklendirilmesinde kullanılmış ve 60 gün boyunca belirli zaman aralıklarında absorbans değerlerine bakılarak renk kayıpları incelenmiştir. Elde edilen sonuçlara göre renklendirilen gıdalarda renk açılmalarının kullanılan gıdanın pH’sına bağlı olarak değiştiği ve gül reçelinde alıkonan renk şiddetinin oldukça yüksek olduğu bulunmuş, bu nedenle renk maddelerinin pH 4 altındaki gıdalarda kullanılabileceği ifade edilmiştir. Palmidis ve Markakis (1975) de fermente üzüm kabuklarındaki antosiyaninleri sıcak su ve farklı konsantrasyonlarda (500, 1000 ve 2000 ppm) SO2 çözeltisi ile ekstrakte ederek alkolsüz karbonatlı içeceklerdeki stabilitelerini incelemişlerdir. Sıcak su ve 500 ppm SO2 çözeltisinin diğerlerinden daha iyi sonuç verdiği rapor edilmiştir. Ekstraktlar konsantre edilip kurutulduktan sonra hazırlanan karbonatlı içecek karışımına katılmış, içecekler farklı sıcaklık ve ışık koşullarında depolanarak belirli aralıklarla antosiyanin içerikleri saptanmıştır. Ekstrakt ve içeceklerin antosiyanin içeriği pH differential yöntem ile saptanmıştır. pH’ları 1 ve 4.5 olan iki tampon kullanılarak örneklerin absorbansları 520 nm’ de okunmuş ve pigment içeriği enosiyanin eşdeğeri olarak ifade edilmiştir. Sıcak su ekstraksiyonu ile elde edilen antosiyaninlerle hazırlanan içeceğin 581 mg enosiyanin /100 mg ve 500 ppm SO2 çözeltisi ile hazırlanan içeceğin ise 640 mg enosiyanin/100 mg içerdiği saptanmıştır. Sıcaklık ve ışığın karbonatlı içeceğe eklenen antosiyaninin stabilitesini etkilediği, depolama sıcaklığı ve ışık şiddetindeki artışın pigment degradasyonunu hızlandırdığı bulunmuştur. Aynca 500 ppm SO2 çözeltisi ile ekstrakte edilen pigmentlerin sıcak su ile ekstrakte edilenlere göre %30-60 oranında daha stabil olduğu saptanmıştır. Mok ve Hettiarachchy (1991), ayçiçeği kabuğundaki antosiyaninlerin 65-95 °C arasında değişen sıcaklıklarda ve pH 1-5 aralığında termal stabiliteleri üzerinde çalışmış ve ekstraksiyon çözgeninde SO2 kullanımının elde edilen pigmentlerin termal stabilitesi üzerine etkilerini incelemişlerdir. Ekstraksiyon çözgeni olarak 500, 1000 ve 2000 ppm SO2 içeren sulu çözeltilerin kullanıldığı çalışmada 1000 ppm SO2 içeren çözeltinin en yüksek termal stabiliteye ve antosiyanin içeriğine sahip olduğu saptanmıştır. 1000 ppm’in üzerindeki konsantrasyonlarda SO2 çözeltisinin daha düşük antosiyanin içeriği vermesinin sebebi SO2 nin yüksek konsantrasyonlarda geri dönüşümsüz ağartma etkisi ile açıklanmıştır. Isıl işlem görmüş ekstraktlardaki toplam antosiyanin içeriği pH differential yöntem ile saptamış ve mg siyanidin 3-glikozit/L olarak ifade edilmiştir. Antosiyaninlerin degradasyon indeksi (DI) değerleri Fuleki ve Francis (l968)’in yöntemine göre saptanmıştır. Degradasyon indeksi, örnekteki degrade olmuş antosiyanin kısmını belirten bir ifadedir. Bu değerin sıcaklık ve süre arttıkça arttığı, 95 °C’deki DI değerinin 65 ve 80°C dekine göre daha yüksek olduğu ve 65 ve 80 °C’de elde edilen DI değerleri arasında önemli bir fark olmadığı bildirilmiştir. En yüksek DI değerinin pH 5’de elde edildiği, bu değeri sırasıyla pH 1 ve pH 3’ de elde edilen değerlerin izlediği rapor edilmiştir.   Antosiyaninlerin Antioksidan Aktivitesi documents/240934301.pdf

http://www.biyologlar.com/antosiyaninlerin-ciceklerin-renklendirilmelerindeki-rolleri

