Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 416 kayıt bulundu.

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

Kuşlar neden göç ederler?

Bu sorun, hala ornitolojide en zorlu sorulardan birisi. Genellikle kuş göçleri üreme ve üreme dışı dönemlerin aynı bölgede geçirilmesinin avantajlı ya da mümkün olmadığı durumlarda görülür. Ancak, bazen daha yakında elverişli kışlama alanları varken türün neden binlerce kilometre öteye göç ettiğini açıklamak her zaman kolay değil. Göç, olanca risklerine karşın hala vazgeçilmediğine göre kuşlara hatırı sayılır yararlar sağlıyor olmalı. Uzun göç yolculuğu, tamamlamak için harcanan enerjinin yanısıra yorgunluk, kaybolma, yırtıcılara yem olma gibi riskleri nedeniyle tehlikeli bir girişim. Kuzey Yarımküre'den güneye göçen küçük kuşların yarısından fazlası asla geri dönmüyor. Örneğin diğer akrabalarının aksine çok daha geç, Ağustos ayında yuva yapan Ada Doğanı (Falco eleonorae) bu gibi küçük göçmenlerle beslenerek yaşamak için evrilmiş bir yırtıcı. Buna, insanoğlunun ve olumsuz hava koşullarının etkilerini eklersek göç ve kışlama sırasında ölüm oranının yüksekliği bizi şaşırtmamalı. Kuşların, kış aylarının olumsuz çevre koşullarından güneye kaçmaları kolay anlaşılsa da belki de daha ilginç bir soru neden uygun koşullar tropikal bölgelerde yıl boyu hüküm sürdüğü halde tekrar kuzeye döndükleri. Burada önemli nokta, her ne kadar kış boyunca düşmanca koşullar hüküm sürse de, kuzey enlemlerinde ilkbahar ve yaz ayları boyunca üremek için tropikal bölgelere göre daha uygun özelliklerin bulunması. Tropikal enlemlerde gece-gündüz uzunluğu neredeyse sabit olduğu halde, ilkbahar ve yaz boyunca kuzey enlemlerinde gündüzler gecelerden belirgin derecede uzun. Diğer taraftan ılıman ve tropikal bölgelerde yerli kuş populasyonlarının yoğunluğu özellikle üreme sırasında yüksek rekabet oluştururken, daha az türe sahip sahip kuzey enlemlerinde bu rekabet daha düşük. Bu bakış açısına göre, kuzey enlemlerdeki çoğu göçmen kuş türleri (kuzeyin zorlu kışından kaçıp tropik bölgeye tahammül eden ılıman kökenli kuşlar değil) kuzeydeki geçici yaz bolluğundan faydalanan tropikal kökenli kuşlardır. Aynı türün farklı coğrafyalarda yaşayan toplulukları göç davranışını sonradan kazanabilir ya da kaybedebilirler. Örneğin Küçük İskete (Serinus serinus) son yüzyıl içinde Akdeniz havzasından kuzeye, Avrupa'ya yayıldı. Atasal Akdeniz toplulukları yerliyken, yeni kuzey populasyonları artık göçmen oldular. Tam tersi bir gelişme, Güney Afrika'da kışlayan Kara Leylek (Ciconia nigra) ve Arıkuşu (Merops apiaster) gibi bazı göçmen türlerin bir kısmının artık orada üreyen yerli türlere dönüşmeleri. Genel olarak, tropikal bölgeye göç eden kuşlar geride ılıman bölgede kalanlara göre kışı daha iyi atlatırken, geride kalan yerli türler üreme açısından göçmenlerden daha başarılı olurlar. Tropikal bölgedeki yerli türler ise uzun yaşamayı düşük üremeye feda ederler. Kurdukları yuvaların pek azı başarılıdır, yavru sayıları düşüktür ve her çift yılda birçok kere üremeyi dener, ama erginler uzun ömürlüdürler. Göç, yerel koşullar yakındaki yörelere fırsatçı hareketleri teşvik ettiği durumlarda evrilir. Populasyonun sadece bir kısmında başlayan bu davranış eğer avantajlı ise, bir süre sonra göç etmeyen toplulukların yeryüzünden silinmesi sonucunda o türün tüm bireyleri için bir kural haline gelir. Farklı göç şekilleri Farklı türlerin kışlama ve üreme alanları arasında izledikleri rota ya da kışlama alanlarında yerleşme şekilleri değişik göç şekilleri oluşturuyor. En belirgin farklılıklardan biri süzülen kuşlarla, kanat çırpan aktif uçucular arasında. Uçabilmek için termallere bağımlı süzülen kuşlar, geniş su kitlelerini aşamadıklarından kıyı kenarını izleyerek gündüzleri uçarlar ve denizleri karaların birbirlerine en çok yaklaştıkları bölgelerden geçerler. Diğer taraftan pek çok ötücü kuş, yağmurcun ve su kuşu yer şekillerine bağlı kalmaksızın geniş bir cephe şeklinde geceleri göç ederler. Bazı durumlarda ilkbahar ve sonbahardaki göç rotası aynı olmaz. Örneğin, Sibirya’da üreyen Kara Gerdanlı Dalgıç (Gavia arctica) toplulukları sonbaharda doğrudan bir uçuşla Karadeniz’e iner, ancak ilkbaharda aynı rotadan geri dönmek yerine önce batıya Baltık Denizi’ne, sonra doğuya uçar. Havalanabilmek için donmamış su yüzeyine gerek duyan dalgıçların, buzu geç çözülen gölleri ilkbaharda kullanamaması nedeniyle bu tip bir göçün ("halka göç") daha avantajlı olduğu sanılıyor. Pek çok ötücü kuş türünde erkek bireyler, dişilere göre daha kısa mesafe göç eder. Bu durumun, erkeklerin ilkbaharda en iyi üreme alanlarını ele geçirmek için giriştikleri yoğun rekabetin sonucu olduğu sanılıyor. Yine muhtemelen aynı nedenden dolayı sonbahar göçü neredeyse aylar süren bir sürede gerçekleştiği halde, ilkbahar göçü çok daha dar bir zaman aralığında gerçekleşir. Süper yakıt: İçyağı Göç eden kuşların büyük çoğunluğu bir seferde uzun mesafeleri aşabilmek için deri altında yağ depolar. Yağ parçalandığında, aynı miktarda karbonhidrat veya proteinle karşılaştırılırsa onların iki katı enerji ve su üretir. Biriktirilen yağ, bazen vücut ağırlığının iki katına çıkmasına neden olabilir. Bu denli çok yağın kısa sürede biriktirilebilmesi için uygun metabolik ve davranışsal değişiklikliklerin oluşması gerekiyor. Bu değişiklikler arasında aşırı yeme (hiperfagi), metabolizmalarının nitelik değiştirmesi, iç organların bazılarının küçülmesi sayılabilir. Yağ, normal zamanlarda küçük kuşların vücutlarının %3 ila %5'ine karşılık gelir. Oysa göç sırasında bu değer %25'e, bazı kıyı kuşlarında % 45'e ulaşabiliyor. Ötücü kuşlar tipik olarak bir seferinde birkaç yüz kilometre uçtuktan sonra 1 ila 3, bazı durumlarda daha da uzun süre dinlenip azalan rezervlerini yeniden tamamlarlar. Uzun mesafeler kateden kıyıkuşları da göçlerini üç veya dört ayakta gerçekleştirirler. Her yolculuk ayağı sırasında dinlendikleri bu mola noktaları birçok tür için yaşamsal önem taşır. Yapılan araştırmalar, küçük kuşların bir saatlik bir uçuş sırasında vücut ağırlıklarının yaklaşık %1'ini kaybettiklerini göstermiş. Ünlü göç araştırmacısı Peter Berthold, ağırlığının %40'ı yağ olan bir göçmen kuşun 100 saat boyunca durmadan uçabileceğini ve bu süre zarfında 2500 km. yol katedeceğini hesaplamış. Yakıtı tasarruflu kullanma açısından hiçbir insan yapısı motor kuşların metabolizmasıyla baş edemez!

http://www.biyologlar.com/kuslar-neden-goc-ederler

Likenlerin Özellikleri

Likenlerin Özellikleri

Likenler başlıbaşına birer organizma değildirler. Mantarlar ile alglerin birleşerek morfolojik ve fizyolojik bir bütün halinde meydana getirdikleri simbiyotik birliklerdir (Güner 1986).

http://www.biyologlar.com/likenlerin-ozellikleri

Türkiye kuşlar listesi

Türkiye kuşlar listesi

Türkiye'nin farklı iklimli bölgeleri birçok farklı kuş türünün yaşaması için elverişlidir. Yaklaşık 465 kuş türü Türkiye sınırları içinde gözlemlenebilmektedir

http://www.biyologlar.com/turkiye-kuslar-listesi

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik


Paleozoyik

(1. Zaman) 545 milyon önce başlamış, 250 milyon yıl önce sona ermiştir. Yaklaşık olarak 295 milyon sürmüştür. Paleozoyik’in ilk döneminde (kambriyen) hayvanlar aleminde hızlı bir evrimleşme ve dolayısıyla çeşitlenme olmuştur. Çoğu kitapta bu çeşitlenme “kambriyen patlaması” olarak ifade edilmektedir. Kambriyen patlamasına (hayvanların çeşitlenmesi) neden olan faktörler çeşitli olabilir. Bunların başında ekolojik faktörler gelir. İkincisi jeolojik faktörler gösterilmektedir. Son yıllarda bir diğer faktör olarak genetik etkenler gösterilmektedir. Genetik faktör olarak Hox genlerinin hayvanlarda evrimleşmesiyle önemli bir etkide bulunduğu sanılmaktadır. Bilinen hayvan şubelerinin bir çoğunun paleozoyikte ortaya çıkmış ve çeşitlenmiştir. Tüm tartışmalara karşın "Kambriyen Patlaması" olarak adlandırılan ve bu süreçte, sadece 25 milyon yıl içinde bugün bilinen hayvan şubelerinin neredeyse hemen hepsi ortaya çıkmış ve hızla evrimleşmişlerdir. Paleozoyik’in ikinci dönemimde (ordovisiyen) ilk omurgalılar (balıklar) oluşmuş, dönemim sonuna doğru bitkiler ve böcekler kara yaşamına geçmişlerdir. Paleozoyik’in devoniyen dönemimde çift yaşamlılar (amphbia) oluşmasıyla omurgalılarda karasal yaşama uyum sağladı. Devoniyen’de balıkların çeşitliliğinden dolayı bu döneme “Balık Çağı” adı da verilmektedir. Kömür devri olarak da bilinen karbonifer döneminde yeryüzünün çoğu kısmında bataklık ormanları şeklinde dev boyutlu bitkiler bulunuyordu. Dünya kömür rezervlerinin büyük bir bölümü bu devire ait olduğundan, devire "karbon içeren" anlamında Karbonifer adı verilmiştir. Karbonifer tüm dünya karalarının ekvatoral düzlemde bir araya toplanmaya başladığı ve büyük bir bölümünün günümüz Amazon ormanlarına benzetilebilecek yağmur ve bataklık ormanlarıyla kaplı olduğu bir devirdi. Dev boyutlu bitki örtüsünün yanı sıra, dev boyutlu böcekler, kırkayaklar ve akrepler ve çeşitli iki yaşamlılar bu devrin önemli canlılarıydı. Yine bu dönemde paleoziyik başında tek olan dünya karaları (Rodinia) parçalanmış ve tekrar birleşmek üzere yeni bir dünya kıtasını (Pangea) oluşturmaya başlamıştır. Karbonifer'in sonuna doğru iklim kuraklaşmaya başladı. Kuraklaşan iklimle birlikte bitkilerin ve ormanların yapısı da değişti ve yeni ortamda sürüngenler kendilerini yavaş yavaş göstermeye başladı. Paleozoyik’in son döneminde (permiyen) pangea tamamen oluştu. Bataklık ormanlarının yok oldu. Sürüngenler yaygınlaşmaya başladı ve dönemim sonunda hayvanlar dünyasında büyük bir yokoluş olmuştur (İlk Kitlesel Biyolojik Yokoluş). Hayvan türlerinin % 90 kadar yol olduğu varsayılmaktadır. İLK KİTLESEL BİYOLOJİK YOKOLUŞ 1. zaman (Paleozoyik) yaklaşık 295 milyon yıl sürdü. Zamanın sonuna kadar omurgalı sınıflardan balıklar, çift yaşamlılar (kurbağalar) ve sürüngenler hızla evrimleşti. zaman sırasındaki en önemli olay canlıların sulardan karalara çıkması ve buralarda kendilerine yeni yaşam alanları bulmasıydı. Bu olay bitkiler - balıklar - çift yaşamlılar - sürüngenler arasındaki evrimsel ilişkilerle gerçekleşti. 1. zaman sonundaki ani iklimsel değişiklikler biyolojik toplu bir yok oluşa neden olmuştur. Tüm türlerin % 90 - 95'i oradan kalktı. Böylece bir çok tür 2. zamana geçemedi.

http://www.biyologlar.com/paleozoyik

Arid zon ve Çöl Toprakları

Aridizoller: Arid topraklar yılda 0-25 veya 0-50 cm yağış alan topraklardır. Sıcaklık ve yağış ilişkisi en önemli etmendir. Günlük, aylık ve mevsimsel açılımlar evapotranspirasyon, vejetasyon ve toprak mikroflorasını yakından etkiler. Vejetasyon seyrek ve kısa ömürlüdür. Toprakta organik madde birikimi yok veya çok azdır. U.S. Soil Conservation Service çöl topraklarını - Aridisol’leri okrik epifedonu ve tipik olan argillic-killi, natric-tuzlu, cambic; kalsik, jipsik veya salik; duripan tanı tabakalarından biri veya birkaçını içeren topraklar olarak 1967’de sınıflandırmıştır. Örneğin Mohave’daki loam - münbit toprak 100cm derinliktedir ve en altında kireç depozitleri, üstünde kahverengi, sıkı münbit kil tabakası 30-35 cm. dir, üstünde 25 cm. lik prizmatik çakıl blokajın üzerini 5-10 cm kahverengi kil, kumlu münbit ince tabaka ve kırmızımsı kumlu münbit tabaka, en üstünü ise kahverengi münbit tabaka örter. Aridizol oluşumunda rüzgarın önemli rol oynadığı, kaçan toz ve kumun cilalaması sonucu oluşan çakıllar ve kayaçlar görülür. Aridizollerde CaCO3 ve diğer tuzlar uçuşan ve yağmurda sabitleşen ince toz ve kumlardan yıkanarak aşağı süzülür. Yağış şiddeti ve süresi ile permeabilite ve ısı arasındaki dengeye göre bir derinliğe kadar inip yerleşir. Genelde denge yüzeye yakın bir yerde oluştuğundan kireçlenme ve heterojen dağılımı tipiktir. Jips te sıklıkla görülür. Entizoller: Aktüel yağışlar alan yamaçlardan gelen alüvyal çökelmeler arid toprakların incelenmesini daha da zorlaştırır. Topoğrafik yapıya göre bu kil, silt ve kum tabakalarının kalınlıkları büyük değişimler gösterir. Tüm bu etkenler genellemelerin ne kadar zor olduğunu gösterir. Litozoller, Regozoller: Arid ve yarıkurak bölgedeki entizoller olup, tabakalanmayan alüvyallerle birlikte erozyona uğrmakta olan yamaçlar, sel taşkını düzlükleri gibi erozyon materyali birikim noktalarında görülür. Çöllerde aktüel allüvyonlar-fluventler, ortentler-ince kolüvyal-alüvyal materyal, Psamentler-kumullar, kumluk alanlar önemli yer tutar. Üzerinde efemeral dahi olsa hiç vejetasyon bulunmayan alanlar topraksız sayılır. Bu konularda geniş yayınlar Arizona Univ. Office of arid Land Studiesweb sitesinde yer almaktadır. Alt tabakalar: B tabakalarıdır, fakat bir kısmı A tab.ları arasına sokulabilir özelliktedir. Arjilik: Silika kil minerallerinin hakim olduğu, erozyonun kil tabakasını açığa çıkartmış olabildiği veya üstte doğrudan yerel, veya taşınmış kil tabakasının bulunduğu üst tabaka. Genelde B, A’an daha killidir. Kambik: açık renkli, organik maddece fakir veya çok fakir, ince ve prizmatik daneli, A1 tabakası olmadığından yüzeyden görülen ve genelde CO3’ca zengin tabaka. Natrik: CEC’inin %15 veya fazlasını Na’un doldurduğu yüzey altı partikül tabakası. Prizmatik, kolonlu veya bloğumsu yapı tabakası. Salik : Soğuk suda jipsden daha yüksek çözünürlüğü olan tuzlarca enaz %2 - 25 ağ/ağ. veya daha zengin olan 5-10 cm.lik yüzeyaltı tabaka. Jipsik: Kalsik tabakaya benzer, farkı kireç yerine CaSO4-jipsce zengin oluşudur.En az 15 cm.dir ve C tabakası veya altındaki tabakadan en az %5 daha fazla jips içerir. Genel kalınlık ve jips içeriğinin en az %602ını içerir. Duripan: Bu alt tabakanın çimentosu silistir. Asitle köpürmez, genellikle demir oksitler ve karbonatlar da çimentoda yer alır. Arid topraklarda üstleri opal ve silika mikrokristalleri ile örtülüdür. Silika çimentolu kum taneleri de içerirler. Dünyada Sahra, Lut gibi gerçek, sıcak çöller azdır. 15 - 45. enlemler arasında kalanların büyük çoğunluğu steptir. Ana faktörler yağış, nem ve sıcaklık ile farkları ve topraktır. Kuru hava bu sıcaklık farklarına neden olur. Yıllık hava sıcaklığı açılımı 60, günlük olarak da 35 dereceyi bulabilir. Çölleşme rüzgarı getirir, örneğin Sahra’da 100km.ye kadar fırtınalar görülür, 15-30km hızında sürekli rüzgarlar tipiktir. Buharlaşma sıcaklık değişimi, kuruluk ve türbülansa neden olur. Sahra’da 2.5-6m, çoğu çölde 3m cıvarındadır. Tipik olarak çöllerde Bağ.nem yazın % 20-30, kışın %50 cıvarındadır, ancak vahalarda ise %90 a kadar çıkabilir. Aydınlanma/bulutluluk oranı Sahra’da %4 - 31 oluşu nedeniyle dehidrasyona ve ısınmaya neden olur. Sahra’da ortalama ışık+ısı gücü 1kW’dır ve 10000km2 ye 25 katrilyon kWh enerji düşerki 2 milyar ton yakıt eşdeğeridir. Kuraklık temelde sıcaklık ve yağışa bağlıdır ve vejetasyonu sınırlar. Canlılar açısından önemli olansa yağış/evaporasyondur. Yeraltısuyu çok derinde değilse ve porozite yeterli ise genelde varlığını yüzeydeki jips, kalsiyum ve klorürlerden oluşan tuzluluk ile ve jips kristalleri, seyrek de olsa bitkiler, özellikle Chenopodiaeae halofitleri ile belli eder. Fakat suyun çok saf olup bu tür tuzlanmaya neden olmaması da mümkündür. Toprakta su tutulma miktarı yağış sonrası giren suyun evaporasyonla kaybedilenden kalan olup arid zonda tipik olarak su üst toprak tabakalarında kalır. Aşağı iniş oranı ve derinliği tekstür ve tarla kapasitesine bağlıdır. Killi toprağın tarla kapasitesi kumlu toprağın tipik olarak 5 katı olduğundan 50mm.lik yağış kumlu toprakta 50, killi toprakta 10cm.yi TK’ine ulaştırır. Kayalık alanda çatlaktan sızabilen su ise 100cm.ye kadar inebilir. Yağış sonrası buharlaşma başlar. Killerde üst 5cm.lik tabaka hızla kurur. Süzülen suyun %50’si bitkilerce kullanılır,kum da 5 cm. kurur fakat suyun ancak %10’u buharlaşır. Kayalarda ise böyle bir kayıp sözkonusu olmaz. Sonuçta nemli iklimdekinden farklı olarak killi toprak bitkilere yararlı değildir. Üstü taşlık toprak ise en uygun yapıyı oluşturur. Ancak vadi ve çukurlardaki birikim, eğimle kayıp gibi jeomorfolojik yapı bu durumu etkiler. Necev çölünde killi toprakta bitkilerin 35mm su kullanabildiği, bu miktarın kumlut oprakta 90, kayalıkta 50mm, vadilerde 250mm olduğu görülmüştür. Bu nedenle derin kök gelişimi ancak permeabilitesi yüksek toprakta görülür, killi toprakta kök yatay gelişebilir. Kumlu ve taşlı topraklarda bu derinlik taban suyuna kadar ulaşabilir ve derin köklenebilen bitkiler kolayca gelişir. Irak’taki Basra çölünde taban suyu 15m. derinliktedir ve nehirlerce beslenir. Yıllık 120 mm.lik yağış ancak yüzeysel nemlenmeye yeterli olduğundan bitki kökleri taban suyuna erişemez ve yağışlar sonrası zayıf ve geçici bir efemeral örtü oluşur. Yerli halkın kuyular aracılığı ile çektiği su ile sulananan sebze tarımı tuzlanma nedeniyle 1 yıl ömürlü olmaktadır. Bu bitkilerin arasına serpiştirilen çok kolay köklenen Tamarix çelikleri yüzey suyunun taban suyuna ulaşabileceği kadar sulanarak köklerinin hızla geliştirilmesi ile ağaçlara dönüşmesi ormanlaştırılmıştır. Acacia tortilis’in arid zondaki kumlu topraklarda, yıllık 50 - 250mm. yağışlı Sudan steplerinde geliştiği, killi topraklarda ise ancak 400mm.lik yağışta bulunabildiği saptanmıştır. A. mellifera otsu örtü savanası da kumlu toprakta 250-400, killi toprakta ise yıllık 400 - 600mm. yağışla gelişebilmektedir. İklimsel olarak kurak alan yağışa karşı buharlaşmanın fazla, vejetasyonun zayıf ve örtünün <%25 olduğu bölge olarak tanımlanırsa da dünyanın çeşitli yerlerindeki kurak alanlar birbirine fazla benzemezler: Tropik kuşakta aylık sıcaklık ortalamaları fazla farklı değildir. Subtropik kuşakta yıl boyunca değişen sıcaklıklar donlara da neden olur. Ilıman zonda kışlar çok soğuk, yazlar sıcaktır. Vejetasyonu sınırlayıcı ana etmen aylık ve özellikle mesimlik yağış toplamlarıdır. İki yağış mevsimi olan bölgeler , yalnız kışın veya yazın yağış alan yöreler, azve rastlantısal olarak yağış gören yerler ve hiç almayanlar. Buralardaki vejetasyon üzerinde yöresel floranın değişen oranlarda etkisi vardır ve belli familyalar dominanttır. Örneğin K. Amerika’da Cactaceae, G. Amerika’da buna ek olarak bazı Bromeliaceae cinsleri, Holarktik’te Chenopodiaceae, en kurak Avustralya çöllerinde Atriplex vesicaria ve Kochia sedoides hakimdir. İklim yanında edafik faktörlerin farklılığı önemlidir. Aylık yağış ve sıcaklık seyri, kurak dönemlerin 10C / 20mm.lik birimlerinin oranı olarak sıc.ın yağışı aştığı dönemler esas alınarak kurak alan haritaları yapılır.

http://www.biyologlar.com/arid-zon-ve-col-topraklari

Biyoterörizm ve Biyolojik Silahlar

Biyoterörizm kavramı, 11 Eylül 2001 tarihini takiben ABD’de posta kaynaklı şarbon vakalarının görülmesiyle günlük hayatımıza girmiştir. Biyoterörizm kişiler, gruplar veya hükümetler tarafından gerek ideolojik, gerekse politik veya finansal kazanç sağlamak amacıyla hastalık yaratıcı patojenlerin (biyolojik savaş araçlarının-BSA) sivil halk üzerinde, hayvanlarda ve bitkilerde hastalık oluşturmak ve/veya ölüme neden olmak amacıyla açık veya gizli şekilde yayılması şeklinde tanımlanmaktadır. Peki biyolojik silahlar nedir?. Klasik olarak “Biyolojik Silahlar” sadece yaşayan canlılara kitlesel zarar veren patojen (bakteri, virüs, mantar) veya doğada patojen olmayan ancak genetik olarak değiştirilmiş mikroorganizmalar ile bu etkenlerin toksinleri olarak tanımlanmaktadır. Neden insanoğlu biyolojik silahları üretmektedir?. Nükleer, kimyasal ve konvansiyonel silahlarla karşılaştırıldıklarında biyolojik silahların çeşitliliği onları diğerlerinden ayıran en önemli özelliği oluşturmaktadır. Bulaşıcılığı yüksek, kolay ve hızlı üretilebilen, aşı ve tedavisi kullanıcı tarafından kolaylıkla kendi yandaşlarına uygulanabilen hemen hemen tüm mikroorganizmalar biyolojik saldırı amaçlı kullanılabilir. Günümüzde 43 mikroorganizma biyolojik silah adayı olarak kullanılabilir olmakla birlikte, bunlar arasında en önemlileri; şarbon, brusella, veba, Q ateşi, tularemi, çiçek, viral ensefalit, viral hemorajik ateş, botulizm toksini ve stafilokoksik enterotoksin B'dir. Biyolojik Silah Olarak mikroorganizmaların Avantajları: • Çok geniş alana dağılabilmesi (etki alanının geniş olması) • Kolay üretilebilir depolanabilir ve Üretim merkezlerinin kamufle edilebilir olması • Düşük maliyetle üretilmesi Kilometrekare kare başına düşen insan sayısının %50’sini etkileyen doz (LD50) baz alınarak maliyet hesaplandığında, konvansiyonel silahlar 2000$, nükleer silahlar 800$, kimyasal silahlar 600$, biyolojik silahlar ise 1 dolara mal olmaktadır. Bu nedenle biyolojik silahlar “Fakirin Atom Bombası” olarak tanımlanmaktadır. • Kullanımlarının kolay olması ve iz bırakmaması Biyolojik silah ajanları renksiz, kokusuz, tatsız olmaları nedeniyle insan gözüyle görülemezler. Aerosol bulutu halinde atıldığı zaman, mikroskopik boyutlardaki partiküller (1-10 m çapında) solunum ile akciğerlerin uç bölgelerine ulaşırlar. Ayrıca, etkilerinin ancak kuluçka süresinin sonunda görülmesi nedeniyle maruz kalanlar semptomlar ortaya çıkana kadar hedef olduklarının farkına varamazlar ve bu arada salgın yayılmış olur. • Az miktarının büyük kitleleri etkilemesi ve oldukça fazla sayıda insanda hastalık ve/veya ölüme neden olabilmesi: Örneğin Washington bölgesine, rüzgar yönünde 100 kg. aeresol şeklindeki şarbon sporunun yayılmasını takiben, 130000 ile 3000000 arasında ölüm gözleneceği, CDC tarafından geliştirilen bir ekonomik modele göre ise saldırıya maruz kalan her yüz bin kişi için 26.2 milyar dolarlık bir bütçe kaynağı gerektiği hesaplanmıştır. Bu da bir BSA’nın etkisinin bir megatonluk nükleer savaş başlığı etkisinden büyük, bir hidrojen bombasının etkisine ise eşit ya da daha büyük olacağı anlamına gelmektedir. • Dış ortam koşullarına dayanıklılığının yüksek olması: Örneğin şarbon sporu toprakta 40 yıldan daha uzun süre kalabilmektedir. • Bazı etkenlerin insandan insana bulaşma olasılığı: Veba, çiçek, kanamalı ateş gibi BSA’ya bağlı enfeksiyonların insandan insana bulaşarak salgın oluşturma ve böylece silahın hedef aldığı kitleden çok daha büyük bir kitleyi etkilemesi mümkün olmaktadır. Ayrıca BSA’lar yayılımı takiben insan vücudu gibi uygun bir ortam bulduklarında çoğalmaya başlarlar; bu şekilde kullanıldıkça çoğalan başka bir silah bulunmamaktadır. • Kitleler üzerinde panik etkisi yaratması ve sağlık sisteminde çökmeye neden olması sayılabilir Kendisini kullananlara zarar verebilmesi, etkilerinin önceden tahmin edilememesi ve uzun süre doğada kalabilmeleri ise BSA’ların olumsuz yönleridir. Biyolojik ajanların kullanımı temel olarak üç yolla olmaktadır: Kontamine su ve gıdalar, infekte vektörler ve aerosolizasyon aracılığıyla ile uygulanabilirler. Ancak, vektörlerin geniş kitleler üzerinde etkili olmaması ve gelişmiş ülkelerin su sistemlerindeki ileri düzeydeki arıtma teknolojisi nedeniyle BSA’nın bu şekilde kullanımı sınırlı olup, tercih edilmez. Aerosol, yapısı nedeniyle geniş bir yayılım sağladığı için biyoterörizmde kullanılan en etkin araçtır. Aerosol şeklinde hazırlanmış biyolojik silahlar; bakterilerin tarım ilaçlaması şeklinde uçaklardan veya sprey tanklarından yerleşim yerlerinin üzerine püskürtülmesi suretiyle etkili olurlar. Düşük maliyeti ve kolay uygulanabilmesi tekniğin avantajları olmakla birlikte etkili olabilmesi için ideal hava koşulları gereklidir. Şiddetli rüzgar, yağmur ve güneş ışınları gibi hava koşulları etkilerinin azalması ayrıca uygulama hatasına bağlı kullanıcının da zarar görmesi gibi olumsuzlukları da söz konusudur. BSA’nın çeşitliliği, hangisinin kullanacağının önceden bilinmemesi, kimyasal silahlarda olduğu gibi hemen belirti vermemesi, bu nedenle de olay mahallinin bilinememesi, hastalık tablosunun birbirine benzemesi dolayısıyla etkenin hangi ajan olduğunun kolayca belirlenememesi ve o bölgede doğal bir salgın olabileceği ihtimali gibi etmenler BSA’nın saptanmasını önemli ölçüde güçleştirmektedir. Yanısıra hangi ajanın ne zaman kullanılacağının bilinmemesi aşı gibi koruyucu önlemlerin uygulanmasını da imkansız kılmaktadır. Biyolojik saldırı olduktan sonra bazı bakterilere karşı antibiyotikler ile proflaksi uygulanabilirse de genetik olarak bu ilaçlara karşı dirençli hale getirilmiş BSA’nın olabileceği göz önünde bulundurulmalıdır. Etkili bir savunma için, saldırı olmadan önce ülkedeki ilgili kurum ve kuruluşların rasyonel ve ekonomik bir şekilde organizasyonu ayrıca operasyonda görev alacak teknik personelin teorik ve pratik eğitimlerinin yapılması gerekir. ABD Hastalık Kontrol ve Önleme Merkezi tarafından (CDC) biyolojik silahlara karşı savunma stratejileri beş ana başlık altında sınıflandırılmıştır. 1.Hazırlık, önlemler 2.Saptamak, gözetim (ilk olgular, otopsi) 3.Etkenin özelliklerini iyi bilme 4.Koruyucu yöntemlerin geliştirilmesi 5.İletişim ağının sağlıklı çalışması Ne zaman ve nereden geleceği tahmin edilemeyen biyoterörist saldırılara %100 hazırlıklı olmanın olanağı yoktur. Ancak, hangi BSA’nın karşı tarafın elinde olduğunu bilmek ve bu ajanlara karşı tanı, tedavi ve korunma açısından hazırlık yapmak esastır. BSA’nın kullanılmasını takiben hastanelerin aktive edilmesi, arındırma, izolasyon, karantina, proflaksi, aşılama, otopsi ve diğer koruyucu önlemlerin belirlenip sağlık örgütünün salgına vereceği savunma yanıtı için epidemiyolojik kapasitenin artırılmasına yönelik hazırlık planları geliştirilmelidir. Bu hazırlık planları, BSA’nın tanımlamasına yönelik yerel, bölgesel ve ulusal laboratuvarların tanı olanaklarına göre belirlenmiş bir laboratuvar ağı oluşturmalarını ve ajanların moleküler karakterizasyonu dahil her türlü incelemeyi yapabilecek çok gelişmiş bir referans laboratuvarının kurulmasını, laboratuvar ağı içerisinde verilerin sağlıklı paylaşımı için bilgisayar ağının kurulması, ulusal veya bölgesel düzeyde sürveyans sisteminin oluşturulması ile şüpheli olguların tanısı ve değerlendirilmesi için standart kriterlerin geliştirilmesini içermektedir. Ayrıca, sağlık personelinin nükleer, biyolojik ve kimyasal ajanlar (NBC) konusunda sürekli eğitilmesi gereklidir. Ulusal ve bölgesel düzeyde ilgili birimler arasında hızlı ve etkin bir iletişim ağının oluşturulması, kesin ya da şüpheli saldırı durumlarında paniğe meydan vermeden halkın bilgilendirilmesi sağlanmalıdır. BSA’nın ne gibi hastalıklar oluşturabileceği, tanı, tedavi ve korunma yolları hakkında toplumun eğitilmesi, biyolojik saldırı sırasında ve sonrasında halkı bilgilendirecek ve endişelerini giderecek eğitim materyallerinin hazırlanması gereklidir. Günümüzde, BSA’nın hızlı saptanmasına yönelik farklı sistemler geliştirilmiştir. Bu tanımlama sistemleri BSA kullanımına bağlı oluşan yapay bulutların analizine dayanan askeri sistemler ile (15 dakika içerisinde) olay yerine taşınabilir sistemler veya laboratuvarda uygulanan moleküler yöntemlere (bir saatten daha az zaman içerisinde) dayanmaktadır. “Biyolojik silahlara karşı korunmada en etkin yol koruyucu giysi ve maske kullanmaktır”. Savaş ortamında yapılabilecek bir biyolojik saldırıda 1-10'luk partikülleri filtre edebilen bir maske ve NBC koruyucu elbisesi birçok BSA için belli derecelerde güvenlik sağlayacaktır. Besin ve su kaynakları zincirinin de biyolojik ajan açısından izlenmesi gereklidir. Bütün teknolojik gelişmelere rağmen, sabunlu su ile vücudun ve özellikle ellerin yıkanması, halen oldukça geçerli ve önemli bir korunma yöntemidir. Biyolojik savaş ajanlarının gelişmesi ile beraber dünyada bu silahların üretimi, stoklanması ve kullanımının önlenebilmesi için 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. Sonuç olarak, potansiyel BSA'ların tanısını koyabilecek referans laboratuvarların kurulması veya mevcut olanlara bu özelliklerin kazandırılması, olay yerinde tanımlama sistemlerinin sağlanması ve BSA’ları tanıyan, etkilerini ve taktik kullanımını bilen uzman biyolojik örnek alma ekiplerinin kurulmasına yönelik düzenlemelerin yapılması için bilimsel kuruluşlar, Üniversiteler ve TSK'lerin bu konularda işbirliği içinde çalışması ülkemiz güvenliği ve çıkarları açısından son derecede önemlidir. KAYNAKLAR • Bellamy RJ, Freedman AR. Bioterrorism. Q J Med 2001;94:227-234. • Kortepeter MG, Parker GW. Potential biological waeapons threats. Emer Infect Dis 1999;5(4):523-527. • Spencer RC, Lightfood NF. Preparedness and Response to Bioterrorism. J Infect 2001;43:104-110. • USAMRIID’s Medical Management of Biological Causalties Handbook.4rd ed. Feb 2001. • Henderson A, Inglesby V, O’Toole T. Bioterrorism Guidelines for Medical and Public Health Management. ASM press 2002. • Prevention of a Biological and Toxin Arms Race and the Responsibility of Scientists. Eds.Geissler E, Haynes RH. Akademie-Verlag Berlin 1991. • Public health response to biological and chemical weapons—WHO guidance(2004). Chapter 3&4, p 38-76. • Erdem H, Pahsa A. Biyolojik Silah Saldırılarına Yönelik Ulusal ve Bölgesel Yaklaşımlar. Infek Derg 2002;16(3) Ek. Uzm.Dr.Selçuk Kılıç RSHMB Salgın Hast. Arş.Md., Parazitoloji Laboratuvarı Kaynak: T.C. SAĞLIK BAKANLIĞI Refik Saydam Hıfzıssıhha Merkezi Başkanlığı ve Temel Sağlık Hizmetleri Genel Müdürlüğü Cilt:4 Sayı:5 Eylül-Ekim 2005 AYLIK EPİDEMİYOLOJİ RAPORU

http://www.biyologlar.com/biyoterorizm-ve-biyolojik-silahlar

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Mezozoyik

(2.. zaman) / Sürüngenler Zamanı 250 milyon önce başlamış, 65 milyon yıl önce sona ermiştir. Yaklaşık olarak 185 milyon sürmüştür. Mezozoik 3 döneme ayrılarak incelenmektedir. Bunlar sırasıyla Triyas, Jura ve Kretase olarak adlandırılmaktadır. Bunlardan Triyas’da Pangaea kıtası bir bütün halinde ve henüz parçalanmamış durumda olup iklim karasal ve serttir. Büyük yok oluşum ardından denizlerde ve karalarda yaşamın yeniden çeşitlenip zenginleşmeye başlamıştır. Bu dönemde İlk memeliler ve pek çok yeni sürüngen grubun ortaya çıkmıştıur. Triyas'ta, ilk toplu yok oluştan kurtulmayı başaran az sayıda ve çeşitlilikteki canlı grubu, uyumsal açılımla boşalan ekosistemlere yayılmışlardır. Sürüngenler süper kıtalar üzerinde ve okyanuslarda uygun iklim koşulları altında çok daha kolay evrimleşme olanağı buldular. Mezozoik’in Jura dönemimde Pangaea kıtasının parçalanmaya başlamıştır. Dinozorlar karasal ekosistemlerin baskın omurgalı grubu olmuştur. Bu devirdeki sürüngenlerin çeşitliliğinden dolayı bir bütün olarak mezozoik zamanına “sürüngenler zamanı” da denilmektedir. Jura’da ilk defa kuşlar görülmüştür. Jura'nın sonlarına doğru ilk çiçekli bitkiler ortaya çıktı. Kretase döneminde dinazorlar büyük bir yok oluşla ortadan kalkmıştır. Bu dönemde Pangaea kıtasının parçalanmış ve iki süper kıtaya ayrılmıştır. Bunlardan kuzey yarım kürede yer alana Lavrasya, güney yarım kürede yer alan süper kıtaya da Gondwana adı verilmiştir. Bu iki kıta Jura’da birbirinden tamamen ayrılmıştır. Devrin sonunda bir meteor çarpması sonucu gerçekleştiği düşünülen büyük yok oluş, hem dinozorları ve hem de pek çok yaygın canlı grubunu ortadan kaldırdı. İKİNCİ KİTLESEL BİYOLOJİK YOKOLUŞ Yaklaşık 65 milyon yıl önce yerküre, korkunç bir meteor yağmuruna hedef oldu. Oluşan yoğun gaz ve toz bulutu güneşin yararlı etkilerini uzun süre kesti. Bu durum, iklimde büyük çapta değişikliklere yol açtı ve besin zinciri bozuldu. Bu büyük trajedi ile başta dinozorlar olmak üzere karalarda ve denizlerde canlıların bir çoğu yok oldu. Geriye kalan gruplar arasında en şanslıları memelilerdi. Bu büyük felaket memelilerin 3. zamanda gelişmesi ve evrimleşmesi için evrimsel olarak boş alanlar yarattı.

http://www.biyologlar.com/mezozoyik

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi

Biyolojik Savaşmı Sinir Savaşımı ?

