Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 353 kayıt bulundu.

Balık Örneklerinin Toplanması ve Tespiti

Fauna tespitiyle ilgili olan sistematik çalışmalarda doğadan balık örneklerinin toplanması çok özen gösterilmesi gereken önemli konulardan biridir. Balıklar, toplanacak tür ve alttürlere bağlı olarak, çok çeşitli alet ve yöntemlerle yakalanabilirler. Bu yüzden örnek toplayacak kişinin herşeyden önce amacına uygun olan alet ve yöntemi saptaması gerekmektedir. Aksi takdirde arazide yapılacak uğraşıların büyük bir kısmı sonuca ulaşmaktan uzak kalacak, dolayısıyla boş yere zaman ve iş gücü sarfedilmiş olacaktır. Balık örneklerinin yakalanmasında kullanılabilecek çok çeşitli yöntemler olmakla beraber, bunların avlama etkinlikleri av ortamındaki çeşitli koşulların durumuna da bağlı kalmaktadır. Bu yüzden, bir taraftan yakalanacak örneklerin çeşitli özellikleri (küçük veya büyük boylu oluşu, bentik veya pelâjik yaşam sürdürmesi, gececi veya gündüzcü karakterde olması v.b.) göz önüne alınırken, bir taraftanda uygulanacak alet ve yöntemin avlama yapılacak ortamın koşullarına uygun olmasına dikkat etmek gerekmektedir. Örneğin, zemini taşlık, kayalık olan veya çeşitli bitki kökleri bulunan bir su ortamında balık örnekleri yakalamak için ığrıp denilen ağların kullanılması son derece külfetli ve hatalı bir iştir. Zira böyle bir ortamda çekilecek ığrıp, birtaraftan da sürekli şekilde zemindeki engellere takılarak yırtılabilecek, diğer taraftan zemini düzenli şekilde tarayamayacağı için örnek yakalama olasılığı çok düşük olacaktır.Genel olarak balık örneklerinin yakalanmasında kepçe, ığrıp, fanyalı ağ, kör ağ veya galsama ağı, serpme, pinter, olta, elektrik şoku v.b. gibi av aletleri ile çeşitli tipteki dalyan ve tuzaklardan yararlanılmaktadır. Bu alet ve tuzakların dışında etkinlikleri çok fazla olmasına rağmen, doğadaki dengeyi çabuk bozması nedeniyle yasaların izin vermediği bazı yöntemlerde vardır. Örneğin, Sığır kuyruğu, sütleğen v.b. gibi zehirli otlar; Enderin gibi ziraat ilâçları; dinamit, tahrip kalıbı ve sönmemiş kireç gibi patlayıcı maddeler kanunlann yasakladığı başlıca av yöntemleridir.Burada, sadece yasal olan av alet ve yöntemlerinden kısaca söz edilmesi yararlı olacaktır.Örneklerin tespitiÇeşitli av araç ve yöntemleri kullanılarak ortamlarından yakalanan balık örneklerine, araştırmanın amacına uygun şekilde işlem yapılır. Eğer yakalanan örnekler ergin hale gelmiş büyük boylu bireylerden oluşuyorsa, bunların tür ve alttürlerini arazide saptama olanağı vardır, dolayısıyla tanıma amacıyla laboratuvara götürülmeleri gerekmez. Yakalamadan hemen sonra türlerin saptanabildiği bazı durumlarda da örnekler henüz canlılıklarını yitirmeden tekrar suya bırakılabilirler. Arazide tanınmaları güç olan örneklerin daha ayrıntılı incelemeler için laboratuvara götürülmeleri zorunludur. Kendi ortamlarından canlı olarak yakalanan örneklerden ilerideki araştırmalar için yararlanılmak isteniyorsa bunların herşeyden önce dikkatlice öldürülmeleri gerekir. Genellikle balık örneklerinin öldürülmesi, su dışında bırakılarak boğulmalarının sağlanması şeklinde yapılırsa da, canlı örneklerin su dışında uzun süre kalmaları sonucunda, balıkların vücutlarında ölümden dolayı bir sertleşme oluştuğundan böyle örneklere bilahare şekil vermek güç olmaktadır. Bu nedenle özellikle müze materyali olarak kullanılacak örneklerin, bu yöntemle öldürülmeleri pek yararlı olmamaktadır. Balıkların zedelenmeden ve düzgün bir şekilde kalmalarının sağlanmasında kullanılan yöntemlerden en iyisi, sıvı bir uyuşturucu kullanılmasıdır. Bu iş içinde en uygun anestezik (MS222) olarak bilinen Fenoxiethanol'dür. Canlı olarak yakalanan balıklar bu maddenin 0.001 lik solüsyonunda bırakılarak çok kısa zamanda ve hiçbir zarara uğramadan bayıltılırlar. Bu şekilde bayıltılan örnekler istenilen şekil verildikten sonra ya çok düşük temparatür derecelerinde aniden dondurulur veya uygun fiksatifler içine alınarak uzun süre muhafaza edilirler.Dondurma yöntemiyle tespit edilen örnekler , orijinal renk ve şekillerini daha iyi korumaktadırlar. Bunun için en iyi yöntem, örnekleri gerekli bilgileri taşıyan etiketleriyle birlikte naylon torbalar içersine düzgün bir şekilde ve yüzgeçlerine zarar vermeyecek titizlikte yerleştirip aniden dondurmaktır. Ancak incelenecekleri zaman donmuş materyal çözülür ve üzerlerinde gerekli tetkikler yapılır. Fakat dondurulmuş örnekler, uzun zaman muhafaza edilemezler. Bu açıdan dondurma, özellikle zaman zaman eritilerek incelenmeleri gereken örneklerin saklanmasında geçerli bir yöntem değildir. Bu nedenle bilimsel araştırmalar için (bilhassa faunistik çalışmalarda) örnekleri çok uzun zaman bozulmadan koruyabilen çeşitli fiksatiflerden yararlanılmaktadır. Bunlar içersinde en iyisi % 4 lük formalin solüsyonudur. Bu solüsyonla örnekleri tespit etmek için herbir balık sığ bir kapta (özellikle mumlu küvette) yan yatırılmalı ve mümkün olduğunca düzgün bir şekil verilmelidir. Yüzgeçlerin açık kalmasını sağlamak için de çok ince böcek iğneleri yardımıyla herbir yüzgeç gergin hale getirilmelidir. Sonra, bu örneklerin üzerini örtecek şekilde % 4 lük formalin solüsyonu ilâve edilir ve bu şekilde birkaç gün bırakılarak sertleşmeleri; dolayısıyla belli şekil kazanmaları sağlanmış olur. Şayet örnekler 30 cm. den daha büyük boylu ise, bunların karın kısımlarından jiletle küçük bir yarık açılır veyahut da anal açıklıklarından bir enjektör yardımıyla % 40 lik formol enjekte edilerek iç organlarının tespiti yapılır ve kokuşması önlenir. Mumlu küvetlerde tutularak belli şekil kazandırılmış olan örnekler devamlı muhafaza için başaşaği olarak kavanozlara yerleştirilir ve kuyruk kısımlarını örtecek şekilde fiksatif doldurulur. Balık örneklerinin devamlı muhafazasında genellikle % 4 lük formalin kullanılırsa da bazen % 70 lik Etil alkol veya % l lik Propilen Fenoxatol çözeltisi de kullanılabilir. Bu prezervatiflerin bulunmadığı hallerde genellikle kolay temin edilen ve daha ucuz olan bazı maddelerden de yararlanmak mümkündür. Bunların başhcalan % 70 lik tuvalet ispirtosu, % 50lik NaCl çözeltisi ve % 100 lük (saf olarak) sirkeden ibarettir. Örnekleri taşıyan herbir kavanozun içinde kurşunkalem veya erimez mürekkeple yazılmış bir etiket bulunmalıdır. Bu etikete ilgili türün adı, toplandığı yer, tarih ve toplayanın adı yazılmaktadır.Özellikle % 70 lik Etil alkol ile yapılan muhafazalarda alkolün uçucu olması nedeniyle zamanla kavanozlarda bir eksilme meydana gelmekte, bu durum örneklerin açıkta kalan kısımlarının, özellikle kuyruk yüzgeçlerinin kurumasına ve bozulmasına neden olmaktadır. Bu türlü eksilmelerin önlenmesinde kavanozların kapaklarına ince bir tabaka halinde vazelin sürülmesi çok iyi sonuçlar vermektedir. Diğer taraftan % 4 îük formalin solusyonundaki çok uzun süreli muhafazalarda, formalinin asidik özelliği nedeniyle örnekler esmerleşmekte ve üzerlerindeki leke ve benekler belirsiz hale gelmektedir. Bu durumu önlemek için de % 4 lük formalin solüsyonunun her 4 litresine bir çorba kaşığı kadar Boraks ilâve edilmesi yararlı olmaktadır. Bu sayede formalinin asidik özelliği bir dereceye kadar giderilmiş olur.Yumurta veya larvalar ya %4 lük formol ya da % 70 lik alkol içeren küçük tüplerde saklanabilir. Her tüp içine gerekli bilgileri taşıyan etiketler konulmalıdır (tür adı, lokalite, tarih, örneklerin taze rengi, habitat, toplayanın adı v.b.). Yumurtaların toplanmasında (özellikle yumurtalarınn kümeli olduğu hallerde) mümkün olduğu kadar bol sayıda örnek almalıdır. Zira, yumurtaların substratuma tutturuluş şekilleri, tanımlamada önem taşıyabilir. Bazen balık türleri, sadece pullarından teşhis edilebilirler. Diğer taraftan, vücudun yanlarından alınmış birkaç sağlam pul yardımıyla hayvanın yaşı ve geçmişine ait bazı bilgiler edinme olanağı da vardır, örneklerden pullar alındığında küçük bir zarf içine konup yassı hale getirilmeli ve sonra kurumaya bırakılmalıdır. Bu şekilde pullar uzun süre saklanabilirler. Zarfın üzerinde tür adı, lokalite, tarih, toplayanın adı, numunenin boyu, ağırlığı ve cinsiyeti yazılmalıdır. Tür tanımı amacıyla alınan pullar temizlenmeli, kuru olarak veya gliserin jeli içinde lam üzerinde preparat haline getirilmelidir.Diğer omurgalılarda olduğu gibi, balıkların tanınmasında da bazı kemikler (örneğin, Cyprinid'lerin farinks ve Salmonid'lerin Vomer kemikleri) çok yararlı olabilmektedir. Bazı türlerin yaş ve büyümelerine ilişkin bilgilerin elde edilmesinde belli bazı kemiklerin büyük önemi vardır; Percidae ve Esocidae üyelerinin operküler kemikleri gibi. Bütün böyle kemiklerin incelenme ve bunu izleyerek saklanmaları için hazırlanmaları oldukça basittir. Bunun için daima taze ya da dondurulmuş materyal kullanılmalıdır. Zira önceden tespit olmuş materyal bu amaca uygun değildir. Gerekli kemikler ilgili balıktan üzerlerindeki diğer dokularla beraber kesilerek çıkarılırlar. Sonra herbir kemik birkaç dakika çok sıcak suya atılır ve nihayet yumuşak dokuları temizlemek için küçük ve sert bir fırça ile dikkatlice fırçalanır. Kemik tamamen temizleninceye kadar buna devam edilir. Sonra temiz bir kağıt üzerine konarak ılık bir ortamda yavaş yavaş kurumaya bırakılır. Kemiğin çıkarıldığı balığa ait gerekli bilgiler (tür adı, lokalitesi, tarih, toplayanın adı, boy ağırlık ve seks durumu) etiketine yazılır.Toplanan örneklerin tayini yapılırken bazı kuşku uyandıran durumlar varsa o türe ait biraz daha fazla örnek, yukarıda açıklandığı şekilde öldürülüp muhafazaya alınarak incelenmek üzere, toplanmasıyla ilgili tüm verilerle birlikte o konuda otorite sayılan bir ihtiyoloğa gönderilmelidir. Genellikle örneklerin taze olarak posta ile gönderilmesi iyi sonuç vermez, çünkü fikse edilmemiş örneklerin oldukça süratli bozulmaları söz konusudur. Tespit edilmiş örnekleri göndermeden önce örneklerden tespit solüsyonu iyice süzülmeli ve aynı solüsyon ile ıslatılmış nemli tülbent bezine sarılan bu örnekler sonra da bir naylon torba içine yerleştirilmelidir. Bu paketçik, içinde ambalaj materyali bulunan sert bir kutu içine konup, tümü tek bir paket yapılarak gönderildiğinde, örnekler mükemmel bir şekilde alıcısına ulaşmış olurlar.

http://www.biyologlar.com/balik-orneklerinin-toplanmasi-ve-tespiti-1

Köpek Balıkları

Köpek Balıkları

Köpek balığı (Selachimorpha), kıkırdaklı balıklar (Chondrichthyes) sınıfının Elasmobranchii alt sınıfını oluşturan iki üst takımdan biri olan Selachimorpha (diğeri, Batoidea) içinde sınıflanan canlı türlerinin ortak adıdır.Beslenmelerine göre üç gruba ayrılırlar.Serbest yüzen deniz canlılarıyla beslenenler: Hexanchus, Lamnidae, Alopias, Carcharhinidae, Squalidae, SomniosusTabanda yaşayan deniz canlılarıyla beslenenler: Heterodontida, Scyliorhinidae, Triakidae, Oxynotidae, Echinorhinidae, Pristiophoridae, SquatinoideiPlanktonla beslenenler: Dev köpek balığı (Cetorhinus maximus), balina köpekbalığı (Rhincodontidae)Vatozlar gibi köpekbalıklarının kanında da diğer canlılara nazaran daha fazla üre bulunur (% 05 - 8). Bu oran Teleostei balıklarınkinden yaklaşık yüz misli daha fazladır.Birim hacimdeki alyuvar sayısı Teleostei balıklarınkine göre yaklaşık 5-8 misli daha azdır. Bu eksiklik her alyuvarın yüzeyinin yaklaşık 5 defa daha büyütülmesi ile giderilmiştir. Sınıflandırma  Takımlar Üst alem:     Eukaryota - ÖkaryotlarAlem:     Animalia - Hayvanlar (Hayvanlar)Alt alem:     Eumetazoa - Gerçek dokulular(Grup)     Bilateria - Bilateral simetrililerÜst şube:     Deuterostomia - İkincil ağızlılarŞube:     Chordata - Kordalılar (Kordalılar)Alt şube:     Vertebrata - Omurgalılar (Omurgalılar)İnfa şube:     Gnathostomata - GerçekçenelilerSınıf:     Chondrichthyes - Kıkırdaklı balıklarAlt sınıf:     Elasmobranchii - YassısolungaçlılarÜst takım:     Selachimorpha- Köpekbalıkları    Carcharhiniformes    Heterodontiformes    Hexanchiformes    Lamniformes    Orectolobiformes    Pristiophoriformes    Squaliformes    Squatiniformes    Xenacanthida (soyu tükenmiş)  

http://www.biyologlar.com/kopek-baliklari

Eletrikli Vatozlar

Eletrikli Vatozlar

Vatoz, Rajiformes takımına özgü balıkların ortak adıdır.Vatozlar, köpekbalıkları ile birlikte bir kıkırdaklı balık olarak sınıflandırlır. Vatozların diğer balıklardan en önemli farkları arasında iyice yassı olan gövdeleri, çok uzun ve ince olan kuyrukları ve biçimi kelebek kanadını andıran büyük yüzgeçleri sayılabilir. Vatozların gözleri yassı gövdelerinin üzerinde, ağızları ve solungaçları ise gövdelerinin altında yer alır.Her bir vatozun ayrı avlanma yöntemleri vardır. Bazı vatozlar deniz tabanında gizlenip avları olan küçük balıkları ve kabukluları avlar. Bu vatozlar ise ya renkleri ile kumda saklanır ya da kendilerini kuma gömerler. Bir kısmı ise denizde yüzüp karşılarına çıkan balık ve planktonları koca ağızlarından içeri alırlar. Bu vatozların renkleri genelde mavi ya da gri olur.Vatozların uzun kuyrukları ise sadece savunma amacı ile kullanılır. Vatozların kuyruklarında elektrik vardır. Bu elektrikten köpek balıkları bile korkar.Kuyruklarındaki elektrik vücutlarındaki özel bir organdan sağlanır ve ölümcül tehlikelere yol açar. Vatozların yumurta keselerine biçimleri nedeni ile "denizkızının çantası" denilir.

http://www.biyologlar.com/eletrikli-vatozlar

Likenlerin Özellikleri

Likenler başlıbaşına birer organizma değildirler. Mantarlar ile alglerin birleşerek morfolojik ve fizyolojik bir bütün halinde meydana getirdikleri simbiyotik birliklerdir (Güner 1986). Likenlere katılan alg ve mantar genellikle serbest yaşayan akrabalarından farklı formda ve tutumdadırlar (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Renksiz bir mantar hifinde oluşan tallusun yapısına algin katılması sonucu ortaya renkli klorofili olan yepyeni ototrof bir bitki çıkar (Güner 1986). Likendeki alg ve mantar kendilerini çoğaltabilecek bir form oluşturmak için bir araya gelirler Diğer türlü tutunamadıkları habitatlarda birliktelik oluşturur ve yayılırlar Likenler, alg ve mantarların nadir oldukları yerlerde yayılmışlardır Mantar hifleri, liken tallusunun ihtiyacı olan su, CO2 ve mineral maddeleri temin eder. Alg hücreleri ise mantara, klorofili vasıtasıyla sentezlediği organik maddeleri ve oksijeni sağlar Mantar bu besinleri alg hücrelerinin içerisine kadar uzanan boruları sayesinde emer. Özgül yaşam şekilleri sayesinde likenler ekstrem koşullarda yaşam şansı kazanır (Güner 1986). Alg hücreleri mantar dokularıyla kaplanmıştır, böylece mantar onları şiddetli ışık, kuraklık ve ısıdan korur Likenlerin yapısına katılmada en çok rastlanan alg türleri özellikle Cyanophycea (mavi-yeşil algler) veya Chlorophycea (yeşil algler) üyeleridir. Mantarlardan ise çoğunlukla Ascomycetes nadir olarak ise Basidiomycetes cinsleri katılır (Güner 1986). Likenler mantarların sistematik bir grubu değildir, bir biyolojik gruptur. Liken birlikteliğini yalnızca mantar ile alg veya mantar ile siyanobakteri oluşturmaz. kidenfazla organizmadan oluşmuş likenler de vardır ve bunlar içerdikleri canlı sayısı veya çeşidine göre Hawksworth tarafından farklı gruplara ayrılmışlardır (Hawksworth1976). Likenler sistematikçiler tarafından değişik şekillerde sınıflandırılmıştır. Sınıflandırma yapılırken; tallus yapıları, morfolojik yapıları, üzerinde büyüdükleri bitki substratları, likeni oluşturan mantarın sınıfı dikkate alınmıştır. 1.1.1 Likenlerin sınıflandırılması 1.1.1.1 Tallus yapılarına göre likenler Alg ve mantarın birbiri ile karışımı değişik şekillerde olabilir. Eğer alg ve mantar tallus yapısında homojen bir dağılım gösteriyorsa böyle likenlere ‘Homeomerik’ liken, alg ve mantar türleri arasında farklı dağılım varsa bu tiplere ‘Heteromerik’ liken adı verilir. Homeomerik tip talluslu likenlerde tallus, jelatini andıran müsilajımsı yapıdadır. Alg ve mantar türleri ayrı bir tabaka oluşturmaksızın birbirleri ile karışmışlardır (Güner1986). Mantar miselyumu, algin salgıladığı müsilaj içerisinde homojen olarak dağılmıştır. Likenin şekli alg tarafından belirlenir (Yurdakulol ve Yıldız 2002). Heteromerik tipi talluslu likenlerde algler üst kabuk tabakası ile orta kısım arasında bir tabaka oluşturur (Şekil 1.1). Diğer kısımlar sıkı veya gevşek olarak mantar hiflerinden oluşmuş dokular halindedir. Likenlerin çoğu bu tipe dahildir. Üst kabuk tabakasının altında alglerin oluşturduğu ‘gonidiyum’ tabakası bariz olarak ayırt edilebilir (Güner1986). Bunun altında mantar hiflerinden oluşmuş ‘medulla’ isimli tabaka bulunur. Örnek olarak Hypogymnia cinsini verebiliriz. Heteromerik likenlerde, likenin şekli içerisinde alg içeren zonları olan mantar tarafından belirlenir (Yurdakulol ve Yıldız 2002). Likenler bulundukları ortama ve beraber yaşadıkları bitkilerin durumlarına göre değişik şekillerde olabilirler. Onlar dış görünüşlerindeki değişikliklere göre de çeşitli tiplere ayrılırlar. 1.1.1.2 Dış görünüşlerine göre likenler 1.1.1.2.1 Kabuksu (Crustose) likenler Üzeri boyanmış tahta görünümündedirler (www.ipcc.ie/infolichens.html, 2004). Kayalar üzerinde gelişirler (Güner 1986). Yassı tallusları kabuk şeklindedir ve tüm altyüzeyi ile ortama sıkı sıkıya bağlanarak yaşadıkları yüzeyde kabuk oluştururlar. Bu kabuk oldukça kalın ya da yüzeyin içine doğru gömülüdür. Substratından kazıyarak ayrılabilir (www.mdc.mo.gov /conmag/1998/10/20.htm, 2004). Salgıladıkları liken asitleriyle bazen kayaları eriterek içine kadar girerler. Bunlara endolitik likenler denir. Liken asitleri, değişik karakterdedirler; parlaktırlar hiflerin ve tallusun yüzeyini örterler, kristalimsi yapıları andıran pulcuklar halinde göze çarparlar (Güner 1986). 1.1.1.2.2 Yapraksı (Foliose) likenler Toprak istekleri çoktur. Çıplak kayaların üzerinde görülmezler. ki koruyucu mantar tabakaları vardır. Tallusları küçük veya büyük loplara ayrılmıştır (Güner 1986). Kökyapıları sayesinde yaşadıkları yüzeyden biraz yüksekte dururlar. Büyüdükleri ortamlara rizoid şeklinde hifler gönderirler Substratlarına hafifçe bağlıdırlar (www.ipcc.ie/infolichens.html, 2004). Çoğu foliose tipler yılda 2 veya 5 mm büyürler (Armstrong 2004). Parmelia, Lobaria, Hypogymnia cinsleri yapraksı likenlere örnek olarak verilebilir. 1.1.1.2.3 Dalsı (Fruticose) likenler Tıpkı çalıya benzer, oldukça büyük likenlerdir. Yaşadıkları yüzeylere tek bir noktadan bağlıdırlar. Ağaçlar üzerinde gelişirler. pliksi veya şeritsi tallusları diktir. Likenler üzerlerinde büyüdükleri zemine göre de isimlendirilirler. Toprakta büyür sterrikolous, kayalarda büyürse saksikolous, ağaçlarda büyürse lignikolous, ağaç kabuklarında büyürse kortikolous, karayosunları üzerinde büyürlerse musikolous, likenlerin üzerinde yetişirlerse likenikolous likenler olarak isimlendirilirler. Tallusları çok sık dallanmıştır (Güner 1986). Kolayca substratlarından ayrılırlar Usnea cinsi likenler dalsı likenlere örnek olarak verilebilir. 1.1.1.3 Yapısına katılan mantarın cinsine göre likenler Likenler yapısına katılan mantarların sınıfına uygun olarak başlıca iki sınıfa ayrılırlar. 1.1.1.3.1 Ascolichenes (Aksuslu likenler) Alglerin askuslu mantarlarla birlikte oluşturdukları bir simbiyoz yaşamlı bitkilerdir. Likenlerin çoğu bu gruba dahildir. 1.1.1.3.2 Basidiolichenes (Bazidiyumlu likenler) Genellikle tropikal bölgelerde rastlanır. Likenler, deniz kıyısından en yüksek dağlara, sıcak bölgelerden kutuplara kadar geniş bir yayılım alanına sahiptirler, en kötü şartlar altında dahi gelişebilmektedirler. Tallusları çok yavaş büyür (Güner 1986). Toprakta, kayalarda, taşlarda, ağaçlarda, ağaç kabuklarında dallarda, kemiklerde, deride, yünde, kerestelerde, evlerin duvarlarında, anıtlarda, kiremitlerde, mezar taşlarında, camlarda ve eski demir alet ve eşyalarda büyüyüp gelişebilirler (Yurdakulol ve Yıldız 2002). Likenler yağmurdan hatta likenle çok kısa süre temasa geçen çok seyreltik bir akıntıdan bile besin sağlayabilirler, biriktirebilirler. Bazı likenler sadece özgül habitatlarda bulunurlar mesela yalnız bir çeşit ağaç veya kaya üzerinde. Aynı zamanda bir ağaç gövdesinde 30 dan fazla liken çeşidine rastlamak da mümkündür. Dar habitat koşullarında yaşayan likenler habitat şartlarına karşı oldukça hassasdırlar, mesela bazı türler hava kirliliğine hassasdırlar ve hava kalitesinin ölçülmesinde kullanılırlar. Bu hassasiyetlerine karşı çok sert doğa koşullarına karşı dayanıklıdırlar (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Çok yavaş büyürler ancak çok yaşlanabilirler, 6000 yıldır yaşayanları tespit edilmiştir ve büyük ihtimalle dünyada yaşayan en yaşlı organizmadır (Ulrik 1999). 1.1.2 Likenlerin çoğalması Likenler iki şekilde çoğalırlar. Mantar kısmı keselerde spor üretir ve bu sporlar likenden salınır. Hafif olan bu sporlar belli bir mesafe taşınabilir ve uygun alg veya bakteri partnerini bulursa yeniden bir liken oluşturabilir. Bulamazsa yaşayamaz, ölür. İkinci şekil ise daha güvenlidir; çoğu likenin yüzeyinde, ‘soredia’ adı verilen hem alg hem de mantardan materyal taşıyan, kahverengi veya siyah diskler bulunur Likenin yüzeyinde toz yumağı gibi görünürler, rüzgar, yağmur veya otlayan hayvanlarca taşınan soredialar yayılır ve yeni likenler oluştururlar (Şekil 1.5). 1.1.3 Likenlerin önemi Kayalar üzerinde gelişen kabuksu likenler oluşturdukları liken asitleri yardımı ilekayaları parçalayarak ortamda toprak oluşumuna neden olurlar. Liken asidi kalkerli ve granitik kayaları kademeli olarak parçalar. Zamanla buralarda parçalanma sonucu oluşan ufak taşcıklar üzerinde az toprağa ihtiyaç gösteren yapraklı kara yosunları gelişmeye başlar. Daha sonraları da parçalanmanın ilerlemesi ve karayosunlarının artıklarının birikmesi ile toprak miktarı çoğalmaya ve böyle yerlerde yüksek bitkiler büyümeye yönelir (Güner 1986). Böylece likenler bitki örtüsünün gelişim sürecinde öncü bitkiler olmuş olurlar (Yurdakulol ve Yıldız 2002). Likenler, genellikle acı kimyasallar içerdiklerinden yaban hayatın ana besin kaynağını oluşturmazlar ancak besin zincirinde önemli yere sahiptirler (www.mdc. mo.gov/conmag/1998/10/20.htm, 2004). Tırtıllar, solucanlar, sümüklüböcekler, salyangozlar likenlerle beslenirler. Likenle kaplı ağaçlar üzerinde yetişkin güveler mimikri yaparak dinlenirler (www.ipcc.ie/infolichens.html, 2004). Ağaç kabukları ve rutubetli ortamlardaki kayalar üzerinde gelişen yapraksı ve dalsı likenler hayvan besini olarak kullanılmaktadır. Bunların başında arktik bölgelerde bol gelişen ve ren geyiklerinin önemli besinlerini oluşturan Cladona rengiferina ve Cetraria islandica türleri gelmektedir. Ayrıca bu tip likenlerden alkol de elde edilmektedir (Güner 1986). Çoğu kuş likenleri yuva yapımında kullanır, Missouri’nin en renkli ötücü kuşu Parula yuva yapımında Usnea likenini ya da spanyol yosununu tercih eder. İnsanlar, yüzyıllardır likenleri boyamada kullanmışlardır, Romanlar mor boyasını likenlerden elde etmişlerdir, iskoçya’daki geleneksel erkek eteklikleri liken ekstratlarıyla boyanmıştır (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Hintliler kilimlerinde liken boyalarını kullanmışlardır. Ressamlar vivid morunu elde edebilmek için likenlerden faydalanmışlardır (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Likenlerden yapılan çay ve merhemler tüm dünyada geleneksel ilaç olarak kullanılmıştır. Likenler ayrıca modern ilaç, antibiyotik ve kremlerde kullanılmıştır. Parfüm endüstrisinde, fiksatif olarak kullanılırlar, parfümün kokusunun yavaşça dağılmasını sağlarlar (Ulrik 1999). Liken asitlerinin bazı maddelerle reaksiyon vermeleri, ayrıca bazı boya maddelerini içermeleri ve antibiyotik içeren cinslerinin olması likenlerin önemini arttırmaktadır. Roccella türlerinden asit/baz indikatörü olarak kullanılan turnusol elde edilir. Afrika ve Arabistan’da yetişen Aspicilia esculanta (Manna likeni)’ dan ekmek yapılmaktadır. Çalımsı yapıda ve sert olan türlerin üretimi yapılarak evlerde ve benzeri yerlerde dekorasyon işlerinde kullanılmak üzere pazarlarda satılmaktadır. İskandinav ülkelerinde bu türler mezarlarda çiçek yerine tabutun başına konmaktadır (Güner 1986). Bazı liken türleri kumlu topraklarda oldukça yaygındır. Rüzgara karşı toprağa iyitespit olarak erozyonu önlerler. Amerika’nın doğusunda kullanılmayan yollarda Baeomyces roseus killi topraklara iyi tutunarak su erozyonunu önler (Yurdakulol ve Yıldız 2002). Likenler kirliliğin belli bir seviyesine sülfürdioksitten dolayı hassastırlar, Bu yüzden çevreciler tarafından hava kirliliğinin ölçümünde kullanılırlar. Likenler sünger gibi kirletici maddeleri emerler, onların kimyasal analiziyle araştırıcılar havada ne olduğunu söyleyebilirler (www.ipcc.ie/infolichens.html, 2004) 1.1.4 Hypogymnia Cinsi Bu çalışmada Türkiye’nin değişik yörelerinden toplanmış Hypogymnia cinsine ait liken türleriyle çalışılmıştır. Bu çalışmada kullanılan Hypogymnia cinsine ait örneklerden bazıları Şekil 1.6’da gösterilmiştir. Hypogymnia’lar, uzun süre çok fazla benzer özellik taşıdığı Parmeliceae familyasının üyesi olarak kabul edilmiştir. 1960 yılında Nylander tarafından rizoidlerinin bulunmayışı ile Parmelia cinsinden ayrılmış (Nylander 1896) ve Poelt tarafından Hypogymniaceae familyası olarak tanımlanmıştır (Poelt 1973). Sonrasında Hypogymnia cinsinde tallusun şişkin ve iç kısmını boş olduğu göz önüne alınarak tallusları dolu bireyleri, Goward tarafından Brodoa cinsi olarak ayrı bir familya altında toplanmıştır (Zeybek vd. 1993a). Bitter Hypogymnia türlerinin sınıflandırmasında soralia morfolojisinin iyi bir karakter olduğunu savunmuştur (Bitter 1901). Modern liken sistematiğinde Hypogymnia cinsi, Hypogymniacea familyası, Lecanorales ordosu altındadır (Zeybek vd. 1993a). Sonraki dönemlerde bu cins üzerine Krog ve Elix’in çalışmaları olmuştur. Krog Artrik ve Boreal Kuzey Yarımküredeki türlere yoğunlaşırken (Krog 1968), Elix Avusturalya ve Doğu Asya’daki bireyleriyle ilgilenmiştir (Elix 1979). Ülkemizde ise bu cins üzerine çalışan araştırmacılar Ulvi Zeybek ve Volker John’dur. Bu araştırmacılar, Türkiye’deki Hypogymnia türleri üzerine yaptıkları taksonomik çalışmada türlerin morfolojik özelliklerine göre ayrımını sağlayan bir tür tayin anahtarı oluşturmuşlar ve Türkiye'deki yayılış alanlarını açıklamışlardır (Zeybek vd. 1993a). Başka bir çalışmalarında ise yalnızca morfolojiyle tanımlamalarının zor olduğunu söyledikleri Hypogymnia bireylerinin farklılıklarını kimyasal analizler yaparak ortaya koymuşlardır. Bu çalışmalarında likenlerin ikincil metabolitlerini tanımlamışlardır (Zeybek vd. 1993b). Hypogymnia cinsi, içi boş şişkin loplara sahip birbirine morfolojik ve anatomik olarak oldukça benzeyen türlere sahip bir taksondur. Tallusları iyi gelişmiştir. Rizoidleri yoktur. Lobların kenarları siyah buruşuk, üst kısımları ise beyaz-beyazımsı gridir, bazı türlerinde uçları ince kahverengi veya siyah çerçevelidir. Lopların kenarları içe kıvrık ve iç kısımları bağlantısızdır (hypo:alt, gymnia:çıplak ) Türlere göre başsı, dudaksı, yüzeysel veya yüksük şeklinde soralleri vardır. Apotesiyum bulunan türlerinde sorallerin ender oluşu tipiktir. Tallusun anatomik yapısı heteromeriktir. Apotesiyumda gelişen askosporangiyumlar 8 sporludur. Sporlar renksiz, uç kısımlarında iyod ile maviye boyanan yüksük bulunur (Zeybek vd .1993a). Bu cinsin taşıdığı en önemli karakteristik özellikleri; Sorelia lokasyonu, kısa yan lopların varlığı veya yokluğu, lobların renklenmesi, lop çapları ve dallanma şekilleri, şişkin, topuz-boğum tipi lopların varlığı, yassı veya yassı olmayan büyüme şeklidir. Ancak bu özellikler de türlerin birbirinden ayrımında bazen yeterli olamamaktadır(www.blm.gov/or/plans/surveyandmanage/MR/...2/Lichens-346949.pdf., 2004). Hypogymnia cinsine ait bireyler, küçük yüzeyler üzerinde büyüyebilme yeteneklerinden dolayı genç dallar ve kökler üzerinde bulunabilmektedirler. Kırlarda nemli koşullarda genellikle çalılıkların köklerinde bulunmaktadırlar. Yaygın olarak asit habitatlarında yaşarlar. Ağaçlık alanlarda huş gibi düşük pH’lı kabuklu ağaçlar ya da Picea gibi korniferler üzerinde yetişmektedirler (www-biol.paisley. ac.uk/bioref/Fungi_lichens/ Hypogymnia_physodes.html, 2004). Asidik koşullara dayanıklılığından dolayı sülfürdioksit kirliliğinin yüksek seviyelerinde yaşayabilirler ve bu özellikleri sayesinde biyoindikatör olarak da kullanılmaktadırlar. Ayrıca Fransa’da, Kuzey Avrupa ve Güney Afrika meşelerinden elde edilen Hypogymnia cinsi liken ekstraktları parfüm endüstrisinde kullanılmaktadır. Bu çalışmada Türkiye’de bulunan Hypogymnia cinsine ait türlerin rDNA ITS bölgesi dizi analizi ile çeşitliliklerinin tanımlanması amaç edinilmiştir. Çalışmaya bu cinse ait dört farklı türün farklı lokalitelerden toplanmış örenekleriyle başlanmıştır. Bu türlerin isimleri ve morfolojik özellikleri aşağıdaki şöyledir. Hypogymnia farinacea Zopf Sinonimleri: Parmelia farinacea Bitter, Hypogymnia bitteriana (Zahlbr.) Krog, Parmelia bitteriana Zahlbr. Tallusları gri renkli, rozet durumludur, 1-3mm eninde dar loplu ve yatıktır. Yukarı kalkık lop uçlarında başsı soralleri sıktır. breli ve iri yapraklı orman ağaçları kabuklarında yoğun birlikler oluşturur. Odun ve taşlar üzerinde seyrek bulunurlar. Ülkemizde zmir, Muğla, Hatay illerinde yaygındır. Hypogymnia laminisorediata D. Hawksw. et Poelt Tallusları gri renkli, parlak değildir. Lopları 2-5 mm eninde geniştir. Uçları çoğunlukla siyah çerçevesiz, ender olarak çerçevelidir. Tallus yüzeyinde siğilimsi isidiyuma benzer çıkıntılar vardır. Apotesiyumları irili ufaklı gruplar halinde ve kalın saplıdır. Ülkemizde zmir, Manisa illerinde dağılım göstermektedir. Hypogymnia physodes, (L.) Nyl. Sinonimi: Parmelia physodes (L.) Ach. Talluslarının morfolojik yapısı ortama göre değişkendir, gri renklidir, parlak değildir.

http://www.biyologlar.com/likenlerin-ozellikleri

Platyhelmintheslerin Tayin Anahtarı

1. Strobila monozoik (üreme organları bir takım) ; embriyo altı çengelli............ ..................... ........................................................Classis: Cestodaria (Amphilina)1. Strobila polyzoik (Spathobothriidea hariç herhangi bir takım üreme organı kapsayan birçok progllittidler) veya monozoik (Caryophyllidea) ; embiryo altı çengelli........................................................................................Classis: Cestoda. 22 . Segmentasyon yoktur.................................................................................32 . Segmentasyon genellikle belirgindir..............................................................193 Skolekste gerçek bothria yoktur; dış segmentasyon yoktur fakat ganotlar çoktur........Dizi : Spathebothriidea 44. Yapışma organı huni şeklindedir..............................Aile:Cyathocephalidae 64. Yapışma organı bir veya iki dorsal ve ventralde , apikale açılan yuvarlak boşluk mevcuttur........Aile : Diplocotylida. 5. Skolekste içten birbirinden tamamen ayrılan boşluklar: genital açıklık ventralde Soy : Diplocotyle5. Skoleksteki boşluklar birleşmiş ; genital açıklık dorsalden ventrale düzensiz olarak değişir..................................................Soy ; Bothriomonas6. Cirrus utero- vaginal kanala açılır........................76. Cirrus ayrı olarak utero- vaginal kanalın ön kısmına açılır......... .................127. Uterus kıvrımları cirrus kesesinin önüne uzanır..............................................87. Uterus kıvrımları cirrus kesesinin önüne uzanmaz........................................108. Ovaryum (U) veya (V) şeklindedir..........................................Soy; Spartoides8. Ovaryum (H) şeklinde............... ..............................99. Skoleks’te iki tane tabak şeklinde çöküntü ; boyun uzun ve dar..........Soy : Biacetabulum9. Skoleks’te üç çukurluk ; boyun kısa ve geniş.........................Soy: Archigetes10. Ovaryum (V) veya (U) şeklindedir.......................................Soy;Bialovarium10. Ovaryum (H) şeklinde...................................................................................1111. Skoleks yelpaze şeklinde , anteriör ucu saçaklı;çukurluk yoktur..................... ..............................................................................................................Soy; Khawia11.Skoleksin anteriör ucu yuvarlak ; iki çukurluk vardır....................... ....................................................................................................Soy ; Pliovitellaria12. Uterus kıvrımları cirrus kesesinin anteriörüne uzanır.....................................1312. Uterus kıvrımları cirrus kesesinin anteriörüne uzanmaz.................................1413. Skoleks büyük , anteriöre doğru genişlemiş olup iki büyük ve derin bothria vardır...............................................................................................Soy : Capingens13. Skoles küçük olup üç çift çok az belirgin çöküntü vardır................................... .........................................................................................Soy: Hypocaryophyllaeus 14. Skolekste çöküntü veya bothria vardır.............................................................1514. Skolekste çöküntü veya bothria yoktur............................................................16 15. Skoleks içe dönük ; çöküntü var veya yoktur; genellikle post – ovarian ; vitellaria yoktur.......................................................................Soy : Monobothrium15. Skoleks yelpaze veya kalkık yassı disk şeklinde ;üç çift çöküntü ; post-ovarianvitellaria vardır....................................................................Soy:Glaridacris16. Post-ovarian vitellaria yoktur..........................................Soy: Pseudolytocestus16. Post-ovarian vitellaria vardır............................................................................1717. Skoleks yassılaşmıştır.......................................................Soy: Caryophyllaeus17. Skoleks konik olup içe dönük yapıya sahip olabilir........................................1818. Skoleks büyük olup gövdeden geniştir; dar boyun yoktur; kısa, küt yapıda..............................................................................................................Soy: Huntarella18. Skoleks küçük; dar boyun vardır;ince ve uzun yapıda........................................................................................................................................Soy:Atractolytocestus 19. Skolekste iki botria .............................................Dizi: Pseudophyllidae 20(X)19. Skolekste dört botria ......................................................Dizi: Tetraphyllides 2319. Skolekste dört emici.................................................Dizi: Probeocephalidea 2420. Skolekste kitinli çengeller ..........................................................................................................................................Aile :Trisenophoridae (Soy: Triaenophorus) 20. Skolekste kitinli çengeller yoktur....................................................................2121. Genital atrium marginal; skoleks subspherial ve genellikle yüzeysel olmakla beraber belirgin......................................................................Aile: Amphicotylidae21. Genital atrium medialde ;skoleks uzunca .......................................................2222.Yüzeysel bothrialı pseudoskoleks vardır ; primer skoleks dört tentaküllü ; küçük kurtlardır........................................Aile:Haplobothridae (Haplobothrium) 22.Skoleks dört loblu , az çok köşeli olup uzun yüzeysel bothriası vardır; orta veya büyük kurtlardır..........................................................Aile Bothriocephalidae23. Skolekste apikal emici; her bothriumun anteriör sınırının önünde yardımcı emici vardır.........................................................................Soy : Pelichnibothrium 23. Skolekste apikal emici yoktur; her bothrium bir veya iki yardımcı emici vardır.......................................................................................Soy: Phyllobothrium 24. Skoleks anteriöre doğru genişlemiş olup emiciyi örten vücut kıvrımı vardır.....................................................................................Soy: Corralobothrium24. Skolekste emiciyi örten vücut kıvrımı yoktur....................................................25. Testisler bir tek alan içinde ................................................Soy: Proteocephalus25. Testisler iki ayrı lateral alanda ...............................................Soy: Ophiotaenia (Ekingen,G.,1983 )

http://www.biyologlar.com/platyhelmintheslerin-tayin-anahtari-1


SÖLENTERLER

Vücutlarının merkezinde bir sindirim boşluğu bulunur. Vücutları iki tabakadan oluşmuştur. Dış hücre tabakasında yakıcı kapsüller vardır. Bu kapsüller canlıyı düşmanlarına karşı korur. Hayvanlar dünyasının ilk gerçek sinir hücreleri sölenterlerde bulunur. Deniz anası, hidra ve mercanlar sölenterlerdendir. MERCANLAR: Knidlilerin mercanlar üst sınıfına bağlı olan, özellikle tropikal denizlerde her zaman bir yere bağlanarak yaşayan ve iskeleti kireçtaşından oluşan hayvan. Kırmızı mercan üstünde, poliplerin yerlerini belirleyen küçük şişkinliklerin bulunduğu çok dallanmış lal rengi “küçük çalı” görünümündedir. Çiçek gibi açabilen poliplerin beyaz rengi, kırmızı renkli polipöbeği üstünde belirgin bir biçimde ayırt edilir. Bu tür bir ortocorallia olduğu için her polipin küçük çıkıntılarla örtülü sekiz dokunacı vardır. Söz konusu polipler, bir çeşit jelatinsi tabaka olan mezoglea içine kök salarlar. Mezoglea, iğnecik olarak adlandırılan kaynaşmış parçalardan oluşmuş kireçtaşından (kalker) bir eksen iskeletin üstünü kaplar: Bu iskelet kuyumculukta kullanılır. Polipöbeği, polipleri birbirine bağlayan ve besin dğimşimlerinin sağlayan kanallar nedeniyle derin çizgili bir görünüm almıştır. Kırmızı mercan özellikle 45 ve 90 metre derinlikler arasında yaşar; Octocorallia sınıfı, daha birçok önemli tipleri kapsar. Gorgonlarda renk daha az canlıdır ve eksen iskeleti kireçten daha çok boynuzsu yapıdadır. Kolonileri tek bir düzlem üstünde yassılaşmıştır ve dalları aralarında birleşebilen “yelpazeler” oluştururlar. Alkyone’de sert bir iskelet bulunmaz, kireçli olan iğnecikleri yalın bir biçimde mezokleanın içinde dağılmıştır. Kolonileri parmak biçimindedir. Sarı ya da portakal rengi olan bu koloniler özellikle deniz mağaralarının çeperlerini süslerler. Parerythropodium cinsinden bir Alkyone ölü bir gorgonun üstüne tutunarak onun biçimini alır. Hexacorallia dan olan madreporlar sürekli olarak mercan diye adlandırırlar. Bunların çoğu, kireçli bir dış iskeleti olan ve koloni halinde yaşayan hayvanlardır, sıcak ve berrak denizlerde gelişen bu mercanlar, biyoloji ve jeoloji açısından büyük önem taşıyan mercan resiflerini oluştururlar. Mercan Resifleri: Deniz düzeyinde çoğalıp yayılan mercan ve öbür deniz organizmaları yığınları olan mercan resifleri özellikle Büyük Okyanus’ta ve Hint Okyanusu’nda yaşarlar ve değişik görünümlerde olurlar. Bir resif, kıyıya yapışarak oluştuğunda kıyı resifi adını alır; ayrıca kıyıya paralel olarak ve belli bir uzaklıkta gelişen resifler de vardır (set resifi). Bunun en belirgin örneği, Avustralya açıklarındaki Büyük Set’tir. Yaşayan organizmalar tarafından oluşturulmuş en katkısız resiflerini mercan adasıdır (atom); bu, açık denizde yer alan dairesel biçimde ve suyun yüzüne çıkmış bölümünün içinde bir deniz gölcüğü (logon) bulunan çok basık bir adadır. Resiflerin oluşumuna karışan organizmalar çeşitlidir. Bunlar arasında önce fazla kireçleşmiş iskeleti olan madreporlar gelir, ama suyosunları ve yumuşakçalar da vardır. Mercanlar çok hareketli bir suda etkili bir biçimde yaşayamadıkları için bunların dayanaklarını suyosunları oluşturur. Büyük boy yassısolungaçlılar olan Tiridacna’lar resiflerin oluşumuna katılırlar. Knidliler dalının serbest yaşayan türü. Hemen hemen bütün medüzler denizde yaşarlar, ama seyrek olarak tatlı suda yaşayan türleri de vardır. Denizde serbest olarak yüzen ve çevresinden dalayıcı dokunaçlar çıkan çan biçimindeki jelatinsi medüzlere halk dilinde denizanası adı verilir. Bir medüz, şemsiye adı verilen ters dönmüş çanak biçimindeki bir bölümle, bunun alt yüzünün merkezine tutunmuş ağız borusu adı verilen dikey bir eksenden oluşur. Çevresine dokunaçların bağlandığı şemsiyedeki kasların kasılması, hayvanın ileriye doğru fırlayarak hareket etmesini sağlar. Medüzün çevresinde yer alan duyu organları bir sinir ağıyla bağlantılıdır. Ağız borusunun tabanında bulunan ağız, ışınsal kanallara bölünmüş karmaşık bir sindirim boşluğuna açılır. Çoğunlukla 4 tane olan bu ışınsal kanallar cinsellik bezlerini taşırlar. Suyun içindeki küçük hayvansal organizmalarla beslenen medüzlerin bedenlerinin büyük bir bölümü (%99’a kadar ) sudan oluşur. Çok büyük boylara erişenleri vardır: Sözgelimi, Cyanea capinnata’nın çapı 3m, dokunaçlarıysa 4m’dir. Medüzlerin üstderilerindeki yakıcı hücre ya da yakıcı kapsüllerin neden olduğu “dalama” öldürücü olabilir. Dokunaçlar insan bedenine deydikleri yerlerde ağrılı tahrişlere yol açarlar.

http://www.biyologlar.com/solenterler

Hücre bölünme kontrolü bozulursa ne olur?