Gal oluşumu,çeşitleri ve gal oluşumuna sebep olan böcekler

GAL NEDİR? Gal, bitki dokularının yaralanması sonucu mikroorganizma enfeksiyonu veya özellikle böcek ve akarların yumurta bırakması sonucunda oluşan anormal gelişmedir. Evrimsel olarak, geçmişte, böcekler, bitkileri değişik şekillerde yerken, bir kısmı iletim demetlerini tahrip ederek bitkinin ölümüne neden olmaktaydı. Büyük bir olasılıkla bitkiler, bu zarardan korunmak için gal oluşumunu başlatmışlardır. Böylece böcekleri belirli bir bölgeye hapsetmeyi başarmışlardır. Galleri, bu sefer böcekler bir koza gibi gelişmelerinin bir parçası olarak kullanmaya başlamışlardır. Böceğin çıkardığı salgılardan (beta indolik asit) dolayı gal olan bitki kısımlarına diğer bir parazitin yerleşmesi olanaksızdır. Çünkü gal civarındaki belirli bir bölgeye immunize olmuştur. Bitki kurusa dahi galin bulunduğu kısım yaşamına bir süre daha devam eder. Her ne kadar bu ilişki bir parazitizmden simbiyozise dönmüş gibi gözükürse de bu birliktelikten bitki çoğunluk zararlı çıktığı için bir simbiyozis kavramı içerisinde değerlendirilmemektedir. Oluşan galleri tanımlarken galin meydana geldiği yere ve ya şekline göre bir isimlendirme yapılır; kabarcık galleri, tomurcuk galleri, küçük top galler, erinoz, çiçek galleri, meyve galleri, yaprak galleri, yaprak lekeleri, meşe elmaları, kese galleri, roly-poly galleri, kök galleri, rozet galleri, yaprak sapı ve ya sürgün galleri gibi.   Galler yaprak ya da gövdede basit şişlikler halinde olabileceği gibi, bitkinin anatomik yapısında oldukça karmaşık yapıda da olabilir. Fakat her zaman gal yapıcılarına özgü bir yapıdadır. Yani galler, gal yapan türe özgü ölçülere, biçime ve renge sahiptirler. Daha çok yaprak, gövde ve çiçekteki galler böcek ve akarlar tarafından meydana getirilir. Galler bitki hücrelerinin anormal gelişmeleriyle ortaya çıkar. Böcek ve akarların beslenme ve yumurta bırakma süresince meydana gelen uyarılara tepki olarak gal dokuları meydana gelir. Bu uyarıları kısaca, Bitki dokuları içine bırakılan yumurtalardan salınan bir sıvı Bitki dokuları içindeki ve ya üstündeki böcek ya da akarların varlığı Böcek ve ya akar tükürükleri Böcek salgıları şeklinde özetleyebiliriz. Böcek ve akarların beslenme ve yumurta bırakması süresince kimyasal bir sekresyon gözlenir. Bu kimyasal maddeler bitki büyüme hormonları gibi davranıp bitki dokusunu gal oluşumuna teşvik eder. Böceklerin beslenirken mekaniksel olarak bitkiye verdikleri zarardan dolayı da gal oluşabilir. Gal yapıcılar, konakçının dokularına yumurtalarını bırakır. Yumurtalar açılır ve meristematik hücrelerle ve ya büyüme bölgeleriyle ilişkide olan küçük larvalar ortaya çıkar.Bu sırada gal büyümeye başlar. Galler, aşırı hücre çoğalması(hyperplasia) ve onu takiben hücre büyümesinin(hipertrofi) sonucudur. Galler;başlıca böcekler, akarlar, nematodlar, bakteriler ve mantarlar tarafından şekillendirilirler. Böcekler; Cynipidleri, Psylidleri, Aphidleri, Thripleri, Güve kurtçuklarını ve kın kanatlıları kapsar. Gal yapıcılara genel olarak ‘’cecidozoa’’ denir. Bunlar salgıladıkları enzimlerle bitkide hipertrofiye ve ya hiperplaziye neden olurlar. Psyllidler ve ya sıçrayıcı bitki bitlerinin çitlembik üzerinde meme başı şeklinde oluşturdukları galler en iyi bilinenlerindendir. Gal yapan aphidler, adelgidler ve ya pamuksu aphidler öncelikle yapraklarını dökmeyen ağaçlara etki eden grubu kapsar. En çok bilinen adelgid, Colorado’daki Cooley ladin gal adelgididir. Bunlar kozalağımsı galleri ladinler üzerinde meydana getirir. Gal yapan aphidlerin meydana getirdiği en göze çarpan galler, kavak ve kavak türleri üzerinde meydana gelen çeşitli gövde ve petiol galleridir. Diğer gal aphidleri, dişbudak, titrek kavak ve kavak üzerinde göze çarpacak derecede yaprak bükülmelerine sebep olurlar. Bunlara pseudo-gal denir. Gal yaban arıları gal yapan böcekler grubunun en büyük üyesidir. Gal yaban arıları odunsu bitkilerde geniş çaplı galler meydana getirir. Galler, gövde ve yapraklar üzerinde tüylü ve yosunludur. Genelde tüm böcekl galleri meşe ve ya güller üzerinde bulunup gal yaban arıları tarafından meydana getirilir. Gal sinekleri bazı kavaklarda ve titrek kavağın yeni sürgünlerinde gelişir.Dairesel şişlikler meydana getirirler. Galler;başlıca böcekler, akarlar, nematodlar, bakteriler ve mantarlar tarafından şekillendirilirler. Böcekler Cynipidleri, Psylidleri, Aphidleri, Thripleri, Güve kurtçuklarını ve kın kanatlıları kapsar. Gal yapıcılara genel olarak ‘’cecidozoa’’ denir. Bunlar salgıladıkları enzimlerle bitkide hipertrofiye ve ya hiperplaziye neden olurlar. Psyllidler ve ya sıçrayıcı bitki bitlerinin çitlembik üzerinde meme başı şeklinde oluşturdukları galler en iyi bilinenlerindendir. Gal yapan aphidler, adelgidler ve ya pamuksu aphidler öncelikle yapraklarını dökmeyen ağaçlara etki eden grubu kapsar. En çok bilinen adelgid, Colorado’daki Cooley ladin gal adelgididir. Bunlar kozalağımsı galleri ladinler üzerinde meydana getirir. Gal yapan aphidlerin meydana getirdiği en göze çarpan galler, kavak ve kavak türleri üzerinde meydana gelen çeşitli gövde ve petiol galleridir. Diğer gal aphidleri, dişbudak, titrek kavak ve kavak üzerinde göze çarpacak derecede yaprak bükülmelerine sebep olurlar. Bunlara pseudo-gal denir. Gal yaban arıları gal yapan böcekler grubunun en büyük üyesidir. Gal yaban arıları odunsu bitkilerde geniş çaplı galler meydana getirir. Galler, gövde ve yapraklar üzerinde tüylü ve yosunludur. Genelde tüm böcekl galleri meşe ve ya güller üzerinde bulunup gal yaban arıları tarafından meydana getirilir. Gal sinekleri bazı kavaklarda ve titrek kavağın yeni sürgünlerinde gelişir.Dairesel şişlikler meydana getirirler. GAL OLUŞTURAN TÜRLER NELERDİR ? Bitkilerde gal oluşturan akarlar Eriophyidae familyasına dahildirler. Bu familyanın tamamı bitkilerde parazittir, ancak gelişmeleri için canlı bitki dokularına ihtiyaç duyduklarından diğer gal yapıcılar kadar bitkiye zarar vermezler. Görünüşleri iğ şeklinde ve gözle görülemeyecek kadar küçük akarlardır. Diğer akarlardan farklı olarak tüm yaşamları boyunca iki çift bacağa sahiptirler. Bu akarlar kışı ergin dişiler olarak ağaç kabuklarındaki yarıklarda geçirirler. Böyle dişilere deutogyne denir. Baharda erginler açılan tomurcuklara hareket ederler ve burada beslenmeye başlarlar.Beslenmeleriyle birlikte bitkide deformasyonlar oluşur ve akarın beslenmeye devam edip, yumurtasını bırakabileceği kese ve ya galler oluşur. Bu arada erkek akarların yaşadığı keseler yaprak yüzeyinde dağılmış durumdadır. Erkek ve dişi birey arasında çiftleşme olmaz. Erkek spermatoforlarını yaprak yüzeyine bırakır ve dişi bunları toplayarak döllenme gerçekleşir. Dişi yumurtalarını gallerin içine bırakır. Bir ay içinde her dişi 80 kadar yumurta bırakır. Yumurtalar bir hafta içinde açılır ve nimfler gelişmelerini tamamlayabilmek için galin içinde kalmaya devam eder. Yumurtadan ergine kadar iki safhadan geçerler. Olgunluğa erişen akarlar ortaya çıkarlar ve yeni yaprakları istila ederler. Ağustos başında gal akarları hibernasyona çekilirler. Gal oluşturan Eriophyidler beslenme sonucu her türe özgü olan ve türler arasında farklılık gösteren lokal bitki deformasyonlarına sebep olurlar. Galler konusunda yapılan araştırmalarda, her bir türün bu tip büyüme tepkileri oluşturmak için bitkiye özel bir büyüme regülatörü vermesi gerektiği düşünülmektedir. Bu bileşimi bilinmeyen, ancak bitkilere verildiğinde yaprakların rengini, hücrelerin büyüme düzenini bozan, sayayla ilgili olan kimyasal maddelerle yapılan çalışmalarda Eriophyes elangatus Hodgkiss akçaağaçta yaprakların üst yüzeyinde koyu kırmızı erineler meydana getirirken, E. Modestus Hodgkiss yine akçaağaçta yaprağın alt yüzeyinde yeşil erineleri meydana getirdiği gözlenmiştir. Akarların oluşturduğu galler, salgılanan büyüme regülatörleri tarafından bozulan epidermal hücrelerden meydana gelmektedir. Her bir galin belirli sınırları vardır. Hepsinde ortak olan özellik eriophyid gallerin çıkış deliği bulundurmasıdır. Erineler, Eriophyidae familyasındaki bir çok türün beslenmesi sonucu oluşan erinose da denilen keçemsi yapılardır. Yaprağın üst yüzeyine doğru meydana gelen şişkinliğin iç kısmında bulunurlar. Çıkış delikleri olan gallerin aksine, tüy kümeleri içersinde akarların barınmasını sağlarlar. Erineler çok sınırlı yamalar halinde olabildiği gibi yaprak ya da petiol yüzeyinin çoğunu kaplar şekilde olabilir. Yapraklarda galler oluşturarak veya galeriler açarak zararlı olan böcek türleri; Tracys minutus (L.) (Coleoptera-Buprestidae), Rhynhaenus salicis (L.) (Curculionidae), Phylloctnistis saligna Z. (Lepidoptera-Phyllocnistidae), Pontania proxima (Lep.) (Hymonoptera- Tenthredinidae). Cecidomyiidae familyasının pek çok türü bitkilerde gal meydana getirir. Bitkinin kök kısımları dışında yumru halinde gal oluştururlar. Çok defa belirli bitki türlerinde hatta bitkinin belirli yerlerine özelleşmişlerdir. Gal oluşumuna larvarın tükrük salgısı önemli rol oynamaktadır. Mekanik uyanlarla birlikte bitkinin o bölgesinin hızlı büyümesi sağlanır. Agrobacterium tumefaciens (Smith and Town.) Conn – Rhizobium rhizogenes (Riker et al.)Conn Agrobacterium tumefaciens; bakteriyel hastalık etmeni dikototiledon bitkilerde, özellikle elma, seftali, armut, kiraz, bağ ve güllerde gal oluşumuna neden olmaktadır. Hastalık bitkilerin toprak üstü aksamlarında ( kök boğazına yakın yerlerde) tipik olarak büyük tümör benzeri sikinliklerden (gal) dolayı bu ismi almıştır. Okaliptüs gal arısı Leptocybe invasa Fisher & LaSalla, okaliptüslerin yeni zararlısıdır. Eucalyptus camaldulensis ve E. grandis’lerin taze sürgün ucunda bulunan yaprak orta damarı, yaprak sapı ve sürgünlerde tipik gal (ur) meydana getirmektedir. Spongospora subterranea (Wallr.) Lagerh. fungal hastalık etmeni olup, patates yumru ve köklerinde görülmektedir. Colemerus vitis :Asma yapraklarında emgi sırasında kabarcık meydana getirir. Eriophyes erineus: Ceviz yapraklarının alt yüzeyinde dikdörtgen şekilde keçemsi tüyler oluşturur. Eriophyes brachytarsus :Ceviz yapraklarında oluşturulan galler keçe şeklindedir. Bu galler 3-6 mm. büyüklüğündedir. Olgunlaştıkça kırmızı renk alır. Phytoptus leavis: Kızılağaç yapraklarında boncuk şeklinde galler oluşturur. Dıştan parlak görülür. Phytoptus similis: Kayısı ve zerdali yapraklarının kenarlarında cep ve külah şeklinde yeşil ve ya kırmızı galler görülür. Boncuk şeklinde gallerin içinde şişkin papillalar vardır. Phytoptus tiliae: Ihlamur ağacı yapraklarında oluşturduğu galler çivi şeklindedir. Eriophyes parulmi: Karaağaç yapraklarında parmak şeklinde galler oluşur. Phytoptus avellanae: Fındık kozalak uyuzu olarak bilinir. Eriophyes elangatus: Akçaağaç yaprağının üst yüzeyinde koyu kırmızı renkli erine oluşturur. Eriophyes triplacis: Meşe ağacında ince papillalardan olusan erine meydana getirir. Eriophyes mackiei: Meşe ağacında yaprakların alt ve ya üst yüzeyinde yeşil ve parlak renkli erineler oluşturur. Eriophyes calaceris: Akçaağaç yapraklarının üst yüzeyinde renkli erineler oluşturur. Acalitus fagarinea: Kayın ağacı yapraklarında sarı erineler meydana getirir. Eriophyes tristriatus: Ceviz yaprağı gal akarı olarak bilinir. Yaprağın alt ve üst yüzeyinde ana damar etrafında küre biçimli urlar meydana getirir. Bazen meyve ve meyve sapında da bu urları görmek mümkündür. Eriophyes triradiatus: Söğüt zararlısı olarak bilinir. Meydana gelen galler üzüm salkımı ve ya mısır püskülü gibidir. Phytoptus pyri: Armut yaprak uyuzu olarak bilinir. Başta armut olmak üzere elma, ayva ve bunların bazı yabani formlarında zararlıdır. Ülkemizde bolca bulunur. Acalitus phloecoptes. Erik tomurcuk akarı olarak bilinir. Başlıca konukçuları erik ve badem ağaçlarıdır. Tetraspinus (=Platoculus) pyramidicus: Dağ diş budağı yaprak kabarcık akarı olarak bilinir. Erineum tipi galler oluşur. Aceria negundi: Akçaağaç gal akarıdır. Akçaağaç yapraklarının alt yüzünde içi beyaz keçemsi tüylerle dolu baskılanmış küçük yuvarlaklıklara neden olur. Eriophyes sheldoni: Turunçgil tomurcuk akarıdır. Meyvede şekil bozukluğuna ve deformasyona, yaprakta rozetleşmeye neden olur. Eriophyes oleae: Zeytin tomurcuk akarıdır. Özellikle genç zeytin ağaçlarında zararlı olmaktadır. Yaprakların bükülüp bodurlaşmasına, sürgünlerin kurumasına neden olurlar. KUŞ BURNU BİTKİSİNDE GAL YAPAN BÖCEKLER ; GALLER NASIL KONTROL ALTINA ALINABİLİR Galler nadirende olsa ciddi zararlara yol açabilirler. Gal bir kere şekillenmeye başladımı büyük olasılıkla durdurulması imkansızdır. Ancak yeni büyüme aşamasındayken spreylerle kontrol altına alınabilir. İnce dal ve tomurcuklar oxythoquinox veya carbaryl ile baharın ılık günlerinde spreylenebilir. Bu işlem yaprak tomurcuklarının yeni çıkmaya başladığı nisan ayında yapılabilir. Gal yapan böcekleri kontrol ettiği sanılan birçok insektisit ve akarisite rağmen bunların kullanımı yersiz ve sonuçsuzdur. Fakat kullanılması zorunlu ise yetişkin yumurtaları gal içine bırakmadan önce kullanılmalıdır. İnsektisitle kontrol genelde kullanmaya elverişli değildir. Çünkü: ·Çoğu zaman zarar çok önemli olmayabilir. Parazitler normal olarak gelişmiş ve gal yapıcılarının populasyonu ciddi bir hasar meydana gelmeden bastırmış olabilir. ·Uygulamanın doğru zamanı gal şekillenmeye başlamadan önce yetişkin canlıları kontrol etmede gereklidir. ·Özellikle büyük ağaçlarda çevresel kontaminasyonlar ve harcamalar hesaplanamaz. Gövdede ve geniş dallarda meydana gelen bazı Galler özenle seçilmiş ve tahrip edilebilir. Diğer bir kontrol şekli biyolojik kontroldür. Bir çok arı gal yapan böceklerin parazitidir ve gal şekillenmesini kısıtlarlar. Doğal düşmanı tarafından rahatsız edilen gal yapıcı delikten dışarı çıkar ve gali terk eder. Boşalan yere küçük örümcekler, yararlı böcekler, karıncalar, bazı larvalar veya parazitik arılar yerleşir. Bu nedenle yaşlı galler zararlı böceklerle beslenen yararlı organizmalara barınak olmuş olur. GALLERDEN NASIL YARARLANILABİLİR Gallerden elde edilen başlıca ürün tannik asittir. Bu madde insektisit yapımında kullanılır. En kaliteli mürekkep gallerden elde edilir. Bu konuda Avrupa ve Asya’daki meşelerde bulunan Aleppo (smyrna) galeri en bilinenlerdendir.Bazı ülkelerde yiyecek olarak kullanılır. Yakın doğuda ‘’pomme de sauge’’ aromatik ve asidik tadı nedeniyle değerlendirilir. Amerika’da ufak siyah galler çiftlik hayvanlarının başlıca gıdasıdır. Çünkü % 64 karbonhidrat ve %9’dan fazla protein içerir. Ayrıca galler renkleri ve şekilleri nedeniyle ülkemizde de olmak üzere birçok yerde çiçek aranjmanında kullanılır. Kumaş boyası elde etmede kullanılan gallerde vardır. Eğer galler demir sulfatla kombine edilirse siyah boya, tek başlarına ise gri renk boya verirler. Aleppo (Cynips tinctoria) galleri Yunanlılardan beri kullanılmaktadır. Derinin bitkisel tabaklanmasında kullanılır. Çin aleppo galerinin üretim ve dağıtımında dünyada %95’lik yer kaplar. Galler %50-75 gallotannin, %2-3 gallik asit ve %2 ellogic asit ve glukoz, eter ve nişasta içerir. SONUÇ Galerin bitkiye bir çok zararı olduğu gibi diğer canlılarada pek çok yararı vardır. Besin olarak kullanıldığı gibi boya sanayinde, deri sanayide ve çiçek sektörüdede kullanılmaktadır.Ancak bunlardan dolayı bitkiye verdiği zarar göz ardı edilemez. Galli yapraklar diğer yapraklardan önce dökülmektedir. Meyvedeki zararı ise; meyveye çürük görünümü verir ve meyveler kullanışsız hale gelir. Gövde ve dallarda iletim demetleri kurur. Yeni çıkan sürgün ve filizlerde oluşan galler büyümeyi engeller. Bu nedenle gal oluşmadan önce tedbir alınması gerekir. KAYNAKLAR Demirsoy, A., 1999. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji. ISBN:975-7746-02-9, Sh:272-274, 6. Baskı Ege Üniversitesi, Ziraat Fakültesi, ‘Bitki Zararlısı Akarlar’ Yüksek Lisans Ders Notları. Jeppson, L.R., Keifer, H.H., Baker, E.M.,1975. Mites ınjurious to economic plants. University of California Pres, 614 s. Madanlar, N., 1991. İzmir ilinde turunçgillerde bulunan Acarina türleri ve populasyon yoğunluklarının saptanması üzerine araştırmalar. E.Ü. Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Basılmamış Doktora Tezi, 258 s. Madanlar, N., 1992. İzmir ve çevresinde turunçgil bahçelerindeki akar türlerinin durumu. Türkiye II. Entomoloji Kongresi (28-31 Ocak 1992, Adana) Bildirileri, 683-691.    

