Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 74 kayıt bulundu.

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Düz Başlı Kedi

Düz Başlı Kedi

Malezya ormanlarındaki Copenhagen hayvanat bahçesinin kamera tuzakları ender olan düzbaşlı eşsiz kedilerin görüntülerini yakaladı. (Prionailurus planiceps). Bu cinsten kedilerin ve yavrularının görüntüleri henüz ilk defa ele geçirildi. Kedinin görüntüleri de ilk defa Malezya'da çekilmiştir. Hayvanat bahçesinin bilim yöneticisi Bengt Holst yeni çekimler hakkında çok heyecanlı. Bengt Holst "Videolar gerçekten eşsiz zira çekimler gösteriyor ki, düz başlı kedi harika bir tırmanıcı; halbuki zoologlar onların bu yeteneğe haiz olduklarını düşünmemişler" şeklinde konuşuyor. Küçülen habitatlar da düz başlı kedileri tehdit ediyor. Düz başlı kedi son derece tehdit altındadır. Holst'un tahminlerine göre, düz başlı vahşi kedi türlerinden sadece 2,000-2,500 kadar kalmıştır ve ne yazık ki, nüfusu düşüştedir. O, nüfusa yönelik en büyük tehdidin yaban kedisi için habitatların daralma olduğuna inanmaktadır. Bengt, "Onlar suya yakın yerlerde yaşamak istiyorlar ve siz büyük alanları engellediğinizde, bu kedilerin yaşayacakları yerleri daraltmış oluyorsunuz" diyor.  Kedi tapirlerin sayesinde resme giriyor. Malezya Krau Yaban Hayatı Rezervi Kopenhag Hayvanat bahçesi kamera tuzakları, tamamen farklı bir amaç için kurulmuştur: araştırmacılar Malayan tapir davranış kalıpları hakkında bilgi toplamak için gerçekten el pençe divan durmuşlar. Tapir projesinden bir yan ürün olarak, hayvanat bahçesinin bilim adamları şimdi kur ritüelleri ve özellikle ilginç avlanma davranışı da dahil olmak üzere, kedinin davranışlarını incelemeye başlıyorlar. "Düz başlı kedi mükemmel bir balıkçıdır" diyor Holst ve ekliyor "Onların kuş yakalamalarının sebebinin özel yetenekleri mi yoksa kuş ve küçük memelileri yakalamada/avlamada diğer türlerle yarışmalarının zor olması mı bilmiyoruz.  Çalışmalarımız bu arazi üzerinde oldukça yetkin avcı olduğunu göstermektedir. O açıklıyor ki, doğa koruma üzerine çalıştığınızda, davranışı hakkında herhangi bir bilgi yararlıdır. Bu, kedinin ekolojik rolünü ve yaşama şartlarına koyduğu talepleri anlama şansımızı artırır. Düz başlı kediler hakkında pek az şey bilinmektedir zira onların davranışları ve faaliyetleri henüz hiç incelenmemiştir. Kaynak: EAZA- COPENHAGEN ZOO Nuray Gündoğdu Eğitim ve Etkinlikler Sorumlusu/Education and Event Area Manager Faruk Yalçın ZooFaruk Yalçın Hayvanat Bahçesi ve Botanik Parkı A.Ş. Tuzla Yolu Cad. No: 15 (297) 41870 Darica Kocaeli TurkiyeGsm: +90 541 852 37 36 Tel: +90262.653.66.66 Faks: +90262.654.02.69 http://www.ttkder.org.tr

http://www.biyologlar.com/duz-basli-kedi

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Hexanchus griseus ( BOZ CAM GÖZ KÖPEK BALIĞI )

Alem: Animallia Şube: Chordata Sınıf: Chondrichthyes Alt sınıf: Elasmobranchii Takım: Hexanchiformes Familya: Hexanchidae Cins: Hexanchus Tür: H. griseus Hexanchus griseus; altı solungaçlı köpek balığı, boz camgöz gibi de adlandırılabilir. Boyları 5 metre kadardır. 8 metre olanlarına da rastlanılmıştır. Baş kısadır. Burun kısa ve geniştir ve gözlerde başa göre küçüktür. Sırt koyu kahve rengi ya da koyu gri ve karın kısmı kirli beyazdır. Yandan bakılınca pektoral yüzgecinin hemen sol üstünde sağlı sollu 6 çift solungaç yarıklarının bulunması bu türün en önemli özelliğidir. Bu özelliğinden dolayı Hexanchidae familyasına dahildir. Üstte 4 altta 6 sıra kesici (canine) dişlere sahiptir. Gövdeleri mekik biçimindedir hidrodinamiktir ve bu sayede iyi yüzücülerdir.Bu özelliği sayesinde sınıflandırmada pleurotremata ordosunda yer alır. Gözün arka tarafında ilk solungaç yarığının körelmesiyle oluşan spirakulum denilen küçük bir delik vardır ve bu delik oksijen difüzyonuna yardımcı olur. Kuyruğu heteroserk yapıdadır bu özelliği kuruğun üst lobunun alt lobundan uzun olması anlamına gelir. Yaşayan köpek balıklarının en ilkelidir ve jura devrinden kalma fosillerle bir çok benzerlik sergilerler. Genellikle balıklar, kalamar crustacea ve bazı balıklar ile beslenirler. İnsanlar için henüz tehlikeli olabildiğine dair bir kayıt bulunamamıştır. Ovovivipar üreme gösterirler, bir üreme sezonunda 20-50 arası embriyo meydana getirebilirler. Yavrularının boyları 60-70 cm.'dir. Gençleri kıyıya yakın ergin olanları derinlerdedir. Gündüzleri deniz tabanında dinlenip geceleri avlanırlar. Bentopelajik ya da mezopelajiktirler, 70-2000 metre arası derinliklerde dağılım gösterirler. Geceleri yüzeyde de bulunurlar (epipelajik). Eti insanlar için zehirlidir. Türkiye sularında ve atlas okyanusunda mevcuttur.

http://www.biyologlar.com/hexanchus-griseus-boz-cam-goz-kopek-baligi-

HAYVANLARI KORUMA KANUNU

Kanun No. 5199 Kabul Tarihi : 24.6.2004 BİRİNCİ KISIM Genel Hükümler BİRİNCİ BÖLÜM Amaç, Kapsam, Tanımlar ve İlkeler Amaç MADDE 1. - Bu Kanunun amacı; hayvanların rahat yaşamlarını ve hayvanlara iyi ve uygun muamele edilmesini temin etmek, hayvanların acı, ıstırap ve eziyet çekmelerine karşı en iyi şekilde korunmalarını, her türlü mağduriyetlerinin önlenmesini sağlamaktır. Kapsam MADDE 2. - Bu Kanun, amaç maddesi doğrultusunda yapılacak düzenlemeleri, alınacak önlemleri, sağlanacak eşgüdümü, denetim, sınırlama ve yükümlülükler ile tâbi olunacak cezaî hükümleri kapsar. Tanımlar MADDE 3. - Bu Kanunda geçen terimlerden; a)Yaşama ortamı: Bir hayvanın veya hayvan topluluğunun doğal olarak yaşadığı yeri, b) Etoloji: Bir hayvan türünün doğuştan gelen, kendine özgü davranışlarını inceleyen bilim dalını, c) Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, d) Tür: Birbirleriyle çiftleşebilen ve üreme yeteneğine sahip verimli döller verebilen populasyonları, e) Evcil hayvan: İnsan tarafından kültüre alınmış ve eğitilmiş hayvanları, f) Sahipsiz hayvan: Barınacak yeri olmayan veya sahibinin ya da koruyucusunun ev ve arazisinin sınırları dışında bulunan ve herhangi bir sahip veya koruyucunun kontrolü ya da doğrudan denetimi altında bulunmayan evcil hayvanları, g) Güçten düşmüş hayvan: Bulaşıcı ve salgın hayvan hastalıkları haricinde yaşlanma, sakatlanma, yaralanma ve hastalanma gibi çeşitli nedenlerle fizikî olarak iş yapabilme yeteneğini kaybetmiş binek ve yük hayvanlarını, h)Yabani hayvan: Doğada serbest yaşayan evcilleştirilmemiş ve kültüre alınmamış omurgalı ve omurgasız hayvanları, ı) Ev ve süs hayvanı: İnsan tarafından özellikle evde, işyerlerinde ya da arazisinde özel zevk ve refakat amacıyla muhafaza edilen veya edilmesi tasarlanan bakımı ve sorumluluğu sahiplerince üstlenilen her türlü hayvanı, j) Kontrollü hayvan: Bir kişi, kuruluş, kurum ya da tüzel kişilik tarafından sahiplenilen, bakımı, aşıları, periyodik sağlık kontrolleri yapılan işaretlenmiş kayıt altındaki ev ve süs hayvanlarını, k) Hayvan bakımevi: Hayvanların rehabilite edileceği bir tesisi, l) Deney: Herhangi bir hayvanın acı, eziyet, üzüntü veya uzun süreli hasara neden olacak deneysel ya da diğer bilimsel amaçlarla kullanılmasını, m) Deney hayvanı: Deneyde kullanılan ya da kullanılacak olan hayvanı, n) Kesim hayvanı: Gıda amaçlı kesimi yapılan hayvanları, o) Bakanlık: Çevre ve Orman Bakanlığını, İfade eder. İlkeler MADDE 4. - Hayvanların korunmasına ve rahat yaşamalarına ilişkin temel ilkeler şunlardır: a) Bütün hayvanlar eşit doğar ve bu Kanun hükümleri çerçevesinde yaşama hakkına sahiptir. b) Evcil hayvanlar, türüne özgü hayat şartları içinde yaşama özgürlüğüne sahiptir. Sahipsiz hayvanların da, sahipli hayvanlar gibi yaşamları desteklenmelidir. c) Hayvanların korunması, gözetilmesi, bakımı ve kötü muamelelerden uzak tutulması için gerekli önlemler alınmalıdır. d) Hiçbir maddî kazanç ve menfaat amacı gütmeksizin, sadece insanî ve vicdanî sorumluluklarla, sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen koşulları taşıyan gerçek ve tüzel kişilerin teşviki ve bu kapsamda eşgüdüm sağlanması esastır. e) Nesli yok olma tehlikesi altında bulunan tür ve bunların yaşama ortamlarının korunması esastır. f) Yabani hayvanların yaşama ortamlarından koparılmaması, doğada serbestçe yaşayan bir hayvanın yakalanıp özgürlükten yoksun bırakılmaması esastır. g) Hayvanların korunması ve rahat yaşamalarının sağlanmasında; insanlarla diğer hayvanların hijyen, sağlık ve güvenlikleri de dikkate alınmalıdır. h) Hayvanların türüne özgü şartlarda bakılması, beslenmesi, barındırılma ve taşınması esastır. ı) Hayvanları taşıyan ve taşıtanlar onları türüne ve özelliğine uygun ortam ve şartlarda taşımalı, taşıma sırasında beslemeli ve bakımını yapmalıdırlar. j) Yerel yönetimlerin, gönüllü kuruluşlarla işbirliği içerisinde, sahipsiz ve güçten düşmüş hayvanların korunması için hayvan bakımevleri ve hastaneler kurarak onların bakımlarını ve tedavilerini sağlamaları ve eğitim çalışmaları yapmaları esastır. k) Kontrolsüz üremeyi önlemek amacıyla, toplu yaşanan yerlerde beslenen ve barındırılan kedi ve köpeklerin sahiplerince kısırlaştırılması esastır. Bununla birlikte, söz konusu hayvanlarını yavrulatmak isteyenler, doğacak yavruları belediyece kayıt altına aldırarak bakmakla ve/veya dağıtımını yapmakla yükümlüdür. İKİNCİ KISIM Koruma Tedbirleri BİRİNCİ BÖLÜM Hayvanların Sahiplenilmesi, Bakımı ve Korunması Hayvanların sahiplenilmesi ve bakımı MADDE 5. - Bir hayvanı, bakımının gerektirdiği yaygın eğitim programına katılarak sahiplenen veya ona bakan kişi, hayvanı barındırmak, hayvanın türüne ve üreme yöntemine uygun olan etolojik ihtiyaçlarını temin etmek, sağlığına dikkat etmek, insan, hayvan ve çevre sağlığı açısından gerekli tüm önlemleri almakla yükümlüdür. Hayvan sahipleri, sahip oldukları hayvanlardan kaynaklanan çevre kirliliğini ve insanlara verilebilecek zarar ve rahatsızlıkları önleyici tedbirleri almakla yükümlü olup; zamanında ve yeterli seviyede tedbir alınmamasından kaynaklanan zararları tazmin etmek zorundadırlar. Ev ve süs hayvanı satan kişiler, bu hayvanların bakımı ve korunması ile ilgili olarak yerel yönetimler tarafından düzenlenen eğitim programlarına katılarak sertifika almakla yükümlüdürler. Ev ve süs hayvanı ve kontrollü hayvanları bulundurma ve sahiplenme şartları, hayvan bakımı konularında verilecek eğitim ile ilgili usul ve esaslar ile sahiplenilerek bakılan hayvanların çevreye verecekleri zarar ve rahatsızlıkları önleyici tedbirler, Tarım ve Köyişleri Bakanlığı ile eşgüdüm sağlanmak suretiyle, İçişleri Bakanlığı ve ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ticarî amaç güdülmeden bilhassa ev ve bahçesi içerisinde bakılan ev ve süs hayvanları sahiplerinin borcundan dolayı haczedilemezler. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, hayvanları sahiplenen ve onu üretmek için seçenler annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Ev ve süs hayvanları ile kontrollü hayvanlardan, doğal yaşama ortamlarına tekrar uyum sağlayamayacak durumda olanlar terk edilemez; beslenemeyeceği ve iklimine uyum sağlayamayacağı ortama bırakılamaz. Ancak, yeniden sahiplendirme yapılabilir ya da hayvan bakımevlerine teslim edilebilir. Sahipsiz ve güçten düşmüş hayvanların korunması MADDE 6. - Sahipsiz ya da güçten düşmüş hayvanların, 3285 sayılı Hayvan Sağlığı Zabıtası Kanununda öngörülen durumlar dışında öldürülmeleri yasaktır. Güçten düşmüş hayvanlar ticarî ve gösteri amaçlı veya herhangi bir şekilde binicilik ve taşımacılık amacıyla çalıştırılamaz. Sahipsiz hayvanların korunması, bakılması ve gözetimi için yürürlükteki mevzuat hükümleri çerçevesinde, yerel yönetimler yetki ve sorumluluklarına ilişkin düzenlemeler ile çevreye olabilecek olumsuz etkilerini gidermeye yönelik tedbirler, Tarım ve Köyişleri Bakanlığı ve İçişleri Bakanlığı ile eşgüdüm sağlanarak, diğer ilgili kuruluşların da görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Sahipsiz veya güçten düşmüş hayvanların en hızlı şekilde yerel yönetimlerce kurulan veya izin verilen hayvan bakımevlerine götürülmesi zorunludur. Bu hayvanların öncelikle söz konusu merkezlerde oluşturulacak müşahede yerlerinde tutulması sağlanır. Müşahede yerlerinde kısırlaştırılan, aşılanan ve rehabilite edilen hayvanların kaydedildikten sonra öncelikle alındıkları ortama bırakılmaları esastır. Sahipsiz veya güçten düşmüş hayvanların toplatılması ve hayvan bakımevlerinin çalışma usul ve esasları, ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvan bakımevleri ve hastanelerin kurulması amacıyla Hazineye ait araziler öncelikle tahsis edilir. Amacı dışında kullanıldığı tespit edilen arazilerin tahsisi iptal edilir. Hiçbir kazanç ve menfaat sağlamamak kaydıyla sadece insanî ve vicdanî amaçlarla sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen şartları taşıyan gerçek ve tüzel kişilere; belediyeler, orman idareleri, Maliye Bakanlığı, Özelleştirme İdaresi Başkanlığı tarafından, mülkiyeti idarelerde kalmak koşuluyla arazi ve buna ait binalar ve demirbaşlar tahsis edilebilir. Tahsis edilen arazilerin üzerinde amaca uygun tesisler ilgili Bakanlığın/İdarenin izni ile yapılır. İKİNCİ BÖLÜM Hayvanlara Müdahaleler Cerrahi müdahaleler MADDE 7. - Hayvanlara tıbbî ve cerrahi müdahaleler sadece veteriner hekimler tarafından yapılır. Kontrolsüz üremenin önlenmesi için, hayvanlara acı vermeden kısırlaştırma müdahaleleri yapılır. Yasak müdahaleler MADDE 8. - Bir hayvan neslini yok edecek her türlü müdahale yasaktır. Hayvanların, yaşadıkları sürece, tıbbî amaçlar dışında organ veya dokularının tümü ya da bir bölümü çıkarılıp alınamaz veya tahrip edilemez. Ev ve süs hayvanının dış görünüşünü değiştirmeye yönelik veya diğer tedavi edici olmayan kuyruk ve kulak kesilmesi, ses tellerinin alınması ve tırnak ve dişlerinin sökülmesine yönelik cerrahi müdahale yapılması yasaktır. Ancak bu yasaklamalara; bir veteriner hekimin, veteriner hekimliği uygulamaları ile ilgili tıbbî sebepler veya özel bir hayvanın yararı için gerektiğinde tedavi edici olmayan müdahaleyi gerekli görmesi veya üremenin önlenmesi durumlarında izin verilebilir. Bir hayvana tıbbî amaçlar dışında, onun türüne ve etolojik özelliklerine aykırı hale getirecek şekilde ve dozda hormon ve ilaç vermek, çeşitli maddelerle doping yapmak, hayvanların türlerine has davranış ve fizikî özelliklerini yapay yöntemlerle değiştirmek yasaktır. Hayvan deneyleri MADDE 9. - Hayvanlar, bilimsel olmayan teşhis, tedavi ve deneylerde kullanılamazlar. Tıbbî ve bilimsel deneylerin uygulanması ve deneylerin hayvanları koruyacak şekilde yapılması ve deneylerde kullanılacak hayvanların uygun biçimde bakılması ve barındırılması esastır. Başkaca bir seçenek olmaması halinde, hayvanlar bilimsel çalışmalarda deney hayvanı olarak kullanılabilir. Hayvan deneyi yapan kurum ve kuruluşlarda bu deneylerin yapılmasına kendi bünyelerinde kurulmuş ve kurulacak etik kurullar yoluyla izin verilir. Etik kurulların kuruluşu, çalışma usul ve esasları, Tarım ve Köyişleri Bakanlığı ile Sağlık Bakanlığının ve ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Deney hayvanlarının yetiştirilmesi, beslenmesi, barındırılması, bakılması, deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin tescil edilmesi, çalışan personelin nitelikleri, tutulacak kayıtlar, ne tür hayvanların yetiştirileceği ve deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin uyacağı esaslar Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. ÜÇÜNCÜ BÖLÜM Hayvanların Ticareti ve Eğitilmesi Hayvanların ticareti MADDE 10. - Satılırken; hayvanların sağlıklarının iyi, barındırıldıkları yerin temiz ve sağlık şartlarına uygun olması zorunludur. Çiftlik hayvanlarının bakımı, beslenmesi, nakliyesi ve kesimi esnasında hayvanların refahı ve güvenliğinin sağlanması hususundaki düzenlemeler Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. Yabani hayvanların ticaretine ilişkin düzenlemeler Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Hayvanların ticarî amaçla film çekimi ve reklam için kullanılması ile ilgili hususlar izne tâbidir. Bu izne ait usul ve esaslar ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Bir hayvan; acı, ıstırap ya da zarar görecek şekilde, film çekimi, gösteri, reklam ve benzeri işler için kullanılamaz. Deney hayvanlarının ithalat ve ihracatı izne tâbidir. Bu izin, Bakanlığın görüşü alınarak Tarım ve Köyişleri Bakanlığınca verilir. Hasta, sakat ve yaşlı durumda bulunan veya iyileşemeyecek derecede ağrısı veya acısı olan bir hayvanı usulüne uygun kesmek ya da ağrısız öldürme amacından başka bir amaçla birine devretmek, satmak veya almak yasaktır. Eğitim MADDE 11. - Hayvanlar, doğal kapasitesini veya gücünü aşacak şekilde veya yaralanmasına, gereksiz acı çekmesine, kötü alışkanlıklara özendirilmesine neden olacak yöntemlerle eğitilemez. Hayvanları başka bir canlı hayvanla dövüştürmek yasaktır. Folklorik amaca yönelik, şiddet içermeyen geleneksel gösteriler, Bakanlığın uygun görüşü alınarak il hayvanları koruma kurullarından izin alınmak suretiyle düzenlenebilir. DÖRDÜNCÜ BÖLÜM Hayvanların Kesimi, Öldürülmesi ve Yasaklar Hayvanların kesimi MADDE 12. - Hayvanların kesilmesi; dini kuralların gerektirdiği özel koşullar dikkate alınarak hayvanı korkutmadan, ürkütmeden, en az acı verecek şekilde, hijyenik kurallara uyularak ve usulüne uygun olarak bir anda yapılır. Hayvanların kesiminin ehliyetli kişilerce yapılması sağlanır. Dini amaçla kurban kesmek isteyenlerin kurbanlarını dini hükümlere, sağlık şartlarına, çevre temizliğine uygun olarak, hayvana en az acı verecek şekilde bir anda kesimi, kesim yerleri, ehliyetli kesim yapacak kişiler ve ilgili diğer hususlar Bakanlık, kurum ve kuruluşların görüşü alınarak, Diyanet İşleri Başkanlığının bağlı olduğu Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvanların öldürülmesi MADDE 13. - Kanunî istisnalar ile tıbbî ve bilimsel gerekçeler ve gıda amaçlı olmayan, insan ve çevre sağlığına yönelen önlenemez tehditler bulunan acil durumlar dışında yavrulama, gebelik ve süt anneliği dönemlerinde hayvanlar öldürülemez. Öldürme işleminden sorumlu kişi ve kuruluşlar, hayvanın kesin olarak öldüğünden emin olunduktan sonra, hayvanın ölüsünü usulüne uygun olarak bertaraf etmek veya ettirmekle yükümlüdürler. Öldürme esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasaklar MADDE 14. - Hayvanlarla ilgili yasaklar şunlardır: a) Hayvanlara kasıtlı olarak kötü davranmak, acımasız ve zalimce işlem yapmak, dövmek, aç ve susuz bırakmak, aşırı soğuğa ve sıcağa maruz bırakmak, bakımlarını ihmal etmek, fiziksel ve psikolojik acı çektirmek. b) Hayvanları, gücünü aştığı açıkça görülen fiillere zorlamak. c) Hayvan bakımı eğitimi almamış kişilerce ev ve süs hayvanı satmak. d) Ev ve süs hayvanlarını onaltı yaşından küçüklere satmak. e) Hayvanların kesin olarak öldüğü anlaşılmadan, vücutlarına müdahalelerde bulunmak. f) Kesim hayvanları ve 4915 sayılı Kanun çerçevesinde avlanmasına ve özel üretim çiftliklerinde kesim hayvanı olarak üretimine izin verilen av hayvanları ile ticarete konu yabani hayvanlar dışındaki hayvanları, et ihtiyacı amacıyla kesip ya da öldürüp piyasaya sürmek. g) Kesim için yetiştirilmiş hayvanlar dışındaki hayvanları ödül, ikramiye ya da prim olarak dağıtmak. h) Tıbbî gerekçeler hariç hayvanlara ya da onların ana karnındaki yavrularına veya havyar üretimi hariç yumurtalarına zarar verebilecek sunî müdahaleler yapmak, yabancı maddeler vermek. ı) Hayvanları hasta, gebelik süresinin 2/3’ünü tamamlamış gebe ve yeni ana iken çalıştırmak, uygun olmayan koşullarda barındırmak. j) Hayvanlarla cinsel ilişkide bulunmak, işkence yapmak. k) Sağlık nedenleri ile gerekli olmadıkça bir hayvana zor kullanarak yem yedirmek, acı, ıstırap ya da zarar veren yiyecekler ile alkollü içki, sigara, uyuşturucu ve bunun gibi bağımlılık yapan yiyecek veya içecekler vermek. l) Pitbull Terrier, Japanese Tosa gibi tehlike arz eden hayvanları üretmek; sahiplendirilmesini, ülkemize girişini, satışını ve reklamını yapmak; takas etmek, sergilemek ve hediye etmek. ÜÇÜNCÜ KISIM Hayvan Koruma Yönetimi BİRİNCİ BÖLÜM Mahallî Hayvan Koruma Kurulları Teşkilât, Görev ve Sorumluluklar İl hayvanları koruma kurulu MADDE 15. - Her ilde il hayvanları koruma kurulu, valinin başkanlığında, sadece hayvanların korunması ve mevcut sorunlar ile çözümlerine yönelik olmak üzere toplanır. Bu toplantılara; a) Büyükşehir belediyesi olan illerde büyükşehir belediye başkanları, büyükşehire bağlı ilçe belediye başkanları, büyükşehir olmayan illerde belediye başkanları, b) İl çevre ve orman müdürü, c) İl tarım müdürü, d) İl sağlık müdürü, e) İl millî eğitim müdürü, f) İl müftüsü, g) Belediyelerin veteriner işleri müdürü, h) Veteriner fakülteleri olan yerlerde fakülte temsilcisi, ı) Münhasıran hayvanları koruma ile ilgili faaliyet gösteren gönüllü kuruluşlardan valilik takdiri ile seçilecek en çok iki temsilci, j) İl veya bölge veteriner hekimler odasından bir temsilci, Katılır. Kurul başkanı gerekli gördüğü durumlarda konuyla ilgili olarak diğer kurum ve kuruluşlardan yetkili isteyebilir. İl hayvan koruma kurulu sekretaryasını, il çevre ve orman müdürlüğü yürütür. Kurul, çalışmalarının sonucunu, önemli politika, strateji, uygulama, inceleme ve görüşleri Bakanlığa bildirir. İllerde temsilciliği bulunmayan kuruluş var ise il hayvan koruma kurulları diğer üyelerden oluşur. Kurul, kurul başkanı tarafından toplantıya çağrılır. İl hayvan koruma kurulunun çalışma esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. İl hayvanları koruma kurulunun görevleri MADDE 16. - Hayvanları koruma kurulu münhasıran hayvanların korunması, sorunların tespiti ve çözümlerini karara bağlamak üzere; av ve yaban hayvanlarının ve yaşama alanlarının korunması ve avcılığın düzenlenmesi hususlarında alınmış olan Merkez Av Komisyonu kararlarını göz önünde bulundurarak; a) Hayvanların korunması ve kullanılmasında onların yasal temsilciliği niteliği ile bu Kanunda belirtilen görevleri yerine getirmek, b) İl sınırları içinde hayvanların korunmasına ilişkin sorunları belirleyip, koruma sorunlarının çözüm tekliflerini içeren yıllık, beş yıllık ve on yıllık plân ve projeler yapmak, yıllık hedef raporları hazırlayıp Bakanlığın uygun görüşüne sunmak, Bakanlığın olumlu görüşünü alarak hayvanların korunması amacıyla her türlü önlemi almak, c) Hazırlanan uygulama programlarının uygulanmasını sağlamak ve sonuçtan Bakanlığa bilgi vermek, d) Hayvanların korunması ile ilgili olarak çeşitli kişi, kurum ve kuruluşların il düzeyindeki faaliyetlerini izlemek, yönlendirmek ve bu konuda gerekli eşgüdümü sağlamak, e) İlde kurulacak olan hayvan bakımevleri ve hayvan hastanelerini desteklemek, geliştirmek ve gerekli önlemleri almak, f) Yerel hayvan koruma gönüllülerinin müracaatlarını değerlendirmek, g) Hayvan sevgisi, korunması ve yaşatılması ile ilgili eğitici faaliyetler düzenlemek, j) Bu Kanuna göre çıkarılacak mevzuatla verilecek görevleri yapmak, İle görevli ve yükümlüdür. İKİNCİ BÖLÜM Denetim ve Hayvan Koruma Gönüllüleri Denetim MADDE 17. - Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki Bakanlıkça mahallin en büyük mülkî amirine yetki devri suretiyle devredilebilir. Denetim elemanlarının nitelikleri ve denetime ilişkin usul ve esaslar ile kayıt ve izleme sistemi kurma, bildirim yükümlülüğü ile bunları verecekler hakkındaki usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel yönetimler, ev ve süs hayvanları ile sahipsiz hayvanların kayıt altına alınması ile ilgili işlemleri yapmakla yükümlüdürler. Yerel hayvan koruma görevlilerinin sorumlulukları MADDE 18. - Özellikle kedi ve köpekler gibi sahipsiz hayvanların kendi mekânlarında, bulundukları bölge ve mahallerde yaşamaları sorumluluğunu üstlenen gönüllü kişilere yerel hayvan koruma görevlisi adı verilir. Bu görevliler, hayvan koruma dernek ve vakıflarına üye ya da bu konuda faydalı hizmetler yapmış kişiler arasından il hayvan koruma kurulu tarafından her yıl için seçilir. Yerel hayvan koruma görevlileri görev anında belgelerini taşımak zorundadır ve bu belgelerin her yıl yenilenmesi gerekir. Olumsuz faaliyetleri tespit edilen kişilerin belgeleri iptal edilir. Yerel hayvan görevlilerinin görev ve sorumluluklarına, bu kişilere verilecek belgelere, bu belgelerin iptaline ve verilecek eğitime ilişkin usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel hayvan koruma görevlileri; bölge ve mahallerindeki, öncelikle köpekler ve kediler olmak üzere, sahipsiz hayvanların bakımları, aşılarının yapılması, aşılı hayvanların markalanması ve kayıtlarının tutulmasının sağlanması, kısırlaştırılması, saldırgan olanların eğitilmesi ve sahiplendirilmelerinin yapılması için yerel yönetimler tarafından kurulan hayvan bakımevlerine gönderilmesi gibi yapılan tüm faaliyetleri yerel yönetimler ile eşgüdümlü olarak yaparlar. ÜÇÜNCÜ BÖLÜM Hayvanların Korunmasının Desteklenmesi Mali destek MADDE 19. - Ev ve süs hayvanlarının korunması amacıyla bakımevleri ve hastaneler kurmak; buralarda bakım, rehabilitasyon, aşılama ve kısırlaştırma gibi faaliyetleri yürütmek için, başta yerel yönetimler olmak üzere diğer ilgili kurum ve kuruluşlara Bakanlıkça uygun görülen miktarlarda mali destek sağlanır. Bu amaçla Bakanlık bütçesine gerekli ödenek konulur. Bu ödeneğin kullanımına ilişkin esas ve usuller, Maliye Bakanlığının olumlu görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. DÖRDÜNCÜ BÖLÜM Diğer Hükümler Eğitici yayınlar MADDE 20. - Hayvanların korunması ve refahı amacıyla; yaygın ve örgün eğitime yönelik programların yapılması, radyo ve televizyon programlarında bu konuya yer verilmesi esastır. Türkiye Radyo ve Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20'sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. Trafik kazaları MADDE 21. - Bir hayvana çarpan ve ona zarar veren sürücü, onu en yakın veteriner hekim ya da tedavi ünitesine götürmek veya götürülmesini sağlamak zorundadır. Hayvanat bahçeleri MADDE 22. - İşletme sahipleri ve belediyeler hayvanat bahçelerini, doğal yaşama ortamına en uygun şekilde tanzim etmekle ve ettirmekle yükümlüdürler. Hayvanat bahçelerinin kuruluşu ile çalışma usul ve esasları Tarım ve Köyişleri Bakanlığının görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasak ve izinler MADDE 23. - Bu Kanun kapsamında olan ev ve süs hayvanlarının ticaretinin yapılması, ithalatı ve ihracatı ile her ne şekilde olursa olsun, ülkeden çıkarılması ve sokulması ile ilgili her türlü izin ve işlemlerde Bakanlığın görüşü alınmak kaydıyla Tarım ve Köyişleri Bakanlığı yetkilidir. Tarım ve Köyişleri Bakanlığının ilgili birimlerince, yıl içinde yapılan ithalat ve ihracat ile ilgili bilgiler Bakanlığa bildirilir. Koruma altına alma MADDE 24. - Bu Kanunun hayvanları korumaya yönelik hükümlerine aykırı hareket eden ve bu suretle bulundurduğu hayvanların bakımını ciddi şekilde ihmal eden ya da onlara ağrı, acı veya zarar veren kişilerin denetimle yetkili merci tarafından hayvan bulundurması yasaklanır ve hayvanlarına el konulur. Söz konusu hayvan yeniden sahiplendirilir ya da koruma altına alınır. DÖRDÜNCÜ KISIM Cezai Hükümler BİRİNCİ BÖLÜM İdari Para Cezası Verme Yetkisi, Cezalar, Ödeme Süresi, Tahsil ve İtiraz İdarî para cezası verme yetkisi MADDE 25. - Bu Kanunda öngörülen idarî para cezaları bu Kanunun 17 nci maddesinde belirtilen denetime yetkili merci tarafından verilir. İdari para cezalarına itiraz MADDE 26. - İdarî para cezalarına karşı cezanın tebliği tarihinden itibaren onbeş gün içinde idare mahkemesine dava açılabilir. Davanın açılmış olması idarece verilen cezanın yerine getirilmesini durdurmaz. Bu konuda idare mahkemelerinin verdiği kararlar kesindir. İdarî para cezalarının ödenme süresi ve tahsili MADDE 27. - İdarî para cezalarının ödenme süresi cezanın tebliği tarihinden itibaren otuz gündür. Ceza vermeye yetkili merciler tarafından, Bakanlıkça bastırılan ve dağıtılan makbuz karşılığında verilen para cezaları, ilgilileri tarafından mahallin en büyük mal memurluğuna yatırılır. Yatırılan paranın % 80'i ilgili belediyeye takip eden ay içinde aktarılır. Bu para, tahsisi mahiyette olup amacı dışında kullanılamaz. Bu Kanuna göre verilecek idarî para cezalarında kullanılacak makbuzların şekli, dağıtımı ve kontrolü ile ilgili esas ve usuller yönetmelikle belirlenir. Öngörülen süre içinde ödenmeyen para cezaları, gecikme zammı ile birlikte 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Cezalar MADDE 28. - Bu Kanun hükümlerine aykırı davrananlara aşağıdaki cezalar verilir: a) 4 üncü maddenin (k) bendinin ikinci cümlesi hükmüne aykırı davrananlara, hayvan başına ikiyüzellimilyon lira idarî para cezası. b) 5 inci maddenin birinci, ikinci, üçüncü ve altıncı fıkralarında öngörülen hayvanların sahiplenilmesi ve bakımı ile ilgili yasaklara ve yükümlülüklere uymayan ve alınması gereken önlemleri almayanlara hayvan başına ellimilyon lira, yedinci fıkrasında öngörülen yükümlülük ve yasaklara uymayanlara hayvan başına yüzellimilyon lira idarî para cezası. c) 6 ncı maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira idarî para cezası. d) 7 nci maddede yazılan cerrahi amaçlı müdahaleler ile ilgili hükümlere aykırı davrananlara hayvan başına yüzellimilyon lira idarî para cezası. e) 8 inci maddenin birinci fıkrasında yazılı, bir hayvan neslini yok edecek müdahalede bulunanlara hayvan başına yedibuçukmilyar lira idarî para cezası; ikinci, üçüncü ve dördüncü fıkralarına uymayanlara hayvan başına birmilyar lira idarî para cezası. f) 9 uncu maddede ve çıkarılacak yönetmeliklerinde belirtilen hususlara uymayanlara hayvan başına ikiyüzellimilyon lira; yetkisi olmadığı halde hayvan deneyi yapanlara hayvan başına birmilyar lira idarî para cezası. g) 10 uncu maddede belirtilen hayvan ticareti izni almayanlara ve bu konudaki yasaklara ve yönetmelik hükümlerine aykırı davrananlara ikimilyarbeşyüzmilyon lira idarî para cezası. h) 11 inci maddenin birinci fıkrasındaki eğitim ile ilgili yasaklara aykırı davrananlara birmilyarikiyüzellimilyon lira, ikinci fıkrasına aykırı davrananlara hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. ı) 12 nci maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira; ikinci fıkrasına aykırı hareket edenlere hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. j) 13 üncü madde hükümlerine aykırı davrananlara, öldürülen hayvan başına beşyüzmilyon lira idarî para cezası, aykırı davranışların işletmelerce gösterilmesi halinde öldürülen hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. k) 14 üncü maddenin (a), (b), (c), (d), (e), (g), (h), (ı), (j) ve (k) bentlerine aykırı davrananlara ikiyüzellimilyon lira idarî para cezası; (f) ve (l) bentlerine aykırı davrananlara hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası verilir, kesilmiş ve canlı hayvanlara el konulur. l) RTÜK’ün takibi sonucunda 20 nci maddeye aykırı hareket ettiği tespit edilen ulusal radyo ve televizyon kurum ve kuruluşlarına maddenin ihlal edildiği her ay için beşmilyar lira idarî para cezası. m) 21 inci maddeye aykırı hareket edenlere hayvan başına ikiyüzellimilyon lira idarî para cezası. n) 22 nci maddeye uymayanlara, hayvanat bahçelerinde kötü şartlarda barındırdıkları hayvan başına altıyüzmilyon lira idarî para cezası. o) 23 üncü maddeye aykırı hareket edenlere hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası. Bu maddenin (b) bendinde atıfta bulunulan 5 inci maddenin birinci, ikinci ve beşinci fıkraları ile (o) bendi dışında kalan fiillerin, veteriner hekim, veteriner sağlık teknisyeni, hayvan koruma gönüllüsü, hayvan koruma derneği üyeleri, hayvan koruma vakfı üyeleri, hayvan toplama, gözetim altına alma, bakma, koruma ile görevlendirilmiş olan kişilerce işlenmesi halinde verilecek ceza iki kat artırılarak uygulanır. Bu maddede yazılı idarî para cezaları, her takvim yılı başından geçerli olmak üzere, o yıl için 4.1.1961 tarihli ve 213 sayılı Vergi Usul Kanununun mükerrer 298 inci maddesi hükümleri uyarınca tespit ve ilân edilen yeniden değerleme oranında artırılarak uygulanır. BEŞİNCİ KISIM Çeşitli, Son ve Geçici Hükümler BİRİNCİ BÖLÜM Çeşitli Hükümler Birden fazla hükmün ihlâli MADDE 29. - Bu Kanunda suç olarak öngörülen fiiller başka kanunlara göre de suç ise, en ağır cezayı gerektiren kanun hükümleri uygulanır. Fiili ile bu Kanunun birden fazla hükmünü ihlal edenlere daha ağır olan ceza verilir. Fiillerin tekrarı MADDE 30. - Bu Kanunda, ceza hükmü altına alınmış fiillerin tekrarı halinde para cezaları bir kat, daha fazla tekrarı halinde üç kat artırılarak verilir. İKİNCİ BÖLÜM Son ve Geçici Hükümler Saklı hükümler MADDE 31. - 4915 sayılı Kara Avcılığı Kanunu, 3285 sayılı Hayvan Sağlığı ve Zabıtası Kanunu, 4631 sayılı Hayvan Islahı Kanunu ile 1380 sayılı Su Ürünleri Kanunu hükümleri saklıdır. GEÇİCİ MADDE 1. - Bu Kanunun 14 üncü maddesinin (l) bendinde belirtilen hayvanlardan, yurda bu Kanunun yürürlüğe girdiği tarihten önce sokulmuş olanların sahipleri; üç ay içerisinde hayvan koruma kurullarına bildirimde bulunarak bunları kayıt altına aldırmak; altı ay içerisinde kısırlaştırarak kısırlaştırıldıklarına ilişkin belgeleri il hayvan koruma kurullarına teslim etmek zorundadırlar. GEÇİCİ MADDE 2. - Bu Kanun gereğince çıkarılması gerekli bulunan yönetmelikler, Kanunun yürürlüğe girdiği tarihten itibaren bir yıl içinde hazırlanır. Yürürlük MADDE 32. - Bu Kanun yayımı tarihinde yürürlüğe girer. Yürütme MADDE 33. - Bu Kanun hükümlerini Bakanlar Kurulu yürütür.

http://www.biyologlar.com/hayvanlari-koruma-kanunu

Doğaya karşı yetiştirme, İçgüdülere karşı öğrenme

İnsanın bazı özellikleri tamamıyla kalıtımsaldır, yani ona doğuştan verili özelliklerdir. Örneğin göz rengimiz, burnumuzun şekli, parmaklarımızın sayısı gibi birçok bedensel özelliğimiz hemen tamamıyla kalıtım tarafından belirlenmektedir. Bazı özelliklerimiz ise tamamıyla çevreseldir: Saçımızı kestirme biçimimiz, konuştuğumuz dilin türü, giyinme biçimimiz gibi. Çoğu özelliğimiz içinse böyle net bir ayrım yapabilmek oldukça güçtür; onlar, her iki grup etkenin karşılıklı etkileşimi sonucunda ortaya çıkarlar. İnsan davranışları, her ne kadar kavramlar içerikleri konusunda bir fikir birliği bulunmasa da, öteden beri içgüdüsel ve öğrenilmiş olarak ikiye ayrılırlar. Bu ayrımda içgüdüsel davranışlar üzerinde doğal-genetik etkenlerin, öğrenilmiş davranışlar üzerinde ise yetişilen çevre ve kültürün daha çok rol oynadığı ve onları belirlediği kabul edilmektedir. İçgüdüsel davranışların daha çok hayvanlarda olduğu, insanda çok az bulunduğu veya insanın gerçek anlamda içgüdüsel denebilecek hiçbir davranışı olmadığı ileri sürülmektedir. Ancak yapılan çalışmalar ve gözlemler, hayvanlarda olduğu gibi tam olarak belirlenmiş olmasa da insanlarda da en azından eğilim (trait) diyebileceğimiz şekilde türe özgü kimi davranış kalıpları olduğunu göstermiştir. İçgüdüsel davranışlar üzerine olan bu tartışmalar yıllardır sürüp gitmektedir. 19. yüzyıl sonlarından bu yana, hayvanların karmaşıklık düzeyi ile içgüdüsel davranışlar arasında bir ters orantı olduğu, yani gelişmişlik düzeyinin artışıyla içgüdüsel davranışların azaldığı, özellikle alt sınıf hayvanlarda ise bu tür davranışların fazla olduğu konusunda bir anlaşma sağlanmış gibi görünmektedir. Ancak bu tarihsel açıklamaların çoğu, araştırma sonucu saptanmış bulgulara dayanmamakta, henüz "bilimsel önyargı" düzeyinde bulunmaktadır. Modern bilimsel yöntemlerle bu konunun araştırılması, 19. yüzyılın sonlarında Charles Darwin'le başlamıştır. İngiliz bilim adamı Darwin, 1859'da yayınlanan ünlü kitabı "Türlerin Kökeni" ile , daha önce kimi felsefeciler tarafından ortaya konulan "doğal ayıklanma" görüşüne dayanarak türlerin gelişimini açıklamayı denedi. Darwin türlerin evrimiyle ilgili çalışmalarında, insanın evrimi ile basit hayvanların evrimi arasında çok keskin bir kopukluğun ya da süreksizliğin olmadığını söylemiştir. Bundan dolayı Darwin ve yandaşları, hayvanlardaki davranışların sadece içgüdülerle değil, tıpkı insanlardaki gibi temel yorumlayıcı zihinsel etkinliklerle ortaya çıktığını öne sürmüşler, aynı şekilde insanın ve basit hayvanların ortak evrimsel süreçten geçtiğini, temel içgüdüsel davranışların insanda da yer aldığını ilke olarak kabul etmişlerdir. Darwin'in bu görüşlerine paralel olarak hemen hemen onunla çağdaş olan ruhbilimci Sigmund Freud, tüm normal ve normal dışı insan davranışlarının genetik olarak belirlenen iki temel içgüdünün etkisiyle çıktığını savunmuştur: Bunlar, yaşam içgüdüsü (libido-Eros) ve saldırganlık-ölüm içgüdüsü (destrudo-Thanatos)'dür. Freud, bu iki temel içgüdünün doğuştan geldiğini tüm insanlarda ortak olduğunu ve insanın ruhsal yaşamını ve davranışlarını belirleyen temel organizasyonun bu iki gücün etkisi altında biçimlendiğini söylemiştir. Bir sosyal psikolog olan William Mc Dougall ise insanın, Freud'un sandığı gibi yalnızca iki değil, kaçma, tiksinme, kavgacılık, toplumsallık vs.. gibi en azından bir düzine içgüdüye sahip olduğunu savundu. İnsanın içgüdüsel davranış teorisi, John Watson ve takipçisi davranışçı bilimciler tarafından reddedildi. Watson ve öğrencileri, davranışın tamamen doğuştan programlanmış ve öğrenilemez olduğu fikrine karşı çıktılar. Bazı davranışçılar ise, alt sınıf hayvanlarda programlanmış ve öğrenilemez küçük, tekrarlayıcı davranışların olduğunu söylemelerine rağmen; gelişkin türlerde davranışın içgüdüsel olmadığını ve hemen her davranışın öğrenilmiş olduğunu savundular. Bu bilimciler, iyi kontrol edilen çevresel koşulların olduğu ortamlarda bile beklenmedik, küçük bir çevresel uyarının bazı öğrenilmiş davranış kalıplarına yol açtığını deneyleriyle göstermeye çalıştılar. Bunlar arasından daha da ileri giden bazıları ise, bırakın davranışları, bazı temel reflekslerin bile öğrenme ve deneyim sonucu ortaya çıktığını öne sürdüler. Onlara göre, Freud ve Mc Dougall gibi davranışların içgüdüsel olduğunu söyleyen bilim adamlarının teorilerini ispatlama şansları yoktu zira teorileri deney ve gözlemlere uygun değildi. Onlara göre, zihin, gözlenebilir davranışın ta kendisiydi; içgüdü teorisyenlerinin gözlemle değil, masa başında düşünerek analizle ortaya çıkardıklarını ileri sürdükleri ve zihnin içsel mekanizmaları diye ilan ettikleri şeyler, gözlemlenemediklerinden deneysel olarak da ispatlanamazlardı. Davranışçılar, bir yaklaşıma gerçekten bilimsel denilebilmesi için davranışın gözlenebilir ve deneysel olarak müdahale edilebilir olması gerektiğini söylüyorlardı. Davranışçılar, 1920 ve 1950'li yıllarda, özelikle ABD'nde, insan davranışının biçimlenmesinde sonradan kazanılan, öğrenilen yanına dikkat çekerlerken bu sırada Konrad Lorenz ve Nikoloas Tinbergen gibi Avrupa'lı zoolojistler, dikkatlerini doğal koşullarda ortaya çıkan hayvan davranışlarının mekanizmaları üzerinde odakladılar. Yeni doğan hayvanların davranışlarını incelediler ve doğuştan gelen tekrarlayıcı gözlenebilir motor hareketlerin içgüdüsel kökeni konusunda biyolojik araştırmalar yaptılar. Çeşitli hayvan türleri üzerine yaptıkları araştırmalar, içgüdü teorisi ve davranışcı teori arasında kısmi bir uzlaşma sağladı. Sonuç olarak birçok hayvan davranışının ne çevreden hiç etkilenmeden, öğrenilmemiş içgüdüsel davranışlar olduğunu ne de tamamıyla çevreden etkilenmeye açık öğrenilmiş davranışlar olduğunu ortaya koydular. Kendilerine etholog denen ve "etholojist ekol" adını alan bu bilimciler, birçok hayvanın genetik yapısının, dıştan ve içten gelen etkilerle şekillenen davranışlar çıkardıklarını savundular. Bu araştırmalardan bazıları oldukça ün kazandı. Bunlardan birisinde Konrad Lorenz, yumurtadan yeni çıkan ördek yavrularının nasıl olup da hemen hangi ördeğin annelerini olduğunu bilerek, onu takip etmeye koyulduklarını ve onların çağrılarına cevap verdiklerini inceledi. Lorenz, ortaya koydu ki, ördek yavruları bu becerileri, deneyim yoluyla ancak çok özel bir biçimde öğrenmektedirler. Ördek yavruları, anne diye ilk gördükleri orta boylu ve hareket halindeki şeyin peşi sıra gitmektedirler ve zaten normalde de bu orta boylu ve hareket halindeki şey anne olmakta, böylelikle bu konudaki içgüdüsel bilgi de yavrular için bir avantaj oluşturmaktadır. Lorenz'in deneyinde de ördek yavruları kuluçka makinesinden çıkar çıkmaz gördükleri ilk hareket eden nesne olarak araştırmacı Lorenz'i anneleri kabul edip onu takip etmeye başlamışlardır. Lorenz'i anneleri olarak belleyen yavrular, araştırmacının sonradan ortama getirdiği gerçek anneleriyle hiç ilgilenmemişlerdir. Daha sonra yapılan araştırmalarda da yavru ördeklere doğru boyutta ve hareket halinde her nesneyle etkilenim yaptırılabileceği ortaya çıkmıştır. Bir grup yavru ördek, iple çekilen büyük bir balonu bile anneleri olarak kabul etmişlerdir. Ancak bu özel etkilenimin oluşabilmesi için doğru uyaranın uygun zamanda verilmesi gerekmektedir. Doğdukları günlerde çevrelerinde uygun boyutta hareket halinde bir cismin hareket etmemesi halinde, yavru ördekler, hiçbir şeyi anneleri olarak kabul etmeyeceklerdir. Yavruların içgüdüsel bir biçimde, doğuştan bildikleri şey, hareket halinde ve;mso-bidi-font-size:13.5pt;font-family:Arial">Bu alanda bir başka ünlü çalışma Tinbergen'in yumurtadan yeni çıkan ringa martılarıyla yapmış olduğudur. Yumurtadan yeni çıkan martı yavruları, annelerinin gagasını gagalayarak ondan yiyecek almak zorundadırlar. Yavru martı, yalnızca gagaladığında beslenebilir aksi takdirde örneğin kör yavrular, açlıktan ölmeye mahkumdurlar. Tinbergen, çalışmasında bu doğuştan gelen tepkileri harekete geçiren şeyin ebeveynin gagasının ucundaki kırmızı nokta olduğunu göstermiştir. Yavru martı, ona üzerinde böyle bir nokta bulunan kartondan yapılmış bir gaga gösterdiğinizde bunu gagalamaya başlayacak, üzerinde bu noktanın bulunmadığı kartonu ise gagalamayacaktır. Tinbergen'in bu çalışmasının yorumu da tıpkı Lorenz'in çalışması gibidir: Doğuştan getirilen içgüdüsel bilgilerin varlığı kesin olmakla birlikte, onların davranış olarak yaşama geçmesini sağlayan şey, çevresel etkenler yoluyla edinilen deneyimdir.  

http://www.biyologlar.com/dogaya-karsi-yetistirme-icgudulere-karsi-ogrenme

Aracnida (=Aracbnoidea ) Sınıfı

Bu sınıfta hekimlik açısından önemli olan keneler, uyuz etkenleri, akrepler ve örümcekler bulunur. Arachnida sınıfındaki artropodların erişkinlerinde 4 çift bacak bulunur. Ayrıca antenleri ve kanatlan da bulunmadığı gibi vücutta baş ve thoraxın birleşmesiyle oluşmuş cephalothorax ve abdomen olmak üzere iki kısımdan oluşmuştur. Yine arachnidlerde ağız organellerinin yan taraflarında cheliser adı verilen kesici organel bulunur. Daha önce bahsedilen insecta sınıfındaki artropodların ise erişkinlerinde 3 çift bacak, anten, kanat ( bazılarında yok) bulunur, bunların vücutları üç parçalı olup, caput, tharox ve abdomenden oluşmuştur ve chelicer ( şelişer ) leri yoktur. Arachnida 'larda caput ve thoraxın birleşmesiyle oluşan cephalothoraxa “prosoma”, abdomene ise " opisthosoma" adı verilir. Prosoma' da iki kısma ayrılır. Ağız organellerinin bulunduğu kısma "gnathosoma" ( = capitulum ) ve bacakların çıktığı kısma ise "podosoma" adı verilir. Podosoma ve opisthosoma' dan meydana gelen yani bacakların çıktığı kısma ve abdomene birlikte "idiosoma"adı verılır. Podosomada "propodosoma"( 1 ve 2.çift bacaklar kısmı) ve "metapodosoma" (3 ve 4. çift bacaklar kısmı) olarak ikiye ayrılır. Gnathosoma ve propodosoma'nın ikisine birden "proterosoma" metapodosoma ve opisthosoma'nın ikisine birden ise "hysterosoma"adı verilir. Gnathosoma üzerinde makas şeklinde olan chelicerler, en önde bulanan ve bir çift bacak şeklinde görülen pedipalpler ve hypostom bulunur. Chelicerler konak derisini delmeye ve kesmeye yarayan iki tane hareketli oluşumlardır. Pedipalpler ise artropodun yiyeceğini yakalamasında ve dokunma duyusu olarak görev yaparlar. Hypostom'un üzere dişler gibi oluşumlarla kaplıdır. Bu yapıları ile konak derisine girdiği zaman geriye çekilmesini engeller ve konaktan kan emmeye yarayan bir oluşumdur. Erişkin arachnidlerde ve nymhlerde 4 çift bacak, larvalarında ise 3 çift bacak bulunur. Bu sınıftaki türlerin tümü kanatsız artropodlardır. Göz bazılarında vardır, bazı türlerde ise bulunmaz. Göz eğer varsa basit göz biçimindedir. Solunum genellikte trachealarla olur. Ancak bunlar bir çift stigma ile dışarı açılırlar. Çoğunlukla erkekleri dişilerinden küçüktür ve dorselden bakıldığında bazı türleri direkt olarak ayrılırlar, yani sexuel dimorfismus vardır. Biyolojik gelişmelerinde erişkin -yumurta -larva -nymph -erişkin dönemleri görülür. Yumurtadan çıkan larvalar erişkinlere genellikle benzerler. Daha sonraki nymph dönemi ise sexuel organlarının olmayışı dışında erişkinlere benzemektedir. Bu nedenle bu sınıftaki parazitlerin gelişmelerinde yarım metamorfoz (= hemimetabola ) görülür. Sindirim kanalları birtakım divertiküllere ve kollara ayrılmıştır. Bu özelikleri ilede gıda deposu olarak görev yaptıkları gibi sindirim bezi olarakta fonksiyon yaparlar. Arachnida Sınıfının Sınıflandırılması Bu sınıf altında üç önemli takım bulunur. Bunlar, Order: Scorpionidea (=akrepler ) Order: Araneidea ( = örümcekler ) Order: Acarina (=kene, uyuz etkenleri ve diğer akarlar) Order: Scorpionidea Akreplerde vücut yapıları cephalo- thorax ve abdomen şeklindedir. Vücudun ön tarafında ve ağzın iki yanında bir çift chelicer ve onun gerisinde yine bir çift pedipalpleri bulunur. Pedipalpler makas şeklinde tutucu organellerdir. Bunların gerisinde ise 4 çift bacak vardır. Abdomenleri ise preabdomen ve postabdomen olmak üzere iki kısımdan oluşmuştur. Bunlardan preabdomen geniş yapıda olup, 7 segmentlidir. Postabdomen ise daha ince yapılı olup, 6 segmentden meydana gelmiştir. Kuyruk adıda verilen postabdomenin son halkası yuvarlağımsıdır ve uç kısmında zehir bezesini taşıyan bir iğne ( telson) bulunur. Akreplerin büyüklüğü 3 cm' den 8 cm 'ye kadar değişir. Vücudun en geniş yeri 1 cm, en dar yeri ise kuyruk kısmı olup, 3 -4 mm'dir. Renkleri siyah, solgun sarı, kahverenkli ve bazen yeşil renkli olabilir. Akreplerde vücut segmentasyon gösterir ve bunlarda dimorfismus yoktur. Scorpionidea 'lar sıcak ve kurak bölgelerde bulunurlar. Gececi parazitler olup, gündüzleri duvar ve tahta çatlakları arasında, kuytu yerlerde saklanırlar. Dişileri ovipardır. Ancak genellikle ovovivipardırlar. Yani uterusta şekillenen yumurtalar içinde gelişen yavrular çıkar. Akreplerin son halkasının uç kısmında bulunan iğne zehir bezeleri ile bağlantılıdır. Bu iğne ile bir canlıya soktuğunda zehiri derhal boşaltır. Zehirin felç edici etkisi vardır. Akrepler genellikle evlere girerler. Tropikal bölgelerde yaşayan bazı türleri insan ve hayvanlar için çok zehirli olup, ölümlere yol açabilirler. Akrepler kanivor artropodlardır, gıdalarını pedipalplerindeki kıskaçları ile yakalarlar. Bazı akrep türleri konaklarını soktukları yerlerde sadece lokal olarak şişliklere ve ağrılara neden olduğu halde, çok zehirli olan türleri sinir sistemi bozukluklarına, konvulsiyonlara, solunum güçlüğü ve kalpte bozukluklara neden olurlar. Akrep zehirlemesine scorpionismus ( = skorpionizm ) adı verilir. Zehirlenmelerin tedavisinde en iyi yol özel antitoksin akrep serumu kullanılmasıdır. Order: Araneidea Örümceklerde vücut cephalo-thorax ve abdomenden oluşmuştur. Abdomende segmentasyon gözükmez ve bir boğumla cephalothorax'dan ayrılmıştır. Ağızlarının yan tarafında iki eklemli ve nihayeti bir iğne ile sonlanmış olan chelicerleri vardır. Bunlar zehir bezeleri ile irtibatlıdır. Zehir iğneleri vasıtası ile canlı artropodları ısırır, zehirini akıtarak daha sonrada yerler. Pedipalpleri duyu organı olarak görev yaparlar ve ergin erkeklerde çiftleşmeye hizmet ederler. Bazı türlerinde dimorfismus görülür ve dişileri erkeklerinden biraz daha büyük olup, abdomenleri daha yuvarlaktır. Örümceklerin bazıları toprak altında bazılarıda taşların altında ve ağaç kovuklarında yaşarlar. Çoğalmaları akrepler gibidir. Araneidea takımında bulunan bazı örümcek türleri insan ve hayvanlarda zehirleyici etki gösterir. Bu canlılarda ağır hastalıklar ve ölümlere yol açabilirler. Bunların toxinleri bir neurotoxin olup, özellikle merkezi sinir sitemini etkilerler. Bazı türleri ise lokal nekrozlara neden olurlar. Zehirli olan cinsleri; Latrodectus ve Loxosceles' dir. Bu örümcek cinslerinin chelicerleri ile insan ve hayvanların derilerini delerek dokulara zehir akıtmaları sonucu oluşan yerel nekroz ve genel belirtilerle karekterize olan artropod zehirlenmesine “araneismus" yada örümcek ağılaması (=örümcek zehirlenmesi) adı verilir. Latrodectus cisindeki türlerin sokması sonucu zehiri merkezi sinir sitemini etkiler ve sistemik belirtilere yol açar. Buna "Latrodectismus" yada sistemik araneismus (sistemik arachnidismus) denir. Latrodectus'ların dişisi 10-20 mm, erkeği ise 4-7 mm büyüklüğündedir. Siyah renklidirler. Abdomen üzerinde kırmızı benekler bulunur. Bunlar kuru ve çorak yerlerde, duvar çatlaklarında, ağaç kovuklarında ve kemirgen yuvalarında yaşarlar. Bu türlerin dişileri çiftleştikten sonra erkeğini öldürdüğü için bunlara kara dul adıda verilmektedir. Loxosceles türlerinin sokması sonucu hemoliz oluşur ve ısırılan yerde nekroz meydana gelir, ortaları düşer ve yerlerinde yaralar oluşur. Bu türlerden ileri gelen zehirlenmede lokal reaksiyonlar oluşur. Bu nedenle bu türlerin oluşturduğu zehirlenmeye "Loxoscelismus" ya da nekrotik araknidizm adı verilir. Loxosceles türleri sarı esmer renkte olup, bunlar genellikle evlerde, karanlık ve nemli yerlerde yaşarlar. İnsanları yüzünden, boynundan, omuz yada kolundan sokarlar. Sokulan yerde önce şişlik, içleri kanla dolu kabarcıklar daha sonrada nekrozlar oluşur. Örümcek sokmalarında ilk yardım olarak önce zehir emilir, sokulan yer kanatılır, bölge üstten sıkılır ve kan emilerek tükürülür. Yara amonyak yada potasyum permanganat ile yakılır. Serumlar verilir. Order: Acarina Bu takımda keneler ve uyuz etkenleri başta olmak üzere hekimlik yönünden önemli olan ektoparazitler bulunmaktadır. Acarina takımında bulunan artropodları inceleyen bilim dalına " akaroloji" adı verilir. Acarina takımındaki türlerin vücutları iki kısımdan oluşmuştur. Bunlar capitulum ( gnathosoma ) ve idiosoma' dır. Hatta bazı türlerde vücutları tek parçalı gibidir. Bu artropodların vücutlarında segmentasyon yoktur veya çok belirsizdir. Ağız organelleri besinleri yakalamaya yarayan bir çift pedipalp, kesici bir çift chelicer ve bunlar arasında sokmaya yarayan bir adet hipostom (rostellutrı)' dan ibarettir. Erişkinlerinde ve nymph'lerinde 4 çift, larvalarında ise 3 çift bacak bulunur. Erkek ve dişiler arasında sexuel dimorfismus vardır. Acarina 'larda solunum trachealarla olur yada bütün vücut yüzeyinden olur. Sinir sistemleri basittir ve göz bazılarında vardır. Bu gruptaki parazitler deri hastalıklarına (uyuz) neden olmaları ve birçok enfeksiyon etkenlerine vektörlük yapmaları (keneler) yönünden büyük önem taşırlar. Acarina takımında 6 alttakım bulunur. Bunlar; l-Suborder : Metastigmata 2-Suborder : Mesostigmata 3-Suborder : Prostigmata 6-Suborder : Holothyroidea 4-Suborder : Astigmata 5-Suborder : Nostostigmata 6-Suborder : Holothyroidea Bunlardan son iki alttakımın ekonomik önemleri yoktur. İlk 4 alttakım özellikle Veteriner Hekimlik yönünden önemli olan artropodları içerir. Suborder : Metastigmata Bu alttakımda keneler yer alır. Stigmaları 4. veya 3. coxae'nın hemen yanında yada arkasında bulunur. Acarina takımının genel özelliklerini taşırlar. Hipostomları üzerinde uçları geriye dönük olan dişler bulunur. Vücutları yekpare bir kese şeklinde olup, gnathosoma ve idiosomadan ibarettir. Larvalarında 3 çift, nymph ve erişkinlerinde 4 çift bacak bulunur. Nimfler olgunlarından genital organlarının olmayışı ile ayrılırlar. Erişkin ve doymuş bir dişi kenenin uzunluğu 2 cm'ye kadar ulaşabilir. Bu alt tabında Ixodidae ve Argasidae aileleri vardır. Familya: lxodidae ( Sert keneler veya mera keneleri) Bu ailede bulunan artropodlar mera keneleridir. Bu kenelerde vücut yapısı"capitulum ve idiosomadan oluşmuştur. İlk bakışta erkek ve dişi keneler birbirlerinden kolaylıkla ayrılırlar. Yani sexuel dimorfısmus vardır. Erkekleri dişilerinden daha küçüktür ve bütün vücutları kitin tabakası ile örtülüdür. Kenelerin dorsalinde bulunan bu sert kitini plaka scutum adını alır. Scutum erkeklerde vücudun bütün dorsal kısmını kaplarken, dişilerde, nymph ve larvalarda capitulum'un arkasında ve vücut dorsalinde küçük bir yaka şeklindedir. Ağız organelleri capitulum 'un ön tarafında yer almıştır. Capitulum; basis capituli ve bundan çıkan bir çift chelicer, chelicer kılıfı, hipostom ve bir çift palpden oluşmuştur. Chelicerler hypostomu üstten örterler ve deriyi kesmeye, delmeye yararlar. Chelicerler tarafından açılan deriye chelicerler ve hypostom birlikte girer ve daha sonra hipostom üzerindeki küçük dişcikler geriye doğru açılarak hipostomun deriden çıkması önlenir. Hypostom kenenin konaktan kan emmesini sağlayan organeldir. Chelicer'lerin yan taraftarında his organeli olarak görev yapan bir çift palp bulunur. Başın arkasında ve vücudun kenar kısmında bazı türlerde bir çift göz mevcuttur. Gözler scutumun marginal kenarına bitişik yer alırlar. lxodidlerin bazı türlerinde göz bulunmaz. Vücudun ventralinde ise bacaklar, ön tarafta genital delik, arka tarafta anüs, çeşitli oluklar, stigmalar ve erkeklerde kitinsel plaklar bulunur. Bacaklar sırası ile coxae, trochanter, femur, tibia, pretarsus ve tarsus'dur. Tarsus'un uç kısmında iki adet tırnak bulunur. Tırnakların ventral yüzünde ise disk şeklinde düz yüzeylere tutunmaya yarayan pulvillum vardır. Genital delik median hat üzerinde ve ikinci coxaların ön kenarı hizasında olup, enine bir yarık şeklindedir. Nymph 'lerde genital delik kapalı olduğu halde larvalarda henüz şekillenmemiştir. Anüs vücudun arkasında yer alır ve çeşitli plaklarla kuşatılmıştır. Stigmalar 4. coxanın arkasındadır ve larvalarda bulunmaz. Bunlarda solunum vücut yüzeyi ile olur. Ixodidlerin bazı türlerinde scutumun üzeri adeta nakışla işlenmiş gibi süslüdür. Yine bazı türlerin vücudunun arka kenar kısımlarında festoons (festum) adı verilen oluşumlar vardır. Bu ailedeki keneler vücutlarının dorsalinde kitini sert bir plaka taşımalarından dolayı “sert keneler" veya biyolojilerini merada geçirdiklerinden dolayıda "mera kenelerı" olarak adlandırılırlar. Mera kenelerinin erkekleri en fazla 3-4 mm büyüklüğünde olduğu halde, dişileri kan emdiklerinde 1 cm büyüklüğüne ulaşırlar. Dişilerde scutum önde bir yaka şeklindedir. Vücudun geri kalan kısmı deri ile kaplıdır. Bundan dolayı dişiler fazla miktarda kan emebilirler. Erkeklerde ise bütün vücut kitinle kaplandığı için çok az miktarda kan emerler ve vücut genişleme göstermez. Keneler sexuel olarak çoğalırlar. Genital organlar dişilerde 2 adet ovaryum, uterus ve genital deliğe açılan vajinadan ibarettir. Ovaryum bir çok yerlerde kör keseler halinde olan sindirim kanalı ile ilişki halindedir. Bu durum kan parazitleri ile enfekte kenelerin bu parazitleri sindirim kanalından ovaryuma ve oradanda yumurtalara geçirebilmesi bakımından önem taşır. Erkeklerde genital organlar bir çift testis ve genital deliğe açılan vasa deferensden oluşmuştur. Keneler bütün hayatları boyunca kan emmek zorunda olan artropodlardır. Sindirim sistemleri hipostomdan başlar ve bir çok kör keseler halinde bağırsaklarla devam eder. Ixodidae ailesindeki kenelerin biyolojileri Mera keneleri ilkbahar sonlarından başlar ve sonbahar sonlarına kadar aktivite gösterirler. Hayvanlarda kulak içi, kulak kepçesi, yüz, karın altı, perianal bölge ve bazende vücudun diğer kısımlarında yerleşirler. Erkek ve dişiler genellikle bir arada bulunurlar ve çoğunlukla kopulasyon kan emme esnasında olur. Erişkin. dişi keneler yumurtalarını toprak veya meraya bırakırlar. Daha çok çatlak ve yarıklara, taş altlarına ve ağaç oyuklarına bırakırlar. Yumurtalar kahverenginde ve oval şekildedirler. Türlere ve kan emmelerine göre değişmek üzere 2-18 bin yumurta bırakırlar. Yumurtlama vücudun ventral ön tarafında bulunan genital delikte olur ve bunlar yapışkan bir madde ile birbirlerine yapıştırıldıklarından bir yumurta kitlesi şeklindedirler. Erişkin dişi bir kere yumurtlar ve daha sonra kuru bir hal alır ve ölür. Yumurtadan çıkan larvalar (uygun ısı ve rutubette türlere göre değişmek üzere 3-7 günde larvalar çıkar) çayır ve otların üst kısımlarına tırmanarak, ön ayakları ile o yörede bulunan konaklara tutunurlar. Kenelerde her türün seçtiği konak türleri varsada, aç kaldıklarında başka konaklardanda beslenebilirler. Konağa tutunan larvalar kan emerek doyarlar ve gömlek değiştirerek nymph safhasına geçerler. Nymph 'ler kan emerek gömlek değiştirirler ve bunlardanda erişkinler oluşur. Erişkin keneler kan emdikten sonra çoğunlukla konak üzerindeyken çiftleşme olur. Kopulasyondan hemen sora erkekler yere düşer ve ölür. Döllenmiş dişi kene ise kan emer, doyar ve toprağa düşerek yumurtlar ve ölür Yukarıda anlatılan biyolojik gelişme genel olarak görülen bir gelişme şeklidir. Ancak lxodidae ailesindeki kene türlerinin kullandıkları konak sayılarına göre bu biyolojik gelişme değişmektedir. Sert keneler gelişmelerinde kullandıkları konak sayısına göre 3 grupta toplanırlar. 1- Bir konaklı keneler Eğer kene biyolojik gelişmesini bir konakta tamamlıyorsa bu kenelere bir konaklı keneler denir. Kenenin kan emmiş doymuş dişisi (döllenmiş ) konağı terkeder toprağa düşer, yumurtlar ve sonra ölür. Uygun ısıda yumurtalar içinde embiryo gelişir ve 3 çift bacaklı larva halini alır. Bu larvalar beyaz renkli yumurta kabuğundan dışarı çıkarak etrafta bulunan otlar üzerine tırmanırlar. Bunlar toplu iğne başının ¼’ü büyüklüğündedirler. Larvalar arka iki çift bacaklarını otlara salarlar ve ön bir çift bacaklarını ise havada sallarlar. Bu civardan geçmekte olan konaklara tutunurlar ve doyuncaya kadar konaktan kan emerler. Bu durumda toplu iğne başı büyüklüğünde ve gri bir görünüm kazanırlar. Hypostomlarını deriden çekerler ve konağın üzerinden ayrılmaksızın gömlek değiştirme evresine girerler. Bu safhada larvanın üzerindeki deri beyazlaşır ve onun vücudunun içinde nymph meydana gelir. Nympler larvanın üstderisi olan kabuğu açarak dışarı çıkarlar. Nympler şekil bakımından erişkinlere benzerler ancak genital organlar gelişmemiştir. Bu nymph 'lerde üzerinde bulundukları aynı konaktan tekrar kan emmeye başlarlar. Doyduklarında küçük bir saçma tanesi şeklindedirler. Bunlarda hypostomlarını deriden çekerler ve bulundukları konağı terketmeden bulundukları yerde gömlek değiştirme safhasına geçerler. Nymplerin üzerini örten deri bir kabuk şeklini alır ve onun içinde de erişkin kene şekillenir. Erkek ve dişi olarak şekillenen bu keneler nymphin gömlek şeklini almış üst derisini açarak dışarı çıkarlar. Yine aynı konaktan kan emmeye başlarlar. Kan emme esnasında kopulasyon olur, dişiler doyuncaya kadar kan emdikten soma konağı terkederek toprağa düşer, yumurtlar ve ölürler. Yani bu tip kenelerde kene yumurta hariç bütün yaşam dönemlerini aynı konak üzerinde geçirir. Aç larva olarak tutunduğu konaktan doymuş dişiler olarak ayrılırlar. Tüm gömlek değiştirmeler konak üzerinde olur. Örneğin; Boophilus annulatus ve Boophilus decoloratus türleri bir konaklı kenelerdir. 2-) İki konaklı keneler Bu tür keneler biyolojik evrimini tamamlayabilmesi için iki konak kullanır. Bu konaklar aynı veya ayrı türler olabilir. Konak üzerinde kan emmiş ve doymuş olan dişiler toprağa düşer yumurtlar ve ölürler. Yumurtadan çıkan larvalar oradan geçmekte olan 1. konak bir canlının üzerine tutunurlar. Doyuncaya kadar kan emerler ve hypostomlarını geriye çekerek, aynı konak üzerinde gömlek değiştirirler ve nymph olurlar. Aç olan bu nymphler aynı konaktan kan emerler ve doyduktan sonra toprağa düşerler. Toprakta gömlek değiştiren nymphlerden erişkinler oluşur. Aç olan erişkin keneler bu yörede bulunan 2. bir konağa tutunurlar, kan emerler ve doyduktan sonra kopulasyon olur. Döllenmiş dişiler bu konağı terkeder toprağa düşer ve yumurtladıktan sonra ölürler. Yani aç larva olarak tutunduğu konaktan doymuş nymph olarak ayrılır. İlk gömlek değiştirme 1. konakta, 2. gömlek değiştirme toprakta olur. Örnek: Hyalomma türleri, Rhipicephalus everts;ve Rhicephalus bursa türleri iki konaklı kenelerdir 3-) Üç konaklı keneler Bu tip keneler gelişmelerini tamamlayabiImek için üç konağa ihtiyaç duyarlar. Yumurtadan çıkan larvalar 1. konağa tutunurlar. Bunlar kan emer ve doyduktan sonra toprağa düşerler. Toprakta gömlek deyiştirdikten sonra aç nymphler oluşur. Bu aç nymphler kan emmek üzere 2. bir ayrı veya ayrı konağa tutunurlar. Kan emip doyan nymphler konağı terkeder ve toprağa düşerler. Toprakta gömlek değiştirdikten sonra aç erişkinler oluşur. Aç erişkin keneler kan emmek için 3. bir aynı veya ayrı konağa tutunurlar. Kan emerler, doyarlar ve çiftleştikten sonra dişiler toprağa düşer yumurtlar ve ölürler. Yani her gelişme döneminde ayrı bir konaktan beslenirler ve her gömlek değiştirme olayı toprakta olur. Örneğin; lxodes ricinus, Rhipicephalus appendiculatus, Haemaphysalis ve Dermacentor türleri gelişmeleinde üç konak kullanırlar. Ixodidae ailesine bağlı olarak bulunan kene cinsleri şunlardır. Genus: Ixodes Genus: Haemaphysalis Genus: Boophilus Genus: Dermacentor Genus: Hyalomma Genus: Amblyomma Genus: Rhipicephalus Genus: Ixodes Ixodes 'lerin palpleri ve hypostomları uzundur. Anal oluk belirgin ve anüsü önden kuşatır. Scutum nakışlı değildir. Göz ve feston bulunmaz. Erkeklerin ventral yüzü birbirinden belirgin sınırlarla ayrılmış 7 alandan oluşur. Palpleri uzun raket şeklinde ve üzerinde kıllar bulunur. Bu cinste bulunan türler; lxodes ricinus, lxodes hexagonus, I. pilosus, l persulcatus ve l rubicundus'dur. Bunlardan en önemli olan tür I. ricunus olup, çoğunlukla sığır ve koyunlardan kan emerler. Avrupa'da ve Türkiye'de yaygındır ve üç konaklı kenedir. Özellikle ılıman ve rutubetli iklim bölgelerinde bulunur. Ixodes ricinus türü konağından kan emerek verdiği zararın yanısıra Babesia bovis, Babesia divergens'i sığırlara, Anaplasma ovis'i koyunlara ve Babesia canis'i köpeklere bulaştınrlar. Aynca Louping-ill virusuna, Rusya ilkbahar yaz encephalitisine ve Coxiella burnettii'ye vektörlük yapmaktadırlar. Genus:Boophilus Bunların ağız organelleri kısadır. Palpleri kısa ve çıkıntılı olup, hipostoma eşit yada kısadır. Göz ve çift anal plakları vardır. Festonları bulunmaz. Boophilus cinsinde bulunan türler; Boophilus annulatus, B. decoloratus, B. calcaratus ve B. microplus' dur. Bunlardan ülkemizde en yaygın olarak görülen tür B. annulatus'dur. Tek konaklı kenedir ve genellikle sığırlardan kan emerler. Sığırların önemli kan protzoonlarından olan Babesia bigemia, B. bovis, Anaplasma marginale, A.centrale ve Borrelia theileri (spirochaetosis)'ye vektörlük yaparlar. Genus: Hyalomma Hyalomma'ların ağız organelleri uzundur. Palpleri uzun olup, 2. palp segmenti çok uzundur. Göz, anal ve subanal plaklar vardır. Scutum koyu renklidir ve nakışIı değildir. Festonlar düzensizdir ve bir bölümü birbiriyle kaynaşmıştır. Bu cinste bulunan önemli türler; Hyalomma anatolicum excavatum, H. anatolicum anatolicum, H. marginatum ve H. detritum' dur. Yurdumuzda görülmektedirler ve yaygın kene türleridir. İki konaklı keneler olup, ruminant ve tektırnaklılardan kan emmerler bunlar konaklarına Theileia annulata, Theileria parva, T.dispar, Babesia caballi, B.equi, Coxiella burnetii (Q humması etkeni), Rickettsia bovis ve Rickettsia canari'yi naklederler. Genus: Rhipicephalus Palpleri ve hypostomları kısadır. Göz ve anal plakları vardır. Anal oluk belirgindir. Basis capituli dışa doğru çıkıntılıdır. Bu cinsteki türler feston taşırlar. Bulunan önemli türler; Rhipicephalus bursa, R sanguineus ve R appendiculatus' dur. Bulardan R. bursa çoğunlukla koyunlardan kan emerler. Bu tür Babesia ovis, Theileria ovis, Babesia bovis, Babesia equi, B. caballi, Anaplasma marginale, Rickettsia avina, Coxiella bumetii ve koyunlarda Nairobi hastalığı virusunu konaklarına bulaştırır. R. bursa türü gelişmelerini iki konakta tamamlarlar. R. sanguineus türü ise genellikle köpeklerden kan emer ve üç konaklı kene olup, ülkemizde yaygındır. Babesia canis, B.vogeli, Hepatozoon canis, Pasteurella tularensis, Rickettsia, Coxiella ve Borrelia türlerine vektölük yaparlar. R.appendiculatus ise Afrikanın tropikal bölgelerinde yaygındır ve sığırlardan kan emerek bunlara Theileria parva'yı taşırlar. Ayrıca T.mutans, B. bigemina ve Hepatozoon canis'e vektörlük yaparlar. Bu üç türden ayrı olarak Rhipicephalus capensis ve R. everisi türleri de bulunmaktadır. Genus: Haemophysalis Palpleri kısa ve 2. palp segmenti basis capituliden daha geniştir. İkinci palp segmenti uzunluğuna oranla iki misli daha geniştir. Göz ve anal plakları bulunmaz. Anal oluk belirgin değildir yada bulunmaz. Anal oluk anüsü arkadan kuşatır. Feston taşırlar. Üç konaklı kenelerdir. Bu cinse bağlı olarak Haemaphysalis punctata, H. parva, H. longicornis ve H. leachi türleri vardır. H. punctata ve H. longicornis ruminantlardan kan emerler. Bunlar B. bigemina, B. motasi, Anaplasma marginale, Anaplasma centrale ve Theileria türlerini naklederler. H. leachi türü ise köpeklerden kan emer. Sarı köpek kenesi adını alır. Köpeklere B. canis, Coxiella bumetii ve Rickettsia conori ' yi bulaştırırlar. Genus: Dermacentor Bu cinsteki kene türlerinin palpleri kısa ve basis capitulinin hizasındadır. Palpleri geniştir. Gözleri vardır, anal plakları yoktur. Scutumları renkli ve nakışlıdır. Bu cinse bağlı türlerin çoğunluğu üç konaklıdır. Genellikle tektırnaklılardan ve köpeklerden kan emerler. Bulunan türler; Dermacentor andersoni, D. reticulatus, D, marginatus, D. niveus, D. occidentalis ve D. variabilis'dir. Bunlardan D. marginatus ve D. reticulatus ülkemizde yaygındır. Bu türler Babesia caballi, B. equi ve B. canis'e vektörlük yaparlar. Genus: Amblyomma Palpleri uzun ve hipostomları kalındır. Gözleri vardır ve anal plakları yoktur. Scutumlarının üzeri nakışlıdır. Festonları vardır ve bunlar arasında kaynaşma yoktur. Türkiyede görülen türü Amblyomma variegatum'dur. Üç konaklı kenedir. Sığırlara Theileria mutans'ı bulaştırır. Bu cinse bağlı olarak A. americanum, A. hebraeum ve A. maculatum türleride bulunur. Ixodidae ailesine bağlı olarak bulunan bu cinslerden başka sürüngenlerde bulunan Aponomma ve evcil ve yabani hayvanlarda bulunan Rhipicentor cinsleride bulunmaktadır. Familya: Argasidae Bu ailedeki keneler mesken keneleri olarak bilinirler. Mesken keneleri ahır, ağıl ve kümesIerde bulunur ve buraya giren hayvanlardan kan emerler. Genel morfolojik ve biyolojik özellikleri yönünden mera kenelerine benzerler. Ancak bazı farklılıklarda vardır.Ixodidae ailesi ile aralarındaki bu farklılıklar verilerek mesken kenelerin özellikleri anlatılacaktır. Morfolojik Farklılıklar 1. Ixodidae'lerde capitulum dorsalden bakıldığında vücudun ön tarafında bir çıkıntı yapmış şekilde görüldüğü halde, Argasidae'lerde larva dönemleri hariç capitulum ventralde yer alır ve bu nedenle dorsalden bakılınca görülmez. 2. Ixodidae'lerde scutum vardır. Erkeklerde scutum tüm vücudu örter ve fazla kan ememezler. Bunların dişi, larva ve nymph 'lerinde scutum önde yaka şeklindedir ve fazla kan emerler. Argasidae'lerde ise scutum yoktur. 3. Ixodidae'lerin erkeklerinin ventralinde görülen kitini plaklar, Argasidae'lerde yoktur. 4. Ixodid 'lerin palpleri köşelidir. Argasid 'lerin ise silindiriktir. 5. Ixodidae ailesindeki kenelerin ayak uçlarında pulvillum adı verilen yastıkçıklar bulunur. Bu nedenle bunlar cam ve fayans gibi düz zeminlere tırmanabilirler. Ancak Argasidae'lerde pulvillum yoktur. 6. Ixodidae'lerin dorsalinde bulunan scutum nedeni ile özellikle kan emmiş olan erkek ve dişiler arasında sexuel dimorfismus vardır. Argasidae'lerde ise böyle bir farklılık bulunmaz. 7. Ixodidae'lerin arka taraflarında feston vardır. Argasidae'lerde yoktur. 8. Mera kenelerinin bazı türlerinde göz vardır. Gözler büyüktür ve scutumun ön kenarının iki yanında bulunur. Mesken kenelerinde göz vardır. Bunlarda vücudun ventralinde ve ön kısmının iki yanında bulunur. 9. Ixodidlerde stigmalar büyüktür ve 4. coxanın arkasındadır. .ArgasidIerde ise stigmalar küçüktür ve 4. coxanın önündedir. ıo. Ixodidlerde erkek ve dişi büyüklük ve scutumun konumuna göre ayrılır. Erkekler dişilere göre daha küçüktür. Scutum erkeklerde tüm vücudu örter. ArgasidIerde ise erkek ve dişi genital deliğin morfolojik özelliğine göre ayrılır. Erkeklerde genital delik at yarık şeklinde olduğu halde, dişilerde enlemesine bir yarık şeklindedir. ll. Sert kenelerin dişilerinde basis capituli üzerinde poros area vardır. Yumuşak kenelerin dişilerinde poros area yoktur. Biyolojik Farklılıklar l. Ixodidae aileasindeki keneler doğada, özellikle açık yerlerde ve meralarda gelişmelerine karşılık, Argasidae türleri ahır, ağıl ve kümes gibi kapalı ve örtülü yerlerde gelişirler. Bunun için Ixodidae ailesindeki kenelere mera keneleri, Argasidae ailesindeki kenelere ise mesken keneleri adı verilir. 2. Mera kenelerinin hemen hepsi memelilerin parazitidirler. Ancak 2 ve 3 konaklı olan bazı türleri kanatlılardan da kan emebilir. Bunun aksine Argasidae türlerinin bir kısmı genellikle sadece kanatlılardan bir kısmı ise memelilerden kan emerler. 3. Ixodidae türleri konakçıya tutunduğunda iyice doyuncaya kadar kan emer, gömlek değiştirir. Yumurtlar ve ölür.Ancak argasidae türleri konaklarından azar azar ve kısa süreli olarak kan emerler ve her seferinde nisbeten az sayıda (200-300 adet) yumurtlar. Fakat yumurtlamadan soma ölmezler ve bir kaçkez yumurtlayabilirler. 4. Ixodidae türleri konaklarından doyuncaya kadar sabit olarak kalırlar. Argasidae türleri ise geçici ve gezicidirler. 5. Mera kenelerinde bir nymph safası vardır. Argasidae'lerde ise bir kaç nymph safhası vardır ve bunlarda bütün gömlek değiştirmeler konak dışında meydana gelir. 6. Mera keneleri açlığa mesken kenelerine göre daha dayanıksızdırlar Ixodidler 1-2 yıl, Argasidler ise 9-10 yıl aç kalabilirler. Argasidae ailesindeki keneler vücutlarının üzerinde kitini plakların olmamasıyla "yumuşak keneler" ve biyolojik gelişmelerini barınaklarda geçirdiği içinde "mesken keneleri" olarak adlandırılırlar. Argasidae ailesindeki kenelerin larva. nvmoh ve eriskinlerinin avrımı: Organ Larva Nymph Erişkin Bacak 3 çift 4 çift 4 çift Peritrem Yoktur Vardır Vardır Capitulum Anteroterminal Anteroventral Anteroventral Genital Delik Yoktur Yoktur Vardır * Erkeklerde dar ve yarım ay şeklinde, dişilerde ise kabarık, geniş ve enine bir yarık şeklindedir. Argasidae ailesinde bulunan kene cinsleri: Genus: Argas, Genus: Ornithodoros (= Ornithodorus), Genus: Otobius Genus: Argas Bu genustaki keneler genel olarak kanatlıların parazitidirler. Vücutları ince yapılı, ovalimsi, dorso-ventral yassı, ön uçları daralmış ve arka uçları geniş ve yuvarlağımsıdır. Bu kenelerin dorsal ve ventral yüzünü ayıran bir çizgi bulunur. Bu çizgi Argaslarda oldukça ince olup, kenenin kan emip doymasına rağmem keskin bir şekilde kalır. Gözleri yoktur. Dorsal yüzlerinde çok sayıda ufak ve yassı dairemsi çukurlar bulunur. Argas cinsine bağlı olarak bulunan türler; Argas percicus: Kanatlılardan (tavuk, bindi, kaz gibi) kan emerler. Ördeklerde kene toksikozuna neden olmaktadır. Argas reflexus: Güvercinlerin parazitidir. Argas sanchezi: Kanatlılardan kan emer. Agas radiatus, Argas miniatus ve Argas mianensis türleride kanatlı keneleridirler. Bunlardan en yaygın olanları A. persicus ve A. reflexus' dur. Argas türleri kan emecek kanatlı bulamadıklarında evcil memelilerden ve insanlardan da kan emebilirler. Biyolojik gelişmeleri Argas türlerinin erginleri kanatlı barınaklarının tahta aralıkları, tünek çatlakları ve çatısında güvercin barındıran veya kuş bulunduran evlerin çatı kısımlarında bulunurlar. Buralarda çatlak ve yarıklara saklanırlar. Buralarda çiftleşirler. Döllenen dişi kan emmek için konağına saldırır, kan emer ve doyduktan sonra konağından ayrılarak çatlak ve yarıklara çekilirler ve buralarda yumurtlarlar. Dişiler kan emek için birkaç kez konağına saldırır ve her kan emişten sonra yumurtlar. Yumurtalardan uygun ısıda yaklaşık 3 hafta sonra larvalar çıkar. Larvalar konaklarına tutunarak kan emer ve doyduktan sonra kanağı terkeder ve bir hafta içinde gömlek değiştirir. Bunun sonucu oluşan 1. nymph'ler tekrar kanaklarına saldırır, kan emer doyar ve konaklarından ayrılarak değişik yerlere saklanırlar. Buralarda yaklaşık bir ay içinde 2. nymph olur. Bunlarda konaklarından kan emer, doyar ve konaklarını terkederek gizlenirler. Argas persicus'da 6-8 hafta sonra, A. reflexus'da ise bir yıl sonra erişkin kene haline gelirler. Bu kenelerin kan emme süreleri 2 saat kadardır. Konaklarından sadece geceleri kan emerler. Ayrıca ülkemiz iklim şartlarında kışın aktivite göstermezler. İlkbaharda havalar ısınınca aç döllenmiş dişi kan emerek biyolojik gelişmeyi başlatır. Argasidae ailesindeki kene türleri kümesIerde bulunan kanatlıların üzerine gelerek bütün gelişme dönemlerinde kan emerler. Özellikle geceleri hayvanları rahatsız ederler. Kanatlılarda huzursuzluğa ve dolayısı ile verim düşüklüğüne neden olurlar. Ayrıca ağır enfestasyonlarda anemi şekillenir. Yine A. persicus türü ördeklerde kene felcine neden olabilir. Argas türleri Anaplasma marginale, Aegyptionella pullorum, Borrelia anserina'nın (Spirochaetosis etkeni ) vektörlüğünü yaparlar. Bu cinse bağlı keneler kümesIere giren insanlarada saldırabilir ve kan emerler. Genus:Ornithodorus Bu cinste bulunan kenelerin yan kenarları yuvarlağımsıdır. Lateralde vücudun dorsal ve ventral yüzünü ayıran çizgi bulunmaz. Vücut dorso-ventral olarak yassılaşmıştır. Aç iken vücudu ince ve kenarları yukarı doğru kıvrılmıştır. Kan emmiş olanlarda ise kenarları yuvarlaklaşmıştır. Elipsoidal şeklinde olup, bazı türlerinde vücudun iki yanının ortası hafif içeri doğru çekik (konkav)dir. Erişkinlerin dorsalinde değişik kıvrımlar vardır. Göz çoğu türlerde bulunur. Bu cinse bağlı türler; Omithodorus laharensis, O. Moubata, O. turicata'dır. Bunlardan yaygın olan ve Türkiye'de de görülen tür O. lahorensis'dir. Bunlar ağıllarda saklanırlar. Toprak veya balmumu renginde olup, koyun ve keçilerden kan emerler. Ayrıca diğer hayvanlardan ve insanlardan kan emebilirler. Koyun ve keçiler bütün yaz mevsimini merada geçirip kış geldiğinde ahır veya ağıllara alındığında keneler bunların üzerine gelirler. Bunun için Ornithodorus 'lara kış kenesi adı verilir. Biyolojileri: Erişkinleri ağıllarda bulundukları çatlak ve yarıklarda çiftleştikten sonra erkekler ölür, dişiler kan emmek için konaklarına tutunurlar ve kan emerler. Doyduktan sonra konaklarını terkeder ve saklanırlar. Saklandıkları yarıklarda yumurtlarlar. Mayıs-Ağustos aylarında yumurtalarını bırakırlar. Yumurtadan yaklaşık bir ay sonra larvalar çıkar. Sonbahar başlarında çıkan larvalar, bu mevsimde havaların soğumasıyla ağıla sokulan hayvanlara saldırır ve kan emerler. Doyduktan sonra konağı terketmeksizin gömlek değiştirir ve l.nymph'ler oluşur. Daha sonra sırası ile konak üzerinde 2.ve 3. nymph'ler meydana gelir. Kan emip doymuş olan 3. nymph 'ler konaklarını terkederler ve saklanma yerlerinde gömlek değiştirerek erişkinler oluşur. Larvadan 3 nymph safhasına kadar olan dönem bir ay kadar sürer. Bir dişi kene bir kopulasyondan sonra hiç çiftleşmeden 2 yıl fertil yumurta bırakabilir. Erişkinler kan emmeden 10-l2 yıl yaşayabilirler. Ornithodorus türleri de geceleri konaklarından kan emerler. Bunlar her gelişme formlarında hayvanların boyun, sırt, vücudun yan taraftan ve kuyruk sokumu bölgesimde yapağı yada tiftik arasında bulunarak bu bölgelerin derisinden kan emerler. Bunun için hayvanlara ilk bakıldığında keneler görülmezler. Keneleri görmek için yapağı aralanarak el bu kısımlarda dolaştırılır ve parmak uçları ile kenelerin varlığı anlaşılır. Çok sayıda olduklarında hayvanlarda kondüsyonun düşük olduğu kış aylarında kan emerek anemiye sebep olurlar ve ekonomik kayıplara yol açarlar. Ornithodorus lahorensis Rickettsia, Tularemi ve bazı Trypanosoma türlerini taşırlar. Ayrıca bu cinse bağlı türler Q- humması etkeni olan Coxiella bumetii'yi naklederler. Konakçı bulamadıklarında insanlara saldırarak kan emerler ve onlarda bazen toksikasyon, felç ve ölümlere yol açabilirler. Genus: Otobius Otobius megnini türü Kuzey ve Güney Amerika, Güney Afrika ve Hindistan' da bulunur ve kulak kenesi olarak adlandırılır. Larva ve nymph 'leri çoğunlukla köpeklerin kulaklarında parazitlenir. Ancak diğer evcil hayvanlar, yabani hayvanlar ve insanlarda bulunabilir. Larvaları doyduklarında hemen hemen küreseldirler. Nymphleri orta kısımlarında daha geniştir. Bu cinsin erişkinleri parazit değildir. Erişkinleri beslenmezler ancak dişileri 500-600 kadar yumurtayı yiyecek depolarının altlarına, taş ve duvar çatlaklarına bırakırlar. Bunlar konaklarından kan emerek irritasyona ve yangıya neden olurlar. Sekunder bakterilerin işe karışması ile de daha da komplike olurlar. Verim düşüklüğüne neden olurlar. Ağır enfestasyonlarda kulak içinde paket halindeki larva ve nymphlerin görülmesi ile tanı konulur. O. megnini'den ayrı olarak tavşanlarda bulunan diğer bir türde O. lagophilus' dur. Özellikleri O. megnini 'ye benzer. Kenelerin Zararlı Etkileri 1. Kan emmeleri veya kan emdikten sonra kanamanın uzun bir süre devam etmesi sonucu anemiye neden olmaları. Bu etkileri ağır enfestasyonlarda görülür. Tek bir dişi kene günde 0.5- 2 ml kan emebilir. Böylece kenelerle enfeste hayvanlarda verim düşer ve hatta ölüm olayları görülebilir 2. Kenelerin konakları üzerinde yaralayıcı etkileri vardır. Kene kan emmek için deriyi soktuğunda deriyi delerek yaralanmalara ve dermatozlara neden olurlar. Ağır enfetasyonlarda bu yaralar piyojen bakterilerle sekunder olarak enfekte olurlar ve kene piyemisi şekillenir. Ayrıca bu gibi enfekte yaralar myiasis etkenlerini ortama davet eder. Myiasis etkenleri yumurta ve larvalarını buralara bırakırlar. Böylece sekunder hastalıklara ortam hazırlarlar. Deri kalitesi bozulur ve verim kaybı oluşur. 3. Kenelerin konakları için bir etkileride paralizIere neden olmalarıdır. Ixodes ve Dermacentor gibi kene türlerinin nymph ve özellikle erişkin dişilerinin tükrük salgısında bulunan toksin kene felcine neden olur. Arka ayaklardan başlayan ve öne doğru yayılan ve hatda ölümle sonuçlanan felç olayı oluşur. Bu toksin solunum ve sinir sistemini etkilemektedir. Kene felci ( tick parlysis) insanlarda özellikle çocuklarda ve evcil hayvanlarda görülmektedir. 4. Kene toksikozuna neden olmaları Hyalomma cinsine bağlı türler tarafından oluşturulur. Erişkin kene tarafından oluşturulan toxin ruminat ve dumuzlarda mukoz membranların hiperemisi ve yaş egzama ile karekterize terleme belirtilerine yol açar. Ayrıca Argas persicus türü ördeklerde kene toksikozuna neden olabilmektedir. 5. Kenelerin en önemli etkilerinden biride çeşitli hastalık etkenlerine vektörlük yapmalandır. Keneler protozoonlar, viruslar, bakteriler, riketsiyalar, spiroketler ve helmintlere biyolojik veya mekanik taşıyıcılık yaparlar. Paraziter enfeksiyonlardan Veteriner Hekimlik yönünden önemli olan Babesia ve Theileria etkenlerini nakletmeleri yönünden büyük önemleri vardır. Keneler bu hastalık etkenlerini iki şekilde naklederler.Bunlar; Transstadial nakil: Kenenin bir gelişme döneminde kan emerken aldığı hastalık etkenini bir sonraki gelişme döneminde kan emerken konağına aktarmasıdır. Üç konaklı keneler larva safhasında aldığı etkenleri nymph evresinde kan emdiği konağa aktarır. Nymph döneminde aldığı etkenleri ise erişkin safhada kan emdikleri konağa aktarırlar (iki konaklı kenelerde de bu durum görülür.). Hyalomma türlerinin Theileria annulata'yı nakletmeleri örnek olarak verilebilir. . Transovarial nakil: Tek konaklı kenelerde etkenler kenenin yumurtalarına geçer. Yumurtadan çıkan larvalar enfekte olduğu için bu dönemde kan emerken etkenleri konağa nakleder. Boophilus türlerinin Babesia türlerini nakletmesi transovarial nakildir. Kenelerin hastalık etkenlerini nakletmelerindeki yüksek potansiyeli şu özelliklerinden ileri gelir: 1. Sabit ve yavaş olarak kan emerler. Bu sırada konağı ile birlikte taşınarak geniş bir alana dağılırlar. 2. Çevre şartlarına oldukça dayanıklı olup, kolay kolay etkilenmezler. 3. Doğal düşmanları oldukça azdır. 4. Kene türlerinin çoğunluğu geniş bir konakçı spektrumuna (euroxene)sahiptir. Bu nedenle aç kalma ve ölme sorunları daha azdır. 5. Keneler uzun süre yaşarlar ve açlığa oldukça dayanıklıdırlar. 6. Kenelerin yüksek üreme güçleri vardır. Bazı türler 18.000'ne kadar yumurta bırakabilirler. 7. Birçok kene türü hastalık etkenlerini tansovarial olarak yeni nesillerine aktarırlar. Böylece bir enfekte keneden binlerce yeni enfekte nesiloluşur. Lyme hastalığı: Bu hastalığın etkeni spiroketalardan olan Borrelia burgdorferi'dir. Köpek, at, sığır, koyun, kedi ve insanlarda bildirilmiştir. Hastalığın vektörlüğünden birinci derecede sorumlu olan tür lxodes ricinus' dur. Bu mera kenesi türü etkenle bir defa enfekte olduktan sonra bütün ömürleri boyunca bulaşık kalırlar. Transstadial (%80) ve transovarial (%20) olarak nakledilirler. Lyme enfeksiyonunda ilk klinik belirti deride oluşan Erythema Chronicum Migrans (ECM)'dır. Bu klinik bulgu hastalık için patognomonik lezyon olup, deri döküntüsü şeklindedir. Buna yerel bir lenfbezi büyümesi, ateş ve halsizlik de eşlik edebilir. Ayrıca sinir sistemi, kalp ve kas iskelet sistemi ile ilgili belirtiler görülür. Suborder: Mesostigmata Mesostigmata alt takımındaki akarlar oldukça küçük olup, 1-2 mm büyüklüğündedirler ve kenelere benzerler. Vücutları gnathosoma ve idiosomadan ibarettir. Stigmaları bir çift olup, coxae'ların lateralinde yer alır. Bu alt takımda önemli olan aile; Familya: Dermanyssidae Bu aileye bağlı bulunan cinsler; Genus: Dermanyssus Genus: Pneumonysus Genus: Ornithonyssus Genus: Ophionyssus Genus: Allodermanyssus Genus: Varroa Genus: Dermanyssus Bu cinste bulunan ve yaygın olarak görülen tür Dermanyssus gallinae' dir. Bu türün erişkinleri 0.5-1 mm büyüklüğündedir. Vücudu oval şekilde ve ön tarafında ince uzun yapıda ağız organelleri bulunur. Vücudun dorsal kısmı yaka şeklinde küçük bir kitinle örtülüdür. Erişkinlerinde ve nymphlerinde 4 çift bacak bulunur. Uzun bacaklıdırlar. İdiosoma seyrek ve kısa kıllarla örtülüdür. Bu parazit tüm kanatlılardan kan emer ve fırsat buldukça da insanlara saldırabilir. Bu akarlar beyaz, gri veya siyah renkte olmalarına rağmen kan emince kırmızı renk alırlar. Bu nedenle tavukların kırmızı akan ya da "tavuk kırmızı biti" olarak adlandırılır. Bunlar kümesIerde hayvanların üzerinde ya da meskenlerde çatlak ve aralıklarda kum yığını halinde bulunurlar. Dişileri yumurtalarını buralara bırakır. Yumurtalardan çıkan larvalar gömlek değiştirirler ve I. nymph 'ler oluşur. Bunlar konaklarından kan emerler, gömlek değiştirirler ve 2. nymph'ler meydana gelir. Bunlarda kan emer ve gömlek değiştirerek erişkinler oluşur. Biyolojileri optimal şartlar altında 7 günde tamamlanır. Erişkinler kan emmeksizin 4-5 ay canlılıklarını korurlar. Dermanyssus gallinae'nin erişkin ve nymph'leri konaklarından kan emerler. Larvaları ise beslenmezler. Dermanyssus gallinae'nin erişkinleri ve nymph'leri değişik zamanlarda ve periyodik olarak kanatlılardan kan emerler. Gündüzleri ise kümesIerde saklanırlar. Evlerin çatısındaki güvercinlerde bulunduklarından buradan insanlara geçebilirler. Ayrıca kümese giren insanlara da saldırırlar. Bu parazitler özellikle yazın aktivite gösterirler ve uygun şartlarda çok çabuk ürerler. Konaklannı irrite ederek huzursuzlandınr ve kan emerek anemiye sebep olurlar. Bu durum yumurta verimlerinin düşmesine ve et verim kaybına yol açar. Ağır enfestasyonlarda ölüm olayları görülebilir. Bu ektoparazit türü kanatlıların spirochetosis etkeni olan Borrelia anserina'ya vektörlük yapar. İnsanları sokması sonucu deride kızarıklık, lokal olarak şişlikler, lokal ya da yaygın allerjik bozukluklar ve kaşıntıya neden olurlar. Bu parazit türüne kuş akarcığı adı da verilmektedir. Genus: Ornithonyssus (=Bdellonyssus, Liponyssus) Bunlar şekil ve biyolojileri bakımından Dermanyssus 'lara benzerler. Ancak bunların Vücudunda çok daha fazla uzun tüyler bulunur. Kanatlılardan, fare ve ratlardan kan emerler. Bunlara keme akarcığı adı verilir. Kan emmemişleri kirli sarı renkli olduğu halde, kan emrniş olanlan kırmızı - boz renktedir. Erişkinleri oval ve 1 mm uzunluğundadır. İnsanlara saldırdıklarında özelikle çocuklarda şiddetli yanma ve kaşıntıya neden olurlar. Bu cinste bulunan türler; Ornithonyssus sylviarum, O. bursa ve O. bacoti'dir. Fareler arasında rickettsia etkeni olan Rickettsia acari'yi naklederler. Genus: AlIodermanyssus Önemli tür Allodermanyssus sanguineus' dur. Bunlar fare ve ratlarda bulunurlar. Özellikle evcil rat ve farelerden kan emerler. Bunun için ev fare akarı adını alırlar. Biyolojileri Dermanyssus'lara benzer. Bu tür fare ve ratlar arasında veya bunlardan insanlara riketsiyal çiçek etkeni olan Rickettsia akari'yi vektörlük yaparak bulaştırırlar. Genus: Pneumonyssus Pneumonyssus cinsine bağlı türlerden P. caninum köpeklerin burun yollarında ve nasal sinuslarda, P.simicola ise maymunların bronşlarında parazitlenir. Biyolojileri iyi bilinmemektedir. Bulaşmanın direkt temasla olabileceği kaydedilmiştir. Genus: Ophionyssus Bilinen tür Ophionyssus natricis'diro Yılanların akarıdır. Sarımsı kahverengindedirler. Ancak kan emdiklerinde koyu kırmızı renk alırlar. Biyoloji ve beslenme özellikleri Dermanyssus 'lara benzer. Ağır enfestasyonlarda anemi, zayıflama ve ölüme yol açarlar. Ayrıca yılanların bakteriyel bir patojeni olan Aeromonas hydrophila 'yı mekanik olarak naklederler. Yılanların diğer akarları olan Entonyssus ve Entophionyssus cinsleri trachae ve akciğerlerde parazitlenirler. Genus: Varroa Species: Varroa jacobsoni (Arı akarı) Ergin dişileri 1.2 mm uzunluğunda ve 1.5 mm enindedir. Vücutları dorso-ventral olarak yassıdır. Dişi varroa 'lar enine ovalimsi, erkekler ise yuvarlağımsıdır. Erkek varroa 'lar 0.8 mm uzunlukta ve 0.7 mm enindedir. Dişi akarlar açık veya koyu kahverenklidirler, erkekler ise beyaz gri veya sarımtrak renklidirler. Ergin dişilerde sırt kısmı hafif dış bükeydir. Vücut sert kitini tabaka ile örtülüdür. Dorsalden bakıldığında ağız organelleri ve bacakları iyi görülmez. Vücut gnathosoma ve idiosoma olmak üzere iki kısımdan oluşmuştur. Ağız organelleri delici ve emici tiptedir. Bir çift cheliserleri vardır. ve bu arı derisinin delinmesinde rol oynar. Bunların kenarında bir çift pedipalp bulunur. Erişkin varroalarda 6 eklemli 4 bacak bulunur. Erkek akarların ağız organelleri hemolenf emmeye elverişli değildir. Dişileri ise uygun ağız organelleri ile arı yavrularının ve erişkin arıların hemolenfini emer. Varroa jacobsoni'nin vücudunun sırt kısmında ve yanlarında diken gibi kıllar bulunur. Bu kıllar akarın arı üzerinde durmasını sağlar. Bu tür arıların genellikle baş ve thorax arasına yerleşir. Solunum çok iyi gelişmiş olan trake sistemiyle olur. Biyolojileri: Varroa jacobsoni'nin biyolojisi ilkbaharda arı larvasının yetiştirilmeye başlamasıyla başlar ve sonbaharda son genç işçi arılar çıkıncaya kadar devam eder. Kışı ergin dişi olarak geçirir. Bu akar erkek arılar üzerinde yaşar. Üreme için özellikle erkek arı gözlerini seçer. Varroa 'ların erkek arıları tercih etmelerinin bir çok nedenleri vardır. Bunlar; erkek arı larvalarının kapalı göz içinde kaldıkları sürenin daha uzun olması, kovanda erkek arı gözlerinin daha çok peteklerin alt ve yan kenarlarında bulunması, erkek arı larvalarının dişilerden daha fazla besinle beslenmesi ve hormonal etki gibi faktörlerdir. Kışı ergin arılar üzerinde geçiren döllenmiş dişi parazitler ilkbaharda gelişmekte olan 5-6 günlük larvaların bulunduğu petek gözlerine, gözler kapatılmadan 1-2 gün önce girerler. Dişi akar larvanın hemolenfini emer ve 2-9 adet yumurtasını buralara bırakır. 2-3 defa bulunduğu yere yumurtlayabilir. Yumurtalardan 24 saat sonra 3 çift bacaklı larvalar çıkar. Bunlar 2 gün sonra gömlek değiştirerek 1. nymph (protonymph) olur. Bu 4 çift bacaklı 1. nymphler larvanın hemolenfini emer ve gömlek değiştirerek 3-5 günde 2. nymph (deutonimf) ler oluşur, 2. nymph dönemi 1-2 gün sürer ve bunlar arı pupasının kan sıvısı ile beslenirler. Bunlardan da erişkin akarlar oluşur. Dişi varroa 8-10, erkek erişkin ise 6-7 günde yumurtadan oluşur. Ergin erkek ve dişi akar petek gözlerinde çiftleşir ve erkekler kapalı göz içerisinde ölürler. Bunun için arılar üzerinde erkek varroalara rastlanmaz. Çiftleşmiş genç dişi varroalar ise gözler içerisinde genç arıya tutunarak beslenmelerini sürdürürler ve arıyla birlikte gözden çıkarlar. Döllenmiş olarak gözden çıkan varroalar 5 gün sonra yumurtlamaya başlarlar. Yani bu akarlar bir süre sonra tekrar yavru gözlerine dönerek yumurtlamaya başlarlar. Erişkin dişi akarlar yazın 2-3 ay, kışın ise 5-8 ay yaşamlarını sürdürürler. Varroa'ların üreme potansiyelleri çok yüksektir. Bir nesilden diğer neslin oluşmasına kadar geçen süre yaklaşık 7 gündür. Erkek arılarda ise biyolojik gelişme 24 gün olduğundan, bir nesil arı oluşana kadar varroalarda 3 nesil meydana gelmektedir. Varroaların yaşaması ve çoğalması için mutlaka bal arısının hemolenfini emmesi gerekmektedir. Bulaşması: Bulaşma daha çok arıdan arıya olmakla beraber bunda gezginci ancılığında rolü vardır. Türkiye'ye Bulga.rİstan'dan geçtiği ve Trakya yöresinden de Ege bölgesine yayıldığı ve göçer ancılar vasıtasıyla bütün illerin bulaşık olduğu bildirilmiştir. Bulaşmada arıcılarında rolü vardır. Bulaşık arı kolonilerinden sağlıklı ailelere yavru ve genç işçi arı verilmesiyle, ailelerin kontrolsüz birleştirilrneleri ile ve işçi arıların çiçekten çiçeğe konarken akarı oralara taşımasıyla olmaktadır. Klinik belirtiler: Arı varroasis'ine neden olan Varroa jacobsoni ergin an ve larvaların hemolenfini emdiği için, yavru arı ve ergin anlara zarar verirler. Arılar güçsüz düşerler ve akarlardan kurtulmak için büyük gayret sarfederler ve bunun sonucunda da huzursuz olur ve uzun bir can çekişmesinden sonra ölürler. Ölümler kovan dışında olur. Enfeste arılar iyi uçamazlar. Sıcak havalarda enfeste arılar kovan uçuş deliğinin önünde sürünürken görülürler. Bu akarlar beslenirken yaralar açarlar ve bu yaralardan bakteriyel etkenler arılara girerek septisemiden ölüme neden olurlar. Ayrıca varroasis'de etkenler erkek arılar üzerinde daha yoğun bulunduklarından, kovanda erkek arı sayısı belirgin sayıda azalır ve cinsel güçleri düşer. Yine ana arı ve işçi arıların ömürleri kısalır ve işçi arılar normalden daha küçük olurlar. Arı larvaları rahatsız oldukları için petek gözünden dışarıya çıkarlar ve kovan dip tahtasının üzerine düşerler ve hatta bunlardan oluşacak arılarda da anomaliler oluşur. Bazen ölü larvalar dışarıya atılamazlar ve gözler koyu renkli olup, deliklerin çerçevesi beyazlaşmıştır. Arılarda yüksek kayıplar kışın ortaya çıkar. Ana arının yumurtlama yeteneğinin azalması ve işçi arıların beslenme yeteneklerinin bozulması ile ekonomik kayıplara yol açarlar. Varrosis’ de teşhis: Kovanın dip tahtası üzerine konan kağıt üzerine düşen akarları toplayıp inceleyerek, kapalı erkek yavru gözleri ince uçlu bir pensle açılarak dışarı çıkarılan larvaların üzerinde akarlar aranarak konulur. Erişkin dişi akarları çıplak gözle görebiliriz. Ancak nymphler için büyüteç yada en iyisi stero -mikroskop altında incelenmeyle teşhis edilir. Ergin arılar üzerindeki varroaları görmek için ise 200 kadar arı örneği bir fırça ile toplanır. Kavanoza konan bu örnekler üzerine sıvı deterjanlı sıcak su dökülür. Arılar tel süzgeçle sallanarak ayrılır ve dipteki tortuda parazitler aranır. Ayrıca arılar etilasetat ile öldürülür, alkolde yıkanır ve akarın an üzerinden ayrılması sağlanır. Çöküntü stero- mikroskopta incelenir. Kontrol: Varroasis'e karşı kimyasal mücadele erken ilkbahar ve geç sonbahar aylarında yapılır. Bu zamanlarda kovandaki bal miktarı az olduğu için kullanılan ilacın bala geçmesi gibi bir sorunun da önüne geçmiş olunur. ilaçlama için en uygun zaman arıların kovana döndükleri güneş batımından sonraki akşam üzeri yapılır. Bunun için gaz halinde kullanılan fumigantlar, toz şeklinde kullanılan ilaçlar, kontakt etkili ilaçlar ve şurup, kek gibi oral yolla etkili ilaçlar olarak gruplandırılan insektisit ve akarisitler kullanılır. Bunun için ülkemizde kullanılan ilaçlar; Perizin (Diethyl-thiophosphate), Folbex-VA (Bromopropylate), Varation-TKV (Malathion % 0.1), Varroacide ( Amitraz ), Vamitrat- Va ( Amitraz ) ve Apistan ( trifuoromethyl, sentetik pyretroiddir )'dır. Kontrol'de ayrıca biyolojik mücadele ve fiziksel mücadele metotlarıda kullanılmaktadır. Suborder: Prostigmata Bu alt takımdaki parazitlerin stigmaları gnathosomanın kaidesinde bulunur. Bulunan aileler; Familya: Trombiculidae Familya: Cheyletiellidae Familya: Demodicidae Familya: Myobiidae Familya: Pediculoididae Familya: Psorergatidae Familya: Tarsonemidae Familya: Trombiculidae Bu aileye bağlı Trombicula, Neotrombicula ve Leptotrombicula cinsleri bulunur. Bu cinslere bağlı türler ise T.dicoxale, T.minor, T.sarcina, T.akamushi ve N. autumnalis'dir Bunlardan yurdumuzda koyun ve sığırlarda saptanmış olan tür Trombicula dicoxale'dir. Ayrıca ülkemiz için en önemli türlerden birisi de N autumnalis' dir. Bu ailede bulunan türlerin erişgin ve nymph 'leri mera ve çayırlarda, kırsal, çalılık ve taşlık yerlerde serbest olarak yaşarlar. Bu evreleri parazit değildir. Ancak larvaları insan ve hayvanlardan lenf sıvısı emerek parazitlenirler. Erişkinleri 2 mm büyüklüğünde, gnathosoma üçgen şeklinde ve vücut cephalo-thorax abdomen şeklindedir. Vücut abdomenden sonra bir boğumlanma ile ayrıImıştır. Erişkin ve nymph 'lerinde görülen bu boğumlanma larvalarda görülmez. Erişkinleri beyaz sarımtrak renklidir ve vücutları sık kıllarla örtülüdür. Şeliserleri tırnak biçiminde ve uçları sivridir. Larvaları 0.2 -0.5 mm büyüklüğünde ve vücut toparlağımsıdır. Larvaların üzeri ince tüylerle kaplı olup, sarıdan kırmızı turuncuya kadar değişen renkte ve dorsal kısımda küçük bir kitini plaka taşırlar. Biyolojik gelişmeleri şöyledir. Trombikulid yumurtaları erişkinler tarafından toprağa veya otlar üzerine ilkbahar aylarında bırakılır. Yumurtalardan 6 bacaklı larvalar çıkar. Bu larvalar bulunduğu ortamdaki kuşlara, reptillere ve memelilere saldırırlar. Larvalar fare gibi küçük omurgalı konaklarda kulaklara yerleşebilir. Buralarda şeliser ve hipostomlarını deriye sokarak beslenirler. Bu esnada tükrüğe benzer bir madde salgılarlar. Larvalar daha sonra yere düşer ve dinlenme dönemi olan deutonimfler oluşur. Daha sonra ikinci dinlenme dönemi olan tritonimfler meydana gelir ve bunlarda erişkin akarcıklar haline geçerler. Trombicula larvaları bulundukları yerlerde başta tavşan, kemirgenler ve kuşlar olmak üzere değişik memeli hayvanlara ve insanlara sadırırlar. Bunlar özellikle ayak kısımlarında, şeliserleri ile tutunduğunda dermatitlere neden olurlar. Uyuz benzeri belirtiler ortaya çıkar. Sokulan yerde ortaları solgun, kenarları hiperemik lezyonlar oluşur, bu lezyonlar zamanla nekrozlaşır. Bazen kırmızı papüller meydana gelir ve bunlar kaşıntılıdır. Larvaların yaptığı bu lezyonlara güz uyuzu yada çalılık uyuzu adı verilir. Zamanla lokal direnç nedeniyle 4-8 gün içinde larvalar kendiliğinden deriden yere bırakılır. Bu türlerden T akamushi insanlara akarcık tifusu etkeni olan Rickettsia tsutsugamushi'yi bulaştırırlar. Bu durum özellikle uzak doğuda önemlidir. Oluşan şiddetli kaşıntıya karşı soğuk su banyoları veya kompresleri, antihistaminikli kremler uygulanır. Kaşıntıyı önlemek için %5 benzocaine, %2 metilsalisilat, %0.5 salisilik asit, %72 etanol ve % 19.5 su karışımı kullanılır. Familya: Tarsonemidae Bu ailede bulunan akarlardan Tarsonemus hominis türü insanların ürogenital organlarında bulunmuştur. Bu türden ayrı olarak özellikle hekimlik açısından önemli olan ve arıcılık sektöründe sorun oluşturan ve arılarda görülen akar türü ise Acarapis woodi' dir. Acarapis woodi'ye yaşlı arılarda yani ergin arılarda 1. göğüs stigmasının gerisinde yer alan trachea ( soluk borusu) ve bunun dallarında rastlanır. Bunun için arıların trachea akarı olarak bilinir. Hindistan ve Pakistan'da yaygındır. Erişkin akar 80 -120 mikron büyüklükte olup, trcheada rahatlıkla hareket eder ve kanat köklerine yerleşerek arı hemolenfi ile beslenir. Uzun ve delici olan ağız yapısıyla trachea duvarım delerek hemolenfı emer. Döllenmiş dişi yumurtalarını tracheaya bırakır ve sırası ile larva, nimf ve erişkin safhaları görülür. Bulaşma arıdan arıya contact temasla olmaktadır. Klinik olarak trachea çevresinden hemolenfin akması sonucu kabuklaşma görülür. Oksijen değişimi engellendiği için arılar ölürler. Büyük kayıplar arıların kovanda bulunduğu kış başlangıcında meydana gelir. Enfestasyon ilkbaharda ortaya çıkar ve enfeste arılar uçamaz ve sürünerek yürürler. Teşhis için trachea açılarak üzerine lamel kapatılır ve mikroskopta erişkin yada larva formları aranır. Ayrıca enfeste arıların tracheaları kahverengindedir. Normalde soluk borusu beyaz renklidir. Mücadelede akarları tam anlamıyla eradike edebilmek için birer hafta arayla 7 kez ilaçlama yapılmalıdır. Fumigasyon şeklinde kullanılan ilaçlar tercih edilir. İlaçlama anında kovandaki tüm delik ve çatlaklar kapatılmalı ve ilaçlama sonrası hemen açılmalıdır. ilaç uygulaması 10 gün sonra tekrarlanmalıdır. Familya: Pediculoididae (= Pyometidae) Önemli tür Pediculoides (= Pyometes) ventricosus'dur. Dişileri 220, erkekleri ise 150 mikron uzunluğundadır. Dişilerin arka uçu kesemsi koniktir. Bu türün sadece dişileri insanlarda ve hayvanlarda parazitlenir. Tahıl ambarlarında yaşayan insektIerin yada bunların gelişme dönemlerinin üzerinde bulunurlar. Bu akarlar bitki tohumlarına saldıran böceklerle beslenirler. Özelliklede bu böceklerin larvalarıyla beslendikleri için faydalıdırlar. Ancak bu ambarlara giren insan ve evcil hayvanlara da saldırarak kaşıntılı dermatitlere neden olurlar. Özellikle tahlıların bol olduğu yaz aylarında ve harman zamanında yaygındırlar. Biyolojileri farklılık gösterir. Deriye tutunan dişinin uterusundaki yumurtalardan larvalar gelişir. Her dişide 100-300 kadar larva gelişebilir. Bu larvaların sadece % 3-4'ü erkektir. Bu erkekler de ananın genita! deliğine yakın dururlar ve genç dişileri delikten çıkma esnasında döllerler. Her erkek 30 kadar dişi ile çiftleşir. Daha sonra dişiler yeni konak ararlar. Yaz aylarında tahılların bol olduğu dönemlerde 3-4 ayda bir yeni nesiller gelişir. Biyolojik gelişme için en uygun sıcaklık 26-28oC'dir. 25derecede'de yaklaşık 10 günde yeni nesiller ortaya çıkmaya başlar. Bunların yalnız dişileri insanlara saldırarak uyuz benzeri belirtilere neden olurlar. Bunun için Piyometes ventricosus'un konakların derilerine yapışarak parazitlenmesi sonucu oluşan dermatite "arpa uyuzu" ya da "Acarodermatitis urticarioides" adı verilmektedir. Tahıl uyuzu etkenleri olan bu akarcıklar başlangıçta açıkta olan kol, yüz, el ve bacakları sararlar ve zamanla tüm vücuda yayılırlar. Deride önce kabarcıklar, veziküller ve kaşıma sonucu peteşiyel kanamalar ve kızarıklıklar görülür. Buralarda kaşıntı sonucu yaralar oluşur. Bu yaralardan yapılan preparatlarda akarların görülmesiyle tanı konulur. Familya: Cheyletidae (= Cheyletiellidae ) Bu ailede bulunan akarların kutikulaları yumuşaktır ve şeliserleri uzundu. Palpleri 3-5 eklemden oluşmuş olup, uçlarında iri kanca bulunur. Memelilerde ve kuşlarda ektoparazit olarak yaşarlar. Bazı türler ise doğada serbest olarak yaşarlar. Memelilerde bulunan cins; Genus: Cheyletiella Bu cinsdeki türler köpek, kedi ve tavşanlarda parazitlenirler. Bağlı türler; Cheyletiella parasitivorax: Tavşanlar konaklandır. C. yasguri: Köpeklerde C. blakei: kedilerde C.strandtmanni: Yabani tavşanlarda C. .furmani: Tavşanlarda bulunur. Bu türlerin büyüklüğü 0.4 x 0.25 mm kadardır. Bu konakların kılları arasında yaşarlar ve çok hızlı hareket ederler. Konaklarının lenf sıvısını emerek beslenirler. Dişi parazitler yumurtalarını iplik benzeri bir salgı içerisinde kıllara yapıştırarak bırakırlar. Yumurta içinde önce prelarvalar ve bunlardan larva oluşur ve yumurtayı terkederler. Daha sonra sırası ile I. dönem nymph ve erişkinler oluşur. Cheyletiella cinsindeki bu parazitler konaklarında kılların keçeleşmesine ve karışık bir görünüm kazanmasına ve nisbetende kıl dökülmesine neden olurlar. Tüm dünyada yaygın olarak bulunan bu parazitler hayvan bakıcılarına ve sahiplerine de geçebilmektedir. İnsanlarda kaşıntı ile seyreden bir dermatite neden olmaktadırlar. Kontakt temasla insanlara geçen bu akarlar irrtasyon, eriytem, vesicül ve pustullere yol açarlar. Bu türlerin enfestasyonlarının teşhisi için şüpeli kısımlardan kıllar alınır ve mikroskobik bakıda iplik benzeri maddeyle kıllar üzerinde bulunan yumurtaların görülmesiyle konulur. Yada lezyonlu kısımların bir sıvı yağ veya gliserin ile yumuşatılmasından sonra kazıntı alınır ve mikroskobik olarak incelenerek tanı konulur. Bunlardan başka en iyi tanı metodlarından birisi de, Cheyletiella türleri hareketli olduklanndan kıllar aralanır ve selefobant yapıştırılır. Daha sonra bu bant kaldırılarak bir lam üzerine yapıştırılır ve akarlar incelenir. Familya: Psorergatidae Genus: Psorergates Bu cinse bağlı bulunan ve koyunların derisinde parazitlenen tür Psorergates ovis' dir. Avustralya, Yeni Zellanda ve Güney Afrika'da yaygın bir türdür. Akarlar oldukca küçük ve küreselolup, 0.2 mm' den daha küçüktürler. P. ovis özellikle yapağısı bol merinos koyunlarında parazitlenirler. Koyunlarda kaşıntıya neden olurlar. Yünler matlaşır ve hayvanlar kaşıntıdan dolayı kendilerini yani yapağılarını ısırırlar ve yapağının yolunarak dükülmesine yol açarlar. Teşhisi uyuzun tanısında yapılan işlemler gibi yapılarak konulur. Familya: Myobiidae Bu aileye bağlı olarak Myobia musculi türü bulunur. Farelerde ve ratlarda parazitlenir. Laboratuvar hayvanlarında hafif bir dermatitise neden olur. Farelerde kıl kaybına yol açarlar ve bulaşma temasla olur. Büyüklükleri 350-500 mikron kadardır. Biyolojilerini 12-13 günde tamamlarlar. Konaklarında uyuz benzeri lezyonlar oluştururlar. Myobiidae ailesine bağlı diyer bir cins Syringophilus'dur. Kanatlılarda bulunur. Bu cinse bağlı Syringophilus columbae güvercilerin, S. uncinata türü ise tavus kuşlarının tüylerinin dip kısmında yerleşirler. Familya: Demodicidae Bu ailede bulunan ve tüm evcil hayvanlarda ve insanlarda rastlanan cins Demodex' dir. Demodex cinsindeki türlerin insan ve hayvanlarda meydana getirdiyi hastalığa "Demodicosis" adı verilir. Demodex'ler diğer uyuz etkenlerinden farklı yapıda bir vücut morfolojisine sahiptirler. Demedex türlerinde vücut caput, thorax ve abdomen olarak ayrılmıştır. Vücudun arka ucu geriye doğru kuyruk gibi uzamış ve kurtçuk şeklindedir. Abdomenin üzeri enine çizgilidir. Erişkinleri 0.1-0.4 mm uzunluğundadır. Şeliserleri kısa, kalın ve makas gibidir. Hipostom delik biçimindedir. Palpleri iki segmentlidir. Bacaklar 4 çift olup, thoraxdan çıkarlar ve çok kısa, kalın ve üç boğumludur. Ayrıca tarsuslarının uç kısımlarında birer çift kalın ve sivri tırnak bulunur. Çiftleşme organı 4. çift bacak koksaları arasında bulunur. Larvaları 3 çift bacaklıdır. Demodex cinsine bağlı bulunan türlerden insan ve domuzlarda bulunanlar hariç konak isimlerine göre adlandırılırlar. Bu türler ve konakları Demodex folliculorum: İnsan D. phylloides : Domuz D. ovis: Koyun D. canis: Köpek D. equi: Tektırnaklılar D. cati : Kedi D. caprae: Keçi D. bovis: Sığır D. cuniculi : Tavşan Bu türler konaklarının kıl folliküllerine ve yağ bezlerine yerleşerek folliküler uyuza neden olurlar. Biyolojik gelişmelerinde sırası ile yumurta -larva -1. nymph (protonymph) -2. nymph ı-- (deutonmyph) ve erişkin dönemleri bulunur. Gelişmelerini 9-14 günde tamamlarlar.