Hücre bölünme kontrolünün ortadan kalkması sonucunda ya kanserlerde olduğu gibi aşırı hücre çoğalması ve buna bağlı hızlı hücre ölümleri, ya da hücre bölünmesinin yavaşlamasına bağlı doku kayıpları görülecektir.Yetişkin bir insanda, kan hücreleri dışında yaklaşık 1013-14 kadar hücre bulunmaktadır. Sayıları oldukça fazla olan bu yapı birimlerinde büyüklük açısından farklar da gözlenir. Örnek olarak, insanın en büyük hücresi dişi yumurta hücresi (=ovum) olup 200 μ büyüklüğündedir. Beyincikte 4 μ büyüklüğünde hücrelere rastlanırken beyinde piramidal hücreler 150 μ'a varan büyüklüktedir. Bu örnekleri genişletebiliriz. Hücre büyüklüklerinin canlıların büyüklüğü ile ilgisi yoktur. Vücut büyüklüğü hücre sayısına bağlıdır. Örnek olarak; farenin karaciğer hücresi ile filin karaciğer hücresi hemen hemen aynı büyüklüktedir. Dış görünümleri incelendiğinde her hücrenin belirli bir biçimi, büyüklüğü ve ağırlığı tanımlanır. Hücrenin kimyasal birleşimi %75-80 su, %15 protein (yapı proteinleri, enzimlen, aminoasitler) %3 yağ ve %1 elektrolitlerden oluşmuştur. Hücrenin şekli sitoplazma akıcılığı, yüzey gerilimleri ve komşu hücrelerden gelen basınç etkisi ile değişmektedir. Hücrelerin erken gelişim dönemlerindeki şekli yuvarlaktır. Organizmada Şekil 2.2'de örneklerini gördüğünüz şekilde, yuvarlak şeklini koruyan hücreler olmakla beraber, yassı, prizmatik, armutsu, piramidal ve kübik şekilli hücreler de bulunmaktadır. İnsan vücudunda 200 çeşidin üzerinde hücre tipi vardır. Bunlar epitel dokusu, bağ dokusu, kas dokusu, kemik dokusu ve sinir dokusu gibi dokularda yer alırlar. Dokularda çeşitli hücre tiplerini birarada görmek de mümkündür.

http://www.biyologlar.com/hucre-bolunme-kontrolu-bozulursa-ne-olur

Deniz Kaplumbağaları Hakkında Bilgi

Denizkaplumbağaları yaklaşık 95 milyon yıldan beri dünyamızda yaşamaktadırlar. Ataları, yıllar önce, dinazorların yaşadığı devirde deniz ortamına geçmiş dev kara kaplumbağalarıdır. İlk deniz kaplumbağaları bugünkülere pek benzemiyorlardı. Değişimleri milyonlarca yıl sürmüş ve ayakları yüzgeç şekline dönüşmüş, ağır ve kocaman gövdeleri yassılarak daha hafif ve su yaşamına elverişli bir biçim almıştır. Dinazorlar ve dev kara kaplumbağaları tamamen yok olmuşlardır; bugün ancak müzelerde fosillerini görebilmekteyiz. Fakat denizkaplumbağaları nasıl olduysa yaşamlarını sürdürebilmişlerdir. Bunların yedi değişik türü, dünyamızı çevreleyen sıcak ve ılıman okyanuslarda hâlâ yüzmektedirler. Dişilerin karaya çıkarak yuva yapıp yumurtladıkları kısa devreler dışında, bütün hayatlarını suda geçirirler. Denizkaplumbağaları denizi balıklarla, balinalarla, diğer deniz yaratıklarıyla ve bizlerle paylaşırlar. Ülkemiz sularında bu türlerden sadece iki tanesi yaşar: Sini Kaplumbağası (Caretta caretta) ve Yeşil Kaplumbağa (Chelonia mydas) Kristof Kolomb Yeni Dünya’yı keşfettiği zaman Karaib Denizi’nde milyonlarca denizkaplumbağası bulunuyordu. Kolomb ve onu onu takip eden diğer kâşifler, tüccarlar, sömürgeciler ve korsanlar özellikle bir tür denizkaplumbağasının etinin lezzetli olduğunun farkına vardılar. Bu kaplumbağa tamamen kahverengi olup, boyu 1 metreye, ağırlığı ise 136 kilograma kadar ulaşabiliyor ve kıyıya yakın sığ sularda yetişen deniz otlarıyla besleniyordu. Denizciler bu uysal hayvanı kolayca avlayabiliyorlardı. Onu, kabuğunun üzerine sırt üstü devirip savunmasız hale getirdikten sonra yüzgeçlerini bağlayıp taze ete ihtiyaçları olduğu zaman öldürmek üzere gemilerine götürüyorlardı. Bu kaplumbağa, vücudundaki yağın rengi yediği ottan dolayı yeşil olduğundan “yeşil kaplumbağa” diye isimlendirilmiştir. Otla beslenen tek denizkaplumbağası türüdür. Yüzyıllar sonra günümüzde de yeşil kaplumbağalar hâlâ avlanıp, öldürülmekte ve sayıları gün geçtikçe azalmaktadır. Sini Kaplumbağası (Caretta caretta) Sini kaplumbağası yeşilden biraz daha ufaktır. Ağırlığı 135-180 kilogram arasında değişer. Yengeç ve başka deniz hayvanlarıyla beslenir. Bu kaplumbağa mercan yuvaları ve kayaların yakınında avlanır. Büyük ve kalın kafası, geniş ve kısa boynuyla kolayca tanınabilir. Diğer denizkaplumbağaları gibi, bu da kara kaplumbağalarının tersine başını kabuğunun içine çekemez. Kabuğu bir zırh gibi olmakla beraber, başı ve yüzgeçleri korumasızdır. Bazı köpekbalıkları ve katil balinalar açıkta kalan bu kısımlara saldırabilirler. Fakat sini kaplumbağası iri ve hızlı olduğundan doğal düşmanı çok azdır. Yeşil Kaplumbağa Yumurtuyor Dişi yeşil kaplumbağa, her zaman yuvasını yaptığı kumsala tek başına çıktı. Bir süre önce yakın sularda bir erkek yeşil kaplumbağa ile çiftleşmişti. Artık yumurtlama zamanı gelmişti. Bir yumurtlama mevsiminde üç veya dört kere yumurtlayabilir. Suda ne kadar hızlı ve ortama uyumluysa, karada da tam tersine o kadar yavaş, hantal ve savunmasızdır. Dişi kendisini denizden dışarı zorlukla çekti ve kumsalda gelgit sularının erişemeyeceği kadar ilerledi. Yüzgeçleriyle vücuduna göre bir yuva kazdı. Yuvaya yerleşip arka yüzgeçlerini kürek gibi kullanarak şişe şeklinde bir delik kazdı. Sonra bu deliğe pingpong topuna benzer, beyaz ve kaplı görünümü veren yaklaşık yüz adet yumurta bıraktı. Kaplumbağa, yumurtlaması bittikten sonra yuvayı kumla örtecek ve arkasında traktör izine benzeyen bir iz bırakarak ağır ağır denize dönecektir. Ne yazık ki anne kaplumbağa yumurtalarını ne kadar çok tehlikenin beklediğinden habersiz. Çoğu kez insanlar, yumurtaları meraktan veya yemek için topluyor. Ayrıca köpek, tilki veya kum yengeci yumurtaları yemeye çok meraklı. Bu yüzden kaplumbağaların ürediği kumsallar mutlak koruma altına alınmalıdır. Yumurtadan Çıkan Yavrular Kumsala varan güneş ışınları kuma gömülü kaplumbağa yumurtalarını ısıtır. Yumurtalar yuvanın içinde gelişir ve iki ay sonra çatlamaya hazır hale gelirler. Yavrular burunlarının ucundaki sivri kısım ile yumurta kabuklarını delmeye başlarlar. Bu özel sivri kısım yumurtadan çıkınca kaybolur. Yavrular kabukları çatlatarak kırarlar. Hepsinin yumurtadan hemen hemen aynı zamanda çıkmaları gereklidir. Çünkü yuvadan kaçış işlemini elbirliğiyle yapmak zorundadırlar. Yavru kaplumbağalar başlarının üzerindeki kumu kazmaya başlarlar. Kum, boş kabuklarının üstüne düşerek çukurun içinde yükselmelerine olanak sağlayan basamaklar oluşturur. Birkaç gün içinde yuvanın tavanına varırlar. Derken bir gece veya bir sabah erken saatlerde kumsalda koyu renkli küçük kafalar ve yüzgeçler belirir. Beş santimetrelik yavrular sürünerek denize doğru yol alırlar. Denize Doğru Yarış Kaplumbağa yavruları deniz yönünü denizin pırıltısından hissederler. Suyun üzerindeki parlaklık onları çeker. Yuvadan çıkıp sel gibi akarak denize doğru yarışlarına başlarlar. Hayat dolu ama savunmasız yavrular, kumsal boyunca beceriksizce çabalayıp dururlar. Bunların da anneleri gibi denize varabilmeleri için etrafın tamamen karanlık olması gereklidir. Işık yanan bir ev, araba, sokak lambası varsa yavrular ışığa doğru ilerler ve sonunda hepsi ölürler. Yavruların gece çıkmalarının asıl sebebi ise kızgın güneşten korunmak içindir. Gündüz çıkacak olsalar güneşin kavurucu sıcaklığı onları derhal kurutup öldürecektir. Yumurtadan çıkan yavruların kabukları yumaşaktır ve kendilerini koruma nitelikleri çok az olduğundan pek çok doğal düşmana yem olur: Yengeç orduları onları yakalar veya deniz kuşları toplanıp, küçük kaplumbağaları keskin gagalarıyla yakalayıp kendilerine ziyafet çekerler. Yavrulardan çok azı denize varabilir ve bunların çoğu balıklara yem olur. Yavrulardan ancak bir, iki tanesi hayatta kalır. Yaşamlarının ilk yılını nerede geçirdikleri doğanın çok sayıdaki sırlarından biridir. Örneğin yeşil kaplumbağalar bir yaşına gelip kıyılardaki sığ sularda beslenmeye başlayana kadar hiç ortalıkta görünmezler. Bir yaşındaki yavrular bir yemek tabağı büyüklüğündedirler. Denizkaplumbağaları Nerelerde Yumurtlar? Denizkaplumbağaları dünya çevresindeki geniş, ılıman kuşak içinde yaşarlar. Akdeniz’de olduğu gibi Pasifik ve Atlantik okyanuslarında yaşayan kaplumbağa topluluklarının sayıları da her geçen gün azalmaktadır. Denizkaplumbağalarının başka bir özelliği büyüdükleri zaman yumurta bırakmak için doğdukları kumsallara geri dönmeleridir. Bu kaplumbağaların yumartlamak için binlerce kilometre yüzdükten sonra doğdukları yeri nasıl buldukları bilim adamlarınca halen tam anlaşılamamıştır. Akdeniz’deki denizkaplumbağalarının bir kısmının da sadece Akdeniz’de yaşadığı ve kışladığı sanılmaktadır. Kaplumbağaların bu göç hareketleri “markalama”, yani üzerlerine konan özel işaretler ile ancak izlenebilmektedir. Kaplumbağalar mı? Kaplumbağa Ürünleri mi? Denizkaplumbağaları dünyamızdan hızla yok olmakta. Oysa yok olan bir hayvan türü bir daha hiçbir zaman geri gelmeyecektir. Yok olma sebeplerinden biri de insanların kaplumbağaları çeşitli amaçlarla avlamasından ileri gelmekte. Bazı kaplumbağaların kabuğundan “bağ” denen taraklar, gözlük çerçeveleri, düğme vb. yapılmakta. Çok pahalı olan bu maddeleri artık insanların satması da alması da doğru değildir. Bazı kaplumbağaların derisinden çanta ve pabuç yapılmakta. Bazılarından ise çorba... Kimi yörelerde kaplumbağa kanının bazı hastalıklara iyi geldiği inancı yaygınsa da bunun doğru olmadığı artık anlaşılmıştır. Unutmayın, siz veya çevrenizdekiler yukarıda saydıklarımızı kullanıyorsanız, bu ender hayvanın yok olmasına sebep oluyorsunuz demektir. Kaplumbağa Avı Çok eskiden beri kıyılarda yaşayanlar, ailelerinin beslenmesine katkıda bulunmak için denizkaplumbağalarını avlamışlardr. Bazen tek bir balıkçı bir kaplumbağayı besin olarak kullanmak amacıyla zıpkınlamış; bazen de grup halindeki balıkçılar, soluk almak için su yüzüne çıkan kaplumbağları ağlarla yakalayıp yemek üzere köylerine götürmüştür. Yıllar boyunca denizkaplumbağalarının bol olduğu zamanlarda bu tip avlanmaların kaplumbağa sayısını çok az etkilediği zannediliyordu. Fakat denizkaplumbağasına istek giderek arttı. Ya kaplumbağa avlayıp satarak ya da kaplumbağadan yapılmış ürünler satılarak para kazanılıyordu. Denizkaplumbağası avlamak kazançlı bir iş haline gelmişti. Böylece avcılar kaplumbağaları kimi zaman denizde, kimi zaman da yumurtlamaya çıktıklarında daha yumurtalarını bırakamadan yüzlercesine yakalamaya başladılar. Kaplumbağalar giderek azaldılar ve hemen hemen yok oldular. Ülkemizde yasalar bütün denizkaplumbağalarını koruma altına almış ve kaplumbağa ürünlerinin ticaretini yasaklamıştır. Yine de bu yasaklara uymayan kişiler halen aramızda bulunmaktadır. Trolcüler ve Kaplumbağalar Dünyanın her yerinde ticari balıkçı tekneleri denizlerden yiyecek sağlar. Bu teknelerin bazıları kıyı sularında dolaşıp deniz dibini “Trol” denen büyük ağlarla tarayarak avlanırlar. Deniz dibini tarayarak yapılan bu tarz balıkçılık, balık, karides, mercan yuvalarına çok zarar verdiği gibi, ne yazık ki çoğu zaman Caretta Caretta cinsi kaplumbağalar da tesadüfen bu ağlara yakalanmaktadır. Örneğin, birçok kaplumbağa, karides trolcülerin büyük huni şeklinde ağlarına yakalanıp, karideslerle beraber ağın içinde sürükleniyorlar ve su yüzeyine çıkıp nefes alamadıkları için de boğulup ölüyor. Böylece az sayıda kalan denizkaplumbağaları daha da azalıyor. Bu soruna bir çözüm yolu bulunması gerekmekte. Amerika Birleşik Devletleri’nin güneydoğu kıyılarındaki karides balıkçıları bu konuda yardımcı olmakta ve sadece karidesi içine alıp, kaplumbağanın giremeyeceği şekilde yapılmış yeni ağlar yapmaktadırlar. Yumurtlayacak Yeri Yok Bir denizkaplumbağası Türkiye’nin güney sahillerinin cennet köşelerinden biri olan Side kıyılarında bir kumsala sürünerek çıkar, şaşırır. Bir de ne görür? Kumsalın büyük bir kısmını apartman ve oteller işgal etmiş. Geri kalan dar kumsal şeridinde ise insan kalabalığı vardır. Kaplumbağa tekrar denize açılıp gece geri döner. Bu sefer pencerelerdeki yüzlerce ışık ortalığı aydınlattığından kumsal pırıl pırıldır. Kumsalın bazı yerleri ise beton rıhtımlarla çevrelenmiş ve yükselmiş. Kaplumbağaya artık yumurtlayacak yer kalmamıştır. Kıyının başka bir yerinde başka bir kaplumbağa boş kalmış ufak ber kumsal şeridine çıkıp yumurtlar. Yavrular yumurtalardan çıkma günü gelince ışıklara doğru sürünürler. Fakat vardıkları yer deniz değil, yakındaki bir yolun sokak lambalarının ışığıdır. Ertesi gün yakıcı güneşin altında hepsi ölecektir. Bir zamanlar denizkaplumbağalarının güvence içinde yumurtlamalarına uygun yüzlerce kilometre uzunluğunda kıyılar vardı. Bugün artık her şey değişti. Bu bölüm hazırlanırken Doğal Hayatı Koruma Derneği'nin "Bütün Yönleriyle Denizkaplumbağaları" adlı yayınından faydalanılmıştır.

http://www.biyologlar.com/deniz-kaplumbagalari-hakkinda-bilgi

Kıkırdaklı balıkların özellikleri

Üst alem: Eukaryota - Ökaryotlar Alem: Animalia - Hayvanlar Alt alem: Eumetazoa - Gerçek dokulular (Grup) Bilateria - Bilateral simetrililer Üst şube: Deuterostomia - İkincil ağızlılar Şube: Chordata - Kordalılar Alt şube: Vertebrata - Omurgalılar İnfa şube: Gnathostomata-Gerçekçeneliler Sınıf: Chondrichthyes - Kıkırdaklı balıklar (Huxley, 1880) Kıkırdaklı balıklar ya da Chondrichthyes; karmaşık yapılı çiftleşme organları ve pulları olan balıklardır. İskelet birbiriyle birleşmiş omurlara sahiptir. Vücutları su damlası/füze (fusiform) şeklinde ya da yanlardan basık (dorso-ventral) şekilde yassılaşmış balıklardır. Vücut sıcaklıkları çevreye bağlı olarak değişen (poikloterm) canlılardır. Deri sert, plakoid pullarla kaplı ve bol miktarda mukus bezi içermektedir. Tek ve çift yüzgeçleri var olup, ventral yüzgeçler erkeklerde değişikliğe uğrayarak, kopulasyon organına dönüşmüştür. Kuyruk (kaudal) yüzgeci çatallı biçimdedir. Kalpleri bir kulakçık ve karıncık olmak üzere iki gözlüdür. Alyuvarları çekirdekli ve oval yapıdadır. Solungaçları 5-7 çifttir. Hava keseleri bulunmaz. Ağızlarında çok sayıda diş vardır. Ayrı eşeylidirler. Çiftleşme sırasında erkekler spermaların bir kopulasyon organı yardımıyla dişinin kloakına verir. Büyük yapılı yumurtalar segmentasyondan sonra yavaş yavaş gelişir. Bu gelişme süresi 9-25 ay arasında değişir. Alt sınıf Elasmobranchii - Yassısolungaçlılar Üst takım Batoidea - Vatozlar ve tırpana balıkları Takım : Myliobatiformes - Takım : Pristiformes - Takım : Rajiformes - Takım : Torpediniformes Üst takım Selachimorpha - Köpekbalıkları Takım : Hexanchiformes - Takım : Squaliformes - Takım : Pristiophoriformes - Takım : Squatiniformes - Takım : Heterodontiformes - Takım : Orectolobiformes - Takım : Carcharhiniformes - Takım : Lamniformes - Takım : †Xenacanthida - Takım : †Symmoriida - Takım : †Cladoselachiformes - Takım : †Eugeneodontida Alt sınıf Holocephali - Tümbaşlılar Takım : Chimaeriformes - Familya: Chimaeridae - Denizkedisigiller.

http://www.biyologlar.com/kikirdakli-baliklarin-ozellikleri

YAPRAKLARIN GENEL YAPISI

Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2'i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır. YAPRAKLARIN GENEL YAPISI Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir. Öncelikle yaprakların dış yapılarını inceleyelim. Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar. Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu. Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir. Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir. Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir. Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır. Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar. Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde tasarlanmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir. Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını genişletir veya daraltırlar(porları) Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler. KUSURSUZ BİR TASARIM: GÖZENEKLER Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2'i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur. Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur. Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir. Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar. Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.

http://www.biyologlar.com/yapraklarin-genel-yapisi

Sucul Bitkiler

SU BİTKİLERİ Sucul bitkiler karada yaşayanlar ile karşılaştırıldığında çeşitli stolojik, morfolojik ve anatomik farklılıklar göstermektedir.Ayrıca bu bitkilerin üreme şekilleri ve tiplerinin de değiştiği görülmektedir. Çeşitli su bitkileri türleri ile yaşadıkları susul ortam arasında doğrudan ilişki vardır.Örneğin Myriophyllaceae familyası üyeleri suya tamamen gömülmüş halde yaşadıkları halde su mercimekleri (lemna türleri )suyun üzerinde kalırlar.Nilüferler (Nymphea türleri) ise bir yandan rizom gövde ve kökleri ile çamura tutunurlar, geniş yaprakları ise su yüzeyinde yüzer. Su bitkileri yaşadıkları ortama uyabilmek için bazı morfolojik değişiklikler geçirmişlerdir.Kök , gövde veya yapraklar bazen ince lam veya iplik şekline dönüşebilir.Çiçekler ise çok küçük olup yalnızca bir tek üreme organı içeririler.İletim kanalları karadaki çiçekli bitkilere oranla azalmış ve daha az farklılaşma göstermiştir. Eğreltilerde yaprak ve kökler oldukça kısa bir gövdeye bağlanmışlardır.Çiçeklenmezler doğrudan yaprak veya gövde üzerinde gelişen sporlara sahiptirler.Sporlar gelişerek üzerinde mikroskopik üreme organı bulunan çok küçük boylu bitkiyi oluşturur.Döllenme olayından sonra tekrar yeni genç eğreltiler meydana gelir. Çiçekli bitkiler tipik olarak kök , gövde , yaprak ve çiçeklerden meydana gelmişlerdir.Çiçekler bitkinin eşeysel üreme merkezindedir.Erkek üreme organları ( etamin) polenleri oluşturur.Dişi üreme organları ise ovul içeren pistilden oluşmuştur.Bazı bitkiler biseksüel ( dişi ve erkek üreme organı taşıyan) çiçeklere sahiptirler.Bazıları ise yalnızca dişi ve erkek çiçekler taşırlar.Döllenen her ovul; tohumu, pistil ise meyveyi oluşturur.Tohumlar daha sonra yeni genç bitkiyi meydana getirir. Epidermis hücreleri klorofil taşırlar ve karbondioksit asimilasyonunda önemli rol oynar.Buna karşın hava organlarında epidermis hücrelerde klorofil bulunmaz ve bu organlarda stoma adı verilen delikler vardır.Böylece hava sirkilasyonu sağlanır. Su bitkilerinde hava dokuların (aerifer) bulunuşu önemli bir özelliktir.Boşluklu süngerimsi yapıdaki bu dokular şamandıra görevini görürler ve su altı organlarının yüzmesini temin ederler. Su altı organları bazen büyük ölçüde değişime uğrayarak özel şamandıra şeklini alırlar. Örneğin;Yaprak sapları ( petiol) veya nodüller arası kısımları şişkin şekilde olabilir ve köklerin zeminle irtibatı olmayabilir.Bazılarında farklı çeşit bir kaç kök bulunabilir. Yapraklar su içine gömülü, yüzücü veya su üstünde bulunabilirler.Aynı tür 2 veya 3 farklı çeşit yaprak tipini dalları üstünde taşıyabilir.Yaprakları su içinde veya dışında oluşlarına göre şekilleri , yapıları, dokuları farklılaşmalar gösterebilir.Su içindekiler çok ince yapılıdırlar.Dallanma gösterirler veya yassılaşmışlardır.Bazılarının membranları ince veya saydamdır.Yaprakların üst ve alt düzeyleri arasında farklılaşma olmayabilir klorofilli dokular her iki yüzeyde yer alırlar.Havada bulunan yapraklarda alt yüzeydeki epidermada stomalar bulunur.Böylece hava epidermis altındaki klorofilli dokulara ulaşır.Yüzücü yapraklarda ise iki yüzleri arasında farklılaşmalar olabilir.Örneğin;stomalar üst ve alt epidermada bulunan su ile temas etmesi nedeniyle alt yüzeyde havanın doku içine girmesi mümkün olmaz.Genellikle alt yüzeyler kırmızımtrak renktedir.Su bitkilerinde dahi çiçeklenme genellikle havada olur.Çiçekler su dışında açar ve döllenme kara bitkilerinde olduğu gibi gerçekleşir. Polenler rüzgar yoluyla veya böceklerle(Diptera) taşınır.Bazen ise su üstünde kayarak döllenmeyi sağlar.Bazılarında ise su içinde olur.Ancak döllenme çiçek açmadan gerçekleşir.( Kleistogami) SU BİTKİLERİNDE ÜREME Sucul bitkiler çiçeklenme ve döllenme yönünden gerçekten farklılaşmalar göstermişlerdir.Döllenme suda olur ve polenler bu ortamdaki yayılmaya uyum göstermişlerdir.Polen su içinde serbest hale geçer , dişi çiçeğin stigmasını bulana kadar su içinde gezinir. Döllenmeden sonra meyve oluşumu su içinde olur.Çiçekleri havada olan su bitkilerinde dahi genellikle meyve su içinde gelişir.Meyveyi taşıyan dalcıklar eğilerek genç meyveyi su içine yöneltir.Sucul meyveler etlidir, tohumları jelleşme oluşumu ile açılır.Tohumlar su içinde veya üstünde yüzerler. Eşeysel üreme her ne kadar bitkisel türlerin çeşitliliğinde (Diversite ) önemli ise de eşeysiz (Vejetatif) üreme su bitkilerinde önemli rol oynar.Bazı türlerin eşeysiz olarak üremesi ile aşırı çoğalması genellikle insan aktivitesi sonucu ortamda değişmeler olduğunu simgeler. Su bitkilerinde üç çeşit üreme tipine rastlanır.Tomurcuklanma veya çeliklenme (Vegatatif) , eşeysiz (sporla) ve eşeyli üreme.  

http://www.biyologlar.com/sucul-bitkiler

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Epitel Doku

Epitel dokusu, sıkıca biraraya gelmiş polihedral hücreler ile çok az hücrelerarası maddeden oluşur. Bu hücreler arasındaki bağlantılar güçlüdür. Böylece, oluşan hücresel tabakalar vücudun yüzeyini örter ve boşluklarını döşer. Epitel dokusunun başlıca görevleri: Yüzeyleri örtmek ve döşemek (deri) Emilim (barsaklar) Salgılama (bezlerin epitelyal hücreleri) Duyu algılama (nöroepitel) Kasılma (miyoepitelyal hücreler) Kökeni: Her 3 germ yaprağından da gelişir. Deriyi, ağız, burun ve anüsü döşeyen epitel ektodermal; solunum, sindirim sistemi ve sindirim sisteminin bezleri (pankreas ve karaciğer) endodermal; kan damarlarının endotel örtüsü mezodermal orijinlidir. Hücre şekli: Yüksek prizmatikten, kübiğe ve alçak yassıya kadar değişirken , boyutları da değişiktir. Çekirdeğin şekli çoğunlukla ve kabaca hücre şekline uyar. Bütün epitel hücreleri, altlarında bulunan bağ dokusu ile temas halindedir. Bunların bazal yüzeyindeki tabaka bazal lamina olarak isimlendirilir. Yalnızca elektron mikroskopta görülen bu tabaka ince fibrillerin oluşturduğu narin bir ağdan meydana gelen 20-100 nm kalınlığında yoğun bir tabaka olarak belirir ve lamina densa olarak adlandırılır. Lamina densa’nın yanısıra bazal laminadaki yoğun tabakanın tek ya da her iki yanında elektron-geçirgen tabakalar bulunabilir, bunlar lamina rara ya da lamina lusida olarak isimlendirilir. Bazal laminanın ana bileşenleri 1-Tip IV kollajen 2-Laminin (glikoprotein) 3-Heparan sülfat (proteoglikan) dır. Bazal lamina, altındaki bağ dokusuna tip VII kollajenle ve yüzeysel dermisin elastik elementlerinden olan mikrofibril demetleri ile tutunur. Bazal lamina yalnızca epitelyal dokularda değil, aynı zamanda bağ dokusu ile temas eden diğer hücre tiplerinde de bulunur. Bazal lamina, bağ dokusu ile diğer dokular arasında makromoleküllerin değiş – tokuşunu sınırlayan yada düzenleyen bir bariyer oluşturur. Hücrelerarası etkileşim için gerekli bilgileri de içerir. Bir diğer fonksiyonu ise epitelyal hücrelerin yerini ve hareketlerini düzenler. Bazal laminanın bileşenleri epitel, kas, yağ ve Schwan hücreleri tarafından salgılanır. Bazen retiküler lifler, bazal lamina ile sıkı bir ilişki içinde olan ve retiküler lamina adı verilen bir tabaka oluştururlar. Bu retiküler lifler, bağ dokusu hücreleri tarafından üretilirler. Bazal membran, akciğer alveolleri ve böbrek glomerüllerinde her iki epitel hücre tabakasına ait bazal laminaların kaynaşması ile oluşan, bu nedenle bazal laminadan daha kalın olan ve ışık mikroskobu ile görülebilen yapılardır. PAS + dir. Genellikle 2 bazal laminanın kaynaşması ile oluşabildiği gibi bazen bir bir bazal bir retiküler laminanın birleşmesi ile oluşur. Epitel Dokusunun İnnervasyonu: Epitel dokularının çoğu lamina propriadaki sinir pleksuslarından zengin duyu sinir sonlanmaları alır. Epitel Hücrelerinin Yenilenmesi: Epitel dokuları dayanıksız yapıdadır, hücreler mitotik aktivite ile devamlı olarak yenilenir. Yenilenme hızı ince bağırsakta süratli (2-5 gün), pankreasta yavaştır (50 günde bir). Çok katlı ve yalancı çok katlı epitelde mitoz, germinal tabakada meydana gelir. Metaplazi: Bazı fizyolojik ve patolojik şartlar altında bir epitel tipi değişime uğrayarak başka bir epitel tipine dönüşür. Polarite: Epitel hücrelerinin önemli bir özelliğidir. Vücut dışını veya vücut boşluğunu sınırlayan apikal yüzü ve bazal laminaya oturan, iç vücut yapılarına dönük bazal yüzeyi vardır. Kan damarları epitele girmediğinden bütün besinlerin lamina proprianın altında bulunan kapillerlerden çıkarak epitele geçmesi gerekir. Besinler ve epitelyal hücre ürünlerinin öncülleri, bazal laminadan diffüzyonla geçerek bazo-lateral yüzeylerinden genellikle de enerji gerektiren bir işlemle hücre içine alınır. Epitel hücrelerinin aktivitelerini etkileyen hormonlar, nörotransmitterler gibi kimyasal ulakların reseptörleri de bazo-lateral membranda toplanır. Absorbtif hücrelerde, apikal hücre membranı yapısındaki membran, proteinlerin yanısıra disakkaritler ve peptidazlar gibi enzimleri de içerir. Bu enzimler, emilen moleküllerin sindirimini tamamlar. Sıkı bağlantıların, çeşitli hücre membran bölgelerindeki esas membran proteinlerinin birbirine karışmasını önlemeye yardımcı olduğu düşünülmektedir.   Vücudun iç ve dış yüzeyini örter.Bunun 4 görevi vardır;Bulundukları organı dış etkilerden korumak,Salgı yapmak,Emmek, Mukus ve benzeri maddeleri iletmek.Epitel doku işlevine göre 2 grupta incelenir; 1.Örtü epiteli:Asıl görevi korumaktır.Ancak bazen emilim görevide yaparlar.Hücrelerinin sıralanışına göre Tek katlı ve Çok katlı olmak üzere ayrılırlar. A.Tek katlı epitel:Yan yana dizilmiş hücrelerden oluşur.Hücreleri yassı,kübik veya silindiriktir., a.Tek katlı yassı epitel: Akciğer alveolleri,kan damarlarının iç yüzü ve kılcal damarlarda bulunur. b.Tek katlı kübik epitel:Omurgalı böbreklerinde,tiroit bezinde bulunur. c.Tek katlı silindirik epitel:Omurgalının solunum yollarında,incebağırsakta bulunan silindirik epitel emme görevi yapar. B.Çok katlı epitel:Üst üste sıralanmış hücrelerden oluşur.Omugalıların derisinde bu doku vardır.Bu epitel dokuyu incelediğimizde en altta silindirik,ortada kübik,üstte ise yassı epitelden oluşmuştur.En üstteki epitel genellikle ölüdür.Bu ölü hücre alttaki canlı hücreleri dış etkilerden korur.Kan damarı içermez. 2.Salgı(Bez) epiteli;Salgı yapma yeteneğindeki hücrelerdir.Tükürük bezi,mide bezleri,ter bezleri,hipofiz,tiroit gibi salgı yapan organlarda bulunur.Hücre sayısına göre; A.Tek hücreli bezler ; Silindirik hücrelerden oluşur.Bunlara “goblet” hücresi denir.Toprak solucanının derisinden,sindirim kanalından,solunum organlarından salgılanan mukus buna örnektir. B.Çok hücreli bezler; Salgı yapan hücrelerin bir araya gelmesi ile oluşurlar.Salgılarını bir kanala ve buradan vücut boşluğuna veren bezlere ekzokrin(dış salgı) bezi denir.Tükrük bezi,mide ve bağırsak bezleri ile gözyaşı bezleri dış salgı bezleridir.Salgılarını doğrudan kana veren bezlere endokrin(iç salgı) bezi denir.Bunlar kanalsız bezlerdir.Salgılarına hormon denir.Hipofiz,tiroit,paratiroit,böbreküstü bezleri birer iç salgı bezidir

http://www.biyologlar.com/epitel-doku

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

DİPHYLLOBOTHRİUM LATUM

Erişkini insan, kedi, köpek, domuz gibi balık yiyen hayvanların ince bağırsağında yaşayan, balıkta larva dönemini geçiren en büyük cestodtur. Cestodların vücudu yassı, halkalara ayrılmış, uzun ve şerit şeklindeki helmintlerdir. Vücutları fonksiyon bakımından üç kısım içerir. 1)Baş (skoleks) 2)Boyun 3)Halkalar Baş üzerindeki vantuz ve çengelleri parazitin bağırsak duvarına tutunmasını sağlar. Boyun bölgesi ince ve segmentsizdir. Halkalar boyundan tomurcuklanma ile oluşur. Boyuna yakın olanları en genç olanları olmakla birlikte boyundan uzaklaştıkça genital organlar ve olgun halkalar meydana gelir ETİYOLOJİSİ: Parazit 3-10m ulaşabilmektedir. İnsan bağırsağındaki sayısı genellikle birdir. Badem şeklindeki skoleksin bütünü boyunca uzanan yarık şeklinde iki adet vantuzu vardır.Genital delikler halkaların ventralinde bulunur.Bir dişi parazit günde bir milyondan fazla yumurta bırakabilmekle birlikte yumurtalar 25-70 x 32-45 µm boyutunda sarımsı kahverenktedirler. EPİZOOTİYOLOJİSİ: Parazit yaşam süresi olan 10yıl boyunca 7 km’lik halka oluşturabilmektedir. Diphyllobothrium latum’ un, Turna, Levrek, Alabalık gibi tatlı su balıklarında su sıcaklığının 15 – 25 Cºolduğu dönemlerde 1 -2 cm’lik larvaları balığın iç organları arasında ve kaslarda kistleşmeye, organların birbirine yapışmasına neden olur. Etkene bağlı vakalar Türkiye’ de bildirilmiştir fakat ülkemizde çiğ ya da az pişmiş balık tüketilmediğimden bu vakalarda kesin değildir KLİNİK VE OTOPSİ BULGULARI: Klinik olarak asemptomatik olabilir. Semptomatik hastalarda karın ağrısı, kramplar, kilo kaybı ve daha çok B12 vitamini eksikliğine bağlı şiddetli anemi görülmektedir.B12 vitamini eksikliğinin nedeni parazitin bu vitamini emilmeden tüketmesidir.Dışkıda yumurta görülmesiyle tanı konulabilmektedir. Balığın iç organlarına yerleşen pleocercoid larvaların meydana getirdiği kistler hastalığın tanınmasını sağlamaktadır KORUNMA: Etlerin yeterli miktarda pişirilmesi tenya larvalarını parçalamaktadır. Tuvaletten sonra yeterli el yıkama ve daima uygun hijyen hastalığın yayılmasını önlemektedir. TEDAVİ: Tek doz Niklosamid oldukça etkilidir. Ayrıca Praziquantel ve Paramomisin kullanılmaktadır. KAYNAKLAR: www. ailem.com / templates / library http:// bilimsel konular. com/ index2 www. gata. edu. edv. tr/ dahibilimler/ infeksiyon www. hekimce. com Timur, G. , Timur, M. , 2003. Balık Hastalıkları, İ. Ü. Su Ürünleri Fakültesi Yayınları No. 5 www. vaxa. com/ human tapeworms – diphyllobothrium – latum. cfm

http://www.biyologlar.com/diphyllobothrium-latum

Beyaz köpek balığı (Carcharodon carcharias)

Alem: Animalia (Hayvanlar) Şube: Chordata (Kordalılar) Sınıf: Chondrichthyes(Kıkırdaklı balıklar) Takım: Lamniformes Familya: Lamnidae Cins: Carcharodon (Smith, 1838 ) Tür: C. charcharia Beyaz köpek balığı (Carcharodon carcharias), Lamnidae familyasından bir köpek balığı türü. Boyu 6 (nadiren 7) metreye ağırlığı 1.7 tona kadar ulaşabilen bu köpek balığı, bütün dünyadaki ılıman sularda, dolayısı ile Türkiye'nin Akdeniz, Ege ve Marmara kıyılarında bulunur. Bazı kaynaklarda, Karadeniz'de de bulunduğu belirtilir. Beyaz köpek balığının Akdeniz havzasındaki temel besinleri, orkinos balıklarıdır. Ancak orkinos balıklarının neslinin azalması sonucu yunuslar ile beslenmeye ağırlık verdikleri tahmin edilmektedir. Balina, yunus, diğer köpek balığı türleri, deniz kunduzları, foklar, penguenler, tuna balığı en favori yiyeceklerindendir. Avına alttan yaklaşarak öldürücü vuruşunu yaparkende avını ısırarak uzaklaşır. Avının kan kaybından ölmesini bekledikten sonra avını yer. diğer köpek balıkları gibi çiğneme yeteneği yoktur avını parça parça kopartarak ya da tüm olarak yutar. Beyaz köpek balığının yediği büyük bir av onu 1-2 ay idare edebilir. Türkiye karasularında en son kaydedilen iki birey, 5 temmuz 2008 tarihinde Edremit Körfezi'nde yakalanmıştır. İhtiyoloji Araştırmaları Topluluğu tarafından incelenen her iki bireyin de yavru olması ve bir tanesinin yeni doğmuş olması, yavruların Kuzey Ege sularında doğduğuna dair ipucu vermiştir. Çoğu filmde katil köpek balığı diye anılır ama dünya rekorlarına en uzun süre mesafe yol kat eden köpek balığı olan nicole Afrika açıklarından başlayarak 3 ayda Avusturalya'ya mercan resifine gidip gelerek rekor kırmıştır. Beyaz köpek balığının oldukça kuvvetli çenesi vardır.Çenelerinde 3000'e yakın kesici diş birkaç sıra halinde bulunur. ilk iki sıra ısırma ve kopartma için kullanılırken arka sıralar besini daha küçük parçalara ayırmak için kullanılır. Yassı üçgen biçimli kesici dişler kırılma kopma gibi durumlarda yeniden çıkar.Üremeleri ovonipardır. yani yumurtlarlar ancak yumurta dişi bireyin karnında büyür gelişir ve yumurtadan çıkar. Ortalama 2-14 adet yavrularlar. Beyaz köpek balığı diğer köpek balıkları gibi koku almada çok hassastır. 100 litre suda tek bir kan damlasının kokusunu farkedebilir. Elektriksel yük değişimlerine karşı oldukça hassaslardır. 0.005 mikrovoltluk değişimleri farkedebilirler. Avının atan kalbinin ya da solungaçlarının yaydğı elektriği farkedecek kadar hassastırlar. Esir ortamına alışık değillerdir. Tutsak olarak fazla uzun ömürlü olmadıkları görülmüştür.Köpek balığı hastalığa yakalanmayan tek canlıdır.

http://www.biyologlar.com/beyaz-kopek-baligi-carcharodon-carcharias

ARGULUS SP

Argulus spp. Diğer adıyla balık biti, tatlı su ve deniz balıklarının ektoparazitlerinden olup, tüm dünyada yaygındır. Konağın kanını ve diğer doku sıvılarını emerek beslendiklerinden ve sekonder enfeksiyon etkenlerine taşıyıcılık da yaptıklarından konakları için tehlike oluşturmaktadırlar. Kan emdikten sonra konağı terk ettiklerinden fakültetif parazittirler. Argulus, konağın derisini deldikten sonra salgıladığı maddeyi yara içine akıtmakta, deldikleri kan damarından kan emmektedirler. Argulus’lar erişkin forma ulaşıncaya kadar balığın deri, yüzgeç ve solungaçlarına tutunarak ve kan emerek yaşamaktadırlar. ETİYOLOJİ: Pylum: Artropoda Subpylum: Crustacea (Brünnich,1772) Clasis: Maxillipoda (Dahl,1956) Subclasis: Branchiura (Thorell,1864) Ordo: Arguloida (Wilson,1932) Familya: Argulidae (Rafinesque,1815) Genus: Argulus (Müler,1785) Argulus’lar en büyük parazitlerdendir ve çıplak gözle görülebilirler. 5mm ile 10 mm arasında değişen uzunlukları vardır. Balıklar üzerinde küçük koyu renkte noktalar gibi görülürler ve hareket edene kadar onların Argulus olduğu anlaşılamayabilir. Vücudun yassı ve kalkana benzer kısmı karapastır ve kafayla kaynaşmış, ayrıca göğüsün de bir kısmını kaplamıştır. Baş kısmında iki tane bileşik göz lekesi bulunmaktadır. Argulus’un karnı, arkada uzamış kuyruk gibi gözükmektedir. Dört çift yüzücü ayakları vardır. EPİZOOTİYOLOJİ: Argulus (Crustacea:Branchiura) cinsi dünya çapında oldukça fazla yayılım göstermektedir ve Afrika, Avrupa, Asya, Avustralya, Kuzey, Orta ve Güney Amerika kıtalarından bilinmektedir. (Ringuelet, 1943; Fryer, 1968; Yamaguti, 1963; Hewitt ve Hine, 1972; Byrnes, 1985; Heegaard, 1962) Amerika’daki deniz ve göllerde 23 türün olduğu Cressey tarafından saptanmıştır.(1972) Argulus japonicus ve Argulus foliaceus’un İngiltere’deki birçok göl balığı türlerinde görüldüğü kaydedilmiştir. Avrupa’da Argulus’un bulunan üç göl türünün (A.foliaceus, A.coregoni, A,japonicus) yazın sonlarında ve sonbaharın başlarındaki dönemlerde maksimum bollukta bulundukları kaydedilmiştir.(Lester&Roubal, 1995) Bütün türlerin sert kışlarda yaşamlarını sürdürebilecek yumurtlama evreleri vardır.(Shimura,1983; Mikheev 2001) Ayrıca A.foliaceus erginlik evrelerinde de kış koşullarında yaşayabilirler.(Kimura, 1970) Hatta Bowershore (1940),kışın ılımlı olduğu koşullarda A.foliaceus’un yıl içerisinde yumurtlayabileceğini de savunmuştur. Argulus sp. Şu anda bilinen 150 türüyle neredeyse tüm dünyada bulunmaktadır. Avrupa’da kaydedilen üç tür Argulus foliaceus, Argulus japonicus ve Argulus coregoni’dir. Ayrıca Argulus foliaceus kahverengi alabalık,tatlı su levreği,sazan,turna ve çipurada da görülmektedir. Genellikle yüzgeçlerin arkasında veya kafa çevresinde yerleşmiş olarak bulunurlar. Saydam yüzgeçlerde daha iyi görülebildikleri için en iyi görüldüğü yerler yüzgeçlerdir. Tablo 1. Üç Argulus türü arasındaki farklılıklar Türler Vücut uzunluğu(mm) Cephalothoracic karapasın arka lopları Karın Karnın arka kenarının tırtıklaşması(Posterior emargination of abdomen) A.foliaceus 6-7 Başlangıcın ötesine uzamamış Yuvarlak loplar Ortaya ulaşmamış A.japonicus 4-8 Karnın orta seviyelerine kadar uzamış Yuvarlak loplar (A.foliaceus’tan daha fazla noktalı) Ortaya ulaşmış A.coregoni 12 Karnın başlangıcına kadar uzamamış Sivri loplar Ortanın ötesine ulaşmış Güney Amerika’da bulunan göze çarpan türler Argulus multicolor’dur. Argulus japonicus bütün dünyada yayılım göstermektedir ve bunun asıl nedeni de altın balık (Carassius auratus) ve aynalı sazan (Cyprinus carpio)’da oldukça fazla görülmesidir. Argulus coregoni İskoçya’da Clyde nehrindeki kahverengi alabalık (Salmo turta) üzerinde bulunmuştur. (Campbell, 1971) Argulus foliaceus da kahverengi alabalıkta görülmekle beraber buna ek olarak dikenli balıkta (Gasterosteus aculeatus), kızılkanatta (Rutilus rutilus), tatlı su levreğinde (Perca fluviatilis), aynalı sazanda (Cyprinus carpio), kadife balığında (Tinca tinca) ve turnada (Esox lucius) görülür. Argulus foliaceus’un görünüşü KLİNİK BULGULAR VE PATOJENİTE: Argulus kendini konakçı balığa, emme organelleriyle, ikinci maxillae, diken veya kancalarıyla bağlar; preoral dikenli iğnesini veya hortumunu deriye batırarak toksik salgıyı iletir.(Sindirim enzimleri ve salgı maddesi-anticoagulant madde-) ve konakçının vücudu üstünden kanı emer. Derinin delinmesi konakçı balığın şiddetli kaşınmasına ve vücudun zarar görerek iltihaplanmasına neden olur. Yaralar kanlı nekroza neden olur ve ikincil olarak da Aeronomas, Pseudomonas gibi bakteriler ve Saprolegnia gibi mantarların bulaşmasına neden olur ve bunun sonucu da derin ülserleşme ve ölümdür. Eritrosit ve lökosit sayısında düşüş, hemoglobin yoğunlaşması, kandaki hematokrit değerindeki toplam protein, toplam kolesterol ve kalsiyum konsantrasyonları gibi hematolojik değişimler görülür. Buna ek olarak, solungaçlar ciddi bir şekilde zarar görerek kanda oksijen azlığına neden olarak ölüme sebebiyet verirler. OTOPSİ BULGULARI: Argulozis hastalığı balıklarda en sık rastlanan hastalıklardan biridir. Parazitler balıkların üzerinde kolayca görülürler. Bu parazitler yarı saydam olduğu, larva ve gençlik dönemlerinde küçük olduğu için,ilk bakışta fark edilemezler. Ancak bu durumlarda balık hastalık belirtisi gösterir. Bu parazitin konakçı balık üzerindeki etkisi enfestasyon şiddetine (Balık üzerindeki parazit sayısı) ve konakçı balığın büyüklüğüne bağlıdır. (Roberts, 1978) Yoğun istilaya uğrayan balık uyuşukluk gösterir, yemekten kesilir, renkte açılma ve yüzgeç düşmesi gibi durumlar gözlenir.(Lester&Roubal, 1995) Argulus sp. Tarafından enfeksiyona uğrayan balıklarda çoğunlukla küçük hemorojik bölgeler görülür. Mikroskobik incelemeler bu bölgelerin, hyperplazi yüzünden yaranın kenarındaki epidermal dokuda oluşturulan kraterler olduğunu gösterir. Bütün balıklarda, mukus ve club hücreleri kraterdeki epidermal dokuda bulunmaz, fakat mukus hücreleri yara kenarı çevresindeki dokuda bolca bulunurlar. TEŞHİS: Argulus bulaşmış balıklar uyuşuklaşırlar, düzensiz hareket ederler ve sık sık kuyruklarını suya çarparlar. Aynı zamanda güçsüzleşirler ve su yüzeyinde yüzerek bazen stres belirtileri gösterirler. Derileri donuk hale gelir ve üzerinde siyah noktalar oluşur. Yüzgeçleri saçaklanır ve gözleri çekilir. Balıklar beslenmeyi bırakırlar. KORUMA: Balık yetiştiriciliğinde hijyen kurallarına uyulması,stok yoğunluğunun iyi belirlenmesi,hastalık belirtisi gösteren balıkların karantinaya alınması önemlidir. Fakat büyük ölçekli balık üretimi için (örneğin alabalık çiftliği) uygun değildir. TEDAVİ: Larvalar için genellikle haftada 2-3 doz (daha düşük sıcaklıklarda daha uzun) Trichlorfon gerekir. Tavsiye edilen Trichlorfon oranları; 27 C sıcaklığın altına litre başına 0,25 mg Trichlorfon, 27 C sıcaklığın üstünde litre başına 0,50 mg Trichlorfon Organophoshate masoten: (Peter Waddington) 13 C sıcaklığın üsütnde 0,7 mg/litre (UK) 13 C sıcaklığın altında 0,4 mg/litre (UK) Olgunlaşmış parazitler elle uzaklaştırılabilirler, ayrıca; Lufenuron 15 mg/litre, Sodyum klorid 3 mg/litre ile tankta 3 hafta süreyle tedavi edilebilirler. Olgunlaşmamış bir Argulus 2 günlük tedavi sonunda deri parçaları üzerinde bulunur. Tedavinin başlamasından 28 gün sonra deri parçaları üzerinde parazite rastlanmaz. Tedavinin sağlığa zararlı bir etkisi yoktur. KAYNAKÇA: www.science.siu.edu/zoology/grad ... gulus.html ryoko.biosci.ohio-state.edu/~par ... gulus.html www.fishdoc.co.uk/disease/argulus.htm www.isrvma.org/article/57_3_6.htm www.drpez.com/pz18b.htm www.aquabase.org/crustacea/view.php3?id=25 www.maine.gov/ifw/fishing/fishlab/vol2issue5.htm

http://www.biyologlar.com/argulus-sp

Fonksiyonlarına Göre Hücrelerarası Bağlantılar

Tutturucu Bağlantılar: Hücrelere mekanik kuvvet sağlayan bağlantılardır ( Zonula adherens ,desmozom, hemidesmozom ) Geçirgen olmayan bağlantılar: Hücreler arasında geçirgen olmayan bir bariyer oluşturur (zonula occludens ). İletişim sağlayan bağlantılar: Moleküllerin hücreler arasında geçişini sağlar (Gap junction ). EPİTEL DOKUSU Örtü (Koruyucu), Bez (salgı) ve Duyu Epiteli (nöroepitel) olmak üzere 3 tipi bulunur. ÖRTÜ EPİTELİ Vücut iç ve dış yüzeylerini ve kavitelerini örtmesinden dolayı epitel hücreleri ya dış yüzeye ya da belirli organların lümenine bakan serbest yüzeye sahiptir. Epitel dokusu kan damarı içermez. Beslenmesi bazal membran altında bulunan kan kapillerlerinden diffüzyon yoluyla olur. Kapillerden çıkan besin maddeleri ve oksijen taşıyan sıvı bazal membranı katederek epitel içinde bazalden apikale doğru yayılır. Metabolizma ürünleri de bazal membranı geçerken kan damarlarına geri dönerler. Bazal membranın yapısı bu iki taraflı madde geçişini sağlayacak niteliktedir. Kat sayısı fazla olan epitel türlerinde yüzey katlarının da beslenebilmesi için alttaki bağ dokusu epitel içine eldiven parmağı şeklinde uzanır. Bu yapılar papilla olarak adlandırılır. Papillaların tepesinde de membranın hemen altında kan kapillerleri sıkı ağ yapısı oluştururlar. Buradan epitelin yüzey alanları beslenir. Epitelin mekanik etkilere uğradığı bölgelerde devamlı rejenerasyon vardır. Bazal kattaki hücreler mitozla çoğalırlar ve üst katlara doğru ilerlerler. Örtü ve bez epiteli ayrı yerlerde yerleşim gösterseler de iç içe olabilirler. Bağırsağın iç yüzünü döşeyen epitel hücrelerinin aralarında sıklıkla müköz salgı yapan goblet hücreleri bulunmaktadır. Koruma epitelinde temelde 3 tip hücre bulunmaktadır. Yassı hücreler, kübik (izoprizmatik) ve prizmatik hücreler Örtü epiteli bu hücreleri içererek katlarına göre şöyle sınıflandırılır. TEK KATLI ÖRTÜ EPİTELİ Tek katlı yassı epitel Tek katlı kübik epitel Tek katlı prizmatik epitel ÇOK KATLI ÖRTÜ EPİTELİ Çok katlı yassı epitel - Keratinleşmiş - Keratinleşmemiş Çok katlı kübik epitel Çok katlı prizmatik epitel --Basit --Fırçamsı kenarlı --Titrek tüylü Çok katlı değişici epitel YALANCI ÇOK KATLI EPİTEL (Pseudo-stratifiye Epitel) Tek katlı yassı epitel: Bazal membran üzerine oturmuş çok ince, yassı hücrelerden oluşur. Hücreler sıkıca bir araya gelerek devamlı bir tabaka oluşturur. Nukleusun bulunduğu orta kısımlar lümene doğru hafifçe kabarık dururlar. Nukleuslar yassı veya ovoid şekillidir. Madde geçişinin çok fazla olduğu vücut kısımlarında bulunur. Endotel (kan ve lenf damarlarını döşeyen örtü), mezotel (periton, plevra, perikard’ın yüzeyel örtüsü) ve böbreklerde Henle kulpunda bulunur. Tek katlı kübik (izoprizmatik ) epitel:Tek katlı halinde düzenlenmiş kübik (izoprizmatik) hücrelerden oluşmaktadır. Epitel yüzeyine dik kesitlerde hücreler kare şeklinde görülür. Çekirdekler yuvarlak ve hücrenin ortasındadır. Yüzeysel olarak bakıldığında poligonal şekilde izlenir. Bu tür epitele, ovaryumun yüzey epiteli, tıroid folliküllerinde, dış salgı bezlerinin boşaltma yollarında böbrek boşaltma yollarında rastlanır. Tek katlı prizmatik epitel:Bazal membran üzerinde tek katlı olarak düzenlenmiş prizmatik hücrelerden oluşur. Hücrelerin çekirdekleri hemen hemen aynı hizada, hücrenin şekline uygun, uzunca, ovoid yapıda olup biraz bazale yakın yerleşim gösterir. Bu tip prizmatik epitelin hücre yüzeyinde özel yapı farklılaşması bulunup bulunmadığına göre 3 türü ayırtedilir. a-Basit tek katlı prizmatik epitel:Hücrenin yüzeyinde hiçbir yapı farklılaşması yoktur. Bezlerin boşaltım yolları epitelleri ile midenin iç yüzeyini döşeyen epitel bu tiptedir. b-Tek katlı prizmatik çizgili kenarlı ( Mikrovilluslu, fırçamsı kenarlı) epitel: Barsak ve safra kesesi epiteli bu tiptedir. Işık mikroskobu ile epitelin serbest yüzünde gözlenen çizgili kenar, birbirlerine paralel ve sıkıca yerleştirilmiş mikrovilluslardan dolayıdır. c-Tek katlı prizmatik titrek tüylü (kinosilyalı) epitel: Apikal yüzeyde kinosilyalar bulunur. Tuba uterina, uterus, ductus efferentes, bronşlar...bulunur. ÇOK KATLI EPİTEL Çok katlı yassı epitel: Vücudun esas koruyucu epitelini oluşturan bu epitel, birbiri üzerine yığılmış hücre katlantılarından meydana gelmiştir. Bazal membran üzerine oturan en derin kat prizmatik hücreleri içerir. Bu hücre katının üstünde düzensiz poligonal şekilli, daha iri hücrelerden oluşan hücre katları bulunur. Ç.K.Y.E.’in keratinize olan ve olmayan tipleri vardır. Keratinize olan Ç.K.Y.E.’de üst sıraları oluşturan hücreler bir dizi değişime uğrayıp nukleuslarını kaybederler ve keratin lamellerine dönüşerek epitel üzerinde sert, koruyucu tabaka oluştururlar. Derinin epidermisi örnektir. Ç.K.Y.non-keratinize epitel yüzeyi kuru olan derinin aksine nemli boşlukları döşer, yumuşak ve canlı kalırlar. Yüzey hücrelerinde çekirdekler kaybolmaz. Bu tip epitele mukoza (mukoz membran) adı da verilir. Çok katlı kübik epitel:İki tabaka halinde kübik hücrelerden meydana gelmiştir. Embriyoner hayatta çok rastlanır. Yetişkinlerde ise tükrük ve ter bezlerinin kanallarında, gelişmekte olan ovaryum folliküllerinin çevresinde bulunur. ÇOK KATLI DEĞİŞİCİ (transisyonel ) EPİTEL: Bu tip epitel, üriner sistem boşlukları döşer. Mesane, üreter , üretranın üst kısmını döşer. Döşediği organın iç basınç ve hacim değişmelerine hücrelerinin biçimini, düzenini ve kat sayısını değiştirerek uyar. Organ dolu olduğu ve duvarları gerildiği zaman epitel 2-3 hücre katından oluşur. Boş olduğunda ise epitel kalınlaşır. Bazal kısımdaki hücreler kübik veya prizmatiktir. Yüzeysel hücreler organ dolu iken yassılaşmıştır, boş olduğunda ise iri prizmatik şekildedir, lümene bakan serbest yüzeyleri kabarık konveks yapıdadır. Bu hücreler çoğunlukla 2 tane nukleus içerirler. Çok katlı değişici epitelin yüzeyindeki hücrelerin kalın plaklardan oluşan özel bir membranı bulunur (KRUSTA). Bu plaklar, idrarla doku sıvıları arasında osmotik bariyer oluşturduğu düşünülen daha ince bir membranın yaptığı dar şeritlerle bölünür. Mesane kasıldığında membran ince bölümlerden katlanır ve kalın plaklar iğ şeklinde sitoplazmik veziküller oluşturacak şekilde içeri çöker. Bu membranın polar lipid fraksiyonunun esas bileşeni serebrozid tir. Dolu mesane 4 bardak idrar taşır. YALANCI ÇOK KATLI (PSEUDO- STRATİFİYE) EPİTEL:Bütün hücreler, bazal laminaya oturur. Ancak bazı hücreler yüzeye kadar uzanmazlar çekirdekler farklı seviyelerde olduğundan epitel ışık mikroskop ile bakıldığında çok katlı epitel izlenimi verir. Solunum yollarında, trake, büyük bronşlarda, östaki borusu, timpanik boşluk, ductus deferens ve ductus epididimiste bulunur.