http://www.biyologlar.com/gal-olusumucesitleri-ve-gal-olusumuna-sebep-olan-bocekler

Embriyo nedir?

Embriyo bir biyoloji terimidir. Çok hücreli diploid ökaryotlarda, yumurtadan meydana gelen dişi yumurtasının erkek spermiyle döllenmesiyle oluşan yedi günlük genç organizmaya embriyo denilmektedir. Embriyo oluşumunda birinci basamak döllenmedir. Döllenme kısaca dişi üreme hücresi (dişi gamet) ile erkek üreme hücresinin (erkek gametin) birleşmesi olayıdırembriyo Yumurta ve sperm hücrelerinin birleşmesiyle oluşan zigot, çift sarmallı DNA moleküllerini içerir Bitkiler, hayvanlar, ve bazı protistlerde zigot mitozla bölünerek çok hücreli canlıyı oluşturur Embriyo terimi, bu gelişimin zigotun bölündüğü zamanla, gelişim basamağının başka basamağa geçmesine kadar olan ilk zamanlarını anlatmak için kullanılır. Zigot nedir? Gebeliğin ilk iki haftası süresince gelişmekte olan döllenme ürününe, döllenmiş yumurta (zigot) adı verilir. Embriyonal dönem nedir? İnsanlarda, ilk sekiz haftalık gebelik dönemine embriyonal dönem denilir. Dölüt nedir? Gebeliğin üçüncü haftası ile beşinci haftası arasında geçen zaman içinde organlar meydana gelir ve bu süre içinde döllenme ürününe embriyo, sekizinci haftadan sonra ise dölüt denir. Embriyo transferi nedir? Embrio transferi, laboratuarda döllenen ceninin (embrionun) jinekolojik muayene masasında rahim içine bir kateter yardımı ile aktarılması işlemidir. Embriyo dondurma nedir? Elde edilen kaliteli embriyoların fazla olanlarının uygun saklama koşullarında dondurulmasıdır. Bu işlemin en büyük avantajı; canlı normal embriyoların atılmaması ve tekrar yumurtlatma tedavisine gerek kalmadan sonraki bir siklusta çiftin gebelik elde edebilme şansı olmasıdır. Normal gelişen embriyo kriterleri nelerdir? 1. gün : 16-20 saat sonra döllenme tespit edilir. 2. gün: 48 saat sonra 3-4 hücreli embriyolar izlenir. 3. gün: 72 saat sonra 6-8 veya daha fazla hücre içeren embriyolar izlenir ve hücreler arası birleşme başlar. 4. günün sabahında hücre sayısı net sayılamamakta, morula dönemine ulaşan embriyolar oluşmaktadır. 5 veya 6. gündeki embriyoya blastokist adı verilir ve hücre sayısı 60’tan fazladır. Ayrıca embryolarda fragman denilen yabancı cisimcik oranının %20’nin altında olması ve embryoyu oluşturan hücrelerin boyutlarının birbirine yakın olması iyi embryo kriteri olarak kabul edilmektedir. Hayvanlarda embriyo transferinin yararları nelerdir? 1- Bir inekten yılda sadece bir buzağı elde edilirken, bu yöntemle yılda 8-12 buzağı elde etme şansı vardır. Böylece üstün yetenekli ineklerden daha çok yavru elde etmek mümkündür. 2- Embriyo ile hastalık bulaşmaz. Ülkeden ülkeye kolayca ve güvenilir bir biçimde nakledilebilir. Bir sıvı azot tankı içerisinde yüzlerce embriyoyu ucuz bir şekilde ithal ya da ihraç etmek mümkündür. 3- Embriyo transferi Irk ıslahının en kestirme, en çabuk , en güvenilir yoludur. 4- Çeşitli sebeplerle canlı hayvan ithalinin yasak olduğu dönemlerde ya da hastalık dolayısıyla yasak konulan ülkelerden embriyo getirmek mümkündür. 5- Kimse en iyi damızlık ineğini başkasına satmaz. Ancak onların embriyolarını satın almak mümkündür. 6- İsteğe göre erkek ya da dişi buzağı elde edilebilir. 7- Taşıyıcı annelerin bulunduğu yerde doğan buzağılar çevresel mikroplara karşı hazırlıklı olarak doğarlar. Kaynak: embriyo.nedir.com/#ixzz2g82a4sYY

