Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 141 kayıt bulundu.

DSÖ: Antibiyotik Direnci Modern Tıbbın Sonunu Getiriyor

Dünya Sağlık Örgütü genel direktörü Margaret Chan, dünyanın bir antibiyotik krizine girdiğini ve bunun rutin operasyonları imkansız hale getiren ve bacaktaki yaralanmayı bile ölümcül kılan bir durum olduğunu öne sürerken, bakterilerin yaygın antibiyotiklere karşı “modern tıbbın sonunu getirebilecek kadar” dirençli hale geldiğini belirtti. Margaret Chan’in iddiasına göre şu ana dek bulunan her antibiyotik yararsız kalma riski altında, bu da rutin operasyonlardaki bir seferlik kullanımları imkansız hale getiriyor.  Buna tüberküloz, sıtma, bakteriyel enfeksiyonlar HIV/AIDS gibi hastalıkların tedavisinde çığır açan ilaçlar gibi kesikler için basit tedaviler de dahil. Kopenhag’da enfeksiyon hastalıkları uzmanlarının konferansında konuşan Dr. Chan “post-antibiyotik bir çağa” giriyor olabileceğimizi söyledi. Replasman tıbbının daha pahalı olacağını ve aynı etkiyi göstermesi için daha uzun dönemlere ihtiyaç duyulacağını da ekledi. Dr. Chan, “strepkokokal boğaz ağrısı veya çocuğun dizindeki yaralanma kadar yaygın şeylerin öldürebilecek hale gelebileceğini” söyledi. “ İlk sıra antimikrobiyallerimizi kaybediyoruz” diyen Chan, replasman tedavilerinin daha maliyetli, daha toksik olduğunu ve daha uzun süre tedavi gerektirdiğini ve yoğun bakım ünitelerinde tedavi gerektirebileceğini söyledi. Dr. Chan, ilaca dirençli patojenlerle enfekte olan hastalar için mortalitenin %50 oranında yükseldiğini belirterek, “Post-antibiyotik çağ etki olarak bakıldığında bugün bildiğimiz haliyle modern tıbbın sonu” diye konuştu. İlk kesin uyarı Dünya Sağlık Örgütü’nün bu “global kriz” ile ilgili uyarıda bulunan “Antimikrobiyal Direncin Gelişen Tehdidi” adlı kitabın basılmasından kısa bir süre sonra geliyor. Bu kitapta “hastalığa neden olan bakteri tedavi için kullanılan antibiyotiğe karşı eninde sonunda dirençli hale gelerek yanıt verir” diye yazıyor. “Kriz on yıllardır gelişiyor, öyle ki bugün birçok sık rastlanan ve yaşamı tehdit edici infeksiyonun tedavisi güçleşmekte ve hatta imkansız hale gelmektedir. Yayında şu anki durumla ilgili antibiyotiklerin uygunsuz olarak yazılması ya da çok sık ve çok uzun süre yanlış kullanılması sorumlu tutulmuştur. Buna ek olarak, “anti mikrobiyel enfeksiyonların artışı, yeni antibiyotiklerin hali hazırdaki eksikliği ve sektörün araştırma geliştirme için ayıracak bütçesinin az olmasının” bir yenilenme ihtiyacına sebep verdiği yazılmaktadır. Dünya Sağlık Örgütü şimdi dünya genelindeki hükümetlere anti mikrobiyel dirençle ilgili araştırmaları desteklemeleri için başvuruda bulunuyor. http://www.medical-tribune.com.tr

http://www.biyologlar.com/dso-antibiyotik-direnci-modern-tibbin-sonunu-getiriyor

AMİNO ASİT TANIMA REAKSİYONLARI

Doğada 300’den fazla amino asit tanımlanmış olmasına rağmen memelilerde bunlardan yalnızca 20 tanesi proteinlerin yapısında yer almaktadır. Amino asitler prolin dışında aynı karbon üzerinde amino (-NH2) ve karboksil (-COOH) grubu bulundururlar. Prolin ise siklik bir yapıya sahiptir ve amino grubu yerine imino grubu taşır. Amino asitlerin genel gösterimleri R-CH-NH2-COOH şeklindedir. R grubu değişken gruptur. R grubunun değişmesiyle 20 çeşit primer veya standart amino asit meydana gelir. Bu 20 çeşit amino asitin değişik sayı ve sıra ile dizilimi çok sayıda proteinin ortaya çıkmasına yol açar. Glisin dışındaki tüm amino asitlerin en az bir tane asimetrik karbonu vardır ve optik olarak aktiftirler. Bunlar da D ve L olarak iki ayrı konfigürasyonda olabilirler. Ancak proteinlerin yapısında bulunan tüm amino asitler L konfigürasyonundadırlar. D amino asitler ise bazı antibiyotiklerde ve bakteriyel hücre duvarında bulunurlar.Amino asitler amfoterik moleküllerdir. Yani hem asidik hem de bazik gruplar içerirler. Monoaminomonokarboksilik asitler sulu çözeltilerde dipolar çözeltiler yani zwitterion şeklinde bulunurlar. a-karboksil grubu dissosiye ve negatif yüklüdür, a-amino grubu protonlanmış ve pozitif yüklüdür, yani molekül nötrdür. Asidik pH’da karboksil grubu bir proton alır ve molekülün net yükü pozitif olur. Bazik pH’da ise amino grubu proton kaybeder ve net yük negatif olur. Bir amino asidin net yükünün sıfır olduğu pH’a izoelektrik nokta denir. Amino asitler renksiz, suda tamamen, etil alkolde ise kısmen çözünmelerine karşılık, eterde hiç çözünme özellikleri olmayan organik bileşiklerdir. Amino asit çözeltilerinin görünür bölgede ışık absorblama özellikleri yoktur. Ancak UV bölgede (280 nm’de) tirozin, triptofan, fenilalanin ve histidin gibi halkalı yapıya sahip amino asitlerin ışık absorblama yetenekleri vardır. Bu özellik biyolojik sıvılardaki protein miktarının belirlenmesinde zaman zaman faydalanılabilen bir özelliktir.Amino amino asitler, bulundurduğu karboksil ve amino grupları, reaksiyon gücü oldukça yüksek fonksiyonel gruplar oldukları için bu grupların verdiği bütün reaksiyonları verirler. Amino asitlerin verdiği bu reaksiyonlar gerek biyolojik sıvılardaki serbest amino asitlerin cinsi ve miktarı, gerekse protein yapısına giren amino asitlerin miktarı, cinsi ve sırasını tespit etmede son derece önemlidir. I. Amino Asit Tayininin Klinik ÖnemiDolaşımdaki amino asitler böbrekte glomerüler membranlar tarafından filtre edilirler. Bu filtrattaki amino asit konsantrasyonu plazmadakine yakındır. Ancak filtrattaki amino asitlerin büyük bir kısmı tübüler sistemde özel transport sistemleri ile geri emilip dolaşıma verilirler. Çok az bir kısmı ise idrarla atılır. Normal yetişkin bir kişinin 24 saatlik idrar amino asit düzeyi 50-200 mg arasında değişir. Bu değişimde etkili faktör diyettin tabiatıdır. Kan amino asit seviyeleri yükseldiği zaman idrarla amino asit atılımında artış meydana gelir. Bu duruma aminoasidüri denir. İki tip aminoasidüriden bahsedilebilir. 1) Taşma tipi (overflow tipi) : Amino asit metabolizmasında rol oynayan enzimlerin eksik veya hatalı olması sonucu görülür. Böbrek eşik düzeylerinin aşılması sebebiyle böbrekler normal çalıştığı halde böbreğin reabsorbsiyon kapasitesi aşıldığından idrar amino asit düzeyi artar. Fenilketonüri, tirozinozis, alkaptonüri ve akçaağaç şurubu idrar hastalığı buna örnektir.2) Renal tip:Böbrek tubuluslarındaki bozukluk sonucu oluşan aminoasidüri türüdür. Bunu sebebi konjenital veya akkiz olabileceği gibi ağır metal zehirlenmeleri, fenol zehirlenmesi veya yanıklar da olabilir. Fankoni sendromu, sistinozis, Wilson hastalığı ve nefrotik sendrom gibi.II. Amino Asitlerin Kalitatif ve Kantitatif Tayininde Kullanılan MetotlarProteinlerin amino asit kompozisyonunu tespit belirlemek için kullanılan metotlar üç basamakta toplanır:1. Proteinlerin amino asitlerine hidrolizi (6N HCl, +110oC’de 24 saat ısıtma)2. Karışımdaki amino asitlerin ayırımı 3. Her bir amino asidin miktarının belirlenmesia) Ninhidrin Reaksiyonuα-amino grubunun en karakteristik reaksiyonu olan ninhidrin reaksiyonu amino asitlerin hem kalitatif hem de kantitatif tayininde sıklıkla kullanılan bir reaksiyondur. Bütün α-amino asitler ve peptidler bu renk reaksiyonunu verirler. Ancak bazı amino asitler mavi kompleks yerine değişik renklerle ortaya çıkarlar. Örneğin, prolin ve hidroksiprolin sarı, asparagin ise kahverengi renk oluşturur. Diğer amino asitler ise mavinin değişik tonları şeklinde kompleksler oluştururlar. b) Gazometrik ÖlçümAmino asitlerin α-amino grubu HNO2 (nitröz asit) ile reaksiyona girdiği zaman karboksilli asitlerin hidroksi türevlerini meydana getirir. Bu reaksiyon sırasında açığa çıkan N2 gazometrik olarak ölçülür. c) Kromatografik YöntemlerAmino asitleri ve peptidleri ayırmada kullanılan değişik kromatografik yöntemler vardır. Bunlar arasında kağıt kromatografisi, ince tabaka kromatografisi, iyon değiştirme kromatografisi, gaz kromatografisi ve yüksek basınçlı sıvı kromatografisi (HPLC) en sık kullanılanlardır. d) Elektroforetik YöntemlerYüksek elektrikli bir ortamda amino asitlerin yük ve büyüklük farklılıklarından faydalanılarak ayrılması tekniğidir. e) Amino Asit Sırası Tayinine Yönelik YöntemlerPeptid ve proteinlerin sırasının belirlenmesi birçok genetik kusurun ortaya çıkarılmasında faydalı olacaktır. Bir proteindeki amino asit sırasını belirlemek için N-terminal ya da C-terminal amino asit rezidülerine spesifik reaksiyonlar kullanılır. N-terminal amino asitlerin belirlenmesinde kullanılan yöntemler.Sanger YöntemiAlkali ortamda bir polipeptidin N-terminal amino asidinin amino grubu ile 2,4 dinitrofluorobenzen (DNF) reaksiyona girerek sarı renkli 2,4-dinitrofenol türevlerini meydana getirirler. Bu türevler elde mevcut olan amino asitlerin aynı reaktifle reaksiyona sokulmasıyla hazırlanmış olan standartları ile kağıt kromatografisi işlemine tabi tutulur. Kromatografi kağıdında elde edilen lekeler değerlendirilerek amino asidin cinsi tespit edilir. Dansil Klorür YöntemiBir polipeptidin N-terminal aminosidinin amino grubu ile floresans bir madde olan dansil klorür yüksek pH’da reaksiyona girer. Böylece dansil klorür ile işaretlenen amino asit florometrik olarak ölçülür. Bu metodla amino asit türevlerinin düşük miktarları (1 nM) bile belirlenir.Edman YöntemiEn önemli ve en çok kullanılan metoddur. Edman reaksiyonuyla sadece N-terminal ucu tanınmaz aynı zamanda bu reaksiyonun tekrarlanması ile uzun polipeptidlerin amino asit sırası tam olarak tespit edilir. Fenilizotiyosiyanat alkali ortamda peptidin N-terminal amino grubu ile reaksiyona girerek N-terminal amino asidin fenilizotiyosiyanat türevi oluşur. Sanger ve dansil klorür yöntemlerinden farklı olarak polipeptid parçalanmaz, sadece bir amino asit eksik polipeptid kalır. Daha sonra oluşan bu türev gaz kromotografisi ile tespit edilir.C-terminal amino asitlerinin belirlenmesinde kullanılan metodlarPolipeptidin C-terminal kalıntılarını tespit etmek için kullanılan metodlar N-terminali tespit etmek için kullanılanlar kadar kesin sonuç vermezler. Ancak bu amaç için kullanılan iki metod vardır.Hidrazinle parçalanma (Hidrazinoliz)Bu reaksiyon sırasında hidrazin ile C terminalindeki aminoasitler ayrılır. Karboksi peptidazla parçalanma Protein parçalayıcı bir enzim olan karboksipeptidaz bir proteindeki en son peptid bağına (C-terminal) etki ederek C-terminal amino asidinin koparılmasını sağlar. Elde edilen serbest amino asit, amino asitlere spesifik reaksiyonlarla tespit edilir. Bu işleme devam edilerek her defasında yeni bir C-terminal amino asit belirlenebilir. III. Kalitatif Amino Asit Tayin YöntemleriKalitatif amino asit tayini kan ve idrar örneklerinde yapılabilir. İdrar örnekleri günün herhangi bir saatinde alınan (rastgele) idrar örneği olabileceği gibi 24 saatlik idrar da olabilir. Hücre içi amino asit seviyesi kan dolaşımından (plazma) 10 kat daha yüksektir. Kan örneği alınırken bu özellik dikkate alınmalıdır. Amino asit seviyesine plazmada bakılır. Kan heparinize enjektörle alınmalıdır. Hemolizden sakınılmalıdır. Yapılacak DeneylerFenil Pirüvik Asit Deneyi4 ml idrar üzerine 1 ml magnezyum ayıracı (11 gr MgCl2, 14 gr NH4Cl ve 20 ml der-NH4OH/litre) konarak 5 dakika bekletilir, süzülür. Süzüntü 2 damla % 10’luk HCl ile asidik hale getirilir. 2 damla % 10’luk FeCl3 ilave edilir. Mavi-yeşil renk oluşursa deney pozitifdir. Fenilketonüride sıklıkla kullanılmaktadır. Triptofan Deneyi2 ml örnek üzerine 2 ml derişik CH3COOH ilave edilir. Bu karışımın üzerine damla damla tabaka oluşturacak şekilde tüp cidarından derişik H2SO4 sızdırılır. İki sıvının birleşme yerinde mor halkanın oluşumu örnekte triptofan bulunduğunu (pozitif reaksiyon) gösterir. (örnek: Hartnup hastalığı)Ninhidrin Deneyia) Deneyin PrensibiBu deneyde normalde sarı olan ninhidrin, amino asitlerle reaksiyona girerek mavi-menekşe rengine dönüşür ve bu metot bu renk oluşumunun tespitine dayanır.Bu reaksiyon sırasında 1. basamakta ninhidrin ile amino asit reaksiyona girerek amino asitten bir karbon eksik bir aldehit, redükte ninhidrin, NH3 ve CO2 meydana gelir. İkinci aşamada açığa çıkan NH3, bir mol okside ninhidrinle bir mol redükte ninhidrin arasında köprü kurarak mavi-mor renkli kompleks oluşturur.Ninhidrin NH2-C-COOH’daki serbest a-amino grubu ile reaksiyona girer. Bu grup tüm amino asitlerde, polipeptidlerde ya da proteinlerde bulunmaktadır. Dekarboksilasyon reaksiyonu serbest amino asitlerde meydana gelmekte iken, peptidlerde ve proteinlerde meydana gelmemektedir. Böylelikle teorik olarak yalnızca amino asitler renk değişimine neden olurlar. Ancak peptidler ya da proteinler her zaman için interferansa yol açabilirler.b) Reaktifler ve Malzemeler A. Malzemeler B. Reaktifler® Test tüpleri ® Ninhidrin Solüsyonu® Pipetler ° Ninhidrin: 0.35 g® Ocak ° 100 ml etanol® Spektrofotometre c) Deneyin Yapılışı1 ml ninhidrin solüsyonu (0.35 g ninhidrinin 100 ml etanole tamamlanması ile hazırlanır.) 5 ml numuneye (plazma) eklenir. Test tüpünün ağzı parafilm ile kapatılır. ( buharlaşmadan dolayı meydana gelebilecek kayıpları önlemek için) 2. Hafifçe karıştırılarak 4-7 dakika süreyle kaynatma işlemine tabi tutulur.3. Daha sonra soğuk su altında tutularak oda ısısına kadar soğutulur. Not: Isopropanol ya da 1/1 aseton/butanol karışımı ninhidrin solüsyonunun hazırlanmasında etanol yerine kullanılabilir.

http://www.biyologlar.com/amino-asit-tanima-reaksiyonlari-2

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

PH-Tuzluluk- Kireç ve Bitkiler için Önemi

Toprak Reaksiyonu (pH) Nedir? Toprak pH'sı, bir toprak çözeltisindeki asitliği veya alkaliliği tanımlayan bir ölçüdür. Asitliğin miktarı öncelikle H+ ve OH ֿ iyonlarının konsantrasyonlarına bağlıdır. Toprak daha fazla asidik olurken H+ iyonları konsantrasyonu artar, bunun sonucunda pH azalır. pH=7'de H+ ve OH ֿ iyonlarının konsantrasyonları birbirine eşittir. Toprak pH'sı doğrudan ve/veya dolaylı olarak toprak içerisinde meydana gelen birçok fiziksel, kimyasal ve biyolojik olayı etkiler. Toprak reaksiyonu ile toprak canlıları arasında sıkı bir ilişki mevcuttur; örneğin mantarlar 4-5, bakteriler ise 6-8 pH derecelerinde daha etkindir. Ayrıca pH derecesi, toprakta mevcut bitki besin maddelerinin bitki için yarayışlılığında önemli rol oynamaktadır. Örneğin; azot, fosfor ve potasyumun bitkiler tarafından alımı açısından en uygun değerler 6,5-7,5 arasıdır. Fosfor, 6.0'dan düşük pH değerlerinde Al ve Fe ile, 7,5'den büyük değerlerde ise Ca ile bağlanır. Bu nedenle bitkiler tarafından alınması zorlaşmaktadır. 5,0'dan küçük değerlerde, Al ve Mn bitkiler için toksik etki yapmaktadır. 7,5 den büyük değerlerde ise; Fe, Cu, Zn, Mn gibi mikro elementler çözünemez forma geçtiğinden, bitkiler için yarayışlılığı yüksek oranda azalmaktadır. Kısacası toprak tepkimesi; pedogenetik bakımdan, toprak oluşumu ve gelişimi; ekolojik açıdan da besin maddeleri ekonomisi üzerinde önemli rollere sahiptir Yukarıda aktarılmaya çalışılan nedenlerden dolayı toprak pH'sının bilinmesi ve düzenlenmesi, bitki beslenmesi açısından büyük önem taşımaktadır. Genellikle alkali karakterli topraklarda; ortamdaki H+ iyonları konsantrasyonunu arttırmak ve/veya mevcut H+ iyonlarını aktif hale geçirmek için, toprağa toz kükürt ve organik madde ya da jips uygulaması yapılır. Toprak tepkimesinin düşük olduğu durumlarda ise, kireçleme yapmakta yarar vardır (Bkz. Kireç) Tuzluluk Toprak tuzluluğu kavramı, birim hacımdaki toprakta bulunan çözünebilir tuzların miktarını belirtir. Genellikle Cl ֿ ve SO4 ֿֿ anyonlarının iki değerlikli katyonlarla, özellikle Ca++, Toprağın tuz içeriği laboratuvar koşullarında, elektriki geçirgenlik ölçüm cihazıyla belirlenir ve elde edilen verilerin değerlendirmesi aşağıdaki sınıflandırmaya göre yapılır. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. KİREÇ Topraktaki kireç miktarı bitkiler için önemlidir. Temel kireç bileşikleri; kalsiyum ile magnezyum karbonatlar ve dolomittir. Laboratuvar koşullarında, karbonat miktarı nicel olarak belirlenerek % toplam CaCO3 miktarı cinsinden ifade edilir. Toprak kireç içeriği sınıflaması genel olarak aşağıdaki gibi yapılmaktadır Kireç miktarının artmasıyla birlikte toprak pH'sı da yükselir. Kireç oranı yüksek olan topraklarda, pH 8,5'e kadar Ca++ katyonu başat durumdadır. Toprakta Ca++ katyonu konsantrasyonu yükseldikçe ortamdaki alınabilir fosfor ve demir iyonları kalsiyum ile çözünemez formda bileşikler oluşturur. Yüksek kireç içeriğine sahip topraklarda, bitkilerde kireç klorozu olarak adlandırılan ve demir noksanlığından kaynaklanan sararmalar meydana gelir Kireç miktarının yüksek olması kadar, çok düşük olması da bitki beslenmesi açısından sakıncalıdır. Çünkü kalsiyum bitki hücre duvarlarının yapısında yer almaktadır. Ayrıca topraktaki kalsiyum karbonat; toprak kırıntılılığını, biyolojik aktiviteyi arttır ve toprak profilinin yıkanmasını güçleştirir. Bu nedenlerden dolayı kireç miktarı çok düşük olan topraklarda kireçleme yapılması gerekir. Kireçleme materyali olarak CaO, CaOH2, CaCO3 ve dolomit kullanılmaktadır BU ÖLÇÜTLERİN ARAZİDEKİ UYGULAMALARI pH ve Tuzluluk Ölçümü Ön etüd çalışmalarında, pH ve tuzluluk ölçümü için arazi kitleri yaygın olarak kullanılmaktadır. Ancak, bu kitlerle yapılan ölçümler yaklaşık olarak sonuç vermektedir. İdeal sonuçların elde edilebilmesi ise laboratuvar analizleriyle mümkündür .Cep ph-metre ve kondüktometreleriyle 1:1 vb. oranlarda toprak-saf su karışımların pH ve elektriki geçirgenliği ölçülebilir. Ayrıca özel olarak hazırlanmış "indikatör çözeltileri veya kağıtları"ndan da yararlanılabilir. Kitlerin üzerinde ya da kullanma kılavuzunda verilen sınıflandırma bilgileri veyahut renk skalaları ile değerlendirm yapılır. Kireç Ölçümü Arazide topraktaki kireç miktarının belirlenmesi için genellikle 1/10 seyreltik HCl kullanılır. Bir saat camı üzerine alınan ince toprak örneği üzerine 5-6 damla asit damlatılır. Meydana gelen kabarmanın şiddetine ve süresine göre toprağın kireç içeriği kabaca aşağıdaki tablodan belirlenir. TOPRAĞIN pH, TUZ, KİREÇ DURUMU ve TÜR SEÇİMİ Tür seçimi konusunda; toprağın pH'sı, tuzluluğu ve kireç miktarı mutlaka göz önünde bulundurulması gereken önemli ölçütlerdir. Ancak Bitkilerin yaşamında tüm ekolojik faktörler birbirleriyle sıkı bir ilişki içerisinde bulunmakta ve her biri önem taşımaktadır. Bu nedenle bir toprağın pH, tuzluluk ve kireç miktarı değerleri irdelenirken değerlendirme, mutlak surette diğer ekolojik faktörler ve toprak özellikleri de göz önünde bulundurularak yapılmalıdır Toprak pH'sı, tuzluluğu ve kireç miktarı bakımından türlerin isteklerinin belirlenmesi amacıyla pek çok bilimsel çalışma gerçekleştirilmiştir. Ancak elde edilen araştırma sonuçları, çalışmanın yapıldığı yörenin içinde bulunduğu ekolojik koşullar için geçerlidir. Bu nedenle literatür incelemelerinden elde edilen bilgilerin, söz konusu ekolojik şartlarda ya da benzeri koşullar altında geçerli olabileceğini kesinlikle unutmamak ve buna göre değerlendirme yapmak gerekir. Ayrıca ön etüd çalışmalarında, incelemesi yapılan sahadaki birtakım özelliklere dikkat etmek suretiyle toprağın pH, tuzluluk ve kireç miktarı ile ilgili bazı fikirler edinmek mümkündür. Örneğin orman altındaki diri örtü pH'ye daha duyarlı olduğundan, bitki örtüsüne bakılarak da pH konusunda bir yargıya varılabilir. Örneğin, karaçam sahalarında bu türe eşlik eden defne yapraklı laden (Cistus laurufolius) ile kızılçam sahalarında bulunan diğer laden türü (Cistus creticus), birer müşir (indikatör) bitki niteliğindedir. Tuzlu toprakların olduğu sahalarda, ılgın (tamariks) gibi halofit yani tuzcul Bitkilerin dışında başka türlere rastlamak mümkün değildir. Ancak Halepçamı, okaliptus, iğde, palmiye ve hurma gibi bazı türlerin tuza dayanıklılığının diğer türlere göre daha fazla olduğu bilinmektedir. Nusret DİRENÇ( Ziraat Mühendisi ) Dr. Rabia ŞİŞANECİ ( Ziraat Mühendisi )

http://www.biyologlar.com/ph-tuzluluk-kirec-ve-bitkiler-icin-onemi

KITALARIN VE KARA PARÇALARININ KONUMLANMASI İLE İLGİLİ GÖRÜŞ VE KURAMLAR

Mevcut hayvan yayılışının açıklanmasında Kararlılık, Köprüler ve Kıtaların kayma kuramı olmak üzere üç temel kuramdan yararlanılmıştır. Bunlar: 1. Kararlılık (Permanenz) Kuramı Dünyadaki kıtaların ve bununla ilgili olarak ana karaların ve deniz tabanlarının oluşumundan beri ufak abzı değişiklilikerin dışında durumunu ve konumunu koruduğu ve değişmediğini varsayılmıştır. Bu kuramın en önemli savunucularından olan Wallace (1876) zoocoğrafik yayılışın, göçler ve bugünkü kara ve su bağlantıları ile açıklamaya çalışır. Bu kurama destek veren Darlington (1957) geç ortaya çıkmış olan memeli hayvanların günümüzde bu yoları etkin biçimde kullandıklarını öne sürmüştür. 2. Kara Köprüleri Kuramı Bir çok canlı grubunun yayılışını bugünkü kıta konumlanması ile açıklamak oldukça zordur. Bu nedenle 1800 yılların başından itibaren kara köprülerinin kabul edilmesi eğilimi ortaya çıktı. Bu kurama göre; Dünyadaki büyük kıta ve kara parçaları arasındaki hayvan geçişinin dar bağlantılar, suların buz ve kar halinde yüksek dağ başlarına veya kutuplarda tutulması sonucunda deniz seviyesinin düşmesiyle oluşan kara köprüleri aracılığı ile gerçekleşmiş olduğunu ileri sürmektedir. Wallace bu kurama da destek vermiştir. Farbes (1846) İngiltere’nin ana kıta ile olan bir karasal bağlantı yoluyla faunalarının bezerliğini açıklamıştır. Hooker (1847) Avustralya ve Güney Amerika kıtaları arasındaki bağlantıyı, bir zamanlar var olduğu öne sürdüğü “ Transokyanusya” kara parçasına bağlamaktadır. Bununla ilgili çok sayıda kara köprüleri ile ilgili kuramlar ortaya konulmuştur. Çoğu bilim adamının vardığı önemli kurama göre, büyük kıtalar arasındaki geçiş, ya dar bağlantılarla ya da suların buz ve kar halinde yüksek dağların başına ve kutuplara yığılması sonucunda denizlerdeki su seviyesinin düşmesi ile oluşan kara köprüleri aracılığı ile sağlanmıştır. ( örneğin Bering boğazının Asya ile Kuzey Amerika arasındaki geçişi sağlaması gibi). Kara köprüleri ile İngiltere ile Avrupa, Asya ile Japonya arasındaki geçişler açıklanmıştır. Afrika ile Güney Amerika arasındaki köprü (Atlantis) bir varsayımdan öte geçmemiştir. Ana kıtalara yakın ve sığ sularda bulunan adalara geçişler, bu yaklaşımlarla kolay açıklanabilmektedir. Uçamayan kuşların kıtalardaki dağılımı kara köprüleri kuramlarına göre de tam açıklanamıyordu. Günümüzde yaşayan deve kuşlarının yapısal özellikleri, hepsinin ortak bir atadan türediğini göstermektedir. Bu kanatsız kuşların okyanuslardaki büyük mesafeleri aşması olanaksız görülmektedir. Kıtaların kayma kuramı bu soruna açıklık getirmiştir. Kara köprüleri kuramı bir açıdan da geçerli bir kuramdır. 2.1. Buzullaşmalar ve Kara Köprülerinin Oluşumu Buzul dönemlerinde, bugünkü buz birikiminin yaklaşık 3 katı daha fazla buz birikimi olmuştur. Buzla kaplı alanların miktarı, Antartika hariç, bugünkünün 13 katı daha fazlaydı. Buzulların ortalama kalınlığı yaklaşık 2 km civarındaydı. Kuzey yarımküre’deki buz miktarı , Güney Yarımküre’den kabaca iki kat fazlaydı Güneyde, buzullar Antartika kıtasının dışına taşmamıştı. Buna karşın Kuzey Amerika ve Avrasya’da, buzlar karalara büyük ölçüde yayılmıştı. İskandinavya’daki buzullar 48o enleme kadar inmişti. Kuzey Amerika’daki nemli iklim ve büyük miktardaki kar yağışı ise 37 o enleme kadar inmişti. Son buzul dönemindeki, buzulların yayılışı, hareketi ve konumlanması ayrıntılı olarak haritalanmıştır. Avrasyadaki buzlar bir çok yeri tamamen örtmüştü (İngiltere, Benelüks ve İskandinavya ülkeleri Almanya’nın önemli bir bölümü ve Sibirya gibi yerler buzlar altında kalmıştı). Buzulların yığılmasıyla birlikte, altlarında bulunan taşküre, dengeyi sağlayabilmek için, magmaya gömülmeye başlar ve buzul arası dönemlerde de tersi ortaya çıkar. Böylece kara parçaları bir duba gibi yükselir ve alçalır. Buzulların erimesiyle karaların yükselmesi yaklaşık 15 000 yıldan beri sürmektedir. Suların buz halinde kıtalara yığılması deniz seviyesinin düşmesine, erimesi ise yükselmesine neden olmuştur. Denizlerde yaşayan kabuklu hayvanların fosillerini kıyılardaki katmanlarda saptamak ve izlemek yoluyla su seviyesindeki değişmeler gözlemlenebilir. Genel bir kabul, buzul devirlerde, deniz düzeyinin bugünkünden 100-150 m’den daha fazla düştüğü yönündedir. Buzullar arası dönemlerde ise deniz düzeyi bugünkünden yaklaşık 20 m. daha fazla yükseldiği kabul edilmektedir. Böylece kara ve su köprülerinin oluşmasının yanı sıra, keza bitki ve hayvanlar için yaşam alanlarının genişlemesi veya kısıtlaması durumu ortaya çıkmıştır. Hem buzul arası dönemin sürmesi, hem de CO2 birikimi ile dünya atmosferinin normal seyrinden daha fazla ısınması, dünyadaki buzların erime sürecini hızlandırmıştır. Antartika ve Grönland’daki buzların erimesi, dünya denizlerinin 6 m. yükselmesine, bu da bir çok kıyı şeridi ile birlikte bugünkü liman şehirlerinin bir çoğunun su altında kalmasına neden olacaktır. Buzullaşma dönemine girseydik, deniz düzeyi en an 100 m düşeceği için, kıyılarda bir çok yeni toprak elde edilecekti. Buzul dönemlerinde bölgeler arasındaki sıcaklık farkları çok daha fazla olduğundan, meydana gelen rüzgarların miktarı, şiddeti ve yönleri bugünkülerden farklıydı. Pleistosen’de (kuaterner’in ilk dönemi, 1 milyon 800 bin yıl önce başlamış, 10 bin yıl öncesine kadar devam etmiş olan jeolojik bölüm) ortaya çıkan buzullaşmalar zoocoğrafya açısından oldukça önemlidir. Pleistosen’de belirgin olarak 4 buzul dönemi saptanmıştır. Her buzul döneminin arasında, sıcaklığın bugünkü gibi yüksek olduğu bir dönem vardır. Tropiklerde ve subtropiklerde kurak (arid) ve yağışlı (pluvial) iklimler birbirini izlemiştir. Zamanımız buzularası (interglasiyal) evredir. Pleistsende meydana gelen buzul dönemleri, dünyanın tümünü etkilemiştir. Tundra yapısında olan Holarktik bir çok canlı için yaşanamaz duruma gelmiştir. Tersiyer türlerinin bir kısmı tamamen ortadan kalkmış, bir kısmı güneye sığınmıştır. Doğu-Batı yönünde uzanan sıradağlar (Alpler, Toroslar, v.s), güneye olan göçü büyük ölçüde önlemiştir. Sonuç olarak Tersiyer’in tür zenginliği ortadan kalkmıştır. Bir çok tür refigiyum (=sığınak) denen uygun ortamlara sığınarak, tür ve alttür oluşumuna zemin hazırlamış ve buzularası dönemde bu refigiyumlar yeniden bir yayılma ya da gen merkezi olarak görev yapmıştır. Anadolu önemli bir refigiyum olarak buzul dönemleri sırasında hizmet vermiştir. Bu dönemde Avrupa’da Alp dağları ve diğer dağlar arasına sığınmış türlere arktik-alpin türler denir. Deniz canlıları da buzullardan etkilenmiştir (suların soğumasından dolayı). Akdeniz, bu dönemde sıcak seven türlerinin hemen hepsini yitirmiştir. Suların buz halinde karalara yığılası ile birbirine 100-150 m sığlıktaki denizlerle bağlanmış kara parçaları arasında kara köprüleri kurulmuş; kara canlıları için yeni yayılma yolları açılmış; fakat daha önce yalıtılmış olan bazı adalarda oluşmuş birçok tür de, ana kıtadan gelen yeni türlerle ortadan kaldırılmıştır. İç sular arasında da buzulların etkisiyle su köprüleri kurulmuştur. Buzul dönemlerinde güneye göç edenlerin bir kısmı, buzul arası dönemlerde tekrar kuzeye gelirken , bir kısmı da yüksek dağların başına çekilerek soğuk yerler aramıştır. Böylece yüksek dağların belirli yüksekliklerinde Arktik Relikt adı verilen bir çok canlı yerleşmiştir. Darwin bu konuda da araştırma yapmıştır. 2.2. Kara Köprüleri Canlıların yayılmasında önemli rol oynayan kara köprüleri iki şekilde oluşmuştur. Birincisi tektonik nedenlerle, yani kara parçalarının yükselmesi ile "Isostatic"; diğeri ise buzul devirlerde deniz düzeyinin düşmesi ile (bu sonuncular "Eustatic" diye adlandırılır) ortaya çıkar. BERİNG KANALI VE KÖPRÜSÜ Senozoyik'in sonlarına doğru Kuzey Amerika ile Avrasya arasında oluşmuş geniş bir kara köprüsüydü. Deniz seviyesinin 100 m. düşmesiyle yaklaşık Alaska'nın genişliğinde bir köprü oluşmuştur (HOPKİNS, 1967). İlave olarak iki kıta arasında Senozoyik boyunca, Miyosen'den sonra, kısa aralıklarla da olsa zaman zaman açılıp kapanan kıstaklar "İsthmus" oluşmuştu. Bu kıstaklar. Kuzey Yarımküre'de, geniş ölçüde buz kütlesi oluşmadan önce, büyük bir olasılıkla, yer hareketiyle oluşmuştu. Fakat esas fauna ve flora alışverişinin olduğu dönem, deniz düzeyinin, östatik (= eustatic= buzullaşma) nedenlerle düşmesi sonucu gerçekleşmiştir. Bu kara köprüsü yaklaşık 12.000 yıl açık kalmıştır. Bering Köprüsü, en azından Geç Pleistosen'de, boreal ormanlardan arınmış, yağış miktarı oransal olarak az olan, tundra ve çayırlık özelliğinde bir köprüydü. Böyle bir bitki örtüsü, ancak, steplerde ve tundralarda yaşamaya uyum yapmış memelilerin göçlerine olanak sağlamıştı. Bununla birlikte, birçok dönemde, iklim, büyük bir olasılıkla, bugünkü boreal iklimden fazla farklı değildi; çünkü Kuzey Pasifik akıntısı kısmen buraları ısıtıyordu. Buradaki iklim ve bitki örtüsü, her defasında, bir süzgeç gibi görev yaparak, ancak, bazı farklı hayvan türlerinin geçmesine izin vermiştir. Bu da Amerika ya da Asya kıtasında bulunan her hayvanın neden diğer kıtaya göç edemediğinin açık kanıtıdır. Bu geçişten en çok yararlananlar, boreal sıcaklıkta, birincil olarak otlayan (çayır, mera ve otlağa bağlı) hayvanlardır. İNGİLİZ KANALI Avrupa Kıtası'nı, Britanya Adaları'na bağlamıştır. Tabanı, Kuzey Denizi ile bağlantılıdır. Buzullaşma olduğu; fakat bizzat bu bölgeler buzullarla örtülmediği zaman, su düzeyinin düşmesiyle kara köprüsü oluşmuştur. İngiliz Kanalı, en azından onun dar bir kısmı. Pleistosen boyunca ya da büyük bir kısmında, hatta deniz düzeyinin yükseldiği buzularası dönemin bir kısmında, kıstak (köprü) özelliğini korumuştur. Bu değişim sırasında, birçok türün yanısıra, fil, gergedan, geyik ve su aygırınm geçtiğini kanıtlayan fosiller bulunmuştur. Bu kıstağın tamamen kapanması, M.Ö. 8000 yıllarında gerçekleşmiştir. İRLANDA KANALI Buzul dönemleri sırasında Weichsel Buzullaşması'na kadar, köprü özelliğini korumuştur. Memelilere dayalı kanıtlar bunu göstermektedir. Örneğin Weichsel Buzullaşması'yla ilişkili (ve daha sonraki dönemler için) hiçbir karasal memeli fosili İrlanda'da henüz bulunmamıştır. İngiltere ve İrlanda arasındaki dar köprü, M.Ö. 8000 yıllarında deniz düzeyinin yükselmesi ile (Flandrian Yükselmesi) kesilmiştir.

http://www.biyologlar.com/kitalarin-ve-kara-parcalarinin-konumlanmasi-ile-ilgili-gorus-ve-kuramlar

OLİMPOS - BEYDAĞLARI SAHİL MİLLİ PARKI

OLİMPOS - BEYDAĞLARI SAHİL MİLLİ PARKI

İli : ANTALYA Adı : OLİMPOS - BEYDAĞLARI SAHİL MİLLİ PARKI Kuruluşu : 1972 Alanı : 34.425 ha. Konumu : Akdeniz Bölgesi’nde, Antalya ili sınırları içerisinde yer almaktadır. Ulaşım : Antalya-Kemer-Kumluca devlet karayolu ile ulaşılır. Kaynak Değerleri :           Batı Toroslar’ın genç dağlar kuşağını içine alan yörenin jeolojik yapısı, genellikle kalker ve serpantin kayaçlarından meydana gelir. Akdeniz Bölgesi’nin bütün ekolojik şartlarına sahip sahada, bitki örtüsü deniz kıyısında fıstık çamları ile başlar. Yükseldikçe kızılçam, karaçam ve 1000 m’nin üstünde sedir ağaçları görülür. Park sınırları içinde bine yakın bitki türü ve bunların içinde de 21 endemik türün bulunuşu, milli parkın tür yönünden çeşitliliğini göstermektedir. Alanda ayı, dağkeçisi, yaban domuzu, tilki, çakal, kurt, sansar ile çeşitli kuş ve balık türleri yaban hayatının bireyleridir.           Antik çağlarda Likya olarak bilinen bölgenin doğusunda yer alan milli park, tarih öncesi dönemlerden itibaren iskan bölgesi olmuştur. Sahilin kuzeyindeki Beldibi Mağarası’ndaki buluntular bunu ispatlamaktadır. Milli parkın en önemli yerleşim yerleri; M.Ö. VII. yüzyılda Rodos Kolonisi olarak kurulan Phaselis (Tekirova) ve Olympos şehirleridir. Ayrıca Kemer yakınlarında Idyros, Adrasan Limanı ve Gagai diğer tarihi yerleşimlerdir.           Olympos’un birkaç kilometre batısındaki dağlık arazide kalker ve serpantin formasyonları kontağındaki çatlaklardan çıkan ve “Likya’ nın sönmeyen ateşi” diye adlandırılan doğalgaz, yüzyıllardır yanmakta ve Bellerophentes mitosuna Chimaira (Yanar Taş) adıyla geçerek yöreye mitolojik değer kazandırmaktadır.           Akdeniz Bölgesi iklim şartlarına sahip alanda yılın 7-8 ayında her türlü deniz sporları, piknik, kamp, yürüyüş yapılabilir ve arkeolojik alanlar gezilebilir. Mevcut Hizmetler : Milli parktan; her türlü deniz sporları, piknik, çadırlı kamp, yürüyüş, arkeolojik alanlar gezilerek yararlanılabilir. Kındılçeşme günübirlik kamp alanı ile Büyükçaltıcak , Küçükçaltıcak, Topçam günübirlik alanlarından faydalanılabilir. Konaklama : Milli park içinde otel, motel ve kamp alanları vardır. Milli parkta, yaban keçisi(capra aegagrus), şah kartal (aquila heliaca), vaşak (felis lynx),kurt gibi sayıları her geçen gün azalan önemli türler barınmakta ve üremektedirler. Türkiye’de bulunan 456 kuş türünün 72 adedi milli parkta görülmektedir. 0-2365 m yükselti farklılığı ve değişik bakı özelliği ile zengin biyolojik çeşitliliğe sahip milli parkta, akdeniz iklim tipinin bitki topluluklarını sergileyen orman ve maki örtüsü içerisinde sakız ağacı(pistasia terebinthus), yabani zeytin(olea oleaster), sandal(arbutus andrache), keçiboynuzu(ceretonia ciliqua), defne(laurus nobilis), tespih(styrax officinalis) vb 865 bitki türü tespit edilmiş olup , 25 adedi bölge endemiği olup sadece bu bölgede yetişmektedir. bunların toplam tür sayısına oranı (%3’tür). 154 (%18) adedi türkiye endemiği olarak tanımlanmıştır. Parkın denize bakan kısımlarında kızılçam ve maki formasyonundan oluşan bir kombinasyon aniden yükselen dağlarla birlikte vahşi bir görüntü sağlamaktadır.  http://www.milliparklar.gov.tr VİDEO GALERİ   http://www.milliparklar.gov.tr FOTO GALERİ

http://www.biyologlar.com/olimpos-beydaglari-sahil-milli-parki

Hematokrit Testi

Hematokrit testi tahlil sonuçlarında, kısaltılmış şekli olan hct olarak gözükür.Hematokrit,kandaki alyuvarların (eritrositler)(Rbc) işgal ettiği hacmin total hacime oranı olarak bilinir.Bu nedenle oransal bir değer olduğu için % (yüzde) olarak belirtilir.Normal hematokrit değeri kadında ve erkekte cinsiyete göre farklılık göstermektedir.Örnek vermek gerekirse erkeklerde normal hematokrit değeri yetişkinler için % 41-53 dür.Bunun anlamı ise yetişkin erkeklerde 100ml kanda 41-53 ml eritrosit (kırmızı küre) bulunması demektir.Hematokrit değeri ,en sık olarak anemi(kansızlık) şüphesinde tanı koymak amaçlı değerlendirilen bir testdir.Hematokrit testinin erkek ve kadınlarda,yaş gruplarına göre olması gereken normal değerleri ve hangi durumlarda düşüp yükseldiği aşağıda belirtilmiştir.Erkek Kadın13-15 yaş %37-49 %36-4616-50 yaş %40-53 %36-46>50 yaş %41-53 %36-46Hematokrit testi klinikte sıklıkla anemi, kan kaybı, polistemi gibi durumların değerlendirilmesinde kullanılır.Hematokrit Testinin Yüksek Çıktığı Durumlar:Polistemi(kan hücrelerinin fazlalığı), egzersiz, hemokonsantrasyon (dehidratasyon, yanık, aşırı kusma, intestinal obstrüksiyon ) ve yüksek rakımda yaşayan kişilerdeHematokrit Testinin Düşük Çıktığı Durumlar:Anemi ve yatar pozisyonda Hct değeri düşer. Ayrıca saat 17.00-07.00 arasında ve yemeklerden sonra da Hct düzeyinde %10’luk bir düşme olabilir. http://tahlil.com

http://www.biyologlar.com/hematokrit-testi

Bilirubin tayini ( testi)

Bilirubin eritrositlerin yıkım ürünlerinden biridir.Bu yüzden normalde kanda belirli bir düzeyde (yaklaşık 1mg/dl) bulunur ve karaciğer tarafından dolaşımdan alınarak safra yollarına dökülür.Bu düzeyin üstüne çıkmasına hiperbilirubinemi denir.Normalde idrarda bilirubin bulunmaz. Bilirubin karaciğere gelmeden önce serumda albumine bağlı olarak bulunur. Bu glukronatlaşmamış bilirubin (albümine bağlı bilirubin –indirekt bilirubin) böbreklerden atılmadığı gibi serum, alkol ve amonyum sülfatla işlem görmeden Van den Berg reaksiyonu vermez. Halbuki konjuge bilirubin (glukronik asite bağlı) yükseldiği zaman idrara geçer ve yukarıdaki işleme gerek kalmadan doğrudan Van den Berg reaksiyonu verir.(Direkt bilirubin) Normal değerler: a) İndirekt (nonkonjuge) bilirubin. 02-08 mg/dlb) Direkt (konjuge) bilirubin 0.0-0.24 mg/dlc)Total bilirubin (direkt + indirekt bilirubin )Arttığı Durumlar:a) a) Hemoglobin yıkılımının artışı (hemolitik ikter): Direkt bilirubin normaldir, indirekt bilirubin ise hafif derecede artar.İdrarda bilirubin yoktur.Urobilin ve urobilinojen ise çok artmıştır. Karaciğer fonksiyonları normaldir.b) b) Karaciğer parankim hastalığı : Kanda direkt bilirubin fazlalaşır.Total bilirubinde buna paralel olarak çoğalır ve idrarda bilirubin pozitif olur.Özet olarak:- Enfeksiyoz,toksik ve neoplazik hepatik harabiyet-İntra ve ekstrahepatik safra yolları tıkanıklığı-Hemolitik hastalıklar-Hemokromatoz-Wilson hastalığı-Alkolik karaciğer hastalıklarında bilirubin artar.Diazo ( Van Den Berg) Testi:Diazo reaktifi sulfonilik asit ve sodyum nitrit karışımıdır.Prensip: Diazo reaktifi ile bilirubin azobilirubin adı verilen bir madde meydana getirirler ve bu rengin yoğunluğu bilirubin miktarı ile orantılı olduğundan spektrofotometrik olarak bilirubin miktarı belirlenir.Reaktifler: 1) 1) Diazo A solusyonu: 1 g sülfanilik asit 500 ml distile su ve 15 ml konsantre HCl ilave edilir ve karıştırılır.Distile su ile 1000 ml ye tamamlanır.2) 2) Diazo B solusyonu: % 0,5 lik sodyum nitrit solusyonudur.3) 3) Absolu metanol4) 4) Diazo kör: 15 ml HCl distile su ile litreye tamamlanır.Deneyin Yapılışı:1- 1- 0.5 ml serum üzerine 9.5 ml distile su ilave ederek 1: 20 dilüsyon hazırlanır.2- 2- Bu dilüsyondan Numune ve Kör tüpüne 5 er ml konur.3- 3- Köre 1 ml diazo kör konur.4- 4- Numuneye ise 1 ml taze diazo reaktifi konur.5- 5- İyice karıştırıp 2 dakika bekledikten sonra 540 nm ye ayarlanmış spektrofotometre kör ile sıfıra ayarlanır. Daha sonra testin optik dansitesi okunur ve bu değer kalibrasyon eğrisinden bulunur.Bu direkt bilirubin değeridir.6- 6- Her iki tüpe 6 ml metanol ilave edilip karıştırılır. 30 dakika bekletildikten sonra yine aynı şekilde köre karşı okunur. Burada okunan rakam total bilirubin miktarını verir. Direkt diazo reaksiyonu:Serum ile diazo reaktifi karıştırılır karıştırılmaz kırmızı renk görülür. Bu rengin 1 dakika içinde görülmesi plazmada konjuge (direkt ) bilirubin varlığını gösterir. Hepatik ve posthepatik sarılıklarda direkt diazo testi pozitiftir.İndirekt diazo reaksiyonu:Albumine bağlı (indirekt ) bilirubin doğrudan diazo reaktifi ile reaksiyona girmez. Serum ilk önce alkolle karıştırılır, proteinler çöker ve bilirubin serbest kalır.Daha sonra diazo reaktifi ilave edilirse kırmızı renk ortaya çıkar. Bu reaksiyonda hem direkt hem de indirekt bilirubin diazo reaktifi ile reaksiyona girer.Bilirubin miktarının hesaplanması: Diazo reaktifi ile meydana gelen rengin optik dansitesinin spektrofotometrede ölçülmesi ile bilirubin miktarı bulunur. Plazmadaki bilirubin miktarı total (direkt + indirekt ) olarak bulunabileceği gibi her ikisi ayrı ayrı da bulunabilir.İdrarda bilirubin aranması:Prensip: Bu gruptaki deneylerin prensibi, bilirubinin oksitlenerek, yeşil renkli biliverdin veya mavi renkli bilisiyanine çevrilip gözle daha iyi görülür hale getirilmesinden ibarettir.1-Rosin MetoduReaktifler:Rosin ayıracı (Alkol içinde iyot ve potasyum iyodur içeren bir çözeltidir.Daha basitçe tentürdiyod’un alkolle on kere sulandırılması ile hazırlanabilir.)Deneyin Yapılışı: Bir deney tüpüne 4-5 ml idrar konup üzerine 1 ml Rosin ayıracı, tüp kenarından yavaşça akıtılıp üstte tabakalandırılacak şekilde konur.İdrar ve ayıraç tabakalarının birleşme yerinde yeşil renkli bir halkanın görülmesi idrarda bilirubinin var olduğunu gösterir.2-Fouchet MetoduReaktifler:1-Baryum klorür çözeltisi 2-Fouchet ayıracı (demir II klorür ve triklorasetik asit içerir.)Deneyin Yapılışı:Bir deney tüpüne 10 ml idrar, 3-4 ml baryum klorürü çözeltisi konur iyice karıştırılır, süzgeç kağıdından süzülür.Süzgeç kağıdı üzerindeki çökeltiyle birlikte alınarak kuru bir süzgeç kağıdı üzerine konur.Çökelti üzerine bir damla Fouchet ayıracı damlatılır.Mavi yeşil bir renk görülmesi idrarda bilirubin olduğunu gösterir.NOT: Bu deney Rosin deneyinden daha hasastır.Klinik değerlendirme:İdrarda bilirubin varlığı ancak kanda glukronatlaşmış (direkt) bilirubinin artması halinde görülür.Çünkü direkt bilirubin suda eriyebilir ve böylece böbreklerden atılabilir.Kanda direkt bilirubin artışına neden olabilecek hastalıklar başlıca tıkanma sarılığı ve hepatobiliyer sarılıktır.Eğer aynı zamanda böbrek yetersizliği de varsa, atılan bilirubin miktarı azalır.Bu yüzden ilerlemiş böbrek yetersizliğinde kuvvetli bir sarılığa rağmen idrarda bilirubin bulunmayabilir.İdrarda ürobilinojen aranmasıBilirubin barsağa geldiğinde barsak bakterileri tarafından ürobilinojen haline çevrilir.Normal değeri 24 saatlik idrarda 0.5-4 mg kadardır. Günlük incelemelerde kalitatif (negatif,normal, +, ++ veya +++) olarak değerlendirilir.İdrarda ürobilinojenin arttığı durumlar şunlardır1-Kabızlık2-Aşırı hemoliz3-Karaciğerin fonksiyonel yetersizliği-Hepatosellüler sarılık-Portal siroz4-Bazı infeksiyonlar(tifo,dizanteri,sıtma)5-İdrarın çok konsantre olmasıPrensip:Şiddetli asit ortamda ürobilinojenin Ehrlich ayıracıyla kırmızı bir renk reaksiyonu meydana getirmesinden ibarettir.Reaktifler: Erhlich ayıracı (p-dimetilaminobenzaldehit ve HCL içerir.)Deneyin Yapılışı:Bir deney tüpüne konan 5-6 ml idrar üzerine 2-3 damla ehrlich ayıracı konup karıştırılır.5 dakika içinde kırmızı bir rengin meydana gelmesi, idrarda ürobilinojen varlığını gösterir.Renk şiddetine göre 1(+), 2 (+), 3(+) denir.Klinik değerlendirmeİdrarda ürobilinojenin yokluğu, safra kesesi kanalının tam tıkanık olması ya da yoğun antibiotik tedavisi sonunda barsak florasının tahrip edildiği durumlarda meydana gelir.İdrarda ürobilin aranmasıBarsakta oluşan ürobilinojenin bir kısmı enterohepatik dolaşım yoluyla karaciğere geri gelir ve tekrar ekskresyona uğrar.Barsakta floranın etkisiyle ürobilinojen oksitlenerek ürobiline dönüşür ve feçesle atılır.Bir kısmı ise böbreklere ulaşır ve idrarla atılır.İdrardaki ürobilinojen havanın etkisiyle oksidasyona uğrar ve ürobilin haline döner.Normalde idrarda ürobilin yoktur.Eser miktarda bulunup çok floresans veren madde ürobilin değil sterkobilindir.Arttığı Durumlar:1-Karaciğer hastalıkları2-Barsak bozuklukları,3-Hemolitik ikter,kronik kanamalar,4-Bazı enfeksiyonlar (tifo,romatizma v.s) :... Prensip: alkollü ortamda ürobilinin çinko tuzlarıyla yeşil floresans vermesi temeline dayanır.Reaktifler:1-Çinko asetat2-Alkol %903-Lugol çözeltisi ( İyot ve potasyum iyodür içerir.) Bu çözelti yerine 0.1 N iyot çözeltisi de kullanılabilir.Deneyin Yapılışı:Bir deney tüpüne 5-6 ml idrar, 1-2 gr kadar toz halinde çinkoasetat, 2 damla lugol çözeltisi konur, şiddetle çalkalanır.Bir iki dakika sonra tüp içindeki sıvı hacmi kadar alkol konur,karıştırılır ve süzülür.Süzüntü bir tüp içine konarak ışık yandan gelmek üzere siyah bir zemin üzerinde bakılır.Yeşil bir floresans görülmesi; idrarda ürobilin varlığını gösterir.