http://www.biyologlar.com/fonksiyonlarina-gore-hucrelerarasi-baglantilar

Dipteraların Preparasyonu

Dipterlerin Preparasyonu Birçok çift kanatlı gruplarında genital organlar üzerine yapılan çalışmalar türleri güvenilir olarak tanımladığı için son derece cazip ve tamamıyla gerçektir. Bununla beraber bu genital yapıların karakterleri diğer yapısal karakterler gibi değişime maruz kaldığı için not edilmelidir. Ayrıca farklı yüzeylere sahip ve tanınması zor olan çok sayıda grubun veya oldukça birbirlerine benzeyen tür çiftlerinin ayırt edilmesindeki çıkış genital organlarına dayanır. Birçok durumda erkekler dişilere göre tanınma açısından daha iyi özellik gösterir. Birkaç grupta genel kuru numunelerde bazı genital yapı karakterleri farklılık gösterebilir (Asilidae, Empididae ve Dolichopodidae'nin bazı üyeleri) (Cyclorrhapha) özellikle iğneleme sırasında abdomenin üst bölgesinin çekilerek ayrıldığı zamanki durumlarda, özellikle araştırmacı tarafından az bilinen veya genel olarak az çalışılmış bir grupta sıklıkla genital organın preparatı hazırlanmalıdır. Preparat hazırlamak için genital organı çıkarma sırasında kırılma ve parçalanmayı önlemek açısından iğnelenmiş böcekler gece boyunca veya birkaç saat özel bir nemli odada bekletilmelidir. Bunlardan sonra Becker's pensinin yardımıyla veya daha büyük böceklerde normal penslerle uygun bir şekilde lam üzerine taşınır. Hiç kullanılmamış güvenli bir jilet parçası el altındaki tahta tutacağa yerleştirilir. Basit bir jiletten bunun gibi 4 tane microscalpels hazırlanır ve körelme gibi durumlarda destek çubuğuna uygun bir şekilde dikey olarak yerleştirilerek diğer microscalpels ile değiştirilebilir. Hypopyoium'un parçaları zarar görmeden karnın içinden alınsın diye genellikle abdomen yarısından az kısmı parçalara ayrılır. Cins ve familya halinde daha detaylı bir bilginin elde hazır olması için abdomenin daha küçük bir parçası kesilebilir. Orta büyüklükteki Dipterlerin preparatları binoküler mikroskop altında hazırlanabilir. Kesilen abdomen parçaları %5'lik KOH çözeltisinde veya genellikle yaklaşık 1 dk. Kaynatılmış %10-15'lik KOH çözeltisi içerisinde bir süre için (gece boyunca) korunur. Daha sonra KOH'ı uzaklaştırmak için soğuk veya sıcak suyla yıkanır. Preparatın KOH ile muamele süresi pratik deneyler tarafından tayin edilir ve böceğin boyutuna, sıcaklığa ve benzeri şeylere bağlıdır. Aşırıcı derecede uzun muamele yumuşak parçaları harap eder ve kitin veya kireçten yapılmış sert kabukları parçalar. Çünkü bu uzun muamele bu kısımların zarlarını yırtar. Böyle bir preparat ise çalışmak için uygun değildir. Yetersiz muamele ile yumuşak dokular bozulmadan kalır ve tetkiki engeller. Böyle bir durumda muamele tekrarlanabilir. Koyu, oldukça sert ve pigmentli türler H2O2 ile muamele edilebilir. Eğer böyle türler KOH içinde kalırsa pigmentleri kaybolur. Çalışmanın devamında yumuşak formların (2.0mm ve daha küçük) genital organları veya nispeten düz, yassı genital organlara sahip formlar Kanada balsamında kalıcı slaytları hazırlanır. Normal slaytlar kullanılabilir. Fakat kalın photofilmlerin şeffaf lamlarından daha küçük slaytlar hazırlamak daha uygundur ve lamlar üzerindeki bu slaytlar üzerine lameller kapatılır. Böyle preparatlar aynı kağıt üzerine ayrı ayrı numuler halinde sabit bir şekilde yerleştirilebilir. Çalışma sırasında geçici slaytlı ve abdomenin uç bölgesine ait daha büyük örnekleri KOH muamelesi ve yıkamadan sonra çalışmada uygunluk için ince sivri uçlu aletle farklı pozisyonlarda çevrilerek ve düzeltilerek gliserol içindeki oyuk blok veya depressionlu bir slayt üzerine yerleştirilir. (Örneğin, bir küçük iğnenin tahta kutu şeklindeki çubuğa yerleştirilmesi gibi) Böyle preparatlar kuru olarak kalması için küçük bir tüp içinde 1/3'lük gliserol karışımı, 1/3'lük alkol (%96) ve 1/3'lük su karışımları karıştırılarak birkaç yıl için saklanabilir. Bunun gibi tüpler o numunenin numarasına tekabül edecek şekilde veya numunenin kendisinin altındaki pozisyonda numaralandırılarak özel kutular içinde ayrı ayrı saklanır. Bunlardan sonraki durumda sadece küçük tüpler kullanılır. (Örneğin, 12-15mm uzunluğunda) Özetle genital preparasyon aşağıdaki aşamaları içerir: Genital segmentler kesilerek küçük bir cam tüp içine yerleştirilir. Tüp içine % 10'luk KOH çözeltisi ilave edilir. Tüp, birkaç dakika kaynamış su içeren daha büyük bir kap içine yerleştirilir. Tüp kaptan dışarı çıkarılır ve genital segmentler 1 kez saf su ile ve 2 kez % 70 alkol yıkanır. Daha sonra çalışılmak üzere genital, alkol veya gliserin içine konur. Depolama için genital birkaç damla gliserin polyeten mikrovial içerisine yerleştirilirilerek genital segmentlerin kesildiği örnekle birlikte iğnelenir.

http://www.biyologlar.com/dipteralarin-preparasyonu

LÖKOSİT FORMÜLÜ (PERİFERİK YAYMA)

Gerekli Malzemeler:1-Mikroskop2-Lam3-Lamel4-Lanset, alkol, pamuk5-May-Grünwald, Wright veya Giemsa boyası6-Distile suYayma Preperatının Hazırlanması:a) Lam metodu:1- Lam, alkol ve sıcak su ile yıkanıp kurulanır. Temizlenen lam kirlenmemesi için kenarından tutulur.2- Kan alınacak parmak alkol ile temizlenerek, hafifçe sıkılır. Steril lansetle delinir. Kuru pamukla ilk damla silinir.3- Parmak aşağı doğru çevrilir. Lama değdirmeden mercimek tanesi büyüklüğünde kan damlası lamın bir kenarına alınır.4- İkinci bir lamın kısa kenarı kan damlasına 30⁰ açıyla değdirilir. Kan iki cam arasında ikinci lamın kenarı boyunca yayılana kadar beklenir.5- Üstteki lam ters yönde ve iki lam arası açı değiştirilmeden ileri doğru yavaş ve sabit bir hızla hareket ettirilir. Bu hareketin yavaş yapılması kanın ince yayılmasını sağlar.6- Lamın kenarına kan alınan kişinin adı yazılır ve havada kurutmaya bırakılır.Tekniğe uygun iyi bir yayma yapabilmek için aşağıdaki noktalara dikkat etmek gerekir. Aksi halde basit gibi görünen bu metoda başarı sağlanmaz.1. Yayılan kan damlası büyük ise yayma çok kalın olacaktır ve hücrelerin morfolojik incelemesi mümkün olmayacaktır.2. Kan damlası çok küçük ise yayma gereğinden fazla ince olacaktır.3. Lamları birbirine fazla sürterek yayma yapılmış ise hücreler bu travma ile parçalanır, yaymada fazla miktarda artefakta rastlanır.4. Lamın kenarı düz değil ise yayma esnasında lam üzerine iyice değmez. Alınan yayma yeterli değildir.5. Lamın yeterince temiz olmaması veya yayma esnasında üzerine pudra, su, toz, v.s. dökülmesi yaymanın bozulmasına sebep olur.6. Kan damlası lam üzerine alınır alınmaz yayma yapmalıdır. Gecikirse beyaz kürelerin dağılımı değişir. Büyük lökositler yaymanın ince kenarlarında toplanır. Eritrositlerde rulo teşekkülü, trombositlerin kümeleşmesi görülür.b) Lamel Metodu:1- Lamelin iki ucu başparmak ve işaret parmağı arasında tutulur.2- Küçük bir damla kan lamel üzerine damlatılır.,3- Diğer el ile ikinci bir lamelin iki ucu baş parmak ve işaret parmağı arasında tutulur.4- İkinci lamel birinci lamele temas ettirilir. Aşağıdaki şekilde görüldüğü gibi köşeler birbirine değmeyecek şekilde yerleştirilir. Kan damlası iki lamel arasında yayılır.5- Lameller birbiri üzerinden horizontal olarak kaydırılarak çekilir.6- Yayma yapılan yüzler, yukarıda tutulmasına dikkat edilerek lameller havada bir süre kurutulur ve boyamaya hazır hale gelir. Önemli noktalar:1- Parmak ucu veya topuktan kan alınırken cilt lamelle temas etmemelidir.2- Lamele kan alınır alınmaz ikinci lamelle derhal temas ettirilip yayma yapılmalıdır. Lamel üzerinde kanın 3-5 saniye beklemesi trombositlerin ve beyaz kürelerin kümeleşmesine, eritrositlerin rulo yapmasına neden olur.Yayma Preperatının Boyanması:a) Papenheim Metodu İle Boyama:1- Lam yayılmış tarafı üste gelecek şekilde bir küvetin veya cam kabın üzerine yerleştirilmiş iki çubuk üzerine konur.2- Lamın üzeri May-Grünwald boyasıyla örtülür. 3dk. Bekledikten sonra üzerine distile su eklenir. 5dk.sonra dökülerek bol distile suyla yıkanır.3- Giemsa boyası 1ml. suya 1damla şeklinde sulandırılarak preperat üzerine dökülür. 15dk. Sonra boya dökülerek bol distile suyla yıkanır.4- Preperatın altı musluk suyuyla yıkanır ve havada kurutulur.b) Wright Metodu İle Boyama1- Lamın üzerine bütün preperatı kaplayacak şekilde Wright boyası dökülür, 1 dk. bekletilir.2- Wright tampon çözeltisinden veya pH 6,7 olan sudan boyanın damlası kadar damlatılır. 3 dk. bekletilir.3- Karışım dökülür, tampon çözeltiyle yıkanır, havada kurutulur.Periferik Yaymanın İncelenmesi:Yayma incelenirken lamelin üzerine 1 damla sedir yağı damlatılır. İmmersiyon objektifinden incelenir. Preperatta her üç tip kan hücresi de incelenir.1- En çok görülen ve bütün alanı kaplayan hücreler eritrositlerdir. Bikonkav yapıları nedeniyle ortaları daha açık boyanır ve içi boş halkalar şeklinde görülürler. Çekirdekleri yoktur. Ancak ender olarak içinde çekirdek kalıntıları olan eritrositler (retikülosit) görülebilir. Eritrositler boya tutuşlarına göre Hipokrom, Hiperkrom veya normokrom olarak, hücre büyüklüklerine göre Makrosit, Normosit, Mikrosit olarak isimlendirilirler. Eritrositler normal olan bikonkav şekillerinden farklı şekillerde görülebilirler. Aldıkları şekle göre Elipsoid, Sferosit, olarak hücre isimlerini alırlar.Eritrosit yapım bozukluklarında eritrositler görülebilir. Periferik yayma ile eritrositlerin sayısı hesaplanamaz.2- Trombositler diğer hücrelerin arasında küme şeklinde görülür. Farklı sahalarda birkaç trombosit kümesinin görülmesi kabaca trombosit sayısının yeterli olduğunu gösterir. Periferik yaymada trombositler sayılmaz.3- Periferik yaymada incelenen esas hücreler lökositlerdir. Sayım yapılırken preperat yukarı doğru hareket ettirilirken alandaki lökosit tipleri kaydedilir. Alt köşeye ulaşınca preperat yana doğru hafifçe kaydırılacak şekilde oklarla gösterildiği gibi bütün preperat araştırılır. 100 hücre sayılarak hücre tipleri % olarak ifade edilir. Resim 1. Eritrositler A) Yaymanın kalın “baş” kısmında eritrositler üst üste binmiştir. B) Yaymanın eritrosit morfolojisinin incelenmesine uygun orta kısmı. Burada eritrositler tek tek ve birbirlerine değmeden yakın dururlar. Ortalarında hücrenin 1/3 ünü aşmayan soluk bir alan vardır. C) Uç “kuyruk” kısmında ise eritrositler yassılaşmışlardır. Merkezdeki soluk alan kaybolmuştur. Bu iki bölgede (A ve C) eritrosit morfolojisi hakkında sağlıklı bilgi elde edilemez.Şekil :lökosit formül preperatının taranması.Lökositler Granüllü ve Granülsüz Olmak Üzere İkiye Ayrılır:a) Granüllüler (Polinükleer Lökositler):1- Nötrofil (% 55-65)2- Eozinofil (%2-3)3- Bazofil (% 0.5-1)b) Agranülositler (Mononükleer Lökositler):1- Monosit (% 5-6)2- Lenfosit (%25-30)a)Granülositler: Çok çekirdekli (Polinükleer) görünümündedirler. Sitoplazmalarında kum tanesi gibi granüller bulunur. Granüllerin boyama özelliklerine göre gruplandırılır.1- Nötrofiller: Lökositlerin % 55-65’ini oluştururlar. 12-15 μm çapındadırlar. Nukleusları ince kromatin iplikleri ile bağlanan 3-5 lob (genellikle 3 lob) içerir. Sitoplazmalarında çok ince toz şeklinde granüleri bulunur. Bu çok ince granüller hem asit hem baz boyalarla boyandıkları için pembe-mavi homojen görünümdedirler.Resim 2. Nötrofil parçalılar (A B) Çekirdeklerindeki lob sayısı beşten az olan olgun nötrofil parçalılar. C) Çekirdekte henüz loblaşmanın başlamadığı nötrofil çomak evresi. Bu genç hücreler arttığında “sola kayma” dan söz edilir. D) Çekirdeği beşten fazla loblu (hipersegmente) parçalı. Çoğaldıklarında “sağa kayma” dan söz edilir. E) Sitoplazmada toksik granülasyon. F) Kadınlarda iki X kromozomuna tekabül eden davul tokmağı şeklindeki çekirdek çıkıntısı (Barr cisimciği).Bazı nötrofillerin nükleusları loblara ayrılmamıştır. “C” veya “S” şeklinde olabilirler. Bu hücreler nötrofillerin genç şekilleridir. Çomak veya Stab olarak isimlendirilirler. Çomakların oranı normalde %5’i geçmez.Nötrofil yapımı çok arttığı zaman genç hücrelerin oranı artar. Buna “Sola Kayma” denir.Sola kayma enfeksiyonun şiddeti hakkında fikir verir. Nükleus loblarının sayısının 5t’en fazla olmasına “hiper segmentasyon”denir. Bu durum genellikle yaşlı nötrofillerde görülür. Hiper segmentasyonun artmasına “sağa kayma” denir. Çok ağır enfeksiyonlarda aşırı lökositoz ile birlikte, ancak kemik iliğinde görülen hücrelerin de kanda görülmesine “lökomoid reaksiyon” denir.Kanda nötrofil sayısının artmasına nötrofili, azalmasına nötropeni denir.Nötrofili sebepleri:a) Fizyolojik sebepler:1 Egzersiz2 Sempatik aktivasyon.b) Patolojik Sebepler:1- Travmalar2- Kanamalar3- Tümörler (Özellikle Hodgkin Lenfoma)4- Enfeksiyonlar (Akut enfeksiyonlar, lokal enfeksiyonlar, sepsis)5- Yabancı protein girişi.6- Zehirlenmeler7- Operasyonlar8- Myokard enfarktüs9- Akciğer enfarktüsü10- Yanıklar11- Akut hemoliz sonrası12- Kolljen doku hastalıkları (SLE, PAN)13- Akut böbrek yetmezliği14- Myeloproliferatif hastalıklar15- Kortizon tedavisi16- Fulminan hepatit17- Eklampsi18- Diabetik asidoz19- Dehidratasyon2. Eozinofiller (=Asidofil Granulosit) : Lökositlerin %2-3’ünü oluştururlar. 12-15 μm çapındadırlar. Nükleusları genellikle 2-3 lobludur. Lobların duruş şeklinden dolayı çekirdekleri Heybe veya Gözlük şekline benzetilir. Sitoplazmaları iri kırmızı-pembe granüllerle doludur.Eozinofil sayısının artmasına Eozinofili denir.Resim 3. Eozinofil parçalılar. A, B, C) Normal eozinofillerde, çekirdek genellikle iki lobludur. Koyu portakal sarısı boyanan granüller çekirdeği örtmez. D, E, F) Bazofil parçalılar. Siyaha yakın koyu mavi boyanan bazofil granüller genellikle çekirdeği de örttüğünden çekirdek yapısı iyi seçilemez.Eozinofili nedenleri:1- Paraziter hastalıklar (barsak kurtları, kist hidatik, trişinozis.)2- Alerjik durumlar (ürtiker, bronşiyel astım, alerjik rinit, anaflaksi, anjiyonörotik ödem.)3- Deri hastalıkları (psoriazis, egzema)4- Malign tümörler (Hodgkin hastalığı, myeloproliferatif hastalıklar, splenektomi sonrası, ışın tedavisi sonrası)3. Bazofiller: Lökositlerin %0,5-1’ini oluştururlar. 14-16 μm çapındadırlar. Preperatlarda bulunmaları oldukça güçtür. İri granülleri yüzünden nükleusları zor görülür. Bazofil artışına Bazofili denir.b) Agranülositler: sitoplazmalarında granül yoktur. Çekirdekleri iri ve tek parçalıdır.1. Lenfositler: Lökositlerin % 25-30’unu oluşturur. Çapları 6-8 μm arasında olanlar küçük lenfositlerdir. Kanda az sayıda çapları 18 μm’ye ulaşabilen orta boy ve büyük boy lenfosit grupları bulunur.Nükleusları tek parça, yuvarlak, çok koyu mavi ve sitoplazmanın bir kenarına itilmiş durumdadır. Küçük lenfositlerin sitoplazmaları çok daha azdır. Çekirdeğin etrafında hilal şeklinde görülür. Artışına Lenfositoz denir. Lenfositoz sebepleri:1- Kronik enfeksiyonlar2- Viral enfeksiyonlar3- Lösemi4- Non Hodgkin Lenfoma5- Hipertiroidi6- Addison hastalığı7- Hipopitütiarizm 2. Monositler: lökositlerin %5-6’sını oluştururlar. Çaplan 12-20 um arasıdadır. Periferik kandakien büyük hücrelerdir Nükleusları kırmızı-mor renkte, yuvarlak, oval, badem veya fasulye şeklinde olabilir. Sitoplazmaları geniştir. Gri-mavi veya pembe mor renkli olabilir. Monositler çevre kanının en büyük hücreleridir (15 – 22 μm). Çekirdek çeşitli şekillerde (yuvarlak, oval, böbrek, at nalı şeklinde ya da loblu) olabilir. Çekirdek kromatini gevşek bir yapıya sahiptir. Gevşek bırakılmış bir yün çilesine benzetilir. Açık mavi ya da kül renginde boyanan sitoplazmada - özellikle EDTA’lı kandan hazırlanan yaymalarda - vaküollere sık rastlanır. Sitoplazmada ince azürofil granüller bulunabilir. Monositoz sebepleri: 1- Kronik bakteriyel enfeksiyonlar (tüberküloz, bruselloz, subakut bakteriyel endokardit) 2- Akut enfeksiyonların nekahat dönemi. 3- Sıtma 4- Kala azar 5- Tifüs 6- Hodgkin hastalığı 7- Ulserotif kolit 8- Regional Enterit (Crohn Hastalığı) 9- Kollogen doku hastalıklan 10- Lösemi   KONU İLE İLGİLİ PDF DOSYASINI BURADAN İNDİREBİLİRSİNİZ. KAYNAK: www.labderoda.org

http://www.biyologlar.com/lokosit-formulu-periferik-yayma

SALGININ KİMYASAL YAPISINA GÖRE BEZLER

Seröz (Albuminöz ) Bezler: Seröz salgı, berrak, sulu ve protein yapısındadır. Çoğu seröz glandlar, sindirim enzimlerinden bir veya birkaçını içerirler. Asinuslardaki salgı hücreleri genellikle piramidal şekilli, yuvarlak nukleuslu hücrelerdir. Bazal infranükleer bölgede bu hücreler yoğun bazofili gösterir (GER+polizomlardan dolayı ) (muköz bezlerden ayırma ölçütü), Apikal kısımda iyi gelişmiş Golgi kompleksi ve yuvarlak membranlı salgı granüllerini içerir. Sindirim enzimleri üreten hücrelerde bu yapılar enzim içerir ve zimojen granüller adını alır (Parotis, ekzokrin pankreas, mide fundik bezleri). Müköz Bezler: Müköz salgı glikoprotein yapısındadır. Yapışkan, akışkanlığı az, kayganlaştırıcı jel kıvamındadır. Hücrenin apikal kutbunda iri, açık renk boyanan kuvvetli hidrofilik glikoprotein tabiatında musin granülleri yer alır. Nukleus genellikle hücre tabanında yer alır. Bu bölge GER’den zengindir. Golgi kompleksi nukleusun hemen üst bölgesinde yer alır ve iyi gelişmiştir. Salgı ile dolduklarında nukleus iyice bazale itilip yassılaşır. Örnek olarak, cellula caliciformis, dil kökünde Weber bezleri, mide, tükrük bezleri, solunum sistemi ve genital sistemindeki bazı bezler verilebilir. Seromuköz (karışık – miks ) Bezler: Seröz ve müköz, her 2 tipte salgı hücrelerine sahip olan bezlerdir. Seröz ve müköz salgı hücrelerinin oluşturduğu son kısımlar ayrı ayrı gözlenirler. Ayrıca müköz son kısımların dışında onları yarımay şeklinde saran seröz hücrelerin (Gianuzzi yarımayları ) varlığı sıklıkla gözlenir. Örn:Gld. Submandibularis ve sublingualis

http://www.biyologlar.com/salginin-kimyasal-yapisina-gore-bezler

Suyosunları Toplama ve Kurutma Yöntemleri

a)Tatli suyosunlari: Bunlari toplamak için agzi vidali plastik siseler kullanilmalidir. Plankton organizmalar plankton agi ile sudan çikarilarak yogunlastirilirlar. Plankton aglari perlon kumastan yapilmalidir. Fitoplankton agi için hafif seyreklestirilmis aralikli örgüden yapilmis ince tül kullanilir. Bu tülün örgü araliklar yaklasik 56-75 mikron olmalidir. Mikroskobik olan bu organizmalar çesitli yöntemlerle preparat haline getirilerek uzun süre saklanabilirler (Saya ve Misirdali, 1982). Tatli suyosunlari ve tuzu giderilmis deniz yosunlari yaklasik 2-3 cm kadar musluk suyu ile doldurulmus yassi, çukur bir kaba (Örnegin; fotograf banyo kabi) birakilir. Daha sonra yosunun üzerindeki yabanci maddeler (kir, diger suyosunlari, kabuklular ve böcekler vs.) temizlenir. Karton bir levha, yassi ve saglam bir alt levhasi ile birlikte suyosununun altina sürülür. Suyosununun taban kismi asagida olacak sekilde karton üzerine çekilir. Su altinda iken dal kisimlari dogal durumlarina en yakin sekle getirilerek düzeltildikten sonra karton, alt levhasi ile birlikte sudan çikarilir. Sudan çikarilan su yosunlari havada biraz kurumaya birakildiktan sonra filtre kagidi arasinda hafif basinç altinda mümkün oldugu kadar çabuk bir sekilde kurutulur, aksi halde kararir. Daha sonra etiketlenerek saklanirlar. b) Deniz yosunlari: Deniz yosunlan çekme kancasi ile veya elle toplanarak tatlisu ile doldurulmus bir kabin içine konur. Çünkü suyosunlarinin üzerindeki tuz, kurutma esnasinda kristalize olarak mantarlasmayi kolaylastiracagindan bunlarin tatlisuyla eritilmeleri gerekmektedir. Tuzu giderilmis suyosunlari kurutularak karton üzerine tespit edilir. Birçok suyosununun sümüksü hücre zarlari bulundugundan kurutma esnasinda karton üzerine kolayca yapisirlar.

http://www.biyologlar.com/suyosunlari-toplama-ve-kurutma-yontemleri

Platyhelmintheslerin Tayin Anahtarı

1. Strobila monozoik (üreme organları bir takım) ; embriyo altı çengelli............ ..................... ........................................................Classis: Cestodaria (Amphilina) 1. Strobila polyzoik (Spathobothriidea hariç herhangi bir takım üreme organı kapsayan birçok progllittidler) veya monozoik (Caryophyllidea) ; embiryo altı çengelli........................................................................................Classis: Cestoda. 2 2 . Segmentasyon yoktur.................................................................................3 2 . Segmentasyon genellikle belirgindir..............................................................19 3 Skolekste gerçek bothria yoktur; dış segmentasyon yoktur fakat ganotlar çoktur........Dizi : Spathebothriidea 4 4. Yapışma organı huni şeklindedir..............................Aile:Cyathocephalidae 6 4. Yapışma organı bir veya iki dorsal ve ventralde , apikale açılan yuvarlak boşluk mevcuttur........Aile : Diplocotylida. 5. Skolekste içten birbirinden tamamen ayrılan boşluklar: genital açıklık ventralde Soy : Diplocotyle 5. Skoleksteki boşluklar birleşmiş ; genital açıklık dorsalden ventrale düzensiz olarak değişir..................................................Soy ; Bothriomonas 6. Cirrus utero- vaginal kanala açılır........................7 6. Cirrus ayrı olarak utero- vaginal kanalın ön kısmına açılır......... .................12 7. Uterus kıvrımları cirrus kesesinin önüne uzanır..............................................8 7. Uterus kıvrımları cirrus kesesinin önüne uzanmaz........................................10 8. Ovaryum (U) veya (V) şeklindedir..........................................Soy; Spartoides 8. Ovaryum (H) şeklinde............... ..............................9 9. Skoleks’te iki tane tabak şeklinde çöküntü ; boyun uzun ve dar.......... Soy : Biacetabulum 9. Skoleks’te üç çukurluk ; boyun kısa ve geniş.........................Soy: Archigetes 10. Ovaryum (V) veya (U) şeklindedir.......................................Soy;Bialovarium 10. Ovaryum (H) şeklinde...................................................................................11 11. Skoleks yelpaze şeklinde , anteriör ucu saçaklı;çukurluk yoktur..................... ..............................................................................................................Soy; Khawia 11.Skoleksin anteriör ucu yuvarlak ; iki çukurluk vardır....................... ....................................................................................................Soy ; Pliovitellaria 12. Uterus kıvrımları cirrus kesesinin anteriörüne uzanır.....................................13 12. Uterus kıvrımları cirrus kesesinin anteriörüne uzanmaz.................................14 13. Skoleks büyük , anteriöre doğru genişlemiş olup iki büyük ve derin bothria vardır...............................................................................................Soy : Capingens 13. Skoles küçük olup üç çift çok az belirgin çöküntü vardır................................... .........................................................................................Soy: Hypocaryophyllaeus 14. Skolekste çöküntü veya bothria vardır.............................................................15 14. Skolekste çöküntü veya bothria yoktur............................................................16 15. Skoleks içe dönük ; çöküntü var veya yoktur; genellikle post – ovarian ; vitellaria yoktur.......................................................................Soy : Monobothrium 15. Skoleks yelpaze veya kalkık yassı disk şeklinde ;üç çift çöküntü ; post-ovarianvitellaria vardır....................................................................Soy:Glaridacris 16. Post-ovarian vitellaria yoktur..........................................Soy: Pseudolytocestus 16. Post-ovarian vitellaria vardır............................................................................17 17. Skoleks yassılaşmıştır.......................................................Soy: Caryophyllaeus 17. Skoleks konik olup içe dönük yapıya sahip olabilir........................................18 18. Skoleks büyük olup gövdeden geniştir; dar boyun yoktur; kısa, küt yapıda...... ........................................................................................................Soy: Huntarella 18. Skoleks küçük; dar boyun vardır;ince ve uzun yapıda........................................ ................................................................................................Soy:Atractolytocestus 19. Skolekste iki botria .............................................Dizi: Pseudophyllidae 20(X) 19. Skolekste dört botria ......................................................Dizi: Tetraphyllides 23 19. Skolekste dört emici.................................................Dizi: Probeocephalidea 24 20. Skolekste kitinli çengeller ................................................................................. .........................................................Aile :Trisenophoridae (Soy: Triaenophorus) 20. Skolekste kitinli çengeller yoktur....................................................................21 21. Genital atrium marginal; skoleks subspherial ve genellikle yüzeysel olmakla beraber belirgin......................................................................Aile: Amphicotylidae 21. Genital atrium medialde ;skoleks uzunca .......................................................22 22.Yüzeysel bothrialı pseudoskoleks vardır ; primer skoleks dört tentaküllü ; küçük kurtlardır........................................Aile:Haplobothridae (Haplobothrium) 22.Skoleks dört loblu , az çok köşeli olup uzun yüzeysel bothriası vardır; orta veya büyük kurtlardır..........................................................Aile Bothriocephalidae 23. Skolekste apikal emici; her bothriumun anteriör sınırının önünde yardımcı emici vardır.........................................................................Soy : Pelichnibothrium 23. Skolekste apikal emici yoktur; her bothrium bir veya iki yardımcı emici vardır.......................................................................................Soy: Phyllobothrium 24. Skoleks anteriöre doğru genişlemiş olup emiciyi örten vücut kıvrımı vardır.....................................................................................Soy: Corralobothrium 24. Skolekste emiciyi örten vücut kıvrımı yoktur.................................................... 25. Testisler bir tek alan içinde ................................................Soy: Proteocephalus 25. Testisler iki ayrı lateral alanda ...............................................Soy: Ophiotaenia (Ekingen,G.,1983 )

http://www.biyologlar.com/platyhelmintheslerin-tayin-anahtari

Golgi Kompleksi

Golgi kompleksi, Golgi apparatus ya da Golgi cisimciği olarak da isimlendirilir. Hücrede çekirdeğin yakınında bulunan yassı keseler ve bunlara eşlik eden veziküllerden oluşmuştur (Şekil 2.3). Eritrositler ve keratinize epitel hücreleri hariç tüm hücrelerde bulunur. Golgi kompleksinin boyutları hücre tipine ve salgı aktivitesine göre değişir. Bazı hücrelerde büyük bir tane bulunuyorken bazı hücrelerde birbirine bağlı çok sayıda (=karaciğer hücresinde en fazla 50 tane) Golgi kompleksi bulunur. Elektron mikroskobi incelemelerinde Şekil 2.7'de şematize edildiği gibi golgi kompleksini oluşturan yassı keselerin orta kısımlarının basık kenarlarının biraz genişlemiş olduğu gözlenir. Yassı keselerin içi sıvı ile dolu olup düz değil hafif eğilimlidirler. Bu şekilde konveks ve konkav iki farklı yüz ortaya çıkar. Konveks yüze, giriş yüzü ya da şekillenme yüzü (=cis), konkav yüze ise çıkış yüzü ya da olgunlaşma yüzü (=trans) ismi verilir.

http://www.biyologlar.com/golgi-kompleksi

EPİTEL HÜCRELERİNİN BİYOLOJİSİ

Hücreler farklılaşırken zamanla yüklenecekleri çeşitli fonksiyonlara ait morfolojik ve fizyolojik özellikler kazanırlar. İyon Transportu Yapan Epitel Hücreleri: Bütün hücreler ATP’yi kullanarak kontsantrasyona ve elektriksel güç gradyanına karşı belirli iyonları taşırlar (Aktif transport). İyon transportu ve onu izleyen sıvı akımı çeşitli epitel hücrelerinde zıt yönlere (Apikalden bazale, bazalden apikale ) olabilir. Her iki durumda da sıkı bağlantılar hücrenin apikal kısmını kapatarak iç ve dış doku kompartmalarını oluşturur. Sıkı bağlantılar hücrenin apikal kısmını kapatarak iç ve dış doku kompartmanlarını oluşturur. Sıkı bağlantılar, epitelden geçmiş materyelin geriye diffüzyonunu engelleyerek enerjinin fazla harcanması engellenir. Pinositozla Transport Yapan Epitel Hücreleri:Hücre membranı yüzeyinde oluşan çok sayıda pinositotik vezikül, makromoleküllerin plazma membranından transportunu sağlar. Endotel, mezotel gibi tek katlı (organel azdır) yassı epitelde belirgin olarak gözlenir. Taşıma her iki yönde 2-3 dakika içinde gerçekleşmektedir. Kimyasal Haberci Üreten Hücreler: Kimyasal haberci üreten hücreler habercinin üretiliş şekline göre 3 grupta sınıflandırılır. Nörokrin : Nöronlar, impulsları sinapslar yolu ile diğer hücreye aktarırlar. Parakrin: Hücreler mesajı çevrelerindeki hücre dışı sıvısı içine yayarlar. Bu da komşu hedef hücreleri etkiler. Endokrin: Haberci bileşikleri direkt kana aktarırlar. Dolaşımla uzaktaki hedef organlara taşınırlar. Protein Sentezleyen Hücreler: Her hücre protein sentezler. Bazıları ise çok fazla protein sentezler. Polizomda sentezlenen proteinler, sitoplazmada kalırken (tümör hücreleri, hemoglobin), GER’ de sentezlenenler membranla çevrilidir. Bir bölümü hücre içi sindirim için sitoplazmada tutulur (lökositler, makrofaj). Diğerleri ise sekresyon denilen işlemle hücrelerarası alana atılır. (fibroblast, plazma hücreleri, ekzokrin pankreas). Bazı hücreler ( plazmositler, fibroblastlar gibi ) hiç biriktirmeden hemen dışarı aktarılır. GER --- Golgi--- dışarı Ekzositoz Bazılarında hücre apikalinde biriktirilir ve daha sonra özel uyarı ile dışarı verilir. Müköz Salgılayıcı Hücreler: Seröz Salgılayıcı Hücreler: Protein sentezleyen hücre özelliğinde Steroid Salgılayan Hücreler:Testisler, ovaryumlar, adrenallerde steroidleri hormonal aktivite olarak salgılayan ve sentezleyen özelleşmiş endokrin hücrelerdir. Bu hücrelerde: Nuk.merkezde Yuvarlak ya da ovoid Eozinofilik sitoplazma Sitoplazmalarında lipid damlacıkları SER den zengin Tubuler tipte kristalı mitokondriler SER +mit ® Steroid sentezi

http://www.biyologlar.com/epitel-hucrelerinin-biyolojisi

Bitki Kök Tipleri ve Özellikleri

Bitki Kök Tipleri ve Özellikleri

Bazı bitkiler neden çiçek açarlar? Kendi açımızdan baktığımızda bu soruya güzel görünmek, güzel kokmak cevabı verilebilir. Ancak bu nedenler gerçek cevap değildir.

http://www.biyologlar.com/bitki-kok-tipleri-ve-ozellikleri-odev-ariyorum

İdrar Sedimenti incelme

Direkt bakı Prepatı boyayıp inceleme Direkt bakı Lama konan sediment kurumadan biran önce incelenmelidir. Mikroskopta inceleme yapılır. Bunu yaparken şunlara dikkat edilir:Oküler ve objektifleri temizlemek için deve kılı fıçayla hafifçe yağ ve parmak izi temizlenmeli. Su bazlı temizleme solusyonları kullanılmalı. Diğer kısımlar için az miktarda ksilol, aseton, alkol temizleme yapılır. Preparat incelerken objektife idrar bulaşırsa temizlenmeli. Parlak olmayan ışıkta şekilli elemanlar daha iyi görüldüğünden mikroskobun kondansatörü uzaklaştırılır ya da diyafram kısılır. Oküler ve objektifi temiz bir mikroskopla önce küçük büyütme (objektif 10x oküler 10x=100x) ile alan bulunup-kontrol edilir. Sonra büyük büyütme (objektif 40x oküler 10x=400x) ile saha incelenir. 400 büyütmede 20 mikroskopik alandaki şekilli elemanların ortalaması alınır. Preparatlar bakıldıktan sonra biyolojik atığa atılır. Sayım ve Rapor Etme İdrar sedimentindeki yapıların cinsi ve sayısı belirtilir. Mikroskop alanındaki sayı verilir: Mikroskopide incelenen bir alandır!... Bir hacim değildir. Bu yüzden sayımlar her alanda şu kadar şu görüldü diye belirtilir. Ama en doğrusu (kantitif ölçüm için) sayım lamlarında sayım yapmaktır. Ama böyle alışagelmiş ve standardize edilerek geleneksel hale gelmiştir. Klinisyenlerde bu sonuçlara göre yorum yapmaktadır. Sayımda en uygunu rakam vermektir, ama geleneksel olarak kullanılan sayım terminolojisi de şöyledir:Nadir= 0-2 şekilli eleman Tek tük= 3-4 şekilli eleman Birkaç= 5-15 şekilli eleman Çok= 16-50 şekilli eleman (Bu aralıkda 15-20/ 20-30/40-50 şekilli eleman şeklinde genelde sayı verilir ) Bol= 51-100 şekilli eleman (50 üstünde şekilli eleman) Silme= 101 üstünde şekilli eleman (100 üstünde şekilli eleman ve arada boşluk kalmayacak şekildedir) Yorumlamada önemli durumlar belirtilmelidir.Hastanın getirdiği tüm idrar hacmi not edilmelidir. İdrar sedimenti incelemesi mutlaka fiziksel ve kimyasal incelemesi ile birlikte önem taşır. Klinik açıdan önemli yapıların raporu tanıda önemli olduğundan o preparat tüm sahalar ele alınarak daha dikkatli incelenmelidir (böbrek epiteli, patolojik silendirler, patolojik kristaller gibi). Yorumlamada idrar toplamaya, incelemeye..vs bağlı sorunlar not edilmelidir (yassı veya transisyonel epitelin bol olması, mikroorganizmaların varlığı kontaminasyon açısından, kristaller idrar kimyası ve öntanısı- şikayeti ile yorum yapılması açısından ..gibi). İdrar sedimenti incelemesinde ayrımı önemli yapılar açısından yardımcı yöntemlerden de yararlanmalıdır:İdrar asitlendirerek veya alkalileştirerek mevcut kristaller ayrılabilir Hücreler ayrımında Boyayarak inceleme Bazı hücreleri lizis ederek inceleme Mikrovida oynanarak kristaller diğer yapılardan refle vermesi ile ayrılabilir. ---------------------------------------------------------------- ADDİS SAYIMI  [Geri Dön] Bu yöntemde hastanın aldığı sıvı miktarı ayarlanarak çıkardığı idrar miktarı ve sedimentteki yapıların sayımı hacim esas alınarak standardize edilmiştir. Hastanın hazırlanışıBildiği- alıştığı kahvaltıyı yaptıktan sonra ertesi sabaha kadar sıvı yasaklanır (nitrojen retansiyonu olmamalı). Saat 19:00'da idrarını yaparak mesaneyi boşaltır, tüm gece boyunca yaptığı idrarı ve ertesi sabah 07:00'de idrarı da bir kapta biriktirir. Üzerine 0,5cc formalin ekler. Kadında idrar vagina yıkanarak- vulvaya temas ettirilmeden veya sonda ile toplanır. İdrarın özellikleriİdrarın pH=6 ve altında olmalı Dansitesi 1,027 ve üstünde olmalıdır. Örneğin hazırlanmasıİdrar hacmi de not edilir. Tüm idrar karıştırılır. 10cc alınır. 1800 devir/dk 5dk. santrifüjlenir. Üstteki 9cc atılır, 1cc bırakılır. Sediment karıştırılır. SayımLökosit pipeti kullanarak sayım lamında sayım yapılır. Tüm yapılar ayrıca sayılır. Hesabı ( N=snV/ v10 ) N= 12 saatlik idrarda eleman (hücre- silendir) sayısıV= 12 saatlik idrarın hacmi (cc)10cc= sanrifüj edilen idrar hacmis= Karıştırılmış çökelti hacmi (1cc)v= İçinde sayım yapılan hacim (0,0009cc)n= Sayılan eleman adedi Kaynak: www.mustafaaltinisik.org.uk DEÜTF Merkez Lab.İdrar Lab.:Kendi Laboratuvarımızda çekilen fotoğraflar. Kitap: A.Handbook of Routine Urineanalysis, Sister Laurine Graff, JB Lippincott Comp, 1983 isimli kitaptan alıntı fotoğraflar Ege ÜTF Parazitoloji AD: Ege Üniversitesi TIp Fakültesi Parazitoloji Anabilim Dalı'ndan temin edilen fotoğraflar