http://www.biyologlar.com/embriyo-nedir

İpek böceği ( Bombyx mori ) Hikayesi

İpek böceği (Bombyx mori), Bombycidae familyasından ördüğü kozalardan ipek elde edilen, dut yaprağı ile beslenen bir cins kelebeğin tırtılı. Kelebek yumurtalarını dut yaprakları üzerine bırakır, yumurtladıktan üç dört gün sonra ölür. Baharda taze dut yaprakları üzerindeki yumurtalardan larva halinde çıkan tırtıllar sık tüylü ve siyahtır. Büyük bir iştahla devamlı dut yaprağı yerler ve dört beş defa gömlek değiştirerek bir birbuçuk ayda 7 veya 8 santime ulaşırlar. Büyüdükçe renkleri açılır ve tüyleri kaybolur. İyice büyüyüp de hücrelerine yerleşince üst dudağındaki delikten iplik halinde zamk gibi bir sıvı çıkararak kozasını yapmaya başlar. Tırtıl önce kozanın dış kısmını sonra kendi vücudunun etrafını örmeye devam eder ve görünmez olur. Eğer kendi haline bıraklırsa iki üç hafta içinde kelebek haline gelerek ördüğü kozayı parçalar ve dışarı çıkar. Bu yüzden kozayı parçalamadan kozalar sıcak suya atılır veya sıcak su buharına tutularak tırtıl öldürülür. Böylece ipek kozaları elde edilir. Bu kozalardan da tel şeklindeki ipek lifleri çıkarılıp ham ipek üretilir. Böceğin neslinin devamı için bir kısım kozanın parçalanıp kelebeğin çıkmasına müsaade edilir. Suni ipek kavak, göknar, söğüt gibi selülozca zengin olan ağaçlardan kimyasal yollarla elde edilen liflere denir. İpek böceği ilk defa İsa'dan 2600 yıl önce Çin'de beslemeye alınmıştır. Çinliler ipekböceği yetiştirme ve ipekli kumaş yapmanın sırrını uzun yıllar ülkelerinde saklamışlardır.Yurdumuzda ise ipekböcekçiliği 1500 yıllık bir geçmişe sahiptir.Son yıllarda suni ipeğin üretilmesi ile önemini kaybetmiştir. Minicik bir böcek, milyonlarca yıldır yeryüzünde bilinen en sağlam ipliği üretir. Bu böceğin yumurtaları bir yıl uyuyarak canlanmayı bekler, yeni doğanlar ise kısa sürede ilk ağırlığının 10.000 katına çıkarak mucizevi bir gelişim gösterir. Binlerce yıldır insanların "en güzel ve en narin" olarak değerlendirdikleri, nadide kumaşların dokunduğu bu ipliği üretmek için kendini ördüğü bir kozanın içine hapseder. Bu süre içinde böceğin kendisi de bambaşka bir görünüm kazanarak göz kamaştıran bir kelebeğe dönüşür. Yumuşaklığı ve parlaklığıyla yüzyıllardır en çok tercih edilen kumaş olan ipek, ipek böceği tırtıllarının ördüğü kozalardan yapılır. Bu mucizevi canlılar, ilginç bir şekilde yalnızca dut yaprağı yerler. Dut ağacı yapraklarından başka hiçbir şeyle beslenmezler. İpek böceği tırtılları gelişimlerini tamamlayınca, kelebek olmak için koza örmeye başlarlar. Sonunda da kendilerini, bu incecik ipek ipliklerinden örülmüş kozalarına hapsedip, uykuya dalarlar. Önce yalnızca minik bir tırtılla başlayan bu sürecin sonunda tırtıl kaybolurken ortaya ipekten örülmüş bir koza ile bir kelebek çıkmaktadır. Peki bu olay nasıl gerçekleşmektedir? *** Tırtıldan Kelebeğe... *** İpek böceklerinin yeryüzünde birçok farklı türü bulunmaktadır. Bazı farklılıklar dışında hepsinde ortak olan dönemler; yumurta dönemi, larva dönemi, koza örme devresi ve ergin-kelebek dönemidir. ***İpek Böceği Yumurtası Bir Yıl Nasıl Canlı Kalır? **** İpek böceklerinin bir türü (univoltin ırk) sadece ilkbaharda yumurtlar ve bu türün verdiği yumurtalar diğer ilkbahara kadar bekler. Başka bir türde (bivoltin ırk) ise yumurtalar ikinci yumurtlama için beklemeye girmeden, 11–12 günlük kuluçka devresi geçirerek yumurtadan çıkarlar. İkinci neslin verdiği yumurtalar ise bekleme dönemine girerek kışı geçirir ve ilkbaharda tekrar canlanırlar. Hindistan, Tayland gibi yetiştirildiği bölgelerin sıcak olması nedeniyle multivoltin ırklardan bir yılda 7–8 nesil elde edilebilir. Burada ilk akla gelen soru kuşkusuz, bir yumurtanın bir yıl nasıl canlı kalabildiğidir. Tıpkı tohumların toprağa ekilip nem, sıcaklık, karanlık gibi uygun koşullar sağlandığında filizlenerek bitki, ağaç haline gelmesi ve bu ana kadar uykuda olması gibi, ipek böceği yumurtaları da bir sonraki ilkbahar mevsimine kadar uykuda kalırlar. Vakti geldiğinde ise harekete geçerler. Bu durumu, tuşuna basarak komut verilen bir cihazın çalışmaya başlamasına benzetebiliriz. ***Deri Değiştiren Larvalar*** Yumurtadan çıkan larvalar, iklim ve hava şartlarına bağlı olarak süresi değişen larva döneminde 4 defa deri değiştirirler. Larvalar yem yeme safhasında çok iştahlıdırlar ve sürekli taze dut yaprağı yerler. Adeta yaşayacakları bir sonraki dönemde inzivaya çekileceklerini biliyor gibi karınlarını iyice doyururlar. Başları vücutlarına oranla küçük olan larvaların derilerinin parlaklığı ve gerginliği artar. Deri değiştirme (uyku) safhasının başlangıcında yemek yemeyi keserler ve durgunlaşırlar. Dinlenmek için yer ararlar. İpeğimsi bir madde salgılayarak yapraklar üzerine tutunurlar, başlarını yukarı kaldırarak hareketsiz bir şekilde dururlar. Deri değiştiren larvaların vücudu ise büyümüştür. Başları da vücutlarına oranla artık daha büyüktür. Yem yeme safhasında parlak ve gergin olan deri, deri değiştirme sonrası gevşer, buruşur ve solgunlaşır. ***20 Gün İçinde 10.000 Katına Çıkan Ağırlık*** Deri değiştirme sürecini yaşayan bir ipek böceği hemen hemen yumurtadan çıkış ağırlığının 10.000 katına ulaşmıştır. Üstelik bu gelişme, 20–25 gün gibi kısa bir süre içerisinde oluşmuştur. Bu mucizevi gelişmeyi anlamak için gözünüzde yeni doğmuş bir bebeği canlandırın. Yaklaşık 3 kg ağırlığında doğan bebek, 20–25 gün sonra devasa bir boyuta ulaşarak 30.000 kg ağırlığına ulaşsa bu mucize karşısında büyük hayrete düşerdik. Ancak milyonlarca yıldır bu dönemleri geçiren ipek böceği larvaları bu mucizenin canlı birer örneğidirler. Böcek erginleştiğinde genellikle 7.-9. günlerde yem yemeyi keser, başını yukarı kaldırarak sallamaya ve oldukça nemli bir sıvı salgılamaya başlar. Göğüs ve karın bölgesinin yarı şeffaf olması nedeniyle vücudunun hemen hemen %40'ını kaplayacak şekilde genişlemiş olan ipek bezleri deri altında fark edilebilir. Sindirim kanalının boşaldığı ve larvanın kehribar rengini aldığı bu aşamada ipek böcekleri artık koza örmeye hazırdır ve askıya alınmaları için toplanmaları gerekir. ***Koza Örme Devresi Başlıyor*** Yumurtadan çıkan ipek böceği tırtılı; önce büyük bir titizlikle seçtiği "askı" olarak kullanacağı dallardan birine çıkarak kendini aynı iplikle oraya bağlar. Daha sonra salgıladığı ipeğe sarılmaya ve koza örmeye başlar. Multivoltin ırklarda 2–3 gün, uni ve bivoltin ırklarda 3–4 gün içerisinde koza örme işlemi biter. İpek böceği, ipliğini çıkardığı sürece, başını 8 çizer gibi sürekli oynatır, kozanın bir bölümünden diğer bölümüne geçerek örme işlemine devam eder. Başı dönmeden ve dengesini hiç kaybetmeden yaptığı bu hareketi, 3–4 gün süresince yaklaşık 130.000 kez tekrarlamaktadır. Bu süre içerisinde tırtıl, ortalama 900-1500 m. uzunluğunda bir iplik çıkarır. Bu rutin hareketi yapan tırtılın boynunun ya tutulması, ya da işlevini yitirmesi gerekirken, o büyük bir çaba ile üretimine devam eder. İpek üretimi sona erdiğinde ve bezler boşaldığı zaman artık çok zayıflamış olan tırtılın ya ölmesi, ya da hastalanması gerekir ancak tırtıl başkalaşıma uğrayarak, bir iki gün içinde daha güçlü bir yapıda olan "krizalit"e dönüşür. ***İpek Böceği Krizalitten Kelebeğe Nasıl Dönüşüyor?*** Koza örmenin 4. veya 5. gününde krizalit haline dönüşen ipek böceği, 8–14 gün süren krizalit devresinde metamorfoza uğrayarak kelebek haline dönüşür. Burada ise yine başka bir mucize gerçekleşmiştir. Bir tırtıl kendi salgıladığı maddeyle kendini sarmalayarak gözden kaybolur, saklanmadan önce yerde yürüyerek ilerleyen bu böcek, iki hafta içinde ise uçabilen bir kelebek olarak dışarı çıkar. Kelebek alkali yapıdaki salyası yardımıyla kozayı delerek dışarı çıkar. Yani kelebek haline gelen tırtıl, bir kozada olduğunu, buradan çıkma vaktinin geldiğini, buradan çıkmak için özel bir sıvıya ihtiyacı olacağını, kozayı delmek için bu sıvının sahip olması gereken formülü ve bunu vücudunda nasıl üreteceğini de adeta "bilmektedir". ***İpek Nasıl Üretiliyor?*** Kozayı örme ve tamamlama işlemi, gece gündüz durmaksızın 3–4 gün sürmektedir. Birkaç mm.lik boyuyla, günlerce ara vermeden çalışan bu tırtıl olağanüstü bir güç göstermektedir. Bunu insanlar ile kıyaslayarak daha iyi anlayabiliriz. Örneğin; insan günlük uykusunu almadığında hem zihnen, hem de bedenen güçsüzleşmesine rağmen, ipek böceğinde herhangi bir bitkinlik görülmemektedir. Yumurtadan tırtıla, tırtıldan kelebeğe giden bu döngünün içinde hayatını sürdüren ipek böceği, dünyanın en sağlam ipliğini üretir. Araştırmalara göre; ipek üretiminin sırrı, ipek böceklerinin salgı bezlerindeki ipek proteinlerinin, suda çözünebilirliğini nasıl kontrol ettiklerinde yatmaktadır. Tüm süreç, su miktarıyla kontrol altında tutulur. Organizma ipek bezine protein gönderir, ancak bunu yaparken oraya ne kadar su bıraktığını denetler. Bu hassas ölçüler de ipeğin sağlamlığında rol oynar. ***İpek, Bilinen En Sağlam Doğal İpliktir*** İpeğin tıp alanında, tahrip olmuş diz bağlarının onarılması ve yapay kemik dokusu oluşturulmasında kullanılabileceğini, Bulgularının doğruluğunun kanıtlanması halinde, çok sağlam koruyucu giysi ve spor malzemeleri üretiminin yanı sıra kemik dokusu için de laboratuvarda yapay ipek üretilebileceğini belirtiyorlar.