http://www.biyologlar.com/aracnida-aracbnoidea-sinifi

Parazit çeşitleri

Daha çok bilgi için: Parazitik ikizler ve Parazitik yapışık ikizler Parazitler host üzerindeki etkileşimlerine göre sınıflandırılırlar. Ciddi olanlarına köpeklerdeki kalp kurdu örnek verilebilir. Konağın dış yüzeyinde yaşayanlar Dış parazitler (örnek Akarlar) ve içinde yaşayanlar İç parazitler (tüm Parazitik kurtlar). Bazen taşıyıcı olan Ara konaklar üçüncül bir parazit veya hastalığı bulaştırabilirler. Hücreler içi parazitlere örnek çeşitli mikroplar olabilir. Saz ardıçkuşu tarafından büyütülen bir Ağaçkakan.Sıradışı parazitizme karıncayı yavaş yavaş içten yiyen Ophiocordyceps unilateralis olarak bilinen bir mantar verilebilir. Bu noktadan sonra mantar karıncanın beynine yerleşmeye başladığında bir çeşit zombiye dönüşen karınca mantarın yönlendirmesine göre yürümeye başlıyor. Özellikle Tayland’ın bazı bölümlerinde görülen bu mantar türünün ele geçirdiği karıncalar daima ormanların içlerine doğru yürüdükten sonra yerden yaklaşık 25 cm yukarıdaki mantarın üremesine elverişli yapraklara dişleri ile tutunup hareketsiz kalıyorlar. Bundan sonra mantar kurbanına başka parazitlerin de bulaşmasını engellemek için karıncanın etrafında bir koza örüyor ve ziyafetine devam ediyor. Mantarın karınca'nın beynini nasıl kontrol edebildiği ve en son olarak karıncanın çenesini kapalı tutan kasları yemesi ise bilim adamlarını şaşırtan bir detaydır. Kleptoparazitizm bir canlının diğer bir canlının av veya gıdalarından faydalanmasıdır, bu tür parazitime örnek olarak bitki bitinden çıkan şekerli salgıları sağmak için onları kültive eden karıncalar verilebilir aynı zamanda bu davranışa yakın bulunan Sosyal parazitlere diğer kuşları yavrularının babysitterliğe manupule ederek yetiştiren, yumurtasını bıraktığı genç kuluçkalı yuvada bakıcı konağı yumurta ve yavrularıyla ilgilenilmeyince bir ya da iki yumurtasını yuvadan atan bazende yıkarak zarar veren kuş, balık, böcek çeşitlerinin dahil olduğu Kuluçka parazitizmi 'örnek verilebilir. İşgal, mafya, savaş ve evrim senaryolarına konu olmuş bir parazitoloji çeşitidir. Eklembacaklı konağı yumurtalarını suya bırakacağı zaman boğulmaya teşvik ederek intihar ettiren Kılımsısolucanlar ya da Aykılı adı verilen Nematorpha türü ise söylentilerin aksine insanda yaşamaz. Tıp ve Alternatif Tıp'ta Çin aktarları parazitik solucanları afrodizyak, görmeyi artırmak vb faydaları için kullanmışlardır. Sosyo ekonomik düzeyi düşük kişilerde gelişmiş ülkelere göre özellikle kanser, enflamatuar bağırsak hastalıkları, kireçlenme gibi rahatsızlıkların daha az görülmesi Amerikalı bazı profesorlerin dikkatini çekmiş risk altındaki kişilere solucan yumurtaları verilmesi ile deneylere başlanmıştır. Bu araştırmalar tartışma aşamasında ve kansere yakalanmamış hastalar için geçerlidir. Östrojen salınımı azaltan kist hidatikin meme kanseri riskini düşürerek, erken alındığında bulunduğu bölgedeki kanser oluşumları'da tartışılmıştır. Bazı formuna önem veren balet, aktrist gibi sanatçılar tenya yumurtası yutarak obeziteye karşı sağlıklı olduğunu düşündükleri yöntemleri uygulamıştır. Bazı balık türleri sedefli, funguslu cilt hastalıklarında ve sülük çeşitleri kirli kanın temizlenmesinde, adi sinek kurtçuklarıda gangrenli ve toksik dokuları temizlemesinde kullanılmıştır, Bazı kuş türleri tüylerinin arasına yerleştirdikleri canlı karıncalar yardımıyla temizlenir. Adi sineğin larvasında bulunan toksinden bilimadamları güçlü yeni bir antibiyotik üzerine çalışmalarını sürdürmektedir bu yine hayvanseverlerinde tepkisine yol açmıştır. Bazı kuş türleri timsahın diş aralarındaki artıklarla beslenirken timsah ağzını açık bırakmaktadır. Bazı ufak balık türleri köpekbalıklarının üzerine yapışarak atık derilerdeki bakteri oluşumunu engellemektedir, köpekbalığı ve timsah gibi vahşi türlerin kendilerininde bu yaratıklara nezaketli davranmaları doğal seleksiyonda dayanışma olabileceği gibi zayıf bir bünye yada aç yeni bir parazit için yukarıda sayılan dostluklar her koşulda geçerli olmayabilir.

http://www.biyologlar.com/parazit-cesitleri

Sivrisinek türleri ( Culicidae )

Sivrisinek türleri ( Culicidae )

Bilimsel sınıflandırma Alem: Animalia Şube: Arthropoda Sınıf: Insecta Takım: Diptera Alt takım: Eudiptera Familya: Culicidae Sivrisinek, (Culicidae) familyasından dişileri kan emerek yavrularını besleyen böcek türlerine verilen ad. Bir sivrisinek basitçe, baş, gögüs, ve karın kısmından oluşur. Başının iki yanında antenleri vardır. Erkek sivrisinekler, dişileri kanat çırpma seslerinden tanıyabilirler. Göğüs kısmında kanatları ve 3 çift ayakları bulunur. Karınları ise onlara kendi ağırlıklarından fazla kan emme şansı tanıyacak biçimde esnek bir deriye sahiptir. Böylece şişerler ama patlamazlar. Kan emerek beslenen "sivrisinek" çok mükemmel bir pompalama mekanizması kullanır: Başının içi, tümüyle kaslarla kaplı boşluklar şeklinde dizayn edilmiştir. Buradaki kaslar kasılıp gevşediklerinde sineğin borusunun iki ucu arasında 1-2 atmosferlik basınç farkı oluşur ve kan saniyede 5 metrelik bir hızla yükselmeye başlar. Bu yüksek akış hızına rağmen sivrisineğin ne borusunda ne de başka herhangi bir dokusunda tahribat ve çatlama olmaz. Çünkü kanın geçiş yaptığı tüm dokular kanın bu hızı ve basıncına dayanabilecek yapıdadır. "sivrisinekler" vücutlarının altı katı kan emerler; bu 15 dakikada 300 mikrolitre kan demektir. Bu bir insanın aynı süre içinde 200 kilo su içmesine denktir. Tüm kan emiciler gibi, ne zaman kan emmeyi durduracaklarını söyleyen, sinir sistemine bağlı gerginlik algılayıcılarına sahiptirler. Sivrisineklerin yaşamak için şekere, protein'e ihtiyaçları vardır. Bunu da bitki ve meyve sularından elde ederler. Kana ise yalnız dişi sivrisinekler muhtaçdırlar, çünkü dişiler yumurta üretirler ve bunun için kana ihtiyaç duyarlar. Sivrisinek cilde en yakın olan damarı tespit ettikten sonra alt ve üst çene yardımıyla altı bıçaktan oluşan kesme sistemiyle deriyi derinlemesine keserler. Bu bıçaklardan birinden akıtılan sıvı dokuları uyuştururken aynı zamanda kanın pıhtılaşmasını engelleyerek kanın dişi sivrisineğin karnına doluşunu devam ettirir. Sivrisinekler kan taşıdıkları için hastalık bulaştırma riskleri vardır. Örneğin sarı humma, fil hastalığı ya da sıtma gibi parazit hastalıklarını taşıyabilirler. AIDS'e sebep olan HIV virüsü ise bu canlılarda gelişme ortamı bulamaz. Virüsler sivrisinekler tarafından taşınmaz. Sivrisinekler yaşamlarını dört evrede tamamlarlar. Yumurta, larva, pupa ve ergin dönem. Bunlardan ilk 3 dönem suda tamamlanır. Sivrisinekler doğru bilinenin aksine kışın da hangi evrede olursa olsun yaşayabilir. Yumurtadan çıkan sivrisinek yavrularının (pulpa), büyüme evrelerini tamamlayabilmeleri için küçük bir su birikintisine ihtiyaç duyar. Bu, çamurlu bir yağmur suyu, bataklık, çeltik, havuz suyu ya da teneke kapta birikmiş bir su olabilir. Ancak durgun sular sivrisineklerin tercih sebebidir. Çünkü bu sular, içerdikleri fotosentez yapabilen bitki öbekleri sayesinde, oksijence zengindirler. Sivrisinek yumurtaları su bulunan her ortamda gelişebilirler, ancak bazı şartların sağlanması gerekir: Yumurtadan çıkacak olan larva, yetişkin bir sinek oluncaya kadar farklı evreler geçirecektir. Her evrede de yavru sineğin farklı ihtiyaçları olacaktır. Kuraklık ve aşırı sıcak da yumurtaların gelişimini engelleyebilir. Bu yüzden anne sivrisinek doğacak yavruların tüm gelişme evrelerini rahatça tamamlayabilecekleri bir ortam bulmak zorundadır. Dişi sivrisinek, karnının altında bulunan alıcı bir anten sayesinde, toprağın nem ve sıcaklık bakımından yumurtalarını bırakmaya uygun olup olmadığını tespit edebilir. Sivrisineklerin çiftleşmesi havada uçarken gerçekleşir. Erkeğin dişisini havada tutmak için kullandığı kıskaçları vardır. Fakat erkekler erişkin bir sivrisinek olana kadar, yani kısa yaşamlarının ilk 24 saati boyunca çiftleşemezler. Çünkü bu süre içinde antenleri henüz kurumadığından sağırdırlar. Bu yüzden dişilerin kanat seslerini -yani çiftleşme çağrılarını duyamazlar. Sivrisineklerde işitme yeteneği çok gelişmiştir. Erkeğin kafasından çıkan 2 tane küçük ve tüylü antende bulunan çok sayıda duyu hücresinden meydana gelmiş "Johnston organı", ses dalgalarının titreşimlerini alır ve ayırt eder. Bu tüylü duyargalar yalnızca dik durumdayken ses titreşimlerine karşı duyarlıdırlar. Dişi sivrisineğin kanatlarından çıkan ses erkek sivrisineği etkileyen en önemli faktördür. Dişinin kanat sesleri, erkeğin antenindeki reseptör hücreleri titreştirir ve sivrisineğin beynine elektrik sinyallerini gönderir. Dişiler kanatlarını erkeklerden daha hızlı çırparlar ve dişinin kanatlarından çıkan titreşimler erkeklerde çiftleşme isteğini artırır. Sivrisinek sürüsünün içine düşen bir dişi, erkeklerden biri tarafından farkedildiğinde, erkek sivrisineğin cinsel organının yanında bulunan özel kıskaçlarla tutulur ve çiftleşme genellikle havada bazen de yerde gerçekleşir. Çiftleşmeden sonra erkek, sürüsüne geri döner ve bir süre sonra da ölür. Çiftleşme gerçekleştikten sonra dişi sivrisinek, erkeğin spermlerini özel bir kesede muhafaza ederek, haftalar boyu döllenmiş yumurta yumurtlayabilir. Bir dişi bir defada 200-400 arası yumurta yumurtlar. Dişi sivrisinek çiftleşme anından itibaren kan emmeye başlar, çünkü yumurtalarının gelişebilmesi için kana ihtiyacı vardır. Larva döneminde bir kurtçuk şeklindeki canlı,pupa döneminde koza şeklini alır. Ilık, durgun ve 60 cm'den sığ sularda gelişebilir. Ergin hale geldikten sonra 2-3 km.uçarak ortalama 2 ay kadar hayatta kalabilir. İçinde su olan lastik, kova,boru,inşaatlar, havuzlar ve lağımlar gelişmek için uygun ortamlardır. Akşam üstü görülern sivrisinek sürüleri erkeklerden oluşmaktadır. Sivrisinekler genelde alacakaranlık zamanlarında uçarlar. Pek çok doğal düşmanları vardır. Kurbağalar, balıklar, kertenkeleler, bukalemunlar, kuşlar, yarasalar ve böcek larvaları sivrisinek ve larvalarıyla beslenirler. Günümüzde sivrisineklerle mücadele için kimyasal ve fiziksel pek çok metod kullanılmaktadır. Ancak çok basit ve hızlı üremeleri nedeniyle etkin bir mücadele ile lokal temizliği mümkündür. Sınıflandırma Alt familya: *Anophelinae Cins Anopheles Cins Bironella Cins Chagasia Alt familya: *Culicinae Oymak: Aedeomyiini Cins: Aedeomyia Oymak: Aedini Cins: Aedes Cins: Armigeres Cins: Ayurakitia Cins: Eretmapodites Cins: Haemagogus Cins: Heizmannia Cins: Opifex Cins: Psorophora Cins: Tanakaius Cins: Udaya Cins: Verrallina Cins: Zeugnomyia Oymak: Culicini Cins: Culex Cins: Deinocerites Cins: Galindomyia Cins: Lutzia Oymak: Culisetini Cins: Culiseta Oymak: Ficalbiini Cins: Ficalbia Cins: Mimomyia Oymak: Hodgesiini Cins: Hodgesia Oymak: Mansoniini Cins: Coquillettidia Cins: Mansonia Oymak: Orthopodomyiini Cins: Orthopodomyia Oymak: Sabethini Cins: Isostomyia Cins: Johnbelkinia Cins: Limatus Cins: Malaya Cins: Maorigoeldia Cins: Onirion Cins: Runchomyia Cins: Sabethes Cins: Shannoniana Cins: Topomyia Cins: Trichoprosopon Cins: Tripteroides Cins: Wyeomyia Oymak: Toxorhynchitini Cins: Toxorhynchites Oymak: Uranotaeniini Cins: Uranotaenia

http://www.biyologlar.com/sivrisinek-turleri-culicidae-

Uçurum Kırlangıçları

Uçurum kırlangıçları yuvalarını uçurum kenarlarına, bina veya avlu duvarlarına çimento ile yapıştırarak yaparlar. Bu çimentoyu elde ediş yöntemleri ise oldukça pratiktir. Öncelikle gagalarıyla çamur veya kil parçaları toplarlar ve bu inşaat malzemelerini yuvalarına taşırlar. Çamuru yapışkanımsı ağız salgılarıyla karıştırıp, uçurumun yüzeyine sürerler ve üstünde yuvarlak bir açıklık bırakarak düzgün bir çömlek şeklinde biçim verirler. Çömleğin içini yavrularının rahat etmesi için çim ve tüyle doldururlar. Uçurum kırlangıçları yuvalarını çoğunlukla sarkan bir kaya çıkıntısının altına inşa ederler. Bunun nedeni yağmur yağdığında çamurun yumuşayarak yuvayı yıkıp götürme tehlikesinin bulunmasıdır. Russell Freedman, How Animals Def. Their Young, s.13-14

http://www.biyologlar.com/ucurum-kirlangiclari

Sarıasmagil Kuşu

Çünkü bu arılar, yılanları, maymunları, siyah papağanları ve özellikle bir tür sineği, kendi yuvalarının yanına yaklaştırmazlar. Sarıasmagil kuşu da yuvasını bu yaban arılarının yuvasının yanına yaptığında, kendi yavruları bu tehlikeli hayvanlara karşı doğal olarak korunmuş olur. Ancak bu hayvanlar arasında Sarıasmagil kuşu açısından önemli olanı sineklerdir. Çünkü bu sineğin larvaları, kuş yavrularının deri altlarına girerek onların ölümüne sebep olurlar. Bu nedenle yuvaların, yaban arılarının bulundukları yerlere kurulması kuşlar açısından oldukça önemlidir. Giovanni G. Bellani, Quand L'oiseau Fait Son Nid, s.86

http://www.biyologlar.com/sariasmagil-kusu

Deniz timsahları

Her şey bundan tam 200 milyon yıl önce başlıyor. O tarihlerde de var olan timsah, henüz bir kara hayvanı... Ayakları üstünde yükselen gövdeleri ve gittikçe daralan yüz yapılarıyla, timsahtan çok yarış köpeklerini anımsatıyorlardı. Sadece içlerinden bir tanesi, bilinmeyen bir nedenle ayaklarından birini sudan hiç çıkarmıyordu. Bu türün su aşkı, aradan geçen 200 milyon yıla karşın hâlâ sürüyor. Dün, tek ayağını suya daldırmakla yetinen "Crocodylus porosus", bugün, tam 22 farklı timsah türü arasında, hem tatlı hem de tuzlu suda yaşayan tek örnek... Ancak hemen belirtelim, asıl tercihi Avustralya ve Hint Okyanusu'nun tuzlu suları... Deniz timsahları, pek aşina olmadıkları tuzlu sularda varlıklarını sürdürmek için bazı anatomik farklılıklar geliştirmişler. Ve bu farklılıkları ta atalarından beri korudukları ileri sürülüyor. En belirgin özellikleri, farklılaşmış tükürük bezleri... Hayvanın dilinin üstünde bulunan bu bezler, deniz suyunun içinde erimiş olan tuzun organizmaya girmesine engel oluyor. Böylece de, canlı bir salamuraya dönüşmesini engelliyor. Bütün dev görünüşüne karşın, deniz timsahları, türlerinin "XL" örneği değiller. En azından bazı organlarının yapısı nedeniyle... Örneğin, timsahtan çok kuşları anımsatıyorlar. Kalp sistemleri, onlar gibi dört bölmeli. Yine, kuşlar gibi çok gelişmiş bir işitme duyuları var. Oysa, diğer sürüngen türlerinin büyük çoğunluğu sağır yaratıklar... Son, ama tartışmalı bir nokta da, bu hayvanların bir görme yeteneğine sahip olup olmadıkları... Kimi araştırmacılara göre, böyle bir duyuları, özellikle de renkleri ayrıştırma yetileri var. Ancak henüz bilimsel olarak kanıtlanmış değil... Çünkü, bu oldukça iri ve vahşi hayvanlarla laboratuvar deneylerinin zorluğunu hemen hemen herkes kabul ediyor. . Suyun içindeyken, deniz timsahının gözleri bir üçüncü gözkapağı ile korunuyor. Deniz timsahları, kesinlikle aptal canlılar değil. Tam tersine, tüm sürüngenler arasında, ortalama zekâ düzeyinin üstüne çıkıyorlar. Bunun kanıtı olarak da, bilim adamları, bu hayvanlar arasında son derece gelişmiş bir hiyerarşi anlayışını gösteriyorlar. Gruplar halinde yaşayan deniz timsahları ailesinde, erkekler yaşam alanını kontrol ediyorlar. Dişilerin görevi ise, yavruların beslenmesi ve yetiştirilmesi... Bu minik grup içindeki tüm üyeler, özel sesler çıkararak birbirleriyle anlaşıyorlar. Deniz timsahlarının dilinde böğürme bir sevgi ve aşk gösterisi, homurdanma ise "dikkatli ol" mesajı... Eğer bir deniz timsahı çok koyu bir sessizliğe bürünmüşse, bu bir av peşinde olduğu anlamına geliyor. Bu deniz devleri, özellikle avlanma konusunda olağanüstü bir sabır örneği gösteriyorlar. Bir deniz timsahı, avının kendisine iyice yaklaşması için, tam 2 gün boyunca hiç kımıldamadan durabiliyor. Suyun içindeyken en tercih ettiği avlar, iri balıklar ve deniz yılanları... Yine içinde bulunduğu ortama göre avlanma stratejileri geliştiriyor. Denizdeyken açıktan açığa avlanan deniz timsahları, nehirlerde süper bir kamuflaj ustası kesiliyorlar. Suya yarı batmış olarak hareketsiz duruyorlar ve sadece gözlerini, kulaklarını ve burun deliklerini su üstünde bırakıyorlar. Deniz timsahı gerçek bir etobur... Üstelik, öyle özel bir tercihi de yok. Kendi cinsine yakın omurgasızlardan ördeklere, yılan balıklarından bufalolara kadar her hayvanın etiyle kendisine ziyafet çekebiliyor. Avını bir bütün olarak yuttuktan sonra, çok asitli özsuyu sayesinde, onları kemiklerine kadar sindirmeyi başarıyor. Enerji fazlasını ise, yağ biçiminde kuyruğunda ve sırt bölümünde depoluyor. Bu olağanüstü yağ depolarını kullanarak, yeni doğan bir deniz timsahı yavrusu 4 ay, bir ton ağırlığındaki yetişkin ise tam bir yıl boyunca yemek yemeden hayatta kalabiliyor. Vahşi, ama kesinlikle açgözlü olmayan deniz timsahları, kendi yavrularına karşı ola-ğanüstü şefkatliler... Yumurtalarını, humus (kara toprak) ve bitkilerden oluşturduğu yuvanın içine bırakan dişi deniz timsahı, iklim koşullarına bağlı olarak, 2-3 ay bunların üstünde kuluçkaya yatıyor. Bu dönemde çok sinirli olan dişi timsah, her türlü sese karşı duyarlı bir hale geliyor. Yavrularının ilk seslerini duyar duymaz, titizlikle yumurta kabuklarını kırıp parçalıyor. Böylece, yavrularının daha kolay biçimde dışarıya çıkmalarını sağlıyor. Bilindiği gibi, birçok timsah türü, yumurtaların kabuğunu kırmak için, onları ağızlarına alıp, dillerinden kaydırma yönteminden yararlanıyorlar. Deniz timsahlarının da bu şekilde davranıp davranmadıkları bilinmiyor. Ancak, ne biçimde olursa olsun yavrularına kavuşan dişi deniz timsahları, aylarca onların beslenmesini ve güvenliğini sağlıyorlar. Onları bir an bile yanlarından ayırmıyorlar. Küçük yavrular ısınmak için annelerinin sırtına çıkıyorlar. En küçük bir tehlike durumunda, anne timsah sırtında yavrularıyla suyun derinliklerine dalıyor. Annelerin yavrularını tehlikeye karşı uyarmak için kullandıkları bir yöntem de, kaslarını titretmek... Bu kas titreşimleri suyun içinde ses dalgalarına dönüşüyor ve çevredeki diğer annelerle yavruları tehlikeye karşı uyarıyor. Denizlerin bu ürkütücü yaratığının en büyük düşmanları yine kendi cinsleri. Zaman zaman, özellikle bölgesel egemenlik ve dişilere sahiplenme konularında aralarında ölümcül kavgalara tanık olunuyor. Bu hayvanların asıl düşmanı ise, insanoğlunun ta kendisi... 60'lı yıllarda, derilerinden hediyelik eşya, ayakkabı, çanta vb. yapmak için çok geniş kapsamlı bir deniz timsahı katliamı yaşandı. Bu hayvanların türü ciddi bir biçimde yok olma tehlikesiyle karşı karşıya geldi. Günümüzde, Avustralya'da "ulusal servet" olarak koruma altına alınan deniz timsahlarının sayısı her geçen gün artıyor. Bu artışın en büyük dinamiği ise, sayıları hızla çoğalan timsah çiftlikleri.

http://www.biyologlar.com/deniz-timsahlari

Kuşların ve Uçuşun Evrimi Üzerine Teoriler

1861 yılında Almanya`nın Bavyera bölgesindeki Jura dönemine ait kireçtaşında bir asimetrik tüy fosilinin bulunması, kuşların Sürüngenler Çağı`ndan beri var olduklarının kanıtı olarak büyük bir heyecanla karşılanmıştı. Bu fosil tüyün bulunmasının hemen ardından, aynı bölgeden ve yine Jura dönemine ait, hem sürüngen hem de kuş özellikleri taşıyan bir hayvanın eksiksiz iskeletine ait fosilin bulunması ise, yaratılışçı görüşün hakim olduğu o günlerde, kuşkusuz başta Darwin olmak üzere bir çok biliminsanı için büyük önem taşıyordu. Archaeopteryx lithographica olarak adlandırılan bu fosil, bir ara-form olarak Darwin`in ortaya attığı evrim teorisini kanıtlar nitelikteydi ve bu fosilin bulunmasıyla kuşların ve uçuşun kökenine ilişkin günümüze dek süren, evrim biyolojisinin belki de en hararetli tartışmaları başlamış oluyordu. Kuşların evrimsel yolculuğuyla ilgili araştırmalar için çok önemli bir başlangıç noktası olan bu fosil, evrim teorisinin ışığı altında kuşların hangi sürüngen kolundan, nasıl bir evrim geçirerek günümüze geldiğini açıklamada bir anahtar rolü görebilirdi. Nitekim Archaeopteryx fosilleri 1861 yılından günümüze dek bu sorulara yanıt arayan araştırmacılar için her zaman önemli bir referans oldular. Günümüzde paleontologların çoğu, kuşların atasının dinozorların bir kolu olduğunda hemfikir.Yazılan bir çok kitap ve makalede kuşların atasının dinazorlar olduğundan sözedildiğini ve dünyanın önde gelen bir çok müzesinin dinozor bölümlerinin bu görüş doğrultusunda düzenlendiğini görmek mümkün. Almanya`nın Bavyera bölgesi ise yerini, 90`lı yıllarda ortaya çıkarılan tüylü dinozor fosilleriyle ünlenen Çin`in Lianoing bölgesine bırakmış durumda. Liaoning bölgesinde yakın zamanda bulunan dört kanatlı bir dinozor fosili de uçuşun evrimiyle ilgili önemli ipuçları içeriyor. Archaeopteryx: Ne kadar sürüngen, ne kadar kuş? Darwin`in "o tuhaf kuş" diyerek sözünü ettiği Archaeopteryx, gerçekten de özelleşmiş birincil ve ikincil uçuş tüylerinden oluşan çok gelişmiş tüyleriyle modern zaman kuşlarına oldukça benziyordu ve kendini önceleyen uzun bir kuş evrimine dikkat çekiyordu. Archaeopteryx`in hem sürüngen hem de kuş özellikleri, kuşların hangi atadan evrimleşmiş olabileceklerine dair önemli ipuçları verirken, fazlasıyla modern yapıdaki tüyleri, uçuşun ve tüylerin kökenine dair çok az ipucu sağlıyordu. Tüyler ve uçuş kuşların en karakteristik özellikleri olduklarından, kuşların evrimsel yolculuğunun tamamıyla aydınlatılabilmesi için Archaeopteryx fosilleri tek başlarına yeterli değildiler. Daha ilkel yapıda tüylere sahip ara-form fosillerinin de ortaya çıkartılması gerekiyordu. Archaeopteryx, günümüzde olduğu gibi bulunduğu ilk yıllarda da, başta Huxley ve Darwin olmak üzere birçok biliminsanı tarafından kuş evriminde bir yan kol olarak görülüyordu. Bu durum, paleontologların, hem modern kuşlar hem de kuş evriminin modern kuşlara uzanan ana kolunda yer almadığı düşünülen bu eski kuş için ortak bir ata aramaları anlamına geliyordu. Ataya ilişkin kuramlar Kertenkelelerden pterozorlara (uçan sürüngenlere), timsahlardan dinozorlara kadar Mezozoik çağ sürüngenlerinin çoğunun kuşların atası olduğu öne sürülmüş. Ancak günümüze dek ulaşabilen yalnızca iki temel kuram olmuş. Bu iki kuram arasındaki en önemli farklılıklar, kuşların atası olarak hangi sürüngen kolunun görüldüğüne ve ilk kuşun ortaya çıkış zamanına ilişkin görüşlerdir. Bu iki kuramı anlatmaya, sürüngenlerin milyonlarca yıllık tarihlerine göz atarak başlamak gerekiyor. Sürüngenler Çağı`ndan çok önce, geç Paleozoik çağda ortaya çıkmış olan kotilozorlar (köken sürüngenler) tüm sürüngenlerin atası olarak kabul edilirler. Anapsid kafatasları olan bu ilkel sürüngenlerin diapsid kafatasına sahip canlılara evrimleşen kollarından biri ise tekodontlardır. Yaklaşık 245 milyon yıl önce dünyada yaygın bir dağılım göstermiş heterojen bir sürüngen grubu olan tekodontlar, timsahların, pterozorların ve dinozorların atası olarak kabul edilirler. Tekodontların bir kolu olarak evrimleşen pterozorlar, uçma yetenekleri ve kuşlarınkine benzeyen diğer uçuş karakterleri nedeniyle bir zamanlar kuşların atası olarak gösterilmişlerse de, bu görüş hiçbir zaman fazla destekçi bulmamış ve benzerliklerin benzeştiren evrimin sonucu olduğu konusunda görüş birliğine varılmış. Aynı şekilde dinozorların iki ana kolundan biri olan Ornitiskianlar (kuşkalçalı dinozorlar) da, isimlerinden de anlaşılacağı gibi sadece yüzeysel bir benzerlik yüzünden kuşların atası olarak gösterilmiş, ancak bu görüş de fazla taraftar bulmadan unutulmuş. Dinozorların diğer ana kolu olan Sauriskianlar (sürüngen kalçalı dinozorlar) ise, etçil ve otçul olmak üzere iki kola ayrılırlar. Etçil olan teropodlar arasında Jurassic Park filminden hatırlayacağımız dev T-Rex gibi büyük dinozorların yanısıra, Huxley`in Archaeopteryx ile benzerliklerine dikkat çektiği Compsognathus (bkz. Bölüm 1) gibi küçük dinozorlar da yer alırlar. Huxley`in, 1868 yılında yazdığı ve tavuk büyüklüğündeki bir teropod dinozoru olan Compsognathus ile Archaeopteryx arasındaki benzerliklere değindiği makaleleri, kuşların teropod dinozorlardan evrimleştiği yönündeki görüşün ortaya çıkmasına neden olmuştu. Oysa Huxley`in o yıllardaki yazıları incelendiğinde, zaman zaman bu görüşünden geri adım atarak, teropod dinozorlar ve kuşlar için ortak bir atadan söz ettiği görülür. Öte yandan, Huxley`in çağdaşı bazı biliminsanları kuşlara ata olarak otçul dinozorları gösterirken, bazıları dinozorları kuşların atası olamayacak kadar fazla özelleşmiş buluyorlardı. Daha o yıllarda dinozorların ve kuşların sözü edilen benzerliklerini pterozor örneğindeki gibi benzeştiren evrime bağlayan ve yine ortak bir sürüngen atadan söz eden biliminsanları olsa da, kuşların atasını daha ilkel sürüngenlerde arayan hipotezin gerçekten doğuşu ancak bir sonraki yüzyıl içinde oldu. 1913 yılında Güney Afrikalı paleontolog Robert Broom`un, alt Triyas kayaçlarından 230 milyon yıllık fosili çıkartılan küçük bir tekodontun kuşların atası olduğu yolundaki düşünceyi ortaya atmasıyla, tekodont-ata hipotezi de doğmuş oluyordu. Broom`un Euparkeria adını verdiği bu tekodont dört ayaklıydı, ancak iki ayaklılığa doğru bir geçiş sürecindeydi. Broom`a göre dinozorların fazla özelleşmiş sayıldığı noktalarda yeterince ilkel olan Euparkeria, kuşların atası olmak için gerekli tüm anatomik özelliklere sahipti. Danimarkalı paleontolog Gerhard Heilmann`ın 1926 yılında yazdığı "Kuşların Kökeni" adlı kitap da bu hipotezi destekler nitelikteydi. Günümüzde konuyla ilgili bir klasik olarak kabul edilen bu kitap, kuşların kökeni ve evrimiyle ilgili ilk kitaptı ve burada Heilmann, Euparkeria`dan, kuşların kökenini açıklayan anahtar fosil olarak söz ediyordu. Aslında tüm yazdıklarının kuşların teropod dinozorlardan evrimi için de geçerli olabileceğinin görüldüğü kitabında Heilmann, teropod dinozorlarda bir kuş karakteristiği olan lades kemiğine rastlanmamış olduğuna dikkat çekiyor, ilkel formları ve lades kemiğine sahip olmaları nedeniyle tekodontların kuşların atası olduğunu savunuyordu. Aslında Huxley`in makaleleriyle ortaya atılmış olan bu dinozor-ata teorisininin, biraz değişikliğe uğramış olarak tekrar gündeme gelmesi, paleontolog John Ostrom`un 1973 yılından başlayarak yayınladığı makalelerle oldu. Ostrom, 1964 yılında keşfettiği ve bir erken Kretase dönemi teropod dinozoru olan Deinonychus ile Archaeopteryx arasında, benzeştiren evrimden kaynaklanmayacak kadar fazla benzerlik bulmuş ve kuşların teropod dinozorlardan gelmiş olduğunu savunmuştu. Archaeopteryx`den 40 milyon yıl genç olan bu fosille Archaeopteryx`in kol, el, kalça, bilek ve omuz kemikleri üzerinde yaptığı incelemeler sonunda özelleşmiş kemikler açısında çok benzediklerini gören Ostrom, Eichsatt Archaeopteryx`inin 20 sene boyunca bir teropod dinozoru (Compsognathus) zannedildiğini de hatırlatıyordu. 1986 yılına gelindiğinde ise paleontolog Sankar Chatterjee, Teksas`taki geç Triyas dönem katmanlarında bulduğu ve Protoavis olarak adlandırdığı bir fosili bilim dünyasına duyuruyordu. Chatterjee`nin, kafatası ve boyun kemiklerinde modern kuşlarla birçok benzerlik bulduğu ve en eski kuş olarak sözünü ettiği bu tartışma yaratan fosil, Archaeopteryx` den yaklaşık 75 milyon yıl gençti ve benzerlikleri kanıtlandığı takdirde dinozor ata teorisini çürütebilirdi. Ne var ki bu fosil iyi bir şekilde korunmadan günümüze ulaşmıştı ve parçacıklı yapısıyla tek bir bireye değil de, farklı birkaç türe ait bireylerin kemiklerinin biraraya gelmesiyle oluştuğu izlenimini uyandırıyordu. Bütünlükten uzak bulunan bu fosil, günümüze dek kuşkuyla sözü edilen bir fosil olarak kaldı. Kuşların tüylerden sonra en karakteristik özelliği sayılan lades kemiğinin, 20. yüzyılın sonlarına doğru Velociraptor ve Ingenia gibi bazı geç Kretase teropod dinozorlarında da bulunması, kuşların atasının teropod dinozorlar olduğu teorisini güçlendirdi. Hatırlanacağı gibi, Heilmann`ın teropod dinozorlarla kuşlar arasında gördüğü benzerliklere rağmen onların ortak bir atadan geldiklerini söylemekten öteye gitmemesinin nedeni, teropod dinozorlarda Heilmann için de çok önemli bir kuş karakteristiği olan lades kemiğinin bulunmamasıydı. Özetleyecek olursak, kuşların kökeniyle ilgili kuramlardan bir tanesi, Archaeopteryx fosilleriyle teropod dinozorlar arasında homolog olduğu düşünülen benzerlikler nedeniyle, kuşların atasının dinozorların bu kolu olduğu yönündeydi. Teropod dinozorlarla kuşlar arasındaki tüm sonradan edinilen benzerliklerin benzeştiren evrimden kaynaklandığını ve teropod dinozorların kuşların atası olamayacak kadar özelleşmiş olduklarını söyleyen tekodont ata teorisi ise, kuşların atasının teropod dinozorlardan önce yaşamış ilkel bir sürüngen olduğunu savunuyordu. Tüm bunlara ek olarak, fosilleri inceleyen bazı bilimsanlarının dinozorlar ve kuşlar arasındaki benzerlikleri, bazılarının ise farklılıkları vurgulaması, bu iki kuramın savunucularını karşı karşıya getiren önemli bir ayrılma noktasının sistematik yöntem farklılıkları olduğunu ortaya koyuyor. Günümüzde çoğu biliminsanınca kanıtlandığı düşünülen teropod-ata teorisinin uçuşun kökenine ilişkin bölümü, son olarak bulunan ilginç bir fosille birlikte çürütülmüş gibi görünüyor. Bu durum kuşların evrimsel yolculuğunu aydınlatmanın zorluğunu çok iyi anlatıyor olsa gerek. Bu yüzden, günümüz Archaeopteryx`lerine geçmeden önce, uçuşun ve tüylerin kökeniyle ilgili olan ve kuşların atasına ilişkin kuramlara paralel olarak gelişen tartışmalara değinmemiz gerekiyor. Uçuşun kökenine dair Kuşların atasının hangi hayvan kolu olduğuna ve kuşların bu atadan kaç milyon yıl önce ayrıldığına ilişkin araştırmalar ve tartışmalar, doğal olarak tüylerin ve uçuşun kökeniyle de çok yakından ilgilidir. Kuşların en karakteristik özelliği olduğu düşünülen tüyler, omurgalı derisinin en karmaşık türevidir. Morfolojik bir harika olarak tanımlayabileceğimiz tüyler, çok karmaşık yapıları ve sayısız işlevleri olması bakımından çok zengin bir evrimsel geçmişe işaret ederler. Tüylerin bir şekilde sürüngen pullarından evrimleştiği genel olarak kabul edilirken, sürüngen pulundan karmaşık yapıdaki tüye kadar olan evrimsel basamaklarda hangi yapıların ortaya çıktığı ve bu yapıların canlıların çevreye uyumunda nasıl bir değere sahip olduğu konusunda yıllar içinde birçok farklı görüş ortaya atılmıştır. Tüylerin, uçuş dışında, yalıtımdan kamuflaja ve kur davranışına kadar kuşların yaşamında büyük önem taşıyan pek çok işlevi vardır. Ancak kuşkusuz uçuşla ilgili/aerodinamik özellikler tüylerin birincil işlevidir. Uçuşun kökeniyle ilgili görüşlerin ve ortaya atılan senaryoların kimi, tüylerin en başta yalıtım ve iletişim gibi uçmayla ilgisiz bir nedenle evrildiğini savunurken, kimi de tüylerin, birincil işlevleri olan uçuştan farklı bir bağlamda evrimleşmiş olmasının mümkün olmadığını savunur. İlkel sürüngen atanın pullarının hangi işlev doğrultusunda evrim geçirerek ilkel tüylere dönüştüklerini ve buna bağlı olarak uçuşun kökenini açıklamaya çalışan iki temel kuram vardır. Bunlardan ilki uçuş evriminin yerde başladığını savunur. Bu kuramı destekleyenlerin çoğu, kuşların iki ayaklı teropod dinozorlardan geldiğini savunan araştırmacılardır. Kuşların atasının teropod dinozorlardan daha ilkel olan tekodontlar olduğunu savunanlar ise, uçuş evriminin ağaçta başladığını savunurlar. İlkel sürüngenvari kuş atasının ağaçta yaşamış olduğunu varsayan teoriye göre, sürüngen pullarında oluşacak her bir küçük değişiklik (uzama ve çatlama) bu hipotetik canlının aerodinamik yeteneklerinin gelişmesi demek olacaktı. Bu ilkel atanın sürüngen pulları karmaşık yapıdaki uçuş tüylerine dönüşürken, önceleri yerçekiminin sağladığı enerjiyi kullanarak ağaçtan ağaca süzülen canlının süzülme yeteneği zamanla gelişecek, manevra gereği ortaya çıktıkça da kanat ve kuyruk tüyleri karmaşık bir yapıya doğru evrim geçirecekti. En ünlü tekodont ata savunucusu olan Alan Feduccia`nın da desteklediği bu teori, özetle, tüylerin en başta uçuşla ilgili olarak evrildiğini varsayıyor ve kuşların atasının Triyas dönemde yaşamış küçük, dört ayaklı, ağaçta yaşayan bir tekodont olduğunu savunuyordu. Kuşların iki ayaklı, etçil teropod dinozorlardan geldiğini düşünenlerin desteklediği ve uçuş evriminin yerde başladığını savunan teori ise, tüylerin öncelikle ısı düzenleyici olarak evrildiğini varsayıyordu. Diğer bir deyişle, kuşlarda görülen sıcakkanlılığın uçuştan önce evrimleşmiş olması gerektiğini savunuyordu. 1969 yılında bazı dinozor türlerinin sıcakkanlı olmuş olabilecekleri yönündeki görüşü ilk kez ortaya atan ve günümüzün ünlü teropod-ata savunucusu olan John Ostrom`un önderliğindeki bu teoriye göre, kuşların teropod atasındaki ilkel tüyler öncelikle ısı yalıtımını sağlamıştı. Aktif, sıcakkanlı, koşarak avlanan bu etçil yırtıcı dinozorların ilkel tüylerle kaplanacak ön uzuvları, onların böcek ve benzeri küçük avlarını ağızlarına doğru süpürmelerini sağlayacaktı. Bu ilkel atanın avı peşinden koşarken ani manevralar yapabilmesi ya da avcılardan kaçarken tepelerden aşağıya süzülebilmesi de modern, gelişmiş kanat ve kuyruk tüylerinin evrilmesiyle gerçekleşecek ve böylelikle ilk olarak ısı yalıtımı sağlama yönünde evrilmiş olan tüyler sonradan aerodinamik işlevler doğrultusunda evrimlerini tamamlayacaklardı. Tüyleriyle fosilleşmiş olarak bulunan ilk kuş olan Archaeopteryx`in fazla modern yapıdaki tüyleri ise, ne yazık ki ilk tüye ve ilk uçuşa dair pek fazla ipucu vermiyordu. Yine de Archaeopteryx`in nasıl bir uçucu olduğuna ve ne tip bir ortamda yaşadığına ilişkin araştırmalar yapılırsa bazı sorular yanıtlanabilirdi. Asimetrik tüyleri Archaeopteryx`in uçabildiğini gösterirken, fazla çıkıntılı olmayan göğüs kemiği uzun süre kanat çırparak uçamayacağını düşündürüyordu. Feduccia, bir çok farklı ekolojik alandan seçtiği 500`den fazla kuşun pençeleri üzerinde yaptığı ölçümlerle Archaeopteryx`inkileri kıyaslıyor, Archaeopteryx`in pençelerinin yerde yaşamasını mümkün kılmayacak derecede kıvrık olduğuna dikkat çekiyor ve Archaeopteryx`in kesinlikle ağaçlarda yaşadığını savunuyordu. Bu görüşe karşı çıkanlar ise, Archaeopteryx fosillerinin bulunduğu Solhofen bölgesinden hiçbir ağaç fosilinin çıkarılmadığını, Jurassic dönemde bu bölgede ağaçların olmadığını ve dolayısıyla Archaeopteryx` in ağaçlarda yaşamış olmasının mümkün olmadığını ileri sürüyorlardı. 20 metreye ulaşabildiği bilinen Gingko gibi bir çok bitkinin Jura dönemi Avrupa`sında görüldüğü ve Solnhofen fosil kayıtlarında ağaçlara ait izler bulunmamasının bir çok nedeni olabileceği ise, bu itiraza verilen bir yanıttı. Yerde başlayan uçuşu savunanların karşılaştıkları en büyük itiraz ise, teropod atanın yerçekimini yenerek havalanmak için çok fazla kaldırma gücüne ihtiyaç duyacağı idi. Bu gerçekten yerinde bir itirazdı ve bu yüzden de uçuşun yerden başladığı teorisi uçuş evriminin ağaçta başladığını savunan teoriden daha az destekçi buldu. Uçuş evriminin yerde gerçekleştiğini düşünen araştırmacılar, Archaeopteryx`in kanatlarını ve uçuş kapasitesini inceleyerek bu önemli fiziksel problemi çözmeye çalıştılar. Son yıllarda yapılan ve bazı kuş türlerinin henüz uçamayan yavrularının bir tehlike durumunda dik yamaçlarda kanat hareketleriyle destekli olarak koşmalarını inceleyen ilginç bir araştırma ise, ilkel tüylere sahip koşan bir teropod atanın düşünüldüğünden daha fazla hareket özelliği olabileceğini savunuyordu. Uçuşun evrimiyle ilgili teoriler içinde şu günlerde tekrar gündeme gelen bir diğeri ise William Beebe`ye aitti. Beebee, 1915 yılında Berlin Archaeopteryx`inin bacaklarında gördüğü tüy izlerine dayanarak Archaeopteryx` ten önce ağaçlarda süzülen dört kanatlı bir sürüngen formun yaşamış olduğu teorisini ortaya atıyordu. Uçuşun kökeniyle ilgili bir görüşü olan tüm araştırmacılar, Archaeopteryx`in anatomisini ayrıntılı bir şekilde inceleyerek teorilerini kanıtlayacak karakterler ve davranış repertuarı bulmaya çalışırken biyolog Philip Regal, Kaliforniya`da yaşayan bir tür tilkinin sadece böceklerle beslendiğine dikkat çekerek uyarıda bulunuyordu. Regal, hiç bir araştırmacının bu tilkilerin anatomisini inceleyerek bu sonuca varmayacağını belirtirken, bir canlının davranışlarının sadece anatomisine dayanılarak tahmin edilemeyeceğine dikkat çekiyordu. Kuşların ve uçuşun kökeniyle ilgili tüm teoriler Archaeopteryx`in ve hipotetik kuş atalarının yerde veya ağaçta resmediliği bir çok çizimle desteklenmeye çalışılırken, Çin`in Liaoning bölgesi de kuşların kökeniyle ilgili tartışmaların ve hatta fosil ticaretinin merkezi olmaya hazırlanıyordu. Dinozorlar hala yaşıyor mu? Kretase döneminde yaşanan hızlı iklim değişiklikleri ve volkanik kül yağmurları Çin`in kuzeydoğusunda yer alan Liaoning Bölgesi`nde fosilce zengin eski bir göl yatağı oluşmasına neden olmuş. Aralarında dünyanın en eski çiçekli bitki fosilinin de bulunduğu bir çok önemli fosil bu bölgeyi dünyanın doğa tarihine ışık tutan bir merkez haline getirmiş durumda. 1994 yılında burada bulunan saksağan büyüklüğündeki ilkel bir kuş Archaeopteryx`e olan benzerliğiyle dikkat çekiyordu. Confuciusornis adı verilen bu kuş, modern yapıdaki uçuş tüyleriyle belli bir mesafeyi uçabilen ilk kuş olarak kabul edildi. Bu kuşa ait fosillerden bir kısmının kuyruğunda eşeysel dimorfizme işaret eden tüyler bulunuyordu. Modern bir gaga yapısına sahip en eski kuş olarak da büyük önem taşıyan Confuciusornis`in Archaeopteryx gibi 3 kıvrık tırnağı olması ise bazı arştırmacılar için Confuciusornis`in ağaçlarda yaşamış olduğunun kanıtıydı. Öte yandan diğer araştırmacılar Confuciusornis`in el yapısını dinozorların kavrayan elinin uçan ele evriminin bir kanıtı olarak görüyor ve Confuciusornis`i uçabilen, tüylü bir teropod dinozor olarak tanımlıyorlardı. Bu bölgeyi kuş kökeni tartışmalarının merkezi haline getiren fosillerden ilki 1996 yılında çıkarıldı. Sinosauropteryx adı verilen bu fosil çok iyi bir şekilde korunmuştu ve bu fosilde genelde fosilleşmeyen karaciğer gibi yumuşak dokuları bile görmek mümkündü. Ancak fosilin tartışmaları alevlendiren özelliği, başından kuyruğuna dek bir hat boyunca inen ve hav izlenimi veren yelesiydi! Kuşların atasının teropod dinozorlar olduğunu savunanlarca ilkel tüy olduğu düşünülen bu lifler, sıcakkanlılığın uçuştan önce evrimleştiğinin kanıtıydı. Bu fosil hayvanın Compsognathus`a olan benzerliği ise teropod ata teorisi savunucuları için kuşların dinozorlardan gelmiş olduğunun kesin bir kanıtıydı. Ne var ki bazı araştırmacılara göre sırt çizgisiyle sınırlılığı şüphe uyandıran bu lifler tüylerin atası olabilecek bir yapıda değildi ve üstelik bu yapılar bazı modern sürüngenlerde de görüldüğü gibi deri altındaki bir tür kolajen destek yapısı olabilirlerdi. Sinosauropteryx fosilinin yankılarının sürdüğü 1997 yılı içinde yine Lianoing`den bu kez peşisıra iki yeni ilginç fosil daha çıkarıldı. Archaeopteryx`e benzerliğinden dolayı Protarchaeopteryx olark adlandırılan ilk fosil, Archaeopteryx`den daha ilkel yapıda tüylere sahipti ve bu tüylerin simetrik yapısı uçuş yeteneğinin olmadığını gösteriyordu. Caudipteryx adı verilen ikinci fosilde de yine benzer yapıda tüyler bulunuyordu. Bu fosilin kuyruğunda göze çarpan kabarık tüyler ise kur davranışıyla ilgili olarak yorumlanıyordu. Bu iki fosil bir çok araştırmacı tarafından Sinosauropteryx ve Archaeopteryx arasında yer alan tüylü teropod dinozor formları olarak kabul edilirken, Feduccia bu fosilleri dinozorlardan çok uçamayan kuşlara benzetiyortu. Uçamamanın ikincil olarak (sonradan) evrimleştiğini belirten Feduccia, çok iyi korunmuş olduğu halde Caudipteryx fosilinde lades kemiğinin görülmeyişini bu gibi kuşlarda görülen lades kemiği kaybının bir örneği olarak görüyor ve bu kuşları "Mezozoik kivi" olarak tanımlıyordu. Bu iki fosilin uçma kaybının çok eskiden evrimleştiğinin bir kanıtı olduğunu belirten Feduccia, "Şayet Mezozoik kayaçlarda bir emu* (Avustralya`da yaşayan ve devekuşuna benzeyen, uçamayan bir kuş türü) fosiliyle karşılaşsaydık bu kuşta gördüğümüz dejenere olmuş tüyleri modern tüye geçişteki bir basamak olarak mı yorumlayacaktık?" diye sorarak uçmayan kuşların uçuşun kökenini aydınlatmadaki önemini vurguluyordu. 2000`li yıllara girildiğinde ise evrim biyolojisinin bu çok tartışılan konusuyla ilgili kitap ve makalelere yenileri eklenmeye, fosil kayıtları da artmaya devam ediyordu. Arjantin`deki geç Triyas döneme ait depozitlerde kuş ayak izlerine ait olduğu düşünülen fosillerin bulunması yine farklı şekillerde yorumlanırken, Lianoing bölgesinden olay yaratacak bir başka fosil çıkarılıyordu. 77 cm boyutlarındaki küçük bir teropod dinozoruna ait olan bu yeni fosil, W. Beebee adını tekrar gündeme getiriyor ve uçuşun kökeniyle ilgili tartışmaları alevlendiriyordu. Microraptor gui adı verilen bu önemli fosil gerçekten de ön ve arka uzuvlarındaki, asimetrik uçuş tüylerinden oluşan kanatlarıyla Beebee`nin hipotetik 4-kanatlı kuş atasına benziyordu. Bir tür teropod dinozoruna ait olan bu fosil bir yandan uçuşun teropod dinozorlardan evrimleştiğini gösteren bir başka kanıt olarak görülürken diğer taraftan uçuş evriminin ağaçlarda süzülmeyle başlamış olduğu teorisini destekliyordu. İlk Archaeopteryx fosilinin bulunduğu yıldan günümüze kadar yapılan araştırmalar sonucunda kuşların ve uçuşun kökenine dair bir çok bilinmeyenin aydınlatıldığı ve yeni bilgilere ulaşıldığı kesin. Biyolog Richard O. Prum ise tüm bu yeni bilgiler ışığında "kuş" tanımının geçirdiği değişikliğe dikkat çekiyor. Prum, evrim biyolojisi, paleontoloji ve sistematikdeki gelişmelerle kuşları dinozor atalarından ayıran anatomik boşluğun silindiğini söylüyor ve son olarak bulunan 4 kanatlı dinozor fosiliyle birlikte kanat çırparak uçuş dışında kuşlara özgü hiçbir temel karakterin kalmadığını belirtiyor. Sonuç olarak denebilir ki sayıları hiç de az olmayan biliminsanına göre dinozorlar hala yaşıyorlar. İnsanoğlunu da çok etkilemiş olan uçuş, canlıların kazandığı en karmaşık yeteneklerden biri ve bizim kuş tanımlarımızı tekrar gözden geçirmemiz gerekiyor.

http://www.biyologlar.com/kuslarin-ve-ucusun-evrimi-uzerine-teoriler

Leyleklerin Göç Yolları

Leyleklerin Göç Yolları

Leylek ve Kara Leylek, ülkemizde ve Avrupa`da yoğun olarak görülür. Her iki leylek türü de göçmen olup, Türkiye için transit ve yaz göçmeni statüsündedir.

http://www.biyologlar.com/leyleklerin-goc-yollari

Denizlerimiz ve ekolojik önemleri

Deniz göl okyanus ekosistemi Denizel (Okyanus ekosistemleri Deniz ekosistemleri) Su ekosistemlerini kara ekosistemlerindeki gibi coğrafi sınırlarla belirlemek çok zordur. Çünkü sular atmosferik olaylardan karaların etkilendiği oranda etkilenmemektedirler. Ancak deniz tatlı su ve haliç gibi su havzalarının derinlikleri ve bileşimlerindeki farklı maddeler nedeniyle sularda da farklı canlı bölgelerinden söz edilebilir. Buradan hareketle su biyomları; deniz biyomları (tuzlu su) ve tatlı su biyomları olmak üzere iki başlık altında incelenebilir. DENİZ BİYOMLARI Denizlerdeki tür topluluklarının dağılımında en önemli etken derinliktir. Neiritik alan diye adlandırılan 200 m derinliğe kadar olan deniz ortamı tür topluluklarının en zengin oldukları bölgeyi oluşturmaktadır. Neiritik alanların akarsularla beslenmesi güneş ışınını fazla almaları oksijen ve birçok çözünmüş maddenin fazla olması nedeniyle deniz canlılarının en çok yoğunlaştığı bölgelerdir. Neiritik alan deniz canlılarının % 90’ını barındırmaktadır. Daha derin sahalara ise güneş ışınları daha az ulaştığı ve besin maddeleri az olduğu için canlı türleri çok azalmaktadır. Bu bölgelerdeki canlılar daha üst tabakalardan inen besinlerle beslenmektedir. NOT: Deniz ve okyanuslar doğada ısının dağılmasında ve atmosferde tuz dağılımında son derece önemlidir.Bu tuz kristalcikleri yoğuşma olayında son derece önemlidir.Aerosol denilen bu parcacıklar bulut oluşumuna yardımcı olur… TATLI SU BİYOMLARI Akarsular göller sulak alanlar ve bataklıklar tatlı su biyomlarını oluşturmaktadır. Akarsular ekosistemlerin önemli bir parçasını oluşturur. Akarsuyun yeraltına sızan kısmı akiferleri yüzeysel akışa geçen kısmı da deniz ve okyanusları besler. Akarsular birçok bitki ve hayvan türü için yaşam alanı oluşturur. Akarsuların akış hızı ve kimyasal özellikleri akarsuyun barındırdığı hayvan türü ve sayısı üzerinde etkili olan faktörlerin başında gelir. Bir akarsuda çağlayanlar varsa biyolojik üretim ve çeşitlilik az olur. Çünkü balıklar ve diğer canlıların çağlayanları aşmaları çok zor bir durumdur. Yatak eğiminin fazla olduğu yerlerde bol miktarda alüvyal malzeme taşınıyorsa akarsu bulanık bir görünüm arz eder. Suyun bulanık olması birçok canlı için olumsuz sonuçlar doğurur. Akarsu denize ulaşıyorsa ağız kesimlerinde tatlı su ve tuzlu su birbirine karışır. Buralar bitki ve hayvan türleri bakımından zengin alanlardır. Akarsuların taşıdığı elementler ve besin maddeleri buralardaki biyolojik çeşitliliği artırır. Akarsu ağızları mikroorganizmalardan kuşlara kadar birçok canlının barındığı yerlerdir. Tüm deniz balık üretiminin % 90’ı kıyı sularından özellikle de akarsu ağızlarından sağlanmaktadır. Göller karalar üzerindeki durgun su ekosistemlerini oluşturur. Göllerin çevresinde yer alan sucul bitkiler gerek su kuşları gerekse diğer canlılar için hem barınma hem de beslenme alanları oluşturmaktadır. SU DÖNGÜSÜ: Su yaşam kaynağıdır. Bütün canlıların ağırlıklarının önemli bir kısmını su oluşturur. Yeryüzündeki su miktarının yaklaşık % 5’ i tatlı sulardır. Güneş enerjisinin ısıtmasıyla çeşitli kaynaklardan atmosfere çıkan su buharı; yağmur kar dolu gibi yağış biçimleriyle yeniden yer yüzüne döner. Bu suyun bir miktarı yer altı sularına karışırken daha büyük kısmı göl ve deniz gibi kaynaklarda birikir. Su döngüsü de öteki tüm döngüler gibi süreklidir. Bitkiler terleme ile su döngüsüne katılır. Yer yeryüzündeki bütün sular katılmaktadır. Söz gelimi denizlerden buharlaşan su yağış olarak yer yüzüne dönmekte bir kısmı yüzeysel sularda birikip bir kısmı da yer altı sularına karışmaktadır.Yer altı sularının son toplanma yeri ise deniz ve okyanuslardır. Burada toplanan sular su döngüsüne devam eder ( uzun su devri ). Deniz ve okyanuslardan buharlaşan suyun karalara geçmeden tekrar yağmur kar dolu biçiminde deniz ve okyanuslara geçmesine ise kısa su devri denir. OKYANUS EKOSİSTEMİ Ekolojik şartları büyük bir çeşitlilik gösteren deniz ortamı homojen bir bütün olarak ele almak bilimsel açıdan çok kısıtlı bir bakış açısına neden olur. öncelikle iki büyük okyanus alanı ayırt edilmektedir.bütünüyle denizleri oluşturan �su kütlesi� ve kıyılardan derin abis çukurlarına kadar dipleri kapsayan �dip alanı� ;Dip alanı derinliğine göre üçe ayrılır. 0-200 metreler arasında uzanan ve okyanusların tabanının yüzde 76 sını oluşturan kıta sahanlığı; 200 metreden 2000 metreye kadar uzanan dipteki ani eğim bölgesinden meydana gelen ve tabanın yüzde 81 ni oluşturan kıta şevi; ve nihayet okyanusların tabanının yüzde 843 ünü meydana getiren abisler. (2000-6000 metre) ve çukurlar (6000 metreden bilinen en derin yer olan mariana çukurunda 11.000 metreye kadar) Gelgite maruz kalan ve hatta dalga serpintisiyle ıslanan kıyı şeritleri de okyanus alanına dahil edilmektedir. Gerçekten de bu bölgelerde yaşayan organizmalar gerek gelgitler sırasında birbirini ardınca su altında ve su üstünde kalarak gerek ortamın yüksek tuzluluğu sebebiyle okyanus etkilerine maruz kalmaktadır. Okyanusları ve denizleri oluşturan su kütlesi ikiye ayrılan kıta sahanlığını örten yüzey suları ve 200 metrenin altında kalan dip suları bu düzeylerde su kütlesi güneş ışınlarının nüfuz etmesi derecesine ve mevsimlik sıcaklık değişimlerine bağlı olarak düşey bir ekolojik katmanlaşma gösterir. Işığın ulaştığı epipelojik bölge ışık miktarının bitkilerin fotosentez yapabilmesi için yeterli olduğu 0 ila 50-100 metrelik yüzey sularına tekabül eder. Söz konusu bu bölgenin altında dip bitkileri ve fitoplankton yaşayamaz; yanlızca etçiler veya çürükçül beslenen hayvan türleri canlı kalabilir. Okyanus ekosisteminin alt bölümlere ayrılması karşılaşılan ekolojik şartların çeşitliliğiyle ilişkilidir; organizmaların uyum mekanizması ve üretkenliği bir bölgeden diğerine belirgin farklılıklar gösterir.   DENİZ KIYILARIMIZDA KİRLENME,EKOSİSTEM ACISINDAN BİR DEĞERLENDİRİLMESİ H. Özden Ege Üniversitesi, Müh.Fak. Mak. Müh. Bölümü ÖZET Denizlerimizde ekosistem dengesini olumsuz etkileyen başlıca nedenler: - kıyılarımızın yıllardan beri kentsel çöplerle ve kimyasal içerikli, mikrobik, bakteriyel ve radyoaktif içerikli endüstriyel atıklarla kirletilmesi, - topraksı hafriyatla, gelişigüzel doldurulması, - deniz ürünlerinin aşırı be bilinçsiz avlanılması ve toplanılması. Bunların sonucu olarak her gecen yıl birçok balık türü ve deniz bitkisi yok olurken deniz ürünlerinin avlama miktarlarında da büyük düşüşler tespit edilmektedir. Deniz kıyılarımızdaki bu olumsuz gelişmeleri basta balıkçılar olmak üzere herkesin bilmelerine ve zaman, zaman yakarmalarına rağmen, gereken yapılmıyor. Uluslar arası sivil örgütlerle bir dayanışma içerisinde toplumsal tepki gösterilmiyor. Uluslararası bir sorun haline gelen deniz kirliliği, Birleşmiş Milletlerde gündeme getirilmiyor, uluslararası çözümler üretilmiyor. Devlet yönetiminde bu kör zihniyet devam ettikçe, vatandaş ve sivil örgütler ses çıkarmadıkça ekosistem dengesi düzelmeyecek şekilde harap olmağa devam edecektir. Doğa harikası deniz kıyılarımızın katliamına hepimiz seyirci kalmaktayız. Bu çalışmada; - Deniz kirliğinin ulaştığı boyutlar, başlıca nedenlerine ve ekosistemdeki bazi olumsuz yansımalarına dikkat çekilmektedir.. Deniz kirliği hakkında ve alınması gereken bazı önlemler sıralanmaktadır. Ayni zamanda çekirdekten yetişme bir balıkçı ve gemici olarak bu konudaki gözlemlerim, tespitlerim ve değerlendirmelerim tartışmaya sunulmaktadır. Anahtar Kelimeler: Deniz kıyıları, kirlenme, kentsel çöpler, sanayi atıkları, eko sistem, önlemler. 1. GİRİŞ Kıyı denizlerimiz, limanlarımız, göllerimiz fosseptik çukuru ve çöplük ve her türlü ölümcül, hastalık atık deposuna dönüştürülmüştür. Deniz suyuna yayılan lağım artıkları, çöp yığınları ve iğrenç rengi nedeniyle bırakın balık avlamayı, denize bile bakılamıyor, Yeşil sağlıklı deniz bitkilerinin, yosunların yerini kahve renkli seyrelmiş hastalıklı yosunlar ve yaz sıcaklarında artarak çoğalan tiksindirici sümüksü mikroplu yosunlarla ve köpüklerle denizin üstünü kaplar olmuştur.. Deniz dibindeki altın sarısı kumlukların yerini laspa, (pis kokulu çamurumsu, bataksı zemin), poşetler ve plastik malzemeler kaplamıştır. Endüstriyel ve kentsel kirli atıklar yetmiyormuş gibi kıyılarımızın, bilhassa liman içi ve turistik kıyıların gelişi güzel ticari amaçlı doldurulması büyük bir sorumsuzluk göstergesidir. Denizin doldurulmasıyla açılan parklarda, kordon boylarında, rıhtımlarda bırakın oturup dinlenmeyi, güneşlenmeyi veya yüzmeyi; denizden bilhassa yaz sıcağında rüzgarsız günlerde ayılan pis kokudan insan nefes almakta zorlanıyor. Şekil 1 gözlenen deniz kıyıların kirlenmesine, kıyı tahribatına ait farklı örnekler gösterilmektedir. (1 ve 2. fotoğraflarda; Kanalizasyon boruları önündeki yüzen çöpler, 3. fotoğrafta; Yağmur sonrası İzmir liman denizinde su üstünde yüzen çöpler, 4. fotoğrafta; Denize acılan bir dere ağzındaki yüzen çöpler, 5. fotoğrafta; Denize dökülen bir derede ilaçlanma görüntüleri, 6. fotoğrafta; Bodrumda devlet ödüllü topraksı hafriyat deniz dolgusuna bir örnek gösterilmektedir). Benzeri kirlilikler ve kıyı tahribatları dünyanın birçok deniz ve göl kıyılarında rastlamaktadır. Kıyı yerel yönetimler deniz içini ve deniz kıyılarını konutsal ve endüstriyel çöplerle, atıklarla ve topraksı hafriyatla doldurup kirleteceklerine; kaynaklarını ve enerjilerini merkezi arıtma tesislerinin, çökeltme göletlerin yapımları gibi hizmetlerde harcasınlar. Denizi doldurarak yeşil saha açacaklarına ve bu yeşil sahalar üzerine gelişigüzel kamu binalarla, büfelerle, cay-kahve, düğün salonları ve sosyete gazinoları ve mafya lokalleri ile yeniden dolduracaklarına denizin dibine suyun içine kadar olan çarpık, geri zekâlılık abidesi olan yapılaşmayı önlesinler. Dolgular, kıyının doğal yapısını bozmakla kalmamakta; denizin kendi kendini yenileme ve temizleme doğal mekanizmasını tahribat etmektedir! 2. DENİZ SUYUNUN KİRLENME NEDENLERİ Deniz suyunun kirletilmesi ile denizdeki bir çok bitkinin, canlının yok olmasının bir çok nedenleri vardır. Bu nedenler örneğin; - Kentsel çöpler, (atıklar) - Sanayisel atıklar, - Tarımsal Atıklar, - Gemi-Teknesel atıklar, - Topraksı hafriyatlı dolgular, - Aşırı ve bilinçsiz avlanma, gibi gruplandırılarak sıralanabilirler. Diğer bir gruplandırma ise, kirli atıkların kati (denizdeki poşetler, lastikler, plastikler, suni maddeler v.b.) , sıvı (yanık yağlar, kimyasal asitli, renklendirici sanayi sıvıları, boyaları, deterjanlı temizlik suları v.b.), aeroskopik atık maddeleri, örneğin püskürtmeli tarımsal ilaçlar) ve radyoaktif özelliğine göre alt gruplandırmalar yapılabilmektedir. 2.1 Kentsel Atıklar: Buradaki kirlilik, evsel bilhassa mutfak artıkların örneğin, yanık yağların lavabo-kanalizasyon yolu ile direkt yada dolaylı denize ulaşmaları. Ayni şekilde temizlikte, hijyenikte kullanılan kimyasal sıvılar, tozlar ( deterjanlar, çamaşır tozları, klorak gibi asitler, sabunlar, macunlar v.b.) Önem sırası dikkate alınmadan aşağıdaki gibi sıralanabilir: ·Evsel-konutsal sıvısal atıkların, (deterjanlı bulaşık suların, asitli çamaşır kirli ve asitli suların, yağların v.b.) lağım, kanalizasyon yoluyla yıllardan beri arıtılmadan direkt yada dolaylı olarak denize akıtılmaları. ·Lağım çukurlarına biriktirilen konut artıklarının, bilhassa asitli, fosfatlı temizlik malzemelerinin, deterjanlı suların, yanmış yağ artıklarının direkt vidanjörlerle veya dere, kanalizasyon, boru gibi kanallarla denize boşaltılmaları, ·Konutsal kati artıkların örneğin poşet, plastik, lastik, sise, kağıt, kumaş gibi kati artıkların, kati çöplerin farklı yollardan direkt atılmaları yada dolaylı olarak dere akarsularla denize dökülmeleri, yayılmaları. ·Konutsal topraksı, taşlı, ağaçlı v.b. hafriyat atıkların denizin içine yada denizin kıyısına boşaltılması, ·Derde yataklarının, kanalizasyonların dezenfekte edilmesi daha sonra bu zehirli ilaçların deniz suyuna karışması, ·Dere yataklarında su birikintilerinde bilhassa sıcak yağışsız mevsimlerde oluşan mikrop, bakterilerin çoğalarak denize karışmaları, deniz deki canlı ve bitkilere bulaşmaları. (Yapılan bir araştırmada İzmir limanı içersinden avlanan balıkların etinde ve barsallarında insan sağlığını tehdit eden kanserojen kalıntıları, bakteriler bulunmuştur, bu bulgular İzmir limanın lağım çukuruna dönüştürüldüğünün diğer bir delilidir.!) 2.2 Endüstriyel Atıklar (Sanayisel ve Tarımsal Atıklar) ; Sanayisel kati, sıvı ve aerosol (sıvı, gaz ve toz karışımlı) artıkları denizlerimiz deki ekosistemi tehdit eden kirliliklerin başında yer alırlar. Bu atıklar Denizlerimde yakıcı, boğucu, bozucu, çökeltici, zehirli, engellemeci, radyoaktif, bulaşma ve yapışma özeliklerine sahiptirler. Tehlikeli hastalık saçan, kanserojen etkili, biyolojik mikrobik sanayi artıkları da arıtılmadan denize ulaşmaktadırlar. Miktar acısından da tehlikeli atıklardır. Sanayisel deniz kirliliğin başlıca nedenini aşağıdaki gibi özetleyebiliriz: “Her türlü Zehirli, çöktürücü, renklendirici, boğucu, radyoaktif sanayi artıkların denize arıtılmadan yada yetersiz artıma ile direkt yada dolaylı olarak dökülmeleri ve denizde yayılmaları” Tarımsal atıkları endüstriyel atıklar grubu icerisinde ele alınabilirler. Tarımsal amaçlı olarak kullanılan kimyasal gübrelerin, alıntılarının, bitkisel ve hayvansal hormonların, ilaçların, boyaların, havadan, yer altı veya yerüstü sularla direkt yâda dolaylı olarak deniz suyuna karışmalarıdır. Endüstriyel baca gazlarını ve aerosöl atıklarını, dünyadaki yanardağların meydana getirildiği kirlilik oranı ile karsılaştırıp Fabrika bacalarından ve eksozlardan yayılan cevre kirliliğini küçümseyen bazı bilim adamları gibi yanılgıya düşüp bilensiz ilaçlama, gübreleme ile meydana gelen kıyı denizlerimizdeki kirlilikte küçümsenmemelidir. 20 sene evveline kadar Edremit körfezinden ta Çandırlı körfezine kadar hemen, hemen her yıl zeytin ağaçlarının ilaçlanması, kanserojen DTT tozu ile uçaklardan püskürtülerek yapılıyordu. Aerosöl ilacın bir kimsi denize karışarak zaman, zaman bazı sahillide toplu balık katliamlarına neden oluyordu, Büyük küçük yavru ayırt etmeksizin balıkların bir kısmi ölü karaya vururken, bir kısmide oryantasyonu kaybedip su üstünde panik içerisinde yüzdükleri hala gözlerimin önündedirler. İşin ilginç ve acı tarafı; cahil vatandaşların bunları denizden toplayarak satması ve pişirip yemesi idi. Günümüzde deniz kıyılarımızda hala zeytin ağaçlarını ilaçlanması uçakla ve motorlu güçlü pompalarla yerden yapılmaktadır. Bu ilacın bir kısmi yine denize karışmaktadır. Tek fark, karaya vuran balıkların görülmemesidir. Bunun nedenini gayet basit sizde düşünün ve yorumlayın! (Denizlerimizde ilaçlardan etkilenip karaya vuracak balık kalmamıştır) 2.3 Gemi-Teknesel ve bot gibi deniz araçlarından denize karışan atıklar, Son yılarda denizlerimizde gemi, tekne, bot, yat gibi deniz vasıtaların sayıları artmıştır. Bu artışa paralel olarak denizlerimizdeki kirlilik artmıştır. Bu kirlilik farklı yollardan denize bulaşmaktadır: ·Petrol tankerlerinden ve diğer gemilerin kazaya uğrayarak kirletici maddelerin denize karışması, yayılması, ·sinte ve balast suların denize boşaltılmaları, ·gemi-evsel çöplerin denize atılması, ·gemi- tuvalet-lavabo suların, denize akıtılmaları, ·gemi ambar artıkların, süprüntülerin denize dökülmesi, ·zararlı yosunların, mikro organizmaların bir denizden diğerine taşınmaları, ·Gemi altlarının yosun, atırganalara (gemilerin sualtı dış gövdelerinde zamanla oluşan kabuklu organizmalar midye türü canlılar, Teknelerin hızını önemli ölçüde azalttığı, yakıt tüketimini artırdığı gibi gövdenin çürümesine de neden olmaktadırlar ) ve diniz kurtçuklarına karşın zehirli boya ile boyatılmaları, bu zehirli boya partiküllerin deniz suyuna karışması. 2.4 Topraksı hafriyatlı deniz kıyısı dolguları ·Her türlü çöpün, topraksı hafriyatın denize direkt veya dolaylı denize dökülmeleri, ·Deniz kıyılarının doğal yapısının betonlaştırılarak tahribat edilmesi, ·Deniz suyunun doğal devir-daimi, akıntıların gelişigüzel dolgu, barınak, dalgakıran, marina, kütiskele, dalyan, gibi yapılarla engellenmesi veya olumsuz yöne çevrilmesi, ·İnşaatlar için sahillerden, koylardan ve deniz dibinden kum, çakıl, taş toplanması, Kıyı dolgusunun her türlü hafriyat, toprak ve çöp artıkları dökülerek gelişigüzel, ciddiyetsiz yapılması ve yapımın üzün sürmesi halinde ortaya çıkan zararlar: ·Topraksı hafriyatın (Şekil 1 de fotoğraf 6) ve çöplerin rüzgar, akıntı, dalga gibi etkenlerle denizin derinliklerine yayılmaktadır, zamanla denizin dibine çökmektedirler, bir kısmı ise karşı sahillerde tekrar karaya vurmaktadırlar. (Günümüzde deniz kıyıları, alışveriş poşetlerinden, bira, kola kutularından, plastik kaplardan, şişelerden geçilmiyor, (Şekil 1) Topraksı, çöplü dolgunun suda eriyerek, dağılması ve yayılması sonucu su bulanmaktadır. Çamurlu su içindeki katıklar zamanla denizin dibine çökelmektedir. Suya karışan toprak ve denizin dibinde çamur seklinde çöken tabaka canlıların, bitki örtüsünün, mikro organizmaların ve balık yavrularının oksijensizlikten telef olmalarına neden olabilmektedir. Diğer yönden yosun gibi bitki örtülerin üzerini kaplayarak bir çok balık türünün besin kaynaklarını yok etmektedir. ·Deniz suyun berraklığına, temizliğine göre güneş ışınları derinliklere ulaşır ve havadaki oksijen denizin yüzeyinden çözünerek derinliklere yayılır. Bu acıdan değerlendirildiğinde, topraksı hafriyatla denizin bulanması sonucu uzun bir süre güneş ışınlarının deniz suyunun derinliklerine ulaşmasını, havadaki oksijenin deniz suyunda çözünüp derinliklerine kadar yayılmasını da büyük ölçüde kısıtlamaktadır. Deniz suyundaki oksijen konzetrasyonuna ve güneş ışınlarına hassas olan deniz bitkilerinin ve çanlılarının topluca katliamına sebebiyet vermektedirler. Bilhassa sıcak havalarda kıyılarda rastlanan sürü halindeki balık katliamlarının diğer bir nedeni budur. Bu katliamlar akarsu ve göletlerde boyalı suların döküldüğü zamanlarda daha yoğun rastlanmaktadır. ·Kıyıların betonlaştırılarak suyun kendi kendini temizleme (arıtma tesisi) mekanizması tahrip edilmektedir. Kumluk, taşlık gerekse de kayalık kıyılar birer canlı arıtma tesisi gibi çalışan bir çok mikro organizmaları, deniz canlıları ve yosunları barındırmaktadır. Kıyıların doldurulmasıyla ilk önce bunlar katledilmektedir daha sonra bunların yerine geçeceklerin yaşam ortamı da yok edilmektedir. Doğal kıyılarda barınabilen sağlıklı yosunlar, mikroorganizmalar, midyeler, kara dikenler, deniz patlıcanları, salyangozlar, yengeçler, deniz yıldızları, solucanlar, mamunlar (deniz böcekleri, kurtcuklar), karidesler v.d. suyun temizlenmesinde önemli rol oynadıkları bilinmektedir. Ayrıca bunlar bir çok balık türünün birer besin kaynağı olduğu da unutulmamalıdır. ·Plansız dolgu yapımları ile deniz suyunun akıntısı engellenmekte veya olumsuz bir yöne doğru yönlendirilmektedir. Deniz suyunun doğal devir-daiminin bozulası ile su kendi kendini tazeleme, yenileme işlevini sürdürememektedir. Suya karışan artıklar akıntı vasıtasıyla acık denizlere taşınamamakta, suyun dibine bir örtü şeklinde çökelerek birikmektedirler. Buraları zamanla bir nevi mikrop yuvasına dönüşmektedir, çevreye yayılmaktadır! Bunu en güzel örneği İzmir Limanında ve İstanbul Haliçte görülmektedir. ·Dolguların, Kordonların diğer bir olumsuz yanı ise, kıyını doğal güzelliğini yok ederken kıyılarda ki canlı arıtma tesislerinin yaşam ortamı da ortadan kaldırmaktadır. Genelde kıyılara en az 50 m ye kadar normal yapılaşmaya izin verilmemeliydi. Bu kural yeni yerleşim kıyı yerlerinde gelecek nesiller için uygulanmalıdır. Deniz kıyıları her kesin kullanımına doğa tahrip edilmeden açık tutulmalıdır. 2.5 Aşırı ve bilinçsiz avlanma ·Tırol, trata gibi kıyıların deniz dibini tarayarak harap eden ağ avlama yöntemlerin yıllardan beri sürmesi, ·Kıyılarda ışık destekli sürüklenmeli germeli ağ balık avlama yönteminin yoğunlaşması, (aşırı avlanma ·Deniz diplerinden, kayalık ve taşlıklardan midye, salyangoz, deniz patlıcanı, yıldız, kara diken, yosun, karides, mamun, (kabuklu kabuksuz deniz böcekleri, kurtları) gibi mamullerin yıllardan beri aşırı toplanması, ·Teknelerin, gemilerin sualtlarının zehirli boyalarla kaplanması, ·Katil yosunların, atırgana gibi zehirli mikroorganizmaların deniz taşıtları ile denizlerde yayılmaları ·Tekne, motor, yat, sandal gibi deniz taşıtlarındaki hızlı artış. Sinte, yakıtlı, yağlı tekne içi sularının limanlarda, koylarda denize boşaltılması.(Denizde suyun üstünde yayılan yağın, yakıtın bir çok bitkinin ve canlının besin kaynağı olan platkon, yakamoz gibi mikro organizmaları, yok etmektedir. ) 2.6 Kıyı denizlerdeki balık çiftliklerin ürettiği kirlilik Yerel yönetimlerin denize direk bıraktıkları arıtılmamış kanalizasyon suları, denize dökülen kentsel atıklar, denize karışan sanayi artıkları ve topraksı hafriyatın yanında balık çiftliklerin ürettiği deniz kirliliği hiç denecek kadar azdır. Aslında balık çiftlikleri denizdeki eko sitemin korunmasında yararlı oldukları gibi ülke ekonominse çok yönlü yararlar sağlamaktadırlar Balık çiftliklerini kaldıracağı yerde artırılması yönünde devletin tevsikleri vermelidir. Koylardaki doğal akıntıyı sekteye vurmayacak şekilde Türkiye’nin belli bölgelerinde kurulmalarında, deniz kirliliği açısından ben sakınca görmüyorum. Balıkçı kooperatifleri yeni balık çiftlikleri kurarak bilinçli isleterek düzenli ve sürekli bir geçim kayağını kendilerine sağlayabilirler. Kıyı yerel yönetimler her yıl milyonlarca metreküp kirli aratılmamış kanalizasyon suyunu, yüz binlerce ton kati atiği denize, limana döküyorlar. Bu kirlenmeğe karşın kamuoyunda ses getirilmiyor. Bula, bula balık çiftliklerindeki kirlenmeye karşın kamuoyunda yaygara koparmalarını manidar buluyorum. Sadece görüntü kirliliği yönünden turistik kıyılarda arsa fiyatlarını düşürdükleri ve ileride turistik tesislerin yapımlarını engelledikleri için belli çevrelerce arzu edilmemektedir, kapatılmaları ve taşınmaları istenmektedir. Denizdeki farklı sorunların üstesinden gelmek için ilgili bakanlığın, Denizcilik bakanlığının kurulma istemini bazı öğretim üyelerinin bu yöndeki önerilerini de anlamsız buluyorum. Balık çiftliklerin kapatılması için ciddi anlamda bilimsel araştırmalara dayalı nedenler bulunmamaktadır. Balık çiftliklerin ürettiği kirlilik üzerine yeterli bilimsel araştırmalar bulunmamaktadır. Kamuoyuna yansıyan bazı ölçümler, kirliliğin ana nedenleri ve boyutları hakinde bilgi vermemektedir. Bu ölçümlerde global kirlilik etkenleri dikkate alınmamıştır. Bazı balık çiftlikleri çevresindeki gözlenen deniz suyu kirliliğinin asil nedenleri, çevresel kirlilik araştırılmamıştır. Balık çiftliklerin koylarda akıntıyı büyük ölçüde sekteye uğratmayacak, görüntü kirliliği yaratmayacak şekilde ve turistik kıyı bölgeleri dışında kurulmalarına dikkat edilmelidir. 3. DENİZ SUYUNUN KİRLENMESİNE KARŞIN ALINACAK BAZI ÖNLEMLER Örneğin gereğinden fazla plastik poşet ambalajlarının kullanılmaması, Almanya’da olduğu gibi plastik şişeler yerine dönüşümlü cam şişelerin kullanılması. Gereğinden fazla temizlik maddelerinin kullanılmaması, Yağımsı, asitli maddelerin kanalizasyona dökülmemesi, Çökeltme ve eleme göletlerin, tagarlarin yapılması, Konutsal çöplerin artıkların ayrı çöp bidonlarına ayrıştırılması gibi çok basit ve ekonomik bazı önlemlerle deniz suyunun temiz kalmasına katkıda bulunabilir. Önem sırası dikkate alınmadan önlemlerin sıralanması: a.Zehirli, boğucu, renklendirici, mikroplu fabrika atıklarının merkezi arıtma ve dinlendirme tesislerinden sonra denize ulaşmalarını sağlamak. Organize sanayi sitelerinde, bölgelerinde merkezi arıtma tesislerin yapımının faaliyetini şart koşmak. Büyük kapasiteli atık üreten fabrikalarda ön amaçlı arıtma tesislerin mevcudiyeti aranmalıdır. b.Küçük büyük yerleşim birimlerin kanalizasyona bağlanması ve atıkların merkezi arıtma tesislerinde zararlı bileşenler arındırılması ve yapay göletlerde dinlendirildikten sonra sulamaya veya akarsulara, denize akıtılmaları. c.Akarsu, (dere, ırmak, nehir..) ve deniz kenarlarına her türlü hafriyatın. Çöpün, artığın dökülmesinin önüne geçmek. Her nedense Türkiye’de yaz aylarında genellikle kuruyan dere, ırmak, çay gibi akarsuların kıyıları, içleri çöplükle, her türlü pisliklerle, zehirli maddelerle doldurulmaktadır. Yaz mevsiminden sonra ilk yağan küvetli yağmurla karadaki çöpler, pislikler, zararlı ve zehirli maddeler denize dökülmektedir. Sekil 3. Parça resim III.1 de yağmurdan sonra İzmir Limanı bütününde deniz üstünde yüzen çöplükler görülmektedir. d.Akarsuların, derlerin denize dökülmeden evvel yapay göletlerden geçirilmeleri, dinlendirilmeleri.. süzgeç- bariyerlerden geçirilmelerini sağlamak e.Liman içlerinde ve sığ sularda balık avlanmasını belli bir süre yasaklamak, f.Kıyılara on mil kala balık avlanmasını kontrol etmek, sadece olta balıkçılığına örneğin, paragata izin vermek, Bu alan içerisinde sabit dikey ağlarla ve hareketli ağlarla örneğin, trata, trol ve gırgır gibi deniz dibini taraklayan balık avlama metotlarının yasaklanması,… g.Bilhassa liman içlerinden deniz diplerinden karadiken, (denizkestanesi) mideye, salyangoz, denizhıyarı ve yosun gibi deniz ürünlerin toplanılmasını yasaklamak, h.Deniz kıyılarının doğal yapısının korunmasına özen göstermek. Deniz su kenarından 50 m’ye kadar yapılaşmaya (konut, yazlık, otel v.b.) izin vermemek. i.Denizin devir daimini aksatacak dalyan, kordon, kütiskele, barınak, dalgakıran, balık, midye çiftlikleri gibi yapılara (Bilhassa liman içlerinde, boğazlarda) izin vermemek kumsalların her türlü araç trafiğine kapalı tutulması. j.Zaruri dolgularda çevreye en az zarar verecek şekilde yapılması, k.Deniz kenarlarından ve deniz diplerinden inşaatlar için kum, çakıl, taş toplanmasına izin vermemek. l.Deniz suyuna dik inen beton kordon duvarları yerine, su seviyesine kadar iri ufaklı topraksız kaya parçaların dökülmesi, m.Deniz uyunun devir daimini destekleyecek kanalların açılması. (Örneğin İzmir Limanında Bayraklı önlerinden denizin dibinde 2 –3 m genişliğinde, 2 m. derinliğinde tarak gemileri ile açılacak kanallar ve veya deniz dibine döşenecek borularla pis suyun acık denizlere taşınmasını kolaylaştıracaktır. Ayrıca açıktan temiz suyun liman girmesine de katkı sağlayacaktır. n.Denize acılan derelerde, deniz kıyısına yakın yerlerde tagarların açılması, (küçük kapasiteli pis, katıklı su dinlendirme havuzları, göletler Şekil 5) o.Halk yazılı ve görsel basınla konunun ehemmiyeti acısından bilgilendirilmelidir. Temiz çevre bilinci aşılanmalıdır. (Örneğin hanımların daha az sıklıkta çamaşır yıkamaları, daha az deterjan temizlik malzemeleri kullanmaları, gereğinden fazla poşet almamaları, Ağır atıkların, çöplerin, hafriyatın dere kenarlarına veya denize gizli dökülmemesi, kızartma yağlarının tuvalete dökülmemesi, Tamirhanelerde motor, fren yanık yağlarının kanalizasyona, dere kıyıların tenha yerlere boşaltılmaması gibi uyarılar. Evsel ve sanayi atik yağların haftanın belli günlerinde ücret karşılığında toplanması bu toplanan yağların rafine edilerek yakıt olarak kullanılması gibi projelere destek vermek ) p.Çevreyi kirletenlerin takibi, tespiti ve caydırıcı hapis ve para cezaların uygulanması q.Dolgu işleminin en kısa sürede tamamlanması, r.Dolgu işleminin suyun akıntısını engellemeyecek biçimde şekillendirilmesi s.Dolgu işlemi için hazırlanan projenin ilgili makamlar tarafından onaylı olması, Dolgu işlemi kıyı yerel yönetimlerin keyfine bırakılmamalıdır. 4. SONUÇLAR ·Deniz kıyıları her geçen gün farklı şekillerle kirletilerek deniz ekosistemini kendi kendini yenilenmeyecek, onarılmayacak derecede tahribat ediliyor. Birçok limanlarımızda, hatta büyük körfezlerde, Marmara denizi gibi kapalı denizlerde kirliliği ciddi boyutlara ulaşmıştır. Buraların deniz suyunda bırakın yüzmeyi, balık avlamayı; sahil şeritlerinde gezinmek, kordondaki banklarda dinlenmek, güneşlenmek bile denizden yayılan pis kokulardan, denizde yüzen lağımsı atıklardan, çöplerden, sümüksü mikroplu iğrenç yosunlardan, köpüklerden mümkün olmuyor. Deniz kirliliği Akdeniz`i tehdit eder boyutlara ulaşmıştır. ·Deniz kirliğin önemli nedenleri ve etkenleri bu çalışmada sıralanmıştır. Denizlerin eski temizliğine kavuşması için bu nedenler ve etkenler ortadan kaldırılması gerekir. Bu yapılmadıkça yürütülen mali külfetli projeler istenileni veremeyeceklerdir. ·Balık çitliklerinin deniz kıyılarındaki ürettikleri kirlilik, yerel yönetimlerin denize döktükleri arıtılmamış kanalizasyon suları yanında hiç denecek kadar azdır. Balık çiftlikleri deniz eko sistem için olmasa olamazlardandır. Öğretim üyeleri destekli Türk kamuoyunda balık çiftlikleri aleyhine koparılan yaygara manidardır! Balık çiftlikleri çevresinde gözlenen deniz suyu kirlenmesi, kıyı denizlerimizde yerel yönetimlerin ve bazı sanayicilerin sebep olduğu, kıyı deniz kirliliğinin bir parçasıdır. ·Deniz ekosisteminin bozulmasının nedenlerinden biri, kıyıların gelişigüzel topraksı hafriyatla, çöplerle v. b. artıklarla doldurulmasıdır. Kıyı dolgu işlemiyle deniz ekosistemine verilen zararın farkında ve bilincinde değillerdir. Her şeyden evvel kumlu, taşlı, kayalıklı kıyılarda yaşam ortamı bulan canlı arıtma tesisleri de yok edilmektedir. Deniz suyuna karışan toprak yayılarak daha sonrada denizin dibine çökerek deniz içindeki canlı ve bitkilerin havasızlıktan boğulmalarına sebebiyet verdiği göz ardı edilmemelidir. Bu nedenle kıyı dolgu işlerinde topraksı hafriyat yasaklanmalıdır. ·Kıyı yerel yönetimler, (bilhassa turistik sahillerde) kıyıları doldurularak yeşil saha, geniş yollar açacaklarına; - beldelerinin kanalizasyon ve arıtma sistemlerine ağırlık versinler, - toplu insan taşımacılıkta yaşanılan problemlerle ilgilensinler. ·Kıyı denizlerimizin ekosistem dengesinin berbat edilmesi ile o beldelerin turistik çekiciliği, balıkçılığı ve dolayısıyla önemli gelirleri, iş sahaları yok olacaktır. Deniz suyunun berraklığı, içindeki yaşam, su ürünleri, koyların temizliği, doğal güzelliği bu beldeleri ilgi çekici yaptığı unutulmamalıdır. Ve bu doğal güzellikler insanlığın geleceği için korunmalıdır.   PDF VERİLERİDE İNCELEYİN documents/k__y___deniz_11.doc documents/suyunonemiekolojiksorunlar.pdf  