Biyolojik savaş eskiden sadece Andromeda Strain (1971), Outbreak (1995), Twelve Monkeys (1996), Mission Impossible (2000) gibi filmlere ve The Coming Plague (1995), The Hot Zone (1995), The Cobra Event (1998), Rainbow Six (1999) gibi kitaplara konu olurken, Körfez Savaşı sırasında Amerika'nın Iraklı bilim adamları tarafından üretilen Anthrax temelli biolojik silahlara karşı askerlerine aşı yapma konusundaki titizliğiyle daha da önemli ve gerçek bir savaş haline geldi. Başkalarına zarar vermeye yönelik bulaşıcı bakteriyel veya viral (virüslerle ilgili) maddeler olarak bilinen biyolojik silahların çok uzun bir tarihi var. İlk çağ insanları insan ve bitkilerden elde edilen biyolojik toksinlere bulaştırılmış oklar kullanır ve düşmanlarını dışkılardan elde ettikleri zararlı toksik maddeleri su kaynaklarına bulaştırarak öldürürlerdi. Bir Rus şehri olan Kaffa'yı kuşatan ortaçağ savaşçıları veba hastalığı bulaştırılmış cesetleri mancınıklarla şehrin duvarlarından fırlatmışlardı.Avrupalılar bu hastalıklara direnci olmayan Yerli Amerikalılara çiçek hastalığı veya kızamık bulaştırılmış battaniyeler vermişlerdir.Biyolojik silahlar ilk olarak 2. Dünya savaşında kullanılmıştır. Zaman geçtikçe biyolojik silahlar biyolojik olarak çıkarılmış toksinler ve zehirler içermeye başladı.Bu zehirli maddelerden en tehlikelileri arasında çiçek hastalığı, Botalinyum toksini, Anthrax ve ricin gelir. Bazıları ölümcül iken diğerleri yerleşim yerlerini etkisiz hale getirir veya öncelikle hayvan ve bitkilere zarar verir. Bugün çoğu ülkenin bu konuya aşırı yatırım yaptığı biliniyor. Biyolojik silahlar modern bir konu oluyor Japonya 1918'de biyolojik silahlar üretimi ve araştırmalarına kendini adamış özel bir askeri ünite olan Ünite 731 ile ilk saldırgan biyolojik silah programını başlatmıştır. 1931'de bu ünite Çinli insanlar üzerinde deneyler yapılanbir yer olan Çin'deki Mançurya'ya taşındı ve aslında 1942'ye kadar bu ünite değişik şehirlere saldırılarda bulundu. En az 10,000 Çinli bu deneyler sırasında ölmüştür. 1942'de Amerika bu programı öğrendi ve böylece o da kendi programını başlattı. 1969'da Amerika artık anthrax, botulism, tularemia, brucellosis, Venezuela ve Q humması gibi hastalıklara sebeb olan maddelerle silahlanmasını tamamlamıştır. 1969'da başkan Nixon Amerika'nın tek yanlı ölümcül veya etkisiz hale getirici kimyasal maddeler ve silahların kullanımından vazgeçtiğini duyurdu ve şartsız olarak tüm biyolojik savaş metodlarını kullanmaktan vazgeçti. Bununla beraber Amerika biyolojik programı sadece katı bir şekilde tanımlanmış bağışıklık gibi savunma önlemleriyle ilgili araştırma yapacaktı. Stoklanmış bütün materyalin yok edilmesi istendi. ABD ve diğer 165 ülke biyolojik ve toksik silah antlaşmasını imzaladı ve 144 ülke bu antlaşmayı onayladı. Ama biyolojik sailahlar antlaşması uygulamaya geçmediği müddetçe etkili olamazdı. Örneğin, Rusya antlaşmayı imzaladı ama programlarına devam etti. 1979'da Sverdlovsk yakınlarındaki bir merkezde kazara Anthrax sızması en az 66 kişinin ölümüyle sonuçlandı. Sovyet otoriteleri biyolojik silah üretimini inkar etseler de yıllar sonra Yeltsin o zamanlar Anthrax'ın üzerinde çalışmalar yapıldığını söyledi. Yeltsin sonra tüm programların durdurulduğunu ve stokların yok edildiğini dile getirdi. Ama kanıtlar saldırı programlarının bir kısmının hala devam ettiğini gösteriyor. Sovyetler'in 1991'de çöküşüyle biyolojik silah üretimi konusunda bilgiler yayılmaya başladı. Margolis'e göre eskiden biyolojik savaş kurumlarında çalışan 60 bin bilim adamı ve teknisyenin şu anda Irak, Suriye, İsrail, İran ve Sırbistan gibi geniş biyolojik savaş silahlarıyla dolu cephaneliklere sahip ülkelerde çalışıyorlar. Hindistan bile Rusya'dan bu konuda yeterli yardım alabilir. Irak biyolojik silah programını 1995'da bildirdi. İyi olan şu ki, bu gibi silahlar misilleme olur korkusuyla Körfez savaşı sırasında kullanılmadı. Birleşmiş Milletler 1996'da Irak'ın biyolojik silah programında ne bulduysa yok etti. Çin, İran, Tayvan, Suriye, Küba, Kuzey Kore, Mısır, İsrail ve Libya'nın aynı tür programlara sahip olduğundan şüphe ediliyor. Biyolojik Silahlar Niçin Kullanılıyor İdeolojileri ve ilgileri insan hayatı ve gelecek nesiller dahil olmak üzere herşeyin üzerinde tutan milletler ve gruplar için bu tür silahlar çok çekici görünüyor. İşte bazı nedenler: 1. Biyolojik silah sayı bazında ele alındığında konvansiyonel silahlardan daha etkili. Sadece 8 gr "A" tipi olarak bilinen botalinyum toksin -bilinen en ölümcül madde- dünya üzerinde hiç canlı bırakmayacak kadar bir etkiye sahip olabilir.1 gr Anthrax 100 milyon ölümcül doz içerir ve birkaç kilosu Hiroşima'da ölen insan sayısı kadar ölümlere sebep olabilir. Genel düşündüğümüzde, birkaç kilo biyolojik etmen bir kaç ton nükleer gazın yapabileceği etkiyi yapabilir. Biyolojik silahlar çok etkilidirler çünkü aşırı toksik olmakla beraber hızlı çoğalan ve hedef noktalara ulaşan yaşayan organizmalardan oluşur. 2. Kimyasal ve nükleer silah üretmek çok sofistike ekipmanlar ve çok iyi yetişmiş eleman gerektirirken, bi-yolojik silah çok mütevazi bir eğitim ve yatırım gerektiriyor. ABD silah kontrol ve silahsızlanma acentası eski asistanlarından Kathleen C.Bailey, 10000 dolarlık ekipman ve 15x15 alanın muazzam biyolojik silah cephaneliği üretmek için yeterli olduğunu dile getiriyor. Örneğin; 1 km'lik alan bulaştırmak için 2000 $'lık konvansiyonel silah, 800$'lık nükleer silah, 600$ kimyasal silah gerektirirken, sadece 1 $'lık biyolojik silah bu alanı yerle bir etmeye yeter. Program, Phd'sini tamamlamış bir süpervisor kontrolünde bir düzineden az bilim dallarından mezun teknisyenle devam ettirilebilir. En biyolojik silah mikropları ile ilgili temel bilgi her yerde mevcut olup, ekipman ve kimyasallar bir çok yerden temin edilebilir. Seri ve yoğun üretim için canlı silahın sadece küçük bir örneğe ihtiyacı var. Bazı maddeler doğal olarak toprakta mevcut veya bir biotek şirketinde kolayca bulunabilir. Bir çok araştırmacı Saddam Hüseyin'in kendi orijinal Anthrax kültürünü edinmek için bu ikinci metodu kullandığı konusunda hemfikirler. 3. Birçok biyolojik silah taşınabilen ve/veya saklı şartlarda üretilebildiği için onları üretim aşamasında ortaya çıkarmak çok zor. Ortaya çıkarıldığında alan hızlıca te-mizlenebilir ve farmakolojik araştırmalar yapılan ve biyoloji laboratuvarına dönüştürülebilir. Ayrıca X-ışın makineleri, metal detektörler, eğitimli köpekler ve nötron bombardımanı gibi antiterörist sistemler biyolojik silahları ortaya çıkaramaz. 4. Zarar sadece insanlara ve diğer canlılara verilir. Böylece kızılötesi yapılar zarar görmez. Böyle bir tehditten çıkacak tek korku hükümetin paniğe kapılması ve silahın bırakılması ve ortaya çıkarılması. Arasında geçen uzun zamanın tanımlama ve teşhisi çok zor hale getirilmesi olarak göz önüne çıkıyor. Biyolojik silahların belli dezavantajları vardır: 1) Etkili bırakılmaya olan ihtiyaç. Birçok biyolojik silah nefes verip alırken etkisini gösterir. Çok büyük partiküller solunum sisteminde tutulurken küçük partiküller dışarıya nefesle atılır. Partiküllerin ciğerlerde kalması için, 1-5 Angstroms arasında olmalı. Japonya'daki bir biyolojik silah teşebbüsü hüsranla sonuçlandı, çünkü dissemination aracı (önceden haber veren cihaz) etkisizdi. 2) Dissemination olsa bile istenen sonuç kesin olmaktan çok uzak. Sporlar dahil çoğu biyolojik silah materyali ultraviyole ışınlar ve kurutma yöntemleriyle yok edilebiliyor. Havaya bırakılan maddeler hava değişiklikleri nedeniyle beklenmeyen bir şekilde yayılma gösterebilir.Yağmur bu maddeleri hedeflerine ulaşmadan yok edebilir. Ayrıca biolojik silahlar dönebilir ve onu bırakanları da etkileyebilir. Saldırının zayıflığı Biyolojik silahların iki kullanım sahası var: savaş alanı ve sivil hedefler. Savaş Alanı: Biyolojik silahları burda dış şartlara aşırı bağlılık, geçikmiş etkileri kendine bulaştırma, etkileri bulaştırılmış bir alanın ne zaman dönülecek kadar güvenli olacağı konusundaki güvensizlik ve aşılama veya koruyucu giysi konusunda nötralleştirme gibi dezavantajları var. Sivil Hedeflere yönelik kullanım: Bu alandaki Biyolojik silah kullanımı gerçek dehşeti doğuracak güce ulaşır. Çünkü, siviller böyle bir saldırıya hazır olmayacaklardır ve sonuçtaki salgın kontrol edilemeyecek kadar büyük olacaktır. Saldırı gizli ise otoriteler kaynağı tesbit edemeyeceklerdir ve etkilenen insanlar hastaneleri doldurana kadar saldırının farkına varamayacaklardır. Sonuçta madde tanımlansa bile, bulaşıcı geniş sahaya yayılmış olacaktır. Aşı mevcut değilse, sağlık personelleri çok fazla yardım edemeyeceklerdir. ABD bu tip saldırılara karşı etkileneceğe benziyor ve kendini korumak için çok titiz çalışmalar yapıyor. Peki, madem Biyolojik silahların temin edilmesi çok kolay niçin şimdiye kadar sivil hedefler üzerinde kullanılmadı? Bunun nedenleri arasında karşı saldırı korkusu ve toplumda uyanabilecek düşmanlık hisleri görünüyor. Biyolojik silahların potansiyel kullanıcıları dezavantajların avantajlardan daha ağır bastığını düşünürler ama bu düşüncenin her zaman devam etmeme ihtimaline karşılık ABD ve diğer ülkeler milli sağlık bakım ünitelerini ve personellerini böyle bir duruma karşı nasıl hazırlayacağı konusunda çalışmalar yürütüyorlar . Son Gelişme: 26 Temmuz 2001 Washington Post gazetesi ABD'nin biyolojik silahlardan vazgeçecegini, çünkü yeni oluşturulacak protokolün "kopyalamayı durdurmayacağı ve ABD'nin farmakolojik ve kimyasal endüstrisi noktasında casusluk yapıp bilgi sızdıracağı"nı düşünüyor. Sonuç: Tüm dinler yaşamın doğuştan kutsal ve saygı duyulmaya değer olduğu için bu tür silahları lanetlemişlerdir. Bununla beraber reel-politik, kâr için duyulan açgözlülük, ideolojik çatışmalar ile doğal ve diğer kaynaklar üzerinde kontrol etme gibi sebeplerden dolayı birçok hükümetin ve insanın dini çağrılara kulak tıkadığını görmekteyiz. Maalesef, bir devletin ve dahası bir grubun bu yolda ilerleme için verdiği kararlar, diğerlerinin kendi korunma içgüdülerinden dolayı aynı yolu takip etmemelerine sebep olmuştur. Bu yolda çok büyük ilerleme kaydettik ve kimse ne zaman biteceğini kestirememektedir. *Kaynak: The Fountain, Biological Warfare, October-December 2001, ISSUE 36. Yazar: By Joseph CLAY* - İng. Çev. Mustafa TOPRAK

http://www.biyologlar.com/biyolojik-savasmi-sinir-savasimi-

YAPRAKLARIN GENEL YAPISI

Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2'i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır. YAPRAKLARIN GENEL YAPISI Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir. Öncelikle yaprakların dış yapılarını inceleyelim. Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar. Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu. Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir. Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir. Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir. Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır. Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar. Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde tasarlanmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir. Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını genişletir veya daraltırlar(porları) Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler. KUSURSUZ BİR TASARIM: GÖZENEKLER Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2'i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur. Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur. Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir. Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar. Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.

http://www.biyologlar.com/yapraklarin-genel-yapisi

Arazi Çalismalari Için Gerekli Malzemeler

1. Bitki koleksiyoncusu araziye çikarken her türlü çevre kosullarini önceden düsünerek, ortamda rahat dolasabilecegi giysiler seçmelidir. Özellikle uygun bir ayakkabi ya da çizme ve ayrica yagmurluga ihtiyaci vardir. 2. Orta boylu saglam ve kullanisli bir not defteri ile bir kursun kalem gereklidir. Deftere arastiricinin verdigi tarla (arazi) numarasi, örnegin alindigi yer, flora hakkinda temel bilgiler, toplama tarihi, bitkinin mahalli adi, biliniyorsa örnegin bilimsel adi, çiçek rengi ve arazinin yüksekligi gibi bilgiler yazilmalidir. 3. Arastirilacak bölgenin haritasi; 1:100.000'lik harita ideal olmakla birlikte 1:250.000'lik haritalar da kullanilabilir. Bitki toplama çalismasi yapilan istasyon harita üzerine isaretlenir. 4. Altimetre (yükseklik ölçer) ve Fotograf makinesi 5. 6x veya l0x büyütmeli bir el büyüteci. 6. Toplanan bitkileri içine koymak için plastik torbalar veya metal çantalar, sünger ve ip. 7. Amaca göre degismekle beraber, 45 x 30 cm. boyutlarinda tahtadan veya metalden yapilmis degisik tiplerde presler ve presleri sikmak için örgü kemerler. 8. Bitkileri toplarken sökmeye yarayan batirici alet (zipkin), kisa sapli kazma, saglam bir kürek, güçlü bir cep biçagi, agaç dallarini ayirmak için bahçe biçagi, acemiler için el biçagi, çaki, budama makasi gibi aletler. 9. Bir pusula. 10. Kurutma kagitlari ve gazete kagitlari (44x28 cm. boyutlarinda), oluklu mukavva, filtreli kagit. 11. Bahçivan eldiveni. 12. Tohumlar için küçük kese kagidi veya kagit zarflar. 13. Su bitkilerini yakalamak için kanca. 14. Canli materyal için islanmaz küçük kutular. 15. Toprak örnekleri için küçük bez torbalar.

http://www.biyologlar.com/arazi-calismalari-icin-gerekli-malzemeler

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Lactarius Kanlıca mantarı

Alem: Fungi Bölüm: Basidiomycota Sınıf: Homobasidiomycetae Alt takım: Russulales Familya: Russulaceae Cins: Lactarius Tür: Lactarius salmonicolor Lactarius salmonicolor, Kanlıca mantarı olarak da bilinir, Russulaceae ailesinden yenebilir bir mantar türü. Şapka büyüklüğü 5-15 cm kadardır. Mantar gençken ortası hafifçe çukurdur, kenarı içeri kıvrıktır, büyüdükçe ortası daha da çukurlaşarak hemen hemen huni şekline döner, rengi turuncudur, açık sarıdan erik sarısına kadar değişir. Genel görünüşle turuncu ve sarıdan ibaret halkalıdır. Çizildiği zaman havayla temas edince yeşil renkleme yoktur. Lameller başlangıçta kırmızımtırak sarı beyaz, daha sonra açık portakal rengi tonundadır. Sapa doğru kıvrımlı şekil alır, sap üzerinde birazcık devam eder. Sapı 3-6,5 cm boyunda 0,8-2,5 cm kalınlığında, silindir şeklindedir. Renk bakımından portakal sarısı, dip kısmında kırmızımtırak sarı beyaz, yukarı kısmında şarap kırmızısı turuncudur. Sapın etli kısmı kırmızı-pembedir ve koparıldığında turuncu renkte bir sıvı çıkarır, sıvı hava ile temas edince kırmızılaşır. Gençken içi dolguludur, daha sonra şapkaya kadar olan alt kısımda boşlukludur. Etli kısmı kırmızımtırak sarı beyaz renkli, meyve kokulu ve yumuşak, sünger gibidir. Spor izi parlak kırmızımtırak sarı, tunç rengindedir. Çam meşçerelerinde ve çam ormanı açıklıklarında, çayırlıklarda, Avrupa'da yapraklı ağaç ormanlarında, ilkbahar ve sonbaharda yağmurlardan sonra görülür. Mantarın tadı acımsı fakat lezzetlidir.

http://www.biyologlar.com/lactarius-kanlica-mantari

Zeitgeist ve Biyoinformatik

Zamanın ruhu. Enteresan bir kavram. Bu kavramın biyoinformatikle olan ilişkisini anlatabilmek için bu konuyu iki ayrı yazıda ele alacağım. Geçen gün sıradışı bir belgesel izledim: "How Earth Made Us: Winds". Rüzgarların medeniyetleri nasıl şekillendirdiğini anlatıyordu. Birbirini bu kadar az çağrıştıran iki kavramın birbiriyle belki hiç bir şeyin olmadığı kadar içiçe olması çok şaşırtıcı geldi bana; ve bunu ancak bu yüzyılda keşfedebilmemiz de bir o kadar hayret verici. Belgeseli yarısında izlemeye başlamıştım ancak bahsedilen ilişki o kısa zaman diliminde beni çarpmaya yetti. Diyordu ki; dünyayı şekillendiren birkaç büyük hava akımı döngüsü var, ve bunların bazıları yıllık, bazıları on yıllık, ve bazıları 50 yıllık döngüler. Bu döngülerdeki değişim yağmurun dünya üzerindeki dağılımını sürekli değiştiriyor fakat bazıları o kadar uzun sürelerde etkili ki, insan ömrü bunları tespit ve takip edebilmek için yeterli gelmiyor. Bu nedenle de bazı motiflerin [pattern] tespiti bu yüzyıla gelinceye kadar mümkün değildi. Suyun miktarındaki değişim, özellikle de azalma o su kaynağına bağımlı olarak ortaya çıkan bir medeniyetin kaderini doğrudan etkiliyor. Hatta bu nedenle sırf kuraklıktan ötürü tamamen terkedilen yerleşim yerleri ve sona eren medeniyetler varmış; günümüzün temiz su şebekeli şehir yapısında bunu düşünebilmek çok zor geliyor. Ve bilim ancak bu günkü kadar gelişip de, birçok fiziksel etkinin arkasında yatan büyük resmi görmeye başladıkça bazı şeyler anlamlandırılabiliyor. Gelelim zamanın ruhuna. Deniyor ki, herhangi bir zaman diliminde tarihin nasıl şekilleneceği büyük oranda dış etkenlere bağlıdır, buna da zamanın ruhu denir. Bundan birkaç asır önce bir su kaynağına yakın olmadıkça bir medeniyet inşa etmek mümkün değilken, artık bir çöl dahi ehlileştirilebiliyor. Gerçi bu ehlileştirme teknolojisini de o çölün sakinleri değil, birçok açıdan kanlı bıçaklı oldukları bir ülke geliştiriyor. Tolstoy diyor ki, liderlik büyük ölçüde kişilerin değil, bulundukları zamanın bir ürünüdür. Dolayısıyla o zamanın şartları büyük ölçüde kimin lider olacağını empoze eder; bunu rüzgar ve medeniyet ilişkisi paralelinde düşünelim. Bu açılardan bakınca, aslında yaşadığımız zaman diliminde ortaya çıkan, önem kazanan, önem kaybeden, veya farkedilmeden yok olup giden kavramların/disiplinlerin aslında zamanın ruhu tarafından şekillendirildiğini farkedebiliyoruz. Diyebilirsiniz ki, bunu farketmek bu kadar da zor değil. Evet, insanın önüne hazır olarak konulduğunda fazlasıyla kolay, ancak zor olanın, bu yaklaşım gözlüğünü takarak dünyaya tekrar bakmak olduğunu düşünüyorum. Bu bakış açısının bize kattığı en büyük şey, geleceği öngörebilmek, veya farklı ve yeni bir kelimeyle, uzgörebilmek. Sonunda biyoinformatiğin zamanın ruhuyla olan ilişkisine gelebildik. Zamanın ruhunun son birkaç yüzyıldaki değişimi, standardizasyonun dünya üzerinde yaygınlaşmasını beraberinde getirdi. Bilim bu nedenle bu denli gelişti ve hızlandı, sanayi ve teknoloji de yine aynı şekilde bundan nasibini aldı. İçiçe geçen birçok şeyin arkasında, zamanın son dönemde hızlanması yatıyor aslında. Zamanın hızlanmasıyla da kitlesel alışkanlıklarımız bu hıza ayak uydurabilmek adına şekil değiştirmeye başladı. Yalnız perde arkasında şöyle bir durum var; bu değişim o kadar büyük ki, hayatı yeniden öğrenmek ve keşfetmek zorunda kalmaya başladık. Abarttığımı düşünüyorsanız cep telefonunuza bakın, bilgisayarınıza bakın, biraz daha geri gidip ulaşım dönüşümüne bakın, bilginin yayılımına bakın. Örneğin, bundan 20 sene önce herhangi bir bilgiye ilişkin ansiklopedi vardı, ve o ne derse oydu. Bu nedenle de güvenilir olduğunu düşündüğümüz kişiler tarafından yazılır ve kontrol edilirdi, yani bilginin güvenilirliği çoğu zaman büyük bir problem değildi. Ancak şimdi, herkes malumat veya bilgi üretebiliyor ve herkesin ulaşımına sunabiliyor; artık bilgiye ulaşmanın kendisinden öte bilginin güvenilirliğine ilişkin kaygılar ön plana çıktı ve bu nedenle daha önce yapılabilmesi mümkün olmayan bir proje dünyaya geldi: Wikipedia. Bilginin güvenilirliğine ilişkin bir otokontrol mekanizması kuruldu; bilgisayarlar bu kadar yaygınlaşmadan önce böyle bir şeyin mümkün olamayacağını rahatlıkla söyleyebiliriz.  

http://www.biyologlar.com/zeitgeist-ve-biyoinformatik

Bitki Örneklerin Toplanma Zamanı ve Şekli

Toplanacak bitkiler kolaylikla taninabilir büyüklükte olmalidir. Ayrica bitkilerin tanisinda resimli teshis kitaplarina ihtiyaç vardir (Aichele, 1975; Rauh, 1954; Schindelmayr, 1968; Olberg, 1963; Volger, 1962; Bursche, 1963; Rytz, 1989; Özer ve ark., 1996). Yeni baslayanlar için hata yapmak kolaydir. Fazla miktarda toplanan bitkilerin Laboratuvarda götürülmesi kolay degildir. Bitkiler kisa zamanda pörsüyerek bozulabilirler. Ayrica, bitkileri toplamak veya preslemek, daha sonra kurutulmus bitki topluluklarina isim vermek kolay degildir. Böyle malzemenin belirlenmesi deneyim sahibi olmayanlar için mutlaka güvenilir degildir. Deneyimsiz bir koleksiyoncu, bitkilerin sadece siniflarini bulur ve prese koyar, daha sonra deneyimli birine bu konuda danismalidir. Bitkileri en uygun toplama zamani, ögleden önce veya sonradir. Sabahin erken saatlerinde bitkinin üstü çigli olur. Ögle günesinde ise bazi türler gevser. Bitkiler yagmurlu havalarda toplanmamalidir. Bitki yetistigi yerde aranmali, karsilastirarak, seçerek ve itina ile toplanmalidir. Her önüne gelen bitkiyi degil, aksine ayirt edici özelliklere sahip uygun bir örnek alinmalidir. Bitkinin kök kisimlarini sökerken ihtiyatli davranilmalidir. Özellikle çok yillik bitkilerde bitkinin kök kismini sökmekten kaçinilmalidir. Hiç bir zaman ülkeye özgü yani endemik bitki topluluklarina zarar verilmemelidir. Bütün büyük çali formundaki bitkiler parçalar halinde alinmalidir. Istege göre tipik özellikte bir dal seçilebilir. Çiçegin, yapraklarin ve dallarin bir arada bulundugu bir dal seçilebilir. Toplu olarak bitkinin bir fotografi da çekilebilir. Küçük bitkilerden genellikle iki örnek alinir. Zira, bazi türlerde çiçekler ve yapraklar farkli zamanlarda gelisir. Öksürük otunda (Tussilago farfara L.) oldugu gibi. Ayrica meyve ve tohumlar da toplanmalidir. Genellikle kalin sapli olan bitkilerde sapin yarisi alinir, diger yarisi atilir. Böylece bitki daha iyi preslenir (Stehli und Brünner, 1981).

http://www.biyologlar.com/bitki-orneklerin-toplanma-zamani-ve-sekli

Geri dönüşüm hakkında kısa bir bilgi

Plastiklerin kaynağı ; ham petrol, gaz ve kömürdür. Plastiğin genelde ana kaynağı petrol rafinerisinden arta kalan bakiye maddelerdir. Dünyada üretilen toplam petrolün sadece %4’ü plastik üretimi için kullanılmaktadır. Plastikler ,çöpe atıldığı zaman çürümez, paslanmaz, çözünmez, biyolojik olarak bozulmaz ve doğada bozulmadan uzun yıllar kalır.. Suyun ve toprağın kirlenmesine neden olur. Sulardaki canlılara zarar verir hatta ölümlerine neden olur. Plastiklerin geri dönüşümü; Cam, metal, plastik ve kağıt/karton gibi değerlendirilebilir atıklar çeşitli fiziksel ve kimyasal işlemlerden geçirilerek yeni bir hammaddeye veya ürüne dönüştürülebilirler. Bu atıkların bir takım işlemlerden geçirildikten sonra ikinci bir hammadde olarak üretim sürecine sokulmasına Geri Dönüşüm denir. Bu süreç her bir atık türü için malzemenin cins ve niteliğine göre farklılık gösterir. Geri kazanım terimi ise tekrar kullanım ve geri dönüşüm kavramlarını da içerdiği için biraz daha geniş kapsamlıdır. Değerlendirilebilir atıkların kaynağında ayrı toplanması, sınıflandırılması, fiziksel ve kimyasal yöntemlerle başka ürünlere veya enerjiye dönüştürülmesi işlemlerinin bütünü Geri Kazanım olarak adlandırılır. Geri dönüştürülebilir atıklardan yeni ürün ve malzemeler üretmek için en temel konu bu atıkların oluşturdukları kaynakta temiz ve türlerine göre ayrılmış olarak biriktirilmesidir. Değerlendirilebilir atıklar, diğer atıklar ile karıştırılırsa kirleneceği için elde edilecek yeni ürünün kalitesi düşük olur.Bu nedenle geri dönüştürülebilir atıklar, diğer atıklardan yani çöplerden ayrı ve temiz olarak toplanmalıdır. Geri dönüşümün yararları nelerdir; Doğal kaynaklarımız korunur. Kullanılmış ambalaj ve benzeri değerlendirilebilir atıkların bir hammadde kaynağı olarak kullanılması, yerine kullanıldığı malzeme için tüketilmesi gereken hammaddenin veya doğal kaynağın korunması gibi önemli bir tasarrufu doğurur. Doğal kaynaklarımız, dünya nüfusunun ve tüketimin artması sebebi ile her geçen gün azalmaktadır. Bu nedenle doğal kaynaklarımızın daha verimli bir şekilde kullanılması gerekmektedir. • Enerji tasarrufu sağlanır. Geri dönüşüm sırasında uygulanan fiziksel ve kimyasal işlem sayısı, normal üretim işlemlerine göre daha az olduğu için, geri dönüşüm ile malzeme üretilmesinde önemli bir enerji tasarrufu sağlanır. Geri dönüşüm ile tasarruf edilen enerji miktarı atık cins ve bileşimine bağlı olarak değişmektedir. Örneğin bir alüminyum kutunun geri dönüşümü ile %90, kağıdın geri dönüşümü ile %60 oranında enerji tasarrufu sağlandığı bir çok uzman tarafından ifade edilmektedir. • Atık miktarı azalır. Geri dönüşüm sayesinde çöplüklere daha az atık gider ve buna ek olarak bu atıkların taşınması ve depolanması kolaylaşır, çünkü artık daha az çöp alanı ve daha az enerji gerekmektedir. • Geri dönüşüm ekonomiye katkı sağlar. Geri dönüşüm sayesinde hammaddelerin azalması ve doğal kaynakların tükenmesi önlenecek, böylelikle ülke ekonomisine katkı sağlanacaktır. Plastiğin geri dönüşümden elde edilen bazı malzemeler şunlardır: Sera örtüsü, otomotiv sektöründe plastik torba, marley, pis su borusu, elyaf ve dolgu malzemesi, araba yedek parçası yapımında Deterjan şişeleri, çöp kutuları ve benzeri ürünler Yağmursuyu ve atık su boruları Marley ve çeşitli plastik dolgu malzemeleri Çeşitli plastik oyuncak ve kırtasiye malzemeleri oluşmaktadır. Kaynak: hurplastik.com

http://www.biyologlar.com/geri-donusum-hakkinda-kisa-bir-bilgi

Toprak

Toprak, bitki örtüsünün beslendiği kaynakların ana deposudur. Toprağın üst tabakası insanların ve diğer canlıların beslenmesinde temel kaynak teşkil etmektedir. Bir gram toprağın içerisinde milyonlarca canlı bulunmakta ve ekosistemin devamı için bunların hepsinin ayrı önemi bulunmaktadır. Toprağın verimliliğini sağlayan ve humusça zengin olan toprağın 10 cm'lik üst tabakasıdır. Bilimsel anlamda toprak bir karışımdır. Türkiye'nin arazi varlığının ise yaklaşık %36'sı işlenmekte, %28'i çayır ve mera, %30'u orman ve fundalık olup, geriye kalan bölümü diğer araziler içinde yer almaktadır. Ekilebilir arazinin ancak %11'i sulanabilmektedir. Toprak katmanları ; genel olarak dört ana katmandan oluşur. 1.katman: Toprağın işlendiği kısım, yani tarım yapıldığı yerdir. Bu katman aynı zamanda toprağın en verimli kısmıdır. Bütün canlıları ve değişimle ortaya çıkan maddeleri kapsar. Tuz,kireç, kil gibi sularda çözünen maddeler, yağmur sularıyla toprağın alt kısımlarına taşınır. 2. katman ; Birikme bölümü,yani tarımın yapılmadığı yerdir.Humus,bitki kökü ve canlı yoktur. 1. katmanının erozyonla yitirildiği yerlerde 2. katman ortaya çıkıyor. 1. ve 2. katmanı binlerce yılda ortaya çıkan esas toprağı oluşturuyor. 3. katman da henüz tam ayrışmamış ana malzeme bulunuyor.Bu katmanda kayaca ait iri parçalar bulunuyor. Ama canlı yoktur. Bu tabaka zamanla ayrışarak 2. katmana karışıyor. 4. katman da toprağın en altındaki kayacı oluşturuyor. Toprak çeşitleri: 1- Humuslu topraklar ; Siyah renktedir. Koyu renk olduğu için çabuk ısınıp kolay tava gelirler.Su tutma kapasiteleri iyidir.Besin maddelerince zengindirler. 2- Killi topraklar; İçeriğinin yarıdan fazlasını kil oluşturur. Ağır topraklar olup işlenmeleri zordur.Kurak zamanlarda toprak katı bir hal alır. 3- Kireçli topraklar; kil,kum humus ve kireç ihtiva ederler.Kalın bir kaymak tabakası bağlarlar.Suyu geçiremezler,zor işlenen bir toprak çeşididir. 4- Kumlu topraklar; % 80 kum ihtiva ederler.İşlenmeleri kolaydır.Su tutamadıklarından bol sulama gerektirirler. Toprktaki besinin zarar görmesine neden olur. Besince fakir ve genellikle asidik topraklardır. 5- Marnlı topraklar; içinde kum, kil,çakıl ve humus bulunur. Bağcılık bakımından uygun topraklardır. 6- Taşlı topraklar ; İçeriği % 80 taş ve az miktarda topraktan oluşur.Kolay havalanırlar. Fakat su tutma kapasiteleri ve besin ihtivaları azdır. 7- Tınlı topraklar ;yarıdan fazlası kum ve % 30-50 arasıda kilden meydana gelirler.İşlenmeleri kolay olduğundan tarım için elverişli topraklardır.