http://www.biyologlar.com/bilirubin-tayini-testi

Biyoloji Eğitiminde Evrim ve Yaratılışcılık

Biyolojik bilimlerin temeli olan evrim kurami çagimizin belki de en önemli bilimsel devrimlerinden biridir. Yeryüzündeki canli türlerinin ortak bir atadan evrimleserek ortaya çiktigini, yeryüzündeki yasamin ortak bir geçmisi paylastigini öne süren evrim kurami, insanin kendine ve dogaya bakis açisini degistirmistir. Sayet insan bugünkü konumuna evrim sonucu geldiyse evrimin yasalarini ögrenebilir ve kendinin ve diger canli türlerinin evrimini yönlendirebilir (1). Canli türlerinin bir evrim sonucunda olustugu ortaya atilincaya kadar dogadaki tüm canli türlerinin insanligin yarari için varoldugu, insanin da dogadan yararlanmak, dogaya egemen olmak üzere yaratildigi düsüncesi geçerli idi. Evrim kurami ise insani bu özel konumundan indirmis ve insanin diger canli türleri gibi biyolojinin yasalarina tabi oldugunu, doganin bir parçasi oldugunu, diger canli türleri ile ortak bir biyolojik bir geçmisi paylastigini öne sürmüstür. Diger bir deyisle biyologlarin, ekologlarin kuslar, böcekler, baliklar, yosunlar üzerinde çalisarak ortaya koydugu ilkeler insan için de geçerlidir. Evrim kuraminin ortaya attigi görüsler insanin ve diger canli türlerinin ortak bir atadan evrimlestikleri görüsü, yaratilisin kutsal kitaplardaki öyküsü ile çelisir görünümdedir. Bu nedenledir ki canli türlerinin olusumunu bilimsel olarak açiklayan evrim kuramina kutsal kitaplari harfi harfine yorumsuz olarak kabul eden bazi kökten dinci çevrelerce sürekli olarak karsi çikilmistir. Dünyanin evrenin merkezi olmadigi sadece günesin çevresinde dolanan küçük bir gezegen oldugu görüsü de ilk kez ortaya atildigi zaman kutsal kitaplarin anlatimi ile çelistigi için büyük bir direnisle karsilasmisti. Günümüzde Copernicus, Kepler, Galileo'nun günes sistemi konusundaki buluslari artik tartisma konusu degildir. Ancak incili harfi harfine tartisilmaz bir tanri kelami olarak kabul eden kökten dinci hiristiyan gruplar evrime karsi bagnazca savaslarini halen sürdürmektedirler. Evrim karsiti kampanyada merkezleri ABD'de bulunan Yaratilisi Arastirma Enstitüsü (Institution for Creation Research) ve Yaratilisi Arastirma Dernegi (Creation Research Society) adli iki örgüt basi çekmektedir (2, 9). Kökten dinciler daha 1920'lerde ABD'nin bazi eyaletlerinde evrim kuraminin ögretilmesini yasaklayan yasalar çikmasini saglayabilmislerdir. Biyoloji ögretmeni John Scopes 1925 yilinda biyoloji dersinde evrim anlattigi için yargilanmis ve mahkum edilmisti. Bunun sonucu olarak 1960'lara kadar Amerika'nin bazi eyaletlerinde evrim kurami pek deginilmeyen bir konu olarak kalmistir. 1957 yilinda gerçeklesen bir olay Amerikalilarin biyoloji egitiminde evrimi yasaklayan tutumunu degistirmelerine neden olmustur. Sovyetler Birligi ilk kez uzaya bir yapay uydu olan Sputnik'i firlatmistir. Bunun üzerine Amerikalilar teknoloji yarisinda Sovyetler Birliginin gerisinde kaldiklarini farkederek fen egitimini yeniden gözden geçirip fen dersleri müfredatinda köklü degisikliklere gitmeye karar vermislerdir. Fen dersleri müfredati çagdas bilimin gerektirdigi sekilde yeniden düzenlenmis ve biyoloji ders kitaplarinda Darwin'in evrim kuramina da yer verilmistir. Bundan sonra evrim karsiti tüm yasalar Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Bunun üzerine kökten dinciler dinsel inançlari Yaratilis bilimi olarak öne sürmüsler ve okullarda bu sözde bilimin de evrimle birlikte okutulmasi için çalismaya baslamislardir. Bunun sonucu olarak 1981 yilinda Arkansas eyaletinde evrim kuramina karsi görüsleri içeren yaratilis biliminin de evrim kurami ile birlikte ögretilmesi yasalasmistir. Daha sonra bu yasa da Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Mahkeme kararina göre evrim kuramina karsi görüsleri savunan ve dinsel bir inanci temsil eden yaratilisçilik ögretisi bir bilim degildi ve fen bilimleri egitiminde evrim kuramina karsi bilimsel bir alternatif sayilamazdi. Amerika Birlesik Devletleri Ulusal Bilimler Akademisi de yaratilis görüsünün evrim ile birlikte ögretilmesine karsi çikmis ve yayinladigi bir kitapçikta su görüse yer vermistir (3) : " Din ile bilim insan düsüncesinin iki ayri ve birbirini dislayan alanidir; bu yüzden ayni yerde ikisinin birlikte verilmeye çalisilmasi hem bilimsel teorinin hemde dinsel inancin yanlis anlasilmasina yol açacaktir." Amerika Birlesik Devletleri Ulusal Bilimler Akademisi yayinladigi Bilim ve Yaratilisçilik (3) adli kitapçikda bu görüslere de yer vermistir : "Ulusal egitim sistemimize ve bilimin zorluklarla kazanilan, somut kanitlar üzerine kurulu yapisinin bütünlügüne ve etkinligine karsi girisilen böyle bir saldiri karsisinda Ulusal Bilimler Akademisi sessiz kalamazdi, çünkü sessiz kalmak, akademik ve düsünsel özgürlüge ve bilimsel düsüncenin temel ilkelerine olan sorumlulugumuzu ihmal etmek olurdu. Bilimsel ugrasinin tarihsel temsilcisi ve Federal hükümet'in bilimsel sorunlardaki danismani olarak Akademimiz bilinmesini ister ki; Yaratilis bilimi ilkeleri bilimsel bir kanitla desteklenmemektedir ve yaratilisçiligin ögretim programinda hiçbir düzeyde yeri yoktur. Günümüzün bilgili ve bilinçli fen dersi ögretmenlerinin de önerilen ögretimi yapmalari mümkün degildir. Ayrica böyle bir ögretim, ülkenin gereksinim duydugu bilimsel gelismeleri izleyebilen bir vatandas ve bilinçli bir bilimsel-teknik personel kitlesinin olusmasini engelleyecektir." Bugün insanin en temel sorunlarindan biri, nüfusunun artmasi ve çevre sorunlari karsisinda yer yüzündeki varligini sürdürebilmesi sorunudur. Bunun için ise insanin diger canlilar gibi biyolojik bir varlik oldugunun, diger canlilar ile ortak bir geçmisi paylastiginin, doganin bir parçasi oldugunun, diger canlilar gibi biyoloji yasalarina, ekoloji yasalarina tabi oldugunu bilinmesi gerekir. Bu da ancak kapsamli bir biyoloji egitimi ile gerçeklesebilir. Liselerimizdeki fen egitimi ise ne yazik ki gençleri önümüzdeki yüzyilin bilimine, biyolojiye hazirlamaktan uzaktir. Biyoloji ders kitaplarinda evrim kuramina karsi bir görüs olarak yaratilis görüsü konulmustur. Böylece ögrenciler dünyanin hiç bir çasdas ülkesinde görülmeyen bir uygulama ile karsi karsiya kalmislardir. Bir fen dersi olan biyolojide yeryüzündeki canli türlerinin çesitliligini açiklamak için kaynagini dinden alan yaratilis öyküsüne de yer verilmistir. Buna göre Biyoloji kitaplarinda (4) "Islama göre kainat ve kainattaki bütün varlıklar ALLAH tarafindan yaratilmistir. Dünyanin ilk yaratilisi insanlar tarafindan gözlenemeyen ve tekrarlanamayan bir olaydir. Yaratilis görüsünde bir de dünyayi saran tufandan söz edilmektedir... Dinozorlarin yeryüzünden bir anda silinmis olmasi buna güzel bir örnektir" seklinde bilimsel olmayan ifadeler yer almaktadir. Ayrica din derslerinde bir biyoloji konusu olan evrim kurami islenmektedir. Lise I Din Kültürü ve Ahlak Kitabinda (5) biyoloji ile hiç bir ilgisi olmayan yazarlar Darwin'in evrim kuramini alabildigince elestirmektedirler. Evrim kuraminda canli türlerinin ortak bir atadan türediklerini, bu nedenle birbirine yakin türlerin genetik açidan da benzer oldugu görüsünü yalanlamak amaci ile su savi ileri sürmektedirler. "Yapilan kan muayenelerinde kurbaga, fare ve yilan kanlarinin evrimcilerin iddialarinin aksine maymununkinden insana daha yakin oldugu tespit edilmistir". Bu sav bilimsel temelden tamamen yoksun ve gerçek disidir (6). Yazarlar hangi bilimsel kaynaga dayanarak bu savi ileri sürmektedirler ? Kan ile neyi kastetmektedirler ? Yapildigi öne sürülen kan muayenelerinde kanin hangi ögesi veya ögeleri incelenmistir ? Kaldi ki insan kani ile maymun kani arasinda büyük bir benzerlik vardir. Örnegin 287 aminoasitten olusan hemoglobin A molekülü insan ve sempanzede tipatip aynidir. Ayni molekül bakimindan insan ve goril kani arasindaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19, koyunda 26, tavukta 45, sazan baliginda 95 aminoasit ile insan hemoglobin A molekülünden ayrilmaktadir. Görüldügü gibi kanin bir ögesi olan hemoglobin A molekülü bakimindan insana en yakin canli olan sempanzede hiç fark yok iken insandan uzaklastikça farkliliklar artmaktadir. Daha bir çok protein üzerinde yapilan çalismalarda ayni yönde sonuçlar elde edilmistir. Bu yakinlik uzaklik iliskileri daha önce bilim adamlarinin morfoloji, anatomi, gelisme biyolojisi, paleontoloji, sistematik gibi dallarda elde edilen kanitlara dayanarak yaptigi siniflandirmalardaki yakinlik uzaklik iliskileri ile paraleldir. Bunun disinnda kalitimin kimyasal temelinin evrenselligi yani tüm canlilar için ayni kalitsal mekanizmanin geçerli olmasi canlilarin ortak bir geçmiii paylaitiklarinin yadsinamaz bir kanitidir (7). Amerika Birlesik Devletlerinde ögretilmesi mahkemece anayasanin laiklik ilkesine aykiri bulunan yaratilis görüsü (8) 1985 yilinda Türkiye Cumhuriyeti Milli Egitim Bakanliginin onayi ile Lise Biyoloji ve Din Kültürü ve Ahlak kitaplarına girebilmistir. Böylece laiklige aykiri oldugu bilinen ve dünyanin hiçbir çagdas ülkesinde görülmeyen bir uygulama 20. yüzyilin son çeyreginde devletin egitim politikasi haline gelmistir. Bilim adamlari günümüzde evrimin olup olmadigini degil evrimin nasil oldugunu tartismaktadirlar. Yaratilis bilimcileri evrimciler arasindaki evrimin mekanizmalari üzerindeki bilimsel tartismalari çarpitarak evrim kuraminin yanlis oldugunu kanitlamak için kullanmaktadir. Bilim kendi kendini düzeltici bir nitelige sahiptir ve bilim adamlari arasinda bazen çok siddetli olabilen tartismalar özelestiriler bilimin saglikli yanini gösterir. Bize de Amerika Birlesik Devletleri'nden ithal edilen yaratilis görüsü biyoloji kitaplarinda "Islama göre kainat ve kainattaki bütün varliklar Allah tarafindan yaratilmistir" seklinde yer almaktadir. Bu görüsün tartisilmasi olanaksizdir. Dahasi bu görüsün deney ve gözlem ile dogrulanmasi ya da yanlislanmasi söz konusu degildir. Din derslerinde ögrencilere Darwin'in evrim kuramini çürütmeleri için ödev vermek olagan bir uygulama haline gelmistir. Bilimsel bir kuram öngörüleri deney ve gözlem sonuçlari ile çelistigi zaman çürütülebilir. Deney ve gözlem sonuçlari kuramin öngörüleri ile uyum içinde ise kuramin desteklendigi söylenir. Bilimsel bir kuramin ispat edilmesi söz konusu degildir. Bilimin yöntemleri ile biyologlarin sayisiz deney ve gözlem yaparak 130 yildir çürütemedikleri, yanlislayamadiklari evrim kuramini din dersinde ögrencilere ödev vererek çürütmeye çalismak bilimsellikten tamamen uzak bir yaklasimdir. Bu çabalarin arkasinda gençlerimizin beyinlerini dinsel görüslerin dar kalibina uydurmaya, bu kalip içerisinde hapis etmeye, ögrencilerin bilimsel düsünebilme, sorgulayabilme, elestirebilme yeteneklerini körletmeye çalismak gibi bir amaç yatmaktadir. Evrimi arastiran bilim adamlarinin çabalari dogayi anlama ve açiklama amacina yöneliktir. Bunun disinda tanrinin varligini reddetmek veya kanitlamak gibi bir amaçlari yoktur, olamaz da. Dinsel konular pozitif bilimlerin yöntemleri ile arastirilamazlar. Çagimizda dünya ülkelerinin bilim ve teknoloji alanindaki yarisi hizla sürerken ülkemizin ayakta kalabilmesi gençlerimizin bilimi bir anlayis sistemi olarak benimsemelerine, kavrayabilmelerine baglidir. Sayet gençlerimiz bilimi bir anlayis sistemi olarak benimsemezler ise dinsel inaçlarina bagli fakat tutsak bir ulus olmamiz kaçinilmazdir. Dünyada çesoitli kültürlerde, çesitli dinlerde çok çesitli yaratilis görüsleri vardir. Fakat bu görüslerin hangisinin dogru oldugunu sinama da ise bilim yetkili degildir. Zira bu yaratilis görüsleri bilimsel degildir. Evrim kurami ise evrenseldir, yani dünyanin her yerinde ayni kuram geçerlidir, dinden dine, kültürden kültüre, bölgeden bölgeye degismez. Bir yanda binlerce kez sinamadan geçmis deney ve gözlemler ile defalarca dogrulanmis bilimsel bir kuram diger yanda ise elestirilemeyen, sorgulanamayan, tartisilamayan, kaynagini kutsal kitaplardan alan yaratilis öyküsü. Yaratilisçilar evrim kuraminin da bilimsel olmadigini iddia etmektedirler. Bir kuramin bilimsel olabilmesi için deney ve gözlemler ile yanlislanma olanaginin bulunmasi gerekir. Evrim kurami deney ve gözlemler ile yanlislanabilir. Örnegin, kambriyan katmanlarinda bir insan, bir çiçekli bitki, bir memeli, bir kus fosili bulunabilirse bu bulgulardan bir tanesi bile evrim kuramini geçersiz kilabilir. Bu yaklasim, biyoloji derslerinde fen derslerinde dinsel bir ögreti ile bilimsel bir kuramin birbirinin karsito iki kuram gibi ele alinarak ögretilmesi ögrencileri büyük bir ikilem içine itmektedir. Ögrenci ya bilimi ya da dini tercih etmeye zorlanmaktadır. Ögrenci ya evrim kurami sadece bir kuramdir kutsal kitaplarda yazilanlar dogrudur diyerek bilimi reddedecek ve yaratilis ögretisini kabul edecek, ya da yaratilis öyküsünü de bilimsel bir kuram gibi sorguya çekerek, irdeleyerek bilimsel bir yaklasimi tercih edecektir. Örnegin yaratilis öyküsündeki Nuh tufani olayini bilimsel bir irdelemeden geçirerek Su anda yeryüzünde bulunan 2 milyon canli türünün her birinden birer çift alarak, Nuh peygamberin bu hayvanlari 40 gün boyunca gemisinde nasil yasatabildigini, dinazorlarin bu gemiye sigmadigi için mi yok oldugunu, tüm dünyayi saran bir tufanda Agri daginin zirvesine kadar sularin nasil yükseldigini, ya da bu hacimde su kütlesinin nereden çiktigini sorabilecektir. Simdi de fen derslerinde evrim kuramini tümden kaldirmak egilimi vardir. Evrim kurami biyolojinin tek birlestirici kuramidir. Bugün evrim kurami olmadan biyolojideki bir çok olay birbiri ile ilgisi olmayan, ilginç fakat pek fazla anlam tasimayan bilgiler yigini olacaktir. Bu bakimdan evrim kurami olmayan bir biyolojiyi düsünmek mümkün degildir. Fen derslerinden, biyoloji derslerinden evrim kurami çikarildigi takdirde fen egitimimiz Amerika Birlesik Devletlerinin bazi eyaletlerinde 1950' lerdeki fen egitimine benzeyecektir. Fen egitiminde bazi konular dinsel inanislarimiz ile bagdasmiyor diyerek o konulari fen egitimi müfredati disinda tutamayız. Bilim bir bütündür. Evrimi müfredat disi birakirsak, biyoloji egitimi, fen egitimi anlamin tamamen yitirir. Bilimin verileri isiginda dinsel görüslerin yorumunu yapmak din adamlarinin görevidir. Fakat bu görüslerin bir fen dersinde bilimsel bir kuram ile birlikte, bilimsel kuramin seçenegi gibi islenmesi fen egitiminde istenilen amaçlara ulasilmasini engelleyecektir. Türkiye'nin gelecegi yetistirdigimiz bilim adamlarinin niteligi ve niceligi ile dogrudan iliskilidir. Bilim adami adaylarinin özgür, elestirel, ve bagimsiz düsünebilme diger bir deyisle bilimsel düsünebilme aliskanligini kazanmis olmalari gerekir. Bilim adami arastiracagi konuya hiç bir önyarginin tutsagi olmadan özgürce yaklasabilmeli, konuyu özgürce sorgulayabilmeli, ve deney ve gözlemlerinin sagladigi kanitlari sonuna kadar, kanitlar nereye götürürse götürsün izleyebilmelidir. Türkiye'nin kalkinmasi, bilimde, teknolojide çagdas ülkeler arasinda yerini alabilmesi için özgür, kosullandirilmamis, elestirel düsünebilen beyinlere ihtiyaci vardir. Bunun için de fen egitiminde bilimin dogasina aykiri olan din konularina yer vermemek gerekir. Türkiye'de bilimin gelisebilmesi için egitimde anayasamizin laiklik ilkesine uyulmasi son derece gereklidir. KAYNAKLAR : 1) Dobzhansky, T., Ayala, F.J., Stebbins, G.L., Valentine, J.W. 1977. Evolution. W.H.Freeman and Company. 2) Kence, A. 1985. Evrim kurami ve yaratilisçilik. Cumhuriyet 24 Nisan 1985. 3) Akkaya, E.U.(Çev.).1985. Bilim ve Yaratilisçilik ABD Ulusal Bilimlar Akademisi'nin görüsü. Gözlem Matbaacilik, 80 s, Istanbul. 4) Güven, T., Köksal, F., Öncü, C., Erdogan, I., Acar, Ö., Demirci, C., Togral, A., Simsek, S. 1994. Liseler için Biyoloji I. Milli Egitim Bakanligi Yayinlari 602, Ders Kitaplari Dizisi 223. 5) Ayas, M.R., Tümer, G. 1994. Liseler için Din Kültürü ve Ahlak Bilgisi I. Milli Egitim Bakanligi Yayinlari 118, Ders Kitaplari Dizisi 100. 6) Kence, A. 1994. Biyoloji egitimi ve laiklik. Cumhuriyet Bilim ve Teknik, 367: . 7) Futuyma, D.J. 1983. Science on Trial. Panteon Books, New York. 8) Creationism in Schools: The decision in McLean versus the Arkansas Board of Education. 1982. Science, 215: 934-943. 9) Morris, H.M. 1985. Yaratilis Modeli. Milli Egitim Bakanligi, Bilim ve Kültür Eserleri Dizisi. (TUBA KONUSMASI) Aykut KENCE ODTU Biyoloji Bölümü, Ankara

http://www.biyologlar.com/biyoloji-egitiminde-evrim-ve-yaratiliscilik

Toprak Yapısı ve Su Verimliliği

Toprağın bitkilere su sağlayabilme potansiyelini belirlemek üzere kullanılan Tarla Kapasitesi, Daimi Solma Noktası veya Yüzdesi, Su Basıncı (P), Su Tansiyonu, Nem eşdeğeri, Su Potansiyeli veya Yayınım Basıncı Eksikliği, Toplam Toprak Suyu Stresi, Kılcallık Kapasitesi gibi birçok terimler vardır. Burada konu bunlar arasında en yaygın olarak kullanılan bazı terimlerle ele alınacaktır. Toplam toprak su stresi, (Total soil moisture stress) konuya enerjetik açıdan yaklaştığı için bu konudaki en bilimsel terimdir. Konuya toprakta bulunan suyun serbest enerjisini azaltan iki temel kuvvet grubunun etkinliği çerçevesinde yaklaşır ve toprak suyunun serbest enerjisini azaltan bu iki grubu : • • Toprak suyu tansiyonunun ögeleri olan hidrostatik kuvvetler, yerçekimi ve adsorpsiyon kuvvetleri, • • Toprak çözeltisinin osmotik kuvvetleri olarak tanımlar. Hidrostatikler bilindiği gibi su basıncı, yüzey gerilimi gibi kuvvetler, adsorpsiyon kuvvetleri de su ile toprak kolloidlerini oluşturan kil gibi mineraller ve organik maddelerle su arasında etkili olan, suyun yerçekimi etkisini yenebilmesini sağlayan kuvvetlerdir. Osmotik kuvvetler de topraktaki su çözeltisinin içerdiği iyonlarla ilişkilerinin sonucu olan kuvvetlerdir. Toprak çözeltisinde çözünmüş iyon derişimi suyun azalması ve çözünür iyon miktarı artışı ile artar. Yani toprak kurudukça su alımı zorlaşır, kuraklığın zorlayıcı etkisi otokatalitik bir artış gösterir. Toprak, kaynağı olan anakaya üzerinde bulunan ve dünya ortalamasına göre 50 - 60cm. kalınlığındaki tabakalı yapıdır. Değişik oranlardaki kaya ve çakıllar ile kumdan oluşan, su tutma kapasitesi düşük veya çok düşük olan, kil ve silt gibi ince taneli, su tutuculuğu olan mineral maddeler ile canlı artıkları ve bozunma ürünleri olan humusu içeren ve su tutan organik maddeler, sulu toprak çözeltisi ile hava ile memeliler ve sürüngenler ile solucanlardan funguslar, mikroalgler ve bakterilere kadar geniş bir açılım gösteren canlılardan oluşur. Bu karmaşık yapısı nedeniyle de çok dinamik bir yapıdır. Kaba kum adı verilen 0.2 - 2mm. çapındaki tanelerden daha büyük çaplı olan çakıl ve taş parçaları toprağın iskeletini oluşturur. Kaba kum ve 0.2 - 0.02 mm çaplı ince kum, 0.002 - 0.02 mm. çaplı silt ve bundan daha küçük taneli kil ise su tutma kapasitesine çapın küçüklüğü oranında katkıda bulunan kısımdır. Toprağın iskeletini de içeren yapısına toprağın strüktürü, iskelet dışında kalan kısmının özelliklerine toprağın tekstürü - dokusu denir. Bu katkıda bulunan kısımların oranı da toprak tekstürü adı verilen ve toprak sınıflandırılmasında kullanılan temel özellikleri oluşturur: Çakıllık, kumul, münbit - verimli, siltli, killi toprak ana tipleri kumlu, siltli ve killi münbit - organik maddece zengin - toprak gibi alt gruplara ayrılır. Ayrıca kahverengi orman toprağı, podzoller, çernozemler gibi yaygın ve belirgin genel özellikleri olan toprakları tanımlayan sınıflandırmalar da vardır. Bitkilerin beslenmesine uygun, yani verimli - münbit topraklar Uluslararası Toprak Bilimi Örgütü Sistemi tarafından Kumlu (%66.6 kum, %27.1 verimli fraksiyon ve %0.9 silt ve kil), İnce Kumlu ( %17.8 kum, %30.3 ver. ve %7.1k+s), Siltli (%5.6 k., % 20.2 v., %21.4 k+s ) ve Killi ( %8.5 k, %19.3 v, %65.8 kil) şeklinde sınıflandırmıştır. Toprak verimliliğinin yanısıra küçük taneli ve organik maddece zengin olması erozyona dayanıklılığının artışına neden olur. Doğal, bozulmamış toprakta toprak yapısı ve dokusu bu sınıflandırmada farklı konumlara sahip olan tabakaları, toprak tabakalarını içerir. Toprağın tabakalanması ve tabaka özellikleri toprak profili ile tanımlanır. Toprak profilinde yer alan tabakalar - horizonlar yüzeyden derine doğru, A1,... gibi alt tabakalara ayrılan A, ....D tabakaları halinde dizilirler. Bu tabakaların herbirinin özelliği bitki örtüsünün kök sistemi özelliklerine göre kompozisyonunu yağış rejimi ve iklimsel özellikler ile birlikte denetler. Kumlu toprak en az karmaşık olan kapiler sistemi geniş porlu olduğunda su geçirgenliği - permeabilitesi, yani drenajı yüksek olduğu için köklerin solunumu için yeterli havalandırma sağlayan düzenli ve sık yağışlı iklimler için en uygun toprak tiplerindendir. Kimyasal ve fiziksel olarak bozunma eğilimi düşük, kararlı yapısına karşın gevşektir. Öte yandan tanecikler arasında çimento görevi görevi yapabilecek organik madde ve kil ile silt az olduğundan gevşek ve erozyona açık olan toprak tipidir. Killi topraklar ise kolloidal ve kolloidimsi özellikteki kil ve siltin oluşturduğu, su çekerek şişen ve topaklaşabilen çimento fazı ile tam ters özelliklere sahiptir. Al-silikatlardan oluşan bazik karakterli levha biçimi olan kolloidal taneciklerin çok yüksek yüzey / hacim oranı ve kohezyon, adezyon kuvvetleri, zayıf hidrojen bağı yapma yetenekleri ile kumlu topraklardan 1000, siltli topraklardan 10 kat daha fazla su tutar ve su girişi arttıkça çok daha az hava bulundururlar. Erozyona ve kurak etkisinde kurumaya karşı dirençli fakat köklere hava sağlama açısından zayıf topraklardır. Verimli olanlar ise yaklaşık olarak eşit oranlarda kum, kil ve silt içeren, su tutma ve hava kapasitesi, drenajı, su geçirgenliği yeterli olan topraklardır. Bu verimlilik uygun iklimle birleşince sık bitki örtüsünü destekler ve organik maddece zenginleşir, madde çevrimi yüksek dengeli bir ekosistem oluşur. Verimli toprağın porozitesi, serbest su ve hava tarafından kaplanan hacmi ortalama olarak %50 oranındadır, killi topraktan bir kattan fazla, kumlu toprağın yarısından az oranda olan bu hacim hava kapasitesini belirler. Fakat su tutma kapasitesi ilişkisine katılan değişkenler daha çok ve sonuç tahmini zordur. Çünkü toplam porlar içinde kapilariteye sahip olanlar ile olmayanların oranı ve suyun tutulmasını sağlayan kuvvetlerin büyüklükleri, oranları etkili olur. İnce bitki kökleri ve solucanlar gibi hayvanlar killerin agregatlar, topaklar oluşturması ile kapiler poroziteyi, su tutma sığasını arttırarak toprağın verimliliğine katkıda bulunur ve sürdürülebilir bir denge oluşmasını sağlar. Bu açıdan saçak köklü otlar çok etkilidir. Toprağın kimyasal bileşimi de bitkilerin mineral beslenmesi yanında su tutma kapasitesini etkiler. Topakların sertliği, dağılma eğilimi, nem tutma sığası, kohezyon kuvveti iyon değişimi ile geçici olarak bağlanmış olan Na + + K+/ Ca++ + H+ iyonlarının oranına bağlıdır, oranın artışı ile sertleşme ve sığa büyür. Kurak bölgelerdeki yağışlar değişebilir iyonları yıkayarak uzaklaştıracak yoğunlukta olmadığı ve yüzeyde buharlaşma ile su kaybı hızlı olduğundan topaklar sertleşir, yüzey kabuklaşır. Şiddetli yağışlar da, sonraki sıcak dönemde hızlı buharlaşma derinlere inmiş suyun yayınım ve kılcallıkla yüzeye çıkışı ile iyon çökeltmesine neden olarak olayı hızlandırır. Özellikle suda çözünürlüğü yüksek olan Na+ birikmesi toprağın tuzlanması sonucu çoraklaşmasına neden olur. Bu durum damlama yöntemi gibi bitkilerin kullanabilecekleri kadar suyun kullandıkları oranda verilmesini sağlayacak şekilde yapılmadığı durumlarda da görülür. Toprağın global kimyasal bileşiminde çok önemli yer tutan ve toprak canlılarının tümünün yaşamını doğrudan etkileyen suyun toprakta bulunuş şekli de tüm bu olaylarda önemli rol oynar ve toprağın hem yapısal hem kimyasal özellikleri ile yakından ilişkilidir. Toprak suyunun sınıflandırılması temelde topraktaki fiziksel haline göre yapılır. Gravitasyonel, yerçekimi etkisinde süzülen, serbest akan su oranı porozitesi ve por çapı ortalaması yüksek ve organik maddesi az topraklarda fazladır. Bu su fazından bitkiler ancak süzülüp akarken kısa bir süre yararlanabilir. Toprağın profili burada önem kazanır, örneğin alt tabakalarda killi bir tabaka olması bu suyun birikmesine neden olur ve bu tabakaya kadar uzanan köklerin havasız kalıp, çürümesine neden olur. Kapiler su, gravitasyonel su süzüldükten sonra toprak taneciklerinin çevresinde ve birleşme noktalarında adezyon ve kohezyon kuvetleri ile tutularak film halinde kalan sudur. Bu kuvvetler bağıl olarak zayıf olduğunda bitkiler bu kalıcı su fazından kolaylıkla yararlanır. Ancak kolloidal materyalde kuvvetle adsorbe edilen su ile sıcak ve kurak iklim koşullarında şiddetli buharlaşma ile kaybedilen kapiler sudan bitkiler aynı kolaylıkla yararlanamaz. Rutin uygulamada kapiler su fazının tümünü değerlendiren Tarla Kapasitesi, diğer bir tanımı ile Nem Eşdeğeri toprakların bitkilere yarayışlı su tutma kapasitesi olarak kabul edilir. Suyla doymuş haldeki toprak ile yerçekimi etkisiyle süzülen su arasındaki fark poroziteyi, kalan su da yararlı kapiler su ile kullanılamayan higroskopik su fazlarının toplamı olarak alınır. Daimi Solma Yüzdesi ile karakterize edilen Higroskopik Su fazı ile tarla kapasitesi arasında kalan su miktarı bitkiler için yarayışlı fazını oluşturur. Daimi solma noktası, bitkilerin susuzluktan kalıcı şekilde etkilendikleri, yani yeniden su düzeyi yükseldiğinde bile toparlanamadıkları durumda toprakta bulunan higroskopik olarak bağlı su fazını tanımladığı düşünülür. Daimi solma olayı canlılık ile ilgili bir terim olmasına karşın bu değer toprak özelliklerinin bir karakteristiği olarak alınır. Gerçekte bitkiler üst yüzeyi parafinlenerek topraktan buharlaşmanın önlendiği belli hacimdeki topraktaki suyu tüketerek bir gecelik süre ile susuz kaldığında yaprakların dökülmesi esas alınmıştır. Bu durumdaki toprak 105 derecede kurutularak % nem oranı belirlenir. Aslında bu durum bitkilerin su alımının çok yavaşlayıp terlemeyi karşılayamadığı durumdur ve toprağın özelliğinden çok bitkinin osmotik karakteristiklerine ve su depolama, terleme özellilklerine bağlıdır. Mezofitik, yani ılıman ve kurak olmayan iklime adapte bitkilerde 20 atm. civarında olan yaprak osmotik basıncı kurak iklime ve tuzlu, osmotik basıncı yüksek topraklara adapte olmuş halofitik türlerde 200 atm.e kadar çıkabilmektedir. Toprağın laboratuar koşullarında serilerek kurutulmasından sonra toprakta kalan ve ancak suyun kaynama noktasına kadar ısıtılarak kurutulmasından sonraki ağırlığı ile hava kurusu denen ilk nemli örnek ağırlığı arasındaki fark higroskopik su fazının miktarını verir. Ancak kaynama noktasındaki termik hareketlilik ile topraktan ayırılabilecek kadar kuvvetli tutulmuş olan bu fazdan bitkiler kesinlikle yararlanamaz, yani gerçek desikkasyon - susuzluktan kuruma noktasıdır.. Killi verimli ve kumlu verimli topraklar bu açıdan karşılaştırıldığında suya doymuşluk düzeyinin killide toprak kuru ağırlığının %70i, kumluda ise %35i oranında olduğu, tarla kapasitesinin %45e karşılık %20, ve daimi solma noktasının da %17’ye karşı 9, son olarak da higroskopik bağlı su fazının %10a karşılık %7 gibi değerler verdiği görülür. Bitkilerin yağışla toprağa düşen sudan yararlanabilmeleri ile ilgili önemli bir toprak özelliği suyun infiltrasyonudur. İnfiltrasyonu düşük, killi ve organik maddece fakir toprakta yağışın hızı arttıkça yüzeyden toprağın içine yayınım yapamadığı için köklere ulaşamayan su oranı artar. Eğimli arazide akar gider, düz arazide taşkına yol açabilir veya buharlaşma ile kaybedilmiş olur. Kumlu toprakta ise bu oran en düşük düzeydedir. Alt tabakaları killi topraklarda sürme işlemi bu yönden zararlı etki yaparak erozyon riskini arttırır. Forum kodları ve simge butonları gösterilmemesine karşın, hala kullanılabilirler.

http://www.biyologlar.com/toprak-yapisi-ve-su-verimliligi

Deniz Biyolojisi

Su an yeryüzünde görebildiginiz tüm canlilar, dogadaki canlilarin çok küçük bir bölümünü teskil etmektedir.Yeryüzünün üçte ikisinin sularla kapli oldugunu düsündügümüz zaman, okyanus ve denizlerde yasayan canlilar aleminin ne kadar devasal oldugunu anlayabiliriz. Yapilan arastirmalara göre dünya üzerindeki su kütlesinin hemen hemen tamami volkanik patlamalardan atmosfere salinan su buharindan husule gelmistir. Atmosfere salinan yüksek miktardaki su buhari yogunlasarak yillar boyunca yagan yagmurlari ve nihayetinde deniz ve okyanuslari meydana getirmistir. Yagmur sulari tatli yani saf su olmasina ragmen okyanus ve denizlerde yüksek miktarda tuzluluk vardir.Bunun nedeni jeolojik tabakalarin yüksek miktarda karbonat, sodyum klorür (tuz) ve zengin mineraller içermesidir.Sodyum miktari oldukça fazla oldugu için deniz ve okyanuslari olusturan tatli sularin tuzlu hale gelmesine neden olur. Tuz orani yüksek bu sularda herhangi bir kara canlisinin veya bir insanin uzun süreler yasamasi mümkün olmamasina karsin birçok deniz canlisi rahatlikla yasayabilmektedir.Tabii yasamlarini vücutlarindaki mükemmel organ sistemleri sayesinde sürdürürler. Okyanus ve denizlerde tipki karada yasayan canlilar gibi mikroorganizmalardan tutun devasal memeli canlilalar kadar binbir çesit canli türü yasamaktadirlar.Biz yanlizca bu devasal canlilar aleminden bilinen ve bilinmeyen birkaç örnek verecegiz. Deniz ve tatlisu mikroorganizmalari Bu canlilara " Plankton " adi verilmektedir.Planktonlar tatli sularda yasayabildigi gibi deniz ve okyanusta yasayanlarida vardir. Bu canlilar tipki bakteriler gibi ikiye bölünerek çogalmaktadirlar.Önce canlinin içerisindeki DNA replikasyonla kopyalanarak iki Katina çikarilir ve ardindan canlinin vücudu ikiye bölünür. Miktari iki katina çikan DNA nin yarisi birinci yavru hücreye diger yarisi ise ikinci yavru hücreye aktarilir. Planktonlarin en önemli özellikleri, suda yüzmek için aktif olarak belli bir hareketleri olmamasidir.Bu canlilar bulunduklari su ortaminin akimina bagimli olarak basibos dolanirlar. Planktonlar ancak mikroskopla görülebilirler fakat çiplak gözle dikkatlice bakildiginda görülebilecek kadar büyük olanlarida vardir. Bu mikroskobik canlilardan en çok bilineni ise " alg " adi verilen tek hücreli bir canli türüdür ki algler hemen hemen heryerde yasamaktadirlar. Denizlerde, tatli sularda, okyanuslarda, havuz sularinda, su birikintilerinde çamurlarin içinde ve nehirlerde bile yasamaktadirlar.Bu kadar fazla bir yasam alanina sahip canlilar biz ziyaretçilerin bile gözünden kaçmis olamaz. Örnegin bir havuz veya insaat sahasindaki seffaf su birikintilerinin renginin, birkaç gün sonra yesile veya kirmiziya dönüstügünü görmüssünüzdür.Bu sularda ilk zamanlarda yasayan binlerce tek hücreli canli türü, uygun bir sicakliga geldiginde süratle çogalmaya baslarlar. Yanlizca birkaç gün içerisinde sudaki canli sayisi milyari bulabilir.Bu kadar fazla sayidaki tek hücreli canlilar suyun rengini bulandirmaya baslar. Suyun rengi niçin yesile dönüsüyor ? Bunun nedeni ise bazi planktonlarin, tipki yesil bitkiler gibi klorofil molekülünü içermesinden dolayidir.Hatirlarsaniz bitkilerin yapraklarinin renginin yesil olarak görünmesinin klorofil molekülünden dolayi oldugunu söylemistik. Iste bu tip planktonlarinda vücutlarinda klorofil molekülü vardir ve tipki bitkiler gibi fotosentez yaparlar.Bu yüzdendir ki taksonomik olarak siniflandirilirken bitkiler kategorisinemi yoksa hayvanlar kategorisinemi konacagi konusunda sistematikçilerin ortak bir karari yoktur. Yumusakçalar (Mollusk) Okyanus ve denizlerde yasayan diger bir canli grubu ise, genel latince isimleri " Mollusk " olan yumusakçalardir. Bu canlilarin vücutlari adindanda anlasilacagi gibi oldukça yumusak bir yapiya sahip olup, bazi türlerinin vücutlari oldukça sert kabuklarlada kapli olabilir. Yumusakçalarin en iyi bilinen iki örnegi " Mürekkep baligi " ve kabuklu bir yapiya sahip olan " Deniz minareleri " dir. Mürekkep baliklari, gerek anatomik yapilari gerekse savunma mekanizmalari bakimindan oldukça ilginç canlilardir. Belgesellerde sik olarak gördügümüz bu canlilarin hareket mekanizmalari, bir jet motorunun çalisma prensibiyle aynidir.Bu prensip " etki - tepki " prensibidir.Yani bir yandan madde alinirken diger yandan madde verilmekte ve bu sekilde süratle hareket etmektedir. Balik, öncelikle vücudunu, arka tarafindan aldigi bir miktar su ile doldurur.Ardindan karin kaslarini büyük bir siddetle kasarki bu kasilma neticesinde sikisan su büyük bir süratle yine vücudun arka tarafindan disari püskürtülür.Disari püskürtülen su, baligin büyük bir hizla ileri dogru ivmelenmesini saglar. Bunun yaninda hayvan düsmanlarindan korunmak için bir tür sivi salgilarki bu sivi mürekkebe benzer olup salgilandiginda, kendisi kovalayan avcinin görmesini engelleyecek kadar suyu bulandirabilir. Yine bir mollusk olan deniz minareleri ise, yumusak bir vücuda sahip olmasina karsin çok sert bir kabuga sahiptir. Bu kabugun en önemli fonksiyonu canliyi düsmanlarindan korumasidir. Nasil oluyorda bu canlilar etraflarini kabukla örtebiliyorlar ? Bir sperm ile bir yumurtanin birlesmesinden sonra zigotu meydana getirdigini ve bu zigotun ardi ardina milyonlarca kez bölünerek bir yavru canliyi meydana getirdigine deginmistik.Mesela insan yavrusunda, en distaki hücreler diger hücrelerden farklilasarak keratin adi verilen bir madde üretir ve " Derinin " sekillenmesini saglarlar. Deniz minarelerinde ise, zigot milyonlarca kez bölünerek yavruyu meydana getirdiginde, yavrunun en distaki hücreleri " Kalsiyum " salgilayan özel bir hücre tipine farklilasirlar.Bu hücreler, canlinin içinde yasadigi deniz yada okyanuslardan absorbe edilen kalsiyumu düzenli bir sekilde salgilayarak canlinin etrafinda kalin bir tabaka olusmasini saglarlar. Okyanus bitkileri Su an soludugunuz havadaki oksijenin büyük bir kismi, deniz ve okyanuslarda yasayan ve klorofil içeren bitkiler tarafinda fotosentez yoluyla üretilir. Nasil ki atmosfer sartlarinda klorofil içeren bir bitki havadan CO2 yi, topraktan suyu ve günesten isigi alarak fotosentez yapip canlilar için oksijen üretiyorsa ayni sekilde deniz ve okyanuslarda da günes isiginin varabildigi bölgelerde bulunan klorofilli bitkilerde oksijen üretmektedirler. Bu canlilarin büyük bölümünü ise yosunlar teskil eder.Bunun yaninda daha adini sayamadigimiz onbinlerce tür deniz bitkisi vardir. Deniz bitkilerinin ihtiyaci olan su zaten yasam ortami olan denizden, CO2 ihtiyaci ise diger tüm deniz canlilari tarafindan karsilanir.Eger bu tabiat harikalari denizlerde var olmasaydi hemen hemen tüm deniz canlilari oksijensizlikten hayatini kaybedecekti. Basit bir canli gibi görünen bu yaratiklari aslinda ekosistemin vazgeçilmez birer parçasidirlar. Bu canlilarin milimetrelerle ölçülebilecek kadar küçük olanlari oldugu gibi yüzlerce metre uzunlugunda devasal boyutlara sahip olanlarida vardir. Atlas okyanusu kiyilarinda yasayan birtür deniz bitkisi, fotosentez yapmak için oldukça mükemmel bir yöntem gelistirmistir. Bu bitki tipki bir " Palmiye " agacina benzer ve onlarca metre uzunlugundaki dallarinin uçlarinda bir veya birkaç adet hava kesesi bulunur.Bu hava keseleri, bitki gelistikçe gitgide büyüyerek bitkinin dallarini suyun kaldirma kuvvetinin etkisiyle yukari dogru kaldirir. Deniz yüzeyine yaklasan dallar günes isigindan olabildigince faydalanarak fotosentez yapma imkani bulur. Deniz bitkilerinin üremeleri hem eseyli hemde eseysiz olabilmektedir. Erkek bitkiden gelen bir sperm ile disi bitkiden gelen bir yumurta hücresinin birlesmesiyle (eseyli üreme) yavru bir bitki meydana gelebildigi gibi bazi bitkiler ikiye bölünme ve " Tomurcuklanma " ile de çogalabilir (eseysiz üreme). Tomurcuklanma, bir bitkinin belirli bir bölgesinde büyüyen hücre veya hücre gruplarinin daha sonra bitkiden ayrilarak bagimsiz bir sekilde kendi basina büyüyüp gelismesi olayidir. Derisi dikenliler (Ekinodermata) Derisi dikenli deniz yaratiklarinin basinda " Deniz yildizlari ", " Deniz hiyarlari " ve degisik sekillerdeki dikenli canlilar gelmektedir. Bu hayvanlarin yasayis tarzlari pek aktif olmasada görünüs itibariyle deniz diplerinde bir renk cümbüsü meydana getirmektedirler.Görünümleri göze çok hos gelen bu yaratiklar alimli renkleriyle deniz diplerindeki vahsi yasamin vazgeçilmez birer parçasidirlar. Deniz yildizlari bilindigi gibi ikiye, üçe, dörde veya daha fazla sayida parçalara ayrilmasina ragmen her ayirdiginiz parça kendini tamir ederek yeni bir deniz yildizi verebilir.Canlilarin bu yeteneklerine "rejenerasyon" yani tamir edebilme özelligi denir. Deniz yildizlarinin bazi türlerinde dikenler oldukça uzun olup, yildizi vahsi deniz canlilari tarafindan parçalanma tehlikesine karsi korur Deniz hiyarlari, protein bakimindan zengin olup uzakdogu ülkelerinde besin kaynagi olarak tüketilmektedir.Bu canlilar genellikle fazla derin olmayan okyanus sularinda yasarlar. Deniz kestaneleri ise disaridan basit bir yapiya sahip oldugu izlenimini verir fakat iç organlari oldukça kompleks bir yapiya sahiptir.Öyleki kestanenin içerisinde, hayvanin sudaki oksijeni rahatça soluyabilmesi için suyu vücudunun içerisinden geçiren karmasik devri-daim organlari bile vardir. Bu mükemmel deniz yaratiklari, gözalici renkleriyle deniz diplerini adeta birer cennete çevirirler. Yüksek Organizasyonlu Deniz Canlilari : Yüksek organizasyonlu canlilar çok sayida türleri kapsamakla birlikte biz en çok bilinen " Köpek baliklari " ve " Balina " türlerine örnekler verdik. Köpek baliklari belgesellerde ve filmlerde gördügünüzden çok daha mükemmel ve gizemli yaratiklardir.Köpek baliklarinin kendi içerisinde birçok alt türleri vardir. Örnegin mamuzlu köpek baligi, boga köpek baligi ve çekiç basli köpek baligi gibi.Fakat köpek baliklarinin bazilari çok uysal olmakla birlikte diger bazi türleri oldukça saldirgan olup önüne gelen hemen her tür canliya saldirabilirler. Saldirgan bir köpek baligi grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldirabilirler. Bu baliklardan en ünlüsü ise " Beyaz köpek baliklari " dir. Bu baliklar köpek baligi türleri arasinda en saldirgani olup yunuslara, foklara, deniz aslanlarina ve hatta balinalara bile saldirabilirler. Bir köpek baligini tehlikeli yapan en önemli organlari disleridir.Eger disleri normal bir baliginki gibi pek keskin olmasaydi, köpek baliklari tanindigi kadar tehlikeli olmayackti. Birçok insan köpek baliginin avini özellikle kuvvetli çene darbeleriyle parçaladigini zanneder fakat asil fonksiyon çenede degildir. Köpek baliklarinin disleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmis bir testere kadar yivlidir. Bir köpek baligi avini isirdiktan sonra basini derhal saga sola dogru sallamaya baslar.Bu sekilde davranarak disleri arasina sikisan bir objeyi ivmelendirip yanal olarak disleri üzerinde hareket etmesini saglar. Obje veya av, disleri üzerinde hareket ettigi zaman jilet kadar keskin olan disler tarafindan rahatlikla kesilir.Böylelikle balik avini kisa süre içerisinde parçalayarak etkisiz hale getirir. Köpek baligi avini parçalarken gözlerini asla açmaz. Bunu yapmasinin nedeni ise avini parçalamasi esnasinda etrafa saçilacak kemik parçalarindan gözlerini korumak içindir. Çünki bir canlinin kemigi kirildigi (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçalari oldukça keskin bir hale dönüsür. Bazi köpek baligi türlerinin boylari oldukça büyük olmasina karsin çok uysal olabilirler.Hatta bazi türleri iri memelilere saldirmak yerine deniz planktonlari ve küçük deniz canlilari ile beslenmektedir. Buna karsin dogada, resimdekinden çok daha iri köpek baliklarininda yasamasina karsin bazilari insanlarin zannettikleri gibi bir saldirganlik göstermezler. Köpek baliklarinin vücut sekilleri çok mükemmel bir sekilde dizayn edilmistir.Tipki bir füzeye benzeyen vücutlari ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hiza erisebilmektedirler. Diger bir mükemmel özellikleri ise solungaçlarinin bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmis olmasidir. Dikkat ettiyseniz yaris arabalarinin her iki yaninda hava bosluklari oldugunu görürsünüz.Bu bosluklar, araba süratle giderken motorun havayi daha rahat bir sekilde emmesine yardimci olmak içindir.Köpek baliklarinin yanlarindaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer bosluk birakacak sekilde konumlanir. Insanlarin köpek baliklarindan esinlenerek taklit etmeye çalistigi bu mükemmel sistemi köpek baliklari haberleri bile olmadan milyonlarca yildir kullanmaktadir. Bugün halen sadece zevk amaciyla köpek baligi öldüren insanlar vardir.Bazi balikçilar ise besin degeri ve parasal degeri çok yüksek oldugundan dolayi hiç durmaksizin köpek baliklarini avlamaktadirlar. Bazi uzakdogu ülkelerinde balikçilar, lüks restoranlarin ihtiyaçlarini karsilamak amaciyla yanlizca yüzgeçlerini kesip baliklari tekrar çaresiz bir sekilde denize atmaktadirlar. Eger bu mükemmel yaratiklarin korunmasi amaciyla bir önlem alinmaz ise yakin bir zaman içerisinde soylari tükenme noktasina gelecektir. Ve eger köpek baliklarinin soylari tükenirse, denizde avlanilmasi ve sayilarinin azaltilmasi gereken birçok av hayvaninin nüfuslari gitgide artacak ve deniz ekosistemini altüst etmeye baslayacatir. Balinalar Dogadaki en büyük memeli hayvanlari temsil eden balinalarin bazi türleri küçük boyutlara sahip olmasina karsin bazi türlerinin boylari ise 35 - 40 metreye kadar varabilir. Balinalarda kendi aralarinda uysal ve saldirgan olarak ayrilirlar.En taninan uysal balina, boyutlari 35 metreye varmasina ragmen planktonlarla beslenerek yasamlarini sürdürürler. Balinalarin cüssesinin büyük olmasina karsin oldukça uysaldir.Bu balinalarin bazi türleri plnaktonlar ve küçük baliklar ile beslenmektedirler. Planktonlarin çok küçük canlilar oldugunu biliyoruz.Fakat bu kadar büyük cüsseli bir balina plnaktonlarla nasil beslenebilmektedir ? Balina bunu, çenelerinin arkasinda bulunan kusursuz bir yüzgeç sistemi sayesinde basarir.Boyu yaklasik 40 metreye varan ve planktonlarla beslenen bir balina, tek hamlede vücuduna 3 oda dolusu suyu doldurabilir.Vücuduna doldurdugu bu muazzam su kütlesini, mükemmel bir yüzgeç sistemine sahip çenelerinden tekrar disari verir. Su büyük bir hizla disari çikarken plankton ve diger küçük canlilar (ufak baliklar gibi) çenedeki yüzgeçte kalirlar.Bir cm3 suyun içinde onlarca plankton bulunduguna göre metrelerce küp su içerisinde içerisinde milyarlarca plankton bulunabilir.Balina bunu defalarca yaparak, midesini protein degeri yüksek bu ufak canlilar ile doldurur. Katil balinalar saldirgan olmalarina karsin egitildikleri zaman dost olmaktadirlar.Fakat vahsi yasam ortamlarinda birer köpek baligi gibidirler. Denizlerin en vahsi hayvanlari sayilan beyaz köpek baliklari bile bir katil balinayi gördügü zaman mümkün oldugu kadar ondan kaçinmaya çalisir. Bu canlilar, karsilastikari bir köpek baligini tek bir çene darbesiyle ikiye bölebilirler. Bazi katil balinalar fok ve deniz aslanlarini avlamak için sahile kadar kovalayabilirler.Ve bu kovalamaca neticesinde basarilida olurlar. Katil balinanin yaksaltigini gören fok veya deniz aslani sürüsü çareyi kumsala çikmakta bulurlar. Fakat katil balinanin sahile kadar çikacagini ummazlar. Balina foklari avlamak için kendini sahile kadar vurabilmektedir.Nitekim bazi foklar hayvanin koca agizindan kurtulamaz. Televizyonlarda gördügümüz gösteri balinalari bu katil balinalardir.Vahsi yasamlarindakinin aksine egitilidikleri zaman oldukça uysal olan bu yaratiklar insanlarin çok yakin dostu olabilmektdir. Senede bir kez belirli dönemlerde dogum yapan balinalar, yavrularini dogurmak için sig sulara göç ederler. Göç sirasinda binlerce mil yol katedebilirler.Deniz arastirmacilari halen balinalarin nasil yönlerini sasirmadan devasal okyanuslarda istedikleri yerlere gidebildiklerini tam olarak çözememislerdir. Bir balina sürüsünün içindeki bireyler, çok tiz bir ses çikararak birbirleriyle anlasmaktadirlar.Bu seslerin ne anlama geldigi konusunda uzun arastirmalar yapilmaktadir. Çikarilan bu sesler kilometrelerce ötedeki baska balinalar tarafindan ve hatta insanlar tarafindan bile duyulabilr. Balinalarin bu seslere nasil yanit verdikleri ise bir sirdir. Balina ve köpek baliklari deniz ekosistemi için mutlaka gerekli olan canlilardir.Fakat insanlarin bilinçsiz avlanmalari sonucunda denizlerdeki av - avci orani süratle bozulmakta, ve denizel ekosistemin dengeleri altüst olmak üzeredir. Örnek verecek olursak okyanuslarda istakozlarla beslenen ve ayni zamanda besin olarak tüketilen bir balik türü, istakozlarin bilinçsiz avlanilmasi sonucunda açlik ve nihayetinde ölüm tehlikesiyle karsi karsiya gelir.Yani insanlar, besin olarak tükettigi bu baliklari kendi elleriyle yok etmektedirler. Ayni sekilde köpek baligi ve balinalarin sayilarindaki süratli düsüs, av sayisinin yükselmesine (örnegin foklar ve küçük baliklar) ve dolayisiyla denizel ekosistemde bir nüfus patlamasina yol açar.Av canlilarinin sayisi yükseldikçe denizdeki diger canlilarin yasamlari olumsuz yönde etkilenmektedir. Umuyoruzki su an bu mükemmel deniz yaratiklarinin soylarinin devam etmesi için yürütülen çalismalar olumlu sonuç versin ve hergeçen gün yikilma noktasina biraz daha yaklasan deniz ekosistemi eski durumuna kavussun.