http://www.biyologlar.com/ipek-bocegi-bombyx-mori-hikayesi

Sularda Bulunan ve Hastalık Yapıcı Mikroorganizmalar

Suda bulunan mikroorganizmalar, üç grupta toplanabilir. a) Suda doğal olarak bulunan canlıların mikroorganizmaları: Spirillum, Vibrio, Pseudomanas, Achromobacter, Chromobacter türleri ile Micrococcus ve Sarcina 'nın bazı türleri. Bu bakterilerin optimum üreme sıcaklığı 25 °C veya daha azdır. b) Toprakta yaşayan mikroorganizmalar; toprağın yıkanması sonucu suya karışırlar. Bunlar; Bacillus, Streptomyces ve Enterobacteriacea 'nın saprofit üyeleridir. Bunlarında optimum üreme sıcaklıkları 25 °C veya daha azdır. c) Normal olarak insan ve hayvanların barsaklarında bulunanlar: Başlıcaları; Esherichia coli, Streptococcus faecalis, Clostridium perfiringens ve muhtemelen bağırsak patojenleridir (Salmonella ve Vibrio comma gibi). Enfeksiyonların bulaşmasında bir çok etken rol oynamasına rağmen, büyük salgınların çıkmasında ve yayılmasında doğal çevre ve özellikle su büyük önem taşır. Hijyenik koşullara sahip suyun sağlanması sosyo-ekonomik ve sosyo-kültürel faktörler ile sıkı sıkıya bağlantılıdır. Alt yapı yokluğu ya da yetersizliği sonucunda patojen mikroorganizmaların sulara karışması ve bu suların içme suyu olarak kullanılması sonucunda da enfeksiyonlar ortaya çıkmaktadır. Bakteriler Patojenik Bakteriler Su ve atık sularda patojenik bakteriler oldukça bol miktarda bulunabilirler. Su kirliliğinde en önemli etken, mikrobiyal kirlilik özellikle de patojenik mikroorganizmalardır. Su kirliliğinin en tehlikeli şekli ise sulu ortama insan dışkısının girmesidir. Birçok hastalık; insan veya bazen hayvanların patojen saçan dışkılarının su veya gıdaları kontamine etmesiyle ve daha sonra bunların tüketilmesiyle Fekal-oral rotalı bir yolla bulaşmaktadır. Enterik patojenler tipik olarak suyoluyla bulaşan hastalıkların sebepleridir. Bu patojen bakteriler, virüsler ve parazitleri (protozoa ve helmintler) kapsamaktadır. Bu organizmalar çevreye salgılandığında uygun çevresel koşullarda, sucul ortamlarda uygun zaman periyotları boyunca yani aylarca ve hatta yıllarca bile canlı kalabilmektedirler. Bundan başka, patojenlerin hepsi oral olarak alındığında hastalığa sebep olmayıp, helmit bir hastalık olan "Schistosomiasis" insan atıklarıyla kontamine olmuş sularda yüzen veya çıplak ayakla yürüyen insanlar arasında yaygındır. Bu enfektif patojenler genellikle yutma yoluyla değil, ciltte burgu yoluyla delik açan serbest yüzücülerdir. Tehlikeli su epidemilerine sebep olabilen Salmonella, Vibrio, Shigella Anthrax, Brucella, Ruam ve diğer birçok patojen bakteriler ve viruslar, portörlerin dışkıları ile sulara karışabilir. Su ile yayılan salgınlara su epidemileri denir. Başlıcaları kolera, tifo, dizanteri ve enfeksiyöz hepatitistir. Salmonella: Genellikle mide krampları ve diyare ile birlikte akut gastroenteritidisi içerir. S. typhi 'nin neden olduğu tifo en bilinen etkendir. S. typhi, dışkı ile atılmaktadır. Suda yaşaması değişken olup düşük sıcaklık ve bol besin koşulları uygun bir ortam oluşturur. Shigella: Basilli dizanteri olarak da adlandırılan hastalığın etmenidir. Etken, dışkı ile atılmaktadır. Çoğunlukla akut diyareye neden olur. Shigellosis, sudan kaynaklanan salgınlara neden olmasına karşın tifodan daha az rastlanır. Vibrio cholerae: Diyare, kusma, hızlı su kaybı, kan basıncının azalması, düşük vücut sıcaklığı ile karakterizedir. Hastalık, hasta kişilerin dışkıları ile yayılır. Yüzeysel sularda bu bakterinin yaşama süresi 1 saatten 13 güne kadar değişmektedir. Kolera salgınları genelde şebeke sularının kirlenmesiyle ortaya çıkar Enteropatojenik E. coli: Atık sularda bol miktarda bulunan bu bakterinin patojenik türü diyareye neden olmaktadır. Leptospira: Leptospirosis'e neden olan bu bakteri, kan dolaşımına derideki sıyrıklardan veya mukozadan girmekte börek, karaciğer ve merkezi sinir sistemini etkileyen akut enfeksiyonlara neden olmaktadır. Bu bakteri idrarla atılır. Suda yaşama süresi bir kaç günden 3 haftaya kadar değişir. Tularemia: Leptospira'da olduğu gibi etken kan dolaşımına deri sıyrıkları ve mukozalar yoluyla girmekte; üşüme, ateş, lenf düğümlerinde şişme ve halsizlik gibi durumlarla ortaya çıkmaktadır. Hastalık; dışkı, idrar ve hasta hayvan ölülerinin su kaynaklarını kirletmesi sonucu yayılmaktadır. Bu mikroorganizmaların suda yaşama süreleri düşük sıcaklıklarda uzamaktadır. Tüberküloz: Hastalık çoğunlukla solunum yoluyla bulaşmasına karşılık etkene idrar ve dışkıda da rastlanılmaktadır. Su ile tüberküloz yayılması pek yaygın değildir. Tüberküloz basilinin suda yaşama süresi birkaç hafta olabilir. Virüsler Enfektif hepatitis: Sarılık olarak bilinen bu hastalık genellikle su ile yayılmakta ve diğer kirlilik etkenleri ile bir arada bulunmaktadır. Polimyelitis: Çocuk felcinin kirli sularla da yayıldığı bildirilmektedir. Temelde kişiden kişiye temasla bulaşmasına karşın kirli sularla da bulaşma bildirilmiştir. Su ile geçebilen virüslerin sebep olduğu hastalıklar: Çocuk felci, enfeksiyöz hepatit, enterisit, şap hastalığı, sığır vebası, domuz vebası, Newcastle, çiçek. Protozoa Bazı protozoon türleri normal olarak insan da dahil olmak üzere sıcak kanlı hayvanların barsaklarında yaşamaktadırlar. Bu protozoon türlerinin büyük bir kısmı insanlar için tamamen zararsız olup sağlıklı ve hasta insanların dışkılarında sürekli olarak bulunurlar. Ancak bazı protozoonlar patojendir. Entameoba histolika: Amebiosis'e neden olan bu protozoon, dışkı ile kistler halinde atıldığından suda uzun süre kalabilir. Protozoa barsak çeperinde delik aşar ve bazı durumlarda barsakta çatlamaya neden olur. Naegleria gruberi: Amibin patojen cinsi olan N. gruberi menenjite neden olmaktadır. Patojen vücuda burundan girmekte, daha sonra beyine,omurilik sıvısına ve kan dolaşımına ulaşmaktadır. Semptomlar su ile temas edildikten 4-7 gün sonra görülmeye başlar. Ölüm genellikle semtomlar görüldükten 4-5 gün sonra şekillenir. Hastalık kirli sularda yüzme ile geçer. Parazitler Taenia saginatta: İnsanlar, bu parazitin yumurtasını taşıyan suları ağız yoluyla almak suretiyle hastalanırlar. Ascaris lumbricoides: Ascariasis denilen hastalığa neden olan bu parazit, daha çok çocuklarda görülür. Dışkı ile atılan yumurtalar toprak ve suda uzun süre canlı kalabilirler. Atık su tasfiye tesislerinde çalışanların %2'sinde, atık su ile sulama yapan çiftçilerin %16'sında hastalık görülmektedir. Shistosoma: Shistomiasis'e neden olup, hastanın idrar veya dışkısı ile kirlenmiş sularda görülür. Su ile geçebilecek parazitlerin sebep olduğu hastalıklar: a) Su ile geçebilen trematode'ların sebep olduğu hastalıklar: Dicrocoeliasise, Distomatose, Schistosomiasise b) Su ile geçebilen Cestode'ların sebep olduğu hastalıklar: Eschinococcose, Taeniasise, Cysticercoae, Sparganose c) Su ile geçebilen Nematode'ların sebep olduğu hastalıklar: Ascariasise, Dracunculose, Oxyurose, Anguillulose, Ankylostomiasise, Necatorose, Trichostrongylose, Haemonchose, Trichurose d) Su ile geçebilen protozoon'ların sebep olduğu hastalıklar: Amipli dizanteri, Lambliese, Trichomeniasis, ishal, balantidium dizanterisi, Coccidiose e) Su ile geçebilen leptospiraların sebep olduğu hastalıklar: Icterus septic haemorrhagicus, yedi gün humması f) Su ile geçebilen diğer parazitler: Bu hususta en önemli olarak sülükleri söyleyebiliriz. Bunlar kan emerek canlı organizmayı zayıf düşürürler. Kaynak: sumikrobiyolojisi.org

http://www.biyologlar.com/sularda-bulunan-ve-hastalik-yapici-mikroorganizmalar

Kist Hidatik (Kistik Ekinokokkoz)