http://www.biyologlar.com/toprak-1

TOPRAK KİRLİLİĞİ SORUNLAR VE ÇÖZÜM YOLLARI

TOPRAK KİRLİLİĞİ SORUNLAR VE ÇÖZÜM YOLLARI 1-Hızlı Nüfus Artışı - Toprak İlişkileri : Hızlı nüfus artışı çok sayıda sosyoekonomik ve politik sorunların ortaya çıkmasına yol açmanın yanında, yanlış arazi kullanma ve toprak kayıpları nedeniyle ekonomimize ve kalkınmamıza önemli etkileri olan sorunlar da yaratmaktadır. Diğer yandan hızlı nüfus artışı gereksinimlerin karşılanması açısından, üretim ve tüketim ilişkilerini de olumsuz yönden etkileyecektir. Özellikle tarımsal üretimde birim alandan daha yüksek ürün almayı özendiren olumlu sayılabilecek etkisi yanında, orman ve meraların tarım arazilerine dönüştürülmesi gibi olumsuz ve zararlı yöndeki gelişmelere de neden olmakta ve bunları hızlandırmaktadır. Nüfus artışı hızı 1990’ da % 2.4 iken 2000 yılında % 1.9’ a inmiştir. Türkiye’nin potansiyel kaynakları artan nüfusu beslemeye belli bir süre için yeterli bir potansiyeldir. Nüfus artışının zamanla düşürülmesi bu hızlı artıştan kaynaklanan sorunları da azaltacaktır. 2- Toprak Kaynaklarının Sorunları ve Çözüm Yolları : Türkiye’nin önemli yaşamsal sorunlarından birisi toprak kaynaklarında ortaya çıkan sorunlardır. Bu sorunlar genelde su ve rüzgar erozyonu ile oluşan sorunlar, yanlış arazi kullanımı ve toprakların fiziksel ve kimyasal etmenlerle kirlenmesi ya da kalitelerin bozulması, üretim gücünün yitirilmesi şeklinde ortaya çıkmaktadır. 27.7 milyon hektar olan toplam tarım arazisinin 19.7 milyon hektarında çeşitli şiddetlerde erozyon tehlikesinin mevcut olduğu araştırmacılar tarafından saptanmıştır. Tarım arazilerimizin yaklaşık 2/3’ ünde toprak kaynaklarımızı kemiren ve azaltan erozyon tehlikesi vardır. Yine yapılan bir araştırmaya göre yılda 500 milyon ton toprağın akarsularla denizlere taşındığı belirlenmiştir. Ayrıca erozyonla taşınan toprakların tarıma elverişli toprakların üst kısımları olduğu göz önünde tutulursa tarımsal toprakların ne denli büyük bir sorunla karşı karşıya kaldığı daha net anlaşılacaktır. Erozyonun oluşumuna ve şiddetine etki yapan önemli etmenler iklim, topografya, toprağın özellikleri, bitki örtüsü gibi türlü etmenler yanında insanın kendisidir. Erozyonu önleyici toprak işleme, ekim ve dikim yöntemlerinin kullanılmamasının neden olduğu toprak kayıpları ağırlık taşımaktadır. Erozyonun hızlanmasında baş rolü toprağı yanlış işleyen ve kullanan insan oynamaktadır. Bu konuda yapılan çalışmalar göstermektedir ki her yıl on binlerce hektar tarımsal alan tarım dışı amaçlar için kullanılmaktadır. İl ve İlçeler bazında organize sanayi ve küçük sanayi sitelerinin kapladığı arazilerin 18000 hektar olduğu ve bunun % 62’ lik kısmının tarıma elverişli araziler üzerine kurulmuş olduğu saptanmıştır. Yanlış arazi kullanımı, bilimsel araştırmalarla da kanıtlanmıştır. Kentleşme sürecinde ve kıyılarımızın turizme açılmasında da yanlış arazi kullanımı uygulamaları sürmektedir. Hızlı kentleşme, kent nüfuslarının hızlı artışı ve gecekondu olayının süregelmesi, kent topraklarının genişletilmesini ve bu arada plansız ve bilinçsiz arazi kullanımı sorunu ve tarımsal toprakların yerleşim yeri olarak kullanılması olayını da birlikte getirmektedir. İstanbul Boğazı yamaçlarında mevcut bitki örtüsünün kaldırılması suretiyle yapılaşmalara açılan topraklar, yanlış toprak kullanımının öncüleri olmaktadır. Kentleşme ve sanayileşmenin çevre üzerindeki olumsuz etkileri birkaç yönde sürecektir. Birincisi, değerli tarım topraklarının özellikle kıyılarda hızla kentsel kullanımlara açılmasıdır. Kamu eliyle tarıma elverişli duruma getirilmeleri için para harcanan verimli topraklar bile kamunun kayıtsızlığına kurban gidebilmektedir. Sanayi sektöründe gelişmeler, organize sanayi bölgeleri için yer seçimi, genellikle altyapıların ekonomik kolaylıklar sağladığı yörelerde kurulacak biçimde yapıldığı gözlenmektedir. Hiçbir düşünce, ham maddesinin üretildiği birinci sınıf tarım alanı üzerine, bu ürünü işleyen sanayi tesislerinin kurulmasına olanak vermez. Çukurova’da pamuk üretimine elverişli, sulama tesisleri tamamlanarak sulamaya açılmış birinci sınıf alanlardaki tekstil fabrikalarının kuruluşu, oradaki yol, su ve elektrik enerjisi olanaklarından kolayca yararlanma amacından kaynaklanmaktadır. Tarım topraklarının, artık üzerinde tarım yapılamaz hale getirilerek yok edilmelerinin diğer bir biçimi de, bunların toprak sanayilerinde kullanılmak üzere satın alınmalarıdır. Tapuda herhangi bir işlem yapılmasına gerek kalmadan satılan, toprak sanayiine elverişli, fakat uzun yıllarda oluşmuş alüviyal topraklar, ana kaya düzeyine ininceye kadar alınmakta ve fabrikalara taşınarak tuğla, kiremit, seramik vb. yapımı amaçlarıyla ham madde olarak kullanılmaktadır. Tarıma elverişli topraklar dışında, aynı amaçla kullanılabilecek kaynaklar ilgili kuruluşlarca saptanarak ilgililere önerilmekte ise de, çeşitli nedenlerle bu ocakların kullanılmaları sağlanılamamaktadır. Toprakların verim güçlerinin kaybolmasına neden olan diğer bir kirlenme şekli de, kimyasal kirlenmelerdir. Bu tür kirlenmelerde ana etmenler atmosferik çökelmeler, asit yağmurları, atık sular ve bunlarla kirlenmiş suların toprakta bıraktığı kirletici elemanlar, arıtma tesislerinden çıkan kirli çamurların toprakta yaptığı kirletici etkiler, tarımsal ilaçların bazılarının toprakta birikmeleri ile oluşan kirlenmelerdir. Ayrıca sulama yoluyla ortaya çıkabilecek, tuzlanma ve çoraklaşma gibi toprağın verim gücünü azaltan, hatta giderek tarımsal üretimde kullanılmasını önleyen fiziksel ve kimyasal kirlenmeler de toprak kaynaklarına olumsuz etkiler yapmaktadırlar. Görüldüğü gibi toprağı kirleten dış etmenler yanında, tarımsal üretim sürecinde bizzat bu üretimin yarattığı kirlenmeler de tarım topraklarına olumsuz etkiler yapmaktadır. Bir örnek olarak, Çukurova, Aşağı Seyhan Projesi alanından hatalı sulamaların ve gerekli tarım tekniklerinin kullanılmaması vb. nedenlerle oluşan tuzluluk sorunu, taban suyunun yükselerek tarımsal üretimi olumsuz bir şekilde etkilemiş olması gösterilebilir. Türkiye’nin diğer sulama projelerinde de gözlenen bu olumsuz sonuçların, GAP sulamalarında yinelenmemesi için toprak kayıplarını önleyici önlemlerin alınması gereği de vurgulanmalıdır. Toprağın özellikle ağır metaller, toksik maddelerle kirletilmeleri, bu topraklar üzerinde yetiştirilen bitkiler aracılığı ile besin zincirine karışmakta ve insan sağlığını etkileyici zararlı düzeylere ulaşabilmektedir. Topraklarımızın korunması ve geliştirilmesi, tarım topraklarımızın verimlerini artırarak kullanılmaları ve korunmaları konusunda temel mevzuatın yetersizliği de toprak kayıplarına neden olan önemli etmenlerden birisini oluşturmaktadır. Mevcut mevzuatın da ülke topraklarının gereği gibi korunmaları için etkili olarak kullanılmamaları var olan boşluğu daha da genişletmektedir. 3- Orman - Toprak Kaynaklarımızın İlişkileri, Sorunları ve Çözüm Yolları: 20 Milyon hektar civarında bilinen ormanımız vardır. Bunların 11 Milyon hektarı koru ormanı, dokuz milyon hektarı da bataklık ormanıdır. Ancak sadece dokuz milyon hektarlık orman iyi (verimli) orman niteliğindedir. Bozuk (verimsiz) olarak nitelendirilen 11 milyon hektarlık orman ise iyileştirilmelidir. Türkiye’de gözle görülür bir orman azalması olayı yaşanmaktadır. Araştırmalar bu olumsuz gelişmeyi doğrulamaktadır. Orman azalması, orman ürünlerinin azalmasını ortaya çıkarması, dolayısıyla ormanlardan yararlanma hızını artırarak, orman tahribatını artırmakla kalmıyor, yeşil örtünün fotosentez yolu ile CO2 ve oksijen dengesini korumasını da bozarak ,yaşamsal sorunların temel nedeninin oluşmasına destek olmakta, toprağın koruyucu örtüsü tahrip edildiği için de toprakların erozyonla kaybolmasına neden olmaktadır. Orman azalmasına, ormanların yok olmasına neden olan etmenlerin başında nüfus baskısı nedeniyle ortaya çıkan izinsiz ve düzensiz ormandan yararlanma olayı gelmektedir. Ayrıca ormanlarda tarla açma yoluyla usulsüz olarak yararlanma, orman yangınları, biyolojik etmenlerle ortaya çıkan hastalıklar, hava kirliliğinin ve asit yağmurlarının ortaya çıkardığı tahribat, orman azalması sürecini hızlandıran ana nedenleri oluşturmaktadır. Türkiye’de erozyonu önleyici teknik ve biyolojik önlemlerin alınması ve ağaçlandırılması gereken beş milyon hektar civarında bir potansiyel alan mevcuttur. Orman içi ağaçlandırma alanları ile birlikte 18 milyon hektar alanın ağaçlandırılması, erozyon denetimi çalışmaları yapılması bir hedef olarak saptanmıştır. Bütün çabalara karşın, başta finansman sorunları olmak üzere diğer nedenlerin etkisi ile henüz bu hedefe ulaşılamamıştır. Türkiye’de ilk defa özel ağaçlandırma sisteminin uygulamaya konulmuş olması ümit verici bir başlangıç olmuştur. Sayıları 159’ a ulaşmış olan fidanlıklarda 700 milyon kadar fidanların Türkiye’nin yeşillenmesinde, toprakların korunmasında önemli katkıları olmuştur. Bu ağaçlandırma çalışmaları, erozyonun önlenmesinde de etkili olmuştur. Ekosistemlerin önemli bir öğesi, yaratıcısı ve koruyucusu olan ormanların tahribi, doğrudan doğruya toprakların da yok olmasıyla sonuçlandığı için ekosistemlerin korunması, toprağın da korunmasına sebep olacaktır. Ormanların korunmasını kapsayan çok yönlü tedbirlerin orman ve toprak koruma politikaları olarak geliştirilmesi ve bunların uygulamaya geçirilmesiyle topraklarımız korunacak ve varlığını sürdürme olanağına kavuşacaktır. Çayır - Mera ve Toprak Kaynakları İlişkileri, Sorunları ve Çözüm Yolları: Çayır ve mera kaynakları, hayvansal üretimin yem kaynağı olma özelliği yanında, birçok önemli görevleri de yerine getirmektedir. Bunların arasında yeşil örtü olarak fotosentez olayıyla oksijeni desteklemesi, toprak ve su kaynaklarının korunması gibi görevleri ile doğal dengenin korunmasına ve ekosistemlerin oluşmasına çok önemli destek vermektedir. Yapılan araştırmalara göre yeşil örtü olarak çayır ve meralar, toprak ve su kaynaklarının su ve rüzgar erozyonu ile yok olmalarına engel olan en etkin görevi üstlenmektedir. Makinalı tarımın gelişmeye başladığı 1950 yıllarından beri 13 milyon hektardan fazla tarım arazisi, sürülerek tarla arazisi haline getirilmiştir. Ayrıca aşırı otlatma, erken ve geç otlatmalar, mera iyileştirme önlemlerinin alınmaması, bu kaynakların giderek tahribine yol açmaktadır. Karapınar ilçesini tehdit eden şiddetli rüzgar erozyonunun oluşturduğu kum fırtınaları, bu ilçeyi oturulmaz hale getirmiştir. Ama başlatılan çalışmalar sonucunda birkaç yılda çözüme ulaşılmıştır. 5- Su-Toprak Kaynaklarının Geliştirilmesi, Kullanımı, Sorunları ve Çözüm Yolları: Su; eritici, taşıyıcı ve besleyici özellikleri ile, tüm canlıların yaşamsal önemde yararlandığı bir doğal kaynaktır. Topraklar ile birlikte ekosistemlerin önemli bir öğesini oluşturur. Ekosistemleri besler. Bunlara karşın suyun, bozulan ekosistemleri tahrip etme, toprağı aşındırma, taşıma ve su erozyonunu oluşturma gibi özellikleri de vardır. Türkiye gibi erozyona müsait toprak ve iklim koşullarına sahip ülkeler için, bu özellikler tahrip edici olayları ortaya çıkarmaktadır. Çeşitli nedenlerle hızla yok edilen yeşil örtü, bu tip erozyonun baş nedeni olmakta, toprak kaynaklarını bir daha kullanılamayacak hale getirmektedir. Erozyondan etkilenen 57 milyon hektar toprağın önemli bir bölümü, bu tip erozyonla yok olmuştur. 6- Biyolojik Zenginliklerimiz - Toprak İlişkileri, Sorunları, Çözüm Yolları: Biyolojik zenginlikler yönünden Türkiye dünyada önde gelen ülkelerden birisidir. Çok sayıda bitki kaynağının vatanı Türkiye’dir. Yalnız ülkemizde yetişen endemik bitki türleri bakımından çok önemli bir kaynağa sahibiz. Bilimsel ve ekonomik yönden yararlanabildiği takdirde, çok yararlı sonuçlar alınabilecek biyolojik bir zenginlik potansiyelimiz vardır. Bu zengin potansiyel kaynaklarımızla yaşamsal bir bağlantı içerisindeyiz. Maalesef bu zenginliklerimizi de hızla yok etmekteyiz. Bitkisel kökenli doğal zenginliklerimizi; yanlış arazi kullanımı, aşırı tüketim ve bitkisel zenginlik kaynaklarımızın yaşamlarının sürdürülebilirliğini tehlikeye sokacak biçimde aşırı düzeylerde tahrip edilmeleri, bu kaynaklarımızın kaybına neden olmakta, çıplaklaşan toprağın erozyonla taşınmaları ve yok olmaları ile sonuçlanmaktadır. Ayrıca hızlı nüfus artışının toprak istemlerinde ortaya çıkardığı baskılar, bu doğal kaynakların ve zenginliklerin tahribine neden olmaktadır. SONUÇ : Dünya gittikçe küçülmektedir. Canlıların yaşayabildiği ya da yaşayabileceği bir başka gezegen henüz keşfedilmemiştir. Çok uzun yıllar ve yüzyıllar boyunca bu dünya üzerinde yaşayacağız. Dünyanın tahribi, ekolojik dengelerin bozulması, sadece bir ülkeyi değil, tüm dünyayı tehdit etmektedir. Brezilya ormanlarının tahribi, dünya ikliminin değişmesine neden oluyor, atmosferdeki oksijen - karbondioksit dengesini etkiliyor. Tüm dünya ülkelerinin bilinçli ya da bilinçsiz olarak çevreyi tahrip etmeleriyle ekolojik dengenin bozulması ortaya çıkmaktadır. Orman azalması ve çölleşme, dünyanın önde gelen problemi haline gelmiştir. Eğer dünyada milyonlarca kişi açlık çekiyorsa, bu olaylar insan oğlunun geçmiş dönemde yaptığı hataların, kaynak tabanlarını tahrip etmelerinin faturası olarak karşımıza çıkmaktadır. Bu hataların faturalarını gelecek kuşakların ödemesini istemiyorsak, ekolojik dengelerin bozulmasına neden olan hatalı uygulamalardan vazgeçmeliyiz.

http://www.biyologlar.com/toprak-kirliligi-sorunlar-ve-cozum-yollari


BİTKİ GENETİK KAYNAKLARININ TOPLANMASI

Dr. Ayfer TAN Dr. Tuncer TAŞKIN Uzm. Abdullah İNAL Bitki genetik kaynakları, çevresel ve diğer baskılarla genetik erozyona uğramaktadır. Bitki genetik kaynaklarındaki çeşitliliğin saptanması, toplanması ve korunması, bitkisel çeşitliliğin sürdürülebilirliği bakımından son derece önemlidir. Genetik çeşitlilik türlerin yerel çeşitlerinin, yabani akrabalarının ve geçit formlarının birlikte bulunduğu yerlerde yoğunlaşmıştır. Türler kendi içlerinde milyonlarca genotip içerir. Toplanan örnekler toplam varyasyonun çok küçük bir modelidir. Bu nedenle, bitki genetik kaynaklarının korunmasında en geniş varyasyonu temsil edecek örneklerin toplanması önemlidir. Bitki genetik kaynakları materyali tohumla ve vejetatif çoğaltılan türleri içerdiğinden toplama prensipleri farklı olacaktır. Toplamanın amacına göre ekipte genetik bilgi birikimine sahip botanikçi, ıslahçı, agronomist, ekolojist ve taksonomistin bulunması gerekebilir. Ekip en az iki uzman kişiden oluşmalıdır. Başarılı bir toplama yapmak için iyi bir planlama, yörenin özellikleri ve hedef türler hakkında bilgi toplamak gerekir. Gerekirse hedef yöre ve türler için daha detay bilgi edinebilmek için bir sörvey programı (inceleme gezisi) düzenlenmelidir. Toplama programında zamanlama önemlidir. Böylece aşağıdaki yararlar sağlanabilir: -Uygun süre içinde en geniş genetik varyasyon toplanabilir. -Hedef türlerin olgunluk zamanları yakalanabilir. -Aynı yörede pek çok duraktan örnek toplanabilir. -Tarlalarda veya tarla kenarlarında geçit formları gözlenebilir. -Hedef türlerin yakın akrabaları gözlenebilir. -Toprak, iklim, yükseklik ve kültürel uygulamalardaki varyasyon yakalanabilir. Gerekli Ekipman Toplama programı süresince kullanılması gerekli ekipman; toplanacak materyal, iklim, yöresel koşullar, seyahat biçimi gibi etkenlerle çok yakından ilişkilidir. Toplama ekipmanı: Bitki türüne göre değişik ölçülerde bez torba, naylon torba, tohum örneklerinin konulacağı sağlam kağıt zarflar, tohum paketlerinin konulacağı kutu veya çantalar, çakı, çapa, çepin, küçük el küreği, şaşula, not defteri, kalem, silgi, kalemtraş, lastik bant, ataç, ip, tel zımba, yapıştırıcı bant, etiket, makas, el çantası, herbaryum presi, kurutma kağıdı, gazete kağıtları. Bilimsel ekipman: Altimetre, GPS, kompas, pusula, padometre, klinometre, digital fotoğraf makinesi, fon için beyaz bez, higrometre, lup, maximum-minimum termometre, harita, pH indikatör kağıtları, flora kitapları ve monograflar. Ulaşım ekipmanı: Arazi aracı, arazi koşullarına uygun giyim (tercihen çok cepli tişört gömlek ve pantolonlar, yağmurluk, şapka, güneş gözlüğü, bot vb.). Genel İlkeler Toplama stratejisinin belirlenmesinde materyalin yabani ve geçit formu, ıslah edilmemiş çeşit/primitif kültür formu, yerel çeşit/ yerel tipler olacağı hususu göz önünde bulundurulmalıdır. Bitki genetik kaynakları materyali dört değişik kaynaktan (habitat) toplanabilir: -Dağlar, vadiler, nehir yatakları, deniz kıyıları ormanlar gibi doğal alanlar, -Kültür tarlaları, tarla kenarları, -Kapama bahçeler ve ev bahçeleri, -Üretici ambarları, yerel köy dükkanları, pazarlar, aktarlar, tohumcular. Örnekleme stratejisi: Bitki genetik kaynakları materyalinin toplanmasında iki farklı örnekleme yöntemi uygulanabilmektedir: Rastgele (random) örnekleme: Genelde rastgele örnekleme yöntemi kullanılır. Örneğin bulunduğu alanda ön yargısız olarak, tüm alanı temsil edebilecek ve geniş varyasyonu içerecek şekilde örnek (tohum, soğan , rizom, yumru, çelik, aşı gözü gibi) alınmalıdır. Kültür, yabani ve geçit formları için kullanılan bu yöntem, az zamanda geniş bir alandan örnek alabilmek ve toplayıcının tüm alanı görmesini sağlaması açısından avantajlıdır. Ön yargılı (biased) örnekleme: Bu yöntemde fenotipik özellikler göz önüne alınarak örnekleme yapılır. Fenotipik durum her zaman genotipik farklılığı göstermediği için ön yargılı örneklemeden dolayı bazı genotiplerin örnek içinde yer alması güçleşebilir. Bir populasyon örneğinin bulunduğu ve ekolojik özelliklerinin kayıt edildiği yere durak adı verilir. Örneklemede, bir duraktan alınacak bitki sayısı, durak sayısı ve durakların toplama bölgesindeki dağılımı konuları ayrı bir öneme sahiptir. Genellikle genetik varyasyonun yüksek olduğu yabani türler ve geçit formları toplanırken bir duraktan toplanacak örnek sayısının belirlenmesinde duraktaki maksimum varyasyonun sağlanmasına dikkat edilmelidir. Bu nedenle etkin populasyon büyüklüğünün dikkate alınması gereklidir. Türlerin toplanmasında durak sayısını doğru belirleme açısından toplayıcı, hedeflediği toplama alanının tümünü örnekleyebilecek vejetasyon bilgisine sahip olmalıdır. Eğer yabani türlerin ve geçit formlarının toplanması hedefleniyorsa durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak yapılmalıdır. Toplama durakları hedeflenen bölge içerisinde uygun olarak dağıtılmalıdır. Bu konuda iki farklı yöntem uygulanabilir: -Durakların hedeflenen bölgedeki dağılımı homojendir (tek yıllık kültür formları için daha uygundur), -Durakların beşerli gruplar halinde olmak üzere hedeflenen bölgeye dağılımı homojendir (yabani ve geçit türleri için daha uygundur). Toplanan örneklerin sağlıklı ve hasar görmemiş olması gerekir. Tohumlu Bitkilerin Toplanması Tohumlu bitkilerin toplanmasında genel ilkeler uygulanmakta yabani ve kültür formlarına has hususlar dikkate alınmalıdır. Yabani türler ve geçit formları: Yabani türler doğal habitatlardan, yabani karakterli geçit formları ise tarla içleri ve kenarları gibi ikincil habitatlardan toplanırlar. Yabani ve geçit türlerinde türler içi ve türler arası doğal melezleme olabileceği göz önüne alınmalıdır. Bu nedenle populasyonlardaki varyasyonu temsil edebilecek olası genotipleri yakalayabilecek yeterli örneğin alınabilmesini sağlamak amacıyla örneklenen bitki sayısı daha fazla olmalıdır. Durakta tek veya birkaç bitki görülmesi halinde bu durum kaydedilmeli, bu bitkilerden tohum alınmamalıdır. Durak sayısı populasyonun büyüklüğü ve vejetasyonun değişmesine bağlı olarak değişir. Kültür formları: Toplama alanları tarlalar, bahçeler üretici ambarları, yerel köy dükkanları ve pazarlar, aktarlar, tohumcular olabilir. Tek yıllık kültür formlarında, eğer üreticiler farklı tohum kaynağı kullanıyorlarsa hepsinden ayrı örnekler, aynı kaynaklı tohum kullanıyorlarsa örneklerin karışımı ile oluşturulan tek bir örnek alınmalıdır. Ayrıca farklı isimlere sahip yerel çeşitlerin toplanması sırasında bu yerel çeşitlere ait bilgi alarak örnekleme yapmak gerekir. Yerel çeşit ve primitif çeşitlerin toplanmasında da durak sayısı önemlidir. Tek yıllık bitkilerde üreticiler kendi tohumlarını kullanıyorlarsa her tarla veya her çiftlikte bir durak yapılmalıdır. Gerek yabani gerekse kültür formlarında toplayıcının bitkisini iyi tanımasını gerekir. Tohumlar meyve içerisinde ise örnekler meyve olarak (olgun ve iri meyveler) alınır, gazete kağıtlarına veya bez torbalara sarılır ve tohumlar daha sonra meyve etinden ayrılır. Meyvelerin tohumunu çıkarmada en uygun yol, meyvenin parçalanarak bir süzgeç içinde yıkanması ve süzülerek tohumların kurutma kağıdı ya da gazete kağıdı üzerine serilerek gölgede kurutulmasıdır. Alınacak meyve sayısı da meyvelerin içerdiği tohum sayısına göre değişir. Gen bankasında uzun süreli muhafaza prensipleri doğrultusunda örnekteki tohum sayısı yabancı döllenen bitkilerde 10000-12000, kendine döllenen bitkilerde ise 8000 olmalıdır. Bu nedenle üretim ve yenileme gerekiyor ise hemen programa alınmalıdır. Vejetatif Üretilen Bitkilerin Toplanması Vejetatif üretime kolaylıkla tepki vermeyen türlerde tohum toplanmalıdır. Ancak vejetatif üretilen materyalde de tohum toplanabilir. Bu durumda tohumla üretilen bitki türlerine ait toplama prensipleri uygulanmalıdır. Tohum meyve türlerinden toplanıyorsa ve çevrede bu tür ile gen alışverişi yapabilecek türler varsa bunlarla ilgili bilgiler dikkate alınmalıdır. Bazı durumlarda sörveyler sırasında da meyve tipleri hakkında ön bilgi edinebilmek amacıyla meyve toplanarak bunların tohumları da değerlendirilebilir. Genelde muhafaza amaçlı tohum toplanması, orman ağaçları, ağaççıkları ve çalı formlu bitkiler ile tohum veren soğanlı, rizomlu ve yumrulu bitkiler ile sınırlıdır. Vejetatif materyalin korunabilmesi için, bitki türüne de bağlı olarak, birçok değişik çoğaltım metodu vardır. Bu nedenle çoğaltım tekniğine ve toplanacak bitki türüne bağlı olarak farklı vejetatif materyal (çelik, aşı gözü, aşı kalemi, soğan, yumru, rizom, sürgünler, köklerdeki piçler gibi) toplanır. Toplanan vejetatif materyal uygun bir koruyucu malzemeye sarılarak buz kutusu içerisinde nemli ve soğuk ortamda korunabilir veya zaman kaybetmeden çoğaltılacak şekilde korumanın yapılacağı kuruluşa yollanır. Vejetatif üretilen türlerin kültür formlarında (yerel meyve tipleri, eski ev bahçelerinde halen ekilmekte olan süs bitkileri vb.) ve yabani türlerinde (meyve, süs bitkisi, tıbbi ve kokulu bitki türleri vb.) genel toplama ilkeleri dikkate alınmalıdır. Endemik ve tehdit altında olan türlerde toplama sırasında yerinde kayıplara sebebiyet vermeyecek önlemler alınmalıdır. Yerel tiplerin toplanması sırasında, toplama yöresindeki bir köyde yerel tipin tohumdan yetiştirildiği saptanmış ise o tip için tüm köy tek bir durak kabul edilerek rastgele örnekleme yapılmalıdır. Eğer ağaçların, özel olarak seçilmiş geleneksel tiplerden klonal olarak üretildiği belirlenmişse köydeki her bir farklı tipin toplanması ve her birinin ayrı bir örnek olarak korunması gerekir. Toplama Sırasında Tutulacak Kayıtlar Toplama sırasında gerek tohumlu bitkiler ve gerekse vejetatif üretilen bitkilerde toplanan türler, toplama ve pasaport bilgileri ile toplama yöresi ile ilgili bilgilerin standart olması iyi bir veri tabanı yönetimi için gereklidir. Bu nedenle veriler standart toplama formlarına dikkatli bir şekilde kaydedilmelidir. Kayıtlarda özetle aşağıdaki bilgiler yer almalıdır: -Toplama numarası (toplama ekibi, toplama tarihi, durak numarası, duraktaki örnek numarası), -Habitat ve kaynağı, -Bitkinin botanik adı (cins, tür, alt tür gibi) ve yöresel adı, -Yöre (il, ilçe, köy, yön, vb.), -Koordinatlar (enlem, boylam ve yükseklik), -Materyal tipi (tohum, vejetatif) ve durumu (yabani, geçit veya kültür formu), -Populasyonun yöredeki büyüklüğü, -Topografya bilgileri (toprak, arazinin durumu vb.), -Birlikte bulunduğu diğer türler, -Tanımlayıcı notlar (Bitki ve yöreye ait ek notlar). Muhafaza Öncesi İşlemler Toplanan materyal ivedilikle muhafazaya alınacak şekilde muhafaza öncesi işleme tabi tutulmalıdır. Bunların başında kayıt işlemi gelmektedir. Materyal tohum örneği ise ivedilikle temizlenmelidir. Miktarı kontrol edilmeli ve üretilmesi gerekiyorsa üretim programına dahil edilmeli ve bu örnekler toplama numarası ile geçici kayda alınmalıdır. Üretimi gerekmeyen örnekler Gen Bankasında muhafazaya alınmak üzere esas kayda alınmalı (ülke kodu ve ardışık numara, TR 35444 gibi) ve tüm toplama bilgileri veri tabanına yüklenmek üzere elektronik ortamda ve standart formlarda Dokümantasyon Birimine iletilmelidir. Vejetatif materyal ise çoğaltılıp, bitkinin gelişimini tamamlayarak muhafaza parsellerine geçirilecek duruma gelene dek (fidan, olgun ve adapte olmuş sağlıklı bitki) toplama numarası ile geçici kayda alınır. Muhafaza parsellerine aktarılan ve oraya adapte olan sağlıklı örnekler ise esas kayda alınmalıdır. Muhafaza parsellerindeki örnekler ile ilgili Vejetatif Materyal İzleme Raporu hazırlanarak muhafaza bilgileri güncelleştirilmelidir. Kaynak: www.etae.gov.tr

http://www.biyologlar.com/bitki-genetik-kaynaklarinin-toplanmasi

PANAMA KANALI

Kuzey Amerika'daki (Alaska'ya kadar) Pleistosen faunası içerisinde Güney Amerika'ya özgü hayvanlar (tembel hayvanlar) bulunur. Güney Amerika'da da yalnız Kuzey Amerika'dan gelebilecek at ve geyikler bulunmuştur. Bu nedenle. Kuvaterner boyunca, devamlı olmasa da, faunanın alış verişini gerçekleştirebilecek Panama Kıstağı mevcuttu. Bugün, bu geçişin gerçekleştiği yerde, 300 km. uzunluğunda yağmur ormanı ve bir çeşit turbalık-bataklık vardır. Böyle bir arazi, pekari gibi hayvanlar için ciddi bir bariyer oluşturmamasına karşın, tembel hayvan, at ve geyikler için büyük ölçüde yayılmayı önleyicidir. Aynı şekilde xerophylous (kurağı seven) bitkiler için de bariyer oluşturur. Bu önleyici iklimsel kuşak. Buzul Devri'nde yer değiştirdiğinden ve güneye kaydığından, bu bataklıklar kurumuş ve savana özelliği kazanmıştır. Bu da hayvan ve bitkilerin göçüne izin vermiştir. Bu yaklaşımda, göçün, yalnız buzul döneminde gerçekleşebileceği görülür. Çünkü bu bölgedeki iklim bu dönemde güneye kayacak ve kıstağı elverişli hale geçirecektir. Buzullaşma döneminde deniz düzeyinin düşmesi ile bu aradaki kıstak bir miktar genişlemiştir. Pleistosen'de kuşların ve balıkların öyküsü, kara köprülerinin yanısıra, diğer köprülerin durumu hakkında da bilgi vermektedir: Kuzey Amerika kuşlarının öyküsü incelendiğinde (MAYR, 1946), kuşların bir kısmının da Bering Köprüsü’nü kullanmış oldukları görülür. Bununla birlikte bunların yayılışı ve göçleri memelilere göre çok daha kolay olmuştur. Tatlısu balıklarının incelenmesi ve onların ayrı kaldıkları (disjunction) yerlerin saptanması, buzul gölleri ve onların drenajı konusunda değerli bilgiler vermektedir (HUBBS ve MİLLER, 1948). Kara köprüleri, kural olarak, bugün birkaç yüz metre okyanus derinliği olan yerlerde oluşmuştur. En tipik örneği ise Wyville-Thomson sırtı denen oldukça sığ deniz tabanı ile Grönland, İzlanda ve İskoçya'nın birbirine bağlanmış olmasıdır. Kara köprülerinin saptanması, özellikle aktif yayılımları sınırlı olan taksonlar konusunda değerli bilgiler vermektedir.

http://www.biyologlar.com/panama-kanali

Su Döngüsü

Su molekülleri;güneş enerjisi ve yer çekiminin etkisiyle litosfer,hidrosfer,atmosfer arasında hareket eder.Bu hareket sonucunda su döngüsü denilen bir sistem oluşur. Okyanuslar,gezegenimizin su çevriminde önemli rol oynar.Yeryüzündeki suların buharlaşması ile oluşan nem yoğuşarak bulutları meydana getiri.Atmosferik hareketlerden olan yağışlar suyun tekrar kullanıldığı bu çevrimin önemli bir parçasını oluşturur.Bir yağmur damlası yılda birçok kez buharlaşıp yeniden yağış olarak yeryüzüne döner.Böylece yaklaşık 4 milyon km3 su karalar ile atmosfer arasında hareket eder.