http://www.biyologlar.com/denizlerimiz-ve-ekolojik-onemleri

Kuş Göcü Araştırmaları

Yüzyıllar boyu, doğa olayları arasında insanda en çok hayranlık uyandıranlardan birisi hiç şüphesiz kuş göçü olagelmiş. Kuşların sonbaharda ortadan kaybolup baharda tekrar ortaya çıkmalarının nedenlerini merak edenler birçok teoriler ortaya atmışlar. Bazıları, küçük kuşların havalar soğuduğunda çamurun içinde ya da küçük kovuklarda saklanarak kış uykusuna yattıklarını düşünmüş. Hatta Aristoteles başka bir teori daha ortaya atarak bahar aylarında Kızılgerdan olarak bilinen kuşun sonbaharda kızılkuyruğa dönüştüğünü ileri sürmüş! Kuşların göçüyle ilgili ilk araştırma çabasının Alman bir rahibe ait olduğu söylenir. Bir Kırlangıcın bacağına üzerinde "Kırlangıç, kışı nerede geçirirsin?" yazılı bir kağıt bağlayan rahip bir yıl sonra üzerinde "Asya`da, Petrus`un evinde" yazılı bir kağıtla aynı kırlangıcın geri döndüğüne tanık olur. Bu olaydan yaklaşık 750 yıl sonra, özellikle geçtiğimiz yüzyılın ikinci yarısından itibaren yoğunlaşan gözlemler, halkalama çalışmaları, radyo vericileri ve radar kullanımının yaygınlaşmasıyla birlikte kuş göçünün gizemi yavaş yavaş çözülmeye başlamış. Kuş göçü araştırmalarında kullanılan en yaygın yöntem bir teleskop ve dürbün yardımıyla tek ya da bir hat boyunca birçok noktadan yapılan yer gözlemleri. Bu yöntem özellikle coğrafi koşullar nedeniyle kuşların göç zamanı yoğunlaştıkları Boğaziçi gibi darboğazlarda, dağ geçitlerinde ya da kıyılarda oldukça verimli oluyor. Göç mevsimlerinde gerçekleştirilen günlük, düzenli gözlemlerle bir bölgeden geçen kuşların tür kompozisyonu, yoğunlukları ve göç takvimleri ortaya çıkarılabilir. Gözlemlerin özellikle hava ve ışık koşullarından çok fazla etkilenmesi bu yöntem kullanıldığı zaman özellikle dikkate alınmalı. Örneğin, yere yakın yüksekliklerde rüzgarın şiddeti çok daha düşüktür. Bu yüzden de kuşlar rüzgara karşı uçmak zorunda kaldıklarında yere yakın uçmayı tercih ederler ve böyle bir günde yüksek sayılarda kuş gözlemek mümkün olabilir. Aksi bir durumda, eğer kuşlar rüzgarı arkalarına alırlarsa bu avantajdan en iyi şekilde yararlanmak için yerden gözlemenin mümkün olmayacağı kadar yüksekten uçabilirler. Bu durumda da yoğun bir kuş göçü olmasına rağmen gözlem başarısızlıkla sonuçlanabilir. Ayrıca, gece göçmenlerini bu yöntemle araştırmak mümkün değil ve aslında kuşların büyük çoğunluğu gece göç eder. Diğer bir yöntem de 1951 yılında Lowery tarafından geliştirilmiş olan ay gözlemi. Bu yöntemde bir teleskop yardımıyla gece göç eden kuşların dolunay önünden geçen silüetleri gözlenir. Bu yöntemle gökyüzünde çok küçük bir alan taranabilmekte ve sadece dolunay zamanı ve bulutsuz havalarda olduğu varsayımı, kuşların uçuş yönünü belirlemekteki güçlükler ve de kalibrasyon sorunu bu yöntemin geçerliliğini zorluyor. Radyo ve uydu vericileri gibi çok daha gelişmiş yöntemler de göç araştırmalarında kullanılmakta. Radyo vericisi takılan kuşlar bir arabaya ya da uçağa yerleştirilen bir alıcı ile takip edilmekte ve göç davranışları ile ilgili çok detaylı bilgiler elde edilmekte. Radyo vericilerinin ağırlığı 0.5 gr.a kadar düştüğü için çok küçük kuşlara bile takılmaları mümkün. Uydu vericileri ise kuşların uçuş yükseklikleri, uçuş hızları ve bulundukları koordinatları cep telefonuna mesajla bile sürekli bildirecek kadar geliştirilmiş, ancak hem çok pahalı olmaları hem de ağırlıkları nedeniyle kullanım alanları oldukça kısıtlı. Genellikle yırtıcı kuşlar, leylekler, turnalar gibi büyük kuşlara uydu vericisi takılmakta. Özellikle İkinci Dünya Savaşı`yla birlikte radar teknolojisinde büyük gelişmeler kaydedilmiş ve radarlar göç araştırmalarında da kullanılmaya başlanmış. Radarlarla çok geniş alanlar taranabilmekte, çalışmalar hava ve ışık koşullarından etkilenmemekte. Bu yöntemle göç eden kuşların yoğunluğu, yönleri, hızları ve yükseklikleri tespit edilebilmekte. Günümüzün radarları 6.400 metre yükseklikteki kuşları fark edebilmekte ve martı büyüklüğündeki bir kuşu 80 kilometre mesafeden kaydedebilmekte. Bu yöntemle ilgili en büyük sorun ise göçmen kuşların tür düzeyinde tanımlanamaması. Radarda gözlenen kuşlar ancak büyüklüklerine göre ötücü, sukuşu, kıyıkuşu şeklinde gruplanabilmekte. Yine de radar çalışmaları kuşların denizler, çöller ve dağlar gibi ekolojik engelleri nasıl aştıkları, hava koşullarına göre nasıl davrandıkları ile ilgili çok önemli bilgiler elde edilmesini sağlamakta. Örneğin, kuşların uçuş yüksekliklerini değiştirerek rüzgardan en iyi şekilde yararlanmaya çalıştıkları radar gözlemleri ile anlaşılmış. Birçok kuş türünün göçe özgü ötüşleri vardır. Bu ötüşlerin kaydedilerek analiz edilmesi de araştırmalarda kullanılan bir diğer yöntem. Yeni bir yaklaşım da kuş tüylerinin kararlı izotop oranları açısından analiz edilmeleri. Bu yöntem, dünyada her farklı coğrafyanın (genellikle yağışlara bağlı olarak) kendine özgü izotop oranlarına sahip olmasına dayanmakta. Bu kararlı izotoplar besin ağı yoluyla kuşların dokularında da birikmekte. Kuşların tüylerindeki ya da tırnaklarındaki hidrojen, karbon veya azot izotop oranları, sadece bu dokular büyürken kuşun beslendiği yöreyi yansıtır. Bu nedenle, tüylerin izotop yapıları belirlenerek kuşların tüy değiştirme stratejilerine göre üredikleri, kışladıkları ya da konakladıkları alanların saptanması mümkün olmakta. Kuşların yön bulma yetenekleri ile ilgili çalışmalar da göç araştırmalarında geniş bir yer tutuyor. Halkalanan ve tekrar yakalanan bireyler sayesinde kuşların üreme, kışlama ve konaklama alanlarına bağlılıkları ve sonuç olarak yön bulma yetenekleri ölçülebilmekte. Bu amaçla gerçekleştirilen en yaygın araştırmalar, yer değiştirme deneyleri. Bu deneylerde hala yuvada yavruları olan erişkin kuşlar üreme alanlarından, güvercinler tüneklerinden ve göçmen kuşlar da göç rotalarından uzaklaştırılırlar ve daha sonra geri dönme başarıları ölçülür. İlk kez 1949 yılında Kramer tarafından kafesteki kuşların belirli bir yöne doğru göç aktivitesi gösterdiklerinin kanıtlanmasının ardından kafeslerdeki kuşların göç huzursuzluğunun ölçülmesi standart bir yöntem olarak yön bulma deneylerinde yerini aldı. Bu çalışmalar için çeşitli kafesler geliştirilmiş. İçinde tünekler olan ve elektrikli bir sayaç ile kuşların bu tüneklere zıplama miktarlarının ölçüldüğü kafesler (Kramer 1949, Sauer, 1957), yan duvarları eğimli olan ve kuş gitmek istediği yöne doğru bu duvarlar üzerine zıpladıkça daktilo kağıdı üzerinde bırakılan izlerin ölçüldüğü Emlen`in huni kafesleri (Emlen and Emlen, 1966) ve kuşun gagası ile kafesin etrafına sarılı şeffaf folyo üzerinde yaptığı izlerin gözle sayıldığı Busse`nin düz kafesleri (Busse 1995) yaygın olarak kullanılan kafesler. diğerlerinin aksine, arazi koşullarında ve hem gece, hem gündüz gerçekleştirilebiliyor olması Busse kafesleri ile çok fazla kuş ile deney yapılabilmesini ve büyük miktarlarda veri elde edilebilmesini sağlamaktadır. Bu yöntemde, halkalama çalışmaları sırasında yakalanan kuşlarla anında deney yapılabilmekte. Türkiye coğrafyasında kuş türlerinin yön tercihleri de halkalama istasyonlarımızda Busse kafesleri ile gerçekleştirilen deneylerle araştırılmakta. Geçtiğimiz on yıl içinde geliştirilen ve oryantasyonu aerodinamik ve fizyoloji ile bağdaştıran "Optimum Göç Teorisi", kuş göçü araştırmaları için başlıca kuramsal çerçeveyi oluştururken, bir yandan da genetik çalışmalar yaygınlaşıyor. Halkalama Çalışmaları Kuşların, halkalama lisansına sahip eğitimli araştırmacılar tarafından güvenli yöntemlerle yakalanmasını, bacaklarına halka takılmasını ve tür, yaş, cinsiyet gibi gerekli bilgilerin kaydedilmesinden sonra serbest bırakılmasını içeren işlemlerin tümüne birden "halkalama" adı veriliyor. Oldukça pahalı yöntemler olan radyo ve uydu vericileri hariç yukarıda bahsedilen hiçbir yöntemle göçmen kuşlar bireysel olarak izlenemiyor. Bu ancak halkalama çalışmaları ile mümkün. Halkaların üzerinde ülkelere özgü sabit bir adres ve her birey için farklı bir kod numarası olur. Kod numarası kuşların bireysel olarak tanınmasını, adresler ise tekrar yakalanan ya da ölü bulunan halkalı bir kuşun halkalanma bilgilerine ulaşılabilmesini sağlar. Bu adres sayesinde kuş ölü bulunduysa halkası, canlı olarak tekrar yakalandıysa da kuşla ilgili bilgiler halkalandığı merkeze ulaştırılır ve kuşun nerede, ne zaman halkalandığı öğrenilir. Bu yöntemle, temelde kuşların göçleri (kuş türlerinin göç stratejileri, konaklama, kışlama ve üreme alanları, göç takvimleri) ve populasyon dinamikleri (kaç yıl yaşadıkları, üreme başarıları, hayatta kalma başarıları, ilk üreme yaşları, kaç yaşına kadar üremeye devam ettikleri, genç bireylerin dağılma oranları) araştırılmakta. Özellikle 1970`li yıllardan sonra halkalama çalışmaları koruma çalışmalarına da büyük katkı sağlamaya başladı. Standart yöntemlerle yapılan çalışmalar sonucunda populasyonlardaki değişimler takip edilebilmekte ve türlerin korunmasına yönelik kararlar alınabilmekte. ABD ve Avrupa`da Operation Baltic, Constant Effort Sites (CES), Monitoring Avian Productivity and Survivorship (MAPS) gibi önemli projeler, standart yöntemler kullanılarak populasyonların takip edilmesi amacıyla gerçekleştiriliyor. Dünyada Kuş Halkalama Çalışmalarının Tarihçesi Halkalama çalışmalarının başlangıcı olarak Danimarkalı bir öğretmen olan Mortensen`in Sığırcık yavrularına alüminyum halkalar taktığı 1889 yılı kabul edilir. Kuşları ilk kez sistematik olarak halkalayan Mortensen, böylelikle günümüzde yüzün üzerinde istasyonda, binlerce lisanslı halkacı tarafından yaygın bir şekilde uygulanan standart halkalama çalışmalarının da öncüsü olmuş. Kuşlarla ve kuş göçüyle ilgili çok önemli bilgiler sağlayan sistematik halkalama çalışmaları öncesinde de kuşlar çeşitli nedenlerle halkalanmışlar. Kuşların ayağına metal bir halka takılmasıyla ilgili ilk kayıt 1595 yılında Fransa`sına ait. 4.Henry`nin halkalı Gökdoğan`larından (Falco peregrinus) biri kuş avı sırasında kaybolmuş ve 24 saat sonra Malta`da bulunmuş. Halkalı olduğu için saatte ortalama 90 km hızla Fransa`dan Malta`ya uçmuş olduğu anlaşılan bu birey böylelikle Gökdoğan`ların şaşırtıcı uçuş yeteneklerinin belki de ilk kanıtı olmuş. 1669 yılında ise Dük Ferdinand bir Gri Balıkçıl`ın (Ardea cinerea) bacağına gümüş halka takmış; 1728 yılında Dük`ün torunu tarafından tekrar bulunan bu Gri Balıkçıl`ın en az 60 yıl yaşadığı da böylelikle anlaşılmış. Almanya`da 1710 yılında bir atmacacı aynı ayağında birden fazla halka taşıyan bir Gri Balıkçıl yakalamış. Halkaların birçoğunun üzerinde herhangi bir bilgi olmadığından bu kuşun nerede ve kimler tarafından halkalandığı anlaşılamamışsa da halkalardan birinin Türkiye`de takılmış olabileceği düşünülüyor. Bu kuşların çoğu kuş göçü ve biyolojisiyle ilgili bilgi edinmekten çok daha farklı amaçlar için halkalanmışlar. Yabani kuşları gizemli göç davranışları ve biyolojileriyle ilgili bilgi edinmek amacıyla markalayan araştırmacılar ise halkalamanın asıl amacına yönelik ilk adımları atmışlar. Kuzey Amerika`da böylesi bir çabayı ilk kez gösteren ünlü doğabilimcisi ve ressam John James Audubon olmuştur. Audubon, 1803 yılında batağan yavrularının ayaklarına gümüş sicimler bağlamış ve böylelikle ertesi yıl iki yavrunun tekrar aynı yere geldiğini kanıtlamış. Ancak bugünkü halkalama çalışmalarının kurucusu, en başta da söz edildiği gibi Danimarkalı Hans Christian Cornelius Mortensen`dir. Viborg`ta öğretmenlik yapan Mortensen`in üzerinde bir adres ve seri numarası olan alüminyum halkayı 5 Haziran 1899 yılında bir Sığırcık yavrusuna takmasıyla sistematik halkalama çalışmaları da başlamış. Mortensen, standart bir şekilde halkalanan 165 Sığırcık yavrusuna tekrar rastlanılacağını umuyordu. Gerçekten de bir yıl içinde bu kuşlardan bazıları tekrar görüldü ve bu kayıtlar yayınlandı. Mortensen`in deneyi başarıyla sonuçlanmıştı ve bu başarıdan etkilenen birçok ülkede kuşlar halkalanmaya ve halkalama istasyonları kurulmaya başlandı. Kuzey Amerika`daki sistematik halkalama çalışmaları ise 1902 yılında Paul Bartsch tarafından gerçekleştirilmiş. Bartsch üzerinde "Smithsonian Enstitüsüne geri gönderin" yazılı halkalar kullanarak ilk kez bir tür gece balıkçılı halkalamış. Avrupa`da düzenli halkalama çalışmaları ise 1903 yılında Almanya`da (bugün Rusya sınırları içinde kalmış olan) ilk halkalama istasyonunun, Vogelwarte Rossiten`in kurulmasıyla başlamış. Almanya`nın ardından 1909 yılında bu kez İngiltere ve İrlanda`da halkalama çalışmaları yapan ornitoloji merkezleri kurulmuştur. Yine 1909`da Amerika`da Wisconsin Üniversitesi`nden Leon Cole, Amerika Kuş Halkalama Derneği`ni (American Bird Banding Association) kurmuş, 1910 yılında Çekoslovakya`da, 1911 yılında İsveç`te, 1912 yılında Finlandiya`da ve 1914 yılında da Norveç`te ilk kuş halkalama istasyonları çalışmalarına başlamış. 1916 yılındaki Göçmen Kuşlar Sözleşmesi`nin (Migratory Birds Convention) ardından 1920`de ABD`de ve 1923`te Kanada`da federal halkalama ofisleri kurulmuş. Göçmen kuşların sınır tanımıyor olması doğal olarak halkalama çalışmalarının da uluslararası işbirliği ile yürütülmesini gerekli kılıyor. Bu gereklilik doğrultusunda 1963 yılında Paris`te, birçok ulusal halkalama programının katılımıyla Avrupa Halkalama Birliği`nin (EURING) kurulmuş. 1966 yılında ise ulusal halkalama programları arasında bilgi alışverişini sağlayabilmek için geri bildirim verilerinde standart bir kodlama sistemi geliştirilmiş. Bu kod sistemi tüm ulusal halkalama merkezleri tarafından kullanılmakta. Türkiye`de Kuş Halkalama Çalışmaları Birçok kuş türü için çok önemli göç yolları üzerinde bulunmasına rağmen 2002 yılına kadar Türkiye`de düzenli ve kapsamlı halkalama çalışması gerçekleşmemişti. 1950-2000 yılları arasında Kızılırmak, Göksu ve Çukurova deltaları başta olmak üzere çeşitli bölgelerde çoğunlukla yabancı araştırmacılar tarafından kısa süreli, düzensiz çalışmalar yapılmış ve 166 türe ait 17.000`den fazla kuş halkalanmıştı. Ayrıca, 43 farklı ülkede halkalanıp hemen hemen tümü öldürüldükten ya da ölü bulunduktan sonra bildirilen 750`den fazla kuş ile ilgili kayıtlar var. Bu çalışmalarda araştırmacılar kendi ülkelerinin ulusal halkalarını kullanmışlar. Sadece, 1969 yılında Salih ve Belkıs Acar tarafından gerçekleştirilen çalışma için özel olarak üzerlerinde "Turkey" yazan halkalar yaptırılmış, ancak bu çaba da ulusal bir programa dönüşmemişti. Ulusal Halkalama Programı (UHP) Türkiye Ulusal Kuş Halkalama Programı (UHP), nihayet Kuş Araştırmaları Derneği`nin (KAD) girişimleri sonucunda, Doğa Koruma ve Milli Parklar Genel Müdürlüğü (MPG), Ortadoğu Teknik Üniversitesi (ODTÜ) ve KAD arasında imzalanan işbirliği protokolü ile Mart 2002 yılında başladı. Programın koordinatörlüğü KAD tarafından yürütülüyor. Halkalama çalışmaları, 2002 yılında Manyas Kuşcenneti (KAD-MPG), Cernek/Kızılırmak Deltası (Ondokuz Mayıs Üniversitesi), Titreyengöl/Manavgat (Avifaunichte Unterschungen, Alman bir ekip) ve ODTÜ (KAD-ODTÜ Biyoloji Bölümü) istasyonlarında gerçekleştirildi. 2003 yılında ise Akyatan (KAD-MPG) ve Dicle (Dicle Üniversitesi) istasyonları da pilot çalışmalarla programa dahil oldular. İki yıl içinde 6 istasyonda 110 türden 55.000`in üzerinde kuş halkalandı ve 15 farklı ülkede halkalanmış 46 kuş Türkiye`de kaydedildi. Türkiye`de halkalanmış 15 kuşla ilgili olarak da 6 ülkeden geri bildirim geldi. Uluslararası geri bildirimlerin yanısıra, sonbahar 2003 çalışmaları sırasında Cernek istasyonunda halkalanmış bir Yalıçapkını (Alcedo atthis) 3 gün sonra Akyatan istasyonunda Tüm bu çalışmalar sırasında, Türkiye için Kuzey Çıvgını (Phylloscopus borealis) için ilk kayıt olmak üzere nadir birçok tür için kayıtlar elde edildi. Renkli Halkalama Çalışmaları Martılar, leylekler ve yırtıcı kuşlar gibi büyük kuşlara renkli halkaların takıldığı çalışmalar da yapılmaktadır. Bir teleskop ya da dürbün yardımıyla hatta bazen çıplak gözle bile renkli halkalar üzerindeki harf ya da rakam kodları okunabilmektedir. Bu sayede, tekrar yakalanmalarına ya da ölü olarak bulunmalarına gerek kalmadan bu kuşların göçleriyle ilgili bilgilere ulaşılabilmektedir. Türkiye`de değişik araştırmacı kişi ve kurumların yürüttüğü renkli halkalama projeleri arasında, Fransa ile işbirliği halinde yürütülen Tepeli Pelikan (Pelecanus crispus) yavrularının halkalanmasını, Belçikalı, Hollandalı ve Fransız bilim adamlarının işbirliğiyle yapılan Akdeniz Martısı (Larus melanocephalus) yavrularının halkalanmasını, yine Fransa ile işbirliği halinde yürütülen Flamingo (Phoenicopterus ruber) yavrularının halkalanmasını ve 2003 yılında Kızılcahamam (Ankara) yakınındaki kolonide başlayan Leylek halkalamasını sayabiliriz. Eğitim Çalışmaları Halkacı olmak, günümüzde artık pek az örneği kalmış bir usta-çırak ilişkisi sonucunda gelişen, kuramsal bilginin yanı sıra kapsamlı bir deneyim edinmeyi ve bu birikimi düzenli olarak güncellemeyi gerekli kılan, çoğu kez de yaşam boyu bir tutkuya dönüşen bir süreç. Halkacı olmak, dünyanın neresinde olursa olsun o kişide olması gereken birikimin varlığını test eden bir lisans sürecini de içeriyor. Halkacının yetkinliğini bir lisansla belgeleme gereğinin temelde iki nedeni var: Kuşların canına ve sağlığına zarar gelmesini önlemek, Hatasız ve güvenilir veri toplayabilmek. İlk gerekçe, kuşların morfolojileri, fizyolojileri ve davranışları hakkında yeterli bilgiye sahip olmayı ve bu işi bilenlerin yanında olası sorunlar karşısında nasıl doğru hareket edileceğini öğrenmeyi gerektiriyor. İkinci gerekçe ise, doğru tanılar yapabilmeyi, referans kaynaklarını doğru kullanmayı ve genelde titiz çalışmanın önemini vurguluyor. Türkiye`de kuş göçlerine ve halkalama çalışmalarına yönelik ilgi ve bilginin arttırılması amacıyla KAD tarafından "Ulusal Halkalama Programı`nın Yaygınlaştırılması, Geliştirilmesi ve Tanıtımı" projesi hazırlandı ve proje UNDP GEF/SGP desteğiyle Aralık 2002`de başladı. Proje kapsamında 100 kişinin katılımıyla Ankara ve Manyas Kuşcenneti`nde "Halkalamaya Giriş Kursları" düzenlendi. Proje kapsamında çocuklarla eğitim çalışmaları gerçekleştiriliyor ve kısa bir belgesel film hazırlanıyor.

http://www.biyologlar.com/kus-gocu-arastirmalari

Arı Hastalıkları ve Sınıflandırılması

Arının gelişme dönemi pek çok hastalık etmeni ve zararlı için uygun ortam oluşturduğundan arılarda çok sayıda hastalık ve zararlı görülmektedir. Bununla birlikte, dünyadaki hızlı ulaşım, kıtalar ve ülkelerarası arı, arı ürünleri ve arıcılık malzemeleri ticareti arı hastalıklarının kısa sürede tüm ülkelere yayılmasına neden olmaktadır. Benzer şekilde, gezginci arıcılık da hastalık ve zararlıların ülke içindeki hızlı yayılışında önemli bir etkendir. Arı hastalıkları genellikle ilkbahar aylarında görülür. Bunun başlıca nedeni ilkbahar aylarında özellikle yavru yetiştirme faaliyetinin büyük hız kazanmış olması ve beklenmeyen soğuk ve yağışlı havalardır. Bu nedenle bu kritik dönemde arıların özellikle yavru hastalıklarına karşı korunması için, koloni kontrollerinde koloninin üşütülmemesine özen gösterilmelidir Arı hastalıkları, hastalığı oluşturan etmene göre; bakteriyel (Amerikan ve Avrupa Yavru Çürüklüğü, Septisemi), fungal (Kireç ve Taş hastalığı), viral (Kronik ve Akut Arı Felci), paraziter (Varroa jacobsoni ve Acarapis voodi) ve Protozoan (Nosema ve Amoeba) ya da hastalığın oluştuğu konukçuya göre; Ergin ve Yavru Arı Hastalıkları olarak sınıflandırılabilir. Pek çok patojen arıların gerek gelişme gerekse yetişkin dönemlerinde hastalık oluşturabilir. Ancak bu patojenlerin hepsi aynı derecede tehlikeli değildir. Amerikan yavru çürüklüğü ve varroa gibi çok tehlikeli ve hızlı yayılıcı bazı arı hastalık ve zararlılarının kontrolünde "Ulusal Kontrol Programları"na ihtiyaç duyulur. Halihazırda ülkemizde mevcut olup ve ülkemiz arıcılığı için önemli bulunan bazı arı hastalık ve zararlıları aşağıda verilmiştir. 1. Yavru Hastalıkları a) Amerikan Yavru Çürüklüğü Ülkemizde ihbarı zorunlu yavru hastalıklarından olan bu hastalığın etmeni Paenibacillus larvae adlı bir bakteridir. Değişik çevre şartlarında uzun bir yaşam süresi olan sporları besleme görevi yapan bakıcı arılar tarafından larvaya bulaştırılır. Hastalığın yayılmasını sağlayan sporlar kovanın herhangi bir yerinde, peteklerde, bal ve balmumunda veya herhangi bir ortamda 35-60 yıl canlı kalıp bu süre sonunda bile hastalık oluşturabilirler. Bu nedenle bu hastalığa karşı gerekli hassasiyetin gösterilmesi ülkemiz arıcılığının geleceği yönünden hayati önem taşımaktadır. Amerikan yavru çürüklüğü görüldüğünde veya şüpheli durumlarda Tarım ve Köyişleri Bakanlığının İl ve İlçe Müdürlüklerine veya Ankara Etlik ve İzmir Bornova'da bulunan Veteriner Kontrol ve Araştırma Enstitülerine ya da Ek.1'de adresleri verilen arıcılık konusunda uzmanlaşmış kurumlardan birine başvurularak teknik yardım istenmelidir. Ayrıca, bu hastalığın ihbar edilmesi kanuni bir zorunluluktur. Hastalıklı kolonilerin nakilleri de yasaktır. Arıcı her şeyden önce kendi geleceği için bu kurallara uymalıdır. Hastalığın Belirtileri Yavrulu petekler incelendiğinde öncelikle düzensiz yavru görünümü dikkat çeker. Kapalı yavrulu hücreler arasına dağılmış düzensiz açık yavru ya da boş hücreler gözlenebilir. Dışbükey görünümünde olması gereken kapalı yavru hücreleri içe çökmüş, çukurumsu görüntü sergiler ve üzerleri deliktir. Hastalıklı yavru beyazdan sarıya daha sonra da kahverengine dönüşür, bir çöple dışa çekildiğinde iplik şeklinde uzar ve tutkal gibi kokar. Çürüyerek ölmüş yavrunun kalıntısı hücre yan duvarı ve tabanına yapıştığından arılarca temizlenmesi zordur. Mücadelesi Bu hastalıkla en kesin ve en etkili mücadele yöntemi, hastalıklı kolonilerin tümüyle yakılarak yok edilmesidir. Böylece, hastalığın diğer kolonilere bulaşması önlenmiş olur. Bazı ülkelerde hastalıklı kolonilerin yakılması yasal bir zorunluluktur. Bakteri sporları antibiyotiklerle öldürülemediği için hastalıkla mücadelede antibiyotik uygulamasının fazla bir yararı olmaz. Antibiyotik uygulaması hastalığı baskı altına alabilir ancak uygulamadan vazgeçildiği anda hastalık tekrar görülür. Daha önemlisi, bu tür koloniler arılıktaki diğer sağlıklı koloniler ve bölge için sürekli hastalık kaynağı olurlar. Arıları ve petekleri yakılmış koloninin, boş kovanı ve kovan kapağı pürümüzle en ince detaylarına kadar yakılıp 40 lt suya 400 gr sodyum hidroksit katılarak elde edilen sıvı ile yıkandıktan sonra tekrar kullanılabilir. Diğer alet ve ekipmanlar da bu sıvı ile yıkanmalıdır. Hastalıktan uzak kalmak için arı satın almalarda ve temel petek kullanımında dikkatli olunmalıdır. Temel petek kullanırken temel peteğin hiçbir zaman hastalık geçirmemiş kolonilerden elde edilmiş balmumundan üretilmiş olmasına özen gösterilmelidir. Temel petek mutlaka sterilize edilmiş balmumundan üretilmiş olmalıdır. Hükümlerine uyulması zorunlu olan "Arıcılık Yönetmeliği"ne göre de temel petek yapımında kullanılacak balmumu 110 oC'da 12 saat süre ile sterilize edilmelidir. b) Avrupa Yavru Çürüklüğü Dünyada en yaygın görülen hastalıklardan biridir. Hastalığın etmeni en son yapılan sınıflandırmaya göre Melisococcus pluton adında bir bakteridir. Hastalıkta diğer bazı (sekonder) bakteri türleri de görülür ancak bunlar doğrudan hastalık oluşturmazlar fakat ölü larvanın kokusu ve kıvamı üzerinde etkili olurlar. Hastalığın Belirtisi Hastalığın kendine özgü kokmuş et ya da balık kokusunu andıran kokusu kovan açıldığında algılanabilir. Açık yavru döneminde ölmüş larvalar koyu kahverengi ve siyaha yakın renktedir ve larvadaki renk değişimi önemli bir belirtidir. Hastalığın çok şiddetli seyrettiği durumlarda kapalı yavru gözlerinde de görülebilir. Ölmüş larva bir çöple çekildiğinde Amerikan yavru çürüklüğünde görülen ipliksi uzama görülmez, kolayca petek hücresinden çıkartılabilir. Genellikle, Amerikan yavru çürüklüğü kapalı yavrularda görülürken Avrupa yavru çürüklüğü açık yavrularda görülür. Mücadelesi Amerikan yavru çürüklüğündeki uygulamanın aksine şiddetli durumlar hariç, bu hastalıkta arıların ve yavru peteklerin imhasına gerek yoktur. Koloninin ana arısı bir süre kovan içerisinde kafeslenerek yumurta atması engellenir. Oxytetracycline, erythromycin veya diğer antibiyotik uygulamaları ile tedavi edilebilir. Ancak, antibiyotik kullanımı konusunda mutlak surette bir uzmanın görüş ve önerileri alınmalıdır. Çünkü antibiyotikler belli aralıklarla, belli dozlarda ve belli bir süre için kullanılması gereken maddelerdir. Aksi halde arı kolonisine, aile bütçesine ve balın kalitesine zarar verilir. Antibiyotik verilen kovanın balı uzun bir süre tüketilmemelidir. Örneğin bu sürenin oxytetracycline grubu için en az 8 hafta olmasına karşın diğer antibiyotik grupları için 1 yıla kadar çıkabilir. Arılıkta kullanılan ekipman ve hastalıklı kolonilerin boş kovanları 50 lt suya 1 kg soda veya 1/1'lik amonyum klorid eriyiği ile dezenfekte edilmelidir. Yavru Çürüklüğü Hastalıklarından Korunma Gerek Amerikan yavru çürüklüğü gerekse Avrupa yavru çürüklüğü hastalıklarından korunmak için; * Arılık her zaman temiz ve düzenli olmalıdır. * Arı ve ana arı satın alırken alımlar, sağlık belgesi veren ve güvenilir kurumlardan yapılmalıdır. * İkinci el alet-ekipman alındığında bunlar dezenfekte ve sterilize edilmelidir. * Amerikan yavru çürüklüğü hastalığının bulaşmasını ve yayılmasını sağlayan bakteri sporları bal içinde yıllarca yaşayabildiğinden arılar kaynağı belli olmayan ya da hastalık geçirmiş arılıklardan elde edilen ballarla beslenmemelidir. * Kaynağı belli olmayan oğullar arılığa alınmamalıdır. * Arılıkta yağmacılığa meydan verilmemelidir. Kovanların yerleşme düzeni arıların yanlış kovanlara girmelerini önleyecek şekilde olmalıdır. Bunun için kovanların uçuş delikleri farklı yönlere bakmalı ve kovanlar arası mesafe 1-2 m'den az olmamalıdır. Mümkünse bu mesafe artırılmalıdır. * Koloniler arasında petek alış-verişi yapılırken dikkatli davranılmalıdır. * Mümkün olduğunca eski petek kullanmaktan kaçınılmalıdır. * Koloniler nektar ve polen kaynağı yönünden zengin bölgelerde tutulmalı, hastalık riski bulunan yerlere arı götürülmemelidir. * Koloniler sürekli kontrol edilmeli, hastalığın yayılmasını önleyen en etkili yolun erken teşhis olduğu unutulmamalıdır. c) Kireç Hastalığı Etmeni Ascosphaera apis adlı bir fungus (mantar) olan yavru hastalığıdır. Hastalıklı larvalar mumyalaşmış olup siyahımsı, gri veya beyaz renktedirler. Hastalığın ilk dönemlerinde beyazlaşmış larvalar iki parmak arasında ezilebildiği halde ileri dönemde pirinç tanesi gibi sertleşerek arılar tarafından kovan önüne ve uçuş tahtası üzerine atılırlar. Hastalığın etmeni olan sporlar toprak altında ve değişik ortamlarda 15 yıl etkinliğini sürdürebildiğinden ve rüzgarla sürüklenebildiğinden bu hastalıkla daha çok kültürel önlemlerle mücadele edilerek başarılı sonuçlar alınabilir. Hastalığa neden olan fungus, yeterli havalandırmanın olmayışı sonucu kovanda biriken CO2 ve nemli ortamda gelişir. Bu nedenle kovanlar sehpalar üzerine yerleştirilerek havalandırma sağlanmalı ve nemden korunmalıdır. Kireç hastalığına karşı alınabilecek bir başka önlem, hastalığa yakalanan kolonilerin ana arılarının hastalığa yakalanmayan kolonilerden üretilen yeni ana arılarla değiştirilmesidir. Zayıf koloniler hastalığa daha hassastırlar. Bunun için güçlü kolonilerle çalışmak en iyi kültürel yöntemdir. Kolonilerin beslenmesi ve arılara doğal nektar kaynağı sağlanması da bu hastalığa karşı etkin bir mücadele yöntemidir. Kolonide stres oluşturan açlık, üşütme ve rahatsız etme gibi durumlar yanında bölme yaparak koloni işçi arı varlığının azaltılması, gereksiz ve yanlış antibiyotik kullanarak larvanın sindirim sistemindeki faydalı floranın tahrip edilmesi kireç hastalığının ortaya çıkmasına veya şiddetinin artmasına neden olan uygulamalardır. Bu uygulamalardan kaçınmak, güçlü koloniler ve genç ana arılarla çalışmak alınabilecek en iyi koruma tedbirleridir. Kireç hastalığının tedavisinde koloni şartlarında uygulanan ilaçlı mücadele denemelerinden bugüne kadar tatmin edici olumlu sonuçlar alınamamıştır. 2. Ergin Arı Hastalıkları a) Nosema Nosema apis adı verilen tek hücreli bir mikroorganizmanın neden olduğu, oldukça tehlikeli sayılan ergin arı hastalığıdır. Hastalığa yakalanmış kolonilerde davranış değişimi ve hızlı yaşlanma görülür. Hastalığın kesin olarak tanınması için hasta arı midesinin makroskobik veya mikroskobik incelenmesi gerekir. Normalde saman rengi olan sağlam arı midesi hasta arıda katı, kirli ve beyaz renktedir. Hastalık yıl içerisinde çeşitli zamanlarda görülebilmekle beraber en yüksek düzeyde ilkbaharda, ikinci derecede ise sonbaharda ortaya çıkar. Nosemaya yakalanmış kolonilerde; çerçevelerin, peteklerin, kovan kapağı ve uçuş tahtası üzerinde turuncu ve beyaz renkte arı pisliği görülür. Hastalığın yayılması besin yoluyla olur. Hasta arılar bakıcılık gücünü kaybederler, uçamazlar ve kovan etrafında sürünürler. Nosema hastalığının önlenmesi ve tedavisinde fumagillin uygulaması yapılır. İlaç ilkbahar ve sonbaharda şerbetle birlikte verilir. Özellikle sonbaharda şurupla birlikte verilen fumagillin iyi bir tedbirdir. Kolonilerin polen dışında polen yerine geçen kek karışımları ve kış aylarında salgı ballarıyla beslenmesi hastalığa sebep olabilen uygulamalardır. Hastalık daha çok besleme hataları sonucu ortaya çıkar. Bu hastalıkla ilişkili olarak, arıların bal ve polen dışında herhangi bir maddeye ihtiyaç duymadıkları unutulmamalıdır. 3. Paraziter Hastalıklar a) Varroa Bu hastalık, Varroa jacobsoni adlı bir dış parazitin sebep olduğu, hem yetişkin arıda hem de yavruda zarar oluşturan, çok hızlı gelişmesi ile tüm dünya üzerine yayılan ve mücadele edilmediği taktirde kolonilerin sönmesine neden olan tehlikeli paraziter bir hastalıktır. Varroanın dişisi oval görünümde ve koyu kahve renktedir. Vücut uzunluğu 1.1-1.3 mm, eni ise 1.5-1.7 mm arasında değişmektedir. Vücudun alt kenarı 4 çift bacak ile çevrilidir. Ağız yapısı sokucu ve emicidir. Gerek ergin gerekse larva ve pupa döneminde arının kanını emerek beslenir. Bu nedenle arıya her dönemde zarar verir. Erkek varroa, sarı-gri renkte yuvarlak görünümlü, dişi varroaya oranla daha yumuşak bir kitin ile kaplıdır. Erkek varroalar dişi ile çiftleşme sonrası öldüklerinden yetişkin arı üzerinde görülmezler. Varroanın kolonilerde üremesi ilkbahar kuluçka faaliyetiyle birlikte başlar. Sonbaharda bu faaliyetin sona ermesine kadar sürer. Kışı yalnızca ergin dişiler geçirir. Varroanın üreme ve gelişmesi kapalı yavru gözlerinde gerçekleşir. Ergin dişiler yavru gözlerinin kapanmasından hemen önce bu gözlere girerek iki gün sonra yumurta bırakmaya başlarlar. İlk 24 saatte yumurtalardan 6 bacaklı larvalar çıkar ve tüm gelişim erkeklerde 6-7 günde, dişilerde ise 8-10 günde tamamlanmaktadır. Gelişimini tamamlayan varroalar kapalı yavru gözü içinde çiftleşirler. Çiftleşmeden hemen sonra erkek ölür. Dişiler ise beslenmeyi sürdürerek arıların gözden çıkması ile birlikte gözü terk ederler. Ergin dişi varroalar kışın 5-6 ay yazın ise 2-3 ay yaşarlar. Ergin dişi varroanın yavru gözüne 5 ve daha fazla yavru bırakması durumunda arı gelişmesini tamamlayamaz ve siyahımsı-gri renkte kanatsız olarak çıkar. Ancak bir görüşe göre kanatsızlığın doğrudan varroaya bağlı olmadığı parazitin varlığında etkisini gösterebilen bir virüse bağlı olduğu belirtilmektedir. Varroa parazitinin gerek larva ve pupa gerekse ergin dönemde arının kanını emerek gelişme ve çalışma aktivitesini zayıf düşürmesi başka hastalıkların da ortaya çıkmasına neden olmaktadır. Mücadelesi Kimyasal Mücadele Varroanın dünyada ve ülkemizde ilk görüldüğü yıllarda mücadele için uygun olan veya olmayan bir çok ilaç varroa mücadelesinde kullanılmıştır. Günümüzde varroa mücadelesi için piyasada 20 civarında ruhsatlı ilaç bulunmasına rağmen bazı arıcılar ruhsatsız ilaç ve karışımlar kullanabilmektedir. Varroa mücadelesi için ruhsatlandırılmamış hiçbir ilaç hiçbir zaman; ruhsatlı olanlar da kullanılma dönemleri dışında özellikle de bal üretim dönemlerinde kullanılmamalıdır. Aksi halde, bu ilaçların bal ve balmumundaki kalıntıları insan sağlığını olumsuz yönde etkileyecektir. Varroa mücadelesinde bir başka önemli nokta mücadele dönemidir. Erken ilkbaharda kolonilerde kapalı yavrunun olmadığı veya en az olduğu, sonbaharda ise kapalı yavrunun sona erdiği son bal hasadından sonraki dönem en etkin mücadele dönemidir. Varroa mücadelesinde altın kural; mücadelenin uygun zamanda, uygun ilaçla uygun dozda yapılmasıdır. Bahsedildiği üzere varroa ile en iyi mücadele zamanı erken ilkbahar ile geç sonbahardır. Kapalı yavru dönemindeki kimyasal mücadeleden olumlu sonuç almak mümkün değildir. Çünkü hiçbir ilaç kapalı yavru içindeki varroalara ulaşamamakta ve öldürememektedir. Fiziksel Mücadele Bilindiği gibi dişi varroalar ilkbahar döneminde yumurta atmak için erkek arı gözlerini tercih ederler. Bu dönemde kolonilere üzerinde erkek arı gözü bulunan petekler verilerek dişi varroaların erkek arı gözlerinde toplanması sağlanır. Bu gözler kapandıktan sonra kovandan çıkartılarak imha edilir. Böylece dişi varroanın bu dönemde attığı yumurtalar ve kendisi erkek arı pupaları ile birlikte yok edilmiş olur. Bu dönemde koloniye yarısı kesilmiş petekli çerçeve verildiğinde, arılar peteğin alt kısmına erkek arı gözlü yeni petek örerek tamamlarlar. Varroalar erkek arı gözlerinde çoğalmayı tercih ettiklerinden gözlerin kapanmasından hemen önce bu gözlere girerler. Bu gözlerin kapanmasından sonra erkek arı gözlü petek kesilerek imha edilir. Bu yöntemle kolonideki varroa miktarını azaltmak mümkündür. Ancak aynı zamanda işçi arı gözlerinde de çoğalan varroalar etkinliğini sürdürür. Bir başka mücadele yöntemi, nektar akımı döneminde işçi arı gözleri içerisine bırakılan varroa yumurtalarını yok etmeye yönelik çalışmadır. Bu yöntemde, koloninin ana arısı ana arı ızgarası kullanılarak bir çerçeveye hapsedilir ve böylelikle bütün varroa yumurtalarının bir petekte toplanması sağlanır. Bu petek kapalı yavru döneminde kovandan çıkartılarak imha edildiğinde kovandaki varroa yumurtalarının tamamı yok edilmiş olur. Bu yöntemin dezavantajı her dönemde uygulanamaması ve koloni gelişimini kısmen engellemesidir. B- Arı Zararlıları a) Petek Güvesi Büyük Petek Güvesi (Galleria mellonella) ve Küçük Petek Güvesi (Achroia grisella) olmak üzere iki türü vardır. Büyük petek güvesi daha zararlıdır. Petek güvesi özellikle sahil şeridindeki arılıklarda daha sık görülür ve ciddi tahribatlar oluşturur. Güvenin larvası zayıf kolonilerin peteklerinde ve balı süzülmüş peteklerin saklanması sırasında, peteklerdeki balmumu ve polenle beslenerek petekleri tahrip eder. Koloni güçlü olduğu ve tüm petekler arılarla sarılı olduğu sürece koloni içinde zarar veremez. Bu yönüyle koloni içinde bulunan peteklerin tümünün arılarla sarılmış olması güvenin çoğalmasını önler. Güve sorunu ve tahribatı daha çok balı süzülmüş peteklerin saklanması sırasında görülür. Balı süzülmüş peteklerin korunmasında fiziksel, kimyasal ve biyolojik metotlar kullanılabilir. Peteklerin 10 oC'nin altında örneğin soğuk hava depolarında saklanması peteklerde bulunan güve yumurtalarının açılımını ve larva gelişimini engeller. Peteklerin 12 oC'da 3 saat veya 15 oC'da 2 saat bekletilmesi petekte bulunan yumurta da dahil olmak üzere bütün gelişme dönemlerindeki güveyi öldürür. Kimyasal mücadele olarak peteklerin saklandığı muhafazalı odalarda 1 m3 hacim için 50 g toz kükürt yakılarak peteklerde bulunan güve larvaları, pupaları ve yetişkinleri öldürülebilir. Bu uygulamada güve yumurtaları ölmediği için uygulamanın sıcaklığa bağlı olarak tekrarlanması gereklidir. Kimyasal mücadele olarak arıcılar arasında sıkça görülen naftalin kullanılmamalıdır. Kanserojen ve petrol ürünü olan naftalin bal ve balmumunda kalıntı bırakmaktadır. Biyolojik mücadele olarak uygulanan Bacillus thuringiensis'in temel peteklere katılması dış ülkelerde uygulanmakta olup ülkemizde bu uygulama henüz yapılmamaktadır. b) Eşek Arıları Ülkemizde Vespa orientalis ve Vespa crabro adlı türleri oldukça yaygındır. Yavru yetiştirme dönemlerinde bal arılarını arazide besin toplarken veya kovan uçuş tahtası üzerinden yakalayarak yuvalarına götürürler. Bazı yıllarda arılara ciddi zarar verirler. Eşek arıları ile kesin bir mücadele yöntemi olmamakla birlikte; yuvaların tahrip edilmesi, içine et, balık, ciğer konan tuzaklarla sayılarının azaltılması, kovan giriş deliğinin daraltılması, böcek öldürücü ilaç ve kıymadan yapılacak zehirli yem ile yuvalarındaki yavrularının öldürülmesi faydalı olabilecek bazı uygulamalardır. En iyi yol, eşek arısı sayısının çok arttığı dönemlerde kolonilerin bu bölgeden taşınmasıdır.

http://www.biyologlar.com/ari-hastaliklari-ve-siniflandirilmasi

Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

Leylekler neden göç ederler

Güney Yarımküre’de havaların nisan ve mayıs aylarından itibaren ısınmaya başladığını nereden bildikleri şaşırtıcı, hatta bir mucize olan leylekler, sıcak yaz aylarını geçirmek için, soğuk kış aylarını geçirdikleri ülkelerden geri dönerler. Yuvaya önce erkek leylek gelir. Çok telaşlı bir şekilde, geçen yıl bırakıp gittiği yuvayı çubuk ve otlarla onarıp yenilemeğe başlar. işi bittiğinde ise, özlem içinde başını gök yüzüne çevirip, dişisinin bir an önce gelmesini umut etmeye başlar. Takriben bir hafta sonra dişi leylek de erkek leylek tarafından onarılmış olan yuvaya döner ve hemen yerini alır. Leyleklerin birbirlerini karşılama törenleri çok ilginç olur. Yuvanın sahibi erkek, dişisini karşılamak için kanatlarını hızla çırpar ve gagasıyla tıkırdar. Daha sonra etraflarına aldırmadan en güzel anlarını yaşamaya başlarlar. baş döndüren bir yükseklikte gerçekleşen bu tutkulu sevgi gösterisinin meyveleri dört veya beş yumurta olur. Takriben dört, bilemediniz beş hafta sonra tüy yumağı civcivler yumurtalarından çıkmaya başlarlar. işte bundan sonra anne ve baba leylek için stres başlar, baba leylek çığırtkan yavrularının beslenmeleri için gerekli solucan, çekirge ve sümüklü böcekler bulabilmek için harekete geçer, hatta bir süre sonra talep daha da artar fare, kurbağa, balık ve yılanlar mönüyü süslerler. Baba leylek yavrularını beslemekle yükümlü iken, anne leylek kanatlarının altına alarak, yavrularını yağmur, fırtına ve kızgın güneş sıcağından korur. Doğal yaşamın bir parçası olan Leylekler, bölgede havalar soğumaya başlar başlamaz, başka bölgelerden gelen diğer leyleklerle gökyüzünde birleşerek, seyredeğer bir görüntü oluşturduktan sonra, yolculuk rotaları olan Güney Afrika, Körfez, Süveyş, ve israil’e doğru yola çıkarlar.

http://www.biyologlar.com/leylekler-neden-goc-ederler

Balıklarda beslenme ve beslenme biyolojisi

Balıklarda beslenme sucul ortamlarda gelişen çeşitli bitkisel ve hayvansal gıdalarla sağlanmaktadır. Fakat her türün gıda olarak kullandığı besin maddeleri yaşadıkları yere göre de değişmektedir. Beslenme yönünden balıklar arasında genellikle şiddetli bir rekabet söz konusudur.Bu nedenle bir gölün veya bir akarsuyun balık populasyonlan arasında gıda sağlanması yönünden büyük bir yarış vardır. Balıklarda besine olan gereksinme veya beslenmek için ortamdan gıdaların aranması genellikle yumurtadan çıktıktan kısa bir süre sonra başlamaktadır. Yumurtadan çıkıştan besin aramaya başlama uğraşısına kadar geçen süre balık türlerine göre çok değişik olmaktadır. Bu periyodun uzun veya kısa oluşu özellikle yumurtadan çıkan yavruların karınları altında bulunan vitellüs kesesinin büyüklüğüne bağlıdır. Örneğin, Deniz alası denilen Salma salar'ın yumurtadan çıkan yavruları genellikle 1,5 ay kadar bu vitellüs kesesini absorbe ederek beslenirler ve bu süre boyunca hareketsiz kalırlar. Cyprinus carpio'da. (Sazan balığı) ise, vitellüs kesesiyle beslenme sadece 2-3 gün devam eder. Çünkü bunların vitellüs keseleri çok küçüktür. Vitellüs keselerini tamamen absorbe etmiş balık yavruları, genellikle sığ yerlerde veya su yüzeyine yakın zonlarda toplanarak gruplar halinde dolaşırlar ve kendileri için gerekli planktonik organizmaları toplarlar. Bu aşamada iken genellikle Rotifer, küçük böcek larvaları ve planktonik algleri yiyerek beslenirler. Küçük balıklarda gözler, vücut kısımlarına oranla gayet büyük olup, yavruların besin bulmalarında tek duyu organı olarak iş görürler. Yüzeyde yaşayan balıklarda gözler en önemli organ olarak dikkate alınırlar, çünkü besinlerini ancak görerek yakalama esasına göre sağlarlar. Ligne lateral dediğimiz yan çizgi organları ise özellikle karnivor formlarda çok iyi gelişme gösterir. Örneğin, körleştirilmiş bir Turna balığı görmediği halde L. laterali sayesinde avını gayet iyi izler ve büyük bir ustalıkla yakalayabilir. Balık yavruları ilk beslenme periyotlarını bu şekilde, genellikle yüzeye yakın yerlerde dolaşıp planktonik organizmaları yiyerek geçirdikten sonra beslenme rejimleri değişir. Bu devredeki balıklar daha ziyade zemin hayvanlarını yiyerek beslenmeye devam ederler, dolayısıyla görme duyusu artık önemini kaybeder. Zira dip hayvanlarının bulunduğu derinliklerde genellikle ışık şiddeti oldukça azalmış olduğundan görüş alanı daralır, bu nedenle koku alma ve dokunma duyuları çok iyi gelişir. Bu sayede balık, avını görmese bile kokusunu algılayarak veya dokunaçları ile voklayarak besinlerini kolayca bulup beslenebilir. Daha önce de belirtildiği gibi (duyu organları konusuna bakınız) zeminde yaşamaya adapte olmuş balıkların çoğunda ağız etrafına yerleşmiş veya bıyıkları üzerinde gelişmiş çok sayıda duyu hücreleri vardır. Örneğin, Yılan balığı, Lota lota ve Yayın balığında gayet iyi gelişmiş duyu hücreleri bulunduğundan adı geçen bu türler gece karanlığında bile bu organları sayesinde avlarını kolayca bulur ve yakalarlar. Bu yüzden de gececi karakterli olmuşlardır. Genellikle gececi olan balıkların çoğunda bu türlü duyu organları iyi gelişmiştir. Besinlerin bulunması için çeşitli duyu organları geliştiği gibi avların yakalanması veya toplanması için de morfolojik bazı değişiklikler meydana gelmiştir. Örneğin, özellikle canlı avlar peşinde koşan ve onları yakalayarak yutan predatör formlarda (Esox lucius, Lucioperca lucioperca) gayet sivri ve genellikle uçları geriye doğru çengel şeklinde kıvrılmış dişleri taşıyan büyük bir ağız bulunur. Bu dişler büyük bir avı yakalamak ve içeriye alabilmek için çok iyi şekilde adapte olmuşlardır. Bu yüzden Turna balığı ve Sudak diye adlandırılan Tatlısu Levreği, geniş ağızları ve kuvvetli dişleri sayesinde kendisinden çok daha büyük bir Sazanı kolayca yakalar ve parçalamadan yutarlar. Ağız şekli bazı hallerde ileriye doğru uzanıp çekilebilen tarzda (Protraktil tipte) olabilmektedir. Örneğin, Acipenser türleri ve Abramis brama ' da belirgin şekilde görülen bu ağız tipi sayesinde adı geçen formlar zemin üzerinde yaşayan kurtları ve dipter larvalarını kolaylıkla toplarlar. Genellikle parazit bir hayat yaşayan ve bu yüzden de diğer balıkların vücuduna yapışan Lampiri'lerde ağız daha da değişik bir durum kazanmış olup, adeta bir sülük ağzını andırmaktadır. Böyle bir ağız sayesinde konak balığın gövdesine sıkıca tutunur ve onun besinlerine ortak olur. Bunlardan başka bir de, tamamen bitkisel gıdalarla beslenmeye alışmış balıklar vardır. Örneğin, Chondrostoma türlerinde ağız etrafında gayet sert ve keskin dudaklar gelişmiş olup, bunlar sayesinde genellikle taşlar ve odun parçaları üzerinde gelişen algleri koparmak çok kolay olmaktadır. Bu keratinleşmiş dudaklar sayesinde balık adeta bir kemirgen gibi davranabilir. Mikroskobik canlılarla beslenen ve bu yüzden planktofag olarak isimlendirilen bazı balık türleri ise, sudaki besin maddelerini solunum için aldıkları sudan ayırarak beslenirler. Ağızlarında hiçbir dişe rastlanmayan böyle balıklarda gıdalar solungaç lamelleri tarafından tutulur ve yutak kısmına gönderilir. Cyprinid'lerin bazılarında durum böyledir. Bununla beraber tüm Cyprinidae familyasında ve daha az gelişmiş olmakla beraber Cobitid'lerde farinks bölgesine yerleşmiş olan özel dişler vardır. Farinks dişleri olarak adlandırılan ve besinleri tıpkı azı dişleri gibi öğüten bu kemiksi yapılar sayesinde ağızdan alınan besinler mideye geçmeden önce kısmen parçalanırlar. Faringien kemikler üzerinde simetrik iki grup halinde dizilmiş bulunan bu dişlerin sıralanış biçimleri, şekilleri ve sayıları türden türe çok değişiklik gösterdiğinden özellikle Cyprinid'lerin klasifikasyonunda büyük önemleri vardır. Görüldüğü gibi balıklarda beslenme yönünden bir takım adaptasyonlar görülmektedir. Bu değişimler daha çok ağız yapısı ve diğer sindirim organlarında ortaya çıkmaktadır. Balıklar beslenme rejimleri bakımından 3 büyük kategoride toplanabilirler Otçul (Herbivor) balıklar. Etçil (Karnivor) balıklar. Canlı avlarla beslenen (Predatör) balıklar. Herbivor denilen balıklar tamamen bitkisel gıdalarla beslenirler. Bunlar balıklar arasında çok küçük bir grup olup, sadece Mersin balığı ve Chondrostoma' lar bu gruba dahil edilmişlerdir. Daha önce de belirtildiği gibi böyle balıklarda iyi gelişmiş ve keskin kenarlı keratin dudaklar bulunur. Bu sayede odun ve taş parçalan üzerindeki algler kemirilerek kopartılır ve yenirler. Fakat bu balıklan tamamen vejetarien olarak kabul etmek de pek doğru olmaz. Zira bazı hallerde otlar arasında gizlenen kurtları, küçük Krustaseleri ve böcek larvalarını da yuttukları bir gerçektir. Etçil balıklar ise, ot yiyenlere oranla daha büyük bir grup oluştururlar. Bunların başlıca besinlerini çeşitli kurtlar, Bivalvia'lar, Mollusk'lar, Krustase'ler ve muhtelif böcek larvaları (Tricopter, Ephemerit, Coleopter, Dipter v.b.) oluşturur. Bu balıklar eğer ortamda yeter derecede omurgasız hayvan bulamazlarsa diğer balıkların yumurtalarını da yiyebilirler. Yırtıcı olan ve sadece canlı av peşinde koşturan predatör balıklar ise, diğer balıkları yedikleri gibi su içerisinde yaşayan diğer omurgalıları (ördek yavrusu, Kurbağa, Dalgıç kuşu v.b.) da yemekten kaçınmazlar. Bunlara en tipik örnekler Esox lucius ve Stizostedion lucioperca türleridir Bunlar kısa zamanda çok aşırı balık tüketimi yaptıkları için atıldıkları bir gölün veya akarsuyun balık faunasını da değiştirebilirler. Bunun bazı örneklerini ülkemizde de görmek olanağı vardır. Örneğin, Eğridir gölüne sonradan aşılanan Stizostedion lucioperca türü kısa zamanda bazı türleri tamamen bitirmiş, dolayısıyla gölün doğal fauna dengesini bozmuştur. Adı geçen bu balık çok aşırı bir yırtıcı olup, şayet ortamda diğer balıkları bulamazsa hemcinslerini de yemeğe başlar. Zira bazılarının midesinden kendi yavrularının çıktığı gözlenebilmektedir. Buraya kadar sözünü ettiğimiz beslenme tipleri balıklar için bütün hayat süresince sabit kalmamaktadır. Yani bir balığın gıda rejimi yavru iken başka, ergin iken başka olabilir. Örneğin, Alabalık yavruları planktonlarla beslendikleri halde, ergin bireyler karnivor karakterdedirler. Diğer taraftan Cyprinus carpio ve Mugil türleri ergin dönemlerinde hem etçil hem de otçul gıdaları hiç ayırmaksızın severek yemektedirler. Dolayısıyla böyle formlar tamamen etçil veya tamamen otçul olmayıp ikisi arasındadırlar. Bunlar için her şey yiyen manasına gelen Omnivor deyiminin kullanılması daha yerinde olacaktır. Bilhassa, üçüncü kategoriyi teşkil eden sular balıklar için tehlikeli durumlar ortaya koyabilir. Zira adı geçen bölgede yılın ancak 1-2 ayında buzlaşma olmakla beraber diğer ayları tamamen buzlar altında geçmektedir. Örneğin, Pirene ve Alp'lerin tepelerindeki göllerde durum genellikle böyledir. Ova göllerinde bilhassa Cybrinid' ler ve göçücü Clupeid' ler ile Acipenserid' ler bulunurlar. Salmonid' ler ise, ancak belirli göçleri esnasında buralardan geçerler, fakat devamlı kalamazlar. Yayla sularında durum daha başkadır. Burada yükseklik 500-1000 m. arasında değiştiği için Cyprinid' \erin çoğu görülmez. Clupeid ve ACİpenserid' ler ise, oraya kadar çıkamazlar. Buna karşılık Alabalıklar ve özellikle Salmo trutta türü bu bölgelerin dominant formudur. 1500 m. yüksekliğe kadar onlara Yılan balıkları da refakat ederler. 1500 m. den sonra Alabalıklar tek başına kalırlar ve 2000-2500 m. yüksekliklere kadar çıkabilirler. Örneğin, Alp'lerde 2239 m.de, Pirene'lerde ise 2134 m. de Alabalıklar için uygun ortamlar bulunur. Tatlısuları sıcaklık yönünden iki büyük kategori altında (Durgun sular ve Akarsular) incelemek daha uygun olacaktır.

http://www.biyologlar.com/baliklarda-beslenme-ve-beslenme-biyolojisi


Çeşitlilik açıklanıyor

Darwin değişkenlerin nereden geldiğini söyleyememenin yanısıra yeni özelliklerin bir sonraki nesillerde nasıl yayıldığını da açıklayamadı. Yavrunun ebeveynlerin özelliklerinin karışımını aldığı karma kalıtıma (blending inheritance) inanıyordu. Ancak Darwin bile bu kuramın sorunlu olduğunu anlamıştı, çünkü eğer özellikler gerçekten karışmış olsaydı, herhangi nadir ve yeni bir özellik, bu özelliği taşımayan bireylerin nesiller boyu çoğalmasıyla giderek seyrelirdi. Karma kalıtımla ilgili karışıklık 1900 yılında, Gregor Mendel'in 1850'lerde ve 1860'larda yürüttüğü ünlü bezelye yetiştirme deneylerinin yeniden ele alınmasıyla ortadan kalktı. Avusturyalı rahibin bahçesinde yetiştirdiği bezelye bitkileri, uzun veya kısa gövdeler, kırışık veya düz tohumlar gibi belirgin biçimsel farklar gösterdiler. Ters özellikleri olan safkan bezelye bitkileri bibiriyle döllendiğinde ortaya çıkan bitki genellikle iki ebeveynden birine benziyordu. Ancak sürdürülen döllenmeler sonucunda, bir özelliğin her iki çeşidi de ileriki nesillerde bozulmamış biçimiyle yeniden ortaya çıkıyordu, bu da değişik biçimlerin genetik blgilerinin karışmamış olduğunu gösteriyordu. Mendel'in deneyleri, kalıtsal değişkenlerin geçici ve birbirine karışabilen öğeler olduğu yolundaki genel kanıyı, görünebilir olmasa da var olan, ve ebeveynlerden yavrulara geçen gizli öğeler olduğu yönünde değiştirdi. Kısa bir süre sonra, Mendel'in "genetik öğelerinin" şaşırtıcı bir biçimde hücrenin çekirdeğindeki kromozomların davranışlarında yansıdığı bulundu. "Türlerin Kökeni Üzerine"nin 50. yıl dönümünde, değişkenlerin kaynağı hala bilinmemesine rağmen, genetik bilgi fiziksel bir varlık haline dönüşüyordu, ve sonunda çekirdek içindeki teller biçiminde görünür hale geldi. Kitabın basımının 100. yıldönümünde, kromozomlardaki kalıtsal bilginin büyük bir asidik polimer olan "deoxyribonucleic acid" yani DNA'ya dayandığı bulundu. James D. Watson ve Francis Crick 1953'de DNA molekülünün yapısını ortaya çıkardılar, bu olayın kalıtımı ve çeşitliliği fiziksel olarak kavramamızda çarpıcı etkileri oldu. DNA, omurgası şeker ve fosfatın yinelenen zincirlerinden yapılmış, uzun ve iki telli bir sarmaldır. Polimerin iki teli, dört olası kimyasal bazın karşılıklı eşlenmesiyle bir arada tutulur, bunlar; adenine, cytosine, guanine ve thymine'dir (A,C,G,T), ve aynı zamanda basit bir genetik dilin de temelini oluşturur. Tıpkı İngiliz alfabesindeki 26 harf gibi, DNA alfabesindeki dört harf, ebeveynden yavruya geçen değişik komutları heceleyerek, sarmalın bir telinde herhangi bir sırada dizilebilir. DNA'nın yapısı Çift telli sarmal yapı aynı zamanda genetik bilginin kopyalanması için de basit bir gereç oluşturur. C'ler her zaman G'lerle, ve A'lar da her zaman T'lerle molekülün ortasında birleşir; bu bağlar birbirini tamamlayan büyüklük, biçim ve karşılıklı kimyasal grupların tutunma özellikleri tarafından tayin edilir. Böylece, DNA sarmalının iki teli ayrıldığında her bir teldeki harflerin dizilimi telin diğerini inşa etmede bir şablon olarak kullanılabilir. Watson ve Crick'in bulduğu DNA yapısı kendiliğinden olan çeşitliliğin fiziksel bir temeli olduğunu derhal gösterdi. Hücre bölünmesinden önce fiziksel zarar görme (örn.radyasyona maruz kalarak), veya DNA molekülünün kopyalanması sırasında gerçekleşen hatalar DNA'nın normal harf dizisini değiştirebilir. Mutasyonlar çok çeşitli biçimler alabilir; polimerin belli bir pozisyonundaki harfin yerine başka bir harf geçmesi, harf kümelerinin silinmesi, harflerin çoğalması ya da yeni harflerin sokulması, harf dizilerinin tersine çevrilmesi veya yerlerinin değişmesi gibi. Böylesi değişiklikler DNA yapısı önerildiğinde (1950'lerde) hala kuramsaldı. Ancak Darwin'in ünlü kitabı "Türlerin Kökeni Üzerine"nin 150. yıldönümü yaklaştığında, büyük ölçekli sıralama yöntemleri genomların tamamının okunmasını ve (Darwin'in önerdiği evrimsel sürecin ham maddesi olduğu anlaşılan genlere dayalı olan) genetik çeşitliliğin analiz edilmesini benzeri görülmemiş bir biçimde olanaklı kıldı. Çeşitli organizmaların ve yavrularının DNA sıralamasını yaparak, ve nesilden nesile geçen uzun DNA zincirinde kendiliğinden olan değişiklikleri inceleyerek bilim adamları, böylesi mutasyonların oldukça düzenli bir biçimde gerçekleştiğini açık bir biçimde gösterdiler. (Doğaldır ki yalnızca tohum hücrelerinde olan mutasyonlar yavruya geçebilir ve bu şekilde saptanabilir.) Mutasyonların mutlak oranları türden türe değişim gösteriyor ancak her bir nükleotid, nesil ve baz-çifti yergeçimi (substitution) başına tipik ortalama 10-8 dir. Bu frekans küçük gibi görünebilir ancak pek çok bitkinin ve hayvanın çok büyük bir genomu vardır. Genomunda 100 milyon ve hatta 10 milyar baz çifti olan çok hücreli hayvanlarda, bazı spontone tek baz-çifti değişikliklerin kalıtsal bilginin bir sonraki nesile geçtiği her durumda gerçekleşmesi kuvvetli bir olasılıktır. Bazı yergeçim tiplerinin diğerlerine göre olma olasılığı daha fazladır, bu durum DNA bazlarının kimyasal dengesine ve yapısal özelliklerine bağlıdır. Buna ek olarak bazı büyük (uzun) dizi değişimleri, tek baz-çifti değişikliklerinin genel ortalama oranından çok daha fazla sıklıkla gerçekleşir. Bir sırada sekiz veya daha fazla aynı harfi içeren ve homopolimer diye bilinen DNA dizileri DNA kopyalanması sırasında kopyalama hatalarına yol açmaya son derece eğilimlidirler. Mikrouydu diye bilinen ve iki, üç, veya daha fazla nükleotid dizisinden oluşan ve sürekli yinelenen bölgeler de böyledir. Genomdaki tüm bu kendiliğinden oluşan değişiklikler, kendi türümüz de dahil olmak üzere, aynı türün içinde bile, eklene eklene çeşitliliğe neden olur. Tarihsel bir dönüm noktası olan 2003 yılında 3 milyar baz çiftinden oluşan insan genomunun tamamının referans dizisi, dört yıl sonra da Watson'un neredeyse tamamlanmış kişisel genomu belgelendi, böylece iki insana ait DNA dizilerinin birbiriyle karşılaştırlması olanaklı oldu, bu örnekler daha sonra Celera'nın kurucusu Craig Venter'in genom dizisi de katıldı. Bu üç dizinin yan yana karşılaştırılması ilginç bulguları ortaya çıkardı. Öncelikle, her bireyin genomu, referans dizisinden yaklaşık olarak 3.3 milyon tek baz-çifti kadar değişim gösteriyordu, bu da ortalama her 1000 bazdan birinin değişik olduğuna karşılık geliyordu. Her ne kadar daha büyük DNA bölgelerindeki silinmeler ve eklemeler tek baz-çifti değişiklikleri kadar sık değilse de (genom başına bir kaç milyon yerine bir kaç yüz bin olay), bu olaylar genomlar arasındaki baz değişikliklerinin çoğunluğunu oluşturdular, yani en az 15 milyon baz-çifti etkilenmişti. Bir çok yeni genom bölgesinin de bireyler arasında değişik sayılarda kopyaları olduğu saptandı, bu da etkileri daha yeni yeni keşfedilmeye başlanan genom yapısındaki görülmemiş yapısal bir değişimi yansıtıyor. Sonuç olarak, insan genomlarının tamamı karşılaştırıldığında görülen dizisel değişimler ya protein kodlamasını ya düzenleme bilgisini ya da insanın 23.000 geninin önemli bir kısmının kopyalanmasını değiştiriyor, bu da bireyler arasında değişim gösteren pek çok özellik için büyük miktarda olası çeşitlilik kaynağı oluşturuyor. Kaynak: evrimolgusu.blogspot.com

http://www.biyologlar.com/cesitlilik-aciklaniyor

Asalak veya parazit nedir

Asalak ya da parazit, bir canlıya bağımlı olarak yaşayabilen ve üzerinde yaşadığı canlıya zarar verebilen organizmalardır. Bu canlılardan kimileri mikroskobik boyutlardan erginlikte çok büyük boyutlara ulaşabilecek değişimlere sahip olabilirler. Bir asalak üzerinde yaşadığı canlının besinine ortak olarak yaşamını sürdürür. Besine ortak olması ise üzerinde yaşadığı canlının zayıf düşmesine ve hastalanmasına neden olur. Günümüzde bilinen birçok hastalık asalaklar neticesinde meydana gelir. Asalakların en bilinenlerinden birisi ise kedi, köpek ve sığırlarda yaşayan şerittir. Şerit başlangıçta kistle kaplı bir yumurta halinde iken konak canlının sindirim sistemine geldiği zaman sahip olduğu kisti kırarak erginleşmeye başlar ve hayvanın bağırsağına yerleşir. Benzeri durumlar genellikle ya konağın zarar görmesi ya da bağışıklık sisteminin uyum göstermesi ile sonuçlanır. Kimi kurt türleri nadiren de olsa beyin ve karaciğer gibi organlara zarar verebilmektedir. Gezici bir asalak olan askaris yoğun vakalarda çok yaygın olmasa da kazara akciğere girerek çıkamayabilir veya karaciğerde apseye neden olabilir. Ölümcül durumlar genelde hatalı konaklarda görülmektedir, örneğin beyaz kuyruklu geyiğin beyninde yaşayabilen Parelaphostrongylus isimli asalak mus'larda sık sık fatal nörolojik vakalarla sonuçlanmaktadır. Asalaklar host üzerindeki etkileşimlerine göre sınıflandırılırlar. Ciddi olanlarına köpeklerdeki kalp kurdu örnek verilebilir. Ektoparazitizm Bir canlı diğer bir canlının dış kısmına (deri ve solungaç) yapışarak veya tutunarak yaşıyorsa Ektoparazitizm denir. Bulundukları yere kendilerini bağlamak için özel organlar (vantuz, salgı bezleri vs.) oluşmuştur. Genellikle vücut sıvısıyla ve özellikle kanla beslenirler. Bir kısmı deriyi delerek galariler açmak suretiyle beslenir. Bunlar ektoparazitlerin doku asalaklığına geçiş gösterenleridir. Endoparazitizm Endoparazitizm, bir canlı diğer canlının iç kısmında yaşaması durumudur. Bu asalaklık hücre içerisinde oluyorsa, örneğin sıtmanın nedeni Plazmodyum (alyuvar içinde bir asalak) ve kala-azar hastalığın nedeni Leishmania (akyuvar içinde asalaktır)'da olduğu gibi, bunlara hücre asalakları; eğer hücre arasında yaşıyorlarsa hücre arası ya da doku asalakları; örneğin kaslarda bulunan ergin Trichinella, örneğin deri altında bulunan Filaria medinensis gibi; eğer kan içerisinde yaşıyorsa kan asalakları denir. Bazı parazitler gelişimlerini bir konakta gerşekleştirir, bunlara monoksen parazitler denir, bazıları ise birden çok konağa ihtiyaç duyarlar, bunlara da heteroksen parazitler adı verilir. Asalakların, ergin halde bulundukları konaga birinci konak ya da ana konak denir. Larva halini geçirdiği konağa veya konaklara ikinci, üçüncü,... konaklar ya da ara konak denir. Çoğunluk konaklara özelleşme görülür. Hayvanların büyük bir kısmı, genellikle böcekler, değişik bitki türleri üzerindeki dokuları yemek ya da özsuyunu emmek suretiyle endoparazitizm yaparlar. Diğer Konağın dış yüzeyinde yaşayanlar dış asalaklar (örnek akarlar) ve içinde yaşayanlar iç asalaklar (tüm asalak kurtlar). Kimileyin taşıyıcı olan ara konaklar üçüncül bir asalak veya hastalığı bulaştırabilirler. Hücreler içi asalaklara örnek çeşitli mikroplar olabilir. Sıradışı asalaklığa karıncayı yavaş yavaş içten yiyen Ophiocordyceps unilateralis olarak bilinen bir mantar verilebilir. Bu noktadan sonra mantar karıncanın beynine yerleşmeye başladığında bir çeşit zombiye dönüşen karınca mantarın yönlendirmesine göre yürümeye başlar. Özellikle Tayland’ın kimi bölgelerinde görülen bu mantar türünün ele geçirdiği karıncalar daima ormanların içlerine doğru yürüdükten sonra yerden yaklaşık 25 cm yukarıdaki mantarın üremesine elverişli yapraklara dişleri ile tutunup hareketsiz kalırlar. Bundan sonra mantar kurbanına başka asalakların de bulaşmasını engellemek için karıncanın dolayında bir koza örüyor ve ziyafetine devam ediyor. Mantarın karıncanın beynini nasıl kontrol edebildiği ve en son olarak karıncanın çenesini kapalı tutan kasları yemesi ise bilim adamlarını şaşırtan bir ayrıntıdır. Kleptoparazitizm bir canlının diğer bir canlının av veya gıdalarından faydalanmasıdır, bu tür asalaklığa örnek olarak bitki bitinden çıkan şekerli salgıları sağmak için onları kültive eden karıncalar verilebilir. Bu davranışa yakın bulunan sosyal asalaklara diğer kuşları yavrularının babysitterliğine manuple ederek dönüştüren, yumurtasını bıraktığı genç kuluçkalı yuvada yumurta ve yavrularıyla ilgilenilmeyince konağın bir ya da iki yumurtasını yuvadan atan, kimileyin de yıkarak zarar veren kuş, balık, böcek çeşitlerinin dahil olduğu kuluçka asalaklığı örnek verilebilir. İşgal, mafya, savaş ve evrim senaryolarına konu olmuş bir parazitoloji çeşididir. Eklembacaklı konağı yumurtalarını suya bırakacağı zaman boğulmaya teşvik ederek intihar ettiren Kılımsısolucanlar ya da Aykılı adı verilen Nematorpha türü ise söylentilerin aksine insanda yaşamaz. Tıp ve Alternatif Tıp'ta Çin aktarları asalak solucanları afrodizyak, görmeyi artırmak vb. faydaları için kullanmışlardır. Sosyo ekonomik düzeyi düşük kişilerde gelişmiş ülkelere göre özellikle kanser, enflamatuar bağırsak hastalıkları, kireçlenme gibi rahatsızlıkların daha az görülmesi Amerikalı kimi araştırmacıların dikkatini çekmiş risk altındaki kişilere solucan yumurtaları verilmesi ile deneylere başlanmıştır. Bu araştırmalar tartışma aşamasında ve kansere yakalanmamış hastalar için geçerlidir. Östrojen salınımı azaltan kist hidatik'in meme kanseri riskini düşürerek, erken alındığında bulunduğu bölgedeki kanser oluşumları da tartışılmıştır. Kimi formuna önem veren balet, aktris gibi sanatçılar tenya yumurtası yutarak obeziteye karşı sağlıklı olduğunu düşündükleri yöntemleri uygulamıştır. Kimi balık türleri sedefli, funguslu cilt hastalıklarında ve sülük çeşitleri kirli kanın temizlenmesinde, adi sinek kurtçukları da ölü dokuların temizlemesinde kullanılmıştır. Doğada Kimi kuş türleri tüylerinin arasına yerleştirdikleri canlı karıncalar yardımıyla temizlenir. Adi sineğin larvasında bulunan zehirden bilimciler güçlü yeni bir antibiyotik üzerine çalışmalarını sürdürmektedir. Kimi kuş türleri timsahın diş aralarındaki artıklarla beslenirken timsah ağzını açık bırakmaktadır. Kimi ufak balık türleri köpekbalıklarının üzerine yapışarak atık derilerdeki bakteri oluşumunu engellemektedir, köpekbalığı ve timsah gibi vahşi türlerin kendilerinin de bu yaratıklara nezaketli davranmaları doğal seleksiyonda dayanışma olabileceği gibi zayıf bir bünye ya da aç yeni bir asalak için yukarıda sayılan dostluklar her koşulda geçerli olmayabilir. Ekosistemdeki Rolleri Doğadaki diğer dominant türlerin rekabetini azaltarak türlerin varolmasını sağlarlar. Besin zincirinde hem av hem avcı konumundadırlar. Pek çoğu yaşam döngüsünü sürdürebilmek için birden çok hosta ihtiyaç duyar ve ekosistemin sağlıklı kalmasını sağlarlar.

http://www.biyologlar.com/asalak-veya-parazit-nedir

Kedilerde Üreme

Dişinin kızgınlık ya da dönem olarak da adlandırılan bu ilk östrusu hayvanın ırkına va mevsime bağlı olarak değişkenlik gösterir. Yavru kedilerin çoğu ilk kızgınlıklarını 2.3-2.5 kg vücut ağırlığına ulaştıklarında gösterirler ve bu yaklaşık 7. ay civarında görülmektedir fakat bazı olgularda cinsel olgunluk 3 ay gibi kısa bir zamanda görülmekte ve İran kedileri gibi bazı uzun tüylü safkanlarda 12-18 aya kadar puberta görülmemektedir. Dişide pubertanın başlamasını hayvanın yaşından çok onun hangi mevsimde doğduğu etkilemektedir. Ekim Aralık ayları arasında doğan dişiler birkaç ay sonra başlayacak çiftleşme mevsiminde kadar seksüel olgunluklarını gösterememekte ve 12-16 aylık olduklarında ilk östruslarını göstermektedirler. Reproduktif aktivitenin 14 yaşına kadar devam ettiği belirtilse de 20 yaşındaki kedilerde bile gebelik olgularıyla karşılaşıldığı bildirilmiştir. Yaşın artmasıyla yavru büyüklüklerinde ve yavru sayısında yıla bağlı olarak azalmalar görülmektedir. ÜREME MEVSİMİ Üreme mevsimi, coğrafi duruma, yıl içindeki döneme ve bu dönemin uzunluğuna bağlı olarak değişiklikler göstermektedir. Kuzey yarım kürede üreme mevsimi Ocak ayının geç dönemlerinde başlar ve gün ışığının azaldığı Ağustos-Eylül aylarında son bulur. Bu bölgelerde Kasım-Aralık aylarına kadar sürdüğü de bildirilmiştir. Bu dönemi bir dahaki üreme mevsimine kadar anöstrus evresi izler.Bununla birlikte, kedilere özgü bir şekilde üreme mevsimi kedinin ırkına, çevre faktörlerine veya hayvanın psikolojik durumuna göre değişkenlik göstermektedir. Bazı olgularda evde beslenen ve yapay ışığa maruz kalan kedilerde poliöstrik aktivitenin tüm yıl boyunca sürdüğü görülmektedir. Kısa tüylü kedilerde özellikle Siyam kedilerinde bu özellik uzun tüylü ırklara göre daha çok görülmektedir. Gebelikten sonraki ilk östrus yavruların sütten kesilmesini izleyen 8 gün sonra görülmekte ve bu da doğumdan sonraki 8. haftaya karşılık gelmektedir. Emzirmeyen dişilerde bu aralık 1 haftadan emzirenlerde 21 haftaya kadar değişiklik göstermektedir. ÖSTRUS (KIZGINLIK) SİKLUSU Dişi kediler poliöstrik hayvanlardır ve ovulasyon mekanizması indüklenmeyle gerçekleşir. Bir başka deyişle, çiftleşme gerçekleşmemişse ne ovulasyon ne de corpus luteum formasyonu gerçekleşir. Siklusun süresi, eğer çiftleşme olmazsa, bunu ovulasyonun izlememesine, gebeliğin gerçekleşmemesine ve gebeliği ve doğumu izleyen laktasyonun olmamasına bağlı olarak değişir. Pro-östrus Bu period 1-3 günde sonlanır ve genellikle artan sinirlilik, sık işeme ve sonunda erkek kediler gibi idrar püskürtme gibi olaylarla karakterizedir. Köpeklerde olduğu gibi belirgin vulvar ödem ve kanlı akıntı yoktur. Östrus Östrus süresi mevsime ve ovulasyonun şekillenip şekillenmediğine göre değişmektedir. İlkbahar aylarında östrus süresi artış gösterse de (5-14 gün/siklus), diğer mevsimlerde bu süre kısalır (1-6 gün/siklus). Ovulasyon gösteren kedilerde östrus periyodu ortalama 5.7 gün sürmekte ve östrus belirtileri çiftleşmeyi izleyen 24-48. saatlerde azalmaktadır, eğer ovulasyon gerçekleşmemişse 8 günlük süre normal kabul edilmektedir. Östrus sırasında dişinin davranışları değişmekte, vokalizasyon artmakta, lordosis pozisyonunu almakta ve kuyruk çiftleşmeye uygun bir şekilde bir tarafa yatmaktadır. Dorsal pelvik bölge hafifçe okşanacak olursa perineal bölgede spasmodik kontraksiyonlar görülmektedie. Anoreksi ve idrar püskürtme sıklıkla görülmektedir. Ovulasyon (Yumurtlama) Bazı kedilerde tek bir çiftleşme uyarısı ovulasyonun meydana gelmesine neden olabilir. Bunun yanında çoğu kedide ovulasyonun meydana gelebilmesi için tekrarlayan çiftleşme uyarıları gerekmektedir. Metöstrus(Kızgınlık sonrası dönem) Çiftleşmeyen kedilerde metöstrus'un süresi ortalama 21 (14-28) gündür. Bunun yanında steril veya yalancı çiftleşme uyarıları sonucunda meydana gelen yalancı gebelik ortalama 35 gün sürer (30-73 gün). Anöstrus Seksüel açıdan sakin olarak karakterize olan bu evrede ovaryumlar küçüktür ve follikül çapları 0.5 mm boyundadır. GEBELİK Gebelik süresi ortalama 63-66 gündür (52-71 gün). GEBELIK TANISI Gebeliğin saptanması abdominal palpasyonla, ultrasonografik veya radyografik yöntemlerle veya laparoskopiyle yapılır. Tanı Metodları Abdominal Palpasyon Gebeliğin geç dönemlerinde abdominal duvar yolu ile yavrular da palpe edilebilir. Ultrasonografi Ultrasonografik muayenede Doppler prensibine göre 30.günde fötal kalp veya uterus arterinde, navel arterindeki pulsasyona bakılarak tanıya gidilir. Radyografi Bu yöntem 17. gün gibi erken bir dönemde uterus boğumlarının saptanması esasına dayanılarak yapılır. BESLENME 3.5 kg ağırlığındaki gebe kedilerin günlük enerji ihtiyacı 1465 kJ’dür (350 kcal). Laktasyonda olan 2.5 kg’lık kedi ise 2510 kJ (600 kcal) enerjiye ihtiyaç duyar. Gebelik ve laktasyon sırasında kısıtlanmış maternal protein alımı yavrularda stresli durumlarda artan heyecana ve annenin yavruya bağlanmasında gecikmelere neden olmaktadır. Hayvan sahiplerinin gebeliğinin son 3 haftasında bulunan kedilerine sık sık ve az miktarda yiyecek vermeleri, aksi takdirde bir anda fazla miktarda verilen yiyeceğin uterusa basınç yapacağı bildirilmelidir. DOĞUM ve YENIDOĞAN YAVRULAR DOĞUM 45X30X25 cm ebatlarındaki doğum bölümü, rahat bir ortama doğumdan hemen önce yerleştirilmelidir. Gebeliğinin 9. haftasından itibaren dişinin aktivitesi düşer ve doğumunu yapmak için sakin ve sessiz bir yer arar. Kedi, huzursuzdur ve sıklıkla en uygun oturma pozisyonunu sağlamak için yer değiştirir. Bazı kedilerde rektal ısı düşebilir, iştah azalabilir veya kaybolur, fakat bazı dişiler doğum yapıncaya kadar ve hatta doğumun sonuna kadar yemek yiyebilirler. Yavruların doğumları arasında geçen süre 5 dakika ile 1 saat arasında değişmektedir. Sıkla iki yavru birbirini takip ederek doğar ve 10-90 dakikalık bir süreninin ardından diğer doğum gerçekleşir. YAVRULAR Yavru Sayısı Yavru büyüklüğü, ırk, yavru sayısı, beslenme durumu ve annenin sağlığı gibi birçok faktörden etkilenmektedir.Yavru sayısı ölçümünde oran 1 ile 8 arasında değişmekte ve ortalama 4 olarak kabul edilmektedir. Doğan ilk yavrunun diğerlerine göre relatif olarak küçük olması karakteristiktir ve yavru büyüklüğü 4. yavruya kadar büyür. Daha sonra 7. yavruya kadar bir düşüş saptanır. En fazla canlı yavru doğumu 14 olarak izlenmiş, bununla birlikte 15 yavru yapan bir diğer kedide bunların 11’i yaşayabilmiştir. Siyam kedilerinde yavru büyüklüğü relatif olarak büyüktür fakat yavru ağırlıkları ise relatif olarak daha küçüktür. Ortalama 6 yavrulu bir doğumda yavru ağırlıkları ortalama 100 gr.’dır. Yenidoğan Yavrular Doğum anında yavrular sağırdır ve göz kapakları kapalıdır. Koku ve tad alma duyuları çok iyi gelişmiştir. Doğumdan sonraki 24-48 saat içerisinde dişi, yavru larının yanında durur ve yavrular her üç saatte bir 2-3 ml süt emerler. Yavrularda göz kapakları yaşamlarının 2. haftasında açılır. Iki haftalık yavru her öğünde 5-7 ml süt emer ve dişi yavrularını birkaç saat kadar yalnız bırakır. Her emme periyodundan sonra anne yavrularının perineal bölgelerini ürinasyon ve defekasyonu uyarmak için yalar ve idrar ve feçeslerini yerler. Yavrular 3 haftalık olduğunda aktiftir ve ürinasyon ve defekasyonlarını kontrol etmeye başlarlar. Dört haftalık yavrular dışarıdan verilen bazı et, kuru mama, bebek maması gibi gıdaları alabilirler. Sütten kesilme genellikle 6.-7. haftalarda görülür fakat bazı durumlarda daha uzun süren laktasyonlar da gözlenebilir. Dişi tekrar gebe kalsa bile yavrunun emmesine müsaade edebilir. 8-9 aylık yavruların bir sonraki yavrularla birlikte emdiği gözlemlenmiştir. Yeni doğan yavruların ağırlıları 110-120 gr’dır ve ilk haftada bu iki misli olur. Üçüncü haftada ağırlık 300-350 gr., 6-7. haftada 700-800 gr.’dır. Anne Sütü Anne sütünün kompozisyonu laktasyon periyodu süresince değişkenlik gösterir. Doğum Sonrası Gün 1-10 11-60 Yağ (%) 3.7 1.2 3.3 1.3 Protein (%) 6.5 0.9 8.7 1.2 Laktoz (%) 3.6 0.3 4.0 0.3 Laktasyonun ilk 9 haftasında laktoz seviyesi devamlı aynıdır. Bunun yanında yağ ve protein içeriğinde belirgin değişiklikler vardır. Protein içeriği % 6.5’den % 10’un üzerine çıkar. Yağ içeriği laktasyonun ilk 4 haftasında düşer ve daha sonra yükselerek laktasyonun 8. haftasında başlangıç seviyesine döner. Geniş Bilgi için Lütfen Veteriner Hekiminize Danışınız Kaynak: www.veterinerhekim.net

http://www.biyologlar.com/kedilerde-ureme

İki ayak üzerinde yürümenin gelişmesi

İki ayak üzerinde yürümenin Australopithecus ile başladığı bilinmektedir. Ancak, hangi nedenle ortaya çıktığı konusunda değişik görüşler bulunmaktadır. Bu konuda, iki ayak üzerinde yürümenin sağladığı avantajları gözden geçirmek yararlı olacaktır. 1) Vücut ısısının düşürülmesi amacıyla, yere paralel olan ve hem güneşten gelen; hem de yerden yansıyan ışınlara maruz kalan gövde dik duruma gelerek, bir tarafdan daha fazla rüzgar alması temin edilirken; diğer taraftan daha az radyasyona maruz kalması sağlanmış olmaktadır. 2) iki ayak üzerinde yürüme, dört ayak üzerinde yürümeye göre daha az enerji gerektirmektedir. 3) Güvenlik ve beslenme gereksinimlerini daha iyi karşılayabilmek için gövdenin arka ayaklar üzerinde yükselmesiyle, düşmanını ve avını daha rahat görerek; düşmanlarına karşı daha heybetli görünme avantajı elde etmiş olmaktadır. 4) Bu avantajlar yanında, iki ayak üzerinde yürümenin bir gereksinime bağlı olarak geliştiğini ileri sürenler de bulunmaktadır. Bu görüşü savunanlara göre iki ayak üzerinde yürüme, Australopithecus 'un ellerini kullanma gereksinimi sonucunda ortaya çıkmıştır. Yavrunun taşınması ve bakımı; yemeğin hazırlanması ve yuvada yapılması gereken diğer işler için ellerin serbest kalması gerekmiş ve iki ayak üzerinde yürüme evrimleşmiştir. Ancak, bu yöndeki evrim henüz tamamlanmamıştır. Orta yaşın üzerindeki, özellikle şişman insanlarda görülen bel ve sırt ağrıları, disk kaymaları ve diz ağrıları bu yöndeki evrimin tamamlanmadığının işaretleridir. Şnsanda sakral bölgede gerçekleştirilen operasyonlardan sonra yara yerinin geç kapanması da kuyruğun kaybedilmesi yolundaki evrimin henüz tamamlanmadığının göstergesidir. Şnsanı meydana getiren evrim çizgisinde yer alan farklı primat türleri dikkate alındığında, yavruların doğumdan sonra erginleşmeleri için gereken süre insanda olduğu gibi uzundur. Örneğin, Hylobates yavruları 5 - 6 yaşında; Gorilin dişisi 4,5, erkeği 6 yaşında ve Şempanzenin dişisi 8, erkeği 12 yaşında cinsel olgunluğa erişmektedirler. Diş değiştirme ise Pongidlerle insanda aynı yaştadır. Yavrunun bakılmasını gerektiren bu süre içinde, ayrıca beslenmesi ve düşmanlarına karşı korunması gerekmektedir. Dişi bir koluyla yavrusunu taşırken diğer koluyla yemeğini hazırlamak; erkek ise ailenin besinini temin etmek üzere yuvadan uzakta avlanmaktadır. Böylece, aynı yuvayı paylaşan erkek ve dişi arasında besin ve yaşam alanı (teritori) için rekabet yerine, bir iş bölümünün ortaya çıktığı görülmektedir. Bu durum, uzun sürede erkek ve dişi arasında "çift birlikteliği" nın oluşumuna ve yavrularla birlikte anne ve babadan oluşan "aile" birliğinin ortaya çıkmasına neden olmuştur. Yavrular bu birlik içinde daha iyi beslenir ve korunurlar. Ebeveynlerin bu yöndeki yeteneklerinin nesiller boyunca giderek geliştiği, aile birliğinin giderek kurumsallaştığı düşünülmektedir. Çünkü, primatlar kendilerine bu yetenekleri kazandıran gen kompozisyonlarını,ancak üreme çağına ulaştırabildikleri yavrularıyla sonraki nesillere aktarmak şansına sahiptirler. Primat türlerinde yavru bakımı ötesinde, yavruya karşı duyulan ilginin de ileri derecelerine rastlanır. Örneğin, dişi Gorilin yavrusunu göğsünde taşımasına karşın; Şempanzenin sırtında taşıdığı; Gibbon dişilerinin ise yavrularına çok düşkün oldukları, su kenarında yavrularının yüzünü yıkadıkları, yavrularından birinin ölümü durumunda iştahtan kesildikleri ve çoğunlukla kederlerinden öldükleri bildirilmektedir. Çift birlikteliğinin, üreme çağından çıkmış dişilerde de devam ettiği; bu duruma, dişinin üreme çağında yavru sahibi olmak için eşiyle yapmış olduğu birleşmelere bağlı olarak aile birliğinin kuvvetlenmesinin neden olduğu ileri sürülmektedir. Vücudun kıllanma şekli ve sekonder cinsiyet organlarının evrimsel gelişimi çift birlikteliğini güçlendiren diğer faktörlerdir. Dişinin üreme çağından çıkmış ve çekiciliğini kaybetmiş olması, diğer erkeklerin ilgisini eskisi kadar çekememesine ve erkekler arasında bu dişi için yapılan kavgaların azalmasına neden olmaktadır. Birden fazla dişisi olan Goril ve Şempanzelerin köpek dişleri fazla gelişmiştir. Erkekler dişilere sahip olmak için aralarında kavga ederler. Hominidlerin köpek dişleri kuyruksuz maymunlarınkine göre küçük olmakla birlikte, hominidlerde dimorfizm (bir tür içinde iki farklı forma rastlanması) görülmektedir. Kuyruksuz maymunlarda iri köpek dişlerinin varlığına çok eşliliğin getirdiği mücadelenin neden olduğu; buna karşın bu şekilde bir mücadelenin görülmediği insan soyunda, özellikle meyve suyu tüketiminin fazla olduğu topluluklarda ise köpek dişlerinin küçülmekte olduğu ileri sürülmektedir. Pirimatların evrimi sürecinde; Monogami (tek eşlilik), köpek dişlerinde ufalma, besin paylaşımı ve iki ayak üzerinde yürümenin birlikte geliştikleri düşünülmektedir. Australopithecus dan sonra insanın evrim sürecinde daha evrimleşmiş olarak ortaya çıkan tür Homo habilis olarak isimlendirilmektedir. Australopithecus „a ait buluntular arasında herhangi bir alete rastlanmazken, Homo habilis buluntuları ile birlikte taş yontulara rastlanmış olması, bu türün “becerili insan” anlamına gelen bu isimle adlandırılmasına neden olmuştur. H. habilis „in belli başlı anatomik özellikleri, boyunun 120 – 130 cm.; ağırlığının yaklaşık 40 Kg. ve beyin hacminin 700 cm3 den aşağı olmamasıdır. Australopithecus „un herbivor olmasına karşın buluntular H. habilis „in omnivor olduğunu göstermektedir. Ayrıca, Afrikada “Turkana” Gölü civarında, H. habilis kalıntıları ile birlikte toprak yanıklarının bulunması; H. habilis „in 1 500 000 yıl önce ateşi kullanan ilk insan olduğunu göstermektedir. Etiyopyanın Omo vadisinde yaşanan insanın evrim sürecinde, 1 600 000 – 2 000 000 yıl öncesine ait tabakalar arasında rastlanılan H. habilis 'den sonra; (1 500 000 yıl öncesinden başlayarak) H. erectus olarak adlandırılan türün kalıntılarına rastlanmaktadır. Buluntular, boy uzunluğu yaklaşık 180 cm., ağırlığı 70 Kg., beyin hacmi 775 – 1500 cm3 rasında değişmekle birlikte ortalama 1100 cm3 olan ve Australopithecus u anımsatan iri çene kemikleri, iyi gelişmiş kaş kemeri, kısa ve eğimli alın bölgesi, kaybolmuş veya küçülmüş çene çıkıntısına sahip olan bu türün yeryüzünün farklı bölgelerine dağıldığını göstermektedir. H. erectus‟un geliştirmeyi başardığı düşünülen konuşma diliyle, kültürünü nesiller boyu taşıdığı ve biriktirdiği ileri sürülmektedir. Sözel olarak kültürün taşınabilmiş olmasının H. erectus‟un dünyanın farklı bölgelerinde değişik çevre koşullarına uymasında yardımcı olduğu; ateşin kontrollu kullanımı, avcılık ve barınma yöntemlerinin nesilden nesile bu yöntemle aktarıldığı düşünülmektedir. Dünya üzerinde H. erectus kalıntılarına Çin, Endonezyanın Java Adası, Afrikanın “Turkana” Gölü kıyısında, Avrupada “Nice” ve “Heidelberg” şehirleri yakınlarında rastlanmıştır. H. erectus‟un bu ölçüde geniş bir alana yayılmasına, günümüzden 1 500 000 – 1 200 000 yıl öncesinde gerçekleşen dünyanın soğuması sonucunda denizlerin bir kaç on metre düzeyinde alçalmasının neden olduğu düşünülmektedir. Yer üzerinde, günümüzden 225 000 yıl öncesinden başlayarak 35 000 yıl öncesine kadar devam eden bir kültürün yaratıcısı olarak ve kendisinden önceki H. erectus ile sonraki H. sapiens türlerinin bazı karakterlerini üzerinde taşıyan Homo cinsinin alt türü, H. sapiens neanderthalensis olarak bilinir. H. erectus „da görülen kaş kemeri ve art kafa çıkıntısına sahip, beyin hacmi 1300 – 1750 cm3 e kadar ulaşmış ve kafatası daha büyük olan bu alt türün ölülerini gömdükleri, mezarlarına bügün de şifalı olarak bilinen otları bıraktıkları bilinmektedir. Ayrıca, Neandertallerin birlikte çalıştıklarını ve aralarında gerçekleştirdikleri sosyal dayanışma örneklerini sergileyen kanıtlar bulunmuştur. Gerek morfolojik özellikleri ve gerekse sahip olduğunu bildiğimiz tinsel (manevi) ve kültürel değerlerini dikkate alarak; H. sapiens neanderthalensis (şekil 57) in bugünkü modern insanın atası olduğu düşünülmektedir. Günümüzden 35 000 yıl kadar önce H. sapiens neanderthalensis den H. sapiens sapiens (insan) in meydana geldiği düşünülmektedir. Lateral olarak bakıldığında yüzü düz, yani alnı dik; kaş kemeri bulunmayan; prognoti (yüzün anterior bölgesini şekillendiren maksilla ve mandibula „nın öne çıkıntı yapması) göstermeyen fakat çene çıkıntısı bulunan ve ard kafa çıkıntısı bulunmayan H. sapiens sapiens, hacmi 900 – 2300 cm3 arasında değişmekle birlikte, ortalama 1400 cm3 lük bir beyine sahip olan son hominiddir. Önceki hominidlerin Afrika, Asya ve Avrupa ile sınırlı olan yeryüzündeki dağılımları, H. sapiens sapiens ile Amerika ve Avusturalya'ya kadar uzanmıştır. Asya insanının Amerika'ya geçişinin, buzul döneminin en şiddetli evresinde deniz sularının alçalmasıyla bugünkü bering boğazının yerinde, iki kıtayı bağlayan kara parçasının su üstüne çıkması sonunda; Asya'dan Amerika'ya göç eden hayvanları avlarken gerçekleştiği düşünülmektedir. Ancak, insanın Asya'dan Avusturalya'ya geçişini deniz sularının bir kaç on metre azalmasıyla açıklamak mümkün değildir. Çünkü her iki kıta ve adaları arasındaki denizler suyun bir kaç on metre alçalmasıyla ortadan kalkmayacak kadar derindir. Bu durum, insanın kıyıdan en az 50 deniz mili açılabilecek nitelikte deniz taşıtları yapabilmiş olması ve yeterli denizcilik bilgisine sahip olmasıyla açıklanmaktadır. Bu insanların hayvanların göç yolları üzerindeki akarsu vadilerinde 25 - 30 kişilik gruplar halinde ve mağaralarda veya hayvan postlarıyla örtülmüş barınaklarda yaşadıkları bildirilmektedir. Bugünkü bilimsel bulgular, insanın bir hominid atadan ayrılarak ve zaman içinde değişerek meydana geldiğini göstermektedir. Şnsanın bir maymundan türediğini gösteren herhangi bir delil bulunmamaktadır. Eğer insanın ortaya çıkışı böyle olsa idi, ARSEBÜK tarafından ifade edildiği gibi, maymunlardan arada bir insan meydana geldiğine tanık olmamız gerekirdi. Böyle bir olay olmadığı gibi, insanın ortaya çıkışı buraya kadar özetlendiği şekilde milyonlarca yıl süren bir evrim süreci sonunda olmuştur. Hominidler, genetik kompozisyonlarında tamamen rastlantısal olarak meydana gelen mutasyonlar arasından bulundukları çevre koşullarına en iyi yanıt verenleri gen havuzlarına ekleyerek birbirlerinden giderek farklılaşan populasyonlar meydana getirmişlerdir. Bunun sonucu olarak, maymunlar giderek daha maymun, insan ise giderek daha insan olma yolunda ilerlemektedirler. insan ve maymunlar Antropoidea alt takımı içinde yer alan farklı türler oldukları için, aralarında benzerlikler de bulunmaktadır. Örneğin, insanda belirlenen 1650 anatomik tarakterden 312 sinin insana özgü olmasına karşın; geriye kalan karakterlerden 385 inin Goril, 369 unun Şempanze, 354 ünün Orangutan, 117 sinin Gibbon ve 113 ünün diğer maymun türleriyle ortak olduğu bulunmuştur. Bu sonuca göre, anatomik özellikler bakımından insana en yakın antropoidin Goril olduğu ve diğer maymunlar arasında yapılacak bir insana yakınlık sıralamasının Şempanze, Orangutan ve Gibbon şeklinde olduğu görülmektedir. Buna rağmen, Şnsana en yakın maymunun Şempanze olduğunu gösteren bulgular da vardır. Örneğin, immünolojik bir çalışmada, Şnsan serumuna karşı Tavşanda elde edilen antiserumun Şempanze serumunda % 63 oranında çökelmeye neden olduğu ve Şempanze serumuna karşı Tavşanda elde edilen antiserumun da Şnsanda % 85 çökelmeye neden olduğu bulunmuştur. Bu sonuç, Şnsan ve Şempanze serum proteinlerinin önemli ölçüde biribirine yakın olduğunu göstermesine karşın; aynı yöntemin başka maymunlarla tekrarlanması, Şnsan serum proteinlerine olan yakınlığın Goril ve Orangutanda giderek azaldığını göstermiştir Biyokimyasal çalışmalar, Pongidae ailesi içinde Şempanzenin Şnsana daha yakın olduğunu göstermektedir. Örneğin, Şnsan ile maymun türleri arasında yapılan hemoglobin proteinlerinin karşılaştırması, Şnsanın Şempanze ile bir, Goril ile iki amino asidi bakımından farklı olduğunu göstermektedir. Sonuç olarak, canlılar alemi içinde bir Şnsan hücresi ile bir kara yosunu hücresi arasında bile morfolojik ve fizyolojik bakımdan pek çok benzerlik söz konusudur. Bu benzerlikler, bir Şempanze veya Goril ile Şnsan arasında var olan benzerliklerin sayısı ile kıyaslanamayacak kadar az sayıda olmakla birlikte; bu kadar fazla sayıdaki benzerliğe rağmen, Şnsanın Şempanze ya da Goril 'den meydana geldiğini söylemek olanaksızdır.