Kistik ekinokkozis, ülkemizde, özellikle hayvanlarda çok yaygın olması nedeniyle, önemli halk sağlığı sorunlarına neden olan ve ciddi ekonomik kayıplara yol açan zoonotik karakterli bir hastalıktır. Halk arasında kist hastalığı olarak bilinen bu hastalığın etkeni, Echinococcus granulosus adı verilen bir parazittir. Bu parazitin esas kaynağı köpek, kurt, tilki gibi et yiyen hayvanlardır. Ancak, sıklıkla köpeklerdir. Parazit köpeklerin ince barsaklarında yaşar. Hastalık köpek dışkısı ile atılan yumurtalar ile insana bulaşır. Köpek dışkısı ile atılan yumurtalar çok dayanıklıdır, toprakta ve soğukta bir yıl kadar canlı kalabilirler. Dışkıyla atılan yumurtalar hayvanların ayakları, arazi eğimi, rüzgar ve yağmurla yayılırlar. İnsanlar bu yumurtaları çiğ tüketilen ve iyi yıkanmamış meyve ve sebzelerden, kirli içme sularından alırlar. İnsandan başka koyun, keçi, sığır ve manda gibi otla beslenen hayvanlar da yumurtaları alarak hastalanırlar. Alınan bu yumurtalar, barsaklarda açılarak barsak duvarını geçer, kan ve lenf yoluyla öncelik sırasıyla karaciğer, akciğer ve diğer organlara yerleşerek kist formunda yaşamlarını sürdürürler. Hastalığın başlarında kistin küçük olduğu dönemlerde uzun yıllar boyunca belirtisiz seyredebilir. Fakat kist büyüdükçe, bulunduğu bölgeye ve oluşturduğu basıya göre belirtiler ortaya çıkar. Kistler en sık karaciğer ve akciğerlerde görülürler. Nadiren dalak, karın zarı (periton), böbrek, kemik, göz yuvası, beyin, kalp ve yumurtalıklara da yerleşebilir. Karaciğer yerleşiminde karnın sağ üst kısmında ağrı, bulantı, kusma ve bazen kaşıntı, sarılık gibi belirti görülür. Akciğer tutulumunda solunum sıkıntısı, öksürük, ağızdan kan gelmesi ve göğüs ağrısı olabilir. Diğer organ ve sistem tutulumlarında da bu bölgelere ait tablolar ortaya çıkar. Örneğin kafa içi tutulumlarda; baş ağrısı, kusma, şuur kayıpları görülebilir. Kalp tutulumunda kalp ritm bozuklukları, enfarktüs bulguları, hatta kalp duvarında yırtılma olabilir. Kemik tutulumlarında kırıklar olabilir. Kist patladığında alerjik reaksiyonlar ortaya çıkabilir. Bu kistleri içeren hayvan etleri ve sakatatlar, köpekler tarafından yenince parazit barsaklarda olgunlaşır. Parazitlerin belirli aralıklarla yumurtlayarak ana konakçı köpekler tarafından atılmasıyla enfeksiyon zinciri bir kısır döngüye dönüşür. Kişinin mesleği, hobileri, yaşam koşulları, eğitim ve sosyoekonomik düzeyi hastalığa yakalanma riskini etkilemektedir. En büyük risk grubunu parazit mücadelesi yapılmamış enfekte köpeklerle teması olan koyun, keçi, inek gibi hayvancılıkla uğraşan kişiler oluşturmaktadır. Ülkemizde kist hidatiğin sorun olmasının nedenlerinden birisi de özellikle kurban bayramlarında yapılan kesimler sonrası kistli sakatatları gömmek yerine, köpeklere yedirmek yada rastgele ortada bırakarak sokak köpeklerinin bu sakatatlarla beslenmelerine yol açmaktır. Hastalıktan korunmak için; * Köpek ve kedilere mümkün olduğu kadar çiğ et verilmemelidir. * Kişisel temizlik kurallarına dikkat edilmeli, içme ve kullanma suları temiz olmalı, çiğ yenen sebze ve meyveler bol su ile iyice yıkandıktan sonra tüketilmelidir. * Kesilen veya ölen hayvanların kist bulunduran organları köpeklerin ve diğer etçil hayvanların ulaşamayacağı şekilde gömülerek bertaraf edilmelidir. Özellikle kurban bayramlarında bu hususlara daha çok dikkat edilmelidir. * Köpekler yılda dört kez iç parazitlere karşı ilaçlanmalıdır. * Köpekler gezdirilirken etrafa dışkılamaları halinde dışkıları alınarak poşete konulmalı, ağzı bağlandıktan sonra çöpe atılmalıdır. * Parazit mücadelesi yapılmadan serbest dolaşan köpeklerin okşanması ve sevilmesi sırasında parazit yumurtaları ellere geçebilir. Bu şekilde kirlenen ellerin yıkanmadan ağza götürülmesi ile parazitin yumurtası alınır. Bu nedenle, özellikle çocukların köpeklerle temasından sonra ellerini bol su ve sabunla yıkamaları sağlanmalıdır. www.saglik.gov.tr Ekinokokkoz: Echinococcus cinsi parazitlerin erişkin formlarının kesin konaklarda, metasestod formu olan larvalarının arakonaklarda oluşturduğu enfeksiyonlar. Arakonakta larva formunun neden olduğu enfeksiyona; hidatik kist hastalığı, hidatidoz, kistik ekinokokkoz, alveoler ekinokokkoz, polikistik ekinokokkoz denir. Tarım ve hayvancılığın yaygın olduğu, çevre sağlığı ve koruyucu hekimlik önlemlerinin yetersiz kaldığı tüm toplumlarda görülen önemli bir paraziter hastalıktır. Parazitolojik tanımlama: Echinococcus; cestode sınıfının, cyclophyllidea takımının, taeniidae familyasına ait bir parazittir. Metasestod (larva) formunun insanlarda hastalığa neden olabilen 4 türü vardır. Echinococcus granulosus (kistik ekinokokkus), echinococcus multilocularis (alveolar ekinokokkus), echinococcus vogeli (polikistik ekinokokus), echinococus oligarthus (polikistik ekinokokus). Morfolojisi: Boyu 3-6mm. Skoleks (baş); konakçı barsağına tutunma sağlar. 4 çekmen (vantuz) ve 30-36 çengel (rostelyum) vardır. Segmentler; 1-Genç segment. 2-Olgun segment; ovaryum ve testis. 3-Gebe segment; 200-800 yumurta, embriyon (onkosfer) taşır, 30-40µ büyüklüğündedir, kuru veya donmuş toprakta 2 hafta canlı kalır, kaynatılmaya 1 dk dayanabilirler. Kesin (ana) konaklar Ara konaklar E.granulosus KöpekgillerTilki ve kurtlar Koyun, SığırAt, DomuzKeçi, DeveGeyik, İnsan E.alveolaris vahşi tilkiler, evcil köpekler, çakal ve kurtlar kemirgenler E.vogeli çalı köpekleri Kemirgenler E.oligarthus vahşi kediler Kemirgenler . Hidatik kistin yapıları (metasestod): Çimlenme zarı; tomurcuklanma ile kız veziküllerin oluştuğu zardır . Veziküller içinde 10-60 adet protoskoleks bulunur. Perikist; parazitin kendi yapısı değildir, yaklaşık bir ay sonra, çevresinde organizma tarafından oluşturulan fibröz kapsüldür. Kistin dış tabakası, 1 mm kalınlığında, beyaz renkli ve selektif geçirgen bir zardır, hem destekleyici hem de porotoskoleksler için koruyucudur. Kist sıvısı; renksiz, kokusuz, antijenik, steril, pH 7.2-7.4. Kız vezikül; hidatik kum. Protoskoleks; aseksüel çoğalmayla oluşurlar, enfektif yapılardır, kesin konakta erişkin parazite dönüşür, kistin parçalanması ile sekonder kist oluşmasına neden olabilir. E. Multilokularis: Bağ doku içine gömülmüş çok sayıda kesecikten oluşan tümör benzeri bir yapıdır, içinde sıvı yerine yarı katı bir matriks vardır. Germinal tabaka içe ve dışa doğru uzar. Kan ve lenf yoluyla farklı odaklarda metastatik kist oluşur. Bulaş yolları: 1-Besin ve sularla; son konakların dışkılarıyla dış ortama saçılan yumurtanın besin ve sularla ağız yoluyla alınması ile. 2-Enfekte hayvanla yakın temas; yumurtalar enfekte köpekten başka bir köpeğin tüylerine, ayaklarına, dışkı koklama yoluyla burunlarına yapışabilir. 3-Sinekler; dışkıdan beslenen sinekler yumurtaları mekanik olarak taşıyıp su ve besinleri kirletebilir. 4-Solunum yolu; insanlar solunum yolu ile enfekte olabilmekte. 5-Plasenta yolu.—-Kedilerde, parazit olgunlaşmadan (normal olgun ve gebe halkalar gelişmeden) düşer, bu yüzden kediler kist hidatik açısından güvenlidir. Yerleşim yerleri: Karaciğer %60-70, Akciğer %20-25, Kas %5, Kemik %3, Böbrek %2, kalp, dalak, pankreas %1. Tek organ tutulumu; %85-90. Tek kist görülme oranı; %70. Çocuklarda AC yerleşimi fazladır. İnsanda en sık etkenler; E.granulosus (EG), E.multilokularis (EM). E.granulosus bütün dünyada yaygındır. E.multilokularis kuzey yarım kürede yaygındır. E.vogeli, orta ve güney Amerika’da yaygındır. E.oligarthus, çok nadir görülür. Ülkemizde EG yaygındır. İnsidansı 2-50/100000. EM ise en çok doğu anadolu ve karadeniz bölgesinde görülmektedir (tüm em vakalarının %68.5’i). Akciğere ulaşma yolları: 1-Sindirim sistemi yolu: A-Hematojen; KC kapillerlerine tutulamayanlar AC kapillerlerine yakalanır, Portokaval anastomozlar, VKİ dalları ve vena hemoroidalislerle direkt AC tutulur. B-Lenfatik; ince barsak lenfatiği >> duktus torasikus >> sağ kalp >> AC. 2-Transdiafragmatik. 3-Solunum yolu. Lokalizasyonu: AC’de en sık sağda ve alt lobdadır. Sağ AC alt lobun diğer AC alanlarına göre kan akımının fazla olması. AC kist hidatikli olguların %20-40 da aynı zamanda KC tutulumu vardır. Pulmoner hidatik kistlerde klinik: Çoğunlukla asemptomatiktir. Lokalizasyona ve büyüklüğüne bağlıdır. Belirti ve bulgular; kistin bası etkisi, rüptürü, enfekte olması, allerjik reaksiyonlara bağlı olarak değişir. Klinik: 1-Bası ile: öksürük, göğüs ağrısı, dispne, hemoptizi. 2-Rüptür ile: Berrak sıvı veya soğan zarına benzer materyal ekspektorasyonu. Anaflaksi nadir ama ciddi komplikasyondur; bronkospazm, deride döküntü, ürtiker, ödem, taşikardi, aritmi. Enfeksiyon ve sekonder apseye ait bulgular; ateş, öksürük, balgam çıkarma. Plevral komplikasyonlara ait bulgular; hidropnömotoraks, ampiyem. Serolojik tanı yöntemleri: Sınırlı değere sahiptirler; casoni cilt testi ve weinberg kompleman birleşmesi testi, indirekt hemaglütinasyon testi (sensivitesi %66-100), IgG ELISA (duyarlılığı en yüksek test), latex aglütinasyon, immun elektroforez. Radyolojik görüntüleme: Sağlam hidatik kist; basit veya tipik kist olarak isimlendirilir. Rüptüre hidatik kist ise enfeksiyon olsun veya olmasın; komplike veya atipik kist olarak isimlendirilir. Akciğer grafisi: Değişen boyutlarda, keskin sınırlı, homojen, yuvarlak veya oval kitleler (escudero nemerow belirtisi) şeklindedir. AC KH’de kalsifikasyon genellikle (%0.7) bulunmaz. Kistin büyümesi ile; plevral reaksiyon, atelektazi, lezyon konturunda belirsizlik oluşabilir. Bilgisayarlı tomografi: Kist-solid lezyon ayırımında önemlidir. İntakt kistin düzgün duvar yapısı vardır. Lümende su dansitesinde homojen içerik bulunur (3-18 HU). Rüptüre KH’de; yoğunluk artar (yumuşak doku dansitesi), solid neoplazmlarla karışabilir, en ciddi komplikasyondur (sınırlı rüptür, bağlantılı rüptür, tam rüptür). Sınırlı rüptür: perikist ile endokist arasına hava sızması ile endokist çöker. Bu hava kistin üst kısmında radyolusen hilal şeklinde görülür; hilal işareti. Kist boyutu değişmez, enfeksiyon ve allerjik reaksiyon gelişmez. Bağlantılı rüptür: endokist yırtılır, kist içeriği perikistteki bronşiollere sızar. Kist boyutu küçülür. Kenarı düzensizleşir, kist lümeninde ondülan membran ve hava oluşur; “nilüfer işareti”. Bronşial yolla hidatik hastalık yayılabilir. Direkt (tam) rüptür: hem endokist hem de perikist yırtılmıştır. Kist içeriği çevre akciğer parankimine ve plevraya açılır. AC periferinde daha sıktır. Plevral ekim ve anaflaksi olabilir. Görüntüleme bulguları; membranda ayrılma, kist boyutunda küçülme, pnömotoraks, plevral efüzyon. Enfekte hidatik kistler: AC apseleri gibi kalın ve opaklaşan bir duvar yapısı, hava-sıvı seviyesi, etraflarında pnömonik konsolidasyon gösterebilir. Solid görünümleri ile BT’de malign tümörle karışabilir. Transdiafragmatik migrasyon: KC’de hidatik kist olduğu bilinen bir hastada; Diafram yüksekliği, AC bazalinde konsolidasyon, atelektazi, plevral efüzyon görülebilir. USG ve özellikle de üst batını içeren toraks BT ayrıntılı bilgi verir. İntratorasik extrapulmoner hidatik kistler: Nadir bir lokalizasyondur (%7.4); fissür, plevral kavite, göğüs duvarı, mediasten, myokard, diafram. Mediasten: oldukça nadir %0.5-2.6 tutulur. Soliter veya multipl olabilir. Radyolojik olarak diğer mediastinal kistlerden ayırt edilemeyebilir. Plevral hastalık: sistemik hidatik hastalığın %0.9-7.4’de görülür. Direkt infestasyon; hematojen, lenfojen yolla. Sekonder invazyon; cerrahi veya tüp torakostominin geç komplikasyonu.