http://www.biyologlar.com/su-dongusu

Toprak Kirliliği ve Çözüm yolları

1-Hızlı Nüfus Artışı - Toprak İlişkileri : Hızlı nüfus artışı çok sayıda sosyoekonomik ve politik sorunların ortaya çıkmasına yol açmanın yanında, yanlış arazi kullanma ve toprak kayıpları nedeniyle ekonomimize ve kalkınmamıza önemli etkileri olan sorunlar da yaratmaktadır. Diğer yandan hızlı nüfus artışı gereksinimlerin karşılanması açısından, üretim ve tüketim ilişkilerini de olumsuz yönden etkileyecektir. Özellikle tarımsal üretimde birim alandan daha yüksek ürün almayı özendiren olumlu sayılabilecek etkisi yanında, orman ve meraların tarım arazilerine dönüştürülmesi gibi olumsuz ve zararlı yöndeki gelişmelere de neden olmakta ve bunları hızlandırmaktadır. Nüfus artışı hızı 1990’ da % 2.4 iken 2000 yılında % 1.9’ a inmiştir. Türkiye’nin potansiyel kaynakları artan nüfusu beslemeye belli bir süre için yeterli bir potansiyeldir. Nüfus artışının zamanla düşürülmesi bu hızlı artıştan kaynaklanan sorunları da azaltacaktır. 2- Toprak Kaynaklarının Sorunları ve Çözüm Yolları : Türkiye'nin önemli yaşamsal sorunlarından birisi toprak kaynaklarında ortaya çıkan sorunlardır. Bu sorunlar genelde su ve rüzgar erozyonu ile oluşan sorunlar, yanlış arazi kullanımı ve toprakların fiziksel ve kimyasal etmenlerle kirlenmesi ya da kalitelerin bozulması, üretim gücünün yitirilmesi şeklinde ortaya çıkmaktadır. 27.7 milyon hektar olan toplam tarım arazisinin 19.7 milyon hektarında çeşitli şiddetlerde erozyon tehlikesinin mevcut olduğu araştırmacılar tarafından saptanmıştır. Tarım arazilerimizin yaklaşık 2/3’ ünde toprak kaynaklarımızı kemiren ve azaltan erozyon tehlikesi vardır. Yine yapılan bir araştırmaya göre yılda 500 milyon ton toprağın akarsularla denizlere taşındığı belirlenmiştir. Ayrıca erozyonla taşınan toprakların tarıma elverişli toprakların üst kısımları olduğu göz önünde tutulursa tarımsal toprakların ne denli büyük bir sorunla karşı karşıya kaldığı daha net anlaşılacaktır. Erozyonun oluşumuna ve şiddetine etki yapan önemli etmenler iklim, topografya, toprağın özellikleri, bitki örtüsü gibi türlü etmenler yanında insanın kendisidir. Erozyonu önleyici toprak işleme, ekim ve dikim yöntemlerinin kullanılmamasının neden olduğu toprak kayıpları ağırlık taşımaktadır. Erozyonun hızlanmasında baş rolü toprağı yanlış işleyen ve kullanan insan oynamaktadır. Bu konuda yapılan çalışmalar göstermektedir ki her yıl on binlerce hektar tarımsal alan tarım dışı amaçlar için kullanılmaktadır. İl ve İlçeler bazında organize sanayi ve küçük sanayi sitelerinin kapladığı arazilerin 18000 hektar olduğu ve bunun % 62’ lik kısmının tarıma elverişli araziler üzerine kurulmuş olduğu saptanmıştır. Yanlış arazi kullanımı, bilimsel araştırmalarla da kanıtlanmıştır. Kentleşme sürecinde ve kıyılarımızın turizme açılmasında da yanlış arazi kullanımı uygulamaları sürmektedir. Hızlı kentleşme, kent nüfuslarının hızlı artışı ve gecekondu olayının süregelmesi, kent topraklarının genişletilmesini ve bu arada plansız ve bilinçsiz arazi kullanımı sorunu ve tarımsal toprakların yerleşim yeri olarak kullanılması olayını da birlikte getirmektedir. İstanbul Boğazı yamaçlarında mevcut bitki örtüsünün kaldırılması suretiyle yapılaşmalara açılan topraklar, yanlış toprak kullanımının öncüleri olmaktadır. Kentleşme ve sanayileşmenin çevre üzerindeki olumsuz etkileri birkaç yönde sürecektir. Birincisi, değerli tarım topraklarının özellikle kıyılarda hızla kentsel kullanımlara açılmasıdır. Kamu eliyle tarıma elverişli duruma getirilmeleri için para harcanan verimli topraklar bile kamunun kayıtsızlığına kurban gidebilmektedir. Sanayi sektöründe gelişmeler, organize sanayi bölgeleri için yer seçimi, genellikle altyapıların ekonomik kolaylıklar sağladığı yörelerde kurulacak biçimde yapıldığı gözlenmektedir. Hiçbir düşünce, ham maddesinin üretildiği birinci sınıf tarım alanı üzerine, bu ürünü işleyen sanayi tesislerinin kurulmasına olanak vermez. Çukurova’da pamuk üretimine elverişli, sulama tesisleri tamamlanarak sulamaya açılmış birinci sınıf alanlardaki tekstil fabrikalarının kuruluşu, oradaki yol, su ve elektrik enerjisi olanaklarından kolayca yararlanma amacından kaynaklanmaktadır. Tarım topraklarının, artık üzerinde tarım yapılamaz hale getirilerek yok edilmelerinin diğer bir biçimi de, bunların toprak sanayilerinde kullanılmak üzere satın alınmalarıdır. Tapuda herhangi bir işlem yapılmasına gerek kalmadan satılan, toprak sanayiine elverişli, fakat uzun yıllarda oluşmuş alüviyal topraklar, ana kaya düzeyine ininceye kadar alınmakta ve fabrikalara taşınarak tuğla, kiremit, seramik vb. yapımı amaçlarıyla ham madde olarak kullanılmaktadır. Tarıma elverişli topraklar dışında, aynı amaçla kullanılabilecek kaynaklar ilgili kuruluşlarca saptanarak ilgililere önerilmekte ise de, çeşitli nedenlerle bu ocakların kullanılmaları sağlanılamamaktadır. Toprakların verim güçlerinin kaybolmasına neden olan diğer bir kirlenme şekli de, kimyasal kirlenmelerdir. Bu tür kirlenmelerde ana etmenler atmosferik çökelmeler, asit yağmurları, atık sular ve bunlarla kirlenmiş suların toprakta bıraktığı kirletici elemanlar, arıtma tesislerinden çıkan kirli çamurların toprakta yaptığı kirletici etkiler, tarımsal ilaçların bazılarının toprakta birikmeleri ile oluşan kirlenmelerdir. Ayrıca sulama yoluyla ortaya çıkabilecek, tuzlanma ve çoraklaşma gibi toprağın verim gücünü azaltan, hatta giderek tarımsal üretimde kullanılmasını önleyen fiziksel ve kimyasal kirlenmeler de toprak kaynaklarına olumsuz etkiler yapmaktadırlar. Görüldüğü gibi toprağı kirleten dış etmenler yanında, tarımsal üretim sürecinde bizzat bu üretimin yarattığı kirlenmeler de tarım topraklarına olumsuz etkiler yapmaktadır. Bir örnek olarak, Çukurova, Aşağı Seyhan Projesi alanından hatalı sulamaların ve gerekli tarım tekniklerinin kullanılmaması vb. nedenlerle oluşan tuzluluk sorunu, taban suyunun yükselerek tarımsal üretimi olumsuz bir şekilde etkilemiş olması gösterilebilir. Türkiye'nin diğer sulama projelerinde de gözlenen bu olumsuz sonuçların, GAP sulamalarında yinelenmemesi için toprak kayıplarını önleyici önlemlerin alınması gereği de vurgulanmalıdır. Toprağın özellikle ağır metaller, toksik maddelerle kirletilmeleri, bu topraklar üzerinde yetiştirilen bitkiler aracılığı ile besin zincirine karışmakta ve insan sağlığını etkileyici zararlı düzeylere ulaşabilmektedir. Topraklarımızın korunması ve geliştirilmesi, tarım topraklarımızın verimlerini artırarak kullanılmaları ve korunmaları konusunda temel mevzuatın yetersizliği de toprak kayıplarına neden olan önemli etmenlerden birisini oluşturmaktadır. Mevcut mevzuatın da ülke topraklarının gereği gibi korunmaları için etkili olarak kullanılmamaları var olan boşluğu daha da genişletmektedir. 3- Orman - Toprak Kaynaklarımızın İlişkileri, Sorunları ve Çözüm Yolları: 20 Milyon hektar civarında bilinen ormanımız vardır. Bunların 11 Milyon hektarı koru ormanı, dokuz milyon hektarı da bataklık ormanıdır. Ancak sadece dokuz milyon hektarlık orman iyi (verimli) orman niteliğindedir. Bozuk (verimsiz) olarak nitelendirilen 11 milyon hektarlık orman ise iyileştirilmelidir. Türkiye’de gözle görülür bir orman azalması olayı yaşanmaktadır. Araştırmalar bu olumsuz gelişmeyi doğrulamaktadır. Orman azalması, orman ürünlerinin azalmasını ortaya çıkarması, dolayısıyla ormanlardan yararlanma hızını artırarak, orman tahribatını artırmakla kalmıyor, yeşil örtünün fotosentez yolu ile CO2 ve oksijen dengesini korumasını da bozarak ,yaşamsal sorunların temel nedeninin oluşmasına destek olmakta, toprağın koruyucu örtüsü tahrip edildiği için de toprakların erozyonla kaybolmasına neden olmaktadır. Orman azalmasına, ormanların yok olmasına neden olan etmenlerin başında nüfus baskısı nedeniyle ortaya çıkan izinsiz ve düzensiz ormandan yararlanma olayı gelmektedir. Ayrıca ormanlarda tarla açma yoluyla usulsüz olarak yararlanma, orman yangınları, biyolojik etmenlerle ortaya çıkan hastalıklar, hava kirliliğinin ve asit yağmurlarının ortaya çıkardığı tahribat, orman azalması sürecini hızlandıran ana nedenleri oluşturmaktadır. Türkiye’de erozyonu önleyici teknik ve biyolojik önlemlerin alınması ve ağaçlandırılması gereken beş milyon hektar civarında bir potansiyel alan mevcuttur. Orman içi ağaçlandırma alanları ile birlikte 18 milyon hektar alanın ağaçlandırılması, erozyon denetimi çalışmaları yapılması bir hedef olarak saptanmıştır. Bütün çabalara karşın, başta finansman sorunları olmak üzere diğer nedenlerin etkisi ile henüz bu hedefe ulaşılamamıştır. Türkiye’de ilk defa özel ağaçlandırma sisteminin uygulamaya konulmuş olması ümit verici bir başlangıç olmuştur. Sayıları 159’ a ulaşmış olan fidanlıklarda 700 milyon kadar fidanların Türkiye’nin yeşillenmesinde, toprakların korunmasında önemli katkıları olmuştur. Bu ağaçlandırma çalışmaları, erozyonun önlenmesinde de etkili olmuştur. Ekosistemlerin önemli bir öğesi, yaratıcısı ve koruyucusu olan ormanların tahribi, doğrudan doğruya toprakların da yok olmasıyla sonuçlandığı için ekosistemlerin korunması, toprağın da korunmasına sebep olacaktır. Ormanların korunmasını kapsayan çok yönlü tedbirlerin orman ve toprak koruma politikaları olarak geliştirilmesi ve bunların uygulamaya geçirilmesiyle topraklarımız korunacak ve varlığını sürdürme olanağına kavuşacaktır. 4- Çayır - Mera ve Toprak Kaynakları İlişkileri, Sorunları ve Çözüm Yolları:Çayır ve mera kaynakları, hayvansal üretimin yem kaynağı olma özelliği yanında, birçok önemli görevleri de yerine getirmektedir. Bunların arasında yeşil örtü olarak fotosentez olayıyla oksijeni desteklemesi, toprak ve su kaynaklarının korunması gibi görevleri ile doğal dengenin korunmasına ve ekosistemlerin oluşmasına çok önemli destek vermektedir. Yapılan araştırmalara göre yeşil örtü olarak çayır ve meralar, toprak ve su kaynaklarının su ve rüzgar erozyonu ile yok olmalarına engel olan en etkin görevi üstlenmektedir. Makinalı tarımın gelişmeye başladığı 1950 yıllarından beri 13 milyon hektardan fazla tarım arazisi, sürülerek tarla arazisi haline getirilmiştir. Ayrıca aşırı otlatma, erken ve geç otlatmalar, mera iyileştirme önlemlerinin alınmaması, bu kaynakların giderek tahribine yol açmaktadır. Karapınar ilçesini tehdit eden şiddetli rüzgar erozyonunun oluşturduğu kum fırtınaları, bu ilçeyi oturulmaz hale getirmiştir. Ama başlatılan çalışmalar sonucunda birkaç yılda çözüme ulaşılmıştır. 5-Su-Toprak Kaynaklarının Geliştirilmesi, Kullanımı, Sorunları ve Çözüm Yolları: Su; eritici, taşıyıcı ve besleyici özellikleri ile, tüm canlıların yaşamsal önemde yararlandığı bir doğal kaynaktır. Topraklar ile birlikte ekosistemlerin önemli bir öğesini oluşturur. Ekosistemleri besler. Bunlara karşın suyun, bozulan ekosistemleri tahrip etme, toprağı aşındırma, taşıma ve su erozyonunu oluşturma gibi özellikleri de vardır. Türkiye gibi erozyona müsait toprak ve iklim koşullarına sahip ülkeler için, bu özellikler tahrip edici olayları ortaya çıkarmaktadır. Çeşitli nedenlerle hızla yok edilen yeşil örtü, bu tip erozyonun baş nedeni olmakta, toprak kaynaklarını bir daha kullanılamayacak hale getirmektedir. Erozyondan etkilenen 57 milyon hektar toprağın önemli bir bölümü, bu tip erozyonla yok olmuştur. 6- Biyolojik Zenginliklerimiz - Toprak İlişkileri, Sorunları, Çözüm Yolları: Biyolojik zenginlikler yönünden Türkiye dünyada önde gelen ülkelerden birisidir. Çok sayıda bitki kaynağının vatanı Türkiye’dir. Yalnız ülkemizde yetişen endemik bitki türleri bakımından çok önemli bir kaynağa sahibiz. Bilimsel ve ekonomik yönden yararlanabildiği takdirde, çok yararlı sonuçlar alınabilecek biyolojik bir zenginlik potansiyelimiz vardır. Bu zengin potansiyel kaynaklarımızla yaşamsal bir bağlantı içerisindeyiz. Maalesef bu zenginliklerimizi de hızla yok etmekteyiz. Bitkisel kökenli doğal zenginliklerimizi; yanlış arazi kullanımı, aşırı tüketim ve bitkisel zenginlik kaynaklarımızın yaşamlarının sürdürülebilirliğini tehlikeye sokacak biçimde aşırı düzeylerde tahrip edilmeleri, bu kaynaklarımızın kaybına neden olmakta, çıplaklaşan toprağın erozyonla taşınmaları ve yok olmaları ile sonuçlanmaktadır. Ayrıca hızlı nüfus artışının toprak istemlerinde ortaya çıkardığı baskılar, bu doğal kaynakların ve zenginliklerin tahribine neden olmaktadır. SONUÇ : Dünya gittikçe küçülmektedir. Canlıların yaşayabildiği ya da yaşayabileceği bir başka gezegen henüz keşfedilmemiştir. Çok uzun yıllar ve yüzyıllar boyunca bu dünya üzerinde yaşayacağız. Dünyanın tahribi, ekolojik dengelerin bozulması, sadece bir ülkeyi değil, tüm dünyayı tehdit etmektedir. Brezilya ormanlarının tahribi, dünya ikliminin değişmesine neden oluyor, atmosferdeki oksijen - karbondioksit dengesini etkiliyor. Tüm dünya ülkelerinin bilinçli ya da bilinçsiz olarak çevreyi tahrip etmeleriyle ekolojik dengenin bozulması ortaya çıkmaktadır. Orman azalması ve çölleşme, dünyanın önde gelen problemi haline gelmiştir. Eğer dünyada milyonlarca kişi açlık çekiyorsa, bu olaylar insan oğlunun geçmiş dönemde yaptığı hataların, kaynak tabanlarını tahrip etmelerinin faturası olarak karşımıza çıkmaktadır. Bu hataların faturalarını gelecek kuşakların ödemesini istemiyorsak, ekolojik dengelerin bozulmasına neden olan hatalı uygulamalardan vazgeçmeliyiz.

http://www.biyologlar.com/toprak-kirliligi-ve-cozum-yollari

DENİZ EKOSİSTEMLERİNDEKİ BOZULMALAR

Deniz ekosistemlerindeki bozulma bir bütün olan çevrenin yapı ve işleyişini olumsuz etkiler. Bazı varlıkların azalması diğer bazı varlıkların azalmasına da neden olur. Madde döngülerinin gerçekleşmesi zorlaşır. Sonuçta doğadaki enerji tükenmeye doğru gider. 1. Dünya Coğrafyasının Değişmesi Ekosistemin yapı ve işleyişini oluşturan iklim, toprak, hava, bitki hayvan gibi faktörlerin olumsuz yönde değişmesi çevrenin ekolojik özelliklerini de değiştirir. - Uzun süren kuraklıklar sonucu bir ekosistemdeki bitki ve hayvan sayısı hızla azalır. - Suların kirlenmesi sonucu suya ışık girişi azalır, suyun hava oranı düşer. - Toprakta oluşan tahribat ve kirlenmeler önce bitkilerin sonrada diğer canlıların zamanla ölmesine neden olur. - Ormanların kesilmesi ve yanması çevrenin çölleşmesine ve sonrasında küresel ısınmaya etkide bulunur. 2. İklimin Değişmesi İklim şartlarının değişmesi , ekosistemdeki canlı yaşam ve dağılışını etkiler. İklimi değişen bir bölgede bazı canlılar göç ederken, bazı canlılar ölür veya şartlara uymaya çalışır. Ozon tabakasının incelmesi, ormanların azalması, havanın kirlenmesi, yağışların azalması, çölleşmenin başlaması bir bölgedeki iklimin ve coğrafik yapının değişmesine etkide bulunur. 3. Erozyonların Oluşması Toprağın su ve rüzgar etkisiyle aşınıp , taşınmasına erozyon denir. Çevredeki bitki örtüsünün azalması, şiddetli yağmurların yağması, karların kısa sürede erimesi, fırtınaların oluşması, toprağın yanlış sürülmesi, eğimli alanlardaki ormanların yanması gibi etkenler erozyonların oluşmasına neden olur. Erozyonlar sonucu bir bölgenin toprağı tahrip olur. Tarım toprağının ürün verimi azalır. Erozyonu önlemek için en etkili yöntem eğimli ve çorak toprakların ağaçlandırılmasıdır. Çünkü bitki kökleri toprağı tutarak erozyonla sürüklenmesini önler. Erozyona uğrayan bir bölgede toprağın yapısı değişeceği için canlıların yaşamı da tehlikeye girer. 4. Su Kaynaklarının Azalması Suların kirlenmesi ve kuruması sonucu çevredeki kullanılabilir su oranı azalır. Çevredeki su kaynaklarının azalmasına, yağışların düşmesine, tarımsal verimin düşmesine ve hidroelektrik santrallerdeki enerji üretiminin kısılmasına neden olur. Bu durum canlıların beslenmesini olumsuz olarak etkiler. Su oranı azlan topraklarda daha az sayıda bitki yaşar. Ortama uyan bazı hayvanlar bu topraklarda barınır. Kısacası çevre zamanla çölleşir. Doğal özelliklerini de zamanla kaybeder. 5. Enerji Kıtlığının Başlaması Madenlerin azalması sonucu termik santraller, su kaynaklarının azalması sonucu hidroelektrik santralleri, petrolün azalması sonucuda ulaştırma araçlarının kullanım oran ve verimi azalır. Enerji kıtlığının başlaması durumunda insanların sosyal yaşamı felç olur. Besin zincirinin oluşumunu sağlayan enerji nakli gerçekleşemez. Ortamın biyolojik dengesi bozulur. 6. Canlı Çeşitliliğinin Azalması Ekosistemdeki fiziksel ve kimyasal şartların değişmesi canlıların yaşama, yayılış ve üramesini etkiler. Bozulan şartlara uyanlar yaşarken diğerleri yok olur. Çevredeki bitki sayısının azalması besin zincirindeki canlı tür ve sayısının azalmasına neden olur. Örneğin, ormanların yanma ve kesilmesi sonucu buralarda barınan tüketici canlıların büyük kısmı ölür.

http://www.biyologlar.com/deniz-ekosistemlerindeki-bozulmalar

Alglerin Ekolojik Önemi

Algler, gerek yapisal olarak gerekse de dis görünüsleri bakimindan oldukça farkli görünümdedirler. Yapisal olarak eukaryotik (gelismis hücre tipi) ve prokaryotik (basit yapili hücre tipi) olmak üzere iki büyük gruba ayrilirlar. Buna göre Mavi-Yesil algler göstermis olduklari hücre organizasyonlari bakimindan prokaryot hücre özelligi tasimaktadirlar. Belirgin bir hücre çekirdeginin olmamasi ve çok basit olan kromatofor yapisindaki pigmentlerin dagilimi ve prokaryotik hücre özellikleri bakimindan diger alglerden ayrilirlar. Dis görünümleri bakimindan tek hücreli ve ipliksi formlardan karisik olarak gelismis bireylere kadar degisik biçimlerde gözlenebilmektedirler. Her canli gibi, algler de nesillerini devam ettirebilmek için çogalmak zorundadirlar. Algler üç farkli üreme sistemine sahiptirler. Bunlar; vejatatif üreme, eseyli ve eseysiz üremelerdir. Alglerde vejatatif üreme yaygin bir durum göstermektedir. Bazi türlerde hücrelerin büyüyerek koloni olusturmasina ve bunlarin daha sonra normal büyüme sonucu bölünmesine dayanir. Diger bazi türlerde ise tallusun büyümesi ya da ana bitkinin büyümesinin sürmesiyle gerçeklesmektedir. Genellikle alglerin ilkel gruplarinda görülen eseysiz üreme çok degisik biçimlerde ortaya çikmaktadir. Kamçili alglerin bazi gruplarinda vejatatif üreme ile eseysiz üreme arasinda büyük benzerlikler bulunmaktadir. Bu tip bir üremeye sahip alg hücrelerinden bazi tiplerin farklilasmasi ve sonuçta bunlarin birer birey olusturarak ana hücreden ayrilmalariyla gerçeklesmektedir. Son üreme sekli olan eseyli üreme ise alglerin genel bir özelligi degildir. Bu tip üreme genellikle gelismis organizmalarda görülmektedir. Alglerde eseyli üreme çogunlukla ayni tür iki organizmanin plazmalarinin ve çekirdeklerinin birlesmesiyle gerçeklesmektedir. Bu durum çok basit olarak morfolojik yapilari ayni olan 2 gametin birlesmesiyle olmaktadir. Gametler flagellatlara benzerler ve hareketlidirler. Bazi türlerde gametler yapilarina göre büyük ve küçük olarak ayrilabilirler. Algler, her ne kadar ekstrem olarak morfolojik, sitolojik ve üreme varyasyonlari bakimindan diger bitkilerle farklilik gösterse de, basit biyokimyasal mekanizmalarinin benzer oldugu görülmektedir. Örnegin, klorofil-a yapilari ve bu pigmentler yoluyla çalisan fotosentetik sistemleri, basit besin ihtiyaçlari ve asimilasyonun son ürünleri olan karbonhidrat ve proteinler, yüksek bitkiler ile benzerlik göstermektedir. Ekolojik olarak algler, karli alanlar, tamamen buzla kapli alanlar da bulunabilirler. Fakat % 70'nin dagildigi asil yayilim alani sulardir. Bu ortamlarda organik karbon bileseklerinin major primer üreticisidirler. Mikroskobik fitoplankton formunda meydana gelebilirler. Makroskobik ve mikroskobik formlarin her ikisi de kara ve su hatti boyunca ve bu ortamlarin her ikisinde meydana gelir. Gövde ya da benzer islevlere sahip yapilari ile derelerin alt kisimlari ve sedimenlere, toprak partiküllerine ya da kayalara tutunurlar. Yukarida da belirtildigi gibi buzla kapli alanlarda bulunduklari gibi 70 0C ya da daha yüksek sicakliktaki kaynak sularinda da yasayabilirler. Bazilari çok tuzlu su ortamlarinda bile gelisebilirler. Göllerde ve denizlerde yüzeyden 100 m asagida ya da daha düsük isik yogunlugu ve yüksek basinç altinda yasayabilirler. Denizlerde yüzeyden 1 km asagida da yasayabildikleri görülmüstür. Algler ile ilgili ekolojik çalismalarin ana hedefleri asagidaki gibidir; alglerin yasadigi habitatlarin siniflandirilmasi, her bir habitat içindeki flora kompozisyonunun tanimlanmasi, floralar arasindaki iliskiler ve habitattaki biyolojik, fiziksel ve kimyasal faktörlerin direkt ya da indirekt etkileri, populasyon içindeki türlerin çalisilmasi ve onlarin üremelerini kontrol eden faktörler ekolojik çalismalarin kapsamini olusturmaktadir. Tüm bu yaklasimlar, çevrenin fiziksel ve kimyasal degisimlerine bagli olarak cografik bir dagilim göstermektedir. Algler su ortaminda primer üretici canlilardir. Yapilarindaki pigmentleri sayesinde karbondioksit ve suyu isigin etkisi ile karbonhidratlara çevirirler, böylece su ortamindaki besin degerinin ve çözünmüs oksijen oraninin artmasini saglarlar. Sonuçta kendi gelisimlerini saglayarak besin zincirinin ilk halkasini olustururlar. Bu sekilde üretime olan katkilari ve üst basamaktaki canlilarla olan iliskileri açisindan önem tasimaktadirlar. Alglerin üretimleri çevresel faktörlerle sinirlanmistir. Bunlar isik, sicaklik ve besindir. Bu sinirlayici faktörler iyilestirilirse, üretim düzeyi artar. Üretim artisinin belli bir düzeyi asmasinin dogal bir sonucu olarak da çevresel denge bozulur ve bu geliseme eutrofikasyon adi verilir. Eutrofik bir ortamda besin madde girdisinin fazlaligindan dolayi, (özellikle azotlu bilesikler ve fosfat gibi alglerin gelisimini arttiran bilesikler) alg ve bakteri faliyetleri ile bulaniklik artar ve isigin suyun alt kisimlarina geçmesi engellenir. Oksijen dip kisimlarda sinirlayici bir özellik kazanir. Bu da bentik bölgede yasayan canlilar için ölümle sonuçlanabilir. Insan faaliyetleri, evsel, endüstriyel ve tarimsal atiklar son yillarda ötrofikasyon direkt etkide bulunmaktadir. Bunun yanisira atmosferden difüzyon ile suya karisan azot, yagmur sularinin alici ortamlara tasidigi besin maddeleri, drenaj yoluyla ortama tasinan maddeler kirlenme sürecini hizlandiran dogal gelisimlerdir. Eutrofikasyonun sonuçlarindan birisi de asiri alg patlamalarinin görülmesidir. Bunun anlami, fitoplankton (alglerin serbest yüzen formlari) populasyonlarinin suyun rengini, kokusunu ve ekolojik dengesini bozacak yeterli yogunluga ulasmasidir. Bunun yani sira alglerin asiri gelismesi, sucul ortamdaki bir çok canli için toksik etkilere neden oldugu için ölümler görülebilmektedir. Örnegin, Dinoflagellatlardan Gymnodinium ve Gonyanlax'a ait türler asiri çogalma sonucu, hayvanlarin sinir sistemlerini etkileyen, yüksek oranda suda çözünebilen toksik madde üretirler (Elliot et. al., 1992). Diger patlamalara ise Mavi-Yesil alglerden Microcystis, Anabaena, Nostoc, Aphanizomenon, Gloeotrichia ve Oscillatoria, Chrysophyte'den Prymnesium parvum neden olmaktadir. Algleri bulunduklari sistem içerisindeki etkilerini bu sekilde belirttikten sonra insanlar için ekonomik anlamda sagladiklari katkilara kisaca deginmek gereklidir. Besin maddesi olarak: Çogunlugu Phaeophyceae ve Phodophycea olan 100'den fazla tür içerdikleri protein, karbonhidrat, vitamin ve minerallerin varligindan dolayi dünyanin çesitli yerlerinde insanlar tarafindan besin kaynagi olarak kullanilirlar. Agar: Kirmizi alglerin hücre duvarlarinda bulunan, jelimsi bir özellige sahip olan bir polisakkarittir. Bazi algler ve bakterilerle ve birçok fungus'un kültürü için laboratuarda hazirlanan farkli kültür ortamlarinda temel olarak kullanilir. Ayrica önceden hazirlanmis yiyeceklerin paketlenmesi, kabizligin tedavisi, kozmetik, deri, tekstil ve kagit endüstrilerinde kullanilmaktadir (Sharma, 1986). Carrageenin: Kirmizi alglerin hücre duvarlarindan elde edilen baska bir polisakkarittir. Bu madde mayalama, kozmatik, tekstil, boya, endüstrilerinde ve tip alaninda kan pihtilayicisi olarak kullanilmaktadir. Alginatlar: Alginat türevleri ve alginik asit, kahverengi alglerin hücre duvarlarindan extre edilen bir karbonhidrattir. Alginatlar kauçuk endüstrisi, boyalar, dondurma, plastik dondurucularda kullaniliyorlar. Ayrica kanamalari durdurmak için alginik asit kullaniliyor. Funori: Kirmizi alglerden elde edilir. Kagit ve elbiseler için yapistirici olarak kullanilir. Kimyasal olarak sülfat ester grubu'n içermesi disinda agar-agar'a benzemektedir. Mineral Kaynagi Olarak: Bazi yosunlar demir, bakir, manganez, çinko bakimindan zengin kaynaklardir. Hayvan Yemi Olarak: Phaeophyceae, Rhodophyceae ve bazi yesil algler besin kaynagi olarak bir çok hayvan yemi için kullanilir. Bunun yanisira Protozoa, Crustacea'ler, baliklar va diger sucul canlilarin en büyük besin kaynagi planktonik alglerdir. Diatomite: Diatomite, diatomlarin hücre duvari materyalidir. Diatom kabuklarinin üst üste birikmesiyle genis yüzey alanlari olustururlar. Diatomite'ler, seker rafinerisi ve bira sanayisi, isi yalitimi, temizleme sanayi, cam bardak fabrikalari'nda kullanilirlar. Gübre Olarak: Dünyanin birçok sahil yöresindeki yosunlar, fosfor, potasyum ve bazi iz elementlerin varligindan dolayi gübre olarak kullanilirlar. Antibiyotikler: Chlorellin adindaki bir antibiyotik, yesil alglereden olan Chlorella'dan elde edilir. Ayrica gram negatif ve gram pozitif bakterileri karsi efektif olan bazi antibakterial maddeler Ascophyllum nodosum, Rhodomela larix, Laminaria digitata, Pelvetia ve Polysiphonia'nin bazi türlerinden elde edilmektedir. Bunlarin yanisira kahverengi ve diger alglerden elde edilen bir çok ilaç tip alaninda kullanilmaktadir. Atiklarin Aritilmasinda: Evsel ve endüstriyel kaynaklardan gelen atiklar, çözünmüs ya da askidaki organik ve inorganik bilesikleri içerir. Bu atiklarin temizlenme prosesleri oksijenli bir ortamda gerçeklesir ve bu oksijenlendirme bazi algler tarafindan saglanir. Ayrica, temizlenmesi güç olan azot ve fosfor gibi bilesikler alglerin bulundugu tanklara alinarak, algler tarafindan besin kaynagi olarak kullanilmalari suretiyle ortamdan uzaklastirilabilmektedirler. Yunus Akbulut Kaynaklar: Güner, H., 1991, Tohumsuz Bitkiler Sistematigi, Sharma, O. P., Text Book of Algea, 395 s., New Delhi. Round, F. E., 1973, The Biology of Algea, 2 nd. Ed., Edward Arnold, London. Elliot. W., Stoching, C. R., Barbour, M. G., Rost, T. L., 1982, Botany, An Introduction to Plant Biology, 6 nd. Ed., John Wiley and Sons, Singapure.

http://www.biyologlar.com/alglerin-ekolojik-onemi-1

Sucul toksikoloji vize soruları

Test, boşluk doldurma ve klasik sorulardan oluşuyor; Klasik sorular; 1)gölleri sıcaklık değişimine göre tabakalandırdığımızda göl kısımlarını yazın ve kısaca açıklayın(epilimnion,termoklin,hipolimnion) 2)P neden diğer nutrient elementlerden daha önemlidir ötrofikasyonda( dna,atp gibi canlılık için gerekli olan en temel birimlerde yer alır ve sınırlayıcı bir faktördür.bu sınırlayıcı faktör ortadan aklkınca üreme başarısı aşırı derecede artar,buda ekosistemdeki debgeyi bozar.) 3)kuru düşen asit yağmurlarını anlat Test soruları; 1)göl çanağını sordu ve cevap limnetik 2)akarsularda su kaynağının olduğu yer.. cvp:alabalık zonu 3)ötrofikasyonun çözümlerinde aşağıdakilerden hangisi vazgeçilemez bir çözüm yoludur cvp: P ve N girişini sağlayan su kaynaklarının kontrol altına alınması(engellenmesi) 4)Ötrofik göllerin daha sıcak olmasının sebebi? cvp: sudaki asılı maddelerin çok olması ve bunların güneş ışığını tutması 5)termoklinin diğer adını verip cvp olarak termoklin di Boşluk doldurma; 1)ötrofikasyonun çözüm yollarından biyolojik mücadelesinde ................ ve ............... kullanılır 2)dünyadaki suların % 97'si ..... , %3 ü ........ sulardır 3)asit yağmurlara .......... ve .......... sebep olur(SOx ve NO2) 4)kirlilik durumuna göre göller .........,..........,........... diye ayrılır.(oligotrofik,ötrofik,distrofik) doğru-yanlışlar; 1)asitliğin nötralleştirilmesinde CaCO3 kullanılabilir(Doğru ama MgCO3 ile MgCO3 de kullanılır) 2)sediment kazınmasında polietilen,sentetik kauçuk gibi maddelerle dip çamuru örtülür(Yanlış çünkü bu işlem dip çamurunun örtülmesi tekniğinde uygulanır) 3)asit yağmurları yapraktan Ca,Mg,K,Na,Mn gibi elementleri ayrır...(DOĞRU) 4)asit yağmurarının ph ları 5,6 ph dan düşüktür (doğru) 5)asit yağmurlarına bağlı olarak göllerde ,akarsularda chironomus larvası artar(YANLIŞ çünkü ötrofikasyona bağlı artar asit yağurlarına bağlı değil)

http://www.biyologlar.com/sucul-toksikoloji-vize-sorulari

Biyodizelin Çevresel Etkileri

Biyodizel kullanımında CO emisyonu %50, partikül madde %30 azalmaktadır. Biyodizel kullanımıyla asit yağmurlarının ana nedeni olan egzoz emisyonundaki SO ve sülfatlar tamamen ortadan kalkmaktadır. Yine insan sağlığı üzerine önemli bir tehdit olan aldehit bileşikleri petrodizele göre %30, yerleşim alanları üzerinde duman oluşumuna neden olan hidrokarbon emisyonları %95 azalmaktadır. Yine aromatik bileşenlerin egzoz emisyonları (PAH, NPAH) azalmaktadır. Biyodizelin petrodizele göre gen mutasyonu üzerindeki etkisi önemli oranda azdır. Biyodizel biyolojik olarak bozunabilir. Biyodizeli oluşturan C16 – C18 metil esterleri doğada hızla parçalanıp bozunur. Biyodizelin suya karışması halinde 28 günde %95 tamamen bozunurken, petrodizelin yalnızca %40’ı bozunabilmekte kalan % 60 ı ise yıllarca bozunmamaktadır. Biyodizelin olumsuz bir toksik özelliği bulunmamaktadır. Ağızdan alındığında sofra tuzu Biyodizelden 10 kat daha yüksek öldürücü etkiye sahiptir. İnsanlar üzerinde yapılan elle temas testleri Biyodizelin ciltte %4’lük sabun çözeltisinden daha az toksik etkisi olduğunu göstermiştir. Biyodizelin sudaki canlılara karşıda herhangi bir toksik etkisi bulunmamaktadır. Buna karşılık 1 litre ham petrol 1 Milyon Litre suya toksik etkide bulunur.

http://www.biyologlar.com/biyodizelin-cevresel-etkileri

Dünyanın En Garip Hayvanları

Yeşil çıngıraklı yılan;Güneydoğu Asya'da yaşıyor. Çıngıraklı yılanın farklı bir türü olan bu yılan bilimadamları tarafından ilk olarak 2002 yılında tanımlandı. Yılan balığı: 'Channidae' yılanbaşı balığı olarak da biliniyor. 2002 yılında tanımlanabildi. Ölüm balığı diye adlandırılan bu tür bir gölde yaşayan tüm canlıları yok edebilme yeteneğine sahip. Ortalama altı kilo ağırlığında ve bir metre uzunluğluğunda Aye-aye: Dünyanın en az bulunan ve ilginç görünümlü yaratıklarından. Madagaskar bölgesinde yaşayan bu inanılmaz hayvan insanlara zarar veriyor. Bir köyü yok ettiği söylenen bu hayvan ortalama 40 santimetre boyunda ve 2 kilo ağırlığında. Yıldız Burunlu Köstebek: Gözü olmayan bu hayvan tüm algısını çok gelişmiş yıldız şeklindeki burnuyla sağlıyor. Dokunma duyusu içinde yıldız şeklindeki burnunu kullanan bu yaratığın burnunda ortalama 25 bin sinir ucu bulunuyor Fırfırlı Kertenkele: Kahverengiye kaçan sarı rengiyle bu kertenkele Avustralya'da yaşıyor. Boynunun etrafını saran fırfır şeklindeki deri hayvana ilginç bir görüntü veriyor. Genellikle ağaç üstünde yaşıyor fakat zaman zaman yere iniyor Yaprak Kuyruklu geko: Madagaskar'ın yerlilerinden.Tropikal yağmur ormanlarında yaşadığı için doğaya uyum sağlamış bir tür. Ağaçların gövdesinde yaşıyor ve sinirlendiğinde ağzını açıp ilginç bir ses çıkarıyor. Kerivoula Kachinensis: Bu ilginç yarasa türü Asya'da yaşıyor. Doğada az rastlanan bir tür olan bu yarasa oldukça yırtıcı Kör çöl faresi: Afrika'nın doğu bölgesinde yaşıyor. Soğukkanlı ve acı sinirleri yok. Yer altında yaşamayı tercih eden bu fareler hiçbir şekilde acı hissetmiyor.