http://www.biyologlar.com/idrar-sedimenti-incelme

Likenler

Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir siyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomycetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen tek bir tabaka şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım ve farklı tabakalar varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Morfolojilerine veya dış görünüşlerine göre göre; Kabuksu likenler, genellikle kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. Yapraksı likenler, tallusları loblar halinde olan ve genellikle rozetler oluşturan likenlerdir. Dalsı likenler, ağaçlar bazen de kayalar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir.   Likenler Tabiatta bazı kayaların, toprakların ağaç gövde ve dallarının üzerinde yaşayan yosunlara benzeyen, köksüz, gövdesiz ve yapraksız bitkiler, Likenler bir kısım mantarlarla bazı su yosunlarının beraberce bir bütün halinde ortak yaşadığı bitkilerdir. Bu iki ayrı çeşit bitki kendine benzemeyen tamamen farklı bir organizma meydana getirirler. Herhangi birisi olmasa liken meydana gelemez. Liken, su yosunları (alg) vasıtasiyle özümleme yapar. Mantarlar da iplikleri ile suyu temin eder ve likeni bulunduğu yere tesbit eder. Likenler, zengin bir bitki grubudur. Dünyanın hemen her bölgesinde yayılmış olarak çeşitli yetişme yerlerinde yaşarlar. Kutuplardan Ekvatora, deniz kıyısından, ovalardan dağların en yüksek yerlerine kadar hemen hemen her yerde, diğer organizmaların yaşayamayacağı yetişme yerlerinde yetişebilirler. Kızgın güneş altında (70°C) sıcağa ve çok düşük dereceli soğuğa, haftalarca süren kuraklığa dayanabilirler, dünya üzerinde de 20.000 kadar türü bulunmaktadır. Likenlerin besin maddelerine olan ihtiyaçları azdır. Yalnız havası temiz olan yerlerde yaşayabilirler. Kirli havaya karşı çok duyarlılık gösterirler. Bunun için likenler, bir bölgenin havasının temiz olup olmadığını belirten iyi bir göstericidir. Likenlerin yapısının büyük kısmını mantar iplikleri meydana getirir. Çoğunlukla likenin üst ve alt kısmında mantar ipliklerinden meydana gelen sıkı bir kabuk tabakası, orta kısmında ise daha gevşek bir örgü dokusu bulunur. Üst kabuk tabakasının altında suyosunları yer alır. Likenin eşeysiz üremesini suyosunları sağlar. Eşeyli üremeyi ise sadece mantar sağlar. Likenler çok yavaş büyürler. El büyüklüğünde bir liken, ekseriya 50 yılda meydana gelir. Çalımsı likenlerin birkaç cm yükselebilmesi ise ancak 100-200 yılda olabilir.” Likenler, şekillerine göre üç grupta toplanabilir. 1. Kabuksu likenler: Liken tamamen ağaç kabuğuna veya kayalara tutunmuş olup, kabuk şeklinde, yassı ve sıkı bir örtü meydana getirirler. Mesela; lecanora, lecidea, rhizocarpon (harita likeni) likenleri gibi. 2. Yapraksı likenler: Liken şerit veya levha şeklinde küçük veya büyük dilimli yaprak şeklindedir. Mesela, İslanda likeni (cetraria) gibi. 3. Çalımsı likenler: İnce şerit şeklinde ve iplik şeklinde dallanmış olup, bir çalıyı andırarak ya dik olarak veya ağaçlardan aşağı doğru sarkan likenlerdir. Mesela; sakal likeni (Usnea), kadeh likeni (Cladonia) gibi. Memleketimizde yetişen önemli likenler şunlardır: Harita likeni: (Rhizocarpon geographicum): Kayalar üzerinde yaşayan sarımsı-yeşil renkte kabuklu likenlerdir. Parmelia furfuraceae: Ağaçlar üzerinde yaşayan grimsi-siyah likenlerdir. Evernia prunastri: Çok yaygındır. Meşe, kayın, gürgen, kavak ve karaağaç üzerinde yaşayan sarımsı-yeşil renkli likenlerdir. Sakal likeni (Usnea barbata): Çam, köknar, kayın ağacı dallarından sarkan çalımsı likenlerdir. Ciğer likeni (lobaria pulmonaria): Yaprak şeklinde, derimsi, yeşilimsi gri likenlerdir. Kadeh likeni (Cladonia pyxidata): Orman kenarlarındaki güneşli yerlerde ve kireçli topraklarda yaşayan grimsi-yeşil kadeh şeklindeki likenlerdir. Likenlerin kullanılışı: Likenler çok eskiden beri tıpta kullanılmıştır. Ancak bu kullanma ilmi esaslara göre değil de o zamanki kurala göre, benzetildiği hasta organının tedavisinde kullanılırdı. Mesela sakal likeni saç çıkarmada, ciğer likeni akciğer hastalıklarında kullanılmıştır. Likenler, antibiyotik etkileri incelenmekte olan bitkilerdir. Bugün likenlerden elde edilen 60 kadar antibiyotik vardır. Bu etkisinin de, taşıdıkları liken asitlerinden ileri geldiği düşünülmektedir. Antibiyotik maddeler çoğunlukla, cladonia, evernia, cetaria, usnea romalina cinsi türlerinden elde edilen usnik asit, vulpinik asit, evernin asidi, önemli antibiyotik asitlerdir. Usnik asit, evernin asidi ve liken yağ asitlerinin karışımından Evosin elde edilir ki bunun kuvvetli bir antibiyotik etkisi vardır. Gram (+) kokuslara karşı etkilidir. Usnik asidin sodyum tuzunun da staphylococcus, streptococcus ve mycobacteriuma karşı kuvvetli bir antibiyotik etkisi vardır. İki liken türü, lethraria vulpina ve cetraira pinastri zehirlidir. İskandinav ülkelerinde kurtları zehirlemek için kullanılır. Bu iki liken türünden başka hiçbir liken zehirli değildir. Yalnız çoğu, ihtiva ettikleri asitlerden dolayı barsak bozukluklarına sebep olur. Tabiatta likenlerin büyük kısmı, hayvanların besinlerini sağlar. Kuzey ülkelerinde ren geyikleri, kar altında cladonia alpestris likenini tercih ederek ararlar. Ayrıca Arktik ve Subarktik kuzey bölgelerinde bulunan İslanda likeni (Cetraria islandica), yabani mandaların, domuzların önemli yem bitkisidir. Kuzey bölgelerinde yerli halk, evcil hayvanları için bol miktarda liken toplarlar. Liken, insanlar için de yiyecek maddesi olarak kullanılır. İki kg liken unu, 1 kg buğday ununa eşittir. Orta doğunun kurak bölgelerinde ve çöllerindeki Manna likeni(kudret helvası), besin olarak kullanılan likenlerdendir. Develerin besinini temin ettiği gibi, insanlar da bundan ekmek yaparlar. Orta Asyada bu liken türünden yapılan ekmeğe Kırgız ekmeği denir. Likenlerde az miktarda da olsa vitaminler vardır. Ren geyiği likeninde (Cladonia rangiflerina), A,C ve D vitaminleri mevcuttur. Likenlerden sanayide de faydalanılır. Roccella tinctoria ve R. fuciformis liken türlerinden, asit, baz endikatörü olarak kullanılan turnusol mahsulü ve kağıdı yapılır. Bundan başka Orsey adı verilen yün, ipek, hatta odunu boyamada kullanılan kırmızı bir boya elde edilir. Bazı liken türleri de ortaçağdan beri parfümeride kullanılmıştır. Fransa''da bir liken türünden orman çayı adı verilen aromatik bir içecek yapılır.     Likenler ya da Lichenes; başlı başına birer organizma değildirler. Mantarlar ve fotosentetik alglerden meydana gelen simbiyotik birlikteliklerdir. Şekil ve yaşayış bakımından kendilerini oluşturan alg ve mantarlardan tamamen ayrı bir yapı gösterirler. Renksiz bir mantar hifinden oluşan tallusun yapısına katılan fotosentetik canlı (fotobiyont), genellikle yeşil alg ya da bir cyanobakteridir; fakat bazı sarı-yeşil alglerden ve kahverengi alglerden de oluştukları bilinir. En çok Cyanophyta ve Chlorophyta'ya ait cinsler ve Xanthophyta ve Phaeophyta'dan bazı alg türleri görülür. Mantarlarda ise genellikle Ascomytcetes ve az olarak Basidiomycetes'e ait cinsler görülür. Alg ve mantarın birbirleri ile birleşmeleri farklı şekillerde olabilir. Eğer alg ve mantar dağılımı homojen şekildeyse bu likenler; "Homeomerik liken", heterojen bir dağılım varsa "Heteromerik liken" olarak isimlendirilirler. Homeomerik likenlerde, alg ve mantar ayrı bir katman oluşturmadan birleşir, tallus jelatini andıran müsilajımsı yapıdadır. Heteromerik likenlerde, üst kabuk katmanı (korteks) ile orta kısım arasında algler bulunur, diğer kısımlar sıkı ya da gevşek dizilmiş mantar hiflerinden oluşur. Çoğu liken bu grupta yer alır. Likenler, birçok yerde bulunabilen organizmalardır. Bulundukları yere göre; •Kabuksu likenler, kayalar üzerinde gelişen likenlerdir. Tallus kabuk biçimindedir. Kayaları eritebilen enzimleri bulunabilir, bu yüzden "Endolitik likenler" de denirler. •Yapraksı likenler, toprakta yaşayan, tallusları loblar halinde olan likenlerdir. •Dalsı likenler, ağaçlar üzerinde gelişen, oldukça büyük talluslu, sık dallanma gösteren likenlerdir. Üremeleri Likenler; 1.Eşeysiz 2.Eşeyli olarak çoğalabilen bir canlı grubudur. 1. Eşeysiz Üreme Bu çoğalma tipi "Sored" denilen mantar hifleri ile çevrili birkaç alg hücresinden oluşan tallus parçacıkları ile gerçekleştirilir. Soredler tallusun korteksinin parçalanması ile serbeste hale geçerek toz gibi çevreye dağılırlar, ulaştıkları yerlerde tutunarak, yeni bireyleri oluştururlar. 2. Eşeyli Üreme Likenlerin yalnızca mantarlarında görülür. Alg bu yapının içinde vejetatif olarak çoğalır. Mantarların meydana getirdiği fruktifikasyonlar serbest yaşayan mantarlarınkinden oldukça farklıdır. Liken yapısındaki mantarın cinsine göre oluşturulan fruktifikasyonlar farklılık gösterir. Metabolizma Likenleri oluşturan alg ve mantarlar arasında bazı fizyolojik iş bölümleri vardır. Simbiyotik organizmalardan alg, klorofil taşıdığından fotosentez yapar ve birliğin karbonhidrat gereksinimini karşılar. Mantar ise su ve madensel maddelerin alınmasında görev alır. Likenlerde metabolik aktivite su, ısı ve ışıkla değişkenlik gösterir. Su içeriği %65-90 arasında olduğunda fotosentez oranı artar, 15-200C fotosentez için en uygun sıcaklıktır. Depo maddesi olarak nişasta bulunur. Likenlerin metabolizmaları sonucu ekonomik öneme sahip bazı maddeler oluşur. Bunlar tıpta, boya sanayinde ve besin olarak kullanlan maddelerdir. Tıpta; öksürük ve göğüs hastalıklarında, diabette, nefrit, nezle de ve iştah açıcı olarak kullanım alanları mevcuttur. İnsanlarca Lecanora esculenta ve Ren geyiklerince Cladonia rangiferina besin olarak kullanılır. Ekoloji Dünyada geniş bir yayılım alanına sahip ve denizlerden yüksek dağlara, sıcak bölgelerden kutuplara kadar yerleşim yerlerinde ve zor koşullarda bulunurlar. Tallus yavaş gelişir, ağaç, toprak ve kayalar üzerinde bulunurlar.üzerinde bulunduğu kayaları parçalayarak toprak oluşumuna katkı sağlarlar.

http://www.biyologlar.com/likenler-1

Trematoda

Trematoda sınıfına kelebeklerde denir. - Vücutları dorso-ventral basıktır. - Vücut boşluğu yoktur. - Tüm vücut tek bir bölümden oluşmuştur. - Tüm organlar tek bir paranşim içinde toplanmıştır. -Çekmen/çengelleri vardır. -Genellikle anüsleri yoktur. -Schistosomatidae ailesi dışındakiler hermafrodittir. -Direk/indirek gelişirler. 3 tane alt sınıf vardır : -Monogenea -Aspidogastrea - Digenea MONOGENEA : - Soğukkanlı ve suda yaşayan hayvanlarda (balık, amfibi, sürüngen) parazitlenirler. -Genellikle ektoparazittirler. -Vivipar ya da ovipardırlar. -Larvaları olgunlarına benzer. -Tutunma organeli olarak arka kısımlarında çekmen/çengelleri vardır. -Direk gelişirler. Ör: Gyrodactylus Dactylogyrus ASPIDOGASTREA : - Yaklaşık 80 türü vardır. -Balık, sümüklü, kabuklu ve kaplumbağalarda parazitlenir. -Hiçbir türünün ekonomik önemi yoktur. -Digenea'lara benzerler. -Çok sayıda alveol/çekmene sahip bir ventral disk taşırlar. -Çekmen bulunmaz -Tegumentte mikrotubuller vardır. -Ekto ya da endoparazit olabilirler. Medikal açıdan önemli olan altsınıf Digenea'dır. DIGENEA : - Boyutları 0,3 mm ile 10 cm arasındadır. -Vücut segmentsiz ve tek bölümlüdür. Paramphistomum soyu tesbih tanesi gibi, Schistosoma soyu da ince, uzun ve silindirik bir yapıya sahip olamsına rağmen genellikle yaprak şekilde dorso-ventral basık bir formdadırlar. -Vücut tegument ile kaplıdır. Tegument düz (Dicrocoelium) ya da dikenli (Fasciola) olabilir. -Ağız ve karında olmak üzere 2 tane çekmen vardır. Bazılarında (Heterophyes) genital çekmen bulunur. -Bazı türlerde (Echinostomatidae) ön kısımda bir yaka ve bu yakada 1-2 sıralı diken bulunur. Sindirim sistemi : Basittir. Ağız / prepharynx / pharynx / oesophagus / barsak (kör olarak sonlanır). Anus yoktur. Beslenme doku artıkları sayesinde olur. Sindirim barsaklarda gerçekleştirilir. Sinir sistemi : Oesophagus çevresinde bir sinir tasması bulunur. Buradan çıkan sinir iplikçikleri vücuda dağılır. Boşaltım sistemi : Paranşimde kirpikli ateş hücreleri varıdır. Buradan çıkan boşaltım kanalları daha büyük kanallarla buluşup arka kısımdaki boşaltım deliğinr açılır. Üreme sistemi : Schistosoma hariç hermafrodittirler. Erkekte:2 testis / vasa deferens / sirrus kesesi (ves.seminalis + penis +sirrus) / genital delik. Dişide : ovarium / oviduct / ootip / uterus. Ootip çevresinde salgılarıyla yumurta kabuğunun şekillenmesini sağlayan Mehlis bezleri vardır. Parazitin iki yanınada ve ootipa açılan vitellojen bezlerin salgısıyla da yumurta sarısı oluşturulur. Döllenme ootipte olur. Larva dönemleri : a) Miracidium : Ön tarafı geniş, arka ksımı dardır.Üzeri kirpikli epitelle kaplıdır. Ön uçta arakonağı delmeye yarayan dikenli çıkıntı vardır.Bazı türlerde 1-2 göz lekesi bulunabilir. b) Sporokist : İnce duvarlı bir kesedir. İç duvarında bölünme yeteneğine sahip hücreler vardır. c) Redi : Silindirik yapıdadır.Ön kısımda ağız çekmeni vardır .Sindirim kanalı ve boşaltım sistemi şekillenmiştir. Vücudun vbir tarafına açılan bir doğum deliği vardır. d) Serker : Vücut gövde ve kuyruktan oluşur. Ağız, karın çekmeni, sindirim kanalı, boşaltım ve sinir sistemi gelişmiştir. Kuyruk tek ya da türe göre çatallı (furkoserker) olabilir. e) Metaserker : Serkerin gövdesini kistleşmiş şeklidir. Genellikle enfektif formdur. Schistosomalarda enfektif dönem serker dönemidir. Metaserker dönemi gözlenmez. Yumurtalar :2 tiptir : -Çift çeperli, kalın kabuklu,dikensiz,kapaklı -Çift çeperli,kalın kabuklu,dikenli,kapaksız (Örn:Schistosomatidae) Teşhis : Sedimentasyon yöntemi ile dışkı bakısı yapılır. Biyoloji : - Gelişme indirektir. -1-2 arakonak kullanılır. Genellikle 1.arakonak sümüklülerdir. 2.arakonak ise genellikle suda yaşayan balık, kabuklulardır. -Son konakata bulunan parazitten dışarı atılan yumurtalarda miracidium gelişir. Miracidium suda yumurtayı terkeder. Bazı türlerde ise (Dicrocoelium dendriticum) terketmez. Miracidium / sporokist (arakonakta serbest halde) / redi / serker / metaserker / çevre koşulları uygun olmazsa kız redi *Dicrocoelium dışındaki tüm digenik trematodların aracıları su sümüklüleridir. 1.AILE : FASCIOLIDAE Cins: Fasciola Tür: F.hepatica,F.gigantica Hastalık: fasciolosis Cins:Fascioloides Tür:F.magna Cins:Fasciolopsis Tür:F.buski Fasciola hepatica : Son konaklar: Sığır, koyun, insan dahil birçok memeli Ara konaklar: Lymnea truncatula (su yüzeyinde yaşar, beyaz renkli ve şeffaftır) Yerleşim: Karaciğer (gençler parankimde, olgunları safra yollarında) Yayılışı: Yurdumuzun her bölgesinde yaygındır Morfoloji: F.hepatica Uzunluk 2-2,5 cm Genişlik 8-15 cm Arka kısım daha sivri Kenarlar daha sivri F.gigantica Uzunluk:2,5-2,7 cm. Genişlik:3-15 cm. Arka kısım küt Kenarlar paralel Rengi sarı-kahverengidir. Kanla beslenir. Doymuşsa kırmızı gözükebilir. 2 tane çekmeni vardır. Ağzı ağız çekmeni kuşatır. Ağzı pharynx, oesophagus ve barsaklar (dallanma gösterir) takip eder. Sindirim sistemi kör olarak sonlanır. Anus yoktur. Vitallojen bezler, ovaryum (yumurta ile dolu ise siyah renkte gözükür) va testisler (arka kısımda bulunur, dallanma gösterir) üreme sistemini oluşturur. Tegument dikenlerle kaplıdır. Biyoloji: Y/M/R/S/M Yumurta safra yoluyla barsaklara karışır, dışkı ile dışarı atılır. Yumurta kapaklı, dikensiz, tek blastomerli, içi tamamen yumurta sarısıyla dolu, sarı renklidir. Dışarı atılan yumurtanın içinde uygun koşullarda 9-10 gün içinde miracidium şekillenir. Işıklı ve sulu ortamda kapağı açılan yumurtadan miracidium dışarı çıkar ve suda serbest olarak yüzmeye başlar. Suda serbest olarak yaşama süresi 1 gündür. Bu süre içinde ara konağa girmelidir. Miracidium arakonağın (L.truncatula) yumuşak dokusunu delerek ara konağa dahil olur. sporokist, redi ve serker dönemlerini geçirdikten sonra ara konağı terkeder. Ara konağı terkeden serker suda kuyruğuyla ilerler. Bir süre sonra kuyruğu kopan serker, metaserkere dönüşür. Gıdalarla birlikte serker son konağın vücuduna girer. Son konakta açılan metaserkerdenn genç kelebek açığa çıkar. Genç kelebek barsak duvarını delerek karın boşluğuna, oradan da karaciğer parankimine geçer. Karaciğer parankiminde yaklaşık 5-6 haftalık göç geçirir. Safra yollarına gelerek olgunlaşır. Prepatent süre 11-12 haftada, tüm biyolojisi ise 17-18 haftada tamamlanır. Uygun olmayan şartlarda bu süre uzar. Klinik belirtiler: Perakut dönemde: Ani ölüm karaciğer kapsülünde yırtılma, karın boşluğunda kan birikimi görülür (enfestasyon durumunda). Akut dönemde: Halsizlik, solunum güçlüğü, karın şişliği, ve ağrı (sternum'a palpasyonla teşhis edilir) görülür. Karın boşluğunda kanlı, fibrinli sıvı birikimi vardır. Ayrıca karaciğerde büyüme, kanama, hematom, göç izleri ve genç kelebekler görülür. Hastalık koyunlarda genelde akut seyreder. Kronik dönemde : Anemi, kaşeksi, çene ve karınaltında ödem, verim düşüklüğü görülür. Karaciğerde setleşme, kenarlarında düzensizlik, safra yollarında kalınlaşma, fibrosis ve kireçlenme vardır. Sığırlarda çok şiddetli reaksiyon oluştuğundan hastalık geneldekronik seyreder. Nekrotik hepatitis'te genellikle belirti görülmez. Genç kelebeklerin barsaklardan karaciğere göçü sırasında barsaklardaki bazı bakteriler de karaciğere gelie. Toksemiden ani ölüm şekillenir. Karında ağrı ve kan birikimi yoktur. Daha çok 2-4 yaşındaki iyi kondisyonlu hayvanlarda görülür. Halk arasında kara hastalık (Black disease) olarak bilinir. Etken bakteri B tipi Clostiridium novyi'dir. Derisi yüzülen hayvanlarda derialtı damarları birden siyahlaşır. Epizootiyoloji: Konak-mera-su Arakonaklar suya ve çamura girip çıkarlar (amfibiktirler). Çamurlu ve pH'ı hafif asit oaln bölgeler ara konaklar için elverişlidir. Yağış; ara konak yaşamı, miracidium ve serkerin çıkışı, toprağın nemi dolayısıyla yumurtanın gelişimi ayrıca meralar için gereklidir. Yumurtadan miracidium ve ara konakların gelişimi için optimal sıcaklık 22-26°C'dir. 10°C'nin altında gelişme durur. Kışın -4°C'nin altında yumurta, metaserker ve çoğu sümüklü ölür. İlaçlama: Stratejik ilaçlam meraya çıkıştan sonraki 1 ay içinde ve kışa girerken yapılabilir. Teşhis: Akut dönemde : Otopside karaciğerde genç kelebekler görülür. Kronik dönemde : Sedimentasyon yöntemi ile dışkı bakısı yapılarak parazit yumurtaları aranır. Kanda gamaglutamik transpeptidaz enzim seviyesine bakılabilir. İnsanlarda ultrasonografi yöntemi denenebilir. Sağaltım: Kontrol: 1) Arakonaklarla mücadele: Molluscisid kullanılarak ve drenaj ile yaşadıkları alanlar kurutularak. 2) Sonkonakların sağlatımı ile: Hayvanlarda parazitin (ilkbaharda ve sonbaharda), merada metaserkerin (ilkbaharda) en çok olduğu zaman. İlaç kullanımında biyoloji dikkate alınır. 3) Hayvanlar enfekte meraya sokulmaz. 2.AILE: DICROCOELIDAE Cins: Dicrocoelium Tür: Dicrocoelium dendriticum (kum kelebeği) Hastalık: Dicrocoeliosis Son konak: Özellikle ruminantlar. Nadiren insan, domuz ve kemiriciler. Ara konak: I. Kara sümüklüleri (Helicella, Zebrina vs.) II. Formica cinsi karıncalar Yerleşim: Karaciğer safra kanalı ve safra kesesi. Yayılış: Yurdumuzda her yerde yaygındır. Patojenite: Fazla patojenitesi yoktur. Sağaltım: İlaçlara çok dirençlidir. Thiabendazole, Netovmin, Albendazole, Praziquantel kullanılır. Biyoloji: Dışkıyla dışarıya miracidiumlu gelişmiş yumurta atılır. Kara sümüklüsü pasif olarak yumurta ve miracidiumu alır. Metaserker dışarıya çıkar®sporokist®serker (dışarı). Atılan sümüksü yumağı karıncalar alır. Serkerlerden bazıları karıncanın beynine gider ve yaptıkları tahribat sonucu karıncanın anormal davranışlarına neden olur.En tipik hareket, sabahın erken saatinde otların tepesine tırmanmak ve ağızlarıyla ota tutunup kalmaktır. Karıncanın çene kasları felç olmuştur. Otların tepesindeki metaserker taşıyan karıncaları alan son konaklar enfekte olur. metaserkerler açılır, genç kelebek serbest duruma geçer. Barsaklardan ductus choleduchus yolu ile karaciğere geçer. Prepatent süre zundur, 10-12 hafta. 3.AILE: OPISTORCHIIDAE Cins: Opistorchis Tür: O.tenuicollis (1) O.sinensis (2) Hastalık: Opistorchiosis Son konak: Köpek, kadi (1), insan (2), diğer balık yiyen etçiller Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları Yerleşim: Karaciğer safra yolları Yayılış: Türkiye, Uzakdoğu Patogenez: Dikenli tegument safra kanalı epitelini irrite ederek papillom ve karsinom gibi tümör oluşumuna neden olur. Teşhis: Dışkıda yumurtaların görülmesi ile taşhis yapılır. Sağaltım: Hexachlorophen 20 mg/kg Morfoloji: Dicrocoelium'a benzer ama testisler arkadadır. 4.AILE HETEROPHYDAE Cins: Heterophyes Tür: Heterophyes heterophyes Son konak: Karnivor ve insan Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları ( Mugil vs.) Yerleşim: İnce barsaklar Yayılış: Türkiye, Ortadoğu, Uzakdoğu Morfoloji: 1,5 mm uzunluk, genital deliği çevreleyn bir GENİTAL ÇEKMEN var. Teşhis: Yumurta (D.dendriticum'unkine benzer ama açık kahverengi) Sağaltım: Praziquantel, Niclosamide,Niclofolan Biyoloji: İnce barsaktaki yumurta dışkı ile atılır. I. ara konaklar yumurtayı Dicrocoelium'daki gibi pasif olarak alırlar. Serkerler II. ara konaklarca alınır. Kaslarda metaserkerler gelişir. Çiğ ya da az pişmiş balıkları yiyen son konaklar enfeksiyona yakalanır. 5.AILE TROGLOTREMATIDAE Cins: Paragonimus Tür: Paragonimus westermanii Son konak: İnsan, karnivor Ara konak: Yengeç, kerevit Yerleşim: Akciğer Cins:Troglotrema Tür:Troglotrema acutum Son konak:Tilki,vizon vb. Yerleşim:Sinüs(frontal ve etmoidal) 6.AILE ECHINOSTOMATIDAE Cins: Echinostoma , Echinochasmus , Echinoparphium Tür: Echinostoma revolutum , Son konak: kanatlı, memeli Tür: Echinoparphium recurvatum , Son konak: kanatlı Tür: Echinochasmus perfoliatus , Son konak: köpek, kedi Yerleşim: İnce barsak 7.AILE PARAMPHISTOMATIDAE Cins: Paramphistomum (RUMEN KELEBEĞİ) Türler: Paramphistomum cervi , Paramphistomum ichikawai Hastalık: Paramphistomosis Ara konaklar: Su sümüklüleri (Planorbis , Bulinus) Son konaklar: Ruminantlar Yerleştiği yer: Gençleri duadenuma, erişkinleri rumen ve reticuluma Yayılışı: Türkiye dahil birçok ülkede. (özellikle eskişehir,bolu) Morfoloji: -Şekli:Kesik koni biçiminde ,yuvarlak -Büyüklüğü: Erişkinler 1 cm.kadar,göç halindeki gençler 0.5 mm.den küçük -Rengi: Pembe,kırmızı -Karın çekmeni: Parazitin arka tabanında bulunur. Biyoloji: F.hepatica ve F.gigantica'ya benzerlik gözterir.Son konakların rumeninde bulunan olgun parazitlerin yumurtaları dışkıyla dışarıya atılır.Dışarıda yumurtadan miracidium gelişir ve miracidium yumurtayı terkeder.Daha sonra miracidium tatlısu sümüklüsüne girer.Sümüklüde sporokist,redi,serker gelişir ve serker dışarıya atılır.Daha sonra serker otlarda ,suda kistlenir,kuyruğu kopar ve metaserker haline gelir.Bunu gıdalarıyla birlikte alan sonkonaklar enfekte olurlar.Metaserker sindirim sisteminde açılır.Genç parazitler önce duadenuma gelir.Daha sonra geri dönerek rumen ve reticuluma gelip olgunlaşırlar. Prepatent süre yaklaşık 7-10 haftadır. Patogenez ve klinik belirtiler: -Akut dönem:Duadenum ve abomasumdaki göç halindeki genç parazitlerden ileri gelir.Parazitler mukozaya bazen kas ve serozaya kadar gömülür.Bağırsakta boğulma,ülser,kanama ve nekroza neden olurlar.Plazma albuminleri bağırsağa sızar.Kanda Ca seviyesi düşer.Plazma proteinlerinin seviyesinin düşmesi sonucu vucut boşluklarında sıvı toplanır.(ödem).İştahsızlık,kilo kaybı,açlık atrofisi, ishal ve bitkinlik görülür. -Kronik dönem:Bazen karın çekmenleri ile rumen papillalarını boğarak atrofiye neden olurlar. Teşhis: Akut dönemde ishalli dışkıda prinç tanesi büyüklüğünde pembe,beyaz renkli parazitler aranır.Kronik dönemde dışkıda yumurtalar aranır. Sağaltım: mg/kg 8.AILE SCHISTOMATIDAE Cins: Schistosoma Orientobilharzia Türler Son konak Yerleştiği vena S.mansoni insan portal, mezenterik S.haematobium insan idrar kesesi S.bovis çift tırnaklı portal, mezenterik S.japonicum insan,hayvan portal, mezenterik S.matthei çift tırnaklı portal ,mezenterik S.nasale çift ve tek tırnaklı burun mukozası O.turkestanicum memeliler portal, mezenterik Hastalık: Schistomosis, Orientobilharziosis Arakonaklar: Tatlısu sümüklüleri (Bulinus, Planorbis, Lymnea) Son konaklar: Memeli ve kanatlı Yerleştiği yer: Vena (portal ve mezenterik) Yayılışı: Orientobilharzia turkestanicum Türkiyede vardır.Koyunlarda görülmüştür. Özellikleri: -Ayrı eşeylidir. -Vucutları silindiriktir. -Yumurtaları kapaksız ve dikenlidir. -Serkerleri çatal kuyrukludur.(furcoserker). -Redi ve Metaserker dönemi yoktur. Morfoloji: -Uzunluğu 2cm.kadardır. -Erkekleri dişilerden daha geniş ve yassıdır. -Dişileri silindiriktir. -Erkek dişiyi ventralinde bulunan bir kanalda (Gynaechophoric kanal) taşır. Biyoloji: İnsan ve hayvanlarda bulunan olgun parazitlerin yumurtaları bulundukları venayı dikenleriyle delerek en yakın kanaldan dışarıya atılırlar.(Eğer idrar kesesi venasındaysa idrarla,Burun boşluğu mukozasındaki bir venadaysa sümükle,mezenterik bir venadaysa dışkıyla).Yumurta atıldığında içerisinde miracidium vardır.(Miracidium sonkonakta gelişir.).Suyla temas ettiği zaman miracidium yumurtayı terkeder ve suda uygun aracılara girer.Aracıda sporokist ve serker gelişir.Serker çatalkuyrukludur.(Furcoserker).Furcoserker kendi aktif hareketiyle sonkonakların derisinden girerek veya suyla,gıdalarla birlikte alınarak sonkonağa girer. -Prepatent süre 6-7 haftadır. -Hava kötüyse sporokistten ikinci kuşak sporokistler gelişir. -Arakonaktaki gelişim süresi 5 haftadır. -Deriden girer girmez kuyruk kopar .Ağız boşluğundan alındıysa mukozayı delerek kana karışır,kuyruğu kopar,kalp,akciğer,karaciğer yoluyla yerleşecekleri venalara giderler veerişkin duruma gelirler. -Kuyruğu koptuktan sonraki döneme SCHİSTOSUMUL denir. -Redi, metaserker dönemi yoktur. Patogenez ve klinik belirti: 1.İnvazyon dönemi: Serker (banyo) dermatitisi oluşur.Deriden giren serkerlerin çıkardıkları sekret, sitolitik enzimler ve ölen serkerlerin vucut antijenleri deride gecikmiş tip aşırı duyarlılığa neden olurlar. (Özellikle o konak için yabancı serkerlerin ölmesi sonucu).(Deri - larva migransı) 2.Göç dönemi: Schistosomaların kan yoluyla kalp,akciğer,karaciğer ve portal sisteme göç ettiği dönemdir.Akciğerlerde pneumoni tablosu şekillenebilir. 3.Olgunlaşma dönemi: Schistosomulların karaciğerde olgunlaştıkları dönemdir. 4.Yumurtlama dönemi: En patojen dönemdir.Yumurtalar damarları yırtarlar.Kanamalara neden olurlar.Anemi şekillenir. Bir kısım yumurta konağı terketmeyerek dokularda(bağırsak mukozası,karaciğer) tutulur.Buralarda yangı ve fibrosise neden olurlar. Teşhis:Dışkı ,idrar ve burun akıntısında yumurtaları görerek yapılır. Sağaltım: Genellikle antimon bileşikleri verilir.(Stibufon gibi)

http://www.biyologlar.com/trematoda

Cestoda (YASSI SOLUCANLAR) Özellikleri

CESTODA (YASSI SOLUCANLAR) - Sestodlar; vücutları yassı, halkalara ayrılmış şerit şeklindeki PLATHYHELMINTH'lerdir. - Boyları 2-4 mmden 20-25 mye kadar varan değişik ölçülerde olabilir.(Diphylobotrium latum 20-25 m. , Taenia saginata 5-10m. ) - Halka sayısı ise 3'ten 8-10bine kadar çok farklı sayılarda olabilir. (D.latum 8-10 bin halka, E.granulosus 3 halka) Cestodlarda vücut, şekil ve fonksiyon yönünden 3'e ayrılır: SCOLEX:Ön uçta bulunur. Yuvarlak / badem biçimlidir. Yapışma görevi vardır. 3 Yapışma organeli vardır: Bothria: Pseudophyllidea'da görülür. 2- 4 adettir. Yanda bulunur. Acetabula: Cyclophyllidea'da görülen çekmenlerdir. Kadeh ya da kase biçiminde, kassal yapılı, 2-4 adet, karşılıklı yer almış oluşumlardır. Bazısında çekmenler bulunabilir Rostellum: Yine Cyclophylladea'da anteriorda bulunur. Uzayıp kısalabilen, üzerinde 1 ya da 2 sıralı çengel taşıyan bir yapıdır. PROLİFERASYON BÖLGESİ: Scolex'ten hemen sonra, halkalara ayrılmamış ve halkaların oluşturulduğu kısımdır. Bazı sestodlarda yoktur (Moniezia). STROBILA: Boyundan sonra gelir. Halkalar: genç (üreme organı henüz yok) olgun (üreme organı gelişmiş) gebe (yumurtalarla dolu) Psedophylleidea'da halkaların sadece genç ve olgun formları varken, Cyclophylleidea'da 3 form da görülür. Vücut tabakaları: En dışta kutikula, onun altında kas tabakası vardır. Bunun altında da Ca granüllerinden zengin paranşim bulunur. Sindirim sistemi: Yoktur. Tüm vücut yüzeyince osmotik absorbsiyonla besinlerini alırlar. Solunum sistemi: Yoktur. Dolaşım sistemi: Yoktur. Boşaltım sistemi: Osmo-regulator sistem de denir. Tüm halkalarda ortaktır. Halkaların yanlarınd aseyreden 2şer (dorsal, ventral) toplama kanalı ve bunların halka posterirorlarındaki bağlantılarında ibarettir. Boşaltım kesesi yoktur. Paranşime dağılmış kirpikli hücreler vasıtasıyla atık maddeler toplanır, bunlar ana boşaltım kanallarına bağlanırlar. Tıklar dışarıya boşaltım deliğinden atılırlar. Sinir sistemi: İyi gelişmemiştir. Tüm halkalar için ortak bir sistem vardır. 1) Merkezi sinir sistemi (scolex'teki ganglionlar topluluğudur) 2) Sinir lifleri (MSS'ten 2 büyük, çok sayıda küçük sinir çıkar) Dölerme sistemi: Her halka için müstakildir. (1/2 adet). Hermafroditizm görülür. Protandri vardır ( önce erkek genital organları gelişr daha sonra dişi genital organları gelişir; körelmede de aynı sıra izlenir). Bu sistem en gelişmiş ve de en önemli sistemdir. Bunun nedeni ise sestodların komplike olan biyolojileri sırasında hiç olmazsa milyonlarcası üretilen yumurtadan sadece birkaçının olgun şerit haline gelebilmesidir. Döllenme halka içi, halkalar arası ya da parazitler arası olabilir. Erkek dölerme organları 1. testis (çok sayıda, halkanın dorsalinde, sperm üretir) 2. vasa efferentis (ince kanallardır) 3. vas deferens (spiral şeklindedir) 4. vesicula seminalis (sperm depolanır) 5. prostat bezleri 6. canalis ejaculatorius 7. cirrus (penis) 8. genital atrium Dişi dölerme organları 1. ovarium (tek loblu, ventrale doğru, yumurta üretir) 2. oviduct 3. ootype (genişlemiş kısım, yumurta döllenir ve gelişir) 4. Mehlis bezleri (kabuk oluşmu için gerekli) 5. vitellojen bezler (yumurta sarısı için gerekli) 6. receptulum seminis (sperm depolanır) 7. uterus (ootype'den köken alır, yumurta kapsülü ve paruterin organ) 8. vagina 9. genital atrium Pseudophylleidea'da uterus deliği varken, Cyclophyllidea'da yoktur. Yumurtalar: Çeşitli tiplerde olabilir. Pseudophyllidea yumurtaları tramatod yumurtalarına benzer. Yumurta sarısı ile doludur. Cyclophyllidea yumurtalarının içinde 3 çift çengele sahip onkosfer bulunur. Gelişim: İndirektir. Cyclophylidea tek ara konak (mesocestoides hariç), Pseudophylidea iki ara konak kullanır. Larva şekilleri: Cyclophyllidea 1) Cysticercus 2) Coenurus 3) Hidatik kist 4) Strobilocercus 5) Cysticercoid 6) Tetrathyridum Pseudophyllidea 1) Coracidium 2) Procercoid 3) Plerocercoid Cyclophyllidea Cysticercus: İnce çeperli, suyla dolu küçük bir kese ve içinde invagine tek scolex'ten ibaret larva formudur (0,5-1 cm). Taenia cinsina bağlı türlerde görülür. Ör: Taenia saginata (insan-barsak) / Cysticercus bovis (sığır-kas) Coenurus: İnce çeperli, içi su ile dolu, büyücek kese (ceviz/tavuk yumurtası büyüklüğünde). İçinde çok sayıda invagine scolex vardır. Ör: Multiceps multiceps (köpek barsak) / coenurus cerebralis (sığır-beyin) Strobilocercus: İnvagine olmamış bir scolex ve henüz dölerme organları gelişmemiş halkalar (strobila) taşıyan larva formudur. Ör: Hydatigera taeniaformis (kedi-barsak) / Strobilocercus fasciolaris (kemirgen-karaciğer) Hidatik kist: (Echinococcus)En kompleks yapılı cestod larva formudur. Su ile dolu ve çapı 20-25 cm'ye ulaşabilen bir kesedir. Çeperi biri lamelli tabaka, diğeri ise çimlenme yeteneğinde doğurgan tabakalardan yapılmıştır. Bu tabakadan yüzbinlerce invagine scolex (protoscolex) meydana gelir. Ör: Echinococcus granulosus (köpek-barsak) / Hidatik kist (memeli- karaciğer, akciğer) Cysticercoid: Omurgasız arakonaklarda gelişir. Büyük, invagine scolex ve kuyruk taşıyan larva formudur. Cercocystis (kuyruklu) ve cryptocystis (kuyruksuz) formları vardır. Ör: Dipylidium caninum (köpek-barsak) / larvası pire ve bitlerde gelişir. Tetrathyridium (Dithyridium): Ön kısmı daha geniş, arkaya doğru incelmiş, basık, kırışık yapıda, tek parça ve ön tarafta invagine tek scolex taşıyan larva formudur. Ör: Mesocestoides lineatus (köpek-barsak) / larvası çeşitli canlılarda gelişir. Pseudophyllidea Coracidium: Trematodlardaki miracidium'a benzeyen, suda serbest yüzebilen , kirpikli, 3 çift çengelli larva formudur. Procercoid: Coracidium'dan sonraki larva formudur. Coracidium'un girdiği kabukluda aldığı formdur. Tek parça, uzunca bir larva formu olup, posteriorunda boğumla ayrılmış, 3 çift çengel taşıyan yuvarlak bir kısım taşır. Önde cephalic invaginasyon vardır. Plerocercoid: Uzun, tek parça, ön uzunda olgunlarınkine benzer 2 bothria taşır. Artık embriyonik çengellerin kaybolduğu larva formudur. Ör: Diphyllobothrium latum (köpek-barsak) Procercoid_kabuklunun vücut boşluğunda Plerocercoid_tatlı su balıklarının kan ve diğer organlarında SINIF: CESTOIDEA ALT SINIF: CESTODA (EUCESTODA) TAKIM: PSEUDOPHYLLIDEA Yumurta: kapaklı , 3 çift çengelli onkosfer sonradan gelişir Morfoloji: - Scolex badem biçiminde - Yapışma organeli; bothria - Halkalar genç, olgun - Genital delik halka ventralinde - Uterus deliği var Gelişme: 2 ara konak, 3 larva şekli var TAKIM: CYCLOPHYLLIDEA Yumurta: Kapaksız, üç çift çengelli onkosfer var. Morfoloji: - Scolex yuvarlak, oval - Yapışma organeli; rostellum, çekmen(acetabula), - Halkalar genç, olgun, gebe - Genital delik halka lateralinde - Uterus deliği yoktur. Gelişme: 1 ara konak, 6 larva şekli var. PSEUDOPHYLLIDEA AILE: DIPHYLLOBOTHRIAE Tür: Diphyllobothrium latum Son konak: İnsan ve balık iyen carnivora Yerleşim: İnce barsaklar Morfoloji: 20-25 m boya ulaşabilir. 2 tane bothria vardır, scolex badem biçimlidir, genital delik halkanın ventralinde, yumurtalar 52-70x32-45m boyutunda, sarımısı kahverenginde, kapalı. Biyoloji: Yumurta dışkı ile dışarı çıkarılır. Suda coracidium gelişir ve serbest kalır. 1.ara konak çeşitli Crustacae (Cyclops, Diaptomus gibi su pireleri)'de gelişen procercoid 2.ara konak olan tatlı su balıklarınca alınır ve bunlarda plerocercoid gelişir (kas ve diğer organlarda). Balıkların çiğ ya da az pişmiş olarak yenmesi sonucu etken son konaklarca alınır. Önemi: Etken, yaşam süresi olan 10 yıl boyunca 7 km'lik halka oluşturabilir. D.latum vit B12'yi absorbe eder ve bu durum sonucunda enfeste canlılarda pernisiyöz anemi şekillenir. Etkene bağlı vakalar Türkiye'de bildirilmiştir ama ülkemizde çiğ ya da az pişmiş balık tüketilmediğinden bu vakalar da kesin değildir. Diphylobotrium latum Tür: Ligula intestinalis Son konak: Olgunları su kuşlarının barsağında, larvaları (plerocercoidler) tatlı su balıklarında ligulose'a neden olur. Biyoloji: D.latum ile aynı biyolojiye sahiptir. Önemi: Balıklarda paraziter kastrasyon nedenidir. Bunu, organlara basınç yaparak, antigonadotropik hormonlar salgılayarak yapar. Hasta balıklarda karın şişer, hantallaşırlar, yüzemezler, karınları patlar ve ölürler. Hastalığa ülkemizde baraj göllerindeki balıklarda rastlanır. İnsan sağlığı açısından tehlikesi yoktur. Ayıklandıktan sonra balıklar yenebilir. İtalya'da plerocercoidler tüketilmektedir. Mücadele: 1.ara konakla mücadele olanaksızdır. 2.ara konak olan balıklarla mücadele edilir. Hasta olanlar, ölenler ve karınları patlayan balılardan serbest kalan plerocercoidler su yüzeyinden toplanır. Diagramma ve Schistocephalus gibi cinsler de vardır. Spirometra erinacei, köpek, kedi gibi hayvanların incebarsaklarında parazitlenirken, Spirometra mansoni 1.ara konak olarak Crustacae'yi, 2.ara konak olarak balık, kurbağa ve yılanları, bazen de 3.ara konak olarak herhangi bir omurgalıyı kullanır. Sparganose: Plerocercois=spargonum Bazen D.latum, Spirometra gibi parazitlerin plerocercoidleri 1) sudaki kabukludayken insanlarca kabuklunun yenmesi ile alınır, 2) kurbağa, fare, yılan, balık gibi canlıların etleri ampirik tedavi yöntemleriyle yara,göz vs. üzerine tatbik edilerek primitif olarak insanların yaralarına ya da gözlerine bulaşır. Plerocercoidlerin bulunduğu kısımda irritasyona bağlı olarak kızartı, kaşıntı, şişkinlik, iltihaplanma görülür. CYCLOPHYLLIDEA AILE: ANOPLOCEPHALIDAE Tür: Anoplocephala perfoliata Son konak: Tek tırnaklılar Yerleşim: İnce barsakların alt kısımları, colon ve caecum Morfoloji: 8x1-1,5 cm. Scolex küçük, rostellum yok. Çekmenler arkasında küpe benzeri yapılar var. Yumurtalar 80m boyutunda ve Moniezia yumurtasına benzer. Onkosferi çevreleyen embriyoforun ucundaki kollar uzun ve kavuşur. Tür: Anoplocephala magna Son konak: Tek tırnaklılar Yerleşim: İnce barsak, jejenum Morfoloji: Atların en büyük şerididir. 70-80x1,5-2 cm. Yumurtaların boyutu 50 m. Scolexte küpe benzeri çıkıntı yoktur. Tür: Paranoplocephala mamillana Son konak: Equide Morfoloji: 1-4x5 cm. yumurtalar 50m boyutunda. Küpe benzeri çıkıntılar yok. Çekmenler yarık biçiminde. Embriyoforun uçları kısa ve ayrık.Atların en küçük şerididir. Ara konak: Oribatidae fam. bağlı akarlardır. Biyoloji: Yumurtayı yiyen akarlarda 4 ayda cysticercoid gelişir. Cysticercoidleri alan atlarda 6-10 haftada şeritler gelişir. Patojenite: Meradan yazın alınan hastalık Eylül Ekim ayında ortaya çıkar. Taylar 100%, erginler 60% hastalığa duyarlı. Genellikle az sayıda parazit bulunur. En patojeni A.magna'dır. Kataral -hemorajik enterite sebep olurlar. A.perfoliata ve P.mamillana az patojendir. İliocecal lokalizasyon önemlidir. Sağaltım: Niclosamide Tür: Moniezia expansa Son konak: Ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 6m x 1,5-2 cm. her halkada 2 tane genital atrium vardır. Testisler halka ortasında dağılmış ya da iki yanda toplu halde bulunabilir. Interproglottidal bezler halka posterior boyunca seyreder. Yumurtalar 50-60 m boyutundadır. Tür: Moniezia benedeni Son konak: Özellikle büyük ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 0,5-4m x 2 cm. Interproglottidal bezler sadece ortada. Tür: Thysaniezia ovilla Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1,5-4,5m x 8-9 mm. Halkalarda 1 tane genital delik var. Testisler boşaltım kanallarının lateralinde. Yumurtaların 5-15'i birarada paruterin organ içinde bulunur. Tür: Stilesia globipunctata Son konak: Ruminantlar (koyun, keçi) Yerleşim: İnce barsaklar Morfoloji: Her halkada 1 tane genitel atrium vardır. 40-60cm x 2-2,5 mm. Testisler boşaltım kanallarının medialinde seyreder. Her halkada 2 tane paruterin organ bulunur. Tür: Avitellina contripunctata Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1-3m x 2-2,5 mm. Her halkada 1 tane genital delik vardır. Testisler boşaltım kanallarının her iki yanında gruplar halinde bulunur. Her halkada 1 tane paruterin organ vardır. Tür: Thysanosoma actinoides Son konak: Ruminantlar Ara konak: Oribatida ailesine bağlı akarlar. Yerleşim: İnce barsaklar, seyrek olarak safra ve pankreas kanalları Morfoloji: 35-40 cm x 8 mm. Her halkada 2 tane genital atrium vardır. Testisler halka posterioru ve ortasında bulunur. Halka posteriorlarında saçaklı yapılar vardır. Yumurtalar paruterin organ içinde bulunur. Biyoloji: Akarlar 0,5-1 mm boyutundadır. Sert kabuklu, gözsüz, serbest olarak toprakta yaşayan, organik kalıntı ve dışkı ile beslenen, bitki kök ve sap kısımlarında yoğun olarak bulunan akarlardır. Akarlarda 3 ayda vücut boşluğunda cysticercoid gelişir. Akarların otlarla birlikte alınımı ile 1,5-2 ayda şeritler gelişir. * Thysaniezia, Stilezia, Avitellina ve Thysanosoma cinslerinde yumurtada onkosferi çevreleyen armut biçimli bir embriyofor yoktur. * Anoplocephalidae ailesindeki parazitlerin olgunları tedavi edilmezse 3-4 ay yaşarlar. Cysticercoidleri akarlarda 1-1,5 yıl boyunca yaşarlar. Akar ölünce onlar da ölürler. Bu akarlar için nemli, uzun, kaba otlu meralar uygundur. Anoplocephalose: 1) mera kontaminasyonu 2) kontaminasyonun devamı ile meydana gelir. Kronik form: En çok görülen formdur. Anemi, zafiyet, yapağı bozulması, ölüm, dehidrasyon, diyare, konstipasyon ve barsaklarda atoni görülür. Akut form: Seyrek görülür. Sinirsel belirtiler (dönme, çırpınma, titreme ve diş gıcırdatma) ile seyreder. Subklinik form: Bakımlı sürülerde görülür. Semptomsuz seyreder. Sindirim sistemi belirtileri (kötü kokulu ishal) görülebilir. Yayılış: 60%'a varabilir. Teşhis: Dışkıda şerit ya da halkaya rastlanabilir. Dışkı muayenesinde yumurta/yumurta kapsülü görülebilir. Otopside olgun şeritlere rastlanır. Sağaltım: Niclosamide, Praziquantel, Albendazol, Nebendazol AILE: DAVAINEIDAE Tür: Davainea proglottina Son konak: Tavuklarda (en yaygın şerit) Ara konak: Sümüklüböcekler (cysticercoid gelişir) Yerleşim: İnce barsaklar (duodenum) Morfoloji: 1,5-5 mm uzunlukta. Halka sayısı 4-9. Rostellumda 2 sıra çengel var. Çekmenlerinde de çengel vardır. Yumurtalar ince çeperli, 30-40 m çapında Tür: Railettina tetragona Son konak: Tavuk, hindi ve diğer kanatlılar Ara konak: Kara sinek ve karıncalar Yerleşim: İnce barsaklar (duodenum) Morfoloji: 6-25 cm x 1-4 mm. Rostellumda tek sıralı çengeller vardır. Çekmenlerinde de çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina echinobothrida Son konak: Kanatlılar Ara konak: Karıncalar Yerleşim: İnce barsaklar Morfoloji: 9-25 cm x 1-4 mm. Çekmenlerinde çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina cesticillus Ara konak: Kaprofaj böcekler Morfoloji: 4-13 cm x 1-3 mm. Kokon içinde tek bir yumurta bulunur. Çekmenler çengelsizdir. AILE: HYMENOLEPIDIDAE Tür: Hymenolepis lanceolata Son konak: Ördek ve kazlar Ara konak: Tatlı sudaki crustacea Yerleşim: İnce barsak Tür: Hymenolepis cariocea Son konak: Tavuklar (sıklıkla görülür) Ara konak: Kaprofaj böcekler Tür: Hymenolepis contaniana Son konak: Tavuk ve hindiler Ara konak: Kaprofaj böcekler Morfoloji: 2-5 mm'den 7-8 cm'ye kadar değişen boylardadırlar rostellumda çengel olabilir ya da olmayabilir. Yumurta 3 katlı koruyucu içindedir. Tür: Hymenolepis diminuta Son konak: Fare, sıçan ve insanlar Ara konak: Çeşitli arthropoda (cysticercoid gelişir) Yerleşim: İnce barsaklar Morfoloji: 20-60 cm uzunluktadırlar. Scolexte 4 çekmen vardır. Rostellum çengelsizdir. Yumurtalar ovalimsi, gri-açık kahverengi, 2 kabuklu (dış ve iç) ve 3 çift çengelli onkosfere sahiptir. Tür: Hymenolepis nana Son konak: İnsan, fare ve sıçanlar Yerleşim: İnce barsaklar Morfoloji: "Cüce şerit" de denir. 2.5-4 cm uzunluktadır. Yumurtaları ovaldir. Açık renkli, grimsidir. 2 kabukludur ve içinde 3 çift çengelli onkosfer vardır. İç kabuğun kutuplarında filamentler vardır. Biyoloji: 1) Direkt 2) İndirekt (ara konak olarak arthropodları kullanır) AILE: DILEPIDIDAE Tür: Ametobotaenia cuneata Son konak: Tavuk, ördek Ara konak: Yer solucanları Yerleşim: İnce barsaklar Morfoloji: 2,2-4 mm x 1-1,5 mm. 12-24 adet halka vardır. Scolexte tek sırlaı çengel taşıyan rostellum vardır. Çekmenler çengelsizdir. Tür: Choanotaenia infundibulum Son konak: Tavuk, hindi vb. Ara konak: Karasinek, çekirge, kaprofaj böcekler Yerleşim: İnce barsaklar Morfoloji: 5-23 cm uzunluktadır. Tek sıra çengel taşıyan rostellum vardır. Çekmenleri silahsızdır. Yumurtaları 60-65 x 40-45 m boyutunda, filamentlidir. KANATLILARDA ŞERİT ENFEKSİYONLARI: En önemlisi Davaniea proglottina'dır. küçük olmasına rağmen 50%lere varan ölümler meydana getirir. Patojen kısmı scolextir. Çünkü hem çekmenlerde hem de rostellumda çengeller vardır. Davainea yumurtaları dirençsizdir. Rutubetli, sıcak ve gölgeli yerlerde 5 gün yaşayabilir. Cysticercoidleri sümüklüde en az 1 yıl canlı kalabilir. Ara konak olan sümüklüde 1000'den fazla cysticercoid bulunabilir. Ağır enfestasyonlarda duodenum mukozasında yangı, hemoraji ve ödem görülür. Klinik semptomlar ise zafiyet, anemi, ishal ve mukusta artıştır. Railettina türleri içinde en patojeni Railettina echinobothria'dır. Barsaktaki yangı şekli NODÜLER ENTERİTtir. Barsak içine gömülü scolex etrafında kazeöz nodüller şekillenmiştir. Sağaltım: Niclosamide (Mansonil, Şeridif, Tenyavet)...............................................50-200mg/kg 2-6 gün boyunca..................................................................................................................20 mg/kg Fenbendazol (Panacur) 5 gün boyunca...............................................................................20 mg/kg Mebendazol (Mebanvet)....................................................................................................10 mg/kg Praziquantel (Droncit)....................................................................................................................... Bithional (Actomer)...............................................................................................................0,2 g/kg AILE: TAENIADAE Tür: Echinococcus granulosus Son konak: Olgunları........................köpek, kurt, çakal vb.'nin incebarsakları (kedilerde seksüel olgunluğa erişemez) Larvaları.........................bütün evcil memelilerde (ruminant, sus, eq.,insan...) başta karaciğer ve akciğer olmak üzere, dalak, böbrek, pankreas, kalp, beyin, kemik iliği, bağlayıcı doku aralıkları ve dokularda. Morfoloji: Olgunlar..........................2-6 mm uzunlukta, vücut genellikle 3 halkadan oluşur. Son halkanın uzunluğu vücudun diğer bölümlerinin uzunluğundan daha fazladır. Genital atrium halka posteriorundadır. Ovarium böbrek biçimindedir. Yumurtalar......................Taenia yumurtası formundadır (yuvarlak/oval). Küçük ve kalın kabukludur. Kabuk enlemesine çizgilidir. 3 çift çengelli onkosfer taşır. KİST HYDATİK (EKİNOKOK KİSTİ): 2 tip kist vardır. 1. Uniloculer kist (kistler tek tektir,daha çok koyun ve insanda görülür) 2. Multicystic/Multivesicular kist (birbirine komşu kistlerdir. Her birni ayrı boşluğu ve sıvısı vardır. Özellikle sığırlarda görülür) Biçimleri yuvarlağımsı (yumuşak, hacimli dokularda) yada mevcut boşluk ya da aralıkları dolduran (ör:kemik iliği) gibidir. Büyüklükleri dokularda konakçı reaksiyonları ile sınırlandırılır (çocu başı ya da portakal büyüklüğünde olabilirler). Göğüs ya da karın boşluğunda iseler büyüklükleri sınırlandırılamaz (20 cm çapına varan kistler görülmüştür). Lokalizasyon; ruminantlarda 70% karaciğerde, 25% akciğerde, 5% de diğer dokularda olmaktadır. Gelişme hızları yavaştır. 6 ayda ancak birkaç mm çapında içi sıvı ile dolu kistik yapı şekillenebilir. Protoscolexler 12 ayda şekillenir. Protoscolex taşıyanlar fertil kist, taşımayanlar ise infertil kist adını alır. Sığırda 90%, domuzda 20%, koyunda ise 8% kistler infertildir. 2 şekilde gelişim tamamlanır: 1- PASTORAL SİKLUS: Evcil karnivorlarla evcil ruminantlar konaktır. Köpek, koyun, deve, Ren geyiği. 2- SILVATIC SİKLUS: Son konak yabani karnivor, ara konaklar ise yabani ruminantlardır. Avusturalya'da dingo-kanguru. Hindistan, Pakistan, Seylan'da çakal-geyik. Bu iki epidemiyolojik siklus bağımsıuz seyreder. Ancak avcılık yolu ile kırılabilir. Kanada'da Kariba(geyik)-köpek. Kırsaldan ormansala geçiş şu şekillerde olur: - Kistli evcil ruminantlar köpeklerce yenir § Enfekte av ve çoban köpeklerinin ormanda dolaşması ve buralara dışkısını bırakması ile yabani rum. enfeste olabilir. Ormandan kırsala geçiş ise şöyle olur: § Evcil ruminantlar ormanlık yörede otlarken yabani köpekgillerin bıraktıları dışkılardan yumurta alırlar. § Av veya çoban köpekleri enfekte yabani ruminantların kistlerini yer. Önemi: Hayvanlarda; - Kistler pek klinik belirtiye yol açmaz (normal doku kalmamasına rağmen) - Enfekte havanlarda karkas ağırlığı azalmaktadır - Enfekte organlar(karaciğer, akciğer, dalak) kısmen ya da tamamen imha edilir (ekonomik kayıp). İnsanlarda; Çoğunlukla klinik belirti göstermese de lokaliza olduğu organ ya da dokuya göre normal fonksiyonları bozar, ağrı yapabilir. Kistler kendiliğinden ya da ameliyat sırasında patlayabilir. Bu da anafaktik şok ya da sekonder hidatidose (echinococcose)'a neden olur. Teşhis: Hayvanlarda serolojik testler yetersizken, ancak kesim sırasında teşhis mümkündür. İnsanlarda klinik belirtiler (organların çalışmalarında aksamalar, şişlik, ağrı), röntgen, serolojik testler(KFT, FAT, ELISA, HA, presipitasyon) ve alerji testi (Casoni) ile teşhise gidilir. Sağaltım: Operasyon ile yapılır. Öncesinde Mebendazol-Albendazol kullanılır. Hastalığın prepatent süresi 4-5 haftadır.