http://www.biyologlar.com/deniz-biyolojisi

Fosil Nedir

Fosilleri inceleyen bilim dalına paleontoloji, fosil toplayıp bunlar üzerinde çalışma yapan kişilere de paleontollog denir. Fosiller bir polen tanesi küçüklüğünde ya da dev bir dinazorun kemiği büyüklüğünde olabilir. Bir hayvan ya da bitkinin fosilleşmesi için milyonlarca yıl devam eden bir süreç gerekmektedir. Genellikle hayvan ya da bitkilerin sert kısımları bu uzun süreç boyunca dayanıklılık gösterebilir. Jeolojik zamanlarda yaşamış olan canlıların tortul kayaçlar içinde taşlaşmış olarak bulunan her çeşit kalıntı ve izine FOSİL adı verilir. Fosiller, bugün yaşayan bir çok grubu temsil ettikleri gibi, soyları tümüyle ortadan kalkmış grupları da tanımamıza yardımcı olurlar. Bilinen en eski fosiller günümüzden 3.6 milyar yıl önce yaşamış olan fotosentetik siyanobakterilerdir (mavi-yeşil algler). Fosiller Nerelerde Bulunur? Fosiller karasal ve denizel ortamlarda yaşamış hayvan ve bitkiler ile onların izlerine aittir. Daha çok kumtaşı, kireçtaşı, çamurtaşı ve şeyl gibi tortul kayaçlarda bulunurlar. Grönland'dan Antartika' ya, okyanus tabanlarından dağların en yüksek zirvelerine kadar dünyanın her tarafında dağılım gösterirler. Fosillerin dünya coğrafyası üzerindeki geniş dağılımı, yerküre yüzeyinin jeolojik zamanlar boyunca sürekli değiştiğini kanıtlar   En genel anlamıyla fosil, uzun zaman önce yaşamış canlıların yapılarının, doğal koşullar altında korunarak günümüze kadar ulaşan izidir. Fosiller, kimi zaman organizmanın bir parçasının kimi zaman da canlının hayattayken bıraktığı izlerin (bunlara iz fosil denir) günümüze kadar gelmesidir. Ölen hayvan ve bitkilerin, çürümeden korunarak, yer kabuğunun bir parçası haline gelmesiyle fosil oluşur. Fosilleşmenin meydana gelebilmesi için, hayvanın veya bitkinin -üzerini çoğunlukla bir çamur katmanının örtmesiyle- ani ve hızlı bir şekilde gömülmesi gerekir. Bu gömülmeyi genellikle kimyasal bir süreç takip eder. Bu süreçte yaşanan mineral değişimleriyle de koruma sağlanmış olur. Fosiller, canlılık tarihinin en önemli delilleridir. Dünyanın çeşitli bölgelerinde elde edilmiş yüz milyonlarca fosil bulunmaktadır. Fosillerin sağladığı temel bilgi, canlılığın tarihi ve yapısı hakkındadır. Milyonlarca fosil, canlılığın aniden, kompleks yapısıyla, eksiksiz olarak ortaya çıktığını ve milyonlarca yıl boyunca hiçbir değişikliğe uğramadığını göstermektedir. Bu da canlılığın yoktan var edildiğinin yani yaratıldığının önemli bir delilidir. Canlıların aşama aşama oluştuğunu, yani evrim geçirdiğini gösteren ise tek bir fosil dahi yoktur. Evrimcilerin ara fosil olduğunu iddia ettikleri fosil örnekleri yalnızca birkaç tanedir ve bunların geçersizliği de bilimsel olarak ispatlanmış durumdadır. Aynı zamanda yine Darwinistlerin ara fosil olarak dünyaya tanıttıkları bazı örneklerin sahte çıkması da, bu konuda sahtekarlık yapacak kadar çaresiz olduklarını gözler önüne sermektedir. 150 yılı aşkın süredir, dünyanın dört bir yanında yapılan kazılarda elde edilen fosil kayıtları, balıkların hep balık, böceklerin hep böcek, kuşların hep kuş, sürüngenlerin hep sürüngen olduğunu ispatlamıştır. Canlı türleri arasında bir geçiş olduğunu -yani balıkların sürüngenlere, sürüngenlerin kuşlara dönüştüğü gibi- gösteren tek bir tane bile fosil görülmemiştir. Kısaca, fosil kayıtları, evrim teorisinin temel iddiası olan, türlerin uzun süreçler içinde değişimlere uğrayarak birbirinden türediği iddiasını kesin olarak çürütmüştür. Fosiller canlılık hakkında verdikleri bilginin yanı sıra, kıta tabakalarının hareketlerinin yeryüzü yüzeyini nasıl değiştirdiği, Dünya tarihinde yaşanan iklimsel değişikliklerin neler olduğu gibi yeryüzünün geçmişiyle ilgili de önemli bilgiler sunarlar. Fosiller, antik Yunan döneminden beri araştırmacıların ilgisini çekmiş, ancak 17. yüzyıl ortalarından itibaren fosillerin incelenmesi bir bilim dalı olarak gelişmeye başlamıştır. Araştırmacı Robert Hooke'un eserlerini (Micrographia (Mikrografi), 1665; Discourse of Earthquakes (Deprem Konuşmaları), 1668), Niels Stensen'in (Nicolai Steno ismiyle bilinir) çalışmaları takip etmiştir. Hooke ve Steno'nun fosiller üzerinde çalışma yaptıkları dönemlerde, düşünürlerin büyük bir kısmı fosillerin gerçekten yaşamış canlıların izleri olduğuna inanmıyorlar, doğanın bir şekilde canlıları taklit ettiğini iddia ediyorlardı. Fosillerin gerçek canlıların izi olup olmadığı yönündeki tartışmanın temelinde, fosillerin bulunduğu yerlerin dönemin jeolojik bilgileriyle açıklanamaması vardı. Fosiller genelde dağlık bölgelerde bulunuyor, ancak örneğin bir balığın nasıl olup da su seviyesinden bu kadar yüksek bir mekanda fosilleşmiş olabileceği teknik olarak açıklanamıyordu. Steno, tıpkı geçmişte Leonardo Da Vinci'nin öne sürdüğü gibi, tarih boyunca su seviyesinde geri çekilmeler olduğunu iddia ediyordu. Hooke ise, dağların okyanus tabanlarındaki depremler ve iç ısınma nedeniyle oluştuğunu söylüyordu. Hooke ve Steno'nun, fosillerin geçmişte yaşamış canlıların izleri olduğunu ortaya koyan açıklamalarının ardından, 18. ve 19. yüzyılda jeolojinin de gelişmesiyle, fosil toplama ve araştırma sistemli bir bilim dalına dönüşmeye başladı. Fosillerin sınıflandırılması ve yorumlanmasında, Steno'nun belirlediği prensipler izlendi. Özellikle 18. yüzyıl itibariyle madenciliğin gelişmesi ve demiryolları inşaatlarının artması, yer altının daha çok ve daha detaylı incelenmesine imkan tanıdı. Modern jeoloji, yeryüzü yüzeyinin "tabaka" adı verilen katmanlardan oluştuğunu, bu tabakaların, kıtaları ve okyanus tabanını taşıyarak Dünya üzerinde hareket ettiğini, tabakalar hareket ettikçe Dünya coğrafyasında değişiklikler olduğunu, dağların da büyük tabakaların hareketleri ve çarpışmaları sonucunda meydana geldiğini ortaya koydu. Dünya coğrafyasında uzun zaman dilimleri içinde meydana gelen değişimler, şimdi dağlık olan bazı bölgelerin bir zamanlar sularla kaplı olduğunu da gösteriyordu. Böylece kaya katmanlarında bulunan fosillerin, yeryüzünün farklı dönemleri hakkında bilgi edinmenin önemli yollarından biri olduğu ortaya çıktı. Jeolojik bilgiler, öldükten sonra çökeltiler içinde korunan canlı izlerinin yani fosillerin, çok uzun dönemler içinde, kayaların oluşumu sırasında yeryüzünün kabuğuna doğru yükseldiklerini gösteriyordu. Fosillerin bulunduğu kayaların bazıları, yüz milyonlarca yıl öncesine aitti. Yapılan araştırmalarda, belli fosil türlerinin yalnızca belli katmanlarda ve belli kaya tiplerinde bulunduğu gözlemlendi. Üst üste gelen kaya katmanlarının her birinde kendisine has, o katmanın bir tür imzası olarak nitelenebilecek fosil grupları olduğu görüldü. Bu "imza fosiller", hem zaman dilimlerine göre hem de mekana göre farklılık gösterebiliyordu. Örneğin, aynı döneme ait bir fosil yatağında, biri eski bir göl yatağı diğeri de mercan kayalığı olan iki farklı çevre koşulu ve tortuyla karşılaşılabiliyordu. Ya da bunun tam tersine, birbirinden kilometrelerce uzakta iki farklı kayalıkta, aynı fosil "imzasıyla" karşılaşmak mümkündü. Bu izlerin sağladığı bilgilerle, günümüzde halen kullanılmakta olan jeolojik zaman çizelgesi tespit edildi.

http://www.biyologlar.com/fosil-nedir

Deniz Biyolojisi Hakkında Bilgi

Su an yeryüzünde görebildiginiz tüm canlilar, dogadaki canlilarin çok küçük bir bölümünü teskil etmektedir.Yeryüzünün üçte ikisinin sularla kapli oldugunu düsündügümüz zaman, okyanus ve denizlerde yasayan canlilar aleminin ne kadar devasal oldugunu anlayabiliriz. Yapilan arastirmalara göre dünya üzerindeki su kütlesinin hemen hemen tamami volkanik patlamalardan atmosfere salinan su buharindan husule gelmistir. Atmosfere salinan yüksek miktardaki su buhari yogunlasarak yillar boyunca yagan yagmurlari ve nihayetinde deniz ve okyanuslari meydana getirmistir. Yagmur sulari tatli yani saf su olmasina ragmen okyanus ve denizlerde yüksek miktarda tuzluluk vardir.Bunun nedeni jeolojik tabakalarin yüksek miktarda karbonat, sodyum klorür (tuz) ve zengin mineraller içermesidir.Sodyum miktari oldukça fazla oldugu için deniz ve okyanuslari olusturan tatli sularin tuzlu hale gelmesine neden olur. Tuz orani yüksek bu sularda herhangi bir kara canlisinin veya bir insanin uzun süreler yasamasi mümkün olmamasina karsin birçok deniz canlisi rahatlikla yasayabilmektedir.Tabii yasamlarini vücutlarindaki mükemmel organ sistemleri sayesinde sürdürürler. Okyanus ve denizlerde tipki karada yasayan canlilar gibi mikroorganizmalardan tutun devasal memeli canlilalar kadar binbir çesit canli türü yasamaktadirlar.Biz yanlizca bu devasal canlilar aleminden bilinen ve bilinmeyen birkaç örnek verecegiz. Deniz ve tatlisu mikroorganizmalari Bu canlilara " Plankton " adi verilmektedir.Planktonlar tatli sularda yasayabildigi gibi deniz ve okyanusta yasayanlarida vardir. Bu canlilar tipki bakteriler gibi ikiye bölünerek çogalmaktadirlar.Önce canlinin içerisindeki DNA replikasyonla kopyalanarak iki Katina çikarilir ve ardindan canlinin vücudu ikiye bölünür. Miktari iki katina çikan DNA nin yarisi birinci yavru hücreye diger yarisi ise ikinci yavru hücreye aktarilir. Planktonlarin en önemli özellikleri, suda yüzmek için aktif olarak belli bir hareketleri olmamasidir.Bu canlilar bulunduklari su ortaminin akimina bagimli olarak basibos dolanirlar. Planktonlar ancak mikroskopla görülebilirler fakat çiplak gözle dikkatlice bakildiginda görülebilecek kadar büyük olanlarida vardir. Bu mikroskobik canlilardan en çok bilineni ise " alg " adi verilen tek hücreli bir canli türüdür ki algler hemen hemen heryerde yasamaktadirlar. Denizlerde, tatli sularda, okyanuslarda, havuz sularinda, su birikintilerinde çamurlarin içinde ve nehirlerde bile yasamaktadirlar.Bu kadar fazla bir yasam alanina sahip canlilar biz ziyaretçilerin bile gözünden kaçmis olamaz. Örnegin bir havuz veya insaat sahasindaki seffaf su birikintilerinin renginin, birkaç gün sonra yesile veya kirmiziya dönüstügünü görmüssünüzdür.Bu sularda ilk zamanlarda yasayan binlerce tek hücreli canli türü, uygun bir sicakliga geldiginde süratle çogalmaya baslarlar. Yanlizca birkaç gün içerisinde sudaki canli sayisi milyari bulabilir.Bu kadar fazla sayidaki tek hücreli canlilar suyun rengini bulandirmaya baslar. Suyun rengi niçin yesile dönüsüyor ? Bunun nedeni ise bazi planktonlarin, tipki yesil bitkiler gibi klorofil molekülünü içermesinden dolayidir.Hatirlarsaniz bitkilerin yapraklarinin renginin yesil olarak görünmesinin klorofil molekülünden dolayi oldugunu söylemistik. Iste bu tip planktonlarinda vücutlarinda klorofil molekülü vardir ve tipki bitkiler gibi fotosentez yaparlar.Bu yüzdendir ki taksonomik olarak siniflandirilirken bitkiler kategorisinemi yoksa hayvanlar kategorisinemi konacagi konusunda sistematikçilerin ortak bir karari yoktur. Yumusakçalar (Mollusk) Okyanus ve denizlerde yasayan diger bir canli grubu ise, genel latince isimleri " Mollusk " olan yumusakçalardir. Bu canlilarin vücutlari adindanda anlasilacagi gibi oldukça yumusak bir yapiya sahip olup, bazi türlerinin vücutlari oldukça sert kabuklarlada kapli olabilir. Yumusakçalarin en iyi bilinen iki örnegi " Mürekkep baligi " ve kabuklu bir yapiya sahip olan " Deniz minareleri " dir. Mürekkep baliklari, gerek anatomik yapilari gerekse savunma mekanizmalari bakimindan oldukça ilginç canlilardir. Belgesellerde sik olarak gördügümüz bu canlilarin hareket mekanizmalari, bir jet motorunun çalisma prensibiyle aynidir.Bu prensip " etki - tepki " prensibidir.Yani bir yandan madde alinirken diger yandan madde verilmekte ve bu sekilde süratle hareket etmektedir. Balik, öncelikle vücudunu, arka tarafindan aldigi bir miktar su ile doldurur.Ardindan karin kaslarini büyük bir siddetle kasarki bu kasilma neticesinde sikisan su büyük bir süratle yine vücudun arka tarafindan disari püskürtülür.Disari püskürtülen su, baligin büyük bir hizla ileri dogru ivmelenmesini saglar. Bunun yaninda hayvan düsmanlarindan korunmak için bir tür sivi salgilarki bu sivi mürekkebe benzer olup salgilandiginda, kendisi kovalayan avcinin görmesini engelleyecek kadar suyu bulandirabilir. Yine bir mollusk olan deniz minareleri ise, yumusak bir vücuda sahip olmasina karsin çok sert bir kabuga sahiptir. Bu kabugun en önemli fonksiyonu canliyi düsmanlarindan korumasidir. Nasil oluyorda bu canlilar etraflarini kabukla örtebiliyorlar ? Bir sperm ile bir yumurtanin birlesmesinden sonra zigotu meydana getirdigini ve bu zigotun ardi ardina milyonlarca kez bölünerek bir yavru canliyi meydana getirdigine deginmistik.Mesela insan yavrusunda, en distaki hücreler diger hücrelerden farklilasarak keratin adi verilen bir madde üretir ve " Derinin " sekillenmesini saglarlar. Deniz minarelerinde ise, zigot milyonlarca kez bölünerek yavruyu meydana getirdiginde, yavrunun en distaki hücreleri " Kalsiyum " salgilayan özel bir hücre tipine farklilasirlar.Bu hücreler, canlinin içinde yasadigi deniz yada okyanuslardan absorbe edilen kalsiyumu düzenli bir sekilde salgilayarak canlinin etrafinda kalin bir tabaka olusmasini saglarlar. Okyanus bitkileri Su an soludugunuz havadaki oksijenin büyük bir kismi, deniz ve okyanuslarda yasayan ve klorofil içeren bitkiler tarafinda fotosentez yoluyla üretilir. Nasil ki atmosfer sartlarinda klorofil içeren bir bitki havadan CO2 yi, topraktan suyu ve günesten isigi alarak fotosentez yapip canlilar için oksijen üretiyorsa ayni sekilde deniz ve okyanuslarda da günes isiginin varabildigi bölgelerde bulunan klorofilli bitkilerde oksijen üretmektedirler. Bu canlilarin büyük bölümünü ise yosunlar teskil eder.Bunun yaninda daha adini sayamadigimiz onbinlerce tür deniz bitkisi vardir. Deniz bitkilerinin ihtiyaci olan su zaten yasam ortami olan denizden, CO2 ihtiyaci ise diger tüm deniz canlilari tarafindan karsilanir.Eger bu tabiat harikalari denizlerde var olmasaydi hemen hemen tüm deniz canlilari oksijensizlikten hayatini kaybedecekti. Basit bir canli gibi görünen bu yaratiklari aslinda ekosistemin vazgeçilmez birer parçasidirlar. Bu canlilarin milimetrelerle ölçülebilecek kadar küçük olanlari oldugu gibi yüzlerce metre uzunlugunda devasal boyutlara sahip olanlarida vardir. Atlas okyanusu kiyilarinda yasayan birtür deniz bitkisi, fotosentez yapmak için oldukça mükemmel bir yöntem gelistirmistir. Bu bitki tipki bir " Palmiye " agacina benzer ve onlarca metre uzunlugundaki dallarinin uçlarinda bir veya birkaç adet hava kesesi bulunur.Bu hava keseleri, bitki gelistikçe gitgide büyüyerek bitkinin dallarini suyun kaldirma kuvvetinin etkisiyle yukari dogru kaldirir. Deniz yüzeyine yaklasan dallar günes isigindan olabildigince faydalanarak fotosentez yapma imkani bulur. Deniz bitkilerinin üremeleri hem eseyli hemde eseysiz olabilmektedir. Erkek bitkiden gelen bir sperm ile disi bitkiden gelen bir yumurta hücresinin birlesmesiyle (eseyli üreme) yavru bir bitki meydana gelebildigi gibi bazi bitkiler ikiye bölünme ve " Tomurcuklanma " ile de çogalabilir (eseysiz üreme). Tomurcuklanma, bir bitkinin belirli bir bölgesinde büyüyen hücre veya hücre gruplarinin daha sonra bitkiden ayrilarak bagimsiz bir sekilde kendi basina büyüyüp gelismesi olayidir. Derisi dikenliler (Ekinodermata) Derisi dikenli deniz yaratiklarinin basinda " Deniz yildizlari ", " Deniz hiyarlari " ve degisik sekillerdeki dikenli canlilar gelmektedir. Bu hayvanlarin yasayis tarzlari pek aktif olmasada görünüs itibariyle deniz diplerinde bir renk cümbüsü meydana getirmektedirler.Görünümleri göze çok hos gelen bu yaratiklar alimli renkleriyle deniz diplerindeki vahsi yasamin vazgeçilmez birer parçasidirlar. Deniz yildizlari bilindigi gibi ikiye, üçe, dörde veya daha fazla sayida parçalara ayrilmasina ragmen her ayirdiginiz parça kendini tamir ederek yeni bir deniz yildizi verebilir.Canlilarin bu yeteneklerine "rejenerasyon" yani tamir edebilme özelligi denir. Deniz yildizlarinin bazi türlerinde dikenler oldukça uzun olup, yildizi vahsi deniz canlilari tarafindan parçalanma tehlikesine karsi korur Deniz hiyarlari, protein bakimindan zengin olup uzakdogu ülkelerinde besin kaynagi olarak tüketilmektedir.Bu canlilar genellikle fazla derin olmayan okyanus sularinda yasarlar. Deniz kestaneleri ise disaridan basit bir yapiya sahip oldugu izlenimini verir fakat iç organlari oldukça kompleks bir yapiya sahiptir.Öyleki kestanenin içerisinde, hayvanin sudaki oksijeni rahatça soluyabilmesi için suyu vücudunun içerisinden geçiren karmasik devri-daim organlari bile vardir. Bu mükemmel deniz yaratiklari, gözalici renkleriyle deniz diplerini adeta birer cennete çevirirler. Yüksek Organizasyonlu Deniz Canlilari : Yüksek organizasyonlu canlilar çok sayida türleri kapsamakla birlikte biz en çok bilinen " Köpek baliklari " ve " Balina " türlerine örnekler verdik. Köpek baliklari belgesellerde ve filmlerde gördügünüzden çok daha mükemmel ve gizemli yaratiklardir.Köpek baliklarinin kendi içerisinde birçok alt türleri vardir. Örnegin mamuzlu köpek baligi, boga köpek baligi ve çekiç basli köpek baligi gibi.Fakat köpek baliklarinin bazilari çok uysal olmakla birlikte diger bazi türleri oldukça saldirgan olup önüne gelen hemen her tür canliya saldirabilirler. Saldirgan bir köpek baligi grubu kendilerinden onlarca kat daha büyük olan balinalara bile saldirabilirler. Bu baliklardan en ünlüsü ise " Beyaz köpek baliklari " dir. Bu baliklar köpek baligi türleri arasinda en saldirgani olup yunuslara, foklara, deniz aslanlarina ve hatta balinalara bile saldirabilirler. Bir köpek baligini tehlikeli yapan en önemli organlari disleridir.Eger disleri normal bir baliginki gibi pek keskin olmasaydi, köpek baliklari tanindigi kadar tehlikeli olmayackti. Birçok insan köpek baliginin avini özellikle kuvvetli çene darbeleriyle parçaladigini zanneder fakat asil fonksiyon çenede degildir. Köpek baliklarinin disleri öyle mükemmel bir anatomiye sahiptirki hem bir jilet kadar keskin hemde ince elenmis bir testere kadar yivlidir. Bir köpek baligi avini isirdiktan sonra basini derhal saga sola dogru sallamaya baslar.Bu sekilde davranarak disleri arasina sikisan bir objeyi ivmelendirip yanal olarak disleri üzerinde hareket etmesini saglar. Obje veya av, disleri üzerinde hareket ettigi zaman jilet kadar keskin olan disler tarafindan rahatlikla kesilir.Böylelikle balik avini kisa süre içerisinde parçalayarak etkisiz hale getirir. Köpek baligi avini parçalarken gözlerini asla açmaz. Bunu yapmasinin nedeni ise avini parçalamasi esnasinda etrafa saçilacak kemik parçalarindan gözlerini korumak içindir. Çünki bir canlinin kemigi kirildigi (insan olsun hayvan olsun) zaman küçük partiküller haline gelen kemik parçalari oldukça keskin bir hale dönüsür. Bazi köpek baligi türlerinin boylari oldukça büyük olmasina karsin çok uysal olabilirler.Hatta bazi türleri iri memelilere saldirmak yerine deniz planktonlari ve küçük deniz canlilari ile beslenmektedir. Buna karsin dogada, resimdekinden çok daha iri köpek baliklarininda yasamasina karsin bazilari insanlarin zannettikleri gibi bir saldirganlik göstermezler. Köpek baliklarinin vücut sekilleri çok mükemmel bir sekilde dizayn edilmistir.Tipki bir füzeye benzeyen vücutlari ve güçlü yüzgeçleri sayesinde saatte 60 - 80 km ye kadar hiza erisebilmektedirler. Diger bir mükemmel özellikleri ise solungaçlarinin bu kadar süratle giderken sudaki oksijenden maksimum istifade edebilmesi için yan yaraflarda özel olarak konumlanmis olmasidir. Dikkat ettiyseniz yaris arabalarinin her iki yaninda hava bosluklari oldugunu görürsünüz.Bu bosluklar, araba süratle giderken motorun havayi daha rahat bir sekilde emmesine yardimci olmak içindir.Köpek baliklarinin yanlarindaki solungaçlarda, hayvan büyük bir süratle yüzerken sudaki oksijeni maksimum absorbe etmesi için yan taraflarda birer bosluk birakacak sekilde konumlanir. Insanlarin köpek baliklarindan esinlenerek taklit etmeye çalistigi bu mükemmel sistemi köpek baliklari haberleri bile olmadan milyonlarca yildir kullanmaktadir. Bugün halen sadece zevk amaciyla köpek baligi öldüren insanlar vardir.Bazi balikçilar ise besin degeri ve parasal degeri çok yüksek oldugundan dolayi hiç durmaksizin köpek baliklarini avlamaktadirlar. Bazi uzakdogu ülkelerinde balikçilar, lüks restoranlarin ihtiyaçlarini karsilamak amaciyla yanlizca yüzgeçlerini kesip baliklari tekrar çaresiz bir sekilde denize atmaktadirlar. Eger bu mükemmel yaratiklarin korunmasi amaciyla bir önlem alinmaz ise yakin bir zaman içerisinde soylari tükenme noktasina gelecektir. Ve eger köpek baliklarinin soylari tükenirse, denizde avlanilmasi ve sayilarinin azaltilmasi gereken birçok av hayvaninin nüfuslari gitgide artacak ve deniz ekosistemini altüst etmeye baslayacatir. Balinalar Dogadaki en büyük memeli hayvanlari temsil eden balinalarin bazi türleri küçük boyutlara sahip olmasina karsin bazi türlerinin boylari ise 35 - 40 metreye kadar varabilir. Balinalarda kendi aralarinda uysal ve saldirgan olarak ayrilirlar.En taninan uysal balina, boyutlari 35 metreye varmasina ragmen planktonlarla beslenerek yasamlarini sürdürürler. Balinalarin cüssesinin büyük olmasina karsin oldukça uysaldir.Bu balinalarin bazi türleri plnaktonlar ve küçük baliklar ile beslenmektedirler. Planktonlarin çok küçük canlilar oldugunu biliyoruz.Fakat bu kadar büyük cüsseli bir balina plnaktonlarla nasil beslenebilmektedir ? Balina bunu, çenelerinin arkasinda bulunan kusursuz bir yüzgeç sistemi sayesinde basarir.Boyu yaklasik 40 metreye varan ve planktonlarla beslenen bir balina, tek hamlede vücuduna 3 oda dolusu suyu doldurabilir.Vücuduna doldurdugu bu muazzam su kütlesini, mükemmel bir yüzgeç sistemine sahip çenelerinden tekrar disari verir. Su büyük bir hizla disari çikarken plankton ve diger küçük canlilar (ufak baliklar gibi) çenedeki yüzgeçte kalirlar.Bir cm3 suyun içinde onlarca plankton bulunduguna göre metrelerce küp su içerisinde içerisinde milyarlarca plankton bulunabilir.Balina bunu defalarca yaparak, midesini protein degeri yüksek bu ufak canlilar ile doldurur. Katil balinalar saldirgan olmalarina karsin egitildikleri zaman dost olmaktadirlar.Fakat vahsi yasam ortamlarinda birer köpek baligi gibidirler. Denizlerin en vahsi hayvanlari sayilan beyaz köpek baliklari bile bir katil balinayi gördügü zaman mümkün oldugu kadar ondan kaçinmaya çalisir. Bu canlilar, karsilastikari bir köpek baligini tek bir çene darbesiyle ikiye bölebilirler. Bazi katil balinalar fok ve deniz aslanlarini avlamak için sahile kadar kovalayabilirler.Ve bu kovalamaca neticesinde basarilida olurlar. Katil balinanin yaksaltigini gören fok veya deniz aslani sürüsü çareyi kumsala çikmakta bulurlar. Fakat katil balinanin sahile kadar çikacagini ummazlar. Balina foklari avlamak için kendini sahile kadar vurabilmektedir.Nitekim bazi foklar hayvanin koca agizindan kurtulamaz. Televizyonlarda gördügümüz gösteri balinalari bu katil balinalardir.Vahsi yasamlarindakinin aksine egitilidikleri zaman oldukça uysal olan bu yaratiklar insanlarin çok yakin dostu olabilmektdir. Senede bir kez belirli dönemlerde dogum yapan balinalar, yavrularini dogurmak için sig sulara göç ederler. Göç sirasinda binlerce mil yol katedebilirler.Deniz arastirmacilari halen balinalarin nasil yönlerini sasirmadan devasal okyanuslarda istedikleri yerlere gidebildiklerini tam olarak çözememislerdir. Bir balina sürüsünün içindeki bireyler, çok tiz bir ses çikararak birbirleriyle anlasmaktadirlar.Bu seslerin ne anlama geldigi konusunda uzun arastirmalar yapilmaktadir. Çikarilan bu sesler kilometrelerce ötedeki baska balinalar tarafindan ve hatta insanlar tarafindan bile duyulabilr. Balinalarin bu seslere nasil yanit verdikleri ise bir sirdir. Balina ve köpek baliklari deniz ekosistemi için mutlaka gerekli olan canlilardir.Fakat insanlarin bilinçsiz avlanmalari sonucunda denizlerdeki av - avci orani süratle bozulmakta, ve denizel ekosistemin dengeleri altüst olmak üzeredir. Örnek verecek olursak okyanuslarda istakozlarla beslenen ve ayni zamanda besin olarak tüketilen bir balik türü, istakozlarin bilinçsiz avlanilmasi sonucunda açlik ve nihayetinde ölüm tehlikesiyle karsi karsiya gelir.Yani insanlar, besin olarak tükettigi bu baliklari kendi elleriyle yok etmektedirler. Ayni sekilde köpek baligi ve balinalarin sayilarindaki süratli düsüs, av sayisinin yükselmesine (örnegin foklar ve küçük baliklar) ve dolayisiyla denizel ekosistemde bir nüfus patlamasina yol açar.Av canlilarinin sayisi yükseldikçe denizdeki diger canlilarin yasamlari olumsuz yönde etkilenmektedir. Umuyoruzki su an bu mükemmel deniz yaratiklarinin soylarinin devam etmesi için yürütülen çalismalar olumlu sonuç versin ve hergeçen gün yikilma noktasina biraz daha yaklasan deniz ekosistemi eski durumuna kavuşsun.