http://www.biyologlar.com/dunyanin-en-garip-hayvanlari

ALGLERİN EKOLOJİK VE EKONOMİK ÖNEMLERİ

Algler, gerek yapısal olarak gerekse de dış görünüşleri bakımından oldukça farklı görünümdedirler. Yapısal olarak eukaryotik (gelişmiş hücre tipi) ve prokaryotik (basit yapılı hücre tipi) olmak üzere iki büyük gruba ayrılırlar. Buna göre Mavi-Yeşil algler göstermiş oldukları hücre organizasyonları bakımından prokaryot hücre özelliği taşımaktadırlar. Belirgin bir hücre çekirdeğinin olmaması ve çok basit olan kromatofor yapısındaki pigmentlerin dağılımı ve prokaryotik hücre özellikleri bakımından diğer alglerden ayrılırlar. Dış görünümleri bakımından tek hücreli ve ipliksi formlardan karışık olarak gelişmiş bireylere kadar değişik biçimlerde gözlenebilmektedirler (Round, 1973). Her canlı gibi, algler de nesillerini devam ettirebilmek için çoğalmak zorundadırlar. Algler üç farklı üreme sistemine sahiptirler. Bunlar; vejatatif üreme, eşeyli ve eşeysiz üremelerdir. Alglerde vejatatif üreme yaygın bir durum göstermektedir. Bazı türlerde hücrelerin büyüyerek koloni oluşturmasına ve bunların daha sonra normal büyüme sonucu bölünmesine dayanır. Diğer bazı türlerde ise tallusun büyümesi ya da ana bitkinin büyümesinin sürmesiyle gerçekleşmektedir. Genellikle alglerin ilkel gruplarında görülen eşeysiz üreme çok değişik biçimlerde ortaya çıkmaktadır. Kamçılı alglerin bazı gruplarında vejatatif üreme ile eşeysiz üreme arasında büyük benzerlikler bulunmaktadır. Bu tip bir üremeye sahip alg hücrelerinden bazı tiplerin farklılaşması ve sonuçta bunların birer birey oluşturarak ana hücreden ayrılmalarıyla gerçekleşmektedir. Son üreme şekli olan eşeyli üreme ise alglerin genel bir özelliği değildir. Bu tip üreme genellikle gelişmiş organizmalarda görülmektedir. Alglerde eşeyli üreme çoğunlukla aynı tür iki organizmanın plazmalarının ve çekirdeklerinin birleşmesiyle gerçekleşmektedir. Bu durum çok basit olarak morfolojik yapıları aynı olan 2 gametin birleşmesiyle olmaktadır. Gametler flagellatlara benzerler ve hareketlidirler. Bazı türlerde gametler yapılarına göre büyük ve küçük olarak ayrılabilirler (Güner, 1991). Algler, her ne kadar ekstrem olarak morfolojik, sitolojik ve üreme varyasyonları bakımından diğer bitkilerle farklılık gösterse de, basit biyokimyasal mekanizmalarının benzer olduğu görülmektedir. Örneğin, klorofil-a yapıları ve bu pigmentler yoluyla çalışan fotosentetik sistemleri, basit besin ihtiyaçları ve asimilasyonun son ürünleri olan karbonhidrat ve proteinler, yüksek bitkiler ile benzerlik göstermektedir. Ekolojik olarak algler, karlı alanlar, tamamen buzla kaplı alanlar da bulunabilirler. Fakat % 70'nin dağıldığı asıl yayılım alanı sulardır. Bu ortamlarda organik karbon bileşeklerinin major primer üreticisidirler. Mikroskobik fitoplankton formunda meydana gelebilirler. Makroskobik ve mikroskobik formların her ikisi de kara ve su hattı boyunca ve bu ortamların her ikisinde meydana gelir. Gövde ya da benzer işlevlere sahip yapıları ile derelerin alt kısımları ve sedimenlere, toprak partiküllerine ya da kayalara tutunurlar. Yukarıda da belirtildiği gibi buzla kaplı alanlarda bulundukları gibi 70 0C ya da daha yüksek sıcaklıktaki kaynak sularında da yaşayabilirler. Bazıları çok tuzlu su ortamlarında bile gelişebilirler. Göllerde ve denizlerde yüzeyden 100 m aşağıda ya da daha düşük ışık yoğunluğu ve yüksek basınç altında yaşayabilirler. Denizlerde yüzeyden 1 km aşağıda da yaşayabildikleri görülmüştür (Elliot et. al., 1992). Algler ile ilgili ekolojik çalışmaların ana hedefleri aşağıdaki gibidir; alglerin yaşadığı habitatların sınıflandırılması, her bir habitat içindeki flora kompozisyonunun tanımlanması, floralar arasındaki ilişkiler ve habitattaki biyolojik, fiziksel ve kimyasal faktörlerin direkt ya da indirekt etkileri, populasyon içindeki türlerin çalışılması ve onların üremelerini kontrol eden faktörler ekolojik çalışmaların kapsamını oluşturmaktadır. Tüm bu yaklaşımlar, çevrenin fiziksel ve kimyasal değişimlerine bağlı olarak coğrafik bir dağılım göstermektedir. Algler su ortamında primer üretici canlılardır. Yapılarındaki pigmentleri sayesinde karbondioksit ve suyu ışığın etkisi ile karbonhidratlara çevirirler, böylece su ortamındaki besin değerinin ve çözünmüş oksijen oranının artmasını sağlarlar. Sonuçta kendi gelişimlerini sağlayarak besin zincirinin ilk halkasını oluştururlar. Bu şekilde üretime olan katkıları ve üst basamaktaki canlılarla olan ilişkileri açısından önem taşımaktadırlar. Alglerin üretimleri çevresel faktörlerle sınırlanmıştır. Bunlar ışık, sıcaklık ve besindir. Bu sınırlayıcı faktörler iyileştirilirse, üretim düzeyi artar. Üretim artışının belli bir düzeyi aşmasının doğal bir sonucu olarak da çevresel denge bozulur ve bu gelişeme eutrofikasyon adı verilir. Eutrofik bir ortamda besin madde girdisinin fazlalığından dolayı, (özellikle azotlu bileşikler ve fosfat gibi alglerin gelişimini arttıran bileşikler) alg ve bakteri faliyetleri ile bulanıklık artar ve ışığın suyun alt kısımlarına geçmesi engellenir. Oksijen dip kısımlarda sınırlayıcı bir özellik kazanır. Bu da bentik bölgede yaşayan canlılar için ölümle sonuçlanabilir. İnsan faaliyetleri, evsel, endüstriyel ve tarımsal atıklar son yıllarda ötrofikasyon direkt etkide bulunmaktadır. Bunun yanısıra atmosferden difüzyon ile suya karışan azot, yağmur sularının alıcı ortamlara taşıdığı besin maddeleri, drenaj yoluyla ortama taşınan maddeler kirlenme sürecini hızlandıran doğal gelişimlerdir. Eutrofikasyonun sonuçlarından birisi de aşırı alg patlamalarının görülmesidir. Bunun anlamı, fitoplankton (alglerin serbest yüzen formları) populasyonlarının suyun rengini, kokusunu ve ekolojik dengesini bozacak yeterli yoğunluğa ulaşmasıdır. Bunun yanı sıra alglerin aşırı gelişmesi, sucul ortamdaki bir çok canlı için toksik etkilere neden olduğu için ölümler görülebilmektedir. Örneğin, Dinoflagellatlardan Gymnodinium ve Gonyanlax'a ait türler aşırı çoğalma sonucu, hayvanların sinir sistemlerini etkileyen, yüksek oranda suda çözünebilen toksik madde üretirler (Elliot et. al., 1992). Diğer patlamalara ise Mavi-Yeşil alglerden Microcystis, Anabaena, Nostoc, Aphanizomenon, Gloeotrichia ve Oscillatoria, Chrysophyte'den Prymnesium parvum neden olmaktadır. Algleri bulundukları sistem içerisindeki etkilerini bu şekilde belirttikten sonra insanlar için ekonomik anlamda sağladıkları katkılara kısaca değinmek gereklidir. Besin maddesi olarak: Çoğunluğu Phaeophyceae ve Phodophycea olan 100'den fazla tür içerdikleri protein, karbonhidrat, vitamin ve minerallerin varlığından dolayı dünyanın çeşitli yerlerinde insanlar tarafından besin kaynağı olarak kullanılırlar. Agar: Kırmızı alglerin hücre duvarlarında bulunan, jelimsi bir özelliğe sahip olan bir polisakkarittir. Bazı algler ve bakterilerle ve birçok fungus'un kültürü için laboratuarda hazırlanan farklı kültür ortamlarında temel olarak kullanılır. Ayrıca önceden hazırlanmış yiyeceklerin paketlenmesi, kabızlığın tedavisi, kozmetik, deri, tekstil ve kağıt endüstrilerinde kullanılmaktadır (Sharma, 1986). Carrageenin: Kırmızı alglerin hücre duvarlarından elde edilen başka bir polisakkarittir. Bu madde mayalama, kozmatik, tekstil, boya, endüstrilerinde ve tıp alanında kan pıhtılayıcısı olarak kullanılmaktadır. Alginatlar: Alginat türevleri ve alginik asit, kahverengi alglerin hücre duvarlarından extre edilen bir karbonhidrattır. Alginatlar kauçuk endüstrisi, boyalar, dondurma, plastik dondurucularda kullanılıyorlar. Ayrıca kanamaları durdurmak için alginik asit kullanılıyor. Funori: Kırmızı alglerden elde edilir. Kağıt ve elbiseler için yapıştırıcı olarak kullanılır. Kimyasal olarak sülfat ester grubu'n içermesi dışında agar-agar'a benzemektedir. Mineral Kaynağı Olarak: Bazı yosunlar demir, bakır, manganez, çinko bakımından zengin kaynaklardır. Hayvan Yemi Olarak: Phaeophyceae, Rhodophyceae ve bazı yeşil algler besin kaynağı olarak bir çok hayvan yemi için kullanılır. Bunun yanısıra Protozoa, Crustacea'ler, balıklar va diğer sucul canlıların en büyük besin kaynağı planktonik alglerdir. Diatomite: Diatomite, diatomların hücre duvarı materyalidir. Diatom kabuklarının üst üste birikmesiyle geniş yüzey alanları oluştururlar. Diatomite'ler, şeker rafinerisi ve bira sanayisi, ısı yalıtımı, temizleme sanayi, cam bardak fabrikaları'nda kullanılırlar. Gübre Olarak: Dünyanın birçok sahil yöresindeki yosunlar, fosfor, potasyum ve bazı iz elementlerin varlığından dolayı gübre olarak kullanılırlar. Antibiyotikler: Chlorellin adındaki bir antibiyotik, yeşil alglereden olan Chlorella'dan elde edilir. Ayrıca gram negatif ve gram pozitif bakterileri karşı efektif olan bazı antibakterial maddeler Ascophyllum nodosum, Rhodomela larix, Laminaria digitata, Pelvetia ve Polysiphonia'nın bazı türlerinden elde edilmektedir. Bunların yanısıra kahverengi ve diğer alglerden elde edilen bir çok ilaç tıp alanında kullanılmaktadır. Atıkların Arıtılmasında: Evsel ve endüstriyel kaynaklardan gelen atıklar, çözünmüş ya da askıdaki organik ve inorganik bileşikleri içerir. Bu atıkların temizlenme prosesleri oksijenli bir ortamda gerçekleşir ve bu oksijenlendirme bazı algler tarafından sağlanır. Ayrıca, temizlenmesi güç olan azot ve fosfor gibi bileşikler alglerin bulunduğu tanklara alınarak, algler tarafından besin kaynağı olarak kullanılmaları suretiyle ortamdan uzaklaştırılabilmektedirler. Kaynaklar: Güner, H., 1991, Tohumsuz Bitkiler Sistematiği, I. Cilt, Ege Üniversitesi Fen Fak. Kitaplar Serisi No:108, 251 s., İzmir Sharma, O. P., Text Book of Algea, 395 s., New Delhi. Round, F. E., 1973, The Biology of Algea, 2 nd. Ed., Edward Arnold, London. Elliot. W., Stoching, C. R., Barbour, M. G., Rost, T. L., 1982, Botany, An Introduction to Plant Biology, 6 nd. Ed., John Wiley and Sons, Singapure.

http://www.biyologlar.com/alglerin-ekolojik-ve-ekonomik-onemleri

Canlıların Sınıflandırılması nedir,nasıl yapılır

CANLILARIN SINIFLANDIRILMASI Dünyamızda yaşamakta olan canlılar incelenirse özelliklerinin çok farklı olduğu gözlenir.Bu farklara rağmen bu canlıları derece derece ve birbirlerine benzeyenleri bir araya toplayarak gruplandırmak mümkündür.Canlıların benzerliklerine göre gruplandırılmasına sınıflandırma (sistematik) denir.Hayvanlar ve bitkiler belirli bir düzen içerisinde sınıflandırılır. SINIFLANDIRMA SİSTEMİNİN GELİŞİMİ Canlılar; monera, protista, fungi, bitki ve hayvan olmak üzere gözle görülmeyen çok küçük organizmalardan dev ağaçlara ve binalara kadar bir dağılım gösterirler.Bu büyük hayat çeşitliliğini tanıyabilmek için, büyük grupları daha küçük gruplara ayırmak gerekir.Biyologlar dünyadaki canlıları sınıflandırmamış olsalardı, bu kadar çeşitli olan canlılara ulaşmak mümkün olmayacaktı. Sınıflandırmanın amacı, canlıları bir sistematiğe oturtmak ve tabiatı daha kolay anlaşılabilir hale getirmektir. İlk sınıflandırmayı Yunan Filozofu Aristoteles (m.ö.383-322) yapmıştır.Aristoteles bitkileri otlar, çalılar, ağaçlar; hayvanları ise yaşadıkları yere göre karada, suda ve havada yaşayanlar şeklinde gruplandırmıştır.Aristoteles’in sınıflandırması canlıların görülebilen ve morfolojik özelliklerine göre yapılmıştır. Günümüzdeki sınıflandırılmada, canlıların bütün özellikleri göz önünde bulundurulur. Örneğin yarasanın kanatlarına bakarak onu kuşlar sınıfında incelemek mümkün değildir.Yarasa bütün özellikleri ile bir memeli hayvandır. Sınıflandırma, canlıların görülen bir veya birkaç özelliğine göre yapılırsa ‘suni sınıflandırma’ (yapay sınıflandırma) adını alır. Aristo’nun yapmış olduğu sınıflandırma yapay sınıflandırmadır. Buna ampirik sınıflandırma da denir. Günümüzde sınıflandırma, canlıların akrabalık ilişkilerine göre yapılır. Sınıflandırılmada canlıların tüm özellikleri göz önünde bulundurulur.Bu çeşit sınıflandırmaya ‘tabii sınıflandırma’ (doğal sınıflandırma) denir. Doğal sınıflandırma bilimsel olan sınıflandırılmadır.Buna filogenetik sistematik da denir. Bir canlıyı türün evrim sistematiğine geçirdiği gelişmelere filogeni (soy oluş), embriyo döneminde geçirdiği değişmelere ontogeni (birey oluş) denir. SINIFLANDIRMA BİRİMLERİ Sınıflandırmanın en küçük birimi tür dür.Sınıflandırmada tür kavramını ilk kuran kişi John Ray dır. Tür ortak bir atadan gelem,yapı görev bakımından ortak özelliklere sahip olan, kendi aralarında çiftleşerek verimli döller meydana getirebilen bireylerin oluşturduğu topluluktur. Sistematikte her tür iki isimle adlandırılır.Bu iki isimden 1. si canlının cinsini 2. si tanımlayıcı özelliğini belirtir.Her türün iki isimle adlandırılması ilk kez Carolus Linnaeus tarafından kullanılmıştır. Türlerden daha büyük topluluklar da vardır.Bunlar sırasıyla cins, familya, takım, sınıf, şube ve alem dir. Birbirlerine çok benzeyen yakın türlerin gruplaşmasıyla cinsler ortaya çıkar.Örneğin kedi, aslan ve kaplan türleri ‘felis’ cins adı altında toplanır. Felis domesticus :Kedi Felis leo :Aslan Felis tigris :Kaplan Her tür kendi cinsiyle belirtilir.Bu kural bütün dünyada kullanılır. Böylece karışıklık önlenir.Cinslerin ortak karakterlerine göre gruplaşmasına familyalar meydana gelir.Benzer familyalar takımları oluşturur.Benzer takımların gruplaşmasıyla sınıflar ortaya çıkar. Sınıfların bir araya gelmesiyle şubeler, şubelerin bir arya gelmesiyle alem meydana gelir. Sınıflandırmada birimler büyükten küçüğe doğru gidildikçe, birimin kapsadığı birey sayısı artar, aralarındaki benzerlik azalır.Büyük biriden küçük birime doğru gidildikçe birey sayısı azalır, benzerlik artar. BİLİMSEL SINIFLANDIRMANIN DAYANDIGI TEMELLER Günümüzde geçerli olan sınıflandırma filogenetik sınıflandırmadır. Bu sınıflandırmaya göre bütün canlıların ortak bir atası vardır.Bu sınıflandırmanın açıklanabilmesi için akrabalık derecelerinin açıklanması gerekir.Akrabalık derecelerinin belirlenmesinde bazı temel kurallar göz önüne alınır. 1) Homolog Organlar: Yapıları ve gelişimleri birbirlerine benzeyen fakat farklı görevleri olan organlara homolog organlar denir.Örneğin fok balığının ön yüzgeci, yarasanın kanadı, kedinin pençesi, atın ön bacağı, insanın eli homolog organlardır.bunları her biri yaklaşık olarak aynı sayıda kemik, kas, sinir ve kan damarlarına sahiptir.Aynı plana göre düzenlenmiş ve aynı gelişme biçimine sahiptir.homolog organlar canlıların ortak bir atadan geldiğinin kanıtlarından biri olarak ileri sürülmektedir. Bazı organlar aynı kökten gelmedikleri halde, yaptıkları görev aynıdır. Bu organlara anolog organlar denir.Kuş ve böcek kanatları analog organlardır. 2) Embriyolojik Benzerlik: Canlıların embriyo dönemlerinde geçirdikleri evreler ve farklılaşmalar birbirine çok benziyorsa bu canlılar yakın akrabadır.Omurgalı hayvanlarının embriyolarının ilk evreleri çok belirgin bir benzerlik gösterir.İlk evrede balık ve domuz embriyosunu ayırmak çok zordur. 3)Biyokimyasal Benzerlik: Çeşitli hayvanların plazma proteinleri arasındaki benzerlik derecelerinin antijen-antikor tekniği ile denenir. Her hayvan türünün kan içeriği kendine özgün bir protein bileşimine sahiptir.yakın akraba olan canlıların plazma proteinlerinin benzerliği daha fazadır. Bütün hayvanlarda hücrenin çalışması ve kalıtım faktörlerinin dölden döle geçmesi kromozomlar tarafından kontrol edilir.Bütün canlılarda kromozomların kimyasal yapısını DNA (deoksiribonükleik asit) meydana getirir.Akrabalık derecesi yakın olan canlıların DNA’larının baz dizilimlerinin benzerliği de artmaktadır. Hayvanlar, protein metabolizması sonucu oluşan azotlu artıkları üre, ürik asit ve amonyak şeklinde idrarla vicuttan uzaklaştırılabilir. Sınıflandırılmada canlıların idrarlarının bileşimi de dikkate alınır. Memeli canlılarının çoğunda sindirim için aynı veya benzer enzimler kullanılır.Bu olaylar canlıların ortak bir kökten geldiğinin kanıtlarından biri olarak gösterilmektedir. Bunlar başka yumurta tiplerinin benzerliği, organizmaların simetri şekilleri anatomik yapılarındaki benzerlikler gibi özellikler de doğal sınıflandırma yapılırken dikkate alınır. Bazı organizmalar mevcut bir sınıflandırma sistemine koymak oldukça zordur.Çünkü canlıların taşıdıkları özelliklerin bazısı bir gruba, bazısı da diğer bir gruba ait olabilir.Örneğin tek hücreli olan euglena; hareketli , kloroplast taşıyan ve kendi besinini yapabilen canlıdır. Euglena, hareketinden dolayı hayvan, kloroplast taşıdıgı ve kendi besinini kendisi yaptığından dolayı da bitki olarak kabul edilmiştir. Bakteriler: Heteretroflardır. Parazit yada saprofit beslenirler. Fotosentez ya da kemosentez yapan ototrof olanları vardır. Mavi-Yeşil algler:Fotosentez yaparlar.Kloroplastları yoktur. Fotosentez olayı stoplazma içine dağılmış klorofiller aracılığı ile olur. PROTİSTA a) Kamçılılar: Tek hücreli yapıya sahiptirler. Suda hareket ederler. Heterotrof ve otorotrof olanları vardır.Örnek:Euglena. b) Kök ayaklılar: Tek hücreli olan bu protozoalar besinlerini yalancı ayakları ile alır ve hareket eder.Örnek:Amip c) Sporlular: Sporla ürerler. parazityaşarlar. Örnek: Plazmadizmmalaria d) Silliler: Hücrenin çevresi hareket ve besin almayı saglayan sillerle çevrilidir. Örnek: Şapkalı mantar. FUNGİ Çok çekirdekli hücrelere sahip olup, sporlarla ürerler. Örnek: Şapkalı mantar. BİTKİLER Algler, çiçeksiz bitkiler ve çiçekli bitkiler olmak üzere üç grupta incelenir. Algler: İletim demetleri yoktur.İletim demetleri olmadığından su ve suda erimiş madensel tuzları tüm bitki tüzeyi ile alırlar.Doku farklılaşması yoktur. Çiçeksiz Bitkiler: Kendi arasında ikiye ayrılır. 1) Kara yosunları: İletim demetleri yoktur.Eşeyli ve eşeysiz üreme, döl değişimi şeklinde birbirini takip eder. Gametleri gametongium denen keselerde oluşturur.döllenme sonucu oluşan zigot bir süre ebeveyne bağlı kalır. 2) Eğrelti otları: İletim demetleri vardır.Gerçek kökleri yoktur. Eşeyli ve eşeysiz üreme döl değişimi şeklinde birbirini takip eder. Çiçekli Bitkiler:İyi gelişmiş iletim sistemleri vardır.Üreme organları çiçek şeklinde özelleşmiştir.Açık ve kapalı tohum olak üzere iki grupta incelenir. 1) Açık tohumlular: Her zaman yeşildirler.Soymuk demetlerinde kalburlu hücreler vardır, arkadaş hücreleri yoktur.Çiçekleri daima tek eşeylidir.Tohumları daima çok çeneklidir.Tohum taslakları yumurtalık dışına gelişir. 2) Kapalı tohumlular: En gelişmiş bitki sınıfıdır.Her zaman yeşil değildirler.Çiçekleri genelde erseliktir.Çiçeklerinde çanak ve taç yaprak farklılaşması vardır.Kapalı tohumların iki önemli sınıfı vardır. 1)Monokotiledonlar (bir çenekliler): Embriyolarında tek çenek yaprağı taşırlar.Otsu bitkilerdir.Tek yada çok yıllık olabilirler.İletim demetleri dağınık ve düzensiz sıralanmıştır.Korteksi incedir.Meristem kambiyumu yoktur.Yaprakları paralel damarlıdır. Saçak kök sistemi bulunur. 2) Dikotiledonlar(iki çenekliler): Embriyolarında iki çenek yaprağı taşırlar.Otsu ve odunsu bitkilerdir.Tek yada çok yıllık olabilirler. İletim demetleri dairesel çizilmiştir. Korteksi incedir.Enine kalınlaşmasını sağlayan kambiyum (meristem) bulunur.Yaprakları ağsı damarlıdır.Ana kök ve buna bağlı yarı kökler gelişmiştir. HAYVANLAR Çok hücreli heterotrof canlılarıdır.Aktif hareket ederler. Omurgalılar ve omurgasızlar olmak üzere iki gruba ayrılırlar. Omurgalılar(kordalılar) Omurgalılar ve ilkel kordalılar olmak üzere iki gruba ayrılırlar. A) Omurgalılar:Vücutlarının sırt tarafında bir sinir kordonu bulunur.İç iskelet eklemlidir. İskelete bağlı kaslar hareketi sağlar.Hepsinde beyin ve beyini koruyan kafatası vardır.Dolaşım sistemleri kapalıdır.Holozoik olarak beslenirler.Çoğu ayrı eşeylidir.Balıklar, kuşlar, kurbağalar, sürüngenler ve memeliler olmak üzere beş sınıfa ayrılırlar. 1) Balıklar: Vicutları pullarla örtülüdür.İç iskelet kemikten ya da kıkırdaktan oluşmuştur.Solungaç solunumu yaparlar.Kalpleri iki odacıklıdır.Kalplerinde sürekli kirli kan bulunur.Vücutlarında temiz kan dolaşır.Soğuk kanlı hayvanlardır.Boşaltım organları mezonefros tipi böbreklerdir.Boşaltım maddelerinin, üreme hücrelerinin ve sindirim artıklarının toplandığı kloak denilen yapıya sahiptirler.Örnek:köpek balığı, alabalık, sazan. 2) Kuşlar: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sağa kıvrılarak dallanır.Sıcakkanlıdırlar.Boşaltım organı metanefroz tipi böbreklerdir, vücut tüylerle kaplıdır.Tüysüz olan bölgeler pullarla örtülüdür.Kloaklıdırlar. Dişleri yoktur.Örnek:martı, bülbül, tavuk, ördek, deve kuşu. 3) Kurbağalar: Lavralar solungaç solunumu, erginleri akciğer ve deri solunumu yaparlar.Kalpleri üç odacıklıdır.Vücutlarında karışık kan dolaşır.Soğukkanlıdırlar.Azotlu dolaşım maddesi amonyaktır.Boşaltım organı mezonefroz tipi böceklerdir.Kloak lıdır.Derilerinin mukus salgısı olan mukus, deriyi kaygan tutar.Örnek:semender, kuyruklu kurbağa, su kurbağası. 4) Sürüngenler: Akciğer solunumu yaparlar.Kalpleri üç odacıklıdır (timsah hariç).Soğukkanlıdırlar.Erginlerinin boşaltım organları metanefroz tipi böbreklerdir.kloak lıdırlar.Dişilerde yumurta kanalının bir bölümü yumurta akı, diğer bölümü yumurta kabuğu yapacak şekilde özelleşmiştir.Vücut keratinle kaplı olduğundan kurudur. Örnek:yılan, timsah, kaplumbağa, kertenkele. 5) Memeliler: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sola kıvrılarak dallanır. Sıcakkanlı hayvanlardır.Kloak yoktur.Ürogenital sistem sindirim sisteminden ayrı olarakdışarıya açılır.Boşaltım organı metanesaz tipi böbreklerdir.Sinir sistemleri çok gelişmiştir.Örnek:fare, yarasa, kirpi, insan,balina.  B) İlkel kordalılar: İskeletleri kıkırdaktır.Yutak bölgesinde solungaç yarıkları, sırt tarafında da sırt ipliği bulunur.Bu grubun tek örneğiAmfiyoksüs tür. OMURGASIZLAR Süngerler, sölentereler, solucanlar, yumuşakçalar, eklembacaklılar ve derisi dikenliler olmak üzere gruplandırılmışlardır. a) Süngerler: Yapısını oluşturan hücreler arasında iş bölümü vardır.Hücresel farklılaşma görülmesine karşın hücrelerde doku oluşturmak için iş bölümü yoktur. b) Sölenterler: Bu şube üyeleri oyu bir kese gibi düzenlenmiş tek açıklı sindirim boşluklarına sahiptirler.Örnek:deniz anası, hidra, mercanlar. c) Yassı solucanlar: Sinir ve üreme sistemlerine sahiptirler.Örnek: tenya, planoria. d) Yuvarlak solucanlar: Bitki ve hayvanlarda parazit yaşarlar.Örnek: bağırsak solucanı. e) Böcekler: Vücutlarının tamamı epidermisin salgıladığı kitin ile kaplıdır.Trache solunumu yaparlar. CANLILARDA BESLENME İLİŞKİLERİ Besleme sistemine göre canlılar üreticiler(ototroflar) ve tüketiciler(heterotroflar) olmak üzere iki grupta incelenir.Üretici canlılar(ototroflar) kendi besinlerini yapar.Tüketiciler(heterotroflar) besinlerini kendileri yapamaz.Doğrudan veya dolaylı olarak ototrof canlılardan sağlar. OTOTROF BESLENME Kendi besinini kendisi sentezleyebilen organizmalara ototrof (üretici) canlı denir.Enerji sayesinde inorganik maddelerden organik madde sentezleyebilirler.Bitkiler, algler ve bazı bakteriler ototrof canlılardır.Kullanılan enerji kaynağına göre, ototrof organizmalar fotosentez yapanlar ve kemosentez yapanlar olmak üzere iki bölümde incelenir.fotosentez yapan canlıların klorofili vardır.bunlar klorofilleri sayesinde güneş ışınlarını soğurarak organik besinlerde kimyasal bağ enerjisine çevirirler. Kemosentez yapan organizmalar genellikle bakterilerdir.Bunlar gerekli enerjiyi amonyak, hidrojen, sülfür gibi belirli inorganik maddeleri oksitleyerek sağlar. Nitrit bakterileri amonyağı nitrite, nitrat bakterileri nitriti, nitrata dönüştürür.bu sırada açığa çıkan enerji bakteriler tarafından ATP sentezinde kullanılır.Bu şekilde gerçekleşen ATP sentezine kemosentetik fosforilasyon denir.Bu ATP inorganik maddelerden organik maddelerin sentezi sırasında kullanılır. Nitrit ve nitrat bakterileri azot döngüsünde rol oynar.Amonyağı, yeşil bitkilerin kolayca alıp kullanabileceği nitrat bileşiklerine dönüştürür.Amonyağın nitrata dönüştürülmesine nitrifikasyon denir. HETEROTROF BESLENME İnorganik maddelerden organik besin yapamayan, organik besinleri hazır olarak alan canlıların beslenme biçimine heterotrof beslenme denir.Böyle beslenen canlılara dış beslek veya tüketiciler adı verilir. Heterotrof canlıların beslenme ve yaşama şekilleri holozoik, simbiyoz, saprofit olmak üzere üç grupta incelenir. a) Holozoik Beslenme:Bu şekilde beslene canlılar besinlerini katı parçalar halinde alarak sindirirler.bunların sindirim sistemleri, avlarını yakalayabilmek için duyu organları, sinir sistemleri ve kas yapıları gelişmiştir.Otçul hayvanlar, etçil hayvanlar ve hem otçul hem etçil hayvanlar bu grupta incelenir. b) Birlikte Yaşama:İki veya daha fazla türün bir arada kurdukları yaşam şekline simbiyosim denir.Bu canlılardan biri konak diğeri konuk adını alır.Birlikte yaşama yararlı ve zararlı birliktelikten oluşur.Yararlı birliklerin beslenme biçimi kommensalizm ve mutualizm dir.Zararlı birlikteliklerin ise parazitizmdir. 1) Mutualizm:Bir arada yaşayan canlıların karşılıklı olarak yarar sağlaması şeklindeki beslenme biçimidir.Bu beslenme biçimine en tipik örnek likenlerdir.Liken, mantar ve yeşil algler in birlikte oluşturdugu bir yaşama birliğidir. 2) Kommensalizm:Bir canlı üzerinde yaşadığı canlıya zarar vermeden bu canlıdan yararlanıyorsa bu yaşama şekline kommensalizm denir.Örnek olarak yengeçlerin solungaçlarına tutunarak yaşayan bazı yassı kurtlar. 3) Parazitizm:Bir arada yaşayan iki canlıdan birinin digerini sömürerek ona zarar vermesi şeklinde olan beslenme ilişkisidir.Bazı bakterilerin sindirim enzimleri yoktur.Önemli monomerleri diğer canlı organizmalardan sağlarlar.Böyle bakterilere parazit bakteriler denir. Hastalık yapan parazit bakterilere de patojen bakteriler denir. Bir canlı diğer bir canlının deri ve solungaçlarına yapışarak yaşıyorsa bu canlılara ektoparazit (dış parazit) denir.Koku ve diğer duyu organları iyi gelişmiştir.Bit, pire, tahtakurusu, uyuz böceği, sivrisinek bir ekoparazittir. Bir canlı diğer bir canlının iç kısmında yaşıyorsa endoparazit denir. Bu parazitler hücre içerisinde yaşıyorsa bunlara hücre parazitleri denir.Örneğin sıtmaya neden olan parazit plazmadium al yuvar hücresinde yaşar.Endoparazitler çok sayıda gamet oluştururlar. Bundan dolayı üreme sistemleri çok gelişmiştir Bitki üzerinde yaşayan ve konak organizmanın odun borularından su ve madensel tuzlar alarak fotosentez yapabilen parazitlere yarı parazit denir.Üzerinde yaşadığı konak bitkinin soymuk borularından hazır organik maddeler alarak yaşayan parazit bitkilere tam parazit denir. c) Saprofit (çürükçül) beslenme:Biramayası, küf mantarı ve bakterilerin çoğu besinlerini katı olarak alamazlar.Bunlar gerekli olan organik besin maddelerini kokuşmaya yüz tutmuş bitki ve hayvan ölüleri üzerinden canlı artık ve salgılarından sağlarlar.Saprofitler öncelikle dışarı salgıladıkları enzimle besinlerini sindirir.Daha sonra küçük molekülleri emerler.Bu şekilde heterotrof beslenmeye saprofit beslenme denir.Saprofit bakterilerinin bir kısmı çürümede, bir kısmı ise mayalanmada rol oynar. HEM OTOTROF HEM HETEROTROF BESLENME Sinek kapan ve ibrik otu gibi böcek yiyen bitkiler fotosentezle organik madde yapar.Ayrıca yakaladıkları böcekleri salgıladıkları enzimlerle hücre dışında sindirirler.Daha sonra bu besinleri emerler. DOGADA MADDE DEVRİ Organik artıklar ve cesetler ayrıştırılarak inorganik maddelere dönüştürülür.Bu yollarla serbest kalan inorganik maddeler yeniden fotosentez ve kemosentez de kullanılır hale getirilir.Fotosentez ve kemosentez olaylarıyla inorganik maddeler yeniden organik bileşiklere dönüştürülür. Bu dönüşümlere doğada madde döngüsü denir. Karbon devri: Bir dönümlük şeker kamışı her yıl atmosfer tabakasından 20 ton kadar karbondioksit kullanır.Bitki ve hayvan enerji elde etmek için organik maddeleri yıkar.Karbondioksit ve su ya kadar parçalanır.Hücre solunumu denen bu olay sonucunda oluşan karbondioksit tekrar atmosfer tabakasına verilir. Azot devri: Bitkiler aminoasit ve protein sentezi yapabilmek için gerekli olan azotu, nitrat tuzları olarak topraktan alırlar.Bitkiler tarafından alınan nitratlar bitki hücreleri tarafından aminoasit ve protein sentezinde kullanılır. Ölmüş bitki ve hayvanla, canlıların artıkları ve salgılarındaki proteinli maddeler saprofitler tarafından amonyağa dönüştürülür.Bu olaya pütrüfikasyon (kokuşma) denir. Amonyak nitrit bakterileri tarafından nitrite; nitritte nitrat bakterileri tarafından nitrata dönüştürülür.Bu olaya nitrifikasyon denir. Bitki tarafından kullanılmayan nitratlar azot bozan bakteriler ile parçalanır.Bu parçalanmadan açığa çıkan azot tekrar havaya karışır.Bu olaya denitrifikasyon denir. Havanın azotu toprağa iki şekilde geçer: 1)Yıldırım çakması sonucu azot oksijenle birleşir.Daha sonra su ile etkileşince nitrik asit meydana gelir.Yağmurla toprağa inen nitrik asit toprakta bulunan sodyum ve potasyum bileşikleri ile etkileşerek nitrat tuzlarını oluşturur. 2)Toprakta, havanın serbest azotunu bağlayabilen ve kullanabilen azot bakterileri vardır.baklagillerin köklerindeki urlarda yaşayan ribozom da havanın serbest azotunu bağlayabilir ve azotlu madde yapar.Bu bakterilerin ölüleri topraktaki azotlu organik artıkları oluşturur.