http://www.biyologlar.com/cestoda-yassi-solucanlar-ozellikleri

Ak balık (Leuciscus cephalus)

Ak balık (Leuciscus cephalus)

Ak balık (Leuciscus cephalus), Tatlısu kefali, Ak kefal, Kepenez ya da Kasna olarak da bilinir, sazangiller (Cyprinidae) familyasına ait bir balık türü.40 ila 100 cm boyuna (en büyük tutulmuşları 80 cm ve 5,71 kilo) ulaşan ak balığın uzun ve yanları yassı bir füze şekilinde vücudu vardır. Kafası büyük ve ağzı geniştir. Dış görünüşü ile Leuciscus idus balığına çok benzer, ama bundan daha büyük ve kenarları koyu renk olan pulları vardır, anal yüzgeci dışarıya doğru dönüktür, karın ve göğüs yüzgeçleri kızıl renktir.Bir tatlısu balığı olan ak balık hızlı akan ırmaklarda suyun üst bölümlerinde yaşar. Ama bu ırmakların yavaş akan bölümlerinde, yani kayaların arkasında durmayı tercih eder. Böceklerden ve diğer küçük hayvanlarla beslenir, ama bazen su bitkilerini de yer. Belli bir büyüklüğe varmış olanları küçük balıklar ve kurbağalarıda yerler. Üreme zamanları Nisan ile Haziran arasındadır. Dişileri bu zamanda 100.000 yumurtayı çakıl taşlarının ve su bitkilerinin üzerine bırakır.Ak balık diğer sazangillerdeki gibi dişleri olmadığından dolayı yırtıcı balık olarak görülmez ama aslında her şeyi yiyen bir balıktır. Yedikleri şeylerin bazıları şunlardır; yosun ve diğer su bitkileri, su böcekleri ve bunların kurtları, sülükler, midyeler ve solucanlardır. Yaşlandıkca sık sık diğer küçük balıkları avlamaya başlar. Hatta bazen suda yüzen bir fareyi bile kaptığı izlenmiştir.Ak balık, iskoçya'nın, İrlanda'nın ve İskandinavya'nın kuzeyi haricinde Avrupa'nın her yerinde bulunur. Ak balığı Türkiye'nin her yerinde, hatta en ufak çaylarında bile bulmak mümkündür.Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya:Cyprinidae (Sazangiller)Cins:     LeuciscusTür:     L. cephalus

http://www.biyologlar.com/ak-balik-leuciscus-cephalus

Kızılkanat (Scardinius erythrophthalmus)

Kızılkanat (Scardinius erythrophthalmus)

Kızılkanat (Scardinius erythrophthalmus), sazangiller (Cyprinidae) familyasına ait bir tatlısu balığı türü. Avrupa'da Ural Dağları'ndan İspanya'nın doğusuna kadar ve Finlandiya'dan İtalya'nın kuzeyine kadar yaygındır. Türkiye'nin sadece kuzeyinde bulunur.Kızılkanat ortalama 20-30 cm (en büyükleri 50 cm) uzunluğunda, ortalama 250-300 gram (en büyükleri 2-3 kilo) agırlığında olur. Yanları yassı olur ve yüksek bir sırtları vardır. Sırtları ve kafalarının üst kısımı ela veya kahverengi-yeşilimsi parlar. Yanları çinko rengi parlar ve karın kısımları gümüşümsü beyaz parlar. Yüzgeçleri kan kırmızısı rengindedir, ama bazen kavun içi renkli yüzgeçleri olanlarınada rastlanır. Kızılkanatlar sık sık kızılgöz balığı ile karıştırılırlar. Bu ikisi aynı familyaya aitlerdir ama aynı balık türü değildirler.Kızılkanatlar bir sürünün içinde yaşarlar, ve duran ya da yavaş akan suların, bol su bitkilerinin bulunduğu alçak su seviyesinde yaşamayı tercih ederler. Yetişkin kızılkanatlar neredeyse sadece su bitkilerinden beslenirler. Beslenmelerinin çok az bir bölümü kurtlardan ve solucanlardan oluşur.Üreme zamanları Mayıs ile Haziran aylarındadır. Bu zamanda dişileri 100.000 ila 200.000 adet 1,5 milimetre büyüklüğünde yumurtalarını su bitkilerinin üzerine yapışık halde bırakır. Kızılkanatlar birçok diğer sazangiller türleri ile birlikte aynı zamanda yumurtladıkları için, sık sık bu yumurtalar diğer türlerinkiler ile karışır ve melez balık türleri maydana gelir. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya: Cyprinidae (Sazangiller)Cins:     ScardiniusTür:     S. erythrophthalmus

http://www.biyologlar.com/kizilkanat-scardinius-erythrophthalmus

Canlıların Sınıflandırılması nedir,nasıl yapılır

CANLILARIN SINIFLANDIRILMASI Dünyamızda yaşamakta olan canlılar incelenirse özelliklerinin çok farklı olduğu gözlenir.Bu farklara rağmen bu canlıları derece derece ve birbirlerine benzeyenleri bir araya toplayarak gruplandırmak mümkündür.Canlıların benzerliklerine göre gruplandırılmasına sınıflandırma (sistematik) denir.Hayvanlar ve bitkiler belirli bir düzen içerisinde sınıflandırılır. SINIFLANDIRMA SİSTEMİNİN GELİŞİMİ Canlılar; monera, protista, fungi, bitki ve hayvan olmak üzere gözle görülmeyen çok küçük organizmalardan dev ağaçlara ve binalara kadar bir dağılım gösterirler.Bu büyük hayat çeşitliliğini tanıyabilmek için, büyük grupları daha küçük gruplara ayırmak gerekir.Biyologlar dünyadaki canlıları sınıflandırmamış olsalardı, bu kadar çeşitli olan canlılara ulaşmak mümkün olmayacaktı. Sınıflandırmanın amacı, canlıları bir sistematiğe oturtmak ve tabiatı daha kolay anlaşılabilir hale getirmektir. İlk sınıflandırmayı Yunan Filozofu Aristoteles (m.ö.383-322) yapmıştır.Aristoteles bitkileri otlar, çalılar, ağaçlar; hayvanları ise yaşadıkları yere göre karada, suda ve havada yaşayanlar şeklinde gruplandırmıştır.Aristoteles’in sınıflandırması canlıların görülebilen ve morfolojik özelliklerine göre yapılmıştır. Günümüzdeki sınıflandırılmada, canlıların bütün özellikleri göz önünde bulundurulur. Örneğin yarasanın kanatlarına bakarak onu kuşlar sınıfında incelemek mümkün değildir.Yarasa bütün özellikleri ile bir memeli hayvandır. Sınıflandırma, canlıların görülen bir veya birkaç özelliğine göre yapılırsa ‘suni sınıflandırma’ (yapay sınıflandırma) adını alır. Aristo’nun yapmış olduğu sınıflandırma yapay sınıflandırmadır. Buna ampirik sınıflandırma da denir. Günümüzde sınıflandırma, canlıların akrabalık ilişkilerine göre yapılır. Sınıflandırılmada canlıların tüm özellikleri göz önünde bulundurulur.Bu çeşit sınıflandırmaya ‘tabii sınıflandırma’ (doğal sınıflandırma) denir. Doğal sınıflandırma bilimsel olan sınıflandırılmadır.Buna filogenetik sistematik da denir. Bir canlıyı türün evrim sistematiğine geçirdiği gelişmelere filogeni (soy oluş), embriyo döneminde geçirdiği değişmelere ontogeni (birey oluş) denir. SINIFLANDIRMA BİRİMLERİ Sınıflandırmanın en küçük birimi tür dür.Sınıflandırmada tür kavramını ilk kuran kişi John Ray dır. Tür ortak bir atadan gelem,yapı görev bakımından ortak özelliklere sahip olan, kendi aralarında çiftleşerek verimli döller meydana getirebilen bireylerin oluşturduğu topluluktur. Sistematikte her tür iki isimle adlandırılır.Bu iki isimden 1. si canlının cinsini 2. si tanımlayıcı özelliğini belirtir.Her türün iki isimle adlandırılması ilk kez Carolus Linnaeus tarafından kullanılmıştır. Türlerden daha büyük topluluklar da vardır.Bunlar sırasıyla cins, familya, takım, sınıf, şube ve alem dir. Birbirlerine çok benzeyen yakın türlerin gruplaşmasıyla cinsler ortaya çıkar.Örneğin kedi, aslan ve kaplan türleri ‘felis’ cins adı altında toplanır. Felis domesticus :Kedi Felis leo :Aslan Felis tigris :Kaplan Her tür kendi cinsiyle belirtilir.Bu kural bütün dünyada kullanılır. Böylece karışıklık önlenir.Cinslerin ortak karakterlerine göre gruplaşmasına familyalar meydana gelir.Benzer familyalar takımları oluşturur.Benzer takımların gruplaşmasıyla sınıflar ortaya çıkar. Sınıfların bir araya gelmesiyle şubeler, şubelerin bir arya gelmesiyle alem meydana gelir. Sınıflandırmada birimler büyükten küçüğe doğru gidildikçe, birimin kapsadığı birey sayısı artar, aralarındaki benzerlik azalır.Büyük biriden küçük birime doğru gidildikçe birey sayısı azalır, benzerlik artar. BİLİMSEL SINIFLANDIRMANIN DAYANDIGI TEMELLER Günümüzde geçerli olan sınıflandırma filogenetik sınıflandırmadır. Bu sınıflandırmaya göre bütün canlıların ortak bir atası vardır.Bu sınıflandırmanın açıklanabilmesi için akrabalık derecelerinin açıklanması gerekir.Akrabalık derecelerinin belirlenmesinde bazı temel kurallar göz önüne alınır. 1) Homolog Organlar: Yapıları ve gelişimleri birbirlerine benzeyen fakat farklı görevleri olan organlara homolog organlar denir.Örneğin fok balığının ön yüzgeci, yarasanın kanadı, kedinin pençesi, atın ön bacağı, insanın eli homolog organlardır.bunları her biri yaklaşık olarak aynı sayıda kemik, kas, sinir ve kan damarlarına sahiptir.Aynı plana göre düzenlenmiş ve aynı gelişme biçimine sahiptir.homolog organlar canlıların ortak bir atadan geldiğinin kanıtlarından biri olarak ileri sürülmektedir. Bazı organlar aynı kökten gelmedikleri halde, yaptıkları görev aynıdır. Bu organlara anolog organlar denir.Kuş ve böcek kanatları analog organlardır. 2) Embriyolojik Benzerlik: Canlıların embriyo dönemlerinde geçirdikleri evreler ve farklılaşmalar birbirine çok benziyorsa bu canlılar yakın akrabadır.Omurgalı hayvanlarının embriyolarının ilk evreleri çok belirgin bir benzerlik gösterir.İlk evrede balık ve domuz embriyosunu ayırmak çok zordur. 3)Biyokimyasal Benzerlik: Çeşitli hayvanların plazma proteinleri arasındaki benzerlik derecelerinin antijen-antikor tekniği ile denenir. Her hayvan türünün kan içeriği kendine özgün bir protein bileşimine sahiptir.yakın akraba olan canlıların plazma proteinlerinin benzerliği daha fazadır. Bütün hayvanlarda hücrenin çalışması ve kalıtım faktörlerinin dölden döle geçmesi kromozomlar tarafından kontrol edilir.Bütün canlılarda kromozomların kimyasal yapısını DNA (deoksiribonükleik asit) meydana getirir.Akrabalık derecesi yakın olan canlıların DNA’larının baz dizilimlerinin benzerliği de artmaktadır. Hayvanlar, protein metabolizması sonucu oluşan azotlu artıkları üre, ürik asit ve amonyak şeklinde idrarla vicuttan uzaklaştırılabilir. Sınıflandırılmada canlıların idrarlarının bileşimi de dikkate alınır. Memeli canlılarının çoğunda sindirim için aynı veya benzer enzimler kullanılır.Bu olaylar canlıların ortak bir kökten geldiğinin kanıtlarından biri olarak gösterilmektedir. Bunlar başka yumurta tiplerinin benzerliği, organizmaların simetri şekilleri anatomik yapılarındaki benzerlikler gibi özellikler de doğal sınıflandırma yapılırken dikkate alınır. Bazı organizmalar mevcut bir sınıflandırma sistemine koymak oldukça zordur.Çünkü canlıların taşıdıkları özelliklerin bazısı bir gruba, bazısı da diğer bir gruba ait olabilir.Örneğin tek hücreli olan euglena; hareketli , kloroplast taşıyan ve kendi besinini yapabilen canlıdır. Euglena, hareketinden dolayı hayvan, kloroplast taşıdıgı ve kendi besinini kendisi yaptığından dolayı da bitki olarak kabul edilmiştir. Bakteriler: Heteretroflardır. Parazit yada saprofit beslenirler. Fotosentez ya da kemosentez yapan ototrof olanları vardır. Mavi-Yeşil algler:Fotosentez yaparlar.Kloroplastları yoktur. Fotosentez olayı stoplazma içine dağılmış klorofiller aracılığı ile olur. PROTİSTA a) Kamçılılar: Tek hücreli yapıya sahiptirler. Suda hareket ederler. Heterotrof ve otorotrof olanları vardır.Örnek:Euglena. b) Kök ayaklılar: Tek hücreli olan bu protozoalar besinlerini yalancı ayakları ile alır ve hareket eder.Örnek:Amip c) Sporlular: Sporla ürerler. parazityaşarlar. Örnek: Plazmadizmmalaria d) Silliler: Hücrenin çevresi hareket ve besin almayı saglayan sillerle çevrilidir. Örnek: Şapkalı mantar. FUNGİ Çok çekirdekli hücrelere sahip olup, sporlarla ürerler. Örnek: Şapkalı mantar. BİTKİLER Algler, çiçeksiz bitkiler ve çiçekli bitkiler olmak üzere üç grupta incelenir. Algler: İletim demetleri yoktur.İletim demetleri olmadığından su ve suda erimiş madensel tuzları tüm bitki tüzeyi ile alırlar.Doku farklılaşması yoktur. Çiçeksiz Bitkiler: Kendi arasında ikiye ayrılır. 1) Kara yosunları: İletim demetleri yoktur.Eşeyli ve eşeysiz üreme, döl değişimi şeklinde birbirini takip eder. Gametleri gametongium denen keselerde oluşturur.döllenme sonucu oluşan zigot bir süre ebeveyne bağlı kalır. 2) Eğrelti otları: İletim demetleri vardır.Gerçek kökleri yoktur. Eşeyli ve eşeysiz üreme döl değişimi şeklinde birbirini takip eder. Çiçekli Bitkiler:İyi gelişmiş iletim sistemleri vardır.Üreme organları çiçek şeklinde özelleşmiştir.Açık ve kapalı tohum olak üzere iki grupta incelenir. 1) Açık tohumlular: Her zaman yeşildirler.Soymuk demetlerinde kalburlu hücreler vardır, arkadaş hücreleri yoktur.Çiçekleri daima tek eşeylidir.Tohumları daima çok çeneklidir.Tohum taslakları yumurtalık dışına gelişir. 2) Kapalı tohumlular: En gelişmiş bitki sınıfıdır.Her zaman yeşil değildirler.Çiçekleri genelde erseliktir.Çiçeklerinde çanak ve taç yaprak farklılaşması vardır.Kapalı tohumların iki önemli sınıfı vardır. 1)Monokotiledonlar (bir çenekliler): Embriyolarında tek çenek yaprağı taşırlar.Otsu bitkilerdir.Tek yada çok yıllık olabilirler.İletim demetleri dağınık ve düzensiz sıralanmıştır.Korteksi incedir.Meristem kambiyumu yoktur.Yaprakları paralel damarlıdır. Saçak kök sistemi bulunur. 2) Dikotiledonlar(iki çenekliler): Embriyolarında iki çenek yaprağı taşırlar.Otsu ve odunsu bitkilerdir.Tek yada çok yıllık olabilirler. İletim demetleri dairesel çizilmiştir. Korteksi incedir.Enine kalınlaşmasını sağlayan kambiyum (meristem) bulunur.Yaprakları ağsı damarlıdır.Ana kök ve buna bağlı yarı kökler gelişmiştir. HAYVANLAR Çok hücreli heterotrof canlılarıdır.Aktif hareket ederler. Omurgalılar ve omurgasızlar olmak üzere iki gruba ayrılırlar. Omurgalılar(kordalılar) Omurgalılar ve ilkel kordalılar olmak üzere iki gruba ayrılırlar. A) Omurgalılar:Vücutlarının sırt tarafında bir sinir kordonu bulunur.İç iskelet eklemlidir. İskelete bağlı kaslar hareketi sağlar.Hepsinde beyin ve beyini koruyan kafatası vardır.Dolaşım sistemleri kapalıdır.Holozoik olarak beslenirler.Çoğu ayrı eşeylidir.Balıklar, kuşlar, kurbağalar, sürüngenler ve memeliler olmak üzere beş sınıfa ayrılırlar. 1) Balıklar: Vicutları pullarla örtülüdür.İç iskelet kemikten ya da kıkırdaktan oluşmuştur.Solungaç solunumu yaparlar.Kalpleri iki odacıklıdır.Kalplerinde sürekli kirli kan bulunur.Vücutlarında temiz kan dolaşır.Soğuk kanlı hayvanlardır.Boşaltım organları mezonefros tipi böbreklerdir.Boşaltım maddelerinin, üreme hücrelerinin ve sindirim artıklarının toplandığı kloak denilen yapıya sahiptirler.Örnek:köpek balığı, alabalık, sazan. 2) Kuşlar: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sağa kıvrılarak dallanır.Sıcakkanlıdırlar.Boşaltım organı metanefroz tipi böbreklerdir, vücut tüylerle kaplıdır.Tüysüz olan bölgeler pullarla örtülüdür.Kloaklıdırlar. Dişleri yoktur.Örnek:martı, bülbül, tavuk, ördek, deve kuşu. 3) Kurbağalar: Lavralar solungaç solunumu, erginleri akciğer ve deri solunumu yaparlar.Kalpleri üç odacıklıdır.Vücutlarında karışık kan dolaşır.Soğukkanlıdırlar.Azotlu dolaşım maddesi amonyaktır.Boşaltım organı mezonefroz tipi böceklerdir.Kloak lıdır.Derilerinin mukus salgısı olan mukus, deriyi kaygan tutar.Örnek:semender, kuyruklu kurbağa, su kurbağası. 4) Sürüngenler: Akciğer solunumu yaparlar.Kalpleri üç odacıklıdır (timsah hariç).Soğukkanlıdırlar.Erginlerinin boşaltım organları metanefroz tipi böbreklerdir.kloak lıdırlar.Dişilerde yumurta kanalının bir bölümü yumurta akı, diğer bölümü yumurta kabuğu yapacak şekilde özelleşmiştir.Vücut keratinle kaplı olduğundan kurudur. Örnek:yılan, timsah, kaplumbağa, kertenkele. 5) Memeliler: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sola kıvrılarak dallanır. Sıcakkanlı hayvanlardır.Kloak yoktur.Ürogenital sistem sindirim sisteminden ayrı olarakdışarıya açılır.Boşaltım organı metanesaz tipi böbreklerdir.Sinir sistemleri çok gelişmiştir.Örnek:fare, yarasa, kirpi, insan,balina.  B) İlkel kordalılar: İskeletleri kıkırdaktır.Yutak bölgesinde solungaç yarıkları, sırt tarafında da sırt ipliği bulunur.Bu grubun tek örneğiAmfiyoksüs tür. OMURGASIZLAR Süngerler, sölentereler, solucanlar, yumuşakçalar, eklembacaklılar ve derisi dikenliler olmak üzere gruplandırılmışlardır. a) Süngerler: Yapısını oluşturan hücreler arasında iş bölümü vardır.Hücresel farklılaşma görülmesine karşın hücrelerde doku oluşturmak için iş bölümü yoktur. b) Sölenterler: Bu şube üyeleri oyu bir kese gibi düzenlenmiş tek açıklı sindirim boşluklarına sahiptirler.Örnek:deniz anası, hidra, mercanlar. c) Yassı solucanlar: Sinir ve üreme sistemlerine sahiptirler.Örnek: tenya, planoria. d) Yuvarlak solucanlar: Bitki ve hayvanlarda parazit yaşarlar.Örnek: bağırsak solucanı. e) Böcekler: Vücutlarının tamamı epidermisin salgıladığı kitin ile kaplıdır.Trache solunumu yaparlar. CANLILARDA BESLENME İLİŞKİLERİ Besleme sistemine göre canlılar üreticiler(ototroflar) ve tüketiciler(heterotroflar) olmak üzere iki grupta incelenir.Üretici canlılar(ototroflar) kendi besinlerini yapar.Tüketiciler(heterotroflar) besinlerini kendileri yapamaz.Doğrudan veya dolaylı olarak ototrof canlılardan sağlar. OTOTROF BESLENME Kendi besinini kendisi sentezleyebilen organizmalara ototrof (üretici) canlı denir.Enerji sayesinde inorganik maddelerden organik madde sentezleyebilirler.Bitkiler, algler ve bazı bakteriler ototrof canlılardır.Kullanılan enerji kaynağına göre, ototrof organizmalar fotosentez yapanlar ve kemosentez yapanlar olmak üzere iki bölümde incelenir.fotosentez yapan canlıların klorofili vardır.bunlar klorofilleri sayesinde güneş ışınlarını soğurarak organik besinlerde kimyasal bağ enerjisine çevirirler. Kemosentez yapan organizmalar genellikle bakterilerdir.Bunlar gerekli enerjiyi amonyak, hidrojen, sülfür gibi belirli inorganik maddeleri oksitleyerek sağlar. Nitrit bakterileri amonyağı nitrite, nitrat bakterileri nitriti, nitrata dönüştürür.bu sırada açığa çıkan enerji bakteriler tarafından ATP sentezinde kullanılır.Bu şekilde gerçekleşen ATP sentezine kemosentetik fosforilasyon denir.Bu ATP inorganik maddelerden organik maddelerin sentezi sırasında kullanılır. Nitrit ve nitrat bakterileri azot döngüsünde rol oynar.Amonyağı, yeşil bitkilerin kolayca alıp kullanabileceği nitrat bileşiklerine dönüştürür.Amonyağın nitrata dönüştürülmesine nitrifikasyon denir. HETEROTROF BESLENME İnorganik maddelerden organik besin yapamayan, organik besinleri hazır olarak alan canlıların beslenme biçimine heterotrof beslenme denir.Böyle beslenen canlılara dış beslek veya tüketiciler adı verilir. Heterotrof canlıların beslenme ve yaşama şekilleri holozoik, simbiyoz, saprofit olmak üzere üç grupta incelenir. a) Holozoik Beslenme:Bu şekilde beslene canlılar besinlerini katı parçalar halinde alarak sindirirler.bunların sindirim sistemleri, avlarını yakalayabilmek için duyu organları, sinir sistemleri ve kas yapıları gelişmiştir.Otçul hayvanlar, etçil hayvanlar ve hem otçul hem etçil hayvanlar bu grupta incelenir. b) Birlikte Yaşama:İki veya daha fazla türün bir arada kurdukları yaşam şekline simbiyosim denir.Bu canlılardan biri konak diğeri konuk adını alır.Birlikte yaşama yararlı ve zararlı birliktelikten oluşur.Yararlı birliklerin beslenme biçimi kommensalizm ve mutualizm dir.Zararlı birlikteliklerin ise parazitizmdir. 1) Mutualizm:Bir arada yaşayan canlıların karşılıklı olarak yarar sağlaması şeklindeki beslenme biçimidir.Bu beslenme biçimine en tipik örnek likenlerdir.Liken, mantar ve yeşil algler in birlikte oluşturdugu bir yaşama birliğidir. 2) Kommensalizm:Bir canlı üzerinde yaşadığı canlıya zarar vermeden bu canlıdan yararlanıyorsa bu yaşama şekline kommensalizm denir.Örnek olarak yengeçlerin solungaçlarına tutunarak yaşayan bazı yassı kurtlar. 3) Parazitizm:Bir arada yaşayan iki canlıdan birinin digerini sömürerek ona zarar vermesi şeklinde olan beslenme ilişkisidir.Bazı bakterilerin sindirim enzimleri yoktur.Önemli monomerleri diğer canlı organizmalardan sağlarlar.Böyle bakterilere parazit bakteriler denir. Hastalık yapan parazit bakterilere de patojen bakteriler denir. Bir canlı diğer bir canlının deri ve solungaçlarına yapışarak yaşıyorsa bu canlılara ektoparazit (dış parazit) denir.Koku ve diğer duyu organları iyi gelişmiştir.Bit, pire, tahtakurusu, uyuz böceği, sivrisinek bir ekoparazittir. Bir canlı diğer bir canlının iç kısmında yaşıyorsa endoparazit denir. Bu parazitler hücre içerisinde yaşıyorsa bunlara hücre parazitleri denir.Örneğin sıtmaya neden olan parazit plazmadium al yuvar hücresinde yaşar.Endoparazitler çok sayıda gamet oluştururlar. Bundan dolayı üreme sistemleri çok gelişmiştir Bitki üzerinde yaşayan ve konak organizmanın odun borularından su ve madensel tuzlar alarak fotosentez yapabilen parazitlere yarı parazit denir.Üzerinde yaşadığı konak bitkinin soymuk borularından hazır organik maddeler alarak yaşayan parazit bitkilere tam parazit denir. c) Saprofit (çürükçül) beslenme:Biramayası, küf mantarı ve bakterilerin çoğu besinlerini katı olarak alamazlar.Bunlar gerekli olan organik besin maddelerini kokuşmaya yüz tutmuş bitki ve hayvan ölüleri üzerinden canlı artık ve salgılarından sağlarlar.Saprofitler öncelikle dışarı salgıladıkları enzimle besinlerini sindirir.Daha sonra küçük molekülleri emerler.Bu şekilde heterotrof beslenmeye saprofit beslenme denir.Saprofit bakterilerinin bir kısmı çürümede, bir kısmı ise mayalanmada rol oynar. HEM OTOTROF HEM HETEROTROF BESLENME Sinek kapan ve ibrik otu gibi böcek yiyen bitkiler fotosentezle organik madde yapar.Ayrıca yakaladıkları böcekleri salgıladıkları enzimlerle hücre dışında sindirirler.Daha sonra bu besinleri emerler. DOGADA MADDE DEVRİ Organik artıklar ve cesetler ayrıştırılarak inorganik maddelere dönüştürülür.Bu yollarla serbest kalan inorganik maddeler yeniden fotosentez ve kemosentez de kullanılır hale getirilir.Fotosentez ve kemosentez olaylarıyla inorganik maddeler yeniden organik bileşiklere dönüştürülür. Bu dönüşümlere doğada madde döngüsü denir. Karbon devri: Bir dönümlük şeker kamışı her yıl atmosfer tabakasından 20 ton kadar karbondioksit kullanır.Bitki ve hayvan enerji elde etmek için organik maddeleri yıkar.Karbondioksit ve su ya kadar parçalanır.Hücre solunumu denen bu olay sonucunda oluşan karbondioksit tekrar atmosfer tabakasına verilir. Azot devri: Bitkiler aminoasit ve protein sentezi yapabilmek için gerekli olan azotu, nitrat tuzları olarak topraktan alırlar.Bitkiler tarafından alınan nitratlar bitki hücreleri tarafından aminoasit ve protein sentezinde kullanılır. Ölmüş bitki ve hayvanla, canlıların artıkları ve salgılarındaki proteinli maddeler saprofitler tarafından amonyağa dönüştürülür.Bu olaya pütrüfikasyon (kokuşma) denir. Amonyak nitrit bakterileri tarafından nitrite; nitritte nitrat bakterileri tarafından nitrata dönüştürülür.Bu olaya nitrifikasyon denir. Bitki tarafından kullanılmayan nitratlar azot bozan bakteriler ile parçalanır.Bu parçalanmadan açığa çıkan azot tekrar havaya karışır.Bu olaya denitrifikasyon denir. Havanın azotu toprağa iki şekilde geçer: 1)Yıldırım çakması sonucu azot oksijenle birleşir.Daha sonra su ile etkileşince nitrik asit meydana gelir.Yağmurla toprağa inen nitrik asit toprakta bulunan sodyum ve potasyum bileşikleri ile etkileşerek nitrat tuzlarını oluşturur. 2)Toprakta, havanın serbest azotunu bağlayabilen ve kullanabilen azot bakterileri vardır.baklagillerin köklerindeki urlarda yaşayan ribozom da havanın serbest azotunu bağlayabilir ve azotlu madde yapar.Bu bakterilerin ölüleri topraktaki azotlu organik artıkları oluşturur.

http://www.biyologlar.com/canlilarin-siniflandirilmasi-nedirnasil-yapilir

Canlı ve taze materyal ile çalışma metodları

1- Lam ve lameller temiz olmalı.2- Pipetler cam eşya ve diğer aletler başka maddelerle karıştırılmamalıdır. Her bir kültürden alınan organizmalar için ayrı pipet kullanılmalıdır.3- Kimyevi solüsyonlar için ayrı pipetler kullanılmalıdır.4- Kültürümüz saf kültür ise cam eşyalar steril olmalıdır.5- Küçük saydam organizmalar örneğin, mikroskobik crustacea, küçük sölenteratlar, rotiferler, yassı kurtlar, annelidler, omurgasızların ve aşağı omurgalıların embriyoları, larvaları yumurtaları 1-2 damla su içinde incelenir. Eğer bu canlılar tatlı suda yaşıyorlarsa, tatlı su, denizde yaşıyorlarsa, deniz suyu, acı suda yaşıyorlarsa acı su konmalı ve incelenmelidir. Tatlı su organizmaları için havuz veya kültür suyu uygundur.

http://www.biyologlar.com/canli-ve-taze-materyal-ile-calisma-metodlari

ESAS BAĞ DOKUSU TİPLERİ

Gevşek (Areolar ) Bağ Dokusu: Papıller dermis, hipodermis, plevra, perikard ve periton gibi seröz zarların yapısında ve mukozal membranların yapısında bulunur. Bağ dokusunun tüm hücreleri bulunur ancak fibroblast ve makrofajlar çoktur. Liflerden kollajen ve elastik lifler daha fazla, retiküler lifler ise az miktarda bulunur. Amorf temel madde çoktur. Esnek ve bol damarlı bir dokudur ancak çekmelere karşı dayanıksızdır. Sıkı Bağ Dokusu: Kollajen lifler yapıya hakimdir. Az sayıda hücre içerir. Hücreleri daha çok fibroblastlardır. Strese-çekmelere dayanıklı ancak esnek değildir. Düzenli ve düzensiz sıkı bağ dokusu olmak üzere 2 tipi vardır. Düzenli sıkı bağ dokusu: Tendon, ligament, organ kapsülleri ve fasialarda bulunur. Kollajen lifler, paralel düzenlenmiş demetler şeklinde bulunur. Düzensiz sıkı bağ dokusu: En çok derinin dermisinde bulunur. Kollajen lif demetleri, birbirlerini çaprazlayan ağ biçiminde bulunur. Elastik Bağ Dokusu: Elastik lif demetlerinden (elastik lifler normalde demetleşmez ) oluşmuştur. Elastik lifler, yapıya hakimdir. Kollajen lif miktarı azdır. Lifler arasında az sayıda yassı fibrolastlar bulunur. Esnek, çıplak gözle sarı renkte izlenirler. Elastik arter, trake kirişi, penisin suspansör ligamenti, vertebraların ligamentum flava’larında Retiküler Bağ Dokusu: Gevşek bağ dokusunun özel bir tipidir. Kemik iliği ve lenfatik organlarda, içinde hücrelerin ve sıvıların kolaylıkla hareket edebileceği süngerimsi bir yapı oluşturur. Bu çatıyı retiküler hücreler ve retiküler liflerin birlikte oluşturduğu retikulum= ağ oluşturur. Mükoz Bağ Dokusu (Embriyonik Bağ Dokusu=Wharton Peltesi): Hiyaluronik asitten zengin bol, jöle kıvamında amorf temel madde içerir. Tüm liflerden az miktarda bulunur. Hücreleri daha çok fibroblastlardır. Umblikal kordon, diş pulpası ve corpus vitreum yapısında bulunur. Yağ Dokusu: Daha sonra kapsamlı olarak anlatılacaktır