http://www.biyologlar.com/deniz-biyolojisi-hakkinda-bilgi

Evrim Kuramı ve Maymun Sorunu

"Evet,insanlar gerçekten de bir evrim geçirdi;ancak yalnızca maymunlardan hatta diğer memeli hayvanlardan türemedi. Bizler, en uzağı ilk bakteriler olan uzun bir atalar soyundan evrildik" Lynn Margulis (Ortak yaşam Gezegeni, Türkçesi:Ela Uluhan,Varlık/Bilim s:10) İnsan kanı ile maymun kanı arasında büyük bir benzerlik vardır. Örneğin 287 aminoasitten oluşan hemoglobin A molekülü insan ve şempanzede tıpatıp aynıdır. Aynı molekül bakımından insan ve goril kanı arasındaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19,koyunda 26,tavukta 45,sazan balığında 95 aminoasit ve insan hemoglobin A molekülünden ayrılmaktadır. Görüldüğü gibi kanın bir öğesi olan hemoglobin A molekülü bakımından insana en yakın canlı olan şempanzede hiç fark yok iken insandan uzaklaştıkça farklılıklar artmaktadır. Daha bir çok protein üzerinde yapılan çalışmalarda aynı yönde sonuçlar elde edilmiştir. Prof.Dr.Aykut Kence (ODTÜ,Fen-Edebiyat Fak) TÜBA Bilimsel Toplantı Serileri 2 Şimdi size bir başka büyük kuramı sunmaya çalışacağım: Evrim Kuramı. Bugün bilime karşı büyük bir düşünsel saldırı var. Şu güzel ülkemiz ve insanlarımız,bilim ve teknolojinin olanaklarından daha tam olarak yararlanamazken bilimin en genel geçer kuramlarını tartışarak zaman öldürmek ne acı. Bilim belki her zaman onu "savunmayı" gerektirdi. Ama gerek 20. yüzyılın büyük savaşları,sosyalist sistemin çatırdayarak çökmesi,teknolojinin yanlış ya da yıkım için kullanılması,gerekse ülkemizdeki,siyasi,ekonomik ve ahlaki bunalım,bilim düşmanlarının saldırılarını kolaylaştırıcı bir zemin hazırlıyor. Bu konuda evrim kuramının da çok iyi anlaşılması ve anlatılması gerekiyor.2000 Mayıs ayında Sabancı Üniversitesi'ne konuk öğretim üyesi olarak gelen Harvard Ünversitesi'nden Andrew Berry, doğal seçimle rastlantı için güzel bir örnek verdi: "Bütün sarışın insanlar cilt kanserinden ölürse burada doğal seçim sürecinin işlediğini söyleyebiliriz;ama tüm sarışınların bir gemiye binip boğulması bir rastlantıdır." Ben iyi bir derleme yaptığıma inanıyorum,ustalara söz vererek bunu da sizinle paylaşmak istiyorum. Ayrıca Erzurumlu İbrahim Hakkı'nın Marifetname adlı eserinden uzun alıntılar veriyorum. Hayvan Deyip Geçmeyelim! Evrim Kuramına itiraz edenlerin en büyük kaygısı, atalarının herhangi bir hayvana bağlanamayacağı noktasındadır. Niye Hayvan? Çünkü, iddiaya göre evrim kuramının en temel noktalarından biri, insanın maymundan türediğidir. Darwin, aslında insanın maymundan geldiğini söylemedi. Darwin, bütün canlıların, birbiriyle akraba olduğunu söyledi. En yakın komşumuz, en yakın yeğenimiz maymunlardır; ama biz, maymunlardan gelmiyoruz; bize söyleyebildikleri kadarıyla maymunlar da bizim atamız olduğunu inkar ediyorlar ve bize bir yakınlık duymuyorlar! Onlar, kendi dünyalarını tercih ediyorlar! Hayvanoğlu Hayvan! Maymun sorununa döneceğim,ama önce genel olarak hayvanlarla ilgili birkaç eğlencelik yazacağım. Belediye otobüsünde mi, yoksa lüks bir baloda mı olmuş bilmiyorum; ama şu olay olmuş: Adamın biri, otobüsteki bir hanımefendinin ya da başka bir adamla dans eden hanımefendinin ayağına basmış... Hanımefendi, önce ses çıkarmamış. Ama adamın paldır küldür, hiç de dans etmeden sallandığını ve yeniden ayağına bastığını gördükten sonra: " Beyefendi, ayağıma basıyorsunuz. Biraz dikkat etsenize!" diye çıkışmış. Bizim maganda yine pek oralı olmamış. Bunun üzerine hanımefendi,sessizce, ama onun duyacağı şekilde "Hayvan!" demiş. Bizimki hayvanlığı da hiç üzerine almamış. Bunun üzerine hanımefendi öfkelenmiş. "Bakınız bey, bakınız! " Hayvan! dediysek, herıld(herhalde’nin kısaltılmışı ve İngilizcesi!) kuş, bülbül, serçe demek istemedik; ayı, öküz, domuz gibi bir şey demek istedik !" demiş. Ama söylentiye göre adam, bu nazik hanımefendiyi yine anlamamış! Bu öykü bana anlatılınca pek sıkılmıştım. Çünkü, pistlerdeki durumum, anlatılan “Anadolu Evladından” hiç de farklı değildi. Kadın, sanki bana konuşuyormuş gibi kıpkırmızı olmuştum. Bunun için , dansetmek mecburiyetinde bırakıldığım zamanlarda(!)pist alanın seyrelmesini dört gözle bekler(!) ve dans ederken de eşime ilk kez sarılıyormuşçasına sarılırım! Böylece hem dans eden çiftlerden, hem de komşuların rahatsız edici konuşmalarından uzak dururum! İnsanlar,genellikle hayvanları bir bütün olarak kendisinden aşağı yaratıklar olarak görür. Bazı insanlar,bazı insanları da aşağı yaratıklar olarak görür de konumuz şimdilik birincisi üzerine. Kızdığımız birine sık sık "hayvan oğlu hayvan " demez miyiz?Bu hayvanlıktan en çok nasibini alan hayvanlar eşek ile öküzdür. Oysa ikisi de insanların öyle çok kahırlarını çeker ki anlatamam. Bir de bunu ayıları ekleyebiliriz. Bu arada savaşçı bir kabile annesi oğlu için "benim kartal pençeli oğlum" der. Kızını pazarlayan(afedersiniz) gösterişçi anne şöyle demez mi: “Ay kardeş, kendi kızım diye söylemiyorum. Görüyorsun işte boy onda bos onda. Ceylan gibi kız. O görgüsüzler, benim ahu (ceylan) gözlü kızımdan daha güzelini nerede bulabilir?” Oğlunu pazarlayan (yine afedersiniz) bir anne ya da babanın “benim oğlum Aslan gibidir” derken, oğlunun Aslandan daha güçsüzlüğünün altını çizmez mi? Şimdi konumuza dönelim. Hayvanlarla bir ilgimiz ve ilişkimiz var mı? Anlattığım gibi var. Kartal var, köpek var, tazı var, kedi var, tavuk var... Şimdi ilginç bir soru: karalara önce bitkiler mi, yoksa hayvanlar mı çıktı? Umarım insanlık onurunuz incinmez, çünkü karalara bizden önce bitkiler çıkmış. Bitki dediysek, güller, sümbüller, kaynana dili değil belki; ama bitki işte... 400 milyon yıl önce karalara ilk olarak "bitkiler " çıktı. 350 milyon yıl önce ilk çift yaşamlı hayvanlar (amfibiler) göründü. 320 milyon yıl önce ilk sürüngenler arşınlamaya başladı karaları. Evrim Kuramının İlk Soruları Bu kuram, her çocuğun, her ergenin, her düşünen insanın yaşamı boyunca zaman zaman kendine sorduğu soruların yanıtını araştırır. Bu sorular ,hepimizin aklını kurcalayan sorulardır: Nereden geldik, nereye doğru gidiyoruz? İnsanoğlunun yaşamında yanıtını bilmek istediği soru böyle özetlenebilir. Ama biz yine de basit sorularla olayı deşmeye çalışalım: Bundan diyelim ki bin yıl, milyon yıl, milyar yıl önce de insan, insan mıydı, tavuk tavuk muydu, kedi kedi miydi? Çam ağacı çam ağacı mıydı?Yani canlılığın tarihinin “filmini” bugünden geriye doğru sarsak neler görebiliriz? Bu film, nereye kadar ve hangi bilgilerle geriye sarılabiliyor? Evrim Kuramı, çok basit olarak “hayvanlar ve bitkiler, bugünlere gelirken değişikliklere uğrayarak mı geldi; yoksa her şey, bir dahi vuruşuyla başladı ve hiç değişmeden sürüp gidiyor mu?” sorularına bilimin verdiği yanıtları kapsıyor. Doğal olarak bilimin verdiği yanıtlar deyince akan sular durmuyor ve bu konuda insan aklının çağdaş düşmanları da boş durmuyor; oldukça inceltilmiş biçimiyle bilime saldırılarını sürdürüyorlar. Bunun yalnız geri kalmış ülkelerde sürdürüldüğünü sanmayınız. En başta ABD olmak üzere,hemen tüm gelişmiş ülkelerde de bilimin düşmanları boş durmuyor. Evrim kuramına karşı yürütülen kampanya, ülkemizde özellikle 20. yy biterken doruk noktasına çıktı. Bunu basit bir inanç kayması olarak görmeyelim. Bu, yalnızca özgür düşünceye değil, başta tıp olmak üzere doğal bilimlere ve daha da geniş anlamıyla bilimsel felsefeye saldırıdır. Evrim kuramına saldıranların ilk ve ilkel saldırılarıyla konuya girmek istiyorum. Bu, maymun sorunudur. Maymun Sorunu: Ünlü Tartışma! İnsanın, “en uyumlunun yaşaması” ilkesiyle, daha ilkel canlılardan evrimleştiği hakkındaki Darwin kuramı, Türlerin Kökeni ’nin yayımlandığı 1859 yılından beri müthiş tepkiler almıştır. Özellikle 1860 Haziran’ında Darwin’i savunan biyolog T.H. Huxley ile Tanrı’yı savunan Oxford başpiskoposu Wilberforce arasında halka açık bir tartışma yapılıyor. Bu tartışmada Piskopos, Darwin’in tezinin çok saçma olduğunu savunuyor ve konuşmasını alaylı bir biçimde Huxley’in büyükanne tarafından mı yoksa büyükbaba tarafından mı maymundan geldiğini sorarak bitiriyordu. Huxley ise evrimin kanıtlarını ustaca ortaya koymuş ve atasının bir maymun olmasının, piskoposunki gibi entellektüel bir fahişe olmasından daha iyi olduğunu söyleyerek bitirmiştir. Bu sırada Lady Brewester baygınlık geçirmiş, dışarı taşınırken hakkın rahmetine kavuşmuştur.”(John Taylor, Kara Delik, e yayınları s: 39) Kaptan Fitzroy’un Kutsal Kitap’la uyumlu düşünceleri yolculuk süresince gittikçe daha da katılaştı. O, anlamaya çalışmamız gereken kimi şeler olduğuna inanıyordu;evrenin ilk kaynağı, bütün bilimsel araştırmaların erişimi dışında bulunması gereken bir giz olarak kalmalıydı. Fakat Darwin çoktandır bunu kabul etmekten çok uzaktı; Kutsal Kitap’a takılıp kalamazdı,onun ötesine geçmek zorundaydı. Uygar insan bütün soruların en can alıcısını-"biz nereden geldik?” sorusunu- sormaya, soruşturmalarını kendisini götürdüğü yere kadar götürmeye devam etmekle yükümlüydü. Bu tartışmaya bir son vermek mümkün olmayacaktı. Tartışma, biri bilimsel ve araştırmalara açık, öteki dinsel ve tutucu, karşıt iki görüşün 25 yıl sonra Oxford’da yapılan o sert toplantıdaki çatışmasının bir ön hazırlığıydı.” Ne var ki bir grup insan, yani Kilise, Darwin’in kuramına şiddetle karşı çıktı. Darwin’in Türlerin Kökeni adlı kitabının yayımlanması(1859) bilim ile din arasında sert bir tartışmaya yol açtı. Darwin’in çekingenliği kendisinin bu tartışmada yer almasını engelledi;ama evrimle ilgili kavgacı savunmalarıyla “Darwin’in Buldoğu” lakabını alan dostu Thomas Huxley’in sözünü sakınmak gibi bir özelliği yoktu. Huxley ile Piskopos Wilberforce arasındaki kavga, Ronald Clark’in Darwin biyografisinde şöyle anlatılır: “Britanya İleri Araştırmalar Kurumu’nun 1860 yazında Oxford’da yaptığı yıllık toplantıda[ Darwin’in kuramı konusundaki] kuşkular boşlukta kaldı. Kurum üyeleri 19. yy bilim tarihinin en parlak sahnelerinden birine tanık olacaklardı. Bu, Oxford Piskoposu Samuel Wilberforce ile Thomas Huxley’in bir tartışma sırasında karşılıklı atışmalarından oluşan bir sahneydi. Çağının öteki kilise adamları gibi Wilberforce da bilimsel bakımdan tam bir karacahildi.(s: 144). Tartışma beklendiği için salon tıka basa doluydu. Wilberforce’un, Huxley’in de daha sonra yazacağı gibi “birinci sınıf bir tartışmacı” olmak gibi bir ünü vardı: “kartlarını uygun oynasaydı evrim kuramını yeterince savunma şansımız pek olmazdı.” Wilberforce, akıcı ve süslü bir konuşmayla, kendisini yenilgiye uğratmak üzere olduğunu belirttiği Huxley’e övgüler düzdü. Ardından ona döndü ve “soyunun büyük annesi mi yoksa büyük babası tarafından mı maymundan geldiğini” öğrenmek istedi. Huxley rakibine döndü ve haykırdı: “Tanrı onu ellerime teslim etti.” “Eğer” dedi [kürsüden], “bana bir büyük baba olarak zavallı bir maymunu mu yoksa doğanın büyük bir yetenek ve güç bahşedip bunlarla donattığı;ama bu yetenekleriyle gücünü yalnızca birtakım eğlenceli sözleri ağırbaşlı bilimsel bir tartışma gibi sunmak amacıyla kullanan bir insanı mı yeğlersin? diye soracak olsalar, hiç duraksamadan tercihimin maymundan yana olduğunu söylerdim.” Huxley bildiği en güçlü darbeyle karşılık vermişti. Bir piskoposu küçük düşürmek,bundan bir ya da birkaç yüzyıl önce pek rastlanır bir şey değildi;hele halkın önünde, kendi piskoposluk bölgesinde küçük düşürmek neredeyse hiç görülmemişti. Dinleyiciler arasında oranın ileri gelenlerinden bir hanım şok geçirip bayıldı Dinleyicilerin çoğu alkışladı. Fakat Robert Fitzroy oturduğu yerden kalktı ve otuz yıl önce Darwin’le gemide yaptığı bir tartışmayı hatırlattı. Kutsal Kitap’ı Huxley’e salladı ve süslü sözlerle bütün doğruların kaynağının bu kitap olduğunu söyledi. Bu öykünün birinci elden bir anlatımı yoktur. Harvardlı biyolog Stephen Jay Gould diyaloğun çoğu bölümünü yaklaşık 20 yıl sonra Huxley’in kendisinin uydurduğu kanısındadır. Fakat bu konuşmalardan kimsenin bir kuşkusu olmadığı yollu bir dip notu da vardır. Huxley Wilberforce’a duyduğu nefreti 1873'e, Piskopos atından düşüp kafasını bir taşa çarparak öldüğü yıla dek sürdü. “Kafası” dedi Huxley bunun öğrenince kıs kıs gülerek “gerçeğe bir kez daha tosladı;ama bu kez sonuç ölümcül oldu." (Adrian Berry, Bilimin Arka Yüzü, TÜBİTAK yay, s: 137-146) Bozkurt Güvenç, olayı değişik sözlerle şöyle anıyor: Huxley soruyu ciddiye alıyor (oysa Darwin aldırmıyor) diyor ki: “Gerçeklere saygısız bir insan soyundan gelmektense, gerçeklere saygılı bir maymun soyundan geldiğimi kabul ederim.” Gazeteciler- o zaman telefon yok- hemen koşuyor, gazete yönetim merkezlerine “ Evrimciler, maymundan geldiklerini kabul ettiler” haberini yetiştiriyorlar. Tabi biz, 120 yıldır değerli dinleyenlerim, gazete haberleriyle Darwin’i ve bilimi yargılıyoruz. Fen fakültelerimizin biyoloji bölümleri dahil. Çünkü kimse, Darwin’in, Türlerin Kökenini, İnsanın Yücelişini okumuyor. Mesele, Darwin konusu, maymun meselesi değil. Dünyayı algılama meselesi. İşte bu konuda, yalnız biz değil, bütün dünyada büyük sorunlar var.” (Prof. Dr. Bozkurt Güvenç,TÜBA, Bilimsel Toplantı Serileri: 2, Bilim ve Eğitim s: 68) Maymun sorunu,maymunları bile rahatsız edecek kalitesizlikle reddediliyor. Neden mi? Size birileri “Efendim size dedenizin dedesi ve onun da dedesi hüdavendigar Murat han hazretlerinden selam ve muhabbetler getirdik. Sizin durumunuzu sorarlar. Sülalem aynı geleneklerle devam etmede midir? Yoksa bazı boylar birliğimizi bozmuş mudur?..” diye soruyor diyelim. Şimdi siz de bu soruyu yanıtlayın. Sanırım şöyle olabilir: “ Benim dedemin dedesinin dedesi Rumeli Beylerbeyi falanca beymiş. Ya da “benim bugünkü durumuma bakmayın. Bendeniz Fatih Sultan Mehmet Han hazretlerinin onüçüncü göbekten torunu olurum” diyebilirsiniz. Ve de torunluğa uygun görev isterim!...” Bu da sizin ne kadar köklü, ne kadar akıllı, ne kadar sabırlı, ne kadar alçakgönüllü(!) olduğunuzu gösterir. İLK İNSANLAR İnsan nasıl insan oldu? “Homo sapiens ’in dil, gelişmiş teknolojik beceriler ve ahlaki yargılara varabilmek gibi özel nitelikleri antropologları uzun zamandır hayranlığa sürüklüyor. Ama yakın zamanlarda antropolojide yaşanan en önemli değişikliklerden biri, bütün bu niteliklere karşın, Afrikalı insansımaymunlarla çok yakın bir bağlantımız olduğunu anlaşılmasıdır. Bu önemli görüş değişikliği nasıl gerçekleşti? Bu bölümde, Charles Darwin’in en eski insan türlerinin özel doğası hakkındaki fikirlerinin antropologları nasıl etkilediğini, yeni araştırmaların Afrikalı insansımaymunlarla evrimsel yakınlığımızı nasıl ortaya çıkardığını ve doğadaki yerimiz hakkında farklı bir bakış açısı geliştirmemizi gerektirdiğini tartışacağım. 1859'da Türlerin Kökeni adlı yapıtında Darwin, evrimin insanlar açısından ne anlama geldiği konusuna girmekten kaçınmıştı. Sonraki baskılara ise çekinceli bir cümle eklendi: “İnsanın kökeni ve tarihi aydınlatılacaktır.” Darwin bu kısa cümleyi, 1871'de yayınlanan İnsanın Türeyişi adlı kitabında ayrıntılandırdı. Hala çok hassas olan bir konuyu ele alarak, antropolojinin kuramsal yapısına iki sütun dikti. Bunlardan ilki, insanların ilk nerede evrildikleriyle (ona zamanında çok az kişi inanmıştı, oysa haklıydı), ikincisi ise, bu evrimin şekli ya da biçimiyle ilgiliydi... Darwin’in evrimimizin şekli hakkındaki görüşleri antropoloji bilimini birkaç yıl öncesine dek etkiledi ve sonra, yanlış olduğu anlaşıldı. Darwin, insanlığın beşiğinin Afrika olduğunu söylüyordu. Bu sonuca basit bir mantıkla varmıştı: Dünyanın her büyük bölgesinde hayatta olan memeliler, aynı bölgede evrilmiş türlerle yakın bağlantı içindedirler. Dolaysıyla, Afrikada bir zamanlar, goril ve şempanzelerle yakından bağlantılı ve günümüzde nesli tükenmiş olan insansımaymunlar yaşamış olabilir: bu iki tür insanın en yakın akrabaları olduğuna göre, ilk atalarımızın Afrika kıtasında yaşamış olma olasılığı, başka bir yerde yaşamış olmaları olasılığından daha yüksektir. Darwin’in bu satırları yazdığı sıralarda hiçbir yerde erken insan fosillerinin bulunmadığını unutmamalıyız; vardığı sonuç tamamen kurama dayandırılmıştı. Darwin’in zamanında bilinen tek insan fosilleri Avrupalı Neandertal insanına aitti ve bunlar, insan gelişiminin görece yeni bir aşamasını temsil ediyorlardı. Afrika'nın Sihiri Antropologlar, Darwin’in yorumundan hiç hoşlanmadılar; bunun en önemli nedenlerinden biri, tropik Afrika’ya sömürgeci gözüyle, küçümseyerek bakılmasıydı: Kara Kıta, Homo sapiens gibi soylu bir yaratığın kökeni için hiç de uygun bir yer olarak görülmüyordu. Yüzyıl başında Avrupa ve Afrika’da yeni insan fosillerinin bulunmasıyla birlikte, Afrika kökenli olma fikrine duyulan küçümseme arttı ve bu tutum onyıllarca sürdü.” Yazar(R.Leakey) 1931'de Camridge’deki hocalarına insanın kökenini Doğu Afrika’da aramayı planladığında kendisine Asya’ya yönelmesi istendi. “Bu olay, bilimcilerin mantık kadar duygularından da etkilenebildiklerini gösteriyor.”(s:16) Darwin’in İnsanın Türeyişi ’nde ulaştığı ikinci önemli sonuç, insanların önemli ayırıcı özelliklerinin-iki ayaklılık, teknoloji ve büyük bir beyin- birbirleriyle uyum içinde gelişmiş olmasıydı: Kollarının ve ellerinin serbest kalması ve ayakları üstünde sağlamca durabilmesi insan için bir avantaj olmuşsa... insanın ataları için daha dik ya da iki ayaklı hale gelmenin daha avantajlı olmaması için bir neden göremiyorum. Eller ve kollar bedenin tüm yükünü taşımak için kullanılıdıkça... ya da ağaçlara tırmanmaya uygun oldukça, silah yapmak ya da taş ve mızrakları hedefe atmak için gerekli şekilde gelişemezdi. Burada Darwin, alışılmadık hareket tarzımızdaki gelişimin, taştan silah yapımıyla doğrudan bağlantılı olduğunu savunmaktadır. Daha da ileri giderek bu evrim değişimlerini, insanlardaki, insansımaymunların hançere benzeyen köpekdişleriyle karşılaştırıldığında son derece küçük olan köpekdişlerinin kökeniyle ilişkilendirmiştir. İnsanın Türeyişi’nde şöyle demekteydi: “İnsanın ataları büyük olasılıkla, büyük köpekdişlerine sahiptiler; ama düşmanları ya da rakipleriyle savaşırken taş, sopa ya da diğer silahları kullanma alışkanlığını geliştirmeleriyle birlikte, çenelerini ve dişlerini daha az kullanmaya başladılar. Bu durumda çene ve dişler küçülecekti.” Silah yapabilen bu iki ayaklı yaratıklar Darwin’e göre, daha çok zeka gerektiren yoğun bir sosyal etkileşim geliştirdiler. Atalarımızın zekalarının gelişmesiyle birlikte, teknolojik ve sosyal gelişmişlik düzeyleri de yükseldi ve bu da, daha gelişmiş bir zeka gerektirdi. Böylece her yeni özellik, diğer özelliklerin gelişmesini sağladı. Bu bağlantılı evrimi hipotezi insanın kökeni konusunda açık seçik bir senaryo sunuyordu ve antropoloji biliminin gelişimine merkez oluşturdu. Bu senaryoya göre ilk insan türü, iki ayaklı bir insansımaymundan öte bir şeydi: Homo sapiens ’te takdir ettiğimiz özelliklerden bazılarına daha o zamandan sahipti. Bu öylesine güçlü ve akla yakın bir imgeydi ki, antropologlar uzun bir süre, bu imgenin etrafında inandırıcı hipotezler dokuyabildiler. Ama senaryo, bilimin ötesine geçti: İnsanların insansımaymunlardan evrimsel farklılaşmaları aniden ve çok eski bir dönemde gerçekleşmişse, bizimle doğanın geri kalan kısmı arasına büyük bir uzaklık girmiş demekti. Homo sapiens’in tamamen farklı bir yaratık olduğuna inananlar için bu bakış açısı son derece rahatlatıcıydı. Bu inanç hem Darwin’in döneminde hem de yüzyılımızda bilim adamları arasında oldukça yaygındı. Söz gelimi, 19.yy İngiliz doğa bilimcisi-ve Darwin’den bağımsız olarak doğal seçim kuramını yaratmış olan- Russel Wallace bu kuramı, insanlığın en çok değer verdiğimiz yönlerine uygulamak istemedi. İnsanları, yalnızca doğal seçimin ürünü olarak görülemeyecek denli akıllı, incelmiş ve gelişmiş buluyordu. İlkel avcı-toplayıcıların biyolojik açıdan bu özelliklere gereksinim duymayacaklarını ve dolaysıyla, doğal seçim sonucu gelişmiş olamayacaklarının düşünüyordu. İnsanların bu denli özel yaratıklar olmalarını doğaüstü bir müdahale sağlamış olmalıydı. Wallace’ın doğal seçim gücüne inanmaması, Darwin’i son derece rahatsız ediyordu. 1930'lar ve 1940'larda Güney Afrika’da gerçekleştirdiği öncü çalışmalarla Afrika’nın insanlığın beşiği olarak kabul edilmesine katkıda bulunan İskoç paleontolog Robert Broom da insanın ayrıcalıklı olduğuna inanıyordu. Homo sapiens ’in evrimin nihai sonucu olduğunu ve doğanın geri kalan kısmının insanın rahat etmesi için şekillendirilmiş olduğunu düşünüyordu. Wallace gibi Broom da türümüzün kökeninde doğaüstü güçler arıyordu. Wallace ve Broom gibi bilimciler, biri entellektüel ve diğeri de duygusal olmak üzere iki çatışan güçle savaşıyorlardı. Homo sapiens’in evrim süreci sayesinde doğadan geliştiği gerçeğini kabul etseler de, insanın tinselliğine ya da aşkın özüne dair inançları, onları evrim konusunda insanın ayrıcalığını kanıtlayan açıklamalar oluşturmaya yönlendiriyordu.(s:18) Darwin’in 1871'deki evrim “paketinde” böyle bir rasyonelleştirme vardı. Darwin doğaüstü müdahale aramıyordu gerçi, ama evrim senaryosu, insanları daha başlangıçtan itibaren insansımaymunlardan ayırıyordu. Darwin’in tezi yaklaşık on yıl öncesine dek(kitabın yazılış tarihi 1996) etkisini sürdürdü ve insanın ne zaman ortaya çıktığı konusunda önemli bir çatışma yaşanmasına neden oldu.Darwin’in bağlantılı evrim hipotezinin çekiciliğini göstermesi nedeniyle, bu çatışmayı kısaca anlatacağım. Çatışma aynı zamanda, hipotezin antropolojik düşünüşteki etkisinin sona ermesine de işaret eder. 1961'de, o dönemde Yale Üniversitesinde olan Elwyn Simons çığır açıcı bir bilimsel bildiri yayınlayarak, bilinen ilk insangil türünün Ramapithecus adı verilen küçük bir insansımaymun benzeri yaratık olduğunu savundu. O dönemde bilinen tek Ramapithecus fosil kalıntıları, Yale’den G. Edward Lewis adlı genç bir araştırmacının 1931'de Hindistan’da bulduğu üst çene parçalarıydı. Simons, yanak dişlerinin (azı dişleri ve küçük azı dişleri), insansımaymunların dişleri gibi sivri değil, düz olmaları açısından insanlardakilere benzediğini görmüştü. Köpek dişleri de insansımaymunlara göre daha kısa ve düzdü. Simons, eksik haldeki üst çenenin yeniden oluşturulması durumunda, şeklinin insanlardakine benzeyeceğini de iddia ediyordu; yani modern insansımaymunlardaki gibi “U” şeklinde değil, arkaya doğru hafifçe genişleyen bir kemer biçiminde. Cambridge Üniversitesi’nden İngiliz antropolog David Pilbeam bu dönemde Yale’de Simons’a katıldı ve birlikte, Ramapithecus çenesinin insansı olduğu iddia edilen anatomik özelliklerini tanımladılar. Ama anatomiden de öteye geçtiler ve yalnızca çene parçalarının güçlülüğüne dayanarak, Ramapithecus’un iki ayağı üstünde dik yürüdüğünü, avcılık yaptığını ve karmaşık bir sosyal ortamda yaşadığını öne sürdüler. Onalrın usavurumları Darwin’inki gibiydi: İnsansı olduğu varsayılan bir tek özelliğin (diş yapısı) varlığı, diğer özelliklerin de varolduğunu gösteriyordu. Sonuçta, ilk insangil türü olduğu varsayılan şey, kültürel bir hayvan- yani kültürsüz bir insanmaymundan çok, modern insanların ilkel bir değişkeni-olarak görülmeye başlandı. İlk Ramapithecus fosillerinin bulunduğu ve ardından, Asya ve Afrika’daki benzer keşiflerin yapılddığı tortular eskiydi. Dolaysıyla Simons ve Pilbeam, ilk insanın en az 15 milyon ve belki de 30 milyon önce ortaya çıktığı sonucuna vardılar ve antropologların büyük çoğunluğu bu görüşü kabul etti. Dahası, kökenin bu kadar eski olduğu inancı insanlarla doğanın geri kalan kısmı arasına büyük bir uzaklık koyarak, pek çok kişiyi rahatlatıyordu. 1960'larda Berkeley’deki California Üniversitesinden iki kimyacı Allan Wilson ve Vincent Sarich, ilk insan türlerinin ne zaman ortaya çıktığı konusunda çok farklı bir sonuca ulaştılar. Fosiller üstünde çalışmak yerine, yaşayan canlılarla Afrikalı insansımaymunlardaki bazı kan proteinlerinin yapısını karışlaştırdılar. Amaçları, insan ve insansımaymun proteinleri arasındaki yapısal fark düzeyini saptamaktı; mutasyon nedeniyle bu fark zaman içinde hesaplanabilir bir hızla artmış olmalıydı. İnsanlar ve insansımaymunrlar ne kadar uzun süre önce iki ayrı tür haline gelmişlerse, biriken mutasyon sayısı da o kadar fazla olacaktı. Wilson ve Sarich mutasyon hızını hesapladılar ve böylece , kan proteini verilerini bir moleküler saat olarak kullanabildiler. Bu saate göre ilk insanlar, yalnızca yaklaşık 5 milyon yıl önce ortaya çıkmış olmalıydılar; bu, egemen antropoloji kuramındaki 15 ile 30 milyon yıllık tahminle çarpıcı oranda çelişen bir bulguydu. Wilson ve Saricn’in verileri ayrıca, insanların şempanzelerin ve gorillerin kan proteinlerinin birbirlerinden aynı derecede farklı olduğunu gösteriyordu. Yani 5 milyon yıl önce gerçekleşen bir evrim olayı ortak bir atanın aynı anda üç ayrı yöne gitmesine neden olmuştu; bu bölünme, modern insanların yanısıra, modern şempanze ve modern gorillerin de gelişmelerini sağlamıştı.(s:20). Bu da çoğu antropolgun inançlarına aykırıydı. Geleneksel düşünceye göre şempanzelerle goriller birbirlerinin en yakın akrabalarıdır ve insanlarla aralarında büyük bir uzaklık vardır. Molekül verileri hakkındaki yorumların geçerli olması durumunda antropologlar, insanlarla insansımaymunlar arasında çoğunun inandığından daha yakın bir biyolojik ilişki olduğunu kabul etmek durumunda kalacaklardı. Çok büyük bir tartışmma doğdu ve antropologlarla biyokimyacılar birbirlerinin mesleki tekniklerini şiddetle eleştirmeye başladılar.Wilson ve Sarich’in vardıkları sonuç, molekül saatlerinin hatalı olduğu ve dolaysıyla, geçmişteki evrim olayları hakkında bir zaman saptamasının güvenilir olmayacağı iddiasıyla eleştiriliyordu. Wilson ve Sarich ise antropologların küçük ve parçalanmış anatomik özelliklere çok fazla önem verdiklerini ve dolaysıyla, geçersiz sonuçlara ulaştıklarını savunuyorlardı. Ben (R.Leakey) o dönemde Wilson ve Sarich’in hatalı olduklarını düşünerek, antropolog topluluğunun yanında yer almıştım. Bu tartışma on yılı aşkın bir süre boyunca devam etti ve bu dönem içinde Wilson’la Sarich ve birbirlerinden bağımsız başka araştırmacılar giderek daha çok sayıda yeni moleküler kanıta ulaştılar. Bu yeni verilerin büyük çoğunluğu, Wilson ve Sarich’in ilk tezlerin destekliyordu. Kanıtlar antropologların fikirlerini değiştirmeye başladı, ama bu yavaş bir değişimdi. Sonunda 1980'lerin başlarında Pilbeam ile ekibinin Pakistan’da ve Londra Doğa Tarihi Müzesinden Peter Andrews ’un Türkiye’de daha eksiksiz durumda Ramapithecus benzeri fosiller bulmaları, sorunun çözüme kavuşmasını sağladı. İlk Ramapithecus fosilleri gerçekten de bazı yönlerden insana benziyorlardı; ama bu tür, insan değildi. Aşırı derecede parçalanmış kanıtları temel alarak bir evrim bağlantısı oluşturma işi çoğu kişinin sandığından çok daha zordur ve dikkatsiz davrananların düşebileceği pek çok tuzak vardır. Simons ve Pilbeam bu tuzaklardan birine düşmüşlerdi: Anatomik benzerlik, mutlaka evrimsel bağlantı olduğu anlamına gelmez.(s:21) Pakistan ve Türkiye’de bulunan daha eksiksiz durumdaki örnekler, insansı olduğu varsayılan özelliklerin yapay olduğunu gösterdi. Ramapithecus’ un çenesi kemerli değil, V şeklindeydi; bu ve diğer özellikler, ilkel bir insansımaymunların türü olduğunu gösteriyordu (modern insansımaymunların çenesiU şeklindedir). Daha sonraki akrabası orangutan gibi, Ramapithecus da ağaçlarda yaşıyordu ve ne iki ayaklı bir insansımaymun ne de ilkel bir avcı-toplayıcıydı. Yeni kanıtlar, Ramapithecus’un insangillerden olduğuna inanan en inatçı antropologları bile yanıldıklarına ve Wilson’la Sarich’in haklı olduklarına ikna etmişti(s:22): İnsan ailesinin kurucu üyesi olan ilk iki ayaklı insansımaymun, sanıldığı kadar eski bir dönemde değil, görece yakın bir zamanda ortaya çıkmıştı. Wilson ve Sarich ilk yayınlarında, 5 milyon yıl öncesini bu olayın tarihi olarak göstermişlerdi; ama günümüzde moleküler kanıtlar, tarihi yaklaşık 7 milyon yıl öncesine atıyor.Ancak insanlarla Afrikalı insansımaymunlar arasında olduğu öne sürülen biyolojik yakınlık fikrinden vazgeçilmedi. Hatta bu ilişki, öne sürüldüğünden de yakın olabilir. Kimi genetikçilerin, molekül verilerinin, insanlarla şempanzeler ve goriller arasında birbirine eşit üç yollu bir ayırma işaret ettiğini düşünmelerine karşın, başka şekilde düşünenler de var. Onlara göre insanlar ve şempanzeler birbirlerinin en yakın akrabalarıdır ve gorillerle aralarındaki evrimsel uzaklık danha fazladır. Ramapithecus olayı antropolojiyi iki şemkilde değiştirmişti. İlk olarak, ortak bir anatomik özellikten ortak bir evrimsel bağlantı çıkarmanın tehlikelerini gösterdi. İkinci olarak, Darwinci “paket”e körü körüne bağlı kalmanın budalalık olduğunu kanıtladı. Simons ve Pilbeam köpek dişinin şeklini temel alarak, Ramapithecus’a eksiksiz bir yaşam tarzı atfetmişlerdi: bir insangil özelliği bulunduğunda, bu türden tüm özelliklerin de bulunduğu varsayılıyordu. Ramapithecus’un insangil statüsünü yitirmesinin sonucunda, antropologlar Darwin paketinden kuşku duymaya başladılar. Bu antropolojik devrimin gelişimini izlemeden önce, ilk insangil türünün nasıl ortaya çıktığını açıkmlamak için çeşitli dönemlerde öne sürülmüş bazı hipotezlere de kısaca göz atmalıyız. Popülerlik kazanan her yeni hipotezin, döneminin sosyal iklimini yansıtması çok ilginç bir nokta. Sözgelimi Darwin, taş silahların geliştirilmesinin, teknoloji, iki ayaklılılık ve beyin boyutunun büyümesini içeren evrim paketinin başlangıcında önemli olduğunu düşünmüştü(s:23) Hipotez hiç kuşkusuz, yaşamın bir savaş olduğuna ve ilerlemenin girişimcilik ve çabayla sağlandığına dair yaygın fikri yansıtıyordu. Victoria çağının bu etosu, bilime işlemiş ve insan evrimi de dahil olmak üzere evrim sürecine bakış açısını belirlemişti. Yüzyılımızın ilk on yıllarında, Edward dönemine özgü iyimserliğin en enerjik günlerinde, bizi biz yapan şeyin beyin ve düşünce olduğu söylendi. Bu yaygın sosyal dünya görüşü antropolojide, insan evrimine başlangıçta iki ayaklılığın değil, beynin büyümesinin ivme kazanrdırdığı fikrinde ifade buldu. 1940'larda dünya, teknolojinin büyüsüne ve gücüne kapıylmışı; dolaysıyla ,”Alet Yapan Adam” hipotezi popülerlik kazandı. Londra Doğa Tarihi Müzesi’nden Kenneth Oakley’in öne sürdüğü bu hipotezde-silah değil- taş alet yapımı ve kullanımının evrimimiz için gerekli dürtüyü sağladığı savunuluyordu. Ve dünyanın İkinci Dünya Savaşının gölgesine girdiği dönemlerde, insanlarla insansımaymunlar arasındaki daha karanlık bir fark vurgulanmaya başlandı: bireyin kendi türüne karşı şiddet uygulaması. İlk kez Avusturalyalı anatomi bilimci Raymond Dart’ın öne sürdüğü “Katil Maymunadam” fikri, belki de savaşta yaşanan korkunç olayları açıklıyor (ya da hatta, mazur gösteriyor) olması nedeniyle, yaygın kabul gördü. 1960'larda antropologlar, insan kökeninin anahtarı olarak avcı-toplayıcı yaşam tarzına yöneldiler. Pek çok araştırma ekibi, özellikle Afrika’da olamak üzere, teknolojik açıdan ilkel modern insan nüfularını inceliyorlardı. Bunların arasından en kayda değerlerden biri (hatalı olarak Bushmen de denen! Kung San halkıydı. Burada doğayla uyum içinde, doğayı karmaşık yöntemlerle kullanan ve doğaya saygı gösteren bir halk imgesi ortaya çıktı. Bu insanlık görüşü dönemin çevreciliğiyle uyum içindeydi; ama antropologlar, karma avvcıllık ve toplayıcılık etkonomisinin karmaşıklığından ve ekonomik güvenliğinden de etkilenmişlerdi. Yine de asıl üstünde durulan avcılıktı. 1966'da Chicago Üniversitesinde, “Avcı Adam” başlıklı önemli bir antropoloji konferansı gerçekleştirildi.(s:24) Toplantıya egemen olan akım oldukça yalındı: İnsanı insan yapan, avcılıktır. Teknolojik açıdan ilkel toplumlarda avcılık genellikle, erkek sorumluluğudur. Dolaysıyla, 1970'lerde kadın sorunu konusundaki bilincin gelişmesiyle birlikte, insanın kökenine dair bu erkek merkezli açıklamanın sorgulanmaya başlanması son derece normaldi. “Toplayıcı Kadın” olarak bilinen alternatif bir hipotezde, tüm primat türlerindeolduğu gibi, toplumun merkezinin dişiyle çocukları arasındaki bağ olduğu savunuluyordu. Karmaşık bir insan toplumunun oluşturulmasını, teknoloji yaratan ve herkes tarafından paylaşılmak üzere (en başta gece) yiyecek toplayan insan dişilerinin insayatifi sağlamıştı. Ya da öyle olduğu savunuluyordu. Bu hipotezler insan evrimini asıl başlatan şey konusunda farklı fikirler getirmekle birlikte, hepsi de Darwin’in değer verilen belli insan özellikleri paketinin daha ilk baştan oluşmuş olduğunu söylüyorlardı: Hala, ilk insangil türünün belli bir düzeyde iki ayaklılık, teknoloji ve büyük beyin özelliklerine sahip olduğu düşünülüyordu. Dolaysıyla insangiller, daha başlangıçtan itibaren kültürel yaratıklardı; bu nedenle de, doğanın geri kalan kısmından farklıydılar. Oysa son yıllarda bunun doğru olmadığını anlamaya başladık. Arkeolojik kalıntılarda, Darwinci hipotezin doğru olmadığını gösteren sağlam kanıtlar görülüyor. Darwin paketi doğru olsaydı, arkeolojik lkalıntılarda ve fosil kalıntılarında iki ayaklılığa, teknolojiye ve büyük beyine dair kanıtları aynı anda görürdük. Ama görmüyoruz. tarihöncesi kalıntılarının tek bir yönü bile, hipotezin yanlış olduğunu göstermeye yetiyor: Taş alet kalıntıları. Çok enders olarak fosilleşen kemiklerin tersine, taş aletlerin yok olması neredeyse olanaksızdır. Dolaysıyla, tarihöncesi kalıntılarının büyük bölümünü taş aletler oluşturur ve en başından itibaren teknolojinin gelişimi bu aletlere dayanılarak yeniden oluşturulur (s:25) Bu tür aletlerin ilk örnekleri-çakıl taşlarından birkaç yonga çıkarılarak yapılan kaba yongalar, kazıma araçları ve baltalar- yaklaşık 2.5 milyon yıl önce ortaya çıkar. Molekül kanıtları doğruysa ve ilk insan türü yaklaşık 7 milyon yıl önce ortaya çıktıysa, atalarımızın iki ayaklı olmalarıyla taş alet yapmaları arasında yaklaşık 5 milyon yıl geçmiş olmalı. İki ayaklı bir insansımaymun yaratan evrim gücü her neyse, alet yapma ve kullanma becerisiyle bağlantılı değildi. Ama pek çok antropolog, 2.5 milyon yıl önce teknolojinin gelişmesinin, beyindeki büyümeyle aynı döneme denk geldiğine inanıyor. Beyindeki büyümeyle teknolojinin, insanın kökeniyle aynı zamanda oluşmadığının anlaşılması, antropologları yaklaşımlarını yeniden düşünmeye zorladı. Sonuçta yeni hipotezler, kültürden çok biyoloji terimleriyle oluşturuldu. Ben bunu, mesleğimizdeki sağlıklı bir gelişme olarak görüyorum; özellikle de fikirlerin, diğer hayvanların ekolojisi ve davranışı hakkında bildiklerimizle karşılaştırılarak sınanmasını sağladığı için. Bu yaklaşımda, Homo sapiens ’in pek çok özel niteliğe sahip olduğunu yadsımamız gerekmiyor. Bu niteliklerin gelişimini, tamamen biyolojik bir bağlamda inceliyoruz. Bu anlayış oluştuktan sonra, antropolgun insanın kökenlerini saptama işi yeniden iki ayaklılığın kökeni üzerinde yoğunlaştı. Evrimsel dönüşüm, bu tek olaydan soyktlandığında bile (ABD’deki) Kent Eyalet Üniversitesi’ nden anatomi bilimci Owen Lovejoy’un da belirttiği gibi, önemsiz değildir: Lovejoy, 1988'de yazdığı popüler bir makalede, “İki ayaklılığa geçiş, evrim biyolojisinde görebileceğiniz en çarpıcı değişimlerden biridir” demişti. “Kemiklerde, kemiklere güç sağlayan kasların düzeninde ve kollarla baca değişimler görülmektedir.” İnsanlarla şempanzelerin leğen kemiklerine bakmak bu gözlemi doğrulamaya yetiyor: Leğen insanlarda kısa ve kutu gibi, şempanzelerdeyse uzundur. Kol ve bacaklarla gövdede de önemli farklılıklar vardır. İki ayaklılığın gelişimi önemli bir biyolojik dönüşüm olmaktan öte, aynı zamanda önemli bir uyarlanma dönüşümüdür. Önsözde de savunduğum gibi, iki ayaklı hareket öylesine önemli bir uyarlanmadır ki, tüm iki ayaklı insansımaymunlara “insan” demekte haklıyız. Bu, ilk iki ayaklı insansımaymun türünün belli bir düzeyde teknolojiye, gelişmiş bir zekaya ya da insanlığın kültürel niteliklerine sahip olduğu anlamına gelmiyor.Bu niteliklere sahip değildi. Ben-kolların günün birinde ellerin kullanılabileceği şekilde serbest kalmasını sağlayan- iki ayaklılık uyarlanmasının son derece önemli bir evrim potansiyeli taşıdığını ve bu nedenle öneminin terminolojimizde yer alması gerektiğini söylüyorum. Bu insanlar bizim gibi değillerdi; ama iki ayaklılık uyarlanması olmasa bizim gibi olamazlardı. Bir Afrikalı insansımaymunda bu yeni hareket şeklinin gelişmesini sağlayan evrim faktörleri nelerdir? İnsanın kökenine dair popüler imgelerde çoğunlukla, ormanı terk edip açık savanlara yönelen insansımaymun benzeri bir yaratık görürüz. Bu, kuşkusuz çarpıcı bir imge olsa da, Harvard ve Yale üniversitelerinden Doğu Afrika’nın pek çok bölgesinde toprak kimyasını inceleyen araştırmacıların da yakın zamanlarda kanıtladıkları gibi, kesinlikle yanlıştır. Büyük göçebe sürülerin dolaştığı Afrika savanları, oldukça gençtir; 3 milyon yıldan daha az bir süre önce, ilk insan türünün ortaya çıkmasından uzun süre sonra gelişmişlerdir. 15 milyon yıl öncesinin Afrikasına bakarsak, batıdan doğuya uzanan ve aralarında çeşitli maymun ve insansımaymun türlerinin de bulunduğu pek çok primata barınaklık eden bir orman örtüsü görürüz. Günümüzün tersine o dönemde insansımaymun türlerinin sayısı, maymun türlerinin sayısından çok daha fazlaydı. Ama sonraki birkaç milyon yıl içinde bölgede ve sakinlerinde çarpıcı değişiklikler yaratacak olan jeolojik güçler gelişmekteydi(s:27). Kıtanın doğu kısmında yerkabuğu, Kızıl Deniz’den günümüzün Etiyopya, Kenya ve Tanzanya’sından Mozambik’e doğru bir hat halinde yarılmaktaydı. Sonuçta Etiyopya ve Kenya’da toprak kabardı ve 3000 metreyi aşkın yükseklikte geniş dağlık alanlar oluştu. Bu büyük kubeler kıtanın topografyasından öte, iklimini de değiştirdi. Eski tekdüze batıdan-doğuya hava akışını bozan kubbeler, doğuda kalan toprakları yağış alanının dışında bırakarak ormanları beslenme kaynaklarından yoksun bıraktılar. Aralıksız ağaç örtüsünün bölünmeye başlamasıyla birlikte orman parçacıklarından, ağaçlık alanlardan ve çalılıklardan oluşan mozaik benzeri bir çevre oluştu. Ama açık otluk alanlar hâlâ enderdi. 12 milyon yıl önce süregiden tektonik güçler çevreyi daha da değiştirdi ve kuzeyden güneye doğru uzanan uzun, dolambaçlı bir vadi oluştu: Büyük Yarık Vadisi. Bu vadinin ortaya çıkışı iki biyolojik etki yaratmıştır: hayvan topluluklarına doğudan batıya uzanan zorlu bir engel yaratmakta ve zengin bir ekolojik koşullar mozayiğinin gelişmesini teşvik etmektedir. Fransız antropolog Yves Coppens, doğu-batı bariyerinin, insanlarla insansımaymunların birbirlerinden ayrı olarak evrilmesinde büyük önem taşıdığına inanıyor. “Aynı atadan gelen (insan) ve (insansımaymun) toplulukları koşulların etkisiyle... ayrıldılar. Bu ortak ataların batıdaki torunları, yaşama uyarlanmalarını nemli, ağaçlık ortamlarda sürdürdüler; bunlar (insansımaymular)dır. Aynı ortak ataların doğudaki torunlarıysa açık bir çevredeki yeni yaşamlarına uyarlanmak için yepyeni bir repertuar yarattılar: Bunlar(insanlar)dır.” Coppens bu senaryoya “Doğu Yakasının Hikayesi” adını veriyor. Vadinin serin, ormanlık platolar içeren çarpıcı dağlık alanları ve sıcak, kurak alanlara 1000 metre irtifadan birden iniveren dik bayırları vardır. Biyologlar bu tür, çok sayıda farklı habitat sunan mozaik çevrelerin evrimsel yeniliği teşvik ettiğini fark ettiler. Bir zamanlar yaygın ve birbirine benzer olan bir (s: 29) türün toplulukları birbirlerinden ayrılabilir ve doğal seçim sürecinin yeni etkilerine maruz kalabilirler. Bu, evrimsel değişim reçetesidir. Böylesine bir değişim kimi zaman, yaşama uygun çevrelerin yok olmasıyla, yok oluşa uzanır.Afrikalı insansımaymunların çoğ u bu kader yaşadı; günümüze yalnızca üç tür kalabildi: goril, bayağı şempanze ve cüce şempanze. Ama çoğu insansımaymun türünün çevre değişiminden olumsuz etkilenmesine karşın, içlerinden biri, hayatta kalmasını ve gelişmesini sağlayacak yeni bir uyarlanma şansını yaşadı. Bu, ilk iki ayaklı insansımaymundu. İki ayaklılık hiç kuşkusuz, değişen koşullarda hayatta kalması için önemli avantajlar sağlamıştı. Antropologların görevi, bu avantajların neler olduğunu bulmaktır. Antropologlar iki ayaklılığın insan evrimindeki önemini genellikle iki şeklide değerlendirirler:Bir düşünce, ön ayakların serbest kalarak taşıma özelliği kazanmasını vurgular; diğer düşünceyse, iki ayaklılığın enerji açısından daha etkin ir hareket şekli olması üzerinde durur ve taşıma yeteneğini yalnızca dik duruşun raslantısal yan ürünlerinden biri olarak görür. Bu iki hipotezden ilkini, Owen Lovejoy öne sürdü ve 1981'de Science ’taki önemli bildiride yayımlanmıştır. Lovejoy’a göre iki ayaklılık etkin olmayan bir hareket şeklidir ve dolaysıyla taşıma amacıyla geliştirilmiş olmalıdır. Taşıma yeteneği iki ayaklı insansımaymunlara, diğer insansımaymunlara göre nasıl bir rekabet avantajı sunmuş olabilir? Evrimsel başarı, sonuçta, hayatta kalacak nesiller üretmeye bağlıdır ve Lovejoy’a göre yanıt, bu yeni yeteneğin erkek insansımaymunlara, dişi için yiyecek toplayarak üreme oranını artırma fırsatını sağlamasıdır. Lovejoy, insansımaymunların yavaş ürediklerini ve dört yılda bir tek yavru yaptıklarını vurgular. İnsan dişileri de daha çok enerjiye-yani daha çok yiyeceğe- ulaşabilmeleri durumunda daha çok nesiller üretebilirler. Erkeğin dişi ve yavruları için yiyecek toplayarak dişiye daha çok enerji sağlaması durumunda dişi, üreme çıktısını artırabilecektir.(s:30) Erkeğin bu eyleminin, bu kez sosyal alanda olmak üzere, bir diğer biyolojik sonucu daha olacaktır. Erkeğin kendi çocuklarını ürettiğine emin olmadıkça dişiyi beslemesinin Darwinci açıdan erkeğe yararlı olmaması nedeniyle Lovejoy, ilk insan türünün tekeşli olduğunu ve üreme başarısını artırıp diğer insansımaymınlara baskın gelme yöntemi olarak çekirdek ailenin ortaya çıktığını öne sürdü. Bu tezini başka biyolojik benzetmelerle destekledi. Sözgelimi, primat türlerinin çoğunda erkekler, mümkün olduğunca çok dişi üzerinde cinsel denetim kazanmak için birbirleriyle rekabet eder. Bu süreç sırasında genellikle birbirleriyle dövüşürler ve silah olarak kullanabilecekleri büyük köpek dişleri vardır. Gibonlar erkek-dişi çiftleri oluşturmak gibi ender rastlanan bir özellik gösterirler ve - her halde birbirleriyle kavga etmeleri için bir neden olmamasından dolayı- erkeklerin köpek dişleri küçüktür. Erken insanlarda köpekdişlerinin küçük olması Lovejoy’a göre, gibonlar gibi erkek-dişi çiftleri oluşturduklarının kanıtı olabilir. Yiyecek sağlama düzenlemesinin sosyal ve ekonomik bağları da beynin büyümesini sağlayacaktır. Lovejoy’un büyük ilgi ve destek gören hipotezi, kültürel değil temel biyolojik konulara hitap etmesi nedeniyle güçlürün. Ama zayıf noktaları da vardır; öncelikle, teknolojik açıdan ilkel halklarda tekeşlilik yaygın bir sosyal düzenleme değildir.(Bu tür toplumların yalnızca yüzde 20'si tekeşlidir). Hipotez bu nedenle, avcı toplayıcıların değil, Batı toplumunun bir özelliğine dayandığı iddiasıyla eleştirilmektedir.belki de bundan daha önemli bir eleşiri ise, bilinen en erken insan türlerinde erkeklerin, dişilerden yaklaşık iki kat büyük olmalarıdır. Beden boyutundaki iki biçimlilik (dimorfizm) olarak bilinen bu büyük farklılık, incelenen tüm primat türlerinde çokkarılılıkla ya da erkeklerin dişilere ulaşmak için aralarında rekabet etmeleriyle çakışır; tekeşil türlerde iki biçimliliğe rastlanmaz. Bence bu gerçek bile, umut verici bir kuramsal yaklaşımı çökertmeye yetmektedir ve köpeksdişlerinin küçük olbsanıa tekeşlilikten (s: 31) başka bir açıklama aranmalıdır. Belki de yiyecekleri çiğneme mekanizması, kesmeden çok öğütme hareketini gerektiriyordu; köpek dişlerinin büyük olması bu hareketi zorlaştıracaktı. Lovejoy’un hipotezi günümüzde, on yıl öncesine göre daha az destek görmektedir. İkinci önemli iki ayaklılık kuramı, kısmen basitliği sayesinde çok daha imna edicidir. Davis, California Üniversitesinden antropolog Peter Rodman ve Henry McHenry’nin öne sürdükleri hipotezde, iki ayaklılığın daha etkin bir hareket şekli sunması nedeniyle, değişen çerre koşullarında daha avantajlı olduğu savunulur. Ormanların küçülmesiyle birlikte ağaçlık habitatlardaki meyve ağaçalrı gibi yiyecek kaynakları, klasik insansımaymunların etkin şekilde yararalanamayacakaları kadara dağınıktır. Bu hipoteze göre, ilk iki ayaklı insansımaymunlar yalnızca hareket şekilleriyle insandırlar.Diyetlerinin değil, yalnızca yiyecek toplama şekillerinin değişmiş olması nedeniyle elleri, çeneleri ve dişleri insansımaymunlardaki gibi kalmıştır. Pek çok biyolog bu düşünceyi başlangıçta olanaksız görmüştür; Harvard Ünivresitesi'nden araştırmacılar yıllar önce, iki ayak üstünde yürümenin dört ayak ütünde yürümekten daha az etkin olacağını göstermişlerdi. (kedisi ya da köpeği olanlar için bu hiç de şaşırtıcı bir durum değil; her iki hayvan da sahiplerini utandıracak derecede daha hızlı koşar.) Ama Harvard araştırmacıları insanlardaki iki ayaklılığın etkinliğini at ve köpeklerdeki dört ayaklılığın etkinliğiyle karşılaştırmışlardı. Rodman ve McHenry, karşılaştırmanın insanlarla şempanzeler arasında yapılması gerektiğini vurguladılar. Bu karşılaştırma yapıldığında, insanlardaki iki ayaklılığın şempanzelerdeki dört ayaklılıktan çok daha etkin olduğu görülüyor. Dolaysıyla, iki ayaklılık yararına bir doğal seçim gücü olarak enerji etkinliği tezinin akla yatkın olduğu sonucuna vardılar. İki ayaklılık evrimin teşvik eden, bir yandan avcıları izlerken bir yandan da yüksek otların üstünden bakabilme ve gündüz saatlerinde yiyecek toplarken serinleyebilmek için daha (s: 32) etkin bir duruşa geçme zorunlulukları gibi başka etkenler de olduğu öne sürüldü. Ben tüm bu düşüncelerin arasında en inandırıcısının, sağlam bir biyolojik temeli olması ve ilk insan türlerinin evrildiği dönemde gelişen ekolojik değişimlere uyması nedeniyle, Rodman ve McHenry’ninki olduğunu düşünüyorum. Bu hipotez doğruysa, ilk insan türünün fosillerini bulduğumuzda, hangi kemikleri bulduğumuza bağlı olarak, bu fosillerin ilk insana ait olduğunu fark edemeyebiliriz. Leğen ya da bacak kemiklerini bulmamız durumunda iki ayaklı hareket şekli görülür ve “insan “ diyebiliriz. Ama kafatasının ve çenenin bazı parçalarını ya da bazı dişleri bulmamız durumunda bunların bir insansımaymuna ait olduğunu düşününebilirz. Bunların iki ayaklı bir insansımaymuna mı, yoksa klasik bir insansımaymunna mı ait olduğunu nasıl anlayacağız? Bu, son derece heyecan verici bir savaşım. İlk insanların davranışlarını gözlemek için 7 milyon yıl öncesinin Afrika’sına gidebilseydik, insanların davranışlarını inceleyen antropologlardan çok, maymun ve insansımaymunların davranışlarını inceleyen primatologlara tanıdık gelecek bir modelle karışlaşırdık. İlk insanlar modern avcı-toplayıcılar gibi göçmen gruplarda aile toplulukları olarak yaşamaktan çok, büyük olasılıkla, savan babunları( habeş maymunları) gibi yaşıyorlardı. Yaklaşık otuz bireyden oluşan gruplar geniş bir arazide koordinasyon içinde yiyecek avına çıkıyor ve geceleri tepeler ya da ağaç kümeleri gibi uygun uyku yerlerine dönüyorlardı. Grubunu büyük bölümünü yetişkin dişilerle çocukları oluşturuyordu ve aralarında yalnızca birkaç yetişkin erkek bulunuyordu. Erkekler sürekli çiftleşme olanakları arıyor ve egemen bireyler daha başarılı oluyordu. Yetişkinliğe erişmemiş ya da düşük seviyelerdeki erkekler, grubun ancak çevresinde er alıyor ve kendi başlarına yiyecek avına çıkıyorlardı. Grubun bireyleri iki ayaklı yürümeleriyle insani bir özellik taşıyor, ama (s: 33) savan primatları gibi davranıyorlardı. Önlerinde, 7 milyon yıl sürecek ve ileride de göreceğimiz gibi son derece karmaşık ve kesin olmayan bir evrim modeli vardı. Çünkü doğal seçim uzun vadeli bir hedefe doğru değil, anlık şartlara göre işler. Homo sapiens sonuçta, ilk insanların torunu olarak ortaya çıktı; ama bunun kaçınılmaz bir gelişme olduğu da söylenemezdi. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim s:15-34 ) Yaşamın Gizi Kökleri 19. yy’a dayanan Evrim Kuramı, gerçekte 20. yy’ın geliştirilen büyük kuramlarından biridir. İnsanın kendi yapısını araştırmaya yönelmesinin bilimsel bir niteliğe bürünmesi oldukça yenidir. Biyoloji, genç bir bilimdir. Biyoloji, özellikle Evrim Kuramı ile genç bir bilimin büyük kuramlar üretebileceğini kanıtladı. Nobel Ödüllü(1965) bilim adamı Jacques Monod Rastlantı ve Zorunluluk adlı eserinde şöyle diyor: “ Biyolojinin bilimler arasındaki yeri, bir bakıma merkezi, bir bakıma da ikincil önemdedir. İkincildir, çünkü canlılar dünyası bilinen evrenin pek önemsiz ve “özel” bir bölümü olduğuna göre, canlıların irdelenmesiyle, canlılar dünyasının dışına da uygulanabilecek genel yasalara varılamaz gibi görünür. Fakat bütün bilimlerin son amacı, eğer benim sandığım gibi, insanla evren arasındaki bağıntıyı aydınlatmaksa, o zaman biyolojiye merkezi bir yer tanımak gerekir; çünkü biyoloji, bütün bilim kolları arasında, henüz “insanın doğası” sorunun metafizik terimler kullanılmadan ortaya konması olanaksızken, çözülmesi gereken sorunların yüreğine en dolaysız yoldan girmeye çalışanıdır. Bu nedenle biyoloji, insan için bilimlerin en anlamlısıdır; felsefe, din, ve politika gibi bütün alanlarda temelden sarsılmış ve açıkça yaralı olan modern düşüncenin biçim kazanmasında, özellikle Evrim Kurramı’nın ortaya çıkışıyla, kuşkusuz bütün öteki bilimleri aşan katkıları olmuştur. Ancak, 19. yy’ın sonlarından bu yana biyolojinin bütününe egemen olmakla birlikte ve fenomeolojik açıdan geçerliliğine ne denli inanılmış olursa olsun, Evrim Kuramı, kalıtımın fiziksel bir kuramı geliştirilmedikçe yine askıda kalıyordu. Bu sonuca ulaşılması ise, klasik genetiğin bütün başarılarına karşın, otuz yıl öncesine dek boş bir kuruntu gibi görünüyordu. Oysa bugün, kalıtım yasası molekül kuramının getirdiği şey budur. Burada “kalıtım yasası kuramı”nı yalnızca kalıtımsal gereçlerle onların taşıdığı bilginin kimyasal yapısına ilişkin kavramlar olarak değil, ayrıca bu bilginin fizyolojik ve morfogenetik anlatımının moleküler düzeneğini de içerecek biçimde, geniş anlamıyla kullanıyorum. Böyle tanımlandığında kalıtım yasası kuramı biyolojinin temel kuralını oluşturur Doğal olarak bu, organizmaların karmaşık yapı ve işlevlerinin bu kuramdan çıkarılabileceği ya da bunların her zaman doğrudan moleküler düzeyde çözümlenebileceği anlamına gelmez.(Kimyanın evrensel temelini kuşkusuz kuantum kuramının oluşturmasına karşın, kimyadaki her şey bu kurama göre ne bilinebilir, ne çözülebilir). Fakat yasanın moleküler kuramı günümüzde (kuşkusuz ileride de) biyoloji alanındaki her şeyi önceden bilip çözemese de daha şimdiden canlı sistemlerin genel bir kuramını oluşturuyor. Moleküler biyolojinin ortaya çıkışından önce, bilimi alanında böyle bir şey yoktu. O zamanlar “yaşam gizi”, ilkesi gereği ulaşılamaz görünürdü. Günümüzde bu giz büyük ölçüde açıklanmıştır. Öyle görünüyor ki bu önemli olay, kuramın genel anlamı ve kapsamı uzmanlar dışında da anlaşılıp değerlendirilebildiği zaman, modern düşüncede ağırlığını büyük ölçüde duyuracaktır. Bu denemin buna yardımcı olacağını umuyorum. Gerçekten ben, modern biyolojinin kavramlarının, kendilerinden çok “biçim”lerini açığa çıkarmaya, düşüncenin başka alanlarıyla mantıksal bağlantılarını göstermeye çalıştım. Günümüzde bir yapıtın adında bilim adamının, “doğal” nitemiyle birlikte de olsa, “felsefe” sözcüğünü kullanması tehlikelidir. O yapıtı, bilim adamlarının güvensizlikle, filozofların ise olsa olsa bir gönül indirmeyle karşılayacakları önceden görülebilir, Tek, fakat haklı olduğuna inandığım bir mazaretim var: Bilim adamlarına düşen ve bugün her zamankinden daha çok kendini duyuran ödev, kendi bilim kollarını çağdaş kültürün bütünü içinde değerlendirmek, onu yalnız teknik bilgilerle değil, aynı zamanda bilimin kazandırdığı, insansal açıdan önemli gördükleri düşüncelerle de zenginleştirmektedir. Yeni bir bakışın (biliminki hep böyledir) arılığı, kimi kez sorunlar üzerine yeni bir ışık serpebilir. Doğal olarak geriye, bilimin esinlediği düşüncelerle, bilimin kendi arasındaki her türlü karışıklıktan kaçınmak kalıyor. ama işte bu nedenle de, bilimin ortaya koyduğu sonuçların tüm anlamını açıklayabilmek için, bunların son sınırına dek götürmek gerekiyor. Zor bir uygulama. Bunu eksiksiz yaptığımı öne sürmüyorum. Önce bu denemenin salt biyolojik bölümünün hiçbir özgün yanı bulunmadığını belirteyim. Modern bilimce saptandığı kabul edilen düşünceleri özetlemekten başka bir şey yapmadım. Örnek seçiminde olduğu gibi, değişik gelişmeleri verilen önemin de kişisel eğilimleri yansıttığı doğrudur. Biyolojinin kimi önemli bölümlerinin burada sözü bile edilmedi. Fakat bu deneme, biyolojinin tümünü açıkladığını kesinlikle savunmuyor. Yalnızca sistemin moleküler kuramının özünü elde etmek yolunda bir girişimdir. Bundan çıkarabildiğim ideolojik genellemelerden sorumlu olduğum açıktır. Fakat bilgi kuramı alanı içinde kaldıkları sürece bu yorumları çağdaş biyolojistlerin büyük bölümünün kabul edeceğini söylerken yanılmış olacağımı sanmıyorum. Ben burada, siyasal değilse bile etik(ahlaksal) düzeyde, gelişmelerin bütün sorumluluğunu yüklendiğimi belirtmeden geçmek istemem; bunlar ne denli tehlikeli olursa olsunlar, ne denli naif ya da benim isteğim dışında, ne denli aşırı görünürse görünsünler bilim adamı alçak gönüllü olmalı, fakat taşıdığı ve savunmak zorunda olduğu düşünceler pahasına değil. Ancak burada da kendimi, yapıtları büyük saygınlık kazanmış kimi çağdaş biyolojistlerle tam bir uyum içinde bulmanın yüreklendirici güvenini duyuyorum....Nisan, 1970"(Kitabın Önsözü’nden) (Jacques Monod, Rastlantı ve Zorunluluk(1970), s:11-13) Evrim Kuramı ve Değişim Evrim Kuramı,canlıların değişimini içerir. Tutucu insanların bu kuramı anlamak istemeyişi ya da reddedişi bu değişimi kabul etmemelerinin bir sonucudur. Evrim kuramına karşı çıkmayı küçümsemeyin. Evrim Kuramına karşı çıkanlar, arkalarında “dine inanan” aydınları ve kitleleri bulur. Değişimi savunmak kadar değişime karşı çıkmak, insan aklının çok önceden bulduğu en tehlikeli silahlardandır. Onu, felsefe temelinde en iyi ve en eski savunan da Platon’dur. Platon, biz erkeklerin kadınlardan nasıl da fersah fesah üstün olduğunun altını pek güzel çiziyor! Bayanların pek sevmeyeceği bir öykü olsa da anlatacağım. Platon’da değişim “kötü”, durağanlık ise “iyi”dir. Karl Popper bunu şöyle belirtir: “Çünkü bütün değişimin çıkış noktası yetkin iyi ise değişiklik ancak yetkin ve iyiden uzaklaşan bir hareket olmak gerekir;bu hareket yetkin olmayana ve kötüye doğru yönelmelidir.” Platon, Kanunlar ’da değişim doktrinini şöyle özetler:" Kötü bir şeyin değişmesi bir yana bırakılırsa, her nasıl olursa olsun değişiklik, bir şeyin uğrayabileceği bütün kötü tehlikelerin en başında gelir,- değişiklik şimdi ister mevsimin ya da rüzgârın olsun, ister beden dişyetinin yahut ruh karakterinin.” Israrını belirtmek için de eklemektedir: “Bu söz her şeye uygundur,tek ayrık, demin söylediğim gibi, kötü bir şeyin değişmesidir.” Kısacası Platon, değişimin kötü ve durulmanın tanrılık olduğunu öğretmiştir... Platon’un Timaios ’taki türlerin kökeni üzerine öyküsü bu genel teoriyle bir uyuşma içindedir. Bu öyküye göre hayvanların en yükseği erkek-insandır,tanrılar tarafından türetilmiştir;öteki türler,bir bozulma ve soysuzlaşma süreciyle ondan -aşağıya- inerler. Önce bazı erkekler-korkak ve rezil olanları-soysuzlaşıp kadın olmuştur. Bilgeliği olmayanlar, adım adım daha aşağı hayvanlara doğru soysuzlaşmıştır. Kuşlar, zararsız deniyor oysa duyumlarına çok güvenen fazla yumşak insanların dönüşümüyle varolmuşlardır; "kara hayvaları,felsefeyle hiç ilgilenmeyen insanlardan gelmiştir”; balıklar, -midye ve sitiridye gibi kabuklu deniz hayvanları da dahil olmak üzere- bütün insanların “en aptal, salak... ve değersiz olanlarından soysuzlaşmayla çıkmıştır” Bu teorinin insan toplumuna ve tarihine de uygulanabeleceği açıktır. (Karl Popper, Açık Toplum Ve Düşmanları s: 49-50) İNSAN NASIL İNSAN OLDU? İnsan nedir? Biz neyiz? Nereden geldik? Sokrates ' e yakıştırılan bir öykü vardır. Sokrates, Atina Agorası' ndaki gönüllü öğrencilerine verdiği ders sırasında "İnsan nedir?" diye sormuş. Onlar da soruyu küçümseyerek " bunu bilmeyecek ne var, iki ayaklı ve tüysüz bir canlıdır" yanıtını vermişler. Ertesi gün Sokrates, elinde tüyleri yolunmuş bir tavukla öğrencilerinin karşısına çıkmış. Tüysüz tavuğu havaya kaldırarak " yani böyle bir şey mi insan dediğiniz?" demiş. Öğrenciler nasıl bir şaşkınlık geçirdi bilmiyoruz; ama insan tanımının öyle basit bir iş olmadığını anlamış olmalılar. İnsan "düşünen varlık", " gülen canlı", "üretim yapan canlı", "alet kullanan canlı" gibi değişik sıfatlarıyla tanımlanmaya çalışılmıştır. Sorunun yanıtı basit değil. Gelin biraz gerilere gidelim. Önce "insan her şeyin ölçüsüdür" diyen eski Yunan filozofunu anımsayalım. Protagoras'ı yani. Onun ne demek istediğini size anlatmaya çalışmıştım. 19. yüzyılın ikinci yarısından itibaren insan konusunda bilimsel düşünceler ortaya konmaya başlandı. İnsanın doğaüstü güçlerce yaratılmadığı ve tüm canlılar gibi evrimsel bir sürecin bugünkü aşaması olduğu düşünülmeye başlandı. Evrim, değişikliği ifade eder. " Evrim, biyolojik bir gerçektir; en geniş anlamı ile organizmaların zaman süreci içinde değişen ortama gösterdikleri fiziksel tepki olarak da tanımlanabilir... "Her canlı bir canlıdan gelir " gerçeği, evrimin temel özelliklerinden biridir." Bununla birlikte konuyla ilgili saptırmalar da başladı." Bu saptırmaların en ünlüsü de insanın maymundan türemiş olduğu, başka bir deyişle bu iki canlı türü arasında bir ata- torun ilişkisi bulunduğu, yani maymunların insanın atası olduğu saptırmasıdır. C. Darwin' in Türlerin Kökeni adlı yapıtının doğurduğu yankılara karşı, özellikle o dönem Anglo- Sakson Kilisesi' nce başlatılan, geliştirilen, desteklenen ve savunulan bu saptırma, üzülerek belirtmek gerekir ki bugün bile kamuoyunda evrensel anlamda belirli bir ağırlığa sahiptir. Olaya bilimsel bir yaklaşımla ve tarafsız olarak bakıldığı zaman, kuşkusuz, insan ile yakın soydaşları olan primatlar arasında bir evrimsel ilişki olduğu görülür. Zaten, evrim bakımından eskiye gidildikçe tüm canlıların oluşumları itibariyle ortak evrim ağacının farklı dalları oldukları ve bu nedenle de tüm canlılar arasında (uzak veya yakın) bir ilişki bulunduğu da bilinmektedir. Ancak bu ilişki, "maymun ile insan arasında bir ata-torun ilişkisi vardı ve insanlar da zaman içinde maymunlardan türemiştir" anlamına tabii ki gelmez. Maymun ve insan türlerinin birlikte oluşturdukları zoolojik takım olan primatlar arasında evrimsel bir ilişi olması demek, bu iki farklı türün ortak bir kökten türemiş olmaları ve / fakat zamanla bunların her ikisinin de değişerek bugünkü hallerini almış olması demektir. Başka bir deyişle, bu iki canlı türünden her biri kendi yönünde evrimleşmiş, zaman içinde insan daha "insanlaşmış" ve buna karşılık maymun daha da "maymunlaşmıştır". Gelecekte, evrim sürecinin bir gereği olarak aynı olayın devam edeceği, insan ile maymun arasında var olan makasın daha da açılacağı kuşkusuz. " Sahi, insanla maymun arasında ne gibi farklar vardır? İnsanı insan yapan nedir? " Yüzyılımızın başlarında insanın çevresine uyum yeteneği, daha sonraları düşünce, İkinci Dünya Savaşı' nı izleyen dönemde araç-gereç yapımı, 1960' lı yıllarda ilkönce lisan ve hemen sonra da avcılık insanı " insan " yapan "insansı" özellikler olarak görülüyordu. Bugün ise durum hayli farklı." "İnsan denen canlıyı ele aldığımız zaman onun bir Homo erectüs (dik yürüyen), bir Homo faber (alet yapan), bir Homo lingua (konuşan/ dili olan), bir Homo symbolicus (soyutlayabilen), bir Homo curiosus (araştıran) ve bir Homo sapiens (akıl sahibi, zeki) olduğunu görüyoruz. Bunların tümü insana özgü. İlginç olan ve özellikle vurgulanması gereken husus, insan dışı

http://www.biyologlar.com/evrim-kurami-ve-maymun-sorunu

Akdeniz İklimi Hakkında Bilgi

Akdeniz İklimi Hakkında Bilgi

Yazları sıcak ve kurak kışları ılık ve yağışlı özelliğe sahip olan bu iklim gerçek olarak Akdeniz ve Ege Bölgelerimizde görülür.