http://www.biyologlar.com/canlilarin-siniflandirilmasi-nedirnasil-yapilir

Ekosistem Çeşitleri

Belirli bölgede bulunan ve birbiri ile dolaylı ya da dolaysız ilişkide olan canlılarla bu canlıların yer aldığı cansız çevre Ekosistemi oluşturur. Doğada büyük ekosistemler ve bunların içerisinde de daha küçük ekosistemler bulunur. Tabiat farklı özellikte pek çok ekosistemin birleşmesinden oluşur Kara ve su ekosistemi olmak üzere başlıca iki çeşit ekosistem bulunur. Kara ekosistemlerini çayırlar çöller, mağara, step, tundra, ova, dağ gibi daha küçük olan ekosistem parçaları oluşturur. Su ekosistemlerini de okyanus, deniz, Göl, ırmak, havuz, bataklık gibi ekosistem parçaları oluşturur. Çevredeki ekosistemlerin birleşmesiyle yeryüzünün doğal ortamı oluşmaktadır. Çevredeki her ekosistem çeşidinin kendisine has olan farklı fiziksel ve kimyasal özellikleri bulunur. Ekosistemdeki Bozulmaların Çevreye Etkileri Ekosistemdeki bozulma bir bütün olan çevrenin yapı ve işleyişini olumsuz etkiler Bazı varlıkların azalması diğer bazı varlıkların azalmasına da neden olur. Madde döngülerinin gerçekleşmesi zorlaşır. Sonuçta doğadaki enerji tükenmeye doğru gider. 1.Dünya Coğrafyasının Değişmesi Ekosistemin yapı ve işleyişini oluşturan iklim, Toprak, Hava, bitki hayvan gibi faktörlerin olumsuz yönde değişmesi çevrenin ekolojik özelliklerini de değiştirir Uzun süren kuraklıklar sonucu bir ekosistemdeki bitki ve hayvan sayısı hızla azalır suların kirlenmesi sonucu suya ışık girişi azalır, Suyun Hava oranı düşer Toprakta oluşan tahribat ve kirlenmeler önce bitkilerin sonrada diğer canlıların zamanla ölmesine neden olur Ormanların kesilmesi ve yanması çevrenin çölleşmesine ve sonrasında küresel ısınmaya etkide bulunur 2.İklimin Değişmesi İklim şartlarının değişmesi ekosistemdeki canlı yaşam ve dağılışını etkiler İklimi değişen bir bölgede bazı Canlılar göç ederken, bazı canlılar ölür veya şartlara uymaya çalışır. Ozon tabakasının incelmesi, ormanların azalması, Havanın kirlenmesi, yağışların azalması, çölleşmenin başlaması bir bölgedeki iklimin ve coğrafik yapının değişmesine etkide bulunur 3.Erozyonların Oluşması Toprağın su ve rüzgar etkisiyle aşınıp taşınmasına Erozyon denir çevredeki bitki örtüsünün azalması şiddetli yağmurların yağması, karların kısa sürede erimesi, fırtınaların oluşması, toprağın yanlış sürülmesi, eğimli alanlardaki ormanların yanması gibi etkenler erozyonların oluşmasına neden olur Erozyonlar sonucu bir bölgenin toprağı tahrip olur. Tarım toprağının ürün verimi azalır. Erozyonu önlemek için en etkili yöntem eğimli ve çorak Toprakların ağaçlandırılmasıdır. Çünkü bitki kökleri toprağı tutarak erozyonla sürüklenmesini önler. Erozyona uğrayan bir bölgede toprağın yapısı değişeceği için canlıların yaşamı da tehlikeye girer 4.Su Kaynaklarının Azalması Suların kirlenmesi ve kuruması sonucu çevredeki kullanılabilir su oranı azalır çevredeki su kaynaklarının azalmasına, yağışların düşmesine, tarımsal verimin düşmesine ve hidroelektrik santrallerdeki enerji üretiminin kısılmasına neden olur. Bu durum canlıların beslenmesini olumsuz olarak etkiler su oranı azlan Topraklarda daha az sayıda bitki yaşar. Ortama uyan bazı hayvanlar bu topraklarda barınır kısacası çevre zamanla çölleşir doğal özelliklerini de zamanla kaybeder 5.Enerji Kıtlığının Başlaması Madenlerin azalması sonucu termik santraller, su kaynaklarının azalması sonucu hidroelektrik santralleri, petrolün azalması sonucuda ulaştırma araçlarının kullanım oran ve verimi azalır. Enerji kıtlığının başlaması durumunda insanların sosyal yaşamı felç olur. Besin zincirinin oluşumunu sağlayan enerji nakli gerçekleşemez. Ortamın biyolojik dengesi bozulur. 6.Canlı Çeşitliliğinin Azalması Ekosistemdeki fiziksel ve kimyasal şartların değişmesi canlıların yaşama, yayılış ve üramesini etkiler Bozulan şartlara uyanlar yaşarken diğerleri yok olur. Çevredeki bitki sayısının azalması besin zincirindeki canlı tür ve sayısının azalmasına neden olur Örneğin ormanların yanma ve kesilmesi sonucu buralarda barınan tüketici canlıların büyük kısmı ölür. Ekosistem Çeşitleri Ekosistemelerin incelenmesinde kara ve su olmak üzere başlıca iki büyük sistem ayırt edilebilir. Bir su ekosistemi en küçük su birikintisinden okyanusa kadar değişen ortamlardaki karşılıklı ilişkileri kapsar. Ortamların farklılığına karşın, suyun canlılar üzerindeki etkisi bu Ekosistemde yaşayan Canlılarda benzer özellikler yaratmıştır Hem Su, hem çok daha karmaşık yaşam biçimlerinin gözlendiği kara ekosistemelerini tek tek incelemek olanaksızdır. Bu sistemlerin topluca incelenmesi ise birçok önemli ayrıntının, fiziksel ve kimyasal bileşenlerin canlıların değişik çevrelerin özelliklerine göre geliştirdiği uyum biçimlerinin enerji akışı ve besin çevriminde ortaya çıkan özelliklerin göz ardı edilmesine yol açar bu nedenle canlıların yaşadığı çevreler belli tipler altında toplanarak incelenir. Genellikle su ekosistemleri deniz Suyu ve tatlı su (ya da denizler ve iç denizler) olarak ayrılabilir iç sularda kendi içinde durgun Sular (göller) ve akarsular olmak üzere iki alt bölüme ayrılır Kara ekosistemleri yaşama ortamlarına ya da kara çevrelerine göre kutup bölgeleri ve tundra, kuzey ve ılıman bölge ormanları, çayır, otlak, çöl ve yarı çöl alanlar, cangıllar ve yağmur ormanları, savanlar ve öbür astropik ormanlar biçiminde ayrılır. Egemen bitki örtüsü temelinde belirlenen bu tiplerin yanı sıra değişik ölçütlere dayanarak farklı sınıflandırmalar da yapılmaktadır. Su ekosistemi: Okyanuslar, denizler veya tatlı sular (Ör: Gölet, bataklık, sazlık, ve nehirler…vb) gibi alanlardaki yaşayan canlıların çevre ilişkisini incelen bir çeşit ekosistemlerdir.

http://www.biyologlar.com/ekosistem-cesitleri

Ulusal ve Uluslar arası Çevre Koruma Kuruluşlar ve Amaçları

Çevre sorunlarının birçoğu insanın var olması ile birlikte başlamıştır. Önceleri nüfusun az olması ve teknolojinin günümüzdeki boyutlarına ulaşmamasından dolayı insanlar doğayla uyum içinde yaşamışlardır. Ancak sanayi ve endüstrileşme, nüfus artışı, teknolojik gelişmelerle bir­likte insanlar doğayı hızla tahrip etmeye başlamışlardır. Bunun sonu­cunda sera etkisi, küresel ısınma, asit yağmurları, çarpık kentleşme ve ik­lim değişiklikleri gibi pek önemli çok çevre sorunları oluşmuştur. Geçmişte bilinçsizce doğayı tahrip eden insanlar bir süre sonra doğa­nın bir parçası olduklarını, doğal dengenin önemini ve bu sistemle uyum içinde yaşamaları gerektiğini anlamışlardır. Çevre sorunları, insanları doğayı koruma konusunda ciddi önlemler almaya yöneltmiştir. Böylece önemli çevre faaliyetlerine girişilmiş ve konu küresel boyutta ele alın­maya başlanmıştır. Ulusal ve uluslar arası faaliyetler hız kazanmıştır. Ulusal ve uluslar arası çevre kuruluşlarından bazıları bu bölümde açıklanmaktadır. T.C. Çevre ve Orman Bakanlığı Çevre ve Orman Bakanlığı'nın; ormanların işletilmesi, korunması ve geliştirilmesi, orman saha bütünlüğünün korunması, Tabiatı Koruma Alanları, Milli Park ve benzeri korunan alanların geliştirilerek yaygınlaş­tırılması, orman ve mera planları, sürdürülebilir orman yönetimi ilkeleri doğrultusunda toplum ihtiyaçları, ekosistemin çeşitli fonksiyonları ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeni­den düzenlenmesi gibi amaçları vardır. Bunlardan başka, sosyal, kültürel ve çevresel nedenlerle yeşil kuşaklar ve parklar şeklinde ormanların ku­rulmasını özendirmek ve yaygınlaştırmak, orman yaygınlarını önleme ve mücadele, kirlenme ve sera etkisi, asit yağmurları, nesli tehlikede olan su ve yaban hayatını koruma konularım öncelikli olarak benimsemekte­dir. Orman Genel Müdürlüğü İlk ormancılık teşkilatı 1839 yılında kurulmuştur. Bu kuruluştan önce ülkemiz ormanlarının yönetim ve idaresinden sorumlu bir teşkilat bu­lunmamaktaydı. Ormanlarımızın ekonomik bir değer olarak kabul edil­mesi ve işletilmesi Tanzimat'tan sonra başlamıştır. Bu dönemde "Orman Müdürlüğü" kurulmuştur. 31.10.1985 tarih ve 3234 sayılı yasa ile ülkemizdeki ormancılık hizmet­lerinin yerine getirilmesi görevi, Orman Genel Müdürlüğüne verilmiştir. 07.08.1991 tarihinden 01.05.2003 tarihine kadar orman bakanlığına bağlı olarak görev yapmış, bu tarihte kabul edilen 4856 sayılı kanun kapsa­mında Çevre ve Orman Bakanlıklarının birleştirilmesi nedeniyle Orman Genel Müdürlüğü, Çevre ve Orman Bakanlığı bünyesinde faaliyetlerini sürdürmeye başlamıştır. Orman Genel Müdürlüğü'nün görevleri arasında; ormanları usulsüz ve kanunsuz müdahalelere, tabii afetlere, yangınlara, muhtelif zararlara karşı korumak, ormanların devamlılığını sağlayacak şekilde teknik ve ekonomik gerekliliklere göre idare etmek ve işletmek, orman ürünlerinin üretim, taşıma, depolama, pazarlama, ormancılık hizmetleri ile ilgili ge­rekli araç ve gereçleri tedarik etmektir T.C. Kültür ve Turizm Bakanlığı Kültür ve Turizm Bakanlığı 16. 04. 2003 tarihinde 4848 sayılı kanun ile kurulmuştur. Kanunun amacı kültürel değerleri yaşatmak, geliştirmek, yaymak, taratmak, değerlendirmek ve benimsetmek, tarihi ve kültürel varlıkların tahribini ve yok edilmesini önlemek, yurdun turizme elverişli bütün imkânlarını ülke ekonomisine olumlu katkı sağlayacak şekilde değerlendirmek, turizmin geliştirilmesi, pazarlanması, teşvik ve destek­lenmesi için gerekli önlemleri almak, kültür ve turizm konuları ile ilgili kamu kurum ve kuruluşlarını yönlendirmek ve bu kuruluşlarla işbirli­ğinde bulunmak, yerel yönetimler, sivil toplum kuruluşları ve özel sek­tör ile iletişimini geliştirmek ve işbirliği yapmak üzere Kültür ve Turizm Bakanlığının kurulmasına, teşkilat ve görevlerine ilişkin esasları düzen­lemektir. T.C. Tarım ve Köyişleri Bakanlığı Kuruluşundan bu yana dört ana dönemde bazen isim değiştirerek, bazen başka bakanlıklarla birleşerek, kimi zamanda ayrılarak veya kapa­tılıp tekrar kurularak günümüze kadar gelmiştir. 14 Aralık 1983 tarih ve 18251 sayılı resmi gazetede yayınlanan 183 sa­yılı kanun hükmünde kararname ile Köyişleri ve Kooperatifler Bakanlığı, Tarım ve Orman Bakanlığına bağlanarak, bakanlığın adı "Tarım Orman ve Köyişleri Bakanlığı" olarak değiştirilmiştir. Sonraki yıllarda bakanlı­ğın adı; Gıda-Tarım ve Hayvancılık Bakanlığı, Tarım ve Orman Bakanlı­ğı, Tarım Orman ve Köyişleri Bakanlığı, Tarım ve Köyişleri Bakanlığı o-larak değiştirilmiş, halen Tarım ve Köyişleri Bakanlığı olarak devam et­mektedir.

http://www.biyologlar.com/ulusal-ve-uluslar-arasi-cevre-koruma-kuruluslar-ve-amaclari

Deniz Biyolojisi

Su an yeryüzünde görebildiginiz tüm canlilar, dogadaki canlilarin çok küçük bir bölümünü teskil etmektedir.Yeryüzünün üçte ikisinin sularla kapli oldugunu düsündügümüz zaman, okyanus ve denizlerde yasayan canlilar aleminin ne kadar devasal oldugunu anlayabiliriz. Yapilan arastirmalara göre dünya üzerindeki su kütlesinin hemen hemen tamami volkanik patlamalardan atmosfere salinan su buharindan husule gelmistir. Atmosfere salinan yüksek miktardaki su buhari yogunlasarak yillar boyunca yagan yagmurlari ve nihayetinde deniz ve okyanuslari meydana getirmistir. Yagmur sulari tatli yani saf su olmasina ragmen okyanus ve denizlerde yüksek miktarda tuzluluk vardir.Bunun nedeni jeolojik tabakalarin yüksek miktarda karbonat, sodyum klorür (tuz) ve zengin mineraller içermesidir.Sodyum miktari oldukça fazla oldugu için deniz ve okyanuslari olusturan tatli sularin tuzlu hale gelmesine neden olur. Tuz orani yüksek bu sularda herhangi bir kara canlisinin veya bir insanin uzun süreler yasamasi mümkün olmamasina karsin birçok deniz canlisi rahatlikla yasayabilmektedir.Tabii yasamlarini vücutlarindaki mükemmel organ sistemleri sayesinde sürdürürler. Okyanus ve denizlerde tipki karada yasayan canlilar gibi mikroorganizmalardan tutun devasal memeli canlilalar kadar binbir çesit canli türü yasamaktadirlar.Biz yanlizca bu devasal canlilar aleminden bilinen ve bilinmeyen birkaç örnek verecegiz. Deniz ve tatlisu mikroorganizmalari Bu canlilara " Plankton " adi verilmektedir.Planktonlar tatli sularda yasayabildigi gibi deniz ve okyanusta yasayanlarida vardir. Bu canlilar tipki bakteriler gibi ikiye bölünerek çogalmaktadirlar.Önce canlinin içerisindeki DNA replikasyonla kopyalanarak iki Katina çikarilir ve ardindan canlinin vücudu ikiye bölünür. Miktari iki katina çikan DNA nin yarisi birinci yavru hücreye diger yarisi ise ikinci yavru hücreye aktarilir. Planktonlarin en önemli özellikleri, suda yüzmek için aktif olarak belli bir hareketleri olmamasidir.Bu canlilar bulunduklari su ortaminin akimina bagimli olarak basibos dolanirlar. Planktonlar ancak mikroskopla görülebilirler fakat çiplak gözle dikkatlice bakildiginda görülebilecek kadar büyük olanlarida vardir. Bu mikroskobik canlilardan en çok bilineni ise " alg " adi verilen tek hücreli bir canli türüdür ki algler hemen hemen heryerde yasamaktadirlar. Denizlerde, tatli sularda, okyanuslarda, havuz sularinda, su birikintilerinde çamurlarin içinde ve nehirlerde bile yasamaktadirlar.Bu kadar fazla bir yasam alanina sahip canlilar biz ziyaretçilerin bile gözünden kaçmis olamaz. Örnegin bir havuz veya insaat sahasindaki seffaf su birikintilerinin renginin, birkaç gün sonra yesile veya kirmiziya dönüstügünü görmüssünüzdür.Bu sularda ilk zamanlarda yasayan binlerce tek hücreli canli türü, uygun bir sicakliga geldiginde süratle çogalmaya baslarlar. Yanlizca birkaç gün içerisinde sudaki canli sayisi milyari bulabilir.Bu kadar fazla sayidaki tek hücreli canlilar suyun rengini bulandirmaya baslar. Suyun rengi niçin yesile dönüsüyor ? Bunun nedeni ise bazi planktonlarin, tipki yesil bitkiler gibi klorofil molekülünü içermesinden dolayidir.Hatirlarsaniz bitkilerin yapraklarinin renginin yesil olarak görünmesinin klorofil molekülünden dolayi oldugunu söylemistik. Iste bu tip planktonlarinda vücutlarinda klorofil molekülü vardir ve tipki bitkiler gibi fotosentez yaparlar.Bu yüzdendir ki taksonomik olarak siniflandirilirken bitkiler kategorisinemi yoksa hayvanlar kategorisinemi konacagi konusunda sistematikçilerin ortak bir karari yoktur. Yumusakçalar (Mollusk) Okyanus ve denizlerde yasayan diger bir canli grubu ise, genel latince isimleri " Mollusk " olan yumusakçalardir. Bu canlilarin vücutlari adindanda anlasilacagi gibi oldukça yumusak bir yapiya sahip olup, bazi türlerinin vücutlari oldukça sert kabuklarlada kapli olabilir. Yumusakçalarin en iyi bilinen iki örnegi " Mürekkep baligi " ve kabuklu bir yapiya sahip olan " Deniz minareleri " dir. Mürekkep baliklari, gerek anatomik yapilari gerekse savunma mekanizmalari bakimindan oldukça ilginç canlilardir. Belgesellerde sik olarak gördügümüz bu canlilarin hareket mekanizmalari, bir jet motorunun çalisma prensibiyle aynidir.Bu prensip " etki - tepki " prensibidir.Yani bir yandan madde alinirken diger yandan madde verilmekte ve bu sekilde süratle hareket etmektedir. Balik, öncelikle vücudunu, arka tarafindan aldigi bir miktar su ile doldurur.Ardindan karin kaslarini büyük bir siddetle kasarki bu kasilma neticesinde sikisan su büyük bir süratle yine vücudun arka tarafindan disari püskürtülür.Disari püskürtülen su, baligin büyük bir hizla ileri dogru ivmelenmesini saglar. Bunun yaninda hayvan düsmanlarindan korunmak için bir tür sivi salgilarki bu sivi mürekkebe benzer olup salgilandiginda, kendisi kovalayan avcinin görmesini engelleyecek kadar suyu bulandirabilir. Yine bir mollusk olan deniz minareleri ise, yumusak bir vücuda sahip olmasina karsin çok sert bir kabuga sahiptir. Bu kabugun en önemli fonksiyonu canliyi düsmanlarindan korumasidir. Nasil oluyorda bu canlilar etraflarini kabukla örtebiliyorlar ? Bir sperm ile bir yumurtanin birlesmesinden sonra zigotu meydana getirdigini ve bu zigotun ardi ardina milyonlarca kez bölünerek bir yavru canliyi meydana getirdigine deginmistik.Mesela insan yavrusunda, en distaki hücreler diger hücrelerden farklilasarak keratin adi verilen bir madde üretir ve " Derinin " sekillenmesini saglarlar. Deniz minarelerinde ise, zigot milyonlarca kez bölünerek yavruyu meydana getirdiginde, yavrunun en distaki hücreleri " Kalsiyum " salgilayan özel bir hücre tipine farklilasirlar.Bu hücreler, canlinin içinde yasadigi deniz yada okyanuslardan absorbe edilen kalsiyumu düzenli bir sekilde salgilayarak canlinin etrafinda kalin bir tabaka olusmasini saglarlar. Okyanus bitkileri Su an soludugunuz havadaki oksijenin büyük bir kismi, deniz ve okyanuslarda yasayan ve klorofil içeren bitkiler tarafinda fotosentez yoluyla üretilir. Nasil ki atmosfer sartlarinda klorofil içeren bir bitki havadan CO2 yi, topraktan suyu ve günesten isigi alarak fotosentez yapip canlilar için oksijen üretiyorsa ayni sekilde deniz ve okyanuslarda da günes isiginin varabildigi bölgelerde bulunan klorofilli bitkilerde oksijen üretmektedirler. Bu canlilarin büyük bölümünü ise yosunlar teskil eder.Bunun yaninda daha adini sayamadigimiz onbinlerce tür deniz bitkisi vardir. Deniz bitkilerinin ihtiyaci olan su zaten yasam ortami olan denizden, CO2 ihtiyaci ise diger tüm deniz canlilari tarafindan karsilanir.Eger bu tabiat harikalari denizlerde var olmasaydi hemen hemen tüm deniz canlilari oksijensizlikten hayatini kaybedecekti. Basit bir canli gibi görünen bu yaratiklari aslinda ekosistemin vazgeçilmez birer parçasidirlar. Bu canlilarin milimetrelerle ölçülebilecek kadar küçük olanlari oldugu gibi yüzlerce metre uzunlugunda devasal boyutlara sahip olanlarida vardir. Atlas okyanusu kiyilarinda yasayan birtür deniz bitkisi, fotosentez yapmak için oldukça mükemmel bir yöntem gelistirmistir. Bu bitki tipki bir " Palmiye " agacina benzer ve onlarca metre uzunlugundaki dallarinin uçlarinda bir veya birkaç adet hava kesesi bulunur.Bu hava keseleri, bitki gelistikçe gitgide büyüyerek bitkinin dallarini suyun kaldirma kuvvetinin etkisiyle yukari dogru kaldirir. Deniz yüzeyine yaklasan dallar günes isigindan olabildigince faydalanarak fotosentez yapma imkani bulur. Deniz bitkilerinin üremeleri hem eseyli hemde eseysiz olabilmektedir. Erkek bitkiden gelen bir sperm ile disi bitkiden gelen bir yumurta hücresinin birlesmesiyle (eseyli üreme) yavru bir bitki meydana gelebildigi gibi bazi bitkiler ikiye bölünme ve " Tomurcuklanma " ile de çogalabilir (eseysiz üreme). Tomurcuklanma, bir bitkinin belirli bir bölgesinde büyüyen hücre veya hücre gruplarinin daha sonra bitkiden ayrilarak bagimsiz bir sekilde kendi basina büyüyüp gelismesi olayidir. Derisi dikenliler (Ekinodermata) Derisi dikenli deniz yaratiklarinin basinda " Deniz yildizlari ", " Deniz hiyarlari " ve degisik sekillerdeki dikenli canlilar gelmektedir. Bu hayvanlarin yasayis tarzlari pek aktif olmasada görünüs itibariyle deniz diplerinde bir renk cümbüsü meydana getirmektedirler.Görünümleri göze çok hos gelen bu yaratiklar alimli renkleriyle deniz diplerindeki vahsi yasamin vazgeçilmez birer parçasidirlar. Deniz yildizlari bilindigi gibi ikiye, üçe, dörde veya daha fazla sayida parçalara ayrilmasina ragmen her ayirdiginiz parça kendini tamir ederek yeni bir deniz yildizi verebilir.Canlilarin bu yeteneklerine "rejenerasyon" yani tamir edebilme özelligi denir. Deniz yildizlarinin bazi türlerinde dikenler oldukça uzun olup, yildizi vahsi deniz canlilari tarafindan parçalanma tehlikesine karsi korur Deniz hiyarlari, protein bakimindan zengin olup uzakdogu ülkelerinde besin kaynagi olarak tüketilmektedir.Bu canlilar genellikle fazla derin olmayan okyanus sularinda yasarlar. Deniz kestaneleri ise disaridan basit bir yapiya sahip oldugu izlenimini verir fakat iç organlari oldukça kompleks bir yapiya sahiptir.Öyleki kestanenin içerisinde, hayvanin sudaki oksijeni rahatça soluyabilmesi için suyu vücudunun içerisinden geçiren karmasik devri-daim organlari bile vardir. Bu mükemmel deniz yaratiklari, gözalici renkleriyle deniz diplerini adeta birer cennete çevirirler. Yüksek Organizasyonlu Deniz Canlilari : Yüksek organizasyonlu canlilar çok sayida türleri kapsamakla birlikte biz en çok bilinen " Köpek baliklari " ve " Balina " türlerine örnekler verdik. Köpek baliklari belgesellerde ve filmlerde gördügünüzden çok daha mükemmel ve gizemli yaratiklardir.Köpek baliklarinin kendi içerisinde birçok alt türleri vardir. Örnegin mamuzlu köpek baligi, boga köpek baligi ve çekiç basli köpek baligi gibi.Fakat köpek baliklarinin bazilari çok uysal olmakla birlikte diger bazi türleri oldukça saldirgan olup önüne gelen hemen her tür canliya saldirabilirler. Saldirgan bir köpek baligi grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldirabilirler. Bu baliklardan en ünlüsü ise " Beyaz köpek baliklari " dir. Bu baliklar köpek baligi türleri arasinda en saldirgani olup yunuslara, foklara, deniz aslanlarina ve hatta balinalara bile saldirabilirler. Bir köpek baligini tehlikeli yapan en önemli organlari disleridir.Eger disleri normal bir baliginki gibi pek keskin olmasaydi, köpek baliklari tanindigi kadar tehlikeli olmayackti. Birçok insan köpek baliginin avini özellikle kuvvetli çene darbeleriyle parçaladigini zanneder fakat asil fonksiyon çenede degildir. Köpek baliklarinin disleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmis bir testere kadar yivlidir. Bir köpek baligi avini isirdiktan sonra basini derhal saga sola dogru sallamaya baslar.Bu sekilde davranarak disleri arasina sikisan bir objeyi ivmelendirip yanal olarak disleri üzerinde hareket etmesini saglar. Obje veya av, disleri üzerinde hareket ettigi zaman jilet kadar keskin olan disler tarafindan rahatlikla kesilir.Böylelikle balik avini kisa süre içerisinde parçalayarak etkisiz hale getirir. Köpek baligi avini parçalarken gözlerini asla açmaz. Bunu yapmasinin nedeni ise avini parçalamasi esnasinda etrafa saçilacak kemik parçalarindan gözlerini korumak içindir. Çünki bir canlinin kemigi kirildigi (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçalari oldukça keskin bir hale dönüsür. Bazi köpek baligi türlerinin boylari oldukça büyük olmasina karsin çok uysal olabilirler.Hatta bazi türleri iri memelilere saldirmak yerine deniz planktonlari ve küçük deniz canlilari ile beslenmektedir. Buna karsin dogada, resimdekinden çok daha iri köpek baliklarininda yasamasina karsin bazilari insanlarin zannettikleri gibi bir saldirganlik göstermezler. Köpek baliklarinin vücut sekilleri çok mükemmel bir sekilde dizayn edilmistir.Tipki bir füzeye benzeyen vücutlari ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hiza erisebilmektedirler. Diger bir mükemmel özellikleri ise solungaçlarinin bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmis olmasidir. Dikkat ettiyseniz yaris arabalarinin her iki yaninda hava bosluklari oldugunu görürsünüz.Bu bosluklar, araba süratle giderken motorun havayi daha rahat bir sekilde emmesine yardimci olmak içindir.Köpek baliklarinin yanlarindaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer bosluk birakacak sekilde konumlanir. Insanlarin köpek baliklarindan esinlenerek taklit etmeye çalistigi bu mükemmel sistemi köpek baliklari haberleri bile olmadan milyonlarca yildir kullanmaktadir. Bugün halen sadece zevk amaciyla köpek baligi öldüren insanlar vardir.Bazi balikçilar ise besin degeri ve parasal degeri çok yüksek oldugundan dolayi hiç durmaksizin köpek baliklarini avlamaktadirlar. Bazi uzakdogu ülkelerinde balikçilar, lüks restoranlarin ihtiyaçlarini karsilamak amaciyla yanlizca yüzgeçlerini kesip baliklari tekrar çaresiz bir sekilde denize atmaktadirlar. Eger bu mükemmel yaratiklarin korunmasi amaciyla bir önlem alinmaz ise yakin bir zaman içerisinde soylari tükenme noktasina gelecektir. Ve eger köpek baliklarinin soylari tükenirse, denizde avlanilmasi ve sayilarinin azaltilmasi gereken birçok av hayvaninin nüfuslari gitgide artacak ve deniz ekosistemini altüst etmeye baslayacatir. Balinalar Dogadaki en büyük memeli hayvanlari temsil eden balinalarin bazi türleri küçük boyutlara sahip olmasina karsin bazi türlerinin boylari ise 35 - 40 metreye kadar varabilir. Balinalarda kendi aralarinda uysal ve saldirgan olarak ayrilirlar.En taninan uysal balina, boyutlari 35 metreye varmasina ragmen planktonlarla beslenerek yasamlarini sürdürürler. Balinalarin cüssesinin büyük olmasina karsin oldukça uysaldir.Bu balinalarin bazi türleri plnaktonlar ve küçük baliklar ile beslenmektedirler. Planktonlarin çok küçük canlilar oldugunu biliyoruz.Fakat bu kadar büyük cüsseli bir balina plnaktonlarla nasil beslenebilmektedir ? Balina bunu, çenelerinin arkasinda bulunan kusursuz bir yüzgeç sistemi sayesinde basarir.Boyu yaklasik 40 metreye varan ve planktonlarla beslenen bir balina, tek hamlede vücuduna 3 oda dolusu suyu doldurabilir.Vücuduna doldurdugu bu muazzam su kütlesini, mükemmel bir yüzgeç sistemine sahip çenelerinden tekrar disari verir. Su büyük bir hizla disari çikarken plankton ve diger küçük canlilar (ufak baliklar gibi) çenedeki yüzgeçte kalirlar.Bir cm3 suyun içinde onlarca plankton bulunduguna göre metrelerce küp su içerisinde içerisinde milyarlarca plankton bulunabilir.Balina bunu defalarca yaparak, midesini protein degeri yüksek bu ufak canlilar ile doldurur. Katil balinalar saldirgan olmalarina karsin egitildikleri zaman dost olmaktadirlar.Fakat vahsi yasam ortamlarinda birer köpek baligi gibidirler. Denizlerin en vahsi hayvanlari sayilan beyaz köpek baliklari bile bir katil balinayi gördügü zaman mümkün oldugu kadar ondan kaçinmaya çalisir. Bu canlilar, karsilastikari bir köpek baligini tek bir çene darbesiyle ikiye bölebilirler. Bazi katil balinalar fok ve deniz aslanlarini avlamak için sahile kadar kovalayabilirler.Ve bu kovalamaca neticesinde basarilida olurlar. Katil balinanin yaksaltigini gören fok veya deniz aslani sürüsü çareyi kumsala çikmakta bulurlar. Fakat katil balinanin sahile kadar çikacagini ummazlar. Balina foklari avlamak için kendini sahile kadar vurabilmektedir.Nitekim bazi foklar hayvanin koca agizindan kurtulamaz. Televizyonlarda gördügümüz gösteri balinalari bu katil balinalardir.Vahsi yasamlarindakinin aksine egitilidikleri zaman oldukça uysal olan bu yaratiklar insanlarin çok yakin dostu olabilmektdir. Senede bir kez belirli dönemlerde dogum yapan balinalar, yavrularini dogurmak için sig sulara göç ederler. Göç sirasinda binlerce mil yol katedebilirler.Deniz arastirmacilari halen balinalarin nasil yönlerini sasirmadan devasal okyanuslarda istedikleri yerlere gidebildiklerini tam olarak çözememislerdir. Bir balina sürüsünün içindeki bireyler, çok tiz bir ses çikararak birbirleriyle anlasmaktadirlar.Bu seslerin ne anlama geldigi konusunda uzun arastirmalar yapilmaktadir. Çikarilan bu sesler kilometrelerce ötedeki baska balinalar tarafindan ve hatta insanlar tarafindan bile duyulabilr. Balinalarin bu seslere nasil yanit verdikleri ise bir sirdir. Balina ve köpek baliklari deniz ekosistemi için mutlaka gerekli olan canlilardir.Fakat insanlarin bilinçsiz avlanmalari sonucunda denizlerdeki av - avci orani süratle bozulmakta, ve denizel ekosistemin dengeleri altüst olmak üzeredir. Örnek verecek olursak okyanuslarda istakozlarla beslenen ve ayni zamanda besin olarak tüketilen bir balik türü, istakozlarin bilinçsiz avlanilmasi sonucunda açlik ve nihayetinde ölüm tehlikesiyle karsi karsiya gelir.Yani insanlar, besin olarak tükettigi bu baliklari kendi elleriyle yok etmektedirler. Ayni sekilde köpek baligi ve balinalarin sayilarindaki süratli düsüs, av sayisinin yükselmesine (örnegin foklar ve küçük baliklar) ve dolayisiyla denizel ekosistemde bir nüfus patlamasina yol açar.Av canlilarinin sayisi yükseldikçe denizdeki diger canlilarin yasamlari olumsuz yönde etkilenmektedir. Umuyoruzki su an bu mükemmel deniz yaratiklarinin soylarinin devam etmesi için yürütülen çalismalar olumlu sonuç versin ve hergeçen gün yikilma noktasina biraz daha yaklasan deniz ekosistemi eski durumuna kavussun.

http://www.biyologlar.com/deniz-biyolojisi

Yağmur Ormanları

Yağmur Ormanları: Tam da gerçek değerlerini anlamaya başlarken süratle yok ettiğimiz dünyanın en kıymetli biyolojik hazineleri... Bir zamanlar dünyanın kara ile kaplı yüzeyinin % 14'ünü oluşturan yağmur ormanları günümüzde ancak % 6'lık bir alanı oluşturuyor ve uzmanların tahminlerine göre, eğer bu hızla tükenmeye devam ederse, son kalan yağmur ormanları da önümüzdeki 40 yıl içinde ortadan kalkacak. Uzmanların tahminlerine göre önümüzdeki çeyrek yüzyıl boyunca, yağmur ormanları kıyımına bağlı olarak, dünya bitki, hayvan ve mikroorganizma cinslerinin neredeyse yarısı ortadan kalkacak veya ciddi tehdit altına girecek. Dünyamızda bulunan tatlı su kaynağının beşte biri Amazon Havza'sında bulunmaktadır. Tropik yağmur ormanları karbondioksiti tüketerek oksijen üretirler. Amazon yağmur ormanları, sağlamış olduğu bu çok önemli ekolojik hizmet ile sürekli bir karbondioksit - oksijen çevrimini sağladığından "gezegenimizin ciğerleri" olarak anılırlar. Dünyamızda ihtiyaç duyulan oksijenin % 20'den fazlası Amazon yağmur ormanlarında üretilmektedir. Bundan 5 yüzyıl önce Amazon Yağmur Ormanlarında tahminen 10 milyon Kızılderili yaşarken, bugün bu rakam 200.000'in altındadır. Peru'daki tek bir yağmur ormanı rezervi, ABD'nin tamamında bulunandan daha fazla kuş türüne ev sahipliği yapabilir. Uzmanların tahminine göre, yağmur ormanları kıyımına bağlı olarak her gün 137 bitki, hayvan ve türünü kaybediyoruz. Bu da yılda yaklaşık 50.000 türe denk düşüyor. Yağmur ormanları türleri kayboldukça, hayatı tehdit eden hastalıkların muhtemel tedavileri imkanları da yok oluyor. Şimdi dünya çapında reçete ile satılan 121 ilaç bitki kaynaklı maddelerden üretiliyor. Bugün yağmur ormanlarında en azından 3000 meyve yetişirken, bunlardan sadece 200 tanesi Batı dünyasında kullanılıyor. Yağmur ormanlarında yaşayan Kızılderililer 2000'den fazlasından faydalanıyor. Brezilya'daki tek bir gölcük, Avrupa'da bulunan nehirlerin tamamında bulunandan daha fazla balık türü içerebilir. Amazon nehrinde bulunan balık türleri sayısı, Atlantik Okyanusu'nun tamamında bulunan balık türü sayısından daha fazladır. Kaynak: insanvebilim.com  

http://www.biyologlar.com/yagmur-ormanlari

DİNOZORLAR (Dinosauria)