http://www.biyologlar.com/kist-hidatik-kistik-ekinokokkoz

Kene ve Kene çeşitleri

Kene insan ve diğer birçok canlının kanıyla beslenen türüne göre zehirli ve zehirsiz olarak değişiklik gösteren parazittir. Kene canlısı vücut yapısı olarak çok küçük olup türüne göre gözleri olmayan ya da gözleri olan canlıdır. Kenenin vücut hizasından başlayıp vücudunun ortasında noktalanan 8 tane bacağı vardır. Kenenin beslendiği canlının üzerinde rahat bir şekilde sabit kalabilmesi için yaradılış itibariyle ayaklarının ucunda çengel ve vantuzları vardır. Kene ısırması özellikle son yıllarda insanların hayatlarını kaybetmesine neden olmaktadır. Kene yaz aylarında sıkça rastlayıp adını duyduğumuz, birçok aktiviteleri iptal etmemize neden olur. Keneler canlıları ısırdığı zaman oldukça ürkütücü sonuçlar doğururlar. Kenelerde çoğalma yumurta sistemi ile olur, hiçbir kene türü canlı yavru doğurmaz. Dişi kene yumurtalarını gelişebileceği uygun ortamlara bırakır. Kene yumurtalarının gelişebilmesi için uygun olan ortamlar; ağaç yaprakları, hayvan kılları, yeşillik alanlar ve çöplere bırakır. Dişi kenenin yumurtası belirli olgunluğa ulaştıktan sonra yumurtadan larvalar çıkar. Bu yumurtadan çıkan larvaların 6 tane bacağı vardır. Bu larvalar belirli dönemlerden sonra ergin kene olur. Larva ilk etapta pupa devresi geçirerek 8 bacaklı tam gelişmemiş yavrulara (nim fa) dönüşür. Tam gelişmemiş kene yavruları bir pupa safhası daha geçirdikten sonra ergin kene olur. Keneler genelde koyun, inek, keçi, sığır, kedi, köpek ve kertenkele gibi hayvanlarının ve insanların üzerine yapışarak bu canlıların kanı ile beslenirler. Kene kanını emerek besleneceği canlıların üzerine ayaklarındaki vantuz ve çengeller sayesinde rahatlıkla tırmanıp yapışır. Kene avının üzerine yapıştıktan sonra derinin içine hortumunu sokup kan emer. Kenenin karnı torba gibi olup kene beslendikçe 11 – 12 mm kadar esneyip içine kan dolar. Kene kan emişini tamamladıktan sonra kendisini yere atıp kanıyla beslendiği canlıdan uzaklaşır. Kene kan emerek yeterince beslendikten sonra deriden ayrıldığı anda bir sıvı salgılar ve bu sıvı ile vücuda virüs bulaştırır ve bu virüs tüm vücuda yayılır. Virüsü alan insan ya da hayvanlar hasta olabilir. Hayvanlarda hastalığın seyri insanlara oranla daha yavaş olur. Belirtileri daha uzun zamanda görülür. Virüs taşıyan hayvanların salgılarıyla ve kanıyla da hastalık diğer canlılara bulaşır. Kırım Kongo virüsü taşıyıcı hayvandan alınırsa bu hastalık 12 - 13 gün içinde belirtisini gösterir. Kene ısırmasıyla Kırım Kongo virüsü alırsak hastalığın belirti zamanı 1– 4 güne düşer. Kene genellikle ilkbahar ve yaz aylarında görülür. Kene sıcağı seven canlıdır. Kene ısırmasıyla bulaşan Kırım Kongo virüsü çok tehlikeli bir hastalıktır. Kırım Kongo virüsü kişiden kişiye bulaşır ve yayılır. Kırım Kongo hastalığı Dünya da ilk 1944 yılında Kırım da 1956 yılında Kongo da görülmüştür. Daha sonraki zamanlarda her iki hastalığın da aynı virüsten kaynaklandığı anlaşılmıştır. Bu nedenle bu isimle anılmaktadır. Kenenin canlı olarak dokuz yüze yakın bilinen türü vardır. Kene tüm türü zehirli değildir. Köpek, kedi, inek, koyun, keçi gibi hayvan kanları ile beslenen kene türlerinin gözleri vardır. Gözleri olmayan kene türleri besinlerini rahatça bulabilmeleri için ön ayaklarını kullanırlar. Kenelerin ön ayakları koku alabilmek ve dokunmak için özel yapıdadırlar. Kene vücuda yapıştığı zaman kesinlikle ondan kurtulmak için müdahalede bulunulmamalı ve biran önce sağlık kuruşuna gidilmeli. Kenenin kan emdiği hortumu çıkıntılı olduğundan müdahale anında kolay kolay çıkmaz. Bu nedenle keneyi çıkartmak için kesinlikle zorlamamak gerekir. Keneye ferdi mücadele halinde kene sıvısını erken vücuda kusar ve virüs alınmasına neden olur. Kene bulunabilecek yeşil alanlara ilkbahar ve yaz aylarında periyodik olarak ilaçlama yapılmalı. Özellikle bahçesi olan evlerin bahçesinde hayvan barınaklarında mutlaka ilaçlama yapılmalı. Bunun için bu işin uzmanı olan ilaçlama firmalarından yardım destek alın ve mutlaka ilaçlama isteyin  

http://www.biyologlar.com/kene-ve-kene-cesitleri

Asalak veya parazit nedir

Asalak ya da parazit, bir canlıya bağımlı olarak yaşayabilen ve üzerinde yaşadığı canlıya zarar verebilen organizmalardır. Bu canlılardan kimileri mikroskobik boyutlardan erginlikte çok büyük boyutlara ulaşabilecek değişimlere sahip olabilirler. Bir asalak üzerinde yaşadığı canlının besinine ortak olarak yaşamını sürdürür. Besine ortak olması ise üzerinde yaşadığı canlının zayıf düşmesine ve hastalanmasına neden olur. Günümüzde bilinen birçok hastalık asalaklar neticesinde meydana gelir. Asalakların en bilinenlerinden birisi ise kedi, köpek ve sığırlarda yaşayan şerittir. Şerit başlangıçta kistle kaplı bir yumurta halinde iken konak canlının sindirim sistemine geldiği zaman sahip olduğu kisti kırarak erginleşmeye başlar ve hayvanın bağırsağına yerleşir. Benzeri durumlar genellikle ya konağın zarar görmesi ya da bağışıklık sisteminin uyum göstermesi ile sonuçlanır. Kimi kurt türleri nadiren de olsa beyin ve karaciğer gibi organlara zarar verebilmektedir. Gezici bir asalak olan askaris yoğun vakalarda çok yaygın olmasa da kazara akciğere girerek çıkamayabilir veya karaciğerde apseye neden olabilir. Ölümcül durumlar genelde hatalı konaklarda görülmektedir, örneğin beyaz kuyruklu geyiğin beyninde yaşayabilen Parelaphostrongylus isimli asalak mus'larda sık sık fatal nörolojik vakalarla sonuçlanmaktadır. Asalaklar host üzerindeki etkileşimlerine göre sınıflandırılırlar. Ciddi olanlarına köpeklerdeki kalp kurdu örnek verilebilir. Ektoparazitizm Bir canlı diğer bir canlının dış kısmına (deri ve solungaç) yapışarak veya tutunarak yaşıyorsa Ektoparazitizm denir. Bulundukları yere kendilerini bağlamak için özel organlar (vantuz, salgı bezleri vs.) oluşmuştur. Genellikle vücut sıvısıyla ve özellikle kanla beslenirler. Bir kısmı deriyi delerek galariler açmak suretiyle beslenir. Bunlar ektoparazitlerin doku asalaklığına geçiş gösterenleridir. Endoparazitizm Endoparazitizm, bir canlı diğer canlının iç kısmında yaşaması durumudur. Bu asalaklık hücre içerisinde oluyorsa, örneğin sıtmanın nedeni Plazmodyum (alyuvar içinde bir asalak) ve kala-azar hastalığın nedeni Leishmania (akyuvar içinde asalaktır)'da olduğu gibi, bunlara hücre asalakları; eğer hücre arasında yaşıyorlarsa hücre arası ya da doku asalakları; örneğin kaslarda bulunan ergin Trichinella, örneğin deri altında bulunan Filaria medinensis gibi; eğer kan içerisinde yaşıyorsa kan asalakları denir. Bazı parazitler gelişimlerini bir konakta gerşekleştirir, bunlara monoksen parazitler denir, bazıları ise birden çok konağa ihtiyaç duyarlar, bunlara da heteroksen parazitler adı verilir. Asalakların, ergin halde bulundukları konaga birinci konak ya da ana konak denir. Larva halini geçirdiği konağa veya konaklara ikinci, üçüncü,... konaklar ya da ara konak denir. Çoğunluk konaklara özelleşme görülür. Hayvanların büyük bir kısmı, genellikle böcekler, değişik bitki türleri üzerindeki dokuları yemek ya da özsuyunu emmek suretiyle endoparazitizm yaparlar. Diğer Konağın dış yüzeyinde yaşayanlar dış asalaklar (örnek akarlar) ve içinde yaşayanlar iç asalaklar (tüm asalak kurtlar). Kimileyin taşıyıcı olan ara konaklar üçüncül bir asalak veya hastalığı bulaştırabilirler. Hücreler içi asalaklara örnek çeşitli mikroplar olabilir. Sıradışı asalaklığa karıncayı yavaş yavaş içten yiyen Ophiocordyceps unilateralis olarak bilinen bir mantar verilebilir. Bu noktadan sonra mantar karıncanın beynine yerleşmeye başladığında bir çeşit zombiye dönüşen karınca mantarın yönlendirmesine göre yürümeye başlar. Özellikle Tayland’ın kimi bölgelerinde görülen bu mantar türünün ele geçirdiği karıncalar daima ormanların içlerine doğru yürüdükten sonra yerden yaklaşık 25 cm yukarıdaki mantarın üremesine elverişli yapraklara dişleri ile tutunup hareketsiz kalırlar. Bundan sonra mantar kurbanına başka asalakların de bulaşmasını engellemek için karıncanın dolayında bir koza örüyor ve ziyafetine devam ediyor. Mantarın karıncanın beynini nasıl kontrol edebildiği ve en son olarak karıncanın çenesini kapalı tutan kasları yemesi ise bilim adamlarını şaşırtan bir ayrıntıdır. Kleptoparazitizm bir canlının diğer bir canlının av veya gıdalarından faydalanmasıdır, bu tür asalaklığa örnek olarak bitki bitinden çıkan şekerli salgıları sağmak için onları kültive eden karıncalar verilebilir. Bu davranışa yakın bulunan sosyal asalaklara diğer kuşları yavrularının babysitterliğine manuple ederek dönüştüren, yumurtasını bıraktığı genç kuluçkalı yuvada yumurta ve yavrularıyla ilgilenilmeyince konağın bir ya da iki yumurtasını yuvadan atan, kimileyin de yıkarak zarar veren kuş, balık, böcek çeşitlerinin dahil olduğu kuluçka asalaklığı örnek verilebilir. İşgal, mafya, savaş ve evrim senaryolarına konu olmuş bir parazitoloji çeşididir. Eklembacaklı konağı yumurtalarını suya bırakacağı zaman boğulmaya teşvik ederek intihar ettiren Kılımsısolucanlar ya da Aykılı adı verilen Nematorpha türü ise söylentilerin aksine insanda yaşamaz. Tıp ve Alternatif Tıp'ta Çin aktarları asalak solucanları afrodizyak, görmeyi artırmak vb. faydaları için kullanmışlardır. Sosyo ekonomik düzeyi düşük kişilerde gelişmiş ülkelere göre özellikle kanser, enflamatuar bağırsak hastalıkları, kireçlenme gibi rahatsızlıkların daha az görülmesi Amerikalı kimi araştırmacıların dikkatini çekmiş risk altındaki kişilere solucan yumurtaları verilmesi ile deneylere başlanmıştır. Bu araştırmalar tartışma aşamasında ve kansere yakalanmamış hastalar için geçerlidir. Östrojen salınımı azaltan kist hidatik'in meme kanseri riskini düşürerek, erken alındığında bulunduğu bölgedeki kanser oluşumları da tartışılmıştır. Kimi formuna önem veren balet, aktris gibi sanatçılar tenya yumurtası yutarak obeziteye karşı sağlıklı olduğunu düşündükleri yöntemleri uygulamıştır. Kimi balık türleri sedefli, funguslu cilt hastalıklarında ve sülük çeşitleri kirli kanın temizlenmesinde, adi sinek kurtçukları da ölü dokuların temizlemesinde kullanılmıştır. Doğada Kimi kuş türleri tüylerinin arasına yerleştirdikleri canlı karıncalar yardımıyla temizlenir. Adi sineğin larvasında bulunan zehirden bilimciler güçlü yeni bir antibiyotik üzerine çalışmalarını sürdürmektedir. Kimi kuş türleri timsahın diş aralarındaki artıklarla beslenirken timsah ağzını açık bırakmaktadır. Kimi ufak balık türleri köpekbalıklarının üzerine yapışarak atık derilerdeki bakteri oluşumunu engellemektedir, köpekbalığı ve timsah gibi vahşi türlerin kendilerinin de bu yaratıklara nezaketli davranmaları doğal seleksiyonda dayanışma olabileceği gibi zayıf bir bünye ya da aç yeni bir asalak için yukarıda sayılan dostluklar her koşulda geçerli olmayabilir. Ekosistemdeki Rolleri Doğadaki diğer dominant türlerin rekabetini azaltarak türlerin varolmasını sağlarlar. Besin zincirinde hem av hem avcı konumundadırlar. Pek çoğu yaşam döngüsünü sürdürebilmek için birden çok hosta ihtiyaç duyar ve ekosistemin sağlıklı kalmasını sağlarlar.