http://www.biyologlar.com/akdeniz-iklimi-hakkinda-bilgi

Karından Ayaklılar Salyangoz, Sümüklü böcekler

Salyangoz, sümüklüböcek, deniz salyangozu, ve sarmal sedef kabuklu, yumuşakçaların karından ayaklılar sınıfında yer alır. Bu hayvanlarda da öteki yumuşakçalarda olduğu gibi bir ayak ve bir manto boşluğu bulunur. Baş gölgeleri çoğunlukla iyi gelişmiştir ve tek parçadan oluşan sarmal biçimli bir kabukları vardır. • Salyangoz Salyangozlar dünyanın her yerinde bulunur. Bazıları okyanuslarda, bazıları ise ırmak, göl ve benzeri tatlı sularda yaşarlar. Karada yaşayan sayısız salyangoz türü tropikal ormanlardan ılıman iklim kuşağının nemli bölgelerine dek uzanan geniş bir alanda bulunur. Salyangozun başında bir ağız ve bir ya da iki çift dokunaç bulunur. Gözleri bu dokunaçların üstünde yada altında yer alır. Yassı gövdesi üzerinde sürünerek ilerler. Ayağında bulunan bazı salgı hücreleri, salyangoz süründükçe yeri yağlayarak ilerlemesini kolaylaştıran bir sümüksü madde de salgılar. Düzgünce bir zeminde ilerleyen salyangozun arkasından parlak bir iz bırakmasının nedeni budur. Hem ayağını hem de başını kabuğunun içine çekebilir. Tatlı su salyangozlarının ve kara salyangozlarının tarih öncesi zamanlarda da insanlarca yenildiği sanılmaktadır. Günümüzde pek çok ülkede lezzetli bir yemek olarak kabul edilir. Piyasada çoğunlukla üretim çiftliklerinde yetiştirilen salyangozlar bulunur. En büyük üretim çiftlikleri Fransa, İtalya ve İspanya’dadır. 8 ile 9 m²’lik bir bölmede yaklaşık 10.000 salyangoz yetiştirilebilir. Salyangozlar et, sebze ve kepek ile beslenir. Hayvanbilimde Buccinum undatum ve Littorina adı verilen deniz salyangozu türleri, Avrupa’da besin maddesi olarak tüketilir. Buccinum undatum çağunlukla Atlas okyanusunun kuzey kıyılarında bulunur. Besin maddesi ve morina avcılığında yem olarak kullanılır. Ilıman bölgelerde ve soğuk denizlerde de yaşar. Kayaların ve yosunların üzerine tutunur ve yosunla beslenir. Dişli dil adı da verilen uzun dili önemli bir özelliğidir. Bu dilde bir dizi keskin kavisli diş bulunur. İstiridye matkabı adıyla bilinen salyangozun dişli dili çok gelişmiştir. Uzunluğu 2,5 cm’den az olan bu küçük canlı, istiridyenin kabuğunun birleştiği yere bir delik açar ve buradan avının yumuşak gövdesini emer. İstiridye yetiştiriciliğinin başlıca düşmanlarından biri, bu istiridye matkabı adı verilen salyangozdur. • Sümüklüböcek Sümüklüböcekler, salyangozların akrabalarından, 2-10 cm uzunluğunda, dış kabuksuz canlılardır. Kara sümüklüböcekleri nemli yerlerde yaşar. Taş altlarında, toprakta, deliklerde sıklıkla bulunur. Kimi zaman sebze bahçelerini sararlar. Deniz sümüklüböcekleri Kuzey Amerika, Avrupa ve Asya’da kıyı boyunca sığ sularda, kayalıklarda, yosunlar arasında yaşayan otçul hayvanlardır. • Koni Kabuklu Salyangoz Koni kabuklu salyangoz adı verilen karından-ayaklılar, sönmüş yanardağı andıran koni biçimli bir kabuğa sahiptir. Sığ sulardaki kayalara emici aykları ile öylesine sıkı sıkıya yapışırlar ki, dalgaların etkisi ile bile yerlerinden ayrılmazlar. Deniz yükseldiğinde, başlıca besin maddeleri olan yosunların peşine düşerler. Beslenmeleri bittikten sonra tekrar kayalara yapışırlar. Dünyanın pek çok yerinde bulunurlar. • Denizkulağı Kabuğu, insan kulağına çok benzediğinden bu adı almıştır. Bunların büyük kabukları, özellikle pürüzlü dış yüzeylerinin cilalanmasından sonra süs eşyası olarak kullanılır. Uzakdoğu’da ve Amerika’nın Atlas Okyanusu ve Büyük Okyanus kıyılarında bulunur. Kıyıya yakın kayalar üzerinde yaşar ve yosunlar ile beslenirler. Rahatsız edildiklerinde şaşırtıcı bir kuvvetle kayaya yapışırlar. Etleri çoğunlukla güveç ve balıklı sebze çorbalarında kullanılır. Kimi zaman biftek şeklinde de pişirilirler. Uzakdoğu’da çoğunlukla kurutularak ya da tütsülenerek tüketilir. • Sarmal Sedef Kabuklular Sarmal sedef kabuklu salyangozlar, özellikle ABD’nin güney kıyılarında ve Batı Hint Adaları’nda çok bulunan bir karından-bacaklılar türüdür. Kabuklarının uzunluğu kimi zaman 25 cm’e ve ağırlıkları da 2,5 kg’a varabilir. Ayaklarında pençe benzeri uzantılar bulunur. Sıçrayarak hareket eder ve yakalanmamak için kimi zaman hızla dönebilirler. Kabukları nefesli saz, kabartma ve düğme yapımında kullanılır. Bahama Adaları’nda ve Florida açıklarındaki mercan adalarında besin maddesi olarak tüketilir

http://www.biyologlar.com/karindan-ayaklilar-salyangoz-sumuklu-bocekler

Bir balığın ve kurbağanın cinsiyetini hangi özelliklerine bakarak nasıl anlayabiliriz?

Türkiye’de göl, dere, çay, nehir gibi iç sularda ve bazı nemli ortamlarda yaşayan pek çok kurbağa türü bulunmaktadır. Kurbağaların hemen hepsi üreme zamanlarında suya bağımlı olup, hayatlarının diğer zamanlarında karada yaşamaktadırlar. Kurbağalar, ilkbahar ve yaz aylarında sulara yumurta bırakır. Yumurtaların bırakıldığı bazı su ortamlarının yaz aylarında kuruması sebebiyle kurbağa yumurta ve larvaları olumsuz şekilde etkilenmekte ve hatta büyük bir kısmı ölmektedir. Buna rağmen ülkemizde doğal ortamlarda yetişen kurbağaların toplanarak yapılan üretim miktarları aşağıdaki gibidir. Amerika Birleşik Devletleri ve Uzak Doğu Ülkelerinde semi-intensif şekilde kurbağa üretimi yapılmakta olup, henüz ülkemizde doğadan toplamanın dışında üretim yapılmamaktadır. BİYOLOJİSİ Kurbağaların Türkiye’de 11 türü bulunmakta, bunlardan bazıları; Rana, Hyla, Bufo, Pelabotes, Bombina ve Palodytes tir. Bu türler içerisinde ekonomik değeri olan ve ihracaatı yapılan Rana cinsinin ülkemizde 5 türü yaşamaktadır. Kurbağalar, omurgalılar hayvanlar grubuna girip, bu hayvanlar arasındaki yerlerini şu şekilde belirlemek mümkündür: Şube (Phylum) : Chordata Alt-Şube (Subphylum) : Vertebrata Sınıf (Classis) : Amphibia Takım (Ordo) : Anura Aile (Familia) : Ranidae Cins (Genus) : Rana Tür (Species) : Rana ridibunda (Ova K.) Rana dalmatına (Çevik K.) Rana macrocnemis (Uludağ K.) Rana cameranoi (Şerit K.) Rana holtzi (Toros K.) ÜREMELERİ Kurbağaların cinsi olgunluğa gelmeleri dişilerde 1-2, erkeklerde 3-4 yaşları sonunda ulaşırlar. Eşeysel olgunluğa ulaşan kurbağalar üreme zamanı geldiğinde suya girerler ve larva safhalarının sonuna kadar da suda kalırlar. Daha sonraları kurbağalar karasal yaşama geçerler. Erkek kurbağaların vücut yapıları dişilerden oldukça iri (büyük) olduğundan ayırt etmek zor değildir. Erkeklerin kulak zarı daha büyük ve gözler daha iridir. Erkeklerin gırtlakları parlak sarı renkli dişilerinki ise beyaz ve kahverengi beneklidir. Yetişkin erkek kurbağalar üreme mevsiminde bazı sesler çıkartırlar ses çıkartma üreme zamanları Şubat ayı sonu ile Ağustos ayı sonuna kadar devam etmektedir ve bu sayede erkekler kolayca ayırt edilir. Kurbağalarda gerçek bir çiftleşme yoktur. Bunun için bu çiftleşmeye kucaklaşma (amplexus) denilmektedir. Kurbağaların çiftleşmeleri genelde geceleri olur ve senede 3-4 dönem yumurtlama olmaktadır. Her dönemde 5.000-10.000 adet arasında yumurta bırakmaktadırlar. Kurbağalar ayrı eşeylidirler. Erkek ve dişi üreme organları ayrı fertte bulunur. Erkeklerdeki testislerde olgunlaşan spermatozoonlar bir kanal ile böbreklere oradanda dışarıya atılırlar. Testisler üzerinde sarı renkli bir çift yağ cisimciği vardır. Bunlar kurbağaların kış uykularında beslenmelerini sağlar. Dişi kurbağalarda bir çift ovaryum bulunur. Ovaryumların büyüklükleri yaşa ve mevsime göre değişiklik göstermektedir. Ovaryumların üzerinde erkeklerde olduğu gibi bir çift yağ cisimciği bulunur. Bu yağ cisimleri kış aylarında dişi kurbağanın kış uykusunda beslenmesini sağlar. Yumurta ve Larvalar Ovaryumda olgunlaşan yumurtalar vücut boşluğuna dökülürler. Buradan yumurta kanalına geçer oradan uterusa ve daha sonra kloak yoluyla dışarıya atılırlar. Yumurta , yumurtlama borusundan geçerken etrafı jelatin bir kılıfla sarılır. Yumurta suya düşünce bir kılıf şiştikten sonraki halidir. Bu jelatin madde yapışkan olduğunda yumurtalar bir grup teşkil eder. Jelatin içindeki embriyo geliºerek larva meydana gelir. Bu larvalar kılftan hareketli bir halde çıkar ve serbest yüzmeye başlar. Bunlara iribaş veya tetar denir. İribaşların ilk safhasında dış solungaçlar gelişir ve solunumu bunlarla yapar. Kurbağa yumurtaları küreseldir. Yumurta çapı 7-10mm civarındadır. Bir dişi kurbağa ortalama olarak 9.000 yumurta yumurtlamaktadır. Yaşlı kurbağalar 12.000 adete kadar da yumurtlayabilirler. Yumurtalar yaklaşık 3 gün içerisinde açılır. 1-1.5 ay sonra iç solungaçlarla yüzgeçler gelişir. İribaşlar 2-2.5 aylık olunca arka bacaklar, 4 aylık olunca ön bacaklar gelişir. 6-6.5 aylık olunca metamorfoz (başkalaşım) geçirerek kuyruk, solungaç ve solungaç yarıkları tamamiyle yok olur. Yerine alkciğerler gelişir ve böylece kurbağalar karasal yaşama başlarlar. Bu safhada kurbağalar herbivordur (bitkiyle beslenirler). Kurbağalarda başkalaşım sonucu şekil değiştirme kuyruğun tamamen yok olmasıdır. Şekil değiştirmede önemli olan su ısısıdır. Su ısısı 16 C0 nin altına düştüğü zaman yavrular şekil değiştirmeyi yapamazlar. Bunun için yavrular güneş ışığında belirli zamanlarda tutularak şekil değiştirmelerine yardımcı olunmalıdır. Eğer yavrular şekil değiştirmeyi gerçekleştiremezlerse ölüm kaçınılmaz olur. Beslenmelerİ Ergin kurbağalar (Anura) yalnız canlı ve hareketli böcek, solucan ve küçük yumuşakçalarla beslenirler. Sucul formlardan büyük formda olanları küçük balık ve kuş gibi hayvanlarla da geçinebilirler. Hatta bazı türler kendi larvalarını da yiyebilirler (kanibalizm). Kuyruksuz kurbağada (Anura’da) olduğu gibi dil öne doğru fırlatılarak dilin yapışkan uçları ile avlarının yakalanmasını sağlar. Bir çok su kurbağasında (Ranidae) ava nişan alınarak dil fırlatılır. Kuyruksuz kurbağa larvaları ise sudaki alglerle ve ölü hayvan kırıntılarıyla geçinirler. Çünkü bunların ağızları büyük besinleri yutmaya elverişli değildir. Larvalar ile erginler birbirlerine rakip olmamak için aynı tür besinlerle beslenmezler. Besinleri protein açısından oldukça zengindir. Soğuk kanlı hayvanlar olduklarından vücütlarında çok fazla miktarda yağ ve glikojen depo etmeye gerek duymazlar. Çünkü bunların metabolizması oldukça düşük düzeydedir.Uygun sıcaklıklarda ve besin sunumunda kurbağalar çok miktarda besin alabilme yeteneğindedirler. Bunun yanısıra bir aydan fazla açlığa dayanabilirler. Yumurtadan çıkan yavrularda başın altında vitellüs (besin) kesesi vardır. Yavrular ilk bir hafta bu besinleri kullanırlar. Besin kesesi kullanımı bittikten sonra (asorbe olduktan sonra) dışarıdan besin almak zorundadırlar. Soğuk kanlı olmaları ve ince olan derileriyle fazla miktarda su kaybettiklerinden , aşırı sıcaklık ve kuraklığa karşı dayanıklı değillerdir. Sucul iki yaşamlılar kış uykusu için göl ve nehirlerin donmayan dip kısımlarına çekilirler. DüşmanlarI Kurbağa larvaları Rhynchota (Hortumlular), Coleoptera (Kin kanatlılar) gibi sucul böcekler tarafından yenir. Aynı zamanda Odonata (Tayyare böcekleri) larvalarıda genç evrelerinde kurbağa larvaları ile beslenmektedir. Lucilia adı verilen bir sinek yumurtalarını Bufo ve Rana türleri üzerine bırakır. Birkaç gün içinde çıkan larvalar bu kurbağalarda doku bozuklukları, daha sonrada ölümler meydana getirirler. Kurbağa Kültürü Diğer su canlılarında ( balıklar, kabuklular v.s.) olduğu gibi kurbağalarında suni üretiminde son yıllarda büyük başarı sağlanmıştır. Kurbağa kültüründe kullanılan yetiştirme havuzları ve özellikleri şu şekildedir. Yetİştİrme HavuzlarI Kurbağa yetiştirciliğinde kullanılan havuzların her birinin alanı değişik olabileceği gibi 50-60m2 olanlar tavsiye edilir. Bir kurbağa yetiştirme çiftliğinin kurulması için toplam 5-6 bin m2’lik bir alan yeterlidir. Böyle bir çiftlikte 5 çeşit havuz yapılması gerekmektedir. Bu havuzlar; · Yumurtlama havuzları · Kuluçka havuzları · Yavru ( iribaş ) havuzları · Genç yavru havuzları · Yetişkin havuzları Yumurtlama Havuzları Genel olarak bu havuzlar 10-15m2 arasında değişen büyüklüklerde yapılmaktadır. Bu havuzlar toprak olduğu için, etrafına ağaçlar ve yüksek bitkiler dikilmek suretiyle tabi bir ortam şekli yaratılmalıdır. Havuzların derinliği değişik olmakla birlikte herbir havuzda 1/3’lük kısmının derinliği 10cm. olmalıdır. Yumurtlama havuzlarına konacak anaç seçiminde kuvvetli olanlar seçilir ve bir erkeğe 3 yada 4 dişi gelecek şekilde seçilmeli ve yumurtlama havuzlarına bırakılırlar ve bekletilirler. Bu sırada havuzlarda bulunan anaçlar rahatsız edilmemelidirler. Kuluçka Havuzları Anaç havuzlarından elde edilen yumurtalar geniş bir kepçe yardımıyla toplanır ve bu yumurtaların %10-15’inden iribaş elde edilir. Yumurtaları havuzlara aktarılmasından sonra su hiç karıştırılmamalıdır. Yumurtaların açılmasında su, ısı ve zaman önemli bir faktördür. Yumurtalar 24-27Co arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş- çıkışı sağlanmalıdır. Kuluçka havuzları betondan inşaa edilmelidir ve havuzlar 40 cm. derinlikte olmalıdır. Havuzlarda bu devrede su akımı önemlidir. Bu nedenle havuzların su giriş ve çıkışı uygun şekilde yapılmalıdır. Larva (İribaş) Havuzları Yumurtadan çıkan larvalar bir hafta boyunca besin kesesini kullanırlar, daha sonra dışarıdan besin almak zorundadırlar. Bu aşamada yumurta sarısı ile beslenmeleri gerekir. İribaş yavruları ilk ay içerisinde balık ve yer fıstığı unu daha sonra tatlı patates unu, pirinç kepeği, mutfak artıkları ve değersiz yiyeceklerle beslenirler. Yiyecekler su yüzeyinde yüzecek şekilde altları delik kaplarla verilmelidir. Günde iki öğün yem verilmelidir. Çıkan yumurtalardan yaklaşık %10-15’inden iribaş elde edilir. Yumurtalar geniş bir kepçe ile su içinde alınarak kuluçka havuzlarına konulurlar. Yumurtalar havuza nakledilikten sonra havuzlar hiç karıştırılmamalıdır. Yumurtaların açılmasında su ısısı ve zaman önemli bir faktördür. Yumurtalar 24-27C0 arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş çıkışı sağlanmalıdır. Kuluçka havuzlarının; derinliği 30-40 cm. arasında ve zeminleri çamur olmalıdır. Böylece havuzların su ısısının sabit tutulması ile yavruların büyüme güvenliği sağlanmış olur. Larva havuzların dikdörtgen şeklinde olması tavsiye edilir. Uygulamada 1m2 ye 1.000 adet olacak şekilde kurbağa larvaları larva havuzlarına konulur. Eğer akarsuya larvalar konulacak ise m2ye 2.000 adet yavru konulmalıdır. Bu arada yavruları boylama eleklerinden geçirerek sınıflandırma yapılır ve ayrı havuzlara koymak gerekir. Genç Yavru Havuzları Genç yavru havuzlarının su derinliği 15-35 cm. arasında olmalı ve her bir havuzun 1/4 kadarlık kısmı sudan daha yüksekte olmalıdır. Yani yavrular gerektiğinde çıkabilmeleri için havuzda susuz bir sahaya gereksinimleri vardır. Yavrular bu havuzlara ancak 3. Aylarını doldurduktan sonra nakledilmelidirler. Genç havuzlarının 1 m2sine 100-120 arasında yavru konulmalıdır. Fakat yavrular 6-7 cm uzunluğunda iseler bu sayı 60-80 arasında olmalıdır.Bütün yavrulara şekil değiştirene kadar yem verilmez. Şekil değiştiren kurbağalar arasında yine bir seleksiyon uygulanır ve aynı büyüklükte olanlar seçilerek aynı havuzlara bırakılırlar. Bu işlem yavrular büyüyünceye kadar devam eder. Şekil bozukluğu gösterenler ve kuyruk atamayanlar ortamdan uzaklaştırılır.Çünkü kanibalizm olayı meydana gelir. Havuza bırakılan genç yavrulara toprak solucanları, sinek larvaları, küçük balıklar, küçük karidesler ile diğer canlı hayvansal besinler verilmelidir. Sinek larvalarının havuzların içinde çoğalmaları için balık artıkları konmalıdır. Çünkü bu artıklar sinekleri cezbeder ve sinek yumurtalarının çoğalmaları için uygun ortam sağlanmış olur. Buda ucuz bir şekilde yavruların ihtiyacının karşılanması demektir. Hava sıcaklığı 20-26 C0 olduğu zaman daha fazla besin verilmelidir ve verilen besin miktarı yüksek ve düşük ısıda azaltılmalıdır. Ortalama verilen besin miktarı %10 kadar olmalıdır. Günde iki defa beleme yapılmalıdır. Besinin kurbağalara eşit olarak verilmesi gerekir bunun içinde yem toprak yüzeyine dağıtılmalıdır. Daha sonra yem küçük tepsilere konulur, tepsinin yarısına toprak solucanı, kurtçuk diğer yarısına da küçük balık, karides, v.s. konur. Tepsi kısmen suya batırılır. Bu işlemde amaç kurbağaların doğadan yem yeme alışkanlığını geliştirebilmelerini sağlamaktır. Bu arada ölen kurbağalar ortamdan uzaklaştırılmalıdır. Yavrular doğal besinlerden alabilecekleri zamana kadar bu iºleme devam edilir. Yetişkin Havuzları Yetişkin kurbağa havuzları genç yavru havuzlarına benzer. Yalnız havuzlardaki su derinliği 30 ile 40 cm. de devamlı korunmalıdır. Bu havuzlarda genç yavru havuzlarındaki gibi kara kısmı yoktur. Yalnız bunun yerine yüzen yem platformları yapılmalıdır. Havuzların etrafı kurbağaların kaçmamaları düşmanları tarafından yenmemeleri için çitle çevrilmelidir. Bu çitler naylondon olabileceği gibi ağaç veya demirden de olabilir. Havuzun yüzeyi de yine böyle bir çitle kaplanmalıdır. Kurbağalar üçüncü aylarını doldurduktan sonra yetişkin havuzlarına nakledilirler. Yetişkin havuzlarında bazen larva veya genç yavrular bulunabilir. Bunları bir-iki haftada bir seçerek havuzdan ayırmak gerekir. Bu havuzların 1 m2sine 12 cm. boyundakilerden 50 adet, 15 cm. boyundakilerden 20-30 adet hesabıyla konulmalıdır. Yetişkin kurbağaların maliyetini düşürmek için iri salyangozların eti kıyılarak yem haline getirilerek verilmelidir. Kurbağalar soğuk kanlı hayvanlar oldukları için kış uykusuna yatarlar. Isı çok düştüğü zaman aktiviteleri ve beslenmeleri durma noktasına gelir, ısı yükseldiğinde ise tekrar aktif hale geçip yem alabilmektedirler. Isının fazla düşmediği kış aylarında bütün yıl beslenebilirler. Kurbağalar şekil değiştirmeyi (metamorfoz) tamamladıktan aşağı yukarı 7-8 ay sonra pazar ağırlığına ulaşırlar. PAZARLAMA Kurbağaların normal pazarlama ağırlığı 150-220 gr arasında değişmektedir. Kurbağalar bu ağırlığa 8-10ay gibi kısa bir sürede ulaşabilmektedir. Bu ağırlık ideal satış ağırlığıdır. Türkiye’de doğal ortamdan toplanan kurbağaların ihracaatı yapıldığı için standart bir ağırlık yoktur. Canlı, donmuş bacak, taze bacak ve konserve şeklinde ihracattaları yapılmaktadır. Türkiye’nin ihracaatının %80’ ini canlı ve donmuş bacak şeklindeki kurbağalar teşkil etmektedir. Konserve şeklindeki ihracaat toplam ihracaatın çok az bir kısmını oluşturur. AVLANMALARI Kurbağaların doğadan toplanmalarında çeşitli kepçeler kullanılmaktadır. Şekil- Kurbağalar avlanma zamanlarında suya bağımlı oldukları için, kullanılan kepçelerin sudan etkilenmeyen ve suyu geçiren ince ağlardan yapılmalıdır. Bunun için ergin kurbağa avlanma kepçesi daha uzun ve büyüktür. İstenilen uzunluğa getirilebilen bir seyyar sap vardır.Larvalar için kullanılan kepçeler daha küçük ve göz açıklıkları daha sıktır. Kurbağalar ellede yakalanabilir Bunun için gece tercih edilir. Işığının kuvvetli olması sonucu kurbağalar ışık etrafında toplanırlar rahatlıkla yakalanırlar.Yalnız derileri kısmen zehirli olduğundan, elle temastan sonra, göz ve dudak gibi ince derili ve nemli kısımlara, suyla yıkamadan ellerin sürülmemesi gerekir. TAŞINMALARI Canlı olarak taşınmaları kısa mesafelerdeki nakilleri naylon torba, çuval bez çanta ve buna benzer bir kap içinde yapılabilir. Uzak mesafelerdeki nakiller ise gemi ambarlarında, kara taşımacılığında frigo-frig tırlarda ısı yalıtımı olan kutular içine konulmalı ve bunlarla nakledilmelidir. Nakil esnasında ortamın serin ve nemli olmasına dikkat edilmelidir. LİTERATÜR 1. BAŞOĞLU, M.- ÖZETİ,N. 1973 Türkiye Amfibileri (The Amphibians of Turkey) E.Ü.fen Fakültesi Kitaplar Servisi No 50 2. TOLUNAY, A.M. Özel Zooloji 3. GÖKALP.N 1980 Kurbağaların Biyolojik Özellikleri ve suni üretimleri Su ürünleri Bölge Müdürlüğü 4. DEMİRSOY A. Yaşamın Temel Kuralları 5. KURU M. Omurgalılar Zooljisi

http://www.biyologlar.com/bir-baligin-ve-kurbaganin-cinsiyetini-hangi-ozelliklerine-bakarak-nasil-anlayabiliriz

BÖCEKLERDE TRAKE SOLUNUMU

Stigma dudağının hemen altında trake sitemi başlar. Filogenetik olarak her segment kendi otonom stigmasına sahiptir. Bununla beraber bazı ilkel böceklerde ve gelişmiş böceklerin çoğunda, her segment bir çift stigma taşımaz. Ektodermin, stigmaların bulunduğu yerden içeriye çökmesiyle oluşurlar. Şekil 28.47/a’da basit ilkel bir trake sistemi şematize edilmiştir. Her stigmadan uzanan kısa bir dal yatay olarak vücut içerisine girerek bir dorsal, bir visceral ve bir de ventral dalcığa ayrılır. Dorsal daldan vücudun sırt kısmındaki kaslar ve integüment; visceralden bağırsak, malpiki tüpü, eşeysel bezler, yağ cisimcikleri; ventral daldan ise, karın kasları, sinir ve karın derisi yararlanır. Yalnız mezotorakstan öne doğru protoraksı ve başı besleyebilmek için bir ventral bir de dorsal kol çıkarak uzanır. Öne doğru uzanan dorsal koldan beyine, göze, üst dudak bölgesine ve antenlere kollar uzanır. Ventral koldan ise, tüm protoraksa, ilk bacak çiftine, alt dudak bölgesine ve ağız üyelerine kollar gönderilir. Stigma taşıyan her iki göğüs segmentinde, ventral koldan bir dal çıkarak bacak trakesini yapar. Böceklerin Hava Keseleri Metamerlere göre ayrı ayrı olan bu sistem diğer tüm böceklerde ikincil olarak değişikliğe uğrayarak daha karmaşık bir durum kazanmıştır. Segmentlerdeki trakelerin tümü enine boyuna birbirine bağlanarak anatomik ve işlevsel bir solunum birliği meydana getirir. Bu bağlantılara “Anastomos” denir. Enine bağlantılar vücudun karın tarafında, boyuna bağlantılar ise sırt kısmında sıktır. Stigmaların hemen iç kısmında tüm vücudu yandan boyuna kateden birleşik bir boru bulunur. Daha az olarak sırt kolunda, en az anastomoz ise visceral ve ventral kollarda görülür. Kanatlı böceklerin tümünde ilaveten kanat trakeleri görülür. Kanatlara giden kollar, mezo- ve metatoraksta, bacaklara giden trake kollarından ayrılarak bir yay yapar ve tekrar karın trake borusuna bağlanır. Özellikle iyi uçan böceklerin trake sisteminde ilave gelişmeler görülür (trake kollarında çoğalmalar ve dallanmalar). En çok görülen şekli ana trake kollarının genişlemesiyle meydana gelen trake keseleri ya da hava keseleridir. Bu kesecikler, mayısböceklerinde olduğu gibi, fazla sayıda; fakat küçük olabilir . Diğer taraftan halanlarında olduğu gibi birçok küçük hava kesesinin kaynaşmasıyla az sayıda; fakat büyük yapıda hava keseleri ortaya çıkar Hava keselerinin tümü havanın depo edilmesi için kullanılır. Keselerden çıkan ince dallar ve borular dokulara kadar uzanır. Ayrıca bu keseler miksosölü sıkıştırmak suretiyle dolaşımı hızlandırır ve dokulara besin ulaşımının daha etkin olmasını sağlar. Her trake, böceğin dış derisinin yani integümentinin özel bir amaç için içeriye çökmesiyle oluşur. Bunu de görmek olasıdır. Trake, “Matrix” ya da “Trake Epiteli” olarak adlandırılan bir tabakalı epitel ile en dışta örtülmüştür (buradaki dış tarifinden kasıt borunun lümeni değil, vücut içindeki tarafıdır). Eğer trake izole edilmiş bir boru halinde düşünülürse; en dışta kaide zarı, onun altında trake epiteli ve en içte de ekso- pro- ve epikutikuladan oluşmuş, vücudun tümünü dıştan örten tabakanın “Intima” denen iç çöküntüsünü görürüz. Intima, trake borusunun iç lümen kısmını astarlar. Intima ne kadar kalınsa, trake içe doğru o kadar fazla olarak uzanır. Bu kitin kılıf, öncelikle, trake borucukuların büzülmesini önler. Borucukların daha sağlam olabilmesi için kitin kılıfın üzerinde “Taenidium” denen özel spiral kitin kalınlaşmalar görülür. Trake intimasında prokutikula sklerotize olmadığından, sağlamlaştırma, taenidium ile, yani, eksokutikulanın yiv şeklinde kalınlaşmasıyla olur. Bazen bu yiv şeklindeki çıkıntılar, bir ağ görünümünde ya da parmakçalık gibi olabilir. Her deri değişiminde intima yenilenir. Büyük hava keselerinde, esnekliği korumak amacıyla, bu şekilde, duvarı sağlamlaştıracak kabarıklıklar ve keza kitinleşme yoktur. Epikutikula, her zaman trake lümenini kesiksiz astarlar. Trakenin içe doğru uçtaki ince dallarında ise, epikutikula basitleşerek sadece dolgun bir tabaka ile kutikula tabakasından oluşur. Trake borucukları son kısmına doğru 2-5 fi çapında çok ince borucuklarla trake uç hücrelerinin içinde son bulur . Burada epikutikula tamamen kaybolur; sadece gaz geçiren ince epitel tabakası kalır. Trake Uç hücreleri ve trakeoller Trake uç hücreleri matriks hücrelerinin değişmiş bir şeklidir. Bu hücreler yıldız şeklini almış ve üst düzeyi diğer matriks hücrelerinden daha değişik yüksekliktedir. Birçok uç hücresinin parmak şeklindeki uzantıları birbirleriyle ilişkide olabilir ve bu şekilde komşu hücre ve organın civarında bir ağ meydana getirirler. Bazen oksijene büyük gereksinme gösteren kas hücreleri gibi hücrelere, bu borucuklar, doğrudan bağlanırlar . Uç uzantıların içerisine kadar uzanan trake borucuklarının çapı 1 /cm’den daha küçük olabilir. Trake kılcallarına “Tracheol” denir. Kural olarak bunların iç çeperi kitin taşımaz. Işık mikroskobunda ancak 250 Â genişliğindeki trakeollerin kör ucu görülebilir. Havanın oksijeni öncelikle bu trakeollerr- saran dokulara diffüzyonla girer, ince trake borucuklarının duvarlarının da gazlar için geçirimli olduğu bilinmektedir. Fakat bu yolla vücudun ne kadar oksijen aldığı saptanamamıştır. Birçok araştırıcıya göre oksijenin geçişi sadece fiziksel bir diffüzyona dayanmamakta, matriks hücreleri, özellikle trake son hücreleri aktif rol oynamaktadır. Belki adı geçen yerlerde birikmiş olan pigment granülleri oksidasyon işlevinde ya da oksijen depolanmasında önemli görevler almaktadır. Deri değişiminde trakeollerin iç çeperi derinin diğer kısımları gibi değişmez; fakat, tamamen çözünür. Bu çözünen kısım “Trachein” denen kolloyidal bir materyalden yapılmıştır. Bu madde, kuru ortamda büzülür, sulu ortamda gevşeyerek açılır. Bu özellik, havanın, trakeollerin son kısmına ulaşmasında büyük öneme sahiptir. Gaz Değişimi: Uzun zamandan beri trakeollerin son kısmının hava ile değil, 0.2-0.3 \jım çapındaki bir sıvı sütunu ile dolu olduğu bilinmektedir. Kılcal kuvvetinden dolayı, trakeollerin son kısmını çeviren dokulardan, sıvıların, bu kılcal boru içerisine akma eğilimi vardır. Bu nedenle trakeollerin iç çeperleri genellikle sıvı (su) ile kaplıdır. Sıvıyı doku içerisinde tutabilmek için de bir zıt etkinin olması gereklidir.” Büyük bir olasılıkla bunu sağlayan da trakenin kolloyidal sıvı içeriğinin özelliğidir. Trake kılcallarının su tutma (eyleme)kuvveti, etrafını çeviren hemolenfin ozmotik basıncına bağlıdır. Dokudaki oksijen azaldığı zaman yadımlama ürünlerinin artmasından dolayı hemolenfin ozmotik basıncı yükselir. Bunun neticesi olarak trakeollerin uç kısmındaki su, dokular içine emilir ve bu arada temiz hava boşalan kılcallara doğru ilerler. Yeterince oksijen alındıktan sonra, ozmotik basıncın yükselmesine neden olan yadımlama son ürünlerinin oksitlenmesiyle ya da yıkılarak ortadan kaldırılmasıyla, ozmotik basınç düşer. Bunun neticesi olarak su, dokulardan kılcal borular içine geçmeye başlar ve hava dışarıya doğru itilir. Sıvının kılcal borular içinde gidip gelmesiyle oksijen içeren hava ritmik olarak trakeoller içerisine pompalanır. Trakeoller Havanın geniş lümenli trakelere ve hava keselerine pompalanmasında başka etkenler rol oynar. Vücut duvarının kaslar aracılığıyla hacimce genişleyip daralması suretiyle hava içeriye ve dışarıya pompalanır. Birçok böcekte abdomenin sırt karın yönünde açılıp kapanmasıyla, ya da dürbün gibi, segmentlerin boyuna birbirinin içerisine girmesiyle havalandırma meydana gelir. Bu tipik hareketleri birçok böcekte çıplak gözle izlemek olasıdır. Ayrıca göğüs birçok böcekte aktif olarak havalandırmaya katılır. Göğüste meydana gelen hacim değişmeleriyle hava stigmalardan içeriye ve dışarıya pompalanır. Dokularda CO2 miktarı çoğalınca, karın gangliyonundaki otonom merkez uyanlarak, solunumdan sorumlu olan kaslar harekete geçirilir. Böylece giren hava miktarı artırılır. Solunumun her stigmada aynı etkinlikle yapıldığı söylenemez. Bazen yönlendirme görülebilir. Dokuiara’a oluşan C02′in bir kısmı trakeollerin uç kısmındaki sıvının içerisine geçer (karbonik asit haline geçerek) ve yine buradan trake yolunu izleyerek dışarıya atılır. Karbondioksit, oksijene göre çok daha kolay olarak dokulara girebilir. Dolayısıyla kutikulanın arasındaki geçitlerden (pasajlardan) ve geniş lümenli trakelerden CCVin büyük bir kısmı dışarıya atılabilir (oksijen hemen hemen hiç geçmediği halde). Çalıçekirgelerinde dışarıya atılan CC^’in % 25′i integümentten sızar (diffüzyon yapar). Trake duvarlarından kan sıvısına sızan oksijen, kısmen erimiş durumda bu sıvıda taşınabilir. Fakat hemen hemen (örneğin Chironomi- dae larvaları hariç) solunum pigmenti taşımadığından, kanın, solunumda önemli bir rolü yoktur. Sıcaklık yükseldiğinde, hareket halinde ve gelişme evrelerinde oksijene gereksinim artar.

http://www.biyologlar.com/boceklerde-trake-solunumu

Toprak Yapısı ve Su Verimliliği

Toprağın bitkilere su sağlayabilme potansiyelini belirlemek üzere kullanılan Tarla Kapasitesi, Daimi Solma Noktası veya Yüzdesi, Su Basıncı (P), Su Tansiyonu, Nem eşdeğeri, Su Potansiyeli veya Yayınım Basıncı Eksikliği, Toplam Toprak Suyu Stresi, Kılcallık Kapasitesi gibi birçok terimler vardır. Burada konu bunlar arasında en yaygın olarak kullanılan bazı terimlerle ele alınacaktır. Toplam toprak su stresi, (Total soil moisture stress) konuya enerjetik açıdan yaklaştığı için bu konudaki en bilimsel terimdir. Konuya toprakta bulunan suyun serbest enerjisini azaltan iki temel kuvvet grubunun etkinliği çerçevesinde yaklaşır ve toprak suyunun serbest enerjisini azaltan bu iki grubu : · Toprak suyu tansiyonunun ögeleri olan hidrostatik kuvvetler, yerçekimi ve adsorpsiyon kuvvetleri, · Toprak çözeltisinin osmotik kuvvetleri olarak tanımlar. Hidrostatikler bilindiği gibi su basıncı, yüzey gerilimi gibi kuvvetler, adsorpsiyon kuvvetleri de su ile toprak kolloidlerini oluşturan kil gibi mineraller ve organik maddelerle su arasında etkili olan, suyun yerçekimi etkisini yenebilmesini sağlayan kuvvetlerdir. Osmotik kuvvetler de topraktaki su çözeltisinin içerdiği iyonlarla ilişkilerinin sonucu olan kuvvetlerdir. Toprak çözeltisinde çözünmüş iyon derişimi suyun azalması ve çözünür iyon miktarı artışı ile artar. Yani toprak kurudukça su alımı zorlaşır, kuraklığın zorlayıcı etkisi otokatalitik bir artış gösterir. Toprak, kaynağı olan anakaya üzerinde bulunan ve dünya ortalamasına göre 50 - 60cm. kalınlığındaki tabakalı yapıdır. Değişik oranlardaki kaya ve çakıllar ile kumdan oluşan, su tutma kapasitesi düşük veya çok düşük olan, kil ve silt gibi ince taneli, su tutuculuğu olan mineral maddeler ile canlı artıkları ve bozunma ürünleri olan humusu içeren ve su tutan organik maddeler, sulu toprak çözeltisi ile hava ile memeliler ve sürüngenler ile solucanlardan funguslar, mikroalgler ve bakterilere kadar geniş bir açılım gösteren canlılardan oluşur. Bu karmaşık yapısı nedeniyle de çok dinamik bir yapıdır. Kaba kum adı verilen 0.2 - 2mm. çapındaki tanelerden daha büyük çaplı olan çakıl ve taş parçaları toprağın iskeletini oluşturur. Kaba kum ve 0.2 - 0.02 mm çaplı ince kum, 0.002 - 0.02 mm. çaplı silt ve bundan daha küçük taneli kil ise su tutma kapasitesine çapın küçüklüğü oranında katkıda bulunan kısımdır. Toprağın iskeletini de içeren yapısına toprağın strüktürü, iskelet dışında kalan kısmının özelliklerine toprağın tekstürü - dokusu denir. Bu katkıda bulunan kısımların oranı da toprak tekstürü adı verilen ve toprak sınıflandırılmasında kullanılan temel özellikleri oluşturur: Çakıllık, kumul, münbit - verimli, siltli, killi toprak ana tipleri kumlu, siltli ve killi münbit - organik maddece zengin - toprak gibi alt gruplara ayrılır. Ayrıca kahverengi orman toprağı, podzoller, çernozemler gibi yaygın ve belirgin genel özellikleri olan toprakları tanımlayan sınıflandırmalar da vardır. Bitkilerin beslenmesine uygun, yani verimli - münbit topraklar Uluslararası Toprak Bilimi Örgütü Sistemi tarafından Kumlu (%66.6 kum, %27.1 verimli fraksiyon ve %0.9 silt ve kil), İnce Kumlu ( %17.8 kum, %30.3 ver. ve %7.1k+s), Siltli (%5.6 k., % 20.2 v., %21.4 k+s ) ve Killi ( %8.5 k, %19.3 v, %65.8 kil) şeklinde sınıflandırmıştır. Toprak verimliliğinin yanısıra küçük taneli ve organik maddece zengin olması erozyona dayanıklılığının artışına neden olur. Doğal, bozulmamış toprakta toprak yapısı ve dokusu bu sınıflandırmada farklı konumlara sahip olan tabakaları, toprak tabakalarını içerir. Toprağın tabakalanması ve tabaka özellikleri toprak profili ile tanımlanır. Toprak profilinde yer alan tabakalar - horizonlar yüzeyden derine doğru, A1,... gibi alt tabakalara ayrılan A, ....D tabakaları halinde dizilirler. Bu tabakaların herbirinin özelliği bitki örtüsünün kök sistemi özelliklerine göre kompozisyonunu yağış rejimi ve iklimsel özellikler ile birlikte denetler. Kumlu toprak en az karmaşık olan kapiler sistemi geniş porlu olduğunda su geçirgenliği - permeabilitesi, yani drenajı yüksek olduğu için köklerin solunumu için yeterli havalandırma sağlayan düzenli ve sık yağışlı iklimler için en uygun toprak tiplerindendir. Kimyasal ve fiziksel olarak bozunma eğilimi düşük, kararlı yapısına karşın gevşektir. Öte yandan tanecikler arasında çimento görevi görevi yapabilecek organik madde ve kil ile silt az olduğundan gevşek ve erozyona açık olan toprak tipidir. Killi topraklar ise kolloidal ve kolloidimsi özellikteki kil ve siltin oluşturduğu, su çekerek şişen ve topaklaşabilen çimento fazı ile tam ters özelliklere sahiptir. Al-silikatlardan oluşan bazik karakterli levha biçimi olan kolloidal taneciklerin çok yüksek yüzey / hacim oranı ve kohezyon, adezyon kuvvetleri, zayıf hidrojen bağı yapma yetenekleri ile kumlu topraklardan 1000, siltli topraklardan 10 kat daha fazla su tutar ve su girişi arttıkça çok daha az hava bulundururlar. Erozyona ve kurak etkisinde kurumaya karşı dirençli fakat köklere hava sağlama açısından zayıf topraklardır. Verimli olanlar ise yaklaşık olarak eşit oranlarda kum, kil ve silt içeren, su tutma ve hava kapasitesi, drenajı, su geçirgenliği yeterli olan topraklardır. Bu verimlilik uygun iklimle birleşince sık bitki örtüsünü destekler ve organik maddece zenginleşir, madde çevrimi yüksek dengeli bir ekosistem oluşur. Verimli toprağın porozitesi, serbest su ve hava tarafından kaplanan hacmi ortalama olarak %50 oranındadır, killi topraktan bir kattan fazla, kumlu toprağın yarısından az oranda olan bu hacim hava kapasitesini belirler. Fakat su tutma kapasitesi ilişkisine katılan değişkenler daha çok ve sonuç tahmini zordur. Çünkü toplam porlar içinde kapilariteye sahip olanlar ile olmayanların oranı ve suyun tutulmasını sağlayan kuvvetlerin büyüklükleri, oranları etkili olur. İnce bitki kökleri ve solucanlar gibi hayvanlar killerin agregatlar, topaklar oluşturması ile kapiler poroziteyi, su tutma sığasını arttırarak toprağın verimliliğine katkıda bulunur ve sürdürülebilir bir denge oluşmasını sağlar. Bu açıdan saçak köklü otlar çok etkilidir. Toprağın kimyasal bileşimi de bitkilerin mineral beslenmesi yanında su tutma kapasitesini etkiler. Topakların sertliği, dağılma eğilimi, nem tutma sığası, kohezyon kuvveti iyon değişimi ile geçici olarak bağlanmış olan Na + + K+/ Ca++ + H+ iyonlarının oranına bağlıdır, oranın artışı ile sertleşme ve sığa büyür. Kurak bölgelerdeki yağışlar değişebilir iyonları yıkayarak uzaklaştıracak yoğunlukta olmadığı ve yüzeyde buharlaşma ile su kaybı hızlı olduğundan topaklar sertleşir, yüzey kabuklaşır. Şiddetli yağışlar da, sonraki sıcak dönemde hızlı buharlaşma derinlere inmiş suyun yayınım ve kılcallıkla yüzeye çıkışı ile iyon çökeltmesine neden olarak olayı hızlandırır. Özellikle suda çözünürlüğü yüksek olan Na+ birikmesi toprağın tuzlanması sonucu çoraklaşmasına neden olur. Bu durum damlama yöntemi gibi bitkilerin kullanabilecekleri kadar suyun kullandıkları oranda verilmesini sağlayacak şekilde yapılmadığı durumlarda da görülür. Toprağın global kimyasal bileşiminde çok önemli yer tutan ve toprak canlılarının tümünün yaşamını doğrudan etkileyen suyun toprakta bulunuş şekli de tüm bu olaylarda önemli rol oynar ve toprağın hem yapısal hem kimyasal özellikleri ile yakından ilişkilidir. Toprak suyunun sınıflandırılması temelde topraktaki fiziksel haline göre yapılır. Gravitasyonel, yerçekimi etkisinde süzülen, serbest akan su oranı porozitesi ve por çapı ortalaması yüksek ve organik maddesi az topraklarda fazladır. Bu su fazından bitkiler ancak süzülüp akarken kısa bir süre yararlanabilir. Toprağın profili burada önem kazanır, örneğin alt tabakalarda killi bir tabaka olması bu suyun birikmesine neden olur ve bu tabakaya kadar uzanan köklerin havasız kalıp, çürümesine neden olur. Kapiler su, gravitasyonel su süzüldükten sonra toprak taneciklerinin çevresinde ve birleşme noktalarında adezyon ve kohezyon kuvetleri ile tutularak film halinde kalan sudur. Bu kuvvetler bağıl olarak zayıf olduğunda bitkiler bu kalıcı su fazından kolaylıkla yararlanır. Ancak kolloidal materyalde kuvvetle adsorbe edilen su ile sıcak ve kurak iklim koşullarında şiddetli buharlaşma ile kaybedilen kapiler sudan bitkiler aynı kolaylıkla yararlanamaz. Rutin uygulamada kapiler su fazının tümünü değerlendiren Tarla Kapasitesi, diğer bir tanımı ile Nem Eşdeğeri toprakların bitkilere yarayışlı su tutma kapasitesi olarak kabul edilir. Suyla doymuş haldeki toprak ile yerçekimi etkisiyle süzülen su arasındaki fark poroziteyi, kalan su da yararlı kapiler su ile kullanılamayan higroskopik su fazlarının toplamı olarak alınır. Daimi Solma Yüzdesi ile karakterize edilen Higroskopik Su fazı ile tarla kapasitesi arasında kalan su miktarı bitkiler için yarayışlı fazını oluşturur. Daimi solma noktası, bitkilerin susuzluktan kalıcı şekilde etkilendikleri, yani yeniden su düzeyi yükseldiğinde bile toparlanamadıkları durumda toprakta bulunan higroskopik olarak bağlı su fazını tanımladığı düşünülür. Daimi solma olayı canlılık ile ilgili bir terim olmasına karşın bu değer toprak özelliklerinin bir karakteristiği olarak alınır. Gerçekte bitkiler üst yüzeyi parafinlenerek topraktan buharlaşmanın önlendiği belli hacimdeki topraktaki suyu tüketerek bir gecelik süre ile susuz kaldığında yaprakların dökülmesi esas alınmıştır. Bu durumdaki toprak 105 derecede kurutularak % nem oranı belirlenir. Aslında bu durum bitkilerin su alımının çok yavaşlayıp terlemeyi karşılayamadığı durumdur ve toprağın özelliğinden çok bitkinin osmotik karakteristiklerine ve su depolama, terleme özellilklerine bağlıdır. Mezofitik, yani ılıman ve kurak olmayan iklime adapte bitkilerde 20 atm. civarında olan yaprak osmotik basıncı kurak iklime ve tuzlu, osmotik basıncı yüksek topraklara adapte olmuş halofitik türlerde 200 atm.e kadar çıkabilmektedir. Toprağın laboratuar koşullarında serilerek kurutulmasından sonra toprakta kalan ve ancak suyun kaynama noktasına kadar ısıtılarak kurutulmasından sonraki ağırlığı ile hava kurusu denen ilk nemli örnek ağırlığı arasındaki fark higroskopik su fazının miktarını verir. Ancak kaynama noktasındaki termik hareketlilik ile topraktan ayırılabilecek kadar kuvvetli tutulmuş olan bu fazdan bitkiler kesinlikle yararlanamaz, yani gerçek desikkasyon - susuzluktan kuruma noktasıdır.. Killi verimli ve kumlu verimli topraklar bu açıdan karşılaştırıldığında suya doymuşluk düzeyinin killide toprak kuru ağırlığının %70i, kumluda ise %35i oranında olduğu, tarla kapasitesinin %45e karşılık %20, ve daimi solma noktasının da %17’ye karşı 9, son olarak da higroskopik bağlı su fazının %10a karşılık %7 gibi değerler verdiği görülür. Bitkilerin yağışla toprağa düşen sudan yararlanabilmeleri ile ilgili önemli bir toprak özelliği suyun infiltrasyonudur. İnfiltrasyonu düşük, killi ve organik maddece fakir toprakta yağışın hızı arttıkça yüzeyden toprağın içine yayınım yapamadığı için köklere ulaşamayan su oranı artar. Eğimli arazide akar gider, düz arazide taşkına yol açabilir veya buharlaşma ile kaybedilmiş olur. Kumlu toprakta ise bu oran en düşük düzeydedir. Alt tabakaları killi topraklarda sürme işlemi bu yönden zararlı etki yaparak erozyon riskini arttırır.