http://www.biyologlar.com/esas-bag-dokusu-tipleri

Aracnida (=Aracbnoidea ) Sınıfı

Bu sınıfta hekimlik açısından önemli olan keneler, uyuz etkenleri, akrepler ve örümcekler bulunur. Arachnida sınıfındaki artropodların erişkinlerinde 4 çift bacak bulunur. Ayrıca antenleri ve kanatlan da bulunmadığı gibi vücutta baş ve thoraxın birleşmesiyle oluşmuş cephalothorax ve abdomen olmak üzere iki kısımdan oluşmuştur. Yine arachnidlerde ağız organellerinin yan taraflarında cheliser adı verilen kesici organel bulunur. Daha önce bahsedilen insecta sınıfındaki artropodların ise erişkinlerinde 3 çift bacak, anten, kanat ( bazılarında yok) bulunur, bunların vücutları üç parçalı olup, caput, tharox ve abdomenden oluşmuştur ve chelicer ( şelişer ) leri yoktur. Arachnida 'larda caput ve thoraxın birleşmesiyle oluşan cephalothoraxa “prosoma”, abdomene ise " opisthosoma" adı verilir. Prosoma' da iki kısma ayrılır. Ağız organellerinin bulunduğu kısma "gnathosoma" ( = capitulum ) ve bacakların çıktığı kısma ise "podosoma" adı verilir. Podosoma ve opisthosoma' dan meydana gelen yani bacakların çıktığı kısma ve abdomene birlikte "idiosoma"adı verılır. Podosomada "propodosoma"( 1 ve 2.çift bacaklar kısmı) ve "metapodosoma" (3 ve 4. çift bacaklar kısmı) olarak ikiye ayrılır. Gnathosoma ve propodosoma'nın ikisine birden "proterosoma" metapodosoma ve opisthosoma'nın ikisine birden ise "hysterosoma"adı verilir. Gnathosoma üzerinde makas şeklinde olan chelicerler, en önde bulanan ve bir çift bacak şeklinde görülen pedipalpler ve hypostom bulunur. Chelicerler konak derisini delmeye ve kesmeye yarayan iki tane hareketli oluşumlardır. Pedipalpler ise artropodun yiyeceğini yakalamasında ve dokunma duyusu olarak görev yaparlar. Hypostom'un üzere dişler gibi oluşumlarla kaplıdır. Bu yapıları ile konak derisine girdiği zaman geriye çekilmesini engeller ve konaktan kan emmeye yarayan bir oluşumdur. Erişkin arachnidlerde ve nymhlerde 4 çift bacak, larvalarında ise 3 çift bacak bulunur. Bu sınıftaki türlerin tümü kanatsız artropodlardır. Göz bazılarında vardır, bazı türlerde ise bulunmaz. Göz eğer varsa basit göz biçimindedir. Solunum genellikte trachealarla olur. Ancak bunlar bir çift stigma ile dışarı açılırlar. Çoğunlukla erkekleri dişilerinden küçüktür ve dorselden bakıldığında bazı türleri direkt olarak ayrılırlar, yani sexuel dimorfismus vardır. Biyolojik gelişmelerinde erişkin -yumurta -larva -nymph -erişkin dönemleri görülür. Yumurtadan çıkan larvalar erişkinlere genellikle benzerler. Daha sonraki nymph dönemi ise sexuel organlarının olmayışı dışında erişkinlere benzemektedir. Bu nedenle bu sınıftaki parazitlerin gelişmelerinde yarım metamorfoz (= hemimetabola ) görülür. Sindirim kanalları birtakım divertiküllere ve kollara ayrılmıştır. Bu özelikleri ilede gıda deposu olarak görev yaptıkları gibi sindirim bezi olarakta fonksiyon yaparlar. Arachnida Sınıfının Sınıflandırılması Bu sınıf altında üç önemli takım bulunur. Bunlar, Order: Scorpionidea (=akrepler ) Order: Araneidea ( = örümcekler ) Order: Acarina (=kene, uyuz etkenleri ve diğer akarlar) Order: Scorpionidea Akreplerde vücut yapıları cephalo- thorax ve abdomen şeklindedir. Vücudun ön tarafında ve ağzın iki yanında bir çift chelicer ve onun gerisinde yine bir çift pedipalpleri bulunur. Pedipalpler makas şeklinde tutucu organellerdir. Bunların gerisinde ise 4 çift bacak vardır. Abdomenleri ise preabdomen ve postabdomen olmak üzere iki kısımdan oluşmuştur. Bunlardan preabdomen geniş yapıda olup, 7 segmentlidir. Postabdomen ise daha ince yapılı olup, 6 segmentden meydana gelmiştir. Kuyruk adıda verilen postabdomenin son halkası yuvarlağımsıdır ve uç kısmında zehir bezesini taşıyan bir iğne ( telson) bulunur. Akreplerin büyüklüğü 3 cm' den 8 cm 'ye kadar değişir. Vücudun en geniş yeri 1 cm, en dar yeri ise kuyruk kısmı olup, 3 -4 mm'dir. Renkleri siyah, solgun sarı, kahverenkli ve bazen yeşil renkli olabilir. Akreplerde vücut segmentasyon gösterir ve bunlarda dimorfismus yoktur. Scorpionidea 'lar sıcak ve kurak bölgelerde bulunurlar. Gececi parazitler olup, gündüzleri duvar ve tahta çatlakları arasında, kuytu yerlerde saklanırlar. Dişileri ovipardır. Ancak genellikle ovovivipardırlar. Yani uterusta şekillenen yumurtalar içinde gelişen yavrular çıkar. Akreplerin son halkasının uç kısmında bulunan iğne zehir bezeleri ile bağlantılıdır. Bu iğne ile bir canlıya soktuğunda zehiri derhal boşaltır. Zehirin felç edici etkisi vardır. Akrepler genellikle evlere girerler. Tropikal bölgelerde yaşayan bazı türleri insan ve hayvanlar için çok zehirli olup, ölümlere yol açabilirler. Akrepler kanivor artropodlardır, gıdalarını pedipalplerindeki kıskaçları ile yakalarlar. Bazı akrep türleri konaklarını soktukları yerlerde sadece lokal olarak şişliklere ve ağrılara neden olduğu halde, çok zehirli olan türleri sinir sistemi bozukluklarına, konvulsiyonlara, solunum güçlüğü ve kalpte bozukluklara neden olurlar. Akrep zehirlemesine scorpionismus ( = skorpionizm ) adı verilir. Zehirlenmelerin tedavisinde en iyi yol özel antitoksin akrep serumu kullanılmasıdır. Order: Araneidea Örümceklerde vücut cephalo-thorax ve abdomenden oluşmuştur. Abdomende segmentasyon gözükmez ve bir boğumla cephalothorax'dan ayrılmıştır. Ağızlarının yan tarafında iki eklemli ve nihayeti bir iğne ile sonlanmış olan chelicerleri vardır. Bunlar zehir bezeleri ile irtibatlıdır. Zehir iğneleri vasıtası ile canlı artropodları ısırır, zehirini akıtarak daha sonrada yerler. Pedipalpleri duyu organı olarak görev yaparlar ve ergin erkeklerde çiftleşmeye hizmet ederler. Bazı türlerinde dimorfismus görülür ve dişileri erkeklerinden biraz daha büyük olup, abdomenleri daha yuvarlaktır. Örümceklerin bazıları toprak altında bazılarıda taşların altında ve ağaç kovuklarında yaşarlar. Çoğalmaları akrepler gibidir. Araneidea takımında bulunan bazı örümcek türleri insan ve hayvanlarda zehirleyici etki gösterir. Bu canlılarda ağır hastalıklar ve ölümlere yol açabilirler. Bunların toxinleri bir neurotoxin olup, özellikle merkezi sinir sitemini etkilerler. Bazı türleri ise lokal nekrozlara neden olurlar. Zehirli olan cinsleri; Latrodectus ve Loxosceles' dir. Bu örümcek cinslerinin chelicerleri ile insan ve hayvanların derilerini delerek dokulara zehir akıtmaları sonucu oluşan yerel nekroz ve genel belirtilerle karekterize olan artropod zehirlenmesine “araneismus" yada örümcek ağılaması (=örümcek zehirlenmesi) adı verilir. Latrodectus cisindeki türlerin sokması sonucu zehiri merkezi sinir sitemini etkiler ve sistemik belirtilere yol açar. Buna "Latrodectismus" yada sistemik araneismus (sistemik arachnidismus) denir. Latrodectus'ların dişisi 10-20 mm, erkeği ise 4-7 mm büyüklüğündedir. Siyah renklidirler. Abdomen üzerinde kırmızı benekler bulunur. Bunlar kuru ve çorak yerlerde, duvar çatlaklarında, ağaç kovuklarında ve kemirgen yuvalarında yaşarlar. Bu türlerin dişileri çiftleştikten sonra erkeğini öldürdüğü için bunlara kara dul adıda verilmektedir. Loxosceles türlerinin sokması sonucu hemoliz oluşur ve ısırılan yerde nekroz meydana gelir, ortaları düşer ve yerlerinde yaralar oluşur. Bu türlerden ileri gelen zehirlenmede lokal reaksiyonlar oluşur. Bu nedenle bu türlerin oluşturduğu zehirlenmeye "Loxoscelismus" ya da nekrotik araknidizm adı verilir. Loxosceles türleri sarı esmer renkte olup, bunlar genellikle evlerde, karanlık ve nemli yerlerde yaşarlar. İnsanları yüzünden, boynundan, omuz yada kolundan sokarlar. Sokulan yerde önce şişlik, içleri kanla dolu kabarcıklar daha sonrada nekrozlar oluşur. Örümcek sokmalarında ilk yardım olarak önce zehir emilir, sokulan yer kanatılır, bölge üstten sıkılır ve kan emilerek tükürülür. Yara amonyak yada potasyum permanganat ile yakılır. Serumlar verilir. Order: Acarina Bu takımda keneler ve uyuz etkenleri başta olmak üzere hekimlik yönünden önemli olan ektoparazitler bulunmaktadır. Acarina takımında bulunan artropodları inceleyen bilim dalına " akaroloji" adı verilir. Acarina takımındaki türlerin vücutları iki kısımdan oluşmuştur. Bunlar capitulum ( gnathosoma ) ve idiosoma' dır. Hatta bazı türlerde vücutları tek parçalı gibidir. Bu artropodların vücutlarında segmentasyon yoktur veya çok belirsizdir. Ağız organelleri besinleri yakalamaya yarayan bir çift pedipalp, kesici bir çift chelicer ve bunlar arasında sokmaya yarayan bir adet hipostom (rostellutrı)' dan ibarettir. Erişkinlerinde ve nymph'lerinde 4 çift, larvalarında ise 3 çift bacak bulunur. Erkek ve dişiler arasında sexuel dimorfismus vardır. Acarina 'larda solunum trachealarla olur yada bütün vücut yüzeyinden olur. Sinir sistemleri basittir ve göz bazılarında vardır. Bu gruptaki parazitler deri hastalıklarına (uyuz) neden olmaları ve birçok enfeksiyon etkenlerine vektörlük yapmaları (keneler) yönünden büyük önem taşırlar. Acarina takımında 6 alttakım bulunur. Bunlar; l-Suborder : Metastigmata 2-Suborder : Mesostigmata 3-Suborder : Prostigmata 6-Suborder : Holothyroidea 4-Suborder : Astigmata 5-Suborder : Nostostigmata 6-Suborder : Holothyroidea Bunlardan son iki alttakımın ekonomik önemleri yoktur. İlk 4 alttakım özellikle Veteriner Hekimlik yönünden önemli olan artropodları içerir. Suborder : Metastigmata Bu alttakımda keneler yer alır. Stigmaları 4. veya 3. coxae'nın hemen yanında yada arkasında bulunur. Acarina takımının genel özelliklerini taşırlar. Hipostomları üzerinde uçları geriye dönük olan dişler bulunur. Vücutları yekpare bir kese şeklinde olup, gnathosoma ve idiosomadan ibarettir. Larvalarında 3 çift, nymph ve erişkinlerinde 4 çift bacak bulunur. Nimfler olgunlarından genital organlarının olmayışı ile ayrılırlar. Erişkin ve doymuş bir dişi kenenin uzunluğu 2 cm'ye kadar ulaşabilir. Bu alt tabında Ixodidae ve Argasidae aileleri vardır. Familya: lxodidae ( Sert keneler veya mera keneleri) Bu ailede bulunan artropodlar mera keneleridir. Bu kenelerde vücut yapısı"capitulum ve idiosomadan oluşmuştur. İlk bakışta erkek ve dişi keneler birbirlerinden kolaylıkla ayrılırlar. Yani sexuel dimorfısmus vardır. Erkekleri dişilerinden daha küçüktür ve bütün vücutları kitin tabakası ile örtülüdür. Kenelerin dorsalinde bulunan bu sert kitini plaka scutum adını alır. Scutum erkeklerde vücudun bütün dorsal kısmını kaplarken, dişilerde, nymph ve larvalarda capitulum'un arkasında ve vücut dorsalinde küçük bir yaka şeklindedir. Ağız organelleri capitulum 'un ön tarafında yer almıştır. Capitulum; basis capituli ve bundan çıkan bir çift chelicer, chelicer kılıfı, hipostom ve bir çift palpden oluşmuştur. Chelicerler hypostomu üstten örterler ve deriyi kesmeye, delmeye yararlar. Chelicerler tarafından açılan deriye chelicerler ve hypostom birlikte girer ve daha sonra hipostom üzerindeki küçük dişcikler geriye doğru açılarak hipostomun deriden çıkması önlenir. Hypostom kenenin konaktan kan emmesini sağlayan organeldir. Chelicer'lerin yan taraftarında his organeli olarak görev yapan bir çift palp bulunur. Başın arkasında ve vücudun kenar kısmında bazı türlerde bir çift göz mevcuttur. Gözler scutumun marginal kenarına bitişik yer alırlar. lxodidlerin bazı türlerinde göz bulunmaz. Vücudun ventralinde ise bacaklar, ön tarafta genital delik, arka tarafta anüs, çeşitli oluklar, stigmalar ve erkeklerde kitinsel plaklar bulunur. Bacaklar sırası ile coxae, trochanter, femur, tibia, pretarsus ve tarsus'dur. Tarsus'un uç kısmında iki adet tırnak bulunur. Tırnakların ventral yüzünde ise disk şeklinde düz yüzeylere tutunmaya yarayan pulvillum vardır. Genital delik median hat üzerinde ve ikinci coxaların ön kenarı hizasında olup, enine bir yarık şeklindedir. Nymph 'lerde genital delik kapalı olduğu halde larvalarda henüz şekillenmemiştir. Anüs vücudun arkasında yer alır ve çeşitli plaklarla kuşatılmıştır. Stigmalar 4. coxanın arkasındadır ve larvalarda bulunmaz. Bunlarda solunum vücut yüzeyi ile olur. Ixodidlerin bazı türlerinde scutumun üzeri adeta nakışla işlenmiş gibi süslüdür. Yine bazı türlerin vücudunun arka kenar kısımlarında festoons (festum) adı verilen oluşumlar vardır. Bu ailedeki keneler vücutlarının dorsalinde kitini sert bir plaka taşımalarından dolayı “sert keneler" veya biyolojilerini merada geçirdiklerinden dolayıda "mera kenelerı" olarak adlandırılırlar. Mera kenelerinin erkekleri en fazla 3-4 mm büyüklüğünde olduğu halde, dişileri kan emdiklerinde 1 cm büyüklüğüne ulaşırlar. Dişilerde scutum önde bir yaka şeklindedir. Vücudun geri kalan kısmı deri ile kaplıdır. Bundan dolayı dişiler fazla miktarda kan emebilirler. Erkeklerde ise bütün vücut kitinle kaplandığı için çok az miktarda kan emerler ve vücut genişleme göstermez. Keneler sexuel olarak çoğalırlar. Genital organlar dişilerde 2 adet ovaryum, uterus ve genital deliğe açılan vajinadan ibarettir. Ovaryum bir çok yerlerde kör keseler halinde olan sindirim kanalı ile ilişki halindedir. Bu durum kan parazitleri ile enfekte kenelerin bu parazitleri sindirim kanalından ovaryuma ve oradanda yumurtalara geçirebilmesi bakımından önem taşır. Erkeklerde genital organlar bir çift testis ve genital deliğe açılan vasa deferensden oluşmuştur. Keneler bütün hayatları boyunca kan emmek zorunda olan artropodlardır. Sindirim sistemleri hipostomdan başlar ve bir çok kör keseler halinde bağırsaklarla devam eder. Ixodidae ailesindeki kenelerin biyolojileri Mera keneleri ilkbahar sonlarından başlar ve sonbahar sonlarına kadar aktivite gösterirler. Hayvanlarda kulak içi, kulak kepçesi, yüz, karın altı, perianal bölge ve bazende vücudun diğer kısımlarında yerleşirler. Erkek ve dişiler genellikle bir arada bulunurlar ve çoğunlukla kopulasyon kan emme esnasında olur. Erişkin. dişi keneler yumurtalarını toprak veya meraya bırakırlar. Daha çok çatlak ve yarıklara, taş altlarına ve ağaç oyuklarına bırakırlar. Yumurtalar kahverenginde ve oval şekildedirler. Türlere ve kan emmelerine göre değişmek üzere 2-18 bin yumurta bırakırlar. Yumurtlama vücudun ventral ön tarafında bulunan genital delikte olur ve bunlar yapışkan bir madde ile birbirlerine yapıştırıldıklarından bir yumurta kitlesi şeklindedirler. Erişkin dişi bir kere yumurtlar ve daha sonra kuru bir hal alır ve ölür. Yumurtadan çıkan larvalar (uygun ısı ve rutubette türlere göre değişmek üzere 3-7 günde larvalar çıkar) çayır ve otların üst kısımlarına tırmanarak, ön ayakları ile o yörede bulunan konaklara tutunurlar. Kenelerde her türün seçtiği konak türleri varsada, aç kaldıklarında başka konaklardanda beslenebilirler. Konağa tutunan larvalar kan emerek doyarlar ve gömlek değiştirerek nymph safhasına geçerler. Nymph 'ler kan emerek gömlek değiştirirler ve bunlardanda erişkinler oluşur. Erişkin keneler kan emdikten sonra çoğunlukla konak üzerindeyken çiftleşme olur. Kopulasyondan hemen sora erkekler yere düşer ve ölür. Döllenmiş dişi kene ise kan emer, doyar ve toprağa düşerek yumurtlar ve ölür Yukarıda anlatılan biyolojik gelişme genel olarak görülen bir gelişme şeklidir. Ancak lxodidae ailesindeki kene türlerinin kullandıkları konak sayılarına göre bu biyolojik gelişme değişmektedir. Sert keneler gelişmelerinde kullandıkları konak sayısına göre 3 grupta toplanırlar. 1- Bir konaklı keneler Eğer kene biyolojik gelişmesini bir konakta tamamlıyorsa bu kenelere bir konaklı keneler denir. Kenenin kan emmiş doymuş dişisi (döllenmiş ) konağı terkeder toprağa düşer, yumurtlar ve sonra ölür. Uygun ısıda yumurtalar içinde embiryo gelişir ve 3 çift bacaklı larva halini alır. Bu larvalar beyaz renkli yumurta kabuğundan dışarı çıkarak etrafta bulunan otlar üzerine tırmanırlar. Bunlar toplu iğne başının ¼’ü büyüklüğündedirler. Larvalar arka iki çift bacaklarını otlara salarlar ve ön bir çift bacaklarını ise havada sallarlar. Bu civardan geçmekte olan konaklara tutunurlar ve doyuncaya kadar konaktan kan emerler. Bu durumda toplu iğne başı büyüklüğünde ve gri bir görünüm kazanırlar. Hypostomlarını deriden çekerler ve konağın üzerinden ayrılmaksızın gömlek değiştirme evresine girerler. Bu safhada larvanın üzerindeki deri beyazlaşır ve onun vücudunun içinde nymph meydana gelir. Nympler larvanın üstderisi olan kabuğu açarak dışarı çıkarlar. Nympler şekil bakımından erişkinlere benzerler ancak genital organlar gelişmemiştir. Bu nymph 'lerde üzerinde bulundukları aynı konaktan tekrar kan emmeye başlarlar. Doyduklarında küçük bir saçma tanesi şeklindedirler. Bunlarda hypostomlarını deriden çekerler ve bulundukları konağı terketmeden bulundukları yerde gömlek değiştirme safhasına geçerler. Nymplerin üzerini örten deri bir kabuk şeklini alır ve onun içinde de erişkin kene şekillenir. Erkek ve dişi olarak şekillenen bu keneler nymphin gömlek şeklini almış üst derisini açarak dışarı çıkarlar. Yine aynı konaktan kan emmeye başlarlar. Kan emme esnasında kopulasyon olur, dişiler doyuncaya kadar kan emdikten soma konağı terkederek toprağa düşer, yumurtlar ve ölürler. Yani bu tip kenelerde kene yumurta hariç bütün yaşam dönemlerini aynı konak üzerinde geçirir. Aç larva olarak tutunduğu konaktan doymuş dişiler olarak ayrılırlar. Tüm gömlek değiştirmeler konak üzerinde olur. Örneğin; Boophilus annulatus ve Boophilus decoloratus türleri bir konaklı kenelerdir. 2-) İki konaklı keneler Bu tür keneler biyolojik evrimini tamamlayabilmesi için iki konak kullanır. Bu konaklar aynı veya ayrı türler olabilir. Konak üzerinde kan emmiş ve doymuş olan dişiler toprağa düşer yumurtlar ve ölürler. Yumurtadan çıkan larvalar oradan geçmekte olan 1. konak bir canlının üzerine tutunurlar. Doyuncaya kadar kan emerler ve hypostomlarını geriye çekerek, aynı konak üzerinde gömlek değiştirirler ve nymph olurlar. Aç olan bu nymphler aynı konaktan kan emerler ve doyduktan sonra toprağa düşerler. Toprakta gömlek değiştiren nymphlerden erişkinler oluşur. Aç olan erişkin keneler bu yörede bulunan 2. bir konağa tutunurlar, kan emerler ve doyduktan sonra kopulasyon olur. Döllenmiş dişiler bu konağı terkeder toprağa düşer ve yumurtladıktan sonra ölürler. Yani aç larva olarak tutunduğu konaktan doymuş nymph olarak ayrılır. İlk gömlek değiştirme 1. konakta, 2. gömlek değiştirme toprakta olur. Örnek: Hyalomma türleri, Rhipicephalus everts;ve Rhicephalus bursa türleri iki konaklı kenelerdir 3-) Üç konaklı keneler Bu tip keneler gelişmelerini tamamlayabiImek için üç konağa ihtiyaç duyarlar. Yumurtadan çıkan larvalar 1. konağa tutunurlar. Bunlar kan emer ve doyduktan sonra toprağa düşerler. Toprakta gömlek deyiştirdikten sonra aç nymphler oluşur. Bu aç nymphler kan emmek üzere 2. bir ayrı veya ayrı konağa tutunurlar. Kan emip doyan nymphler konağı terkeder ve toprağa düşerler. Toprakta gömlek değiştirdikten sonra aç erişkinler oluşur. Aç erişkin keneler kan emmek için 3. bir aynı veya ayrı konağa tutunurlar. Kan emerler, doyarlar ve çiftleştikten sonra dişiler toprağa düşer yumurtlar ve ölürler. Yani her gelişme döneminde ayrı bir konaktan beslenirler ve her gömlek değiştirme olayı toprakta olur. Örneğin; lxodes ricinus, Rhipicephalus appendiculatus, Haemaphysalis ve Dermacentor türleri gelişmeleinde üç konak kullanırlar. Ixodidae ailesine bağlı olarak bulunan kene cinsleri şunlardır. Genus: Ixodes Genus: Haemaphysalis Genus: Boophilus Genus: Dermacentor Genus: Hyalomma Genus: Amblyomma Genus: Rhipicephalus Genus: Ixodes Ixodes 'lerin palpleri ve hypostomları uzundur. Anal oluk belirgin ve anüsü önden kuşatır. Scutum nakışlı değildir. Göz ve feston bulunmaz. Erkeklerin ventral yüzü birbirinden belirgin sınırlarla ayrılmış 7 alandan oluşur. Palpleri uzun raket şeklinde ve üzerinde kıllar bulunur. Bu cinste bulunan türler; lxodes ricinus, lxodes hexagonus, I. pilosus, l persulcatus ve l rubicundus'dur. Bunlardan en önemli olan tür I. ricunus olup, çoğunlukla sığır ve koyunlardan kan emerler. Avrupa'da ve Türkiye'de yaygındır ve üç konaklı kenedir. Özellikle ılıman ve rutubetli iklim bölgelerinde bulunur. Ixodes ricinus türü konağından kan emerek verdiği zararın yanısıra Babesia bovis, Babesia divergens'i sığırlara, Anaplasma ovis'i koyunlara ve Babesia canis'i köpeklere bulaştınrlar. Aynca Louping-ill virusuna, Rusya ilkbahar yaz encephalitisine ve Coxiella burnettii'ye vektörlük yapmaktadırlar. Genus:Boophilus Bunların ağız organelleri kısadır. Palpleri kısa ve çıkıntılı olup, hipostoma eşit yada kısadır. Göz ve çift anal plakları vardır. Festonları bulunmaz. Boophilus cinsinde bulunan türler; Boophilus annulatus, B. decoloratus, B. calcaratus ve B. microplus' dur. Bunlardan ülkemizde en yaygın olarak görülen tür B. annulatus'dur. Tek konaklı kenedir ve genellikle sığırlardan kan emerler. Sığırların önemli kan protzoonlarından olan Babesia bigemia, B. bovis, Anaplasma marginale, A.centrale ve Borrelia theileri (spirochaetosis)'ye vektörlük yaparlar. Genus: Hyalomma Hyalomma'ların ağız organelleri uzundur. Palpleri uzun olup, 2. palp segmenti çok uzundur. Göz, anal ve subanal plaklar vardır. Scutum koyu renklidir ve nakışIı değildir. Festonlar düzensizdir ve bir bölümü birbiriyle kaynaşmıştır. Bu cinste bulunan önemli türler; Hyalomma anatolicum excavatum, H. anatolicum anatolicum, H. marginatum ve H. detritum' dur. Yurdumuzda görülmektedirler ve yaygın kene türleridir. İki konaklı keneler olup, ruminant ve tektırnaklılardan kan emmerler bunlar konaklarına Theileia annulata, Theileria parva, T.dispar, Babesia caballi, B.equi, Coxiella burnetii (Q humması etkeni), Rickettsia bovis ve Rickettsia canari'yi naklederler. Genus: Rhipicephalus Palpleri ve hypostomları kısadır. Göz ve anal plakları vardır. Anal oluk belirgindir. Basis capituli dışa doğru çıkıntılıdır. Bu cinsteki türler feston taşırlar. Bulunan önemli türler; Rhipicephalus bursa, R sanguineus ve R appendiculatus' dur. Bulardan R. bursa çoğunlukla koyunlardan kan emerler. Bu tür Babesia ovis, Theileria ovis, Babesia bovis, Babesia equi, B. caballi, Anaplasma marginale, Rickettsia avina, Coxiella bumetii ve koyunlarda Nairobi hastalığı virusunu konaklarına bulaştırır. R. bursa türü gelişmelerini iki konakta tamamlarlar. R. sanguineus türü ise genellikle köpeklerden kan emer ve üç konaklı kene olup, ülkemizde yaygındır. Babesia canis, B.vogeli, Hepatozoon canis, Pasteurella tularensis, Rickettsia, Coxiella ve Borrelia türlerine vektölük yaparlar. R.appendiculatus ise Afrikanın tropikal bölgelerinde yaygındır ve sığırlardan kan emerek bunlara Theileria parva'yı taşırlar. Ayrıca T.mutans, B. bigemina ve Hepatozoon canis'e vektörlük yaparlar. Bu üç türden ayrı olarak Rhipicephalus capensis ve R. everisi türleri de bulunmaktadır. Genus: Haemophysalis Palpleri kısa ve 2. palp segmenti basis capituliden daha geniştir. İkinci palp segmenti uzunluğuna oranla iki misli daha geniştir. Göz ve anal plakları bulunmaz. Anal oluk belirgin değildir yada bulunmaz. Anal oluk anüsü arkadan kuşatır. Feston taşırlar. Üç konaklı kenelerdir. Bu cinse bağlı olarak Haemaphysalis punctata, H. parva, H. longicornis ve H. leachi türleri vardır. H. punctata ve H. longicornis ruminantlardan kan emerler. Bunlar B. bigemina, B. motasi, Anaplasma marginale, Anaplasma centrale ve Theileria türlerini naklederler. H. leachi türü ise köpeklerden kan emer. Sarı köpek kenesi adını alır. Köpeklere B. canis, Coxiella bumetii ve Rickettsia conori ' yi bulaştırırlar. Genus: Dermacentor Bu cinsteki kene türlerinin palpleri kısa ve basis capitulinin hizasındadır. Palpleri geniştir. Gözleri vardır, anal plakları yoktur. Scutumları renkli ve nakışlıdır. Bu cinse bağlı türlerin çoğunluğu üç konaklıdır. Genellikle tektırnaklılardan ve köpeklerden kan emerler. Bulunan türler; Dermacentor andersoni, D. reticulatus, D, marginatus, D. niveus, D. occidentalis ve D. variabilis'dir. Bunlardan D. marginatus ve D. reticulatus ülkemizde yaygındır. Bu türler Babesia caballi, B. equi ve B. canis'e vektörlük yaparlar. Genus: Amblyomma Palpleri uzun ve hipostomları kalındır. Gözleri vardır ve anal plakları yoktur. Scutumlarının üzeri nakışlıdır. Festonları vardır ve bunlar arasında kaynaşma yoktur. Türkiyede görülen türü Amblyomma variegatum'dur. Üç konaklı kenedir. Sığırlara Theileria mutans'ı bulaştırır. Bu cinse bağlı olarak A. americanum, A. hebraeum ve A. maculatum türleride bulunur. Ixodidae ailesine bağlı olarak bulunan bu cinslerden başka sürüngenlerde bulunan Aponomma ve evcil ve yabani hayvanlarda bulunan Rhipicentor cinsleride bulunmaktadır. Familya: Argasidae Bu ailedeki keneler mesken keneleri olarak bilinirler. Mesken keneleri ahır, ağıl ve kümesIerde bulunur ve buraya giren hayvanlardan kan emerler. Genel morfolojik ve biyolojik özellikleri yönünden mera kenelerine benzerler. Ancak bazı farklılıklarda vardır.Ixodidae ailesi ile aralarındaki bu farklılıklar verilerek mesken kenelerin özellikleri anlatılacaktır. Morfolojik Farklılıklar 1. Ixodidae'lerde capitulum dorsalden bakıldığında vücudun ön tarafında bir çıkıntı yapmış şekilde görüldüğü halde, Argasidae'lerde larva dönemleri hariç capitulum ventralde yer alır ve bu nedenle dorsalden bakılınca görülmez. 2. Ixodidae'lerde scutum vardır. Erkeklerde scutum tüm vücudu örter ve fazla kan ememezler. Bunların dişi, larva ve nymph 'lerinde scutum önde yaka şeklindedir ve fazla kan emerler. Argasidae'lerde ise scutum yoktur. 3. Ixodidae'lerin erkeklerinin ventralinde görülen kitini plaklar, Argasidae'lerde yoktur. 4. Ixodid 'lerin palpleri köşelidir. Argasid 'lerin ise silindiriktir. 5. Ixodidae ailesindeki kenelerin ayak uçlarında pulvillum adı verilen yastıkçıklar bulunur. Bu nedenle bunlar cam ve fayans gibi düz zeminlere tırmanabilirler. Ancak Argasidae'lerde pulvillum yoktur. 6. Ixodidae'lerin dorsalinde bulunan scutum nedeni ile özellikle kan emmiş olan erkek ve dişiler arasında sexuel dimorfismus vardır. Argasidae'lerde ise böyle bir farklılık bulunmaz. 7. Ixodidae'lerin arka taraflarında feston vardır. Argasidae'lerde yoktur. 8. Mera kenelerinin bazı türlerinde göz vardır. Gözler büyüktür ve scutumun ön kenarının iki yanında bulunur. Mesken kenelerinde göz vardır. Bunlarda vücudun ventralinde ve ön kısmının iki yanında bulunur. 9. Ixodidlerde stigmalar büyüktür ve 4. coxanın arkasındadır. .ArgasidIerde ise stigmalar küçüktür ve 4. coxanın önündedir. ıo. Ixodidlerde erkek ve dişi büyüklük ve scutumun konumuna göre ayrılır. Erkekler dişilere göre daha küçüktür. Scutum erkeklerde tüm vücudu örter. ArgasidIerde ise erkek ve dişi genital deliğin morfolojik özelliğine göre ayrılır. Erkeklerde genital delik at yarık şeklinde olduğu halde, dişilerde enlemesine bir yarık şeklindedir. ll. Sert kenelerin dişilerinde basis capituli üzerinde poros area vardır. Yumuşak kenelerin dişilerinde poros area yoktur. Biyolojik Farklılıklar l. Ixodidae aileasindeki keneler doğada, özellikle açık yerlerde ve meralarda gelişmelerine karşılık, Argasidae türleri ahır, ağıl ve kümes gibi kapalı ve örtülü yerlerde gelişirler. Bunun için Ixodidae ailesindeki kenelere mera keneleri, Argasidae ailesindeki kenelere ise mesken keneleri adı verilir. 2. Mera kenelerinin hemen hepsi memelilerin parazitidirler. Ancak 2 ve 3 konaklı olan bazı türleri kanatlılardan da kan emebilir. Bunun aksine Argasidae türlerinin bir kısmı genellikle sadece kanatlılardan bir kısmı ise memelilerden kan emerler. 3. Ixodidae türleri konakçıya tutunduğunda iyice doyuncaya kadar kan emer, gömlek değiştirir. Yumurtlar ve ölür.Ancak argasidae türleri konaklarından azar azar ve kısa süreli olarak kan emerler ve her seferinde nisbeten az sayıda (200-300 adet) yumurtlar. Fakat yumurtlamadan soma ölmezler ve bir kaçkez yumurtlayabilirler. 4. Ixodidae türleri konaklarından doyuncaya kadar sabit olarak kalırlar. Argasidae türleri ise geçici ve gezicidirler. 5. Mera kenelerinde bir nymph safası vardır. Argasidae'lerde ise bir kaç nymph safhası vardır ve bunlarda bütün gömlek değiştirmeler konak dışında meydana gelir. 6. Mera keneleri açlığa mesken kenelerine göre daha dayanıksızdırlar Ixodidler 1-2 yıl, Argasidler ise 9-10 yıl aç kalabilirler. Argasidae ailesindeki keneler vücutlarının üzerinde kitini plakların olmamasıyla "yumuşak keneler" ve biyolojik gelişmelerini barınaklarda geçirdiği içinde "mesken keneleri" olarak adlandırılırlar. Argasidae ailesindeki kenelerin larva. nvmoh ve eriskinlerinin avrımı: Organ Larva Nymph Erişkin Bacak 3 çift 4 çift 4 çift Peritrem Yoktur Vardır Vardır Capitulum Anteroterminal Anteroventral Anteroventral Genital Delik Yoktur Yoktur Vardır * Erkeklerde dar ve yarım ay şeklinde, dişilerde ise kabarık, geniş ve enine bir yarık şeklindedir. Argasidae ailesinde bulunan kene cinsleri: Genus: Argas, Genus: Ornithodoros (= Ornithodorus), Genus: Otobius Genus: Argas Bu genustaki keneler genel olarak kanatlıların parazitidirler. Vücutları ince yapılı, ovalimsi, dorso-ventral yassı, ön uçları daralmış ve arka uçları geniş ve yuvarlağımsıdır. Bu kenelerin dorsal ve ventral yüzünü ayıran bir çizgi bulunur. Bu çizgi Argaslarda oldukça ince olup, kenenin kan emip doymasına rağmem keskin bir şekilde kalır. Gözleri yoktur. Dorsal yüzlerinde çok sayıda ufak ve yassı dairemsi çukurlar bulunur. Argas cinsine bağlı olarak bulunan türler; Argas percicus: Kanatlılardan (tavuk, bindi, kaz gibi) kan emerler. Ördeklerde kene toksikozuna neden olmaktadır. Argas reflexus: Güvercinlerin parazitidir. Argas sanchezi: Kanatlılardan kan emer. Agas radiatus, Argas miniatus ve Argas mianensis türleride kanatlı keneleridirler. Bunlardan en yaygın olanları A. persicus ve A. reflexus' dur. Argas türleri kan emecek kanatlı bulamadıklarında evcil memelilerden ve insanlardan da kan emebilirler. Biyolojik gelişmeleri Argas türlerinin erginleri kanatlı barınaklarının tahta aralıkları, tünek çatlakları ve çatısında güvercin barındıran veya kuş bulunduran evlerin çatı kısımlarında bulunurlar. Buralarda çatlak ve yarıklara saklanırlar. Buralarda çiftleşirler. Döllenen dişi kan emmek için konağına saldırır, kan emer ve doyduktan sonra konağından ayrılarak çatlak ve yarıklara çekilirler ve buralarda yumurtlarlar. Dişiler kan emek için birkaç kez konağına saldırır ve her kan emişten sonra yumurtlar. Yumurtalardan uygun ısıda yaklaşık 3 hafta sonra larvalar çıkar. Larvalar konaklarına tutunarak kan emer ve doyduktan sonra kanağı terkeder ve bir hafta içinde gömlek değiştirir. Bunun sonucu oluşan 1. nymph'ler tekrar kanaklarına saldırır, kan emer doyar ve konaklarından ayrılarak değişik yerlere saklanırlar. Buralarda yaklaşık bir ay içinde 2. nymph olur. Bunlarda konaklarından kan emer, doyar ve konaklarını terkederek gizlenirler. Argas persicus'da 6-8 hafta sonra, A. reflexus'da ise bir yıl sonra erişkin kene haline gelirler. Bu kenelerin kan emme süreleri 2 saat kadardır. Konaklarından sadece geceleri kan emerler. Ayrıca ülkemiz iklim şartlarında kışın aktivite göstermezler. İlkbaharda havalar ısınınca aç döllenmiş dişi kan emerek biyolojik gelişmeyi başlatır. Argasidae ailesindeki kene türleri kümesIerde bulunan kanatlıların üzerine gelerek bütün gelişme dönemlerinde kan emerler. Özellikle geceleri hayvanları rahatsız ederler. Kanatlılarda huzursuzluğa ve dolayısı ile verim düşüklüğüne neden olurlar. Ayrıca ağır enfestasyonlarda anemi şekillenir. Yine A. persicus türü ördeklerde kene felcine neden olabilir. Argas türleri Anaplasma marginale, Aegyptionella pullorum, Borrelia anserina'nın (Spirochaetosis etkeni ) vektörlüğünü yaparlar. Bu cinse bağlı keneler kümesIere giren insanlarada saldırabilir ve kan emerler. Genus:Ornithodorus Bu cinste bulunan kenelerin yan kenarları yuvarlağımsıdır. Lateralde vücudun dorsal ve ventral yüzünü ayıran çizgi bulunmaz. Vücut dorso-ventral olarak yassılaşmıştır. Aç iken vücudu ince ve kenarları yukarı doğru kıvrılmıştır. Kan emmiş olanlarda ise kenarları yuvarlaklaşmıştır. Elipsoidal şeklinde olup, bazı türlerinde vücudun iki yanının ortası hafif içeri doğru çekik (konkav)dir. Erişkinlerin dorsalinde değişik kıvrımlar vardır. Göz çoğu türlerde bulunur. Bu cinse bağlı türler; Omithodorus laharensis, O. Moubata, O. turicata'dır. Bunlardan yaygın olan ve Türkiye'de de görülen tür O. lahorensis'dir. Bunlar ağıllarda saklanırlar. Toprak veya balmumu renginde olup, koyun ve keçilerden kan emerler. Ayrıca diğer hayvanlardan ve insanlardan kan emebilirler. Koyun ve keçiler bütün yaz mevsimini merada geçirip kış geldiğinde ahır veya ağıllara alındığında keneler bunların üzerine gelirler. Bunun için Ornithodorus 'lara kış kenesi adı verilir. Biyolojileri: Erişkinleri ağıllarda bulundukları çatlak ve yarıklarda çiftleştikten sonra erkekler ölür, dişiler kan emmek için konaklarına tutunurlar ve kan emerler. Doyduktan sonra konaklarını terkeder ve saklanırlar. Saklandıkları yarıklarda yumurtlarlar. Mayıs-Ağustos aylarında yumurtalarını bırakırlar. Yumurtadan yaklaşık bir ay sonra larvalar çıkar. Sonbahar başlarında çıkan larvalar, bu mevsimde havaların soğumasıyla ağıla sokulan hayvanlara saldırır ve kan emerler. Doyduktan sonra konağı terketmeksizin gömlek değiştirir ve l.nymph'ler oluşur. Daha sonra sırası ile konak üzerinde 2.ve 3. nymph'ler meydana gelir. Kan emip doymuş olan 3. nymph 'ler konaklarını terkederler ve saklanma yerlerinde gömlek değiştirerek erişkinler oluşur. Larvadan 3 nymph safhasına kadar olan dönem bir ay kadar sürer. Bir dişi kene bir kopulasyondan sonra hiç çiftleşmeden 2 yıl fertil yumurta bırakabilir. Erişkinler kan emmeden 10-l2 yıl yaşayabilirler. Ornithodorus türleri de geceleri konaklarından kan emerler. Bunlar her gelişme formlarında hayvanların boyun, sırt, vücudun yan taraftan ve kuyruk sokumu bölgesimde yapağı yada tiftik arasında bulunarak bu bölgelerin derisinden kan emerler. Bunun için hayvanlara ilk bakıldığında keneler görülmezler. Keneleri görmek için yapağı aralanarak el bu kısımlarda dolaştırılır ve parmak uçları ile kenelerin varlığı anlaşılır. Çok sayıda olduklarında hayvanlarda kondüsyonun düşük olduğu kış aylarında kan emerek anemiye sebep olurlar ve ekonomik kayıplara yol açarlar. Ornithodorus lahorensis Rickettsia, Tularemi ve bazı Trypanosoma türlerini taşırlar. Ayrıca bu cinse bağlı türler Q- humması etkeni olan Coxiella bumetii'yi naklederler. Konakçı bulamadıklarında insanlara saldırarak kan emerler ve onlarda bazen toksikasyon, felç ve ölümlere yol açabilirler. Genus: Otobius Otobius megnini türü Kuzey ve Güney Amerika, Güney Afrika ve Hindistan' da bulunur ve kulak kenesi olarak adlandırılır. Larva ve nymph 'leri çoğunlukla köpeklerin kulaklarında parazitlenir. Ancak diğer evcil hayvanlar, yabani hayvanlar ve insanlarda bulunabilir. Larvaları doyduklarında hemen hemen küreseldirler. Nymphleri orta kısımlarında daha geniştir. Bu cinsin erişkinleri parazit değildir. Erişkinleri beslenmezler ancak dişileri 500-600 kadar yumurtayı yiyecek depolarının altlarına, taş ve duvar çatlaklarına bırakırlar. Bunlar konaklarından kan emerek irritasyona ve yangıya neden olurlar. Sekunder bakterilerin işe karışması ile de daha da komplike olurlar. Verim düşüklüğüne neden olurlar. Ağır enfestasyonlarda kulak içinde paket halindeki larva ve nymphlerin görülmesi ile tanı konulur. O. megnini'den ayrı olarak tavşanlarda bulunan diğer bir türde O. lagophilus' dur. Özellikleri O. megnini 'ye benzer. Kenelerin Zararlı Etkileri 1. Kan emmeleri veya kan emdikten sonra kanamanın uzun bir süre devam etmesi sonucu anemiye neden olmaları. Bu etkileri ağır enfestasyonlarda görülür. Tek bir dişi kene günde 0.5- 2 ml kan emebilir. Böylece kenelerle enfeste hayvanlarda verim düşer ve hatta ölüm olayları görülebilir 2. Kenelerin konakları üzerinde yaralayıcı etkileri vardır. Kene kan emmek için deriyi soktuğunda deriyi delerek yaralanmalara ve dermatozlara neden olurlar. Ağır enfetasyonlarda bu yaralar piyojen bakterilerle sekunder olarak enfekte olurlar ve kene piyemisi şekillenir. Ayrıca bu gibi enfekte yaralar myiasis etkenlerini ortama davet eder. Myiasis etkenleri yumurta ve larvalarını buralara bırakırlar. Böylece sekunder hastalıklara ortam hazırlarlar. Deri kalitesi bozulur ve verim kaybı oluşur. 3. Kenelerin konakları için bir etkileride paralizIere neden olmalarıdır. Ixodes ve Dermacentor gibi kene türlerinin nymph ve özellikle erişkin dişilerinin tükrük salgısında bulunan toksin kene felcine neden olur. Arka ayaklardan başlayan ve öne doğru yayılan ve hatda ölümle sonuçlanan felç olayı oluşur. Bu toksin solunum ve sinir sistemini etkilemektedir. Kene felci ( tick parlysis) insanlarda özellikle çocuklarda ve evcil hayvanlarda görülmektedir. 4. Kene toksikozuna neden olmaları Hyalomma cinsine bağlı türler tarafından oluşturulur. Erişkin kene tarafından oluşturulan toxin ruminat ve dumuzlarda mukoz membranların hiperemisi ve yaş egzama ile karekterize terleme belirtilerine yol açar. Ayrıca Argas persicus türü ördeklerde kene toksikozuna neden olabilmektedir. 5. Kenelerin en önemli etkilerinden biride çeşitli hastalık etkenlerine vektörlük yapmalandır. Keneler protozoonlar, viruslar, bakteriler, riketsiyalar, spiroketler ve helmintlere biyolojik veya mekanik taşıyıcılık yaparlar. Paraziter enfeksiyonlardan Veteriner Hekimlik yönünden önemli olan Babesia ve Theileria etkenlerini nakletmeleri yönünden büyük önemleri vardır. Keneler bu hastalık etkenlerini iki şekilde naklederler.Bunlar; Transstadial nakil: Kenenin bir gelişme döneminde kan emerken aldığı hastalık etkenini bir sonraki gelişme döneminde kan emerken konağına aktarmasıdır. Üç konaklı keneler larva safhasında aldığı etkenleri nymph evresinde kan emdiği konağa aktarır. Nymph döneminde aldığı etkenleri ise erişkin safhada kan emdikleri konağa aktarırlar (iki konaklı kenelerde de bu durum görülür.). Hyalomma türlerinin Theileria annulata'yı nakletmeleri örnek olarak verilebilir. . Transovarial nakil: Tek konaklı kenelerde etkenler kenenin yumurtalarına geçer. Yumurtadan çıkan larvalar enfekte olduğu için bu dönemde kan emerken etkenleri konağa nakleder. Boophilus türlerinin Babesia türlerini nakletmesi transovarial nakildir. Kenelerin hastalık etkenlerini nakletmelerindeki yüksek potansiyeli şu özelliklerinden ileri gelir: 1. Sabit ve yavaş olarak kan emerler. Bu sırada konağı ile birlikte taşınarak geniş bir alana dağılırlar. 2. Çevre şartlarına oldukça dayanıklı olup, kolay kolay etkilenmezler. 3. Doğal düşmanları oldukça azdır. 4. Kene türlerinin çoğunluğu geniş bir konakçı spektrumuna (euroxene)sahiptir. Bu nedenle aç kalma ve ölme sorunları daha azdır. 5. Keneler uzun süre yaşarlar ve açlığa oldukça dayanıklıdırlar. 6. Kenelerin yüksek üreme güçleri vardır. Bazı türler 18.000'ne kadar yumurta bırakabilirler. 7. Birçok kene türü hastalık etkenlerini tansovarial olarak yeni nesillerine aktarırlar. Böylece bir enfekte keneden binlerce yeni enfekte nesiloluşur. Lyme hastalığı: Bu hastalığın etkeni spiroketalardan olan Borrelia burgdorferi'dir. Köpek, at, sığır, koyun, kedi ve insanlarda bildirilmiştir. Hastalığın vektörlüğünden birinci derecede sorumlu olan tür lxodes ricinus' dur. Bu mera kenesi türü etkenle bir defa enfekte olduktan sonra bütün ömürleri boyunca bulaşık kalırlar. Transstadial (%80) ve transovarial (%20) olarak nakledilirler. Lyme enfeksiyonunda ilk klinik belirti deride oluşan Erythema Chronicum Migrans (ECM)'dır. Bu klinik bulgu hastalık için patognomonik lezyon olup, deri döküntüsü şeklindedir. Buna yerel bir lenfbezi büyümesi, ateş ve halsizlik de eşlik edebilir. Ayrıca sinir sistemi, kalp ve kas iskelet sistemi ile ilgili belirtiler görülür. Suborder: Mesostigmata Mesostigmata alt takımındaki akarlar oldukça küçük olup, 1-2 mm büyüklüğündedirler ve kenelere benzerler. Vücutları gnathosoma ve idiosomadan ibarettir. Stigmaları bir çift olup, coxae'ların lateralinde yer alır. Bu alt takımda önemli olan aile; Familya: Dermanyssidae Bu aileye bağlı bulunan cinsler; Genus: Dermanyssus Genus: Pneumonysus Genus: Ornithonyssus Genus: Ophionyssus Genus: Allodermanyssus Genus: Varroa Genus: Dermanyssus Bu cinste bulunan ve yaygın olarak görülen tür Dermanyssus gallinae' dir. Bu türün erişkinleri 0.5-1 mm büyüklüğündedir. Vücudu oval şekilde ve ön tarafında ince uzun yapıda ağız organelleri bulunur. Vücudun dorsal kısmı yaka şeklinde küçük bir kitinle örtülüdür. Erişkinlerinde ve nymphlerinde 4 çift bacak bulunur. Uzun bacaklıdırlar. İdiosoma seyrek ve kısa kıllarla örtülüdür. Bu parazit tüm kanatlılardan kan emer ve fırsat buldukça da insanlara saldırabilir. Bu akarlar beyaz, gri veya siyah renkte olmalarına rağmen kan emince kırmızı renk alırlar. Bu nedenle tavukların kırmızı akan ya da "tavuk kırmızı biti" olarak adlandırılır. Bunlar kümesIerde hayvanların üzerinde ya da meskenlerde çatlak ve aralıklarda kum yığını halinde bulunurlar. Dişileri yumurtalarını buralara bırakır. Yumurtalardan çıkan larvalar gömlek değiştirirler ve I. nymph 'ler oluşur. Bunlar konaklarından kan emerler, gömlek değiştirirler ve 2. nymph'ler meydana gelir. Bunlarda kan emer ve gömlek değiştirerek erişkinler oluşur. Biyolojileri optimal şartlar altında 7 günde tamamlanır. Erişkinler kan emmeksizin 4-5 ay canlılıklarını korurlar. Dermanyssus gallinae'nin erişkin ve nymph'leri konaklarından kan emerler. Larvaları ise beslenmezler. Dermanyssus gallinae'nin erişkinleri ve nymph'leri değişik zamanlarda ve periyodik olarak kanatlılardan kan emerler. Gündüzleri ise kümesIerde saklanırlar. Evlerin çatısındaki güvercinlerde bulunduklarından buradan insanlara geçebilirler. Ayrıca kümese giren insanlara da saldırırlar. Bu parazitler özellikle yazın aktivite gösterirler ve uygun şartlarda çok çabuk ürerler. Konaklannı irrite ederek huzursuzlandınr ve kan emerek anemiye sebep olurlar. Bu durum yumurta verimlerinin düşmesine ve et verim kaybına yol açar. Ağır enfestasyonlarda ölüm olayları görülebilir. Bu ektoparazit türü kanatlıların spirochetosis etkeni olan Borrelia anserina'ya vektörlük yapar. İnsanları sokması sonucu deride kızarıklık, lokal olarak şişlikler, lokal ya da yaygın allerjik bozukluklar ve kaşıntıya neden olurlar. Bu parazit türüne kuş akarcığı adı da verilmektedir. Genus: Ornithonyssus (=Bdellonyssus, Liponyssus) Bunlar şekil ve biyolojileri bakımından Dermanyssus 'lara benzerler. Ancak bunların Vücudunda çok daha fazla uzun tüyler bulunur. Kanatlılardan, fare ve ratlardan kan emerler. Bunlara keme akarcığı adı verilir. Kan emmemişleri kirli sarı renkli olduğu halde, kan emrniş olanlan kırmızı - boz renktedir. Erişkinleri oval ve 1 mm uzunluğundadır. İnsanlara saldırdıklarında özelikle çocuklarda şiddetli yanma ve kaşıntıya neden olurlar. Bu cinste bulunan türler; Ornithonyssus sylviarum, O. bursa ve O. bacoti'dir. Fareler arasında rickettsia etkeni olan Rickettsia acari'yi naklederler. Genus: AlIodermanyssus Önemli tür Allodermanyssus sanguineus' dur. Bunlar fare ve ratlarda bulunurlar. Özellikle evcil rat ve farelerden kan emerler. Bunun için ev fare akarı adını alırlar. Biyolojileri Dermanyssus'lara benzer. Bu tür fare ve ratlar arasında veya bunlardan insanlara riketsiyal çiçek etkeni olan Rickettsia akari'yi vektörlük yaparak bulaştırırlar. Genus: Pneumonyssus Pneumonyssus cinsine bağlı türlerden P. caninum köpeklerin burun yollarında ve nasal sinuslarda, P.simicola ise maymunların bronşlarında parazitlenir. Biyolojileri iyi bilinmemektedir. Bulaşmanın direkt temasla olabileceği kaydedilmiştir. Genus: Ophionyssus Bilinen tür Ophionyssus natricis'diro Yılanların akarıdır. Sarımsı kahverengindedirler. Ancak kan emdiklerinde koyu kırmızı renk alırlar. Biyoloji ve beslenme özellikleri Dermanyssus 'lara benzer. Ağır enfestasyonlarda anemi, zayıflama ve ölüme yol açarlar. Ayrıca yılanların bakteriyel bir patojeni olan Aeromonas hydrophila 'yı mekanik olarak naklederler. Yılanların diğer akarları olan Entonyssus ve Entophionyssus cinsleri trachae ve akciğerlerde parazitlenirler. Genus: Varroa Species: Varroa jacobsoni (Arı akarı) Ergin dişileri 1.2 mm uzunluğunda ve 1.5 mm enindedir. Vücutları dorso-ventral olarak yassıdır. Dişi varroa 'lar enine ovalimsi, erkekler ise yuvarlağımsıdır. Erkek varroa 'lar 0.8 mm uzunlukta ve 0.7 mm enindedir. Dişi akarlar açık veya koyu kahverenklidirler, erkekler ise beyaz gri veya sarımtrak renklidirler. Ergin dişilerde sırt kısmı hafif dış bükeydir. Vücut sert kitini tabaka ile örtülüdür. Dorsalden bakıldığında ağız organelleri ve bacakları iyi görülmez. Vücut gnathosoma ve idiosoma olmak üzere iki kısımdan oluşmuştur. Ağız organelleri delici ve emici tiptedir. Bir çift cheliserleri vardır. ve bu arı derisinin delinmesinde rol oynar. Bunların kenarında bir çift pedipalp bulunur. Erişkin varroalarda 6 eklemli 4 bacak bulunur. Erkek akarların ağız organelleri hemolenf emmeye elverişli değildir. Dişileri ise uygun ağız organelleri ile arı yavrularının ve erişkin arıların hemolenfini emer. Varroa jacobsoni'nin vücudunun sırt kısmında ve yanlarında diken gibi kıllar bulunur. Bu kıllar akarın arı üzerinde durmasını sağlar. Bu tür arıların genellikle baş ve thorax arasına yerleşir. Solunum çok iyi gelişmiş olan trake sistemiyle olur. Biyolojileri: Varroa jacobsoni'nin biyolojisi ilkbaharda arı larvasının yetiştirilmeye başlamasıyla başlar ve sonbaharda son genç işçi arılar çıkıncaya kadar devam eder. Kışı ergin dişi olarak geçirir. Bu akar erkek arılar üzerinde yaşar. Üreme için özellikle erkek arı gözlerini seçer. Varroa 'ların erkek arıları tercih etmelerinin bir çok nedenleri vardır. Bunlar; erkek arı larvalarının kapalı göz içinde kaldıkları sürenin daha uzun olması, kovanda erkek arı gözlerinin daha çok peteklerin alt ve yan kenarlarında bulunması, erkek arı larvalarının dişilerden daha fazla besinle beslenmesi ve hormonal etki gibi faktörlerdir. Kışı ergin arılar üzerinde geçiren döllenmiş dişi parazitler ilkbaharda gelişmekte olan 5-6 günlük larvaların bulunduğu petek gözlerine, gözler kapatılmadan 1-2 gün önce girerler. Dişi akar larvanın hemolenfini emer ve 2-9 adet yumurtasını buralara bırakır. 2-3 defa bulunduğu yere yumurtlayabilir. Yumurtalardan 24 saat sonra 3 çift bacaklı larvalar çıkar. Bunlar 2 gün sonra gömlek değiştirerek 1. nymph (protonymph) olur. Bu 4 çift bacaklı 1. nymphler larvanın hemolenfini emer ve gömlek değiştirerek 3-5 günde 2. nymph (deutonimf) ler oluşur, 2. nymph dönemi 1-2 gün sürer ve bunlar arı pupasının kan sıvısı ile beslenirler. Bunlardan da erişkin akarlar oluşur. Dişi varroa 8-10, erkek erişkin ise 6-7 günde yumurtadan oluşur. Ergin erkek ve dişi akar petek gözlerinde çiftleşir ve erkekler kapalı göz içerisinde ölürler. Bunun için arılar üzerinde erkek varroalara rastlanmaz. Çiftleşmiş genç dişi varroalar ise gözler içerisinde genç arıya tutunarak beslenmelerini sürdürürler ve arıyla birlikte gözden çıkarlar. Döllenmiş olarak gözden çıkan varroalar 5 gün sonra yumurtlamaya başlarlar. Yani bu akarlar bir süre sonra tekrar yavru gözlerine dönerek yumurtlamaya başlarlar. Erişkin dişi akarlar yazın 2-3 ay, kışın ise 5-8 ay yaşamlarını sürdürürler. Varroa'ların üreme potansiyelleri çok yüksektir. Bir nesilden diğer neslin oluşmasına kadar geçen süre yaklaşık 7 gündür. Erkek arılarda ise biyolojik gelişme 24 gün olduğundan, bir nesil arı oluşana kadar varroalarda 3 nesil meydana gelmektedir. Varroaların yaşaması ve çoğalması için mutlaka bal arısının hemolenfini emmesi gerekmektedir. Bulaşması: Bulaşma daha çok arıdan arıya olmakla beraber bunda gezginci ancılığında rolü vardır. Türkiye'ye Bulga.rİstan'dan geçtiği ve Trakya yöresinden de Ege bölgesine yayıldığı ve göçer ancılar vasıtasıyla bütün illerin bulaşık olduğu bildirilmiştir. Bulaşmada arıcılarında rolü vardır. Bulaşık arı kolonilerinden sağlıklı ailelere yavru ve genç işçi arı verilmesiyle, ailelerin kontrolsüz birleştirilrneleri ile ve işçi arıların çiçekten çiçeğe konarken akarı oralara taşımasıyla olmaktadır. Klinik belirtiler: Arı varroasis'ine neden olan Varroa jacobsoni ergin an ve larvaların hemolenfini emdiği için, yavru arı ve ergin anlara zarar verirler. Arılar güçsüz düşerler ve akarlardan kurtulmak için büyük gayret sarfederler ve bunun sonucunda da huzursuz olur ve uzun bir can çekişmesinden sonra ölürler. Ölümler kovan dışında olur. Enfeste arılar iyi uçamazlar. Sıcak havalarda enfeste arılar kovan uçuş deliğinin önünde sürünürken görülürler. Bu akarlar beslenirken yaralar açarlar ve bu yaralardan bakteriyel etkenler arılara girerek septisemiden ölüme neden olurlar. Ayrıca varroasis'de etkenler erkek arılar üzerinde daha yoğun bulunduklarından, kovanda erkek arı sayısı belirgin sayıda azalır ve cinsel güçleri düşer. Yine ana arı ve işçi arıların ömürleri kısalır ve işçi arılar normalden daha küçük olurlar. Arı larvaları rahatsız oldukları için petek gözünden dışarıya çıkarlar ve kovan dip tahtasının üzerine düşerler ve hatta bunlardan oluşacak arılarda da anomaliler oluşur. Bazen ölü larvalar dışarıya atılamazlar ve gözler koyu renkli olup, deliklerin çerçevesi beyazlaşmıştır. Arılarda yüksek kayıplar kışın ortaya çıkar. Ana arının yumurtlama yeteneğinin azalması ve işçi arıların beslenme yeteneklerinin bozulması ile ekonomik kayıplara yol açarlar. Varrosis’ de teşhis: Kovanın dip tahtası üzerine konan kağıt üzerine düşen akarları toplayıp inceleyerek, kapalı erkek yavru gözleri ince uçlu bir pensle açılarak dışarı çıkarılan larvaların üzerinde akarlar aranarak konulur. Erişkin dişi akarları çıplak gözle görebiliriz. Ancak nymphler için büyüteç yada en iyisi stero -mikroskop altında incelenmeyle teşhis edilir. Ergin arılar üzerindeki varroaları görmek için ise 200 kadar arı örneği bir fırça ile toplanır. Kavanoza konan bu örnekler üzerine sıvı deterjanlı sıcak su dökülür. Arılar tel süzgeçle sallanarak ayrılır ve dipteki tortuda parazitler aranır. Ayrıca arılar etilasetat ile öldürülür, alkolde yıkanır ve akarın an üzerinden ayrılması sağlanır. Çöküntü stero- mikroskopta incelenir. Kontrol: Varroasis'e karşı kimyasal mücadele erken ilkbahar ve geç sonbahar aylarında yapılır. Bu zamanlarda kovandaki bal miktarı az olduğu için kullanılan ilacın bala geçmesi gibi bir sorunun da önüne geçmiş olunur. ilaçlama için en uygun zaman arıların kovana döndükleri güneş batımından sonraki akşam üzeri yapılır. Bunun için gaz halinde kullanılan fumigantlar, toz şeklinde kullanılan ilaçlar, kontakt etkili ilaçlar ve şurup, kek gibi oral yolla etkili ilaçlar olarak gruplandırılan insektisit ve akarisitler kullanılır. Bunun için ülkemizde kullanılan ilaçlar; Perizin (Diethyl-thiophosphate), Folbex-VA (Bromopropylate), Varation-TKV (Malathion % 0.1), Varroacide ( Amitraz ), Vamitrat- Va ( Amitraz ) ve Apistan ( trifuoromethyl, sentetik pyretroiddir )'dır. Kontrol'de ayrıca biyolojik mücadele ve fiziksel mücadele metotlarıda kullanılmaktadır. Suborder: Prostigmata Bu alt takımdaki parazitlerin stigmaları gnathosomanın kaidesinde bulunur. Bulunan aileler; Familya: Trombiculidae Familya: Cheyletiellidae Familya: Demodicidae Familya: Myobiidae Familya: Pediculoididae Familya: Psorergatidae Familya: Tarsonemidae Familya: Trombiculidae Bu aileye bağlı Trombicula, Neotrombicula ve Leptotrombicula cinsleri bulunur. Bu cinslere bağlı türler ise T.dicoxale, T.minor, T.sarcina, T.akamushi ve N. autumnalis'dir Bunlardan yurdumuzda koyun ve sığırlarda saptanmış olan tür Trombicula dicoxale'dir. Ayrıca ülkemiz için en önemli türlerden birisi de N autumnalis' dir. Bu ailede bulunan türlerin erişgin ve nymph 'leri mera ve çayırlarda, kırsal, çalılık ve taşlık yerlerde serbest olarak yaşarlar. Bu evreleri parazit değildir. Ancak larvaları insan ve hayvanlardan lenf sıvısı emerek parazitlenirler. Erişkinleri 2 mm büyüklüğünde, gnathosoma üçgen şeklinde ve vücut cephalo-thorax abdomen şeklindedir. Vücut abdomenden sonra bir boğumlanma ile ayrıImıştır. Erişkin ve nymph 'lerinde görülen bu boğumlanma larvalarda görülmez. Erişkinleri beyaz sarımtrak renklidir ve vücutları sık kıllarla örtülüdür. Şeliserleri tırnak biçiminde ve uçları sivridir. Larvaları 0.2 -0.5 mm büyüklüğünde ve vücut toparlağımsıdır. Larvaların üzeri ince tüylerle kaplı olup, sarıdan kırmızı turuncuya kadar değişen renkte ve dorsal kısımda küçük bir kitini plaka taşırlar. Biyolojik gelişmeleri şöyledir. Trombikulid yumurtaları erişkinler tarafından toprağa veya otlar üzerine ilkbahar aylarında bırakılır. Yumurtalardan 6 bacaklı larvalar çıkar. Bu larvalar bulunduğu ortamdaki kuşlara, reptillere ve memelilere saldırırlar. Larvalar fare gibi küçük omurgalı konaklarda kulaklara yerleşebilir. Buralarda şeliser ve hipostomlarını deriye sokarak beslenirler. Bu esnada tükrüğe benzer bir madde salgılarlar. Larvalar daha sonra yere düşer ve dinlenme dönemi olan deutonimfler oluşur. Daha sonra ikinci dinlenme dönemi olan tritonimfler meydana gelir ve bunlarda erişkin akarcıklar haline geçerler. Trombicula larvaları bulundukları yerlerde başta tavşan, kemirgenler ve kuşlar olmak üzere değişik memeli hayvanlara ve insanlara sadırırlar. Bunlar özellikle ayak kısımlarında, şeliserleri ile tutunduğunda dermatitlere neden olurlar. Uyuz benzeri belirtiler ortaya çıkar. Sokulan yerde ortaları solgun, kenarları hiperemik lezyonlar oluşur, bu lezyonlar zamanla nekrozlaşır. Bazen kırmızı papüller meydana gelir ve bunlar kaşıntılıdır. Larvaların yaptığı bu lezyonlara güz uyuzu yada çalılık uyuzu adı verilir. Zamanla lokal direnç nedeniyle 4-8 gün içinde larvalar kendiliğinden deriden yere bırakılır. Bu türlerden T akamushi insanlara akarcık tifusu etkeni olan Rickettsia tsutsugamushi'yi bulaştırırlar. Bu durum özellikle uzak doğuda önemlidir. Oluşan şiddetli kaşıntıya karşı soğuk su banyoları veya kompresleri, antihistaminikli kremler uygulanır. Kaşıntıyı önlemek için %5 benzocaine, %2 metilsalisilat, %0.5 salisilik asit, %72 etanol ve % 19.5 su karışımı kullanılır. Familya: Tarsonemidae Bu ailede bulunan akarlardan Tarsonemus hominis türü insanların ürogenital organlarında bulunmuştur. Bu türden ayrı olarak özellikle hekimlik açısından önemli olan ve arıcılık sektöründe sorun oluşturan ve arılarda görülen akar türü ise Acarapis woodi' dir. Acarapis woodi'ye yaşlı arılarda yani ergin arılarda 1. göğüs stigmasının gerisinde yer alan trachea ( soluk borusu) ve bunun dallarında rastlanır. Bunun için arıların trachea akarı olarak bilinir. Hindistan ve Pakistan'da yaygındır. Erişkin akar 80 -120 mikron büyüklükte olup, trcheada rahatlıkla hareket eder ve kanat köklerine yerleşerek arı hemolenfi ile beslenir. Uzun ve delici olan ağız yapısıyla trachea duvarım delerek hemolenfı emer. Döllenmiş dişi yumurtalarını tracheaya bırakır ve sırası ile larva, nimf ve erişkin safhaları görülür. Bulaşma arıdan arıya contact temasla olmaktadır. Klinik olarak trachea çevresinden hemolenfin akması sonucu kabuklaşma görülür. Oksijen değişimi engellendiği için arılar ölürler. Büyük kayıplar arıların kovanda bulunduğu kış başlangıcında meydana gelir. Enfestasyon ilkbaharda ortaya çıkar ve enfeste arılar uçamaz ve sürünerek yürürler. Teşhis için trachea açılarak üzerine lamel kapatılır ve mikroskopta erişkin yada larva formları aranır. Ayrıca enfeste arıların tracheaları kahverengindedir. Normalde soluk borusu beyaz renklidir. Mücadelede akarları tam anlamıyla eradike edebilmek için birer hafta arayla 7 kez ilaçlama yapılmalıdır. Fumigasyon şeklinde kullanılan ilaçlar tercih edilir. İlaçlama anında kovandaki tüm delik ve çatlaklar kapatılmalı ve ilaçlama sonrası hemen açılmalıdır. ilaç uygulaması 10 gün sonra tekrarlanmalıdır. Familya: Pediculoididae (= Pyometidae) Önemli tür Pediculoides (= Pyometes) ventricosus'dur. Dişileri 220, erkekleri ise 150 mikron uzunluğundadır. Dişilerin arka uçu kesemsi koniktir. Bu türün sadece dişileri insanlarda ve hayvanlarda parazitlenir. Tahıl ambarlarında yaşayan insektIerin yada bunların gelişme dönemlerinin üzerinde bulunurlar. Bu akarlar bitki tohumlarına saldıran böceklerle beslenirler. Özelliklede bu böceklerin larvalarıyla beslendikleri için faydalıdırlar. Ancak bu ambarlara giren insan ve evcil hayvanlara da saldırarak kaşıntılı dermatitlere neden olurlar. Özellikle tahlıların bol olduğu yaz aylarında ve harman zamanında yaygındırlar. Biyolojileri farklılık gösterir. Deriye tutunan dişinin uterusundaki yumurtalardan larvalar gelişir. Her dişide 100-300 kadar larva gelişebilir. Bu larvaların sadece % 3-4'ü erkektir. Bu erkekler de ananın genita! deliğine yakın dururlar ve genç dişileri delikten çıkma esnasında döllerler. Her erkek 30 kadar dişi ile çiftleşir. Daha sonra dişiler yeni konak ararlar. Yaz aylarında tahılların bol olduğu dönemlerde 3-4 ayda bir yeni nesiller gelişir. Biyolojik gelişme için en uygun sıcaklık 26-28oC'dir. 25derecede'de yaklaşık 10 günde yeni nesiller ortaya çıkmaya başlar. Bunların yalnız dişileri insanlara saldırarak uyuz benzeri belirtilere neden olurlar. Bunun için Piyometes ventricosus'un konakların derilerine yapışarak parazitlenmesi sonucu oluşan dermatite "arpa uyuzu" ya da "Acarodermatitis urticarioides" adı verilmektedir. Tahıl uyuzu etkenleri olan bu akarcıklar başlangıçta açıkta olan kol, yüz, el ve bacakları sararlar ve zamanla tüm vücuda yayılırlar. Deride önce kabarcıklar, veziküller ve kaşıma sonucu peteşiyel kanamalar ve kızarıklıklar görülür. Buralarda kaşıntı sonucu yaralar oluşur. Bu yaralardan yapılan preparatlarda akarların görülmesiyle tanı konulur. Familya: Cheyletidae (= Cheyletiellidae ) Bu ailede bulunan akarların kutikulaları yumuşaktır ve şeliserleri uzundu. Palpleri 3-5 eklemden oluşmuş olup, uçlarında iri kanca bulunur. Memelilerde ve kuşlarda ektoparazit olarak yaşarlar. Bazı türler ise doğada serbest olarak yaşarlar. Memelilerde bulunan cins; Genus: Cheyletiella Bu cinsdeki türler köpek, kedi ve tavşanlarda parazitlenirler. Bağlı türler; Cheyletiella parasitivorax: Tavşanlar konaklandır. C. yasguri: Köpeklerde C. blakei: kedilerde C.strandtmanni: Yabani tavşanlarda C. .furmani: Tavşanlarda bulunur. Bu türlerin büyüklüğü 0.4 x 0.25 mm kadardır. Bu konakların kılları arasında yaşarlar ve çok hızlı hareket ederler. Konaklarının lenf sıvısını emerek beslenirler. Dişi parazitler yumurtalarını iplik benzeri bir salgı içerisinde kıllara yapıştırarak bırakırlar. Yumurta içinde önce prelarvalar ve bunlardan larva oluşur ve yumurtayı terkederler. Daha sonra sırası ile I. dönem nymph ve erişkinler oluşur. Cheyletiella cinsindeki bu parazitler konaklarında kılların keçeleşmesine ve karışık bir görünüm kazanmasına ve nisbetende kıl dökülmesine neden olurlar. Tüm dünyada yaygın olarak bulunan bu parazitler hayvan bakıcılarına ve sahiplerine de geçebilmektedir. İnsanlarda kaşıntı ile seyreden bir dermatite neden olmaktadırlar. Kontakt temasla insanlara geçen bu akarlar irrtasyon, eriytem, vesicül ve pustullere yol açarlar. Bu türlerin enfestasyonlarının teşhisi için şüpeli kısımlardan kıllar alınır ve mikroskobik bakıda iplik benzeri maddeyle kıllar üzerinde bulunan yumurtaların görülmesiyle konulur. Yada lezyonlu kısımların bir sıvı yağ veya gliserin ile yumuşatılmasından sonra kazıntı alınır ve mikroskobik olarak incelenerek tanı konulur. Bunlardan başka en iyi tanı metodlarından birisi de, Cheyletiella türleri hareketli olduklanndan kıllar aralanır ve selefobant yapıştırılır. Daha sonra bu bant kaldırılarak bir lam üzerine yapıştırılır ve akarlar incelenir. Familya: Psorergatidae Genus: Psorergates Bu cinse bağlı bulunan ve koyunların derisinde parazitlenen tür Psorergates ovis' dir. Avustralya, Yeni Zellanda ve Güney Afrika'da yaygın bir türdür. Akarlar oldukca küçük ve küreselolup, 0.2 mm' den daha küçüktürler. P. ovis özellikle yapağısı bol merinos koyunlarında parazitlenirler. Koyunlarda kaşıntıya neden olurlar. Yünler matlaşır ve hayvanlar kaşıntıdan dolayı kendilerini yani yapağılarını ısırırlar ve yapağının yolunarak dükülmesine yol açarlar. Teşhisi uyuzun tanısında yapılan işlemler gibi yapılarak konulur. Familya: Myobiidae Bu aileye bağlı olarak Myobia musculi türü bulunur. Farelerde ve ratlarda parazitlenir. Laboratuvar hayvanlarında hafif bir dermatitise neden olur. Farelerde kıl kaybına yol açarlar ve bulaşma temasla olur. Büyüklükleri 350-500 mikron kadardır. Biyolojilerini 12-13 günde tamamlarlar. Konaklarında uyuz benzeri lezyonlar oluştururlar. Myobiidae ailesine bağlı diyer bir cins Syringophilus'dur. Kanatlılarda bulunur. Bu cinse bağlı Syringophilus columbae güvercilerin, S. uncinata türü ise tavus kuşlarının tüylerinin dip kısmında yerleşirler. Familya: Demodicidae Bu ailede bulunan ve tüm evcil hayvanlarda ve insanlarda rastlanan cins Demodex' dir. Demodex cinsindeki türlerin insan ve hayvanlarda meydana getirdiyi hastalığa "Demodicosis" adı verilir. Demodex'ler diğer uyuz etkenlerinden farklı yapıda bir vücut morfolojisine sahiptirler. Demedex türlerinde vücut caput, thorax ve abdomen olarak ayrılmıştır. Vücudun arka ucu geriye doğru kuyruk gibi uzamış ve kurtçuk şeklindedir. Abdomenin üzeri enine çizgilidir. Erişkinleri 0.1-0.4 mm uzunluğundadır. Şeliserleri kısa, kalın ve makas gibidir. Hipostom delik biçimindedir. Palpleri iki segmentlidir. Bacaklar 4 çift olup, thoraxdan çıkarlar ve çok kısa, kalın ve üç boğumludur. Ayrıca tarsuslarının uç kısımlarında birer çift kalın ve sivri tırnak bulunur. Çiftleşme organı 4. çift bacak koksaları arasında bulunur. Larvaları 3 çift bacaklıdır. Demodex cinsine bağlı bulunan türlerden insan ve domuzlarda bulunanlar hariç konak isimlerine göre adlandırılırlar. Bu türler ve konakları Demodex folliculorum: İnsan D. phylloides : Domuz D. ovis: Koyun D. canis: Köpek D. equi: Tektırnaklılar D. cati : Kedi D. caprae: Keçi D. bovis: Sığır D. cuniculi : Tavşan Bu türler konaklarının kıl folliküllerine ve yağ bezlerine yerleşerek folliküler uyuza neden olurlar. Biyolojik gelişmelerinde sırası ile yumurta -larva -1. nymph (protonymph) -2. nymph ı-- (deutonmyph) ve erişkin dönemleri bulunur. Gelişmelerini 9-14 günde tamamlarlar.