http://www.biyologlar.com/iki-ayak-uzerinde-yurumenin-gelismesi

YILAN BALIĞI BİYOLOJİSİ VE YETİŞTİRİCİLİĞİ

Yılan balıkları eski yıllardan beri insanların ilgisini çekmiştir. Su bulunan bir çok yerde yılan balığına rastlandığı halde yumurtlama ve yavrulama sırasında izlenememesi, yumurtalı veya karnında yavru bulunan bir balığa rastlanamaması bu ilginin çok eskiden beri doğmasına neden olmuştur. Dünyadaki toplam yılan balığı istihsali; Avrupa yılan balığı (Anguilla anguilla ) (1990-1991) 23 950 ton, Japon yılan balığı ( Anguilla japonica ) 109 100 ton, Amerikan yılan balığı ( Angıilla rostrata ) 2 850 ton, diğer yılan balığı türleri ise 1 500 ton olup toplam 137 400 tondur. Dünya su ürünleri istihsalinde çok önemli bir yer tutan yılan balıkları ülkemizde yetiştiricilikte bir yer bulamamıştır. İç su ve dalyanlarımızdan 400 ton yılan balığı yakalanmıştır (DİE, 1997). Yılan balıklarının büyük bir ekonomik önemi vardır. Özellikle fümesi sevilerek yenmekte olduğundan Avrupa’ya ihraç edilmekte ve ülkemiz için önemli bir döviz kaynağı oluşturmaktadır. Bu çalışma, yılan balığı yetiştiriciliği için gerekli bilgilerin derlenmesi ile oluşturularak ülkemiz için konunun önemini açıklanmıştır. Bu bilgilerin ışığında hiç de azımsanmayacak potansiyele sahip olduğumuz yılan balığı yetiştiriciliği konusunda devlet desteği ile gerekli girişimlerin yapılması önem arz etmektedir. Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Coğrefik Dağılım Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Avrupa Yılan Balığının Yaşam Döngüsü Yılan balıklarının biyolojik döngüsünde başlıca üç nokta vardır. - Bu üç yılan balığının yaşam süresi oldukça uzundur(Avrupa yılan balığında 15 yıla kadar) - Yalnızca bir kez ürerler. - Hayatlarının büyük bir kısmı tatlı sularda geçer. Denizde uzun bir göç süresi vardır. Yumurtlama alanı Yılan balıklarının doğal ortamda üremesi gözlemlenememiştir. Ancak markalanan bireyler Atlantik okyanusunda takip edilmiştir (Tesch, 1973) ve pek çok avlama sahası ayrıntılı olarak incelenmiştir. Danimarkalı Schmidt 1904-22 yılları arasında yaptığı çalışmalar sırasında Avrupa yılan balığının yumurtalarını Meksika körfezine bıraktıklarını ispatlamıştır. İlk göç Avrupa yılan balıkları Bermuda adalarının güneydoğusunda tam olarak bilinmeyen bir derinlikte üremektedirler. En küçük larvalara (7 mm) 75 ile 300 metre derinlikler arasında rastlanmıştır. Leptosefalus larvaları ilk bahar başında yumurtadan çıkarlar ve Golfstrim akıntıları ile Avrupa kıyılarına doğru göç ederler. Bu sırada 75 mm boya sahip olan leptosefaluslar metamorfoz geçirirler ve söğüt veya defne yaprağı şeklinden yılan balığını andırır silindirik bir şekil alırlar. Başlangıçta şeffaf bir görünümde olan yılan balıklarında , 7-8 ay sonra pigmentleşme gerçekleşir ve akarsulara girerler. Hayatlarının ilk dönemine denizde başlarlar ve bu aşamada planktonik bir hayat sürerler. Yavrular su hareketlerine karşı direnç gösteremezler. Yanlardan yassılaşmış bir vücuda sahip olan leptosefalusler büyük gözlere ve büyük dişleri olan geniş bir ağza sahiptirler. Bu aşamada karnivordurlar ve besinlerini zooplanktonlardan sağlarlar. Larvalar gece gündüz periyodunda, farklı derinliklerde bulunurlar. Geceleri yüzeye yakın yerlerde (35-130 metre) yakalanırken gündüzleri 300-600 metre derinlikler arasında dağılım gösterirler. Leptosefaluslar Avrupa kıyılarına doğru yaklaştıkça büyümelerini tamamlamış olurlar. İlkbahardan yaza kadar İspanyanın kuzey kıyısından, Feroe adalarının batı kıyılarına kadar dağılım gösterirler. Metamorfozu başlamamış bireylere metamorfozu devam etmekte olan bireylerin bulunduğu kıyılardan çok daha uzakta rastlanmıştır. Genel olarak leptosefaluslerin kıta sahanlığına yaklaşmaları iki buçuk yıl sonra olur. Yumurtadan şeffaf elver konumuna yaklaşık üç yılda gelmektedirler ( Tesch, 1987). İlk Metamorfoz Larvaların büyük bir çoğunluğu metamorfoz sürecini kıta sahanlığında, ağustos-eylül aylarında tamamlarlar. Bu metamorfozda aşağıdaki değişikliklere rastlanmaktadır. - Ağırlık ve boyda meydana gelen bir azalma. Örneğin leptosefalus safhasında olan (tanesi yaklaşık 1,5 g) 75 mm boyundaki larvaların yaklaşık 700 tanesi 1 kg gelirken, elver haline geçmiş aynı boy larvaların yaklaşık on misli vücut ağırlıklarından kaybettikleri ve 7 000 tanesinin 1 kg geldiği görülür. - Morfolojik değişimi, Söğüt yaprağı şeklinde yassı olan leptosefaluslar silindirik bir yapıya ulaşırlar. Bu şekildeki yılan balığı yavrularına elver adı verilir. - Beslenme durur. Planktonik larvada bulunan dişler kaybolur. - Ağırlığı azalır ve sindirim organları kısalır. - Troid ve hipofiz etkinliğinin artması ile endokrin sistemin çalışmasının değişmesi, davranış değişikliğine, Gel-git akıntılarına ve tatlı sulara olan duyarlılığın artmasına ve iç sulara göç etmesine sebep olur. Tatlı suya ilk göç (anadrom göç) Şeffaf elverler su akıntılarını takip ederek kıyı sularında toplanırlar. Metamorfoz ergin yılan balığına benzeyinceye kadar devam eder. Pigmentasyon sonucunda sırt kısmı zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara “sarı” yılan balığı denir. Sarı yılan balıklarının tatlı suda büyümesi On dört on beş yıl kadar süren bu aşamada sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenmenin başlaması pigmentasyonun son safhasında ve ağırlık artışı başladığında ortaya çıkar. Beslenme karnivor olarak bentik omurgasızlarla ve belli bir boyu aştıktan sonra diğer balıklarla olmaktadır. Büyüme oldukça yavaştır. Yılan balığının gelişimi yaşadığı ortam şartlarına bağlıdır. Dişiler, erkek bireylerden boy olarak daha uzun olup, erkekler 50 cm den küçük, dişiler 45-150 cm arasında, nadiren 200 cm boy ve 4-6 kg ağırlığa kadar ulaşmaktadırlar. Buna rağmen çoğunlukla, yakalanan dişilerde ağırlık 250-400 gram ve boy 70-80 cm kadardır. Gonatların dişi yönünde gelişmeye başlaması 15-20 cm. den itibaren olmaktadır. Cinsel farklılaşmanın başlıca belirtileri cinsiyet organları üzerinde görülmez. Büyümedeki farklılaşma ve erkek bireylerin nehir ağızlarında kalırken dişi bireylerin kaynağa yakın yerlerde bulunması ile cinsiyet ayırt edilir. Göç etme eğilimindeki bu farklılaşma çok erken safhalarda, şeffaf elver yada elver aşamasında görülür. İkinci metamorfoz Deniz suyuna geçmek üzere ikinci kez ortam değiştirmeleri sırasında yılan balıklarında oluşan morfolojik değişiklikler beş başlık altında toplanabilir. - Kahve rengi ve zeytin yeşili olan vücut rengi değişir, karın gümüşi beyaza döner. Sırt ve yüzgeç rengi koyulaşır. Dalgalı renklenme kaybolur. Yılan balıklarının tüketici tarafından en çok talep edildiği şekli gümüşi yılan balığı safhasıdır. - Etlerindeki yağ oranı artarak vücut ağırlığının % 30’ unu geçebilir. Bu yağlanma yılan balığının Saragossa’ya doğru yaptığı uzun göçe dayanmasını sağlar. - Tesch’e göre göz çapı iki katı kadar artar. Bu sayede daha az riskli bir yolculuk yapar. Bununla birlikte ışıktan kaçma davranışı ortaya çıkar. - Pektoral yüzgeçler yuvarlak şekillerini kaybederek erken olgunluk döneminde sivrileşirler. - Son olarak olgunlaşmanın ilerlemesi ile cinsel organlar gelişir. Vücutlarında çok fazla yağ depolarlar. Diseksiyon yapılarak cinsiyet teşhis edilebilir. Gonatların gelişimi deniz ortamına geçtikten sonra gerçekleşir. İkinci göç ( katadrom göç) Bu, yılan balıklarının doğduğu yere geri döndüğü üreme göçü olup, Anguilla anguilla için 5000 km. dir. Gümüşi yılan balıkları sonbaharda, tatlı suları terk ettiklerinde gonatlar hala tam olarak olgunlaşmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Tatlı suda yakalanan örneklerde sindirim sisteminin köreldiği ve işlevini yitirdiği gözlenmiştir. Gümüşi yılan balıkları Saragossa’da ki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaştığı süreye kadar denizde beslenmeden hayatta kalabilmektedirler. Hayatlarında bir kez yaptıkları üreme sonucunda yaşam süreçleri son bulur. Yılan balıklarının bu göç sırasında yönlerini nasıl buldukları günümüzde hala bilinmemektedir. Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. · Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. · Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. · Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Durgun Su Yöntemi Japonya ve Tayvan’da kullanılan en eski ve yaygın olan metottur. Balıkların oksijen ihtiyaçlarını su içindeki fitoplanktonlar ile karşılanması bu yetiştirmenin temel prensiplerinden biridir. Geceleri oksijen miktarını çok dikkatli bir şekilde takip edilmesi gerekir. Özellikle fazla balığın stoklandığı, suyun sıcaklığının fazla olduğu dönemlerde, konunun önemi daha da artmaktadır. Suya oksijen kazandırmak için suyu karıştıran makineler yada basınçlı hava veren düzenek kullanılır. Bu yetiştirme yönteminde havuzlara çok az (%10) su verilir. Verilen suyun havuz suyunu karıştırmaması havuzun bir köşesinden girip, diğer köşesinden dışarı çıkması sağlanır. Böylece havuzdaki plankton varlığının korunması ve suyla sürüklenip gitmesi önlenmiş olur. Bu yetiştirme yönteminde metre karede 2- 4 kg balık yetiştirilebilir. Başarılı bir yetiştirme için su sıcaklığının 23-30 °C arasında olması gereklidir. Bu şartlarda iki yıl veya daha az sürede 150-200 grama ulaşması gerekir. Bu ağırlığa Tayvan’da 1,5 yılda , İngiltere’de 4 yılda, Japonya’da 2 yılda ulaşır. Güney Ege ve Akdeniz’de yılın 8-9 ayı su sıcaklığı 20 °C den yukarıda tutulabileceğinden yılan balığı yetiştiriciliği bu bölgelerimizde karlı olabilir. Yılan balıklarına 12 °C nin altında yem verilse dahi gelişme olmaz. Bu yetiştirme yönteminde havuz alanı 3-4 dekar arasında tutulur. Akarsu Yöntemi Akarsu yönteminde havuzların alanı 150-300 m² dir. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyunun olması gerekir. Birim sahada yetiştirilebilecek balık miktarı verilebilecek oksijene, dolayısıyla suya bağlı olarak değişir. Yöntemin başarılı olabilmesi için su sıcaklığının 23 °C üzerinde olması gerekir. Bu yetiştirme yönteminde üretime alınacak balıkların başlangıç olarak ağırlıklarının yaklaşık 30 g. olması tavsiye edilmektedir. Çünkü suyun hızla değiştiği ortamda yavrularda gelişme iyi olmamaktadır. Bu yöntemle yetiştiricilik yapan işletme sayısı oldukça azdır. Ağ Kafeslerde Yetiştirme Yöntemi Japonya’da ağ kafeslerde yapılan sazan ve alabalık yetiştiriciliğinin aynısıdır. Bu amaçla bu havuzlar iç sularda ve göllerde kullanılmaktadır. Japonya’da Şizouka balıkçılık deneme istasyonunda derinliği 1,5 m olan 8 mm göz açıklığında ağlar ile ağ havuzlarda yapılan deneme oldukça olumlu sonuçlar vermiştir. Bu denemede toplam 23,3 kg yılan balığı konulmuş, 38 gün sonra 38,6 kg balık, ortalama 180 g ağırlıkta hasat edilmiştir. Bu çalışmada dondurulmuş uskumru eti kullanılmış olup, yem dönüşüm katsayısı 7,35 bulunmuştur. Bu denemede ortalama su sıcaklığının 25,5 °C, tuzluluğun %0 21, birim alandaki verim 7,7 kg olarak tespit edilmiştir. Tünel Yöntemi Bu metotla ticari bir işletme kurulmamış olmakla beraber tünel yöntemi ile yılan balığı yetiştirilebileceği denemelerle gösterilmiştir. Bunda amaç, yılan balığının karanlık saklanacak yeri bulunan doğal ortamına benzeyen bir alanın sağlanmasıdır. Bunun için balıkların gündüz saklanmasının mümkün kılacak karanlık tüneller suya yerleştirilir. Havuzlarda ılık akarsu yöntemi kullanılmıştır. Sirkülasyon Yöntemi Devamlı olarak sirküle edilen suyun kullanılması, yetiştirme çalışmalarında olumlu sonuçlar alınmıştır. Bu tür bir çalışmada iki adet havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan su devamlı olarak bir motopomp vasıtası ile filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel temizlenmesinin yanı sıra biyolojik temizleme de gerçekleşir. Filtre kumu ve taşlarındaki bakteriler balıkların atıklarındaki nitrit, nitrat ve amonyak gibi toksik kimyasal bileşikleri azota kadar indirgeyerek zararsız hale getirirler. Bu tür bir çalışmanın başarılı olabilmesi için kullanılan havuzların kapasitesi, filitrasyon yüzeyi, filtre yapan temizleyici kütlenin kalınlığı, kullanılan pompaların kapasitesi, su kalitesi, sudaki oksijen miktarı, sıcaklık ve artık yemlerin temizlenmesi gibi pek çok konuyla ilgilidir. Bu tür bir yetiştirme yöntemi, ancak kullanılacak suyun kısıtlı olduğu yerlerde düşünülebilir. Bu yöntemle küçük bir alanda fazla miktarda balık üretimi mümkün kılınabilir. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: - Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. - Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. - Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. - Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. - Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. - Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. - Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. - Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. - Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; - Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7' nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme sırasında sık sık boylama yapılır. Bu şekilde büyüme daha iyi olur. Yetiştiriciliğin son safhası büyütme havuzlarında gerçekleşir. 660 m² havuza her biri 10 g olan ( 100 adedi 1 kg ) 300 kg balık yani m² ye 50-60 balık konur. Burada amaç 150-200 g ağırlığında pazarlanacak bireyler elde etmektedir. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. 30- 40 cm ye kadar erkek ve dişi bireyler arasında büyüme bakımından bir fark yoktur. Bu uzunluktan sonra özellikle avrupa yılan balığı erkek bireylerin büyümesinde bir düşüş görülür (Şekil x ). Erkekler en fazla 50 cm büyürler. Bu boydaki ağırlık 100-120 g dır. Dişi bireyler 50-70 cm ye kadar boya ve 300-500 g ağırlığa kadar büyüyebilirler. Erkek dişi arasındaki oran erkek lehine 20:1 dir. Cinsiyet farklılaşması 14-20 cm arasında olur. Bu boya kadar balık aynı zamanda hem erkek hem de dişi cinsiyet hücrelerini taşır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. KAYNAKLAR Alpbaz, A.,Hoşsucu, H., 1988, İç Su Balıkları Yetiştiriciliği, Ege Üniv. Su Ürünleri Y.O. Yay No:12, 1-98 s. İzmir. Anonim, 1985, Yılan Balığı, T.C. Ziraat Bankası Ege Bölge Müdürlüğü, Su Ürünleri Çalışmaları/1, (Çev) Hakkı Çakır, 62 s., İzmir. Çelikkale, M.,S., 1994, İç Su Balıkları ve Yetiştiriciliği, Cilt 1, 2. Baskı, Karadeniz teknik Üniv. Sürmene Den.Bil Fak. Yay NO: 2, 337-362 s Trabzon. DİE., 1991, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1583, Ankara 1995, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara 1997, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara Gault, J., 1986, L’élevage de l’anguille,(in) Aquaculture, (ed) Barnabe, G., Technique et Documantation-Lavoisier, 739-771 pp, Paris. Geldiay,R., Balık, S., 1996, E Ege Üniv. Su Ürünleri Fakültesi, Yay No:16, 2. Baskı, E.Ü. Basımevi, 204-209 s, İzmir. Tesch, F.,W., 1983, Der Aal, Biologie und Fischerei, Verlag Paul Parey, 340p, Hamburg und Berlin. Usui, A., 1974, Eel Culture, Fishing News (Books), Ltd.,186 p, England. Kaynak; tarim.gov.tr

http://www.biyologlar.com/yilan-baligi-biyolojisi-ve-yetistiriciligi

ALABALIK BİYOLOJİSİ ve YETİŞTİRME TEKNİKLERİ

A.Ü. Ziraat Fakültesi Su Ürünleri Bölümü. 06110 ANKARA Yaşam ortamı bakımından berrak, temiz, serin ve oksijen yönünden zengin suları tercih eden alabalık halkımız tarafından özel likle etinin lezzetli oluşuyla anımsanan balıklar arasında bulunmaktadır. Alabalık türleri sistematikte Salmonidae familyasında yer alırlar. Morfolojik bakımdan yağ yüzgeci ile karakterizedirler. Salmonidae familyasında ekonomik yetiştiricilik ve doğal suların balıklandırılması için önem arz eden çeşitli alabalıklar üç cinsin türleridir. Bu cinsler : a- Salmo b- Salvelinus c- Oncorhynchus Dünya genelinde ençok tanınan alabalık türleri aşağıda gösterilmiştir (Bruno ve Poppe 1996). - Salmo salar Linnaeus (Atlantik Salmonu) - Salmo trutta f.trutta Linnaeus (Deniz alabalığı) - Salmo trutta f.fario Linnaeus (Dere alabalığı) - Oncorhynchus mykiss Walbaum (Gökkuşağı alabalığı) - Salvelinus fontinalis Mitchill (Kaynak alabalığı) - Salvelinus alpinus Linnaeus (Alp alabalığı) - Salhvelinus namaycush Walbaum (Göl alabalığı) Ülkemizin yerel alabalık alt türleri ise şöyle sıralanabilir (Çelikkale 1994). - Salmo trutta macrostigma Dumeril (Anadolu Dağ alabalığı) - Salmo trutta abanticus Tortonese (Abant alabalığı) - Salmo trutta caspius Kessler ( Aras alabalığı) - Salmo trutta labrax Pallas (Karadeniz alabalığı) - Salmo trutta f.lacustris Linnaeus (Göl alabalığı) Yukarıda belirtilen alabalık türleri içerisinde yetiştiriciliği en yaygın olanı Kuzey Amerika kökenli Gökkuşağı alabalığı olmuştur. Gökkuşağı alabalığı ile Kaynak alabalığı hemen hemen aynı yıllarda yaklaşık 120 yıl önce Kuzey Amerika’dan Avrupa’ya getirilmelerine karşın kültür koşullarına uygun niteliklerinden dolayı Gökkuşağı alabalığı yetiştiriciliği hızlı bir artış göstermiş ve günümüzde bir endüstri haline gelmiştir. Gökkuşağı alabalığının yetiştiriciliğe uygun özel likleri aşağıdaki başlıklar halinde belirtilebilir (Steffens 1981). - Gökkuşağı alabalığının çevre koşullarına çok iyi uyum göstermesi yanında özel likle yüksek sıcaklıklara oransal olarak dayanıklı olması, - Aktif yem alması nedeniyle yemlenmesinin kolay olması ve yemi değerlendirmesinin daha iyi olması yönünden iyi bir büyüme göstermesi, - Daha yüksek ilkbahar sıcaklığında dere alabalığı ve kaynak alabalığı gibi diğer alabalık türlerine göre daha kısa süreli kuluçka dönemine sahip olması. Gökkuşağı alabalığının Türkiye’de yetiştiriciliği ise 1970’li yıllarda kamu ve özel girişimciler tarafından başlatılmıştır. Dünya genelindeki kültür balıkçılığının gelişimine koşut olarak ülkemizde de özel likle üstün yetiştirme avantajları nedeniyle Gökkuşağı alabalığı üretimi büyük aşamalar katetmiştir. Önceleri küçük işletmeler tarafından gerçekleştirilen Gökkuşağı alabalığı üretimi, 1990’lı yıllardan itibaren entegre üretim tesislerine dönüşmüştür. Hatta günümüzde ülkemiz Gökkuşağı alabalığı üreticileri Avrupa’ya füme halinde işlenmiş ürün ihraç eder duruma erişmişlerdir. SU KOŞULLARI Alabalık yetiştiriciliğinde kullanılacak su kaynağının orijini ve kalitesinin yüksek nitelikte olması arzulanan bir olgudur. Kaynak Tipleri Alabalık yetiştiriciliğinde yararlanılan su kaynaklarının başlıcaları şunlardır (Leitritz 1974). - Kaynaksuları - Dere veya ırmak suları - Göl veya gölet suları - Yeraltı suları Kaynak Suları Kaynak suları genellikle yerkürenin yüzeysel yada derin katlarından çıkmalarına bağlı olarak kaliteleri farklılık gösterir. Yaklaşık 40 m gibi yüzlek katlardan çıkan kaynak sularının miktar ve kalitesi yağmur ve kuraklığa bağlı olarak değişkenlik gösterir. Fakat oksijen düzeyleri yüksek, CO2 miktarları düşük, su sıcaklığı ise 6-12 oC arasındadır. Yer kabuğunun 1000 m ve daha derin tabakalarından köken alan kaynak sularının miktar ve kalitesi aynı, fakat ekseriya oksijen miktarları litrede 4 mg’ın altında, CO2 düzeyleri ise litrede 50 ppm’in üzerinde, su sıcaklığı ise 8-10 oC seviyesindedir. Dere veya Irmak Suları Irmak veya derelerin kaynaktan ilk birkaç yüz metrelik kesimlerinin su kalitesi aynı ve kirlenmemiştir. Orta ve alt kesimleri ise tarım, gübreleme, endüstri ve evsel atıkların etkisi altındadır. Fakat dere ve ırmakların su kalitesindeki belirtilen bu olumsuzluklara karşın, su miktarları çok fazladır. Kaliteli bir kaynaktan köken alan dere veya ırmak gibi akarsular litrede 8 mg’ın altında CO2’e sahip olmakla birlikte, sıcaklıkları yıl bazında 6-12 oC arasında oldukça değişkendir. Göl veya Gölet Suları Bu tip suların kalitesi de endüstriyel ve tarımsal faaliyetlerin etkisiyle mevsimsel olarak farklılık gösterir. Göl suları da yüksek düzeyde oksijen ve düşük miktarda CO2 içermeleriyle tanınırlar. Fakat 10 m den daha derin göllerde yaz aylarında su kütlesinin yüzey kesimlerinde su sıcaklığı 20 oC’a yükselebilir, yüzeyin yaklaşık 4 m altında ise 15-16 oC sıcaklıkta su bulunur. Yeraltı Suları Genelde kaynak veya iyi kalitede dere suyuna yakın kalitede sulardır. En büyük avantajları daima aynı miktar ve kalitede olmalarıdır. Fakat yerüstüne çıkarmada ekseriya yüksek düzeyde enerji giderine gereksinim duyulur. Ayrıca oksijen yönünden zenginleştirmeye de gereksinim vardır. Su Kalitesi Alabalık yetiştiriciliğinde ideali, yetiştirme ortamındaki balıklara düzenli bir şekilde daima aynı kalitede su temin etmektir. Aynı zamanda su miktarı ile kalite arasındaki sıkı ilişki de gözardı edilmemelidir. Bu bakımdan su miktarındaki ani değişimlerin suyun mevcut kalite değerlerini olumsuz veya olumlu yönde etkileyebileceği unutulmamalıdır. Alabalık yetiştiriciliğinde su kalitesine ilişkin suda incelenmesi gereken çeşitli parametrelerin sınır değerleri Tablo 1’de gösterilmiştir (Lindhorst-Emme 1990). Kuluçka Evinde Su Kriterleri Döllenmiş yumurtaların kuluçkasının gerçekleştirileceği kuluçka evine verilecek suyun kalitesine daha fazla özen göstermenin yararları yadsınamaz. Alabalık yumurtalarının kuluçkası ve larvaların gereksinimi için mümkün olduğu kadar temiz ve kirlenmemiş su kullanılmalıdır. Bu bakımdan kuluçka evine verilen suyun önceden filtre edilmesinde fayda vardır. Kuluçka evinin büyüklüğü döllenmiş yumurta miktarı ve kullanılan kuluçka gereçlerinin tipine bağlıdır. Orta büyüklükte bir kuluçka evinin su gereksinimi saniyede 3-5 litredir. Kuluçka evinde kullanılacak suya ilişkin uygun değerler Tablo 2’de gösterilmiştir (Lindhorst-Emme 1990). Su Miktarı ile Balık Üretimi İlişkisi Balık üretim miktarını, su kalitesi ile birlikte temel olarak suyun miktarı yani debisi etkilemektedir. Fakat bunlarla birlikte balık üretim miktarında yetiştirme sistemi ve kullanılan teknik donanımlarda etkilidir. Örneğin 1000 m2 havuz yüzlemi için saniyede 8 litre kaynak veya iyi kalitede dere suyuna gereksinim vardır. Bu örnekte teknik donanımlardan yararlanmaksızın 400-500 kg alabalık üretilebilir. Fakat ilave olarak havalandırma gibi ilave tekniklerden yararlanıldığında ise yılda 1500-2000 kg alabalık üretmek mümkün olabilir. 1000 m2’den büyük ve 3 m’den derin havuzlarda, küçük havuzlara oranla daha az suya gereksinim vardır. Böyle havuzlarda rüzgarın etkisiyle suyun kalitesi olumlu etkilenebilirse de işçilik yönünden büyük havuzlarda çok büyük güçlüklerle karşılaşılır. Diğer yandan akarsu kanallarında yetiştiricilikte geleneksel havuz yetiştiriciliğine göre 10-20 misli daha fazla suya gereksinim vardır. Yani 1000 m2 yüzleminde akarsu kanalında alabalık yetiştiriciliği için saniyede 80-160 litre suya ihtiyaç vardır. Alabalık üretiminde işletme tiplerine göre stoklama miktarları Tablo 3’de görülmektedir (Lindhorst-Emme 1990). Alabalık üretiminde ana ilke kullanılan suyun miktar ve kalitesinin esas alınarak üretim miktarının saptanmasıdır. Buradan yola çıkılarak önceleri havuzlarda su değişiminin günde 3-5 defa gerçekleşmesiyle saniyede 1 litre suyla yılda 50-75 kg mutfaklık balık üretilebileceği şeklindeydi. Fakat günümüzde yaygın kanı saniyede 1 litre suyla 100-150 kg sofralık balık üretilmesine dönüşmüştür (Bohl 1982). Günümüzde balık üretim miktarı genellikle m3’de kg olarak ifade edilmektedir. Havuzlarda değişimin günde 3-5 defa gerçekleşmesiyle 3-5 kg/m3 balık üretilebilir. Daha yoğun üretimde bu miktar 1 m3 suda 10 kg’a yükselmektedir. 0,30-0,50 m derinlikteki havuzlarda suyun saatte 3 defa değişimiyle m2’de 20 kg (=40-60 kg/m3) balık üretilebilmiştir. Hatta Fransa’nın Brötanya yöresinde havalandırmalı havuzlarda m3’de 100 kg balık üretimi gerçekleştirildiği bildirilmiştir (Bohl 1982). Benzer üretim miktarlarına su değişiminin saatte 5-10 defa gerçekleştirildiği tanklarda m3’de 50-100 kg’la ulaşılmıştır (Steffens 1981). Alabalık üretiminde su miktarı kadar kullanılan suyun sıcaklığı ve yetiştirme ortamına stoklanan bireylerin ortalama canlı ağırlığının dikkate alınması gerekmektedir. Bu faktörlerin dikkate alınmasıyla saniyede 1 litre su girişiyle yoğun üretim koşullarında üretilebilecek balık miktarları Tablo 4’de sunulmuştur (Steffens 1981). Belirli bir miktar su ile üretilebilecek balık miktarının saptanmasında yararlanılan bir diğer kriter suyun oksijen içeriğidir. Buradaki birinci temel ilke toplam 1 kg alabalığın 1 saatte tükettiği oksijenin esas alınmasıdır. Bu yöntemde 50 g’dan küçük balıkların toplam 1 kg’nın 1 saatte 500-600 mg oksijen tükettiği, 50 g’dan daha büyük balıkların ise toplam 1 kg’nın 1 saatte 400-500 mg oksijen tükettiklerinin dikkate alınmasıdır. Ayrıca kullanılan suyun havuzlardan çıkışta litrede 6 mg oksijen içermesi zorunludur. Havuzlara giren suyun içerdiği oksijen ile çıkış suyunun kapsadığı oksijen arasındaki miktar balıkların tüketebileceği kullanılabilir oksijeni ifade eder. Bu veriler esas alınarak (Steffens 1981), Örneğin havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile 50 g’dan küçük balıklar stoklandığında üretilebilecek sofralık balık miktarını hesaplamak gerekirse, Oksijenden yola çıkılarak üretilecek balık miktarını hesaplamada ikinci temel ilke 1 kg yemin balık tarafından tüketilmesinde harcanan oksijenin esas alınmasıdır. Bu tip hesaplamada yararlanılan formül aşağıda gösterilmiştir (Bohl 1982). d = debi = litre/sn 2= Beslenme fizyolojisi bakımından saptanmış katsayı Bu formüle göre havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile, günde %2 oranında yemlemeyle üretilebilecek balık miktarını saptamak gerekirse, Balıklar, günde canlı ağırlıklarının %2’si oranında yemlendiğine göre; Buraya kadar belirtilen veriler doğrultusunda saniyede 1 litre suyla genel olarak 100-200 kg pazarlık balık üretilebileceğini belirtebiliriz. DAMIZLIK BALIKLAR Damızlık populasyonu işletmenin sofralık balık üretiminin %1’i kadar yeterlidir. Yani 400 ton üretim kapasiteli bir işletmede 1 ton damızlık balık bulundurulacak demektir. Damızlık balıklar günlük su değişiminin defalarca olacağı kaliteli suyun verildiği havuzlara m2’ye 1-2 kg stok yoğunluğunda yerleştirilir. Erkek / dişi oranı 1: 5 ila 1 : 8 olmalıdır. Genellikle erkekler 2, dişiler ise 3 yılda cinsel olgunluğa ulaşır. İşletmenin yumurta üretim kapasitesini saptamada kg dişi başına 2000 Adet yumurta hesaplanır. Damızlığa ayrılacak bireylerin seçimi ön büyütme döneminden başlayarak gerçekleştirilmelidir. Ayrılan balıkların yetiştirilmesine devam edilerek populasyon içersinden damızlık balık ayrımında belirgin özel likler aranmalıdır. Bu nitelikler: - Hızlı büyümeyle birlikte yemi iyi değerlendirme, - Hastalıklara karşı dayanıklılık, - Düzgün ve uyumlu vücut formu, - Yüksek üreme verimi (Sayıca fazla ve çapı büyük yumurta, kaliteli sperma vb.) - Cinsi olgunluğa geç ulaşma. Yukarıdaki özel likler dikkate alınarak seçilen damızlık balıklar, damızlık havuzlarında kaliteli pelet yem yanında taze balık, karides gibi yaş yemle de beslenmelidir. Damızlık balıkları yemlemede aşırıya kaçılmamalıdır. Damızlıklar yılda yaklaşık 0,5 kg artış göstermelidir. Yoğun yemleme gonad ürünlerinden özel likle yumurtalarda yağ dejenerasyonuna neden olabilir (Bohl 1982). Damızlıkların Verimi Üç yaşındaki damızlık balıkların ortalama ağırlıkları 1-2 kg arasındadır. Dişi balıklar 6. yaşına kadar birbirini takip eden 4 üreme peryodunda kullanılır. Çünkü canlı ağırlık artışıyla birlikte damızlık balıkların kg vücut ağırlığına düşen yumurta miktarı azalır. Örneğin 6 yaşındaki balıklarda bu miktar kg canlı ağırlık için 1200 adet yumurtanın altına iner. Fakat çapı daha büyük yumurtalardan satış avantajı daha fazla olan canlılıkta larva elde edilir. Bu nedenle 4-5 yaşındaki dişiler her yönüyle büyük ekonomik değere sahiptir. Yapılan araştırmalar 3 yaşlı erkeklerin spermasının hiçbir zaman 4-5 yaşlı erkeklerin spermasının kalitesine ulaşamadığını göstermiştir. Fakat 3 yaşlı erkeklerin sperması miktar bakımından daha fazladır. Bu bakımdan yetiştiriciler damızlık balık giderini de dikkate alarak 3 yaşındaki erkekleri tercih ederler (Lindhorst-Emme 1990). Dişi damızlıkların yumurta verim özel liklerine ilişkin temel bilgiler aşağıdaki şekilde sıralanabilir (Steffens 1981). - Damızlık balıktan elde edilen toplam yumurta miktarı balık büyüdükçe artış gösterir. Örneğin 3 yaşında 750 g ağırlıkta balıktan 1800 adet yumurta elde edilirken; 4 yaşında 1300 g ağırlıkta balıktan 2500 adet yumurta alınır. - Balık büyüklüğü arttıkça kg vücut ağırlığına düşen oransal yumurta miktarı azalır. Örneğin 3 yaşında 750 g ağırlıktaki balıkta kg canlı ağırlığa düşen yumurta sayısı 2400 adet olurken; 4 yaşlı 1300 g ağırlıkta balığın kg canlı ağırlığa düşen yumurta sayısı ise 2000 adettir. - Yumurta sayısı, yemin miktar ve kalitesiyle etkilenebilir. - Yumurta sayısının bireylerde farklılığında genetik koşulların etkisi çok büyüktür. - Yaşlı ve büyük balıklar genç ve küçük balıklara oranla daha büyük yumurta geliştirirler ve bu suretle daha kuvvetli larva oluşumunu sağlarlar. Örneğin 178 g ağırlıkta 2 yaşlı balıkta yumurta çapı 3,9 mm olurken, 2700 g ağırlıkta 7 yaşlı balığın yumurtasının çapı ise 5,7 mm dir. Özgün bir çalışma sonucunda elde edilen damızlık dişilerin yumurta verimleri ve erkek damızlıkların sperma (süt) miktarlarına ilişkin veriler Tablo 5’de gösterilmiştir (Lindhorst-Emme 1990). Damızlıkların Cinsiyet Ayrımı Gökkuşağı alabalıkları kökenlerine göre yılın farklı dönemlerinde yumurtlama olgunluğuna erişirler. Yılın erken döneminde yumurtlayanlar Temmuz/Ağustos, Orta dönemdekiler Kasım/Aralık, geç dönemdekiler Mart/Nisan’da üremeye hazırdırlar. Damızlık balıklar üreme sezonundan 4 hafta önce cinsiyet ve yaşlarına göre ayrılmalıdır. Bu ayrım işleminde erkek ve dişi balığın vücut yapısına bakılır. Dişilerde karın daha şişkindir. Cinsiyet deliği etrafı kırmızı renkte görünümdedir. Üreme zamanı erkeklerde alt çene öne doğru uzamış ve bir kanca şeklinde yukarı kıvrılmıştır. Erkeklerde vücut daha yassıdır. Özellikle erkekler üreme zamanı yaklaştığında yanal çizgi boyunca daha koyu ve parlak kırmızı bir şerit taşırlar (Ekingen 1975,Özdemir 1994). SAĞIM VE YUMURTALARIN DÖLLENMESİ Balık üretiminde damızlık balıklara üreticiler eliyle hafif bir masaj uygulanarak dişi balıklardan yumurta ve erkek balıklardan süt (spermatozoa içeren beyazımsı renkte sıvı) alım işlemi sağım olarak adlandırılır. Sağım döneminden 2-3 hafta önce damızlıklara verilen yem miktarı azaltılır. Damızlık balıklarda sağıma hazırlığa yönelik son kontrollerin yapılmasından sonra, yani sağımın bir hafta öncesinde ise yemleme tamamen kesilir. Yumurtlama olgunluğuna ulaşmayan damızlıklar ise bir hafta boyunca canlı ağırlıklarının %0,5’i gibi düşük oranda yemlenir (Greenberg 1969, Wiesner 1968). Sağımda damızlıklara zarar vermemek, işlemi çabuk ve seri olarak gerçekleştirmek ile sağımı yürüten kişinin fazla güç sarfetmeden, çok sayıda damızlık balığı sağabilmesi için damızlıklara narkoz uygulanabilir. Damızlık balıkları bayıltmada anestezik olarak sıkça kullanılan preparatlar (Atay 1987, Bohl 1982). - MS-222 (Tricainemethansulphonat) - Trichlormethylpropanol (TCMP) - Quinaldin (2 Methylchinolin) Belirtilen anesteziklerden suda kolay eriyen MS-222 1:20.000-1:30.000 (1 g+ 20-30 lt su) konsantrasyonlarında kullanılır. Balıklar sağımdan birkaç dakika önce anestezik madde bulanan suya yerleştirilirler. Sağım işlemi bittikten sonra balıklar tekrar oksijen yönünden zengin temiz suya bırakılırlar ve burada 2-3 dakika içinde normale dönerler. Alabalık üretiminde sağımın ana kuralı işlemin kuru koşullarda gerçekleştirilmesidir. Çünkü yumurtanın su ile teması halinde spermanın yumurtaya giriş kapıcığı olan mikropil 1-2 dakika içersinde kapanır. Ayrıca erkek balıktan elde edilen sütün içerdiği spermatozoa’lar suda yaklaşık 1 dakika kadar yaşabilirler. Bu nedenlerle sağımda damızlık balıkların bir bez yada en iyisi havlu ile kurulanmasıdır. Alabalık sağımında dikkat edilmesi gereken bir diğer konu balıkların uygun sağım zamanının saptanmasıdır. Tam olgunluğa ulaşmış dişi alabalık sudan çıkarılıp kuyruğu aşağı gelecek şekilde tutulduğunda yumurtalar kendiliğinden akmaya başlar (Baran 1977, Erençin 1977). Genellikle sağımda balığın sırtının sağan kişiye dönük olması geleneksel tutuş şeklidir. Damızlık balıkların sağımı balığın boyutuna göre tek veya iki kişi tarafından gerçekleştirilir. Birkaç dişinin yumurtası küçük hacimli plastik kaba sağılır ve bu yumurtaların üzerine de birden fazla erkeğin sütü sağılır. Dişi balıklar yılda bir defa sağıldıkları halde, erkekler 15 gün ara ile birkaç defa sağılabilirler (Brown ve Gratzek 1980). Plastik bir küvete sağlan yumurta-süt karışımı elle veya plastik bir kaşıkla karıştırılır. Daha sonra bu karışım üzerine bir miktar temiz su ilave edilir. Yaklaşık 5 dakikada döllenen yumurtaların bir küvet içerisinde 30-45 dakika süreyle su alıp şişme işleminin tamamlanması beklenir. Bu evrenin sonunda yumurtalar birkaç defa temiz su ile yıkanarak kuluçka gereklerine yerleştirilir (Atay 1980). Kuluçka Balık üretiminde döllenmiş yumurtalardan embriyonal evrelerin (Morula, Blastula ve Gastrula) gelişimiyle yumurtadan larva çıkışının tamamlanmasına kadar geçen süreç kuluçka (Incubation) işlemi olarak adlandırılır. Gökkuşağı alabalığının döllenmiş yumurtalarının kuluçkası için uygun su sıcaklığı 7-10 oC arasındadır. Yumurtalardan larva çıkış süresi gün-derece olarak ifade edilir. Gün-derece; günlük ortalama su sıcaklıklarının toplamı olarak larva çıkış süresinin belirtilmesidir. Örneğin 10 oC su sıcaklığında larvalar 30 günde yumurtadan çıktığında, gün derece 300’dür. Buna göre döllenmiş yumurtalardan kaç gün sonra larva çıkabileceğinin gün-derece olarak göstergeleri farklı alabalık türlerine göre Tablo 6’da sunulmuştur (Bohl 1982). Kuluçka döneminde 10 oC su sıcaklığında gökkuşağı alabalığının döllenmiş yumurtalarından 32 ila 36 gün sonra vitellus keseli (yedek besin keseli) larvalar çıkar. Larvaların çıkışında su sıcaklığı ile birlikte kalıtsal etki ve damızlıkların yaşı yanında, suyun oksijen içeriği ve ışık yoğunluğu gibi çevresel faktörlerde etkilidir. Alabalık yumurtaları embriyonal gelişme sürecinde ışık etkisine karşı aşırı duyarlıdırlar. Bu bakımdan direkt güneş ışığından korunmaları gerekir. Kaliteli damızlıklardan elde edilen yumurtaların optimum koşullarda kuluçkasında kayıp oranı yaklaşık %10-20 olabilir. Büyük işletmelerde bu oran %20-30’u aşmamalıdır (Bohl 1982, Steffens 1981). Kuluçka Süresinde Koruyucu Önlemler Döllenmiş yumurtaların kuluçka döneminde su sıcaklığı, oksijen miktarı, suyun temizliği, ışık gibi faktörlere özen göstermekle beraber, ölü yumurtaların ayaklanması da çok önemlidir. Çünkü ölen yumurtalarda saprolegnia sp. mantarları kısa sürede infeksiyona neden olur ve sağlıklı yumurtalara bulaşarak onların da ölmelerine neden olurlar. Bu hastalık odağı ölü yumurtalar, sağlıklı yumurtaları zedelemeden cımbız (yumuşak ahşap materyalden özel imal edilenler tercih edilmelidir), özel pens yada maşalar, tıpta kullanılan lastik puarların ucuna 15-20 cm boyunda cam boru takılarak hazırlanan özel pipetler, ölü yumurtaların sifon edilmesi, tuz eriyiği (%10, 7’lik tuz eriyiğinde-960 g NaCl/8 lt su-ölü yumurtalar 3 dakikada dibe çökerler) ve fotosel sistemi ile çalışan elektrikli seçicilerden yararlanılarak ayıklanabilir. Fakat yinede fazla işçilik gerektirmesine rağmen en iyi sonuçlar elle temizlemeyle elde edilmektedir. Ölü yumurtaların canlı yumurtalardan ayrımında hangi yöntem tercih edilirse edilsin, bu işlem yumurtaların göz lekeli döneminde gerçekleştirilmelidir. Döllenmiş yumurtalar göz lekeli döneme 200-220 gün-derece sonra ulaşırlar. Gözlekeli dönemde yumurtaların mekanik işlemlere duyarlılıkları azalır. Fakat döllenmeden yaklaşık 8 saat geçtikten sonrası ile göz lekesi oluşana kadar ki dönemde ise yumurtalar fevkalade duyarlıdırlar. Kuluçka döneminde mantarlaşmaya karşı koruyucu olarak kimyasal maddelerle yumurtaları ilaçlamak faydalı olmaktadır. Bu amaçla kullanılan kimyasal maddeler Tablo 7’de belirtilmiştir (Steffens 1981). Bu maddelerin tamamı kuluçka sisteminin giriş suyuna ilave edilirler. Koşullara göre belirtilen tedavi 2 günde bir veya daha fazla süre arayla da uygulanabilir. Kuluçka döneminde yumurtalara saprolegnia infeksiyonuna karşı en yaygın kullanılan kimyasal madde Malachit yeşilidir. Çoğunlukla oxalat formu, kristalize veya sıvı konsantrasyonu kullanılmaktadır. Maalesef günümüzde henüz Malachit yeşilinin yerini alacak zararsız ve aynı değerde bir kimyasal madde bulunamamıştır. Bu dezenfeksiyon maddesinin son on yıldan beri yoğun şekilde kanser etkisinden bahsedilmekte ve kullanılırken özenli davranılması gerektiği belirtilmiştir. Özellikle pazarlık balık üretiminde kullanımı yasaklanmıştır. Çünkü balığın etinde insan sağlığı için zararsız düzeye inene kadar 108 gün geçmesi gerekmektedir. Bu nedenle Almanya’da Malachit yeşilinin satışı 1988 yılı sonundan itibaren veteriner hekim reçetesine bağlanmıştır. Ayrıca kullanımı da yumurta ve larva dönemi ile 6 cm boyunda yavru balıklarla sınırlandırılmıştır (Baur ve Rapp 1988, Lindhorst-Emme 1990, Schlotfeldt ve Alderman 1995). Balık yumurtalarının yüzeylerinde infeksiyon etkenlerinin bulunabildiği ve böylece hastalıkların yayılmasında rol oynadıkları bilinmektedir. Bu nedenle işletmelerin yumurta satışlarında, yumurtaların taşınmasından önce dezenfeksiyon işlemini uyguladıklarını garanti etmeleri istenmektedir. Bu hedefe yönelik olarak iyot preparatlarıyla banyo işlemine tabi tutulan yumurtaların, bu işlemin uygulanmadığı yumurtalara oranla daha az mantarlaştıkları bildirilmiştir (Bohl 1982). İyot içeren dezenfeksiyon maddesi olarak yaklaşık %1 aktif iyot kapsayan Actomar K30 önerilmektedir. Alabalık yumurtalarının bu maddeyle dezenfeksiyonu için ideal iki dönem vardır. Birinci uygulama zamanı döllenmeden 10 saat sonra yeşil yumurta dönemi, daha da iyi olan 2.ci dönem ise yumurtaların gözlekeli devresidir. Belirtilen dezenfeksiyon işlemi için 1 litre suya 15 ml Actomar K30 ilave edilir ve yumurtalara banyo uygulanır. Actomar K30 ile hazırlanan banyo solüsyonunun etkinliği rengi ile anlaşılır. Kullanılan eriyiğin rengi kahverengiden-sarıya kadar kullanılabilirliğini gösterir. Açık sarı renk oluştuğunda ise etkinliği garanti edilemez, hatta bazen tamamen etkisizdir (Baur ve Rapp 1988, Bohl 1982, Schlotfeldt ve Alderman 1995). Kuluçka Tipleri Alabalık üretim tesislerinde yaygın olarak kullanılan kuluçka tipleri ve temel nitelikleri Tablo 8’de belirtilmiştir. Tablo 8. Kuluçka tipleri Kuluçka gereci Su gereksinimi Kapasite Kuluçka kanalı 15-25 lt/dak. 100.000 Adet yumurta Zuger şişesi 1,5-3 lt/dak. 30-50.000 Adet yumurta Kuluçka dolabı 1,2-2 lt/dak. 100.000 Adet yumurta Kuluçka kanalları En eski ve halen günümüzde de yaygın olarak kullanılan kuluçka gereçleridir. Birkaç metre uzunluğunda kanal ve içerisine konulan özellikle tabanları gözenekli materyalden yapılan, yumurta yerleştirilen tablalardan (Kasetlerden) oluşur. Tablalar arasında kanalda enine bölmeler vardır. Bu sistemde su tablaya alttan girer ve yumurtaların oksijenini sağladıktan sonra üstten çıkar. Kuluçka kanallarının boyları farklı olmakla birlikte 2-3 m uzunluk tercih edilmektedir. Yumurta tablaları ise 45x45 cm boyutunda kare şeklindedir. Yumurta tablalarının tabanı için 1,5 mm çapında yuvarlak delikleri olan alüminyum materyal kullanılması daha uygundur. Yumurta tablaları kuluçka kanallarına üst üste değil, birbiri ardı sıra konulmalıdır. Kuluçka kanallarına 4-7 adet yumurta kaseti yerleştirilir. Bu kasetlere suyun kalitesine göre kuluçka için yumurtalar tek kat konulduğunda 5000 adet, çift kat konulursa 10.000 adet yumurta bırakılır. Kuluçka kanallarının herbirisine kuluçkanın ilk günlerinde 15 lt/dak. su girişi sağlanırken, bu miktar yumurtalardan larva çıkışına yakın 25 lt/dak düzeyine yükseltilir (Bohl 1982, Çelikkale 1994, Lindhorst-Emme 1990, Steffens 1981). Bu tip kuluçkalıklar alt kısımları huni şeklinde olan, ilk kullanan kişinin ismine atfen zuger şişesi olarak adlandırılan ve genellikle 6,5-8 lt kapasiteli gereçlerdir. Daha az yer kaplayan, daha az suya gereksinim duyan ve kurulmaları kolay olan bu gereçlerin, kapasiteleri 30.000 ile 50.000 adet yumurtadır. Taban kısımları açık olan ve ters yerleştirilen bu şişelerin, huninin alt kesimi gibi daraltılmış boğaz kısmından verilen su girişinin basıncının yumurtalara zarar vermemesi için, ağız kısmına 3 cm yüksekliğinde cam boncuklardan (yaklaşık 6 mm çapında veya aynı büyüklükte çakıl taşları) oluşan bir katman yerleştirilir. Normal boyutta bir zuger şişesi için 1,5-3 lt/dak. su gereklidir. İki zuger şişesi için 0,25 x 0,50 m, çift sıralı 8 zuger şişesi için ise 0,50 x 1.00 cm’lik alana gereksinim vardır. 8-10 zuger şişesine yerleştirilen yumurta miktarı, kanal sistemi kuluçkalıklarda 36 adet kuluçka kanalına konulan yumurta miktarına eşdeğerdedir. Belirtilen miktarda kuluçka kanalı için, kuluçka evinde 35 m2 yer ayırmak gerekir. Ayrıca zuger şişeleri fiyat bakımından da daha uygundur (Bohl 1982). Kuluçka dolaplarının kullanımı son yıllarda özel likle büyük kapasiteli işletmelerde hızla artmaktadır. Buna neden olarak çok az alana gereksinim duymaları, kaliteli, fakat az miktarda su kullanımı ve işçilik giderinden tasarruf gösterilebilir. Kuluçka dolapları damlalıklı ve vertikal akışlı dolaplar olmak üzere iki tiptir. Damlalıklı dolaplarda yumurtaların larva çıkışından kısa süre önce dışarı alınarak kuluçka kanallarında tablalara yerleştirilmesi zorunludur (Ekingen 1975). İkinci tipte ise larvalar yemleme dönemi öncesine (serbest yüzme) kadar dolabın tepsilerinde tutulabilmektedir. Bunlar Veco (İSVİÇRE)-Dolapları olarak adlandırılırlar. Bu dolapların yumurta tablaları tepsi şeklinde daireseldir. Her dolapta 10 tepsi bulunur. Her tepsi şeklindeki yumurta tablasına 10.000 adet yumurta konur. Bu dolapların su girişi üsttendir, önce birinci tepsiye su dolar, daha sonra ikinci vd. ne devam eder. Bu dolaplarda 100.000 adet yumurta için 1,2-2,0 lt/dak. su yeterli olmaktadır (Bohl 1982). Kuluçka döneminin sona erdiği günlerde 25-35 gün-derecede yada bir başka ifadeyle 10 oC su sıcaklığında 2,5 günde yumurtaların tamamından larva çıkışı tamamlanır. Bu arada ortamdaki yumurta kabukları sifonlanarak günde iki defa yumurta tablalarının delikleri tıkanmaması için ayıklanmalıdır. Yumurtadan çıkan larvalara Vitellus keseli larva denilir. Bunlar besin kesesi olarak da adlandırılan keselerini su sıcaklığına göre 12-17 günde tüketirler. Bu dönemde larvaların barındırıldığı gereçlerden en azından her iki gündebir beyaz renkli ölü yumurtalar yada ölen keseli larvalar vaya deforme ve anomalili larvalar sifonlanarak uzaklaştırılmalıdır. Belirtilen temizlik işlemi yapılmadığı durumda hızlı bir şekilde mantar enfeksiyonu ile karşılaşılır (Lindhorst-Emme 1990) Larvaların serbest yüzme dönemine ulaşmaları, besin keselerinin çoğunu tüketmeleri, larvaların yemlenmeye başlanmaları için önemli göstergelerdir. Vitellus keseli larvaların %10’u yem alma gücüne ulaştığında yada besin keselerinin 2/3’lük kısmını tükettiklerinde ve serbest yüzmeye başladıklarında yemlenmeye başlanmalıdır. Larvalar belirtilen evreye ulaştıklarında, kuluçka kanallarında yumurta tablaları arasındaki bölmeler kaldırılır, tablalarda bulunan larvalar yavaş bir şekilde kanallara stoklanırlar (Bohl 1982, Çelikkale 1994, Igler 1990, Steffens 1981). Serbest yüzme devresine ulaşmış ve suda aktif hareket eden larvaların bakım ve beslenmelerine özen gösterilerek ortalama 1 g canlı ağırlığa kadar yetiştirilmeleri genel olarak “ön büyütme” olarak tanımlanır. Bu devre 60-80 günde tamamlanır. Bu dönemde yetiştirme ortamı olarak daha ziyade büyütme kanalları kullanılır. Ayrıca ön büyütme dönemi kuluçka evinde tank yada kanallarda gerçekleştirilir. Su değişimi, stok yoğunluğuna ve su kalitesine bağlı olarak 4-8 kez/saat, olmalıdır. Belirtilen koşullarda stok yoğunluğu 100.000 larva/m3 sudur. Larvaların yemlenmesine her 30-60 dakikada bir günde 12 saat devam edilir. Bu dönemde kayıp oranı yaklaşık %30-35’dir. Optimum üretim koşullarında hasatta üretim hedefi en azından 1 g bireysel ağırlıkta m3’de toplam 25 kg veya 25.000 ön büyütülmüş yavru olmalıdır (Steffens 1981). Ön büyütme döneminde larvaların yetiştirilmesinde aşağıdaki önlemlerin alınmasında fayda vardır (Çelikkale 1994). - Kaliteli su temini, - Direkt güneş ışığından korumayla birlikte dolaylı aydınlık sağlama, - Yavruların köşelerde veya belli noktalarda birikmelerinin önlenmesi, - Yemlemenin sık olarak yapılması, fakat her defasında azar azar verilmesi ve yem artıkları ile dışkıların sürekli temizlenmesi gibi konularda özen gösterilmelidir. Alabalık larvalarının ön büyütülmesinde genellikle 3-4 m uzunluk ve 40-80 cm genişlikte kanallar kullanılmaktadır. Genelde betonarme inşa edilirlerse de, hijyenik açıdan polyester kanallar tercih edilmelidir. Populasyonun stok yoğunluğu, kullanılan suyun miktar ve kalitesine bağlıdır. Bu kanallarda su değişiminin optimum düzeyi saatte 4-8 defa olmalıdır. Derinlikleri 30-80 cm olan bu kanallarda su yüksekliği balık boyutuna koşut olarak yükseltilir. Örneğin 3,60 m uzunluk, 40 cm genişlik, 17 cm su derinliğinde kanala yaklaşık 30.000 adet gökkuşağı alabalığı larvası, yani 122.000 larva/m3 stoklanarak yemlenebilir. Yemleme dönemindeki larvalarda genellikle 100.000 adet/m3, yani 100 adet/lt stok miktarları uygulanır. Belirtilen stok miktarları uygulandığında kanallarda saatte 4-8 defa su değişimi için 1-2 lt/sn/m3 su gereklidir. Bu koşullar altında, 8-10 oC’lik su sıcaklığında 8 günlük yemleme sonunda stokta 50.000 yavru/m3, 15 günlük yemlemeden sonra ise 20.000-30.000 yavru/m3 şeklinde seyreltme yapılır (Bohl 1982). Kapasitesi 2-4 m3, genelde polyester olan, fakat beton yada eternitten de imal edilen kanal tipi tanklarda iyi düzeyde oksijen içeren suyla 30.000-60.000 adet larva 6-8 hafta beslenir. Bu tanklara su girişi 20-40 lt/dak./m3 su, olmalıdır. Stok yoğunluğu 8-12 adet larva/lt. Bu tanklarda taban eğimi %1,5-2 olduğunda iyi temizlenme olanağı yaratır (Lindhorst-Emme 1990). Bu tanklarda üst kısımdan basınçla geren su, tank içindeki suyu dairevi bir hareket halinde tutar. Dolayısıyla bu tankların her tarafında oksijen hemen hemen aynı düzeydedir. Bu tanklarda su çıkışı tabanın ortasındadır. Su çıkış kısmı üzerine 15-20 cm çapında 3,5-4,0 mm göz açıklığında, paslanmaz metalden yapılmış bir süzgeç yerleştirilir. Tankın alt kısmına yerleşmiş olan su çıkış borusu hareketli bir dirsekle dış kısmından yükselmektedir. Bu hareketli dirseklerle tank içindeki su seviyesi kolayca ayarlanabilmektedir. Diğer taraftan tankın tabanında orta su çıkış kısmına doğru yaklaşık %5 meyil vardır. 2 m çapında ve yaklaşık Fingerling (Parmak Büyüklüğünde Balık) Yetiştiriciliği Parmak büyüklüğünde yavru balık üretiminde stok materyali olarak ön büyütmesi yapılan genellikle en azdan 0,5-1 g bireysel ağırlıkta ve 4-5 cm boyunda yavrular kullanılır. Eğer ön büyütmesi yapılan yavruların stoklandığı havuzlarda ve kullanılan suda dönme hastalığına neden olan parazitin (Myxosoma cerebralis) sporları varsa, yavruların boyu en azından 6-7 cm olmalıdır. Çünkü belirtilen büyüklükteki yavruların omur ve kafa kemiklerinin kıkırdak kısımları oldukça dayanıklılık kazanmıştır ve deforme olmaz hale gelmiştir (Bohl 1982). Parmak büyüklüğünde yavru balıkların yetiştiriciliği yapılan bütün üretim donanımlarının, yavru balıklar stoklanmadan önce hijyenik yönden önlemlerinin alınması zorunludur. Bu önlemlerin başında dezefenksiyon gelir. Dezenfeksiyon etkisi sıcaklığa bağlıdır. Genel bir kural olarak, dezenfeksiyon maddesinin etkisi için 20 oC’da 30 dakika, 12 oC’da 1 saat, 4 oC’da 2,5 saat süre gereklidir. Dezenfeksiyon maddesi olarak genellikle formaldehyd (Ticari adı Formol) tercih edilir. Konsantrasyon olarak %5’lik eriyik (5 kısım Formol + 32 kısım su) önerilmektedir. Metal olmayan materyaller için NaOH (Sodyum hidroksit) %2 oranında, yani 20 g NaOH (Sud kostik) 1 litre suya ilave edilerek kullanılmaktadır (Bohl 1982, Baur ve Rapp 1988). Beton kanallarda finrgerling yetiştiriciliği Mevcut kapasiteyi daha iyi değerlendirmek için, 7-10 m uzunluk, 0.80-1 m genişlik ve 0,80-1 m derinlikte beton kanallar parmak büyüklüğünde yavru üretiminde kullanılmaktadır. Su koşullarına ve her 10 dakikada su değişiminin gerçekleşmesine bağlı olarak stok yoğunluğu 2000-5000 adet ön büyütülmüş yavru/m3 tercih edilir. Bu durumda hasatta elde edilen ürün 50 kg/m3 olur ve yavru balıkların bireysel ağırlıkları 10-15 g yada 30 g’a ulaşabilir. Bu tip yetiştiricilikte yavruların defalarca yemlenmesi çok zaman alırsada, aynı zamanda günde iki defa temizlik yapılmalıdır (Bohl 1982). Yavru yetiştirme kanallarının 8-10 m uzunluk ve 1-2 m genişlikte olanları fingerling üretimi için esas yönünden uygundur. Bu kanallarda su değişimi en azından 5-20 dakika sürede gerçekleşmelidir. Kanalların savaklarında 3,5 mm çapında delikli materyal kullanılmalıdır. Su değişimine göre stok yoğunluğu 2000-5000 adet/m3, yavru yada daha yüksek olabilir. Hasatta balık büyüklüğü ve su koşullarına göre 50 kg/m3 veya özel likle daha iyi koşullarda 100 kg/m3, ürün elde edilebilir (Steffens 1981). Havuzlarda fingerling yetiştiriciliği Parmak büyüklüğünde yavru balık yetiştiriciliği uygun koşullarda havuzlarda da yapılabilir. Bu havuzların betonarme yapılması daha uygundur. Dikdörtgen konumdaki havuzların genişlik/uzunluk oranları yaklaşık ¼-1/6 olmalıdır. Bu havuzlarda kullanılan suyun kalite ve miktarına bağlı olarak stok yoğunluğu 60-100 adet ön büyütülmüş yavru/m3 (ortalama 1 m derinlikte) şeklinde düzenlenir. Bu tip üretimde 50.000 adet fingerling yetiştiriciliği için yaklaşık 10 lt/sn suya gereksinim vardır. Ayrıca hafif asidik karakterde 3-5 lt/sn suyla, örneğin 450 m2 yüzleminde ve 1,5-2,3 m derinlikte havuzda ek havalandırma koşullarında 60.000-80.000 adet yavru ortalama 12-15 cm (2-3 kg/m2) boya kadar üretilir (Bohl 1982). Ağ kafeslerde fingerling yetiştiriciliği Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliği pazarlık boyutta (sofralık) balık yetiştiriciliği kadar uygun değildir. Bunun en büyük nedeni fingerling yetiştirilecek kafeslerde ağ göz açıklığının küçük olma zorunluluğudur. Çünkü ağın gözleri küçüldükçe ağlar daha çabuk tıkanır ve böylece su değişimi engellenir. Ayrıca kafeslere stoklanacak yavru balıkların genellikle ön beslemesi yapılmış ortalama 1 g ağırlıkta olmaları nedeniyle, kafesten kaçmamaları için 4 mm göz açıklığında ağlar gereklidir (Beueridge 1987). Belirtilen sorunlar dikkate alınarak ağ kafeslere stoklanacak yavruların en az 2 g ağırlıkta ve ağ göz açıklığının 6 mm olması daha uygundur. Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliğinde stok yoğunluğu 300-500 adet/m3, yavru önerilmektedir. Bu tip yetiştiricilikte uygun su koşullarında yavru balıklar 8-10 cm boy yada 50 g ağırlığa kadar büyütülebilirler. Yalnız yavru balıklar büyüdükçe 1 cm balık boyu için 1 mm ağ göz açıklığı temel alınarak kafesin ağ torbası periyodik olarak yenilenmelidir (Kieckhäfer 1983, Steffens 1981). Pazarlık (Sofralık) Alabalık Yetiştiriciliği Yavruların fingerling (Parmak büyüklüğünde balık) üretiminde amaç, 140-150 günlük yemleme döneminde yavruları en azından ortalama 10 g bireysel ağırlığa ulaştırmaktır. Fakat daha iyisi 30 g bireysel ağırlığın üstüne çıkmak olmalıdır (Steffens 1981). Pazarlık alabalık üretiminde genel olarak sofralık balık büyüklüğü 250-330 g/adet (4 yada 3 adet/kg) olarak kabul edilmektedir. Mutfaklık balık yetiştiriciliğinde havuz, kanal ve kafes sistemleri kullanılır (Bohl 1982, Çelikkale 1994, Steffens 1981). Havuzlarda sofralık alabalık üretimi Bu havuzların ölçüleri, kullanılan suyun miktarı ve kalitesi ile havuz yapılan arazinin topoğrafik durumu ve toprak yapısına göre büyük değişiklik gösterir. Havuzların beton yapılmasında zorunluluk yoktur. Toprak yapısı killi ve suyu tutma özel liğinde ise havuzların kullanımı, beton havuzlara bakarak daha fazla işçilik gerektirirse de, sabit yatarım gideri daha azdır. Beton havuzlarda dezenfeksiyon ile bakım daha kolay, yemleme ve balıkların kontrolü daha iyi, fakat yapım gideri ise yüksektir (Atay 1995, Çelikkale 1994, Emre ve Kürüm 1998). Pazarlık alabalık besiciliğinin gerçekleştirildiği havuzların boyutları, genellikle 20-50 m uzunluk, 4-12 m genişlik ve en fazla 1.20 m derinlikte olmalıdır. Uygun stok yoğunluğu su değişimine ve kalitesine göre saptanır. Ayrıca yemleme, havuz hijyeni, teknik donanım kullanımı (Örneğin havalandırma gibi), üretim süresi gibi faktörlerde stok miktarını saptamada dikkate alınmalıdır (Lindhorst-Emme 1990, Steffens 1981). Optimum yetiştirme koşulları ve tam değerli pelet yem kullanımı ile gökkuşağı alabalığı yetiştiriciliğinde 8 aylık üretim sürecinde tüketim ağırlığına ulaşılabileceği beklenmelidir (Bohl 1982). Sofralık balık üretim miktarı genellikle kg/m3 olarak ifade edilir. Örneğin havuzlarda su değişimi günde 3-5 defa gerçekleştiğinde 3-5 kg/m3, balık üretilebilir. Yarı yoğun üretim koşullarında ise bu miktar 10 kg/m3’e yükselir. Derinliği 30-50 cm olan havuzlarda su değişiminin saatte 3 defa gerçekleştiği durumda 20 kg/m2 (=40-60 kg/m3) balık üretilir (Bohl 1982). Havuzlara verilen su miktarı esas alınarak da stok miktarı hesaplanabilir. Buna göre iyi kalitede 1 lt/sn’lik su girişine göre hasatta 100-150 kg sofralık balık üretileceği hedefine yönelik stoklama yapılır. Pazarlık alabalık büyüklüğü 200-250 g baz alınarak, 1 lt/sn debi için 400-600 adet fingerling stoklanır (Çelikale 1994). Kanallarda sofralık alabalık üretimi Derinlikleri 50-65 cm, genişlikleri bir kaç metre olan, betondan yapılan, uzunlukları birkaç yüz metre, su değişiminin saatte 2-3 defa gerçekleştiği üretim tesisleridir. Taban eğimi 30 m’de 10-20 cm dir. Birkaç yüzmetre uzunluğundaki bu kanallar ızgaralarla yaklaşık 30 m’lik bölümlere ayrılır. Üretim kapasiteleri genellikle 24-32 kg/m3’dür (Steffens 1981). Bu kanal tipi havuzlar, mekanik yemlemeye hastalıklarla savaşa ve otomatik seleksiyona uygun balık üretim tesisleridir (Atay 1995). Yavru balıkların pazarlık boyuta kadar büyütülmesinde suyun akış hızı 1,5-3 cm/sn olmalıdır. Benzer veriler Amerikan kaynaklarına (Westers’e göre) tablo 9’da belirtilmiştir (Bohl 1982). Bir hektar yüzleminde kanal tipi havuzlarda 1000 lt/sn su ile 100 ton alabalık üretilir. Bu hesaplama havuzlarda yarı intensif yetiştiricilik yöntemindeki 100 kg balık/lt/sn su ile hesaplanan geleneksel eski üretim miktarına eşdeğerdir (Bohl 1982). Kafeslerde sofralık alabalık üretimi Ağ kafeslerde yetiştiricilik göller, baraj gölleri, göletler, kum-çakıl göletleri, akarsu gölcükleri ve büyükçe yapılmış sulama kanallarında, belirli çerçevelere takılmış ağ kafesler içinde, balıkların kontrol altında büyütülmeleridir. Ülkemizde denizlerimizde ağ kafeslerde çipura ve levrek yetiştiriciliğine koşut olarak, son yıllarda kamunun da yönlendirmesiyle özel girişimciler tarafından tatlısu kaynaklarımızda da ağ kafeslerde alabalık yetiştiriciliği hızla yaygınlaşmaya başlamıştır (Atay 1994). Kafeslerde alabalık yetiştiriciliğinde öncelikli olarak su koşullarının uygun olması gerekir. Buna ilişkin koşullar Tablo 10’da özetlenmiştir. (Ruhdel 1977). Tablo 10. Ağ kafeslerde alabalık yetiştiriciliğinde su koşulları Nitelik Miktar Su sıcaklığı 20 oC’nin altında Oksijen 6 mg/lt’nin üzerinde (sabahları) PH 8’in altında NH4 0,5 mg/lt’nin altında Zehirli madde Olmamalı Su derinliği 4 m’nin üzerinde Oksijen tüketimi 600 g/ton/saat Kafesin yerleştirildiği ortamın tabanı ile kafesin ağ torbasının alt kısmı arasında en az 1 m aralık olmalıdır. Kafesin ağ torbası su ortamında geometrik şeklini tam olarak koruyamayacağından hacminin yaklaşık %15’i kaybolur. Kafesler uzun süre aynı yerde konuşlandırıldıklarında gölün yada göletin su kalitesini etkilerler. Sığ göllerde her üretim peryodunda kafeslerin yeri değiştirilmelidir. 10 m’den derin göllerde ise yer değiştirmeye gereksinim yoktur. Ağ kafeslerin büyüklükleri çok farklı olmakla birlikte 5 m x 5 m x 5 m boyutları en çok kullanılanıdır. Ağ kafesin göz açıklığı balığın boyunun 1/10’u olmalıdır. Ağ göz açıklığının bir başka ifadeyle pratikte 1 cm alabalık boyu için 1 mm ağ göz açıklığı esas alınır. Ağ kafeslere en azından ortalama 40 g ağırlıkta yavru balıklar stoklanır. Yılın Mart ayında stoklanan yavrular Haziran ayı ortalarında, Eylül ayında stoklanan balıklar Aralık ayında hasat edilirler (Bohl 1982, Kieckhäfer 1983, Ruhdel 1977). Normal su koşulları altında ağ kafeslerde stok yoğunluğu 50-100 adet ortalama 40 g ağırlıkta yavru balık/m3 olarak planlanır. Bu durumda hasatta üretim miktarı 20-30 kg/m3 olarak gerçekleşir. Örneğin Orta Avrupa göl ve baraj göllerinde ağ kafeslerde yetiştiricilikte ağ göz açıklığı 14 mm olarak düzenlenir. Stok yoğunluğu olarak 90 adet 40 g ağırlıkta yavru/m3 esas alınır. Bu koşullarda 100 ton alabalık üretimi için 4x3x3 m boyutlarında yaklaşık 180 kafese gereksinim vardır. Uygun koşullar altında stok yoğunluğu 100 adet fingerling/m3, olarak uygulanabilir (Steffens 1981). Ağ kafeslerde yetiştiricilikte 17-20 oC su sıcaklığında, gökkuşağı alabalıklarında ortalama 35 g ağırlıkta stoklanan yavrular yüksek büyüme oranıyla 300 g ağırlığa ulaşmışlardır. Bu durumda 2,5 ayda 265 g ağırlık artışı sağlanmış, yani yavrular günde 3,5 g büyümüşlerdir (Bohl 1982). Ağ kafeslerde yetiştiricilikte ortalama 50 g’lık balıkların, 90-100 yemleme gününde 250 g olan sofralık büyüklüğe ulaştırmak hedeflenmelidir. Bu hedefe yönelik olarak 20 m3’lük kapasiteli ağ kafese 500-1800 adet yavru balık yeterlidir. 20 m3 kapasiteli ağ kafeslere 700 adetten az balık stoklandığında, 1000 veya 1200 adet balık stoklamaya oranla büyüme daha yavaş olmuştur. Fakat 20 m3 kapasiteli ağ kafeslere 1200 adetten fazla balığın stoklanması da önerilmemektedir. Belirtilen maksimum stok yoğunluğu esas alındığında 1200 x 250 g= 300 kg balık üretilir. Aynı koşullarda bir sezon daha üretim yapıldığında 300 x 2= 600 kg yıl sürecinde alabalık üretimi gerçekleştirilir. Göllerde ağ kafeslerde yılda 600 kg sofralık alabalık üretildiğinde ortama balıklar tarafından bırakılan dışkı 1 hektar havuz yüzleminin kendini temizleme gücünü etkilemez (Kieckhäfer 1983). Ağ kafeslerde alabalık yetiştiriciliğinde Kieckhäfer’e (1983) göre m3’e ortalama 50 g ağırlıkta yavrulardan 60 adetten fazla stoklanmamalıdır. Bu stoklama miktarı uygulandığında ise 250 g sofralık balık bireysel hasat ağırlığına göre 15 kg balık/m3 ürün elde edilir. Fakat literatür verilerine (Mann 1974, Falk 1968) göre 20-30 kg/m3, mutfaklık alabalığı ağ kafeslerde üretmek olasıdır (Kieckhäfer 1983). Ağ kafeslerde gökkuşağı alabalığı yetiştiriciliği deniz ortamında da gerçekleştirilebilir (Atay 1994). Çünkü gökkuşağı alabalıklarının tuz konsantrasyonuna toleransları balıklar büyüdükçe artmaktadır. Yavru balıkların ağırlıkları 50 grama ulaştığında %0 12-15 tuz konsantrasyonunda, %0 0-1’lik konsantrasyona oranla büyümeleri %70 daha iyi olmaktadır. Parmak büyüklüğünde yavru balıklar sofralık balık büyüklüğüne kadar ‰30 tuzlulukta ve bununda üstünde konsantrasyonda deniz suyunda beslenebilirler (Steffens 1981). ALABALIKLARIN BOYLANMASI Alabalıkların sınıflandırılması yada boylarına göre ayrılması özenle uygulanması gereken bir işlemdir. Çünkü alabalıkların karnivor karakterde olmaları nedeniyle, balıklar arasındaki büyüklük farkı aşırı boyutlara ulaştığında, büyük bireylerin küçükleri yemeleri (Kannibalizm) olgusuyla karşılaşılır. Bu sakıncanın yanında verilen yem büyük balıklar tarafından alınır ve küçük balıklar ise yetersiz düzeyde beslenirler. Böylece yem dağılımının dengesiz olması bakımından büyük balıklar ile küçük balıklar arasındaki büyüklük farkı giderek artar. Sonuçta birim canlı ağırlık artışı için tüketilen yem miktarı (yem değerlendirme değeri) artar, bir başka tanımla yem değerlendirme oranı (FQ yada FCR= Food Conversation Rate) olumsuz yönde etkilenir (Vollmann-Schipper 1975). Alabalık üretiminde yavru balıkların boylarına göre ilk seleksiyonu, larvaların 6-8 hafta beslenmesinden sonra, yani ön büyütme dönemi sonunda yavruların yaklaşık 1 g ağırlığa ulaştığında gerçekleştirilmelidir. Bu işlemin uygulanmasında sabit yada ayarlı ayırma kutuları kullanılır. Belirtilen gereçler daha çok miktarı az ve boyu küçük yavruların sınıflandırmasında kullanılır. Eğer iyi bir gelişme elde etmek, kanibalizme engel olmak ve aynı büyüklükte balık elde etmek isteniyorsa seleksiyon yapmak zorunludur. Bütün balıklar aynı büyüklükte olurlarsa, günlük yem gereksinimi daha doğru ve havuzun toplam kapasitesi daha kolay tahmin edilir (Atay 1995, Bohl 1982). Hem yavru balıklar hem de daha büyük balıkları sınıflandırmada ise ızgaraları ayarlanabilen, havuzlara ve kanallara monte edilebilen boylama sistemleri kullanılabilmektedir. Bu sistemin ızgara aralığını 1,6-21 mm arasında ayarlamak mümkündür (Atay 1995). Ayrıca alabalıkları aynı anda ikiden fazla boya ayırmak için su püskürtme ve titreşim esasına göre çalışan sınıflandırma makinalarından da yararlanılabilir. Belirtilen boylama gereçlerinden farklı olarak kapasitesi büyük üretim tesislerinde ise; ayırmayı hızlandırmak, zaman ve işçilikten tasarruf etmek için; üretim tesisi dışında kurulan, su akıntısı verilebilen ve balıkları yakalama sırasında boylama yapabilen sistemlerin kullanılması önerilmektedir (Vollmann-Schipper 1975, Igler 1990). Yavru Alabalıkların Sınıflandırılması Alabalıkların boylanmasının pratikte iki önemli yararı vardır. Bunlar: 1- Farklı boyuttaki balıkların ayrılmasıyla kannibalizm önlenir. 2- Özellikle yavru balıklar satış için sınıflandırılmış olur. Yavru balık üreticileri yavru balıkları satış için pratikte 6 sınıfa ayırmaktadırlar. Bu sınıflar ve balık boyutları Tablo 11’de sunulmuştur (Lindhorst-Emme 1990). ALABALIKLARIN YEMLENMESİ Gökkuşağı alabalıklarının yemlenmesinde öncelikli olarak aşağıdaki faktörler dikkate alınmalıdır (Ruhdel 1977). a- Su sıcaklığı b- Suyun oksijen içeriği c- Suyun alkalinitesi d- Stok yoğunluğu Yemin İçeriği Gökkuşağı alabalığının yetiştiriciliği için optimum su sıcaklığı 15-20 oC olmasına karşın, yemlemeye uygun su sıcaklığı ise 14-16 oC’dır. Gökkuşağı alabalıklarının larva yeminde %40, yavru yeminde %30 ve sofralık balıkların yeminde ise %30 protein bulunması genel kullanım oranlarıdır. Bu oranlar larva yeminde %50’ye, mutfaklık balık beslenmesinde %46’ya kadar yükseltilebilmektedir. Yemleme metodu, su ve işletme koşullarına göre seçilir. Alabalık yemlerinde yağ içeriği başlangıçta %4-5 oranında önerilmektedir. Rasyonda protein miktarının yüksekliği ile birlikte yağ oranı %8’e kadar artırıldığında, yem değerlendirme ve balığın et kalitesi iyileşir. Alabalık pelet yemlerinde %8-12 oranında yağ ve %42-50 oranında protein üst sınır olarak kabul edilmektedir (Ruhdel 1977). Avrupa’da tanınmış bazı firmaların ürettikleri alabalık ticari besi yemlerinin içerikleri Tablo 14’de gösterilmiştir (Lindhorst-Emme 1990). Yem Tüketimi Dağılımı Alabalık üretim tesislerinde yem tüketimi işletme giderleri içerisinde yaklaşık %50-60 oranıyla en büyük payı oluşturur, İşletme giderinin yaklaşık 2/3’ünü oluşturan yemin yıl sürecinde kullanımının üretim dönemlerine göre dağılımı Tablo 15’de görülmektedir (Lindhorst-Emme 1990). Tablo 15’de görülen dönemlerden kuluçka evinde larvaların yemlenmesi günde 8-12 defa yapılmalıdır. Yem balıklara su yüzeyine serpilerek verilmelidir. Larva besiciliği döneminde 2000 adet larva için yem gereksinimi ilk bir ay yaklaşık 1 kg, ikinci ay ise 2 kg olarak hesaplanmalıdır (Bohl 1982). Daha sonraki dönemlerden yavru yetiştiriciliğinde yemleme sıklığı günde 3-4 defa, pazarlık balık besiciliğinde ise günde 2 defa olmalıdır. Balıklara haftada bir gün yemleme yapılmamalıdır (Ruhdel 1977). Yemin Boyutu Alabalıkların yemlenmesinde özel likle larva ve yavru dönemlerinde yemin boyutunun balıkların ağız açıklığına uygunluğu çok önemlidir. Bu konuya ilişkin veriler Tablo 16’de gösterilmiştir (Lindhorst-Emme 1990). Yemleme ve Su Sıcaklığı Alabalık besiciliğinin bütün evrelerinde su sıcaklığının etkisi yadsınamaz. Çünkü su sıcaklığı en başta suyun oksijen yönünden doymuşluğunu etkilemekle birlikte, aynı zamanda balıkların metabolizma hızına da tesir etmektedir. Yavru yetiştiriciliğinin ilk haftalarındaki yemlemede, su sıcaklığının etkisine ilişkin özgün örnek Tablo 17’de görülmektedir (Lindhorst-Emme 1990). Tablo 17’deki verilerin elde edilmesinde 4 m3 hacminde kanal tipi küvetlerde, yetiştirme için ideal su sıcaklığı olan 15 oC’da başlangıçta 100.000 adet olan stok yoğunluğu, 5. haftadan itibaren 60.000 adete indirgenmiştir. Yemleme Zamanı Ön büyütmesi yapılmış yavruların ilkbahar yaz döneminde, parmak boyunda yavru balık boyutuna kadar beslenmesinde, günlük yemleme öğünleri aşağıdaki gibi olmalıdır. 1. Yemleme 07.00-08.000 saatlerinde 2. Yemleme 11.00-12.00 saatlerinde 3. Yemleme 14.00-15.00 sularında Sonbahar döneminde fingerling dönemine ulaşan yavru balıklar ise aşağıda gösterilen saatlerde günde iki defa yemlenirler. 1. Yemleme 08.00-09.00 2. Yemleme 13.00-14.00 Yemleme (Besi) süresi Alabalık yetiştiriciliğinde bir diğer önemli konu yavru balıkların ne kadar süre beslenerek pazara sunulabileceğidir. Bu konu tamamen su ve yemleme koşullarıyla balığın kalıtımsal kökenli büyüme performansına bağlı bir durum olanak kabul edilse de, Tablo 18’de normal koşullarda gerçekleşmesi olası besi süreleri verilmiştir (Lindhorst-Emme 1990). Yem Değerlendirme Oranı Balık yetiştiriciliğinin verimliliğinin ölçütü olarak birim balık üretimi için harcanan yem miktarı kullanılmaktadır. Çünkü balık üretiminde girdilerin büyük çoğunluğunu yavru, işçilik ve yem giderleri oluşturmaktadır. Bu üç gider içerisinde de en büyük paya yem sahiptir. Belirli koşullar altında farklı kalitede 3 çeşit yemle yürütülen gökkuşağı alabalığı besiciliğine ilişkin veriler Tablo 19’da görülmektedir (Lindhorst-Emme 1990). Tablo 19’da görülen veriler irdelendiğinde birim balık üretimi için harcanan yem, yani yem değerlendirme oranı kadar, yemin fiatınında çok önemli olduğu anlaşılmaktadır. Yemleme Oranı Alabalık üretiminde başarılı besiciliğin temelini balıkları canlı ağırlıklarının %’si olarak doğru oranda yemlemek oluşturur. Yemleme oranını saptamada stok miktarı, su kalitesi ve miktarıyla birlikte, yetiştirme ortamında su değişimi gibi bir çok faktör dikkate alınabilir. Fakat balıklara günlük olarak verilecek yem miktarını saptarken iki ana ilke unutulmamalıdır. Bu iki ilke (Igler 1990): 1- Balıkların yem alımı su sıcaklığına bağlıdır. 2- Balıklar büyüdükçe yem gereksinimi oransal olarak düşer. Su sıcaklığı baz alınarak alabalık populasyonuna canlı ağırlıklarının %’si olarak günlük verilecek yem miktarı Tablo 20’den yararlanarak saptanır (Kieckhäfer 1983). Alabalıkların beslenmesinde günlük olarak verilecek yem miktarını tespit etmede, yine su sıcaklığının esas alındığı, fakat balıkların ortalama bireysel ağırlık ve boylarına göre gruplandırıldığı ve pratikte uygulanan yemleme oranları Tablo 21’de gösterilmiştir (Igler 1990). Alabalık Yemleme Yöntemleri En eski yemleme şekli olan elle yemleme halen kullanılan bir yöntemdir. Bu yöntemle yemlemede, balıklar özenle yavaş bir şekilde yemlenmeyi gerektirdiği için işçilik giderini artırır. Alabalık yetiştiriciliğinde büyük kapasiteli işletmelerde ve işçilik ücretinin yüksek olduğu ülkelerde yaygın olarak otomatik yemlikler kullanılmaktadır. Yem otomatları içerisinde en çok kullanılanlar, sarkaçlı yemlikler, yürüyen band sistemi ile çalışan yemlikler ve hava basınçlı yem otomatlarıdır (Çelikkale 1994). Sarkaçlı yemliklerde bir yem deposu, yemin düşmesini ayarlayan bir mantar, mantara takılan ve su içerisine uzayan bir çubuk bulunur. Balık havuzda yüzerken çubuğa dokunduğunda belli miktar yem suya dökülür. Bu sistemi balık 1-2 günde öğrenebilmektedir (Kieckhäfer 1983). Band sistemi yemliklerde, saat benzeri mekanizma yardımıyla yürüyen band üzerine yem konur. Band ilerledikçe yada döndükçe bandın yanlarından suya yem dökülür. Bu bandlar çalar saatlerin belirli zamana ayarlanarak kurulmasına benzer şekilde çalışırlar ve belirli zaman aralıklarıyla yavru yada özel likle larva yetiştirme kanallarına düzenli bir şekilde yem bırakırlar (Bohl 1982). Hava basınçlı yemliklerde, yem deposu havuz kenarındaki plastik bir boru üzerine yerleştirilmiştir. Yem deposu boru içine yem dökülecek şekilde boruya bağlıdır. Bir kompresör yardımıyla borunun, bir kenarından belli sürelerde hava basılır ve boru içine dökülmüş olan yem havuza fışkırtılır. Her havuz başına yerleştirilen bu sisteme merkezden otomatik olarak kumanda edilir (Lindhorst-Emme 1990). ALABALIKLARIN TAŞINMASI Alabalıkların yavru ve sofralık boyutlarında canlı olarak taşıma kaplarına konulmazdan önce uyulması gereken ilkeler aşağıda 4 madde halinde belirtilebilir. 1- Alabalıkların havuzlardan hasat sonrasında aşırı stresli oldukları bilinmeli, 2- Balıkların solungaçları temiz olmalı, 3- Balıklara havuzun taban yapısının kokusu sinmiş olabilir. Özellikle havuzlarda bulunan alg, çamur ve balçık vd. leri direkt olarak balığın etini etkiler. 4- Balıkların sindirim sistemi boş olmalıdır. Çünkü taşıma sırasındaki stresin etkisiyle balıkların barsak içeriğinin taşıma suyuna boşaltılmasıyla oluşacak bulanıklık taşımada büyük sorunlar yaratır (Lindhorst-Emme 1990). Alabalıkların taşıma sürecinde en büyük gereksinimleri oksijendir. Fakat diğer taraftan suyun oksijen içeriğinin su sıcaklığına göre değişken olduğu bilinen bir olgudur. Farklı su sıcaklıklarında oksijen doymuşluğu ve alabalıkların belirli süreçte tükettikleri oksijen Tablo 22’de özetlenmiştir (Koch et.al. 1976). Alabalıkların canlı olarak taşıması aşamasında taşıma gereçlerindeki balıkların oksijen gereksinimleri, oksijen tüplerinden yararlanarak taşıma suyuna oksijen verilerek karşılanır. Piyasada satılan oksijen tüplerinin özel likleri Tablo 23’de gösterilmiştir (Lindhorst-Emme 1990). Alabalıkların farklı büyüklük dönemlerinde taşınmalarında belirli sürede gereksinim duyulan oksijen miktarları Tablo 24’de görülmektedir (Lindhorst-Emme 1990). Alabalıkların canlı olarak taşınmaları öncesi havuz yada yavru yetiştirme kanal veya tanklarından yakalanmalarında ve taşıma kaplarına stoklanmalarında yararlanılan kepçelerde kullanılan ağ materyalin iplik kalınlığı ve ağ göz açıklıkları Tablo 25’de gösterildiği gibi olmalıdır (Lindhorst-Emme 1990). Yavru Balıkların Taşınması Alabalık yavruları özel likle küçük dönemlerinde plastik torbalarda oksijen ilave edilerek taşınırlar. Plastik torbalar 50 cm genişlik ve 1.20 m yükseklik boyutlarında dayanıklı materyalden üretilmiş olmalıdır. Plastik torbaların 1/3’üne temiz, soğuk su konur; 2/3’üne ise saf, gaz formunda oksijen doldurulur. Bu torbalarla 10-15 lt su içerisinde, 4-6 hafta yemlenmiş 1000 adedi 400-700 g olan 2000-3000 adet yavru emniyetli bir şekilde taşınabilir. Fakat yavruların taşınma ortamının su sıcaklığının, bulundukları havuz suyu sıcaklığı ile aynı olması zorunludur. Dayanıklı plastikten üretilen torbalarla 15-20 lt su hacminde 12-15 cm boyda olan 100 adet, toplam 2,5-3 kg yavru balığın taşınması mümkündür (Lindhorst-Emme 1990). Alabalık yavruları oksijen yönünden zenginleştirilmiş taşıma kaplarında (tanklarında) da taşınabilir. Bu tip taşımada 30-40 lt su hacminde 8000-10.000 adet yem alma yeteneğinde yavru taşınması mümkündür. Bu yavruların 1000 adedi toplam 120-160 g ağırlıktadır. Aynı koşullarda 3-4 hafta yemlenmiş 1000 adedi 400-700 g ağırlıkta olanların ise 4000-5000 adedi taşınabilir. Alabalık yavrularının yukarıda belirtilen ağırlıkta olanlar için bu koşullar altında taşınma süresi 1-2 saattir. Daha uzun süreli taşımalarda taşınacak yavru balık miktarı %10-20 oranında azaltılmalıdır. Taşıma tanklarının kapasitesi 100 lt olduğunda, 10-12 kg ön büyütmesi yapılmış yavru veya 15-20 kg parmak büyüklüğünde balık (Fingerling) taşınabilir. Sofralık Balıkların Taşınması Sofralık alabalıklar plastik torbalarda 15-20 lt su hacminde 250 g bireysel ağırlıkta 20 adet, yani toplam 5 kg ağırlığa kadar taşınabilir. Sofralık alabalıkların tanklarda taşınmasında 100 lt su hacminde 20-25 kg stok miktarı esas alınır. Daha fazla miktarda pazarlık balık taşımada ise kasalarına tank monte edilen kamyon, kamyonet ve ağır vasıtalardan yararlanır. Bu araçlarla taşımada araçta bulunan oksijen tüplerinden taşıma tanklarına düzenli bir şekilde oksijen verilir. Bu tip endüstriyel şekilde pazara alabalık sunmada 500 lt suda 75 kg yada 100 lt su içinde 150 kg alabalık taşınır. Belirtilen kapasitede tanklardan araçların çekiş gücüne göre bir adet yada birden fazla tank konabilir. Tam donanımla tankların monte edildiği ağır vasıtalarla oksijen miktarına bağlı olarak 4000 km yada daha fazla uzaklıklara 50-60 saat sürede sorunsuz olarak mutfaklık alabalık taşıyabilmek olasıdır (Lindhorst-Emme 1990). Çekici güçleri 1,5 ton ile 32 ton arasında değişen taşıma vasıtaları ile pazarlık balık taşınabildiği gibi küçük yavruları (larva) ve büyükçe yavruları (Fingerling) da taşımak olanak içerisindedir. Fakat 500 lt’de 75 kg, 1000 lt’de 150 kg, olarak belirtilen sofralık alabalık miktarlarını, larvalar için 2/3 ve parmak büyüklüğünde yavrularda ise 1/3 oranında azaltmak gereklidir. Ayrıca bu miktarlarda balıkların kondisyonu, taşıma süresi ve su sıcaklığına bağlı olarak değişiklik yapmak gerekebileceği de unutulmamalıdır. Alabalık Yumurtalarının Taşınması Gökkuşağı alabalığının yetiştiriciliğin dünya genelinde yayılmasında, döllenmiş yumurtalarının uygun koşullarda sorunsuz bir şekilde kıtalararasında kolayca taşınabilmesinin önemi yadsınamaz. Gökkuşağı alabalığının yumurtalarının döllenmesinden sonra 24-36 saat içerisinde daha çok kısa mesafelerde işletmeler arası taşındığı bilinmektedir. Bu sürede yumurtalar henüz duyarlı döneme ulaşmamışlardır. Fakat gökkuşağı alabalığı yumurtaları en emin bir şekilde göz lekesi oluştuktan sonra en uzak  Doç.Dr.Fikri AYDIN