http://www.biyologlar.com/toprak-yapisi-ve-su-verimliligi-2

Kuş ve Doğa Fotoğrafçılığı Çekim Rehberi

Fotoğrafik Donanım Fotoğrafa yeni başlayanlar için piyasadaki seçeneklerin fazlalığı büyük bir kaybolmuşluk ve şaşkınlık yaratabilir. Bu psikoloji içinde ve arkadaşlardan alınan duyumlarla bilinçsiz seçimler yapabiliriz. Ancak fotoğraf malzemelerinin pahalı olması yanlışlardan dönmeyi zorlaştırır. Bu yüzden seçimimizi bilinçli yapmak büyük önem taşır. Teknoloji süratle gelişmekte olduğundan, son yenilikleri içeren modelleri seçmekte yarar vardır. İyi fotoğraf çekmek için iyi bir fotoğrafçı oluncaya dek yüksek teknolojili malzemelerin sağladığı avantajlardan yararlanmak hayatı kolaylaştıracaktır. Analog Fotoğraf Makineleri Özellikle küçük boyutları, taşıma kolaylığı ve değiştirilebilir lens (objektif) sistemi yüzünden 35mm SLR kameralar (fotoğraf makineleri) doğa fotoğrafçılarının tercih sebebidir. Büyük format (6x6 cm gibi) kameralara oranla daha küçük ve hafif olan 35mm SLR kameralar kayalık alanlarda tırmanırken veya sulak alanlarda ilerlerken hareket yeteneğinizi sınırlamayacak ve sizi yormayacaktır. Diğer taraftan, çoğu zaman bu kameraların içinde bulunan sarma motorları, saniyede 4-5 kare film sararak örneğin bir kuşun kanat çırpma aşamalarını film üzerine ard arda kaydetmenize olanak sağlayacaktır. Gene bu özellik sayesinde uzaktan kumanda aygıtları kullanarak veya sehpa üzerinde (makineye el sürmeden) deklanşör kablosu ile çekim yapmak mümkün olacaktır. Fotoğrafta görülen EOS5 in sarma motoru ve ayna refleksi olağanüstü sessizdir. Kuşlar ve diğer hayvanlar sese karşı aşırı duyarlı olduklarından ilk kare çekimden sonra korkup kaçabilirler, bu açıdan kullanacağınız makinenin sessiz olması önem taşımaktadır. Otomatik netleme yapan (AF) makinalar, netleme hatalarınızı en aza indireceğinden bu tip kameraları seçmenizde fayda vardır. Dijital Fotograf Makineleri Dijital sistemleri tercih edenler için yukarıda tavsiye edilen 35 mm SLR analog kameraların eşdeğeri dijital SLR kameralardır. Dijital kameralar sizleri film ve banyo (tab) masraflarından kurtaracak, çektiğiniz fotografı anında görmenizi sağlayacak, beğenmediğiniz kareleri tekrar çekmenize olanak verecek, daha sonra bilgisayarınız başında çektiğiniz kareleri üzerinde bazı manipülasyonlar yapmanızı sağlayacaktır. Bu kameraların dezavantajı analog SLR lere oranla pahalı olmalarıdır. Ayrıca hafıza kartları da oldukça fiyatlıdır. Öte yandan mevcut AF lenslerinizi bu makinelerle de kullanabilirsiniz. Objektifler Kuş fotoğrafları için gerekli en gerekli lens uzun bir tele-objektifdir. Bu uzunluk en az 400mm olmalıdır. Bunun yanında 2x gücünde bir teleconverter (TC) lensinizin gücünü 800mm ye çıkaracaktır (400x2=800). Ancak unutulmaması gerekir ki TC ler görüntüyü yaklaştırma çarpanları oranında filme ulaşan ışığı azaltırlar. Örneğin 400mm f/2.8 bir lense 2x TC taktığınızda ışık iki durak azalır; yani artık 800 mm f/5.6 değerinde bir lensiniz var demektir. Fotoğrafta hem daha ucuz, hem de daha hafif olması nedeniyle tercih edilebilecek EF 400mm f/5.6 Canon lens görülmektedir. Bu lensler içinde bulunan yassı ultrasonik motorlar (USM) sessiz ve hızlı otomatik netleme için vazgeçilmez özelliklerdir. Canon serisi bazı lenslerde uygulanmaya başlayan titreşim engelleme sistemi (IS: Image Stabilizer) ışığın yeterli olmadığı ortamlarda iki durak değerinde avantaj sağlamakta; makinenin sallamasından doğan istenmeyen efektleri en aza indirmektedirler. IS teknolojisinin başarısına bakılırsa yakın gelecekte bu teknolojinin yaygınlaşacağını söyleyebiliriz. ***Aynı lensi dijital SLR kamerada kullanmanız halinde dijital makine içindeki çipin, 35mm film alanından küçük olması nedeniyle lensiniz 640mm (400x1.6) ye eşdeğer olacaktır. Önemli Not: Lenslerin "f" (diyafram) değeri yükseldikçe ışığın filme ulaşma süresi uzar, kuşlar genellikle sürekli olarak hareket halinde bulunduklarından, "f" değerinin yükselmesi kuş çekimleri için bir dezavantajdır. Bunun yanında böcek, kelebek ve çiçek çekimleri için 1:1 (doğal büyüklükte) çekim yapma imkanı veren 100mm makro bir lens ile manzara çekimleri için geniş açısı 24mm veya 28mm olan bir zoom lensin de çantanızda bulunması gerekmektedir. Alternatif Objektifler Konvansiyonel tele-objektiflerin ağır ve pahalı olması nedeniyle saha teleskoplarını bunlara alternatif olarak kullanmak mümkündür. Bir adaptör aracılığıyla kameranıza bağlayabileceğınız teleskop ile 800mm f/10.4 eşdeğerinde bir tele-objektif sağlamış olursunuz. Bunun yanı sıra, SLR kameralar için bağımsız objektif üreticilerinin sağladığı aynalı lensler, ucuz ve hafif olmaları nedeniyle tercih edilebilir. Bu tür lenslerde, bunların içinde bulunan toplayıcı ve yansıtıcı aynalardan kaynaklanan görüntü kayıpları ile özellikle su kenarlarında istenmeyen halkacıklar sorunu yaşanabilir, her şeye rağmen, bol ışıklı ortamlarda aynalı lenslerle iyi sonuçlar elde edebilirsiniz. Önemli Not: alternatif objektiflerin "f" değerleri yüksek ve sabittir. Filtreler Objektiflerinizi çizilmekten, tozdan, rezinden, yağdan korumak ve güneşin ultraviole ışınlarını kesmek için lenslerin çaplarına uygun UV veya skylight filtreleri devamlı üzerlerinde takılı bulundurmak gerekir. Ayrıca özellikle manzara fotoğrafı çekerken istenmeyen yansımaları ortadan kaldırmak ve arzu edilen renk ısısını elde etmek için polarize filtre vazgeçilmez bir eklentidir. Modern kameralarda ışık ölçüm (TTL) sistemlerin yanılmasını önlemek için dairesel (Circular-CPL) polarizerlerin seçilmesi lazımdır. Alternatif Dijital Fotoğraf Makineleri Fiyatları çok yüksek olan Dijital SLR makineleri yerine daha ucuz alternatif arayanlar için bu alanda kullanılabilecek en uygun dijital fotograf makinesi döner başlıklı Nikon Coolpix serisidir. Nikon Coolpix ler digiscoping olarak adlandırılan kuş fotograflama yöntemi için çok uygundur. Digiscoping yöntemi dijital bir fotograf makinesiyle bir saha teleskobunun kombinasyonundan oluşmaktadır. Bu yöntem kullanılarak örneğin 20x yakınlaştırma değeri olan bir saha teleskobuna 3x yakınlaştırma değerli bir dijital makine eklendiğinde 35 mm formatında 2800mm ye eşdeğer bir sistem kurulabilmektedir. Kamerayı sağ üstte görüldüğü gibi bir destek ünitesi yardımıyla veya bir adaptör kullanarak teleskopla birleştirmek veya kamerayı elle tutarak, okülere yaklaştırıp çekim yapmak mümkündür. Benzer şekilde dürbün-coolpix kombinasyonu da kullanılabilir. Netleme konusunda bolca egzersiz yapıldıktan sonra bu yöntemle çok başarılı fotograflar çekilebilir: Sehpa , döner başlık ve diğer sabitleyiciler Tele-objektif, teleskop veya makro lens kullanırken titreşimi önlemek ve net görüntü yakalayabilmek için sehpa kullanmak şarttır. Profesyoneller, manzara fotoğrafı çekerken dahi sehpa kullanırlar. Taşınma kolaylığı açısından hafif sehpa almayı düşünenler bunu hemen unutsunlar, zira hafif sehpalar arazide sıkça görülen rüzgarlardan hemen etkilenir, titreşimi kameraya yansıtır hatta rüzgar veya arazi eğiminden dolayı üzerindeki kıymetli teçhizatla birlikte devrilebilirler. Burada tavsiye edeceğim sehpa hafif olmayan, ayakları birbirinden bağlantısız, su ve özellikle çamurun ayak kanallarına dolmasına olanak vermeyen tiplerdir. Sehpa ayaklarının ve merkez dikitinin birbirlerinden bağımsız olarak hareket ettirilebilmesi sehpayı alçak seviyelerde kullanmaya (çiçek, böcek çekimlerinde gerekli) veya düz olmayan kayalık alanlarda, değişik açılarda farklı yükseltilere yerleştirmeye imkan verir. Öte yandan özellikle araba içinden kuşları çekmek için pencereye kelepçelenen aparatlar da büyük kolaylık sağlarlar, ancak bunlar kullanılırken titreşimi kesmek için arabanın motoru kapatılmalıdır. Bu aparatın takıldığı pencerenin üzerine bir perde geçirildiği takdirde arabalar kolaylıkla bir gözlem evine dönüştürülebilir. Diğer taraftan kullanılan sehpalar üzerinde yön değiştirmeye, ince ayar yapmaya, fotoğrafı çekilecek kuşu izlemeye yarayan bir döner başlık yerleştirmek gerekir. Bu konuda en başarılı modeller top kafalı döner başlıklardır. Flaş ve Aksesuarları Kuşları ve doğal yaşamı fotoğraflarken flaş genellikle güneş ışığına ek olarak ve yaprak-dal gölgelerini gidermek, gölgede duran objeyi aydınlatmak üzere yardımcı olarak kullanılır. Kullandığınız filmin ISO değeri yükseldikçe veya objektifte daha düşük "f" değeri kullanıldıkça flaşın etki alanı da artar. Seçeceğiniz flaş ünitelerinin, kameranız ile uyumlu olmasını öneririm, bunlar çoğu kez ön parlama ile çekim öncesi ölçüm yapma özelliğine sahip TTL flaş tipleridir. Flaş seçerken serinin en büyük GN* değerine sahip olan döner başlıklı modelleri tercih etmek yararlı olur. Kullandığınız kamera için üretilen orijinal flaşlara yardımcı olarak daha ucuz olan ve bağımsız firmalar tarafından üretilen flaşları ek olarak kullanabilirsiniz. Bu tip ek flaş üniteleri fotoselli algılayıcılar sayesinde kablo kullanmaya gerek kalmadan ana flaş ünitesi ile eşzamanlı olarak tetiklenebilirler. Diğer taraftan, tele-objektiflerle çalışırken flaş ışığının dağılmasını önleyerek huzmeyi daha uzağa iletmek için, yanda resmi görülene benzer yardımcı aparatlar kullanılabilir. Yakın çekimlerde ise makro lenslerin ağzına yerleştirilen daire şeklinde özel makro flaşların kullanımı fotoğraf kalitesini yükseltecektir. Not: GN=Guide Number= Rehber Numara flaşın gücünü belirler (ISO100 film için) örneğin 28GN bir flaş, f5.6 da 5 metreye kadar etkili olabilir 28/5=5.6 Uzaktan Kumanda ve Kızılötesi Tetikleme Aygıtları, Kablolu deklanşör Kuşlara veya diğer hayvanlara yaklaşmak kimi zaman olanaksız, kimi zaman ise sakıncalı olabilir (üreme dönemleri). Bu durumda gözden uzak uygun bir yerde konuşlanarak uzaktan kumanda ile veya kızıl ötesi tetikleme yöntemiyle çekim yapmak gereklidir. Uzaktan kumanda aygıtlarını elektronik ve mekanik olarak iki gurupta ele alabiliriz. Elektronik aygıt seçerken kamera üreticileri tarafından söz konusu makine için özel olarak üretilen modelleri kullanmak yerinde olur. Mekanik aparatlar ise uzun kablolu deklanşörler niteliğindedir ve hava basıncı ile çalışır.Bu tür aparatların etki alanları 5-15 metre arasındadır. Kimi profesyoneller, radyo frekansları çalışan ile daha uzun mesafelerde (50-100m) etkili alıcı-verici sistemleri de kullanmaktadır. Diğer taraftan fotoğraf çekerken hassas ayarların bozulmasını ve titreşimi engellemek için kablolu deklanşör kullanmak gereklidir. Aygıtları yerleştirirken kuşların etrafta bulunmadığı zamanlar tercih edilmelidir. Film Çektiğiniz fotoğrafların ticari değer ifade etmesi, bozulmadan uzun süre saklanması ve kolaylıkla arşivlenmesi açılarından pozitif (slayt-dia) film kullanmanızda yarar vardır. Filmin ISO (ışık hassasiyet) değeri yükseldikçe ışığa duyarlığı artar ancak gren seviyesi yükselip , renk tonları solgunlaşabilir (ISO 200-400) . Bu dezavantajlar yüzünden düşük grenli ve düşük ISO değerli filmler (50-100) kullanmakta fayda vardır. Ancak "f" değeri yüksek, ışığı geç geçiren (yavaş) lensler kullanırken yüksek ISO değerli filmler kullanmak kaçınılmaz gibidir. Diğer Yardımcı Malzemeler Fotoğraf Makinelerinizi boynunuzda taşımanız gerektiğinde boyuna ağırlık yüklemeyecek, geniş yüzeyli, ağırlığı yayan özel kamera kayışları kullanılmalıdır dar kayışlar, efor gerektiren etaplarda boyundaki damarlar ve ense omurları üzerindeki bası nedeniyle baş ağrısına yol açabilirler. Fotoğraf malzemelerini taşımak için konvansiyonel çantalar yerine mevcut sırt çantalarınızı kullanmanızı öneririm, objektif, kamera, vd.nin birbirine çarpmasını önlemek için yedek iç çamaşırı, t-shirt , polar şapka kullanabilir veya mevcut çantalarınız içindeki muflonlu seperatörleri bunların arasına yerleştirebilirsiniz. Piyasada sırt çantası şeklinde tasarlanmış kamera çantaları da vardır. Ancak ben içinde matara (su), güneşten koruyucu krem (kokusuz), su kenarına gidiliyorsa sivriler için sinek-kov spreyi, çakı, çakmak ve rehber kitap, not defteri ve kalem bulundurduğum çok fonksiyonlu sırt çantamı tercih ediyorum. Arıların ve diğer hayvanların dikkatini çekmemek için parfüm kullanmamanızı tavsiye ederim. Bakım Ürünleri Toz ve nem, makine ve objektiflerin düşmanıdır. Her yolculuktan sonra araç ve gereçlerinizin tozunu almak için yumuşak temizleme fırçası ve lekeleri gidermek için lens temizleme kağıtları bulundurmak gereklidir. Toz almak amacıyla satılan basınçlı hava spreylerini dikkatli kullanmak ve fotoğraf makinelerinin içine kesinlikle tutmamak gerekir, bu işlem makinenin elektronik perdesine zarar verebilir. Lens temizlemek için satılan solüsyonları mercek üzerinde yapışkan-inatçı lekeler oluşmadıkça önermiyorum, bu tip kimyasallar imalat sırasında mercekler üzerine uygulanmış bulunan kaplamalara zarar verebilir. Fotoğrafik Teknikler Bir fotoğrafı iyi bir fotoğraf yapan fotoğraf makinesi değil fotoğrafçıdır. Doğada bol pratik yaparak yeteneklerinizi geliştirmeniz gerekir. Zamanla kendi tarzınızı geliştirdiğinizi göreceksiniz. Ancak iyi bir kuş ve doğa fotoğrafçısı olmak için aynı zamnda iyi bir gözlemci olmak gerektiğini de unutmayın. Gördüğünüz kuş veya çiçek nedir, hangi türler, ne tip habitatlarda bulunur, türlerin davranış biçimleri nedir? gibi bilgileri edinmek gerekir. Kuşlar, çiçekler, mantarlar ve böceklerle ilgili çeşitli yardımcı kitaplar edinip bunları çalışmakta büyük yarar vardır. Kompozisyon Bir konuyu, fotoğraf karesine aktarmanın pek çok yolu vardır. Sizin özgün tarzınızı belirleyecek olan da konuyu, küçük bir kareye sığdırırken kullanacağınız yöntem olacaktır; başka bir deyişle kompozisyon kurma yeteneğiniz. İyi bir kompozisyonu oluşturan tüm öğeleri tarif etmek zordur, zira bunu yapmanın pek çok şekli olabilir, burada sadece kompozisyonun temel öğelerine değinmekle yetineceğim. Başarılı bir kompozisyonun içindeki tüm etmenler izleyicinin ilgisini çekecek şekilde dizilmiş olmalıdır: Işık ve gölge Işığın başarılı kullanımı, solgun renklerin hakim olduğu ortamlardan başarılı fotoğraflar çıkarabilmenizi mümkün kılabilir. Bir an siyah-beyaz fotoğrafı düşünecek olursanız ışığın gücünü daha iyi kavrayabilirsiniz. Kısaca vurgulamak gerekirse: ışığın aydınlattığı alan izleyicinin dikkatini çeken alandır. Geride kalan alanlar ise ışık düşen alanları dengeli biçimde besleyerek fotoğrafta üçüncü boyutun oluşmasına katkıda bulunurlar. Resim 1`de gördüğünüz flamingoyu içinde bulunduğu ortamdan soyutlayabilmek ve kuşun çarpıcı rengini vurgulayabilmek için -1.5 f/durak (eksi) pozlandırma uyguladım. Söz konusu işlem yapılmamış olsaydı, bu sıradan bir flamingo fotoğrafı olacaktı ve fazla ışık kuşun renklerini solgun, beyaza dönük pembe, gölgelik alanları ise uçuk gri olarak gösterecekti. Günün fotoğraf çekmek için en uygun ışığı, güneş doğduktan hemen sonra ve güneş batmadan önceki saatlerde bulunabilir. Resim 1`de görülen flamingo fotoğrafı güneş batmadan önce çekilmiştir. Geleneksel olarak güneşi arkamıza veya yanımıza alarak fotoğraf çekmek en iyi sonuç veren yöntemlerdir. Gün ışığı yeterli olmadığında veya istenmeyen gölgeler (dal ve yaprak) konunun üzerine düştüğünde bunları gidermek için yapay ışık kaynağı (flaş) kullanmak gerekir. Renkler ve ahenk Güçlü, parlak renkler izleyicinin dikkatini çeker. Örneğin kırmızı rengin insanların beyin hücrelerini uyardığı kanıtlanmıştır. Öte yandan renklerin uyumu (ahenk) ve uyumlu karışımlar (sarı-mavi) izleyiciyi olumlu etkiler. Gün ışığının dikey ve yatay gelmesi renk tonlarını etkiler. Güneş doğarken veya batarken ışınlar yatay geldiğinden ışığın ultra-viole etkisi azalır, bundan dolayı kırmızı ve sarı tonlar kuvvetlenir, abartılı çıkar. Işığın dik olarak geldiği saatlerde artan kontrastı dengelemek ve renk ısısını korumak için polarize filtre kullanılmalıdır. Açı ve derinlik Fotoğrafın çekildiği açı objelerin görünüm ve derinliğini dramatik biçimde değiştirir. Bir objeyi yukarıdan (tepeden) çekmek fotoğrafı iki boyuta indirecek (sağdaki fotograf) oysa diz çökerek veya yere yüzükoyun uzanarak yandan (yüzeyden) çekmek konuya derinlik katacak, (aşağıdaki fotoğraflar) fotoğrafa üçüncü boyutu kazandıracaktır. Öte yandan derinlikte detayın önemli olduğu manzara fotoğraflarında alan derinliğini artırmak için f/14 gibi yüksek f/durakları tercih edilmelidir. Hareketli fotoğraflar çekerken önemli olan merkez objenin netliği olduğundan f/2.8 gibi mümkün olan en düşük f/durağı tercih edilir. Nitekim düşük f/durağı tercih etmek daha süratli hız aralıklarında çekim yapmayı mümkün kılar ve objelerin hareketli olmasından doğan netlik risklerini de en aza iner. (Resim 2) Fon ve ufuk çizgisi Fotoğrafı çekilen objenin dışında arka planda veya kenarlarda neyin nasıl bulunduğuna da dikkat etmek gerekir. Fon`da veya kenarlarda objeyi perdeler şekilde duran, ilgiyi dağıtacak detayların (dallar, yapraklar, çöp vb yıgınlar gibi) bulunmamasına ve ufuk çizgisinin yatık değil (Resim 3), düz olmasına (soldaki fotograf), ayrıca fotoğraf alanını tam ortadan değil ortanın altından bölmesine özen gösterilmelidir. Fonda istenmeyen objelerin bulunmaması için temel objeye gösterilen dikkatin aynısını göstermek gerekmektedir. Kısaca konu kadar, konunuzun etraf ve arkasını gözlemlemeniz büyük önem taşır. Kadraj ve anlatım disiplini Objelerin ne kadarının fotoğraf karesi içine alındığı ve bunun karenin neresine yerleştirileceği önemlidir. Burada pek çok seçenek karşımıza çıkar, örneğin bir kuşu çekerken portre veya tüm gövde tercih edilebilir ya da kuşun yaşadığı ortamı vurgulamak için kuş biraz daha küçük tutularak içinde yaşadığı habitat hakkında fikir verilmesi sağlanabilir. Kuşun gövdesinin tamamını kapsayan bir fotoğrafta, gövdenin yatay kadrajda tercihen sağ veya sol alt köşeye (bakış yönüne göre) yerleştirilmesi anlatımı güçlendiren bir uygulamadır. Anlatım gücünü artırıp fotoğrafı değerli kılmak için objeyi sabit çekmek yerine belirgin bir davranışı sergilerken çekmekte fayda vardır. Uçarken, avını yakalarken, beslenirken, v.b. (Resim 4) Pozlandırma Temel kompozisyon kurallarına yer verdikten sonra, pozlandırma ile ilgili bilgilere geçebiliriz. Pozlandırma ile basit olarak film yüzeyine düşecek ışığın dozajının ayarlanmasını kasdediyorum. Fotoğrafı başarılı kılacak en önemli etmenlerden biri filme ulaşan ışığın uygun ölçülerde olmasıdır. Filme ulaşacak ışığı ayarlamak için elimizde iki kontrol noktası vardır, objektif odak-diyafram değerleri (Av: f-durakları: f2.8-f22 arası) ve makinenin çekim hız aralığı (Tv: 1/4000sn-30sn). Her filmin az ve çok pozlandırmaya karşı toleransı değişiktir bu durumda kullandığınız filmlerin duyarlıklarını ölçmek size düşüyor, bunu tecrübe ile bulacaksınız. Bu iki kontrol noktası arasında ters oranlı bir ilişki vardır, birinin değeri arttığında diğeri azalır; örneğin poz değeriniz f5.6 de(Av), 1/500 (Tv) ise derinliği artırmak içi diyaframı kısarak f8 e(Av) getirirseniz hız (Tv) 1/250 ye düşecektir. Hızın düşmesini engeller ve değeri (Tv) 1/500 de bırakırsanız fotoğrafınız 1 f/durağı az pozlanmış olur. Fotoğrafa yeni başlayanlar makinelerinin otomatik olarak atadığı değerlerle çalışmalıdırlar, biraz tecrübe kazandıktan sonra pozlandırma egzersizleri yapılabilir, ancak ne yaptığınızı unutmamak için poz değerlerinizi bir kenara not almakta yarar vardır. Kuşlar gibi hareketli konuları çekerken konuyu istenen netlikte dondurmak için mümkün olan en düşük f/durağı ve en yüksek hız değeri kullanılmalıdır. Fakat teleobjektiflerin f/durak değerleri düştükçe fiyatları artar. Örneğin 300mm f/5.6 bir lens 300 dolara alınabilecekken, aynı lensin f/2.8 durağına sahip olanı 3000 dolar değerinde olacaktır. Bu çarpıcı örneği verirken aynı zamanda kuş fotoğrafçılarının en önemli problemini de sanırım açıklamış oldum. Fotoğraf makineleri tarafından otomatik olarak atanan değerler ile çoğu zaman optimum pozlandırma yapılabilir ancak bazı durumlarda işe el koyup otomatik pilotu devreden çıkarmak gerekebilir. Risk içeren durumlarda (açık veya koyu renkli kuşlar çekerken) öncelikle makineyi durak (Av) belirleyici otomatik konuma getirmekte ve kuş ile aynı uzaklıkta bulunan bir ağaç gövdesinden ışık ölçümü yaparak hızı (Tv) bu değere sabitlemekte yarar vardır. Bu yapılmadığı takdirde tıpkı yandaki fotoğrafta olduğu gibi TTL metre koyu renkli fondan etkilenerek beyaz tüylerdeki detayın kaybolmasına (beyaz patlaması) yol açar. (Resim 5) Alan Derinliği Alan derinliğini objektif değerlerini (Av) değiştirerek kontrol edebiliriz. Kural basittir: f/durağı değerini artırırsanız (ör:f18) alan derinliği artar, azaltırsanız (ör: f2.8) azalır. Peki alan derinliğini artırıp, azaltmak ne işe yarıyor? Alan derinliği arttıkça vizör içinde görülen her obje mümkün olan en net biçimiyle ve detaylı olarak filme çıkacaktır, bu yüzden manzara fotoğrafları çekerken makine tarafından atanan değerler yerine f14 gibi yüksek duraklar seçmeniz gerekir. Bir çiçek resmi çekerken ise onu arkadaki istenmeyen dal ve yaprak görüntülerinden soyutlamak (alan derinliğini azaltmak) için f5.6 gibi nisbeten düşük bir durak kullanılabilir. F/duraklarını artırıp azaltırken dikkat edilmesi gereken nokta, alan derinliği arttıkça daha düşük hız aralıkları içinde veya flaş kullanarak çekim yapmamız gerektiğidir. Eğer objeniz hareketli ise veya rüzgardan dolayı sallanıyorsa alan derinliğini artırma çabalarınız başarısızlıkla sonuçlanabilir. (Resim 6) Flaş Kullanımı Işığın yetersiz olduğu durumlarda başarılı fotoğraf çekebilmek için flaşdan yararlanmak gerekir. Flaş yapay bir ışık kaynağı olduğundan objeye ve fona eşit oranda dağılmaz, örneğin objeniz sizden 10 m, fondaki yapraklar ise 20m uzakta ise, yapraklara objeye ulaşan ışığın ancak dörtte biri ulaşacak fon film üzerine iki durak daha az pozlanmış olarak çıkacaktır. Böyle bir ortamda Fonu da objeyle aynı oranda pozlamayı arzu ediyorsanız ek flaş üniteleri kullanmanız gerekecektir. Gece çekimlerinde ortaya çıkan bir başka problem olan ‘kızıl göz` ü ortadan kaldırmanın en iyi yolu uzatma kablosu kullanarak flaşı makineden farklı bir açıda konuşlandırmaktır. (Resim 7) Flaş bir taraftan güneş ışığının az olması veya olmaması nedeniyle kullanılırken, diğer taraftan da fazla olması nedeniyle ortaya çıkan istenmeyen gölgeleri ortadan kaldırmak için de kullanılır. Tamamen siyah renkli olan kuşların (sağdaki karatavuk gibi) tüyleri üzerinde detay vermek ve gözlerine ışıltı katıp gövdesinden ayırmak, ışığı arkasında bulunduran objeleri aydınlatmak için de flaş kullanılır. Gözlerdeki ışıltı fotoğrafa canlılık katan önemli bir öğedir, sırf bunu sağlamak için devamlı olarak flaş kullanmak da mümkündür. Flaş ile çalışılırken makineniz en fazla 1/60 - 1/250 hız değerlerinde çalışır. Yüksek hız aralıklarında (1/250) gün ışığı ile flaşı dengelemek kolaylaşır. Gün ışığı ile flaşı aynı anda kullanırken (dolgu flaş) doğru pozlama yapabilmek için makinenizin TTL metresinin okuduğu değerde bir değişiklik yapmazken, flaş değerini 1 durak az ışık verecek şekilde ayarlamanız gerekir. Modern flaşların üzerinde tıpkı kameranızın üzerinde olduğu gibi artı-eksi pozlama düğmesi bulunmaktadır, eski tip flaşlarda bunu sağlamak için makine değerini sabitleyip, flaşın üzerindeki ASA ayarını 100`den 200`e getirmek gereklidir. Arkasında güneş bulunan objeler için böyle bir ayarlama yapmanıza gerek yoktur. Uzaktan Kumanda Normal şartlarda yeterince yaklaşılması mümkün olmayan veya sakıncalı olan (yuvada) kuşları fotoğraflamak için uzaktan kumanda aygıtları kullanmak gerekmektedir. Bu aygıtların kuşların etrafta bulunmadığı bir zamanda yerleştirilmesi ve tecihen iyi gizlenmesi gerekir. Uzaktan kumandaya bağlanmış makine kuşun konması beklenen noktaya netledikten sonra , kuşun göremeyeceği bir yere saklanarak sabırla beklemekten başka yapacak bir şey yoktur. Fotografları çektikten sonra düzeneği kaldırırken de aynen kurarken olduğu gibi kuşların uzaklaştığı zamanı beklemek gerekir. Kuşların hangi noktalara konduğunu ve makineyi nereye koyacağınızı tespit etmek için dikkatli gözlem yapmak gereklidir. Resim 8`deki fotoğraf, kara kızılkuyruğun istinat duvarının deliği içinde yuva yaptığı belirlendikten sonra üzerinde küçük teleobjektif olan bir düzeneğin yuva ağzının üç-dört metre gerisine gizlenmesiyle çekilmiştir. Bu sistemi kullanarak büyük tele objektifleriniz olmasa da mükemmel sonuçlar alabilirsiniz.

http://www.biyologlar.com/kus-ve-doga-fotografciligi-cekim-rehberi

Sivrisinek Evrelerinin Özellikleri

Sivrisinekler holometabol böceklerdir. Yani tam başkalaşım gösterirler. Hayat döngülerinde dört dönem bulunmaktadır. Yumurta evresi Sivrisinek yumurtaları 0.6-1 mm boyunda bir ucu sivri, diğer ucu daha küt olan iğ şeklinde yapılardır. Yumurtaların alt yüzleri üst yüzlerinden daha dış bükeydir (Şekil 6). Yumurtaların bir ucunun biraz yanında {Anopheles türleri) ya da ucunda (Culex ve Aedes türleri) küçük bir delik bulunur. Bu delikten dölleme hücresi girer ve yumurta döllenir (Horsfall, 1955). Yumurtaların ve yumurta bırakma şekillerinin farklı olmasından dolayı cinsler ve türler birbirlerinden kolayca ayrılırlar. Sivrisineklerin tek tek ya da paket olmak üzere gene! olarak iki tip yumurta bırakma şekilleri vardır Anopheles yumurtaları kayık biçimindedir. Uzun, iki ucu yukarıya biraz kıvrık ve iki yanında zarımsı yüzgeçler vardır. Bunların orta kısımlarında türlere özgü olarak enine yüzgeçler bulunur. Bu oluşumlar yüzey gerilimini artırdığı gibi, yumurtanın da suyun yüzeyinde yüzmesini sağlar An. sacharovi'nin yazın bıraktığı yumurtaların yalnız yüzgeç kuşağı vardır. Güzün bıraktığı yumurtalarda ise az gelişmiş yüzme hücreleri de bulunur. Anopheles cinsine bağlı türler yumurtalarını tek tek bırakırlar. Yumurtalar bazen suyun üzerinde dantel şeklinde kümeler yaparlar. Aedes türlerinin yumurtaları koyu renklidir. Üzerinde ağ şeklinde yapılar taşır ve suyun üzerinde yüzemez (Şekil 9). Bunlarda yumurtalar yağmur yağdığında, karlar eridiğinde ya da taban suyundaki dinamiğe bağlı olarak, su içerisinde kalacak bitkilerin ya da nemli ve kuru zeminlerin üzerine tek tek bırakılır. Kuraklığa karşı 4-7 ay dayanabilirler (Alten, 1993). Sular yükselince su birikintilerinin altında kalırlar. Larvalar kuru ortamlarda yumurta içerisinde birkaç günde gelişir; ancak, suyla karşılaşınca bir gün içerisinde yumurtadan çıkarlar (Horsfall, 1955). Cutex türlerinin yumurtaları birleşik halde su yüzeyinde sal gibi yüzerler. Bunlara yumurta paketleri denir. Aynı zamanda Culiseta cinsine bağlı türlerinde yumurtaları bu şekildedir. Yumurtaların inkübasyon yani yumurtanın içindeki embriyonun gelişip larva olarak yumurtadan çıkmasına kadar geçen süre, türlere, iklimsel koşullara, sınırlayıcı faktörlere, suyun fiziksel ve kimyasal özelliklerine göre farklılık gösterir (Alten, 1993; Şimşek, 1997). İnkübasyon süresi mücadele programlarının tam olarak planlanabilmesi için oldukça önemlidir. Özellikle su sıcaklığının yumurta inkübasyon süresi üzerinde önemli bir etkisi vardır.12° İle 32°C arasındaki sıcaklıklar yumurta inkübasyonu için uygun kabul edilse de, ideal sıcaklık 23-25°C arasındadır (Down, 1951). Çukurova'nın iklimsel koşullarında A. sacharovi yumurtaları 25°C'de 1-2 gün içerisinde açılabilmektedirler (Alten, 1989). Muğla-Sarıgerme'de 23°C'de doğa! koşullar altında yapılan denemelerde, C. pipiens türünün yumurtaları 2±0.01 gün içerisinde açılabilmektedirler (Alten, 1993). Aynı çalışma, laboratuvar koşullarında değişik sıcaklıklarda gerçekleştirildiğinde, örneğin 14 °C'de türün yumurtaları 4-5 günde açılmaktadır.Yani sıcaklık düştükçe ya da çok yükseldikçe yumurta açılma sürelerinde gecikmeler olabilmektedir. Bir genelleme yapılacak olursa tüm sivrisinek türleri için inkübasyon süresi 1-4 gün sürebilmektedir. Sivrisinekler ideal koşullar altında bir seferde çok sayıda yumurta veren canlılar arasındadır. Ayrıca yılda 2-4 (bazen 5) döl verdiklerini düşünürsek, önümüze çok yüksek bir üreme potansiyeli çıkmaktadır. Bir sivrisinek dişisi bir defada türlere göre değişmekle birlikte 35-450 yumurta bırakabilir. Yumurta miktarı dişinin beslenme şartlarına, yumurtlamak için uygun ortam bulmasına ve o andaki iklimsel koşullara bağlıdır. Anopheles türleri bir defada 200-400, Culex türleri 100-200, Aedes türleri ortalama 250, Culiseta türleri ise 250-300 yumurta bırakabilirler. Muğla-Dalaman'da yapılan bir çalışmada, temmuz ayında A. sacharovi türüne bağlı yarı kontrollü şartlarda bulunan bir populasyonda dişiler ortalama 367, maksimum 541 yumurta bırakmışlardır (Alten, 1996). Larva evresi Sivrisinek yumurtaları su yüzeyi ile yeterli süre temas ettikten sonra, larva (kurtçuk) yumurtayı alt yüzeyinden baş kısmındaki kesiciler yardımıyla keser ve dışarı çıkar. Sivrisinek yumurtasından çıkan bu genç canlılara larva denir. Gelişmelerinde üç kez gömlek değiştirirler ve dört evre geçirirler. Dördüncü evre larva 6-13 mm boyunda olabilir. Kimi türlerde, örneğin Culiseta longiareolata ya da Cu. annulata'da, 15 mm'ye kadar çıkabilir. Vücutları ince ve saydam bir kitinsel örtü ile örtülüdür. Başta ve vücutta çok sayıda seta adı verilen kıllar bulunur. Setalar tamamıyla çevre şartlarının algılanması ve su içinde dengenin korunması için görev yaparlar. Baş ve vücutta yer yer koyu renklenmeler görülür. Genellikle sırt kısımları güneş ışınlarını tutmak için koyu renkli, karın kısımları açık renklidir. Örneğin, dördüncü evre Anopheles larvasının üzeri sarımsı yeşil ya da kahverengimsi yeşil renktedir. Birinci ve ikinci evredekiler ise koyu kara renktedir. Culex larvaları parlak kahverengimsi-boz yeşilimsi renktedir. Culiseta larvaları açık ya da koyu parlak kahverengidir. Larvanın yüzeyi üzerine simetrik olarak dizilmiş kıllar bulunur. Bu kılların dizilişi türlere göre değişir. Sivrisinek larvalarının vücutları belirgin olarak birbirinden ayrılmış üç ayrı bölümden oluşmuştur (Şekil 11, 12, 13). Bunlar baş, gövde ve karındır. Sivrisinek türleri, larvalarının su içinde duruşları ve hareketleriyle de çok rahatlıkla ayrılabilirler. Anopheles larvaları su yüzeyine paralel durmaları ile su yüzeyine eğik olarak asılı duran Aedes ve Culex larvalarından kolayca ayrılırlar (Şekil 14). Anopheles larvalarının su yüzeyine paralel durmalarının nedeni sifonlarının olmaması ve solunumun stigmal olarak yapılmasından ileri gelir. Anopheles larvaları suyun hemen yüzeyinden, Culex ve Aedes larvaları daha aşağıdan beslenir. Anopheles türlerinin larvaları diğerlerinden başka bazı özellikleriyle de ayrılırlar. Karın segmentlerinin üst tarafında çift yapılı, yelpaze şeklinde yayılmış, suların alt yüzeyine yüzey gerilimi ile tutunmayı sağlayan tüy demetleri taşırlar. Başın 180° dönmesiyle larvalar anafor aygıtlarıyla suyun yüzeyindeki besin partiküllerini alabilirler. Başları diğer sivrisinek cinslerine ait larvalara göre daha uzundur ve vücutları çok sayıda tüyümsü kıllarla kaplıdır (Kirkpatrick, 1925 ). Larva evrelerinin süreleri genel olarak suyun sıcaklığına, iklimsel koşullara, fiziko-kimyasal özelliklere, besin maddesine ve pH'a bağlıdır. Ortalama tanımlar yapacak olursak, Culex larvaları 10°C'nin üzerindeki sıcaklıklarda gelişirler. Ancak ekstrem durumlarda bulunmaktadır. Örneğin, Culex laticinctus türü kışı larva evresinde geçirir ve buz tutmuş sularda bile, buzun üzerine çıkabilmiş bitkiler çevresindeki sularda çok yavaş olarak gelişmelerini sürdürebilirler (Alten, 1989). Anopheles larvaları 15°C'de 40-45 günde, 20°C'de 20-25 günde, 25°C'de 15 günde, 30°C'de 12 günde gelişmelerini bitirirler ve pupa evresine geçerler. Sıcaklık arttıkça larval gelişme daha kısa sürede tamamlanır. Sivrisinek larvalarının gelişmesi için ideal sıcaklık 25 °C'dir. Besin ve sıcaklık durumu en uygun olduğu zaman larva evre süresi 7-16 gün sürebilir. Sivrisinek larvaları suda çok devinimlidirler. Sürekli olarak su yüzeyine çıkarak hava alır, yeniden su içine dalarlar. Değişik sivrisinek türlerinin su içinde genel olarak yaşadıkları ve beslendikleri yerler, onların sivrisinek kommünitesi içinde değişik ekolojik düzeylerini belirler. Sivrisinek larvaları genellikle su içinde bulunan yosun, bakteri, protozoa, mantar sporları ve hatta diğer sivrisinek larvaları ile ya da kendi gömlekleriyle beslenirler. Biyolojik mücadelede kullanılan Bacillus thuringiensis kökenli birçok preparatın uygulanma prensibi, larvalar için patojen olan bu bakterilerin sudaki miktarının artırılmasına dayanmaktadır. Larvalar genellikle gölge olan sularda bulunma eğilimindedirler. Özellikle öğle sıcağında yaprak altlarına ya da suda bulunan yosunların altlarına girmeyi tercih ederler. Ancak, C. pipiens gibi, sığ ve sıcak, güneşli sularda bulunabilen türlerde vardır. Asla unutmamalıdır ki, sivrisinek larvaları çok geniş bir adaptasyon yeteneğine sahiptir. Yaşam ortamlarında her türlü ekst-rem koşula oldukça dayanıklıdırlar. Bu yüzden, çok geniş bir yayılma alanına sahip-tirler. Küçük bir su çalkantısında ya da suyun üzerine dışarıdan gelebilecek herhangi bir etkide suyun dibine kaçarlar ve belli bir süre İçin orada yaşarlar. Bu süre C. laticinctus larvaları için 20 dakikaya kadar sürebilmektedir. Larvaların yaşama ve gelişmesinde suyun fiziksel ve kimyasal özelliklerinin de büyük önemi vardır. Anopheles larvaları genellikle oksijeni bol, temiz, sığ sularda gelişirler (Bkz. 2.3). Kimi Anopheles türlerinin larvaları %0.5-0.8 tuzlu suda; A. sacharovi larvaları %1.2-1.5 oranında tuzlu suda bile gelişme gösterebilirler (Alten, 1989). Culex larvaları değişik su kalitesindeki habitatlarda yetişebilirler. C. pipiens larvaları, Aedes ve Culiseta cinslerine ait bazı türlerle birlikte 12 mg/lt amonyak içeren foseptik çukurlarında bile bulunabilmişlerdir (Boşgelmez ve ark., 1994). Su bitkilerinin de larvaların gelişmesinde önemli etkileri vardır. Örneğin, A. sacharovi larvaları özellikle su sümbülü (Potamogeion perfoliaius, P. fluviatilis ) türünden bitkilerin yoğun olduğu sularda oldukça bol bulunurlar. Bu bitkiler larvalara besin sağladığı gibi aynı zamanda korunak da oluşturmaktadır. Pupa evresi Dördüncü gelişim evresine gelmiş olan larva, önceleri çok devinimli, kısa bir süre sonra daha az devinimli olarak vücudu karın yönünde kıvrılmaya başlar ve ince, saydam ve koyukahverengi bir çeperle sarılarak pupa evresine dönüşür (Şekil 15). Pupalar yandan bakılınca virgül gibi görünürler. Pupanın içinde çok önemli histolitik ve histogenetik değişimler oluşarak sivrisineğin genetik tür özelliklerini taşıyan ergin oluşur. Pupanın vücudu iki bölümden oluşur. Önde çok büyük olan baş, gövde arkasında ise sırt-karın yönünde yassı olarak karın bulunur. Pupa önceleri çok devinimlidir. Ancak, daha sonra devinimi azalır. Bu evrede beslenme durur. Bu yüzden, sivrisinek sucul evre mücadelesinde, mücadele yapılacak suda populasyon-nun büyük çoğunluğu son dönem dördüncü evre larva ya da pupa evresinden olu-şuyorsa, ortamda insektisit kullanmanın anlamı yoktur. Çünkü bu evrelerde beslenme durmuştur. Çeperi yumuşak, ince ve saydam olduğundan içinde gelişen ergin kolayca görüle-bilmektedir. Suyun dalgalanması sonucu kendini bırakarak pasif hareketle aşağı iner. Uzun süre su dibinde kalabilirler. Pupanın gelişme süresi en fazla 5-6, ideal koşullarda 1-2 gün sürer. Başkalaşım yapacak pupalar yatay konuma geçerler ve vücutlarının ön kısımlarını sudan dışarıya uzatırlar. Hava alma ile pupa örtüsü içindeki iç basınç artar; buna bağlı olarak, vücudun ön kısmında orta çizgi "T" şeklinde boydan boya yırtılır ve ergin dışarıya çıkar. Dışarıya çıkma 5-6 dakika sürer Ergin ve genel özellikleri Sivrisinekler ergin evresini, yumurta, larva ve pupalardan farklı olarak karasal habitatta geçirirler. Habitat farklılığının yanı sıra, morfolojik olarakta birçok farklılığa sahiptirler. Bu evrede, kanatların varlığından dolayı, uçma özelliğini kazanırlar. Ayrıca, larva evresinde çiğneyici olan ağız parçaları, ergin evresinde altı iğneli sokucu-emici özellik kazanmaktadırlar. Yani, larva evresinde beslenmelerini yeme yoluyla yaparlarken, ergin evresinde sokma ya da kan emme yoluyla yaparlar. Her iki eşeyde (dişi ve erkek), genel olarak çiçek ve meyvelerin özsuyu ile beslenirken, aynı zamanda dişiler, yumurtaları geliştirebilmek için insan ve hayvanlardan kan emerler. Erginler, ince yapılı, başı küçük, birleşik gözleri iri, antenleri ve hortumu ince uzun, göğsü yuvarlağımsı ve yanlardan basık, kanatları dar-uzun, bacakları ince ve uzun, karnı yuvarlak ve uzun olan canlılardır. Boyları 3-13 mm dir. Vücutları ve uzantıları pullarla örtülüdür. Bu pulların dizilişi, renkleri ve dağılımı cinslerin ve türlerin birbirlerinden ayrılması için sınıflandırmada oldukça önemlidir. Ergin sivrisineklerin vücudu baş, gövde ve karın olmak üzere üç ana bölümden oluşur. Morfolojik özellikleri oldukça karmaşık olan bu yapıların ayrıntısına girmek bize göre bu kitabın konusu değildir ve sizlere ulaştırmak istediğimiz amacımızdan uzaklaşmamıza neden olabilir. Bu nedenle bu kısımda cinsler arasında yapısal ayırımı kolaylıkla sağlayan ve sınıflandırmada çok önemli olan bazı pratik farklılıklar üzerinde duracağız. Öncelikle sivrisinekler diğer böceklerden başlarının ön kısmında bulunan ve proboscis olarak adlandırılan sokma iğneleri ile ayrılırlar. Dişi ve erkekleri morfolojik olarak en kolay ayırma yolu, antenlerinin farklılığıdır. Sivrisinek türlerinin erkeklerinde antenler oldukça kıllı ve geniş görünüşlüdür. Oysa dişilerde kıllanma az ve daha dar görünüşlüdür. Antene ek olarak dişi ve erkekleri birbirinden ayıran en önemli farklardan bir tanesi, proboscis'in iki yanında bulunan ve palpus adı verilen dokungaçlardır. Palpuslar dişilerde proboscis'ten kısa, erkeklerde ise daha uzun ve kalındır. Anopheles cinsine bağlı sivrisinek erginleriyle diğer cinslere bağlı sivrisinek erginlerini birbirinden ayırmanın diğer bir yolu İse palpusların ve antenlerin cinse göre farklılaşmasıdır. Anopheles 'lerin hem dişilerinde hem de erkeklerinde palpusların boyu proboscisin boyu ile hemen hemen aynıdır. Oysa Aedes, Culex ve Culiseta gibi cinslere bağlı türlerde, palpuslar dişilerde proboscisden çok kısa, erkeklerde ise aynı boyda ya da biraz daha uzundur. Sivrisinek gövdesinin sırt kısmının karın kısmıyla ayrıldığı bölgede scutellum adı verilen bir çıkıntı bulunmaktadır (Şekil 17). Bu çıkıntı, sırt kısmında sivrisineğin eni boyunca yer almakta ve uçlarında türlere göre değişen sayıda kıl taşımaktadır. Bu kısmın morfolojik yapısı, sivrisinek cinslerinin birbirinden ayrılmasını sağlamaktadır (Şekil 23). Scutellum Anopheles erginlerinde lopsuz ve dışbükey, diğer cinslerde ise üç lopludur. Sivrisinek sınıflandırılmasında karın (abdomen) bölgesinin sırt kısmında bulunan dokuz adet segmentin birbirlerine bağlantı bölgelerinde bulunan pulların dizilim, şekli ve rengi de cinslerin ve hatta türlerin ayırımı için oldukça önemlidir. Anopheles cinsine bağlı türlerde bu bölgelerde pullanma yoktur. Keleş'lerde pullanma çok yoğundur ve genel olarak beyaz ve açık sarı renklidir. Bu cinste pullanma şekli genel olarak üçgen şeklindedir. Culex cinsinde ise pullanma gene! olarak daha kalın ve nettir. Pulların rengi sarımsı, kahverengimsi, kızıl ya da beyaz-sarı karışımı olabilir.