http://www.biyologlar.com/aracnida-aracbnoidea-sinifi

İlginç Yaşamlar.... Deniz Canlıları

Suların vazgeçilmez canlıları. Kimi zaman soframızı, kimi zaman da evimizdeki akvaryumu dolduran balıklar. Torpido ya da iğ şeklindeki vücutları var. Bu vücut yapısı sayesinde su içerisinde daha az enerji harcayarak hareket edebiliyorlar. Bazen renk renk, göz alıcı güzelliğe sahip balıklarla karşılaşırız. Vahşi yaşamda bu balıklar, 0-200 m derinliklerde yaşar ve littoral balık olarak isimlendirilir. Littoral balıklar, bulunduğu bölgedeki taş, kum, resif ya da kayaların rengine sahipler. Yani kamuflaj yetenekleri var. Balıklar için bu özellik, düşmanlarından saklanmak için bir avantaj. Bu avantajı onlara verip, renk değiştirerek saklanmalarını sağlayan renk hücreleriyse dört çeşit. Kromotofor adı verilen bu hücreler, melanofor (siyah), ksantofor (sarı), eritrofor (kırmızı) ve gümüşi renkte olan iridositler. İridositler dışındaki diğer kromotoforlar, merkezi bir kısım ve uzantılarından oluşan karmaşık bir hücresel yapıya sahip. Işık, hormon ve sinirlerin etkisiyle kromotofor içerisindeki pigment granü’lleri, bu hücrenin merkezinde toplanırsa balığın rengi açık, tüm hücreye yayılırsa renk koyu oluyor. Bu özellik ani renk değişimi olarak biliniyor. Bazen de karanlık bir ortamda yaşayan ya da uzun süre böyle bir ortamda kalmış olan bir balık, yavaş yavaş kromotofor sayısını arttırarak, vücut rengini bulunduğu ortama göre ayarlayabiliyor. Bu renk değiştirme biçimi uzun süreli olup, kalıcı. İridositler dediğimiz gümüşi renkteki kromotoforlarınsa içinde özel bir renk maddesi bulunmuyor. Bunun yerine ışığı kuvvetlice kıran, guanin kristalleri içe-riyorlar. Bu kristallerin hücre içindeki yerine göre, ışığı az ya da çok miktarda yansıtmasıyla da bir gökkuşağı rengi meydana geliyor. Açık denizlerde yaşayan balıklardaysa renk karakteristik. Sırt, mavi yeşil parıltılı olup, balığın yanlarından karnına doğru gümüşi, karın tarafı da beyaz. Sofralarımızı dolduran hamsi, sardalye, uskumruda olduğu gibi… Dip balıklarından vatoz (Rajiformes), dil ve pisi (Pleuronectiformes) balıklarına bakacak olursak, sırt taraflarının koyu renkli ve karışık desenli, karın taraflarının da soluk renkli olduğunu görürüz. Karanlık çevreye uyum sağlamak için bu gibi dip balıklarında menekşe ya da siyah renk hakim. Ayrıca diplerde ve bulanık sularda yaşayan balıklarda gözler küçük. Besin aranmasında, düşmanın algılanmasında vs. gözler yerine bıyıklar ya da koklama organı gibi başka organlar görev alıyor. Bıyıklar üzerindeki reseptörler kimi zaman tat almada, kimi zaman da besin aranmasında rol oynuyor. Balıklardaki koklama organı kara hayvanlarında olduğu gibi solunum işine yaramıyor ve yutakla bağlantısı yok. Balığın gözü ile ağzı arasında bulunan burun delikleri, her iki yanında bir çift delikten oluşup burun boşluğu içinde koklama kapsülü bulunuyor. Yüzme sırasında su, ön delikten giriyor ve koklama kapsülünden geçtikten sonra arka delikten çıkıyor. Özellikle de sürü halinde gezen balıklarda bu organ, balığın kendi sürüsünden birinin ya da düşmanın kokusunu ayırt etmede kullanılıyor. Bazı balıklarda bir bireyin yaralanmış derisinden salgılanan koku maddesi, sürünün diğer üyeleri tarafından algılanarak, ortamda düşmanın var olduğunu anlamalarını sağlıyor. Balıkların birbirleriyle haberleşmesini sağlayan diğer bir yöntem de çıkardıkları sesler. Balıklarda gırtlak olmadığı için, memeli ve kuşlarda olduğu gibi ses çıkarmıyorlar. Bunun yerine sazangiller (Cyprinidae) ailesinde olduğu gibi yüzme kesesinden hava çıkarken oluşan ya da kırlangıç balığıgiller (Triglidae)ailesindeki balıklarda görülen ‘gurlama’ şeklindeki ses gibi karakteristik sesler çıkarıyorlar. Birçok balığın kendine özgü sesi var: Trachurus, Mola ve bazı Balistes türleri üst ve alt yutak dişlerini birbirine sürterek kaba bir ses çıkarıyorlar. Bazı balıklarsa süpersonik sesler çıkarıyorlar. Genellikle, süpersonik sesler çıkaran canlılar olarak yunuslar gelir aklımıza. Fakat yunuslar, denizlerde yaşayan memeli hayvanlar. Bu sevimli canlılar 2000 Hz’den az ve 100 000 Hz’den fazla olan ‘klik’ şeklindeki sesleriyle büyüklük, boyut, boşluk tayini ve aynı zamanda da doku ve objelerin yön ve yoğunluğunu algılıyorlar. Bizim duyamadığımız bu sesler, yunusun kafasının içindeki ‘melon’ adı verilen bölgeden kaynaklanıyor. Yunuslar su içerisinde hareket ederken, genellikle kafalarını yavaş biçimde bir yandan diğer bir yana döndürerek ve yukarı aşağı hareketler yaparak, çevreyi tarıyorlar. Bu tarama sırasında, çevrelerindeki nesnelerin şeklini, gönderdikleri seslerin frekansını değiştirerek ortaya çıkarırlar. Sesin geri dönüş süresi objenin yunusa olan uzaklığını belirliyor. Yunusun kafasının yan kısımları ve alt çenesi oldukça yağlı. Geri dönen ses yansımaları, bu bölge ile algılanır. Şişe burunlu yunus (Tursiops truncatus), tırtak yunus (Delphinus delphis), çizgili yunus (Stenella coeruleoalba) ve Karadeniz’de yaşayan, ama günümüzde sayıları oldukça azalmış olan mutur (Phocena phocena), yurdumuzun denizlerinde yaşayan yunus türleri. Kontrolsüz biçimde avlanma, ağlara takılmaları, besin azlığı nedeniyle sayıları oldukça azalmış bu sevimli hayvanlar hakkında ne yazık ki ülkemizde yeterli bilimsel araştırma yok. Azalan sayılarıyla halen yaşam mücadelesi veren, suların vazgeçilmez canlılarından bir diğeriyse, Mersin morinası (Huso huso). Acipenceridae ailesinden biri olan bu değerli balık, mersin balıkları içinde en büyüğü ve yurdumuzda Karadeniz’de 100-130 m derinliklerde yaşıyor. Karides, yengeç, çeşitli kabuklular ve kabuklularla beslenen bu muhteşem hayvanın boyunun 4 m ve ağırlığının 1300 kg’a ulaştığı ne yazık ki efsanelerde kaldı. Günümüzde Mersin morinasının boyu 2 m’yi bile bulmuyor. Havyarı ve lezzetli eti yüzünden aşırı avlanıyor. Yumurtlamak için tatlı sulara girmek istediğinde önüne kurulan setler yüzünden nehre giremeyen bu değerli üyemizi, gün geçtikçe kaybediyoruz. Normal olarak denizlerde yaşayıp da yumurtlamak için tatlı sulara göç eden balıklara anadrom balıklar deniyor. Mersin morinası gibi alabalıklar da (Salmonidae ailesi) anadrom balıklar grubuna giriyor. Salmonidae ailesini diğer balıklardan ayıran en önemli özellikleri sırtlarında bulunan yağ (adipoz) yüzgeci. Etleri çok lezzetli olan bu balıklar, küçük omurgasız ve balıklarla besleniyor. Ülkemizde temiz dağ sularında ve Karadeniz’de yaşıyorlar. Salmonidae ailesinin en ilginç yaşam öyküsüne sahip olan üyesi, Pasifik som balığı (Oncorhynchus sp.). 2 Aralık 1964′de, Prairie Creek balık çiftliğinde yaşanan bir olayla araştırılmaya başlandı. Yavru balıkların bulunduğu havuzda, büyük bir som balığı görüldü. Balık, iki yıl önce okyanusa bu çiftlikten bırakılmıştı. Çünkü, bu balık çiftliğinin metal klipsini taşıyordu. Balık çiftliğinin tahliye kanallarına bakıldığında 70 kadar daha som balığının havuza girmek için beklediği görüldü. Yapılan uzun süreli araştırmalar sonucu ülkemizde yaşamayan bu göçmen balığın yaşam yolculuğu belirlendi. Bir som balığının yaşamı, ekim-ocak aylarında annelerinin sığ bir akarsuda, çakıl ve kumlar arasına yaptığı yuvaya, yumurtalarını bırakmasıyla başlıyor. Suyun sıcaklığına göre gelişimini tamamlayan yumurtalar 3-5 ay sonra açılıyor. Yavrular iki ay kadar çakıllar arasında besin keseleriyle besleniyor, daha sonra aktif olarak beslenmeye başlıyor. Parlak pembe renkli ve üzeri koyu lekeli, gene som balığı yavrusuna ‘parr’ deniyor. Parr’lar gelişerek ertesi ilk baharda 25-35 gr ağırlığa ulaşıyorlar. Bu büyüklükteki bir som balığında, tuzlu suya geçiş için fizyolojik değişimler meydana geliyor ve balığın davranışları değişiyor. Renk değiştirerek gümüşi bir renk alıyorlar. Göç etmeye hazır duruma gelmiş som balığı yavrularına ise ’smolt’ adı veriliyor. 1-5 yıl boyunca okyanusta, çok uzun mesafelere göç ediyorlar. Kanada ve Alaska’da bulunan bu balıklar, Amerika, Alaska ve Japonya kıyılarında dolaştıktan sonra üremek için yumurtadan çıktıkları akarsuya geri dönüyorlar. Ne bir şelale, ne de kuvvetli bir akıntı yıldırabilir onları. Çok uzun mesafelerde gerçekleştirdikleri bu üreme göçü sırasında hiçbir şey yemiyorlar. Doğduğu akarsulara geldiğinde sığ kesimlere yumurtalarını bırakıyor ve kısa bir süre sonra da ölüyorlar. Bu şaşırtıcı yolculuğun nasıl yapıldığına ait araştırmalar, som balığının, dünyanın manyetik alanını algılayan doğal bir pusulasının bulunduğunu söylüyor. Kendi akarsularını nasıl bulduklarına gelince; dünyadaki bütün akarsuların kendine özgü bir kimyasal bileşimi var. Som balıkları da hassas koku alma sistemleriyle, yumurtadan çıktıkları akarsuların kokusunu algılayarak yolculuklarını tamamlarlar. Balıklarda göç, yalnızca denizlerden nehirlere olmaz. Normalde tatlı sularda yaşadığı halde, yumurtlamak üzere denizlere göç eden balıklar da var. Bunlar katadrom balıklar olarak biliniyor. Yılan balıkları (Anguilla anguilla) bu gruba giriyor. Ülkemizin denizlere dökülen akarsularında ve özellikle de Akdeniz bölgesinde yaşıyorlar. Okyanuslarda dünyaya gelen yılan balığı larvasına ‘Lepto-sephalus’ adı veriliyor. Leptosephalus, şeffaf ve yassı vücutlu olup, ilk günlerde iğne gibi sivri dişleriyle planktonlarla besleniyor ve hızlı bir şekilde büyüyor. Bu sırada yavaş yavaş deniz yüzeyine doğru yaklaşıyorlar. Larvaların başkalaşımı üç yılda tamamlanıyor. Eşeysel olgunluğa 6-7 yıldan sonra erişiyorlar. Erkekleri nehir ağzında kalıyor, dişilerse nehirlere doğru göç etmeye başlıyor. Tatlı suda kaldıkları sürece sırt yeşilimsi- kahve karın ve yan tarafları sarı. Bu nedenle ’sarı yılan balığı’ olarak adlandırılırlar. Tatlı sularda 15-18 yıla kadar devamlı olarak kalabilirler. Kışın soğuğundan rahatsız olan bu balıklar; göl ve nehirlerde, suyun derin kısımlarında ve çamurlar arasında kış uykusuna yatarlar. Sonbahar sonlarına doğru çok kuvvetli bir iç güdüyle tatlı sulardan denizlere göç ederler. Bu sırada renk değiştirirler. Sırt siyah, yan tarafları gümüş parlaklığındadır. Bunlara ‘gümüş yılan balığı’ da deniyor. Gümüş yılan balıklarının etleri oldukça yağlı. Baş, genç yaştakilere göre daha kısa, çeneler küçük ve dudakları ince. Denizle bağlantısı kesilmiş sularda yaşayan yılan balıklarının bile denize ulaşmak için ıslak çayırlar üzerinden geçtikleri biliniyor. Erkek ve yumurtalarını bırakan dişi yılan balıkları yumurtalarını bıraktığı yerde ölüyor. Yılan balıkları içinde bir tür var ki, bu kuvvetli göç etme içgüdüsünün yanında elektrik üretmesiyle de kendini özel kılmış. Elektrophorus electricus (elektrikli yılan balığı) 250 cm’lik boyu, 15-20 kg ağırlığıyla Güney Amerika’nın nehir ve bataklıklarında yaşıyor. Kuyruğunun her iki yanında bulunan 6000-8000 bölmeli elektrik organı, 550 volt ve 2 amper şiddetinde elektrik üretiyor. Çizgili kasların değişikliğe uğramasıyla oluşan elektrik organı, etrafı ara doku ile çevrili, disk şeklindeki elektroplakların arka arkaya dizilmesiyle oluşuyor. Bu plakların bir yüzünde sinirler, bir yüzünde kan damarları yerleşmiş. Plaklar, aynı yüzleri, aynı yöne gelecek şekilde dizilmiş. Elektrik akımının şiddeti, elektrik plaklarının sayısına ve balığın büyüklüğüne bağlı olarak değişiyor. Elektrikli yılan balığı, iki metrelik bir uzaklıktan 1 kilovvatt kuvvetinde bir etki gösterecek kadar tehlikeli. Elektrik organını genellikle korunma amacıyla kullanıyor. Elektrik akımına giren büyük memelileri ve hatta insanları bile rahatlıkla çarpıp, bayıltıyor ve şiddetli ağrılara neden oluyor.

http://www.biyologlar.com/ilginc-yasamlar-deniz-canlilari

Leishmania'nın yaşam döngüsü

Diğer bir parazit türü olan Leishmania köpekler aracılığı ile bulaşabilir. Bu grubun alt türü olan Leishmania donovani kalaazar (visseral leishmaniazis) hastalığının etkenidir. Diğer bir alt türü olana Leishmania tropica ise şark çıbanı etkenidir. Bu parazitler için köpekler rezervuar görevi yapar. Flebotomlar (kene ve pire) ise vektör yani taşıyıcılardır. Leishmania donovani insan vücuduna girişinden 2 yada 8 ay sonra etkisini gösterebilir. Dalağın büyümesine neden olur. Leishmania tropica flebotomların ısırdığı yerden deri üzerine lokalize olarak kalır. Cilt hastalığı şeklinde belirti verir. Derinin retiküloendotelial hücrelerinde ve lenfoit dokularında yerleşerek hastalık nedeni oluşturur. Parazitlerin ikinci grubu olan çok hücreliler yassı solucanları içine alır. Kaynak:bilkent.edu.tr

http://www.biyologlar.com/leishmanianin-yasam-dongusu

Hayvanlarda haberleşme

Hayvanlar, aralarında haberleşmek için çeşitli usuller kullanırlar. Bu bazan sesle, bazan hareketle, bazan da koku, renk veya ışık sinyalleriyle gerçekleşir. Hayvanların bir kısmı bir çeşit mors alfabesi ile konuşur. Birçok balık türü de yaydıkları elektrik sinyalleriyle haberleşirler. Pekçok sayıda tatlı su balığı zayıf elektrik sinyalleri yayar. Bunlarla karanlıkta yollarını bulur ve birbirleriyle haberleşirler. Yaşayan hayvan çeşidi kadar lisan çeşidi mevcuttur. Her hayvan türü, kendine has bir dil ile anlaşılır. Sinyali alan hayvan, bunun hangi anlama geldiğini anlayarak harekete geçer. Haberleşmenin aynı cins hayvanlar arasında olması, kısa ve öz olması önemlidir. Haberleşmede sinyaller; cinsel çağrı, korunma, rakibini tehdit etme, birbirini tanıma, besinin yerini bildirme, tehlikeyi haber verme gibi maksatlarla kullanılır. Böceklerin çoğu, vücudun eğe şeklindeki bir kısmını cisme vurarak, kas yardımı ile bir zarı titreterek ses çıkarırlar. Ateş böceği gibi hayvanlar da ışık sinyalleriyle haberleşirler. Son zamanlara kadar balıklar dilsiz sanılırdı. Fakat yapılan araştırmalar birçok balığın yüzgeçleri, dişleri, kemikleri, yüzme keseleri, solungaç veya kaslarıyla ilginç sesler çıkardığını gösterdi. Amazon Nehrinin sularında kuşlar gibi cıvıldayan, trampet çalan, tabanca ateşi veya köpek hırlamaları gibi sesler çıkaran balıklar vardır. İşitme organları “labiren” denen bir kapsül içinde bulunan iç kulaktan ibarettir. Bununla sudaki ses titreşimlerini işitirler. Kuzusunu kaybeden koyun, meleyerek yavrusunu arar. Geyikler bir tehlikenin varlığını ayaklarını hızla yere vurarak arkadaşlarına duyururlar. Tavşanlar da, kızgınlık veya alarm işareti vermek için arka ayaklarını sertçe yere vururlar. Yunuslar, su altında çeşitli sinyaller çıkararak haberleşirler. Kuşların çoğu öterek, leylek gagasını takırdatarak hemcinsleriyle anlaşır. Miyavlamak, kişnemek, havlamak, böğürmek çeşitli hayvanların lisanıdır. Kunduzlar, geniş ve yassı kuyruklarını tehlike durumunda suya çarparak çıkardığı seslerle arkadaşlarını uyarırlar. Bir geyik, kuyruğunu aniden kaldırıp beyaz kısmını göstererek yavrusuna “Beni takip et!” demek ister. Tropik bölgelerde yaşayan “ağaç karıncaları”, ağaç kabuklarına ve yapraklara vurmak suretiyle ağaçtan ağaca birbirleriyle konuşurlar. Ağaç galerilerde yaşayan böcekler başlarını sert zemine vurarak haberleşirler. Eski mobilya ve ahşap eşyalarda bazan koro halinde başlarını vurmaya başlarlar. Gecenin sessizliğinde hastaları ürkütürler.

http://www.biyologlar.com/hayvanlarda-haberlesme

HAYVANLARI TOPLAMA VE SAKLAMA TEKNİKLERİ

Her hayvan grubu için farklı yöntemler kullanılarak hayvanlar doğal ortamlarından toplanırlar. Salyangozları, midyeleri, zar kanatlılar dışında kalan diğer bütün böcekleri, keneleri, kırkayakları, kurbağaları, tespih böceklerini, toprak solucanlarını, deniz şakayıklarını el ile tutabiliriz. Çıyan, örümcek, kelebek tırtılları ters yüzen   sokucu ve zehirli hayvanları pens ile tutabiliriz.Su böcekleri, kurbağa ve kurbağa yavruları ile çekirge gibi hayvanları fileli kepçe ile, gündüz kelebeklerini, kelebek ağı ile yakalayabiliriz. Elle tutulamayacak kadar ufak olan, suda yaşayan plankton hayvanlarını plankton ağı ile ;suyu biraz derince olan tatlı su veya göllerdeki balıkları serpme veya olta ile, suyu çok azalmış dere, su arkı, çeşme ve ufak pınar ayaklarındaki çeşitli su hayvanlarını  (balık, su böcekleri, böcek larvaları, gammarus vs. gibi) su yolunu keserek yakalayabiliriz. Sığır, at, eşek, köpek, kedi gibi hayvanların vücutlarındaki dış parazitleri sık dişli tarakla taramak suretiyle; yürüyen böcekleri, böcek düşürme kapanları ile: gece uçan böcekleri, ışıklı böcek düşürme kapanları ile yakalayabiliriz. HAYVANLARIN SAKLANMASIAynı şekilde toplanan  her hayvan grubu farklı şekillerde saklanırlar.Tek hücreliler için en uygun saklama ortamı % 4 lük formoldür. Kabuklu ve iskeletli olanları alkolde saklanabilir. Coelenterata, sünger, polip, deniz şakayığı ve deniz anaları bu gruptandır. Bunlarda % 4 lük formolde saklanır. Solucanlar: Yassı solucanlar büzülmelerini önlemek için önce % 1-1,5 lük formolde yada az ısıtılmış % 5-10 luk alkolde öldürülüp sonra % 4 lük formole konulur. Yuvarlak solucanlarda Sıcak alkolde öldürüldükten sonra % 4 lük formole konur. Halkalı solucanlar ise önce su içerisinde öldürülür sonra % 4 lük formole konulur. Yumuşakçalar: Salyangozların büzülmelerini önlemek için önce suyu bir kapta 10-15 dk. kaynatınız, soğudunuz. Silme olarak bir kaba doldurunuz. Kabuklu ve kabuksuz hayvanları içine atınız. Üzerini camla hava kalmayacak şekilde kapatınız. 24 saat içinde hayvanlar ölür (Ayak ve tutkaçları uzamış şekilde).  Hayvanların üzerine bol sofra tuzu serpilir ve 1 dk sonra tazyikli suyla yıkanır. Bu olay 3 defa tekrar edilir. Böylece sümüksü sıvılar  temizlenmiş olur. Sonra % 4’lük formole koyulur.Eklem bacaklılar:  Formol ve alkolde saklanacak eklem bacaklıları önce 24 saat kadar 3 kısım % 70 lik alkol ve 1 kısım gliserin karışımında bekletiriz. Sonra % 5 gliserinli  % 70 lik alkole alınır.  Yada % 4 lük formole alınır. Balıklar, Kurbağalar ve Yılanlar:  Bu gruptaki hayvanlar uygun şekilde öldürülürler. (Sıcak su içene bırakmak, sulandırılmış eter içine koymak, anüsten vücut içine eter enjekte etmek, kapalı kap içinde eterle öldürmek yada sulandırılmış sodyum pental enjekte ederek öldürmek). Öldürülen hayvanların gövde ve bacaklarına uygun bir şekil verilir. Üzerlerini örtecek kadar formol- alkol konur. Bu şekilde 1-4 gün beklenir. Sonra çeşme suyunda yıkanan hayvanlar % 70 lik alkol içerisine alınır.  Yarasalar: Yarasalar hem kuru (post halinde) hem de sulu ortamlarda koleksiyon edilebilirler Yarasalar sadece % 70 lik alkolde saklanırlar Memelilerin ve kuşların tamamı post çıkarma yöntemi ile koleksiyona uygun hale getirilirler (25).

http://www.biyologlar.com/hayvanlari-toplama-ve-saklama-teknikleri

Histolojide Kullanılan Yöntemler

1-Preparasyon Yöntemleri Taze hücre ve dokular: Kan ve lenf gibi sıvısal örnek hücreleri, derialtı bağ dokusu hücreler direkt olarak incelenebilir. Doku kalın veya katı bir organ halindeyse tuz çözeltisi içinde diderek veya ayırarak hücrelerin birbirinden ayrılması sağlanır. Taze preparatlarda hücreler gerçek morfolojilerini yitirmeden incelenir. Ancak kontrast azlığından dolayı vital boyama uygulanmalı ya da faz-kontrast mikroskop kullanarak incelenmelidir.Canlı ve taze materyelin çalışılması için lam ve lameller temiz olmalı. Canlı numuneler için kullanılan pipetler, cam eşyalar ve aletler kimyasal maddeler için kullanılanlar ile asla karıştırılmamalıdır. Herbir kültürden alınacak küçük organizmalar için ayrı bir pipet kullanılır. Her kimyasal madde için de ayrı pipet kullanılmalıdır. Saf kültür için çalışmaya başlanmadan önce cam eşyayı ve ortamı sterilize etmek gereklidir. Canlı ve taze materyel için bright-Field illumination- ışıklandırma dikkatli kontrol edilmeli, çünkü canlı hücrenin birçok yapısı refraktif indeks veya renkte çok az fark ile ayırt edilir. Küçük ve şeffaf organizmalar, serbest yaşayan protozoalar, küçük sölenteratlar, rotiferler, ectoproct lar, yassı kurtlar, nematod lar snnelidler, krustaseler ve omurgasızların ve aşağı omurgalıların larvaları, embriyoları ve yumurtaları bir iki damla su içinde incelenebilir. Tatlı su ve toprakta yaşayanlar tatlı suda ve deniz suyu veya tuzlu ve acı suda yaşıyanlar uygun tuzluluktaki suda incelenirler. Ancak su metaller, chlorine veya diğer zehirler ile kirlenmemiş olmamalıdır.Tatlı su organizmaları için havuz veya kültür kabından alınan su yeterlidir. Deniz suyu yalnız cam, porselen, toksik tipte olmayan bazı plastik ile temasta olmalı, metal borular birçok organizma için toksiktir. Vital boyama ile hücrelerin sitoplazmasına renk ve kontrast kazandırılır. Vital boyama 2 şekilde uygulanır. Canlı hücreler boya solusyonunda ayrılarak (supra-vital boyama ) veya canlı organizmaya boyanın injeksiyonu ile (intra-vital) boyanabilirler. Canlı hücre kısımları gösterildiğinden bu yöntemler idealdir. Vital boyama ile sitoplazmik yapılar gösterilir. Çekirdek zarı vital boyalara dirençlidir. Çekirdek zarının boyalara geçirgenleşmesi hücre ölümünün ifadesidir. 2-Sitolojik YöntemlerHücre içeren sıvılar, aspire kemik iliği gibi ince doku parçaları lam üzerine alınır ve hücrelerin görünüşlerini koruyabilmeleri için tespit edilir. Organlar ve dokular da lama sürülerek ve smearler hücre yapısını göstermek için boyanırlar. Boyanmış smearlerin incelenmesi eksfolyatif sitolojide standart bir yöntemdir. Atipik hücrelerin bulunuşu malignite hakkında fikir verir. Diagnostik sitolojideki gelişmeler Beale (1860) ‘nin karsinoma hücreleri için vücut sıvılarını incelemesi ile başlamış ve Papanicolaou (1943) yöntemi ile ilerlemeler kaydetmiştir.Dalak ve kemik iliği gibi organlarının kesi yüzeyine veya organın bir parçasına lam değdirilerek uygulanan impression yöntemi ile dokunun küçük bir artitektürel düzeni hakkında fikir edinilebilir. Yumuşak tümörlerde malignite bu teknikle hızla çalışılabilir. Smearlerde hücreler yassıldıkları, dokulardan hazırlanan kesitlerdeki hücrelerden daha geniş olduklarından ve dokunun artitektürünü koruduklarından hücresel ayrıntılar daha kolaylıkla izlenir. Kesitsel tekniklere ek olarak smearler kullanılabilir. 3-Kesitsel YöntemlerDoku parçalarından alınan örnekler yaklaşık olarak 1 hücre kalınlığında dilimlere ayrılırlar. Hücresel yapıyı görmek için bu kesitler değişik tekniklerle boyanırlar. Kesitlerin yorumu, kesitler dikey ya da yatay konumda alınmamışsa tecrübe gerektirir.Histolojide doğru sonuç veren birçok kesitsel yöntem vardır. Seri kesitlerin alınması ile küçük bir dokunun rekontriksüyonu yapılabilir. Tüm örneklerden numaralandırılarak kesitler alınır, boyanır ve incelenir. Doku büyük ise belirli aralıklarla alınan kesitler örneğin tüm yapısını kapsamlı olarak açıklayabilir. Bu yöntem basamaklı kesit alma (step-sectioning) olarak bilinir. Taze veya tespit edilmiş dokulardan jilet ile mikrotomsuz kesit alınabilir. Sadece yüzey boyanacağından histolojik yapı iyi gözlenemez. Bu yöntem hala dokuları tanımanın hızlı ve kolay yoludur. Mikrotom kullanarak uygulanan kesitsel yöntemlerin çoğunda doku uygun bir kıvama getirilir, parafin, selloidin veya sentetik resinlere gömülür ya da dondurma (freezing) yapılabilir. Frozen kesitler taze dokulardan alındığı için tespite gerek duyulmaz. Diğerleri için tespit gereklidir.Histolojik kesitler genellikle 4-7 mm kalınlığında alınır. Yağ damlacıkları, sinir fibrilleri ve kan damarları gibi geniş yapılar için 10-25 mm daha uygundur. Sentetik rezinlere gömülen dokulardan 1 mm’luk kesitler alınabilir. Doğal olarak hücresel ayrıntı daha iyi olacaktır. Elektronmikrospobik gözlemler için ultratom ile 50-100 nm’ lik kesitler alınır. Genellikle gösterim ve eğitim için çıplak gözle incelemek üzere 300-400 mm’ luk kesitler alınabilir. Bu amaçla jelatine gömülmüş organlardan geniş bir mikrotom ile kesitler alınarak incelenir.Dokuların çoğu yumuşaktır. Dişler, kemik gibi bazı dokular ise çok serttir. Bu nedenle kesitten önce dekalsifikasyona gereksinim vardır. Matriksin kalsifikasyonun normal olup olmadığı ise dekalsifiye edilmemiş örneklerde araştırılır. Bu amaçla dens gömme ortamları ve ağır mikrotomların kullanılması gereklidir. Mikroskobik inceleme için dokuların renge ve kontrasta gereksinimi olduğundan kesitlerin boyanması yapılır. Preperatların uygun bir kırma indisi olmalıdır. Boyama; renkli olan veya floresansı artıran boyalarla, renkli son ürünler oluşturan kimyasal reaksiyonlarla veya metalik çöktürme ile doku bileşenleri opaklaştırılarak yapılabilmektedir. Geleneksel boyama yöntemlerine ek olarak boyama-olmayan teknikler de kullanılabilir. Histolojide floresans immünolojik yöntemler, otoradyografi, mikroinkrinasyon ve mikroradyografik yöntemler de kullanılmaktadır. Floresans immüno-histolojik yöntemler: Florokromla işaretlenmiş antikorların kullanımına dayanmaktadır. Çok spesifik bir yöntemdir. İmmün kompleksleri ve dokulardaki yapıları göstermek için kullanılır. Floresans mikroskopta incelenen preparatlar az miktardaki florokromu gösterme yeteneğindedir. Otoradyografi: İşaretlenmiş bir radyoaktif element dokuya verilimini takiben dokudaki hücrelerle birleşebilir. Otoradyografi bir fotografik emülsiyondaki gümüş tuzlarını indirgeme yetenekleri ile radyoaktif izotop alanlarını gösterecektir. Fotografik emülsiyon özel plaklardan çıkarılır ve kesitlere uygulanır. Çalışanlar, radyoaktivitenin zararları konusunda uyarılmalıdır. Biyolojik kullanımdaki radyoaktif izotopların yarı-ömrü birkaç saatten yıllara kadar değişebilir. Mikroinkrenasyon (yakıp kül etme ): Lam üzerine alınan kesitler elektrikli fırında ısı yavaş yavaş artırılarak ısıtılır. Organik maddelerin tümü uzaklaştığından geriye dokunun mineral iskeleti kalır. Yansıyan ışık ve karanlık saha mikroskobu ile inkrenasyon yapılmamış kontrol kesitle karşılaştırılarak incelenir. Histospektrografik yöntemle minerallerin kantitatif ölçümü de yapılabilir. Mikroradyografi: X-ışınlarının absorbsiyonu ile dokunun kimyasal yapısı hakkında bilgi edinilir. X-ışınlarını absorbe eden kemik, kıkırdak, enamel ve dentin gibi hidroksi-apatit kristallerini içeren kalsifiye dokular ince taneli fotografik emülsiyon ile yakın temasa tutularak yumuşak bir X-ışını verilir. Elde edilen fotograf mineralin dağılımını gösterir ve kontakt mikroradyograf olarak adlandırılır. Klasik ışık mikroskobu ile incelenebileceği gibi projeksiyon mikrografi için geliştirilen aletlerle de incelenebilir. Kesitin alanlarında mineral miktarları da ölçülebilir. Kemik örnekleri metil metakrilata gömüldükten sonra öğütülür ve parlatılır. 20 kV X-ışını ile ışınlanır. Çok ince taneli özel fotografik emülsiyonundan geçirilir. 5-10 kV’ lik çok yumuşak X-ışınları kullanılırsa yumuşak doku kesitlerinin mikroradyografları dokuların protein içeriği ve hücrelerin kuru kütlesi hakkında bilgi elde edilebilir. Mikroradyografi, bazen radyoopak maddenin injeksiyonu sonunda kan damarlarının düzenini göstermek için kullanılır

http://www.biyologlar.com/histolojide-kullanilan-yontemler-1

Hamsi (Engraulis encrasicolus)