http://www.biyologlar.com/alabalik-biyolojisi-ve-yetistirme-teknikleri

ÇİPURA (Sparus aurata Lin., 1758) BALIĞININBİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Şahin SAKA-Kürşat FIRAT Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik BölümüYetiştiricilik Anabilim Dalı İskele-Urla, 35440 İZMİR GİRİŞ Günümüzde Akdeniz Bölgesi’nde oldukça iyi bir pazara sahip olan çipura balığına ait çalışmalar uzun yıllardır devam etmektedir. Yetiştiricilik çalışmalarında elde edilen bilgiler ise daha birçok konunun çalışılması gerektiğini ortaya çıkarmaktadır (Tandler ve Helps, 1985, Conides, 1992). Çipuraların fizyolojisi ve biyolojisi üzerine yapılan çalışmalar diğer türlere oranla daha azdır. Laboratuar şartlarında çalışmaların zorluğu ve çipura balığının kültür koşullarında üretiminin oldukça güç olması bu türle ilgili araştırmaları olumsuz etkilemiştir (Freddi ve ark., 1981, Camus ve Koutsikopoulos, 1984, Tandler ve Helps, 1985, Francescon ve ark., 1988 ). Ülkemizde bu tür ile ilgili çalışmalar larval dönem yaşama oranının arttırılması, larva yetiştirme protokollerinin hazırlanması, gelişim oranının yükseltilmesi ve hastalıkların tedavisi konularında devam etmektedir. ÇİPURA (Sparus aurata, Lin., 1758) BALIĞININ BİYOLOJİSİ Chrysophrys aurata sinonimi ile de adlandırılan çipura, Phylum: Vertabrata Subphylum: Pisces Clasis: Osteichthyes Ordo: Perciformes Subordo: Percoidei Familya: Sparidae Genus: Sparus Species: aurata (Linneaus, 1758) şekli ile sistematikteki yerini almıştır. Klimatik yapıdan çipura balığına tüm Akdeniz’de rastlanmakla birlikte doğu ve güney doğu Akdeniz ülkelerinde, Kanarya Adaları'nda, İngiltere kıyılarında, Verde Burnu’nda ve nadir olarak Karadeniz kıyılarında rastlanır. Genellikle tropikal, subtropikal ve ılıman kuşaklarda yayılım gösteren çipura deniz fenogramlarının bulunduğu kumlu–çamurlu ve çamurlu ortamlarda yaşamını sürdürür. Bunun yanı sıra nehir ağızlarına ve lagüner bölgelere de girer (FAO, 1987). Ülkemizde daha çok güney sahilleri ve Ege kıyılarında yayılım gösterir. 30-50 gram olanları ince lidaki, 100 gram olanları lidaki, 100-180 gram olanları kaba lidaki, 200 ve üzeri ağırlıkta olanları da çipura olarak adlandırılır (Alpbaz, 1990). 0-3 yaş arası çipuraların mide içerikleri incelendiğinde bu türün karnivor bir form olduğu ve özellikle ergin bireylerin Crustacea ve Mollusca familyasına ait türlerle beslendiği ortaya çıkmıştır. Sırt yüksekliği fazla olup lateralden yassılaşmış simetrik bir yapıya sahiptir. Baş iri, burun küt ve ağız terminal konumlu olup düzdür. Alt çenede dişler önde 4 adet kanin, arkada 4 sıra molar, üst çenede ön tarafta 4 adet kanin, arkada ise 3 sıra molar şeklindedir. Üst dudak, alt dudağa oranla daha kalın olup gözün başladığı noktanın paralelinde biter. Gözler orta derecede gelişmiştir. Göz çukuru önündeki mesafe, göz çapından en az iki kat daha uzundur. Gözler arasında V şeklinde yıldızsı bir bant vardır. Operkulum ve prooperkulum pullarla kaplıdır. Yanal çizgi hafif eğimli olarak operkulumdan kaudal yüzgece kadar kesintisiz olarak devam eder. Yanal çizgi üzerinde 73-85 adet pul bulunur. Dorsal yüzgeç anal yüzgeçten daha uzundur. Pektoral yüzgeç anüse kadar uzanır. Kaudal yüzgeç homoserk yapıdadır. Bu tür için yüzgeç formülü D XI/13-14, A III/11-12, P I/5, V 5/5 şeklindedir. Renk dorsalde gri-esmer, ventralde gümüşidir. Pektoral yüzgecin dorsalinde ve operkulum üzerinde kırmızı-menekşe renkli bir leke karakteristiktir. Hermafrodit özellik gösteren çipuralar 8. aylarında ovaryum oluşumlarıyla birlikte dişi özellik gösterirler. 12. ayda üremenin ilk sezonunda tüm bireyler erkek karakterdedir. Gonadın ventralinde olgun testiküller belirir. Gonadın dişi kısmında ise hiçbir gelişme gözlenmez. 23-24. aylardaki balıkların ikinci üreme periyodunda ise bireylerde erkeklikten dişiliğe geçiş söz konusudur. Bu dönemde gonadlarda belirgin bir olgunlaşma gözlenmektedir. Bu cinsiyet değişimi ani olmamakla birlikte özellikle 3. yaştaki bireyler intersex özelliğindedir. Ancak bu cinsiyet değişimi populasyonun tamamında değil sadece yaklaşık olarak %80’inde gözlenmektedir ki kalan %20’lik oran populasyonun ve devamının sağlanabilmesi için genetiksel bir emniyet marjı olarak nitelendirilebilir. Bu tip bir cinsiyet değişimine protandrik hermafroditizm adı verilmektedir. Bütün bu değişimlere genetik ve çevresel faktörler ile beslenme özellikleri etki yapmaktadır. Çipuraların üreme periyodu ülkemizde Ekim-Aralık ayları arasında olup en iyi gelişim 22-25 °C aralığında gözlenmektedir. Yaşayabilecekleri sıcaklık aralığı 3-34 °C, tuzluluk değeri ise ‰5-40 olarak belirtilmiştir. ‰1 tuzluluğa kadar yaşayabildikleri Chervinski ve Chanin (1985) tarafından bildirilmiştir. Genellikle 5-25 m arası derinliklerde yayılım gösterirler. Yaşları ilerledikçe derinlerde yaşamayı tercih ederler. Bunun için dalyan alanlarında ergin bireylere rastlanmaz. Yaz aylarında 0.5-9 m derinliğe kadar olan sığ sulara giriş yapan çipuralar, kış aylarında 35-40 m derinliğe kadar inerler. 2 yaşını aşan bireyler daha da derin sulara inebilmektedirler. Maximum boyları 70 cm’ye ulaşan çipuraların ortalama uzunlukları 25-40 cm. arasındadır. ÇİPURA BALIĞI YETİŞTİRİCİLİĞİ Çipuralarda Üreme Fizyolojisi Çipura balıklarının gonad gelişimi hermafrodit özellik gösterir. 21±3 oC de yapılan çalışmada 4 aylık çipuraların gonadlarında sitolojik ve topoğrafik olarak hiçbir farklılaşma olmadığını bildirmiştir. 5. ayda topoğrafik farklılaşma başlar. Bu dönemin başlangıcında konjektif doku (bağlayıcı doku) gonadın dorsalinde ve ventralinde gelişimi başlatır. Ortada merkezi bir boşluk vardır. Bu kısmın dorsalinde ovaryum, vetralinde testiküllerin oluşumu başlayacaktır. Ancak bu farklılaşma çok zor ayırt edilir. Bu iki kısım germinal hücre yuvaları ile birleşir. Çok sayıda ovogonium birleşmesi ile oluşan ovijel lameller görülür. Ancak bu ayda oositler deformasyona uğrar ve gonad merkezinin kenarında ovujel lameller şeklinde bir yatakta kalır. Gonadın ventralinde 5 aylık balığa göre daha fazla spermatogonium vardır. Ovogoniumlar bir yatak içinde sıkışmışlardır. 10-11. aylarda, gonadın ventral kısmında spermatogenez aktivitesi gelişerek sürmektedir. Testiküller tüplerdeki spermetozoitler spermatogoniumlardan yola çıkarak germinal hücrelerin bulunduğu bölüme yerleşir. Testiküller kısım gonadın dorsal kısmını çevirmeye başlar ve büyür. Spermatozoit kanalı uzayan merkezde olup spermatozoitlerin toplandığı kısımdır ve ovaryum ile testiküllerin arasındadır. 1-2 dişi germinal hücre yatağı merkezin kenarında sıkışıp kalır. Bunlar ovogoniumlardır ve oositleri mayoz bölünmesi ile primer vitellogenesis olayının oluşmasını sağlayacaklardır. 12. ay üremenin ilk sezonudur. Populasyonun tüm bireyleri erkek özelliği gösterir. Gonadın ventral kısmında olgun bir testikül vardır. Ancak düşük bir RGS değerine sahiptir. Spermatozoitlerin doldurduğu tüplerde spermiasyon olayı meydana gelir. Gonadın dişi kısmında ise hiçbir değişme gözlenmez ve iyice küçülmüştür. 13-16. aylar arasında cinsiyet dönüşümü başlar. Gonadın spermatozoit kısmında gonadların boşalıp dinlenme fazı başlar. Testiküler tüplerde yalnızca spermatogoniumlar vardır. Ovaryum kısmında ise ovogoniumlar hızlı bir şekilde çoğalmaya başlar. Primer oositler hızlı bir şekilde previtellogenesis dönemine girer. 16. ayda ovaryum gonadın %80'lik bölümünü kaplar. Dorsal kısımda oosit hücreleri previtellogenesisi tamamlar ve vitellogenesise geçer. Aynı zamanda ventraldaki spermatogoniumlar ölerek dejenerasyon başlar. 23-24 aylarda üremenin ikinci periyodunda dişiler olgun bir gonada sahiptir. Ventral kısımda ise dejenere olmuş bir testikül yer alır. Populasyonun geriye kalan %20'lik kısmında cinsiyet dönüşümü durur. Gonadın dorsal kısmındaki oositler atresiye uğrar ve dorsaldaki gelişim ventraldeki gelişimin içine sıkışır (Zohar ve diğ., 1984). Doğal koşullarda iki yaşında dişi özelliği gösteren anaçlar üç yaşında intersex özelliği taşırlar. Bu bireylere hormon müdahalesi yapılırsa erkek olarak görev yaparlar. Aksi halde 4 yaşında dişi özelliği gösterirler. Bu cinsiyet dönüşümleri bulundukları populasyonun dişi erkek oranına göre gecikmeler gösterebilir. Çipura balıklarının erkek bireylerinde spermatogenesis tamamlandığında dişilerin çoğunda oosit hücrelerinin olgunlaşması ve yumurtaların atılması için gereken hazırlık devam etmektedir. Çipura erkeklerinden ekim ve mart ayları arasında sperm almak mümkündür. Anaçlarda Yumurta ve Sperm Gelişimi Çipuralarda ovaryumlardaki yumurta hücresinin gelişimi 7 aşamada meydana gelir : * - İlkel yumurta hücreleri çok küçük olup boyutları 8-12 mikron arasındadır. Hücreler mitoz bölünme ile çoğalır. * - Yumurta hücresinin etrafında folikül oluşmuştur. Bu hücrenin ikinci katını oluşturur. * - Hücrelerin boyutları 40-200 mikron büyüklüğe ulaşır. Etrafları folikül ile tamamen çevrilidir. * - Vitellogenesis başlamıştır. Yumurta çapı 200-350 mikron arasındadır. Lipoid maddelerin stoplazma içinde birikimi başlamıştır. * - Stoplazma lipoid damlacıklarla doludur. Vitellogenesis hızlanmıştır. Yumurta büyüklüğü 300-350 mikron arasındadır. * - Yumurta sarısı tabakası lipoid damlasının ikinci halkanın oluşmaya başladığı yer olan hücre kenarına doğru iter. Çekirdek içi maddeler protein sentezinde ve besin maddesi birikiminde rol oynayan çekirdek içi maddelerin çekirdek zarına yapıştığı görülür. Yumurta çapı yaklaşık 600 mikrondur. Vitellogenesis tamamlanmıştır. Yumurta çapı 700-800 mikron arasındadır. Çekirdek içi maddeler merkeze doğru çekilmeye başlamıştır. Mikropil deliği bu dönmede oluşmuştur. Yumurta değişime uğramaksızın birkaç hafta bu durumda kalır. Uygun şartlar sağlandığında folikül tekasındaki kasların kontraksiyonu ile ovulasyon meydana gelir. Eğer biotik ve abiotik şartlar uygun değilse foliküllerin deformasyonu ile yumurtaların emilimi ortaya çıkar. Testislerin oluşumu içerisinde (Bkz. 3.1.) spermlerin gelişimi spermatogoniumların aktif olarak testis kanalları duvarlarında çoğalması ile başlar. Önce spermatogoniumlardan primer spermatozittler, onlardan da sekonder spermatozitler meydana gelir. Testiküller kanal boşluklarında toplanan ve burada uygun koşullar oluşuncaya kadar bekleme pozisyonuna giren spermler gonadotropin etkisi ile döl vermeye hazır hale gelirler. Anaçlar ve Yumurtlama Anaç olarak 2-6 yaşındaki çipuralar kullanılır. Anaç olabilecek bireyler genç dönemlerinde seçilerek büyütülebileceği gibi doğal ortamdan olta ve pareketa ile yakalanabilirler. Anaçlardan yumurta doğal şekilde serbest ve müdahaleli (Hormon Uygulamalı-Dekalaj) olarak sağlandığı gibi kullanılmamakla birlikte sağım yöntemi ile de alınabilir. Yetiştiricilik ortamında tutulan erkeklerde spermatogenezis tamamlanmış olmasına rağmen, dişilerde oositler sadece vitellogenezis’in son safhasında gelişme gösterdiğinden ve sonra hızlı bir atresiye (dejenerasyon) uğradığından doğal ortamdan yakalanan anaçların kullanılması daha iyi sonuçlar vermektedir. Çipura dişileri ardışık yumurtlarlar. Vücut ağırlığının her kilogramı için ortalama 20.000-30.000 adet yumurta verecek şekilde 3-4 aylık periyotta hemen hemen her gün yumurta verirler. Böylece çipura dişilerinin fekonditeleri sezonluk her kg vücut ağırlına karşılık 2-3 milyon yumurtaya ulaşabilir. Anaçlar 4-7 m3' lük tanklara yoğunluğu 10-15 kg/m3 olacak şekilde stoklanır. Mevsim dışı yumurta elde etmek için tanklar, ışıklandırmanın ve sıcaklığın kontrol edilebileceği sistem ile donatılmalıdır. Stoklamada dişi erkek oranı anaç balığın durumuna göre 1:1, 1:2 veya 2:3 kg olacak şekilde ayarlanır. Balıklar günde 1-3 kez vücut ağırlığının (kg) %1-1.5’u kadar kalamar etine dayalı kuru pelet yemle beslenmelidir. Bunun yanı sıra taze midye sübye ve kalamar etleri ile de beslenebilirler. Verilen yemler %50-55 protein ve %10-15 deniz orjini canlıların yağlarından oluşmalıdır. Yağlar en az %5 n-3 HUFA içermeli ve temel olarak 22:6n-3 (DNA) tipinde olmalıdır (Zohar ve diğ., 1995). Bu diet yumurtlamaya başlamadan en az 1-2 ay önce anaçlara verilmelidir. Su sıcaklığı yumurtlama döneminde 16-18°C arasında tutulmalıdır. Spermatogenesis erkeklerde tamamlandığında, dişilerin çoğunda oositlein olgunlaşması ve yumurta atılması için gerekli hazırlıklar devam etmektedir. Spermotogenez ve oogenez arasındaki bu fark hormon kullanımı ile oositlerin gelişim hızlandırılarak kapatılabilir. HCG hormonunun çipuralarda bağışıklık sistemini harekete geçirdiği, bu yüzden çipuranın olgunlaştırma gonotrophini için homolog radioimmunoussay (RIA) sistemi ile ölçüm teknikleri geliştirilmiştir. RIA kullanıldığında görülmüştür ki dişi çipuraların yetiştiricilik ortamında yumurta vermemesinin nedeni Gth’ın hipofizde birikmesine rağmen kan dolaşım sistemine girmemesidir. Bu olay yumurtlamanın başlaması için gonadotropin releasing hormonlarının (GnRH veya GnRHa) kullanılabileceğini göstermiştir. Bunun sonucunda çalışmalar polypeptitler ve proteinlerin yeni polymer tabanlı üretimleri üzerine kaymıştır. Bu sistemler çipuralar üzerinde uzun Gth salgısı ve başarılı bir yumurtlama için çok etkilidir (Gordin ve Zohar, 1978, Zohar ve Gordin, 1979, Zohar ve ark., 1989a, 1989b, 1990a). Çipura balıklarında yapılan çalışmalarda HCG 800-1500 IU/kg, GnRH 1-20 mgr/kg olacak düzeyinde kullanılmaktadır. Çipuralarda 1 mgr/kg olacak şekilde yapılan hormon uygulamasının yumurtlama periyodunu uzattığı, anomaliyi azalttığı, 7.5 mgr/kg tek enjeksiyon GnRH uygulamasının dişilerde %80 üzerinde yumurtlamanın teşvikini sağladığı tespit edilmiştir. Çevresel koşulların optimum olarak sağlanması ile birlikte, yumurtlama tüm yıl boyunca elde edilebilmektedir. Yumurtlama, hormon uygulamasından 48-72 saat sonra başlar. Hormon uygulamasından sonraki birkaç gün içinde, günün farklı zamanlarında yumurtlama meydana gelebilir. Yumurtlama başladıktan sonra yaklaşık 1 hafta içinde populasyon içindeki dişilerin yumurtlama zamanı aynı döneme rastlamaktadır. Yumurtlama genellikle gün batarken ve 24 saat aralıklarla olur. Yumurtlayacak populasyon strese karşı çok hassas olduğundan yumurtlama süresince stres faktörleri ortada kaldırılmalıdır. Yumurtlama sezonu süresince oositlerin bir kısmı vitellogenesis safhasına başlarken diğer bir kısmı vitellogenesisin son safhalarını geçirir. Bu yüzden vitellus maddesi yılın birkaç ayında yumurtalıklarda devamlı olarak bulunmaktadır. 3-4 aylık yumurtlama periyodu süresince, dişi çipuralar vücut ağırlığı başına toplam 0.5-2 kg. yumurta bırakır ki bu değer vücut ağırlığının 0.5-2 katına eşittir. Bu uzun ve zor yumurta üretimi sadece yüksek kaliteli ve enerji veren besinler tarafından desteklenebilmektedir. Çipura anaçlarına verilen besinin içeriği, yumurta ve larvalarının kalitesini direkt olarak etkiler. Canlı yumurtaların kalitesi fekondite, yağ damlası sayısı, larva çıkış oranları ve normal larvaların yüzdesi ile ortaya çıkar ki bu durum ancak anaçların kaliteli yemler ile beslenmeleriyle mümkündür. Yumurta Özellikleri ve Embriyolojik Gelişim Canlı yumurtalar ortalama 0.9-1 mm çapında ve saydamdır. Normalde tek yağ damlası içeren yumurtaları pelajik özellik gösterir. Koryon şeffaf ve ince olup mikropil deliği yaklaşık 14 mikrondur. Cansız ya da döllenmemiş yumurtalar birkaç saat içinde opak renge dönüşür ve tankın dibine çöker. Yumurtlama tankından canlı yumurtaları toplamak için tekli ve çiftli reküparatör sistemleri kullanılabilir. Çiftli sistemde ilk kollektöre atık maddeler toplanır. Buradan geçen su diğer kollektörde bünyesinde bulundurduğu canlı yumurtaların toplanmasını sağlar. Temin edilen yumurtalar alındıkları ortamla aynı sıcaklıktaki inkübatör tanklarına yerleştirilmelidir. Sıcaklık farkı ±0.5 0C dereceyi geçmemelidir. İnkübasyon sıcaklığı 16-18 0C arasında olmalıdır. İnkübatörlerde doğal deniz suyu tuzluluğu kullanılmalıdır. Yumurtalar inkübatörlere ortalama 1500-2500 adet/lt olacak şekilde konulur. İnkübasyon süresince ışık kullanılmaz. İnkübatörlerin bulunduğu tanklarda saatte %40-60 su değişimi uygulanır. Ortam karanlıktır. Çipura yumurtalarının 18 0C embriyolojik gelişimleri Tablo 1'de verilmiştir (Alpbaz, 1990). Çipuralarda Prelarval ve Postlarval Dönem Çipura prelarvaları, yumurtadan çıktıklarında yaklaşık 2.6-2.8 mm boydadırlar. Vitellüs kesesi çapları ise 0.9-1 mm’dir. Vitellüs kesesinin posteriorunda 0.2-0.22 mm çapında bir yağ damlası bulunur. Ağız ve anüs kapalıdır. Baş vücuda oranla küçük, gözler büyük ve pigmentsizdir. Pigmentasyon sarı ve siyah olup sarı pigmentler başta birkaç tane, post-anal ve medio-ventralde bir sıra olarak bulunur. Vitellüs kesesi baş kısmının altında, su geçirmez bir zar ile sıkışmıştır. Yüzgeçlerden yalnızca pektoral yüzgeç bir taslak halinde önceleri yatay sonra dikey konumlu olarak 3. günde oluşur. Tek yüzgeçlerin yerine başın üstünde başlayan ve tüm vücudun medio-dorsali boyunca uzanıp kuyruk uçundan medio-ventrale dönüp vitellüs kesesine kadar uzanan primordial yüzgeç bulunur. Bu yüzgeç larvanın yüzeyini genişletip su üstünde kalmasını ve O2 ihtiyacını karşılar. Denge organı olan otositler gözlerin arkasında olup, burun delikleri tam gelişmemiştir. Sindirim sistemi düzensiz olmakla beraber, sindirim sistemi düz bir boru şeklindedir. Pankreas ve karaciğer oluşmuş fakat salgı bezleri ve lipit rezervleri mevcut değildir. Ağız açılmadan önce vitellüs kesesinin çoğu absorbe edilir. Prelarvalarda boydaki toplam artış ile vitellüsün azalması çok yakından ilişkili olup sıcaklığın etkisi altındadır. Çabuk tüketilen vitellüs boyda ani artış yaratmasına rağmen larva için iyi değildir. Düşük sıcaklıkta vitellüs absorbsiyonunda boy geç uzamakla birlikte toplam boy artışı fazla olmaktadır. Bu dönemde larvanın hareketinin az olması enerji tüketimini düşürür ve harcanan enerji larvanın organel gelişiminde kullanılır. Çok düşük sıcaklıklarda ise larva vücudunda deformasyonlar görülür. Larvanın ağız-anüsünün açılması ve gözlerde pigmentasyonun meydana gelmesi ile postlarval evre başlar. Hava kesesi oluşumu dördüncü günden itibaren gözlenebilir. Kesenin normal gelişiminin ilk safhası larva beş günlük ve 4 mm boyda iken meydana gelir. Eğer şişme gerçekleşmezse kese ilkel görünümünü korur ama fonksiyonel olmaz. İkinci gelişim safhası 13-15. günlerde yaklaşık 7-8 mm boyda meydana gelir (Chatain,1989b, Chatain ve Guschemann, 1990). Larva 5-6 mm boya ulaştığında preoperküler dikenler görülür. 7-8 mm boy uzunluğuna erişildiğinde önce kaudal, sonra dorsal ve anal olmak üzere tek yüzgeçler oluşur. 13 mm boyda yüzgeçler son şeklini alır. Bu dönemde melanaforlar tüm vücutta yatay siyah bantlar oluşturacak şekilde toplanır. Çipura Larva Yetiştirme Dönemleri Yumurtaların embriyolojik gelişimini tamamlayıp larvaların çıkması ile birlikte larva yetiştiriciliğide başlar. Larva yetiştiriciliği biyotik, abiyotik ve yabancı biyotik faktörlerin kontrol altına alındığı akuakültür tesislerinde yapılmaktadır. Larval Dönem Çipura prelarvaları yoğun üretim koşullarında 80-100 adet/lt olacak şekilde tanklara yerleştirilir. Tanklar silindir-konik yapıda olup polyester veya fiberglas malzemeden üretilmiştir. Hacimleri 2m3’ten 15 m3’e kadar değişim gösterebilir. Bu tankların seçimi üretim kapasitesi ve uygulanacak larva yetiştirme tekniği ile ilgilidir. Su sıcaklığı 16-18 0C olup ortam karanlıktır. Oksijen değeri 5-6 mg/lt dir. Su girişi alttan, çıkışı ise üsttendir. 16-18 0C su sıcaklığında çipuralarda prelarval dönem 3. günde sona erer ve postlarval dönem başlar. Çipura larva yetiştiriciliğinde açık devre ve kapalı devre sistemler kullanılmaktadır. Bunun yanı sıra değişik hacimlerde İngiliz tekniği olarak ta adlandırılan alg kullanımına dayalı yeşil su tekniği uygulanmaktadır. Açık devre sistemlerde su kriterleri larvanın gerek duyduğu şartlara göre ayarlanır ve üretim tanklarına gönderilir. Yeşil su tekniği uygulandığında bu tanklara verilen debi oranları azaltılmalıdır. Bu teknikle yazın planlanan üretimlerde debi azlığına bağlı olarak tanklardaki suyun ısınmasının engellenmesi için ortamın soğutulması gereklidir. Aksi halde alg bozulmaları ortam suyunun amonyak dengesini bozarak kitlesel ölümlere neden olur. Çipuralar larval dönemde çok hassas bir üretim çalışması istediğinden su değişimlerindeki dalgalanmaların minimum düzeyde olması istenir. Bunun için hem enerji yönünden tasarrufun sağlanması hem de üretim kalite ve kantitesinin arttırılması için kapalı devre sistemlerin kullanılması gereklidir. Kapalı devre sistem tankların da larvalar tarafından kullanılan su önce toplama tankına gelir. Burada istenilen özellikte ve gerekli miktarda taze su yenilenmesi yapıldıktan sonra, mekanik temizlik için kum filtresine geçer. Beraberinde getirdiği süspansiyon haldeki partikül maddelerden ayrılan su ultraviyole filtreye gönderilir. Ultraviyole filtreden geçen su bu sırada bünyesindeki tüm canlı organizmalardan (bakteri, mantar, parazit, bazı virüsler vs.) temizlenerek biyolojik filtreye girer. Balık dışkıları, yem atıkları ve ölü balıklardan dolayı yükselen amonyak miktarını normal düzeye indirilmesi bu aşamada aerobik bakteriler tarafından yapılır. Amonyak önce nitrite daha sonrada balıklar için zararlı etkisi olmayan nitrata indirgenir. Bu aşamalardan geçen su havuzlara geri dönmek üzere sistemi terk eder. Biyolojik filtre çıkışında 1.2-1.8 mg/lt’ye düşen sudaki oksijen miktarını 5-6 mg/lt’ye ulaştırmak ve bünyesinde getirdiği azot gazı fazlasını atmak için saturasyon kolonları kullanılmalıdır. Saturasyon kolanlarının içerisine havalandırma sistemleri de kurulabilir. Bazı kapalı devre sistemlerin kurulmasında ultraviyole filtreler biyolojik filtrelerden sonra kullanılsa da havuzlarda gelişen patojen veya patojen olmayan mikroorganizmaların biyolojik filtrelere yerleşerek zaten zayıf yapıda olan aerobik bakterilerin yerini alması sistemin çalışmasını olumsuz etkiler. Kapalı devre sistemler, suyun ısıtılmasında veya soğutulmasında kullanılan enerji açısından avantajlıdır (Timmons ve Losordo, 1994). Bunun yanı sıra kapalı devre sistemlerde, özellikle çipura gibi zor bir larva dönemi geçiren türlerin üretiminde suyun fiziksel ve kimyasal değişimleri ani farklılıklar göstermez. Kapalı devre sistemlerde suyunun her gün analizleri yapılarak amonyak miktarı kontrol edilmelidir, aksi halde ani ve kitlesel ölümler ile karşılaşılır. Çipura larva yetiştiriciliği çalışmalarında kullanılan su sıcaklık aralığı 18-22 0C arasında değişim göstermiştir. Su sıcaklığı ilk 15 günlük dönem içerisinde 18-20 0C arasındadır. Sıcaklık 15. günden itibaren arttırılarak 22 0C’ye getirilir ve larval dönem sonuna kadar bu sıcaklık değeri korunur (Tablo 2). Levrek larva yetiştiriciliğinde uygulan tuzluluk düşürme tekniği çipura larva yetiştiriciliğinde uygulanmamaktadır. Oksijen değeri 5-6 mg/lt dir. Su girişi ilk 10 gün tank dibinden daha sonra tank yüzeyinden yapılır. Larvalar ağız ve anüsün açıldığı postlarval evreye kadar karanlıkta tutulur. 18 0C su sıcaklığında çipuralarda prelarval dönem 3. günde sona erer ve postlarval dönem başlar. 2. günde tankların üzerinde biriken yağ tabakasının temizlenmesi için yüzey temizleyicileri tank yüzey genişliğine göre 1 veya 2 adet olacak şekilde yerleştirilir. Bu hava kesesinin ilk dolumu için çok önemlidir. Aydınlanma süresi ve yoğunluğu larvaların gelişimini, hava kesesi oluşumunu, ve yaşama oranının etkiler. Larvaların gelişimi artan aydınlatma koşullarında yükselirken, sürekli aydınlatma balıkların yaşama gücünü düşürür. Larva tanklarına ağız açılana kadar ışıklandırma uygulanmaz. Işıklandırma süresi ve şiddeti 3.günde 3 lüks, 4.günde 30-50 lüx, 5-10. günde 600 lüx, 11. günde ve sonrasında 1500 lüx olarak ayarlanır. Aydınlatma süresi ilk gün 12 saat olup daha sonra 24 saat ışıklandırma uygulanır (Equip Merea, 1987). Henüz yoğun üretimde kullanılmamakla birlikte 12-14 saat arası ışıklandırma süresi ve ‰30-32 arası tuzlulukta larva üretimlerin yaşama oranlarına olan etkileri çalışılmaktadır. Çipura larval dönem beslemede rotifera (Brachionus plicatilis) ve artemia (Artemia sp.) kullanılır. Bunun yanı sıra larva tanklarına alg uygulaması yapılmaktadır. Alg uygulaması ortama verilen rotiferlerin canlılığını koruduğu gibi, ortamın pH dengesini sağlaması ve larvaya loş bir ortam yaratması açısından önemlidir. Bunun için Chorella ve Nannochloropsis sp türü algler ml’de 5-7x105 hücre yoğunluğunda kullanılabilir. Çipuraların ağız açıklığı küçük olduğundan (?100 μ) larva beslemede small tip rotiferler kullanılmalıdır. Bu rotiferlerin boyutları 40-80 mikron arasında değişim gösterir. Larvalara 3-5. günler arasında 15 adet/ml, 5-12. günler arasında 10-12 adet/ml, 12-15 günlerde 8-10 adet/ml, 15-20. günlerde 6-8 adet/ml, 20-30. günlerde 4-6 adet/ml ve 30-35. günlerde 2 adet/ml rotifer ile besleme yapılır. Çipuralara ancak 15 günden itibaren artemia nauplii ile beslenecek büyüklüğe ulaşırlar. Dünya üzerindeki rezervleri tükenmekle beraber Venezüella orjinli artemia yumurtalarının kullanımı, nauplilerin boyutlarının küçük olmasından dolayı larva yaşama oranını arttırır. Günümüzde aquakültür tesislerinde yoğun olarak kullanılan ve Artemia Systems’in üretiği AF tip artemiaları ile besleme yapılmaktadır. Kullanılan AF tip artemiaların nauplii boyları yaklaşık 480 μ, enleri ise 165-175 μ arasında olup 10 mg/gr’dan daha fazla miktarda HUFA içerirler. Yumurtadan çıkan naupliilerin protein oranları %48-52, yağ oranları %19.3-21, karbonhidrat oranları %12-13, kül miktarları %8.1-8.7 ve nem oranları %4.8-5.2 arasında değişim gösterir. 30. günden sonra kullanılan EG tip artemialar ise daha düşük oranda protein miktarına (%45-47) ve daha az doymamış yağ asitleri (5-7 mg/g HUFA) oranına sahiptirler. Ayrıca boyutları daha büyük olup boyları 500-520 μ, enleri ise 175-190 μ arasındadır. Levrek larva yetiştiriciliğinde kullanılan EG1 formları boyca (740-780 μ) ve ence (225-240 μ) büyük olduğundan çipura larval dönemde kullanılmaz. Bu formlar sövraj döneminde kullanılmaktadır. Artemia nauplii 15-20 günler arasında ortama 0.5 adet/ml, 20-25. günlerde 1 adet/ml ve daha sonrada 40. güne kadar 2 adet/ml olacak şekilde verilir. Larval dönem sonunda uygulanan yetiştirme tekniklerine göre başarı oranı % 3-27 arasında değişim gösterir. Tablo 2’de alg tekniği uygulamalı larval dönem çipura yetiştirme protokolü verilmiştir. Sövraj (Mikropartikül Yemlere Geçiş) Dönemi Larval dönemim tamamlanması ile birlikte 40-42 günler arasında larvalar canlı yemden mikropartikül yeme adapte olacakları sövraj bölümüne alınırlar. 40 günün sonunda larval yetiştiriciliği biten larvaların karma yemlere adaptasyonu için kullanılan bu bölümde işletmenin kapasitesine göre belirlenmiş sayıda 10-15 m³ lük tanklar kullanılır. Tankların dip kısımları koniktir olup silindir yapıdadır. Tankların iyi dizayn edilmesi ve yeterli hacime sahip olması balıkların tanktaki pozisyonunu, yem tanktaki dağılımını, yem alımını ve su sirkülasyonunu etkilemesi açısından önemlidir. Tankların iç kısmı gel-coat kaplı olup bu yüzey sayesinde mikroorganizmaların kolonileşmesi engellenebilir. Sövraj bölümleri de istenildiği taktirde kapalı devre sistem kurularak çalıştırılmaktadır. Fakat bu bölümde su debisinin fazla olması, kullanılan yemin su kalitesini çabuk bozması, larvanın ürettiği azotlu bileşiklerin oranının artması ve hastalık riskinin yüksekliğinden dolayı açık devre sistemler bir çok tesiste tercih edilmektedir. Su çıkışları merkezi ve diptendir. Balıkların yaşına bağlı olarak su çıkışlarına yerleştirilen krepinlerin göz açıklıkları 500µ,1000µ ve 2000µ arasında değiştirmektedir. Havuzlarda 1500-2000 lüx aydınlatma uygulanır. Ünitede aydınlatma süresi 16 saat olup otomatik olarak zamanlayıcılar yardımıyla ayarlanmaktadır. Mikropartükül yeme alıştırma dönemi, balıkların 25-30 mg ağırlığa ulaştıkları 40-42 günlerde başlar. Bu dönemde havuzlardaki balık yoğunluğu litrede 10-12 adettir. Saf oksijen kullanıldığı durumlarda bu oran 18-20 adet/lt kadar çıkabilir. Bu dönem beslemede kullanılan artemia HUFA bakımından zenginleştirilmelidir. Bunun için EG tip artemia naupliileri 24 saat boyunca SELCO türevli zenginleştirici maddeler ile beslenerek büyütülür. SELCO ürünleri yüksek oranda HUFA (200 mg/gr), vitamin, antioksidan ve yağ (%60-65) içerirler. 24 saat sonunda metanauplii formuna gelen artemiaların boyutları 740-780 μ, enleri ise 225-240 μ arasında değişim gösterir (Artemia Systems, 1991). Sövraj sırasında kullanılan mikropartikül yemler ise % 56-64 ham protein, % 11-12 ham yağ, %11.4-11.7 kül, 5 1.4 ham selüloz, % 10 nem ve yeterli miktarlarda vitamin-mineral madde içermelidir. Mikropartikül yemler 80 mikron büyüklükten başlayarak larva gelişimine göre kullanılır (Tablo 3). Çipuralar levreklere oranla daha hızlı mikropartikül yeme adapte olabilmektedirler. Sövrage uygulaması 10-12 gün devem eder. Larvalara verilen günlük artemia miktarı azaltılırken mikropartikül yem oranı arttırılır. Bu dönemde besleme oranı %8-10 arasındadır Çipuralar aşırı kanibalistik özellik gösterdiklerinden dolayı ortamda mutlaka yeterli miktarda yem bulunmalı ve balıklar sürekli boylanmalıdır. Sövraj bölümünü terk etmeye hazırlanan larvaların ağırlığı 300-350 miligrama ulaşır. Sövraj boyunca su sıcaklığı 20-22 0C olup tanklarda su debisi %50-100 arasında değişim gösterir Çipuralar sövraj dönemine daha çabuk ve hızlı adapte olmaktadırlar. Larva yaşama oranı sövraj başarısına göre % 85-95 arasındır. Sövrajı tamamlayan balıklar ön büyütme ünitesine alınarak burada doğal deniz suyu ortamına adapte edilirler (Divanach ve diğ., 1986, France Aquaculture, 1987, Çörüş, 1993). Ön Büyütme Ön büyütme ünitesinde kullanılan tank özellikleri sövraj bölümü ile aynıdır. Bu bölümde açık devre su sistemi kullanılmaktadır. Gelişim özelliklerine göre 60-70 günlerde sövraj ünitesini terk eden yavrular boylarına ayrıldıktan sonra ön büyütme ünitesine alınırlar. Ayrıca boylama sırasında hava keseli ve hava kesesiz bireylerde birbirinde ayrılır (Chatain ve Corrao, 1992). Bu bölümde ağ kafeslere çıkarılmak için gerekli olan 1.5-2 gram ağırlığa kadar büyütülürler. Ancak ülkemiz koşullarında yavru bireyler 0.5-1 gram arasında da kafes sistemlerine çıkarılmaktadır. Ön büyütme ünitesinde de balıklar sürekli gözlenmeli ve kanibalizmin engellenmesi için sık sık boylama yapılmalıdır. Balıklara verilen su sıcaklığı 20-22 0C olup 16 saat ışıklandırma uygulanır. Yemleme otomatik yemlikler ile yapılmaktadır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Tanklara 3000-5000 adet/m3 arasında yavru stoklanabilir. Su değişimi balık büyüklüğüne ve stok yoğunluğuna göre saate %50-150 arasında değişmektedir. Yemleme oranı %7 başlayıp %3 kadar düşme gösterir (Tablo 3). Yaşama oranı hastalık çıkmadığı süre içinde %90-95 arasındadır. Büyütme Kuluçkahanelerden ve özellikle ülkemizde doğal ortamdan temin edilen çipura yavruları porsiyonluk boyuta getirilmek üzere karasal ve denizel ortama kurulan yetiştirme sistemlerde farklı teknikler kullanılarak büyütülür. Bunlar içinde en çok kullanılanı yarı entansif ve entansif yetiştirme yöntemidir. Şu anda ülkemizde ekstansif yöntem Avrupa ülkelerindeki düzeyde değildir. Özellikle Bodrum ve Savran bölgelerinde yarı entansif üretim yapan çipura işletmeleri mevcuttur. Ekstansif Yetiştirme Yöntemi Bunun için açık denizden, kıyısal bölgelerdeki lagünlerden ve denize bağlantısı olan acı su birikintilerinden faydalanılır. Açık denizlerde yapılan yetiştiricilikte genel olarak deniz yosunları ve yumuşakçaların üretimi yapılmaktadır. Kıyı bölgedeki lagüner alanlarda ise başta çipura, levrek, kefal ve yılan balığı gibi türlerin yetiştiriciliği yapılır. Yavrular ilkbahar dönemlerinde barınmak ve beslenmek üzere lagüner alanlara girerler. Bu dönem içinde bir çok zoo ve fitoplanktonun yanı sıra küçük balık, karides yavruları mamun, sülines, midye ve akivades ile beslenirler. İzmir Körfez bölgesi dalyanlarına 2-10 gram ağırlıkta giren çipuralar, sonbaharda 80-120 gram ağırlığa ulaşırlar. 100 gram ağırlıkta girenler ise 200-300 gram ağırlığa kadar ulaşabilirler. Bu ağırlık artışları dalyan sahasının verimliliği ile ilgilidir. Çipuralar kış aylarına doğru dalyan sahasının soğuması ile daha sıcak olan derin sulara kaçma eğilim gösterirler. Deniz ile bağlantılı noktalara kurulan kuzuluk sistemlerinden yakalanan bu bireyler pazara sunulacağı gibi, canlı olarak yakalanıp toprak havuz ve ağ kafes sistemlerinde de büyütülebilir. Ekstansif yetiştiricilikte beslemeye ve çevre şartlarının kontrolüne ihtiyaç duyulmaz. Ancak bu alanlar kendi içinde parsellenerek derinleştirilebilir ve su değişimi sağlanabilir. Özellikle İtalya sahillerinde yoğun olarak valikültür adı verilerek yapılan bu teknikte dışarıdan besin takviyesinde de bulunulmaktadır. Böylece küçük boylarda dışarıya kaçarken yakalanan yavrular kışlatılarak ağırlık kazanmaları sağlanmaktadır. Bu sistemlere dışarıdan da yavru takviyesinde bulunulur. Ekstansif lagün yetiştiriciliğinde 80-100.000 hektarlık alanlarda bir senede türlere göre 100-500 kg/hektar ürün elde edilebilir. Yarı Entansif Yetiştirme Yöntemi Bu sistem havuz yetiştiriciliği olarak ta adlandırılır. Genellikle balık ve eklembacaklıların yetiştiriciliğinde kullanılır. Bu sistemde toprak ve beton havuzların yanı sıra portatif yapıdaki polyester veya polymerden yapılmış branda havuzlardan yararlanılır. Ayrıca kıyısal alanlar ağ ile çevrilerek üretimde yapılmaktadır. Bu sistemlerde günlük su değişimleri kontrol altında olup ürün miktarının arttırılmasında oksijeneratörlerden yararlanılır. Toprak havuzlarda ise son yıllarda jeo-membran sistemi uygulanmaktadır. Su debisinin artırılmasına bağlı olarak bu sistemlerden stok yoğunluğu arttırılarak entansif amaçlı olarak ta yaralanılabilir. Ancak sistemde meydana gelecek aksaklıklar üretimi olumsuz etkiler. Bu yüzden stoklama yoğunluğunun düşük tutulmasında fayda vardır. Stok yoğunluğu beton havuzlar, brandalı havuzlar ve iç kısmı jeo-membran kaplı küçük hacimli toprak havuzlarda 2-5 kg/m3 arasındadır. Büyük yapıdaki toprak havuzlardan 1-4 ton/hektar ürün edilebilir. Entansif Yetiştirme Yöntemi Dünyada ve ülkemizde yoğun olarak kullanılan bu yöntemde yüzer ağ kafes sistemlerinde yetiştiricilik yapılmaktadır. Akuakültür çalışmalarının gelişmesine paralel olarak birim alandan daha çok verim almayı sağlaması acısından su içerisinde yetiştirme sistemleri geliştirilmiştir. Günümüzde kıyısal alanlarda, açık denizlerde ve okyanuslarda bile güvenlik içinde kurulabilecek sistemler planlanmaktadır Günümüzde kıyı ötesi kafeslerde 2500-6000 m3' arası değişen hacimlerde tek bir sistemde yıllık 150 ton üretim yapılabilmektedir. Bu sistemlerde su kalitesinin kıyısal bölgelere göre çok daha iyi olması, işletmenin kendini ve başkalarını kirletme etkisinin az olması, birim alana daha yoğun stoklama imkanının olması, daha hızlı balık gelişiminin sağlanması, uzun vadede ekonomik olması ve yüksek kapasite balık stoklanabilmesi gibi özellikler bu sistemleri çekici hale getirmektedir (Özden ve diğ., 1998). Kafes sistemlerinde sabit kafesler, yüzer kafesler, dalgıç kafesler ve döner kafesler kullanılmaktadır. Ağ kafeslere kurulduğu yerin özelliklerine ve su kalitesinin durumuna göre 15-30 kg/m3 arasında stoklama yapılabilir. Balıkların hızlı şekilde gelişimi için besleme teknikleri ve su sıcaklığı önemli rol oynar. Besleme rejimlerinde yem kalitesinin yanı sıra balıkların ağırlıkları ile su sıcaklığı arasındaki ilişki dikkatli takip edilmelidir. Bu dönemde kullanılan yemlerdeki protein %46-52, selüloz %2-4, ham kül %12-13, ham yağ % 10-11, kalsiyum % 1.4-2.2, ve fosfor %1.15-1.5 arasında değişim göstermelidir. Bunun yanı sıra vitaminler ve iz elementler yeterli miktarda kullanılmalıdır. Tablo 4'te çipura balıklarının ağırlıklarına göre 16-25 C'de besleme oranları ve balıkların konulması gereken ağ göz açıklıkları verilmiştir. Kafeslerde düğümsüz ağ kullanılması solungaç takılmalarının engellenmesi, pul dökülmesi ve vücutta meydana gelen çizilmelerin önlenmesi için faydalıdır. Ege Bölgesi koşullarında 4 aylık süreyi akuakültür tesislerinde geçiren çipura yavrularının ağ kafeslere çıktıktan itibaren 12-14 aylık sürede 3-4 gram ağırlıktan 350-400 gram ağırlığa ulaşmaktadırlar. Bu süre ve ağırlık artışı yetiştirme ortamının ekolojik şartlarına, kullanılan yemin içeriğine, balık stok yoğunluğuna, hastalık etkenleri ve larva kalitesi göre değişim gösterebilir. SONUÇ Çipura larva yetiştiriciliğinde günümüzde halen istenilen yaşama oranları sağlanamamıştır. Oldukça zor ve hassas bir üretim tekniği isteyen çipuraların başarı oranın arttırılmasında; ortam suyunun fiziko-kimyasal yapısının sürekli kontrol edilmesi, ani değişimlerden kaçınılması, yumurtaların temininde pestisitlerden, metalik iyonlardan, hipoklorid ve diğer kirliliklerden arındırılmış ortamlar yaratılması, hormon uygulamalarına dikkat edilmesi ve canlı yumurtaların inkübasyona alınmadan önce dezenfekte edilmesi, yumurta ve larva stok yoğunluğunun optimum oranlarda tutulması, ani abiyotik değişimlerden ve mekanik şoklardan kaçınılması, larval aşamada ışık yoğunluğunun çok iyi ayarlanması, postlarval döneme geçmeden önce tank yüzeyinde biriken yağ tabakasının yüzey alanı hesaplanarak hava süpürgeleri ile ortamdan uzaklaştırılması, 12-14 günler arasında ortam şartlarında değişim olmadan bazı larva tanklarının yaşama oranları diğer tanklardan önemli oranda düşük ise bu tankların klorlanarak iptal edilmesi, hava kesesi gelişimi süresince su şartları ve ortam düzeninde ani değişimler olmaması, larvalara verilen canlı yem kaynakları olan rotifera (Brachionus plicatilis) ve artemiaların (Artemia sp.) gerekli yağ asitleri ve vitaminler ile zenginleştirilmesi, larva tanklarına uygulanan debinin larva yaşı ile doğru orantılı olarak arttırılması, debi hesaplarının yapılmasında larva hızı ve direncinin göz önüne alınması, özellikle hava kesesinin fonksiyonel olmamasına bağlı olarak deformasyona uğrayan larvaların 70-80. günlerde birbirinden ayrılması, bu ayırma tekniklerinin yavrular ağ kafeslere gönderilmeden önce mutlaka yapılması, hastalık etmenlerine karşı gerekli önlemlerin alınması, içerik yönünden yüksek besin değerine sahip yemlerin sövraj, ön büyütme ve büyütme dönemlerinde kullanılması başarının arttırılmasında yararlı olacaktır. Tüm bu koşullar yerine getirilmeye çalışılsa da üretimin çeşitli safhalarında değişik sorunlarla karşılaşılacaktır. Geliştirilen üretim tekniklerinin takibi ve ülkemiz koşullarına uygulanması sayesinde kalite ve kantite her geçen gün artacaktır. LİTERATÜR - Artemia Systems, 1991. User’s guide Artemia Systems N.V. Belgium - Alpbaz, A.G., 1990. Deniz Balıkları Yetiştiriciliği. Ege Üniversitesi Su Ürünleri Yüksekokulu Yayınları No. : 20. - Camus, P., Koutsikopoulos, A., 1984. Incubation experimentale et developpement embryonaire de la daurade royale Sparus aurata (L.), a differentes temperatures. Aquaculture, 42, 117-128. - Chatain, B., 1989b. Problems Related to the Lack of Functional Swimbladder in Intensiv Rearing of Dicentrarchus labrax and Sparus auratus. Advances in Tropical Aquaculture. 699-709. - Chatain, B., Guschemann, N., 1990. Improved Rate of Swimbladder on Mortality of Dicentrarchus labrax During Weaning. Aquaculture 78: 55–61. - Chatain, B., Corrao, D., 1992. A Sorting Method for Eliminating Fish Larvae without Functional Swimbladders. Aquaculture, 107. 81-88. - Chervinski, J., Chanin, Y. 1985. Gilthead sea bream (Sparus aurata L.) a candidate for culture in ponds- Laboratory experiments. Bamidgeh 37 (2), 42. - Conides, A., 1992. Effects of salinity on growth, food conversion and maintenance of young gilthead sea bream, S. auratus. PhD thesis, University of Athens, Greece, 185 pp. - Çörüş, İ., 1993. Fransa’ da Levrek (Dicentrarchus labrax) Balığı Larvası Haçeri Sistemleri. E. Ü. Fen Bil. Ens. - Divanach, P., Kentouri, M., Dewarrin, G. 1986. Sur le sevrage et l’ evolution des perfomaves biologiques d’ alevins de daurades, Sparus auratus provevant d’ elevage extensif, apres replacement des nourrisseurs en continue par des distributeurs libre service. - Equipe Merea, 1987. Maitrise de la Qualite des Alevins de loup (Dicentrarchus labrax) Produits en Elevage Intensif. La Pis. Française, 85: 17–23. - FAO,1987. Identification sheets for the Mediterranean and Black Sea.Fishing Area 37.1343-1375. - France Aquaculture, 1987. Elevage Larvaire du Loup en Conditions Intensives. Rapport Interne. Centre National D’ Aquaculture Monastır, 87.07, 1-23. - Freddi, A., Berg, L.,Bilio, M., 1981. Optimal salinity-temperature combinations for the early life stages of gilthead sea brea, Sparus aurata. J. World maric. Society 12, 130-136 - Gordin, H.; Zohar, Y., 1978. Induced spawning of Sparus aurata (L.) by mean of hormonal treatments. Annales Biologie Animale Biochimie Biophysique, 18, 985-90. - Özden, O., Güner, Y., Alpbaz, A. G., Altunok, M., 1998. Kıyı Ötesi Ağ Kafes Teknolojisi. E.Ü. Su Ürünleri Fakültesi Dergisi. Cilt:15 Sayı:1-2 - Tandler, A., Helps, S., 1985. The effect of photoperiod and water exchange rate on growth and survival of gilthead sea bream (Sparus aurata) from hatching to metamorphosis in mass rearing system. Aquaculture 48, 71-82. - Timmons, M.,B., Losordo, T.M., 1994. Aquaculture Water Resume Systems: Engineering Design and management. Elsevier Science B.V., New York - Zohar, Y., Gordin, H., 1979. Spawning kinetics in the gilthead sea bream, S. aurata L. after low doses of human chorionic gonadotropin. Journal of Fish Biology, 15, 665-70. - Zohar, Y., Harel, M., Hassin, S., Tandler, A., 1995. Broodstock Management and egg and larval quality.94-118. Editors: Bromage, R., Roberts, R. Blackwell Science Ltd. Cambridge UK. - Zohar, Y.; Billard, R.;Weil, C., 1984. La reproduction de la daurade et du bar: Le cycle sexuel et l’induction de la ponte. In aquaculture de bar et des Sparides, (eds R. Billard; G. Barnabe), pp. 3-24. INRA Press, Paris. - Zohar, Y.;Tosky, M.; Pagelson, G.; Finkelman, Y., 1989a. Induction of Spawning in the Gilthead Sea bream, Sparus aurata, using [D-Ala6-Pro9NET] –LHRH: Comparison with the Use of hCG. Israel Journal of Aquaculture, 4, 105-13. - Zohar, Y., Goren, A., Tosky, M., Pagelson, G., Liebovitz, D., Koch, Y. 1989b. The bioactivity of gonadotroin-releasing hormones and its regulation in the gilthead sea bream, Sparus aurata, in vivo and in vitro studies. Fish Physiology and Biochemistry, 7, 59-67. - Zohar, Y., Breton, B., Sambroni, E., Fostier, E., Tosky, M., Pagelson, G., Liebovitz, D. 1990a. Development of homologous radioimmunoassay for a gonadotropin of the gilthead sea bream, Sparus aurata. Aquaculture, 88, 189-204.

http://www.biyologlar.com/cipura-sparus-aurata-lin-1758-baligininbiyolojisi-ve-yetistirme-teknikleri

LEVREK (Dicentrarchus labrax Lin., 1758) BALIĞININ BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Yrd.Dç.Dr. Kürşat FIRAT & Şahin SAKA Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik BölümüYetiştiricilik Anabilim Dalı İskele-Urla, 35440 İZMİR GİRİŞ Su ürünleri yetiştirme teknolojisinin gelişimi ile beraber levrek kültürü üzerindeki çalışmalarda yoğunlaşmıştır. Ülkemizde önceleri çipura balığının besiye alınması ve daha sonrada larva üretimine geçilmesini takiben, levrek larvalarının kültür çalışmalarında yoğun artışlar gözlenmiştir. İlk defa Fabre-Domerque (1905) tarafından levreklerin yapay yolla üretilebileceği bildirilmiş olup, Barnabé (1971) levreklerin hormon müdahelesi ile kontrol altına alınabileceğini rapor etmiştir. Aynı araştırmacı (1972) levrekleri jüvenil hale kadar getirmeyi başarmış ve bugün Avrupa ülkelerinde yumurtadan pazar boyuna kadar geniş bir endüstri kolu haline gelmesine öncülük etmiştir. Ülkemizde ise levrek larva yetiştiricilik çalışmaları 1984 yılında özel bir işletme ve E.Ü. Su Ürünleri Fakültesi'nde başlamıştır. 1980'li yılların sonunda üretimlerini binli rakamlar ile ifade eden akuakültür tesisleri günümüzde yıllık larva üretimlerini milyonlara dayanan rakamlar ile ifade etmektedirler. Levrek larva üretiminde sağlanan bu gelişim, yeni türlerin aquakültürüne de öncülük etmektedir. LEVREK(Dicentrarchus labrax, L. 1758) BALIĞININ BİYOLOJİSİ Morone labrax ve Roccus labrax sinonimleri ile de adlandırılan levrek, Phylum : Vertabrata Subphylum : Pisces Classis : Osteichthyes Subordo : Percoidei Familia : Serranidae Genus : Dicentrarchus Species : labrax (Linneaus, 1758) şekliyle sistematikteki yerini almıştır. Levrek balıkları, tüm Akdeniz'den, İngiltere'nin kuzey sahillerine ve Kanarya Adaları'na kadar yayılım gösterir. Deniz fenogramlarının bulunduğu kumlu, çamurlu-sığ biotoplarda, sıcaklığa ve tuzluluğa karşı gösterdiği toleransı ile nehir ağızlarında ve lagüner bölgelerde yaşayan bir littoral bölge balığıdır. Havaların soğuması ile birlikte kışlamak için derin sulara göç ederler. Karnivor bir tür olan, bazen yalnız bazen de küçük sürüler halinde dolaşan levreklerin genç dönemlerinde eklem bacaklılardan Crangon, Gammarus ve Ligia gibi küçük karidesleri, ergin dönemlerinde küçük balıklardan özellikle Sardina türünü, kafadanbacaklılardan Sepiola ve Loligo'yu, eklembacaklılardan Carnicus, Crangon sp. ve Macropipus türlerini tercih ettiği yakalanan bireylerin mide içeriklerinden alınan örneklerden ortaya çıkmaktadır (FAO, 1991). Vücudu lateralden hafif yassılaşmış olan levrek balığının derisi ktenoid pullarla kaplıdır. Sikloid pullar ense ve yanaklar üzerindedir. Yanal çizgi üzerinde 65-80 arası pul bulunur. Birinci solungaç yayı üzerindeki brankiospin sayısı 18-27 arası değişir. Dorsal yüzgeç araları geniştir. Dorsal yüzgeçte 8-10 adet diken ışın mevcuttur. II. dorsalde 1 diken ve 10-14 adet yumuşak ışın bulunur. Muzoda pul yoktur. Operkulumda gri-siyah leke mevcuttur. Preoperkulum ve operkulum üzerinde sert diken ışınlar vardır. Renk dorsalde koyu gri-esmer, ventralde beyazdır. Göz kemiğinin üstünde siyah lekeler mevcuttur. Ağız geniş, dişler damakta ve dilde bulunur. Renkleri sırt kısmında koyu gri-esmer, yanlarda gümüşi, karın bölgesinde beyazdır. Ergin bireylerin sırt kısmı lekesiz koyu renkte olurken, gençlerde bazen siyah lekeler olabilir. 1 m'ye kadar uzayabilen boyu ortalama 50 cm. olup, ağırlığı da 12 kg' a ulaşabilir (Uçal ve Benli, 1993). Tatlı sularda büyüyebilirler, fakat üreyemezler. Levrekler 5-28 °C arası sularda yaşayıp 12-14 °C arasında yumurta bırakırlar. Doğal ortamda 1 kg'lık bir dişinin 293.000-358.000 adet yumurta bırakabildiği bildirilmişlerdir (Kennedy ve Fitzmaurice, 1972). Tuzluluk değişimlerine karşı dayanıklı olup, ‰3 tuzluluktan ‰50 tuzluluğa kadar yayılım gösterir. ‰0 tuzluğa adapte olabilir. Levreklerin düşük tuzluluk şartlarına adaptasyonu üzerine birçok çalışma yapılmış olup, bunlar adaptasyon teknikleri, düşük tuzlulukta beslenmeleri ve gelişimleri üzerinedir (Loy ve ark., 1996, Dendrinos ve Thorpe, 1985, Johnson ve Katavic, 1984). Levrek balıkları 1 yaşına gelene kadar gonadlarında bir gelişim gözlenmez. 13-15. aylarda testiküllerde ve ovaryumlar da farklılaşma başlar. Doğal şartlar altında levrekler hayatlarının ikinci yılında sperm salgılayabilirler. Ancak RGS değeri düşüktür. 3. yılda ise ergin bir birey gibi yüksek oranda sperm sağlayabilirler. Ovaryumlardaki farklılaşma, erkeklerde olduğu gibi 13-15 aylar arasında başlar ve nispeten daha uzun sürer (Brusle ve Roblin, 1984). Dişiler doğal şartlar altında ancak 3. yılda yumurta bırakabilir. Büyüme hızı bir yaş grubu bireylerinde en fazla durumdadır. Cinsi olgunluk dönemlerinde ağırlık artışının dişilerde erkeklerden daha fazla olduğu saptanmıştır. Üçüncü yaştan sonra alınan besinler gonad gelişiminde kullanılır. Akdeniz'de erkekler 2-3 yaş 25-30 cm boyda, dişiler 3-5 yaş, 30-40 cm boyda, Atlantik’te ise erkekler 4-7 yaş ve 32-37 cm boyda, dişiler ise 5-8 yaş ve 38-42 cm boyda cinsel olgunluğa ulaşırlar (Alpbaz, 1990). Levrek balıkları Akdeniz' de Ocak-Mart ayları arasında yumurta bırakırlar. LEVREK BALIĞI YETİŞTİRİCİLİĞİ Anaçlar ve Yumurtlama Anaçlarının tutulduğu tanklar, anaçların büyüklüğüne ve stok yoğunluğuna bağlı olarak değişim gösterir. Akuakültür ünitelerinde büyük, orta ve küçük hacimli anaç havuz sistemleri kullanılmaktadır. Büyük sistemler yoğun olarak Japonya ve kuzey doğu Asya ülkelerinde 50-100 m3 hacimlerde kullanılmakta ve tesis dışında kurulmaktadır. Orta büyüklükte hacime sahip tanklar Avrupa ülkelerinde kullanılmakta olup tesis içinde yer almaktadır. Tankların hacimleri 15-30 m3 arasındadır. Bunların ayrıca filtrasyon, ısıtma ve soğutma sistemleri de mevcuttur. Küçük hacimli sistemler ise 10-20 m3 arasında olup Akdeniz sahasındaki ülkelerde kullanılmaktadır (Licas, 1988). Bu tankların tüm sistemleri çevresel şartlara karşı kontrol altındadır. Tanklar genellikle koyu renkte olup yuvarlaktır. Anaç bireyler yetiştiricilik yolu ile yada doğal ortamdan çeşitli avlama metodları ile yakalanabilir. En ideali paraketa ile yapılan avcılıktır. Ağ ile yakalanan bireylerde adaptasyon dönemin de yoğun ölümler görülür. Anaç bireyler yumurtlama döneminden önce yüksek kalitede taze yem ile kalamar, sübye ve karides etine dayalı pelet yemlerle günde 1-3 kere vücut ağırlığının (kg) %1-1.5’ğu kadar beslenmelidir. Verilen yemler %50-55 protein ve %10-15 deniz orijinli canlıların yağlarından oluşan içeriğe sahip olmalıdır. Yağlar en az %5 n-3 HUFA içermeli ve temel olarak 22:6n-3 (DNA) tipinde olmalıdır. Bu durum yumurta kalitesini doğrudan etkiler. Balıklar 10-15 kg/m3 olacak şekilde stoklanır. Dişi erkek oranı anaç balığın durumuna göre 1:1, 1:2 veya 2:3 kg olacak şekilde ayarlanır. Tanklara saatte %10-20 arası debi uygulanır. Su sıcaklığı 14-15 0C olmalıdır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Yumurtaların pelajik yapısından dolayı tankların su çıkışları yüzeydendir. Bunun için tankların üst çıkışına 500 mikron göz açıklığına sahip tank içine yerleştirilmiş reküparatör sistemleri konulur. Anaç bireylerden doğal yollarla, sağım yöntemiyle ve hormon müdahalesi ile yumurta temin edilebilir. Sağım yöntemi yumurtaların küçük olmasından ve döllenme oranının düşüklüğünden dolayı uygulanmamaktadır. Yumurtaların doğal periyot içinde hormon müdahalesi olmadan alınması kaliteyi olumlu etkiler. Bunun yanı sıra doğal ortamdan yakalanan bireylerin yumurtlamaya teşvik edilmesinde hormon kullanımı oldukça başarılı sonuçlar vermektedir. Ayrıca levrek anaçlarına fotoperiyot uygulanması ile doğal yumurtlama zamanları değiştirilerek yılın çeşitli dönemlerinde yumurta sağlanabilir. Levrek balıkları hormon uygulamalarına karşı hassastır. HCG ile teşvik edilen anaçlarda kuvvetli bir bağışıklık sistemi oluşur. Hipofizden gonadotrapin (GtH) salgılanmasındaki başarısızlıktan dolayı daha önceden kullanılan anaçlarda yumurtlama ve yumurtaların oluşumu sırasında sorunlar oluştuğunu saptanmıştır. HCG enjekte edilen anaçlarda hipotalamus hipofiz eksenindeki eksilme sonucunda, anaçlarının yumurtalarını oluşturmasında azalma görülür. Bunun sebebi hipofizde gonadotropin seviyesinin artmasına rağmen dolaşım sistemine salgılanmamasıdır. LH-RH ve LH-RHa’nın çeşitli türlerin plazmalarındaki gonadotropin (GtH) düzeyini yükselttiği ve HCG hormonuna göre daha avantajlı olduğu saptanmıştır (Alvarino ve diğ., 1992a, 1992b). Bu hormonların HCG hormonuna göre avantajları şunlardır. 1. GnRH (LH-RH) balığın kendi GtH üretimini sağlar. 2. Küçük moleküllüdür. GnRH kolayca sentezlenebilir ve saf olarak temin edilebilir. 3. Yumurtlama sırasında kullanılan miktar azdır. 4. GnRH türlere göre düşük miktarda kullanılabilir. 5. Küçük polipeptidlidir ve bağışıklık yapmaz. Levreklerde LH-RH’ın uygulanmasında yumurta çapının 650 mm civarında olması istenir. Bu dönemde yani vitellogenesis safhasında toplam 10 mgr/kg olacak şekilde, 12 saat ara ile uygulanması sonucunda ilk 48 saat içinde ovulasyon görülebilir. Uygulamanın gündüz başlaması ovulasyonun hızını artırırken, gece başlaması yüzdesini etkiler. Levrek balıklarında yapılan çalışmalarda HCG 500-1800 IU, LHRH 1-20 mgr/kg olacak düzeyinde kullanılmasının yumurta kalitesi ve kantititesi üzerinde olumlu etkisi olduğu saptanmıştır (Barnabé ve Paris, 1984, Barnabé ve Barnabé-Quet, 1985, Alvarino ve diğ., 1992a,1992b). Anaçlarda Yumurta ve Sperm Olgunlaşması Üreme dönemine giren levrek balıklarının gonadlarında yumurta hücrelerinin oluşması ve atılması dört temel periyotta olur. a) Pregametik Periyot: Haziran ve Ekim aylarında gonadlarda olgunlaşma yoktur. b) Gametogenesis: Ekim ve Ocak aylarında oosit sitoplazmasında yağ damlacıkları, az sayıda yağ globülleri ve kortikol alveolleri görülür. Kasım-Aralık aylarına kadar yağ damlasında büyüme görülmekle birlikte erkeklerde sperm elde edilmesi mümkündür. c) Yumurtlama Periyodu: Ocak ayında başlar, Mart ayında biter. Bu dönemde yumurtalar dışarı atılır. d) Dinlenme Periyodu: Nisan-Mayıs ayları arasında gözlenir. Ovaryumlar da atretik oosit’ler, testislerde artık yapılar gözlenir. Levreklerin ovaryumlarındaki yumurta hücresinin gelişimi ise 12 temel aşama ile açıklanır. 1. Aşama: İlkel yumurta hücresi (Ovogenium) çok küçük bir yapıdadır. Fakat buna nazaran büyüklüğü diğer hücrelerden daha fazladır. Hücrenin çapı 10-12 µ arasındadır. Hücrelerde mitoz bölünme ile çoğalma görülür. 2. Aşama: Yumurta hücrelerinin çapları 12-20 µ ulaşır. Her yumurta hücresinin etrafında folikül oluşmaya başlamıştır. Folikül hücrelerin ikinci katını oluşturur. 3. Aşama: Bu dönemde sitoplazmanın homojenliği bozulmuştur. Hücre çekirdeğinin (Nukleus) bölümlenmesi ile çekirdeğin dış kısmının şekillenmesi başlamıştır. Hücre çekirdeğinin çapı 5-8 µ arasındayken, hücrenin bu aşamada çapı ise yaklaşık 20 µ civarındadır. 4. Aşama: Hücre içerisinde stoplazmik üç zon birbirinden ayrılmıştır. Bunlar kortikal zon, granüler yapılı orta zon ve tanecikli prinüller zon dur. 5. Aşama: Bu dönemde ilk oosit zarı farklılaşmaya başlamıştır. Ayrıca yumurta sarısının meydana gelmesi ve toplanması olarak bilinen previtellogenesis’in de ilk başlangıcı bu aşamada görülür. Bu sırada hücre çapı 30-50 µ arasındadır. 6. Aşama: Çekirdek zarında ilk yağ damlacıkları ve çekirdek çevresinde loplar meydana gelmeye başlar. Bu olay yumurta çapı yaklaşık 100 µ olduğunda başlar ve yumurta 300-350 µ gelinceye kadar devam eder. 7. Aşama: Vitellüsün iki farklı yapısının belirginleşmeye başladığı bu dönemde yumurta zarının şekillenmesi de başlamıştır. Yaklaşık 100 µ çapındaki yumurta hücresinde yağ damlacıkları ve yumurta sarısı üretimi hızla devam eder. 8. Aşama: Yumurtanın çapı yaklaşık 200 µ’dur ve vitellüsün iki karışımı görülmektedir. 9. Aşama: Bu aşamada yağ damlacıkları yumurta sarısı tarafından hücre kenarına doğru itilir ve vitellüsün üç karışımı izlenebilir. 10. Aşama: Yumurta çapı 350-400 µ civarında olup vitellogenesis sona ermiş ve çekirdek kutba doğru yönelmiştir. 11. Aşama: Yumurta 500-550 µ boya ulaşmış ve mikropil deliği bu aşamada meydana gelmiştir. Yumurta içinde vitellüs, hücre duvarı ve yağ damlası net şekilde görülmektedir. 12. Aşama : Yumurtanın gonadlardaki bu gelişiminden sonra yumurta herhangi bir değişime uğramaksızın 1-2 ay bekler. Dışarıya doğru çıkıntı yapmasına neden olurlar. Böylece folikül tekasındaki kasların kontraksiyonu ile ovulasyon meydana gelir. Eğer biotik ve abiotik şartlar uygun değilse foliküllerin deformasyonu ile yumurtaların emilimi ortaya çıkar. Levrek balıklarında spermlerin gonadlarda ki gelişimi spermatogoniumların aktif şekilde testis kanalları duvarlarında çoğalması ile başlar. İlk önce spermatogoniumlardan primer spermatozitler, onlardan da sekonder spermatozitler meydana gelir. Testiküler kanal boşluklarında toplanan ve burada uygun şartlar oluşuncaya kadar bekleme pozisyonuna giren spermler, gonadotropin etkisi ile dışarı atılmaya hazır hale gelir. Testislerde hareketsiz halde bekleyen spermler su ile temasa geçince hareketlenirler. Yumurta Özellikleri ve Kalite Kriterleri Kemikli balıkların yumurta boyları türlere ve türlerin kendi içindeki bazı koşullara göre değişiklik gösterir. Türün yumurta çapı büyüdükçe yumurta sayısı azalır, çıkan larvanın boyu ve yaşama oranı artar. Döllenmiş yumurtalar pelajik, küresel ve saydamdır. Yumurtanın kalitesi, yumurtanın yüzebilirliği, yağ damlası sayısı, açılım oranı ve normal yapıdaki larva miktarı ile orantılıdır. Levrek yumurtalarında biri merkezi konumlu olmak üzere ortalama 4-5 adet yağ damlası bulunur. Levrek yumurtalarının çapları ortalama 1150±85 µ, yağ damlalarının çapı ise 360-420 µ arasındadır. Yumurta çapları bölgelere göre değişim gösterir. İngiltere kıyılarında yumurta çapları 1.07-1.32 mm arasında ölçülmüştür. Akdeniz kıyıları boyunca yumurtaların çapları daha küçük (1.02-1.296 mm) olarak tespit edilmiştir. Kuzey Denizi'nde ise bu değerler 1.386 mm’ye kadar ulaşmıştır. Yumurta çapı su sıcaklığı ve besin içeriği ile ilişkilidir. Kış aylarındaki düşük sıcaklıkta doğal üreme periyodunda alınan yumurtaların diğer zamanlarda sabit sıcaklıklarda elde edilen yumurtalara göre daha büyük olduğu saptanmıştır. Aynı tür içindeki yumurtaların boyutları arasındaki farklılıklar anaçların beslenmesine, büyüklüğüne, yumurtlama zamanına, hormon uygulamalarına, ortam koşullarına, genetik faktörlere ve bölgesel farklılıklara bağlıdır. Bunlar aynı zamanda kaliteyi ve kantiteyi etkileyen faktörler arasında yer almaktadır. Yumurtalarda morfolojik ve genetiksel bozukluk yok ise inkübasyon koşulları aynı olduğunda yumurtanın büyük veya küçük olması larva çıkış oranını değiştirmez. İnkübasyona alınacak yumurtaların kaliteli olması ileride çıkacak larva kalitesi için çok önemlidir. Bu bozukluklar inkübasyon öncesinde ve inkübasyon süresince belirlenmelidir. Reküparatörlerden alınan yumurtaların %40’tan fazlası ölü ise bu grup üretime zorunlu kalınmadıkça alınmamalıdır. Blastomer bölünmelerinin eşit olmasına dikkat edilmeli, eksik bölünmelerin olup olmadığı tespit edilmelidir. Çok sayıda yağ damlası içeren yumurtalar yine zorunlu kalınmadıkça üretime alınmamalıdır. Yumurta içinde nokta şeklinde parçacıklar görülmesi ve blastoporun çıkıntı yapması embriyonik gelişim esnasında meydana gelen olumsuzluklardan kaynaklanan diğer bozukluklardır. Yumurtaların İnkübasyonu Uygun ortam şartlarında anaçlar tarafından bırakılan yumurtalar reküparatörlerden hassas biçimde toplanır. Yumurtalar toplama, tartım ve canlı-ölü ayrılması aşamalarında hava ile mümkün olduğunca az temas ettirilmeli ve çok miktarda yumurtanın üst üste birikmesi engellenmelidir. Yumurtalar uzun süre nakil edilecekler ise 15-20 litrelik plastik kaplar kullanılır. 24 saatlik bir taşıma için litreye 20.000 adet, 6 saatlik bir taşıma için ise litreye 80.000 adet yumurta konulur. Taşıma işlemi döllenmeden sonraki ilk 24 saat içinde yapılmalıdır. Taşıma kapları içerisindeki suyun oksijen değeri 9-11 mg/lt' ye yükseltilmelidir. Plastik kabın 3/2'sine su ve yumurta konulur. Kabın 3/1’ne ise saf oksijen basılır. Taşıma işlemi sonucunda açılım oranı %50-70 arasında değişmektedir. Yumurtalar inkübasyona alınmadan önce gerek duyulursa dezenfeksiyon işlemine tabi tutulmalıdır. Bunun için %5' lik Iadophor çözeltisinden bir litre deniz suyuna 10 ml konur ve yumurtalar içinde 8-10 dakika bekletilir. Ayrıca bu işlem için çinko içermeyen Malahit yeşili ile de 5 mg/lt oranında 40-60 dakika arası uygulama yapılarak tatbik edilir. Canlı yumurtalar temin edildikten sonra bunların inkübasyona alma işlemi başlar. İnkübatörlerin konulacağı havuzlar değişik yapıda olabilir. Yumurtaların inkübasyonu için en uygun sistem race-way tipinde olan havuzlara inkübatörlerin yerleştirilmesidir. Ayrıca larva tankları veya diğer yapıdaki tanklarda da bu işlem yapılabilir. Hassas bir çalışmanın yapılabilmesi ve kontaminasyonun engellenmesi için akuakültür tesisinde inkübasyon ünitesinin ayrı olması gereklidir. Bu ünitenin büyüklüğü ve ekipmanları tesis için gerekli yumurta miktarına göre dizayn edilir. İnkübatörlerin konulacağı tankların iç kısımları koyu renkli ve jel-kot kaplıdır. Kullanılan inkübatörlerin hacimleri 50-200 lt arasında değişebilir. İnkübatörler polyesterden yapılmış olup silindir koniktir. Silindir kısmı 300 m’luk plankton bezi ile kaplı olup konik kısım polyesterdir. Her inkübatöre alttan ayrı su girişi yapılabildiği gibi, bunların yerleştirildiği havuzlara da su giriş ve çıkışı direkt olarak yapılır. Tanklara gelen su önce 5 m' luk, sonrada 1 m'luk kartuş filtrelerden geçerek U.V. filtreye giriş yapar. Buradan da tanklara dağılır. Yapılan çalışmalarda levrek yumurtalarının ‰29-47 tuzlulukta çatladığı görülmüştür. Fakat iyi bir yumurta açılımı için tuzluluğun hem levrek hem de çipura yumurtaları için ‰34-38 arasında olması gerekir. ‰34 tuzluluğun altında yumurtalar semi-pelajik özellik gösterirler ve ‰33 tuzluluğun altında da tamamen çökerler. Levrek yumurtaları için en iyi inkübasyon sıcaklığı 14-16 0C arasındadır (Freddi, 1985). Temin edilen yumurtalar alındıkları ortamla aynı sıcaklıktaki inkübatör tanklarına yerleştirilmelidir. Sıcaklık farkı ±0.5 0C dereceyi geçmemelidir. Yumurtalar inkübatörlere ortalama 3000-5000 adet/lt olacak şekilde konulur. İnkübasyon süresince ışık kullanılmaz. İnkübatörlerin bulunduğu tanklarda saatte %40-60 su değişimi uygulanır. Su değişimi olmadan yapılan inkübasyonlar da açılım oranları %30-40 olarak tespit edilmiştir. Normal akışkanlı suda ise açılım %75-85 arasında olmaktadır. Yumurtaların Embriyolojik Gelişimi Spermin yumurtaya girmesi ile başlayan döllenme olayı, inkübasyon süresi adı da verilen embriyonun yumurtadan çıkışına kadar devam eden süreç ile son bulur. Tablo 1' de 15 ve 17 0C de levrek yumurtalarının embriyolojik gelişimleri diğer araştırmacılar ile birlikte verilmiştir. Levreklerde Larval Dönem Yumurtaların embriyolojik gelişimlerinin tamamlanması ve yumurta kapsülünü terk etmesi ile birlikte larval safhaya geçilir. Prelarval Evre Levrek larvalarının yumurtadan çıktıklarında ağız ve anüsleri kapalıdır. Larvalar pasif durumdadır, baş aşağı dururlar ve kendi vitellüs keselerinden sağladıkları enerji ile hayatlarını sürdürürler. Yumurtadan çıkan levrek larvalarının boyları 3.4-3.6 mm arasındadır. Vitellüs kesesi boyu 1.1-1.3 mm uzunluğundadır. Yağ damlası çapı ise 0.5-0.7 mm arasındadır. Ağız ve anüs kapalı olduğundan dışarıdan besleme söz konusu değildir. Larvanın sadece vitellüs kesesinden beslendiği bu döneme lecithotrophik periyot adı verilir. Vitellüs kesesi vücudun anteriorunda yer alır. Yağ damlası ise vitellüs kesesinin posteriorundadır. Anüs vücudun yaklaşık olarak ortasında yer alan 14-15. miyomerler altında yer alır. Su sıcaklığı vitellüs kesesinin tüketiminde ve ağız ile anüsün açılmasında en önemli faktördür. Pigmentasyon burunda, besin kesesinin ön kısmında, kuyruğun ventralinde, bağırsağın üstü boyunca, ağız bölgesinde ve anüsün üst tarafında yıldızsı yapıda belirginleşmeye başlamıştır. Pektoral yüzgeçler oluşmuştur, fakat kullanılmaz. İlk 24 saat içinde spazmadik yüzme vardır. İlk gün sonunda larvanın baş bölgesi yukarı doğru kalkar. Vitellüs absorbsiyonu devam etmektedir. Tuzluluğun düşürülmesi süresince ve vitellüsün absorbsiyonu ile larvalar tank ortamında yukarıdan aşağıya doğru homojen şekilde dağılırlar. Yumurtadan çıkmış prelarvaların davranışsal tepkileri esas olarak koklama duyusuna, ikincil olarak ise yanal çizgiye dayanır. Koku alma plakoidleri inkubasyonun 80. saatinde epidermal hücre katları içinde kabarcık şeklinde görülür. 65. saat civarında başın yan tarafında neusomast’lar görülür. Yumurtadan çıktıktan sonra vücut yüzeyinin yan tarafında 8 neuromast görülür. Yanal çizgideki neuromastlar baştakilerden daha büyüktür. Operkulum kenarlarında, gözlerin arasında ve kuyruk yarım dairesinde bulunurlar. Yanal çizgide de serbest neuromastlar mevcuttur. Larvanın tüm vücudunu saran bir primordial yüzgeç bulunur. Yüzgeç başın hemen arka kısmından başlayıp tüm kuyruğu geçer ve besin kesesinde son bulur. Yüzgeç ışınsız bir deri kıvrımı şeklindedir. Bu sayede larva suda hem yüzebilirliğini hem de gerek duyduğu O2 ihtiyacını karşılar. Yumurtadan henüz çıkmış larvaların ağız epitelyumu düzensiz bir şekilde ve yassı hücrelerden meydana gelen tek bir tabakadan oluşur. 3. güne doğru yer yer iki sıra hücreye rastlanır. Sindirim tüpü düz bir boru şeklinde ve 10 m kalınlığındadır. Sindirim tüpünün dorsalinde pankreas, ventral bölgesinde karaciğer farklılaşmamış küçük tomurcuksu yapıdaki hücrelerden oluşur. Mide bu dönemde bir kıvrım ve bir boğum ile belirlenir. Bağırsağın çapı mideninkinden daha fazladır. Bağırsak çeperi yumurtadan çıktıktan itibaren düz bir form izler. 1 ve 2. günlerde tek bir tabaka hücre vardır. 3. gün yoğun bir mitoz bölünme ile bu hücreler iki-üç tabaka haline gelir. Ağzı açılmamış larvanın bağırsak hücre çapları 40 hm dan daha küçük lipoprotein partiküllerinin taşınımını ve sentezini yapabilir (Diaz ve diğ., 1997). Lecithotropik dönemin sonunda larva bağırsak hücreleri fonksiyonel olmasına rağmen gelişim yavaştır. Vitellüs bol ve ana yağları içermesi ile temel besleyici rol oynar. İlk beslemeden sonra bağırsak hücreleri 200 hm çaplı lipoproteinleri sindirebilir. Lecithotropik dönem boyunca iç rezervler yavaş yavaş azalır ve sindirim kapasitesinin artması ile lecithoexotropik periyot denilen hem iç hem de dış besleme başlar. Bağırsak, larvada bir kapakçıkla postvalvular ve prevalvular bağırsak olmak üzere iki bölgeye ayrılır. Karaciğerdeki hepatik hücreler ilk günle beraber görülmeye başlar ve 10 m kalınlığındadır. 3. günden itibaren epetetial kanal ile larvaların sindirim tüpüne bağlanırken boyuda 110 m’a ulaşmıştır. Bu dönemde pankreasta gelişim proksimal, karaciğerde ise distal yöndedir. 2. günde sindirim tüpü 50 derecelik bir acı ile dönme hareketi yapar. Bununla beraber karaciğer sol laterale kayarken, pankreasta sağ laterale yerleşir. Safra kesesi karaciğer tarafından sarılır. Sindirim tüpünün dorsal bölümünde hava kesesinin ilk oluşumu başlar. Pankreas mesodermik hücre katmanları tarafından çevrilir. Hücre yapısı pyriformdur. Karaciğerde ise üçüncü günle beraber hepotoblast polirizasyon sonucu değişim redükte olunur. Bu dönemde henüz larva içinde organ oluşumları olduğundan sindirim olması söz konusu değildir. 3. günle beraber gözlerde pigmentasyon açıkça görülür. Hareket hala su debisi ile beraber olup larvalar 20-30 sn' de bir 2-3 sn yüzme hareketi yapar. Postlarval Evre Postlarval evre 15-16 0C 5.günde sonunda ağız ve anüsün açılması ile başlar. Bu dönmede ağız içinde mukositler oluşur. Bunlar ilk önce mukusla kaplanmış epitelium çukurları gibidir. Selüler çeperleri incedir. 7. güne doğru çene kıkırdakları ve kasları oluşmaya başlar. Salgı bezleri tam oluşmadığından sindirim mekanizması mükemmel değildir. Sindirim tüpü epitel yapıda dört-altı sıra hücreden oluşur ve kalınlığı 45 mikrondur. 8. güne doğru hücre sıra sayısı altı-sekiz adete ulaşır. Bu sırada bağırsak emici hücreleri işlevlik kazanmıştır. Bu dönem içinde 10-11. günlerde phanin dişlerin ilkel formları oluşmaya başlar. Mide bu dönemde daralmış bir yapı izleyerek boğumlaşmıştır. Bağırsaklara geçişi sağlayan valf mevcuttur. Midesel alt mukozayı çevreleyen kas dokusu bu günlerde iyice belirginleşmiştir. 12-15. günlerde rectum epitel hücrelerinin görülmesi proteinlerin yavaş yavaş emilmeye başlandığını gösterir. Protein emilimi pinoitosis ile hücre zarından yapılır. Yağların emilimi prevalvular bağırsaktan yapılmaktadır (Deplano ve ark., 1991). Karaciğer 13-14. günle beraber glikojeni depolayacağı bölgeyi oluşturur. 20. günle birlikte sindirim kanalı 60 µ boyuta ulaşır. Doğal olarak bu dönmede larvanın canlı yemler ile beslenmesi gerekir. Besin kesesinin çoğu absorbe olmasına rağmen az miktarda yağ damlası mevcuttur. Larva bu dönemde 60 derecelik açı içerisindeki besinleri görüp algılayabilir. İki gözün kesiştiği bölgedeki yansıması algıladıktan sonra 5-7 mm geri çekilme yaparak yılanvari şeklinde bir hareket ile avına saldırır ve tek hamlede yutar. Koku sistemleri ve yanal çizgi avlanmada diğer yardımcı faktörlerdir. Hava kesesi ilk dolumu da bu günlere rastlar. Hava kesesi oluşumu ve gelişimi, levrek larvalarında yaşama yüzdesini ve gelişimi sınırlayıcı temel fizyolojik yapıdır. Levrek genel olarak fizoglist türler içinde gösterilse de hava kesesi ile sindirim tüpünü birbirine bağlayan duktus pinomatikus’un post larval dönemde kopması ile parafizoglist türler içinde yer alır (Chatain, 1986). Levreklerde hava kesesi sindirim tüpünün dorsal diverkülünden köken alır. Üçüncü günde elektron mikroskobu ile hava kesesinin gelişen yapısı görülebilir. Larva 5.2 mm boya geldiğinde pankreasın sol tarafından gelişmeye başlar. Bu dönemde hava kesesi duktus pinomatikus ile sindirim tüpüne bağlıdır. Bu gelişim su sıcaklığıyla doğru orantılı olarak 5-6. günlerde şekillenir. Pankreas sağ taraftan hava kesesini sararken kese sindirim kanalının üstünde horizontal ve vertikal yapıda gelişmesine devam eder. Larva 5.8 mm boya ulaştığında vertikal büyüme açıkça görülür. Hava kesesinin gelişimi esnasında vitellüs kesesi ve yağ damlası hacimlerinde küçülme olur (Fırat, 1995). 5.2-6 mm boylarda hava kesesi içinde ilk hava kabarcığı görülür. Larva su yüzeyinden ilk hava kabarcığını yutarak kesesini şişirir. Hava kesesi hacim olarak büyümüş ve üzerinde peritenium parçaları şekillenmiştir. Hava kesesinin şişmesi iki safhada meydana gelir. Birinci safhada kendi içinde iki bölümde açıklanır. İlk dönem kırılgan bir hava kabarcığının olduğu şişme dönemdir. Hava kabarcığı kese hacmiyle sınırlanmamıştır. İkinci dönemi ise, ilk şişme olmadığında kesenin içinin loş ve karanlık bir yapı göstermesiyle tanımlanır. Bazen kese şişme gösterdiği halde içinde hava kabarcığı gözükmez. Bu şişme gibi gözüken yapı kese hücre duvarının kalınlaşmasından kaynaklanır. Bu anormal keseler lümenlerinde gaz yerine eosinofil jelatinöz madde içerir (Paperna ve diğ., 1977). Epitelyum hücrelerinin hipertrofisinin bileşimi ile oluşmuştur. İlk şişme olmadığı taktirde kese gelişimi şişmeden önceki dönemde durur ve fonksiyonelliğini kaybeder. Bu aşamadan sonra kesenin gelişimi imkansızdır (Chatain ve Dewavrin, 1989). Kese uzunluğu larva uzunluğunun % 3-5' i kadardır. İlk şişmenin gerçekleşebileceği maksimum. boy 6.5 mm' dir. 10.5 mm boyda kese içinde hava kabarcığı çok net bir şekilde görülürken, larva 11-12 mm boya ulaştığında ilk hava kabarcığının arkasında birincisinden daha küçük bir hava kabarcığı görülür ki buda ikici safhayı oluşturan bölümdür. Bu hava kabarcığı fizyon yoluyla ilk hava kabarcığı ile birleşerek keseye elipsoidal bir görüntü kazandırır ve keseyi arkaya doğru uzatır. Hava kabarcığı artık tek bir yapı gösterir. Bu dönemde kese boyu total uzunluğu 14 mm olan larva boyunun %10-12' si kadardır. 13-15 günlerde duktus pinomatikus dejenere olarak sindirim tüpünden ayrılır. Bundan sonra hava kesesinin doldurulması gaz bezi ve retya mirabilya ile gerçekleşir. Levrek Larva Yetiştirme Dönemleri Yumurtaların embriyolojik gelişimini tamamlayıp larvaların çıkması ile birlikte larva yetiştiriciliği de başlar. Larva yetiştiriciliği biyotik, abiyotik ve yabancı biyotik faktörlerin kontrol altına alındığı akuakültür tesislerinde yapılmaktadır. Larva yetiştirme periyodu larval dönem, sövraj (mikropartikül yeme geçiş) ve ön büyütme olarak üç bölümde gerçekleşir. Larval Dönem Prelarval dönemde, larvalar yoğun üretim koşullarında 80-200 adet/lt, olacak şekilde larva tanklarına yerleştirilir. İdeal stok yoğunluğu 100-125 adet/lt’dir. Tanklar silindir konik yapıda olup polyester malzemeden üretilmiştir. Hacimleri uygulanan tekniğe göre 2 m3'ten 15 m3'e kadar değişim gösterebilir. İdeal larva tankları 4-6 m3 hacmindedir. Havuzların iç yüzeyleri gel-coat ile kaplı olup koyu renklidir. Larvaların kolay izlenmesi için tanklara lomboz açılmalıdır. Havuzların etrafı rahat çalışmaya elverişli olmalı, alttan ve üstten su çıkışları mevcut olmalıdır. Bu tankların seçimi uygulanacak larva yetiştirme tekniği ile ilgilidir. Levrek larva yetiştiriciliğinde açık devre ve kapalı devre sistemler kullanılmaktadır. Açık devre sistemlerde su kriterleri larvanın gerek duyduğu şartlara göre ayarlanır ve üretim tanklarına gönderilir. Balıklar tarafından kullanılan su daha sonra deşarj edilir. Saatte %5 değişim ile başlayan su debisinin larva dönem sonunda saatte %50 çıktığı düşünüldüğünde kullanılan su miktarına bağlı enerji tüketiminin fazlalığı ortaya çıkar. Kapalı devre sistemlerde ise tanklarda kullanılan su önce toplama tankına gelir. Burada gerekli su yenilenmesi yapıldıktan sonra tuzluluğu tekrar ayarlanır. Buradan kum filtresine geçer ve beraberinde getirdiği süspansiyon haldeki partikül maddelerden ayrılarak ultraviyole filtreye gönderilir. Bu işlem sırasında bünyesindeki tüm canlı organizmalardan (bakteri, mantar, parazit, bazı virüsler vs.) arınarak biyolojik filtreye girer. Balık dışkıları yem atıkları ve ölü balıklardan dolayı yükselen amonyak miktarı bu aşamada aerobik bakteriler tarafından önce nitrite daha sonrada balıklar için zararlı etkisi olmayan nitrata indirgenir. İşlemleri tamamlayan su havuzlara geri dönmek üzere sistemi terk eder. Ancak havuzlara ulaşmadan önce bünyesinde getirdiği azot gazı fazlasını atmak ve oksijence %100 doygunluğa ulaşmak için saturasyon kolonlarından geçerek havuzlara gelir. Saturasyon kolonlarına girmeden önce suyun oksijen değeri 1.8-2.3 mg/lt'ye kadar düşmektedir. Bu sayede suyun O2 değeri tekrar 5-6 mg/lt’ye ulaşmaktadır. Ayrıca saturasyon kolonlarının içinde havalandırma sistemleri de mevcuttur. Kimi kapalı devre sistemlerde ultraviyole filtreler biyolojik filtrelerden sonra kullanılsa da havuzlarda gelişen patojen veya patojen olmayan mikroorganizmaların biyolojik filtrelere yerleşerek zaten zayıf yapıda olan aerobik bakterilerin yerini alması sistemin çalışmasını olumsuz etkiler (Timmons ve Losordo, 1994). Kapalı devre sistemler, suyun ısıtılmasında veya soğutulmasında kullanılan enerji açısından avantajlıdır. Bunun yanı sıra kapalı devre sistemlerde, larvalar için tehlikeli olan suyun fiziksel ve kimyasal değişimleri ani farklılıklar göstermez. Deniz ortamında özellikle yazın planlanan üretimlerde görülen bakteri patlamalarına karşı üretimi korur. Özellikle levrek larva yetiştiriciliğinde kullanılan düşük tuzluluk tekniğinin uygulanması ve tatlı su tasarrufu sağlanması yönünden avantajlıdır. Bununla birlikte kapalı devre suyunun her gün analizleri yapılarak amonyak miktarı kontrol edilmelidir, aksi halde ani ölümler görülebilir. Yetiştiricilikte sistem farkı gözetilmeksizin larva için gerekli olan fiziksel-kimyasal koşullar ve besleme özellikleri optimum düzeyde olmalıdır. İlk on günde ağız ve anüsün açılması, sindirim tüpünün faaliyete geçmesi ve hava kesesi doldurulması gibi çok önemli fizyolojik gelişimlerin olması ve larval başarıyı direkt olarak etkilemesi açısından yüksek sıcaklıkta çalışılmaktan kaçınılmalıdır. Su sıcaklığı ilk dönem 15-16 0C olup ortam karanlıktır (Bertolini ve diğ, 1991) (Tablo 2). Levrek larva yetiştiriciliğinde uygulan tuzluluk düşürme tekniği yaşama oranının olumlu yönde etkilemektedir (Johnson ve Katavic, 1986). Bunun yanı sıra hava kesesi oluşturma yüzdesini arttırması ve buna paralel olarak deformasyonun azalması bu tekniği daha da kullanılır hale getirmiştir. Tuzluluk ilk günden itibaren tedrici olarak düşürülür ve 5. günde doğal deniz suyu tuzluluğundan ‰26 tuzluluğa ulaşılır. 5-17. günler arasında bu tuzluluk değerinde sabit kalınır. 17-23. günler arasında aynı şekilde tuzluluk kademeli olarak arttırılarak doğal deniz suyu tuzluluğu düzeyine çıkarılır. Tuzluluk artırımında hava kesesi hipertrofisi ile karşılaşıldığında ‰26 tuzluluğa geri dönülmelidir (Saka, 1995). Oksijen değeri 5-6 mg/lt’dir. Türbitite miktarı 8.5-12 ITU'yu aşmamalıdır. Larva tanklarında nitritin (NO2) 0.013-0.016 mg/lt, nitratın (NO3) 0.062-0.068 mg/lt arsında olması üretim için idealdir (Equınoxe, 1990). 15-16 0C su sıcaklığında levreklerde prelarval dönem 5. günde sona erer ve postlarval dönem başlar. Ağız açılmadan önce tankların üzerinde biriken yağ tabakasının temizlenmesi için yüzey temizleyicileri tank yüzey alanına göre 1 veya 2 adet olarak yerleştirilir. Bu hava kesesi gelişimi için çok önemlidir. Larvalara uygulanan aydınlanma süresi ve yoğunluğu larvaların gelişimini, hava kesesi oluşumunu ve yaşama oranının etkiler (Cerqueria ve Chatain, 1991). Larva gelişimi artan aydınlatma koşullarında artarken, sürekli aydınlatma balıkların yaşama gücünü düşürür. Larva tanklarına prelarval evrede ışıklandırma uygulanmaz. Işıklandırma süresi ve şiddeti 5.günde 12 saat-50 lüks, 11.günde 13 saat-140 lüx, 17. gün ve sonrasında 16 saat–920 lüx olarak ayarlanmalıdır (Equipe Merea, 1990). Larval dönem beslemede canlı yem kaynakları olan rotifera (Brachionus plicatilis) ve çeşitli orijine sahip artemiaların (Artemia sp.) nauplii ve metanauplii formları kullanılır (Barnabé ve Guissi, 1993). Dünyanın çeşitli bölgelerinde farklı orijinlere sahip artemia yumurtaları temin edilmektedir. Bunların açılım oranları, besin içerikleri, bir gramdaki yumurta sayıları ve açılım sonrası nauplii boyları değişim gösterir. Artemia Systems’in ürettiği ve larva üretim tesislerinde yoğun olarak kullanılan AF tip artemiaların nauplii boyları yaklaşık 460-480 μ olup, 10 mg/gr’dan daha fazla miktarda HUFA içerirler. Bu artemiaların enleri 165-175 μ arasında değişim gösterdiğinden ağız açıklığı 400-420 μ olan levrek larvalarında ilk günden itibaren de kullanılabilir. Fakat bir haftalık dönemde rotifer ile besleme yapılması yaşama oranını olumlu etkiler. AF tip artemia naupliilerinin protein oranları %48-52, yağ oranları %19.3-21, karbonhidrat oranları %12-13, kül miktarları %8.1-8.7 ve nem oranları %4.8-5.2 arasında değişim gösterir. İkinci aşamada yine yoğun olarak kullanılan EG tip artemia naupliileri ise daha düşük oranda protein miktarına (%45-47) ve daha az doymamış yağ asitleri (5-7 mg/g HUFA) oranına sahiptirler. Ayrıca boyutları daha büyük olup 500-520 μ arasındadır. 16. günden itibaren EG1 olarak kullanılan artemia formları ise EG tip artemia naupliilerinin 24 saat boyunca SELCO türevli zenginleştirici maddeler ile beslenerek büyütülmesi ile elde edilir. SELCO ürünleri yüksek oranda HUFA (200 mg/gr), vitamin, antioksidan ve yağ (%60-65) içerdiklerinden larva gelişiminde önemli rol oynarlar. 24 saat sonunda metanauplii formuna gelen artemiaların boyutları 700-750 mikron arasındadır (Artemia Systems, 1991). Larvalara verilen canlı yemlerin tipleri ve mililitredeki oranları Tablo 2'de gösterilmiştir. Larval dönem sonunda yumurta kalitesine de bağlı olarak uygulanan yetiştirme tekniklerine göre başarı oranı %40'a kadar ulaşabilir. Sövraj (Mikropartikül Yemlere Geçiş) Dönemi Larval dönemin tamamlanması olarak kabul edilen 38-42 günler arasında larvalar canlı yemden mikropartikül yeme adapte olacakları sövraj bölümüne alınırlar. Bu bölümde işletmenin kapasitesine göre belirlenmiş sayıda 10-15 m³’lük tanklar kullanılır. Tankların dip kısımları koniktir. Su çıkışları merkezi ve diptendir. Balıkların yaşına bağlı olarak su çıkışlarına yerleştirilen krepinler göz açıklıkları 500, 1000 ve 2000 mikron arasında değiştirmektedir. Havuzlarda 1500-2000 lüx aydınlatma şiddeti sağlayacak ışıklandırma sistemleri mevcuttur. Ünitede aydınlatma süresi 16 saat olup otomatik zamanlayıcılar yardımıyla ayarlanmaktadır. Mikropartikül yemlerin dağıtımında otomatik yemlikler kullanılmaktadır. Bu bölümde de açık devre ve kapalı devre sistemler kullanılabilir. Ortama girilen toz yem su kalitesini çok hızlı değiştirdiğinden kapalı devre sistemlerde su kalitesinin sürekli kontrolü sağlanmalıdır. Hastalık risklerinin azaltılması yönünden açık devre sistemlerin bu aşamada kullanılması daha faydalı olmaktadır. Tanklara verilen su mutlaka kum ve ultraviyole filtreden geçirilerek larvalara verilmelidir. Bunların yanı sıra tanklarda saf oksijen girişi, debi metre, saturasyon kolonları ve yüzey temizleyicilerinin bulunması üretimi olumlu yönde etkiler. Mikropartükül yeme alıştırma dönemi, balıkların ortalama 19-21 mm total boya ve 35-40 mg ağırlığa ulaştıkları 38-42 günlerde başlar. Bu dönemde havuzlardaki balık yoğunluğu litrede 10-12 adettir. Saf oksijen kullanıldığı durumlarda bu oran 18-20 adet/lt'ye kadar çıkabilir. Mikropartikül yeme geçiş döneminde kullanılan Artemia’lar metanauplii II formunda olup HUFA bakımından larval dönemde metanauplii I formunda olduğu gibi zenginleştirilir. Levrek balıklarının sövrajında kullanılan mikropartikül yemler ilk dönem 80-150 mikron büyüklükten başlayarak larva gelişimine göre 500 mikron büyüklüğe kadar kullanılır. Sövraj uygulaması 15-16 gün devem eder. Larvalara günlük verilen artemia miktarı azaltılırken mikropartikül yem miktarı arttırılır. Bu dönemde mikropartikül yem besleme oranı canlı ağırlığın %8-10 kadardır. Sövraj boyunca su sıcaklığı ortalama 20 0C olup, tanklarda su debisi %50-100 arasında değişim gösterir. Ölümler sövrajın ilk günlerinde toz yeme adapte olamamaya bağlı olarak artma eğilimindedir. Larva yaşama oranı normal şartlar sağlandığı taktirde ortalama % 80-90 arasında değişim gösterir (Equipe Merea, 1990). Sövrajı tamamlayan larvalar ortalama olarak 350-400 mg ağırlığa kadar bu bölümde kaldıktan sonra ön büyütme ünitesine alınır. Ön Büyütme Bu sistemde kullanılan tankların teknik özellikleri sövraj ünitesinde kullanılan tanklar ile aynıdır Gelişim özelliklerine göre 70-80. günlerde sövraj ünitesini terk eden yavrular boylanarak, hava keseli ve hava kesesiz bireyler birbirinden ayrılır. Ön büyütmede kapalı devre sistem kullanılmaz. Balıklar burada ağ kafeslere çıkarılmak için gerekli olan 1.5-2 gram ağırlığa kadar büyütülürler. Ancak ülkemiz koşullarında yavru bireyler 0.5-1 gram arasında da kafes sistemlerine çıkarılmaktadır. Ön büyütme ünitesinde balıklar sürekli gözlenerek, hastalık risklerine karşı gerekli önlemler alınmalıdır. Ön büyütme ünitesinde de hacimleri 10-15 m3 arasında değişen silindir tanklar kullanılmaktadır. Su sıcaklığı 19-21 °C olup 16 saat ışıklandırma uygulanır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Tanklara 3000-5000 adet/m3 arasında yavru stoklanabilir. Su değişimi balık büyüklüğüne ve stok yoğunluğuna göre saate %80-150 arasında değişmektedir. Yemleme oranı %6 başlayıp %4 kadar düşme gösterir. Yaşama oranı hastalık çıkmadığı süre içinde %90-95 arasında değişim gösterir. Büyütme Akuakültür tesislerinden veya doğal ortamdan temin edilen levrek yavruları porsiyonluk boyuta getirilmek üzere karasal ve denizel ortama kurulan tesislerde farklı teknikler kullanılarak büyütülür. Ekstansif Yetiştirme Yöntemi Bunun için sahil şeridinde bulunan, dalyan ve gölet gibi doğal alanlardan yararlanılır. Buralarda yavru temini tamamen doğadan olup, ortamda diğer türlerle birlikte polikültür yapılmaktadır. Bahar aylarında daha bol besin içeriğine sahip olan dalyan alanlarına giren yavrular, yaz sonunda suların soğuması ile birlikte sıcaklığı sabit olan derin sulara göç ederler. Bu sırda dalyan sahasının çıkışına kurulan kuzuluklardan yakalanırlar. Yeterli pazar boyuna gelmeyen bireyler dalyan sahalarında yada kafes ünitelerinde besiye alınabilir. Bu amaçla dalyan alanları kendi içinde bölünerek derinleştirilir ve motopomplar ile su değişimi sağlanır. Özellikle İtalya sahillerinde yoğun olarak bu tür sistemlere rastlanmaktadır. Valikültür adı verilen bu teknikte dışarıdan besin takviyesinde de bulunulmaktadır. Bu tür alanlarda yatırım maliyetleri düşük olmasına rağmen sistemin kontrol zorlukları ve birim alandan alınan ürün miktarının az olması sistemi olumsuz yönde etkiler. Ancak ülkemizde dalyan sahalarında ortalama 20-50 kg/hektar olan verim, bu tür yapılarda hektar başına ortalama 200 kg olmaktadır. Su kalitesinin ve besleme tekniklerinin yükseltilmesine bağlı olarak 500 kg/hektar ürüne kadar çıkılabilmektedir. Yarı Entansif Yetiştirme Yöntemi Bu sistemler karasal alanlarda kurulu olan toprak veya beton havuz sistemleri ile portatif olarak kullanılan branda havuzları kapsamaktadır. Havuzların şekilleri ve büyüklükleri değişik yapılarda olabilir. Bu sistemlerde su değişimi ve beslenme kontrol altındadır. Su kalitesini arttırma için sistemlere oksijeneratörler eklenebilir. Ayrıca toprak havuzlar jeo-membran madde ile kaplanmakta ve su geçirmeyen özelliğe sahip olmaktadırlar. Bu sayede su debisi yükseltilmesi ile stoklama yoğunluğu arttırılmaktadır. Toprak havuzlarda hektar başına 1-4 ton arası ürün alınabilir. Bu oran beton havuzlarda ve iç yüzeyi kaplı toprak havuzlarda 2-5 kg/m3 arasında değişmektedir. Entansif Yetiştirme Yöntemi Dünyada ve ülkemizde yoğun olarak kullanılan bu yöntemde yüzer ağ kafes yapılarında yetiştiricilik yapılmaktadır. Akuakültür çalışmalarının gelişmesine paralel olarak birim alandan daha çok verim almayı sağlaması acısından su içerisinde yetiştirme sistemleri ağırlık kazanmıştır. Günümüzde kıyısal alanlarda, açık denizlerde ve okyanuslarda bile güvenlik içinde kurulabilecek sistemler planlanmaktadır. Günümüzde kıyı ötesi kafeslerde 2500-6000 m3' arası değişen hacimlerde tek bir sistemde yıllık 150 ton üretim yapılabilmektedir (Özden ve diğ., 1998). Kafes sistemleri sabit kafesler, yüzer kafesler, dalgıç kafesler ve döner kafesler olarak 4 ana grupta toplanır. Ağ kafeslere kurulduğu yerin özelliklerine ve su kalitesinin durumuna göre 15-30 kg/m3 arasında stoklama yapılabilir. Balıkların gelişiminde besleme ve su sıcaklığı önemli rol oynar. Besleme rejimlerinde yem kalitesinin yanı sıra balıkların ağırlıkları ile su sıcaklığı değerleri dikkate alınarak günlük besleme yapılmalıdır. Büyütme döneminde levreklerde kullanılan yemlerde protein %46-52, selüloz %2-3, ham kül %12-13, ham yağ % 10.5-11.5 kalsiyum % 1.6-2.2 ve fosfor %1.4-1.5 arasında olması, bunun yanı sıra vitaminler ve iz elementlerin yeterli miktarda kullanılması gelişimi olumlu yönde etkiler. Ege Bölgesi koşullarında 4 aylık süreyi akuakültür tesislerinde geçiren levrek yavrularının ağ kafeslere çıktıktan itibaren 14-15 aylık sürede 3-4 gram ağırlıktan 370-420 gram ağırlığa ulaşmaktadırlar. Bu süre ve ağırlık artışı yetiştirme ortamının ekolojik şartlarına, kullanılan yemin içeriğine, balık stok yoğunluğuna, hastalık etkenleri ve larva kalitesi göre değişim gösterebilir. SONUÇ Kompleks bir yapı izleyen levrek yetiştiriciliğinde meydana gelen sorunlar canlının gelişiminin yeteri kadar bilinmemesinin yanı sıra yönetim ve üretim tekniklerinin eksikliklerinden de meydana gelmektedir. Üretimlerde temin edilen yumurta ve larvaların kalitesi uygun şartlar sağlanarak kontrol altında tutulmalıdır. Cinsiyet kontrolü çalışmaları, suni seks dönüşümü için ideal periyodunun tayini ve ploidlik manuplasyonları için uygun deneysel şartlar (örneğin; monoseks üretimi için ginogenezis) üzerinde çalışılması gereken konulardır. Bu çalışmalara, premature dişilerin varlığının engellenmesi, deformasyon oranlarının azaltılması ve gelişimin yükseltilmesinin eklenmesi ile yeni ufuklar açılacaktır. Ayrıca, soy ve yumurtlamanın kalitesi üzerine anaç beslemenin etkileri ile ilgili çalışmalar oldukça hızlamıştır. Bu çalışmaların direkt sonucu, yumurta ve larval üretimin etkisini net bir şekilde arttıracaktır. Bunun yanı sıra ileri genetik çalışmalara hız verilerek, anaç seçim programları, çiftleştirme özellikleri ve yüksek kalite yem formulasyonları üzerine çalışmalar planlanmalıdır. Yetiştiricilik kalite ve kantititesinin arttırılması gelecekte uygulanacak bu tekniklerin başarısı ile ilgilidir. LİTERATÜR Artemia Systems, 1991. User’s guide Artemia Systems N.V. Belgium Alpbaz, A., G., 1990. Deniz Balıkları Yetiştiriciliği. E.Ü. Su Ürünleri Y.O. No: 20 Alvarino, J.M.R., Carrillo, M., Zanuy, S., Prat, F., Mananos, E., 1992a. Pattern of sea bass development after ovarian stimulation by LHRHa. Jour. of Fish Bio., 41, 965-70. Alvarino, J.M.R., Zanuy, S., Prat, F.Carrillo, M.,&Mananos, E., 1992b. Stimulation of ovulation and steroid secretion by LHRHa injection in the sea bass (Dicentrarchus labrax): effect of time of day. Aquaculture, 102, 177-86. Barnabé, G., 1971. Bases biologiques et ecologiques de l’aquaculture. Lavoisier-Tec. Doc. 55 pp. Barnabé, G., Rene, F., 1972. Reproduction Controlle du Loup Dicentrarchus labrax et Production en Masse D’alevins. C.R.Acad Sci, 275: 2741-2744. Barnabé, G. 1976. Chronologie de la morphogenese chez le loup ou bar Dicentrarchus labrax (L.) (Pisces, Serranidae) obtenu par reproduction artificielle. Aquaculture 8 : 351 - 363. Barnabé, G., Paris, J., 1984. Ponte avancée et ponte normale du loup Dicentrarchus labrax (L.) a la Station de Biologue Marine et Lagunaire de Séte. In L’Aquaculture du Bar et des Sparidés (eds. G. Barnabé & R. Billard), pp. 63-72. INRA, Paris. Barnabé, G., Barnabé-Quet, R., 1985. Avancement et amélioration de laponte induite chez le loup Dicentrarchus labrax (L.) a l’aide D’un analogue de LHRH injécte. Aquaculture, 49, 125-32. Barnabé, G., Guissi, A., 1993. Combined effect of diet and salinity on European sea bass Larvae D. Labrax. J. World Aqua Soc. 24 (4) :439-450. Bertolini B., Boglione G., Cataudella S., Finoia M.G., Marino G., Monaco G., 1991. Temperature induced developmental anomalies in sea bass (Dicentrarchus labrax) embryos and larvae. Acta Embryological Morphological Exp., 12 (1):77-79. Brusle, J., Roblin, C., 1984. Sexualite du loup Dicentrarchus labrax en condition d'elevage controle. In l'Aquaculture du bar et des Sparides. /eds Cerqueria, V. R., Chatain, B., 1991. Photoperiodic effects on the growth and feeding rhythm of European sea bass (Dicentrarchus labrax), larvae in intensive rearing. Larvi’ 1991 Fish and Crustacean larviculture symposium, 15: 304-306. Chatain, B., 1986. La vesie natoire chez Dicentrarchus labrax et Sparus auratus. aspects morphologiques du developement. Aquaculture 53: 303-311. Chatain, B, Dewavrin, G. 1989. Influence des anomalies de development de la vessie natatoire sur la mortalite de D. labrax au cours du sevrage. Aquaculture 78:55-61 Dendrinos, P., Thorpe, J. P., 1985. Effects of Reduced Salinity on Growth and Body Composition in the European Bass D. labrax( L.). Aquaculture 49(1985) 333-858, 25p. Deplano, M., Connes, R., Diaz, J. P., Barnabe, G., 1991. Variation in the Absorption of Macromolecular Proteins Larvae of the Sea Bass Dicentrarchus labrax L. During transition to the Exotrophic Phase. Marine Biology 110, 29 36 (1991). Devauchelle, N., Coves, D. 1988. The characteristics of sea bass (Dicentrarchus labrax) eggs: Description, biochemical composition and hatching performances. Aquatic Living Resourch. 1 : 223- 230. Diaz, J.P., Guyot, E., Vigier, S., Connes, R., 1997. First event in lipid absorption during post-embryonic development of the anterior intestine in gilthead sea bream. Journal of Fish Biology, Vol.51, No.1, pp.180-192. Equinoxe, 1990. Le magazine des reources vivan les de la mer. No.31 IFREMER Nantes-France pp.42-43 Equipe Merea, 1990. L’ elevage intensif du loup, Dicentrarchus labrax. Tec. Rapor. Chemin de Maguelone Palavas-France. Fabre-Domerque, B., 1905. Introduction a l'etude de la pisciculture marine, In ''Travail du Laboratoire de Zoolpgie Maritime de Concarneau''. Vuibert et Nony Ed. Paris, 205-243 FAO, 1991. Fiches FAO d'identification des especes. Zone de Peche 37. Medit. et M. noire Fırat, K. 1995. Levrek (D. Labrax) Larvalarında (0-45 gün) Hava Kesesi Oluşumu ve Larval Gelişim Üzerine Olan Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Freddi, A., 1985. Sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) larval rearing. FAO. Projet Regional Mediterraneen de Developpement de L’aquaculture, 62 pp. Jennings, S., Pawson, M. G., 1991. The Development of sea bass, Dicentrarchus labrax, eggs in relation to temperature. Journal of Marine Bilogie 71: 107 - 116. Johnson, D. W., Katavic, I., 1984. Mortality, Growth and Swim Blader Stress Syndrome of Sea Bass (Dicentrarchus labrax) Larvae Under Varied Environmental Conditions. Aquaculture 38(1984) 67-68. Johnson, D., Katavic,I., 1986. Survival and growth of sea bass larvae as influenced by temperature, salinity and delayed inital feeding. Aquaculture. 52 : 11-19. Kennedy, M., Fitzmaurice, P., 1972. The biology of the sea bass (Dicentrrachus labrax, in Irish waters. Journal of Marine Biological Association of the UK, 52, 557-597. Licas, D., 1988. Marine hatchery technology-Systems Reviews. In aquaculture Engineering Technologies for the Future. IchemE Symposium Series No: 111, pp. 65-76.EFCE Publication Series No: 66, Stirling, UK. Loy, A., Cataudella, S., Corti, M., 1996. Shape Changes During of the Sea Bass, (Dicentrarchus labrax L.) in Relation to Different Rearing Conditions. Envir. Biol. Fish. New York. Marino, G., Boglione, C., Finoia, M. G., Bronzi, P., Monaco, G., Bertolıni, B.& Cataudella, S. 1991. Effect of incubation temperature on embriyonic development and hatching of Dicentrarchus labrax (L.) eggs. Larvi ‘91-Fish and Crustacean Larviculture Symposium, EAS, 15 : 230 - 232. Özden, O., Güner, Y., Alpbaz, A. G., Altunok, M., 1998. Kıyı Ötesi Ağ Kafes Teknolojisi. E.Ü. Su Ürünleri Fakültesi Dergisi. Cilt:15 Sayı:1-2 Paperna, I., Colorni, A., Gordın, H., Kıssıl, G., 1977. Disease of Sparus aurata in Marine Culture at Elat. Aquaculture, 10: 195-213. Saka, Ş. 1995. Levrek (D. Labrax) Larva Yetiştirme Teknolojisinde Tuzluluk Değişimlerinin Üretime Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Saka, Ş., Fırat, K., Kamacı, O. 1999. The Development Of European Sea Bass (Dicentrarchus labrax L.) Eggs In Relation To Temperature. TÜBİTAK Türk Veteriner ve Hayvancılık Dergisi (Baskıda) Timmons, M.,B., Losordo, T.M., 1994. Aquaculture Water Resue Systems: Engineering Design and management. Elsevier Science B.V., New York Salvatorelli, F. B. G., Santulli, A., D’ Amelio, V., 1989. Otogenetic variation of same enzymes in Dicentrarchus labrax. Boll. Zool. 56 . 1 - 6. Uçal, O. 1985. Levrek ( Dicentrarchus labrax L. ) biyolojisi ve fingerling seviyesinde yetiştirilmesi. Doktora Tezi. E. Ü. Fen Bil. Ens. Uçal, O., Benli, H.A., 1993. Levrek balığı ve yetiştiriciliği. Tarım ve Köy İşleri Bakanlığı Su Ürünleri, Araştırma Enstitüsü Müdürlüğü. Bodrum. Seri A, Yayın No. 9, 72 s.