Çoğunlukla İkinci jeolojik zamanda (Mezozoik dönem) havada, suda ve karada yaşamış ve soyu tükenmiş sürüngenlerin bir takımına verilen ad. Dinosaurus, yâni dinozor “Korkunç kertenkele” demektir. Et yiyeni, ot yiyeni, cücesi, devi, hantalı, atiği vardı. Paleontologların dinozor fosilleri üzerinde yaptıkları zaman incelemeleri, bunların I. jeolojik zamanın Permiyen devrinde, yâni bundan 270 ilâ 225 milyon yıl kadar önceki bir zaman diliminde, dünyâ sahnesine çıkmış olabileceklerini ortaya çıkarmıştır. Bunlar arasında 30 m uzunluk ve 80 ton ağırlığa ulaşanları mevcuttu. Uçan bâzı türlerinde kanat uçları arası 16 metreyi buluyordu. Serçe kadar olanları da vardı. Dinozorların muazzam cüsselerine rağmen, ayaklarının diğer sürüngenlerde olduğu gibi vücutlarının yanında değil de gövdelerinin altında oluşu hareket kabiliyetlerini kolaylaştırmıştır. Tyrannasaurus Rex (korkunç kertenkelelerin kralı) adındaki çeşidinin, saatte 70 km’lik bir hızla koşabildiği, Robert Bakker tarafından ispat edilmiştir. 250 milyon yıl kadar önce yaşadıkları sanılan dinozorlar, 65-70 milyon yıl önce, II. jeolojik zamanın son devri olan Kretase (veya tebeşir) devrinde birdenbire tükendiler. Dinozorlar, yıllardır soğukkanlı, aşırı büyümüş kertenkeleler olarak tanınmıştır. Son yıllarda yapılan incelemeler, davranışları hakkında kıymetli bilgiler ortaya çıkarmıştır. Bu bilgiler, 1978 yılında jeolog Jack Horner ile Bob Makela’nın ABD’de Montana’da 80 milyon yıl kadar önce fosilleşmiş 15 dinozor yavrusunu barındıran taşlaşmış bir yuvayı keşfetmesiyle elde edildi. Bu keşiften sonra iki jeolog her yıl bu bölgede kazılarına devam ederek, çeşitli devrelerinde iken fosilleşmiş birçok dinozor fosili ihtivâ eden on kadar yuva ve yüz kadar da dinozor yumurtası buldular. Yuvalarda farklı büyüklükte yavruların varlığı, dinozorların yumurtadan çıkan yavrularını belli bir gelişme devresine kadar besleyip koruduklarını ve yüksek bir analık şefkatine sâhib olduklarını ortaya koydu. Jeolog Horner, dinozorların soğukkanlı hayvanlar olmalarının da desteklediği hızlı bir bazal metabolizmaya sâhib olduklarını ve bu sebepten hızlı bir büyüme sergiledikleri iddia edilmektedir. Birçok araştırmalar ise, dinozorların gerçekte sıcakkanlı, yüksek vücut metabolizmaları olan hayvanlar oldukları eğilimine ağırlık kazandırmıştır. Bu yeni teoriye göre dinozorların tıpkı memeli hayvanlar gibi karmaşık fizyolojileri ile yeryüzünün değişik çevrelerinde yaşadıkları ileri sürülmektedir. Dinozorlar arasındaki teorilerin birbirinden farklı olmasında bu yaratıkların fizyoloji ve hayat tarzlarını incelemek için elde bulunan tek imkânın müzelerdeki dinozor kalıntılarından ibâret olmasının büyük payı vardı. Kalıntılara dayanarak ilmî sonuçlar bulmak imkânı yok gibidir. O yüzden dinozorlar hakkındaki bilgiler bir spekülasyondan ileri gidemiyordu. Günümüzde ise yapılan çalışmalar sonucunda dinozorlar hakkındaki bilgilerimiz artmış bulunmaktadır. Yavrularına karşı olan şefkatleri, sosyal alışkanlıkları, avlanma stratejileri, zekâ seviyeleri, beslenme rejimleri gibi çeşitli konularda net bilgiler elde edilmiş bulunmaktadır. Dinozorların nesli niçin tükendi? Bu konuda çeşitli hipotezler ileri sürüldü: İklimin soğuması, besin kaynaklarının değişmesi, oksijen azlığı, kozmik ışınların artması, memeli hayvanların saldırısı vs. Bugüne kadar bu hipotezlerin hiç biri herkesçe kabul edilmedi. California Üniversitesi Jeoloji Profesörü Walter Alvarez’e göre, 65 milyon yıl önce dünyâya birkaç yıldız çarptı. Meydana gelen toz bulutları güneşi sakladı. Dünyâda yaşanan uzun meteor kışının soğuğuna dayanamayan çeşitli canlılarla berâber dinozorlar da kayboldu. Alverez, teorisini yıldızlarda bulunan iridyum madeninin dinozor kalıntılarında bol miktarda görülmesine dayandırmıştı. Sovyet jeologu Vasili Yeliseyev ise, dinozorların raşitizm denen kemik yumuşaması hastalığından öldüklerini ileri sürmektedir. Dinozorlar yeryüzünde 180 milyon yıl kadar yaşadılar. Bu süre içinde dünyâ iklimi çok değişti ve ilkel Gondvana kıtası parçalanarak bugünkü kıtalar meydana geldi. Dinozorlar bu büyük değişmelere rağmen kendilerini yeni ortamlara uydurdu ve çoğalmaya devâm etti. Kretase devri sonlarına doğru (bundan 65 milyon yıl kadar önce) dinozorlar birden bire tükendi. Vasili Yeliseyev, Kongo Halk Cumhûriyetinin balta girmemiş ormanlarında incelemeler yaparken orman hayvanlarının savan hayvanlarından çok daha küçük olduğunu fark etti; gri gazel, tavşan büyüklüğündedir. Büyük kirpilerin ılık kuşaklarda yaşayanları çok iri olduğu hâlde orman kirpileri küçük bir aslan yavrusu kadardır. Orman zürafası (okapi) 1.5-2 m, savan zürafası ise 6 m yüksekliktedir. Cengel (balta girmemiş orman) su aygırları 1.5, savan su aygırları ise 4 m uzunluktadır. Fil avcıları, cengel fillerinin dişlerinin savan fillerine göre daha küçük ve kalitesiz olduğunu söylemektedir. Kongo köylerinde erişkin keçiler oğlak kadardır. Bütün bunların sebebi ne? Cengellerde yağmur suyu CO2 ve organik asitlerle yüklü olduğundan çok aşındırıcıdır, kayaları şiddetle aşındırır ve toprağın derinliklerine sızar, bu sırada topraktaki Na, K ve Ca gibi eriyen elemanları yıkayıp götürür. İskeletin gelişmesi içinse, kalsiyum tuzları gereklidir. Nemli ormanlarda yaşayan hayvanların küçük oluşu bununla ilgilidir. Buna karşı savanlara çok daha az yağmur düşer. Bu yağmur derinlere sızamadan buharlaşır, böylece savanlarda kalsiyum tuzları toprakta kalır; savan bitki ve hayvanları bu kalsiyumu kullandıklarından büyük olur. Peki bunların dinozorlarla ilgisi nedir? Kretase sonlarına doğru geniş kurak alanları su bastı. Dünyânın iklimi sıcak ve nemli bir hâl aldı, öyle ki kuzey kutbunda palmiyeler büyüdü. Denizlerin çok yayılması sonucu nemlilik çok arttı ve dinmeyen yağmurlar başladı. Bu büyük yağmurlar topraktaki Ca tuzlarını yıkayıp denizlere ve göllere götürdüler. Toprak kalsiyumca fakirleşince dinozorların kemikleri yumuşadı ve tonlarca ağırlığın altında eğrildi. Bu dev hayvanlar bundan öldü. Kazılarda eğrilmiş dinozor kemiklerine çok rastlanmaktadır. Dinozor yumurtalarının kabuklarının inceldiği ve kusurlu olduğu da anlaşılmıştır. Raşitizm önce ot yiyici dinozorları çökertti, bunlar et yiyici dinozorların kurbanı oldular. Et yiyici dinozorlar ot yiyici dinozorlar ölünce öldü, çünkü yiyecek bir şey kalmamıştı. Kalsiyumsuz kalmak kedi kadar küçük dinozorları etkilemedi, kaplumbağa ve kertenkeleler de kalsiyum eksikliğinden etkilenmedi. Küçük dinozorlarla memeliler arasında bir ölüm- kalım savaşı başladı ve memeliler bütün cüce dinozorları yiyip bitirdiler. Dinozorlarla ilgili bir diğer esrar da bâzı yerlerde üstüste yığılmış dinozor iskelet ve kemiklerine rastlanmasıdır. Âdetâ dinozorlar ölmek için belli bir noktaya toplanmışlardır. Böyle bir “dinozor mezarlığı” Büyük Sahra’da Agades civârında bulunmuştur. Bugün bunun açıklaması şöyle yapılmaktadır: Dinozorlar çok ağır oldukları için karada kolay yürüyemiyorlardı, ömürlerinin büyük bir kısmını herhalde suda geçirdiler. Ot yiyen dinozorların dişleri çok zayıf bulunmuştur ve bunların yalnız yumuşak su bitkileri yiyebildikleri düşünülmektedir. Büyük ihtimâlle dinozorlar sularda, özellikle ırmaklarda öldü; akıntıyla sürüklenen cesetler deniz ve göllerde birikti. Sâkin denizlerin dibinde kalan ve üstleri hızla örtülen iskeletler bütün halde bugüne kadar kaldı. Buna karşı dalgalı bir kıyıya erişen iskeletler parçalandı, kemikler aşındı ve birbirine karıştı. Kretase sonlarında denizler karaları istilâ etmeseydi bugün belki dinozorlar görülebilecekti. Milyonlarca yıldır devâm eden dünyâ ve onun üzerinde zamanla değişen hâdiseler insanlar için büyük bir ibrettir. Bir yaratıcının bulunduğuna işârettir.

http://www.biyologlar.com/dinozorlar-dinosauria

Kayıp Dünya Borneo

Yarısı Endonezya ya diğer yarısı Malezya'ya ait Borneo Adası'nda, son 10 yılda 365 yeni canlı türü keşfedildi. Bu türler arasında Yeni bir kedi balığı Boyu 10 cm ulaşan dev hamamböceği 259 adet böcek türü, 50 adet yeni bitki türü 30 ayrı balık türü, 7 adet kurbağa, 6 adet kertenkele, 5 adet yengeç, Dünyanın en küçük ikinci omurgalısı olan 8 milimetre boyunda bir erişkin balık türü 2 ayrı yılan türü, (Kapuas Bataklık Yılanı) 2 yeni ağaç kurbağası Yeni bir etobur türü, Dünyanın en uzun böceği (56.6 cm) yeralıyor. Stuart Chapman, 220 bin kilometre karelik muazzam Borneo adasının tam ortasında yer alan sık ormanlarla kaplı bölgede, dünyanın en nadide hayvan türlerinin barınabileceğinden bahsediyor. 1970’li yıllardan beridir kerestecilik alanında çok büyük ilerleme kaydeden yerli halk dünyada kullanılan tropik yapraklı ağaç odunları ile geçimini sağlamaktadır. Çok hızlı bir şekilde kesilen ormanların 39 yılında yarısı yok edilmiştir. Ulaşımı güçlükle sağlanan iç bölgelerde bulunan dağlık alanlardaki orman kaybı diğer bölgelere nazaran daha azdır. Bölgenin önemli ağaç türlerinden olan yağ palmiyesi yok olma tehlikesiyle karşı karşıya olup, bunun yanında yukarıda bahsettiğimiz nadide türler parçalanan ve yok olan ormanların içinde yok olma tehlikesi ile karşı karşıyadır. Gunung Palung Ulusal Parkının uydu görüntüleri incelendiğinde ağaç kesiminin ne kadar hızlı olduğunu açıkça gözler önüne serilmektedir. Son 20 yılda kesilen orman alanın yaklaşık olarak 8000 kilometrekareye ulaştığı, 2010 yılında alçak bölge ormanlarının tamamen yok olma tehlikesi ile karşı karşıya kalacağı bildirilen haberler arasında yer alıyor. Kaçak ağaç kesimi nedeniyle Endonezya her yıl en az 2.8 milyon hektar orman kaybediyor. Yedi ayrı ekolojik bölgeye sahip olan Borneo biyolojik çeşitlilik açısından, 220 bin kilometrekarelik alanı ile tam bir canlıar topluluğunu iç içe barındırmaya devam ediyor. Bu güne kadar keşfedilen tür çeşitliliğine bakılacak olursa yer yüzünde eşi benzeri bulunmayan, vahşi doğa harikası, çok büyük bir ada olduğunu anlamak çok güç olmasa gerek... Ne varki ülkemizin birçok bölgesinde olduğu gibi ada da yaşayan halklar topluluğu da içinde bulundukları vahşi hazinenin farkında değil, Her geçen gün hızla tükenen bitki örtüsü, ormanlar ve canlılar yöre halkını çokda ilgilendirmiyor, belki ekonomik yokluklar, belki bilinçsizce yapılan avlanmalar ve ağaç kesimleri son 39 yılda nelerin kaybedildiğini açıkça göstermekte... Dünyada var olan kara parçaları içinde orangutan, fil, gergedan ve adını sayamadığım yüzlerce canlı türünün bir arada yaşadığı iki ayrı bölgeden biri olan 220 bin kilometrekarelik yağmur ormanının korunması için çalışmalar yürütülüyor. WWF'ye göre bu, sadece Borneo'yu değil, tüm Asya ve Dünya'yı ilgilendiren bir trajedi... Kaynaklar: www.coloradocarnivorousplantsociety.com maps.grida.no www.naturetrek.co.uk atlas dergisi Hazırlayan Uzm. Biyolog Yavuz AYDIN Bu haber Ediz HUN beye e- mail olarak gönderdik sağolsun kendisi bizi kırmayıp kendi görüşlerini yazıp gönderdi makaleyi aynan yayınlıyorum.

http://www.biyologlar.com/kayip-dunya-borneo

Sağlıklı Ekosistemler ve Biyolojik Çeşitliliğimiz Gıdamızın Garantisidir

Sağlıklı Ekosistemler ve Biyolojik Çeşitliliğimiz Gıdamızın Garantisidir

Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) tarafından bugün Dünya Gıda Günü olarak ilan edilmiştir. Artan insan nüfusu ve bu nüfusun ortaya çıkardığı çevresel sorunlar gelecekte gıda ile ilgili de büyük sorunlar yaşanacağını gösteriyor. Dünyamızın birçok yerinde açlıkla mücadele eden toplumlar var.Türkiye için henüz alarm çanları çalmıyor belki ama çevresel sorunlar sadece belirli bölgeleri veya ülkeleri vurmaz. Tedbir alınmaz ve eldeki kaynakların farkında olunmazsa gelecekte gıda kıtlığı ile karşılaşmayacağımızın garantisi yoktur. İnsanların en temel besinleri bitkisel ve hayvansal besinlerdir. Bu besinlerin sağlıklı ve verimli üretimi ise tamamen ekosistemlerin sağlıklı döngüler içerisindeki işlevine bağlıdır. Toprak, su ve hava ortamları, bitkiler, hayvanlar, mantarlar ve mikroorganizmalarla birlikte besinlerimizin oluşumu için çok hayati mekanizmaları içinde barındıran sistemlerdir. Herkesin bildiği fotosentez, artıkların çürümesi, tozlaşma, besin zinciri, temiz su kaynaklarının oluşumu gibi temel döngülerin hepsi sağlıklı ekosistemlerin varlığına bağlıdır.   İnsanlar ise yoğun ve bilinçsiz tarımsal faaliyetler, sanayileşme ve şehirleşme sonucunda ekosistemlerin barındırdıkları süreçleri yok ederek her geçen gün gıda kaynaklarımızı risk altına sokmaktadır. Tarım alanlarında kullanılan aşırı gübre önceleri yoğun besin üretimi sağlıyor gibi görünse de zamanla toprağın kalitesini ve işlevini yok eder. Yağmur ile toprakta fazla kalan besin maddeleri süzülerek sulara karışıp, tatlı su kaynaklarına ve denizlere zarar vererek, balık stoklarımızı tehdit etmektedir. Her hasat sonrası karşılaştığımız anız yakma ise ayrı bir büyük sorun. Yakılan anızlarla birlikte toprağın bitki artıklarını çürüterek faydalı maddelere dönüştürme kabiliyeti bu döngüyü gerçekleştirecek olan faydalı mikroorganizmaların öldürülmesi ile tamamen yok edilmektedir. Bu yangınlar bir diğer gıda kaynağımız olan ormanları da tehdit etmektedir. Tarımsal ilaçlar ise sadece yabancı otlar ve böcekleri öldürmekle kalmaz, maalesef birçok zararlı böceğin düşmanı faydalı böceklerin ölümüne, böceklerle beslenen kuşların ölmesine, tozlaşmayı ve tohum taşınmasını üslenmiş böceklerin ve kuşların ölümü ise onlara bağlı bitkilerin yok oluşuna neden olmaktadır. Tarım topraklarının aşırı tarımsal faaliyetlerle işlevlerini yitirmesinin yanı sıra şehirleşme ve sanayileşme adına yok edilmesiyle yine gıda kaynaklarımızı göz ardı etmeye devam ediyoruz. Ülkemiz toprakları buğday, çavdar, arpa, mercimek gibi en temel bitkisel besin kaynaklarının gen merkezidir. Yani bugün ıslah edilen tarım ürünlerinin büyük kısmının Anadolu topraklarında bulunan yabani formları milyonlarca yıllık evrimleri sonucunda hastalık, kuraklık, böcek istilaları gibi olağan dışı pek çok çevresel sorunla mücadele edebilecek genetik güce sahiptir. Bu türleri yayılış gösterdikleri alanları ile birlikte korumak için yeterli tedbir alınmazsa, gelecekte iklim değişikliğinin tarım alanlarında meydana getireceği zararlara karşılık hiçbir güvencemiz kalmayacaktır. Biyolojik çeşitliğimizi yabancı tohumlar ve GDO’lu ürünler ile risk altına atıyoruz. Tarımsal biyolojik çeşitliliğimizi koruyacak tedbirleri olmazsak, ülkemizin yabani bitki gen merkezlerine sahip çıkmazsak gelecekte en temel gıda kaynaklarımızın yok oluşuna seyirci kalabiliriz. Anadolu toprakları sadece bizim için değil yeryüzünün geleceği için gıda ambaradır. Onu korumak, saygılı olmak, değerini bilmek, basit çıkarlar için yok etmemek hepimizin sorumluluğundadır. Serap KANTARLI Genel Başkan Yardımcısıhttp://www.ttkder.org.tr

http://www.biyologlar.com/saglikli-ekosistemler-ve-biyolojik-cesitliligimiz-gidamizin-garantisidir

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Solucanlar

*Az gelişmiş omurgasız hayvanlardır. *Çoğu tatlı sularda, denizlerde ya da dip çamurlarda yaşarlar. *Hareketlerini uzunlamasına kasların uzayıp kısalmasıyla sağlarlar. *Hermafrodittirler. Her solucan hem sperm hem yumurta hücresi üretir. *Boyları birkaç mm’den 4 metreye kadar uzanır. *Parazit olan türlerin tutunma organları gelişmiştir. *Sürekli karanlıkta yaşadıklarından gözleri gelişmemiştir. *Gelişmişlik düzeylerine göre yassı solucanlar, yuvarlak solucanlar, halkalı solucanlar şeklinde sıralanır. Yassı Solucanlar *Parazit yaşarlar. *Vücutları baş, boyun ve gövdeden oluşur. *Sindirim sistemleri gelişmemiştir. *İnsan ve omurgalıların barsaklarında yaşarlar ve bu canlılara zarar verirler. *Örnekler: Karaciğer kelebeği, planarya, tenya Yuvarlak Solucanlar *Nemli toprakta, sulak alanlarda,yosunlar arasında yaşarlar. *Büyük bir bölümü parazittir. *Sıcak ülkelerde yaşayan türleri insanın bağırsağına girerek kan emerler, zayıflamaya sebep olurlar ve tehlikelidirler. *Örnekler: Kancalı kurt, medine kurdu,bağırsak kurdu Halkalı Solucanlar *9000 türü vardır. Ama en önemlisi Toprak solucanıdır. *Kapalı dolaşım, deri solunumu, kendini yenileme görülür. *100 gün suda kalsalar bile yaşarlar. *% 70 su kaybına kadar dayanabilirler. *Yağmur yağınca toprak yüzeyine çıkarlar, bunun nedeni toprakta hava boşlularının suyla dolmasıdır. *Örnekler: Toprak solucanı ,Sülük

http://www.biyologlar.com/solucanlar

Caretta caretta ( Deniz Kaplumbağaları)

Caretta caretta ( Deniz Kaplumbağaları)