http://www.biyologlar.com/asalak-veya-parazit-nedir

Çocuk Sahibi Olabilmek İçin Sık Kullanılan Bir Yöntem

Çocuk Sahibi Olabilmek İçin Sık Kullanılan Bir Yöntem

Çocuk sahibi olamayan bayanlara bu konuda çeşitli tedavi yöntemleri uygulanmaktadır. Ovulasyon İndüksiyonu ve Rahim İçi İnseminasyonu da bunlardan biridir.Çocuk sahibi olabilmek için en sık yöntem, bayanlarda  yumurtanın ilaçlar ile uyarılarak bir veya çok daha fazla sayıda folikül gelişimine olanak sağlamaktır. Bunun için ağızdan alınan ilaç veya deri altına yapılan enjeksiyonlardan yararlanılır.Uzman doktorlarca, ultrason yoluyla belirli aralıklarla, folikül gelişimi takip edilir.Ultrason muayenesi ile ölçülen folikül 18-19 mm ye  erişince, folikülü çatlatmak ve yumurtlamayı sağlamak için,kalça  içine  enjeksiyon yapılır.   Enjeksiyondan yaklaşık 34-36 saat sonra  ise yumurtlama  gerçekleşir. Bu süreçte  erkekten alınan spermler hazırlanarak bir kanül yardımı ile rahim içerisine yerleştirilir. Böylece kadın yumurtası ile erkek yumurtasının bir araya gelerek döllenme şansı artırılmış olur.    Ağızdan alınan ilaçlar ile çoğu kez 1-2 adet folikül gelişirken, enjeksiyon uygulanan kadınlarda doza da bağlı olarak 5-6 adet folikül gelişimi olur.Bu nedenle enjeksiyon yöntemi çok daha başarılıdır.http://tahlil.com

http://www.biyologlar.com/cocuk-sahibi-olabilmek-icin-sik-kullanilan-bir-yontem

Barsakların Mikotik Enfeksiyonu

Fırsatçı etkenler olan mantarların oluşturduğu hastalık tablosudur. ASPERGİLLUSLAR solunumdaki aynı bağırsakta görülür. MUCORACEAE FAM hemorajik ve infarktüslü lezyonlara yol açar CANDIDA SPP floranın herhangi bir şekilde değişime uğraması sonucu ( uzun süre Antibiyotik tedavisi anaerobik bakterinin ortadan kalkması) ortaya çıkar ve enfeksiyon oluştururlar. BARSAKLARIN PARAZİTER HASTALIKLAR İNTESTİNAL PARAMFİSTAMOZİS Mez. Lenf yumrusu büyümüş. Mikroskopi® parazit kesit İNTESTİNAL SCHISTOSAMA ENF protein kayıplı enteropati nedeni. Koyunda şiddetli seyreder ve ölümle sonuçlanır. Mikroskopi parazit yumurtası ve kesiti CESTOD ENFEKSİYONLARI DALATUM ENF insanda ince bağırsakta. Ayrıca kedi,köpek,domuzda. İnsanda vitamin B12 yetmezliği yapar (persiyoz anemi). ANOPLA CEPHALA atlarda i.b ve sekumda (ileosekal) ülserleşme,kanama Fazla miktarda (sestod) bulunduklarında invaginasyon (i.b.da) ve tıkanmalara neden olurlar MONIEZIA ENF M. Expensa ishal M. benedeni D. CANİUM TAENİA ENFEKSİYONU BARSAKLARDA CESTOD ENFEKSİYONU Taenia enfeksiyonu Son konak köpek Ara konak insan ve memeliler Metaserker 1-Sistiserkus 2-Strobilioserkus Taenia ların ara kınakta oluşturduğu formlardır 3-Coenurus 4-Hidatik kist T.taeniformiskedi(ara konakta sistiserkus) T.pisiformis köpek T.hydatigena carnivor ,ara konakta sığır ve domuz olgunu barsakta larva periton boşluğu T.ovis olgunun köpekte ,ara konak koyun(cysticercosis eneden olur) T.multiceps ara konak rum beyindekist ölüm Koyunlarda dönme hastalığı nedeni Klinik Hayvan kendi etrafında dairesel hareketi yapar.Listeriozis le karşılaşabilir.(bunda beyin köküne yerleşir) Nekropsi Beyinde coenurus cerebralis kisti aranır. Meningoensefalitis tablosu vardır. Echinococcus multilocularisbarsak Echinococcus granulasus ara konak hidatik kist BARSAKLARDA NEMATOD ENFEKSİYONLARI At strongylosis barsakta tıkanma ve sancı S.vulgularis larvası ince ve kalın barsak mukozası L-4 olurlar arteriollumenlerine girerler A.mezenterika cranlis e ulaşırlar L-5 Larvaları mez.craz de ENDOARTERİTİS e yol açar Oesophagostomum Enfeksiyonu iştahsılık mukoid dışkıishal Nekropsi Kaşeksi,kolon mukozasında kalınlaşma,barsak duvarında paraziter modüller. Chabertia Enfeksiyonu Koyunyumuşak mukoid dışkı lgun parazitler barsak kas tabakasına kadar ilerler. Mukozada oluşturdukları travmalar küçük kanamalara neden olur. Kancalı Kurt Enfeksiyonu kedi,köpek,rum,sus (diğer taenialrdan farklı olarak gelişimleri direktir.) Sindirim yoluyla alınırlar .Bazı parazitler enfeksiyonda k.c. üzerinden a.c. ve trachea göçü geçirirler ve yeniden sindirim sistemine ulaşırlar.(balgamın yutulması) Hastalığın önemli özelliklerinden biri de bazılarının bu göçü geçirdiktensonra iskelet kasına gelmeleridir.gebelikte larvalar reaktif hale geçer ve süte geçer.yavrular(köpek)sütle birlikte etkeni alır. Kancalı kurtlar barsak yüzey epiteline organelleri ile yapışarak kan emerler, kanın pıhtılanmasını önleyen faktör salgılarlar.Anemi ve hipproteinemi ortaya çıkar. akut genç ölen hayvanlarda mukozalar soluk renktedir.kronik yaşlı mezenteryumda ödem ve vücut boşluğunda Sıvı birikimi. kaşeksi Anemi hayvan yorulur Sulu dışkı(koyu kırmızı ve siyah renkte) Cooperia enfeksiyonurum. Nematodirus enfeksiyonurum. İnce barsağın ön kısımlarında Askarid Enfeksiyonu At,kedi,köpek,domuz Gelişim direkt .(ağızla alınır) İnce barsakta yumurtalar açolır içindeki formlarbarsakta gelişir,portal dolaşımla göç geçirirler.(K.c. üzerinden a.c. ve tracheaya mutlaka göç geçirirler) K.c. ve a.c. de parazite ait modüler yapı, a.c. de ödem,konjesyon,barsak lumeninde mukoza yıkımı,çoksa obstrüksiyona neden olurlar.sonuç ölüm Bazen obstyuktüf sarılık yaparlar. Parascaris equorum özellike genç atlarda Taxascaris leanina kedi,köpek T.canis 10cm. Gelişimi kopleks. Temel siklus 2.dönem larvaların ve k.c. ,a.c. ve tracheaya geçirmesi.Yaşlılarda k.c. ,a.c. göçü yerine iskelet kası ve beyine yerleşerek granumlara sebep olur. Gebe köpeklerde özellikle gebeliğinson 3 haftası moblize olarak granulamdan ayrılır ve plasentaya geçerek yavruyu enfekte ederler. Prepenant süre 4-5 haftadır. T.canis in önemli bir özelliği Köpek dışındaki normal olmayan konakçıda visceral larva migransa neden olmasıdır.(bunların iç organlardaki göç aşamaları) K.c. de hepatomegali,kan tablosunda eozinofili,göz,beyin ve a.c. de granulam. T.cati Kedi ini iç barsaklarında gelişimi T.canis e benzer. İnsan da VLM ye neden olur. Prenatal enfeksiyon yoktur. T.vitilorum Rum da en büyük parazit. Enfeksiyon kaynağı süt.(doğumdan sonra 30 Güne kadar.) Trichuris Enfeksiyonu Colon da hemorajik tiflitis tifcolitis

http://www.biyologlar.com/barsaklarin-mikotik-enfeksiyonu

 
3WTURK CMS v6.03WTURK CMS v6.0