http://www.biyologlar.com/levrek-dicentrarchus-labrax-lin-1758-baliginin-biyolojisi-ve-yetistirme-teknikleri

MİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-Izmir Mollusca filumunun Bivalvia klasisi içinde yer alan Mytilidae familyası geniş bir yayılım alanına sahiptir. Bu familyanın en önemli türleri ise Mytilus galloprovincialis (kara midye veya Akdeniz midyesi) ve Mytilus edulis (mavi midye veya Avrupa midyesi), Modiolus barbatus (at midyesi) ve Perna sp., (Afrika midyesi)’dir. Ülkemiz sularında ise Mytilidae familyasının ekonomik olarak değerlendirilen yukarıdaki türlerden Mytilus galloprovincialis ve Modiolus barbatus olmak üzere 2 türü bulunmaktadır. Mytilus galloprovincialis İzmir’den Karadeniz sularına kadar toplanırken, Modiolus barbatus avcılığı en fazla Ayvalık ve civarından yapılmaktadır. Toplanan midyelerin bir kısmı taze veya işlenmiş olarak yurtiçinde değerlendirilirken önemli bir kısmı yurtdışına pazarlanmaktadır(Alpbaz, 1993; Alpbaz, 1997). 2-MİDYELERİN MORFOLOJİSİ VE BİYOLOJİSİ Mytilid kabukları mikro yapıya sahiptirler. Ilıman bölgelerde kabuk 2 veya 3 tabakalı argonit ve kalsitten oluşurken diğer bölgelerdeki kabuklar 2 tabaka argonit ve sedef tabakasına sahiptirler(Gosling, 1992). Genel olarak M. galloprovincialis’in kabukları ön(anteriör), arka(posteriör), ventral ve dorsal kenar olmak üzere dört kısıma ayrılabilir. Ön kenar çok kısa olup kabuklar burada birbirlerine bağlıdır. Ventral kenar bysus ipliklerinin çıktığı kenardır. Önden arkaya kadar düz bir yapıdadır. Ventralin tam tersi kenar ise dorsal kenarı oluşturur. Kavisli olması dikkat çekicidir. Posterior kenar ise midye kabuklarının açıldığı uç kısma denilmektedir. Anteriör-dorsal kenarda kabukların birbirine bağlı durmasını sağlayan boynuza benzeyen ligament yer alır. Ligament iki kabuk arasında düz bir oluk içersindedir. Ligament kabukların kapama kaslarının kapama kuvetlerinin tersi yönde bir kuvvete sahiptir. Ölen midyede kaslar kapama kuvvetini kaybettiklerinden ligamentin aksi yöndeki elastikiyetinden dolayı kabuklar açık kalır. Kabukların üzerinde umbodan itibaren küçük eliptik daireler şeklinde başlayan ve kenara paralel olarak devam eden büyüme çizgileri vardır. Midye uygun olmayan ekolojik şartlara maruz kaldığında büyüme çizgilerinde anormal bir sıklaşma, yukarı doğru kabarma veya aşağıya doğru çökme görülür. Midyelerin sağ kabukları sol kabuklarından 1mm kadar daha yüksektir (Uysal, 1970). Kabuğun ventralinde bysus yarığı vardır. Bu yarık periostrakum kıvrımlariyle örtülüdür. Hayvanın ventralinde bulunan periostrakum kıvrımları, kabuklar kapandığında yastık görevi görürler. Kabuklar kapandığında bysus ipliklerinin çıktığı bu alandan içeri su veya istenmeyen maddenin girmesini engellerler. Kabuklara içten bakıldığında kolayca fark edilebilen iki renk görülür. Orta kısım beyazımsı sedef parlaklığındadır. Kenarlara doğru renk koyu mavi olur. Bu iki kısım birbirinden manto çizgisi ile ayrılırlar. Manto kabuk üzerinde belirgin bir iz bırakır. Kabuklar kapama kası kesilerek açıldığında manto boşluğunda şu kısımlar göze çarpar: Kabuk içersine yerleşmiş ve buraya sıkıca bağlanmış manto lobları; anteriörde kabukların kenetlendiği gaga şeklindeki dişli kısmın hemen alt tarafında ligament ekseni üzerinde, ince yarık şeklinde bir ağız; ağız etrafında altta ve üstte birer çift olmak üzere 4 adet ağız kolu(palial palp) bulunur. Bunların birbirine bakan kısımları oluklu olup, üzerleri kirpikli epitel hücreleri ile örtülüdür. Ağızdan sonra özafagus ve ortaya yakın yerde ligament ekseni üzerinde, dil şeklinde koyu kahverengi kızılımsı renkte bir ayak ve ayağı öne, arkaya bağlayan kaslar görülür. Ayağın hemen arka tarafında bysus iplikleri, bunların çıktıkları ve bissogen bezlerinin bulunduğu bir şişkinlik yer almaktadır. Bu şişkinliği tabiben, genital kanalların bol olarak bulunduğu mesosoma, ayağın önüne ve arkasına doğru uzanan “V” şeklinde kaslar, özafagusun iki tarafında ve kasların üzerinde, serebral ganglionlar, anteriör kasların altında ve mide etrafında koyu kahverengi karaciğer bezleri bulunur. Bunların üzerinde vücudun iki tarafında labial palplerden posteriör kapama kasına kadar, bir çift bojanus organı uzanmaktadır. Bojanus organlarının dış kenarları boyunca, kenar bantları ile vücut duvarına tesbit edilmiş, uçları serbest birçok flamentten oluşan kitap yaprağı şeklinde iki çift solungaç, longitüdinal olarak ağızın dış kenarından posteriör kapama kasına kadar uzanır. Solungaç bantları ile posteriör kapama kası arasında üreme, boşaltım ve anüs açıklıkları, dorsalde ligamentin bittiği yerden posteriöre doğru uzanan perikard boşluğu ve bu boşlukta kalp bulunur (Uysal, 1970; Seed, 1976; Gosling, 1992). Midyeler 2-100µm boyutlarında olan organik ve inorganik her türlü partikülü süzerek beslenirler. Ortalama 7-8cm boyundaki bir midye saatte 10-15lt suyu süzme özelliğine sahiptir. Midyelerin filtrasyon hızı üzerine; -midye büyüklüğü, -partikül büyüklüğü, -partikül yoğunluğu, -partikül türü, -su sıcaklığı, -su akıntısı etkilidir(Bayne ve ark., 1976). Midyelerde beslenme az olduğunda büyüme yavaşlar veya durur. Et verimi düşer ve gonadlarda olgunlaşma tam olmaz, alınan döller dayanıksız ve küçük olur. Sıcaklığın 8-10oC civarında olduğu kış aylarında ise midyeler, partikül organik madde içerisinde yer alan ve canlı organizma olmayan kısmı ek besin olarak kullanmaktadırlar(Stirling ve Okumuş, 1995). Kabuklu su canlılarında büyümeyi sıcaklık ve besin durumu etkilemektedir(Seed, 1976; Langdon ve Newell, 1990). 3-ÜREME BİYOLOJİSİ Midyelerde çoğalma sistemi bütün vücuda yayılmış kanallar ve kanalcıklardan meydana gelir. Kanalcıkların uçları bağ dokuda ve genital organlarda son bulur. Bu kanal ve kanalcıklardan meydana gelen sistem, manto loblarının her tarafındaki bağ dokusu içersine yayılmış durumdadır. Üreme zamanlarında, genital organların bulunduğu manto dokusu tamamen cinsiyet hücreleri ile doludur. Bunlar mesosomada, perikardial boşluğun hemen altında, vücudun yan duvarlarında, karaciğerin hemen üzerindeki dokularda yayılırlar. Genel olarak üreme sistemi solungaçlar, kaslar ve ayak hariç vücudun her tarafına yayılmıştır. Mantonun anteriöründe yani karaciğerin üstünde , lateralde ve mesosomada mevcut kanallardan gelen kanalların birleşmesi ile oluşan genital kanal, mantonun iç yüzeyine , buradan arkaya döner; vücudun diğer tarfından gelen diğer kanal ile birlikte bir kanal halinde ventral kanalda solungaçların kenarına paralel olarak uzanır ve posteriör kapama kasının hemen yanından dışarı açılır. Burası canlının çoğalma organı açıklığıdır ve kontrolü altında açılıp kapanır(Seed ve Suchanek, 1992). Bütün mantoya yayılan genital organlarda ve vbağ dokusunda üreme mevsimlerinde , yoğun olarak cinsiyet hücreleri görülebilmektedir. İzmir Körfezi’nde midyeler Eylülden Mayıs-Hazirana kadar döl verebilmektedirler. Fakat en yoğun döl verimi Eylül-Ekim ve Mart-Nisan aylarında olmaktadır. Midyeler döllerini bıraktıktan sonra 1 ay içinde kendini tekrar toplayarak yeni döl üretmektedir. Midyeler ayrı eşeyli olup, olgun erkeklerde gonadlar krem-beyaz, dişilerde ise portakal sarısı tonlarındadır. Kabuklar kapalı iken cinsiyet ayrımı yapılamaz. Ancak midye kabuğunu su içinde hafif açtığında renklenme fark edilebilirse cinsiyetleri hakkında konuşulabilir. Yumurta bırakma süresi ve miktarı bulundukları ortamdaki besin türlerine ve bolluğuna, tuzluluk ve su sıcaklığına bağlı olarak değişmektedir. 3.1. Midyelerde Gonad Gelişim Safhaları Midyelerde gonad olgunlaşma süreci 4 aşamada tamamlanır: Dinlenme Safhası: Canlı bu safhada, seksüel dinlenme safhasındadır. Bağ dokusu iyi gelişmiştir. Manto fildişi rengindedir. Manto dokularında foliküller yoktur. Safha 1-Bu safhada, genital kanalların epitelial tabakalarından cinsiyet hücreleri meydana gelmeye ve foliküllerde gametogenez görülmeye başlar. Foliküller hızla artarak monto dokusunu kaplar. Erkekte çoğalma kanalcıklarında spermatidler, dişide germinal epitelyumdan tomurcuklanma ile meydana gelen oositler bulunur. Bu safhada, foliküllerin gelişme derecesine ve bağ dokusundaki glikojen miktarına göre, biraz değişiklik göstermesine rağmen manto rengi dişilerde kırmızı kahverengi veya portakal renginde, erkeklerin ise açık portakal sarısıdır. Safha 2-İyi gelişmiş foliküllerde olgun olmayan sperm ve yumurtalar bulunur. Foliküllerde yağ hücreleri görülür ve glikojen miktarı artar. Erkeğin mantosu kahverengi toprak renginde ve çok fazla foliküllerle kaplıdır. Dişinin mantoso portakal kırmızı tonlarında olup, bunun üzerinde kayısı renginde ovaryumlar tesbit edilir. Erkeğin mantosu dişininkinden daha düzgünce bir görünüştedir. Safha 3-Bu safhada midye olgundur. Mantonun bağ dokusu hemen hemen foliküllerle kaplıdır. Manto şişkincedir. Manto dişilerde portakal veya kırmızımsı, erkeklerde ise süt beyaz veya kirli beyazdır. Safha 4-Midyeler bütün cinsiyet hücrelerini dökmeye başlarlar. Bu esnada manto incelir ve şeffaflaşır. Üreme hücrelerini dökme aralıklı bir şekilde devam ederse, bu esnada erkeklerin mantosu beyazımsı, dişilerinki ise kırmızımsı olur. Üreme mevsiminde boşalan genital organlar, tekrar cinsiyet hücreleri ile doldurulur. Üreme hücrelerinin tekrar olgunlaşması ekolojik şartlara bağlı olarak, bir ayı geçmemek üzere değişir. Yaz aylarında folikül teşekkülü durur. Canlı bu dönemde seksüel dinlenme aşamasındadır. Midyeler ayrı eşeyli olmakla beraber çok nadir olarak hermafroditlik görülür (Lubet, 1959; Sugiura, 1962). Manto içersindeki dokularda gelişen sperm ve yumurtalar olgunlaşınca genital kanallardaki siller vasıtası ile dışarı atılırlar. Bu hücrelerin dışarı atılmasında bazı uyarılar etkili olmaktadır. Erkeler spermlerini ince uzun ip şeklinde su içine fışkırtarak 3-5cm mesafeye yayarlar. Sperm salımından sonra midye etrafındaki suyun rengi sütümsü bir renk alır. Dişiler de yumurtalarını üreme organı açıklığından ince uzun paketler halinde 2-3cm mesafeye yayarlar. Paketler halinde suya bıakılan yumurtalar kürevi bir şekil aldıktan sonra, birbirlerinden ayrılarak pembe veya kırmızı bir renkte zeminde birikirler. Üreme hücrelerinin bırakılması bazen devamlı olarak 2-3 saat ve bazen de aralıklı olarak 2-3 gün devam edebilir. Eğer cinsiyet hücrelerinin hepsi bırakılmaz içeride kalırsa, hücreler dejenere olur ve vücut taraından absorbe edilir(Field, 1922). Dalgalar ve su hareketleri suya bırakılan yumurta ve spermlerin yayılıp birbirine karışmasına ve döllenmenin olmasına neden olur. Ortalam bir dişi 5-12milyon arası yumurta üretebilir. Olgun yumurtalar alesital tipte, soluk kahverengi, küre şeklinde ve 60-70µm çapındadır. Yumurtaların ortasında kısmında nukleus, nucleus etrasında da yumurta granülleri yer alır. Spermler toplu iğne şeklinde olup, baş, boyun ve kuyruk bölgelerinden oluşur. Sperm 3.5-5µm’dur. Spermlere hareket sağlyan kuyrukları ise 40-60µm arasında değişen uzunluklara sahiptir. 3.2 Midyelerden Döl Alım Yöntemleri Doğal şartlar altında gonadları olgunlaşmış midyeler uygun şartlarda(sıcaklık, tuzluluk gibi) döllerini suya bırakırlar. Eğer gonadları dolu midyelerin dölleri bir seferde alınmak isteniyorsa bazı uyarı yöntemler(şoklar) uygulanarak midyenin döllerini suya bırakması sağlanır. Midyelerin ortam sıcaklığından 8-10°C düşük ve yüksek sıcaklıktaki sularda 1-2dk. bekletilmesiyle termik şok, bulundukları suya düşük voltta elektrik verilmesiyle elektrik şoku, addüktör kasının bir iğne ile uyarılması ile mekanik şok ve manto boşluğuna KCl solusyonu verilmesi ile kimyasal şok yapılmış olur. Şok yöntemler ile elde edilen fazla sperm solusyonu anaç tanklarına bırakıldığında uyarılmamış dişilerin döllerini bıraktıkları görülür. 3.3Yumurtaların İnkübasyonu ve Larva Özelikleri 20°C’de ilk bölünme döllenmeden yaklaşık 45 dak. sonra olur. Döllenmeden 24 saat sonra silli trakofora safhasına ulaşılır. Bu safhada büyüme ve hareket çok hızlı olup, larva sillerini kullanarak hareket eder. 30 saat sonra, trakofora larvasında sindirim sistemi ve dorsal bölgenin posteriör tarafında, kabuk bezinin faliyeti sonucunda kalınlaşan bir kabuk görülür. BU kabuk hızlı bir şekilde gelişerek önce tek, daha sonra sağ ve sol tarafta olmak üzere iki kabuk haline gelir. Önceleri küçük olan kabuklar döllenmeden 40 saat sonra tüm vücudu kaplar. 48 saat sonra kabuklar tamamen vücudu örterek, boyu 95 µm, eni 70µm ve kalınlığı 70µm “veliger” larva safhasına ulaşılır. Bu safhada bir velum üzerinde uzun bir kamçı ve bunun etrafında siller görülmektedir. Bir tehlike anında velum kabuk içine çekilerek kabuklar kapama kasları ile sıkıca kapatılır(Bayne ve ark., 1976). Midye larvaları yaklaşık olarak 2-4 hafta planktonik bir yaşam sürerek su sütununda aktif olarak yüzer ve beslenirler. Larva 140-150µm boya ulaştığında kabukların bağlandıkları noktada yuvarlanmış umbo görülür. Bu değişim ile larva, düz menteşeli durumdan umbo safhasına geçer. Larva 210-230µm boya ulaştığında umbo yavaş yavaş menteşeden yayılır ve küçük bir tomurcuk halini alır. Kabuk boyu 220-230µm’ye ulaştığında larvada bazı yapılar gelişmeye başlar. Göz noktası gelişir ve larva 245µm’ye ulaştığında kaybolur. Larva 195-210µm iken ayak oluşur ve 215-240µm boya ulaşan larvalarda ise ayak aktif hale gelir. Yaklaşık 260µm’ye ulaşan larvalar pediveliger denir ve bu aşamada metamorfoz geçirmeye hazırdırlar. Bununla beraber uygun bir substrat olmadığı taktirde metamorfoz 10°C’de 40 günün üzerinde 20°C’de 2 gün ertelenebilir. Metamorfozun gecikmesi durumunda büyüme çok azalır ve velum kısmen dejenere olur. Larva beslenemez ve yüzme bozulur. Ölüm oranı artar(Dare, 1976). 3.4 Larval Gelişim Midye larvaları 15–30 gün içinde metamorfoz aşamasına ulaşır ve yerleşmeye başlarlar. Larval yaşam süresi yeterli ve uygun besine, sıcaklığa, tuzluğa ve diğer değişkenlere bağlıdır. 3 haftalık bir larval dönem sonunda larva ağırlığı 0.1µg’dan 1.0µg’a ulaşır. Larva günlük olarak ağırlığının %30-60’ı kadar besine gereksinim duyar. Larva ölümleri su ortamında var olabilecek predatör organizmalardan kaynaklanabileceği gibi su kalitesindeki ekstrem değişikliklerden de kaynaklanmaktadır. Birçok vertebrate ve invertebrate bu hareketli larvaları besin olarak tüketebilmektedir. Bivalv larvalarının bulunduğu bir stoğun %3’nün poliket (Neptys ciliata) larvaları tarafından günlük besin olarak kullanılabilmektedir. Diğer ölümler ise aynı türün veya diğer suyu süzerek beslenen türlerin ergin bireyleri tarafından da bu larvalar filtre edilebilmektedirler. 3.4.1Büyümeye sıcaklığın etkisi Midye larvalarında kabuk boyuna göre büyüme eğrisi bazı verilerde linear olmasına karsın genelde sigmoidal şekildedir.Midye larvaları 5°C’de büyüme durur. Sıcaklık 10-16 arasında büyüme oranı artar ve yüksek sıcaklıklarda ise büyüme yavaşlar veya bazı populasyonlarda durur. Bu sıcaklık aralıkları populasyonların bulundukları bölgeye göre az değişiklikler gösterir. 3.4.2 Büyümeye tuzluluğun etkisi Bazı midye populasyonlarında büyüme ‰19’da durur, ‰30-32’de ise normal büyüme gösterirken, bazı pulasyonlarda ise ‰14 tuzlulukta bile büyümenin olduğu tespit edilmiştir. Midye larvalarının büyümesi üzerinde tuzluluk ve sıcaklık birbirleri ile ilişkili ve larvalar üzerinde etkili parametrelerdendir. Optimum larval büyüme 20°C’de ve ‰25-30 tuzlulukta olur. Büyüme sıcaklık 25°C‘ye çıktığında ve 10°C’nin altına düştüğünde, tuzlulkise ‰40 gibi yüksek veya çok düşük olduğunda azalmaya başlar. Midye larvalarının Büyüme istekleri dar tuzlukluk ve sıcaklık aralığındadır. Bu hayatta kalmaları için duydukları istekten daha dardır. 3.4.3 Larval Beslenme Midye larvaları süzebilecekleri büyüklükte olan her partikülü filtre edebilmektedirler. Kültür şartlarında bu süzülen maddelerin değerlendirilmesi ve değerlendirilenlerin de besinsel kalitelerinin iyi olması istenir. Larva besini olarak kullanılabilecek birçok alg hücresi üzerinde araştırmalar yapılarak bunlardan hangilerinin uygun besin olduğu tespit edilmiştir. Chlorella sp. hücre duvarının kalın olması ve metabolik artıklarının bivalve larvaları için toksik olması nedeni ile kabuklu larvalarının beslenmesinde tercih edilen bir fitoplankton türü değildir. Daha çok hücre duvarı olmayan flagellalı hücre türleri besin olarak tercih edilmektedir. Verilecek besin miktarı kültür sıcaklığına, larva sayısına ve alg kültür yaşına bağlı olarak değişir. Tek tür ile besleme yapmaktan ziyade karışık türler ile yapılacak besleme ile larvalar daha hızlı bir büyüme gösterirler. Isochrysis galbana, Monochrysis lutheri, Phaedactylum tricornutum, Dunaliella tertiolecta, Tetraselmis suecica, Chaetoceros calcitrans larva beslemede kullanılan başlıca fitoplankton türlerindendir(Bayne ve ark., 1976). 3.4.4 Metamorfoz ve Substrat Seçimi Pediveliger larvalar zemine iner ve ayağı ile sürünerek uygun yer arar. Midye kültür halatları gibi uygun bir substrat bulduğunda, pediveliger larvalarda yerleşme işlemi başlar. Bunun için bysal bez salgılarıyla kendini substrata yapışır. Bu işleme yerleşme adı verilir. Bu onun sesil hayata geçişinin başlangıcıdır. Midye kendini bysus iplikleri ile yapıştırdığında velum tamamen kaybolur ve suda yüzme aktivitesi sona erer. Midye larvaları filamentli yapıları yapışmak için tercih ederler. Düz, ürüzsüz bir zeminden çok pütürlü ve üzerinde fouling organizmaların tutunduğu yüzeyleri tercih ederler. Bu tercihlerinde kimyasall cezbedilicilikten çok, morfolojik cezbedici özelliği söz konusudur(Dare, 1976). 4-MİDYE YETŞTİRME TEKNİKLERİ Midyelerin üreme döneminin uzun olması nedeni ile doğal ortamdan yavru bireyler uygun sistemler ile kolaylıkla temin edilebilmektedir. Laboratuvar şartları altında başarılı bir şekilde yumurtlatılıp larva yetiştiriciliği yapılabilmesine karşın larva kültürü üreticilere ek bir maliyet getirmektedir. Bu sebeple tam kontrollü yumurtadan pazara yetiştiricilikten ziyade yarı kontrollu olarak yavru aşamadan pazara kadar kültür uygulamaları yapılmaktadır. Yumurta ve larva çalışmaları daha çok biyolojik, fizyolojik ve genetik çalışmalar için yapılmaktadır. Bir diğer yumurta ve larva üretim nedeni ise deniz balıkları ve krustase larvalarına zooplankton olarak ek beslemede kullanılmak amacıyla üretilmektedir. 4.1 Yavru Toplama Midye üreticileri için yavru toplama işlemi kültür içim önemli bir bölümü oluşturur. Yetiştiriciler ihtiyaç duydukları yavruları kendileri toplayabilecekleri gibi sadece bu iş ile uğraşan kişilerden de satın alarak yavru ihtiyaçlarını karşılamaktadırlar. Genellikle larva biyolojisinden yararlanarak pelajik-planktonik yaşamdan sesil yaşama geçerken midye stoklarının olduğu bölgelere midye larvalarının yapışmaları için cezbeden kollektörler bırakılır(Dare, 1976). Bu kollektörlere tutunan genç bireyler kültür alanlarına taşınarak uygun kültür sisteminde büyümeye alınırlar. Doğal ortamdan kollektörler vasıtası ile yavru midyelerin toplanmasında aşağıdaki konulara dikkat edilir: -Midye yataklarının olduğu bir bölge olmalıdır -Midyelerin üreme döneminde kollektörler denize bırakılmalıdır. -Fouling organizmaların az olduğu veya tutunmalarının az olacağı dönemde kollektörler denize bırakılmalıdır. Bu alanlara kollektörler bırakılmadan önce ön çalışmalar yapılmalı ve midyelerin ürediği fakat fouling organizmaların az olduğu zaman seçilmelidir. Eger fazla olursa midye yerine bu organizların toplanması gerçekleştirilmiş olur. -Yavruların tutunmak için tercih edecekleri kollektörler seçilmelidir. -Düz olmayan, pürüzlü ve filamentli yapılar kollektör olarak kullanılmalıdır. 4.1.1 Kollektörler ve Özellikleri Günümüzde midye yavrularının toplanması için kullanılan birçok kollektör materyali vardır. Bunlar doğal materyaller (bitki liflerinden hazırlanan halatlar, Manila halatları) ile sentetik (polypropilen ) halat ve sentetik (polyetilen) ağlardır. Kuzey Amerika’da denize sarkıtılan polipropilen halatlar ile denize bir perde gibi bırakılan farklı göz açıklığındakı polietilen ağlar kullanılmaktadır. Günümüzde en fazla kullanılan ve en iyi sonucu veren materyall hindistan cevizi liflerinden hazırlanan halatlardır. Bu halatlar filamentli yapısı nedeni ile midye yavru toplamada etkili sonuçlar vermektedir. Yavru toplamak için kazıklar kullanıldığında, bunların üzerinde balanusların ve kırmızı alglerin yapışmasını beklemek gerekmektedir. Midye spatları bu yapıların üzerine ağaç materyale oranla daha fazla tutunmaktadır. Kollektörlerin denize bırakılma zamanı kadar, denizdeki konumları da önemlidir. Halatlar denize dik durumdan ziyade deniz yüzeyine paralel olacak şekilde bırakılırlar. Kollektörlerin denize bırakılma derinliği de önemlidir. Midye yavruları su yüzeyine yakın yüzeylere yoğun miktarlarda tutunurlar. 3 m derinliğe bırakılan bir polipropilen halatın 1cm2’lik yüzey alanına tutuna yavru midye(spat) sayısı 100 iken 10 m derinliğe bırakılan halat üzerine tutunan spat sayısı 10’a düşmektedir. Bu sayı farklı bölgelerde değişebilir. Fakat derinliğe bağlı olarak midye spatlarının tutunma oranı azalır. İspanya’da Fuentes ve Molares (1994)‘de yaptıkları bir çalışmada 9 metreden 11.2 spat/4cm2, 5 metreden 29.1 spat/4cm2 ve 1 metreden ise 35.3 spat/4cm2 elde etmişlerdir. Eğer kollektör olarak ağlar kulanılıyorsa bu ağların göz açıklıkları önemlidir. 22mm göz açıklığındaki bir ağa tutunacak spat sayısıs 13mm göz açıklığındaki bir ağa göre çok daha az olacaktır. Bu şekilde tutunmanın fazla olduğu alanlarda spat toplama kontrol altına alınabilkir. Ayrıca Büyük gözlü ağlarda daha az midye tutuduğundan midyelerin büyümesi için daha geniş bir alan sağlar. Halatların uzunluğu ve çapları ülkeler ve spat toplayan üreticilere göre bazı farklılıklar gösterebilir. Maine’de13mm çapında ve Manila halatları kullanılırken, 16mm çapında ve 8m uzunluğunda polipropilen halatlar kollektör olarak kullanılmaktadır. Her üretici kendi şartlarında en iyi sonucu veren kollektörü tercih etmelidir. Bir bölgede ve ya ülkede başarılı bir şekilde kullanılan materyal aynı sonucu başka bir yerde göstermeyebilir. Diğer bir yavru toplama yöntemi ise dreçler ile midye yavrularının bol olduğu alanlarda avlanmasıdır. Pazara sunulmak üzere yapılan midye hasatları esnasında da var olan küçük bireyler ayrılarak tekrar büyümeleri için yetiştirme alanlarına bırakılmaktadırlar. İspanya’da kıyılardan midye yavruları elle toplanmaktadır. Yavru midyelerin yoğun olduğu alanlardan toplanan midyelerin zaman kaybetmeden kültür alanlarına taşınması gerekmektedir. Böylece midyeler daha az strese maruz kalırken büyüme ve yaşama oranları da yüksek olur. 4.2 Kültür Yöntemleri Avrupa’da midye kültürünün 700 yıl önce Fransa’dan ağaç kütükler ile yüklenen geminin 1235 yılında kaza yapması sonucu başladığı bilinmektedir(Mason, 1971). Gemiden kurtulan Patrick Walton adlı bir gemici üzerine ağ koyarak ağaç kütüklerini deniz kuşlarını yakalamak için kullanmıştır. Bu işlem için tam başarılı olamamıştır. Fakat bu esnada bu kütüklere fazla miktarda midyelerin turtunduğunu gözlemiştir. Böylece bu kazıkları midye toplamada ve büyütmede kullanarak besinini temin etmiştir. Küçük nbir değişiklik ile Waltson sistemi günümüzde kazık kültür sistemine dönüşmüştür. Bu sistem halen Fransa’nın batı kıyılarınsda kullanılan en etkili sistemdir. 13.yy’dan sonra Avrupa’da birçok midye kültür yöntemi geliştirilmiştir. Genel olarak 4 temel kültür yöntemi vardır. Bu yöntemlerin etkinliği ülkere göre değişiklik göstermektedir. Son yarım yüzyılda bu kültür yöntemlerine 1 yeni yöntem ilave olmuştur. Bu yüzen halatlarda yapılan midye kültürüdür. Kültür yöntemlerini genel olarak zeminde ve zeminden uzakta olmak üzere ikiye ayırabiliriz: 1- Zeminde -Dip Kültürü 2- Zeminden uzak -Kazık veya kütüklerde kültür -Raf kültürü -Sallarda kültür -Halatlarda kültür olarak sınıflamak mümkündür(Mason, 1971). 4.2.1 Kültür Alanının Seçimi Midye kültürüne başlamada önce yetiştiriciliği yapılacağı alanın dikkatle seçilmesi gerekmektedir. Kültür alanının midyelerin hızlı büyüyüp gelişmesine izin verecek sıcaklık, tuzluluk değerlerine,belli bir su akıntısına, yeterli ve uygun besin miktarına sahip olmalıdır. Toksik planton patlamaları ile evsel ve endüstriyel girdiler olmamalıdır. Uygulanak üretim sistemi arazi şartlarına uygun olmalı ve sistem deniz ulaşımı üzerinde kurulmamalıdır. 4.2.1.1 Dip Kültürü Bu yöntemde genel prensip midye yavrularının çok bol olan yerlerden toplanıp daha hızlı büyüyüp, daha fazla et dolgunluğuna sahip olacağı alanlara seyrek olarak bırakılmasına dayanır. 8-13mm büyüklüğündeki 1 yıllık olan midye yavruları doğal midye yataklarından dreçler yardımı ile toplanırlar. Taze olarak tüketime sunulacak olan güçlü addüktör kasına sahip kalın kabuklu midyeler gel-git etkisindeki deniz alanına bırakılırken ince kabuklu olup işlenecek midye yavruları 3-6m derinliğindeki kültür alanlarına tasınırlar. Bu midyeler bu alanlarda 18-24 ayda 7cm olan pazar boyuna ulaşırlar. Bazı Hollanda’lı üreticiler %30-40et verimi elde edebilmek için midyeleri 2.5-3 yıl sonra hasat etmektedirler. Bazı zeminler çamurlu yapıya sahip olabilir. Bu durumda midyelerin hasatı yine dreçler yardımı ile olur. Bu midyeler beslenmeleri esnasında bünyelerine bu çamur materyalinden de alırlar. Bu durumdaki midyeler pazara sunulmadan once taşlı veya çakıllı bir zemine yerleştirilerek var olan çamur birikintisinin temizlenmesi sağlanır(Hurlburt ve Hurlburt, 1980). Bu yöntem yaklaşık 150 yıldır Hollanda’da başarılı bir şekilde uygulanmaktadır. Ortalama midye yataklarından 5.5kg/m2 verimle 22ton/dönüm/yıl midye hasatı yapmaktadırlar. 4.2.1.2 Kazık veya Kütüklerde Kültür Fransa’nın Atlantik, Britany ve Normandy’nin kuzey kıyılarında yaygın olarak kullanılan bir kültür yöntemidir. Bu kıyılar rüzgarlara karşı korumasızdır. Gel-git çok fazla olduğu için su sıcaklığı 4-21°C arasında tuzluluğu ise ‰29-34 arasında sezona bağlı olarak değişmektedir. Bu aşırı gel-git’in yetiştiriciler açısından dezavantajı olduğu gibi avantajları da vardır. Sular çekildiğinde üreticiler midye kazıklarında çalışmalarını yaparlar(Goulletquer ve ark., 1994). Meşe ağacı en iyi kazık materyalidir. Genellikle 20cm çapında 3m uzunluğunda kazıklar kullanılmaktadır. Bu kazıklar deniz tabanına 1.5-2m dışarıda kalacak şekilde çakılırlar. Kazıkların alttan30cm’lik kısmına deniz yıldızlarının, yengeçlerinve diğer predatör organizmaların tırmanmasını engellemek için pürüzsüz plastik sarılır. Kazıklar 1m aralıklar ile dikilir ve her kazık sırası arasında 3m mesafe bırakılır. Bu aralıklar bölgeden bölgeye değişiklik gösterir. Bu kazık sıraları arasında sular çekildiği zaman at arabaları, traktörler, bisikletler ile gidilerek çalışmalar yapılır. Gel-git’in az olduğu bölgelerde ise ulaşım aracı olarak tekneler kullanılır. Kazıkların kültür alanı üstte kalan 1.5m’lik kısımdır. Walton’un gelmiş olduğu Aiguillon körfezi’nde 2.5 milyon kazık (Her sırada 50 kazığın kullanıldığı ve 50 000’den fazla sıranın olduğu) kullanılır. Toplam olarak Fransa kıyıları boyunca 1100km’lik bir alanda kazık kültürü yapılmaktadır(Bardach ve ark., 1972). Gel-git’in az olduğu alanlarda yavru midyeleri toplamak amacıyle doğal midye yataklarının olduğu yerlere halatlar(kollektörler) bırakılır. Birkaç hafta içinde midye yavruları bu halatlara yapışır. Yavru midyelerin tutunduğu bu halatlat kazıkların bulunduğu alanlara taşınır. Gel-git’in fazla olduğu bölgelerde ise yüksek su akıntısı (hareketi)olduğu için midye yavrularının tutunmasını engeller. Bu nedenle bu bölgelere yavru midyelerin tutunduğu halşatların taşınması çok önemlidir. Spatların tutunmuş olduğu kollektörler kazıklar üzerine tek tek sarılır. Bu sarma işlemi esnasında halat kazık üzerine bir çivi yardımı ile sabitlenir. Daha sonra “S” ve “Z” şeklinde sarılırlar. Bu midyeler çok kısa bir süre içinde büyüyerek kazığın tamanını kaplarlar. Başlangıçta kollektör üzerinde tutunmuş midye sayısı çok olduğu için büyüyen midyeler sıkışır. Midyelerin hızlı büyümeye devam edebilmeleri için kazıklardaki midlere kazınarak toplanır. Bu amaçla mekanik alatlerden yayalanıldığı gibi sular yükseldiğinde tekne ile kazıların yanına gidip kepçe benzeri bir kenarı bıçaklı bir aparat ile elle da toplanabilir. Bu işlem zaman alıcı ve işçiliği fazla olduğu için ekonomik durumu iyi olan üreticiler mekanik olarak çalışan aletlerden yararlanır. Bunlar alt kısmı açılabilir sert plastik ile kapatılıp açılabilen iki kapaktan oluşan bir büyük silindir tüptür. Tekneden elektronik olarak kontrol edilir. Alt kapaklar kapatılır. Bir vinç yardımı ile silindir kaldırılıp tekneden kazığı tamamen içine alacak şekilde geçirilir. Alt kapaklar yine tekneden kontrol edilerek sıkıca kapatılır. Vinç yardımı ile yukarı çekilirken midyelerde sıyrılarak bu silindir. İçine dolar. Tekneye alınan silindir içindeki midyeleri tanklara boşaltılır. Bu alet aynı zamanda midyelerin hasatında da kullanılmaktadır. Kazıklardan toplanan mnidye yavruları 15cm çapındaki ve 2m uzunluğundaki plastik ağdan hazırlanmış Bu esneyebilen silindirler tekrar aynı şekilde kazıkların üzerine sarılırlar. Bu işlemden sonra 6-7cm olan Pazar boyuna midyelerin ulaşması 12-18 ayı alır. Bu midyeler 20 kg’lık torbalar içinde pazarlanırlar. Midye kültür alanları Fransız hükümeti tarafından toksik organizmaların açısından takip edilir. Böyle bir tehlike görüldüğünde ise midye hasatı tehlike geçene kadar durdurulur. Midye kültür alanları hükümetten kiralanır ve çoğu aile işletmesidir. Birkaç büyük çiftlik dışında(75 000 kazık ile çalışan) genellikle 15 000-20 000 kazık ile üretimi gerçekleştiriler. Bir kazıktan 9,1-11,3kg/yıl canlı midye ve ya 4,5kg/yıl et hasatı yapılabilmektedir. Bir dönüm alandan bir yıl içinde 5 ton canlı midye veya 1 800 ton et üretimi yapılabilmektedir. Fransa’da midyeler taze tüketilir. Üretimin büyük bir kısmı iç tüketimi karşılamak için yapılır. Talebin fazla olduğu yıllarda ise komşu ülkelerden midye ithal ederler. 4.2.2 Sal Kültürü İspanya’nın Kuzeybatı Atlantik kıyılarında 5 körfez vardır. Bu körfezlerin kıyıları denize dik ve sarptır. Bunların toplam uzunluğu 24km genişliği ise 3-10km olup ortalama 30m(max.60m) derinliğe sahiptirler. Körfezlerin ağız kısımları adalar tarafından okyanus fırtınalarına ve dalgalarına karşı korunmaktadır. Yıllık yüzey su sıcaklığı 9-21°C ve tuzluluğu ise ‰35 ‘dir. Bu alanda Sal kültürü 30 yıldan beri uygulanmaktadır.(Figueras, 1989; Figueras, 1990; Fuentes ve Molares, 1994) Midye kültüründe kullanılan sallar oldukça basit malzelerden yapılmaktadır. İlk kullanılan malzemeler eski tekne gövdeleriydi. Daha sonraları sallar 4-6 köşeli duba ve ya yüzdürülen metal aksamdan yapılmaya başlamıştır. Günümüzde en yaygın kullanılan malzeme ise strafor ve fiberglas materyaldir. Ahşap salların ana bedeni oluşturan çerçeve 5cm2’lik yüzey alanına sahip okalüptüs ağacından hazırlanan krişlerden hazırlanmaktadır. Herbir kriş 45-50cm aralıklar ile ana bedene sıkıca bağlanmaktadır. Bu salların büyüklükleri değişmekle beraber ortalama 23m x 23m olacak şekilde hazırlanır ve bu sala 700 halat asılabilir. Ana beden yüzdürücüler ile alttan desteklenerek batması engellenir. Sallar her iki ucundan beton ağırlıklar ile deniz dibine yaklaşık 20 tonluk beton ağırlıklar ile sabitlenir. Böylece salın bir alanda sabit kalması sağlanmış olur. Sallara asılan halatları uzunluğu 9m’dir. Bu halların uzunluğu deniz tabanına değmeyecek şekilde ayarlanır. Böylece midyeler deniz yıldızlarının, yengeçlerin ve diğer dipte yaşayan predatör organizmaların zarar vermesi engellenmiş olur. Sonbaharda sahil boyunca taşlara tutunmuş olan yavru midyeler toplanır ve suda birkaç çinde eriyebilen rayon fileleri içerisine bir halat ile yerleşririlirler. Fileler sallardan sarkırılırlar. File eriyene kadar midyeler file içindeki halata bysus iplikleri ile tutunurlar.Bu midyeler bir yıl içinde 8-10cm boya ulaşırlar. İlkbaharda ise sallardan boş halat kollektörler sarkıtılarak yeni midye yavruları toplanmaktadır(Bardach ve ark.,1972). Midyeler halatlara tutunduktan sonra pazar boyuna ulaşması 18 ayı alır. İspanya bu şekilde sallarda yetiştirlen midyeler hızlı büyümeleri ve et oranlarının yüksek olması nedeni ile dünyaca bilinen en kaliteli midyelerdir. Midyelerin et verimi %35-50 arasında değişir. Kültür esnasında midyelerin birkaç kez seyreltilmesi gerekmektedir. Böylece hem midyelerin büyüme hızları düşmemekte hem de halatların aşırı ağırlıktan dolayı kopması engellenmiş olmaktadır. Bu işlem ile bir halat 2-3 halata bölünebilmektedir. Bu halatlar 13mm naylon veya 25mm esparto bitkisinden hazırlanmaktadır. Halatların her 40-50cm’sine 30cm boyunda ve 20mm kalınlığında tahta çubuklar yerleştirilerek halat üzerinde büyüdükçe ağırlaşan midye kümelerinin aşağıya kaymasını engellemektir. 9m uzunluğundaki bir halat 113kg /yıl midye üretir. 700 halatlı bir ise 80 ton kabuklu midye üretir. Bu da 41 ton midye eti demektir. Yoğun olarak midye üretiminin yapıldığı alanın 1 dönümünde ise 90 800kg midye eti yıllık olarak üretilebilmektedir. İspanyol midye üreticileri diğer canlıların kültürü ile uğraşan üreticilere göre midyelerin doğal ortamdan yararlanarak büyümesi, herhangibir ek masrafı ve yapay besleme sorunun olmaması nedeni ile 200 kat daha karlıdırlar. Bu halatların hasatı vinçli tekneler ile yapılır. Halatlar vinç ile kaldırılır teknede bulunan bir metal sepet içine Sal bağlantıları kesiler yerleştirilir. Hasat edilen midyeler İspanya içi veya dışına satılmadan önce kanunlarına göre mutlaka 24 saat depurasyon işlemine tabii tutulmalıdır. Bu basit depurasyon işleminde midyeler tanlara alınır. Hafif klor solusyonu içeren sürekli deniz suyuna 48 ssat maruz bırakılırlar. Böylece midyeler bünyelerinde bulunabilecek istenmeyen maddeleri bu ytemiz akışkanlı suya bırakarak etleri temizlenmiş olacaktır. Bu işlemden sonra midyeler bu klorlu sudan çıkarılır ve süzülür, 3 saat sularının akması beklenir ve 15 kg’lık fileler içerisinde soğutmanın olmadığı kapalı bir araç içinde 3 gün gibi uzun süre dayanabilirler. İspanya’da deniz alanı ve sallar hükümetten kiralanmaktadır. Bir aile ortalama büyüklükteki 2-4 midye salını rahatlıkla idare edebilmektedir. Büyük şirketler ise 20-30 Sal ile çalışmaktadır. İspanya üretiminin %95’i Galiçya körfezlerinden yapılmaktadır. Üretimin %25’ Fransa ve Italya’ya satılmaktadır. 4.2.3 Halatlarda Kültür Bu sistem deniz yüzeyine horizontal serilen ana halat bedeninden ve bunların yüzdürücülerinden oluşur. Bu ana bedene vertikal olarak hem kollektör amaçlı halatlar asılabileceği gibi hem de midyelerin bu halatlarda büyümesi sağlanabilmektedir. Horizontal olan ana bedeb 60m uzunluğunda olup 6m aralıklar ile 200lt’lik plak bidonlar ile yüzdürülmektedir. Bu ana beden tek olarak hazırlanabileceği gibi aralarındaki mesafe 1m olacak şekilde bir çift olarak da hazırlanabilmektedir. Bu anabedenler arası mesafe 3m olur. Vertikal halatlat ise 50cm aralıklar ile bağlanır ve uzunlukları 6,5m’dir. Bu halatların uzunluğu , aralarındaki mesafeler yine üreticilere göre değişiklikler göstermektedir(Figueras, 1989). Bu sistemlerde yavru toplama doğrudan sisteme asılan halat kollektörler ile yapılmaktadır. İlkbaharda halatlara tutunan midyeler 14-16 ay sonra 6-7cm boya ulaşırlar. Fazla tutunmuş midye yoksa bu midyelerde seyreltme işlemi yapılmaz. Bu sistemin en önemli avantajı ağır kış şartlatına karşı dayanıklı olmasıdır. Gelgit’in 1m gibi az olduğu yerlerde uygulannan bu istemde operasyon da vinçli tekneler ile yapılmaktadır. Kış şartlarının çok ağır geçtiği ülkelerde su yüzeyi buz tutmaktadır. Bu durumda ne midyeler ne de sistem hiçbir zarar görmez. Kışı ağır geçen İsveç’de yılda 1 dönümden 13 600-15 900kg midye eti elde edilebilmektedir. Kültür sitemleri ülkeler göre faklılıklar gösterebilir (Tablo 1). Bir ülkenin kullandığı sistemin tamamen aynısını yapmaktansa, kültürü yapılacak alanın şartlarına uygun sistem bazı modofikasyonlar ile kullanılabilir. Kültür alanında böyle bir sistemin küçük br modeli hazırlanarak midyelerin tutunma veya büyüme oranları ile sistemin dayanıklılığı test edilmelidir(Hickman, 1992). Kültür yöntemleri içerisinde bugün en fazla tercih edilen ve kullanılan sal ve halat kültürleridir. Aynı bölgede dipte yapılan kültüre göre sallarda veya halatlarda yapılan kültürün %50 daha fazla verim verdiği bilinmektedir. Bu sistemler ile deniz alanından maksimum bir verim alınırken zeminde var olan predatör canlılardan da midyeler korunmuş olmaktadır. Sal ve halat kültürlerinde ise foling organizmalar ile predatör balıklar problemi vardır. Foulingin fazla olduğu dönemlerde midye fileleri veya halatları sık sık kontrol edilmelidir. Eğer fazla miktarda fouling organizma midyeler üzerine yapışırsa onların su ile olan temaslarını engelleyecektir. Bu durumdaki midyelerde su alış verişi azalacağından sudan hem besinini hem de oksijenini sağlayamayan midyeler kısa bir süre sonra öleceklerdir. Bu organizmalar ile halatlara veya sallara binen yük artacak ve sistem batma tehlikesi ile karşı karşıya kalacaktır. Predatör organizmaların başında balıklar, yengeçler, deniz yıldızları ve deniz kuşları gelmektedir. Midyeleri besin olarak kullanarak zarar vermektedirler(Fuentes ve ark., 1994; Lök ve Köse, 1999). Entegre Kültür Uygulamaları Suyu süzerek beslenen midye gibi kabuklu su canlıları son yıllarda deniz balıkları kültür alanlarında birlikte kültür uygulamaları artmıştır. Bu sistemde ağ kafeslerden belli mesafeye(20-50m) yerleştirilen halat veya sal kültür sistemlerinde midye veya istiridye kültürleri yapılmaktadır. Balık besleme esnasında suda çözünenen yemler kabuklular tarafından değerlendirildiği gibi, yemlerin çözünmesi ile suya karışan azotlu bileşikler ile beslenerek çoğalan fitoplankton hücreleri de kullanılmaktadır. Böylece ağ kafeslerinin bulunduğu bölge kabuklular tarafından filtre edilip temizlenirken, yeni bir ürünün üretimi hiçbir yemleme yapmadan söz konusu olmaktadır (Hindioğlu, 1998) 5-Sonuç Kabuklu su ürünleri içerisinde ülkemizde en iyi bilinen tür midye olmasına karşın henüz bilinçli bir yetiştiricilik çalışması başlamamıştır. Bilimsel araştırmalar yanında ağ kafes üreticileri yüzdürücülere bol miktarda tutunan midyeleri basit sistemlerde kültür çalışmalarını denemeye başlamışlardır. Gelecekte ağ kafeslerde balık yetiştiriciliği ile birlikte kültür uygulamalarının başlaması ile hem çevre hem de kabuklu su ürünleri üretimi açısından yararlı olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E. Ü. Su Ür. Fak. Yay. 26-82. Alpbaz, A.G., 1997. Dünyada ve Türkiye’de su ürünleri yetiştiriciliğinin dünü, bugünü ve geleceği. Akdeniz Balıkçılık Kongresi. E.Ü.Su.Ür. Fak.Yay. 5-15. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Culture of mussels. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms . pp. 760-776. Bayne, B.L., Widdows, J., Thompson, R.J., 1976. Physiology: I. In: Bayne, B.L.(ed.). marine mussels: their ecology and physiology. Cambridge University Press. pp. 122-159. Dare, P. J., 1976. Settlement, growth and production of the mussel, Mytilus edulis L., in Morecambe Bay, England. Fish. Invest. (Ser.2), 28: 1. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Figueras, A. J., 1989. Mussel culture in Spain and France. World Aquaculture, 20(4): 8-17. Figueras, A., 1990. Mussel culture in Spain. Mar. Behav. Physiol., 16: 177-207. Fuentes, J., Reyero, I., Zapata, C., Alvarez, G., 1992. Influence of stock and culture site on growth rate and mortality of mussels (Mytilus galloprovincialis Lmk.) in Galicia, Spain. Aquaculture, 131-142. Fuentes, J., Molares, J., 1994. Settlement of the mussel Mytilus galloprovincialis on collectors suspended from rafts in the Ria de Arousa /NW pf Spain): annual pattern and spatial variability. Aquaculture,122: 55-62. Gosling, E.M., 1992. Systematics and geographic distribution of Mytilus. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp. 1-17. Goulletquer, P. T., Joly, J. P., LeGagneur, E., Ruelle, F.,1994. Mussel (Mytilus edulis) culture along the Normandy coastline (France) : Stock assessment and growth monitoring. ICES Statutory Meeting , Shellfish Committee, K: 10, p. 11. Hickman, R.W.,1992. Mussel cultivation. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp.465-510. Hindioğlu, A. 1998. Deniz balıkları yetiştiriciliği ile kabuklu kültürünün entegrasyonu. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı, Türkiye Kıyıları 98 Bildiriler Kitabı, 22-25 Eylül 1998 ODTÜ Ankara s. 261-271 Hurlburt, C.G., Hurlburt, S.W., 1980. European mussel culture technology and its adaptability to North American waters. In: Lutz, R.A.(ed). Mussel culture and harvest: A North American perspective. Developments in aquaculture and fisheries science, 7. Elsevier scientific publishing company,New York pp.69-98 Langdon, C. J., Newell, R. I. E., 1990. Utilization of detritus and bacteria as food sources by two bivalve suspension feeders, the oyster Crassostrea virginica and the mussel Geukensia. Mar. Ecol. Prog. Ser. 58: 299-310. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Lubet, P. E., 1959. Reserches sur le cycle sexuel et L’emission des Gametes Chez les Pectinides et les Mytilides. Rev. Trav. Ist. Pm. 23(4), pp. 396-545, Paris. Mason, J. 1971. Mussel cultivation. Underwater Journal 3: 52-59. Seed, R., 1976. Ecology. In: Bayne, B. L.(ed), Marine mussels: their ecology and physiology, Cambridge University Press, pp: 13-65. Seed, R., Suchanek, T.H., 1992. Population and community ecology of Mytilus. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp. 87-157. Stirling,H.P. ve Okumus, I., 1995. Growth and production of mussels (Mytilus edulis L.) suspended at salmon cages and shellfish farms in two Scottish sea lochs. Aquaculture, 134: 193-210. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole, 123: 203-206. Uysal, H., 1970. Türkiye sahillerinde bulunan midyeler “Mytilus galloprovincialis Lamarck” üzerinde biyolojik ve ekolojik araştırmalar. E.Ü. Fen Fak., İlmi Raporlar Serisi , No.79, 79p.

http://www.biyologlar.com/midye-biyolojisi-ve-yetistirme-teknikleri

İSTİRİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK - Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-izmir Mollusca bireylerinin tüketimi insanoğlunun tarihi ile yakından ilgilidir. Bugün arkeolojik verilerden de anlaşılacağı gibi, deniz kıyısında yerleşim alanları oluşturmuş insanların balık avlamadan önce bu sabit canlıları tükettikleri bilinmektedir. Mağaralarda çok miktarda yenmiş midye ve istridye kabukları bulunmuş; ve bunların bir kısmından kolye yapılmışlardır. Doğal ortamlardan toplanarak tüketim ilk günden bu güne kadar gelmektedir. İlk kültür çalışmaları 17. yüzyılda Japonlar tarafından ele alınmıştır. Bambu kamışları dikerek istridyelerin bunların üzerine tutunmasını sağlayarak yetiştirmişlerdir. Yine bambu kamışlarından sal yaparak denizde sadece dikey değil yatay olarak da yetiştiriciliği başlatmışlardır. Bu dönemde yavruların çoğu doğadan toplanmaktadır. İnsan kontrolü altında ilk yavru üretimi 1879 yılında ele alınmıştır. 1920’de ise kültüre alınacak boya kadar yetiştirilmişlerdir. Bugün birçok ülke yarı kontrollü olarak dipte, kazıklarda, halatlarda, rafta ve sallarda yetiştiricilik yaparken, tam kontrollü olarak yumurtadan pazar boyuna kadar istiridye üretimini de başarılı bir şekilde yapmaktadırlar. Istiridye yetiştiriciliğinde söz sahibi olan ülkelerin birkaçını ve yetiştirdikleri türleri sıralayacak olursak şöyledir; Japonya Crassostrea gigas Fransa Ostrea edulis, Crassostrea angulata, C. gigas Amerika Crassostrea virginica Portekiz Crassostrea angulata Filipinler Crassostrea eradelis Avustralya Crassostrea commercialis Ingiltere Ostrea edulis İnsan gıdası olarak yararlanılan kabuklu su canlıları görüldüğü gibi dış ülkelerde önemli bir yer tutmaktadır. Ülkemizde ise kabuklu deniz canlılarının tüketimi sadece deniz kıyısı olan bölgelerde yaygındır. Kıyı harici şehirlerimizde bu kabuklu canlıların pazarlandığını görmek sanırız pek mümkün değildir. Bu kabuklu su canlıları son yıllarda ülkemizde tanınmaya başlanmıştır. Ülkemizde tüketiminin pek fazla olmamasına rağmen dış talebin yüksek olaması nedeni ile bazı ihracatçılar bu canlıları doğadan toplatarak Italya, Ispanya, Yunanistan gibi ülkelere pazarlanmaktadır(Alpbaz, 1993). İstridyenin Sistematikdeki Yeri Phylum: Mollusca Classis: Bivalvia (Lamelibranchiata) Ordo: Filibranchiata Familia: Ostreidae Genus: Ostrea (Linne, 1758) Species : Ostrea edulis (Linne) Ostrea lurida (Carpenter) Ostrea angasi (Sowerby) Ostrea chilensis (Philippi) Genus: Crassostrea (Sacco, 1897) Species: Crassostrea gigas (Thunberg) Crassostrea virginica (Glein) Crassostrea angulata (Lamarck) Crassostrea rhizophorae (Guilding) Crassostrea madrasensis (Preston) Ülkemiz sularını temsil eden tek tür Ostrea edulis’tir. Marmara Denizi, Ege Denizi, Akdeniz ve Karadeniz’in Istanbul Boğazı ile birleştiği noktada görülmektedir. -Genus: Crassostrea (Sacco, 1897) Olgun istiridyelerde kabuklar karınlı ve uzundur. CaCo3’ın depolanması nedeniyle kabuklar yapraksı görünümdedir, ve sol kapağın karınlı alanı içerideki canlının gelişmesine imkan verir. Sağ kapakçık tamamen düzdür. C. gigas’ta süslü yapıda kapak mevcuttur. Ovipardırlar ve büyük üreme kabiliyetine sahiptirler. Intertidal zonda yaşarlar. Tuzluluk değişimlerine dayanıklı olduklarından acı sularda kolonize olabilirler. C. gigas Pasifik Okyanusu kökenlidir. Ayrıca S.S.C.B.’nin Vladivostok Denizi’nde, Sacolin Adası’nda, Japonya’da lokal 2 ırkı vardır. Iwata bölgesinde, Hiroşima’da, Kore’de, Kuzey Amerika’da (Alaska’dan, Kalifornya’ya kadar) yayılım gösterir(Korringa, 1976a). Bazı araştırıcılar C. gigas ve C. angulata’nın aynı tür olduğunu belirtirler. Portekiz türünün C. gigas’tan türediğini, 15-17. yüzyıla kadar ticaret seferleri yapan tahta gemilere yapışarak Avrupa’ya gelip yerleştiklerini söylemektedirler. Bununla birlikte bu iki türün farklı özellikler gösterdiği belirlenmiştir. Bunlar; solunum metabolizması, küçük zerrecikleri tutma özelliği, büyüme kabiliyeti, üreme şekilleri, farklı hastalıklar karşısındaki durum fizyolojik olarak her iki ırkın az da olsa farklılık gösterdiği tespit edilmiştir. -Genus: Ostrea (Linne, 1758) Kabuk oval şekilli olup, belirsiz kanca burunlu (gagalı), yaprak şeklinde, sarımsı kahverengi renge sahiptir. Sol kabuk hafif küp, sağ kabuk yassı görünümdedir. En önemli türü O.edulis olup max. 12cm, genellikle 6-7cm uzunluğunda olurlar. Yetişkin türlerde bireyin şekli yuvarlaktır. Sınırlı bir üreme vardır ve larvipardır. Tuzlu sularda yaşayıp bulanıklılığa karşı toleransı azdır. Doğal ve kültür yatakları daima denizin içerisinde olmalıdır(Infralittoral zon). Bu daha çok Kuzey Avrupa türü olup Norveç’ten Fransa’ya kadar (Ingiltere, Almanya, Hollanda, Irlanda ve diğer ülkeler) uzanır. Daha güneyde Ispanya kıyıları ile Fas’ın güney ucuna kadar yayılmışlardır(Korringa, 1976b). Akdeniz’de Fransa, Italya, Sicilya’dan Karadeniz’e kadar uzanır. Ülkemizde sahil ötesi kumlu, çamurlu veya kayalık bölgelerde yaşarlar. 2-İSTRİDYENİN BİYOLOJİSİ Morfolojik olarak Ostrea edulis dairesel şekilli iki kabuktan meydana gelmiştir.Her iki kabuk dorsal kenarlarından boynuza benzeyen ligamentlerle birbirine bağlanmıştır. Ligamentin esnekliği kabukların açık durmasını sağlar. Bu, hasta yada ölü istridyenin karakteristik bir özelliğidir. Açılmış kabukların canlılığı herbiri ayrı fonksiyona sahip olan iki kısma ayrılmış adductor kası tarafından kontrol edilir. Adduktor kası merkezdedir ve her iki kabuğa sıkıca yapışmış durumdadır. Vücut kısmı addüktör kası ile mafsal arasında uzanır. Kalp, bağırsak, böbrek, mide bu bölümdedir. Gonadlar da buradadır. Üreme zamanında gonadlar tüm yüzeyi kaplayarak krem beyaz görünüm alırlar. Manto, vücut kısmının her iki yanını kaplayan düz bir dokudur ve kabuk kenarı boyunca sabit olarak uzanır. Manto kenarlarında bulunan materyalin ilavesi sonucu kenar kısmında kabuk oldukça gelişmiştir. İstridye kabuklarının %95’den fazlası kalsiyum karbonattır. Manto vücudun iki yanında kabukla vücut arasında bir örtü gibi bağ dokuya asılıdır. Bu nedenle bir ada gibidir. Mantonu uçları üç yaprak şeklindedir. Bunlardan iki sıra kabuk üretiminde görev alırlar, içteki ve en geniş olanı vücut ile kabuk arasında perde görevi yapar. Mantonun öbür ucundaki yapraklar ayrı ayrı veya birlikte hareket ederek suyun manto içine akışını kontrol eder, bu durumda kabuklar yuva gibidir. Manto bölgesine giriş manto uçlarının birleşmesi ile sınırlandırılır. Küçük organizmaların girmesine ve suyun atılmasına olanak verir. İstiridye solungaçları vücudun 2/3’ünü sarar. Belli aralıklar ile birbirine bağlanmış küçük filamentlerden oluşur. Su, manto boşluğundaki su alma bölümünden filamentler üzerinde bulunan kırbaç biçimindeki sayısız sillerin hareketi ile su tüplerine hareket eder. Bunlar sadece suyun hareketini sağlamaz, aynı zamanda istiridyenin besinin oluşturan küçük parçaları da sudan filtre eder. Bu süzülen su, solungaç tüplerine geçer ve oradan su verme bölümüne, en sonunda manto boşluğundan dışarı atılır. Solungaçlar dört adet yarı ay şeklinde tabakalardan ibarettir. Manto uçlarının birleşmesi, manto kısmını manto odası ve solungaçları içeren geniş bir oda küçük bir boşaltım odası olmak üzere ikiye ayırır. Ayrıca bir boşaltım kanalı içerir. Bu manto ile vücudun sağ yanı arasında bulunur ve istiridyelerin özellikle çamurlu ortamda yaşamasına yardımcı olur(Walne, 1974). Solungaçlar basit bir süzgeç mekanizması değildir. Aynı zamanda komplex bir ayırma aygıtı gibi olup, uygun gıdanın yeterli miktarda ayırım ve değerlendirilmesini yapar. Gıdasını teşkil edecekler ağıza, diğerleri atık bölgeye liflerin yardımı ile yollanır. Çok iri olanlar mantonun altına düşürülür (Walne, 1974). Kabuklularda solungaç yapısı birbirlerine benzemesine karşın farklılık filamentlerin bağlantı şeklinde olup, Mytilus edulis’te filamentler arası organik bağlara rastlanmaz. Fakat istiridyelerde bu olay yukarıda görüldüğü gibi bulunmaktadır. Örneğin akivadeslerde bu filament bağlantılarının derecesi istiridyelerde bulunanlardan çok daha yüksektir. İstiridyenin sağ kabuğu düzdür ve larva metamorfoza ulaştığında kendini sol kabuk üzerinde zemine tespit eder. Uygun koşullarda istiridyeler bütün gün boyunca kabuklarını açıp su içerisindeki planktonları ve zerrecikler halindeki organik maddeleri, hatta su içerisindeki mineraller maddeleri bile süzerek gıda olarak kullanırlar(Claus, 1981). Böylece su içerisindeki organik maddeleri ete çeviren canlılar olarak önem kazanırlar. Su akımının esas rolü şüphesiz ki beslenme üzerinedir. Fakat bunun yanında su, sindirim sisteminde ve böbreklerde oluşan atıkları uzaklaştırmaya yarar ve ayrıca canlıya O2 sağlar. İstiridyelerin filtrasyon hızını sıcaklık, suyun debisi ve partikül konsantrasyonu etki eder. 3-İSTİRİDYELERDE ÜREME İstridyeler eşeyli üreme gösterirler. Üreme organları erkek ve dişi gametleri oluşturur. Bunların üreme mevsimi ilkbahar sonu ile sonbahar arasında olup havaların ısınmasıyla başlar, soğumaya başlaması ile sona erer. Her iki seksdeki gonadlar birçok hayvanda bulunan ile karşılaştırıldığında basit yapıdadır. Sindirim sistemi üzerinde yerleşmiş durumdadır. Avrupa istiridyesi, Ostrea edulis, olgun durumda iken gonadlar 2 veya 3mm kalınlığında bir tabaka biçimindedir. Seksler arasındaki farklılık yumurta ve sperm varlığından hariç dış görünüşten belli olamaz. 3.1 İstiridyelerin Gonad Gelişim Safhaları İstiridyelerin gonad safhalarını belirlemek için alınan histolojik örneklerde gonad aşamaları beş grup altında değerlendirilmektedir(Cole 1942; Brausseau, 1995; Garcia-Dominguez ve ark., 1996, Yolkolu, 2000). Bu gruplar: Safha 0 Dinlenme Safha 1 Ilk Gametogenesis Safha 2 Olgunlaşmaya başlama Safha 3 Döl atımına hazır Safha 4 Kısmı olarak döl atımı olarak sınıflandırılır. 3.1.1 Dinlenme safhası Bu safhada olan bireylerde istiridyelerin cinsiyetinin belirlenmesi açısından histolojik olarak herhangi bir ip ucu yoktur. Ortamda cinsiyeti belirleyici olan germ(cinsiyet) hücreleri bulunmamaktadır. 3.1.1.1 Testis Safha 1: Ilk gametogenesis safhasındadır. Bu özellikte olan örneklerde foliküler küçüktür, yuvarlak veya oval şekillidir. Bağ dokusunun kapladığı alan geniştir. Spermatagonialar bir arada ve koyu renklidir. Safha 2:Foliküller oldukça büyümüştür. Bağ dokusunun kapladığı alan iyice azalmıştır. Spermatozoalar merkeze doğru yönelmiştir ve kırmızı şeritler halinde kuyruklar belirgindir. Safha 3: Istiridyelerin döl atımına hazır olduğu safhadır. Foliküller şişip birleşmiş ve çoğunluğu tamamen spermatazoa ile doludur ve kuyrukları kırmızı renktedir ve açıkca belirgindir. Maturasyon ile incelmeye başlamış olan folikül duvarlarının iç kısmına doğru spermatositler ve spermatidler sıralandırılmışlardır. Serbest spermatazoalar follikül lümellerine tamamen yerleşmişlerdir. Çok sayıda hareketli spermatazoa görülmektedir. Bağ dokusu alanı azalmıştır. Safha 4:Foliküller tamamen boşalmış ve dinlenme safhasına geçilmiştir. Bu da ortamda inaktif olan spermatagoniumlardan anlaşılmaktadır. Foliküller arası bağ dokusu iyice gelişmiştir. 3.1.1.2 Ovaryum Safha 1: Foliküller başlangıçta küçük, boş ve belirgin değildir. Folikül duvarları, gelişen oositler ve kök hücreleri ile belirginleşmiştir. Oogonia ve primer oositler küçüktür ve yumurta sarısı yoktur. Bu aşamadaki primer oositlerin çekirdeği büyüktür ve belirgindir. Sık demetler şeklinde folikül duvarına doğru yapışma olmaktadır. Oogenesis ilerlemektedir. Birkaç büyük oositin uzamaya başlaması ile genç oositler bölünmektedir. Safha 2: Oositler, lumenlere doğru genişlemiş ve yığılmaya başlamıştır. Sekonder oositler yoğun miktarda görülmektedir. Primer oosit ve serbest oosit birkaç tanedir. Bu serbest oositler, lümel merkezinde görülmektedir. Hala folikül duvarları ile bağlantılı olan uzamış oositler ile hemen hemen olgunlaşmış olan oositler yoğun olarak bulunmaktadır. Oositler konik ve oval şekildedirler. Bağ dokusunun alanı iyice azalmıştır. Safha 3: Birleşmiş foliküller, bir çekirdekçiği ve çekirdeğinin gözüktüğü polygonal şekilli, tamamen serbest olan oositler ile doludur. Sekonder oosit bir kaç tanedir. Safha 4: Oositler olgunlaşmış atıma hazır hale gelmişlerdir. Bağ dokusu tekrar belirginleşmeye başlamıştır. Ayrıca oositlerin şekli hekzogenal hale gelmiştir. Bazı boşalmış ve yıkıma uğramış foliküller bulunmaktadır. Avrupa istiridyesi, Ostrea edulis sukseksif hermafroditizm gösterir. Seksüel olgunluğa ilk ulaştığı zaman gonad normal olarak bir erkek gibi gelişir ve sperm verir. Gonad spermi bıraktıktan sonra dişi safhasına geçer ve sperm yerine yumurta üretir. Bu düzenli bir şekilde tüm yaşamı boyunca devam eder. Erkek tarafından dışarı bırakılan spermalar dişi tarafından su alma kanalı ile alınarak yumurtalar dişinin içinde döllenir. Döllenmiş yumurtalar 8-10 gün kadar dişinin palial boşluğunda kuluçkalandıktan sonra dışarıya serbest yüzen veliger larva durumunda bırakılırlar(Alpbaz ve Hindioğlu, 1991). Avrupa istiridyesinin döl verimi üzerine sıcaklığın, besinin, büyüklüğün ve yaşın etkisi büyüktür Avrupa istiridyesinin larva boyu 150-190µm büyüklüktedir. 120-130µm büyüklükte larvalar görülse de, yetiştiricilikte büyük larvalar alınır. Küçük larvalar elenir. Böylece daha dayanıklı ve sağlıklı bireyler elde edilebilir. Suya bırakılan veliger larvaları velumları sayesinde hareket ederler. Besin olarak fitoplanton tüketirler. 10-15 gün pelajikte yaşamlarını sürdüren larvalar 290-300µm ve bazen de 360µm büyüklükte iken zemine inerek, hayatlarının geri kalan kısmını sürdürecekleri sert bir substratuma kendilerini tespit ederler. Larvanın kuru ağırlığı hareketli dönemi boyunca 1µg’dan 4µg’a çıkar. Bunun %75-80’i kabuk ağırlığıdır. Yeni bırakılmış bir larvanın kuru ağırlığının %14’ü glikojen, %15,5-22,5’i yağdır. Crassostrea genusuna ait istiridyeler ise 100 milyonun üzerinde yumurta dökebilmektedirler. Bu yumurtaların hepsi aynı zamanda değil, üreme dönemi boyunca bırakılırlar. Crassostrea gigas’da ise dişi birey yumurtalarını deniz suyuna bırakır ve erkek bireyin bıraktığı spermalar ile su içinde döllenme olur. Yumurtalar yaklaşık 50µm büyüklükte olup çok küçüktürler. Yumurtalar ovaryumda iken armut şeklindedir. Ovaryumdan bırakılıp su ortamında döllendikten sonra spiral şekil alır. Birinci ve ikinci polar vücut görünerek yarılma devam eder. Gelişme, morula, blastula ve gastrula safhalarına doğru ilerler. Veliger safhada larvanın velumu ortaya çıkar ve aktif hareket etmeye başlar. Daha sonra D şekilli larvaya dönüşür. Larvada umbo oluştuğunda umbo safhasındadır ve kabuk uzunluğu 0,2mm’ye ulaştığında metamorfoz başlar(Bardach ve ark., 1972). Larva metamorfoz aşamasına geldiğinde anacına benzer bir hal alır. Her iki genusda da benzer belirti olan göz noktası ve ayağın görülmesi metamorfozun en önemli işaretidir. Zemine inen larvada velum kaybolur ve yüzme hareketi ayak ile sürünme hareketine dönüşür. Uygun substrat bulduğunda kendini sol kabuğundan salgıladığı özel bir salgı ile oraya yapıştırarak sesil hayatı başlamış olur. Hareket kabiliyeti artık bitmiştir. 4-İSTİRİDYE YETİŞTİRİCİLİĞİ İstiridye kültüründe yavru bireyler ya kuluçkahanelerde üretilerek ya da doğal alanlardan toplanarak elde edilmektedir. Kuluçkahaneden yavru üretimi gerçekleştirilirse, genetik seleksiyonlar yapılarak hızlı büyüyen, zor şartlara karşı dayanıklı, et verimi fazla, hastalıklara karşı dayanıklı bireylerin elde edilmesi söz konusu olabilmektedir(Rodriguez ve Frias, 1992). Doğal ortamdan toplanan yavrularda ise böyle bir seleksiyon şansı yoktur. 4.1. Kuluçkahaneden Yavru Temini Bu kültür yönteminde kıyısal alanda bir kuçkahane binasının olması gerekmektedir. Bir istiridye kuluçkahanesinde filtre odası, fitoplankton üretim birimi, anaç, larva ve yavru üretim birimi olmalıdır. 4.1.1. Deniz Suyu İstiridye kültüründe suyun filtrasyonu önemli bir konudur. Anaç ve yavru biriminde kullanılan suyun 40-60µm’lik kum filtrelerinden geçmesi yeterli olurken, fitoplankton ve larva üretiminde kullanılacak suyun 20, 10, 5, 1µm’lik kartuj filtrelerinden geçerek partiküllerden ve suda bulunabilecek diğer organizmalardan ayrılması gerekmektedir. Bazı üreticiler deniz suyu ile gelebilecek bazı organizmaların istiridye larvaları tarafından besin olarak değerlendirilebileceğini düşünerek kaba bir filtrasyon yapmaktadırlar. Fakat üretimi riske atmamak için iyi bir filtrasyon ve sterilizasyon önemlidir. Suyun iyi filtre edilmiş olması U.V. ışınları ile yapılacak sterilizasyon etkisini arttırmaktadır. 4.2. Anaç Özellikleri Genellikle istiridye anaçları üretim zamanında doğal stok alanlarından döl almak amacıyla kuluçkahaneye getirilir ve döl alma işlemi tamamlandıktan sonra tekrar denize bırakılırlar. Bu anaçlar hızlı büyüyen, zor şartlara karşı dayanıklı, et oluşturma kapasitesi yüksek, düzgün kabuk şekilli gibi özelliklere sahip istiridye stoklarından seçilmasi tercih edilir. 4.2.1. Anaç istiridyelerden döl alım yöntemleri Olgun istiridyelerden yumurta ve larva elde etmek için birkaç yöntem vardır. İstiridyenin yumurta ve larvalarını ortama normal olarak kendi isteği ile bırakması haricinde yumurtlamayı uyarıcı şok yöntemler de uygulanır. Bu şok yöntemler şöyledir; Termik şok: Şok yöntemlerin en çok kullanılanıdır. Olgun istiridyelerin ani olarak sıcak sudan soğuk suya, soğuk sudan sıcak suya bırakılması ile olur (Field, 1922). Bu işlem birkaç defa tekrarlanır ve istiridyenin larva bırakması beklenir. Kimyasal şok: İstiridyelerin manto boşluğuna 2cc, 0.5 mollük KCL solüsyonu enjekte etmek sureti ile yapılmaktadır. (Bayne; 1965) Elektrik şok: İstiridyelere düşük voltta elektrik verilmek sureti ile uygulanır (Iwata, 1950; Sugiura, 1962). Mekanik şok: İstiridyelerin adduktor kasına enjektör iğnesi ile dokunularak uyarı yapılmaktadır (Loosanoff ve Davis, 1963). Diğer Yöntemler Diseksiyon yöntemi Olgun İstiridyelerin kapama kasları kesilerek gonadlardaki yumurta veya spermler C.gigas’ta alınırken, O. edulis’te palial boşluktaki larvalar alınabilir. Sperm solusyonu Yumurtlamayı uyarmak için suya sperm solüsyonu verildiğinde de istiridyeler bir süre sonra yumurta bırakmış olur. Bu amaçla şok uygulamalar sonrasında elde edilecek fazla sperm solusyonu kullanılabilir. Şok yönetemlerin uygulanmasından yaklaşık 30dk sonra istiridyeler döllerini su ortamına dökerler. Eğer istiridyeler döllerini bırakmaya hazır değiller ise şok yöntemler ile başarılı bir sonuç elde edilemez. İstiridyeler bilindiği gibi yaz aylarını üreme için kullanılır. Kışın ise doğada üreme görülmez. Laboratuvarda uygun koşullar yaratılarak kış aylarında da istiridye üretimi yapılabilir. Bunun için doğal ortamdan alınan istiridyeler 10°C sıcaklıktaki suya bırakılırlar. Ortama alışan damızlıkların tutulduğu havuzdaki su sıcaklığı tedrici olarak 18°C’ye veya biraz daha yüksek sıcaklığa çıkartılır. Bu sıcaklıkta istiridyeler 2-4 hafta tutulur. Bu süre üretim mevsimine bağlı olarak değişir. İstiridyeler bu süre içerisinde gonadlarını olgunlaştırırlar ve sıcaklık 20°C’ye ulaştığında döllerini dökerler. Bu işleme gonad olgunlaştırarak döllerin alınması işlemi denilir. Burada kullanılan anaçlar genellikle genetik olarak istenilen özelliklere sahip özel anaçlardır. 4.3. Larva Kültürü Yumurta veya larvalar anaç biriminde elde edildikten sonra larva birimine alınırlar. Burada 50lt’den 2tona kadar silindir-konik polyester tanklar kullanılabilmektedir. Tank hacmi üretim kapasitesine ve üreticinin tercihine bağlı olarak değişir. Bu tankların alt kısmında bir su çıkış vanası olur. Tanklar 40watt’lık floresan lambalar altına yerleştirilir. Tuzluluğu ‰33-35 ve sıcaklığı 20-22 °C olan iyi filtre edilip sterilize edilmiş deniz suyu doldurulur. Bu tanklara başlangıçta veliger larvaları 10 adet/ml’yi geçmeyecek şekilde stoklanır. Larvalar büyüdükçe stoklama yoğunluğu 3-5adet/ml’ye indirilir. Tankların temizliği gün aşırı yapılır. Tank suyu tamamen süzülerek larvalar yıkanır ve temiz su ile doldurulmuş yeni tanka aktarılırlar. Bu temizlik işlemi larva kültür boyunca devam eder. Veliger safhasında 170-190µm büyüklükte olan larvalar metamorfoza yakın gözlenmiş safhada iken 240-350µm boya ulaşırlar. 4.3.1 Fitoplankton Üretimi Kuluçkahanede bulunan anaç, larva ve yavru istiridyelerin besinleri bu birimde üretilerek temin edilir. Larva beslemede açıklanan Wells-glancy veya Milford yöntemine göre kültür gerçekleştirilmektedir 4.3.1.1 Wells-glancy yöntemi Wells-glancy yönteminde deniz suyu sadece kum filtresinden geçirilir ve sera ortamındaki büyük hacimli tanklara(20-30 tonluk) gönderilir. Tanklara deniz suyu ile gelen fitoplankton hücrelerinin artmasına izin verecek nutriyent karışımı verilir. Bu tank suyu 5-6 gün içinde kahverengi veya yeşil renk aldığında doğrudan larva tanklarında besleme amaçlı kullanılır. Bu yöntemin dezavantajı deniz suyu iyi filtre edilmediği için zararlı fitoplanktonlar türleri de kısa sürede çoğalarak istiridye larvalarına zarar verebilir. Suyla birlikte gelen zooplanktonlar hem larvalara predatör olarak zarar verdiği gibi bazıları da ortamda çoğalan besine ortak olur. Deniz suyu sterilize edilmediği için hastalıklara neden olabilecek mikroorganizma bulaşması da söz konusu olabilir. Böyle bir kültür yönteminde larva yetiştirciliği riske atılmış olmaktadır. Bu yönteme dayalı yapılan fitoplankton kültürü daha çok yavru veya anaç beslemede kullanılabilir. Wells-glancy yöntemi fitoplankton üretim masrafını çok azalttığı için tercih edilmektedir(Bardach ve ark., 1972). 4.3.1.2. Milford yöntemi Milford yönteminde ise alg hücreleri tek tek ayrı tüplerde ve saf kültür olarak inkübatörde muhafaza edilir. Larva kültürüne başlamadan önce bu hücreler steril şartlar altında arttırılmaya başlar. Kültür suyu 0.45µm göz açıklığındaki Milipore filtreden süzüldükten sonra otoklavda sterilize edilir. Kültür hacmi 6lt’yi geçtiğinde suyun filtrasyonu 1µm’lik kartuj filtrelerde, sterilizaysonu ise U.V. lambalarından yararlanarak yapılır. Böylece larva beslemede istenilen hücrelerin kültürü ayrı tanklarda yapılmış olur. Kültür biriminin iyi bir fitoplankton artışı sağlanması için 18-22°C arasında olması sağlanır. Şeffaf polyester tanklar veya naylon torbalarda(50-500lt hacimli) kültür gerçekleştirilir(Bardach ve ark., 1972). 4.3.2 Larva Besleme Milford yöntemine göre kültüre alınan fitoplankton hücrelerinden larvalara ilk olarak Isochrysis galbana ve Monochrysis lutheri besin olarak verilir. Larvalar büyüdükçe Tetraselmis suecica, Dunaliella tertiolecta, Chaetoceras calcitrans gibi besinler kullanılmaktadır. Genellikle tek tür beslemesinden ziyade karışık türler ile besleme iyi sonuç vermektedir. Isochrysis galbana, Monochrysis lutheri 100 000 hücre/ml, Tetraselmis suecica, Dunaliella tertiolecta 50 000-80 000 hücre/ml larva tankında olacak şekilde besleme yapılır. Karışık besleme başlangıçta %50 Monochrysis lutheri ve %50 Isochrysis galbana, larva metamorfoza yaklaştığında ise %20-30 Tetraselmis suecica ile karışık besleme yapılır. Beslemede kullanılacak fitoplankton hücrelerinin canlı olmasına dikkat edilir. Bu nedenle logaritmik artış fazında iken fitoplankton hasat edilerek larvalara verilir. Chlorella sp., ve Phaedactylun tricornutum besleyici değeri düşükolduğu için kullanılması tercih edilmez. Ayrıca Chlorella sp kalın hücre duvarına sahip olmaları nedeniyle larvalar tarafından sindirilememekte ve metabolik artıkları istiridye larvaları için toksik etkiye neden olmaktadır. Bu sebeplerden dolayı kabuklu larva kültüründe besin olarak kullanılmazlar(De Pauw, 1981). Son yıllarda kurutulmuş alg tozlarının kullanılması ile kuluçkahaneler fitoplankton üretim birimlerini küçültmüşler veya tamamen kaldırmışlardır. İhtiyaç duydukları kadar toz fitoplanktonu satın alarak larva beslemede kullanmaktadırlar(De Pauw, 1981). Metamorfoz Larva kültüründe metamorfoz dönemi en önemli dönemlerden biridir. Larvaların günlük sayımları ve ölçümleri alınırken göz ve ayak noktasının oluşumu çok iyi takip edilmelidir. Bu dönemde larvalar zemine iner ve kendilerine uygun gördüklere yerlere yapışırlar. Larva kontrolü iyi yapılmadığı taktirde larvalar tank çeperlerine yapışırlar ve buralardan çıkarılmaları çok zor olur. Böylece bir larva üretim dönemi başarısızlıkla bitmiş olur. Metamorfoz aşamasına gelen larvalar ya ayrı tanlara alınırlar ya da bulundukları tanklar içersine yapışma işlemi başlamadan önce çeşitli kollektör malzemeleri bırakılarak larvaların bunların üzerine yapışması sağlanır. Burada kullanılan kollektör malzemesi larvanın en çok tercih ettiği materyal olan istiridye kabuklarıdır. Bir ip üzerine 3-4 cm aralıklar ile dizilen istiridye kabukları larva tanklarının içerisine tank dibine değecek boyda hazırlanarak sık bir sekilde tank yüzeyinden aşağı doğru sarkıtılırlar. 3-5 gün içinde larvalar bu kabuklar üzerine tutunarak metamorfozlarını tamamlamış olurlar. Bu yeni tutunmuş istiridye yavrularına “spat” adı verilir. Yeni tutunmuş bir spat 1,2-5,7mg canlı ağırlığa sahiptir. Bu spatlar 10-11 hafta sonra 220-500mg canlı ağırlığa ulaşır. Yavrular kollektörler vasıtası ile yetiştirme alanlarına taşınarak uygun sistemlerde büyümeye alınırlar(Utting, 1988). Eğer spatlar tek tek herhangi bir yüzeye yapışık istenmiyorsa, metamorfoz aşamasında iken su sikülasyonunun olduğu spat tanklarına alınırlar. Bu tanklar. 50cm genişliğinde, 30cm derinliğinde olup 2m uzunluğundadır. Tankların içine derinliği 10-15cm olan altı plankton bezi ile çevrelenmiş tepsiler tabanları dibe değmeyecek şekilde yerleştirilir. Tanka su girişi herbir tepsinin üstünden olurken su çıkışı ana tankın sifon çıkışından olmaktadır. Başlangıçta tepsilerin plankton bezi büyüklüğü 150µm’dir. Bu sistemin esas özelliği larvalar bu tepsilere yerleştirilmeden önce kum haline getirilmiş istiridye ve midye kabuklarının tepsi tabanındaki plankton bezini örtecek şekilde yayılmasıdır. Plankton bezi başlangıç boyunun larva boyuna göre çok küçük olmasının nedeni de bu kabukların tepsiden akıp gitmesini engellemek içindir. Kabuk tozu serpilen tepsilere larvalar bırakılır ve 3-5 gün içinde larvalar bu kabuk tozlarına yapışırlar. Zaman içinde spat istiridyeler büyüdükçe kabuk tozları görünmez, spatlar gözle rahatlıkla görünür hale gelirler. Spat büyüklüğüne paralel olarak tepsinin plankton bezi göz açıklığı arttırılır. Spatların 2-3mm boya kadar bu sistemlerde kalabilmektedir. Bu aşamada verilen deniz suyu sadece kaba filtreden geçmektedir ve besin olarak da diatom ağırlıklı besleme yapılmaktadır. Kuluçkahanelerde yapılan larva çalışmaları sırasında metamorfoz aşamasına yaklaşan istiridye larvalarının tutunmasını uyarmak ve hızlandırmak için bazı neuroaktif bileşikler kullanılmaktadır (Shau-Hwaitan ve Wong, 1995). Bazı araştırıcılar bu amaçla sıcaklığı arttırırken bazıları da tank suyuna kabuklu glikojeni, potasyum klorür veya bakır klorür solusyonu kullanırlar(Nell ve Holliday, 1986).. Bu bileşikler larvalarda göz noktası ve ayak oluştuktan sonra kullanılarak larvaların hemen hepsinin aynı anda metamorfozu tamamlaması sağlanmış olur. Kuluçkahanede 3-4mm boya ulaşana kadar spat istiridyeler tuttulur. Bu aşamadan sonra deniz alanında hazırlanmış olan uygun sistemlere taşınarak yetiştiriciliğe devam edilir. 4.4. Doğal Ortamdan Yavru Temini İstiridyelerin yavruları doğal ortamdan ya dreçler ile avlanarak toplanırlar ya da istiridye yataklarının olduğu alanlara üreme dönemlerinde bırakılan çeşitli malzemelerden hazırlanmış kollektörler ile toplanırlar. İstiridyeler biyolojik yapılarından dolayı tutunmak için özellikle kendi anaç kabuklarına benzer materyalleri tercih etmektedirler. Eğer ortamda kabuk yoksa, spatlar buldukları sert substrata kendini yapıştırırlar(Pascual ve Zampatti 1995). Birçok ülkede, yarı kontrollü yetiştiricilik çalışmalarında, spat istiridyelerin toplanmasında, geleneksel yöntemlerin yanında geliştirilmiş yeni malzemelerden hazırlanan kollektörler de kullanılmaktadır. 4.4.1 Kollektör Tipleri Spat toplamada kullanılacak kollektör tipi önemlidir. Şimdiye kadar birçok materyal ve dizayn kullanılmıştır. Fakat bunlardan hiçbiri için her yerde ve her tür için çok iyi sonuç veren sistem denilemez. Bir tür için iyi olan kollektör diğer bir tür için arzu edilen sonucu vermeyebilir(Bardach ve ark., 1972). Uzak doğuda mangrov (Rhizophora sp., Avicennia sp.) bitkilerinin kökleri ile başlayan spat toplama işlemi günümüzde kiremit, çeşitli mollusk kabukları(midye, istiridye, tarak gibi), ahşap, PVC, metal materyallerin kullanımına kadar uzanmaktadır. (Burrell, 1980; Heral, 1990). 4.4.1.1 Kabuk kollektörler Japonya’dan Amerika’ya kadar çok yaygın bir kullanım alanına sahiptir. Bir ucu sivri olan özel çekiçlerle delinen kabuklar, 2 m. uzunluğundaki galvaniz tele dizilmektedir. Teldeki kabuk sayısı 80 ila 100 arasında değişmektedir. Kabuklar arasında mesafe bırakabilmek için önceleri bambu kamışlar kullanılmaktaydı, ancak maliyet ve geri dönüşüm açısından daha karlı olan plastik tüpler son yıllarda tercih edilmektedir. Kabukların bol olduğu bölgelerde ise herhangi bir mesafe bırakmadan ip veya galveniz tel üzerine üst üste gelecek şekilde kabuklar dizilerek kollektörler hazırlanmaktadır (Korringa, 1976a-b; Haven ve ark., 1987; Mann ve ark., 1990). Fransa’da Ostrea edulis spatlarının toplanmasında kabuk kollektörler içerisinde en iyi sonucu midye kabukları vermektedir. Bu kabuklar ince uzun ağ fileler içerisine yerleştirilmekte ve daha önceden hazırlanmış olan metal çerçeveler üzerine bağlanarak deniz tabanına bırakılmaktadır. Bunlar daha çok gel-git’in olmadığı derin sulara yerleştirmektedir (Heral, 1990). Hazırlanan tüm kabuk kollektör çeşitleri raf veya sallardan sarkıtılarak denize bırakılırlar. Bir çok kuluçkahanede, çeşitli kabuklular kırılıp toz haline getirildikten sonra metamorfoz aşamasına gelmiş larvaların yerleştirildiği tavaların tabanına serilmekte ve larvaların bu kabuk tozlarına tutunması sağlanmaktadır. Bu istiridye yavrularının tek tek elde edilmesi amacıyla da avantajlı bir yöntemdir. Bu şekilde elde edilen spat istiridyeler torbalara yerleştirilip kültür sistemlerine yerleştirlmektedir(Pascual ve Zampatti, 1995). 4.4.2 Kiremitler Kollektör olarak kullanılan kremitler, yaklaşık olarak yarı silindirik şekildedir. 33cm uzunluğunda, 15cm genişliğinde ve ortalama 5cm yüksekliğindedirler. Bu kiremitlerden birinin ortalama ağırlığı 900gr’dır. Kiremitler 10’luk gruplar halinde bir araya getirilirler ve Bouquets olarak adllandırılırlar. Bu onluk grupların oluşturulması için kısa kenarından 7,5cm uzaklıkta iki delik açılmaktadır. 110cm uzunluğunda 1,5mm kalınlığında galvanizli tel ile köşeler kesişecek şekilde birbirine bağlanmaktadır. Daha sonra kirece batırılıp kuruyuncaya kadar bekletilmektedir Kiremit kollektörlerde, kireç solusyonunun kullanılması ile spatlar kiremitler üzerinden rahatlıkla çıkarılmaktadır(Walne, 1974; Korringa, 1976a-b; Heral, 1990). Hollanda’da S-tipi kiremitler istiridye yavrusu toplamak için daha uygun olduğu bildirilmektedir (Dutch Tipi). Burada kullanılan kiremitlerin kuru ağırlıkları 2kg’dır. Ancak deniz suyu içindeki ağırlıkları ortalama 2,5kg. cıvarındadır. 35x23cm boyutlarında ve 13mm kalınlığındadırlar. Bu kiremitler de kreç ile kaplandıktan sonra denize bırakılmaktadırlar (Korringa,1976b). Gerek Crassostrea gerekse Ostrea türleri için gel-git’in olduğu alanlarda yaygın olarak kullanılan kremit kollektörler zemine yerleştirilmektedir. Kollektörlerin bırakılacağı alanlar daha önceden deniz yıldızları ve yengeçlerden temizlenerek kollektör veriminin olumsuz etkilenmesi önlenmiş olur. 4.4.3. Plastik malzemeler Günümüzde geleneksel olarak kullanılan bir çok materyalin yanında kolay şekil verilebilen plastik malzemeler de kullanılmaktadır. Bu malzemelerin maliyeti diğer kollektörlere göre daha yüksek olmasına karşın, tekrar kullanılması nedeni ile tercih edilmektedir. PVC çubuklar, yarı silindir plastik kollektörler, plastik levhalar ve fileler en çok kullanılan plastik materyal tipleridir(Korringa, 1976a-b). Dayanıklı ve hafifitirler., spat hasatı pratiktir. 4.4.4. Bambu kamışı ve ahşap materyaller Özellikle Filipinler’de Crassostrea eradelie için kullanılan bir kollektördür. Hazırlanışı basit olduğu için Filipin’li üreticiler tarafından özellikle tercih edilmektedir. Bu bambu kamışlar 5-10cm çapında ve sağlam olanları tercih edilmektedir. Bambu kamışları kesildikten sonra güneşte kurutulmakta ve eğer kalın bambu kamışları varsa bunlar da ikiye ayrılarak kullanılmaktadır. Daha önceleri bu ülkede istiridye kabukları yaygın olarak kollektör yapımında kullanılmasına karşın, bambu kamışlarının iyi bir spat toplayıcı olmasının belirlenmesinden sonra istiridye kabuklarının kullanımı azalmaya başlamıştır. Kullanılan bu kamışlar intertidal alanlara 0,3-0,7m aralıklar ile yanyana dikilmektedir. Her bir bambu sırası arasında bir küçük tekne gezebilecek kadar mesafe bırakılmaktadır. Bambu kamışlarının sıralar halinde kullanımının dışında kamışların bir araya getirilmesi ile ızgaralar hazırlanmıştır. Hazırlanan bu ızgaralar deniz dibine dik olacak şekilde ve özellikle gel-git alanlarına yerleştirilmektedir (Bardach ve ark., 1972). 4.4.5. Ahşap ızgaralar Avusturalya’da Crassostrea commercialis ‘in spatlarını toplamada tahta ızgaralardan yararlanılır. 2m uzunluğundaki ve 22-25mm2 yüzey alanına sahip olan bu çıtalar belli aralıklar ile kafes şeklinde çakılarak ızgaralar oluşturulur. Bunlar zeminden 1-1,3m yukarıdaki raflara üst üste gelecek şekilde yerleştirilerek tren yoluna benzer uzun hatlar oluşturulur. Her bir sıra arasında tekne girecek kadar mesafe bırakılır(Kesteven, 1941). Pek yaygın olmamakla birlikte, ahşap kaplamalar güneş altında kurutulup spral şekline getirilerek, spat toplama için kullanılmaktadır (Quayle,1969). 4.4.6 Kayrak taşı Kayrak taşı, özellikle Fransa’da kullanılan materyaldir. İnce kare parçalar halinde kesilen taşlar bir çelik tel üzerine araları 4-5cm mesafe ile dizilirler. Tel üzerindeki taş adeti 15 ila 20 adet arasındadır. Bu şekilde hazırlanan kollektörler gel-git etkisinde olan raf sistemlerinin üzerine yerleştirilerek kullanılmaktadır. Bu taşlar aynı zamanda ince uzun dirtdörtgen şeritler halinde de değerlendirilebilmektedir. Hazırlanan dirtdörtgen plakalar aralarında 5-6cm’lik mesafe ile yan yana gelecek şekilde birleştirilirler ve raflar üzerine bırakılırlar(Berthome ve ark., 1984). 4.4.7 Spat toplamada kullanılan diğer malzemeler İngiltere’nin bazı bölgelerinde kullanılan, ince bir beton tabakası ile kaplanmış yumurta kolileri Karasal hayvanların kümesi olarak kullanılan küçük tel kafesler, Seramikten hazırlanmış, çatı kremitlerine benzer yarı silindirik yapılar, Plastik ile kaplanmış tel ızgaralar, Çimentolu alçı taşı, İnce dilimler halinde kesilmiş lastik parçaları çeşitli dizaynlarda hazırlanarak kollektör olarak kullanılmaktadır((Bardach ve ark., 1972; Mann ve ark., 1990; Soniat ve ark., 1991; Lök ve Yolkolu, 1999). Günümüze kadar birçok kollektör materyali ve dizaynı denenmiş olmasına karşın genel olarak en iyi kollektör şudur demek yanlış olur. Bir tür veya bölge için iyi olan bir kollektör, diğer bir tür ve bölge için arzu edilen sonucu vermeyebilir. Bir yörede kullanılacak olan kollektörün seçiminde dikkat edilecek belli başlı özellikler vardır. Bu özelliklerin başında istiridyenin türü gelmektedir ki, yetiştiriciliği yapılacak olan türün özellikle hangi materyallere tutunduğunu belirlemek gerekmektedir. Kullanılacak olan kollektör tipinin ekonomik açıdan maliyetinin düşük olması ve tekrar kullanılabilirliğinin olabilmesi yada dayanıklılığının uzun vadeli olması tercih sebebini oluşturmaktadır. Yine seçilen kollektör tipinin o yörede bol miktarda olması aranılan özellikler arasındadır. Larvalar yapışmak için temiz, sert yüzeyleri tercih eder. Kollektörler yapışkan, kaygan veya düz zeminli olmamalıdır. Kaba yüzeyler larvalar tarafından daha çok tercih edilmektedir. Kollektör rengi önemsizdir. Kollektörler batabilme özelliğine sahip olmasına karşın hafif olmalı, larvaların hareketine izin verecek kadar kollektörler arasında su hareketi olmalıdır. Kollektörler ile yavru toplama işlemine başlamadan önce, o bölgede mevcut olan istiridye yatakları ve bu istiridyelerin üreme zamanlarının çok iyi belirlenmesi gerekmektedir. Bu amaçla araştırıcılar bölgede plankton çekimi yapıp istiridye larvalarının bolluğunu ve yaşını takip ederek en uygun zamanı bildirirler. Bazı bölgelerde ise üreticiler geçmiş yılların tecrübesine göre kollektörlerini denize bırakırlar. Eğer kollektörler denize çok erken bırakılırlarsa çok fazla sayıda balanus veya diğer arzu edilmeyen fouling organizmalar kollektörlere yapışır ve spat toplama başarısını olumsuz etkiler. Kollektörlerin bırakılacağı alanlarda yapılacak ön çalışmalar ile en iyi kollektör tipi ve en uygun spat toplama zamanı tespit edilir(Mori, 1987). Larva toplama zamanı araştırma istasyonları tarafından belirlenir ve ilgilenen üreticilere ilan edilir. Yeni yapışan larva 0.3mm büyüklüğündedir. Yaklaşık bir ay sonra 1-1.5cm olur. Bu boydan sonra kollektörden ayrılarak büyütme alanlarına transfer edilirler. Bazı yetiştiriciler kollektör tipleri uygun ise spatları ayırmadan ya aynı alanda ya da gelişmenin daha iyi olacağı başka bir alana taşıyarak uygun kültür sistemlerine yerleştirilerek büyümeye alınırlar. 5- YETİŞTİRİCİLİK YÖNTEMLERİ Gerek kuluçkahaneden elde edilen ve gerekse doğal alanlardan toplanan yavru istiridyeler, pazar boyuna kadar büyütülecekleri yetiştirme alanlarına yerleştirilirler. Yetiştirme alanlarının seçiminde aşağıdaki konulara dikkat edilmelidir: a) İstiridyenin büyümesine izin verecek uygun su koşullarına(sıcaklık, tuzluluk) sahip olmalıdır. b)Evsel ve endüstriyel bir atık girdisi olmamalıdır. c)Plankton açısından zengin olmalıdır. d) Toksik plankton patlaması olmamalıdır. e)Suda belli bir su akıntısı olmalı, durgun su olmamalıdır f)Denizyolu ulaşımı üzerinde olmamalıdır. 5.1 Dip Kültürü Gel-git etkisindeki kıyı alanlarında uygulanana en eski kültür yöntemidir. İplere dizilmiş olan kabuk kollektörler spatlar tutunduktan sonra iplerden çıkarılarak spatlar ile birlikte deniz tabanına bırakılırlar. Bu genç bireyler 22 ay bu alanda kalırlar. Bir yaz sezonunun geçmesi et dolgunluğu için yeterli olmaktadır. İstiridyeler sonbaharda hasat edilirler. Hasat işlemi elle veya dreçler ile yapılır. Toplanan istiridyeler basınçlı su ile yıkanarak temizlenir ve pazara sunulurlar. Bu dip kültür sistemi zemine hazırlanan raylı sistemler ile biraz daha geliştirilmiştir. Raylı sistemlere istiridye büyüklüğüne uygun göz açıklığına sahip kasalar yerleştirilir. Kasaların üstü ağ fileler ile örtülür. Böylece sular yükseldiğinde kasa içersindeki istiridyelere bazı organizmaların zararı olmayacaktır. Ayrıca kasalara yerleştirilen istiridyeler zemine direk temastan kurtulmuş olmaktadırlar. Böylece istiridye üstünde çamur birikerek boğulma riski de azaltılmış olmaktadır(Iversen, 1976). 5.2.Sehpalarda kültür Dip kültüründe zararlı organizmalar ve istiridyeler üzerinde çamur birikmesi verimin düşük olmasına neden olmaktadır. Bu nedenle üreticiler ilk zeminden uzak kültür yöntemi olarak sehpa sistemini uygulamaya başlamışlardır. Gelgitin fazla olduğu yerlerde zeminden 30cm yukarıda ve 2m uzunlukta olacak şekilde metal çubuklardan 30-40cm genişliğinde sehpalar yapılmaktadır. Bu sehpalar üzerine kollktörlerden temizlenen veya kuluçkahanelerden alınan spatlar plastik torbalar içersine konarak yerleştirilir. Plastik gözenekli torbalar sehpalara her iki ucundan metel maşalar ile sabitlenirler. İstiridyeler büyüdükçe torbaların göz açıklığı da büyültülür. 2-2,5 yıl sonra istiridyeler hasat edilir. Bu sistemin en önemli sorunu torbalar üzerinde makro alg birikiminin fazla olması ve gözenekleri kapatmasıdır. Torbalar sık sık kontrol edilmeli ve fazla alg birikimi temizlenmelidir. Temizleme işleminde algin tamamı alınmaz. Kalan algler torba üzerinde sular çekildiğinde gölgeleme yaptığı için istiridyelerin sıcaklıktan etkilenmesini azaltır(Bardach, ve ark., 1972). 5.3.Raf Kültürü Raf kültürü ile istiridye yetiştiriciliği hem horizontal, hem de vertikal alanda yapılır hale gelmiştir. Gelgit etkisinin az olduğu deniz derinliği 1.5-2m’den 5-6m’ye kadar olan kıyısal alanlarda raf kültürü uygulanmaktadır. Bazı üreticile gelgit etkisindeki alanlarda da uygulamaya almaktadır. Bambu kamışlar aralarında 2-3m mesafe olacak şekilde 2 ila 5m derinliklerdeki suların bulunduğu yerlere çakılırlar. Diğer bambular ise denize dik çakılan kazıkların üstlerine yatay olarak olarak bağlanırlar. Bu rafların dizaynı uzun ikili sıralar halinde olabileceği gibi 10x10m ebatlarında da yapılabilir. Bu durumda bambu sıraları arasındaki mesafeler 50-60cm olacak şekilde ayarlanır. İstiridye spatlanın tutunduğu kollektörler yatay bambu kamışlarının üzerinden 40-50cm aralıklar ile sarkıtılarak spatların büyümesine izin verilir. Bu sistemde kollektör uçlarının deniz tabanına değmemesine dikkat edilir. Böylece zararlı organizmalardan kollektörler uzak tutulmuş olur. Raf sisteminde bambu kamışı dışında dayanıklı ahşap materyaller ve deniz suyuna dayanıklı metal konstrüksiyon da kullanılmaktadır(Korringa, 1976a-b). 5.4 Sal Kültürü Sallarda yetiştiricilik genellikle iç denizlerde uygulanır. Salların inşasında tropik kuşakta 10-15cm çaplı bambular veya sedir ağacı kullanılmaktadır. Birbirine 30 veya 60cm aralıkla monte edilirler. Salların ebadı, 9x5,4m dir. Bu büyüklükdeki bir sal, 500-600 adet istiridye kollektörü(spatlı) taşır. Salların yüzdürülmesinde tercihen dayanıklı plastik variller (50 galonluk), fıçılar veya yüzdürücüler (stypor) kullanılır. Sallar 5-10m aralıklarla birbirlerine bağlanır. Bir ünite yaklaşık 10 saldan teşekküldür. Salların büyüklükleri ve sayıları değişiklik gösterebilir(Bardach, ve ark., 1972; Burrell, 1980). Sallar genellikle bambulardan yapılır. Plastik borularda bu amaçla kullanılabilir (PVC sulama boruları). Bu tür malzemenin esneme payı fazladır. Elemanlar 8 numara telle bağlanır. Salların sabitlenmesi için (deniz demiri) çapalar kullanılır, diğer bir yöntem ise, biri 3 tonluk, diğeri 5 tonluk iki beton bloğun yardımı ile sabitlemektir. Sert havalarda salı sürükleyen dalgalar güçlü ise, 3 tonluk bloğu oynatırlar. 5 tonluk bloğu oynatmaya çalışırken dalga aralarında 3 tonluk blok boşu alarak dibe çöker ve salın sürüklenmesini önler. Çapalı sabitlemede çapayı bırakmak ve ipin kopması çok görülmüştür. Bir salın ömrü 5 yıldan fazla olabilmektedir. Sal kültürü ile 25mm büyüklüğündeki bir istiridye 9 ay içinde pazar büyüklüğüne ulaşabilmektedir. Bu sistem ile su alanında hem horizantal, hem de vertikal olarak yararlanma söz konusudur. Dipte yapılan bir kültür ile karşılaştırıldığında verim en az%50 artmaktadır. 5.5. Halatlarda Kültür Aralarında 3-6m mesafe ile bir kalın halat üzerine sabitlenmiş yüzdürücülerden oluşur. Yüzdürücü olarak 30-40 lt hacimli plastik bidonlardan yararlanılır. Bu sistem tek halat ile hazırlanabileceği gibi arasında 30-40cm mesafe olacak şekilde çift halat olarak da hazırlanabilir. Uzunluğu 60-75m arasında değişir. Her hattın ucunda duruma göre 1-3 arası çapa bulunur ve deniz dbine sabitlenir. Her ünitede 10-12 yüzdürücü vardır.Yüzdürücülere bağlı olan ana halat bedene spatlar tutunmuş kabuk kollektörler asılabileceği gibi, içinde istiridye olan ağ fileler de asılabilir. İstiridye kollektörleri veya fileleri 30cm aralıkla asılırlar. Sahilden uzak derin sularda kurulabilir ve zor hava şartlarına karşı dayanıklıdır. Sistemin yıpranma ömrü diğer sistemlere göre daha uzundur. Planktonnun daha az olduğu derin, sahilden uzak sularda kurulması tercih edilen bir sistem olduğundan spatların Pazar boyuna ulaşması 2 yılı geçebilir(Bardach, ve ark., 1972; Iversen, 1976; Burrell, 1980). 5.6 Kafes Kültürü Kollektörler ile toplanıp bir yıl sonra seyreltilen istiridyelerden güzel şekilli olanlar seçilirler. Tel çerçeveli ızgara şeklindeki kafeslere herbirinin ayrı ayrı konabileceği bölmelere istiridyeler yerleştirilir, sal veya halat sistemlerinden asılır. Yaklaşık 6-8 ay sonra 10-20 cm uzunluğa ve 10-30 gr et ağırlığına ulaşır. Bu yöntem daha çok istiridyeler pazara çiğ olarak sunulacağı durumlarda uygulanır. Izgara sistemi nedeni ile sıkışan istiridyelerde kabuk şekli düzgün olarak büyüme gerçekleştiğinden tüketici tarafında tercih edilmektedir. Sal veya halat kültür alanlarındaki yerleşim akıntı, tuzluluk, besin ve yerel balıkçılık aktivitelerine bağlı olarak ayarlanmalıdır. Yoğun istiridye ölümleri kıyısal ve acı sularda yapılan kültür alanlarında ve doğal stoklarda görülmektedir. Bu ölümlerin başlıca nedenleri; -yetersiz beslenme -aşırı yağmurlar ve seller nedeni ile oluşan ekstrem tuzluluk ve sıcaklık değerleri, -predatörlerin aşırı üreyip yayılması, -çamur birikimi, -düşük oksijen seviyeleri, -yoğun stoklamalar -hastalıklardır. Bunlara ilaveten yaz aylarında seksüel olgunlaşma ve yumurtlama esnasında da anaç istiridyelerde yoğun ölümler görülmektedir. 6-Zararlı Organizmalar İstridye doğal ortamda iken suda mevcut olan diğer canlılar tarafından da bazı etkilere maruz kalmaktadır. Bu etkilerin başında onları besin olarak kullananlar, yaşadıkları ortama ve besine ortak olanlar, üzerinde yaşayarak direk ve indirek etki edenler veya kabuklarını delip içine girerek yaşamlarını istiridye içinde geçirenler gelmektedir. Kabuklu yetiştiricileri bu zararlıları bilip önlem almak zorundadırlar. Bu zararlıları predatörler(bazı balık türleri, yengeçler, istiridye matkabı, deniz yıldızı, ahtopot ve deniz kuşları (Haemotopus ostrolegus), rakip canlılar ve fouling, boring organizmalar olarak sınıflandırmak mümkündür(Korringa,1976a-b, Spencer, 1990; Lök ve Köse, 1999). Bunların dışında kabuklularda toksik madde birikimlerine neden olan Gonyaulax sp., Dinophysis sp. gibi fitoplanton türlerinin olduğu alanlardan istiridye hasatı yapılmamalı veya toksik etkisi geçene kadar beklenmelidir. Toksik fitoplankton patlamaları sonucunda toplanıp tüketilen istiridye, midye gibi kabuklu su canlıları bünyelerinde biriktirdikleri toksite nedeni ile insanlarda ölümlere kadar varan sonuçlar ile karşılaşılabilmektedir(Hindioğlu, 1998). 7- SONUÇ İstiridye kültürü Romalılar zanında başlamış ve günümüze kadar birçok kültür yöntemi ve sistemi geliştirilmiştir. Kültür uygulamaları ülkelere, istiridye türüne ve üreticinin tercihine göre değişiklik göstermektedir. Üreticiler kendi ülke şartları için en uygun sistemi geliştirmişler ve halen daha başarılı sonuçlar alma yönünde çalışmalar devam etmektedir. Ülkemizde ise istiridye kültürünün başlatılması hem ekonomik sonuçları hem de uygun deniz alanlarının değerlendirimesi açısından önemli olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E.Ü. Su ürünleri Fakültesi yayınları No. 26, s. 82-130. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Oyster culture. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms :. pp. 674-742. Bayne, B. L., 1965. Growth and delay of metamorphosis of the larvae of Mytilus edulis(L.) Ophelia, Vol:2, No:1, Denmark. Berthome, J.P., Prou, J., Razet, D. & Garnier, J., 1984. Premiere approche d’unemethode d’estimation previsionelle de la production potentielle d’huitre creuse C.gigas d’elavage. Haliotis 14 39-38. Brausseau, D. J.,1995. Gametogenesis and spawning in intertidal oysters (Crassostrea virginica) from Westrn Long Island Sound. Journal of Shellfish Research. Vol.14, No.2 pp.483-487. Burrell, Jr.V.G., 1980. Oyster culture. In: Huner,J.V., ve Brown E.E.(eds), Crustacean and Mollusk Aquaculture in the United States. pp. 235-305. Claus, C., 1981. Trends in nursery rearing of Bivalve Molluscs. In:Claus, C., De Pauw, N., Jaspers, E.(eds) Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.1-33. Cole, H. A., 1942.Primary sex phase in Ostrea edulis. Quart. J. Micros. Sci., 83. pp. 317-356. De Pauw, N., 1981. Use and Production of Microalgae as Food for Nursery Bivalves. In:Claus, C., De Pauw, N., Jaspers, E.(eds). Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.35-69. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Garcia-Dominguez F., Ceballos-Vazquez , P. B., Qezada A.T. 1996. Spawning cycle of the pearl oyster, Pinctada mazatlanica (Hanley, 1856) (Pteriidae) at Isla Espirito Santo, Baja California Sur, Mexico. Journal of Shellfish Research, Vol.15, No.2. pp.293-303. Haywood, E. L., Soniat, T. M.1992. The use of cement-stabilizied gypsum as cultch for the Eastern oyster, Crassostrea virginica (Glein, 1791). J Shellfish Res.vol.11, No.2 pp. 417-419. Haven, D. S., Zeigler, J. M., Dealteris, J. T., Whitcomb, J. P., 1987. Comparative Attachment, Growth and Mortalities of Oyster (Crassostrea virginica) Spat on Slate and Oyster Shell In The James River, Virginia. Journal of Shellfish Research , Vol:6, No:2, pp. 45-48. Heral, M.,1990. Traditional oyster culture in France. In: Barnabe, G. (ed.), Aquaculture Vol.1, pp. 342-387. Hindioğlu, A., Alpbaz, A., 1991. İstiridye (Ostrea edulis, L.1758) larvası üretimi üzerine araştırmala. Eğitiminin 10.yılında Su Ürünleri Sempozyumu, sayfa: 578-589. Hindioğlu, A., Serdar, S., Yolkolu, S., 1998. Kabuklularda (Bivalve-Mollusk) algal biotoksin ve insan üzerindeki etkileri. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı,Türkiye Kıyıları 98 Bildiriler Kitabı,22-25 Eylül 1998.ODTÜ Ankara pp.173-187. Iversen, E.S., 1976. Farming the edge of the sea, pp.134-158. Surrey England. Iwata , K. S., 1950. Spawing Mytilus edulis discharge by electirical stimulation. Bull. Jap. Soc. Scic. Fish. 15, pp.443-446. Loosanoff, V.L., Davis, H.C., 1963. Rearing Molluscs. Advances in Marine Biology. Vol. I, pp. 14-106. Academic Press, London. Lök, A., Yolkolu, S., 1999. İstiridye yavrularının (spat) toplanmasında kullanılan kollektör tipleri. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.109-114. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Mann, R.; Barber, B.J.; Whitcomb, J. P., Walker, K. S., 1990. Settlement of oysters, C. virginica (Glein, 1791), on oyster shell, expanded shale and tire chips in the James River, Virginia. J Shellfish Res, vol. 9, No.1 pp.173-175. Mori, K., 1987. Managed coastal water for oyster culture in Japan. In: Michael, R. G.(eds.).Ecosystems of the World 29 Managed Aquatic Ecosystems pp.125-143. Nell, A. J., Holliday J. E., 1986. Effects of potassium and copper on the settling rate of Sydney rock oyster (Saccostrea commercialis) larvae. Aquaculture, 58 pp.263-267. Kesteven, G.L., 1941. The biology and cultivation of oysters in Australia. CSIRO, Divisionof Fisheries. Report 5, pp.1-32. Korringa, P., 1976a. Farming the cupped oysters of the genus Crassostrea P.219. Elsevıer Scientific Publishing Company-Newyork Korringa, P.,1976b. Farming the flat oysters of the genus Ostrea P.231 Elsevier Scientific Publishing Company-Newyork. Pascual, M.S., Zampatti, E.A., 1995. Evidence of a Chemically mediated adult-larval interaction triggering settlement in Ostrea puclchana: applications in hatchery production-Aquaculture133, pp.33-34 Rodriguez J., Frias, J. A., 1992. Tropical mangrove oyster production from hatchery-raised seed in Cuba. Journal of Shellfish Research, vol. 11, No.2, pp.455-460. Quayle,D. B., 1969. Pacific oyster culture in British Columbia. Fisheriesresearch Board of Canada Biological Station, Nanaimo, B.C. pp. 57-65. Shau-Hwaitan ve Tat-meng Wong, 1995. Introduction of settlement and Metamorphosis in The Tropical Oyster, Crassostrea belcheri (Sowerby), byNeuroactive Compounds, Journal of Shellfish Research, vol. 14 pp.435-438. Soniat, T. M., R. C. Bioadhurst III & E.L. Haywood III. 1991.Alternatives to clamshell as cultch for oysters, and the use of gypsum for the production of cultchless oyster. J Shellfish Res. 10:405-410. Spencer, B.E., 1990. Cultivation of Pacific oysters. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. No: 63, p.47. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole Cilt:123, pp.203-206. Utting, S.D., 1988. The growth and survival of hatchery-reared Ostrea edulis L. spat in relation to environmental conditions at the on-growing site.Aquaculture,69:27-38. Walne, P. R., 1974. Culture of Bivalve Mollusch 50 years experience at Conwy.Fishing News Books Ltd. Farnham, Surrey England. Yolkolu, S., 2000. İstiridye (Ostrea edulis)’nin gonad gelişimi ve cinsiyet oranı üzerine bir araştırma. E.Ü. Su Ürünleri Fakültesi. Yüksek Lisans Tezi, p.69.