http://www.biyologlar.com/sivrisinek-evrelerinin-ozellikleri

Anophelinae Alt Ailesine bağlı Türkiye'de Bulunan Türlere Ait Sucul Evrelerin Ekolojisi

Anopheles türleri yumurtaları su yüzeyine tek tek bırakır. Yumurtalar su yüzeyinde birbirlerine değerek sanki bir dantel gibi beşli ya da altılı gruplar yaparlar. Yumurta inkübasyon (gelişme) süresi yüzey suyunun sıcaklığına bağlıdır. Yumurtaların kuruluğa dayanıklılığı, yaşlarına, türlere ve çevre koşullarına göre değişir (Horsfall, 1955). Erginlerin verimliliği onların büyüklüğüne ve fizyolojik yaşlarına bağlıdır {Shannon and Hadjinicalao, 1941; Bates, 1949; Detinova et al., 1963). Birinci evre larva, yumurtanın kabuğunu keserek dışarı çıkar. Larvalar zaman zaman su yüzeyine çıkarlar ve burada yüzeye paralel olarak kalırlar. Su içerisinde, suyun yüzey gerilimini kullanarak hareket eden, dört larva evresi ve bir pupa evresi bulunmaktadır. Larvalar dağıtıldıklarında ya da rahatsız edildiklerinde yavaş yavaş su altına doğru yüzerler. Larvalar sekizinci karın segmentlerinde bulunan ve spirakül adı verilen bir çift organlarıyla solunum yaparlar; sifonları yoktur. Beslenme sırasında larvalar başlarını 180 derece çevirebilirler ve sırtları su yüzeyinde kalır. Larvaların bulunduğu habitat suyu bakteriler tarafından oluşturulan jelatinimsi bir madde ile örtülüdür. Larvalar ağız parçaları yardımıyla bu maddeyi keserek yer ve beslenirler. Anopheles larvalarının temel besin maddesi, mikroorganizmalar ve bakterilerdir {Bates, 1949; Buxton and Leeson, 1949; Horsfall, 1955). Bundan kaynak alan çalışmalar sonunda, larvaların doğal sularında bulunan Bacillus kökenli değişik türlerdeki bakteriler endüstriyel preparat haline getirilmiş ve larva mücadelesinde kullanılmaktadır. Larvalar, her 2 cm2'ye bir larva düşecek şekilde, kalabalık populasyonlar halinde bulunurlarsa, yamyamlık davranışı gösterirler ve salgıladıkları toksinlerden dolayı çok uzun zamanda gelişirler. Bundan dolayı yüksek oranda ölüm görülür (Reisen and Emory, 1977). Birçok türe ait larvalar durgun ya da çok ağır akan sularda gelişirler. Nadiren akıntılı sularda da tespit edilmişlerdir. Türler, göl kenarlarında, büyük su birikintilerinde ve bataklıklarda, özellikle bitkilenmenin bol olduğu yerlerde bulunmuşlardır. A. maculipennis komplekse ait birçok tür, gölgeli ve temiz, kalıcı,yarı kalıcı, durgun ya da ağır akan sularda saptanmıştır. Bazen küçük geçici habitatlarda da bulunan türler vardır (Weyer, 1939; Bates, 1949; Buxton and Leeson, 1949; Hedeen, 1955; Borob'ev, 1960). Larvaların gelişimine, suyun fiziksel ve kimyasal özelliklerinin büyük etkisi vardır. Fiziksel özelliklerden; sıcaklık, suyun hareketi ve güneş ışığı kimyasal özelliklerden; tuzluluk, kalsiyum, alkalinite ve nitrojenin bulunuşu larval gelişme oranı üzerine etkilidir. Gelişme oranı Sucul evrelerinin gelişme oranı üzerine su sıcaklığının etkisi çok önemlidir. A. maculipennis ve A. sacharovi türlerinin sucul evrelerinin değişik sıcaklıklardaki gelişme süresi Tablo 3'de gösterilmiştir. Tablodan da görüldüğü gibi sıcaklık yükseldikçe sucul evrelerin gelişme süreleri kısalmaktadır. Böylece, eşik değeri ile en üst sınır arasında kalan sıcaklıklarda pozitif bir ilişki vardır diyebiliriz. Sucul evreler için fotoperyodun da bir etkisinin olmadığını (Vinogradova, 1960) kabul ettiğimizde, sıcaklığın en önemli etken olduğu ortaya çıkmaktadır. Sıcaklığa bağlı olarak gelişme sürelerindeki değişimin bilinmesinin mücadele çalışmalarının planlanmasında büyük önemi vardır. Mücadele yapılacak alanda, mevsimsel su sıcaklığı değişimlerinin bilinmesi, türlerin hangi mevsimlerde ne kadar zamanda gelişebileceğinin tahmin edilmesini sağlar. Böylece, mücadele programlarının sıklığı bu bilgiye göre planlanabilir. Örneğin, bir alanda su sıcaklığı 25 C ye temmuz ayında çıkıyorsa burada A. sacharovi 'nin yumurtadan ergin oluncaya kadar yaklaşık 14 günde gelişebileceğini anlarız. Böylece mücadele programımızı temmuz ayında 10-14 günlük periyodlar halinde planlamamız, sivrisinek populasyonunu kontrol altına alabilmemiz için yeterli olacaktır. Bu durum, mücadele yapan ekibe zaman, emek ve maliyet açısından yararlar sağladığı gibi, insektisitlerin lüzumsuz kullanılmasını engelleyeceği için doğanın aşırı kirlenmesini de önleyecektir. Sucul evre ölümleri Çeşitli etkilerden dolayı, Anopheles türlerinin sucul evrelerinde, doğal ortamda, diğer cinslere ait türlere göre yüksek sayılabilecek ölümler kayıt edilmiştir. Dmitriev and Artemiev (1933), büyük bir havuzda saydıkları 3750 yumurtadan çıkan larvaların % 67'nin 2. evreye, % 40'nın 3. evreye, %25'nin 4.evreye ve %16'nın pupa ve ergin evreye ulaşabildiklerini belirtmişlerdir. Bruce-Chwatt (1985), Anopheles türlerinde sucul evre aşamasında zaman zaman % 90-92.5 oranlarına varan ölümlerin olduğunu bildirmiştir. Avrupa'nın birçok ülkesinde doğal koşullarda yapılan denemeler sonunda özellikle endüstriyel kirlilik nedeniyle Anopheles türlerinin diğer sivrisinek türlerine göre daha fazla etkilendiğini ortaya çıkarmıştır. A. maculipennis kompleksin sucul evrelerin ölümlerine ait laboratuvar araştırmalarından elde edilen sonuçlar Tablo 4'de gösterilmiştir. Bu türlere ait ölümlerin sıcaklık değişimleriyle yakın ilgisi vardır ve ölüm oranları türlere göre değişmektedir. A. sacharovi tüm türler arasında sıcaklığa en dayanıklı türdür. Artemiev (1980), Orta Asya'da yapmış olduğu araştırmalarda, bu türün 38-40°C sıcaklıklarda bile bulunduğunu belirtmiştir. Tuzluluk da larval ölümler üzerine önemli bir faktördür. Eckstein (1936), A, airoparvus için 10000, 5000, 2500, 500, 250, 50 mg/lt tuzlu sularda larval mortaliteyi sırasıyla, % 87, 57, 16, 4, 1 ve 2 olarak bulmuştur. Adana'da yapılan bir çalışmada A. sacharovi larvalarının % 0.8 tuzluluğa sahip habitatlarda yaşayabildiği; ancak, % 1 tuzlulukta 1. evre larvaların tümünün öldüğü belirtilmiştir (Alten, 1989). Anopheles türleri diğer sivrisinek türlerinde olduğu gibi doğal ortamlarında da birçok düşmana sahiptirler. Bunlar arasında balıklar, kurbağalar, sürüngenler, kuşlar, diğer sucul böcekler, bakteriler, bir hücreliler ve mantarlar sayılabilir. Bunların tümü, diğer çevresel faktörlerin de denetimi altında, larval populasyonların doğal ortamda azaltılması için çalışır. Verimlilik A. maculipennis kompleksin verimlilik değerleri Tablo 5'de gösterilmiştir. Bu komplekse bağlı türler, coğrafik bölgelere ve iklimsel koşullara göre değişmekle birlikte, yaklaşık olarak toplam 2500 yumurta oluşturana kadar 10 batım yapabilirler. Verimlilik kesinlikle dişilerin fizyolojik yaşına bağlıdır. Ayrıca, birçok araştırmacı dişi büyüklüğü ile yumurta sayısı arasında pozitif bir ilişki bulmuştur. İlkbaharın soğuk aylarında, yaz aylarındakilerden daha büyük olan dişiler, bir batımda daha fazla yumurta vermektedirler (Detinova et al., 1963). A. sacharovi 'nin yumurta sayısının haziran ayında ortalama olarak 283'den temmuz ayında ortalama 235'e düştüğü belirtilmiştir (Detinova, 1963). Aynı şekilde bu türe ait aylara göre yumurta sayıları, ağustosta 180, eylülde 132 olmaktadır. Birinci yumurtlama evresinde olan bir dişi, haziran, temmuz, ağustos ve eylül aylarında sırasıyla, 289, 263, 255 ve 180 vermektedir. Değişik türler için ideal sıcaklık derecesini belirlemek oldukça güçtür. Sıcaklık arttıkça, gelişme oranı artmakta, gelişme süresi düşmekte, buna bağlı olarak ölümde artmaktadır. Ancak, yüksek sıcaklıklarda ergin çıkışı, düşük sıcaklıklara göre daha düşüktür. Benzer şekilde, dişi başına yumurta sayısı da düşmektedir.

http://www.biyologlar.com/anophelinae-alt-ailesine-bagli-turkiyede-bulunan-turlere-ait-sucul-evrelerin-ekolojisi

Anophelinae Alt Ailesine Bağlı Türkiye'de Bulunan Türlere Ait Ergin Sivrisineklerin Ekolojisi

Çiftleşme, kan emme ve Üreme Doğada, sperm depolama keseleri boş olan hiçbir dişiye rastlanmamıştır. Bundan dolayı, Buxton and Leeson (1949), çiftleşmenin normal olarak ergin çıkışından hemen sonra, beslenmeden önce gerçekleştiğini belirtmişlerdir. Birçok Anopheles sürü, çiftleşmeden önce erkeklerinin esem adı verilen kümeler yapmasına ihtiyaç duyar. Dişiler bu esemlerin içine girer ve çiftleşme havada gerçekleşir. Cambournac and Hill (1940), A. airoparvus türünün, iç ortamlarda ya da açık havada çiftleşme dansı yaptığını belirtmiştir. Erel (1973), A. sacharovı erkeklerinin çiftleşme kümesi oluşturmak amacıyla suyun ya da herhangi bir objenin 1.5-2 m üzerinde toplandıklarını belirtmiştir. Işık, sıcaklık ve nem, esemlerin oluşması için denetleyici faktörlerdir. Fertilizasyondan sonra, dişiler kan emmek için konak araştırmaya başlar. Kan, yumurtaların gelişmesi için gereklidir. Kana alternatif olan temel besin kaynaklarının başında bitki özsuyu gelir. Sivrisineklerin, nektar (şeker) ile beslenmesi, her iki eşeyin hayatta kalabilmesi, üremeleri ve uçmaları için iyi bir enerji kaynağıdır (Alten, 1989; Muir, 1989). Sivrisinekler, ilk kan emmelerinden sonra sekiz gün içinde ilk yumurta bırakmak için hazırdırlar. Sonrasında, yumurta batımları iki günlük bir zaman dilimi içinde bölüm bölüm bırakılır (Bates, 1949). Horsfall (1955), yumurta bırakımının ve kanın sindiriminin yukarıdaki görüşe alternatif olarak, ilk iki kan emmeden sonra başlayabileceğini ileri sürmüştür. A. sacharovı 'de; eğer, pupal gelişme ideal sıcaklıklarda olmuş (24-30 °C) ya da yeni çıkmış dişiler ilk kan emmeden önce bitki özsuyu ya da şekerle beslenmişse, ilk yumurta bırakımı birinci kan emmeden sonra gerçekleşebilir; ancak, bu türün dişileri genelde İki kez kan emdikten sonra ilk yumurta batımlarını bırakabilirler (Mer, 1936; Yoeli and Mer, 1938). Yumurta bırakmak için, genel olarak iki günlük periyodlarda kan emme gereklidir. Ayrıca, yumurta bırakılmasına ya da yumurtaların gelişmesine çevresel faktörlerin de önemli etkisi vardır. Örneğin, A. atroparvus'da yumurta gelişimi yumurta bırakılması 6-35 °C gibi geniş bir aralıkta olabilmektedir (Cambournac and Hill,1938). Ayrıca, bu biyolojik faaliyetleri ışık, renk, ses, karbondioksit, nem ve hava hareketleri de denetler (Bates, 1949). Diyapoz (kışlama) Birçok Anopheles türü ılıman kuşakta kışın diyapoza girer. Diyapoz sırasında yumurtlama tamamıyla durur. Diyapoz, genellikle sıcaklığa göre, günlerin kısalması sayesinde oluşur (Washino, 1977). Ancak, sıcaklık değişimleri de gün uzunluğuna yardımcı olur (Vinogradova, 1960; Kasap, 1987). Sivrisinek türlerinin ve her bir bireyin diyapoz davranışı birbirlerinden farklılık gösterir. Bu farklılık ekolojik, klimatik koşullara ve coğrafi bölgelere de bağlıdır. Diyapoz, kısmi ya da tüm olarak görülür. Tüm diyapozda dişilerin karın bölgeleri tamamıyla yağla kaplanır. Dişiler ilkbahara kadar, dinlenme alanlarında hareketsiz kalarak, vücutlarındaki bu yağ sayesinde beslenirler. Kısmi diyapozda ise vücutta yine yağ depolanır;ancak, bireyler hareketlidir. Soğuk havalarda, dişiler konutların ya da ahırların içinde barınaklı yerlere doğru yönelirler ve kan emmeye ve kural dışı olarak, yumurtlamaya devam ederler. Bu durum, özellikle iç alanlarda sıtmanın yayılması için çok önemlidir. Ülkemiz içinde en önemli tür olan A. sacharovı "nin kışın davranışı bu şekildedir. Ayrıca, mücadele çalışmaları açısından da bu durumun önemi büyüktür. Bu türün yaygın olduğu bölgelerde, kışın mücadele çalışmalarını kesmemek ve özellikle ahır ve ev içlerinde kışlak mücadelesi yapmak gerekmektedir. A. maculipennis'\n diyapozu, ekim ayında başlamaktadır. Beslenme aktivitesi kasım ve aralık aylarına kadar sürebilmektedir. Ocak ayında tam diyapoz başlar. Beslenme aktivitesi tamamıyla sıcaklıktan etkilenir. 11.5 °C'nin altındaki sıcaklıklarda, yumurtlama faaliyeti durur. Yumurtaların gelişimi 5-7 °C'nin altında durur (Guelmino, 1951). A. sacharovi türünün diyapozu ekim ayında başlar ve şubat ayında son bulur. Kasap (1987), Türkiye'de, gün uzunluğunun 10 saatin altına ve sıcaklığın 18 °C'nin altına düştüğü periyotta, bu tür için yumurtlama faaliyetlerinin durduğunu bildirmiştir. Ancak, sıcaklığın 25 °C'ye yükseldiğinde yumurtlama faaliyetinin yeniden başladığını belirtmiştir. Bu durumda, kısalan gün uzunluğunun ve yükselen sıcaklığın dişilerin diyapozu için oldukça önemli iki çevresel faktör olduğunu söyleyebiliriz. Diyapozun bitmesi tamamıyla sıcaklık tarafından denetlenir. Solovey and Likhoded (1966), 8°-10 °C'de A. maculipennis dişilerinin uçma aktivitesinin başladığını belirtmiştir. Bu türün yumurtlamaya başlaması 7.5 °C'nin üzerindeki sıcaklıklarda olmaktadır (Guelmino, 1951). Hava sıcaklığının türlere göre değişen belirli sıcaklıkların üzerine çıkması sivrisinek dişilerinin diyapozdan çıkmasını sağlar. Kışlama, mücadele çalışmalarının en önemli dönemidir. Bu dönemde yapılacak bilimsel tabanlı ideal bir sivrisinek mücadelesi, ilkbaharda yeni çıkacak jenerasyonun %25-30'luk (ya da daha fazla) bir kısmının başlangıçta ortadan kaldırılmasını sağlayacaktır. Ayrıca, kışlama sırasında sivrisineklerin nispeten daha az hareketli ya da hareketsiz olduklarını düşünürsek, yapılacak mücadele çalışmalarının oldukça kolay olduğu ortaya çıkar. Öte yandan, son yıllarda birçok araştırma kışlama çalışmalarında uzun yıllardır kullanılan kalıcı insektisitlerin artık kullanılmamasını, bunun yerine ani tesirli insektisitlerin alması gerektiğini ortaya koymuştur. Her ne olursa olsun, özellikle bölgesel mücadele programlarında kışlak mücadelesinin zamanında ve iyi yapılması çok önemlidir. Ergin özellikleri ve sıtmanın epidemiyolojisi Belli bir alandaki sıtma vakaları, insan davranışı, parazitin varlığı ve vektörün özelliklerine göre belirlenir. Bu kısımda, diğer faktörlerin üzerinde kısaca duracağız: Vektör yoğunluğu Vektörün yoğunluğu, onun verimlilik, gelişme oranı ve ölüm gibi hayat döngüsü parametrelerine bağlıdır. Bu parametrelerin tümü, sucul ve karasal evreler için, habitatların kimyasal, fiziksel ve biyolojik özelliklerine göre belirlenir. Döllerin sayısı, mevsimlerin uzunluğuna bağlıdır. Örneğin, A. maculipennis, Rusya'da iki ay yaşarken, İtalya ya da Türkiye'de 7 ay ya da daha fazla yaşayabilmektedir. Sivrisinekler üstün bir biyolojik potansiyele sahiptirler. Yüksek üreme ve gelişme potansiyelleri vardır. Cambournac (1939), bir pirinç tarlasında yapmış olduğu çalışmada bir hektarlık alanda günlük 20000 yeni erginin çıktığını gözlemlemiştir. Hayat uzunluğu Sivrisinek erginlerinin hayat uzunluğu, sıtma epidemiyolojisinde en önemli noktalardan biridir. Eğer bir sivrisinek dişisi Plasmodium'un inkübasyon periyoduna yetecek kadar uzun yaşarsa, sıtmanın bulaştırılması kesinleşmektedir. Erkekler dişilere göre daha kısa bir hayat uzunluğuna sahiptir. Sivrisineklerin hayat özelliği tür karakterlerine, bireylerin aktivitesine, klimatik faktörlere, beslenmeye, parazit, ve predatörlerinin varlığına bağlıdır. Bireyler, kışlama sırasında 4 ay gibi uzun bir süre yaşayabilirler. Ancak kışlamadan sonra belki bir hafta içinde ölebilirler. Onların beslenmek ve yumurtlamak için habitat arayışı ömürlerini kısaltan nedenlerdir. Her tür için ve türün metabolik aktiviteleri için bir ideal sıcaklık ve nem değeri vardır. Sıcak ve kuru koşullar hayat uzunluğunu sınırlar. Sivrisinekler yüksek su kaybından dolayı, düşük nemlilik değerlerini tolere edemezler. Hundertmark (1939), yüksek nemlilik değerlerinin beslenmemiş dişilerin hayatlarını uzattığını bildirmiştir. Mamafih, yüksek nemlilik her zaman ideal değildir (Tablo 6). Buxton and Leeson (1949), gün ışığında, dinlenme alanlarında bile yüksek derecede ölümlerle karşılaşmanın temel nedenini yüksek sıcaklığa bağlamışlardır. A, maculipennis türünün yumurtlayan dişilerindeki ölüm oranlan Tablo 7'de gösterilmiştir. Beslenmeye, sıcaklığa ve neme bağlı olarak ortaya çıkan göreceli ölüm 0.01-0.3 arasında değişmektedir. A. sacharovi, Anopheles türleri arasında sıcaklığa en dayanıklı türdür (Artemiev, 1980). Bu durum türün, tüm Avrupa içinde yayılış modelini oluşturmuştur. A. superpictus türünün A. maculipennis komplekse bağlı türlere göre yüksek sıcaklığa ve düşük neme daha toleranslı olduğu tespit edilmiştir (Shannon, 1935; Bates, 1949). Beslenme Dişilerin ömür uzunluğu aynı zamanda beslenmeye bağlıdır. Kanla beslenen dişiler, nektar ya da bitki özsuyu ile beslenenlerden daha uzun yaşarlar. Besinsiz ortamda, dişilerin hayatta kalmaları çok sınırlıdır. Laarman (1955), beslenmemiş sivrisinek erginlerinin 2 gün içinde %50'nin öldüğünü belirtmiştir. Harici inkübasyon periyodunun süresi Anopheles türleri, sıtma parazitinin harici inkübasyon periyodunun tam olarak tamamlanmasına kadar, kan emselerde enfekte olmuş sayılmazlar. Bu harici inkübasyon periyodu, tamamıyla sivrisinek vücudunun sıcaklığına bağlıdır. Sivrisinek bir kez enfekte olursa, hayatının sonuna kadar böyle kalır. Sivrisinekler sadece kışlama sırasında enfekte olma olasılıklarını azaltırlar. Parazitin, 4°-24°C arasındaki sıcaklık değişimlerinde en az 80 gün boyunca aktif olmadığı bildirilmiştir. Plasmodium vivax için yüksek sıcaklıklar öldürücüdür. 32°C sıcaklıkların üzerinde ömür uzunluğu süresi çok hızlı olarak azalır (Roubaud, 1918; James, 1925-1926-1927). Tablo 8'de değişik Plasmodium türlerinin gelişebilmesi için gerekli olan en düşük sıcaklıklar gösterilmiştir.

http://www.biyologlar.com/anophelinae-alt-ailesine-bagli-turkiyede-bulunan-turlere-ait-ergin-sivrisineklerin-ekolojisi

Türkiye`nin kene riski haritası

Türkiye`de ilk 2002 yılında görülen kene ısırmaları ve buna bağlı olarak ortaya çıkan Kırım Kongo Kanamalı Ateşi Hastalığı, her geçen yıl giderek artıyor. 2002 yılından bu zamana kadar bin 100 köyde 2 bin 315 hastalık vakası görüldü. Bugüne kadar kene tarafından ısırılan 140 kişi hayatını kaybetti. Sağlık Bakanlığı, KKKA Hastalığı risk haritasını çıkardı. Buna göre vakalar çoğunlukla Orta Anadolu ve Orta Karadeniz Bölgesi`nde, yani Kelkit Vadisi başta olmak üzere Gümüşhane, Tokat, Sivas, Amasya, Çorum, Yozgat, Kastamonu, Karabük ve Çankırı illerinde yoğunlaşıyor. Daha çok havaların ısındığı yaz mevsiminde görülen kene vakalarıyla, bu yıl daha erken karşılaşıldı. Kene vakalarının bu yıl daha erken görülmesinin en büyük nedenin ise hava sıcaklıklarındaki artış olarak değerlendiriliyor. Uzmanlar, sıcak ortamda yaşama ve üreme imkânı bulan kenelerin, yumurtadan daha erken çıkarak aktif hale geldiği ve insanlarla temas haline geçtiğine dikkat çekiyor. Kenelerin havaların soğumaya başladığı kasım ayına kadar aktif olacağını hatırlatan uzmanlar, insanların yaz döneminde çok dikkatli olmaları uyarısında bulunuyor. Özellikle araziden eve dönüşte mutlaka tüm vücutta detaylı bir kene taraması yapılması gerektiği ifade ediliyor. Erciyes Üniversitesi Tıp Fakültesi Hastanesi Klinik Bakteriyoloji ve İnfeksiyon Hastalıkları Anabilim Dalı Öğretim Üyesi Doç. Dr. Orhan Yıldız, bir kenenin yılda ortalama 6 bin yavru bıraktığını ve bunu engellemenin imkânsız olduğunu söyledi. Engellenemediği için kene sayısının her geçen yıl giderek arttığını buna paralel olarak da vaka ve ölüm olaylarının arttığına dikkat çeken Doç. Dr. Yıldız, havaların bu yıl erken ısınmasının kenelerin yumurtadan çıkarak aktif hale gelmesini hızlandırdığını ifade etti. Özellikle iklim değişikliği ve tavşan avcılığının kısıtlanmasının KKKA hastalığı görülme riskini arttırdığına dikkat çeken Doç. Dr. Yıldız, önlem alınmaması halinde Türkiye`yi önümüzdeki yıllarda daha zor günlerin beklediğini savundu. Kuş gribiyle birlikte kümes hayvanlarının büyük çoğunluğunun itlaf edilmesinin de kenelerin sayısının arttırdığını aktaran Doç. Dr. Yıldız, bu konularla alakalı ciddi tedbirler alınması gerektiğini dile getirdi. KENENİN ERKEN FARK EDİLMESİ HAYAT KURTARIYOR Kars Kafkas Üniversitesi Veteriner Fakültesi Öğretim Üyesi Prof. Dr. Zati Vatansever, kenenin erken fark edilmesi halinde ölüm olaylarının büyük oranda önüne geçilebileceği uyarısında bulundu. Kırsal arazide; çalışmak, piknik yapmak veya başka bir nedenden dolayı bulunan kişilerin kene tarafından ısırıldıklarını geç fark ettikleri için ölümlerin yaşandığının altını çizen Prof. Dr. Vatansever, `Kırsal arazide bulunmak zorunda kalan insanlar akşamları evlerinde gittiklerinde detaylı bir şekilde kene kontrolü yapsalar sorun kalmayacak. Keneler sığırlardan kan emiyor. Sığırları ilaçlarlarsa kene sayısını bir miktarda azaltmış oluruz. Dünyada da başka yöntem yok. Birçok mücadeleden bahsediliyor. Ama bunlar sansasyonel açıklamalar.` diye konuştu. DÜNYADA 900, TÜRKİYE`DE 30 ÇEŞİT KENE VAR Bilimsel olarak tespit edilen 900 çeşit kene olduğunu belirten Zati Vatansever, Türkiye`de 30 civarında kene türü olduğunu ve bunlar içinden bir tanesinin virüs taşıdığını belirtti. Aktarma potansiyeli olan kenenin önemli olduğunu ifade eden Vatansever, taşıma potansiyeli olan türün Türkiye`de bir tane olduğunu bildirdi. BİLİNENİN AKSİNE KEKLİKLER KENENİN DÜŞMANI DEĞİL DOSTU Doğada her hangi bir şekilde birbirlerini yiyen canlılar olduğunun altını çizen öğretim üyesi, kuşlar hareket halindeyken keneyi gördüklerinde yediklerini hatırlattı. Karıncaların da bir kısmının kene yediğini aktaran Vatansever, Türkiye`de kekliğin keneleri yiyerek azalttığı yönünde yanlış bir inanış olduğunu söyledi. Kene yiyen canlıların hiçbirisinin popülasyonunu azaltmayacağını kaydeden Vatansever `Aksine kenenin çoğalmasına keklikler yardım ediyor. Keneler kekliklerin yavrusunda besleniyor. Tavşan, hindi, karga olan yerde kene vardır. Çünkü keneler bu hayvanları çok sever. Sığır aynı yerde varsa kene için yaşar. Bu kene toprağın içine saklanır. Bazı kene türleri ota tırmanır. Toprağın altındaki keneyi kimse bulamaz.` diye konuştu. KENE İLE İLGİLİ YANLIŞ BİLİNENLER Kırım Kongo Kanamalı Ateşi Hastalığı ile ilgili kamuoyunda yanlış bilinenleri anlatan Prof. Dr Zati Vatansever, önemli açıklamalarda bulundu. Yozgat`ta keklik, domuz, tavşan gibi hayvanları avlayarak kene araştırması yaptığını anlatan Vatansever, `Halk arasında keneyle ilgili çok sayıda yanlış bilinen konu var` dedi. Prof. Dr Vatansever yanlış bilinenleri şöyle sıraladı. - Nereden çıktı bu hastalık, keneler neden bu kadar arttı? Hastalık eskiden de vardı fakat biz bunu bilmiyorduk. Az sayıda da ortaya çıktığı için farkına varılamıyordu. Birden bire çok sayıda çıkınca farkına vardık. Bu gibi salgınların ortaya çıkışında her zaman yaban hayvanı ve buna bağlı olarak virüs taşıyan kene sayısının artışı ile ilgilidir. Türkiye`de azımsanmayacak boyutlarda bir ekolojik rejenerasyon var. Gerek ormanlaşma çalışmaları gerekse kendiliğinden ortaya çıkan çalılık alanlar yaban hayvanı sayısını arttırmaktadır. Buna ek olarak köylerden göç vardır. Tarım arazileri işlenmediği ve parçalı arazı yapısının oluşumuna neden olduğu için yaban hayvanları ve keneler için uygun ortamlar oluşmaktadır. 1990`lardan beri oluşan ekolojik rejenerasyona dikkatlice bakılırsa bir çok şeyi anlamamamız daha kolay olacaktır. - İlaçlama yapıldı kene sayısı artacak` Bunun bir bilimsel dayanağı olmadığı gibi yaşadığımız KKKA gerçeği ile de ilgisizdir. Hastalığın görüldüğü 1500 kadar köyün hiç birinde çevre ilaçlaması yapılmadığı gibi, çiftçiler tarlalarında zirai mücadele amaçlı ilaç bile kullanmamaktadırlar. - Keneyi kendi çıkardı o yüzden öldü Hastalık oluşumu keneyi nasıl çıkarttığınız çıkartmadığınızla değil, kenenin sizden kaç gün kan emdiği ile ilgilidir. Keneyi 6-12 saat içinde çıkartırsanız hastalanma olasılığı en düşük seviyededir. Geciktiğiniz sürece kene size artan miktarda virüs vermeye devam edeceği için hastalanma riskiniz artar. Keneyi çıkartmak için uzman olmaya gerek yok. Elinize bir eldiven giyin, yoksa bir naylon parçası veya bez de kullanabilirsiniz. Keneyi deriye tutunduğu en yakın yerden parmaklarınızla tutup yavaş ve sabit kuvvetle çekin, çıkacaktır. Ağız organellerinin deri içinde kalması bir hastalık riski teşkil etmez, bunları ağaç kıymığı batmış gibi değerlendirin. - Kendiniz çıkarırsanız keneyi kusturursunuz ve hastalanırsınız Kenelerde `kusma` olarak adlandırılan mekanizma farklıdır. Keneyi mekanik olarak sıktığınızda kusmaz. Dolayısıyla keneyi tutup çekmeniz onun kusmasına neden olmaz. Keneyi çıkartırken yapılmaması gereken şey üzerine çeşitli maddeler dökmek veya yakmaktır. İşte bunlar keneyi kusturabilir. - Keneyi çıkartırken ağız içerde kalırsa hastalanırsın Kenenin ağzında salgı bezi yok, dolayısıyla kopmasının bir hastalık riski oluşturması beklenemez. Bunu ağaç kıymığı gibi algılayıp ona göre değerlendirmek gerek. - Gidin doktor çıkartsın Kendiniz hemen çıkartın sonra istiyorsanız doktora gidip bilgi verin. Çıkartma konusunda kendinize güvenmiyorsanız yine doktora gidebilirsiniz. Unutulmaması gereken tek şey: sizi kene tuttuysa 10 gün boyunca ateş ve kırgınlık yönünden kendinizi izleyin ve kuşkulandığınızda hemen doktora gidip bilgi verin. Özelikle kırsal alanda çalışan insanlar bu gibi belirtileri ilk başlarda önemsememekte ve geç kalınıyor. YILLARA GÖRE TÜRKİYE`DE GÖRÜLEN KENE VAKALARI 2002- 2003 yıllarında vaka sayısı 150 iken, ölüm sayısı 6 oldu 2004`te vaka sayısı 249, ölüm oranı 13, 2005`te vaka sayısı 266, ölüm oranı 13, 2006`da ise vaka sayısı 438, ölüm oranı ise 27. 2007 ve 2008`de ise özellikle vaka sayılarında büyük artışlar yaşandı. 2007`de 717 olan KKKA vakası 2008`de bin 315`e yükseldi. 2007`de 33 kişi KKKA`dan hayatını kaybederken 2008 yılında 135 kişi hayatını kaybetti. 2009 yılının ilk 5 aylık döneminde ise ölü sayısı 5`i buldu.

http://www.biyologlar.com/turkiyenin-kene-riski-haritasi

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop tipleri, patolojide kullanım alanları

Mikroskop (16. yy) Lensler ve büyüteçler, Antik Yunan uygarlığında bile biliniyormuş. Ancak onlar bu lensleri yapmayı değil, sadece ortası kenarlarından daha geniş kristallerin etkilerini biliyormuş.

http://www.biyologlar.com/mikroskop-tipleri-patolojide-kullanim-alanlari

Toprak suyunun sınıflandırılması

Toprak suyunun sınıflandırılması temelde topraktaki fiziksel haline göre yapılır. Gravitasyonel, yerçekimi etkisinde süzülen, serbest akan su oranı porozitesi ve por çapı ortalaması yüksek ve organik maddesi az topraklarda fazladır. Bu su fazından bitkiler ancak süzülüp akarken kısa bir süre yararlanabilir. Toprağın profili burada önem kazanır, örneğin alt tabakalarda killi bir tabaka olması bu suyun birikmesine neden olur ve bu tabakaya kadar uzanan köklerin havasız kalıp, çürümesine neden olur. Kapiler su, gravitasyonel su süzüldükten sonra toprak taneciklerinin çevresinde ve birleşme noktalarında adezyon ve kohezyon kuvetleri ile tutularak film halinde kalan sudur. Bu kuvvetler bağıl olarak zayıf olduğunda bitkiler bu kalıcı su fazından kolaylıkla yararlanır. Ancak kolloidal materyalde kuvvetle adsorbe edilen su ile sıcak ve kurak iklim koşullarında şiddetli buharlaşma ile kaybedilen kapiler sudan bitkiler aynı kolaylıkla yararlanamaz. Rutin uygulamada kapiler su fazının tümünü değerlendiren Tarla Kapasitesi, diğer bir tanımı ile Nem Eşdeğeri toprakların bitkilere yarayışlı su tutma kapasitesi olarak kabul edilir. Suyla doymuş haldeki toprak ile yerçekimi etkisiyle süzülen su arasındaki fark poroziteyi, kalan su da yararlı kapiler su ile kullanılamayan higroskopik su fazlarının toplamı olarak alınır. Daimi Solma Yüzdesi ile karakterize edilen Higroskopik Su fazı ile tarla kapasitesi arasında kalan su miktarı bitkiler için yarayışlı fazını oluşturur. Daimi solma noktası, bitkilerin susuzluktan kalıcı şekilde etkilendikleri, yani yeniden su düzeyi yükseldiğinde bile toparlanamadıkları durumda toprakta bulunan higroskopik olarak bağlı su fazını tanımladığı düşünülür. Daimi solma olayı canlılık ile ilgili bir terim olmasına karşın bu değer toprak özelliklerinin bir karakteristiği olarak alınır. Gerçekte bitkiler üst yüzeyi parafinlenerek topraktan buharlaşmanın önlendiği belli hacimdeki topraktaki suyu tüketerek bir gecelik süre ile susuz kaldığında yaprakların dökülmesi esas alınmıştır. Bu durumdaki toprak 105 derecede kurutularak % nem oranı belirlenir. Aslında bu durum bitkilerin su alımının çok yavaşlayıp terlemeyi karşılayamadığı durumdur ve toprağın özelliğinden çok bitkinin osmotik karakteristiklerine ve su depolama, terleme özellilklerine bağlıdır. Mezofitik, yani ılıman ve kurak olmayan iklime adapte bitkilerde 20 atm. civarında olan yaprak osmotik basıncı kurak iklime ve tuzlu, osmotik basıncı yüksek topraklara adapte olmuş halofitik türlerde 200 atm.e kadar çıkabilmektedir. Toprağın laboratuar koşullarında serilerek kurutulmasından sonra toprakta kalan ve ancak suyun kaynama noktasına kadar ısıtılarak kurutulmasından sonraki ağırlığı ile hava kurusu denen ilk nemli örnek ağırlığı arasındaki fark higroskopik su fazının miktarını verir. Ancak kaynama noktasındaki termik hareketlilik ile topraktan ayırılabilecek kadar kuvvetli tutulmuş olan bu fazdan bitkiler kesinlikle yararlanamaz, yani gerçek desikkasyon - susuzluktan kuruma noktasıdır.. Killi verimli ve kumlu verimli topraklar bu açıdan karşılaştırıldığında suya doymuşluk düzeyinin killide toprak kuru ağırlığının %70i, kumluda ise %35i oranında olduğu, tarla kapasitesinin %45e karşılık %20, ve daimi solma noktasının da %17’ye karşı 9, son olarak da higroskopik bağlı su fazının %10a karşılık %7 gibi değerler verdiği görülür. Bitkilerin yağışla toprağa düşen sudan yararlanabilmeleri ile ilgili önemli bir toprak özelliği suyun infiltrasyonudur. İnfiltrasyonu düşük, killi ve organik maddece fakir toprakta yağışın hızı arttıkça yüzeyden toprağın içine yayınım yapamadığı için köklere ulaşamayan su oranı artar. Eğimli arazide akar gider, düz arazide taşkına yol açabilir veya buharlaşma ile kaybedilmiş olur. Kumlu toprakta ise bu oran en düşük düzeydedir. Alt tabakaları killi topraklarda sürme işlemi bu yönden zararlı etki yaparak erozyon riskini arttırır.

http://www.biyologlar.com/toprak-suyunun-siniflandirilmasi

Bakteriyosinler

Gıdaların korunması ve muhafaza sürelerinin uzatılmasında, düşük sıcaklık veya ısıl işlem uygulaması, paketleme yöntemleri gibi prosesler ve tuz, şeker ve antimikrobiyal katkı maddeleri gibi katkılar kullanılmaktadır. Ancak yine de gıda kaynaklı sağlık sorunlarıyla karşılaşılabilmektedir. Gıdaların güvenliğinin sağlanmasında mümkün olduğunca proses uygulamalarından kaçınılması ve doğal katkı maddelerinin kullanımı gerekmektedir. Bu amaçla biyokontrol yöntemi önerilmektedir. Bu yöntemde, antagonistik mikroorganizmaların ve metabolitlerinin kullanımıyla patojen ve bozulma etmeni mikroorganizmaların inaktive edilmesi sağlanmaktadır . Gram (+) ve Gram (-) mikroorganizmaların önemli bir kısmı antimikrobiyal bileşenler üretmelerine rağmen, gıdaların biyokontrolünde laktik asit bakterilerinin ayrı bir önemi vardır. Bu bakteriler fermentasyon teknolojisinin tipik bakterileri olup, gıdalarda uzun yıllardan beri güvenli bir şekilde kullanılmaktadırlar .Gıdaların korunmasında laktik asit bakterileri gibi koruyucu kültürlerin kullanımı yanında, bu kültürlerden elde edilen bakteriyosin gibi metabolitler de kullanılmaktadır. Bakteriyosinler bakteriler tarafından sentezlenerek salgılanan, protein yapısındaki antimikrobiyal bileşenlerdir. İnhibisyon etkileri daha çok yakın türler üzerinde bulunmaktadır. Farklı özelliklere sahip birçok çeşitlerinin olmasına rağmen, gıdalarda güvenli bir şekilde ve yaygın olarak daha çok laktik asit bakterilerinden elde edilen nisin kullanılmaktadır. Dolayısıyla, nisinle birlikte diğer bakteriyosinlerin özelliklerinin bilinmesi, bu antimikrobiyal maddelerin birçok gıda maddesinde etkin bir şekilde kullanımını sağlayabilecektir.Bakteriyosinlerin Tanımlanması ve SınıflandırılmasıBakteriyosinlerin tanımlanmasına yönelik ilk çalışma 1925’te E. coli tarafından sentezlenen colicin’in tespit edilmesiyle başlamıştır. Bakteriyosinlerin aynı ya da farklı bakteri grupları tarafından sentezlenen yüzden fazla çeşidi bulunmaktadır. E coli suşlarının yanı sıra Lactococcus, Lactobacillus, Pediococcus, Leuconostoc, Staphylococcus ve Enterococcus gibi birçok mikroorganizma bakteriyosin üretmektedir.Daha çok gıdalar da güvenli olduğu düşünülen laktik asit bakterileri tarafından sentezlenen bakteriyosinler üzerinde araştırma yapılmakta ve gıdalarda bu bakteriyosinler kullanılabilmektedir. Bu nedenle laktik asit bakterileri, özellikle de Lactobacillus ve Lactococcus tarafından sentezlenen bakteriyosinler üzerinde önemle durulmaktadır.Bakteriyosinler için farklı sınıflandırmalar yapılmakla birlikte, daha çok Klaenhammer’in özellikle Gram (+) bakterileri dikkate alarak yaptığı sınıflandırma kullanılmaktadır. Biyokimyasal özellikleri dikkate alınarak yapılan sınıflandırmada, bakteriyosinler molekül büyüklüğü, kimyasal yapıları, etki mekanizmaları ve ısı stabilitelerine göre genel olarak 4 sınıfa ayrılmışlardır (Tablo 1). Ancak, biyokimyasal tanımlanması bakımından daha çok ilk 3 sınıf dikkate alınmaktadır..Bakteriyosin Sentezleyen Etki SpektrumlarıGrup I ANisin Lactococcus lactis Lactococcus ssp., Lactobacillus ssp., Streptococcus ssp., Micrococcus ssp., Mycobacterium ssp., Staphylococcus aureus, Corynebacterium ssp., Clostridium ssp., Bacillus ssp., Listeria ssp.Lactocin S Lactobacillus sake Lactobacillus ssp., Lc.mesenteroides, P. acidilactici, P. pentosaceusEpidermin Staphylococcus epidermisGallidermin Staphylococcus gallinarumLacticin 481 Lactobacillus lactis Lactococcus ssp.,L. helveticus, L. bulcaricus,Grup I BMersacidin Bacillus subtilisCinnamycin Streptomyces cinnamoneusAncovenin Streptomyces ssp.Duramycin S. cinnamoneusActagardin Actinoplanes ssp.Grup II APediocin PA-1 Pediococcus acidilactici PAC 1.0 Lactobacillus ssp., Pediococcus ssp.,L. monocytogenesPediocin AcH Pediococcus acidilactici H L. monocytogenes, L. ivanovii, LinnocuaSakacin A L. sake Lactobacillus ssp., L.monocytogenesSakacin P L. sake Enterococcus ssp., Lactobacillus, Pediococcus,L. monocytogenes, L. innocua, L. ivanoviLeucocin A-UAL 87 Leustonostoc gelidumMesentericin Y105 Leuconostoc mesenteroides L. monocytogenesEnterocin A Enterococcus faeciumDivercin V41 Carnobacterium divergens Enterococcus ssp., Lactobacillus, Pediococcus,L. monocytogenes, L. innocua, L. ivanoviLactococcin MMFII L. lactis Enterococcus ssp., Lactobacillus ssp., Lactococcus ssp., L. ivanoviGrup II BLactococcin G L. lactisLactococcin M L. lactisLactacin F Lactobacillus johnsonii L. bulcaricus, L. leichmanni, L. helveticus, L. lactis, L. fermentum 1750, E. faecalisPlantaricin A Lactobacillus plantarum L. plantarum, L. paramesenteroides, E. faecalis, Pediococcus pentosaceusPlantaricin S L. plantarum Lactobacillus ssp., Leuconostoc ssp., Pediococcus ssp.Plantaricin EF L. plantarumPlantaricin JK L.plantarumGrup II CAcidocin B Lactobacillus acidophilusCarnobacteriocin A Carnobacterium piscicolaDivergicin A C. divergensEnterocin P E. faeciumEnterocin B E. faeciumGrup IIIHelveticin J Lactobacillus helveticus L. helveticus 1846 ve 1244, L. bulcaricus 1373 ve 1489, L. lactis 970, L.caseiHelveticin V-1829 L. helveticusGRUP I BakteriyosinlerBu gruptaki bakteriyosinler daha çok “lanthionine” içermeleri nedeniyle lantibiyotikler olarak adlandırılmakta ve yapılarında bilinen amino asitlerden farklı olarak lanthionine (Lan) ve methyllanthionine (MeLan) amino asit türevlerini içermektedirler. Bununla birlikte yapılarında biyokimyasal özelliklerini etkileyen dehydroalanine ve dehydrobutyrine de bulunmaktadır .Bu gruptaki bakteriyosinler kimyasal yapılarına ve antimikrobiyal aktivitelerine göre I A ve I B lantibiyotikleri olmak üzere iki gruba ayrılırlar.Grup IA: Bu gruptaki bakteriyosinler net pozitif yüke sahip ve hidrofobik polipeptid yapısındadırlar. Membran aktif peptidler olup, bakteri zarında gözenek oluşturarak antimikrobiyal aktivite göstermektedirler. Grup IB : Bu gruptaki bakteriyosinler yüksüz veya negatif yüklü olup, globüler peptid yapısındadırlar. Spesifik enzimleri inhibe ederek antimikrobiyal aktivite göstermektedirlerGRUP II BakteriyosinlerBu gruptaki bakteriyosinler Grup I’den farklı olarak lanthionine içermezler. Ayrıca, molekül ağırlıkları daha düşük olup, ısı stabilitesine sahiptirler. Antimikrobiyal aktiviteleri, membran aktif olmalarından kaynaklanmaktadır. Çok sayıda bakteriyosin içeren bu grup 3 alt gruba ayrılmaktadır Grup IIA : Bu gruptakiler özellikle listeria’ya karşı aktif olup, yapılarında bulunan peptid’in N-terminalinin sonunda Try-Gly-Asn-Gly-Val-Xaa-Cys amino asit dizisine sahiptirler .Grup IIB :Bu gruptaki bakteriyosinler primer yapıları birbirinden farklı iki polipeptid içerirler. Ayrı ayrı aktivite gösterebildikleri gibi, etkin bir şekilde aktif hale gelebilmeleri için her ikisinin de aktif olması gerekmektedir. İki polipeptidin aktif hale gelmesiyle, hücre membranında gözenek oluşturarak antimikrobiyal aktivite göstermektedir . Grup IIC : Bu gruptaki bakteriyosinler, Grup II deki bakteriyosinlerin özelliklerini gösteren, Grup IIA ve IIB dışındaki diğer bakteriyosinlerdir. Bu gruptakilerin birçoğu sistein amino asit rezidüsü içermekte ve bu bakteriyosinlere thiolbiotic’ler veya cystibiotic’ler denilmektedir. Tiyo-aktif bakteriyosinler olup, aktiviteleri için indirgenmiş cystine rezidüsüne gereksinim duyarlar .GRUP III BakteriyosinlerBu gruptaki bakteriyosinler daha büyük molekül ağırlığına sahip olup, ısıya karşı duyarlı peptid zincirlerinden oluşmaktadırlar. Ancak bu gruptaki bakteriyosinler henüz yeterince karakterize edilememişlerdir.GRUP IV BakteriyosinlerBu gruptaki bakteriyosinler ise büyük ve kompleks moleküller olup, aktiviteleri için karbonhidrat veya lipid bileşenlerine gereksinim duymaktadırlar. Bu bakteriyosinler hakkındaki bilgiler yetersiz olup, biyokimyasal olarak henüz yeterince karakterize edilememişlerdir. Dolayısıyla bu konuda daha fazla bilgiye ihtiyaç duyulmaktadır.Bakteriyosinlerin Sentezlenmeleri ve Etki MekanizmalarıBakterilerin, bakteriyosinleri veya benzeri maddeleri neden sentezledikleri ve nasıl kullanmaya başladıkları hakkında çalışmalar yapılmasına rağmen, henüz bu durum tam olarak açıklığa kavuşturulamamıştır. Ancak bakteriyosinlerin üretim mekanizmaları, amino asit dizilişleri, etki mekanizmaları, üretici genlerin RNA dizilişleri belirlenmiş ve genel olarak bir çok ortak özelliklere sahip oldukları saptanmıştır. Bakteriyosinlerin daha çok plazmid kökenli oldukları ifade edilmesine rağmen, bir kısım bakteriyosinlerin kromozomal kökenli olduğu da ifade edilmektedir. Genel olarak bakteriyosinlerin üretimlerindeki temel prosesler aynıdır. Polipeptid dizisi RNA tarafından kodlandıktan sonra öncü protein olarak ayrılıp bir moleküler sinyalizasyona uğrayıp, çeşitli modifikasyonların ardından sistein sayısına göre son şeklini kazanmakta, daha sonra sec-dependent mekanizması yardımıyla hücre dışına salgılanmaktadır Bakteriyosinler duyarlı mikroorganizmalar üzerinde farklı etki mekanizmalarına sahiptirler. Hücrenin stoplazmik zarına bağlanarak, hücre içerisine girip, zarda gözenekler oluştururlar. Böylece düşük molekül ağırlığına sahip hücre bileşenlerinin hücre dışına sızmasına yol açarlar. Bununla birlikte, iyonların, özellikle de ATP kaybı ve hücre içi pH dengesinin korunmasında etkili olan K+ iyonunun hücre dışına sızması, hücrede enerji tüketimine neden olmaktadır . Hücrede meydana gelen bu değişimler, DNA ve RNA gibi hücre için hayati önemi olan makro moleküllerin degredasyonuna, bu moleküllerle birlikte protein ve peptidoglycan gibi biyolojik proseslerin inhibisyonuna yol açmaktadırBakteriyosinler ve Gıdada KullanımıBilindiği gibi gıda güvenliği açısından, patojen mikroorganizmaların gıdalarda gelişiminin önlenmesi gerekmektedir. Gıdalarda gelişen patojen mikroorganizmalar üzerinde antagonistik mikroorganizmaların ve bakteriyosin gibi metabolik ürünlerinin etkili olması nedeniyle, gıda güvenliğinde bakteriyosin kullanımının önemi oldukça artmıştır. Bakteriyosinlerin gıdalarda antimikrobiyal aktivitelerinin yanı sıra, doğal olmaları, renksiz, tatsız ve kokusuz olmaları da ürün özellikleri açısından oldukça önemlidir.Peptid veya protein yapılarında olmaları ise pankreas kaynaklı proteolitik enzimlerden, mide salgılarından etkilenebildiklerini ve insan vücudunda sindirilebileceklerini göstermektedir. Ayrıca bazı bakteriyosinlerin (Grup II) ısı stabilitelerinin olması, yüksek sıcaklıkta işlem gören birçok gıda maddesinde kullanılabilirliğini sağlamaktadır . Hatta bazı bakteriyosinler otoklavlama sıcaklığında bile stabil kalabilmektedir. Dolayısıyla bakteriyosinlerin et ve süt ürünleri başta olmak üzere birçok gıdada kullanımı mümkün olmaktadır.Gıdalarda bakteriyosinlerden farklı şekillerde yararlanılmaktadır. Doğrudan gıda maddesine katılabildikleri gibi, bakteriyosin sentezleyen koruyucu kültürlerin gıdaya inokulasyonuyla veya gıdanın koruyucu ambalaj materyali ile birlikte de kullanılabilirler. Bu amaçlarla koruyucu kültür olarak daha çok laktik asit bakterileri, bakteriyosin olarak ise, yasal kullanımına izin verilen nisin kullanılmaktadır. Nisinin etki spektrumu diğer birçok bakteriyosine kıyasla daha geniş olup, asidik gıdalarda ve Gram (+) mikroorganizmalar üzerinde oldukça aktiftirler Nisinin pH 2’deki çözünürlüğü, pH 8’e kıyasla 228 kez daha fazladır. Dolayısıyla pH yükseldikçe çözünürlük azalmaktadır. Nisinin koruyucu katkı maddesi olarak kullanımına ilk kez krem peynirlerinde izin verildikten sonra, günümüzde 47 ülke tarafından güvenli gıda koruyucusu olarak kabul edilerek kullanılmaktadır. Birleşik Devletler Gıda ve İlaç Dairesi (US FDA) yetişkinler için günlük kabul edilebilir nisin miktarını 2.9 mg olarak belirlemiştirNisin et ve et ürünlerinde birçok mikroorganizma üzerinde etkilidir. Bununla birlikte, en önemli özelliklerinden birisi, hastalık ve ölümlere yol açabilen Listeria monocytogenes ‘i inhibe edebilmesidir. Yine nisin, et ve et ürünlerinde oldukça tehlikeli bir patojen olan C. botulinum üzerinde etkilidir. Nisin, antimikrobiyal olarak nitrit için belli düzeylerde alternatif oluşturabilmektedir. Ayrıca nisinin Brochothrix thermosphacta, Carnobacterium divergens ve L. innocua üzerindeki etkisini araştırmak amacıyla, karkas yüzeyine spreylenmesi, bu mikroorganizmaların sayısını önemli düzeyde azaltmaktadır. Brochothrix thermosphacta üzerinde etkili nisin seviyesinin 400 IU/ml olduğu da bildirilmektedirSüt ürünleri üzerinde yapılan çalışmalarda, nisinin özellikle eritme peynirlerinde toksin üretebilen C. botulinum ‘u inhibe ettiği ve spor oluşumunu engellediği ifade edilmektedir. Bu ürünlerde inhibisyon etkisini gösterebilmesi için farklı seviyelerde kullanılabileceği ifade edilmekle birlikte, kullanım seviyelerinin pH, tuz ve fosfat içeriği ile proses şartlarına bağlı olarak değişebileceği de ifade edilmektedir. Nisinin yanı sıra farklı bakteriyosinlerin gıdalarda kullanımı ve sonuçlarıyla ilgili bazı bilgiler Tablo 2’de verilmiştir.Bakteriyosin Uygulanan gıda EtkileriNisin A Yeniden şekillendirilen et ürünleri (formed meat products) Bakteriyel inaktivasyonNisin A Ricotta peynirinde L. monocytogenes’in kontrolü için kullanılmıştır L. monocytogenes’i 8 hafta etkili bir şekilde inhibe etmiştirPediocin AcH Pediocin AcH sentezleyen L. plantarum WHE 92, olgunlaşmanın başlangıcında Munstar peynirinin yüzeyine spreylenmiştir L. monocytogenes’in gelişimini engellemiştirEnterocin 4 Enterocin sentezleyen E. faecalis INIA4, Manchego peyniri üretiminde kullanılmıştır L. monocytogenes Ohio ‘yu inhibe ederken, Listeria monocytogenes Scott A’yı inhibe etmemiştirLinocin M-18 B. lines kırmızı peynir üretiminde starter olarak kullanılmıştır L. ivanovi ve L. monocytogenes’te 2 log düşüşe neden olmuşturPiscicolin 126 Jambonda L. monocytogenes kontrolü için kullanılmıştır Ticari bakteriyosinlerden daha etkili bulunmuşturLeucocin A L. gelidium UAL187 vakum paketlenmiş sığır etinde bozulma kontrolü için kullanılmıştır L. sake ‘nin de etkisiyle bozulma 8 haftaya kadar geciktirilmiştir.Lactocin 705 Kıyılmış sığır etinde L. monocytogenes’ in gelişimini önlemek için kullanılmıştır L. monocytogenes’ in kıyılmış etlerde gelişimini önlemiştir.Pediocin AcH Tavuk eti sosisinde L. monocytogenes’i nhibe etmek için pediosin üreten P. acidilactici (Ped+) kullanılmıştır Etkili bir şekilde L. monocytogenes sayısını azaltmıştır.Pediocin Şarap ve fırıncılık ürünlerinde kullanım potansiyeli araştırılmıştır Bu tür ürünlerde kullanım potansiyeli olduğu belirlenmiştirPediocin AcH Tavuk etine pediosin preparatı ilave edilmiştir 5 oC’de 28 gün L. monocytogenes gelişimini kontrol etmiştirPediocin PA-1 Fermente sosiste starter olarak P. acidilactici (Ped+) kullanılmıştır L. monocytogenes’i etkili bir şekilde kontrol etmiştir.Enterocin Jambon, domuz eti, tavuk göğüs eti, pate ve sosis’te kullanılmıştır Çeşitli şartlar altında L. monocytogenes gelişimini kontrol etmiştir.Bakteriyosinlerin Diğer Koruyucu Maddeler ve Prosesler ile Birlikte KullanımıBakteriyosinlerin etki spektrumlarının sınırlı olması nedeniyle gıdalardaki etkileri de sınırlı kalabilmektedir. Özellikle Gram (+) mikroorganizmalar üzerinde etkili olmaları nedeniyle, genellikle Gram (-) mikroorganizmalara karşı fazla etkili olamamaktadırlar. Dolayısıyla Gram (-) olan patojen mikroorganizmaların da olduğu düşünüldüğünde, sadece nisin kullanımıyla gıda güvenliğinin sağlanamayacağı açıktır. Bu nedenle, nisinle birlikte diğer gıda koruyucu katkıların veya proseslerin kullanılması gerekmektedir Gram (-) bakterilerin dış zarlarının bütünlüğü bozulduğunda bakteriyosinlere karşı oldukça hassasiyet göstermektedirler. Bu nedenle nisinle beraber hücre zarını bozabilecek trisodyum fosfat veya EDTA gibi çelatların kullanılmasının inhibisyon etkisi yapabileceği bildirilmektedirÖrneğin EDTA, Gram (-) mikroorganizmanın lipopolisakkarit kısmında Mg+2 ’u bağlayarak dış zarın yapısını bozup, nisinin sitoplazmik zara ulaşmasını sağlamaktadırErkan GÜNEŞGıda MühendisiTarım İl Müdürlüğü