Sistematiği Filum: Chordata Altfilum: Vertebrata Üst sınıf: Tetrapoda Sınıf: Reptilia Altsınıf: Anapsida Ordo: Testudines Altardo: Cryptodira Üst familia: Chelonioidae Familia: Cheloniidae Cins: Caretta Tür: Caretta Caretta Coğrafi Yayılışı Caretta Caretta Atlantik, Pasifik ve Hint Okyanusu’nun ılıman ve subtropikal sularındaki estuarin, lagün, koy ve denizlerin kıyıya yakın kesimlerinde dağılım gösterir. C.C.’lar Atlantik Okyanusu’nda Arjantin’den Nova Scotia’ya kadar bulunur. Kuzey Amerika’daki en büyük popülasyonu Kuzey Carolina’dan Florida kıyılarına kadar olan adalarda bulunur. Bu C.C.’ler kışları Bahama Adaları’na göç ederler. Kuzey Amerika’daki diğer küçük popülasyonlar ise Texas kıyılarında bulunur. Caretta Caretta ların en büyük yuvalama alanları Umman’ın Masirah Adası’dır. Akdeniz’deki önemli yuvalama alanları Yunanistan ve Türkiye sahillerindedir. Bunlara oranla çok daha düşük ancak önemli bir popülasyona ise Kıbrıs’ta rastlanmaktadır. Tunus’ta yuvalama çok nadir, İsrail’de ise daha da azdır. Zaman zaman Campedusa (İtalya), Sicilya ve hatta Sardunya’da da yuvalama olmaktadır. Mısır ve Libya için ise veriler yetersizdir. Türkiye’de ki yuvalama alanları; Ekincik, Dalyan, Dalaman, Fethiye, Patara, Kumluca, Belek, Kızılot, Demirtaş, Gazipaşa, Anamur ve Göksu Deltası’dır. Fiziksel Özellikleri Ergin bireylerde karapaks (sırt kabuğu) oval şekilli ve arkaya doğru daralmış 70–75 cm boyunda ve 50–55 cm genişliğindedir (Türkiye için). Boş oldukça büyük ve üçgenimsidir. Ancak bu büyük beyinleri olduğunu göstermez; aksine bu boşluk çeneleri kapsayan kaslar tarafından kullanılır. C.C.’ların iki alt–türü (sub–species) vardır. Bunlardan C.C. gigas Pasifik ve Hint Okyanusu’nda bulunur. Genel renklenme dorsalde kırmızımsı kahverengi, ventralde kremsi sarı şeklindedir. Diğer deniz kaplumbağalarından sağlam bir kabuk, gözleri ile burun delikleri arasında kalmış iki çift prefrontal plak (bazı bireylerde bu plakların ortasında beşinci bir plak olabilir), karapaksta beş çift kotsal plak, plastronda keropakla bağlantılı ve geniş üç çift inframarjinal plak, her bir üyede iki tırnak ve tipik olarak kahverengimsi–kırmızı renklenme gibi özelliklerle farklılaşır. Beslenme Alışkanlıkları Yavru ve genç Caretta caretta bireyleri, yüzeyde akıntı çizgilerinde toplanan makroplanktonik av üzerinde beslenir. Ergin bireyler özellikle yumuşakçalar üzerinden beslenen karnivorlardır. Etoburdurlar ve sünger, deniz anası, at nalı yengeçler ve istiridye yerler. Kurbanlarının sert kabuklarını kolayca parçalayabilmelerini sağlayan çok güçlü çeneleri vardır. Geniş bir kafa, oldukça gelişmiş çene kasları ve kuvvetli gaga, sert kabuklu avlarını parçalayabilmek için meydana gelmiş adaptasyonlardır. Biyo– Ekolojileri Caretta caretta’lar ayrı eşeylidir ve eşeysel dimorfizm erginlerde görülür. Eşeyler arasındaki büyüklük dimorfizmi hakkında çelişkili bilgiler mevcuttur. Ancak ergin erkekler dişilerden daha uzun kuyruğa ve geriye doğru kıvrılmış tırnaklara sahiptir. Yavru, genç ve ergin öncesi bireylerde eşey ayrımı yapılamaz. Caldwel (1962) ve Uchida (1967)’ya göre esaret altında yetiştirilen Caretta caretta ’nın eşeysel olgunluğa ulaşması 6–7 yıl olarak tahmin edilmektedir. Serbest olarak doğada yaşayan bireyler içinse eşeysel olgunluk yaşı; Mendonca (1981)’ya göre 10–15 yıl, Zug (1983)’e göre 14–19 yıl, Frazer (1983)’e göre 22 yıl, Frazer ve Ehrhart (1985)’a göre sırtındaki eğrilerden edinilen bilgilerle 12–30 yıl olarak tahmin edilmektedir. Üreme Caretta caretta’lar kabukları 50 cm’yi geçmeden cinsel olgunluğa erişirler. Diametre cinsinden 40–42 mm olan yumurtalar med zamanı bırakılır. Yumurtalar kirletilmemiş ve iyi süzülmüş kumullardaki ya da otlu bitki örtülerindeki yuvalara bırakılır. Dişi kıyıya gelir ve gelgitin oluşturduğu yükseltiye tırmanıp orada durur, daha sonra sığ bir çukur açmak için burnunu toprağa sürter. Çukur kazılıp yumurtalar çukura bırakılınca, kaplumbağa arka ayağının tırnaklarıyla yuvayı kumla örter. Kuluçkaya yatma 31–65 gün arası sürer. Genellikle yuva başına 120 yumurta vardır ve dişi 13 günlük aralarla kuluçkaya yatar. Dişi kıyıdaki yuvaya sadece bahar ve yazları geceleyin gelir. Dişi genellikle her yıl mevsim başına 3–4 kere yuva yapar. Yuvadaki yavrular genellikle bu zamanlarda yumurtadan çıkar ve yavrular yaşamlarındaki tek karasal yaşamı bırakıp hep birlikte çabucak denize giderler. Günlük Aktiviteleri Caretta caretta’ların olağan bir gününün beslenme ve dinlenme ile geçtiği bilinmektedir. Kuluçka sezonunda güneydoğu ABD’de yapılan araştırmalar Caretta caretta’ların yuva bulunan kumsal, kıyıdaki resifler ve diğer kayalıklarda düzenli davranışlar sergilediğini göstermiştir. Çiftleşme ve /veya beslenmenin bu bölgelerde gerleşleştirildiği tahmin edilmektedir. Kuluçka dönemi dışında, kaplumbağalar yüzlerce, hatta binlerce mil öteye göç edebilmektedir. Caretta caretta’lar derin sularda yüzeydeyken ya da kıyı yakınlarındaki sularda dipte uyuyabilmektedir. Birçok dalgıç kayalıklarda kaya altında uyuyan kaplumbağa görmüştür. Yumurtadan yeni çıkan kaplumbağaların ise tipik olarak yüzeyde süzülerek uyudukları ve bu sırada ön ayaklarının sırtlarının üstüne doğru kıvrıldığı kaydedilmiştir. Kur Yapma ve Çiftleşme Caretta caretta’ların çiftleşmesi yuvalama başlangıcından birkaç hafta önce yuvalama plajı yakınları veya özel toplanma alanlarında meydana gelebilir. Birbirlerine sıkıca sarılmış çiftler çoğunlukla yüzeyde görünmekle birlikte su altında birleşmeler de rapor edilmiştir. Caretta carettalar için kur yapma ve çiftleşme dişinin ilk yumurtlama döneminden önceki kısıtlı bir zamanda gerçekleştiğine inanılmaktadır. Daha sonra yalnızca dişiler kıyıya gelir, erkekler karayı terk edince bir daha asla geri dönmez çiftleşme mevsiminde erkekler bir dişinin kafasına burnunu sürterek ya da boynunun arkasını hafifçe ısırarak ve paletlerini dikerek kur yaparlar. Eğer dişi kaçmazsa, erkek ön paletlerindeki tırnakların yardımıyla dişinin kabuğunun üstüne çıkar. Daha sonra çiftleşmek için kuyruğunu dişinin kabuğunun altına sokar. Genellikle dişilerin çiftleşmesinin gerçekleştiği kumsalda kuluçkaya yattığı ve erkeğin asıldığı kabuğundaki tırnak izlerinin kanayabildiği gözlemlenmiştir. Çiftleşme su yüzeyi ya da altında gerçekleşebilir. Bazen erkeklerin aynı dişi için kavga ettiği gözlemlenebilmektedir. Caretta caretta’ların çiftleşmelerini gözlemleyenler hem erkeklerin, hem de dişilerin agresif bir tutum sergilediğini gözlemlemiştir. Dişi yumurtlama döneminden önce bir çok erkek ile birlikte olup birkaç ay için sperm biriktirebilir. Nihayetinde yumurtalarını bıraktığında bunlar bir çok erkek tarafından döllenmiş olur. Bu davranış popülasyonda genetik çeşitliliğin devamını sağlamaya yardımcı olur. Yuva Yapma, Kuluçkalama ve Dağılım Caretta caretta’ların neden bazı kumsallara yuva yapıp diğerlerine yapmadığı bilinmemektedir. Florida’da binlerce yuva varken, kuzeydeki tıpa tıp kumsallarda çok az kaplumbağa vardır. Bu yuva dağılımı yüzyıllar önce var olan ısı, kumsal görünümü ya da saldırının az olması gibi tercih nedenlerinin durumunu ortaya koyabilir. Bugün, insanlar Caretta carettaların yuva yaptığı yerlere etki etmektedir.sahilde dalma, deniz koyları, suni aydınlatma ve beslenmenin oluşturduğu kumsal erozyonu bir zamanların taze ve temiz kumsallarını etkilemektedir. Bu durumun gelecek yuvaları da etkileyeceği kesindir. Caretta carettaların nasıl, nerede ve ne zaman yuva yaptığını daha iyi anladıkça, yuva habitatları daha iyi korunmuş olacak. Kumsal Seçimi Çoğu dişi genellikle her seferinde daha önce yuva yaptıkları kumsala geri dönmektedir. Sadece aynı kumsalda görünmekle kalmayıp, daha önceki yuvalarının çok yakınlarına yuva yaparlar. Yuva Yapma Davranışları Sadece dişiler yuva yapar ve bunu genellikle geceleri yaparlar. Dişi okyanustan çıkar ve ara sıra duraksayarak yuva yapacağı yere doğru ilerler. Bazen okyanustan çıkacak, ancak bilinmeyen nedenlerle yuva yapmayacaktır. Buna “sahte çıkış” denir ve bu bazen doğal olarak, bazen ise kumsaldaki suni aydınlatma veya insanların varlığından kaynaklanmaktadır. Bazı türlerin bireylerinin sadece bir kere, bazılarının ondan daha fazla yapmasına rağmen çoğu dişi yuva yapma mevsiminde en az iki kere yuva yapar. Yuvayı İnşa Etmek Yuvalama sezonu genellikle Kuzey yarım kürede Mayıs–Ağustos, güney yarım kürede ise Ekim– Mart ayları arasındadır. Yumurtlama genellikle gece meydana gelir. Nadiren günüz yumurtlama da görülür. Yumurtlamak için kıyıya gelen dişi zaman zaman başını kaldırır ve kumsalı gözetler. Dişi bu dönemde dışarıdan gelecek uyarılara karşı çok hassastır ve rahatsız edildiğinde geri döner. Daha sonra kumsala doğru tırmanan dişi yumurtlayabileceği bir alan aramaya başlar. Bazı durumlarda yuvalamadan veya denize dönmeden önce önemli mesafeleri kat edebilir, karapakslarını gizleyebilecekleri sığ ve geri tarafta daha derin olan bir gövde çukuru açabilirler. Ön üyeler yuva açma olayında pek görev yapmazken arka üyeler karşılıklı iş görür. Yumurta Bırakma ve Gömme Yumurta oyuğu açılınca, dişi kaplumbağa yumurtaları bırakmaya başlar. Yumurta bırakma sırasında salgılanan mukusla birlikte aynı anda iki–üç yumurta bırakılır. Bu yuva yaklaşık 80–120 yuva alır. Caretta caretta yumurtaları genellikle küresel, beyaz, mukusla kaplı ve ping–pong topu büyüklüğündedir (yaklaşık 40 mm çapında ve 40 gr ağırlığında). Yumurtalar arasında küçük oval şekilli veya ikili yumurtalara da rastlanabilir. Caretta caretta yumurtaları esnektir ve deliğe düşerken kırılmazlar. Bu esneklik hem dişiye hem de yuvaya daha fazla yumurta sığmasını sağlar. Yuva yapan Caretta caretta’ların ağladıkları görülür, ancak bu sadece vücudun salgıladığı salgının atılmasıdır. Birçok insan yumurta bırakan kaplumbağanın transa geçtiniği ve rahatsız edilmemesi gerektiğini düşünür. Bu tamamen doğru değildir. Bir Caretta caretta’nın yumurta bırakırken yuvayı terk etmesi pek olası değildir, ancak bazıları rahatsız edilir ya da kendilerini tehlikede hissederlerse bunu etkileyebilir. Bu sebeple, bu işlem sırasında C.C.’lar rahatsız edilmemelidir. Yumurtaların hepsi bırakıldıktan sonra, dişi arka üyeleriyle ana çukuru kapatır ve yuvayı düzler. Kumu farklı taraflara da atarak yumurtaların avcılar tarafından bulunmasını engellemeye çalışır. Yuva kapandıktan sonra, kaplumbağa denize yönelir ve bir sonraki yuva yapma ya da göç zamanına kadar dinlenir. Dişi yuvayı bir kez terk etimi tekrar geri dönmez. Kuluçka Caretta caretta’ların kuluçkalama süresi yaklaşık 45–60 gündür. Ancak embriyoların gelişme hızını etkileyen kum sıcaklığı bunu kısaltabilir ya da uzatabilir. Serin kumların erkek, sıcak kumların dişi üretme eğilimi vardır. Yuvayı Terk Etme Yuvadan anneleri tarafından çıkarılan timsahların aksine, Caretta caretta’lar yuvadan kendi başına çıkmak zorundadır. Yumurtayı kırmak için yavrular, “caruncle” adı verilen geçici, sivri yumurta dişlerini kullanırlar. Bu diş yuvadan çıktıktan hemen sonra düşer. Yavrular, yumurta kabuklarını kırdıktan sonra karapakslarının düzelmesi için yuva içinde 26 saate kadar hareketsiz kalırlar, yuvayı terk etme ise yumurtadan çıktıktan 1–7 gün (ortalama 2,5 gün) sonra yavruların birbirlerine yardımıyla yüzeye doğru tırmanma şeklinde gerçekleşir. Yavrular yuvadan havanın serin olduğu geceleri ya da yağmur fırtınaları sırasında çıkmayı tercih ederler. Bunun nedeni bu havalarda kum sıcaklığının düşüklüğüdür. Yuvadaki bütün yavrular aynı zamanda yuvadan çıkmayabilir, bu durumda takip eden gecelerde gruplar halinde yavru çıkışı devam eder. Yuvadan çıkan yavrular ufuk aydınlığını kullanarak denize doğru yönelirler. Bu sırada kumsal gerisinde bulunan herhangi bir ışık kaynağı, yavruların yönlerini şaşırmalarına ve bu nedenle ölümlerine neden olabilir. Eğer hemen denize ulaşmazlarsa, güneşte kalmaktan, su kaybından, ya da yengeçler, tilkiler, köpekler, rakunlar yakın balıkları ve köpek balıkları gibi nedenlerle öleceklerdir. Denize ulaşan yavrular “yüzme çılgınlığı” denen ve yaklaşık 20 saat süren bir dönemde durmaksızın yüzerler. Ancak yavru Caretta caretta için o kadar çok tehlike vardır ki her 1000 yavrudan ancak biri gençliğe kadar hayatta kalabilir. Doğal ortam yaşayan Caretta carettalar için belgelenmiş ömür uzunluğu tahmini yoktur. Ancak ergin dişilerin üretimsel hayat süreleri 32 yıl, eşeysel olgunluğa ulaşma süresi 15–30 yıl olarak tahmin edilmiştir. Bu şartlarda maksimum ömür uzunluğunun 47–62 yıl olabileceği belirtilmiştir. Göç ve Yön Duyguları Göç: Deniz kaplumbağalarının beslenme alanından, yuva yaptıkları alana olan yüzlerce binlerce millik göçü hayvanlar aleminin en dikkate değer özelliklerindendir. Erişkin dişilerin kendi doğdukları bölgeye yuva yapmak için dönmeleri bu özelliği daha da çekici yapar. Deniz kaplumbağalarının nasıl ve nereye göç ettikleri onlarca yıldır bilim adamlarının odaklandığı bir noktadır. Elde edilecek bilgiler türlerin korunma stratejileri için çok büyük önem taşımaktadır. Bugün biliyoruz ki, deniz kaplumbağaları yaşamları boyu sürecek bu göçe yuvadan ilk çıkışlarıyla başlarlar. İlk kritik 48 saat içinde yavru kumsaldan okyanusa yürümek ve orada kendine avcılardan korunup yiyecek bulabileceği bir yer bulmalıdır. Atlantik ve Caribbean’da bir çok yavru körfez akıntılarına kapılır. Burada genç kaplumbağalar yeterli bir besin kaynağı ve az sayıda avcı bulurlar. Yıllarca Atlantik etrafında yüzüp durduktan sonra, bu genç kaplumbağalar kıyı kenarındaki sığ sulara dönecek kadar büyümüşlerdir. “Tüm Floride loggerheadlerinin birkaç yıllarını kıyı yakını habitatlarda beslenip büyüyerek geçirirler. Ergenliğe ve cinsel olgunluğa erişir erişmez, bir iki beslenme alanına göç ettikleri bilinir. Ergen kaplumbağaların üreme mevsimi hariç ömürleri boyunca kalacakları yer bu ilk beslenme alanıdır. Çiftleşme ve yuva yapma dönemine gelindiğinde hem dişi hem de erkek yuva yapılan kumsallara doğru göçe başlar. Bu olağan güç hayatları boyunca sürecektir. Yön: Açık okyanuslarda deniz kaplumbağaları güçü akıntılara maruz kalırlar, kısıtlı bir görüş açıları vardır; kafalarını suyun üstüne yalnızca birkaç santim çıkartabilir. Bu kısıtlamalara rağmen, deniz kaplumbağaları aynı yuva yapılan kumsalı bulmak için uzun mesafelere göç ederler. Bunu nasıl yaptıkları hayvanlar aleminin en gizemli sorularından biridir ve buna cevap bulabilmek bir çok araştırmacının odak noktası olmuştur. Umut verici yeni bir teori kaplumbağaların dünyanın manyetik alanının açı ve yoğunluğunu bulabildiğini iddia eder. Bu iki özelliği kullanarak kaplumbağa istediği yere gitmesini sağlayacak olan bulunduğu yerin enlem ve boylamını bulabilmektedir. Daha önceki araştırmalar da deniz kaplumbağalarının manyetik alanı belirleme yeteneğinin var olduğunu ispatlamıştır. Göç incelemeleri: Deniz kaplumbağalarının göçebe doğaları, onları anlama ve korumayı zorlaştırmaktadır. Özellikle kaplumbağaları kendi habitatları içinde korumak için, bu habitatların nerelerde olduğunu, kaplumbağaların orada nasıl davrandığını ve hangi yönlere doğru göç ettiğini bilmemiz gerekir. Bir çok araştırma yuva yerlerinde yapılmıştır ve bunun çok mantıklı sebepleri vardır. Araştırmacılar için bu bölgeler daha kolayca ulaşılabilirdir, ayrıca yeni deniz kaplumbağalarının üremesi soyun devamı için çok önemlidir. Koruma çalışmaları da en kolay yuva bulunan kumsallarda yönetilmektedir. Ancak, hayat döngüleri içinde deniz kaplumbağalarının gittiği bölgelerden, en az zaman harcananı yuva yapılan kumsallardır. Bir deniz kaplumbağasının hayatının % 90’ından fazlası suda–beslenerek, çiftleşerek, göç ederek ve kimse izlemediğinde deniz kaplumbağaları ne yaparsa onu yaparak geçer. Sonuç olarak, korumacılar için en büyük tehlikenin olduğu bölge en çok sorunla karşılaşılan okyanuslardır. Yaşamları boyunca onları tam olarak koruyabilmemiz için, kaplumbağaların göçebe motiflerinin ve sudaki davranışlarının tam olarak bilinmesi gerekir. Deniz kaplumbağalarının nereye gittiklerini belirlemek için bir çok metot uygulanır. Bunların en basitlerinden biri yuva yapmaya kumsala geldiğinde ayaklarından birine küçük, zararsız bir metal parçası takmaktır. Her parça kodlanmış bir numaraya sahiptir ve insanlara bulunduğu taktirde geri gönderilmesi için gerekli olan bir adres vardır. İnsanlar bu kimliği geri döndüklerinde, küçük bir ödül kazanırlar ve bu şekilde kaplumbağaların bulundukları, uğradıkları yerler bulunmuş olur. Populasyon: C. caretta’nın erkekleri hakkındaki bilgilerine azlığından dolayı populasyonlarının cinsiyet oranı tam olarak bilinmemektedir. Populasyonların yaş ve boyut kompozisyonları hakkında da kapsamlı bir bilgi yoktur. Ayrıca Henwood (1987), populasyonda kompozisyonların her sezonda değiştiğini ve böylece populasyonun büyüklüğü hakkında bilgi edinmenin karmaşık hale geldiğini belirtmiştir. Populasyon yapısı ve cinsiyet oranı hakkındaki eksik bilgiler ve deniz kaplumbağalarının yaşadığı biyolojik populasyonun sınırlarının tam olarak bilinmemesinden dolayı, populasyon bolluğu ve yoğunluğu hakkında tahmin yapabilmek zorlaşmaktadır. Bununla birlikte yuvalama kumsallarına gelen dişilerin direk sayımı veya yuva sayılarıyla ilgili bazı tahminler yapılmaktadır. C. caretta’nın üretkenlik organlarına etki eden faktörler bölgesel olarak değişkenlik göstermektedir ve populasyon içinde önemli oranlarda varyasyonlar söz konusudur. Bu varyasyonlar, belirli sahillerdeki üretkenlik durumunun belirlenmesini engeller. Aşırı yağmurlar, rüzgar erozyonu, dalga erozyonu ve sıcaklık gibi baskın genel çevresel faktörler üretkenliği etkiler. Yumurtlama sahillerindeki insanların varlığı, ziyaretçilerin olması ve çevredeki ışık kaynakları yuvalama yapmak için kumsala çıkmış dişileri rahatsız ederek denize dönmelerine neden olabilir. C. caretta yavruları, kum yengeçleri, köpek balıkları, predatör kemikli balıklar ile tilki, köpek, rukan gibi memelilere yem olmaktadır. Çeşitli kuşlar da gündüz saatlerinde yavruları avlarlar. Hastalık, şiddetli açlık ve soğuk sersemliği de ölümlere sebep olabilmektedir. Ancak belirli populasyonlar üzerindeki etkileri bilinmemektedir. Katran, yağ artığı ve plastik atıklarının yutulmasından ölümler meydana gelebilmektedir. Genç ergin öncesi ve ergin bireyler ise özellikle köpek balıkları tarafından avlanırlar. Ayrıca bu gruplar, katran veya plastik yutarak ölebilir veya yaralanabilirler. Ayrıca bot çarpmaları bilinçli avlanmalar ve çeşitli ağlara takılmalar da ölüme neden olan diğer faktörlerdir. C. caretta Avustralya, Güney Afrika ve ABD’de korunmaktadır. Balıkçılık endüstrisinin öncelikli avı olmasa da görüldükleri yerde avlanırlar. İnsanların çoğu iddia edilen beğenilmemiş tadından dolayı etini yemezler. Ancak Hindistan, Madagaskar ve Mozambik kıyılarında yaşayan insanlar tarafından hala tüketilmektedir. Her ne kadar C. caretta’nın eti, kabuğu ve derisi Cheloma mydas, Eretmochelys imbricata, Lepidchelys kempii ve Lepidochelys olivacea’ya göre değerli olmasa da yumurtaları dünyanın bir çok yerinde tüketilir. Mozambik, Madagaskar ve Umman kıyı şeritlerinde olduğu gibi C. caretta yumurtalarının protein amaçlı kullanılması, populasyonlarının gerilemesine neden olmuştur. Çoğunlukla ılık ve subtropikal bölgelerde yuvaladıklarından, C. caretta’nın üreme habitatları ve kışlama alanları arasında göç ettikleri sanılır, erkek göçleri hakkında ise çok az şey bilinmektedir. C.Caretta’nın grup göçü bilinmemektedir. Yıl boyunca açık deniz sularında kalabilirler. Florida’da bazı bireylerin, dipleri çamurlu kanallara girdikleri belirlenmiştir. Bazı populasyonlar ise yıl boyunca yuvalama kumsallarının yakınında yaşarlar ve yuvalama dönemleri arasında çatlak ve delikleri mesken edinebilirler. C. caretta’nın klasik anlamda “sürüler” oluşturduğuna dair herhangi bir gösterge yoktur. Bununla beraber, denizde ya da yuvalama kumsallarının yakınında lokal yoğunlaşmalar oluşturabilirler (Dodd, 1988). Koruma ve Yönetim C. caretta’nın da içinde bulunduğu deniz kaplumbağaları, bu türlerin durumları ve önemi kavrandıkça yakalanmalarını ve satışlarını yasaklayan, habitatlarının korunmasını da sağlayacak kanunlarla korunmaya çalışılmıştır. C. caretta, Uluslararası Tehlike Altındaki Türler Kongresinde (CITES) Ek 1’de listelenmiştir. Aralarında Türkiye’nin de bulunduğu bir çok ülke bu antlaşmayı imzalamıştır. Bu listede yar alan türlerin herhangi bir şekilde gelir amaçlı satışı yasaklanmıştır. Göç eden türler konferansı hazırlıklarında uluslararası korumanın şart olduğu Ek 2 listesinde yer almışlardır. Her ne kadar bazı düzenleyici kanunlarla koruma altına alınmış olsalar da bazı bölgelerdeki yetersiz veya isteksiz güvenlik güçleri ve ülkelerin ekonomik seviyelerindeki farklılıklar C. caretta ve diğer deniz kaplumbağalarının korunmasında yeterli olmamakta ve tedbirlerin uygulanmasını güçleştirmektedir. C. caretta’nın neslini devam ettirebilmesi için bütün önemli yuvalama, beslenme, göç ve kışlama habitatlarının üzerinde önemle durulması ve biyolojik verilere dayalı korumalarının uygulanması zorunlu olmuştur. Deniz kaplumbağalarının korunması için farklı bölgelerde, farklı koruma ve yönetim alternatifleri uygulanmaktadır. C. caretta’nın derisi ve kabuğu için fazla talep yoktur ve bu nedenle uluslararası ticareti de çok iyi değildir. Yumurta ve eti ise genellikle lokal olarak tüketilmektedir. CITES uygulamaları uluslararası ticareti engellemede başarılı olabilecektir. Uluslararası ticaret, yasalar tarafından değişik derecelerde başarıyla durdurulmuştur. Örneğin, ABD ve Avustralya’da yumurta tüketimi bu sayede durmuştur. Fakat kaçak avlanma devam etmektedir. Koruma kanunlarının olmadığı bölgelerde ise kanunların çıkarılması ve uygulanması türün devamlılığı için zorunlu görünmektedir. Dişilerin üretkenlikteki önemi ve yumurtlama anlarında çok hassas olmaları nedeniyle plaja gelen dişilerin rahatsız edilmemeleri gerekmektedir. Bu, yumurtlama mevsiminde insan aktivitesinin en aza indirilmesi ve yavruların yollarını bulabilmeleri için yapay ışıklandırmaların minimuma çekilmesiyle gerçekleşebilir. Yuvalar ve dişiler sahillere giren araçlardan korunmalıdır. Çünkü bunlar kumu sıkıştırabilir veya yavruların içinden çıkamayacakları izler bırakabilirler. Ayrıca bu araçların gece kullanılması da dişilerin bu sahillere gelmesini engelleyebilir. Plaj temizlemede kullanılan ağır mekanize temizleme araçları, yumurtlama mevsiminde yumurtlama plajlarında kullanılmamalı veya zarar vermeyecek boyutlarda işletilmelidir. Yumurtalar üzerindeki kaçak avcılığın, predosyonun ve erozyonun yüksek oldu bölgelerde yeni yapılanmış yuvalar, korunmuş kuluçkalıklara taşınabilir buralarda acilen yuvalara tekrar gömülür ya da nemli plaj kumu ile doldurulmuş kutularda inkübasyona bırakılabilir. Bu tip uygulamaların yaratacağı durumlarda, yöntemin taşıdığı bazı risklerden dolayı dikkatli planlama yapılması ve yürütülmesi zorunluluğu vardır. Deniz kaplumbağalarının korunmasında kullanılan bir başka metot da yavruları ilk dönemlerinde yüksek olan predasyonlardan korunabilecekleri büyüklüğe kadar ulaştırmaktadır. Konu ile ilgili araştırmacılar tarafından habitat korunmasından sonra bu metodun kullanılması gerektiği savunulmaktadır. Bu yöntem özellikle Chelonie mydas, Eretmochelys imbricata, Lepidochelys kempii populasyonlarını arttırmak için dünyanın değişik yerlerinde kullanılmıştır. Yavru kaplumbağaların korunması için, yavru kaplumbağalar üzerindeki predasyonun azaltılması, plaj ışıklandırmalarından kaynaklanan yanlış yönelmelerin önlenmesi, kirleticilerin ve besin olarak nitelendirebilecekleri plastiklerin denize ulaşmasının engellenmesi gerekmektedir. Balıkçılıkta kullanılan ağlarla rasgele yakalanmaların ve ölümlerin yüksek olduğu bölgelerde “Kaplumbağa Dışlayıcı Aygıt (TED)”ların kullanılması balıkçılıktan kaynaklanan ölümleri azaltacak bir yöndemdir. Bu yöntem özellikle ABD’de balıkçılıktan kaynaklanan ölümlerin yüksek olduğu bölgelerde kullanılmış, ergin ve ergin öncesi kaplumbağaların kurtulmasını sağlamıştır. Kaplumbağa yaşamını tehdit eden faktörler: Deniz kaplumbağaları yaşamlarının büyük bölümünü denizde geçirmekle birlikte, nesillerini devam ettirebilmek için üreme kumsallarına son derece bağımlı olan canlılardır. Bu tip kumsalların insan eliyle farklı amaçlar için işgal edilmesi ( turizm amaçlı faaliyetler, kum alımı, otlatma, tarım için kumsalların toprak ile örtülmesi vs. ) ve artık Türkiye , Yunanistan ve Kıbrıs gibi birkaç ülkede sınırlı kalması bu bölgelere yumurta bırakan kaplumbağaların nasıl yavaş yavaş yok olmaya mahkum edildiklerini ortaya koymaktadır. Ayrıca, deniz ortamında gerek ergin, gerekse yavrularını trol vb. ağlarla balıkçılar tarafından tesadüfi yakalanmaları da kaplumbağa yaşamını tehdit eden önemli bir sorundur. Çözüm ve Öneriler: Yüksek yuva yoğunluğuna sahip üreme kumsallarını olumsuz yönde etkileyecek yatırımlardan kaçınılmalıdır. Gerek turizm amaçlı gerekse bu amaç dışı yapılanmalarda, özellikle deniz kaplumbağası üreme mevsimi olan Mayıs-Ekim aylarında aydınlatma ve gürültü ile ilgili tedbirlere önem verilmelidir. ( Karayolları aydınlatması, çadır ve karavan kampingleri, otel, ev vb. ) Kumsallarda, doğal yapıyı bozucu her türlü kum ve çakıl alımı önlenmelidir. Üreme kumsallarına büfe, restoran vs. sabit tesisler kurulmamalıdır. Gece kumsallar insanlar tarafından kullanılmamalı, araba, motor, bisiklet vs. araçların üreme kumsallarına girmesi engellenmelidir. Plaj şemsiyeleri toprağa gömülmeyen türden olup yumurtlama bandının gerisinde kullanılmalıdır. Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar Ülkemizin taraf olduğu Uluslararası Sözleşmeler (Bern, Barselona Sözleşmeleri) çerçevesinde nesli tehlikede olan ve Türkiye sahillerini üreme alanı olarak kullanan deniz kaplumbağalarının korunması yönünde çalışmalar yapılmaktadır. Bu amaçla, Bakanlığımız koordinatörlüğünde ilgili Bakanlıklar, üniversiteler ve gönüllü kuruluşlardan oluşan “ Deniz Kaplumbağaları İzleme-Değerlendirme Komisyonu ” kurulmuştur. İzleme-Değerlendirme Komisyonu Akdeniz’ de önemli deniz kaplumbağası üreme alanı olarak belirlenmiş 17 alanda ( Ekincik, Dalyan, Fethiye-Çalış, Dalaman, Patara, Kale (Demre), Kumluca, Tekirova, Kızılot, Belek, Gazipaşa, Demirtaş, Göksu Deltası, Kazanlı, Anamur, Akyatan, Samandağ ) incelemelerde bulunarak, sorunları tespit etmekte ve bu sorunların giderilmesi yönünde çalışmalar gerçekleştirmektedir. KAYNAKÇA: 1- Sınıflandırma, coğrafi dağılışı, fiziksel özellikleri, beslenme alışkanlıkları, üreme, davranış özellikleri, habitatı: 2- Biyo-Ekolojileri, populasyonu: 3- Kaplumbağa yaşamını tehdit eden faktörler, Çözüm ve Öneriler, Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar    

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari

KOVADA GÖLÜ MİLLİ PARKI

KOVADA GÖLÜ MİLLİ PARKI

İli : ISPARTA Adı : KOVADA GÖLÜ MİLLİ PARKI Kuruluşu : 1970 Alanı : 6.534 ha. Konumu : Akdeniz Bölgesi’nde, Isparta ili Eğirdir ilçesinde yer almaktadır. Ulaşım : Isparta-Eğirdir-Konya devlet karayolundan ayrılıp güneye dönen 23 km’lik bir yol ile ulaşılmaktadır. Kaynak Değerleri :           Kovada Gölü’nün meydana gelişi, Batı Toroslar’da görülen karstik göllere benzer. Havzaya düşen yağmur sularının fiziksel ve kimyasal aşınmasına eklenen tektonik yer hareketleriyle şekillenen göl, karstik tektonik bir polyedir. Eğirdir Gölü’nün güneye doğru uzantısı olan Kovada Gölü, sonradan aradaki dar vadinin alüvyonlarla dolması sonucunda bugünkü şeklini almıştır.           Tatlısu levreği (sudak), tatlısu istakozu ve sazandan meydana gelen göl faunası sayı olarak oldukça iyi durumdadır. Milli Parkın ana kaynak değeri olan kızılçam, meşe, çınar ağaçlarından meydana gelen bitki örtüsü ve parkın tabii güzellikleri, açıkhava da dinlenme ve kullanma potansiyeline katkıda bulunmaktadır.           Sahanın meydana gelişini hazırlayan karst morfolojisi; bakir doğanın araştırılması, yürüyüş, manzara seyretme, tırmanma ve basit kampçılık imkanı sağlamaktadır. Görünecek Yerler : Milli parka adını veren Kovada Gölü, çevresindeki zengin flora gibi doğal peyzajın pek çok çeşidini sunan bir sahadır. Mevcut Hizmetler : Saha; günübirlik rekreasyonel faaliyetlerden doğa yürüyüşü uygun olup, primitif kamping de yapılmaktadır. Sahadaki kır gazinosu ziyaretçilere hizmet vermektedir. Konaklama : Çadır ve karavanla konaklama mümkündür. Sahada konaklama tesisi bulunmadığı için ziyaretçiler Eğirdir ilçesinde bulunan otellerden faydalanabilirler. FLORA 6534 hektar olan Kovada Gölü Milli Parkı alanının, 4662 hektarı, ormanlık alandır. % 71 gibi yüksek bir düzeye ulaşan orman alanlarının, 1659,5 hektarı prodüktif koru, 2899,5 hektarı bozuk koru, 103,0 hektarı da bozuk baltalıktır. Açıklık alanın, 790 hektarı göl yüzeyidir. Alanda orman kuran ağaçlar; Karaçam, Kızılçam, Ardıç ile Meşe türleridir. Göl çevresinde Çınar ve yüksek rakımlarda Toros Göknarı ile Toros Sediri de karışıma iştirak etmektedirler. Milli Park içerisinde yer alan Kovada Gölü sulak alanı ve çevresinde yer alan farklı tipteki biyotoplar, çok sayıda canlı için önemli birer habitat niteliği taşıması nedeniyle, önemli kaynak değerleri konumundadırlar. Zengin bir bitki örtüsüne sahip Milli Park; Kızılçam, Saplı-Sapsız-Saçlı Meşeler, Pırnal Meşesi, Kokar Ağaç ve Ardıç gibi ağaç türleri ile Hayıt, Sandal, Kocayemiş, Funda, Çitlenbik, Yabani Zeytin Akçakesme, Mersin, Menengiç, Boyacı Sumağı, Muşmula, Alıç, Dağ Muşmulası, Böğürtlen, Yabani Gül, Defne, Tesbih Ağacı, Karaçalı, Kördiken gibi maki florasının çalıları ile kaplanmıştır. FAUNA Kovada Gölünde Sazan ve Tatlısu Levreği, Tatlısu Istakozu bulunmaktadır. Milli Parkta en çok rastlanan türler; Yaban Domuzu, Sansar, Porsuk, Tilki, Tavşan ve Sincap’tır. Kuşlardan Yaban Ördeği, Kaz, Angut, Keklik ve Çulluk Milli Parkta görülen belli başlı türlerdir. http://www.milliparklar.gov.tr TANITIM VİDEOSU   

http://www.biyologlar.com/kovada-golu-milli-parki

EKOLOJİ PDF SUNUMLAR

İNSAN VE DOĞA; http://www.masht-gov.net/advCms/documents/07_4_09.pdf EKOTURİZİM VE BOTANİK TURİZMİ; http://www.alpineplants.org/Download/14.pdf TARIM VE ÇEVRE:http://www.keyifkafe.net/bilim/tarim-ve-cevre-pdf-turkce-38682/ ÇEVRE EĞİTİMİ KİMYASAL ÇEVRE KİRLİLİĞİ :http://www.ekolojidergisi.com.tr/resimler/13-3.pdf Derin Ekoloji ;http://dogaokulu.net/notlar/derinekoloji.pdf Modern Topluma Ekolojik Bir Yaklaşım; http://kosbed.kou.edu.tr/sayi12/kilic.pdf Ekoloji Prensipleri ve Derin Ekoloji; http://dogaokulu.net/notlar/2008/derinekoloji.pdf Çevre Kirliliğinin Klima Sistemlerine Etkileri; http://arsiv.mmo.org.tr/pdf/10289.pdf HAVA KİRLİLİĞİ VE ASİT YAĞMURLARININ ÇEVRE VE İNSAN SAĞLIĞI ÜZERİNE ETKİLERİ http://www.meteor.gov.tr/FILES/arastirma/webhakir.pdf ÇEVRE VE ÇEVRE KİRLİLİĞİ NEDİR?; http://oynaogrenegitimi.com/odev/cevre.pdf HAVA KİRLİLİĞİ VE ATMOSFER; http://www.agri.ankara.edu.tr/soil_sciences/1250_Karaca_Arcak_Cevre_Bolum_3.pdf Hava Kirliliğinin Akciğer Etkileri ; http://www.solunumhastaliklari.org/pdf.php3?id=252 HAVA KİRLİLİĞİNİN SOLUNUM FONKSİYONLARINA ETKİLERİ; http://www.ekolojidergisi.com.tr/resimler/15-1.pdf ÇEVRE KİRLİLİĞİ VE CANLILARA ETKİSİ; http://www.obi.bilkent.edu.tr/images/duyuru/ekokose5.pdf Grültü Kirliliği; http://www.veteriner.tv/tr/index2.php?option=com_content&do_pdf=1&id=3246 Su Kirliliği; http://www.yesilkutu.net/dyn_files/news/files/25.pdf SU KİRLİLİĞİNİN HAYATIMIZA ETKİLERİ; http://email.egelisesi.k12.tr/egelisesi/basarilarimiz/Projeler/proje2004/proje27.pdf Su Kirliliği Kontrolü Yönetmeliği; http://www.trabzonozelidare.gov.tr/mevzuat/Yonetmelik_SuKirliligi.pdf

http://www.biyologlar.com/ekoloji-pdf-sunumlar

Dinozorların Nesli Nasıl Tükendi

Dinozorların nasıl yok olduğuna dair bugüne değin bir çok iddia ortaya atılmıştır. Geçmişte, dinozorların kısa bir süre içinde toplu olarak nasıl yok oldukları uzun bir süre açıklanamamış ve yanardağ patlamalarından dünyadaki iklim değişikliklerine kadar çeşitli teoriler ortaya atılmıştır. 1980 de ise Nobel ödüllü fizikçi Luis Alvarez ve oğlu jeolog Walter Alvarez dinozorları bir göktaşının ortadan kaldırdığını ileri sürdüler. Alvarezler'in bu görüşü 85 li yılların sonları ve 90 lı yılların başlarında bilim çevrelerinde ağırlık kazanmış ve ilerleyen yıllarda da ortak kabul olmuştur. Yapılan araştırmalar da bu görüşü kanıtlamıştır. Dinozorların nasıl yok olduğuna ilişkin bilim adamlarının sahip oldukları bu görüş dinozorların sonunun 65 milyon yıl önce yaklaşık 10 km çapında bir göktaşının Dünya'ya çarpmasıyla gerçekleştiğini açıklar. Bu göktaşı saatte 54.000 km hızla Meksika'nın Yukatan Yarımadası açıklarında Dünyaya çarpmış ve çarpma anında 200.000 km³ (her bir kenarı 58.480 tane çamaşır makinesinden oluşan dev bir küp olarak düşünülebilir !) madde buharlaşmış, erimiş ya da yüzlerce kilometre öteye savrulmuştur. Bu çarpma sonucu canlı türlerinin %70'inden fazlası yok olmuş ve 170 km çapındaki, Dünya'nın en büyük kraterlerinden biri olan Chicxulub krateri meydana gelmiştir. Çarpmanın 100 milyon megaton TNT'ye eşdeğer bir enerji açığa çıkardığı tahmin edilmektedir. Çarpma sonucu oluşan toz tabakası atmosferi kaplamış, Dünya aylar boyu karanlıkta kalmış, sıcaklık suyun donma derecesine kadar düşmüş ve asit yağmurları yaşanmıştır. Aylarca süren bu karanlık ve soğuk dönemde bitkilerin fotosentez yapamaması besin zincirini yıkmış ve bu felaketler zinciri de dinozorların sonunu hazırlamıştır.Dünya hiç güneş görmeyince buz devri oluşmuştur. Dinozorlar da bu sırada ölmüştür.

http://www.biyologlar.com/dinozorlarin-nesli-nasil-tukendi

Bitki Kökleri Elementleri Nasıl Ayırt Ediyor

Bitki kökleri toprakta karışık halde bulunan demir, kalsiyum, magnezyum ve fosfor gibi elementleri bir seferde ve hatasız bir şekilde birbirinden nasıl ayırt edebilir? Doğada çeşitli şekillerde bulunduğunu bildiğimiz elementleri, mineralleri birbirlerinden ayırmak için ne gibi işlemler yapmak gerekir? Bitkiler toprağın altına yayılmış halde bulunan kökleri ile toprakta bulunan elementleri tanır, birbirlerinden ayrıştırır ve ihtiyaçları olan miktarlarda su ve minerali gövdesine doğru pompalar. Bu hayati işlemler sırasında bitkiler bir kez bile şaşırmaz ve hata yapmazlar. Her zaman elementleri doğru bir şekilde tanır, ihtiyacı doğru şekilde tespit eder ve yine tam olması gereken miktarda besini alırlar. Bitkiler ihtiyaçları olan tüm mineralleri topraktan alırlar. Bu maddeler toprakta tek olarak bulunmaz. Bu yüzden bir bitki bunları iyon olarak emer ve toprak çözeltisi arasından sadece kendi ihtiyacı olan 16 tanesini alır. Bu işlem için de toprak altında sondaj yapan köklere gereksinim duyarlar. Köklerin görevi, toprağın altına bir ağ gibi hızla yayılıp su ve mineralleri çekmektir. Bitkiler, aslında minerallere toprakta bulundukları yoğunluktan daha yüksek yoğunlukta ihtiyaç duyarlar. Bu da gerçekte köklerin ne kadar mükemmel bir toplama sistemine sahip olduklarını gösterir. Kökler, ihtiyaçları olan iyonları kendi bünyelerindeki yüksek yoğunluğa rağmen hücrelerinden geçirerek pompalarlar. Kimlik Taramasından Geçirilen Mineraller Yerçekimi sisteminin tersine gerçekleşen pompalama işlemi oldukça zorlu bir iştir. Bu nedenle pompalara yüksek enerji sağlanması gereklidir. Ayrıca, istenilen iyonları çeken ve istenmeyenleri geri iten bir tanıyıcı sistem olması da zorunludur. Bu da iyon pompalarının sadece basit birer pompa olmadıklarını göstermektedir. Bir bitkinin sağlıklı olarak yaşayabilmesi için nitrojen, potasyum, fosfor, kalsiyum, magnezyum ve sülfür gibi ana elementlere ihtiyacı vardır. Bu "gerekli" elementleri sağlaması için kök hücresinin bitkinin tamamındaki elementleri teker teker tanıması ve nerede hangi elementin eksildiğini tespit etmesi gerekmektedir. Şüphesiz bunları yapmak oldukça zor olacaktır. Üstelik toprak içinde karışık olarak bulunduklarını düşünürsek bu işlem çok daha zorlaşacaktır. Bir Bitkinin Topraktaki Elementlerin İçinden Kendisine "Gerekli Olanları Seçmesi" Ne Anlama Gelmektedir? Öncelikle buradaki "gerekli" kavramını ele alalım. Bu "gereklilik" için kök hücresinin bitkinin tamamındaki elementleri teker teker tanıması şarttır. Tanıdığı bu elementlerin de bitkinin her yerindeki eksikliğini tespit etmesi ve ihtiyaç olarak belirlemesi gerekmektedir. Yine soru soralım. Bir element nasıl tanınır? Eğer toprakta saf halde bulunmuyorsa, yani başka elementlerle bir arada bulunuyorsa, bitki bir elementi diğerlerinden kendi başına ayırt edebilir mi? Böyle bir işlemin milyonlarca yıldır her seferinde, en doğru şekilde gerçekleşmesi tesadüfen mümkün olur mu? Bu soruların her birinin cevabı elbette ki "imkansız"dır. Bitkiler, ilim bakımından her şeyi kuşatmış olan Yüce Allah’ın sonsuz ilminin tecellisi olarak hareket ettikleri için bu işlemleri her defasında ve hatasız yerine getirirler. Onlara bu yeteneği veren, ihtiyaç duyulan elementleri toprakta bulunan diğerlerinden ayırt etmesini sağlayan kuşkusuz ki Yüce Rabbimiz’dir. Bitki kökleri, narin yapılarına rağmen tonlarca ağırlığa ulaşabilen bitkilerin toprağa sıkıca bağlanıp tutunmalarını da sağlarlar. Köklerin toprağı tutma özelliği son derece önemlidir. Çünkü bu sayede toprak kaymaları, toprağın verimli üst katmanlarının yağmurlarla kaybı gibi insan yaşamını etkileyecek olumsuz etmenler de ortadan kalkmış olur. Elementlerin Miktarını Ayarlayan Kökler Bitkiler, toprakta bulunan pek çok element içinden sadece kendilerine gerekli olan 16 elementi alır ve kullanırlar. Bu elementlerin yeteri kadar alınamaması ya da fazla alınması durumunda bitkide çeşitli eksiklikler ortaya çıkacaktır. Örneğin: Nitrojen, topraktan fazla alınması durumunda yüksek ısıda kolay kırılmaya ve güçsüz büyümeye sebep olabilir, az alınması durumundaysa bitkilerde sararma, kırmızılıkların ve morlukların oluşması, az tomurcuklanma ve geç büyüme gibi sonuçlar doğurabilir. Fosfor eksikliğindeyse, büyüme yavaşlar, renk koyulaşır, bazı bitkilerdeki yapraklarda kahverengileşme ve morarma oluşur. Yine tomurcuklanma azalır ve alttaki yapraklar dökülür, çiçek açımı azalır. Kısacası bitkilerin sağlıklı büyümeleri için bu iyonların varlığı ve topraktan gerektiği kadar alınmaları şarttır. Bitkiler bu iyon seçici mekanizmaya sahip olmasalardı ne olurdu? Topraktan sadece gerekenleri değil de her türlü minerali alsalardı ya da gereğinden daha az ya da fazla mineral alsalardı neler olurdu? Kuşkusuz ki şu anda yeryüzünde bulunan kusursuz dengede önemli bozulmalar meydana gelirdi. Toprak ile Aramızdaki Mineral Köprüsü: Bitkiler Vücudumuzda toplam olarak yaklaşık üç kilo mineral vardır. Bunların bir kısmı organizmanın sağlığı için mutlaka gereklidir ve hepsinin vücutta bulunması gereken belirli miktarlar vardır. Örneğin vücutta kalsiyum olmasa dişler ve kemikler sertliğini kaybeder, demir olmayınca hemoglobin de olmayacağından dokularımıza oksijen ulaşamaz. Potasyum ve sodyum olmasa hücrelerimiz elektrik yükünü kaybeder ve hızla yaşlanır. İnsan vücudunda bulunan minerallerin aynısı toprakta da bulunur. Bunların da hepsinin oranları, görevleri ve toprakta bulunuş şekilleri farklıdır ve bu minerallerden faydalanan pek çok canlı vardır. Bitkiler de, kendileri için gerekli olan elementleri topraktan kolaylıkla alabilecek şekilde yaratılmışlardır. Yapılarında yer alan elementlerin hepsinin farklı kullanım alanları, dolayısıyla topraktan alındıktan sonra gitmeleri gereken farklı yerler vardır. Hepsinin görevi ayrıdır. Biz ise toprakta yer alan gerekli mineralleri bitkiler vasıtasıyla vücudumuza alırız. Bunları saf halde topraktan ayırt ederek vücudumuza katmamız ise olanaksızdır. Bu işi bizim için bitkiler üstlenmiştir. Kökler Su Dengesini Nasıl Sağlar? Bitkiler, köklerindeki hücrelerin iç basınçları dış basınçlarından az olduğunda dışarıdan su alırlar. Başka bir deyişle bitki, topraktan ancak ihtiyacı olduğu zamanlarda su almaktadır. Bunu belirleyen en önemli faktör, bitkinin köklerinin içinde bulunan suyun meydana getirdiği basınç miktarıdır. Bu basıncın dışarıdaki basınç miktarı ile dengelenmesi gereklidir. Bitki bunu sağlayabilmek için, içerideki basınç miktarı azaldığında kökler vasıtası ile dışarıdan su alma ihtiyacı duyar. Bunun tam tersi olduğunda ise, yani bitkideki iç basınç dışarıdakine oranla daha yüksek olduğunda, bitki bu dengeyi sağlayabilmek için bünyesindeki suyu yapraklarından dışarı bırakır. Eğer suyun topraktaki yoğunluğu normalde olduğundan biraz daha yüksek olsaydı, dış basınç çok yüksek olacağından bitki sürekli su alacak ve bir süre sonra bitki bundan zarar görecekti. Bunun tam tersine suyun topraktaki yoğunluğu daha düşük olsaydı, bitki hücresi dış basınç çok düşük olacağından dışarıdan hiçbir zaman su alamayacaktı. Hatta basıncı dengelemek için bünyesindeki suyu dışarı salacak yani her iki durumda da kuruyarak ölecekti. Bu işlemleri yaparken kökler hiçbir teçhizata gerek duymazlar. Köklerin suyu çekme işlemini başlatacak gücü sağlayan bir motorları yoktur. Suyu ve mineralleri metrelerce uzunluktaki gövdeye pompalayacak bir teknik donanımları da mevcut değildir. Ama kökler çok geniş bir alana yayılarak suyu çekebilirler. Görüldüğü gibi bitki kökleri ne eksik ne de fazla, sadece o anki şartlarda ihtiyaç duyulan miktarda basınç ayarlaması yapabilecek bir denge-kontrol mekanizması ile donatılmışlardır.

http://www.biyologlar.com/bitki-kokleri-elementleri-nasil-ayirt-ediyor

 
3WTURK CMS v6.03WTURK CMS v6.0