http://www.biyologlar.com/istiridye-biyolojisi-ve-yetistirme-teknikleri

Hindiler (Meleagris gallopavo)

Amerika'nın soyu tükenmeye yüz tutmuş bir yerlisidir. Bir zamanlar Birleşik Amerika'nın kuzey batısı ile ta Meksika yaylası arasındaki  bölgelerde pek boldu. Bununla beraber yaban hindisi 1840'da, en bol bulunduğu New England ile New York bölgelerinde tüketilmiş bulunuyordu. Hindiler de harikulade kuşlardır. Erkekleri 904 95 santim boyunda, 100 -110 santim uzunluğunda ve ortalama 10 kilo ağırlığındadır. Siyah kenarlı tüylerinde kahveye, kızıla ve yeşile çalan madenî bir parıltı dikkati çeker. Başındaki ve boynundaki çıplak kısımlar mavi, gerdanındaki sarkık etleri kıpkırmızıdır. Kafası ufak ve çıplak, boynu uzun, bacakarı güçlü, ayakarı iridir. Erkek hindi özellikle flört zamanında geniş kuyruk tüylerini yelpaze gibi açınca pek gösterişli bir hal alır. Birleşik Amerika'nın bazı bölgelerinde hâlâ tutunan yaban hindisi, kendisine biraz göz açtırılsa soyunu devam ettirecektir. Son derece ürkek bir kuş olup en ufak bir tehlike belirtisi karsısında büyük hızla kaçmaktadır. Gerekince iyi uçabilir de. Açılmış kanatlarının eni ortalama 100 santimi bulur. Yabanî baba hindi tıpkı evcilleştirilmiş akrabaları gibi çalımla gezinmesiyle meşhurdur. Dişisi yuvasını kuytu bir köşeye yapar, böylece onu düşmanlarından olduğu kadar, kıskanç eşinden de gizlemeye çalışır. Baba hindi çok eşli olup kalabalık bir harem sahibidir. Üreme mevsiminde rakip erkekleri kaçırmaya çalışmaktan, karnını doyurmaya vakit bulamaz. Sonbaharda kestane ve palamut gibi orman meyvelerinin sayesinde epey semirir. Böcekler de yiyecek listesinde çokça yer tutar. Yaban hindisi'nin değişik çağrıları vardır: Çiftleşme mevsimindeki bunların sadece bir tanesidir. Kızılderililer, hindileri avlayabilmek için bu çağrıları taklit etmenin ustası kesilmişlerdi. Günümüzdeki avcılar da bu usule baş vurmakta iseler de, mermilerine hedef olacak yaban hindileri eskisine kıyasla çok azalmıştır. Düşmanlarının çokluğu sebebiyle yaban hindisi'nin hayat süresi "kısadır: Beş yılı pek geçmez. Dişi yaban hindisi koyu sarı fon üzerinde hafif benekli bir düzüne kadar yumurta yumurtlar. Yavrular uçmayı öğrenene kadar sayısız düşman yüzünden her an ölüm tehlikesiyle karşı karşjyadırlar. Üstelik rutubetli ve sert havalardan da zarar görürler. Dişi yaban hindisi yavrularının yarısını büyütebildiği takdirde, şanslı sayılır. Hindi ailesinde (Meleagrididae) bir tür daha vardır. «Gözlü hindi» (Agriocharis ocellata) Kosta Rika'yla başka bazı Orta Amerika ülkelerinin ovalarında yaşar. Hindinin ilginç tarihçesi: Bu türlerden ikisi de sülünlerle akraba olup eski bir çağda Yeni Dünya'ya geçmeyi başaran gerçek sülünlerin bazı üyelerinin soyundan olabilirler. Meksika'daki Aztekler Kristof Kolomb'un Amerika'lara gelmesinden çok önce hindiyi evcilleştirmişlerdi. Çeşitli evcil cinsler bu kökten çıkmadır. İspanyol fatihleri 16'ncı yüzyılın başlarında hindileri İspanya'ya götürdüler. Bu kuş çok sonradan Avrupa'lılar tarafından tekrar Amerika'ya sokuldu. Bu Yeni Dünya kuşuna, Eski Dünya'da takılan adm aslım araştırmak da ilginçtir. Gördüğümüz gibi, hindi tamamiyle bir Yeni Dünya kuşudur. Avrupa'dan Amerika'ya götürülen hindiler bile Amerikan hindilerinin soyundan gelmeydi. Ne var ki hindi 16. Yüzyılda Avrupa'da, Afrika'dan Türkiye yoluyla İspanyol topraklarına nakedilen ve «hindi» diye bahsi geçen «beç tavuğu» ile karıştırılıyordu. (Hindi ailesinin bilimsel adı «Meleagrididae» nin aslı da ilginçtir. Yunan efsanesinde Meleager'in kız kardeşleri beç tavuğu şekline sokulmuşlardı.)

http://www.biyologlar.com/hindiler-meleagris-gallopavo

Fok (Phocidae) - Fok Türleri

Alem: Animalia (Hayvanlar) Şube: Chordata (Kordalılar) Sınıf: Mammalia (Memeliler) Takım: Carnivora (Etçiller) Alt takım: Caniformia (Köpeğimsiler) Üst familya: Pinnipedia (Yüzgeçayaklılar) Familya: Phocidae - Fokgiller (Gray 1821) Foklar denizde yaşamaya çok iyi uyum sağlamış, yüzgeçayaklı, memeli hayvanlardır. Ayıbalığı olarak da anılan, ama suda yaşama­larının dışında balıklarla hiçbir ilgisi olmayan bu deniz memelilerinin 31 türü vardır. Özel­likle kuzey ve güney kutup denizlerinde dağılmış olan bu türler iki ayrı familyada toplanır: Gerçek ya da kulaksız foklar (Phoci-dae familyası) ve kulaklı foklar (Otariidae familyası). Bu iki familyanın üyeleri, dışkulaklarının ve yüzgeçayaklannın yapısındaki bazı farklı­lıklar dışında birbirlerine çok benzerler. Hep­si de çok iyi yüzücü ve dalıcı hayvanlardır. Suya daldıklarında kalp atışları yavaşladığı için enerji gereksinimleri azalır; böylece akci­ğerlerine doldurdukları havayla daha uzun süre yetinerek dakikalarca suyun altında kala­bilirler. Hatta, yaklaşık 10 dakikada bir yüze­ye çıkıp soluk almak koşuluyla suyun altında uyuyabilirler. Ama, yavrulamak için kıyıya çıkmak zorunda olduklarından, öbür deniz memelileri (balina ve yunuslar) gibi bütün yaşamlarını suda geçiremezler. Fokların mekik biçimindeki gövdeleri ve yüzgece dönüşmüş olan ayakları yüzmelerine yardımcı olur. Ayrıca, türlerin çoğu soğuk denizlerde yaşadığından, derilerinin altında vücutlarını sıcak tutan bir yağ katmanı vardır. Bununla birlikte türlerden bazıları ılık deniz­lere de uyum sağlamıştır. Foklar özellikle kalamar, ahtapot, balık ve kabuklularla bes­lenen etçil hayvanlardır. Yumuşak bakışlı iri ve güzel gözleriyle köpekleri andıran bu sevim­li hayvanlar, başlan suyun üstünde yüzerlerken uzaktan insanlarla bile karıştırılabilir. Gerçek Foklar Bu 18 fok türünü kulaklı foklardan ayıran en belirgin özelliklerden biri, başlarının iki ya­nında çıkıntılı kulakkepçelerinin, yani dışku­laklarının olmamasıdır. Bu yüzden bu grupta­ki hayvanların bir adı da kulaksız foklardır. Yüzgeçayaklannın yapısı da kulaklı fokların-kinden oldukça farklıdır. Ön üyeleri kısa olan gerçek foklar, arka üyeleri öne doğru bükülmediği için karada ancak güçlükle ve sürüne­rek yürüyebilirler. Buna karşılık, karada işe yaramayan bu arka üyeleri denizde çok usta bir yüzücü olmalarını sağlar. Boz fokun (Halichoerus grypus) erkeği yaklaşık 3 metre uzunluğunda ve 300 kg ağırlığındadır. Dişinin ağırlığı bunun yarısını bile bulmaz. Başları iri, geniş ve basık, burunları uzun olan boz fokların derisi genel­likle boz üstüne kara beneklidir. Nevvfoundland kıyılarında, Britanya Adaları çevresinde ve Baltık Denizi'nde üreyen bu hayvanların yeni doğmuş yavruları yün gibi yumuşacık, beyaz bir kürkle kaplıdır. Yaklaşık üç hafta sonra bu beyaz tüyler dökülür ve erişkinlerin rengini alan yavrular kendi başlarına denize dönerler. Derisi boz üstüne kara benekli olan körfez foku (Phoca vitulina) bütün kuzey yarıkürede en yaygın fok türüdür. Balık, kalamar ve kabuklularla beslenen bu hayvanlar o kadar çok balık yerler ki, bazı yörelerde balıkçılar için büyük bir sorun haline gelirler. Antarktika'da yaşayan pars fokunun (Hyd-rurga leptonyx) derisi, üzerindeki beneklerin deseniyle tıpkı bir pars (leopar) derisini andı­rır. Dişisi erkeğinden daha iridir ve uzunluğu 3,5 metreyi aşabilir. Öbür fokların yavruları ve penguenler gibi sıcakkanlı hayvanları da yediği saptanmış olan tek fok türü budur. Gene Antarktika'da yaşayan ve Güney Kutbu çevresinin en yaygın türü olan Weddell foku­nun (Leptonychotes vveddelli) derisi lekeli boz renkte, suratı da buldog köpeği gibi yassı ve basıktır. Karadeniz'de, Akdeniz'de ve Kanarya Adaları çevresinde yaşayan keşiş fokları ılı­man denizlere uyum sağlamış türlerdir. Bu gruptan olan Akdeniz foku (Monachus mo-nachus) Türkiye çevresindeki denizlerde de görülebilen tek fok türüdür. Uzunluğu 2-3 metre, derisi koyu kahverengi olan bu foklar bir zamanlar Akdeniz kıyısındaki ıssız kum­sallarda kalabalık koloniler halinde ürerlerdi. Yoğunlaşan plaj turizminin ve deniz kirliliği­nin etkisiyle sayıları iyice azaldı. Bugün Tür­kiye'nin ve öbür Akdeniz ülkelerinin kıyıla­rındaki bazı yörelerde küçük koloniler halin­de varlıklarını sürdürmeye çalışıyorlar. Bütün foklar içinde en irileri, morstan bile büyük olan fil foklarıdır (Mirounga cinsi). Adını kocaman gövdesinden ve hareketli uzun burnundan alan fil fokunun erkeği 6,5 metre uzunluğunda ve yaklaşık 3 ton ağırlı­ğındadır. Denizfili de denen bu türler daha çok Antarktika çevresindeki ıssız adalarda yaşarlar. Bu hayvanların kuzey yarıküredeki alttürlerinin ise soyu tükenmek üzeredir; California açıklarındaki yerleşilmemiş adalarda kuzey fil foklarının tek tük örneklerine rast­lanır. Çizgili fok (Histriophoca fasciata) Büyük Okyanus'un kuzeyinde ve Bering Denizi'nde yaşar. Erkeğinin uzunluğu 2 metreyi bile bulmayan bu fokun koyu kahverengi derisi, açık sarı renkte enli çizgilerle bezenmiştir. Kuzey Kutbu'ndaki Eskimolar, derisine çok değer verdikleri bu fokları avlamak için buz­daki küçük deliklerin başında bazen saatlerce beklerler. Hayvan soluk almak için başını delikten çıkardığında da mızraklayarak öldü­rürler. Kutuplarda çizgili fokun hem eti yenir, hem de derisinden kayak (Eskimo kayığı) ve giysi yapılır. Ayrıca derialtı yağlarını yemek ve lamba yağı, kas kirişlerini de iplik yerine kullanırlar. Halkalı fokun (Pusa hispida ya da Phoca hispida) boz renkli gövdesi, soluk renkli halka desenleriyle bezelidir. Yaklaşık 1,5 metre uzunluğundaki bu hayvan daha çok deniz kabuklularıyla beslenir. Antarktika'daki yü­zen buz kütleleri arasında yaşayan yengeç yiyen fok (Lobodon carcinophagus) da, adı­nın çağrıştırdığı gibi yengeçleri değil, küçük deniz kabuklularını yeğler. Uzunluğu 2,5 metreyi bulan bu ince yapılı fokun en sevdiğiyiyecek, sivri dişlerinin arasından süzerek topladığı kril denen küçük kabuklulardır. Balonlu fok (Cystophora cristata) da Atlas Okyanusu'nun kuzeyinde ve Kuzey Buz De­nizi açıklarında yaşayan ilginç bir fok türüdür. Adını burnunun üstündeki balon gibi şişkin­likten alan bu hayvanın soyu aşırı avlanma nedeniyle tükenmek üzeredir. En çok balık yiyerek beslenen balonlu foklar, genellikle Grönland fokuyla (Pagophilus groenlandicus ya da Phoca groenlandicus) birlikte karma sürüler halinde dolaşırlar. Grönland foku da soyunun tükenmemesi için son yıllarda koru­ma altına alınmıştır. Çünkü bu hayvanların yeni doğmuş yavrularının yumuşacık beyaz postu kürk ticaretinde çok değerlidir. Bu yüzden, büyüdükçe değeri düşen bu kürk uğruna on binlerce yavru daha iki haftalık olmadan sopalarla öldürülmüştür. Sakallı fok (Erignathus barbatus), çenesindeki çalı gibi sert tüylü sakalları ve dikdörtgen biçimindeki yüzgeçayaklarıyla tanınır. Çok iyi dalıcı olan bu hayvan, midye gibi dipte yaşayan kabuklu yumuşakçalarla beslenir. Derisi ve eti için Eskimolar'ın çok avladıkları türlerden biridir. Kulaklı Foklar Gerçek foklardan ayrı bir familya oluşturan 13 fok türü küçük kulakkepçeleriyle kolayca ayırt edilir. Bunlar karada çok hareketli hayvanlardır; gerçek foklarınkinden farklı olarak öne doğru bükülebilen arka üyeleriyle karada rahatça yürür, hatta kayalara bile hızla tırmanabilirler. Denizde asıl yüzgeç görevini ise yana doğru kaymış olan ön üyeleri üstlenir. Bu grubun en tanınmış üyele­ri, beş türü olan denizaslanlarıdır.California denizaslanı (Zalophus california) nus) gösteri yapmak üzere kolayca eğitilebildiği için, sirklerde ve hayvanat bahçelerinde insanların ilgiyle izledikleri foklar hep bu türdendir. Bu hayvanlar lastik gibi esnek gövdeleriyle geriye doğru bükülüp kıvrılarak karada ve denizde ilginç gösteriler yaparlar. California, Galâpagos Adaları ve Japonya'nın Büyük Okyanus kıyıları gibi doğal yaşama alanlarında temel besinleri mürekkepbalığı ve kalamardır. Ama insan eliyle bakıldıklarında balık yemeye de alışır ve kendilerine atılan balıkları havada yakalamayı öğrenirler. Cali­fornia denizaslanının erkeği 2,5 metre uzunlu­ğunda ve dişisinden çok daha iridir. Erkeğin ve dişinin asıl rengi soluk kahverengi olduğu halde, ıslandıkları zaman derileri parlak kara bir renk alır. Denizaslanlarının öbür türleri de Avustralya çevresindeki denizlerde, Büyük Okyanus'ta ve Bering Denizi'nde yaşar. Kulaklı fokların avlanmasının asıl nedeni, kürklerinin altındaki iç örtü kıllarının çok değerli olmasıdır. Kestane rengindeki bu yu­muşak kürk yalnız denizaslanlarında bulun­maz. Kulaklı kuzey fokunun (Callorhinus ursinus) 3 metre uzunluğundaki erkekleri koyu kahverengi gövdeleri ve boz renkli yeleleriyle tanınır. Dişiler erkeklerin yarısı büyüklüğünde, daha açık renkli ve yelesizdir. Bering Denizi'ndeki bazı adalarda üreyen, ama yılın en az yarısını Büyük Okyanus sularında dolaşarak geçiren bu foklar kışın güneye göç ederek California açıklarına ka­dar inerler. Üreme bölgelerine mayıs başlarında önce erkekler gelir ve her biri kendisi için kumsal­da bir üreme alanı seçer. Ağustosta üreme dönemi bitip yeniden denize açılıncaya kadar hiçbir şey yemez, su içmez ve yerlerinden ayrılmazlar. Çünkü haziranda kıyıya çıkacak olan dişilerini ve üreme alanlarını korumak için öbür erkeklerle kıyasıya dövüşmeleri gerekir. Bu yüzden, dövüşmek dışında hiçbir şeye ayıracak zamanları yoktur. Bir zamanlar Bering Denizi'nde ve Büyük Okyanus'un güneyindeki ıssız adalarda kulak­lı fokların oluşturduğu büyük koloniler vardı. Ama bu hayvanlar o kadar çok avlandı ve öldürüldü ki birkaç kez tümüyle yok olma tehlikesiyle karşı karşıya kaldılar. Günümüz­de fok avcılığı çok sıkı biçimde denetlenmek­te ve türlerin üreme bölgelerinde rahatsız edilmeden yavrulayabilmesi için gerekli ön­lemler alınmaktadır. Özellikleri Ölçüleri Yüzgeçayaklılar üst familyasının en büyük ve en küçük türleri fokgiller familyasına aitdir. Fokgillerin ortalama ölçüleri morslar ve denizaslanıgillerden küçüktür. En küçükleri baykal gölü foku ve kıvrak fok, 110-140 cm uzunluğa ve 50 kg'dan biraz fazla bir ağırlığa ulaşırlar. Büyüklük rekorunu 6,5 metre uzunluğa ve 4 ton ağırlığa kadar varan deniz fili tutmaktadır. Denizaslanıgillerden farklı olarak, fokgillerde çoğunlukla dişi ve erkek türler aynı büyüklükte, bazen dişiler biraz daha büyük olurlar. Sadece deniz fillerinde erkekler dişilerden çok daha büyük olurlar. Yüzgeçleri Ilerleme yöntemleri başlığı altında da açıkladığımız gibi fokgillerin ön yüzgeçleri denizaslanıgillerde olduğundan küçüktür. Parmaklarında güçlü tırnakları vardır. Bu tırnakları ile yere tutunur, ya da karın içine mağaralar kazarlar. Sadece bazı antarktik türlerde tırnaklar gerilemişdir. Arka yüzgeçlerinde en dışta kalan parmak en uzunudur. Arka yüzgeçlerindede tırnaklari vardır, ama bu tırnakları kullanmazlar. Güney yarıkürenin çoğu türlerinde bu arka yüzgeç tırnakları yok olmuşdur Iskelet ve kas yapıları Fokgillerde en güçlü kasların toplandığı bölge, irikulaklıgillerde olduğu gibi omuzlarında değil, kalçalarındadır. Musculus longissimus dorsi ve Musculus iliocostalis kasları en iyi gelişmiş kaslarıdır. Fokgillerin dış görünüşlerine bakıldığında boyunları yokmuş ve kafaları doğrudan vucutlarının üstünde oturuyor gibi görünürler, ama bütün memelilerde olduğu gibi onlarında boyunlarında yedi eklem bulunur. Boyunlarında güçlü kasları vardır. Yüzerken kafalarını eğik tutarlar, ama avlarını yakalarken hemen kafalarını dikerler. İlerleme yöntemleri Fokgillerin denizaslanıgiller arasındaki diğer mühim bir farkları, ilerleme gücünü öne değil arkaya aktarmış olmalarıdır. Denizaslanıgiller suyun içinde bir pengüen gibi güçlü ön yüzgeçleriyle ilerlerken, fokgiller yüzerken çok daha zayıf olan ön yüzgeçlerini hızı kesmesinler diye vucutlarına dayar ve pek kullanmazlar. Fokgiller yüzmek için arka yüzgeçlerinin parmaklarını gerip onları daha geniş yaparlar ve onların gücü ile ilerlerler. Böylece fokgillerin suda yaşamaya, denizaslanıgillerden daha iyi ayak uydurmuş olduklarını söyliyebiliriz. Çünkü suda işlerine yaramayan ön yüzgeçleri zayıflamışdır. Bu yüzden karada hareket etmek onlar için irikulaklıgillerde olduğundan daha zordur. Fokgiller karada karınları üzerinde sürünerek ilerler. Bu yorucu ilerleme yönteminden dolayı bazen sağa ya da sola doğru ilerlemek için o yana doğru yuvarlanırlar. Karlı ve buzlu bir ortamda kayabildikleri için daha rahat ilerlerler. Eskiden denizaslanıgillerin fokgillerden daha ilkel bir familya oldukları düşünülmüşdür. Modern bilimde ama böyle bir fikirden kaçınılır, çünkü iki familyanında bulunan en eski kalıntıları aşağı yukarı aynı yaşlardadır. Yaşam şekilleri Fokgiller, denizaslanıgiller gibi büyük koloniler oluşturmazlar. Sadece deniz fillerinde, bir erkek diğer erkeklerle dövüştükten sonra iyi kolladığı bir harem oluşturur. Çoğu fokgiller yalnız ya da küçük topluluklar içinde yaşarlar. Beslenme Çoğu fokgiller balık ve diğer deniz hayvanları ile beslenirler. Bazıları bir tür besin üzerinde uzmanlaşmışlardır; örneğin yengeç yiyen fok'un yaşam şekli ve hatta çene yapısı güney kutpu yengeçleri ile beslenmeye ayak uydurmuşdur. Deniz parsı ise tam bir yırtıcı hayvandır, pengüenler ve diğer fok türlerini avlar. Katil balina ve köpekbalıklarının yanında, güney kutpu denizinin en başarılı avcılarından biridir. Sınıflandırma Fokgiller familyasını sınıflandırmanın en mantıkli yolu, güney yarıkürenin türlerini Monachinae, ve kuzey yarıkürenin türlerini Phocinae olarak ayırmakdır. McKenna & Bell'e göre sınıflandırma (ancak oymaklar alt familyaya, alt oymaklar ise oymağa çevrilmişlerdir): Alt familya: Monachinae Oymak: Monachini Cins: Monachus Akdeniz foku (Monachus monachus) Havaii foku (Monachus schauinslandi) Karibik foku (Monachus tropicalis) Cins; Deniz fili (Mirounga) Kuzey deniz fili (Mirounga angustirostris) Güney deniz fili (Mirounga leonina) Oymak: Lobodontini Cins: Ommatophoca At foku (Ommatophoca rossii) Cins: Lobodon Yengeç yiyen fok (Lobodon carcinophagus) Cins: Hydrurga Leopar foku (Hydrurga leptonyx) Cins: Leptonychotes Vedel foku (Leptonychotes weddellii) Alt familya: Phocinae Cins: Cystophora Balonlu fok (Cystophora cristata) Cins: Erignathus Sakallı fok (Erignathus barbatus) Cins: Asıl foklar (Phoca) Semer foku (Phoca groenlandica) Şeritli fok (Phoca fasciata) Kıvrak fok (Phoca hispida) Hazar denizi foku (Phoca caspica) Baykal gölü foku (Phoca sibirica) Larga foku (Phoca largha) Bayağı fok (Phoca vitulina) Cins: Halichoerus Gri fok (Halichoerus grypus) 1996 da Bininda-Emonds ve Russell fokgiller üzerinde kladistik bir analiz yapmaya çalışmışlardır. Kafatasları, çeneleri ve yüzgeçlerin özelliklerini incelemişlerdir. Bu incemeler Monachinae ve Phocinae'nin gerçekten iki ayrı monofiletik takson olduğu hakkında kanıtlar getirmişdir. Ancak büyük ihtimalle Phoca cinsi parafiletik'dir, ve Monachinae'nin yukarıda gösterilen oymağa konulmasıda doğru değil gibi gözükmektedir. Bu yapılan araştırmada birden fazla kladiogramlar ortaya konulmuşdur. MsxLabs & TemelBritannica

http://www.biyologlar.com/fok-phocidae-fok-turleri

Deniz Canlıları ve Dokosahekzanoik asit (DHA) ve Eikosapentanoik asit (EPA)

• Denizde yaşayan türlerin çoğu doymamış yağ asitlerini sentezleme yeteneğine sahip değildir. • Bazı deniz canlıları aldıkları besinlerle Dokosahekzanoik asit (DHA) ve Eikosapentanoik asit (EPA) ihtiyacının tamamını karşılamayabilirler. • Bu yağ asitlerinin larvaların diyetlerinde bulunması sonucunda hayatta kalma ve büyümelerinde genellikle artış görülmektedir. • 1989 yılında yapılan bir çalışmada, 10 mikroalg türünün yağ asidi kompozisyonu incelenmiştir. • Bu çalışma sonunda mikroalglerin yağ asitleri kompozisyonlarının kültür şartları ile değiştiği ve kültürdeki maksimum büyümenin alglerdeki DHA (22:6n-3) konsantrasyonunun yüksek olması durumunda gözlendiği not edilmiştir • Deniz balığı larvalarının büyümesi ve hayatta kalması için diyetlerde en önemli faktör n-3 serisi doymamış yağ asitleridir. • Bu yağ asitleri arasında EPA (20:5n-3) ve DHA (22:6n-3) yer almaktadır. • Günümüzde birçok deniz balığı kuluçkahanesi esansiyel yağ asitlerince zengin besin zincirini sağlamak amacıyla canlı alg üretim ünitesi kurmaktadır. • Bu ünitelerde kalifiye elemana ve yüksek insan gücüne ihtiyaç duyulmaktadır. • Genellikle alg üretimi kuluçkalıklarda ihtiyaç duyulan miktarı karşılayamamaktadır. • Bu problem dondurulmuş ve konsantre edilmiş yüksek kalitedeki mikroalglerin ticari üretimi ile aşılmıştır. • Yamasaki ve diğ. (1989) dondurulmuş haldeki algler üzerine çalışmalar yapmışlardır. • Dondurma işleminin alg hücrelerinin bütünlüğünü etkilediğini ve bazı türlere ait kültürlerin daha kaliteli olduğunu ileri sürmüşlerdir. • Mikroalg Nannachloropsis’in uzun süre dayanıklı olduğu ve kimyasal kompozisyonunun değişmediğini bildirmişlerdir. • Mikroalglerin yapısında bulunan yağ asitleri, kültür koşullarına ve kültürün yaşına bağlı olarak değişiklik gösterir. • Mikroalg türleri arasında da yağ asitleri miktarları değişim göstermektedir. • Isochrysis galbana EPA ve DHA açısından oldukça zengindir. • Taze, dondurulmuş ya da konsantre formdaki mikroalglerin balıkların beslenmesinde eksik olan esansiyel besin maddelerini tamamladıkları, hayatta kalma ve büyümeyi destekledikleri anlaşılmaktadır. YAĞ ASİTLERİNİN DENİZ BALIĞI LARVALARININ BESLENMESİNDEKİ ÖNEMİ • Yağ asitleri doymuş ve doymamış yağ asitleri olarak ikiye ayrılmaktadır. • Doymuş yağ asitlerinin karbon zincirindeki bütün karbon atomları tek bağ ile bağlıdır. • Zincirin diğer kısımları hidrojen atomları ile bağlıdır. • Doymamış yağ asitlerinde ise bir yada birden çok çift bağ içerirler. • Çift bağlar erime noktasını düşürücü etkiye sahiptir. • Bu özelliklerinde dolayı doymamış yağ asitleri sıvı halde bulunmaktadır. • Balıklar yağ asitlerini temel enerji kaynağı olarak kullanırlar. • Balık yumurtasının içerdiği yağ miktarı ve kompozisyonu türler arasında değişiklik gösterir. • Larvanın enerji ihtiyacı ise fizyolojik olaylara göre değişiklik gösterir. • Larva beslenmesinde ilk yemin besin değerinin ve yağ içeriğinin larvanın besin kesesindekine benzer olmasına dikkat edilmelidir. Esansiyel yağ asitlerinin doğru oranlarda ayarlanmaması deniz balığı larva yetiştiriciliğindeki temel sorunu oluşturmaktadır. • Diyetlerin içerdiği yüksek EPA miktarı pigmentasyonu etkilemektedir. • Bununla birlikte EPA’nın yüksek miktarı DHA ile kıyaslandığında hücre zarı fosfolipidlerin DHA/EPA oranını etkiler. • Reitan ve diğ. (1994), kalkan balığında DHA/EPA oranlarının sağlanması için mikroalg Isochyrsis galbana ve Tetraselmis sp.’yi kullanmışlardır. • Bu sonucun mikroalglerin DHA ve EPA oranlarını uygun oranda içerdiklerinden dolayı olduğu bildirilmiştir. • Bununla birlikte Reitan ve diğ. (1993) yaptıkları araştırmalarda yetiştiriciliği yapılan kalkan ve dil balıklarındaki pigmentasyon bozukluklarının diyetlerdeki DHA (22:6n-3) yetersizliğinden kaynaklandığını göstermişlerdir. • Dokosahekzanoik asit (DHA)’ nın retina ve beyin dokularının gelişmesindeki rolünü ringa balıklarında yapmış oldukları çalışmalarda tanımlamışlardır. • Balıklarda DHA yüksek oranda görme ve sinir dokularındaki hücre zarlarında bulunmaktadır. • DHA’nın eksik olması durumunda düşük ışık yoğunluğunda ringa yavrularının yem yakalama ve avlanmalarının olumsuz yönde etkilendiği bildirilmiştir. • Balıkların hayatta kalma, normal gelişim ve büyümesinin tüm safhalarında özellikle yeterli ve orantılı olarak yağ asitlerince zengin besin miktarının sağlanması gerekmektedir. • Deniz balığı yetiştiriciliğinde en önemli problem larva safhasında meydana gelen ölümlerdir. • Bunun en önemli nedeni larva yemlerinin besin yönünden yetersiz olmasıdır. n-3 yağ asidi eksikliği sonucunda zayıf gelişme, yem değerlendirmede düşme, kaslardaki su içeriğinde artış, vücut yağ kompozisyonunda değişme ve yoğun ölümler görülmektedir. • Balıklar n-3 serisi yağ asitlerine n-6 serisinden daha çok ihtiyaç duyarlar. • Bunun nedeni balıkların vücut sıcaklıklarının kara canlılarından daha düşük olması ve n-3 serisi yağ asitlerinin erime noktalarının daha düşük olmasından kaynaklanır. • Deniz balığı larvalarının fosfolipidlerindeki DHA/EPA oranının larval gelişmede önemli olduğu belirtilmiştir. • Bu oranın hücre içi ve dışına madde taşınmasını etkilediği bilinmektedir. • Esansiyel yağ asitleri hücre geçirgenliği ve akışkanlığında, yağların taşınmasında, enzim aktivasyonunda düzenleyici rol oynarlar. • Yapılan araştırmalar sonucunda yüksek EPA miktarına karşı DHA miktarının az olması larvalarda ölümlere neden olabilmektedir. • Birçok açıdan bakıldığında DHA deniz balığı larvaları için EPA’dan daha önemlidir

http://www.biyologlar.com/deniz-canlilari-ve-dokosahekzanoik-asit-dha-ve-eikosapentanoik-asit-epa

Dünyanın en büyük örümceği

En küçük bir örümceğin bile büyük korkulara sebep olabildiği dünyamızda, Theraphosa blondi'yi görenler hayretler içerisinde kalabilir. Güney Amerika’da yaşayan bu tarantula, dünyanın en büyük örümceği olarak tarihe geçti. Diğer örümceklerin daha uzun ayakları olmasına rağmen, T. blondi’nin geniş gövdesi 170 gram ağırlığında. Tüm Theraposa familyasına 'kuş yiyenler'ismini veren, Goliath kuş yiyen olarak bilinen bu devasa örümcek aslında göründüğü kadar tehlikeli değil.Takma ismine rağmen, Hayat Ansiklopedisi’nin belirttiğine göre, T. blondi, nadiren kuşlarla besleniyor. George Washington Üniversitesi’nden örümcek alanında uzman Gustavo Hormiga, T. blondi’nin daha çok eklembacaklılardan beslendiğini belirtiyor. “Bu örümcek, genel olarak yırtıcı ve küçük fare ya da kertenkele gördüğünde, onları da yiyebilir,” diyor Hormiga. Fakat bu örümcekten avını yakalaması için büyük bir ağ kullanmasını beklemeyin- T. blondi yemeğini eski yollarla buluyor: zehirli dişlerini kullanarak. Hormiga, zehrinin insanlar için zararlı olduğunu düşünmese de, çoğu örümcek gibi, T. blondi de zehir üretiyor. Isırması, daha çok arı sokmasını andırıyor, fakat neredeyse hiç tıbbi müdahale gerektirmiyor. Tüyünden sakının T. blondi, ağ yapmasa da, ip üretip kullanıyor. Örümcek, ormandaki çukur ve zemindeki oyuklarda yaşıyor. Bir memeli, lezzetli bir örümcek atıştırmak isteyip oyuğa girmeye çalışırsa, T. blondi’nin zehirden daha kullanışlı bir silahı var: tüyleri. “Bu tüylerin, mikroskoptan bakıldığında, zıpkın şeklini aldığı görülebilir,” diyor Hormiga. Bu da, tüylerin derinin içine işlemesini sağlıyor. “Bu örümcekler, tüylerini salmak için, dördüncü çift ayaklarını karınlarının üstüne sürtüyorlar. Bu tüyler, kaşınma hissi uyandırıyor.” Bu tüylerin zararlı olması için illa da salınmış olması gerekmiyor, araştırmacılar ve evinde örümcek besleyenler örümcekle ilgili herhangi bir şeyde ellerine eldiven takıp durum ile başa çıkmak zorundalar. İnsanlarda, bu tüyler sinir bozucu şekilde kaşıntı hissi uyandırabilir, fakat fareler gibi daha küçük memeliler için bu tüyler öldürücü olabilir. T. blondi dişileri, 30 mm bir kesenin içine 50-150 arası yumurta bırakırlar. Keseyi yırtıcılardan korumak amacıyla kesenin etrafının tüyleriyle örterler. Yeni doğmuş örümcek yavrularının olgunlaşması iki ya da üç yıl alır; Kendilerine bakmaya yetecek büyüklüğe ve olgunluğa ulaşana kadar, anneleriyle uzun zaman geçirirler. Dişileri 20 yıla kadar yaşayabilirken, erkekleri 3-6 yıl arası yaşar, erkeklerin ölümü genelde olgunluğa eriştikten ve çiftleştikten sonra olur. Tadı karidese mi benziyor? Güney Amerika’nın kuzeybatısındaki yerliler T. blondi'yi lezzetli bir atıştırmalık olarak görüyor. Öncelikle, örümceğin tüylerini yakıyorlar, daha sonra örümceği muz yapraklarına sararak kızartıyorlar. Venezuela’daki yerli Piarora insanlarıyla bir yemek masasına oturmuş ve bu örümceklerden yemiş olan tarantula uzmanı Rick West, T. blondi'nin şaşırtıcı şekilde lezzetli ve sulu olduğunu söylüyor. “Yapışkan karın içerikleri, sarılmış yaprak içerisinde çok pişmiş olsa da, beyaz kas ‘et’i, dumanlı karides tadında,” diyor West. 2 cm uzunluğundaki dişleri, yemekten sonra kürdan olarak kullanılıyor. Yemeğiniz her zaman böyle kürdanı içinde gelmez. Karides tadına rağmen, bu örümcek türünü yakın zamanda muhtemelen restoranlarda göremeyeceksiniz. Kaynak: newswatch.nationalgeographic.com

http://www.biyologlar.com/dunyanin-en-buyuk-orumcegi

CANLILAR ARASINDA DAYANIŞMA

FİZYOLOJİ ve Tıp alanında tanınmış ünlü bilim adamı Kenneth Walker, Doğu Afrika'da çıktığı av sırasında canlılar arasındaki dayanışmaya ilişkin gözlemlerini şu şekilde anlatıyor: “Yıllarca önce Doğu Afrika'da avlanmaya çıktığımda hayvanlar arasında gözlemlediğim dayanışmanın birçok örneği hâlâ belleğimde canlıdır. Ahti düzlüklerinde değişik zebra ve ceylan sürülerinin tehlikelere karşı birbirlerini uyarmak için belli yerlere nöbetçi koyduklarına tanık oldum. Zebra avlamaya çıkmamıştım; ama ceylan avlamam da hemen hemen olanaksızdı. Çünkü ne zaman birine yaklaşmak istesem, nöbet tutan zebra tehlikeyi fark eder, ceylanları uyarırdı. Gene zürafalarla filleri de çok kez birlikte bulurduk. Fillerin kocaman kulakları, son derece keskin işitme duyuları vardır; ancak görme duyuları zayıftır. Zürafalar ise adeta gözetleme kulelerine yerleştirilmiş bekçiler gibidir. Güçlerini birleştirdiklerinde görünmeden ya da duyulmadan ne fillere ne de zürafalara yaklaşmaya olanak vardır. Daha ilginç (daha doğrusu son derece garip) bir işbirliği gergedanlarla, derilerine gömülen kene türünden parazitleri ayıklamak için sırtlarında tırmanıp oturan kuşlar arasında idi. Bu kuşlar her zaman tetikte bekler, yaklaştığımı çok uzaktan fark eder etmez hırçın çığlık ve gagalamalarla konuğu oldukları hayvanı uyarırlardı. Gergedan kaçmaya koyulduğunda kuşlar bir katardaki yolcular gibi hayvanın sırtına asılıp yerlerinden ayrılmazlardı.” Kenneth Walker gibi daha pek çok gözlemci, tabiatta canlılar arasındaki dayanışmaya ilişkin bu tarz gözlemlerde bulunmuşlardır. Fakat, her nedense, sıradan izleyici olarak televizyona baktığımızda, belgesellerde tam aksi bir fotoğrafın resmedildiğini görürüz. Sanki hayvanlar aleminden alınacak tek ders, "hayatın bir mücadeleden ibaret olduğu"dur. Bu belgesellerin bunca yıl belli felsef” inanışları yansıttığı bir gerçek. Ama yavaş yavaş bu durum değişiyor. Canlılar aleminin bizim onlara yamadığımız basit inanış ve şablonların çok ötesinde derin sırlarla çevreli olduğu giderek daha iyi anlaşılmaya başladı. Canlılar aleminde görülen sayısız dayanışma örnekleri de, bu bağlamda dikkati çeken önemli başlıklardan bir tanesi. Dilerseniz, canlılar arasında dayanışmanın nasıl ve ne şekilde gerçekleştiğine ilişkin bazı arabaşlıklara göz atalım. Tehlikelere Karşı Birbirlerini Uyarırlar TOPLULUK içinde yaşayan hayvanlar herhangi biri tehlikeyi sezdiğinde sessizce olay yerinden kaçmak yerine var gücüyle çevresindeki diğer hayvanları da uyarır. Her bir canlı türünün kendine özgü bir uyarı şekli vardır. Örneğin tavşanlar ve bazı geyikler tehlikeyi sezdiklerinde çevrelerindeki hayvanları uyarmak için kuyruklarını dikerler. Ceylanlar ise ilginç bir zıplama dansı yaparlar. Birçok küçük kuş, düşmanlarını fark ettiklerinde hemen öterek alarm verirler. Sarı asma kuşu gibi türler alarm verirlerken dar frekans aralığı olan ve yüksek perdeden bir ses çıkartırlar. İnsan kulağı bunu ince bir ıslık gibi algılar. Bu sesin en önemli özelliği ise kaynağının yönünün anlaşılmamasıdır. Koloniler halinde yaşayan böceklerde de, tehlikeyi ilk sezen böcek bütün koloniyi uyarır. Ancak, tehlikeyi haber veren böceğin salgıladığı alarm kokusu düşmanın da dikkatini çeker. Dolayısıyla kolonisini tehlikeye karşı uyaran böcek ölümü de göze almış olur. Fakat bu örnekler içinde asıl ilginç olanı, gergedanların üzerlerinde yaşayan kuşların attığı çığlıkların tehlikeyi haber verdiğini anlamalarıdır. Bu da gšsteriyor ki, hayvanlar sadece kendi türleri arasında değil, diğer hayvanlarla da anlaşabiliyorlar. Tehlikelere Birlikte Karşı Koyarlar S†R† halinde yaşayan hayvanlar tehlike anında birbirlerini uyarmanın yanı sıra tehlikeye de birlikte karşı koyarlar. Örneğin küçük kuşlar, doğan veya baykuş gibi yırtıcı kuşlar bölgelerine girdiklerinde topluca bu hayvanların çevresini sararlar. Bu arada çevredeki diğer kuşları da bölgeye çekmek için özel bir ses çıkartırlar. Küçük kuşların topluca gösterdikleri saldırgan hareketler, yırtıcı kuşları genellikle bölgeden uzaklaştırır. Öte yandan, genel olarak bir zebra sürüsü saldırıya uğradığında sürünün lideri olan zebra geride kalır ve dişiler ile taylar önde koşarlar. Erkek zebra arkada zigzaglar çizerek koşar, çifteler atar, hatta geri dönüp saldırgan hayvanları kovaladığı bile olur. Yunuslar da hep grup halinde gezerler ve en büyük düşmanları olan köpekbalıklarına karşı grupça karşı koyarlar. Yunuslar, köpekbalıkları yavrularını tehdit edecek şekilde yaklaştıklarında iki yetişkin yunus gruptan ayrılarak köpekbalığının dikkatini kendi üzerlerine çekerler. Köpekbalığının dikkati başka yöndeyken diğer grup elemanları bir anda köpekbalığının çevresinin sararlar ve hepsi birden köpekbalığına darbeler indirmeye başlarlar. Misk sığırları da bir saldırganla karşılaştıklarında kaçmak yerine kendilerine bir güvenlik çemberi oluştururlar. Tüm grup üyeleri düşmana arkalarını dönmeden geri geri giderek bir daire haline gelirler. Yavrular bu dairenin merkezindedirler ve annelerinin uzun tüylerinin altında saklanırlar. Yetişkinler yavruların çevresini kuşatarak onları tam bir koruma altına alırlar. Saldırganların üzerine atılan bir misk sığırı saldırıdan sonra yavruları koruyan dairenin dağılmaması için yerine geri döner. Hayvanların tehlike durumları dışında, avlanma sırasında gösterdikleri işbirliği konusunda da oldukça çarpıcı örnekler bulunmaktadır. Örneğin pelikanlar balık avlamaya daima kalabalık bir sürü halinde giderler. Uygun bir koy seçtiklerinde ise, sahile karşı yarım bir daire oluştururlar ve sığ suda gezinerek bu daireyi daraltırlar. Bu dairenin içine giren tüm balıkları yakalarlar. Canlılar ‰leminde daha bunun gibi pek çok örneğe rastlanabilir. Doğum Sırasında Yardımlaşan Hayvanlar TABİ, canlılar arasında yardımlaşma konusu bu kadarla sınırlı değil. Bir de hayvanların doğum sırasında birbirleriyle yardımlaşmaları sšz konusu. Özellikle memeli hayvanlar doğumları esnasında tehlikeye son derece açık bir durumdadırlar. Hem anne hem de yeni doğan yavrular avcı hayvanlar için kolay birer avdırlar. Ancak genellikle bu canlılar doğum yaparlarken yanlarında sürülerinden biri yardımcı olarak bulunur. Örneğin, dişi antilop yavrulayacağı zaman, sürünün dışında çalılıkların arasında bir mekânı tercih eder. Doğum esnasında ise yalnız değildir. Yanında sürüde bulunan bir başka dişi ona yardım etmek için hazır bulunmaktadır. Doğum esnasında yardımlaşmalarıyla ünlü olan diğer canlılar ise yunuslardır. Yunus yavrularının doğar doğmaz su yüzeyine çıkmaları gerekir. Bu nedenle dişi yunus doğum esnasında yavruya yardım ederek onu burnuyla su yüzeyine doğru iter. Doğumdan hemen önce, anne yunusun hareketleri ağırlaşır. Bu nedenle doğum anında dişi yunusun yanında, ona doğumda yardımcı olmak üzere topluluktaki iki dişi yunus daha bulunur. Yardımcı yunuslar, doğumdan önce ona bir zarar gelmemesi için anne yunusun iki yanında yüzerler. Görevleri, doğumdan önce hareketleri ağırlaşan ve bu nedenle herhangi bir tehlikeye karşı koyabilecek bir güce sahip olmayan anneyi korumaktır. Anne file de doğum öncesinde yardımcı olmak üzere her zaman için topluluktaki diğer dişi fillerden biri hazır bulunur. Sık çalılık ve ağaçların arasında ustalıkla saklanan anne ve ona doğumda yardımcı olacak olan dişi fil, yavru fili yıllar boyu korumaya devam ederler. Dişi fil, yanında yavrusu varken çok daha saldırgan ve tetiktedir. Koloni Halinde Yaşayan Canlıların Fedakarlığı ÖZELLİKLE karıncalar, arılar ve termitler disiplin, itaat, iş bölümü, dayanışma ve fedakârlık üzerine kurulu bir organizasyon içerisinde yaşarlar. Bu minik canlılar, kendi hayatlarını hiçe sayarak, larvadan çıktıkları andan ölene kadar bütün enerjilerini larvalarını ve kolonilerini korumak ve beslemek için kullanırlar. Birbirleriyle yiyeceklerini paylaşırlar, bulundukları ortamı temizlerler ve hatta gerektiğinde diğerleri için canlarını verirler. Herkes ne iş yapması gerektiğini çok iyi bilir ve onu kusursuzca yerine getirir. Her biri için kolonisindeki diğer canlılar ve özellikle savunmasız larvalar birinci plandadır. Arıların, termitlerin ve karıncaların arasında bir tek bencil harekete rastlamak mümkün değildir. Bu yüzden de koloni halinde yaşayan bu canlılar kusursuz bir düzen içinde hayat sürerler ve büyük başarılar elde ederler. Peter Kropotkin, kitabında karıncaların ve termitlerin karşılıklı yardımlaşma sonucunda ne kadar büyük bir başarı kazandıklarıyla ilgili bir tespitini şöyle dile getirmektedir: "Termit ve karıncaların muhteşem yuva ve binalarının, şayet insanlarınki ile aynı ölçülerde olsaydı, çok daha üstün olduğu görülecekti. Asfaltlanmış yolları ve yer üstü tonozlanmış galerileri, geniş holleri ve tahıl ambarları, tahıl alanları, hasat etme işlemleri, yumurta ve larvalarının bakımındaki akılcı metodları... ve son olarak cesaretleri ve üstün akılları, tüm bunlar, yoğun ve yorucu yaşamlarının her aşamasında uyguladıkları karşılıklı yardımlaşmanın doğal bir sonucudur." Tabi burada Kropotkin'in göremediği nokta, söz konusu akılcı metodların ve üstün akıl tezahürlerinin hayvanlarının kendi akl” yeteneklerinden kaynaklanmadığı. Hayvanlarda görünen tüm bu üstün meziyetler, canlıların birbirleriyle bu derece iç içe yaşam sürmeleri, birbirlerini kollamaları, birlikte hareket etmeleri, ancak insanın refleks hareketlerine benzer şekilde otomatik mekanizmalar sayesinde gerçekleşmektedir. Dolayısıyla, canlıların üstün akılları yerine, onlara bu hareketleri ilham eden Varlığın akıl ve şuurunun yüceliğinden bahsetmek çok daha doğru olur. Şu kadarı var ki, ortada apaçık duran gerçek, canlılar aleminin evrimcilerin varsaydığı gibi salt çatışmaya dayalı ve kendi kendine gelişme gösterdiği bir alem olmadığı. Her şeyde O'nun tecellileri görünüyor. Yazar : Zafer Araştırma Grubu

http://www.biyologlar.com/canlilar-arasinda-dayanisma

Doğal Seçilim (Seleksiyon) yasası nedir?

Aynı yaşta ve aynı derecede sağlıklı, biri şişman biri zayıf iki insan kuzey Atlantik denizinde sandaldan suya düşseler, şişman insanın yeniden karayı görmesi olasılığı daha kuvvetlidir. Bunun iki nedeni vardır. Birincisi; balinalar, fok balıklan ve benzerlerinde de gördüğümüz gibi yağ çok iyi bir yalıtımdır. İkincisi, yağ sudan hafif olduğu için şişmanın su yüzünde durmasını kolaylaştırır. Bundan alınacak ders, bir organizmanın belli özelliklerinin değeri veya yararlılığı ancak kendisinin içinde bulunduğu çevreyle değerlendirilebilir. Çok yağ yükü taşımak birçok durumda kötü sayılsa da şişman biri Kuzey Atlantik’te denize düşerse, deniz şişmanlığın değerini yargılayacaktır. Atlantik’in vereceği hüküm şişmanlığın bu durumda yaşamı sürdürmek için iyi bir özellik olduğudur. Çevre ve Değişme Şişman ve zayıf denizciler örneği, anlatmak istediğim noktayı dramatize etmeme yardımcı oldu. Ama aslında değişim ve çevre arasındaki ilişkinin can damarını bulmak için bireyler yerine, kuşaklar boyunca canlı nüfusları ve bunların yavrularını göz önüne almalıyız. Belirli bir çevrede yaşayan ana-baba, değişmiş bir DNA’yı çocuklarına geçirirlerse o çocuklar, onların çocukları ve bütün izleyen kuşaklar; 1) ana-baba benzeri, 2) ana-babadan daha iyi, 3) ana-babadan daha kötü bir yaşam sürebileceklerdir. Bu üç durum bölünen hücrelerle daha şematik olarak gösterilmiştir. Prensip olarak DNA’daki değişmenin başarısını ölçmek kolaydır: Değişme görüldükten sonra birkaç kuşakta yaşayan bireyleri sayın; eğer yeni bireylerin sayısı, değişme zamanındaki bireylerin toplam sayısını geçiyorsa, DNA’daki özgün değişme veya başarılı, eğer organizmaların sayısı azalmışsa değişme zararlı olmuştur. Benzer düşünceler, türler ve organizma nüfusları mutlu yaşayıp giderken çevre koşullarında değişmeler olunca da akla gelir. Türün yavru yapma yeteneği artacak veya azalacaktır, ikinci durumda, yavaş yavaş yok olma, ancak DNA’da başka bir değişme olup yeni çevrede daha iyi üremeye yol açan bir farklılık gelişirse önlenebilir. Değişme ve doğal seçme arasındaki bu basit ilişkilerin altında evrimin anahtarı yatar. Değişen protein demektir; değişen protein değişen organizmaya yol açar. Yeni organizma, içine doğduğu çevreyi kendisi seçmemiştir. Kendilerinin ve yavrularının daha iyi koşullarda yaşamasına neden olacak değişimlere uğramış organizmalar çoğalırlar; dezavantajlar değişimlere uğrayanlarsa ölüp gitmeye eğilimlidirler. Doğal çevre, iyi dayanabilme yeteneğini organizmalar yararına, dayanamayanların ise zararına olarak, seçme yapar. Evrimsel başarının veya başarısızlığın, hiçbir zaman anında veya tek organizma örnekleri üzerinde ölçülemeyeceğini biliyoruz, kuzey Atlantik’te denize düşen arkadaşlarımız için de durum aynı. Ölçme ancak büyük nüfuslar ve birçok kuşaklar incelenerek yapılabilir. Çevre, türlerin yavru yapma yeteneği üzerine etki yapar, Üreme oranı, çevreye uyum ve evrimsel başarının kritik göstergesidir. Rastlantı Rastlantının evrimi de temelden etkilediğini gözden kaçırmayın. DNA’nın mutasyonla nasıl değişeceği rastlantıya dayanan bir konudur. Bir ana-babanın hangi özelliklerinin DNA’nın cinsel karışımı sonucu yavruda ortaya çıkacağı da bir rastlantı konusudur. Birleşecek çiftleri karşılaşması da öyle. Ve çevrenin değişen organizmalar arasında yapabileceği doğal seçme de rastlantının elindedir. Kısaca, yaşamın kökleri rastlantının derinliklerinde gömülüdür diyebiliriz. Şişeler Örneğine Yeniden Bakış Birinci bölümdeki kıyıya vuran şişeleri anımsıyor musunuz? Gelin yeniden şişeleri organizmalar gibi düşünelim. Şişenin kaderini değiştiren rastlantısal olay, bir şişe “mutasyonu”da diyebilirsiniz isterseniz, kapağın bilinçsizce yeniden yerine yerleştirilmesidir. Etkin çevre ise, içine kapaklı kapaksız birçok şişenin atıldığı deniz. Deniz seçmeyi yapınca, kapaksız şişeler dibi boylarlar; kapaklı şişeler kıyıya vurana kadar deniz üstünde yüzüp kurtulmayı başarırlar. Şimdi, değişme ve doğal seçme örneği olarak şişeleri seçmenin bir yanlışlık olduğunu görebiliriz. Çünkü şişeler türlerini sürdürmek için üre-yemezler. Bu öykü, bir iki cinsel yönden aktif şişeye kapak takılsaydı ve kapaksız şişelerle birlikte denize atılsalardı daha iyi bir örnek olacaktı. Böylece şişeler hâlâ üreyebilme olanakları varken kıyıya ulaşabileceklerdi. Çiftleşecekler, çocukları, torunları olacak ve bu böyle sürüp giderken, kıyıda gittikçe gelişen bir kapaklı şişeler topluluğu oluşacaktı. Şişelere cinsellik vermişken, şişe evrimini bir adım daha ileri götürebiliriz. Diyelim kıyımız bir zaman geçtikten sonra taşlı hale geliyor, öyle ki her yükselen alçalan gel-gitle şişeler kıyıya çarpıyorlar. Kaim cam şişeler bu duruma dayanabilecek, ama ince şişeler kıyıya çarptıkça kırılacaklardır. Kalın şişeler kadar, okyanusta batmaya karşı koyabilen ince şişelerinde şimdi açık seçik bir dezavantajı var. Bazıları birkaç yavru yapmayı başaracaklar ama çoğu yapamayacak. Yavrular daha büyük bir taş tehlikesiyle karşılaşacaklar ve kısa zamanda ölecekler. Birkaç kuşak sonra, kıyıda yalnızca kalın şişelerden oluşan bir yığın görülecek. Güveler Bir zaman önce İngiltere’de Birmingham’da bir çeşit beyaz güve yaşıyordu. Bu pervaneler, beyaz kabuklu kayın ağaçlarıyla beslenip, onların üzerinde göze çarpmayan renkleriyle, güve yiyerek geçinen kuşlardan gizlenebiliyorlardı. Yıllar geçtikçe Birmingham büyük ölçüde endüstrileşti. Havadaki is zamanla ağaçları kararttı. Böylece beyaz güveler göze görünür oldular. Kararmış ağaç kabukları üzerinde kuşların gelip onları yemelerini bekler gibi oturuyorlardı. Sonuç olarak, nesiller geçtikçe güve nüfusu tükenecek kadar azaldı. Bu dönem süresince, zaman zaman koyu gri güvelere rastlanmaya başlandı. Ağaçların gri kabukları üzerinde bunların çok iyi gizlenme olanağı vardı. Sayıları hızla arttı ve sonunda bu yeni güvelere bölgede bolca rastlanmaya başlandı. Bu öykü, çevre ve organizma arasında oynanan oyunu çok güzel anlatıyor. Koyu renk ağaç kabuklan ve böcek yiyen kuşlar, açık renk güvelerin aleyhine doğal seçme yapan bir çevre oluşturuyorlar, nüfuslarının yok olmasına neden oluyorlardı. Bu sırada ortaya çıkan rastlantısal bir mutasyon, koyu renk güvenin oluşumuna yol açtı. Daha önceleri, ağaçlar açık renk iken böyle bir mutasyon zararlı olacaktı, oysa şimdi yararlı oluyor. Koyu renk güveler barış içinde çiftleşip üreyebiliyorlar. Başka bir deyişle kendileri ve onları izleyen kuşaklar gelişiyorlar. Değişen çevrenin ve geçmişindeki rastlantısal mutasyonların, toplam etkisi nüfusunun karakterine tam bir değişmeye neden oldu. Bakterilerde Mutasyon Bakteriler, evrimsel değişmeyi (doğal seçmeyi) incelemek için çok uygun deney modelleridirler. Hepsi safkandır, nüfusun bütün bireyleri birbirinin aynıdır, çünkü hepsi aynı bakteriden üremişlerdir. Her yarım saatte bir yeni bir kuşak doğar, böylece kuşaklar üzerinde nüfus durumunu makul bir süre içinde izleyebilirsiniz. Şimdi isterseniz, laboratuvarda bir cam kavanoz içindeki bakterilere Birmingham’ın pervanelere yaptığına yakın bir şey yapalım, uygun olmayan bir çevre yaratalım. Kavanozdaki sıvıya bir damla antibiyotik streptomisin ekleyelim. Bu bakteriler için felâkettir. Çünkü bu, ilaç onlar için ölüm demektir. Büyüme çok geçmeden yavaşça durur ve hücreler ölmeye başlarlar. Bir iki saat içinde bütün hücreler ölmüş gibidir. Canlı hücre kalıp kalmadığım anlamak için bir test yapabiliriz. Milyonlarca ölü hücre içinde yaşayan bir iki hücre olduğunu görürüz, (diyelim on taneden az). Dahası, bu ender canlı hücrelerin streptomisinin varlığına rağmen çok iyi üreyebildiklerini gösterebiliriz. İlaçtan hiç rahatsız olmadan, Streptomisine dayanıklılık özelliğini aktararak ürüyorlar. Tek tük yaşamını sürdürebilen bakteriden çoğalan bütün gelecek kuşaklar, bu ilaca dayanıklılık özelliğini kalıtımla alırlar. Bu olayın açıklaması nedir? Son derece büyük bakteri nüfusu içinde (milyonlarca hücre) bir şansımız var; belki de on milyonda bir hücrenin kendisini streptomisin varken veya yokken ortaya çıkabilir, çünkü DNA içinde tümüyle rastlantısal bir değişmedir bu. Eğer streptomisin olmasaydı, bu mutasyonun oluştuğunu bilmeyecektik. Streptomisinin varlığıyla, dayanıklı organizmalar seçildiler, çünkü bu organizmaların avantajları vardı. Streptomisine dayanıklı hücreler, bundan sonra kalabalık bir nüfus oluşturana kadar bölünmeyi sürdürdüler. Yararlı mutasyon geçirmemiş ilk bakteriler, yaşamı o belirli çevrede sürdürecek olanakları olmadığı için ölüp giderler. Temelinde, bu öykü de pervanelerinkine benziyor. Çorbaya Geri Dönelim İkinci bölümde, yeryüzündeki ilk hücreden üre-yenlerin içinde doğdukları zengin çorbayı oburca tüketmelerine bir göz atmıştık. Şimdi de bir organizmanın besin tüketme yeteneğinin (besin alıp, şeker gibi bileşiklerden enerji üretmek anlamında) özel enzimlere nasıl bağımlı olduğunu resmimize işleyeceğiz. Hücrelerdeki enzimler olmasaydı, şeker kullanılamazdı. Biz de bağırsaklarımızdaki enzimler olmasaydı buna benzer bir durumla karşılaşacaktık; elimizin altında besin maddeleri bulunduğu halde, onları bedenimize alıp yakamayacaktık. Yeryüzündeki ilk hücrenin çorbada bir veya daha çok şeker benzeri kimyasal maddeyi kullanma yeteneği vardı, ama çorbada mevcut bütün kimyasal madde türlerini tüketemeyeceğini düşünmemiz akla yakın. Böylece kullanabileceği cinsten bütün maddeleri bitirdikten sonra, “askıya alınmış canlılık durumunda” bekleyecekti. Bugünkü bakteriler besin olarak gereksindikleri kimyasal maddeler tükenince aynı şeyi yapıyorlar; yalnızca durup bekliyorlar. Çorbanın içinde bekleşen milyarlarca hücrenin arasında, uzun dönemler sonunda rastlantısal mutasyonlar görülebilirdi. Bu mutasyonlardan bazıları, bir organizmaya başka bir kimyasal maddeyi kullanabilme yeteneği kazandırınca da organizma yeniden üremeye başlayabilirdi. Bu yolla çorba, en sonunda içinde durmadan artan çeşitli canlı organizmalar tarafından tüketilecekti. Vahşi Doğada Evrim Şimdiye kadar üzerinde durduğumuz örneklere, evcilleşmiş evrimden örnekler denebilir. Nüfusta “tek” bir değişme ve bu değişmenin lehine veya aleyhine doğal seçme arasında çok açık bir ilişki vardır. Laboratuvarda kullandığımız yaratıklar çoğunlukla safkan üreyenlerdir, yani genetik olarak aynı, en azından bir mutasyon belirene kadar her birey aynıdır bu deneylerde. Etrafımızdaki doğal dünyada aynı prensipler geçerliyse de, durum daha karışıktır. Safkan yavruları doğada nadiren görürüz. Aslında Darwin’i şaşırtan, onun dikkatini çeken ve bizi de etrafımıza baktıkça şaşırtacak olan, canlı varlıkların çok büyük çeşitliliğidir. Yalnızca değişik türden yaratıkların çeşitliliği değil, türlerin kendi içlerindeki çeşitliliği de. Türler içinde ölçmek için ele alınan hemen hemen her özellik, büyük çeşitlilik gösterecektir. Yalnızca insan türüne baksak, hepimiz insan olsak da birbirimizden çok farklıyız. Hayvanlar için de aynı durum söz konusu; kürkün kalınlığı, koşma ve tırmanma hızı, dişlerin uzunluğu ve keskinliği, uzunluk, ağırlık, güçlülük, görme, işitme, karşı cinse karşı çekicilik, bunların hepsi bireyden bireye çok farklılık gösterir. Safkan bir fare kuşağında bu özellikler dizisini ölçerseniz bir farklılık bulamazsınız. Bütün hayvanlar birbirinin aynıdır. Çeşitlilik evrimin işlemesine olanak sağlar. Darwin ve Wallace, çeşitliliğin nedenini bilmedikleri halde (DNA’nın mutasyonu ve cinsel karışımı), önemini kavrayıp teorilerini bunun üzerine kurdular. Şimdi herhangi bir canlı toplumunun, gelişme tarihinin herhangi bir zamanında, DNA’sı içinde çok büyük sayıda birikmiş değişme taşıdığı düşüncesini kavramaya çalışmalısınız. Canlı toplum, gerçekte, bütün geçmiş değişikliklerinin ve çevrenin yaptığı bütün geçmiş etkilerin deposudur. Bu, topluluk içindeki bireylerin büyük çeşitliliğinin nedenidir. Doğal seçme işte bu çeşitliliği kullanarak topluluğun daha çok gelişmesini sağlar. İsterseniz yalnızca bir değişken alalım, örneğin koşma yeteneğini düşünelim. Açık havada bir düzlükte, büyük bir geviş getirenler sürüsü içinde, saptayabileceğimiz en yüksek hızlar geniş bir farklılık gösterebilir. Kıyıda köşede gizlenip bekleşen bir sürü aslan varsa, en hızlı koşanın yaşamını sürdürme ve üremede daha çok şansı olacaktır. Böylece, kuşaklar sonra çevrenin kazandırdığı dengeyle, sürü hızlı koşanlar bakımından zenginleşecek, sürünün hızı artacaktır. Siz de birtakım özelliklerin ortaya çıkışında etkili olan benzer güçleri gözleyebilirsiniz: Çevrede Değişiklik: Doğal Olarak Seçilen Özellik Ormandan düzlüğe İyi koşan bacaklar Düzlükte yırtıcı hayvanların ortaya çıkışı Daha iyi koşan bacaklar Orman tabanından ağaçlara Daha iyi kavrayan kollar Yerden havaya Daha hafif kemikler, daha uzun kollar ve tüyler Sıcaktan soğuğa Kürk, ter gözenekleri Et yemekten ot yemeğe Kısa otlama dişleri Evrimin Amacı Var mı? Evrimi anlamanın zorluklarından biri, insana nedeni var gibi görünen değişmelerin aslında evrim sürecinde yalnızca rastlantıya dayanan olaylar olmalarıdır. Örneğin daha küçük hayvanların bol olduğu bir çevrede, ot yiyen bir türün gittikçe et çiğnemeye yarayan dişler geliştirmesi görülüyorsa, bu değişme anlaşılabilir: Yaşamı sürdürecek olanlar, öbür hayvanları yemek zorundadırlar ve et çiğneyen dişler bu olanağı sağlayacaktır. Burada, çevrenin hayvanları kendi yararlarına değişme yapmaya yönlendiriyormuş gibi bir amacı olduğu düşünülebilir. Bunu destekleyen bir düşünce biçimini savunan T.D. Lysenko, Stalin ve Kruşçev, bütün Sovyetler Birliği’ni neredeyse otuz yıl süren bir komik operaya sürüklediler. Bir çevrenin bir hayvan nüfusuna değişim öğretmesini sağlayan, düşünülebileceğimiz hiç bir yöntem olmaması yanında olaylar da bu şekilde gelişmez. Daha ziyade, bir hayvan nüfusu diş biçimi ve büyüklüğü bakımından rastlantısal değişimler sonucu büyük bir çeşitliliğe rakip oluyor. Nesil tekerleğinin her dönüşüyle, diğer hayvanları öldürebilecek ve etlerini çiğneyebilecek diş yapısı olanlar, diğerlerine göre, yaşamı sürdürme ve yavru yapma açısından daha şanslı oluyorlar. Yavaş yavaş kuşaklar boyu süren doğal seçmeden sonra, et yiyen hayvan türü gelişecektir. Bu işlem tamamen amaçtan yoksundur. Seçme kelimesi, belki de burada yanlış anlamaya neden oluyor, çünkü amacı da çağrıştırıyor. Çevre, tabiî ki tümüyle pasiftir. İyi veya kötü değişmelerin ortaya çıkmasına neden olmaz. Değişmeler kendiliğinden belirir (mutasyonla ve cinsel karışımla) ve bir defa gerçekleştikten sonra bir hayvana çevreye daha iyi uyma şansı verebilir. Bir an için dönüp güveler örneğine bakın. Büyük bir beyaz güve nüfusu içinde yer yer gri güvelerin bulunması, tümüyle rastlantısal bir olaydır ve gri renge olan “gereksinimden” bağımsızdır. Olay, gri ağaçlar döneminde görülebildiği sıklıkta, beyaz ağaçlar döneminde de ortaya çıkabilirdi. Ağaçlar, griliğe yönelten bir mutasyonun belirmesini desteklemiyorlar. Yine de aynı rastlantı gri ağaç döneminde olursa, gri güvelerin yaşamlarını sürdürüp yavru yapmaları olanağı artıyor. Koyu renk ağaçlardaki kuşların düşman olduğu pervanelerin durumu, düzlükte aslan tehlikesi altındaki hızlı koşucunun durumuyla aynıdır. Bu basit ilişkiyi gördüyseniz, Darwin ve Wallace’nin yeryüzündeki yaşamın geniş çeşitliliğinin verdiği ilhamla buldukları evrim prensiplerini kavradınız demektir. İnsanlarda Mutasyon ve Doğal Seçme İnsanlar daha basit canlı biçimlerinden, mutasyon ve cinsel karışımla evrimleştiler; tıpkı bakteri ve pervanelerde olduğu gibi. Şimdi bile işleyen olgunun bazı yönlerini görebiliriz İnsanlarda bazı mutasyonlar, bedende önemli bir işlevi olan bir proteinin neden olduğu bir hastalık biçiminde ortaya çıkabiliyor. Proteinin işlevim yerine başaramaması bir hastalık nedeni olabiliyor. Bugün bu nedenle oluştuğu bilinen bir sürü genetik hastalık var; her birinde değişik bir protein, çoğunlukla bir enzim iyi işlemiyor. Daha önce sözü geçen orak gözeli kansızlık (bölüm V) örnek gösterilebilir. Burada DNA’daki bir mutasyonel değişim, değişik hemoglobin moleküllerinin üretimine yol açıyor. Değişmiş hemoglobin molekülleri, içinde taşındıkları kırmızı kan hücrelerinin (alyuvarların) biçimini değiştirip hastalığa neden oluyorlar. Bu hastalık üzerine söyleyecek iyi şeyler pek yok. Ancak, Afrika’da sıtmanın yaygın olduğu yerlerde yaşayan orak gözeli kansızlık kurbanları, hastalıkları sayesinde sıtmaya karşı korunmuş durumdalar! Sıtmaya, alyuvarlara yerleşip hastalık yapan bir asalak neden olur. Bu asalaklar, orak biçimli hücrelerden hoşlanmazlar, onun yerine daha sağlıklı kurbanları yeğlerler. Orak gözeli kansızlık ve sıtma arasındaki bu ilişki, yine değişen organizma (bu örnekte insan) ve çevresi arasındaki ilişkinin belirgin bir örneğini gösteriyor. Orak gözeli kansızlık hastalarının evrimsel dezavantajları olsa da, bir sıtma ülkesinde sıtma yüzünden daha çok hasta olanlara göre avantajlı durumda sayılabilirler. Türlerin Çeşitliliği Nereye baksak bir canlı türünü, yaşamını sürdürebilmek için çok yoğun şekilde uğraşırken bulabiliriz. Bir avuç toprakta veya suda, her yükseklikte ve derinlikte, sıcak su kaynaklarında veya donmuş tundralarda, okyanusta veya havada, kupkuru çölde veya muson ormanlarında; evrim, akla gelebilecek (hatta gelemeyecek) her canlı türüne bir yer bulmuş görünür. Duyuların her biçimi, yemek, hareket, iletişim, sevmek, dövüşmek, korumak, üremek, bunların hepsi evrimin hizmetindedir. Ve bugün yeryüzünde gördüklerimiz daha önce yaşayıp tümüyle yok olmuş canlı yaratıkların çeşitliliğinin yalnızca ufacık bir bölümüdür. Hep bildiğimiz o koca dinozor iskeletleri, binlerce milyon yıl sürmüş doğum - yaşam - yenilme - yok olma çemberinde eriyip gitmiş türlerden bize kalan anıtlardır. Değişme ve doğal seçme bütün bu karmaşıklığı ve çeşitliliği açıklayabilir mi? Her şeyin nasıl geliştiği ayrıntılı olarak bilemeyiz, yalnızca prensip olarak değişme ve doğal seçme arasındaki bu karşılıklı etkileşimin durmadan genişleyen karmaşıklığa yol açabileceğini gördüğümüzü söyleyebiliriz. Organizmalara fazladan yaşamı sürdürebilme kapasitesi sağlayan değişmeler, yaşama şansını artırırlar. Yeterli zaman oldukça her şey denenecektir. Yalnız bir şeyden emin olabiliriz, iki veya üç milyar yıl önce yaşayıp geleceği görmeye çalışsaydık, herhalde olacakları önceden bilemezdik; kimse, insanları veya diğer canlı türlerini gözünün önüne getiremezdi. Neden? Çünkü, evrimde her adım rastlantıya dayanan bir olaydır, bu nedenle önceden bilinemez. İnsanlar dahil bütün canlı yaratıklar, son derece rastlantısal olayların ürünüdür. Denilebilir ki insanlar olarak bugün kendimizi tanıdığımız biçimimiz son derece ender bir rastlantıdır! Başka bir deyişle evrim, aynı koşullarla aynı yeryüzünde yemden başlasaydı insanların yeniden oluşmaları şansı, sonsuz küçüklükte olacaktı. Bu olgulara bağlı olarak ve aynı akıl yürütme temelinde, denebilir ki evrende bir yerlerde bize benzeyen yaratıkların varolması olasılığı çok küçüktür. Evrende yaşam olasılığı büyük ama bizimkine benzer bir yaşam olasılığı çok küçük. Değişme ve doğal seleksiyonun, insan varlığını açıklamak için “yeterli” olduğunu bitiriyoruz. Bilim her zaman yeterli ve basit açıklamaları sever.

http://www.biyologlar.com/dogal-secilim-seleksiyon-yasasi-nedir

Sürüngenler ve İki Yaşayışlılar

ÜRÜNGENLER... Omurgalıların suda ya da karada yaşayan, sürünerek ya da yürüyerek ilerleyen sınıfı. Karada yaşayan biçimlerin evrim tarihinde en önemli yerlerden birini tutan sürüngenlerin kökenleri, diğer tüm biyolojik soylar (eski devirlerde yaşamış küçük boyutlu ikiyaşayışlılardan başlayarak) gibi, hala tam açıklığa kavuşturulamamıştır. Sürüngenlerin, memeliler ve kuşların türediği bir grup olduğu sanılır, ama evrim olayları ölçüsüzce yalınlaştırılmamalıdır ve ikiyaşayışlıların balıkların soyundan geldikleri ve bir sürüngenin ortaya çıkmasına neden oldukları biçimindeki klasik taslak "kullanışlı bir imge"den başka bir şey değildir. KABUKLU YUMURTALAR Günümüzde eldeki bilgilerin ışığında, Karbon devrinin başlangıcından beri, üremelerini sağlamak için suya bağımlı kalmış olan ikiyaşayışlıların yanı sıra, bunların yakın akrabası olan, ama kabuklu yumurtalar yumurtlayan ve yumurtadan çıkan yavrularının hemen suya gereksinimi olmayan bir grubun var olduğu anlaşılmaktadır (oysa ikiyaşayışlıların suda yumurtlanan ve döllenen, bir kabukla da korunmamış olan yumurtalarından çıkan kurtçuklar için su gereklidir). İyi korunmuş kabuklu yumurtalar yumurtlama yeteneği, embriyoların yumurtalar içinde gelişmesi ve buradan çıktıklarında bulundukları ortama uyum sağlama yetenekleri, sürüngenleri ikiyaşayışlılardan ayıran başlıca özelliklerdendir. Yaklaşık 250 milyon yıl önce, ikiyaşayışlılarla ortak ataları olan canlılar, bu döneme özgü yetkinleşme yolunda bulunabiliyordu. Kısa süre içinde dört ayaklı omurgalılar suda yaşama zorunluluğundan kurtulmuş ve Karbon devrinin bitkisel yayılımını izleyen kuru ortamda gelişebilmişlerdir. Kimi araştırmacılar, sürüngenlerin atalarını oluşturan biçimlerin Seymuriyamorf arasında yer aldığını ileri sürerler. Seymouriacinsi ve buna akraba olan cinsler, anatomileri bakımından, hem ikiyaşayışlıları, hem de ilkel sürüngenleri anımsatırlar, ama bazı belgeler, bunların suda yaşayan kurtçukların görünüşünde geliştiklerini ve sürüngenliğe olan eğilimlerine karşın, hala ikiyaşayışlı olduklarını kanıtlamaya yöneliktir. Kafataslarıysa zırhlıbaşlara ait iki yaşayışlılara ve balıklara özgü bir yapıdadır. Bununla birlikte, Seymuriyamorf'un yapılarının inceliği nedeniyle hiç fosilleşmiş izler bırakmayan ama Karbon devrinde, bir yandan döl bırakmaksızın çabucak ortadan kalkmış olan Diadectes'e ve öte yandan Kotilozorları (Cotylosauria) oluşturan küçük boydaki "ilksürüngenler"le ortak atalarasahip oldukları düşünülebilir. KOTİLOZORLAR VE DÖLLERİ Hemen hemen bütün uzmanlar, sürüngenlerin kökenini (kendileri döl bırakmaksızın, Permiyen'in sonundan önce ortadan kalmış olan) kotilozorlarda aramak gerektiği konusunda görüş birliğine varmışlardır. Bu, Orta ya da Alt Karbon devrinden başlayarak türemiş olan kimi kotilozor biçimlerinin bilinen tüm sürüngenlerin ataları oldukları anlamına gelir. Bu sürüngenler şöyle sıralanabilir: a) Kaplumbağalar ya da Chelonia: Günümüze kadar her zaman bol bulunmuştur; b) Synapsida: Takımlarından biri olan Therapsida memelilerin kökenidir; c) Pleziyozorlar (Plesiosauria): Tebeşir devrinde döl bırakmaksızın ortadan kalmışlardır; d) İhtiyozorlar (Ichthyosauria): Denizlerde yaşayan büyük sürüngenlerdir. Tebeşir devrinde döl bırakmaksızın ortadan kalmışlardır; e) Lepidozorların (Lepidosauria) ataları: Günümüzde yaşayan yılanlar, kertenkeleler ve kalakbaşlılar (Rhynchocephalia); f) Arkozorlar (Archosauria): Triyas'ta ortadan kalmış olan tekodontların (Thecodontia) atalarıyla ilgili biçimleri vermiştir; g) Tebeşir devrinin sonunda ortadan kalmış olan dinozorlar; kuşların daha doğrudan eski ataları olan, aynı biçimde Tebeşir devrinde ortadan kalmış olan pterozorlar (Pterosauria); hala var olan timsahların ataları.

http://www.biyologlar.com/surungenler-ve-iki-yasayislilar

I. Ulusal Leylek Envanteri Tamamlandı

I. Ulusal Leylek Envanteri Tamamlandı

Orman ve Su İşleri Bakanlığı, Doğa Koruma ve Milli Parklar Genel Müdürlüğü ve Ege Üniversitesi İşbirliği ile Türkiye I. Ulusal Leylek (Ciconia ciconia) Envanteri Orman ve Su İşleri Bakanlığı - Doğa Koruma ve Milli Parklar Genel Müdürlüğü ile Ege Üniversitesi Rektörlüğü arasında 01.04.2013 tarihinde imzalanan “Türkiye’de Üreyen Leylek (Ciconia ciconia) Populasyonunun Tespiti ve Elektrik Direkleri Üzerine Yuva Platformu Yerleştirme Çalışmaları Protokolü” işbirliği kapsamında yapıldı.Projenin Amacı Bu protokol kapsamında yapılacak çalışmalar ile leyleklerin ülke genelinde kuluçkaya yattıkları bölgelerin saptanması, kuluçkaya yatan çift sayısının belirlenmesi ve elektrik direkleri üzerinde yer alan leylek yuvalarının yapay yuva platformları ile değiştirilmesi amaçlanıyor. Yuva platformlarının yerleştirilmesiyle birlikte yavruların yuvada yanarak ölmeleri ve uçmaya yeni başlayan leylek yavrularının elektrik tellerine çarparak ölmelerinin önüne geçilecek. Envanter Yöntemi:Leylek envanteri için 2012 yılında Ege Üniversitesi uzmanları tarafından hazırlanan bir veri formu Bakanlık Bölge Müdürlüklerine dağıtılmış ve envanter genel olarak Orman ve Su İşleri Bakanlığı Bakanlık Bölge Müdürlüklerine bağlı İl Şube Müdürlükleri, Ege Üniversitesi Tabiat Tarihi uygulama ve Araştırma Merkezi, Fen Fakültesi Biyoloji Bölümü uzmanları tarafından yapıldı. Bazı bölgelerimizde mülki idari amirlerden de destek alınarak envanter çalışmaları yürütüldü.  Ayrıca sayımlara az sayıda bölgede çeşitli sivil toplum örgütleri, avcı dernekleri ve kuş gözlemcileri de destek sağladı. Veriler; İl, İlçe, Belde / Köy bazında toplanıp, yerleşim yerindeki toplam leylek yuva sayısı, aktif olarak kullanılan leylek yuva sayısı ve leylek yuvasının yuva tipi belirlenerek kaydedildi. Verilerin doğru toplanabilmesi için sayıma katılanlara sayım öncesi örnek bir veri giriş formu verilerek bilgilendirme yapıldı. Toplanan veriler ayrıca il bazında envanter sorumlusu personel ile birebir bağlantıya geçilerek kontrol edildi ve Ege Üniversitesi uzmanları tarafından Coğrafi Bilgi Sistemleri kullanılarak oluşturulan Geodatabase (konumsal bir veri tabanı) altında birleştirilip analiz edildi.Envanter Genel Sonuçları:2011 yılında başlayan ve 2013 yılında tamamlanan envanter sonuçlarına göre ülkemizde toplam 9881 leylek yuvası bulunduğu ve bu yuvalardan 8683’ünün ise araştırma döneminde leylekler tarafından aktif olarak kullanıldığı tespit edildi. Envanter sonuçları ülkemizde 81 ilin 78’inde leyleklerin ürediğini ortaya koydu. En çok leylek üreyen 3 il sırasıyla Samsun, Kütahya ve Edirne olup, Artvin, Rize ve Trabzon’da ise hiç leylek yuvası bulunmadığı tespit edildi. Ayrıca ülkemizde en az 2481 farklı yerleşim yerinde leyleğin ürediği tespit edildi.Ege Üniversitesi uzmanları; leyleklerin yuva yapmak için en çok tercih ettikleri ilk üç yuva yerinin sırasıyla elektrik direği, ağaç ve telefon direği üstleri olduğunu belirlemiş ve toplam 6091 leyleğin bu üç yuva tipinde ürediğini tespit etti.  Ayrıca yapılan analizler sonucunda ülkemizde üreyen leyleklerin yaklaşık % 45’inin elektrik direği ya da yüksek gerilim hattı direği üzerinde ürediğini ortaya konuldu. Dünyada Leylek Çalışmaları ve Bu çalışmanın ÖnemiAvrupa’da ülke ya da bölgesel ölçekte leylek sayımları uzun yıllar öncesine dayanmaktadır. Özellikle Polonya, Almanya ve İspanya’da leylek sayımları konusunda uzun yıllardır önemli çalışmalar yürütülmektedir.  Bu ülkelerin gerek yüzölçümlerinin Türkiye’ye kıyasla küçük olması gerekse sayıca daha çok yetişmiş personel bulundurması leylek sayımlarını kolaylaştırmaktadır. Ülkemizde, günümüze dek birincisi Dr. Max Kasparek tarafından, ikincisi ise Kuş Araştırmaları Derneği ve Doğa Derneği tarafından dar kapsamlı ve yerel ölçekte olmak üzere iki kez sayım yapılmıştır. Bu nedenle ülkemizde üreyen toplam leylek çift sayısı bugüne dek belirsiz kalmış ve 15 bin ile 35 bin çift arası gibi çok geniş sayı ile ifade edilmiştir.  Ancak Orman ve Su İşleri Bakanlığı  Doğa Koruma ve Milli Parklar Genel Müdürlüğü ve Ege Üniversitesi bu eksikliği gidermek için önemli bir işbirliği yapmış ve Türkiye I. Ulusal Leylek Envanterini başarı ile tamamlamıştır.I. Ulusal Leylek Envanterinin başarılı ve bütüncül olması nedeniyle ülkemizde üreyen leyleklerin hangi bölgelerde yoğunlaştıkları ve hangi sulak alanlarla ilişkili oldukları artık daha iyi bilinmektedir. Ülkemizde üreyen leyleklerin korunması için; Orman ve Su İşleri Bakanlığı ve Ege Üniversitesi işbirliği bu konuda atılmış önemli bir adım olup elde edilen veriler ile leyleklerin korunması için önceliklendirme ve planlama çalışmaları yapılarak yeni projelerin üretilmesi hedeflenmektedir. Bu çalışmanın devamı olarak Ege Üniversitesi uzmanları tarafından ülkemizde üreyen leyleklerin yuva yeri seçimi çeşitli coğrafik, çevresel ve iklimsel parametrelere bağlı olarak modellenecektir. Leylek Yuva Restorasyonu Yuva Platformu Yerleştirme Çalışmaları BitmediBu kapsamda 2013 yılı içerisinde Doğa Koruma ve Milli Parklar Genel Müdürlüğü desteği ile Ege Üniversitesi uzmanları  “Leylek Yuvası değişimi ile yapay yuva platformu yapımı ve tekniği” hakkında teorik ve uygulamalı bir eğitim verecektir. Bu eğitime Doğa Koruma ve Milli Parklar Genel Müdürlüğü yetkilileri, Bakanlık Bölge Müdürlüklerine bağlı İl Şube Müdürlüğü personelleri, Ege Üniversitesi uzmanları ve çalışma bölgesinden sorumlu elektrik kurumu temsilcileri katılacaktır.http://www.milliparklar.gov.tr

http://www.biyologlar.com/i-ulusal-leylek-envanteri-tamamlandi

Dünyanın en büyük örümceği

Dünyanın en büyük örümceği

En küçük bir örümceğin bile büyük korkulara sebep olabildiği dünyamızda, Theraphosa blondi'yi görenler hayretler içerisinde kalabilir. Güney Amerika’da yaşayan bu tarantula, dünyanın en büyük örümceği olarak tarihe geçti. Diğer örümceklerin daha uzun ayakları olmasına rağmen, T.  blondi’nin geniş gövdesi 170 gram ağırlığında.Tüm Theraposa familyasına 'kuş yiyenler'ismini veren, Goliath kuş yiyen olarak bilinen bu devasa örümcek aslında göründüğü kadar tehlikeli değil.Takma ismine rağmen, Hayat Ansiklopedisi’nin belirttiğine göre, T. blondi, nadiren kuşlarla besleniyor. George Washington Üniversitesi’nden örümcek alanında uzman Gustavo Hormiga, T. blondi’nin daha çok eklembacaklılardan beslendiğini belirtiyor. “Bu örümcek, genel olarak yırtıcı ve küçük fare ya da kertenkele gördüğünde, onları da yiyebilir,” diyor Hormiga.Fakat bu örümcekten avını yakalaması için büyük bir ağ kullanmasını beklemeyin- T. blondi yemeğini eski yollarla buluyor: zehirli dişlerini kullanarak.Hormiga, zehrinin insanlar için zararlı olduğunu düşünmese de, çoğu örümcek gibi, T. blondi de zehir üretiyor. Isırması, daha çok arı sokmasını andırıyor, fakat neredeyse hiç tıbbi müdahale gerektirmiyor.Tüyünden sakınınT. blondi, ağ yapmasa da, ip üretip kullanıyor. Örümcek, ormandaki çukur ve zemindeki oyuklarda yaşıyor. Bir memeli, lezzetli bir örümcek atıştırmak isteyip oyuğa girmeye çalışırsa, T. blondi’nin zehirden daha kullanışlı bir silahı var: tüyleri. “Bu tüylerin, mikroskoptan bakıldığında, zıpkın şeklini aldığı görülebilir,” diyor Hormiga. Bu da, tüylerin derinin içine işlemesini sağlıyor. “Bu örümcekler, tüylerini salmak için, dördüncü çift ayaklarını karınlarının üstüne sürtüyorlar. Bu tüyler, kaşınma hissi uyandırıyor.”Bu tüylerin zararlı olması için illa da salınmış olması gerekmiyor, araştırmacılar ve evinde örümcek besleyenler örümcekle ilgili herhangi bir şeyde ellerine eldiven takıp durum ile başa çıkmak zorundalar. İnsanlarda, bu tüyler sinir bozucu şekilde kaşıntı hissi uyandırabilir, fakat fareler gibi daha küçük memeliler için bu tüyler öldürücü olabilir.T. blondi dişileri, 30 mm bir kesenin içine 50-150 arası yumurta bırakırlar. Keseyi yırtıcılardan korumak amacıyla kesenin etrafının tüyleriyle örterler. Yeni doğmuş örümcek yavrularının olgunlaşması iki ya da üç yıl alır; Kendilerine bakmaya yetecek büyüklüğe ve olgunluğa ulaşana kadar, anneleriyle uzun zaman geçirirler. Dişileri 20 yıla kadar yaşayabilirken, erkekleri 3-6 yıl arası yaşar, erkeklerin ölümü genelde olgunluğa eriştikten ve çiftleştikten sonra olur.Tadı karidese mi benziyor?Güney Amerika’nın kuzeybatısındaki yerliler T. blondi'yi lezzetli bir atıştırmalık olarak görüyor. Öncelikle, örümceğin tüylerini yakıyorlar, daha sonra örümceği muz yapraklarına sararak kızartıyorlar. Venezuela’daki yerli Piarora insanlarıyla bir yemek masasına oturmuş ve bu örümceklerden yemiş olan tarantula uzmanı Rick West, T. blondi'nin şaşırtıcı şekilde lezzetli ve sulu olduğunu söylüyor. “Yapışkan karın içerikleri, sarılmış yaprak içerisinde çok pişmiş olsa da, beyaz kas ‘et’i, dumanlı karides tadında,” diyor West. 2 cm uzunluğundaki dişleri, yemekten sonra kürdan olarak kullanılıyor.  Yemeğiniz her zaman böyle kürdanı içinde gelmez. Karides tadına rağmen, bu örümcek türünü yakın zamanda muhtemelen restoranlarda göremeyeceksiniz.Kaynak: newswatch.nationalgeographic.comhttp://www.bilim.org

http://www.biyologlar.com/dunyanin-en-buyuk-orumcegi-1

Grebe Kuşu ( Batağan veya önceki adı ile Yumurta piçi )

Grebe Kuşu ( Batağan veya önceki adı ile Yumurta piçi )

Grebe kuşu, ismini bir çoğumuzun ilk defa duyduğu hatta adını okumakta bile zorlandığımız bir kuş türüdür. Tabiattaki kuşlar genellikle güzellikleriyle sevimli ve cana yakın oluşlarıyla biz insanların dikkatini çekerler. Bazı kuşlarda vardır ki, bu kuşlar kendine has özellikleriyle diğer canlılardan ayrılırlar. Bu özellik kimi zaman avcılıklarıyla, kimi zamanda vücut yapılarındaki farklılıklarla dikkatleri üzerlerine çekerler.Bazı canlılarda vardır ki, onları diğer canlılardan ayıran en önemli özellik; onlardaki şefkat duygusudur. Grebeler ( su kuşları ) onlara bahşedilmiş olan annelik şefkatiyle bilinirler. Çoğu insanın çocuğunu sokağa attığı, bakmadığı çocuğuna ilgi göstermediği çağımızda biz insanlara örnek olacak ibretlik bir kuştur. Bir su kuşu türü olan Grebeler, yavrularını sırtında taşır. Yavrularını yanından ayırmaz. Anne kuş, yavruları üstünden düşmesin diye kanatlarını hafifçe yukarıya doğru kaldırır ve başını yana doğru uzatarak gagasında tuttuğu besin parçalarıyla yavrularını besler. Yavrularına karşı aşırı düşkünlükleri vardır. Sadece onları mutlu edebilmek için yaşarlar.Grebeler, yavrularına ilk olarak besin vermezler. Yavrularına ilk olarak verdikleri şey, su yüzeyinden toplayabildikleri ya da göğsünden kopardıkları tüylerdir. Canları ne kadar çok acısa da yavrularının aç kalmaması için bunu göze almışlardır. Grebelerin yavrularına ilk olarak besin vermemelerinin nedeni, yavrularına verebilecekleri böcek ve benzeri besinlerin yavrularının midesinden geçerken bağırsaklarına zarar verebileceği düşüncesidir. Yavrularını kendilerinden bile sakınan bir kuş türüdür. Bu tüy yemeleri yavruların her zaman karşılaşabileceği çok gerekli bir tecrübedir.Grebeler, daha çok ördekleri andırırlar. Yüzmeye bayılırlar. Kendi besinlerini suda yakaladıkları balıklarla ve böceklerle sağlarlar. Yavrularına ilk dönemlerde bu besinlerin zarar verebileceği düşüncesiyle yedirmezler sadece kendileri tüketirler. Çok değişik renklerde olabilirler. Boyunları ve gagaları uzuncadır.Kaynakça: google, kuşlarYazar: Hamza canhttp://www.bilgiustam.com

http://www.biyologlar.com/grebe-kusu-batagan-veya-onceki-adi-ile-yumurta-pici-

Ağaç Sansarı Nedir?