Hamsi (Engraulis encrasicolus)

Hamsi (Engraulis encrasicolus), Engraulidae familyasına ait bir balık türü. Hamsi adı arkaik Kolh dili kökenlidir ve orijinal prototipi "Küçük Sivri Balık" anlamındadır. Vücut ip şeklinde hafif yassılaşmış olup yanlarda yuvarlaktır. Alt dudak mevcut değildir, üst çene ise uzun olup, sırt rengi koyu mavi siyahımsı, alt taraf açık renklidir. Yan tarafları parlaktır. Kuyruk yüzgeci homoserk yapıdadır. Karadenizin insan yaşamıyla birleşen balığıdır. Marmara Denizinde de bulunur. Sürüler halinde yaşar ve 18 cm'e kadar büyür. Ocak - Mart arasında beslenmek için sahillere yaklaşır. Gündüzleri 30–40 m. derinlerde, geceleri yüzeye yakınlarda dolaşır. 1 yaşından itibaren olgunluğa erişip 18°-20 °C sularda, 25–60 m. derinliklerde ve az tuzlu sularda üreyip yaklaşık 40.000 yumurta döker. Ömürleri 4 yıl kadardır. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     ClupeiformesFamilya:EngraulidaeCins:     EngraulisTür:     E. encrasicolus

http://www.biyologlar.com/hamsi-engraulis-encrasicolus

Hücre Fizyolojisi

Hücreler yaşayan organizmaların yapısal ve fonksiyonel birimleridir. Hücreler küçük fakat kompleks yapılardır. Yaşamın bu temel birimi hakkında ayrıntılı bilgiler ilk kez 17. Yüzyılda ışık mikroskobunun geliştirilmesi ile edinildi. Bir müze müdürü olan İngiliz Robert Hooke 1663 yılında mantar ve diğer bitki örneklerini bir jiletle keserek mikroskop altında 30 kat büyüterek inceledi. Bu incelemeler sonucunda bitkilerin "hücre" adını verdiği küçük bölmelerle dolu olduğunu buldu. Anton van Leeuwenhoek isimli bir Alman dükkancı ise doku örneklerini 300 kat büyüterek, bakteri, kan hücresi, sperm hücresi gibi tek hücreli organizmaları inceledi. Bu organizmalara hayvancık anlamına gelen "animalcules" adını verdi. Hücrelerin Genel Özellikleri: Hücreler hem morfolojik (şekilsel) hem de metabolik olarak çok büyük farklılıklar gösterirler. E.coli isimli bakteri 1m m (m m=mikrometre= 1 metrenin milyonda biri) uzunluğundayken, aksonları 1 metre uzunluğunda olan sinir hücreleri vardır. Ama yine de hücrelerin çok büyük bir çoğunluğu 1-30 m m arasındadır. Hücreler küçük olmak zorundadırlar, çünkü metabolizmalarında diffüzyon çok önemlidir. Diffüzyon, termal hareketle moleküllerin rasgele hareket etmesidir. Diffüzyon moleküllerin, yüksek konsantrasyon bölgesinden düşük konsantrasyon bölgesine doğru, her yerde eşit dağılıncaya kadar olan, rastgele hareketleridir. Diffüzyon termodinamiğin 2. Kanuna bir örnektir. Bu kanuna göre entropi (düzensizlik ya da rasgelelik) sürekli olarak artar. Evrendeki düzensizliğin derecesi sadece ve sadece artabilir. Hücrelerin çoğu aktivitelerinin büyük bir bölümünü diffüzyon ile düzenlerler. Diffüzyon, molekülün özelliğine (büyüklük gibi) ve çevreye (vizkozite, membran gibi) bağlıdır. Bir partikül (madde parçası) tarafından katedilen mesafe zamanın karekökü ile doğru orantılıdır. Yani bir partikül 1 saniyede 1 m m gidiyorsa, 4 saniyede 2 m m ve 100 saniyede 10 m m ve 3 saatte (10.000 saniye) 100 m m gidecek demektir. Hücrelerin Fonksiyonel Özellikleri: Hücreler ortamdan ham materyali alırlar. Enerji üretirler: Bu enerji iç ortam dengesini sağlamak, ve sentez reaksiyonlarını yürütmek için gereklidir. Termodinamiğin 2. Kanununa karşı koymak ancak enerji ile mümkündür. Kendi moleküllerini sentez ederler. Organize bir şekilde büyürler. Çevreden gelen uyarılara cevap verirler. Çoğalırlar (bazı istisnalar haricinde). Hücrelerin Yapısal Özellikleri: Kalıtsal bilgiler DNA içinde saklanır. Genetik kod temelde aynıdır. Bilgi DNA dan proteinlere RNA aracılığı ile geçer. Proteinler ribozomlar tarafından yapılır. Proteinler hücrenin fonksiyon ve yapısını düzenlerler. Bütün hücreler seçici geçirgen bir zar olan plazma membranı ile çevrilmiştir. HÜCRELERİ BİRBİRİNDEN AYIRAN ÖZELLİKLER Hücreler arasında pek çok benzerlik olmasına rağmen, çok belirgin farklılıklar da vardır. Bu farklılıklar hücreleri çeşitli ana guruplara ayırmamıza yardımcı olur. İki yaygın ana gurup şunlardır. Prokaryotlar Eukaryotlar Prokaryotlarla Eukaryotlar arasındaki en temel farklar prokaryotların bir nükleusa (çekirdek) ve membrana bağlı organellerinin (birkaç istisna haricinde) olmamasıdır. Her ikisinin de DNA sı, hücre zarı, ribozomları vardır. HÜCRE ORGANELLERİNİN YAPI VE FONKSİYONLARI Hücreler ışık mikroskopu ile incelendiği zaman, sitoplazma ve çekirdek adı verilen iki bölümden oluştuğu görülür. Ancak daha büyük büyütme sağlayan elektron mikroskopuyla yapılan incelemeler, hücrenin bir takım alt birimlerden, hücre organellerinden oluştuğunu ortaya koymuştur. Hücre şunlardan oluşmuştur. Hücre zarı Sitozol Organeller Çekirdek Hücre Zarı: Zar ya da membranlar yaşam için çok önemlidir, çünkü bir hücre 2 sebebten dolayı kendisini dışarıdaki ortamdan ayırmak zorundadır. DNA, RNA ve benzeri yaşamsal moleküllerini dağılmaktan korumalıdır. Hücre molekül yada organellerine zarar verebilecek yabancı molekülleri uzak tutmalıdır. Ancak hücre bu iki kurala uyarken bir taraftan da çevreyle haberleşmeli, dış ortamı sürekli olarak izlemeli ve ortam değişikliklerine ayak uydurmak zorundadır. Ayrıca hücre besin maddelerini dışarıdan almalı ve metabolizması sonucunda ürettiği toksik (zehirli) maddeleri dış ortama vermelidir. Biyolojik membranlar Şekil 1 de görüldüğü gibi bilipit katmandan oluşur. Şekildeki her bir fosfolipiti temsil eder. Daire ya da baş negatif yüklü fosfat gurubudur, ve iki kuyruk da çok hidrofobik (hidrofobik=suyu iten) olan hidrokarbon zincirlerini temsil eder. Fosfolipit zincirlerinin Şekil 1. De görüldüğü düzenlenmesi sonucu hidrofobik kısımlar membranın içinde kalır. Membran yaklaşık 5 nanometre (1 nanometre = 1 metrenin milyarda biri) kalınlığındadır. Membran semipermeabledır (yarı geçirgen), yani bazı maddelerin membrandan serbestçe geçmesine (diffüze olmasına) izin verir. Membran büyük moleküllere geçirgen değilken, yüklü iyonları çok az geçirir, ve yağda eriyen küçük moleküllere oldukça geçirgendir. Tüm biyolojik membranlar gibi hücre zarı (membranı) da lipit, protein ve az miktarda karbonhidrattan oluşmuştur. Hücre zarı, hücre içinde ve dışında bazı uzantılarla devam eder. Hücre dışına doğru olan uzantılar hücrenin yüzeyinden interstisiyel mesafeye doğru uzanırlar, bu uzantılara mikrovillus denir. Hücre içine doğru devam eden zar sistemi ise dış ortamın hücre içiyle daha yakın ilişki kurmasını sağlar. Bu sisteme endoplazmik retikulum denir. Endoplazmik Retikulum: Endoplazmik retikulum lipid, protein (ribozomlar aracılığı ile) ve kompleks karbonhidratların yapım yeridir. Endoplazmik retikulum hücredeki toplam membranların yarısından fazlasını oluşturur. Endoplazmik retikulum iki membrandan oluşur, iki membran arasında kalan boşluğa endoplazmik retikulum lümeni denir. İki tip endoplazmik retikulum vardır. Granüllü Endoplazmik Retikulum: Üzerinde ribozomlar vardır. Sisterna denilen yassılaşmış keseler şeklindedir. Golgi Kompleksi: Golgi kompleksi hem yapı hem de fonksiyon yönünden endoplazmik retikulum ile yakından ilişkilidir. Bu organel birbirine paralel bir dizi membranöz kanaldan oluşur ve salgı yapan hücrelerde iyi gelişmiştir. Golgi kompleksinin fonksiyonu endoplazmik retikulumda sentezlenen maddelere son şeklini vermek ve bu maddeleri bir membranla çevrelemektir. Ayrıca hücre zarının yenilenmesi ve yüzeyinin genişletilmesi görevini de üstlenir. Lizozom: Lizozomlar 0,2 ila 2 m m çapında organellerdir. Hücreiçi sindirimi sağlamak üzere yaklaşık 40 civarında enzim içerirler. Lizozom membranı lizozomun hücreyi tümüyle sindirmesini önler. Bu enzimler için optimal pH 5 civarıdır. Lizozomlarda ATP hidrolizi ile çalışan H+ pompası vardır. Bu sayede lizozomun pH I düşük tutularak enzimlerin etkin hale geçmesi önlenir. Peroksizom: Peroksizom membranında spesifik proteinler ve oksidasyon enzimleri vardır. Karaciğerdeki peroksizomların ana görevi detoksifikasyondur (bir maddeyi zararsız hale getirme). Ribozom: Ribozomlar proteinlerin sentez edildikleri yerdir. Protein sentezi için gerekli bilgi DNA dadır, bu bilgi RNA ya transfer edilir, ve ribozomlarda RNA daki bu bilgiyle protein yapılır. Bir hücre için protein sentezi çok önemlidir, bu yüzden de hücrede binlerce ribozom bulunur. Ribozomlar ya sitoplazmada serbestçe yüzerler ya da endoplazmik retikuluma bağlı olarak bulunur. Ribozomların membranı yoktur. Protein sentezlemedikleri zaman 2 alt gurup halinde bulunurlar. Alt guruplar ribozomal RNA (rRNA) ve ribozomal proteinlerden oluşur. Mitokondri: Mitokondriler eukaryotik hücrelerde ana enerji üretim merkezleridir. Biri iç diğeri dış olmak üzere iki membranı vardır. İç membranda çok sayıda katlanmalar vardır, bu membranın yüzey alanını genişleterek, membran bağımlı raksiyonların daha fazla sayıda olamasını sağlar. Mitokondrilerin kendi DNA ve ribozomları vardır. Çekirdek (Nükleus): Nükleus DNA nın bulunduğu ve DNA daki bilginin RNA ya aktarıldığı yerdir. Çift katlı bir membranla sarılmıştır, bu membranda çok sayıda büyük porlar bulunur. Çekirdeğin içini dolduran esas madde DeoksiriboNükleik Asit ve protein molekülleridir. Bu DNA molekülleri nükleus içinde rastgele dağılmış olamayıp kromozom denilen yapılar içinde protein molekülleri ile birlikte organize olmuşlardır. İnsanda 46 adet (23 çift) kromozom bulunur. DNA molekülleri hücrede mevcut bütün proteinlerin nasıl yapılacağının genetik bilgisini içerirler. Bilgi nükleusdadır fakat proteinler sitoplazmada yapılır, bu sebeple bilginin sitoplazmaya aktarılması gereklidir. Bu amaçla DNA kalıp gibi kullanılarak, bu kalıptan RNA yapılır, oluşan RNA sitoplazmaya geçerek, protein yapım yeri olan ribozomlara protein sentezi için gerekli bilgiyi aktarır. Çekirdek hücrenin kontrol merkezidir, buradaki genetik mekanizmalar yoluyla sadece hücre içindeki kimyasal olaylar değil, aynı zamanda hücrenin özelliklerinin yeni hücre nesillerine aktarılması da sağlanır. Hücre İskeleti: Aslında hücre iskeleti terimi yanlış bir deyimdir. Hücre iskeleti transparan olduğu için hem ışık hem de elektron mikroskobu preperatlarında görülmez. Hücre çizimlerinde de gösterilmemesine rağmen önemli bir hücre komponenttidir. Hücre iskeleti hücrenin şeklini, hücre organellerinin yerinde durmasını sağlar, ve hücre hareketinden sorumludur. Hücre iskeleti şunlardan oluşmuştur. Sentriyoller Mikrotübüller Aktin filamentleri Sentriyoller çekirdeğe yakın olarak yer alan bir çift silindirik yapıdır. Her biri üçerli guruplar halinde dokuz tübülden oluşmuştur. Sentriyoller hücre bölünmesi sırasında kromozomların hücre kutuplarına çekilmesini sağlarlar. Mikrutübüller tübülin denilen alt birimlerden oluşmuştur. Görevi hücreyi yerinde tutmaktır, aynı zamanda silya ve flagellanın da ana bileşenidir. Aktin filamentleri ise hücrenin şeklini değiştirmesinde görev alırlar.

http://www.biyologlar.com/hucre-fizyolojisi

Kist Hidatik (Echinococcus granulosus) yaşam döngüsü

Yassı solucan (Plathelminthes) grubundaki sestodların (şeritler) bir türü olan Echinococcus granulosus köpeklerde bulunur. Köpek dışkısı ile atılan yumurtaların ağızdan alınması ile insana bulaşabilir. Yumurtalar barsaklarda açılarak larvalar açığa çıkar. Kan dolaşımı ile çeşitli organlara geçerek hastalık yapar. Bu parazit türü kist hidatik denilen hastalığa neden olur. En sık karaciğer, ikinci sıklıkta akciğer olmak üzere beyine de yerleşebilir. Tedavide ilaç uygulaması yapılır. En etkin yöntem ise cerrahi müdahale ile kistin parçalanmadan çıkartılmasıdır. Kaynak: www.bilkent.edu.tr

http://www.biyologlar.com/kist-hidatik-echinococcus-granulosus-yasam-dongusu

Hayvanlar Alemi ve Hayvanların Sınıflandırılması

İnsanoğlunun isim kullanmaya başlaması sistematiğin başlangıç noktası olarak kabul edilir. MÖ 383- 322 yıllarında Aristo "hayvanlar yaşam şekillerine, hareketlerine, vücut yapılarına, alışkanlıklarına göre sınıflandırılabilir" diyerek bu bilimin temelini oluşturur. Bu düdşünce 2000 yıl sürmüştür. 1627- 1705 yıllarında John Ray sınıflandırmada doğal sistemi ileri sürmüştür. Linne yazdığı Systema Natura adlı kitabıyla zoolojik nomenklatürün başlangıcını oluşturmuştur. Linnenin çalışmaları birçok sistematikçiyi etkilemiş, hatta bir sonraki yüzyıla da damgasını vurmuştur. Bu nedenle Linne taksonominin babası olarak kabul edilmiştir. 100 yıl sonra Charles Darwin evrim teorisi ile tüm çalışmaları etkilemiştir. 1866da Haeckelin filogenetik ağaç sistemi sistematikçilere yararlı oluştur. Bu dönem taksonominin en önemli periyodu olmuştur. Hergün yeni cinsler, takımlar ortaya çıkmıştır. Daha sonraki yıllarda sadece türler düzeyinde alışmalar yapılmıştır. Mendel kanunlarının bulunmasıyla önce genetiğin, sonra populasyon genetiğinin gelişimi gerçekleşmiş, günümüzde sistematik çalışmalarda moleküler düzeye inilmiştir. Günümüzde tanımlanmış ve sınıflandırılmış 1.350.000 tür olduğu bilinmektedir. Bunların 1.300.000ini omurgasızlar oluşturmaktadır. Geri kalan fosilllerle birlikte 65.000 tür Chordata şubesinde incelenmektedir. Günümüzde yaşayan yaklaşık 43.000 kordalı bulunmaktadır. Bunun 42.000i Vertebrataya, 1000 kadarı da ilkel kordalılara aittir. Hayvanlar aleminin Sınıflandırılması İlim adamları bir milyona yakın hayvan çeşidi keşfetmişler ve daha da yenileri keşfedilmektedir. Hayvanların sayıları da türden türe değişir. Hayvanlar hemen hemen dünyanın her yerine yayılmışlardır. Kutuplardaki buzullardan ekvator bölgelerine, basıncın insanın dayanamayacağı kadar yüksek olduğu okyanus diplerinden atmosfer yoğunluğunun çok az olduğu yüksek dağların zirvelerine kadar her yerde yaşarlar. Hayvanların büyüklükleri de oldukça değişiktir. İnsan akyuvarlarının içinde yaşayan hayvanlar ve 30 metreden büyük balinalar vardır. Sistemli bir metodla hayvanların sınıflandırılması, onların incelenmesinde büyük kolaylıklar sağlar. Böylece yeni keşfedilen türler, bilinenlerle olan münasebetine göre uygun bir sınıfa konur. Hayvanların ve bitkilerin hususiyetlerine sahib olan bazı canlılar vardır ki, bunların sınıflandırılması zordur. Bunlardan bir tanesi bir tatlı su canlısı olan öğlenadır. Kamçısı ile suda hareket edebilir. Fakat bu canlı klorofil maddesi ihtiva eder. Bundan dolayı öğlenayı botanikçiler bitki, zoologlar hayvan olarak kabul eder. Kış uykusuna yatan, göç eden, geviş getiren, elektrik ve ışık üreten çeşitli hayvan grupları vardır. Mevsimlere bağlı olarak renk değiştirenler, kilerlerinde kışlık yiyecek depo edenler, köle kullananlar da mevcuttur. Ayı gerçek manada kış uykusuna yatmaz. Kırlangıç ve leylekler soğuklar yaklaşınca sıcak ülkelere göç eder. Koyun, keçi, deve gibi hayvanların mideleri birkaç bölmeli olduğundan geviş getirerek besinlerini ikinci bir öğütmeye tabi tutarlar. At geviş getirmez. Gelincik, avlarını felçleştirerek canlı olarak kilerlerinde depolar. Bugün halen keşfedilememiş yüzlerce hayvan türü vardır. Hayvanlar Alemi 1. Omurgalılar a. Memeliler b. Kuşlar c. Sürüngenler d. Amfibyumlar e. Balıklar 2. Eklembacaklılar a. Böcekler b. Örümcekler c. Çok ayaklılar d. Kabuklular 3. Yumuşakçalar a. Kafadanbacaklılar b. Karındanbacaklılar c. Yassı solungaçlılar 4. Derisidikenliler a. Denizkestaneleri b. Denizyıldızları c. Yılanyıldızları d. Denizhıyarları e. Denizlaleleri 5. Solucanlar 6. Selentereler (Sölentereler) 7. Süngerler 8. Bir Hücreliler a. Kökbacaklılar b. Kamçılılar c. Haşlamlılar d. Sporlular

http://www.biyologlar.com/hayvanlar-alemi-ve-hayvanlarin-siniflandirilmasi

Kıkırdaklı Balıklar

İskeletleri kikirdak yapida oldugundan bu hayvanlar, kikirdakli baliklar anlamina; Chondrichthyes olarak isimlendirilmislerdir. Kikirdak yapidaki iskelet ilkel bir özellikten çok dejeneratif bir özellik olarak kabul edilir. Çünkü bunlarin en yakin akrabalari olan Plaucodermi fosillerine devoniende rastlanmasina karsin, ilkel kemikli baliklarin fosilleri siluriende bulunmustur. Iskeletin bazi kisimlarinda kalkerlesme görülmesine karsin bu sinifin hiç bir örneginde kemik yapiya rastlanmaz. Kordalilar içerisinde hareketli çeneler ilk kez bu hayvanlarda görüldügünden Gnasthostomata (çeneliler) subfilumunun en basit yapili örneklerini içerisine alir. Bunlarin çift haldeki üyeleri ve omurlari bulunur. Hemen hemen hepsi yirticidir ve çesitli canlilarla beslenirler. Çok az bir kismi disinda hepsi genellikle denizlerde yasar. Jeolojik devirlerde yasamis bir çok kikirdakli baligin, bugün pul, dis ve yüzgeç isini gibi sert kisimlarinin fosillerine rastlanmaktadir. Kikirdakli baliklar biyolojik açidanda çok ilginçtir. Çünkü bunlarin bazi anatomik özelliklerini, yüksek yapili omurgalilarin erken embriyonik evrelerinde de görmek olasidir. Bunlarin, Ostracodermi-Plakodermi arasi bir atadan zirhlarini ve iskeletlerindeki kemik yapilari kaybederek olustuklari kabul edilir. Karakteristik özellikleri: 1) Vücut fusiform veya mekik seklinde, bazilarinda ise yassilasmistir. Derileri sert, plakoid pullarla kapli ve bol miktarda mukus bezi içerir. Median (tek) ve lateral (çift) yüzgeçleri mevcut olup, isinlarla desteklenirler. Ventral (pelvik=karin) yüzgeçler erkeklerde degisiklige ugrayarak spermalarin disiye aktarilmasina yarayan kopulasyon organlari haline gelmistir. Caudal ((kuyruk) yüzgeç genelde heteroserk seklindedir. 2) Agiz ventral ve mine tabakasi ile örtülü çok sayida disleri bulunur. Burun delikleri 1-2 tanedir ve agiz boslugu ile baglantilari yoktur. Alt ve üst çenelerin her ikiside mevcuttur. Baüirsaklarin iç yüzeyinde helozon seklinde kivrintilar bulunur. 3) Iç iskelet kikirdak halindedir ve gerçek kemikleri yoktur. Notokord her zaman mevcuttur. Birbirleriyle birlesmis omurlara veya tek halde bulunan bir omurgaya sahiptirler. Pektoral (gögüs) ve ventral kemerler mevcuttur (appendicular iskelet). Kafatasi (cranium) çift haldeki duyu kapsülleriyle birlesmistir. Ayrica agiz, dil ve solungaçlari destekleyen visseral iskelet yapilarida bulunur. 4) Kalpleri bir kulakcik ve bir karincik olmak üzere iki gözlüdür. Ayrica sinus venosuslari mevcuttur. Aort yaylari birkaç çifttir. Eritrositleri çekirdekli ve oval yapidadir. 5) Genellikle solungaçlari 5-7 çifttir. Solungaçlardan her biri ayri bir delikle disari açilir. Bazilarinda birden çok solungaç birleserek müsterek bir delikle de disari açilabilir. Solungaç kapaklari (operculum) yalniz Holocephali alt sinifinda vardir. Hava keseleri yoktur. 6) Beyinleri oldukça gelismistir ve 10 çift beyin sinirleri vardir. Her bir kulakta üçer yarim daire kanali bulunur. 7) Vücut sicakligi degiskendir (poikilothermus). Çevreye bagli olarak degisiklik gösterir. Bosaltim organlari mezonefroz böbrek tipindedir. 9) Ayri eseylidirler. Üreme organlari çift haldedir. Esey organi kanallari kloaka açilir. Döllenme, iç döllenme seklindedir. Ovipar, vivipar veya ovovivipardirlar. Yumurtalari büyüktür, fazla miktarda yedek besin içerir, segmentasyon tam degildir, ancak belli bir kisim segmentasyona ugrar (meroblastic) ve embriyo tabakalari bulunmaz. Gelismeleri dogrudan dogruyadir yani larva ve metamorfoz yoktur. Kikirdakli baliklar , Cyclostomata’ya göre daha ileri bir organizasyon gösterirler. Bunu kanitlayan özellikleri sunlardir: 1-vücutlarinda pullar vardir. 2-Iki çift lateral (çift) yüzgeçleri vardir. 3-Kafatasina bagli hareketli çeneleri bulunur. 4-Disleri mine ile örtülüdür. 5-Dermal yapida yüzgeç isinlarina sahiptir. 6-Belirgin bir mide ve pankreaslari bulunur. 7-Herbir iç kulakta üçer yarim daire kanali bulunur. 8-Dorsal kaburgalari bulunur. 9-Üreme organlari ve bu organlarin kanallari çift halde bulunur. 10-Omurga notokordu siki bir sekilde kusatmistir. Kikirdakli baliklarin, kemikli baliklardan daha basit organizasyonlu olarak kabul edilmesi ise su nedenlere dayanmaktadir: 1-Iskeletleri kikirdak yapidadir ve gerçek kemikleri yoktur. 2-Plakoid pullara sahiptirler. 3-Solungaçlarin her biri çogunlukla ayri bir delikle disari açilir. 4-Hava (yüzme) keseleri yoktur. 5-Genellikle yutak ile baglantisi olan bir çift spirakulum’lari vardir. Bazi örnek türler: Hexanchus griseus (Alti solungaçli köpek baligi), Chlamydoselachus anguineus (Yakali köpek baligi), Carcharis ferox (öfkeli köpek baligi), Lamna nasus (Dikburun karkariyas baligi), Cetorhinus maximus (Büyük camgöz baligi), Alopias vulpinus (Tilki baligi) Mustelus mustelus (Asil köpek baligi), Sphyrna zygaena (Çekiç baligi), Torpedo torpedo (Lekeli elektrikli balik), Raja clavata (Vatoz).

http://www.biyologlar.com/kikirdakli-baliklar

KEMİK DOKUNUN OLUŞUMU

Kemik dokusunun oluşumu genel olarak iki aşamada gerçekleşmektedir. Öncelikle bu iş için özelleşmiş hücreler tarafından kemik dokusunun organik kısmı salgılanır. Daha sonra oluşan ara maddenin mineralizasyonu gerçekleştirilir. Kemik dokunun histogenezi (osteogenezis) iki çeşittir. 1-İntramembranöz Kemik Gelişimi(Direkt Ossifikasyon) Bu kemik gelişiminde embriyonal bağ dokusundan doğrudan doğruya kemik dokusu oluşmaktadır.İskeletteki kısa kemiklerin gelişimi ile uzun kemiklerin kalınlaşması bu yolla sağlanmaktadır. İskelette bu yolla oluşan kemiklere membran kemikler adı verilmektedir. İntramembranöz kemikleşmeye bazı yüz kemikleri ile kafa tasının örtücü, yassı kemikleri örnek verilebilir. İntramembranöz kemikleşmenin başlangıcı. Mezenkim hücreleri halka yaparak osteoblastların farklılaştığı blastemayı meydana getirirler.(Sungueira , L.C. , Carneiro , J. , Kelley , O.D. :Temel Histoloji'den) 2-İntrakartillajinöz Kemik Gelişimi (İndirekt veya Endokondral Ossifikasyon) Endokondral kemikleşmede öncelikle ileride oluşacak kemiğin taslağı olarak hiyalin kıkırdak gelmekte, daha sonra bu kıkırdak modelinin üzerine kemik dokusu yapılmaktadır. Fakat hiçbir zaman kıkırdak dokusu doğrudan kemik dokusuna dönüşmemektedir. Kıkırdak doku harabiyete uğrayarak kemik doku için gerekli temeli oluşturmaktadır. Meydana gelen kemik doku mezenşimden gelişmektedir. Kondral kemikleşmeye kafa tası kemiklerinin bazıları ile vertebra'lar ve bütün uzun kemikler örnek verilebilir. Kondral kemikleşmede ortaya çıkan hiyalin kıkırdak ileride gelişecek kemiğin çok ufak bir maketi şeklindedir. Bu makette uzamış bir orta kısım(geleceğin diafizi), şişkince uç kısımlar ( geleceğin epifizleri ) ve bu iki kısım arasında küçük bir bölge bulunmaktadır(geleceğin metafizleri). Kemikleşme intra-utarin hayatın 40. gününde başlamakta ve 18-24 yaşına kadar sürebilmektedir. Kondral kemikleşmede öncelikle diafiz'de başlayıp, zamanla epifizlere doğru ilerlemektedir. Sekonder kemikleşme ise primer kemikleşmenin tamamlanmasını beklemeden epifiz bölgesinde başlamamaktadır. Bu bölgedeki kemikler ışınsal olarak büyümektedir. Kemikleşme olayları devam ederken iki bölgede kıkırdak yapı ortadan kalkmayıp özelliğini korumaktadır.Bunlardan birincisi epifiz kemikleştiği halde kıkırdak yapısını koruyan , epifizin dış kısmında bulunan Eklem Kıkırdağı(artikular kıkırdak) 'dır. İkincisi ise metafizin epifiz tarafında yer alan, kalınlığı 1-2 mm. olan ve epifizin kemik ökçesi ile sınırlanmış Büyüme Kıkırdağı(Epifizyal Plak )'dır. Ortadan kalkmayan bu iki kıkırdak kısmı arasında farklar bulunmaktadır. Eklem kıkırdağı tüm yaşam boyunca kıkırdak olarak kalmasına karşın, büyüme kıkırdağı belirli bir yaştan sonra kapanıp tamamen kemikleşmektedir. Ayrıca eklem kıkırdağı kemik büyümesine katılmayıp eklem bölgelerinde hareketi kolaylaştırırken, büyüme kıkırdağı kemiğin uzunluğuna büyümesini sağlamaktadır. Endokondral kemikleşmeyi gösteren uzun bir kemiğin genel şekli. (www.turk-ortopedi.net) 2.1.Epifizyal Plak Gelişimi ve Yapısı Kondral kemikleşme devam ederken maketteki değişiklikler kemiğin boyunun uzamasından daha hızlı olduğundan fötal hayatın 3.ayının sonuna doğru metafiz bölgesine ulaşır. 4.aydan itibaren maketteki değişiklikler yavaşlar ve metafiz bölgelerinde uçlardaki epifizlere doğru ilerler. Bu esnada maketin büyük eksenine dikey olarak bağ dokusu-damar filizlerinin kıkırdağı haraplaması görülür. Böylelikle epifizyal plak adı verilen büyüme kıkırdağı ortaya çıkar. Kemiklerin boyuna uzamasını sağlayan epifizyal plak fötal hayatın sonuna doğru açıkça belirir. Gelişime ve dış etkilere bağlı olarak erkeklerde ortalama 22-24 yaşlarına, dişilerde ise 20-22 yaşlarına kadar kıkırdak özelliğini korur ve işlevine devam eder.Kısacası fötal yaşamın 3.ayına kadar iskeletin başlıca uzun kemiklerinin her birinin diafizinde kemikleşme merkezleri görülmeye başlar .Daha sonra genellikle doğumdan sonra içte, epifiz endokondral kemikleşmenin başlangıncını belirten karakteristik hipertrofiyi gösterir, sırası geldiğinde de kan damarlarıyla doldurulur. Epifizyal disk ortalama 1-2 mm. (bazı kaynaklarda 1,5 mm.) kalınlığında olup kemiğin orta bölümünü oluşturan diafiz bölgesi ile uç kısımlarını oluşturan epifiz bölgelerinin arasına yerleşmiş konumdadır. Çevresi perikondrium ve periostium'dan gelişin yapılarla kuşatılmıştır. Temel yapısını kemiğin diğer kısımlarına da oluşturan Hiyalin kıkırdak teşkil etmektedir.   İntramembranöz ve Enkondral olmak üzere 2 tür kemikleşme vardır. Bunlardan intramembra-nöz kemikleşme bağ dokusu, enkondral tip ise kıkırdak dokunun katılımıyla oluşmaktadır. Ke-mikleşme hangi türde olursa olsun ilk oluşan kemik dokusu primer kemik yani olgunlaşmamışkemiktir. Oluşan bu primer kemik kalıcı olmayıp yerini esas yani olgun lamelli kemik do-kuya bırakmaktadır. Daha önce de bahsedildiği gibi kemik yapımı, yıkımıveya rezorbsiyonu ileuyumlu bir biçimde olmaktadır. Kemik dokusu aktif bir yapıdır dolayısıyla devamlı olarak yeni-lenmektedir. Bu yenilenme özellikle mekanik, kimyasal ve hormonal koşullarla yakın ilgilidir. Kemik hücrelerinin yapısal farkları ve bu hücrelerin dokudaki rolleri nedir?4.1. İntramembranöz Kemik OluşumuKemiğin bu şekildeki oluşumu bağ dokusu tarafından gerçekleştirilir. Organizmada kafatasınfrontal, pariyetal, temporal gibi kemikleriyle çene bu tür kemikleşmeyle oluşmaktadır. Bu ke-miklere membran kemikleri de denmektedir. Kemiğin gelişmesi şöyle olmaktadır:Önce mezenşim hücreleri damarlar etrafında toplanırlar ve çoğalırlar. Aradaki boşluklar sert-leşmemiş matriks ve içindeki kollajen liflerce doldurulmuştur. Mezenşim hücreleri osteoblast-lara dönüşebilen hücrelerdir. Bu hücreler hücrelerarasımadde ve lif sentezini de yaparak oste-ositlere farklılaşırlar. Bu bölgeye kemikleşme merkezi adı verilir. Oluşan kemik spongiyöz(trabeküler) yapıdadır ve lamel içermez. Araya henüz kalsiyum bileşikleri de çökmemiştir veosteoid doku adını alır. Damar çevresindeki osteoblastların osteositlere dönüşerek boşalttık-ları yerlere arkadan yeni hücrelerin gelmesiyle olayda devamlılık sağlamaktadır. Trabeküllerbüyür, çoğalır ve anastomozlaşarak spongiyöz kemik dokusu şekillenmiş olur. Bu tür kemik-leşmede peristeum ve endosteum kemikleşmeye katılmayan bağ dokusu tarafından yapıl-maktadır. Trabeküllerarası boşluklardaki bağ dokusu da kemik iliğinin miyeloid veya hemapo-etik dokusuna (kan hücrelerinin yapımı) dönüşmektedir. Kondral Kemikleşme; Bu tür kemikleşme diğerinden biraz farklıdır. Kemikleşme Hyalin kıkırdak hücreleriyle oluş-maktadır. Bu nedenle intrakartilagenöz kemikleşme de denmektedir. Organizmanın uzun vebazı kısa kemikleri böyle gelişir. Kondral kemikleşme perikondral ve enkondral olmak üzere2 tiptir. Perikondral Kemikleşme; Kıkırdak yüzeyindeki mezenşim kaynaklı hücreler osteoblastlara dönüşerek bu bölgede taba-kalaşma yaparlar ve ara maddeyi salgılayarak osteosit haline dönüşürler. Bu olayı kalsifikas-yon izler. Sonuçta ise diyafizin ortasında ve daha sonra da uçlara doğru gelişen ve kıkırdağıçevreleyen bir perikondral kemik dokusu ortaya çıkar. Kemikleşme tamamlandıktan sonraperikondriyum periyosteum adını almaktadır. Bu kemik kompakt yapıdadır ve bu yolla kemi-ğin enine büyümesi sağlanır. Enkondral Kemikleşme ; Bu tür kemikleşmede kıkırdak hücreleri önemli rol almaktadırlar. Özellikle uzun kemiklerin şe-killenmesi bu yolla olur. Bu tür kemikleşme esas olarak kıkırdak hücrelerinin özellikle uzun ke-miklerin diyafiz bölgesinde birtakım değişimleri şeklinde olmaktadır. Uzun kemikler epifiz (yu-varlakça uç kısımlar) ve uzun bir diyafizden oluşur. Daha önce bahsedildiği üzere meydana ge-lecek ilk kemik önce diyafizi saran perikondriyumda intramembranöz yolla olmakta (kemik hal-kası oluşumu) ve Periyost şekillenmektedir. Diyafizdeki kemikleşme primer kemikleşmedir vebölge tamamen kemikleşinceye kadar devam eder. Bunu epifiz bölgesindeki kemikleşme izlerve sekonder kemikleşme merkezi adını alır. Epifizdeki eklem kıkırdağı ise kemikleşmeyekatılmaz. Uzun kemiğin diyafizinde meydana gelen ve kemiğin uzunlamasına büyümesini sağ-layan olayları ise kısaca şöyle özetleyebiliriz:Kıkırdak hücrelerinde görülen farklılaşmalar neticesinde doku birtakım zonlara (bölgelere) ay-rılmaktadır. Bu zonlar şöyle sıralanmaktadır; 1. Dinlenme zonu: Morfolojik değişim göstermeyen hyalin kıkırdak hücrelerinin olduğu bölgedir. 2. Poliferasyon zonu: Kıkırdak hücrelerinin hızla bölünüp çoğalması ve uzun kolonlar yapmasıdır. 3. Hipertrofi zonu: Büyümüş ve sitoplazmalarında glikojen birikmiş kıkırdak hüc-relerinin olduğu bölgedir. 4. Kalsifikasyon zonu: Kıkırdak hücreleri bozulmaya başlamıştır ve ortama kal-siyum çöker, dokunun bazofilisi artar. 5. Kemikleşme zonu: Bölgede oluşan bol damarlı yeni kemik dokusudur (en-kondral tipte).Yukarıdaki açıklamalarda görüldüğü gibi ilk zonda mitozla çoğalan (proliferasyon zonu) kıkır-dak hücreleri kemik uzun eksenine doğru dizilmeler yapmaktadırlar. Çoğalma diyafiz ortaların-da durur. Bundan sonra hücreler sitoplazmalarında madde depolamaya başlarlar ve büyürler(hipertrofi zonu). Buradaki hücrelerde alkalen fosfataz enzimi çok artmıştır ve bu enzimin dışarıçıkmasıyla kalsifikasyon başlar. Kalsifikasyondan sonra görülen kemik yıkımı veya rezorbsi-yon olayı osteoklastlarca yerine getirilir. Bu bölge kan damarlarından da zengindir. Rezorbsi-yon sonucu ortaya çıkan boşluklara kemik kovuklarıdenir. Bu bölgeye periyosteumdan gelenosteoprogenitör hücreler osteoblastlara dönüşürler ve kavitelerin yüzeyine yerleşerek kemikmatriksini yaparlar daha sonra da osteosit haline dönüşürler. Matriks de ileride kalsifiye olmak-tadır (Resim 7.3). Resim 7.3: a - Çoğalma ve Hipertrofi zonu b- Kalsifikasyon - Primer kemikleşme bölgelerip-periosteumHavers lamel sistemi ise şu şekilde ortaya çıkmaktadır: Osteoklastların civar dokuyu eriterekaçtıkları kovukların anastomozlaşmasıyla bir nevi tünel veya labirent benzeri yapı oluşmakta-dır. Bunların içi kemik iliği, bağ dokusu ve osteoklastlarca dolmuştur. İşte buradaki bağ doku-sunda yeralan hücreler osteoblastlara farklılaşıp kanal duvarına dizilirler ve o Havers'in en dışlamelini yaparlar. Olay süreklidir ve bu şekilde periferden merkeze doğru konsentrik tertiplen-miş lamel tabakası ortaya çıkar (osteon). Sonuç olarak perikondral kemikleşme perikond-riyumun osteojenik aktivitesiyle, enkondral kemikleşme ise kondrositlerin yani hyalin kı-kırdak hücrelerin çoğalması ve diğer bir takım değişiklerle meydana gelmektedir. Kemik biryandan devamlı olarak yapılırken bir yandan da osteoklastlarca yıkıma uğratılmakta ve bu ikiolayın uyumlu çalışmasıyla kemik normal formunu korumaktadır.

http://www.biyologlar.com/kemik-dokunun-olusumu

Böceklerin Kökeni ve Evrimi

Prekambriyumdan önce monofiletik ikiz grup olusturan Mandibulata (Crustacea) ve Tracheata (Myriapoda ve Insecta) büyük bir olasilikla suda yasayan ve spermalari spermatofor içinde toplanan ana kök daha sonra ikiye ayrilmis, bir grubu sularda kalarak Crustacea'yi (kabuklular), ikinci grup karaya çikarak Tracheata'yi meydana getirmistir > prekambriyumda ayrilmistir. Tracheata'ya geçis sirasinda, ikinci maksil, labium halinde kaynasarak bir agiz boslugu meydana gelmis, ikinci antenler körelmis, gövde segmentlerinin çogunda birer çift stigmayla birlikte trake sistemi olusmus, bosaltim organlarindaki degisiklikle körelen anten ve kabuk bezlerinin yerine barsak çikintilarindan olusan Malpiki tüpleri meydana gelmistir. Iki kardes grup olan Myriapoda ve Insecta ayrildiklarinda, baslangiçtaki temel yapilarini (mandibul eklemleri, abdominal üye kalintilari ve trake sistemi, Symphyla (Myriapoda), Diplura ve Thysanura'da (Insecta) bu ortak özellikler görülür) gösterirken, Myriapodlar saklanarak yasamaya uyum yaptigi için, bilesik gözlerini kaybetmeye baslamis ve saklanmaya uyum yapacak yassi vücut seklini kazanmislardir. Buna karsin böcekler serbest yasama uyum yaparak gövdenin, üç thoraks, onbir abdomen segmentinden yapili olmasi, gögüsteki kaslarin hareketi, abdomendekilerin sindirimi sagliyacak biçimde yogunlasmasi, thorakstaki paranotal loblardan kanat olusmasi ve abdomen bacaklarinin körelmesiyle Tracheata'dan farklilasmistir. En ilkel böcek, Chilopoda'ya benzer bir atadan kök alarak gelistigi düsünülür. 3 segmentli thorax ve her segmentte birer çift bacagi olan bu yaratigin abdomen üyeleri muhtemelen yoktur veya körelmistir. Bu formlarda yavrular, erginden görünüs olarak çok az farklidirlar. Kanatlar henüz olusmamistir. Kanatsiz olan bu bes ilkel böcek takimina (ordo) Apterygota diyoruz. Bes apterygot takimdan en primitif olani Diplura'dir ve tahminen Collembola ile Protura takimlari da Diplura ya benzer bir atadan kök almistir. Bu takimlarda tibia ve tarsus kaynasmis, abdomendeki stigmalar ise körelmistir. Birçok ortak köken özellikleri olmasina ragmen Collembola ve Protura birbirine hiç benzemeyen böcekler seklinde gelismislerdir. Protura da anten körelmis ve ön bacaklar bir çift anten seklini almistir. Collembola'da ise abdomen segmentleri sayica dumura ugramis (Protura'da 11, Collembola'da 6 segment) ve 4. abdomen segmentine ait dejenere bacak, ziplama organi (furcula) seklinde gelismistir. Bu üç takimda da agiz çukurunun yanlari kaynasarak birlesmis ve agiz parçalarinin etrafini çeviren bir bosluk meydana getirmislerdir. Diger iki apterygot böcek takimi olan Microcoryphia ve Thysanura vücut yapilari ve agiz parçalari göz önüne alinirsa bu ilk üç takimdan daha basit olsalarda daha sonra kanatli böceklerin meydana gelecegi yapilari gelistirmislerdir. Bu yapilarin en önemlileri daha uzun ve kuvvetli bacaklar ile tentoryumun (iç iskelet) dorsal ve posterior kollarinin gelismesidir. Microcoryphia bütün abdomen segmentlerinde stayli tasimasina ragmen Thysanura da ilk 6 abdomen segmentinde bu stayliler körelmistir ve tentoryum parçalari çok fazla gelismistir. Vücut daha genis ve yassidir. Bu sebeplerden dolayi, muhtemelen Thysanuraya yakin bir atadan çikan bir kol, yükselip alçalma kabiliyetini ve bununla birlikte yapisini da gelistirmesiyle böcek kanatlari ortaya çikmis ve bunun sonucu olarakta uçus ile kanatli böcekler türemistir. Kanatlarla hareket, böceklerinin patlama biçiminde gelismesini ve dallanmasini getirmistir. Ilk uçus yapabilen kanatlilarda kanat sert ve yelpaze gibi katli olup, abdomen üzerinde katlanip uzanamaz biçimdedir. Bu tür kanatlara sahip böcek takimlarina "Paleoptera" denmektedir. Paleopter takimlarin bugünkü yasiyan örnekleri Ephemeroptera ve Odonata'lardir. Paleoptera'dan ise kanatlari vücut üzerine yatirilabilen ve katlanabilen kanatlara sahip Neuptera türemis olup bu gruba hamamböcekleri ve çekirgeler dahildir. Böcekler paleozoik devirden yani 350 milyon yildan beri yasamaktadirlar. Bu gün için en ilkel böceklere ait kesin bir fosil kayiti elimizde yoktur. Ancak önceden de belirtildigi gibi çok bacakli (Chilopoda) bir hayvandan türemis olduklari kuvvetle muhtemeldir. Kayalarda bulunan fosil formlara göre elimizdeki ilk kayit Paleozoik'in Pensilvanian periyoduna ait olup 300 milyon yil öncesine gitmektedir. Ancak bu türlerin hiçbir temsilcisi günümüze erisememis ve nesilleri tükenmistir. Fakat hamamböcekleri ve pirimitif kanatsiz böcekler (Apterygotlar) ilk sekillerini bugüne kadar korumuslardir. Yine fosil formlara göre pensilvanian periyodun da (Carbonifer) büyük ormanliklarda kanat açikligi 30 inc= 75 cm. olan (l inc= 2.54 cm) Dragonfly (Odonata)' lara benzer böcekler yasamislardir. Palezoikin Permiyen (Perm) peryodunda buzullarin olusmasi, daglarin yükselmesi gibi yerkürede ve iklimde meydana gelen degisiklikler Holometaboli'nin (Tam baskalasim) ortaya çikmasina dolayisi ile böceklerin çesitlenmesine yol açmistir. Kabuklu böcekler (Coleoptera) ve sineklerin (Diptera) ortaya çikisi çok daha sonralara Mezozoik'in Trias periyoduna rastlamaktadir. Sinir kanatli (Neuroptera) böcekler ve kelebekler (Lepidoptera) ise 170 milyon sene önce Jura periyodunda ortaya çikmislardir. Çiçekli bitkilerin ortaya çikis devri olan Mezozoik'in Kretase periyodunda böcekler tam olarak gelisme imkani bulmus ve patlarcasina bir çesitlenme göstermislerdir. Senozoikte meydana gelmis olan ufak ve narin yapili türler bugün yasiyan örneklere aynen benzemekte olup bugün bile teshis edilebilir durumdadirlar. Ari, sinek ve kelebek gibi gruplar tozlasmayi saglamakta ve bu nedenle bitki evrimine paralel bir evrimlesme göstermektedir. Her jeolojik dönem bir böcek grubuyla simgelenmistir. Böcekler 3. zamanin (Sönozoik) en basarili hayvan grubudur. Bu devir ise "böcek devridir" ve diger hayvan gruplarindan belirli bir üstünlük göstermislerdir. Kanatsiz böcekler diger Tracheata gruplari gibi stigmalarla solunum yapan karasal hayvanlardir. Kanatli böcekler karasal biotalari isgal ederken, bir kismi larvalarinin yaptigi ikincil bir uyumla suya geçmis ve çesitlenme daha hizlanmistir.

http://www.biyologlar.com/boceklerin-kokeni-ve-evrimi

Solucanlar

*Az gelişmiş omurgasız hayvanlardır. *Çoğu tatlı sularda, denizlerde ya da dip çamurlarda yaşarlar. *Hareketlerini uzunlamasına kasların uzayıp kısalmasıyla sağlarlar. *Hermafrodittirler. Her solucan hem sperm hem yumurta hücresi üretir. *Boyları birkaç mm’den 4 metreye kadar uzanır. *Parazit olan türlerin tutunma organları gelişmiştir. *Sürekli karanlıkta yaşadıklarından gözleri gelişmemiştir. *Gelişmişlik düzeylerine göre yassı solucanlar, yuvarlak solucanlar, halkalı solucanlar şeklinde sıralanır. Yassı Solucanlar *Parazit yaşarlar. *Vücutları baş, boyun ve gövdeden oluşur. *Sindirim sistemleri gelişmemiştir. *İnsan ve omurgalıların barsaklarında yaşarlar ve bu canlılara zarar verirler. *Örnekler: Karaciğer kelebeği, planarya, tenya Yuvarlak Solucanlar *Nemli toprakta, sulak alanlarda,yosunlar arasında yaşarlar. *Büyük bir bölümü parazittir. *Sıcak ülkelerde yaşayan türleri insanın bağırsağına girerek kan emerler, zayıflamaya sebep olurlar ve tehlikelidirler. *Örnekler: Kancalı kurt, medine kurdu,bağırsak kurdu Halkalı Solucanlar *9000 türü vardır. Ama en önemlisi Toprak solucanıdır. *Kapalı dolaşım, deri solunumu, kendini yenileme görülür. *100 gün suda kalsalar bile yaşarlar. *% 70 su kaybına kadar dayanabilirler. *Yağmur yağınca toprak yüzeyine çıkarlar, bunun nedeni toprakta hava boşlularının suyla dolmasıdır. *Örnekler: Toprak solucanı ,Sülük

http://www.biyologlar.com/solucanlar

 
3WTURK CMS v6.03WTURK CMS v6.0