Ağaç Sansarı Nedir?

Ağaç sansarı; hayvanlar aleminin kordalılar şubesinin memeliler sınıfının etçiller takımının sansargiller ailesindendir.Boyları ortalama yirmi üç santimetre kiloları ortalama bir buçuk kilogramdır. Postlarının rengi kahverengidir. Kış aylarında postları uzar ve daha kabarık bir hal alır. Boyutlarına oranla kuvvetlidirler. Bacakları kısa ve kafaları sivridir. Boynu ise vücuduna oranla oldukça ince bir şekildedir. Kuyruğu yumuşak kıllıdır ve vücudunun hemen hemen yarısı kadar uzunlukta olmaktadır.Ağaç sansarları, sık olarak çamların bulunduğu ormanlarda yaşarlar. Yuvalarını ağaç kovuklarına veya yerlerde açtıkları çukurlara yaparlar. Ama genelde ağaçların tepelerinde yaşamlarını sürdürürler. Geceleri daha aktif haldedirler. Orman faresi, büyük tavşan, karaca yavruları, kurbağa, kuş, sincap, böcek, yarasa, köstebek ve leşlerle beslenirler. En ilginci ise bazı zamanlar tilki ile beslenmeleridir. Bunların yanı sıra meyvelerle, yumurtayla ve balla da beslendikleri bilinir.Ağaç sansarlarının en büyük doğal düşmanları kartallar ve kartallar olarak bilinmektedir. Korunmak için kendi alanlarını yani bölgelerini kendi dışkılarıyla işaretlerler.Çiftleşmedeki en aktif zamanları Mart ayıdır. Gebelik süreleri ise 203-270 gün arasında değişmektedir. Tek seferde 3-8 tane arası yavru doğururlar. Yavrularının gözleri yaklaşık iki hafta sonra kendine gelip açılmaktadır. Yavrular ilk doğduklarında beyaz veya pembe renktedirler. Birkaç hafta sonra annelerinin rengine dönerler. Yaklaşık 9 ayda yetişkin bir ağaç sansarı olurlar. Ömür uzunlukları ise ortalama 15 yıldır.En önemli savunma mekanizması kötü koku üretebilen vücud salgı bezlerinden kendine karşı tehdit gördüklerine bu kötü kokuyu salgılamalarıdır.Kaynakça: http://tr.wikipedia.org/wiki/Ağaç_sansarıhttp://www.tramem.org/memeliler/Yazar: Ensar Türkoğlu http://www.bilgiustam.com

http://www.biyologlar.com/agac-sansari-nedir

Genetik Yapımız ve Davranışlarımız Arasındaki İlişki

Daha doğum anından itibaren bebeğin annesine mi yoksa babasına mı benzediğini merak ederiz. Yeni doğan bebeği görenler, öncelikle bu benzerlik konusundaki kanaatlerini açıklama gereği hissederler ya da gerçekten ortada öylesine bir benzerlik vardır ki, kendilerini bu konuda bir şey söylemekten alıkoyamazlar. Çoğu zaman “Hıh, deyip birisinin burnundan düşmüş”üzdür Kime benzediğimiz, fiziksel özelliklerimizi, bazı huylarımızı kimden aldığımız yaşamımızın sonraki dönemlerinde de insan ilişkilerindeki temel ilgi alanlarından birisi olmakta devam eder. Çocuk ya da genç, hoşa giden veya gitmeyen bir tutum gösterdiğinde, bu tutumun hep hesapta tutulan sorumlularından biri de kalıtımsal mirasıdır. Baba, matematikten “pekiyi” alan oğlunun başarısında, biraz da kendi kalıtımsal mirasını etken olarak gördüğü için öğünür. Eşine kimi huylarından dolayı kızgın olan anne, kızı bu baba huylarından bazılarını gösterse, öfkesini yönelttiği kaynaklardan birisi de eşinin kalıtımsal mirasıdır; o yüzden açık ya da gizli “çekmez olasıca!” diye hayıflanır. Şöyle ya da böyle kalıtım, gündelik yaşamımızda büyük ve büyülü bir yer tutar. Gündelik yaşamımızda böylesine önemli bir yeri olan kalıtım, doğal olarak tarihte, toplumsal ve politik yaşamda da “soy sop sorunu” şeklinde hak ettiği yeri almıştır. Evlilikler, politik tercihler sırasında, soyaçekimin bu büyüsel etkisi kendisini çoğu zaman hemen hissettirir. “Kız anasına bakılarak alınır”; soyun gücüne inanç, mezhepsel farklılıklara, babadan oğula geçen dinsel ve politik iktidar biçimlerine yol açar; demokratik söylemin başat olduğu modern zamanlarda bile partilerin başına soyaçekimin büyüsünden faydalanılacak liderler seçilmeye çalışılır. Kalıtımsal miras ve soyaçekim konusunun şüphesiz bilimsel tecessüsü uyandırması gecikmemiş, “genetik”, bilim dünyasının en önemli alanlarından birisi haline gelmiştir. Bu yüzyılın ortalarında kalıtımsal mirasın geçiş yolu olan kromozomların, genlerin ve genetik şifrenin taşıyıcısı DNA’nın yapısının keşfiyle, insanlık tarihinde belki etkisi gelecekte çok daha belirginleşecek olan “genetik devrim” ortaya çıkmıştır. Genetik şifre hakkındaki artan bilgi, DNA’ların ayrıştırılıp yeni yapılar elde etmek üzere yeniden birleştirilmesi (rekombinant DNA teknolojisi), insanlığı diğer tüm devrimlerde olmadık biçimde politik, toplumsal ve etik, yepyeni bir meydan okumayla karşı karşıya bırakmaktadır. Artık tüm canlılarda, bitki, hayvan ve insanda istenilen değişikliklerin ortaya çıkarılması ve kopyalama mümkündür. Moleküler biyoloji ve gen mühendisliği gibi iki temel alandan beslenen yeni bir bilimsel ve teknolojik alan olan biyoteknoloji, insan ve toplum için inanılması güç olumlu vaadlerde bulunmaktadır. 1987′de Amerikalı ve İngiliz bilimcilerin önderliğinde başlatılan “İnsan genomu projesi” tüm hızıyla sürmektedir. Bu projeyle ilk aşamada insan genlerinin, ikinci aşamada tüm DNA dizilimlerinin ayrıntılı bir haritasının çıkarılması hedeflenmektedir. İnsan DNA’sında 3 milyar harf olduğu sanılmakta, projenin başlangıcından beri 76 milyon harfin yerinin saptandığı, 2002 yılında 500 milyon harfin yerinin saptanmış olacağı bildirilmektedir. Halen süren ama bir yandan da gerek bilimsel gerek politik çevrelerin tepki ve eleştirilerine hedef olan bu proje, nihai amacı olan insan genomundaki her noktanın DNA diziliminin elde edilmesini gerçekleştirebilirse, ortaya çıkabilecek imkan ve sorunların bugünden hayal edilmesi bile mümkün değildir. Şu sıralarda İngiltere’de Cambridge’de sürmekte olan “İnsan Genetiği Haritası Araştırması” için insan DNA’sından elde edilen 1 milyon kopya derin dondurucularda saklanmakta, varılan sonuçlar Avrupa Biyoenformasyon Enstitüsü (EBI) tarafından dünyaya açıklanmaktadır. EBI, şimdiye kadar 20 bin organizmanın genetik yapısını bilimcilere açıklamıştır. İnternetteki sayfasına her gün on bin kişi girip biriken bilgiyi elde etmektedir. EBI’nın interteki sayfasını okuyanların sayısı son bir yılda 7 kat artmış durumdadır. Bugün “tıbbi genetik” bilgi sayesinde sağlanan bazı hastalıkların nedenleri ve erken tanınması ile birlikte ortaya çıkan imkanların “müthiş” bir düzeye gelmesi ve daha anne karnında hatalı genlerin hatalı olmayanlarla değiştirilmesi yoluyla kesin etkili olacak “genetik tedavi” ulaşılmak istenen ilk hedeflerdendir. Genetikteki çok hızlı gelişme, yalnızca tıp alanıyla sınırlı değildir. İlaç şirketleri de, genetik mühendislikte araştırma-geliştirmeye giderek aratan oranlarda kaynak ayırmaktadır. Biyoteknolojinin tıp ve eczacılık dışındaki diğer hedefleri arasında tarım ve petrokimya alanlarında pek çok ürünün ucuza ve bol miktarda üretilmesini sağlamak bulunmaktadır. Genetik çalışmaların böylesine gelişme ve tüm toplumsal ve ekonomik alanlara yayılma eğilimi, “genetik araştırmaların ekonomisi”yle uğraşan “genomics” adlı yeni bir bilgi türü bile ortaya çıkarmıştır. Ancak insan söz konusu olduğunda, genetik devrimdeki ve biyoteknolojideki tüm bu olumlu gelişmeleri gölgeleyen bazı soru işaretleri ve eleştiriler ortaya çıkmaktadır. Tüm bunların sonucu olarak geçenlerde aralarında ülkemizin de bulunduğu, İngiltere dışındaki 19 Avrupa ülkesi, araştırma amaçlı dahi olsa insan embriyosu üretimini ve kopyalanmasını yasaklayan bir anlaşma imzalamıştır. Bir zamanlar, örneğin matbaanın icadında olduğu gibi, bilimsel ve teknolojik gelişmelere, dinsel ve ahlaki nedenlerle din adamları karşı çıkarlarken bugün benzer gerekçelerle bizzat bazı bilimcilerin kendileri bilimsel etkinliğin sınırlandırılması gerektiğini savunmaktadırlar. İnsanın en bilmecemsi yanı, davranışlarıdır. İnsanla ilgili her türlü bilmeceyi mutlaka çözme (!) azim ve kararlılığında olan genetik bilimciler, uzunca bir süreden beri, felsefenin ve beşeri bilimlerin yıllardır tartıştıkları konulara da el atmışlar; insanın (ve hatta toplumun) karmaşık davranışlarının genetik bakımdan açıklanabilmesi için bugüne kadar birçok araştırma yapmışlardır. Bazı fiziksel hastalıkların genetik nedenlere bağlı olarak ortaya çıktıkları kanıtlanalı beri, önce ruhsal hastalıkların daha sonra işsizlikten çapkınlığa, homoseksüellikten toplumsal şiddete kadar tüm etik, politik, ekonomik sorunların nedenleri DNA dizilimlerinde aranmaya, insanı her türlü davranışının sorumluluğundan muaf tutmaya çalışan bir gayret başlamış, bir nükleotid’in değişimiyle bu sorunların düzelebileceği şeklinde hayaller kurulmuştur. Bu hayal ticaretinin kışkırtılmasında medyanın rolü hiç de azımsanmayacak bir ölçüdedir. Genetik devrimin ve biyoteknolojinin önemi, hem gelişmiş ülkelerin hükümetleri hem de uluslar arası büyük şirketler tarafından çoktandır kavranılmış, bu alanda çok ciddi yatırımlar yapılmıştır. Tüm bunlar nedeniyle, zaten eskiden beri gündelik yaşamda büyük ve büyülü etkiye sahip olan kalıtım ve soyaçekim sorunu, bu kez bilimsel bilgi ve teknolojideki gelişmelerin sonuçları olarak ilerideki günlerde hiçbirimizin kayıtsız kalamayacağı biçimde önümüze gelecektir. Bilgiler yenilenmeli, tüm toplumsal yaşamı derinden sarsacak olan durumlara ve tartışmalara hazır olunmalıdır. İnsan, diğer canlılardan ne kadar farklı? Diğer canlılardan farklılığımızı ortaya koyabilmek için düşünürler, bizim “konuşan”, düşünen”, “gülen”, “politik davranan”, “üretim araçları yapan” “hayvan” olduğumuz şeklinde formüller öne sürmüşlerdir. İnsanın diğer canlılarla karşılaştırıldığında ilk bakışta göze çarpan yanı, onun karmaşık ve zengin yapıya sahip olduğudur. Biz insanlar yaşayan bir organizma olarak, yaşam döngümüzün her aşamasında, hem doğuştan getirdiğimiz genetik mirasa hem de çevresel etkenlere bağlı bir biçimde görünüm ve davranış olarak farklılaşır dururuz. Bu farklılaşan özelliklerimizin bazıları, örneğin aramızdaki zengin duygusal ve düşünsel iletişimi sağlayan dil gibi, diğer canlılarda olmayan yalnızca bizim türümüze özgü kimi niteliklerdir. Saldırganlık ve şefkat gibi kimi tutum ve davranışlarımız ise, ilk bakışta diğer canlı türlerinde de bulunabilen özellikler olarak görünmektedirler. Gerek insana özgü gerekse de insana özgü olmayan bu geniş ve zengin davranış, duygu, düşünce dünyasının neye göre belirlendiği, nasıl şekillendiği sorusu insanlığın sorduğu en temel sorulardan birisidir. İnsanın davranışlarını nelerin belirlediği sorusunun cevabı ahlakla, bilimin kesiştiği bir yerde bulunmaktadır. Düşünce ve dinler tarihi, bu sorunun cevabıyla ilgili tartışmalarla doludur. İnsan davranışlarına yüzeysel bir bakışla yaklaştığımızda onları, büyük ölçüde kişilik özellikleri, dünya görüşü gibi etkenlerin belirlediği sanabiliriz. Bunları nelerin belirlediği sorusu ise, bir süreden beri bilimin temel ilgi alanlarından birisi haline gelmiştir. Önceleri bu soruyu gündemine doğrudan almasa da, günümüzde ulaştığı birikimle genetik bilimi, insanın kalıtsal yanını araştırarak bu soruya bir ölçüde cevap bulmaya çalışıyor. İnsanın biyolojik ve bedensel yapısını, ebeveyninden miras olarak aldıkları ne ölçüde belirlemektedir sorusuna oldukça net sayılabilecek cevaplar verdiği söylenebilen genetik, şimdi de bu miras olarak aktarılanların davranışlarımıza ve ruhsal yapımıza olan etkilerini araştırmakta, yeni ve çoğu zaman sansasyonel tezler öne sürmektedir. Son 150 yıldır yapılan bilimsel araştırmalar, insan dışındaki canlılarda kuşaktan kuşağa aktarılan türler arası ve tür içinde gözlenen farklılıklardan çoğunlukla kalıtsal etkenlerin sorumlu olduğunu göstermiştir. Ancak söz konusu olan insan varoluşu olduğunda, bu kadar kolay çıkarımlar yapılamamaktadır. Bugün bilim çevrelerinde genel olarak kabul gören yaklaşım, insan varoluşunun karmaşıklığı ve zenginliği dolayısıyla basitçe genlerin etkisiyle açıklanamayacağı ama genleri hesaba katmadan da bir insan olarak potansiyellerimizin ve zayıflıklarımızın biyolojik-bedensel temellerini anlayamayacağımızdır. İnsan organizmasını belirleyen en önemli etkenlerden birisini, atalarımızdan kalıtım yoluyla devraldığımızın pek tartışılacak yanı yok gibidir. Tartışma, daha çok bu mirasın sonradan çevresel-kültürel etkenlerle ne kadar değişikliğe uğradığı ve ne ölçüde davranışlarımızda etkili olduğu konusunda çıkmaktadır. Atalarımızdan bize kalan mirasın yalnızca dış görünüşümüzü ve beden yapımızı değil, ama aynı zamanda, belli ölçülerde kalmak koşuluyla ruhsal özelliklerimizi (kişiliğimiz, huylarımız, tutumlarımız) de etkilediği genellikle kabul edilmektedir. Hatta Noam Chomsky gibi bazı ünlü dilbilimcilerin, insanın dili kullanma potansiyelinin bile genetik olarak aktarıldığı ve doğuştan getirildiği şeklindeki kanaatleri saygıyla karşılanmaktadır. Ama genetik mirasın etkisi konusunda ortaya çıkan bu geniş fikir birliği, çevresel-kültürel etkenlerin rollerinin küçümsenmesine yol açmamaktadır. Yine bugün kabul edilen görüşe göre, doğum öncesinden başlayarak ölene dek çevresel etkenlerin genetik mirasımızı, hatta yalnızca davranışsal olanlarını değil, biyolojik olanlarını bile, etkilemekte ve dönüştürmektedir. Bilim dünyasında bedensel-biyolojik ve ruhsal-davranışsal yapımızı birlikte şekillendiren bu faktörlerin genetik-kalıtımsal olanlarına “doğuştan getirdiklerimiz”, çevresel-kültürel etkilerle oluşan özelliklere “sonradan kazandıklarımız” denilmektedir. Bu yazıda “sonradan kazandığımız” çevresel-kültürel etkenler ve bedensel-biyolojik yapımız üzerinde değil de, daha çok “doğuştan getirdiğimiz” genetik-kalıtımsal faktörlerin ruhsal-davranışsal yapımız üzerindeki etkilerini ele alacağız. Böyle yapmakla, genetik devrim ve biyoteknoloji alanındaki gelişmelerin bizi sürükleyeceği tartışmalarda, genetik ve davranış ilişkisi konusunda gerekli temel bilgi donanımının elde edilmesine katkıda bulunmayı amaçlıyoruz. Onları bu yazı dolayısıyla şimdilik dışarıda tutmamız, hiçbir şekilde çevresel-kültürel etkenlerin davranışlarımızdaki rollerini küçümsediğimiz şeklinde anlaşılmamalıdır. “Doğuştan getirdiğimiz” genetik miras mı yoksa “sonradan kazandığımız” kültürel-çevresel etkenler mi davranışlarımızın şekillenmesinde önem taşırlar tartışmasının, bilim dünyasında birçok başka tartışmada uzantıları bulunmaktadır. Bunların başında ünlü “doğa mı, yetiştirme mi” (nature-nurture) ya da “içgüdü mü, öğrenme mi” tartışmaları gelmektedir. Doğaya karşı yetiştirme; İçgüdülere karşı öğrenme İnsanın bazı özellikleri tamamıyla kalıtımsaldır, yani ona doğuştan verili özelliklerdir. Örneğin göz rengimiz, burnumuzun şekli, parmaklarımızın sayısı gibi birçok bedensel özelliğimiz hemen tamamıyla kalıtım tarafından belirlenmektedir. Bazı özelliklerimiz ise tamamıyla çevreseldir: Saçımızı kestirme biçimimiz, konuştuğumuz dilin türü, giyinme biçimimiz gibi. Çoğu özelliğimiz içinse böyle net bir ayrım yapabilmek oldukça güçtür; onlar, her iki grup etkenin karşılıklı etkileşimi sonucunda ortaya çıkarlar. İnsan davranışları, her ne kadar kavramlar içerikleri konusunda bir fikir birliği bulunmasa da, öteden beri içgüdüsel ve öğrenilmiş olarak ikiye ayrılırlar. Bu ayrımda içgüdüsel davranışlar üzerinde doğal-genetik etkenlerin, öğrenilmiş davranışlar üzerinde ise yetişilen çevre ve kültürün daha çok rol oynadığı ve onları belirlediği kabul edilmektedir. İçgüdüsel davranışların daha çok hayvanlarda olduğu, insanda çok az bulunduğu veya insanın gerçek anlamda içgüdüsel denebilecek hiçbir davranışı olmadığı ileri sürülmektedir. Ancak yapılan çalışmalar ve gözlemler, hayvanlarda olduğu gibi tam olarak belirlenmiş olmasa da insanlarda da en azından eğilim (trait) diyebileceğimiz şekilde türe özgü kimi davranış kalıpları olduğunu göstermiştir. İçgüdüsel davranışlar üzerine olan bu tartışmalar yıllardır sürüp gitmektedir. 19. yüzyıl sonlarından bu yana, hayvanların karmaşıklık düzeyi ile içgüdüsel davranışlar arasında bir ters orantı olduğu, yani gelişmişlik düzeyinin artışıyla içgüdüsel davranışların azaldığı, özellikle alt sınıf hayvanlarda ise bu tür davranışların fazla olduğu konusunda bir anlaşma sağlanmış gibi görünmektedir. Ancak bu tarihsel açıklamaların çoğu, araştırma sonucu saptanmış bulgulara dayanmamakta, henüz “bilimsel önyargı” düzeyinde bulunmaktadır. Modern bilimsel yöntemlerle bu konunun araştırılması, 19. yüzyılın sonlarında Charles Darwin’le başlamıştır. İngiliz bilim adamı Darwin, 1859′da yayınlanan ünlü kitabı “Türlerin Kökeni” ile , daha önce kimi felsefeciler tarafından ortaya konulan “doğal ayıklanma” görüşüne dayanarak türlerin gelişimini açıklamayı denedi. Darwin türlerin evrimiyle ilgili çalışmalarında, insanın evrimi ile basit hayvanların evrimi arasında çok keskin bir kopukluğun ya da süreksizliğin olmadığını söylemiştir. Bundan dolayı Darwin ve yandaşları, hayvanlardaki davranışların sadece içgüdülerle değil, tıpkı insanlardaki gibi temel yorumlayıcı zihinsel etkinliklerle ortaya çıktığını öne sürmüşler, aynı şekilde insanın ve basit hayvanların ortak evrimsel süreçten geçtiğini, temel içgüdüsel davranışların insanda da yer aldığını ilke olarak kabul etmişlerdir. Darwin’in bu görüşlerine paralel olarak hemen hemen onunla çağdaş olan ruhbilimci Sigmund Freud, tüm normal ve normal dışı insan davranışlarının genetik olarak belirlenen iki temel içgüdünün etkisiyle çıktığını savunmuştur: Bunlar, yaşam içgüdüsü (libido-Eros) ve saldırganlık-ölüm içgüdüsü (destrudo-Thanatos)’dür. Freud, bu iki temel içgüdünün doğuştan geldiğini tüm insanlarda ortak olduğunu ve insanın ruhsal yaşamını ve davranışlarını belirleyen temel organizasyonun bu iki gücün etkisi altında biçimlendiğini söylemiştir. Bir sosyal psikolog olan William Mc Dougall ise insanın, Freud’un sandığı gibi yalnızca iki değil, kaçma, tiksinme, kavgacılık, toplumsallık vs.. gibi en azından bir düzine içgüdüye sahip olduğunu savundu. İnsanın içgüdüsel davranış teorisi, John Watson ve takipçisi davranışçı bilimciler tarafından reddedildi. Watson ve öğrencileri, davranışın tamamen doğuştan programlanmış ve öğrenilemez olduğu fikrine karşı çıktılar. Bazı davranışçılar ise, alt sınıf hayvanlarda programlanmış ve öğrenilemez küçük, tekrarlayıcı davranışların olduğunu söylemelerine rağmen; gelişkin türlerde davranışın içgüdüsel olmadığını ve hemen her davranışın öğrenilmiş olduğunu savundular. Bu bilimciler, iyi kontrol edilen çevresel koşulların olduğu ortamlarda bile beklenmedik, küçük bir çevresel uyarının bazı öğrenilmiş davranış kalıplarına yol açtığını deneyleriyle göstermeye çalıştılar. Bunlar arasından daha da ileri giden bazıları ise, bırakın davranışları, bazı temel reflekslerin bile öğrenme ve deneyim sonucu ortaya çıktığını öne sürdüler. Onlara göre, Freud ve Mc Dougall gibi davranışların içgüdüsel olduğunu söyleyen bilim adamlarının teorilerini ispatlama şansları yoktu zira teorileri deney ve gözlemlere uygun değildi. Onlara göre, zihin, gözlenebilir davranışın ta kendisiydi; içgüdü teorisyenlerinin gözlemle değil, masa başında düşünerek analizle ortaya çıkardıklarını ileri sürdükleri ve zihnin içsel mekanizmaları diye ilan ettikleri şeyler, gözlemlenemediklerinden deneysel olarak da ispatlanamazlardı. Davranışçılar, bir yaklaşıma gerçekten bilimsel denilebilmesi için davranışın gözlenebilir ve deneysel olarak müdahale edilebilir olması gerektiğini söylüyorlardı. Davranışçılar, 1920 ve 1950′li yıllarda, özelikle ABD’nde, insan davranışının biçimlenmesinde sonradan kazanılan, öğrenilen yanına dikkat çekerlerken bu sırada Konrad Lorenz ve Nikoloas Tinbergen gibi Avrupa’lı zoolojistler, dikkatlerini doğal koşullarda ortaya çıkan hayvan davranışlarının mekanizmaları üzerinde odakladılar. Yeni doğan hayvanların davranışlarını incelediler ve doğuştan gelen tekrarlayıcı gözlenebilir motor hareketlerin içgüdüsel kökeni konusunda biyolojik araştırmalar yaptılar. Çeşitli hayvan türleri üzerine yaptıkları araştırmalar, içgüdü teorisi ve davranışcı teori arasında kısmi bir uzlaşma sağladı. Sonuç olarak birçok hayvan davranışının ne çevreden hiç etkilenmeden, öğrenilmemiş içgüdüsel davranışlar olduğunu ne de tamamıyla çevreden etkilenmeye açık öğrenilmiş davranışlar olduğunu ortaya koydular. Kendilerine etholog denen ve “etholojist ekol” adını alan bu bilimciler, birçok hayvanın genetik yapısının, dıştan ve içten gelen etkilerle şekillenen davranışlar çıkardıklarını savundular. Bu araştırmalardan bazıları oldukça ün kazandı. Bunlardan birisinde Konrad Lorenz, yumurtadan yeni çıkan ördek yavrularının nasıl olup da hemen hangi ördeğin annelerini olduğunu bilerek, onu takip etmeye koyulduklarını ve onların çağrılarına cevap verdiklerini inceledi. Lorenz, ortaya koydu ki, ördek yavruları bu becerileri, deneyim yoluyla ancak çok özel bir biçimde öğrenmektedirler. Ördek yavruları, anne diye ilk gördükleri orta boylu ve hareket halindeki şeyin peşi sıra gitmektedirler ve zaten normalde de bu orta boylu ve hareket halindeki şey anne olmakta, böylelikle bu konudaki içgüdüsel bilgi de yavrular için bir avantaj oluşturmaktadır. Lorenz’in deneyinde de ördek yavruları kuluçka makinesinden çıkar çıkmaz gördükleri ilk hareket eden nesne olarak araştırmacı Lorenz’i anneleri kabul edip onu takip etmeye başlamışlardır. Lorenz’i anneleri olarak belleyen yavrular, araştırmacının sonradan ortama getirdiği gerçek anneleriyle hiç ilgilenmemişlerdir. Daha sonra yapılan araştırmalarda da yavru ördeklere doğru boyutta ve hareket halinde her nesneyle etkilenim yaptırılabileceği ortaya çıkmıştır. Bir grup yavru ördek, iple çekilen büyük bir balonu bile anneleri olarak kabul etmişlerdir. Ancak bu özel etkilenimin oluşabilmesi için doğru uyaranın uygun zamanda verilmesi gerekmektedir. Doğdukları günlerde çevrelerinde uygun boyutta hareket halinde bir cismin hareket etmemesi halinde, yavru ördekler, hiçbir şeyi anneleri olarak kabul etmeyeceklerdir. Yavruların içgüdüsel bir biçimde, doğuştan bildikleri şey, hareket halinde ve;mso-bidi-font-size:13.5pt;font-family:Arial”>Bu alanda bir başka ünlü çalışma Tinbergen’in yumurtadan yeni çıkan ringa martılarıyla yapmış olduğudur. Yumurtadan yeni çıkan martı yavruları, annelerinin gagasını gagalayarak ondan yiyecek almak zorundadırlar. Yavru martı, yalnızca gagaladığında beslenebilir aksi takdirde örneğin kör yavrular, açlıktan ölmeye mahkumdurlar. Tinbergen, çalışmasında bu doğuştan gelen tepkileri harekete geçiren şeyin ebeveynin gagasının ucundaki kırmızı nokta olduğunu göstermiştir. Yavru martı, ona üzerinde böyle bir nokta bulunan kartondan yapılmış bir gaga gösterdiğinizde bunu gagalamaya başlayacak, üzerinde bu noktanın bulunmadığı kartonu ise gagalamayacaktır. Tinbergen’in bu çalışmasının yorumu da tıpkı Lorenz’in çalışması gibidir: Doğuştan getirilen içgüdüsel bilgilerin varlığı kesin olmakla birlikte, onların davranış olarak yaşama geçmesini sağlayan şey, çevresel etkenler yoluyla edinilen deneyimdir. Ethojinin insan davranışının açıklanmasına katkıları Etholojik araştırmaların insan davranışı incelemelerine etkisi, iki yönden olmuştur. Bunlardan birincisi, etholojik araştırmalardaki genetik faktörün önemini öne çıkartan sosyobiyoloji alanındadır; ethologların hayvan davranışı incelemelerinden yola çıkan sosyobiyologlar, evrim konusunda Darwin’in bakışından oldukça farklı bir yaklaşım geliştirdiler. Onlara göre, evrimin amacı soyun sürekliliğini sağlamaya yöneliktir; birsoyun üyesinin davranışlarına soyunu korumaya ve onun sürekliliğini sağlamaya yönelik, “soy seçici” içgüdüler yön verirler. Bu soy seçici tutumlar, insan davranışlarının da temelini oluşturur. İnsan davranışlarını da genetik olarak getirdikleri, soyu korumaya yönelik içgüdüsel tutumlar belirlemektedir; kültürel ve öğrenme yoluyla ortaya çıktıkları sanılan tüm insan etkinlikleri aslında, içgüdüsel olarak insan türünün sürekliliğini sağlamaya yönelik faaliyetlerdir. Etholojinin insan davranışının açıklanmasına ikinci etkisi ise, sosyobiyolojinin tam tersine, anne-bebek ilişkisinin önemini öne çıkartan bir şekilde olmuştur. Harlow’un maymunlarla yıllar süren araştırmalarının sonucunda, maymunlarda anne-bebek ilişkisinin onların sonraki yaşamlarında nasıl bir ruhsal ve toplumsal gelişme göstereceklerini belirlediği kanaatine varması ve ardından bu kanaatinin tüm memeliler için geçerli olduğunu söylemesi, çocuk ve erişkin psikiyatrisi üzerinde derin etkiler yaratmıştır. Başta John Bowlby olmak üzere etholojiden etkilenen psikiyatristler, erişkin yaşamda ortaya çıkan birçok ruhsal rahatsızlığın anne-bebek ilişkisindeki toplumsal-duygusal bağın ve güvenli bağlılık ilişkisinin yeterince gelişmemesiyle ilgili olduğunu öne sürmüşlerdir. Şüphesiz ethologların bu ve benzeri birçok deneysel sonuçlarına, hayvanlardan elde edilen sonuçların insanlara genellenemeyeceği söylenerek karşı çıkılabilir. Bu eleştiride bir haklılık payı vardır. İnsan yavrusu, hayvanlarda olduğu gibi, dünyaya ayrıntılı içgüdüsel tepki mekanizmalarıyla gelmemekte; oldukça bağımlı ve çaresiz bir durumda bulunmaktadır. Kaldı ki, yaşamları boyunca pek bir şey öğrenmelerine gerek olmadan içgüdüsel bilgileriyle var kalabilen hayvanlardan ayrı olarak, insan bilgisinin pek çoğunu öğrenerek elde eden ve bunları içgüdüleriyle değil aklıyla yapan bir varlıktır. Ama insan ve hayvan arasındaki tüm bu farklılıklar yine de insan zihninin doğum sırasında, bazı filozofların sandıkları gibi, boş bir levha (tabula rasa) olmadığı; belli uyaranlara karşı doğuştan gelen tepkilerden tümüyle mahrum kaldığı anlamına gelmemektedir. Örneğin, yeni doğan bebek, emme tepkisini nasıl göstereceğini bilmektedir. Aynı şekilde, yeni doğan bebekler, etrafındakileri elleriyle nasıl kavrayacaklarını bilirler; yani dokunuşla ilgili uyaranlara nasıl tepki vereceği konusunda programlanmışlardır. Davranışlarımızdaki kalıtım mirasının alt-yapısı Bir tür olarak genetik yapımızı kromozom adını verdiğimiz insanı oluşturan en küçük birim olan hücrenin çekirdeğinde yar alan 46 adet düz bir şekilde sıralanmış gen veya kalıtım ünitesi oluşturur. Bu gen topluluğunun sayı ve yapısı hem tür içinde hem de türler arasında farklılıklar gösterir. Türler arasındaki farklılıklardan ayrı olarak tür içindeki farklılıklar da, belli ölçülerde genetik etkenlere bağlıdır; yani örneğin insan türündeki her bireyin cinsiyet, boy, zeka gibi birçok fiziksel ve ruhsal eğilimi en azından şu ya da bu ölçüde genetik kontrol altındadır. İnsanlar arasında sadece tek yumurta ikizlerinde bu genetik yapı birbirinin aynısıdır. Genlerin varlığını ilk kez 1865′de Moravya’lı bir rahip olan Gregor Mendel adlı bilim adamı ortaya attı. Mendel, bitkilerin melezleşmesiyle ilgili gözleme dayalı deneyler yapana kadar, soyaçekim, anababa özelliklerinin çocuklarda ve sonraki nesillerde rastgele aktarıldığı bir durum olarak biliniyordu. Mendel’in ünlü deneyleriyle birlikte, soyaçekimin gen adı verilen birimlerin belli bir uygunlukta bir araya gelmesinden oluştuğu anlaşıldı. Ancak tür özelliklerinin nesilden nesile aktarılmasının ayrıntılı mekanizmalarının bilinmesi oldukça yenidir. Mendel’in bu fikri yaklaşık 35 yıl unutulduktan sonra 1900′lerin başında önemi farkedilmeye başlandı. 20. Yüzyılın başında öncelikle genleri taşıyan renkli cisimler, kromozomlar saptandı. Özellikle insan genetiğiyle ilgili bilgilerin gelişiminde ise, 1956′da J.H. Tijo ve A. Levan’ın insanda 23 çift kromozom olduğunu belirlemeleri önemli bir rol oynadı. Bugün artık bilinmektedir ki, nesilden nesile geçiş, gen adı verilen, kromozomlar üzerinde yerleşmiş organik birimler aracılığıyla olmaktadır ve kromozom sayıları türlere göre değişiklik göstermektedir. Kromozom sayısının türün gelişmişliği ve karmaşıklığıyla bir ilişkisi yoktur. Örneğin tavuklarda 78 kromozom vardır. Yine artık, yeni bir organizmanın cinsiyetinin ve saç ve göz rengi gibi fiziksel özelliklerinin genetik kurallara göre olduğu; bu geçişin kromozomlardaki DNA moleküllerinin içerdiği aminoasitlerin kendi aralarında değişik biçimlerde bir araya gelerek oluşturdukları genetik şifreye göre sağlandığı; genetik geçiş sırasında kromozom hatalarının ve bazı sakat genlerin geçişine bağlı olarak genetik hastalıkların ortaya çıkabilecekleri bilinmektedir. Normalde genler aşırı derecede sağlam ve değişmez niteliktedir ve hücre bölünmesi esnasında tam bir kopyalarını üretirler. Bu kopyalama esnasında olabilecek değişiklikler genellikle zararlıdır. Evrim kuramı kopyalama esnasında nadiren olabilen bu değişikliklerin (mutasyon) olumlu olanlarına dayanmaktadır. Genler, kimyasal olarak deoksiribonükleik asit (DNA) denilen yapılardan oluşurlar. Bu DNA yapılarında insan bedeninde yer alan çeşitli yapısal proteinlerin kalıpları bulunur. Yani proteinler, bu DNA dizileri aracılığıyla üretilirler. Yalnız işin ilginç yanı, herhangi bir anda bir insanda DNA’lardan oluşan genlerdeki bu materyalin yaklaşık %1′ i protein sentezine aracılık etmektedir. Yani insanın genetik materyalinin hepsi kullanılmamakta, bir kısmı belli özel koşullar altında çalışmaya ve ifade edilmeye başlamaktadır. İnsanın davranışlarıyla ilgili ana biyolojik sistem olan merkezi sinir sisteminin gelişimini düzenleyen genlerin kesin sayısı bilinmese de bazı bilim adamları insandaki tüm genetik materyalin yaklaşık 1/3 ünün bu iş için ayrılmış olduğunu saptamışlardır. Bunun anlamı, insan kromozomlarında yer alan yaklaşık 50 bini aşkın genin en az 15 bin ila 20 bininin merkezi sinir sisteminin oluşumu ve işlev görebilmesi için çalıştığıdır. Yani davranışın meydana gelmesinde aracılık eden sinir hücrelerinin hem oluşumu hem de aralarındaki iletişiminin sağlanması, sürekliliği ve düzenlenmesi için gerekli proteinlerin sentezini, sonsuz sayıda değişkenlikle dizilmiş DNA birimlerinden oluşan genlerin bir kısmı yönetmektedir. Moleküler biyolojideki son gelişmeler davranışın genler tarafından bire bir kodlanmadığını ortaya çıkarmış; “tek gen=tek davranış” şeklinde bir bağlantı olmadığı anlaşılmıştır. Genler, davranışın ortaya çıkmasından sorumlu sinir hücresi topluluğunun hem yapısal hem de metabolik işleyişinden sorumlu olan proteinlerin sentezi için gerekli kodları içermektedirler. Belli genleri dönüştürülerek, yapısı değiştirilmiş hayvanların öğrenilmiş davranış kalıplarında bozukluklar ortaya çıktığı bugün bilinen bir gerçektir. Yapılan incelemelerde, o genin veya genlerin yapımından sorumlu oldukları biyolojik bakımdan aktif maddelerin eksikliğine veya hatalı işleyişlerine bağlı olarak ilgili sinir hücrelerinde metabolik ve fonksiyonel bozukluklar saptanmıştır. Sinir hücreleri arasındaki kavşaklarda davranışın boyutunu belirleyen biyolojik olarak aktif moleküllerin (serotonin, dopamin, norepinefrin vb..) sentezi, yıkımı, miktarları, genler tarafından kodlanan enzimler sayesinde olmaktadır. Ayrıca genler hormonlar ve hormon benzeri düzenleyici moleküllerin kodlarını da taşımaktadırlar. Davranışta kalıtımın rolünün kanıtları İnsan davranışının ortaya çıkması için gerekli alt-yapının hazırlanmasında ve işleyişinde büyük bir öneme sahip oldukları artık kabul edilmekle birlikte, genlerin insanın toplumsal davranışının belirlenmesinde ne gibi bir rol üstlendikleri henüz yeterince bilinmemektedir. Maymunlarda yapılan bir çalışmada, yeni doğan maymunlar, annelerinden ve diğer maymunlardan ayrılmışlar ve verecekleri tepkileri ölçmek üzere, onlara birçok fotoğraf gösterilmiştir. İlginç olan, yeni doğan maymunların yalnızca maymun içeren fotoğraflara yoğun ilgi göstermeleridir. Yeni doğan maymunlar, on haftalık olduklarında, korkutucu maymun resimlerine bile yoğun ilgilerini sürdürmekte ama yaşları daha da büyüdüğünde korkutucu maymun resimlerinden rahatsız olmaktadırlar. Bu deneyden çıkan sonuç, maymun türlerinde doğuştan gelen ama sonradan serbest bırakılan bazı davranış kalıplarının olduğudur. Genetik donanımın insanın davranışlarındaki rolünün bilinememesinde işte bu tür hayvanlarda yapılan cinsten deneyler yapma imkanının bulunmamasıdır. Bu nedenle, genetik yönden ayrıntılı çalışmalar yapılmadığı halde, kültürden kültüre farklılıklar gösteren evlilik, din ve bağlılık, biçimleri gibi davranışların öğrenilmiş ve kültüre özgü oldukları genel kabul görmüştür. Genetikçileri hem çileden çıkaran hem de yeni araştırmalar için güdüleyen, insan araştırmalarının sınırlılığı ve bu tip kültürcü önyargılardır. Çünkü onlar, her şeye rağmen insan davranışında doğuştan gelen kalıtsal kalıpların rolüne işaret eden bazı gözlemler olduğu kanaatindedirler. Bu gözlemler, bazı insan davranışlarının evrensel olması, hangi kültürde olursa olsun her insanda aynı kalıpta ifade edilmesi; maymun deneyinde olduğu gibi insanlarda da, özgül bir uyarana aynı tekrarlayan davranış kalıplarının bulunması; insanlarda da öğrenilme şansı olmayan motor tekrarlayıcı davranışların olması gibi gözlemlerdir. Örneğin doğuştan kör bebeklerde yapılan gözlemlerde bu bebeklerin mimikleri öğrenme şansının çok çok az olduğu göz önüne alındığında şu sonuçlara varılmıştır. Bu bebeklerin mimikleri normaldir. Ayrıca kör bebeklerin gören bebekler gibi gülümsemeyle karşılık verdikleri sesin kaynağına doğru baş ve gözlerini çevirmeleri doğuştan gelen bu davranışların öğrenmeden çok az etkilendiğini düşündürmektedir. Yine örneğin, derin tendon refleksleri, göz kırpma refleksi gibi motor davranışlar; açlık, susuzluk, seks gibi güdüsel davranışlar tüm insanlarda evrenseldir. Kültürden kültüre şiddeti değişmekle birlikte tüm insanlar sosyal ilişki ve duygusal tatmin ararlar. Kızgınlık, sevinç, üzüntü gibi duygusal tepkilerin mimiklerle anlatımı evrensel özellikler taşır. Büyük olasılıkla bunlar doğuştan getirdiğimiz, genetik olarak programlı davranışlardır. İnsanda da sabit hareket dizeleri şeklinde tekrarlayıcı davranışlar vardır. Korkma, gülme, bu gibi davranışlara örnektir. Yeni doğan bebeklerde gülme davranışının erken dönemlerde bir çift göz imgesine karşı oluşan, özgül uyarana karşılık olarak yapılan, tekrarlayıcı ve aynı kalıbı gösteren davranışlar olduğu saptanmıştır. Çocuk büyüdükçe yüzün diğer detaylarına karşı da gülme davranışı oluşmaktadır. Tüm bunlar, insan davranışında genetik geçişin varlığını destekleyen gözlemlerdir. Ama her şeyden önce, bu gözlemleri pekiştiren, yukarıda sunduğumuz davranışın genetik alt-yapısı alanındaki bilimsel bilgimiz, yani zihin ve davranışın beynin bir ürünü olarak ortaya çıkmasının, beynin işleyişinin de genetik faktörlerden etkilenmesinin kaçınılmaz olduğunun bilinmesi, genetik araştırmalar için tetikleyici etmenlerdir. Ahlaki engeller yüzünden insan davranışının genetik nedenleri konusunda ayrıntılı ve sistemli araştırmalar yapılamaması bir bilimsel bilgi boşluğu yaratmakta, bu boşluk hem kültürcü hem genetikçi aşırı fikirler tarafından doldurulmaktadır. Bu ahlaki engellerin kaldırılıp kaldırılmaması, bir başka tartışma konusudur ancak açık olan durum, insan davranışının kalıtımsal yönleri konusundaki bilgi boşluğunun ve ideolojik önyargıların ortaya çıkmasında bu engellerden kaynaklanan bilgi boşluğunun çok önemli bir yeri olduğudur. İnsanın toplumsal davranışının genetik belirleyenlerini bilimsel olarak saptama olanağı olmayınca, bu tartışmanın sürdürülebileceği en verimli alan olarak karşımıza insan davranışının bir biçimde ve belli ölçülerde bozulduğu ruhsal rahatsızlıklar çıkmaktadır. Çünkü ruhsal rahatsızlıklar sırasında şöyle ya da böyle beynin zihni ve davranışı düzenleyici işlevleri bozulmakta, şüphesiz bu işlevlerin ortaya çıkmasında, insanın genetik donanımı önemli rol oynamaktadır. Ruhsal rahatsızlıklar ve kalıtım Bugün tıbbın alanına giren birçok rahatsızlıkta, belli ölçülerde nesilden nesile geçiş olduğunu biliyoruz. Bu gerçek, ruhsal rahatsızlıklar için de geçerlidir. Ruhsal rahatsızlıklarda kalıtımın rolünün gösterilebilmesi için, ruhsal rahatsızlığı olan ailelerdeki soy ağacı, ikizler, birbirlerinden farklı yerlerde büyütülmüş kardeşler (evlatlıklar) incelenmekte, bu incelemeler kalıtımın rolüne işaret ettiğinde doğrudan doğruya genetik geçişi sağlayan etkeni bulmaya yönelik çalışmalar yapılmaktadır. Hemen söylemek gerekir ki, bugüne kadar doğrudan genetik geçişe bağlı olduğu kanıtlanmış olan bir ruhsal rahatsızlık yoktur. Ancak yaygınlığı saptamaya yönelik incelemelerde, birçok ruhsal rahatsızlığın toplumda genetiğin rolünü düşündürecek bir dağılım gösterdiği fark edilmekte, bu tabloyu açıklamaya yönelik kuramlar öne sürülmektedir. Örneğin çoklu-genetik geçiş kuramına göre, ruhsal rahatsızlıklarda, genetiğin rolü, diğer genetik hastalıklarda olduğu gibi tek bir gen üzerinden değil, birçok genin etkisiyle olmaktadır. Ruhsal rahatsızlıkların birinci derecede akrabalarda fazla görüldüğü halde, doğrudan genetik bir geçişten söz edilememesinin nedeni budur. Bu yazıda gerek bu konuda bir fikir vermek gerek evlilik, çocukların durumu, diğer aile bireylerinin kendilerine yönelik kaygıları gibi sorunlara kısmen açıklık getirebilmek için toplumda en sık rastlanılan bazı ruhsal rahatsızlıklar ele alınacaktır. Şizofreni Genetikle ilişkisi üzerinde en çok çalışılan, hem hasta bireyi, hem ailesini hem de toplumu birçok bakımdan güç durumda bırakan ruhsal rahatsızlık olan şizofreni örneğini incelediğimizde konuyu daha kolayca anlayabiliriz. Bireyin ruhsal yapısında ortaya çıkardığı yıkım nedeniyle, en ağır ruhsal rahatsızlıklardan biri olan ama tedavisinde oldukça belirgin umutlar bulunan şizofreninin toplumda görülme sıklığı %1′dir. Şizofrenik bireylerin kardeşlerinde hastalığın görülme sıklığı %8, şizofrenik ebeveynin çocuklarında görülme sıklığı sadece bir ebeveyn şizofrenikse %12; her iki ebeveyn de şizofrenikse %40 dır. Şizofrenik bir bireyin eş yumurta ikizinde şizofreni görülme sıklığı ise %48′ e kadar yükselmektedir. Aslında özellikle birbirlerinden doğumdan itibaren farklı yerlerde büyütülmüş eş yumurta ikizlerinin durumu, hastalıklarda genetik geçişin rolünün gösterilmesinde çok önemlidir. Bu önem şizofreni için yapılan çalışmalarda da fark edilmiş ve birisinde şizofreni saptanmış, eş yumurta ikizi olduğu ve ikizinin çok küçükken farklı çevrelerde büyütüldüğü bilinen kimselerde, ikizinde ve hem biyolojik hem evlatlık olma dolayısıyla ortaya çıkan akrabalarda çok ayrıntılı çalışmalar yürütülmüştür. Ancak tüm bu çalışmalardan bugüne kadar şizofrenide genetik geçişi gösterecek kesin bir sonuç elde etmek mümkün olmamıştır. Şizofrenik hastaların kan bağı olan akrabalarında hastalığın görülme sıklığının artmış olması, işin genetik bir yanı olduğunu göstermektedir. Fakat unutulmaması gereken önemli bir nokta, kalıtımsal yapı ve beden özellikleri itibarıyla birbirinin aynı olan ikizlerde bile oranın %100 olmaması ve ancak %48′ de kalmasıdır. Bu rahatsızlığın gelişiminde çevrenin de bir katkısı olduğunu düşündürmektedir. İki uçlu (Bipolar)mizaç bozukluğu İki uçlu mizaç bozukluğu, periyodik olarak gelen ya depresyon ya da mani ataklarıyla seyreden bir ruhsal rahatsızlıktır. Depresyon, üzüntü,karamsarlık, umutsuzluk, isteksizlik gibi belirtilerle seyreden bir ruhsal çökkünlük durumuyken manide çevreyi rahatsız edecek düzeyde neşelilik, çoşku, enerji, büyüklük düşünceleri görülür. Depresyon ve mani madalyonun iki yüzü gibi birbirlerine karşıt tablolar olduklarından rahatsızlığa iki uçlu mizaç bozukluğu denilmiştir. Bu rahatsızlık, genetik etkenin kendisini en belirgin olarak gösterdiği psikiyatrik tablo olarak kabul edilir. Çünkü bu hastalığı olanların birinci derece akrabaların yaklaşık üçte ikisinde değişik mizaç bozukluklarının ortaya çıktığı hem klinik gözlemler hem yapılan aile incelemeleri sırasında saptanmıştır. Hastalıktaki yüksek ailesel görülme oranları, moleküler genetik alanında birçok çalışmayı teşvik etmiş, hatta 1987′de hastalığın 11.ci kromozomun kısa kolundaki genetik bir hataya bağlı olarak ortaya çıktığı bile ileri sürülmüştür. Ancak bugüne kadar hsatalğın genetik geçişinin kesin bir kanıtı gösterilememittir. Sosyal fobi Sosyal fobi özelinde hem normal olarak karşılanan kimi ruhsal özelliklerin hem de ruhsal rahatsızlıkların nasıl aktarıldığını daha ayrıntılı olarak ele alma imkanına sahibiz. Çünkü sosyal fobi, “utangaçlık”, “sıkılganlık” olarak bilinen normal ruhsal özelliklere oldukça yakın belirtilerle seyreden bir ruhsal rahatsızlıktır. Sosyal fobik hastalar, sosyal durumların çoğunluğunda (topluma karşı konuşma, insanlarla birlikte yemek yeme, genel tuvaletleri kullanma vb.) olumsuz bir şekilde incelendikleriyle ilgili gerçekle orantılı olmayan bir korkuya sahiptirler. Sosyal fobide kişi yabancılarla veya diğer bireylerin incelenmesiyle karşı karşıya kaldığı, sosyal veya performans durumlarında belirgin ve sürekli bir şekilde korku duyar. Sosyal fobinin temel özelliği, göreceli olarak küçük gruplarda diğer insanlar tarafından incelenme korkusu şeklinde belirlenmiştir. Son yıllarda yapılan çalışmalar bu rahatsızlığın eskiden sanıldığının aksine toplumda oldukça yaygın olduğunu göstermiştir. ABD’nde yapılan son çalışmalarda En sık görülen üçüncü ruhsal bozukluk olduğu saptanmıştır. Şimdi kalıtımın bu hastalıktaki rolüyle ilgili bilgileri inceleyelim: Özgün olarak sosyal fobi tanısı almış hastaların ailelerinde yapılan çalışmalarda, sosyal fobisi olmayan kontrol grubuna göre, daha sık oranda sosyal fobi saptanmıştır. Son bir çalışmada yalnızca sosyal fobide değil, diğer tüm fobik bozukluklarda da ailesel yüklülüğünün her fobi için özgül olduğu saptanmıştır. Yani bir bireyde hangi tür fobi varsa onun ailesinde de o tür fobi görülme olasılığı diğer fobilere göre daha yüksektir. Aynı şekilde tek yumurta ikizlerinin her ikisinde de sosyal fobi bulunma olasılığı %24.4 bulunurken, çift yumurta ikizlerinde bu oran %15.3 olmuştur. Tek yumurta ikizlerinde oranın daha yüksek bulunması yine sosyal fobinin genetik bir bileşeni olduğunu göstermektedir. Ama tek yumurta ikizlerindeki bu oranın %100 olmaması, hastalıkta genetik olmayan etkenlerin de büyük ölçüde etkili oldukları anlamına gelmektedir. Şimdi doğrudan bir rahatsızlık sayılmasa da kişilerde bulunduğunda onları oldukça rahatsız eden utangaçlık ve davranışsal ketlenme davranışının kalıtımsal yönü üzerinde biraz durarak, normal davranış dağarcığımızın oluşumunda kalıtımın rolünü bir parça aydınlatmaya çalışalım. Yeni veya tanımadığı insanlar karşısında tedirgin ve çekingen tavır alma şeklinde tanımlayabileceğimiz utangaçlığın genetik geçişini incelemek için yapılan ikiz çalışmalarında tek yumurta ikizlerinde utangaçlık davranışı, çift yumurta ikizlerine göre birbirine daha benzer bulunmuştur. Bununla birlikte gerek ikiz incelemelerinden ve gerek evlatlık çalışmalarından elde edilen sonuçlara göre, utangaçlıkta genetiğin katkısı, çevresel etkenlerin rolünü düşündürecek şekilde orta düzeydedir. Tanıdık olmayan ortamlara, insanlara, ve nesnelere karşı aşırı korku duyma olarak tanımlanan davranışsal ketlenmenin sosyal fobinin çocukluk çağındaki öncülü olduğu öne sürülmektedir. Yapılan bir çalışmada davranışsal ketlenmesi olan çocukların ebeveynlerinde sosyal fobi sıklığı %18 , davranışsal ketlenmesi olmayan çocukların ana babalarında ise hiç sosyal fobi saptanmamıştır. Bu çarpıcı farklılık, ailesel etkenlerin davranışsal ketlenmede önemli bir rol oynadığını düşündürmektedir. Panik bozukluğu ve agorafobi Panik bozukluğu, kendisini çarpıntı, nefes alamama hissi, terleme, titreme, baş dönmesi gibi ani bunaltı belirtileriyle ve ölüm ya da delirme korkusuyla gösteren ataklarla seyreden toplumda oldukça sık görülen bir ruhsal rahatsızlıktır. Agorafobi, genellikle daha önce panik atağı geçirmiş kişilerde görülen, kapalı yerlerde yalnız kalamama şeklinde ortaya çıkan bir başka bozukluktur. Her iki rahatsızlık da kadınlarda erkeklerden iki kat daha fazla görülür. Yapılan aile araştırmalarında hem panik bozukluğu hem agorafobisi olan kimselerin birinci derece yakınlarında bu rahatsızlığa yakalanma riskinin oldukça artmış (%50′ye kadar) olduğu saptanmıştır. Bu oranlar, rahatsızlıkta kalıtım etkeninin bir rolü olduğunu düşündürüyorsa da ikiz çalışmalarındaki oranların beklenenden çok daha düşük olması, bu olasılığı düşürmektedir. Zaten bugüne kadar, panik bozukluğunun gelişimini etkileyen genetik etkenleri belirlemek amacıyla yapılmış olan moleküler genetik tekniklerden de bir sonuç alınamamıştır. Antisosyal kişilik bozukluğu Yasa-dışı ve suça yönelik eylemlilikle seyreden antisosyal kişilik bozukluğu (sosyopati, psikopati), son yıllarda üzerinde en çok çalışılan rahatsızlıklardan birisidir. Son yapılan çalışmalarda çocukluk çağındaki bu türden antisosyal eylemler daha çok ailenin sosyal yapısıyla, yani çevresel etkenlerle bağlantılı iken yetişkin dönemdeki çalışmalarda tam tersine genetik-kalıtımsal yüklülük göze çarpmaktadır. Yine antisosyal gençlerde eğer aile ortamı çok disiplinli ve denetimli ise antisosyal eylemlerin ortaya çıkışı gecikmekte, gencin ailesinden ayrılıp kendi çevresini seçme özgürlüğünü elde ettiğinde antisosyal eylemler görülmektedir. Zeka geriliği İnsan davranış genetiğinin en tartışmalı alanlarından birisi de, zeka ile ilgilidir. Fakat ortada birçok belirsizlik olması nedeniyle zekanın genetiğinden daha önce zekanın ne olduğu ve nasıl ölçüldüğü üzerinde durmamız gerekmektedir. Zeka nedir, nasıl ölçülür? Zeka, kesin bir anlaşma olmamasına rağmen “problemleri çözmek, yeni şeyler öğrenmek, iyi düşünebilme yeteneği geliştirmek için genel zihinsel kapasite” veya “yeni durumlara karşı uyum yeteneği” olarak tanımlanmaktadır. Zekanın tanımlanmasında bunca güçlükler olsa da, herkes zeka diye bir zihinsel bir işlev olduğuna inanmaktadır; psikoloji bilimiyle uğraşanlar ise, fazladan olarak bu işlevin ölçülebilece?i kanaatindedirler. XIX. Yüzyıl’ın sonlarında İngiltere’de Sir Francis Galton, evrim teorisinin de etkisiyle, insandaki kalıtımla geçen özellikleri, farklı zihinsel yetenekleri ve kişisel karakteristikleri ölçerek bulmaya girişti. Galton, öyle bir varsayımla hareket ediyordu ki, bireysel farklılıkları gösterebildiğinde, dolaylı olarak genetik etkeni de göstermiş olacağını sanıyordu. Gerçi Galton’un bugünkü anlamıyla zekayı ölçtüğü söylenemezdi ama insanların zekalarına göre farklı sınıflara ayrılabilecekleri ve zeka ölçümlerindeki bireysel farklılıkların ancak genetik yapıyla açıklanabileceği anlayışı, Galton’dan bu yana, bazı bilimcilerin kafalarında hemen hiç değişmeden kaldı. Üstün insanları diğerlerinden ayırt etme çabası, durmaksızın sürdü. Galton’un çağdaşı ve modern psikolojinin kurucusu Wund’un insan işlevlerinin laboratuarda ölçülebilece?ini ileri süren öncü çabalarıyla, aynı zamanda liberal siyaset felsefesinin kurucusu olarak kabul edilen Locke’un duyumculuğunun bütün bilginin duyumlardan geldiği şeklindeki önermesi birleşince zekayı ölçmeye çalışan psikologlar, daha çok bireyler arasındaki duyusal-motor farklılıklara yöneldiler. Zeka farklılıklarını görme keskinliğinden, acıya karşı duyarlılığa, hatta avuç içindeki çizgilere kadar birçok etkenle açıklamaya kalkıştılar. Ve nihayet 1900′lü yıllarda Fransız hükümeti, psikolog Alfred Binet’e zihinsel özürlü çocukları diğerlerinden ayırma görevi verdi. Binet, bu somut görev karşısında artık zekayı birçok bileşenden oluşan bir işlevler toplamı olarak almak yerine, tek başına ama karmaşık bir zihin işlevi olarak ele almak zorunda kaldı. Bugün birçok konuda uygulama alanına sahip olan zeka testlerinin ilk örnekleri bu mantıkla hazırlandı. Her iki dünya savaşı sırasında orduya acilen zeki insanlar kazandırma şeklinde yeni bir somut sorun çıkınca, zeka testlerinin uygulanması ve geliştirilmesi süreci belirgin bir ivme kazandı. Binet ölçeği birçok revizyondan geçerek günümüze kadar uzandı. Zekayı daha ziyade bir soyutlama yeteneği olarak düşünen ve bugün Stanford-Binet olarak bilinen bu testin en belirgin özelliği, zekayı yaşla değişen bir işlev olarak düşünmesi, zeka yaşını ve takvim yaşını birbirinden ayırmasıydı. Bu testten sonra da birçok zeka testi geliştirildi. Bunlardan en yaygın olarak uygulananı, Wechsler tarafından geliştirilen erişkinler ve çocuklar için farklı versiyonları bulunan zeka testleridir. Bu testlerin Stanford- Binet testinden en önemli farkları, zekanın sözel ve performans olmak üzere ikiye ayrılmasıdır. Zeka testleri, geniş bir uygulama alanı bulmuş, eğitimden sağlığa, askerlikten iş ve işçi seçimine kadar birçok alanda büyük faydalar sağlamı? olsalar da, henüz zekanın niteliği ve kökenleri sorunu aydınlatılabilmiş değildir. Ancak bütün bu süreç içerisinde kazanılan bilgi ve deneyimler, insan beyninin işlevleri hakkındaki bilgimizin gelişimiyle bir araya getirildiklerinde zeka hakkında daha ayrıntılı yaklaşımların ortaya çıkmasına neden olmuştur. Artık zekanın Binet’in sandığı gibi global bir işlev birimi olduğu düşünülmemekte, tam tersine birçok işlevin (hafıza, sözel akıl yürütme, matematik akıl yürütme, benzerlik ve farklılıkları algılama hızı, kelime bilgisi vb.) karşılıklı iç ilişkilerinin değişik görünümlerinin zekayı oluşturduğu sanılmaktadır. Dolayısıyla ortaya yeni zeka tanımları ve bu tanımlar uyarınca geliştirilmiş yeni zeka ve bilişsel testler çıkmaktadır. Örneğin bunlardan Thorndike’ın yapmış olduğu zeka tanımı oldukça ilginçtir. Thorndike, zekanın mekanik, toplumsal ve soyut olmak üzere üç türü bulunduğunu savunmaktadır. Mekanik zeka, insanın el ve alet kullanma becerisini; toplumsal zeka, diğer insanları anlama ve kişiler arası ilişkiler kurma, soyut zeka ise, semboller ve kavramlarla düşünebilme yeteneğini temsil etmektedir. Zeka testlerinin kesin bir biçimde zeki olanlarla olmayanları birbirlerinden ayırdığı şeklindeki eski katı anlayış da bu arada yumuşamıştır. Değerlendirmelerde kültürel farklılıklar, deneklerin testin gerekli gördüğü koşullarda yetişip yetişmedikleri gibi ara belirleyenler hesap edilmeye başlanmıştır. Daha önemlisi, zeka testlerinde ölçülenin insanın doğuştan getirdiği kapasite değil, bu kapasitenin davranışa dönüşmüş bölümü olduğu kabul edilmektedir. Bütün bunların sonucunda, artık zeka testi kavramından vazgeçilmekte, onun yerine “genel yetenek ölçümleri” gibi daha iddiasız ifadeler kullanılma yoluna gidilmektedir. Sürecin böyle bir yönelime girmesinde, kazanılan bilgi ve deneyimler kadar, şüphesiz bilimcileri etkileyen Jean Piaget gibi düşünür-bilimcilerin görüşleri etkili olmuştur. Piaget’in “genetik epistemoloji” adını verdiği yaklaşıma göre, bütün insanlarda belli gelişim evrelerine karşılık gelen bir global yapı olarak aynı zeka potansiyeli vardır. Ancak biyolojik uyum ile çevreye uyum arasındaki etkileşme; fiziksel, bilişsel ve duygusal kapasiteleriyle ilgili olarak organizmaların performanslarına göre zeka da farklılıklar göstermektedir. Piaget’ e göre ayrıca zeka, psikolojik testlerle ölçülemez; ancak niteliksel bir yapı şeklinde analiz edilebilir. Sir Galton’dan bu yana zeka hakkında yapılan en ilgi çekici araştırma konularından biri de, zekanın kalıtımla, çevre ile, ırkla ve doğum düzeniyle bağlantılarının araştırılmasıdır. Araştırmaların doğru bir sonuç vermesi için gerekli olan ara belirleyenleri hesaba katma işlemleri, bu araştırmaların hiçbirisinde tam olarak yapıl(a)madığından bilimsel olarak genellikle ciddiye alınmamaktadırlar. Kaldı ki, zekanın tanımının böylesine belirsiz olduğu koşullarda, zeka adına neyin ölçüldüğü bile belli değildir. Yine de zekanın genetiği konusunda bugüne kadar yapılan, birçok eleştiri alamalarına rağmen çoğunlukla kabul gören ciddi araştırmalardan elde edilen en genel sonuçları şöyle özetlemek mümkündür: Zeka, bireyin kişilik özelliklerine göre daha kalıtımsal bir nitelik sergilemektedir ve hatta zeka üzerinde kalıtımın rolünün, çevrenin rolünden daha fazla olduğunu söylemek mümkündür. Bir başka deyişle, bilim çevrelerinde “doğa mı yoksa yetiştirilme tarzı mı, insan davranışında daha baskındır?” sorusuna cevap bulmaya çalışan ünlü ‘nature-nurture’ tartışmasında, zeka ile ilgili olarak, şimdilik doğa yanlılarının yani genetikçilerin raundu önde bitirdikleri söylenebilir… Araştırmaların ortaya çıkardığı bir başka sonuç da, beyin vebazı beyin alt-bölümleri ne kadar büyük olursa, zekanın da genellikle o kadar artmakta olduğudur ama burada önemli olan, büyümüş beyin dokusunun kalitesidir…Kadınlarda zekanın sözel denilen bölümünün, erkeklerde ise, performans zeka genellikle daha iyi gelişmiş olduğu da bugün bilimsel bir gerçek olarak kabul edilmektedir. Ama zekanın genetiği ile ilgili olarak ortaya konan bilimsel iddialardan ayrı olarak, öjenik bir bakış açısıyla yapılmış birçok sözde-bilimsel önyargılar da bulunmaktadır. Öjeni nedir? Öjenikler neyi savunurlar? İnsan genlerinin kalitesini düzeltmeyi amaçlayan tüm etkinlikler öjenik diye tanımlanırlar. Ancak öjeni (eugenics), incelemeye dayalı bir bilimsel bilgi alanını değil, bir tutumu ve niyeti ortaya koyduğundan, sağlıklı nesiller yetiştirmek için insanlığın hizmetinde olan genetik danışma ve taramaları ondan ayırt etmek gerekmektedir. Kalıtımla ilgili gerçekler bilimsel ilgi alanına girmeye başladığı tarihten bu yana, bilim ve siyaset çevrelerinde öjenik olanlarla, yani insan neslinin soyaçekim yoluyla ıslahının mümkün olduğuna samimiyetle inananlarla, anti-öjenikler yani öjenizmi sahte bilim, öjenikleri bilimci kılığına girmiş kafatasçılar olarak görenler arasında müthiş bir tartışma süregelmektedir. Süregelen yalnızca tartışma değildir; bu alandaki tartışmaların etkileri doğrudan doğruya hükümet politikalarına, istihdamın nasıl düzenleneceğinden, ülkeye göçmen olarak kimlerin kabul edileceğine; kimlerin evlenmeye ve nesillerinin yeniden üretmeye hakları olduğundan kimlerin fırınlarda yakılacağına kadar yansımaktadır. Yıllardan beri, insan davranış genetiği alanında bilimin nerede başlayıp siyasetin nerede bittiğini ayırt edebilmenin imkansız olduğu bir keşmekeş yaşanmaktadır. Davranış genetiği alanında yapılan çalışmaların çoğu zaman araştırmacıların niyetlerinden bağımsız, bazen de apaçık bir biçimde araştırmacının kişisel önyargılarını meşrulaştırma girişimi olarak toplumsal ve hatta politik etkiler yaptıklarını, şimdi de yapabileceklerini gösteren, birçok kanıt ve emare bulunmaktadır. Örneğin Münih Üniversitesi’nde yürütülen psikiyatrik genetik çalışmalarının sonucu olarak, Naziler 1933′te ruhsal rahatsızlığı bulunan insanların kısırlaştırılmaları yasasını çıkarmışlardır. Sözde bilimsel çalışmaların sonucunda, ABD’nde de ruhsal rahatsızlığı olanlar, daha 1950′lere kadar kendi istemlerinin dışında kısırlaştırılıyorlardı. 20. Yüzyılın başlarında Amerikan Psikoloji Birliği’nin kendisine yüklediği en önemli görevlerden birisi, Amerikan toplumunun zeka seviyesini koruyabilmek için beyaz ırkın zencilerle karışmasının önüne geçmeye çalışmaktı. Yıllar geçti, toplumlar demokrasi ve insan hakları konusunda önemli adımlar attılar, bilim çevrelerinde bilim adı altında basbayağı siyaset yapmak zorlaştı ama bilimsel ırkçılık, genetik biliminin arkasına gizlenerek hep varlığını sürdürmesini bildi. Toplumdaki eşitsizliklerin kaynağını genetik yapımızda görerek toplumdaki eşitsizlikleri meşrulaştıran ve yakınlarda ölen Harvard psikoloji profesörlerinden Richard Herrnstein ve yine Harvard’lı bir siyaset bilim profesörü olan Charles Murray, birlikte yazdıkları ABD’nde geçen yıl yayınlanan “Çan Eğrisi: Zeka ve Amerikan Hayatındaki Sınıf Yapısı” adlı kitabta, 1970 ve 1990 yılları arasında sürdürülen Amerikan Ulusal Uzunlamasına Gençlik Araştırması’ndan aldıkları zeka ve eğitim başarısı ile ilgili verilerden yola çıkarak, insanların toplumsal ve etnik özellikleriyle, testlerden aldıkları puanlar arasynda yaptıkları istatistiksel de?erlendirmeler sonucunda, bilim adına şu iddialarda bulunma hakkını kendilerinde görebilmişlerdir: “Suç işleyenlerde ve işsizlerde zeka düzeyleri, toplumun genel ortalamasına göre daha düşüktür. Zeka düzeyi düşük olan toplum kesimlerinde, doğurganlık oranı daha yüksektir. Zeka, eğitimle ve diğer çevresel faktörlerle değil de, daha ziyade kalıtımla ilgili olduğundan, bu durumda toplum, giderek daha düşük zekalılardan meydana gelecek dolayısıyla suç işlemenin ve işsizliğin önüne geçmek imkansızlaşacaktır…” “Toplumsal gruplar arasında zeka yönünden nasıl farklar varsa, ırklar arasında da farklar vardır: En zeki ırklar, Çinliler ve Japonlardır, onların hemen ardından Avrupalılar gelmekte, son sırada ise, oldukça düşük bir yüzdeyle Afrikalılar yer almaktadır…Eğer yoksullar yoksulsa bu her şeyden önce zenginlerden daha az zeki oldukları içindir. Onlara acıyabiliriz, ancak bu hiçbir şeyi değiştirmez. Sonuç olarak sosyal adalet programları savurganlıktan başka bir şey değildir. Üstelik yoksullar daha fazla çocuk yaptıkları için de kötü genlerin yayılmasına neden olurlar. Açıkça görülmektedir ki, eğer yoksul siyahlara yardıma son verilirse, her şey daha iyi olacaktır…” İşte öjeni tam da budur ve günümüzde de etkisini büyük ölçüde sürdürmektedir. Ama öjeniklerin yaptıkları bu araştırmalar, sağduyulu bilimciler tarafından, gerek metodoloji ve gerek sonuçlar açısından topa tutulmakta, en ağır suçlamalar yöneltilmektedir. Örneğin “DNA Doktrini” kitabı dilimize de çevrilen R. D. Lewontin ve arkadaşları yıllardan beri biyolojinin bir toplumsal ideoloji biçimine dönü?mesine karşı mücadele etmektedirler. Yine örneğin 50 yılı alan bir araştırmanın sonucunda ortaya çıkan “İnsan Genlerinin Tarihi ve Coğrafyası” adlı dev eserin yazarları olan genetikçi Luca Cavalli- Sforza, Paolo Menozzi ve Alberti Piazza, ırk kavramının genetik açıdan anlamsızlığını göstermişlerdir Kaynak: turksite.eu

http://www.biyologlar.com/genetik-yapimiz-ve-davranislarimiz-arasindaki-iliski-1

Genetik Çeşitlilik

Genetik çeşitlilik, bir biyolojik çeşitlilik düzeyi olup bir türün gen havuzundaki genetik özelliklerinin toplam sayısını gösterir. Genetik çeşitlilik, çeşitlenen genetik özelliklerin eğilimini tanımlayan genetik değişkenlik terimi ile aynı şey olmayıp bundan ayrılır. Genetik çeşitlilik, popülasyonların değişen çevrelerine uyum sağlamalarına olanak tanır. Daha fazla varyasyon ve genetik çeşitlilik sayesinde, popülasyondaki bazı bireyler, çevre için uygun olan alel varyasonlarına sahip olurlar. Bu bireylerin, aynı alelleri taşıyan döller vererek hayatta kalma olasılığı daha yüksektir. Bu bireylerin başarılı olmaları sonucu popülasyon, daha fazla nesille süre gelmeye devam edecektir. [1] Akademik alanda popülasyon genetiği, genetik çeşitliliğe dair çeşitli hipotez ve teoriler içerir. Moleküler Evrim'in Nötral Teorisi, genetik çeşitliliğin, nötral değişimlerin bir birikimi sonucu meydana geldiğini öne sürer. Çeşitlendirici seçilim, bir türün farklı ortamlarda yaşayan ve belirli bir lokusta farklı aleller için seçilen iki alt popülasyonuna dair bir hipotezdir. Bu, örneğin, bir türün, içindeki bireylerin devingenlik ve hareketliliğinde, görece olarak geniş bir yelpaze aralığına sahip olduğunda meydana gelebilir. Frekansa bağlı seçilim, alellerin ne kadar yaygın olursa o kadar savunmasız hale geldiğine dair bir hipotezdir. Bu, genellikle, konak-patojen etkileşimi olarak adlandırılır ve konukta yüksek frekansta bir koruyucu alel olduğu anlamına gelir. Nitekim bu alel alt edildiğinde, patojenin yayılma olasılığı da yükselecektir. Genetik çeşitliliğin önemi Genetik çeşitliliği belirlemek ve ölçmek için bir çok farklı yollar vardır. Hayvanlardaki genetik çeşitlilik kaybının güncel nedenleri araştırılmış ve tespit edilmiştir.[2][3] Amerikan Ulusal Bilim Vakfı tarafından 2007 yılında yapılan bir çalışmada, bir türün kendi içindeki çeşitliliğin, türler arasındaki çeşitliliğin devam edip sürdürülmesinde veya tersinde, vazgeçilmez ve gerekli olduğu, genetik çeşitlilik ile biyoçeşitlilik arasında bağlantı olduğu ortaya çıkarılmıştır. Çalışmayı yöneten araştırmacı Dr. Richard Lankau'ya göre, "eğer herhangi bir tür sistemden kaybolduğunda döngü çökebilir ve topluluk sadece tek bir türün hakimiyeti altına girer".[4] Genetik ve biyolojik çeşitlilik arasındaki karşılıklı bağımlılık hassastır. Biyolojik çeşitlilikteki değişiklikler, arta kalan türleri adapte olmaya yönlendirerek canlıların yaşam ortamında değişikliklere yol açar. Türlerin kaybolması veya ortadan kalkması gibi genetik çeşitlilikte olan değişiklikler, biyolojik çeşitliliğin kaybına yol açar.[1] Hayatta kalma ve adaptasyon Bir türün yaşadığı çevre değişime uğradığında, zayıf gen varyasyonları, canlının uyum ve hayatta kalabilmesini sağlamak için organizmaların anatomisinde değişimlerin olmasına ihtiyaç duyduklarından, genetik çeşitlilik, canlıların hayatta kalması ve adaptasyonu için çok önemli bir rol oynar. Popülasyon içinde büyük bir genetik çeşitlilik seviyesine sahip bir tür, en uyumlu alellerden seçilen varyasyonlara daha çok sahip olacaktır. Genetik çeşitliliğin artması, bir türün evrimi için de zorunludur. Çok az genetik çeşitliliğe sahip olan türler büyük bir risk altındadır. Çok az gen varyasyonlarına sahip olan türlerin sağlıklı olarak üremesi giderek daha zor hale gelir ve oluşan yavru döller, yakın akraba eşleşmelerinde de gözlemlenen benzer sağlık sorunlarıyla başa çıkmak zorunda kalırlar.[5] Popülasyonun belirli hastalık ve epidemi türlerine karşı zaaflığı, genetik çeşitliliğin azalmasına bağlı olarak artabilmektedir. Tarımdaki önemi İnsanların tarım yapmaya başladığı ilk dönemlerde, ıslah etme ve seçici yetiştirme yoluyla bitkilerin arzu edilen özellikleri devredilip istenilmeyen özellikleri seçilmemiştir. Seçici yetiştirme ve ıslah etme, geniş alana yayılmış çiftliklerde neredeyse bütün bitkilerin genetik olarak birbirleriyle özdeş olduğu monokültürlerin oluşmasına yol açar. Çok az veya hiç bir genetik çeşitliliğin olmaması, ekinleri yaygın hastalıklara karşı son derece hassas hale getirir. Zira bakteriler devamlı olarak form ve şekil değiştirirler. Eğer bir hastalık, bakterinin, genetik bir varyasyona saldırması için değişmesine yol açarsa bu, türlerin büyük miktarda yok olmasına neden olabilir. Eğer bakterinin başarılı şekilde saldırdığı genetik varyasyon, aynı zamanda insanların yetiştirmek için kullandığı ve hasat ettiği bir varyasyon olursa, bu durumda tüm ekin yok olacaktır.[6] Buna benzer bir durum, İrlanda'da büyük bir patates kıtlığına yol açmıştır. Yeni patates bitkileri üreme sonucu oluşmadıkları, daha ziyade ana bitkinin parçaları oldukları için ve aslında tüm bir ürünün tek bir patatesin klonları olması sonucu herhangi bir genetik çeşitlilik geliştirememişler ve bu şekilde bir salgın hastalığa karşı özellikle duyarlı ve hassas hale gelmişlerdir. 1840'larda İrlanda nüfusunun büyük çoğunluğu beslenmek için patatese ihtiyaç duyuyordu. Nitekim İrlandalılar, Phytophthora infestans denilen ve çürümeye yol açan bitki paraziti plasmodiophoride karşı hassas olan "niteliksiz" patates varyasyonunu ekmeyi tercih etmişlerdi.[7] Ve bu plasmodiophorid, patates ekininin büyük çoğunluğunu yok etmiş ve 1 milyon insansın açlıktan ölmesine neden olmuştur. Genetik çeşitliliğin azalmasına karşı önlemler Doğa, genetik çeşitliliğin korunmasında veya artmasında çeşitli yöntemlere sahiptir. Okyanus planktonlarında viruslar, genetik değişimlerin oluşması sürecinde katkıda bulunurlar. Planktonlara bulaşan okyanus virüsleri, kendi genlerinin yanı sıra diğer canlıların genlerini de taşırlar. Bir hücrenin genlerini taşıyan bir virüs, başka bir hücreye bulaşıp enfekte ettiğinde, bu hücrenin genetik yapısı değişir. Genetik yapının bu şekilde sürekli tazelenmesi, karmaşık ve öngörülmeyen çevresel değişikliklere rağmen, planktonların sağlıklı bir popülasyona sahip olmasını ve sürdürmesini sağlar.[8] Çitalar, nesli tehlike altında olan bir türdür. Son derece düşük bir genetik çeşitlilik ve bunun sonucu olarak düşük bir sperm kalitesi, çitalar için üreme ve hayatta kalmayı zor bir hale getirir. Çita yavrularının sadece % 5'i hayatta kalarak yetişkin olabilmektedir.[9] Yaklaşık 10.000 yıl önce, jubatus hariç, çitaların tüm türleri yok olmuştur. Bu türün popülasyonu, genetik çeşitliliğinin çoğunu yitirdiği büyük bir darboğaz yaşadı ve bunun sonucu, geride kalan bireyler, yakın akrabalarıyla veya aile fertleriyle eşleşmek zorunda kaldılar.[10] Ancak, kısa bir süre önce, dişi çitaların, her bir batında doğan yavrular için, birden fazla erkek çita ile çiftleştikleri keşfedildi. Dişi çitalar, bu anlamda, her bir çiftleşmede yeni yumurtalar oluşturabildiği uyarılmış ovülasyona maruz kalmaktalar. Bu şekilde, anne çita, birden fazla erkekle çiftleşerek tek bir batında doğmuş olan yavrularının genetik çeşitliliğini de artırmaktadır. [11] Genetik çeşitliliğin ölçülmesi Bir popülasyonun sahip olduğu genetik çeşitlilik, bazı basit ölçümlerle tespit edilebilir. Gen çeşitliliği, genom üzerindeki polimorfik lokusların oranıdır. Heterozigotizm, polimorfik lokuslara sahip olan bireylerin ortalama sayısıdır. Lokus başına alel sayısı da genetik çeşitliliği göstermek için kullanılır. Kaynakça 1^ a b "National Biological Information Infrastructure". Introduction to Genetic Diversity. U.S. Geological Survey. Retrieved 3/1/2011. 2^ Groom, M.J., Meffe, G.K. and Carroll, C.R. (2006) Principles of Conservation Biology (3rd ed.). Sunderland, MA: Sinauer Associates. Website with additional information 3^ Tisdell, C. (2003). "Socioeconomic causes of loss of animal genetic diversity: analysis and assessment". Ecological Economics 45 (3): 365–376. 4^ Study: Loss Of Genetic Diversity Threatens Species Diversity 5^ Genetic Diversity." National Biological Information Infrastructure. NBII. 16 Mar. 2008 www.nbii.gov 6^ "Introduction to Genetic Diversity." Cheetah Conservation Fund. 2002. 19 Mar. 2008 www.cheetah.org 7^ "Monoculture and the Irish Potato Famine." Understanding Evolution. Berkley University. 19 Mar. 2008 <evolution.berkley.edu> 8^ "Scientists Discover Interplay Between Genes and Viruses in Tiny Ocean Plankton". National Science Foundation. March 23, 2006. Erişim tarihi December 12, 2008 9^ Stephens, Tim. "Currents." University of California, Santa Cruz. 10 Aug. 1998. University of California. 19 Mar. 2008 www.ucsc.edu 10^ "Genetic diversity". Cheetah Conservation Fund. Retrieved December 12, 2008. 11^ Fildes, Jonathan (May 29, 2007). "Cheating cheetahs caught by DNA". BBC News. Retrieved December 12, 2008.

http://www.biyologlar.com/genetik-cesitlilik-1

Sakarmeke hakkında bilgi

Alem: Animalia (Hayvanlar) Şube: Chordata (Kordalılar) Sınıf: Aves (Kuşlar) Takım: Gruiformes (Turnamsılar) Familya: Rallidae (Yelvegiller) Cins: Fulica Tür: F. atra Fulica atra Linnaeus, 1758 Sakarmeke (Fulica atra), yelvegiller (Rallidae) 36-38 cm boyunda sulak alanlarda yaşayan bir kuş türü. Gövdesi siyah, gagası ve alnı beyaz bir su kuşudur. Sudan havalanırken, uzun süre suyun üzerinde koşar. Çevresi sazlıklarla kaplı sığ göllerde yaygın olarak görülür. Tamamiyle simsiyah tüylere sahiptir,sadece farklı olarak gaga ile gaganın üzerinden alına kadar uzanan beyaz bölge göze çarpmaktadır,göz rengi kırmızıdır,dişi ve erkek benzer görünüştedir. Güneydoğu hariç tüm göllerde,kıyılarda,lagün ve deltalarda gözlenir,yerlidir,avrupa ve asyada yaygındır. Tek eşlidir,sazlıklarda yuvalarını yaparlar,yuvalarına 6-10 yumurta bırakırlar,kuluçka dönemi 21-24 gündür,yavrularının uçma süresi ise 55-60 gündür,besinlerini başlıca bitkiler oluşturmaktadır,bazen böceklerlede beslenirler,dalarak ya da su yüzeyinden besinlerini toplarlar.Avcılar tarafından çok fazla beğenilmeyen bir kuştur.Avı çok kolaydır hayvan koşmadan uçamadığından rahatlıkla vurulabilir.Sakarmeke nin postu çok kalındır.Sazlık alanlarda sürü halinde yaşarlar tehlike anında önce yüzerek uzaklasmaya başlarlar aralarından birtanesi ucmak için suda koşmaya başladığında diğerleride hemen koşmaya ve uçmaya çalışırlar. Uçarak gelip suya iniş yapan bir sakar meke göğsü üzerine inen bir uçak görünüşünde olur ve sert bir iniş yaparlar.  

http://www.biyologlar.com/sakarmeke-hakkinda-bilgi

GRİ FOKLAR HAKKINDA BİLGİ

GRİ FOKLAR (Halichoerus grypus), birçok efsanelere konu olmuştur. Meselâ İskandinavyada gri fok’un tekrar dünyaya gelmiş bir insan ruhu, ya da gözden düşmüş bir melek olduğuna ve ona fenalık yapan adamın korkunç bir akıbete uğrayacağına dair bir inanış vardır. Çiftleşme zamanında kavgalar: Gri fok’larm erkekleri ağustos sonunda veya eylülde kayalıklara çıkıp güneşin altına uzanırlar. Bir hafta sonra dişiler de gelerek erkekler tarafından karşılanırlar. Tahmin edileceği gibi, dişilere sahip olmak için erkeklerin arasında hayli gürültülü rekabet olur. Bazen şiddetli dövüşler bile görülür. Erkekler iki yarılarına sallanarak rakiplerine beyaz dişlerini gösterir, bazen de ısırdıkları boyunlarda derin yaralar açarlar. Dişiler, karaya çıktıktan birkaç saat sonra uzun beyaz kürklü bir tek yavru doğururlar. Yavru doğuşta 15 kilo ağırlığmdadır. İki hafta sonra kilosu 40-45′e fırlamış olur. Dişiler yavrularının doğumundan on, on iki gün sonra çiftleşirler. Her erkeğin, bir dönümün onda biri kadar bîr sahası vardır. Fakat toprakları için canlarını dişlerine takarak dövüştükleri halde, kıskanç ayı balıkları’nm aksine, dişilerini serbest bırakırlar. Bir dişi, erkek fok’un arazisine girerse, o erkeğin olur, fakat komşu bir fok’un arazisine geçmeyi isterse, erkeği itiraz etmez ve onunla ilgisini keser. Kasım ayında fok’larm arasında yine banş devresi başlar. Dövüşler ve böğürmeler artık sona ermiştir. Erkekler dostça bir arada yaşar ve geçen bir dişiye yan gözle dahi bakmazlar. Yavru gri fok’lar: Gri fok’lar ve özellikte yavruları âdeta birer insan görünüşündedirler. Yuvarlak ve sevimli yüzlerinin ortasından iri iri bakan yuvarlak gözlerinin dokunaklı bir ifadesi vardır. Anne, yavrusunu iki veya üç hafta süresince zengin ve bol yağlı sarı sütüyle besler. Bu süre zarfında yavrusunu korumak, onu sevmek, hatta sırtını kaşımak için kendine yiyecek aramaya dahi çıkmaz. Midesi sütle dolan yavru esnedikten sonra, yüzgeç ayaklarından birinin ucunu ağzına sokabilir ve bir çocuk gibi hayatından memnun uyuyakalır. Yavruların önceleri hareket etmek için arka ayaklarım kullanmaları ve kara memelileri gibi önce birini, sonra ötekini oynatmaları ilgi çekicidir. Fakat iki, üç gün sonra bu alışkanlığa veda eder ve karada yol almak için bir daha arka ayaklarını kullanmazlar. Birçok bilginler yavru fok’larm yüzmeyi öğrenmek zorunda olduklarını söylerler. Bu, tam manasıyla doğru değildir. Yavru gri fok’lar kaim ve yünümsü bir beyaz kürkle dünyaya gelirler. Daha ilk baştan yüzebildikleri halde, bu kalın kürk suyu sünger gibi çekeceğinden uzun müddet yüzeyde kalmalarına imkân yoktur. Yavru fok’lar ikinci ile dördüncü hafta arasında sıcak beyaz urbalarını gri bir postla değişirler. Üçüncü hafta esnasında, dişiler denize dönmeye hazırlanırken yavrular da sütten kesilirler. Artık kendi başlarının saresine bakmaları lâzımdır. Bundan sonraki iki hafta süresince vücutlarında depo olmuş yağla beslenirler.Fakat çok gecmeden açlığın etkisiyle denizin yolunun tutup orayada yiyecek bulmayı ve sığ suda yüzmeyi çabucak öğrenirler. Genç fok’lar birkaç güne kalmadan derinlerde en tecrübeli büyükler kadar ustalıkla balık avlamaya alışırlar. Artık yumuşakçaları ve kabukluları yakalamayı öğrenmişlerdir. Daha da büyüyünce kaya balıkları ve 180-200 santimlik yılan balıklarıyla da besleneceklerdir. Yırtıcı balıkları yok ettikleri için balıkçılara faydalı olurlar. Kayalık kıyıların hayvanları:Grifok, Kuzy Atlantik’teki dar bir kuşakta yaşar. Kuzeyin buz tarlalarına çıkmadığı gibi, güneyin daha ılımlı bölgelerine de inmez. Atlantik Okyanusu’nun her iki kıyısında, denizin derin ve suların pek ender olarak sakin olduğu Güney Kanada ile Büyük Britanya enlemlerindeki kayalık kıyılara ve açıktaki adalara dadanmıştır. Bu türün hâkim rengi tabiî gridir, ama bu fokların siyah renktekileri veya koyu renk lekelerle beneklenmiş açık tonluları da vardır. Gri fok aşağı yukarı Grönland foku iriliğindedir. İri erkekler 240 santim ve 300 kilo olabilirler. Gri fok, denizlerde oldukça uzun yolculuklar yapmakla beraber, alışılagelmiş üreme yerlerinden pek uzaklaşmaz. Hatta sürünün bazı üyeleri bütün yıl bu kayalık kıyıların yakınında kalırlar.www.hayvanansiklopedisi.com/Gri-Foklar.html

http://www.biyologlar.com/gri-foklar-hakkinda-bilgi

Eşek Arıları (Hymenoptera) Nasıl Canlılardır?

Eşek Arıları (Hymenoptera) Nasıl Canlılardır?

Şimdiye Kadar Hymenoptera’da tanımlanmış olan ve böceklerin diğer takımlarından daha fazla tür sayısı, (120 bin) gerçek sayının sadece küçük bir kısmıdır. Şu anda 350 bin tanımlı kınkanatlı’nın (Coleoptera) gerisinde kalmasına rağmen Hymenoptera’nın sayısı muhtemelen daha fazladır.Tüm standartlara göre Hymenoptera, başarılı sayılan bir topluluktur. Dünya gezegenindeki kara parçalarında yaşayan tüm yaşam formları üzerinde büyük bir etkileri vardır. Doğrudan bitkilerden beslendikleri için yaprak arılarının ve onun akrabalarının larvaları, kendilerinin de geçici bir yıkıma uğramalarını sağlayan tüm bir ormanın yapraklarını dökebilirler. Ancak gerçek şu ki, böyle felaketler çok sık gerçekleşmez ve bunun da sebebi diğer bir hymenoptera grubu olan parazitik eşek arılarının çok fazla türünün uyguladığı kontrol mekanizmasıdır. Bitkiyle beslenen tüm tırtıllara saldırarak onların sayıca çoğalmasında kırıcı bir etkiye yol açarlar. Bitkiler de Hymenopteralarla daha olumlu bir şekilde etkileşim kurar. Yeryüzündeki 30,000 civarındaki arı türünün yardımı olmadan, dünyadaki bitki örtüsünün büyük bir kısmının üremesi durur ve böylece ortadan kaybolurdu. Tür Sayısı: 120,000 civarında (A.B.D.’de 20,000′den fazla)Boyutları: 1 mm-5 cm arasındadır.Fiziksel Özellikleri: Vücut sert ve çeşitli renktedir; 2 çift zarsı kanatlı parlak metalik tüyleri yoğun; arka çifti daha küçük ve ön çiftle bir dizi kanca aracılığıyla eşleşir; ağız kısımları ısırıcı, hatta (bazı arılarda) emme tüpü mevcuttur; “belli veya “belsiz bir abdomen; belirgin bir “boyun” üzerinde kafa hareketlidir; genelde iğneleri mevcuttur; tam metamorfoz (yumurta-larva- pupa-yetişkin) vardır; larva tırtılımsıdır (yaprak arılarında), aksi halde bacaksız kurtçuktur.Beslenme Tarzı: Yetişkinlerin çoğu türünün, yetişkinleri çiçekleri beslenmek için veya (arılarda) kendi yavrularına yiyecek malzeme toplamak için; larvalar bitki, tahta, diğer böcekler, örümcekler, polen ve meyve özlerinden beslenirler; bir çok larva yaşayan konağın içinde veya ebeveyninin yaptığı yuvada büyür. Yaşam Alanı: Okyanuslar hariç her yerde.Yeryüzünde Dağılımı: Çok soğuk ve kuru bölgeler hariç tüm dünyada.Sınıflandırma ve BiyolojiHymenoptera takımı iki alt takıma bölünmüştür. Symphyta daha “ilkel” türleri içerir: yaprak arıları, boynuzkuyruklar ve tahta eşek arıları. “Abdomenin toraksa” bağlandığı tıknaz vücutları vardır. Bir “eşek arısı beli”nin müdahalesi olmadıkça etki aşağı yukarı düz çizgi gibidir. Kanatlar yoğun bir damar ağı taşır. Dişiler bıçak benzeri bir yumurta boruları aracılığıyla yumurtalarını bitki dokularına yerleştirir. (boynuz kuyruklarda yumurtlama borusu uzun ve iğne benzeri yapıdadır). Duyargalar diğer topluluklara nazaran daha fazla çeşitlilik gösterir, sıklıkla ipliksi fakat aynı zamanda yumru ve tüysü (kuş tüyü) yapıdadır. Yaprak arısı larvaları belirli güve tırtıllarını andırmaktadır. Genellikle çoklu bacak takımları olanların bitkilerden haricen beslendiği görülmektedir. Boynuz kuyruklar ve tahta eşek arıları larvaları tahtanın içinde beslenir ve bacaksızdır.İnce BellerDiğer alt takımda Apocrita, yetişkinlerin ilk başta göze çarpan özellikleri vücutlarının ortasına doğru bel yapısına benzeyen daralmadır. Belin toraks ve abdomen arasında bir bölümlenme yaratmasına rağmen, aslında abdomenin ilk segmentiyle toraksın arkası birleşerek “propodeum” denilen yapıyı oluştururlar. Bel de dahil olmak üzere arkasındaki her şey abdomenin bir parçasıdır ve kursak olarak bilinir. Larvalar bacaksızdır ve genelde kurtçuk benzeridir.Apocrita çoğunlukla iki başka bölüme ayrılır. Parasitica daha ziyade böceklerin ince vücutlu parazitlerini ve diğer eklem bacaklıları içerir. Dişi eşek arısı doğrudan bir kurbanın vücuduna yumurtladığında konak olarak bahsedilenler çoğunlukla daha gençlik çağlarında saldırıya uğrarlar. Saklanan konaklara bazı türlerde vücuttan daha uzun olan uzatılmış tüysü yumurtlama borusuyla ulaşılabilir. Birçok minik tür yumurtalarını diğer böcek veya örümcek yumurtalarının arasına bırakır.Sokma MekanizmasıApocrita’nın ikinci bölümü en bilindik eşek arıları, karınca ve arılarını içeren Aculeatadır. Dişi yumurtlama borusu asla uzamaz ve kurbanı felç etmek veya kendini savunmak için bir iğne olarak kullanılır. Aculeata larvaları her zaman yemekleriyle çevrelenmişlerdir. Bu yüzden kendilerine sorun çıkartacak bacaklara ihtiyaçları yoktur. Çoğu bu yüzden etli ve normalde koyu ve sert olan baş kapsülü hariç özelliksiz beyaz kurtçuklardır. Önemli bir özellik kapalı bağırsaktır. Bu da dışkılamanın imkansız olduğu anlamına gelir ki bu da larvanın çoğunlukla içinde bulunduğu çok değerli besinlerin kirlenmesini engelleyen bir gelişmedir. Parazitik larvalar için vücutlarından dışkı salgılamaları durumunda üzerinde yaşadıkları konağı zehirleme riski olurdu. Tam olarak olgunlaşmış bir larvada, bağırsak sonunda işlevsel hale gelir ve tüm biriken dışkı bir seferde pupa haline gelmeden dışarı atılma zorunluluğu ortaya çıkardı. Bu noktadan itibaren bütün sağlık önlemleri konu dışı kalır.SosyallikBuraya dahil edilenler, tüm karıncaların, eşek arılarının ve arıların çoğu gibi tüm böcekler türleri içinde en fazla sosyal olanlar arasındadır. Sosyal türlerin yuvalarında görevi yumurtlamak olmayan birçok dişi çalışan vardır. Yumurtlama genelde yalnızca çiftleşme dönemi uçuşları sırasında spermleri alan “kraliçe”nin ayrıcalığıdır. Benzeri yüksek sosyal organizasyon düzeyi bunun dışında sadece, ilgisi olmamasına rağmen çoğu kez yanlış olarak beyaz karınca diye bilmen termitlerde gözlenir. Termit işçileri ise erkek ve dişilerden oluşmaktadır. Diğer birçok canlı organizma topluluklarında olduğu gibi, Hymenoptera’nın familya ve alt familyalara bölünmesi gerektiğine dair tartışmalar vardır. Görüş farklılıklar özellikle, bazı uzmanların tek bir familyada, Apidae, toplamak istediği arılarla ilgilidir. Arıların diğer uzmanlar tarafından kabul edilen çeşitli familyalarına Apidae içindeki bir alt familya olarak bakılır. Fakat karıncaların tek bir familyada, Formicidae, mutlu olarak var olduklarını düşündüğümüzde arılar için de benzer bir muamelenin bir bütün olarak Hymenoptera’ya daha tutarlı bir yaklaşım olabileceği önerilmektedir.İki alt takımada ait yetişkinlerde bulunan birçok anatomik özellik Hymenoptera için tipik özellikler olarak değerlendirilebilir.Kafa genelde fark edilebilir bir “boyun” üstüne yerleşmiş sert, yuvarlak bir kapsüldür. Bu dizilim önemli bir hareket kabiliyeti sağladığı hymenopteranların çoğu böylece kafalarını neredeyse 360 derece çevirebilirler. Genelde, bir tanesi kafanın iki tarafında bir de onların arasında osel üçlüsü olmak üzere iki bileşik göz mevcuttur. Duyargaların biçimi değişkendir. Bir çok türde aşağı yukarı ipliksi yapıda ve erkeklerde dişilerdekine nispeten daha uzundur. Normalden sapma en fazla, duyargalarının uçları ayırt edici biçimde yumrulu olan (Cimbicidae) yaprak arılarında gözlenir. Diprionidae erkeklerinde uçlar tüylü olabilir.Bütün türlerin ağız kısımlarında ısırma ve çiğneme özelliği vardır. En tipik özelliklerinden birisi dört kanatlı oluşu olan Hymenoptera’nın, arka kanatları bariz şekilde ön kanatlardan küçüktür. İki kanat çifti birbirlerine, arka kanadın ön kenarı boyunca dizili olan minik kancalar (hamuli denen) aracılığıyla bağlıdır. O kadar yakın bir eklem oluştururlar ki daha küçük olan arka kanadı ayırt etmesi özellikle de dinlenme konumunda kanatlarını arkasında tuttuğu zaman oldukça zordur. Öyle ki iki kanatlı sinek (Diptera) ile uğraştığınızı sanmanız an meselesidir Hymenoptera’da kanatlar aşağı yukarı transparan olsa da sarımtırak, mavimtırak veya duman grisine bürünebilir. Kanat damarlanması yaprak arılarındaki gibi karmaşık ve ağsı bir düzenden neredeyse hiç bulunmadığı, ancak bulunduğunda ince tüy sıraları halinde kenarında bulunduğu perisineğine kadar çeşitlilik gösterir. Yumuşak karıncalar (Mutillidae) gibi bazı familyalarda sadece erkeklerin kanatları vardır. Karıncalarda sadece kanatlılar (alates) denilen cinsel formların: kanatları vardır, işçiler kanatsızdır.Synocea vlrglnea loıyil Ur oftk arısı Peru’daki bir yağmur ormanında küçük bir mtyvtdın besleniyor. Hymtnoptırt dünyanın en üst düzeyde sosyallafmlf böceklerinden bazılarını barındırırCinsiyetin Belirlenmesi Tüm Hymenopteralar oviparözdür, yani yumurtlayarak çoğalırlar. Çiftleşme genelde kısadır, spermlerin taşınması ise dişinin vücudundaki özel bir hazne sayesinde (sperm kesesi) uzun(bir kaç yıla kadar) sürer. Diğer böceklerin tersine, hymenopteran dişilerinin çoğu sadece bir yumurtaya sperm girişini engelleyerek yavrularının cinsiyetlerini belirleyebilmektedir. Döllenmemiş (haploid) yumurtalar normal gelişecek fakat erkek olacaktır. Normal yoldan döllenmiş yumurtalar ise her zaman dişi ortaya çıkıyor. Sarı ceketli eşek arıları (Vespula) gibi sosyal Hymenoptera’ların çoğunda kraliçe yaz boyunca sabit bir şekilde dişi doğurur. Böylelikle o yuvayı genişletmek ve gençleri beslemek için sabit bir işçi akışı sağlamış olur. Doğru zaman gelince kraliçe erkek yumurtalar üretmeye de başlasa da diğer taraftan yoğun olarak gelen, geleceğin kraliçeleri olan dişi yumurtalarına özel muamele yapılmasını için ayırır. perisineğine kadar çeşitlilik gösterir. Yumuşak karıncalar (Mutillidae) gibi bazı familyalarda sadece erkeklerin kanatları vardır. Karıncalarda sadece kanatlılar (alates) denilen cinsel formların: kanatları vardır, işçiler kanatsızdır.En korkunç haliyle parazitizm. Avrupa’dan kıvrılan bir Cotesia glomerata braconid eşek arısı (Braconidae) larva sürüsü tırtıldan doğmakta ve etrafına koza örmeye başlıyor.Kaynakça: BBC Vahşi Doğa Ken Preston-MafhamYazar: Tuncay Bayraktarhttp://www.bilgiustam.com

http://www.biyologlar.com/esek-arilari-hymenoptera-nasil-canlilardir

Seçilim tepkisi

Nicel genetik alanında yapılan çalışmalarda, seçilen bireylerin yavrularının ortalama uyum başarısı ile popülasyondaki diğer bireylerin yavrularının ortalama uyum başarısı arasındanki farktır. "R" ile gösterilir.

http://www.biyologlar.com/secilim-tepkisi

Artvin Derelerinde Kırmızı Benekli Alabalıklar İzleniyor...

Artvin Derelerinde Kırmızı Benekli Alabalıklar İzleniyor...

Doğa Koruma ve Milli Parklar Genel Müdürlüğü tarafından 2005 yılında başlatılan "Doğal Alabalık Üretilmesi ve Orman İçi Suların Balıklandırılması" uygulama projesi kapsamında  KTÜ Deniz Bilimleri Fakültesi ile ortaklaşa yürütülen izleme ve kontrol çalışmalarında Artvin Yusufeli Barhal Deresi’ne markalanmış 1.000 adet kırmızı benekli doğal alabalık yavrusu bırakıldı. Artvin derelerinin doğal alabalığı olan 30 gr ağırlığında markalanmış kırmızı benekli alabalıklar türünün devam ettirilmesi ve takip edilmesi için Barhal Deresi’ne bırakılarak takip altına alındı. Türkiye’de ilk defa doğal alabalıklarda uygulanan ve iki yıl sürmesi planlanan Alabalık İzleme ve Takip Projesi ile “boya-marka” yöntemi ile markalanarak akarsulara bırakılan doğal alabalık yavrularının doğal ortamlardaki davranış, akarsu boyunca yapacakları göç mesafeleri, büyüme, yumurta üretip üretmeyecekleri, üretecekseler miktarı ve büyüklüğü, doğal renklenmeye geçip geçmedikleri, adaptasyon konularında bilimsel veri toplamak ve sonuçları geleceğe yönelik yeni projeksiyonlar amaçlanıyor. http://www.milliparklar.gov.tr

http://www.biyologlar.com/artvin-derelerinde-kirmizi-benekli-alabaliklar-izleniyor-

 
3WTURK CMS v6.03WTURK CMS v6.0