http://www.biyologlar.com/bakteriyosinler

Karbonhidratlarda solunumun kalitatif tayini

Bir cam kap içine solunumu şiddetli olan (çimlenmekte) olan Pisum sp. (bezelye) tohumları konur. Solunum sırasında açığa çıkan CO2 gazının emilmesi için tohumların bulunduğu bölümle KOH kristalleri taşıyan plastik gaz geçiren bir kap yerleştirilir. Bu cam kabın çıkışına bağlı U boru renkli sıvıya batırılır. Solunumu şiddetli olan bezelye tohumları balon içindeki havadan O2 alır, dışarı CO2 verirler. Ancak dışarı verilen CO2 KOH kristalleri tarafından bağlandığından solunumda harcanan O2'nin yerine CO2 geçemez. Sonuçta aynı hacimde bir yoğunluk azalması ile basınç düşmesi kendini göstereceğinden kılcal boruda renkli sıvının yükseldiği görülecektir. Anaerobik Solunum: Bir erlenmayer içine sakkaroz çözeltisi ve biraz bira mayası konur. Bira mayası etkisi altında sakkaroz önce hidroliz olur. Hidroliz sonucu oluşan glukoz ve fruktoz da fermentasyona uğrayarak CO2 açığa çıkar. Bira mayası + şeker eriyiği bir boru ile içinde KOH çözeltisi bulunan bir tüpe bağlanırsa CO2 ile KOH reaksiyona girerek K2CO3' ı oluşturur. Bu da bulanma ile kendini gösterir veya boru fenol kırmızısına gönderilirse renk ................ olur. Erlenmayerdeki şekerli ve bira mayalı eriyiğe iyot katılırsa iyodoform kokusundan etil alkol varlığı anlaşılır.

http://www.biyologlar.com/karbonhidratlarda-solunumun-kalitatif-tayini

Toprak Yapısı ve Su Verimliliği

Toprağın bitkilere su sağlayabilme potansiyelini belirlemek üzere kullanılan Tarla Kapasitesi, Daimi Solma Noktası veya Yüzdesi, Su Basıncı (P), Su Tansiyonu, Nem eşdeğeri, Su Potansiyeli veya Yayınım Basıncı Eksikliği, Toplam Toprak Suyu Stresi, Kılcallık Kapasitesi gibi birçok terimler vardır. Burada konu bunlar arasında en yaygın olarak kullanılan bazı terimlerle ele alınacaktır. Toplam toprak su stresi, (Total soil moisture stress) konuya enerjetik açıdan yaklaştığı için bu konudaki en bilimsel terimdir. Konuya toprakta bulunan suyun serbest enerjisini azaltan iki temel kuvvet grubunun etkinliği çerçevesinde yaklaşır ve toprak suyunun serbest enerjisini azaltan bu iki grubu : · Toprak suyu tansiyonunun ögeleri olan hidrostatik kuvvetler, yerçekimi ve adsorpsiyon kuvvetleri, · Toprak çözeltisinin osmotik kuvvetleri olarak tanımlar. Hidrostatikler bilindiği gibi su basıncı, yüzey gerilimi gibi kuvvetler, adsorpsiyon kuvvetleri de su ile toprak kolloidlerini oluşturan kil gibi mineraller ve organik maddelerle su arasında etkili olan, suyun yerçekimi etkisini yenebilmesini sağlayan kuvvetlerdir. Osmotik kuvvetler de topraktaki su çözeltisinin içerdiği iyonlarla ilişkilerinin sonucu olan kuvvetlerdir. Toprak çözeltisinde çözünmüş iyon derişimi suyun azalması ve çözünür iyon miktarı artışı ile artar. Yani toprak kurudukça su alımı zorlaşır, kuraklığın zorlayıcı etkisi otokatalitik bir artış gösterir. Toprak, kaynağı olan anakaya üzerinde bulunan ve dünya ortalamasına göre 50 - 60cm. kalınlığındaki tabakalı yapıdır. Değişik oranlardaki kaya ve çakıllar ile kumdan oluşan, su tutma kapasitesi düşük veya çok düşük olan, kil ve silt gibi ince taneli, su tutuculuğu olan mineral maddeler ile canlı artıkları ve bozunma ürünleri olan humusu içeren ve su tutan organik maddeler, sulu toprak çözeltisi ile hava ile memeliler ve sürüngenler ile solucanlardan funguslar, mikroalgler ve bakterilere kadar geniş bir açılım gösteren canlılardan oluşur. Bu karmaşık yapısı nedeniyle de çok dinamik bir yapıdır. Kaba kum adı verilen 0.2 - 2mm. çapındaki tanelerden daha büyük çaplı olan çakıl ve taş parçaları toprağın iskeletini oluşturur. Kaba kum ve 0.2 - 0.02 mm çaplı ince kum, 0.002 - 0.02 mm. çaplı silt ve bundan daha küçük taneli kil ise su tutma kapasitesine çapın küçüklüğü oranında katkıda bulunan kısımdır. Toprağın iskeletini de içeren yapısına toprağın strüktürü, iskelet dışında kalan kısmının özelliklerine toprağın tekstürü - dokusu denir. Bu katkıda bulunan kısımların oranı da toprak tekstürü adı verilen ve toprak sınıflandırılmasında kullanılan temel özellikleri oluşturur: Çakıllık, kumul, münbit - verimli, siltli, killi toprak ana tipleri kumlu, siltli ve killi münbit - organik maddece zengin - toprak gibi alt gruplara ayrılır. Ayrıca kahverengi orman toprağı, podzoller, çernozemler gibi yaygın ve belirgin genel özellikleri olan toprakları tanımlayan sınıflandırmalar da vardır. Bitkilerin beslenmesine uygun, yani verimli - münbit topraklar Uluslararası Toprak Bilimi Örgütü Sistemi tarafından Kumlu (%66.6 kum, %27.1 verimli fraksiyon ve %0.9 silt ve kil), İnce Kumlu ( %17.8 kum, %30.3 ver. ve %7.1k+s), Siltli (%5.6 k., % 20.2 v., %21.4 k+s ) ve Killi ( %8.5 k, %19.3 v, %65.8 kil) şeklinde sınıflandırmıştır. Toprak verimliliğinin yanısıra küçük taneli ve organik maddece zengin olması erozyona dayanıklılığının artışına neden olur. Doğal, bozulmamış toprakta toprak yapısı ve dokusu bu sınıflandırmada farklı konumlara sahip olan tabakaları, toprak tabakalarını içerir. Toprağın tabakalanması ve tabaka özellikleri toprak profili ile tanımlanır. Toprak profilinde yer alan tabakalar - horizonlar yüzeyden derine doğru, A1,... gibi alt tabakalara ayrılan A, ....D tabakaları halinde dizilirler. Bu tabakaların herbirinin özelliği bitki örtüsünün kök sistemi özelliklerine göre kompozisyonunu yağış rejimi ve iklimsel özellikler ile birlikte denetler. Kumlu toprak en az karmaşık olan kapiler sistemi geniş porlu olduğunda su geçirgenliği - permeabilitesi, yani drenajı yüksek olduğu için köklerin solunumu için yeterli havalandırma sağlayan düzenli ve sık yağışlı iklimler için en uygun toprak tiplerindendir. Kimyasal ve fiziksel olarak bozunma eğilimi düşük, kararlı yapısına karşın gevşektir. Öte yandan tanecikler arasında çimento görevi görevi yapabilecek organik madde ve kil ile silt az olduğundan gevşek ve erozyona açık olan toprak tipidir. Killi topraklar ise kolloidal ve kolloidimsi özellikteki kil ve siltin oluşturduğu, su çekerek şişen ve topaklaşabilen çimento fazı ile tam ters özelliklere sahiptir. Al-silikatlardan oluşan bazik karakterli levha biçimi olan kolloidal taneciklerin çok yüksek yüzey / hacim oranı ve kohezyon, adezyon kuvvetleri, zayıf hidrojen bağı yapma yetenekleri ile kumlu topraklardan 1000, siltli topraklardan 10 kat daha fazla su tutar ve su girişi arttıkça çok daha az hava bulundururlar. Erozyona ve kurak etkisinde kurumaya karşı dirençli fakat köklere hava sağlama açısından zayıf topraklardır. Verimli olanlar ise yaklaşık olarak eşit oranlarda kum, kil ve silt içeren, su tutma ve hava kapasitesi, drenajı, su geçirgenliği yeterli olan topraklardır. Bu verimlilik uygun iklimle birleşince sık bitki örtüsünü destekler ve organik maddece zenginleşir, madde çevrimi yüksek dengeli bir ekosistem oluşur. Verimli toprağın porozitesi, serbest su ve hava tarafından kaplanan hacmi ortalama olarak %50 oranındadır, killi topraktan bir kattan fazla, kumlu toprağın yarısından az oranda olan bu hacim hava kapasitesini belirler. Fakat su tutma kapasitesi ilişkisine katılan değişkenler daha çok ve sonuç tahmini zordur. Çünkü toplam porlar içinde kapilariteye sahip olanlar ile olmayanların oranı ve suyun tutulmasını sağlayan kuvvetlerin büyüklükleri, oranları etkili olur. İnce bitki kökleri ve solucanlar gibi hayvanlar killerin agregatlar, topaklar oluşturması ile kapiler poroziteyi, su tutma sığasını arttırarak toprağın verimliliğine katkıda bulunur ve sürdürülebilir bir denge oluşmasını sağlar. Bu açıdan saçak köklü otlar çok etkilidir. Toprağın kimyasal bileşimi de bitkilerin mineral beslenmesi yanında su tutma kapasitesini etkiler. Topakların sertliği, dağılma eğilimi, nem tutma sığası, kohezyon kuvveti iyon değişimi ile geçici olarak bağlanmış olan Na + + K+/ Ca++ + H+ iyonlarının oranına bağlıdır, oranın artışı ile sertleşme ve sığa büyür. Kurak bölgelerdeki yağışlar değişebilir iyonları yıkayarak uzaklaştıracak yoğunlukta olmadığı ve yüzeyde buharlaşma ile su kaybı hızlı olduğundan topaklar sertleşir, yüzey kabuklaşır. Şiddetli yağışlar da, sonraki sıcak dönemde hızlı buharlaşma derinlere inmiş suyun yayınım ve kılcallıkla yüzeye çıkışı ile iyon çökeltmesine neden olarak olayı hızlandırır. Özellikle suda çözünürlüğü yüksek olan Na+ birikmesi toprağın tuzlanması sonucu çoraklaşmasına neden olur. Bu durum damlama yöntemi gibi bitkilerin kullanabilecekleri kadar suyun kullandıkları oranda verilmesini sağlayacak şekilde yapılmadığı durumlarda da görülür. Toprağın global kimyasal bileşiminde çok önemli yer tutan ve toprak canlılarının tümünün yaşamını doğrudan etkileyen suyun toprakta bulunuş şekli de tüm bu olaylarda önemli rol oynar ve toprağın hem yapısal hem kimyasal özellikleri ile yakından ilişkilidir. Toprak suyunun sınıflandırılması temelde topraktaki fiziksel haline göre yapılır. Gravitasyonel, yerçekimi etkisinde süzülen, serbest akan su oranı porozitesi ve por çapı ortalaması yüksek ve organik maddesi az topraklarda fazladır. Bu su fazından bitkiler ancak süzülüp akarken kısa bir süre yararlanabilir. Toprağın profili burada önem kazanır, örneğin alt tabakalarda killi bir tabaka olması bu suyun birikmesine neden olur ve bu tabakaya kadar uzanan köklerin havasız kalıp, çürümesine neden olur. Kapiler su, gravitasyonel su süzüldükten sonra toprak taneciklerinin çevresinde ve birleşme noktalarında adezyon ve kohezyon kuvetleri ile tutularak film halinde kalan sudur. Bu kuvvetler bağıl olarak zayıf olduğunda bitkiler bu kalıcı su fazından kolaylıkla yararlanır. Ancak kolloidal materyalde kuvvetle adsorbe edilen su ile sıcak ve kurak iklim koşullarında şiddetli buharlaşma ile kaybedilen kapiler sudan bitkiler aynı kolaylıkla yararlanamaz. Rutin uygulamada kapiler su fazının tümünü değerlendiren Tarla Kapasitesi, diğer bir tanımı ile Nem Eşdeğeri toprakların bitkilere yarayışlı su tutma kapasitesi olarak kabul edilir. Suyla doymuş haldeki toprak ile yerçekimi etkisiyle süzülen su arasındaki fark poroziteyi, kalan su da yararlı kapiler su ile kullanılamayan higroskopik su fazlarının toplamı olarak alınır. Daimi Solma Yüzdesi ile karakterize edilen Higroskopik Su fazı ile tarla kapasitesi arasında kalan su miktarı bitkiler için yarayışlı fazını oluşturur. Daimi solma noktası, bitkilerin susuzluktan kalıcı şekilde etkilendikleri, yani yeniden su düzeyi yükseldiğinde bile toparlanamadıkları durumda toprakta bulunan higroskopik olarak bağlı su fazını tanımladığı düşünülür. Daimi solma olayı canlılık ile ilgili bir terim olmasına karşın bu değer toprak özelliklerinin bir karakteristiği olarak alınır. Gerçekte bitkiler üst yüzeyi parafinlenerek topraktan buharlaşmanın önlendiği belli hacimdeki topraktaki suyu tüketerek bir gecelik süre ile susuz kaldığında yaprakların dökülmesi esas alınmıştır. Bu durumdaki toprak 105 derecede kurutularak % nem oranı belirlenir. Aslında bu durum bitkilerin su alımının çok yavaşlayıp terlemeyi karşılayamadığı durumdur ve toprağın özelliğinden çok bitkinin osmotik karakteristiklerine ve su depolama, terleme özellilklerine bağlıdır. Mezofitik, yani ılıman ve kurak olmayan iklime adapte bitkilerde 20 atm. civarında olan yaprak osmotik basıncı kurak iklime ve tuzlu, osmotik basıncı yüksek topraklara adapte olmuş halofitik türlerde 200 atm.e kadar çıkabilmektedir. Toprağın laboratuar koşullarında serilerek kurutulmasından sonra toprakta kalan ve ancak suyun kaynama noktasına kadar ısıtılarak kurutulmasından sonraki ağırlığı ile hava kurusu denen ilk nemli örnek ağırlığı arasındaki fark higroskopik su fazının miktarını verir. Ancak kaynama noktasındaki termik hareketlilik ile topraktan ayırılabilecek kadar kuvvetli tutulmuş olan bu fazdan bitkiler kesinlikle yararlanamaz, yani gerçek desikkasyon - susuzluktan kuruma noktasıdır.. Killi verimli ve kumlu verimli topraklar bu açıdan karşılaştırıldığında suya doymuşluk düzeyinin killide toprak kuru ağırlığının %70i, kumluda ise %35i oranında olduğu, tarla kapasitesinin %45e karşılık %20, ve daimi solma noktasının da %17’ye karşı 9, son olarak da higroskopik bağlı su fazının %10a karşılık %7 gibi değerler verdiği görülür. Bitkilerin yağışla toprağa düşen sudan yararlanabilmeleri ile ilgili önemli bir toprak özelliği suyun infiltrasyonudur. İnfiltrasyonu düşük, killi ve organik maddece fakir toprakta yağışın hızı arttıkça yüzeyden toprağın içine yayınım yapamadığı için köklere ulaşamayan su oranı artar. Eğimli arazide akar gider, düz arazide taşkına yol açabilir veya buharlaşma ile kaybedilmiş olur. Kumlu toprakta ise bu oran en düşük düzeydedir. Alt tabakaları killi topraklarda sürme işlemi bu yönden zararlı etki yaparak erozyon riskini arttırır.

http://www.biyologlar.com/toprak-yapisi-ve-su-verimliligi-1

Apoptozis ve kaspazlar

Apoptozis, organizma tarafından düzenlenen enerji bağımlı hücre ölümüdür. Programlı hücre ölümü olarak da adlandırılan bu süreç, doku homeostazının korunmasında kritik bir role sahip olduğu gibi, fetal gelişim ve erişkin dokulardaki pekçok fizyolojik olayda da önemli rollere sahiptir. Apoptozis terimi ilk kez 1972 yılında Kerr ve arkadaşları tarafından kullanılmıştır (1). Kerr, fizyolojik olarak ölen hücrelerin çekirdeklerinde yoğunlaşmış kromatin parçalarını gözlemlemiş ve organellerin iyi korunduğunu fark ederek bu olayı büzüşme nekrozu olarak adlandırmıştır. Apoptosis terimi köken olarak "ayrı düşmek" anlamına gelmektedir (1). ve hücre kaybını belirtmek amacı ile kullanılmıştır. Apoptotik ölüm sinyali alan hücrenin kromatini yoğunlaşmaya başlar. Benzer şekilde sitoplazma da yoğunlaşmaya ve hücrenin boyutları küçülmeye başlamıştır. Bir süre sonra hücre apoptotik cisimcik denilen daha küçük parçalara bölünür. Bu parçacıkların en büyük özelliği, fragmente olmuş nükleusların ve parçalanan hücreye ait tüm yapıların plazma membranı ile kaplanarak immün sistemi enflamasyon yönünde uyarmamasıdır. Apoptotik cisimcikler, yüzeylerinde yeni sinyal yapıları ortaya çıkarır ve bu sinyalin uyarısı ile yandaki hücre tarafından fagosite edilerek ortadan kaldırılır (2,3). Apoptozis normal gelişimsel süreç içerisinde pek çok fizyolojik olayda görev alır. Embriyogenesis (4,6), normal menstruel siklusda endometrial hücrelerinin yıkımı (5), barsak kripta epitelleri gibi sürekli çoğalan hücre gruplarında hücre sayısının dengelenmesi (6), timusun gelişimi sırasında otoreaktif T hücrelerinin ortadan kaldırılması (6), bunlardan sadece birkaçıdır. Apoptotik hücre ölümü regülasyonundaki defektler hücre birikiminin olduğu kanser, restenoz gibi hastalıklara yol açabildiği gibi, hücre yıkımının arttığı otoimmün rahatsızlıklar, nörodejeneratif hastalıklar, Alzheimer gibi rahatsızlıklara da yol açabilmektedir (7,8 ). Son yıllarda yürütülen araştırmalar neticesinde, apoptosisten sorumlu moleküler mekanizmalar açıklığa kavuşmuştur. Bu çalışmalar sonucunda, kaspaz adı verilen, intrasellüler proteazların; apoptosisin gerek direkt, gerekse indirekt morfolojik ve biokimyasal değişikliklerinden sorumlu olduğu ortaya konulmuştur. Kaspazların apoptozla ilk ilişkisi bir nematod olan Caenorhabditis Elegans'ın genetik analizi sırasında ortaya çıkmıştır (9). Kaspazlar apoptotik hücre ölümü esnasında önemli rol oynayan multigen ailesinden oluşan sistein-proteaz grubu enzimlerdir. Kelime olarak "Cysteine Aspartate Specific ProteASEs- CASPASE" olarak türetilmiştir. Öncelikle inaktif proteinler olarak sentezlenen bu enzimler çeşitli yollarla aktive edilmelerinin ardından hücresel hedeflerdeki tetrapeptit motifleri tanır ve substratı, bir aspartat rezidüsünün karboksil tarafından ayırır. Hücre ölümü sırasında meydana gelen pek çok sellüler ve morfolojik değişimler, bu enzimlerin rol oynadığı birtakım süreçler neticesinde gelişir (10). Kaspaz-1, kaspaz ailesinin prototipidir ve önceleri prointerlökin-1-beta'nın biyolojik aktif formuna dönüşümünden sorumlu, ICE (interlökin-1-beta dönüştürücü enzim) olarak da adlandırılan, bir sistein proteaz olarak tanımlanmıştır (11,12). Daha sonraları ise ICE'nin diğer sistein-proteazlardan farklı olarak amid bağının N-terminalindeki p1 pozisyonu olarak bilinen ucunda aspartik asitin mutlak gerekliliğini gerektiren farklı bir sistein-proteaz olduğu keşfedilmiştir. ICE'nin inflamasyondaki rolü geniş bir şekilde aydınlatılırken bir taraftan da hücre ölümünden sorumlu genetik yoldaki rolü ortaya konmuştur (13). Bir nematod olan Caenorhabditis elegans'ın üzerinde yapılan bu çalışmada, hücre ölümü sırasında görev alan genetik yolda ced-3 isimli bir genin kodladığı proteinin hermafroditin gelişimi esnasındaki tüm programlı hücre ölümlerinden sorumlu olduğu görülmüştür. Daha sonraları ise ced-3'ün memelilerdeki ICE'nin bir homoloğu olduğu gözlenmiştir (14,15). Tüm bu bilgilerin ışığında apoptotik hücre ölümleri esnasında meydana gelen özellikli proteolizler ve bu yıkımlar sonucu oluşan biyokimyasal olaylar aydınlatılmaya çalışılmıştır. Memelilerde en az 14 kaspaz tanımlanmıştır (16). Filogenetik analiz sonucunda gen ailesinin ICE (kaspaz-1) ile ilişkili ve ced-3 benzeri olmak üzere iki subgrubu olduğu görülür. Proenzimlerin kısa (kaspaz 3,6,7) veya uzun prodomain barındırmalarına göre de kaspazları daha alt gruplara ayırmak mümkündür. Alternatif olarak bu proteazlar, substrat spesifitelerine göre de gruplandırılabilir (17,18). Günümüzdeki modern yaklaşım ise proteazları üç gruba ayırmaktadırlar (10). (şekil-1). Şekil 1: Proteolitik aktivitelerine göre kaspazlar Grup 1 : Sitokin matürasyonuna aracılık edenler (caspase-1, 4, 5, 13) - ICE ailesi, Grup 2 : Apoptotik hücre ölümü sürecinde efektör görevi üstlenenler (kaspaz-2, 3, 7) - ced 3 ailesi, Grup 3 : Apoptotik hücre ölümünde aktivatörler (kaspaz-6, 8, 9, 10) - ced 3 ailesi (14). Kaspazlar tetrapeptit motiflerini aminoasit spesifitelerine göre tanır ve p4 pozisyonundaki aminoasitlere göre üç spesifik gruba ayrılır. Grup 1 kaspazlar (kaspaz-1, 4, 5, 13) P4 pozisyonunda hidrofobik aminoasitleri tanırlar ve sitokinlerin maturasyonuna aracılık ederler. Grup 2 kaspazların yeğledikleri ayırma noktası hücre ölümü sırasındaki pek çok proteinlerde gözlenir ve bununla ilintili olarak da grup 2 kaspazlar (kaspaz-2, 3, 7) apoptosisin major efektörleri olarak bilinirler. Grup 3 kaspazlar (kaspaz-6, 8, 9, 10) ise P4 pozisyonunda alifatik aminoasitleri tanır ve grup 2 kaspazların aktivasyonunda görev alır (şekil 2). Kaspazlara ek olarak bir serin proteaz olan granzim-B gibi başka proteazlar da kaspaz aktivasyonunda görev alarak ve bazen de kaspazların yerine fonksiyon görerek apoptotik hücre ölümüne katkıda bulunur   Bu sıralanmanın istisnaları da mevcuttur. Örneğin kaspaz-2 kendiliğinden aktive olabilir. Kaspaz-6 efektör proteaz olarak görev alabilir (10).Kaspazlar inaktif üç parçalı proenzimler olarak sentez edilirler. Aktivasyonları sırasında aspartat (P1) - X (P2) bağının ayrılması ile proenzimden, küçük ve büyük subüniteleri içeren aktif enzim oluşur. Ayrılma noktasında aspartatın bulunması kaspazın oto-aktif ya da aktive edilebilir olmasıyla uyumludur. Ayrılma işleminden sonra 2 büyük ve 2 küçük alt üniteden oluşan tetramer yapısına sahip kaspaz yapısı izlenir   Şekil 3: Kaspaz X-ışını kristal yapılanması. Kaspazların tetramer yapısı 2 adet büyük (dışta) ve 2 adet küçük alt üniteden (içte) oluşmuştur. Bu şekilde kaspaz-3 ve onun inhibitörü Ac-DEVD-CHO (sarı) görülmektedir (24). Kaspaz aracılı apoptozisin aktivasyonunda üç ayrı yolun varlığı bilinmektedir; 1. Mitokondri/Sitokrom-C aracılı apoptozis 2. Hücre yüzey reseptörleri aracılığı ile tetiklenen apoptozis 3. Endoplazmik retikulum aracılı apoptozis 1. Mitokondri/Sitokrom-C aracılı Apoptozis: Hücresel stres durumunda mitokondriden, sitokrom c ve apoptotik proteaz aktive edici faktör (Apaf-1) salınarak dATP kofaktörlüğünde prokaspaz-9 molekülüne bağlanır (şekil 4). Bu yolla aktive olan kaspaz-9, prokaspaz-3'ü aktive eden kaskadı başlatır ve devamında sitoplazmada yapısal poteinlerin sindirimi, kromozomal DNA'nın degradasyonu ve hücrenin fagositozu sağlanır (19,20,21). Şekil 4: Sitokrom c ve Apaf-1 aracılı apoptozis Apaf-1 molekülündeki konformasyonel değişiklikler apoptozom oluşumuna ve apoptozisin aktivasyonuna neden olur. Apoptozomun oluşum ve fonksiyon görmesi ise mitokondrial ve sitozolik faktörler tarafından düzenlenir (22). 2. Hücre yüzey reseptörleri aracılığı ile tetiklenen apoptozis: Fas-ligand (Fas-L) ve Tumor necrosis factor (TNF) gibi moleküllerin, hücre yüzeyindeki Fas ve TNF reseptörlerine bağlanmasıyla sitoplazmaya Kaspaz-8'i aktive eden sinyaller yayılır. Kimyasal, fiziksel ya da viral enfeksiyonlarla hasar görmüş hücrelerde, interlökin-1 (IL-1) gibi pro-enflamatuar sitokinlerin etkisi ile hücre yüzey Fas ekspresyonu başlar. Bu süreç Fas antijeninin up-regülasyonu olarak adlandırılır. Bu süreç sırasında sitotoksik T hücreleri de Fas-L yapımı için uyarılırlar ve Fas- FasL bağlanması ile prokaspaz 8 ve 2'nin aktivasyonu sağlanır (23). Böylece hücrenin apoptozise gitmesi indüklenmiş olur (24). Fas-Fas-L etkileşimi FADD (Fas bağımlı ölüm domain proteini) aracılığıyla olur (25) (şekil 5). Bir yandan da, ilk kez granülositlerde keşfedildiği için Granülosit-enzim kelimelerini birleştirerek ifade edilen Granzim B (GrB ), sitotoksik T hücrelerinden salgılanarak GrB reseptörlerine bağlanır. GrB bir serin proteaz enzimidir. Sitoplazma içine alınan GrB, kaspas kaskadı üzerinden apoptozisi başlatır (26,27,28,29). 3. Endoplazmik retikulum aracılı apoptozis: Endoplazmik retikulum (ER), hücre içi kalsiyum dengesi, sentezi ve membran proteinlerinin katlanmasını içeren birçok süreçte kritik öneme sahiptir. Hücre içi kalsiyum seviyeleri yükseldiğinde ER membranında lokalize olan prokaspaz-12 aktifleşir ve sitoplazmaya yönelir. Kaspaz-9 ile karşılıklı olarak etkileşerek kaspaz kaskadını aktive eder (30,31). Kaspasların etkilediği hedef noktalar; DNA hasarının tamirinden sorumlu Poli ADP Riboz Polimeraz (PARP) (9,32), DNA-bağımlı protein kinaz (DNA-PK) (33,34), nükleus membranının integritesini sağlayan laminler (35) ve UlRNP (9), DNA'nın parçalanmasına yol açan nükleazları inhibe eden DNA fragmentasyon faktörü (DFF 45) adlı protein (36), hücre içi kolesterol homeostazisinden sorumlu bir integral protein olan Sterol Düzenleyici Element Bağlayıcı Protein (SREBP-1) (16-37), bir tümör supresör gen olan retinoblastom geni ve hücre iskelet proteinlerinden Fodrin (23) olarak özetlenebilir. Apoptozisi saptamak icin çok çeşitli yöntemler geliştirilmiştir. 1972 yılında, apoptozis terimi ilk kez kullanıldığında hücrenin morfolojik görünümüne göre karar verilmişti. Günümüzde ise morfolojik değerlendirmenin yanı sıra, apoptozise özgü olduğu bilinen bazı aktivasyonların (örn, aktif kaspaz-3 tayini) moleküler düzeyde belirlenmesiyle de apoptosiz saptanabilmektedir. Bu yöntemler şu şekilde sıralanabilir (38): I. Morfolojik görüntüleme yöntemleri 1. Işık Mikroskobu • Hematoksilen Boyama • Giemsa Boyama 2. Floresan Mikroskobu / Lazerli Konfokal Mikroskop 3. Elektron Mikroskobu 4. Faz Kontrast Mikroskobu II. İmmunohistokimyasal yöntemler 1. Anneksin V Yöntemi 2. Tunnel Yöntemi 3. M30 Yöntemi 4. Kaspaz 3 Yöntemi III. Biyokimyasal yöntemler 1. Agaroz Jel Elektroforezi 2. Western Blot 3. Flow Sitometri III. İmmunolojik yöntemler 1. Elisa 2. Flourimetrik Yöntem IV. Moleküler Biyoloji yöntemleri (DNA Microarrays) Günümüzde pekçok çalışmada bu yöntemlerden bir veya birkaçından birlikte faydalanıldığı ve gerek çeşitli çevresel toksinlerin gerekse birtakım hastalıkların dokulardaki etkisini göstermek amacıyla kullanıldığını görmekteyiz. KAYNAKLAR 1. Kerr J.F., Wyllie A.H, Currie A.R. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 1972; 26 (4): 239-245. 2. Lipponen P, Aaltomaa S, Kosma VM, Syrjänen K. Apoptosis in breast cancer as related to histopathological characteristics and prognosis. Eur J Cancer. 1994; 30A(14): 2068-73. 3. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306. 4. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3-15 5. Hopwood D, Levison DA. Atrophy and apoptosis in the cyclical human endometrium. Pathol. 1976 Jul;119(3):159-66. 6. Cohen JJ. Apoptosis: mechanisms of life and death in the immune system. J Allergy Clin Immunol. 1999 Apr;103(4):548-54. 7. Kiess W, Gallaher B. Hormonal control of programmed cell death/apoptosis. Eur J Endocrinol. 1998 May;138(5):482 - 91. 8. Hetts SW. To die or not to die: an overview of apoptosis and its role in disease. JAMA. 1998 Jan 28;279(4):300-7. 9. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug; 22(8):299-306. 10. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999; 6:1028-1042. 11. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768 - 774. 12. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, et al. Molecular cloning of the interleukin1 beta converting enzyme. Science 1992; 256: 97 - 100. 13. Ellis RE, Yuan JY and Horvitz HR. Mechanisms and functions of cell death. Annu. Rev. Cell. Biol. 1991; 7: 663 - 698 14. Xue D, Shaham S and Horvitz HR. The Caenorhabditis elegans celldeath protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes. Dev. 1996; 10: 1073 - 1083 15. Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75: 641 - 652 16. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA,Wong WWand et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87 (2): 171 17. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-CalvoM, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 1997; 272: 17907 - 17911. 18. Rano TA., Timkey T., Peterson EP., Rotonda J., Nicholson DW., Becker JW., et al. A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem. Biol. 1997; 4: 149 - 155. 19. Hu Y M, Benedict M A, Ding L Y. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-I-mediatcd caspase-9 activation and apoptosis. EMBO J. 18: 3586- 3595, 1999. 20. Krajewski S, Krajewska M, Ellerby L M, Welsh K, Xie Z, Deveraux Q L, Salvesen G S, Bredesen D E, Rosenthal R E, Fiskum G, Reed J C: Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci, USA 96: 5752-5757, 1999. 21. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479 - 489 22. Cozzolino M, Ferraro E, Ferri A, Rigamonti D, Quondamatteo F, Ding H, Xu ZS, Ferrari F, Angelini DF, Rotilio G, Cattaneo E, Carrì MT, Cecconi F. Apoptosome inactivation rescues proneural and neural cells from neurodegeneration. Cell Death Differ. 2004 Nov;11(11):1179-91. 23. Nagata S, Golstein P. The Fas death factor. Science. 1995; 267:1449-56. 24. Grell M, Krammer PH, Scheurich P. Segregation of APO- 1/Fas antigen- and tumor necrosis factor receptor-mediated apoptosis. Eur J Immunol. 1994 Oct; 24(10): 2563-6. 25. Bhojani MS., Chen G., Ross BD., Beer DG., Rehemtulla A. Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle. 2005 Nov;4(11): 1478-81. Epub 2005 Nov 20. 26. Srinivasula SM., Ahmad M., Fernandes-Alnemri T., Litwack G., Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA. 1996; 93:14486-91. 27. Darmon AJ., Nicholson DW. ,Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 1995; 377: 446 - 448. 28. Martin SJ., Amarante-Mendes GP., Shi L., Chuang TH., Casiano CA., O'Brien GA., et al. The cytotoxic cell protease granzyme B initiates apoptosis in a cell- free system by proteolytic processing and activation of the ICE/CED-3family protease, CPP32, via a novel two-step mechanism. EMBO J. 1996; 15: 2407-2416. 29. Andrade F., Roy S., Nicholson D., Thornberry N., Rosen A., Casciola-Rosen L. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 1998; 8: 451-460. 30. Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP., Lozyk M. et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 2000; 150: 731-740. 31. Rao RV., Hermel E., Castro-Obregon S., del Rio G., Ellerby LM. et al. Coupling endoplasmic reticulum stress to the cell death program: mechanism of caspase activation. J Biol Chem 2001; 276: 869-874. 32. Hirata H., Takahashi A., Kobayashi S., Yonehara S., Sawai H., Okazaki T. et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med. 1998;187:587-600. 33. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med. 1996 May 1;183(5):1957-64. 34. Song Q., Lees-Miller SP., Kumar S., Zhang Z., Chan DW., Smith GC. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 1996;15:3238-3246. 35. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996; 86:147-157. 36. Chen WJ, Huang YT, Wu ML, Huang TC, Ho CT, Pan MH. Induction of apoptosis by vitamin D2, ergocalciferol, via reactive oxygen species generation, glutathione depletion, and caspase activation in human leukemia Cells. J Agric Food Chem. 2008 May 14;56(9):2996-3005. Epub 2008 Apr 37. Zou H, Henzel WJ, Liu X, Lutscha A, Wang X. Apaf-1, a human protein hoınologous to C.elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Celi. 1997;90:405-13. 38. Ulukaya E. Apoptozis ders notları. Uludağ Üniversitesi Tıp Fakültesi, Biyokimya Anabilim Dalı 2003;15-26. Yazışma Adresi: Dr. K. Beril YÜKSEL Dr. Zekai Tahir Burak Kadın Sağlığı Eğitim ve Araştırma Hastanesi Hamamönü / ANKARA Tel: 0 312 310 31 00 e-mail: berilyu@hotmail.com Bu metin dergi.ztb.gov.tr adresinden alınmıştır.   Yüksek organizmalarda hücre ölümü iki farklı mekanizma ile gerçekleşir. Klasik hücre ölümü nekroz olarak adlandırılır.Şiddetli bir travma, zararlı bir uyarı ile meydana gelir. Genellikle gruplar halinde hücreleri etkiler.Morfolojik olarak ER, mitokondride dilatasyon, plazma membranının iyon transportunun bozulması,hücrelerin şişmesi ve lizisi tipiktir.Nükleer kromatin flokulasyonu, DNAnın nonspesifik klavajı, hücrelerin parçalanması ile hücre içeriği ve lizozomal enzimler eksrasellüler ortama dökülür.Bu enzimlerde komşu hücre ve dokuları zedeleyerek inflamatuar yanıta yol açar. Hücre ölümünün diğer şekli Apoptosis genellikle tek tek hücreleri etkiler.Birçok fizyolojik ve patolojik koşulda ortaya çıkar ve genellikle inflamatuar yanıt söz konusu değildir. Müllerian kanalın ve interdigital perdelerin regresyonu, B ve T hücrelerin negatif seleksiyonu, self antijenleri tanıyan immunkompetan hücrelerin delesyonu, hormon bağımlı dokuların, hormon yokluğunda involusyonu gibi birçok fizyolojik olayda rol alır. Apoptosis, hücrelerin öldürülmesinde fizyolojik bir süreçtir.Çok hücreli organizmaların gelişimi, işlevselliğinde çok önemlidir. Bu hücre ölümünün kontrolündeki anormallikler : --Kanser --Otoimmun Hastalıklar --Dejeneratif Hastalıklar oluşumuna neden olur Organizmanın bütünlüğü ve homeostazisi, hücre çoğalması ve farklılaşması yanısıra, hücre ölümü ile sağlanabilir. Apoptosis sinyallenmesi ya hücre içinden gelen tetikleyici olaylar yada ölüm reseptörlerinin ligasyonu gibi hücre dışındaki olaylarla olur.Tüm apoptosis sinyalleyici yollar, proteinleri aspartat rezidülerine bölen, sistein proteazlar (Kaspazlar) ile olan ortak hücre yıkımı işleminde birleşir.Doku transglutaminaz aktivitesi ise proteinlerin çapraz bağlanmasına yol açarak intrasellüler yapıların ekstraselüler alana dökülmesine engel olur. Ölü hücrelerin yıkımı ve uzaklaştırılması, komşu hücrelerin fagozitozu ile olur. Apoptosisdeki Morfolojik Değişiklikler: Elektron mikroskobunda apoptosis esnasında; -Kromatin kondansasyonu -Stoplazmik büzülme -Plazma membran kabarması Apoptosis erken safhasında ER, mitokondri, golgide gözlenebilir değişiklikler olmadığı gösterilmiş olmakla beraber son zamanlarda, mitokondri dış membranında şişme, mitokondrial membran aralıgında sitokrom c ve bir oksidoredüktaz ile ilişkili flavoprotein olan Apopitos İndükleyici Faktör salınımı olduğu bildirilmiştir. Apoptosis esnasındaki moleküler degişiklikler arasında ; -DNA ayrılması -İç ve dış plazma membran yaprakları arasında PS dağılımının randomizasyonu vardır. Bu değişiklikler; -DNA kırılmasında,nukleotitlerin terminal deoksinükleotidil transferaz yolu ile belirlenmesi, -PS in annexin ile boyanması , -Subdiploid DNA içeriği olan hücrenin, DNA ekleyen boyalar ile belirlenmesi ile gösterilebilir. Apoptosisdeki Major Oyuncular: 1-Kaspazlar 2-Kaspazların başlatıcı etkinliğini kontrol eden Adaptor Proteinler 3-TNF-R 4-Bcl-2 proteinleri KASPAZLAR: İnisiatör K. Efektör K. Cytokin Maturasyon Ced-3 C-3 C-1 C-13 C-2 C-6 C-4 C-14 C-9 C-7 C-5 C-10 C-11 C-8 C-12 Bir grup sistein proteaz enzimidir. Apoptosis için gereklidir. Kaynağına yada ölüm uyaranına bakılmaksızın apoptosise giden tüm hücrelerde sistein proteaz aktivitesi tespit edilir. Basulovirus protein P35, tüm kaspazların potent inhibitörüdür. Kaspazlar, apoptosisin son devresindeki hücresel substratların degradasyonundan sorumlu olduğu gibi apoptosisin başlatılmasında da kritik önemi vardır.Memelilerde en az 14 kaspaz vardır.Bunlar tetrapeptit motifleri tanır ve substratı, bir aspartat rezidüsünün karboksil tarafından ayırır. Kaspazlar, düşük intrensik etkinlik gösteren zimojenler olarak sentezlenir.Aktif enzim, 20kD luk subünite ilaveten 10kD luk subünit bulunan bir heterotetramerdir. Kaspaz 8 ve Kaspaz 9, baslatıcı kaspazlardır ve efektör kaspazların aktivasyonunu başlatır.Bazı kaspazlar ise self processingdir. Efektör kaspazlar;-DNA onarım enzimleri -Lamin -Gelsolin -MDM2(P53inhibitörü) -Protein Kinaz Cd , gibi yaşamsal proteinleri ayırmakta ve inaktive etmektedir.Kaspaz yollu proteoliz ile aktive olan enzimlerde vardır.Kaspaz yolu ile aktifleşen DNAase (CAD) normalde bir inhibitöre İCAD(DNA fragmantasyon faktör) a bağlanarak inaktive olmaktadır.Apoptosis esnasında İCAD kaspazlar tarafından ayrılmakta ve bu durum karekteristik internükleozomal DNA ayrılması oluşturur. Aktif endonükleazın salınmasına yol açar. - ADAPTÖR PROTEİNLER: Adaptor proteinler: Apaf-1 Ced-4 RAIDD FADD/MORT1 RIP FLIP1 -Hücre ölüm efektörleri, -Hücre ölüm regülatörleri, -Ölüm reseptörleri, -Bcl-2 gen ailesi , arasındaki bağlantıyı kurarlar. Kaspazlar, TNF-Rleri ve Adaptör Proteinler arasındaki bağlantılar, ölümsahası(DD), ölüm effektör sahası(DED) ve Kaspaz Toplama sahası(CARD) olarak bilinen alanlar arasındaki homotipik etkilesimler yolu ile sağlanmaktadır. DD içeren bir TNF-R üyesinin adaptör proteini çapraz bağlanmasından sonra TNF-R’nin DD ile adaptör proteinin DD i arasındaki homotipik etkileşimler, kaspaz agregasyonuna ve aktivasyonuna izin verir. Kaspaz toplanması ve birikimi adaptör proteinlerde bulunan başka bir alan olan DED yolu ile de olur. DEDler FADD ve Kaspas 8 de de vardır. Bu nedenle CD95in çapraz bağlanması prokaspaz 8, agregasyonu ve FADD yolu ile aktiflenmesi sonucunu doğurabilir. DR --FADD--Kaspas 8, sinyallenmesi , FLİP molekülleri ile bloke edilebilir. FLİP molekülleri prokaspaz 8 in toplanması ve aktiflenmesini önlemektedir. FLİP in, FLİPL ve FLİPS şekilleri vardır. FLİPL daha yaygındır ve prokaspaz 8 e çok benzer.FLİPS ise sadece iki DED içerir. Bütün kaspazlar TNF-R çapraz bağlanma yolu ile aktive olmadığı gibi bütün başlatıcı kaspazlar DED içermezler. Memeli prokaspaz 9 ve prokaspaz 2 ve C.elegans Ced-3 ü aynı zamanda kendi spesifik adaptörü olan Apaf-1 ve Ced-4 te bulunan CARD ler içerir. Kaspaz 8, CD95 yoluyla aktive olurken, Kaspaz 9 Apaf-1 ile aktive olur ve Bcl-2 proapopitotik üyeleri ile kontrol edilir. TNF-R AİLESİ: TNF-R1 CD95 DR3 CAR1 DR4 DR5 NGFRp75 TNF-R üyelerinin pleotropik etkisi vardır. Hücre tipine ve aldığı sinyallere göre proliferasyon ,canlı kalma, farklılaşma yada ölümü tetikleyebilir. Bu reseptörler, TNF ligant ailesine ait ligantlar tarafından aktive edilir. Bu bağlar memrana bağlanmış trimerler olarak sentezlenir, sinyalleme için çok miktarda çapraz bağlanma gerekir. TRAİL/APO-21(TNF ile ilgili apoptosis başlatıcı ligant), Apoptosisi transforme hücrelerde başlatır ve diğer ligantlara kıyasla dokularda daha yaygındır. TRAİL in 4 reseptörü tanımlanmıştır: DR4 , DR5 , DCR1 ,DCR2 . Fakat sadece DR4 ,DR5 apoptosisi başlatır. Diğerleri, intrasellüler ve transmemran bölgeleri yada DD bölgeleri içermediginden apoptosisi başlatamazlar. Bu reseptörler tuzak vazifesi görür. Akciğer ve kolon kanserinde Fasl (DCR3) ye karşı bir tuzak reseptörün çok fazla olduğu gösterilmiştir. Spesifik kaspaz inhibitörleri ve kaspaz eksikliği olan mice’ların fibroblastlarında yapılan deneylerde, kaspaz 8 in , DR4 , DR5 ve DR3 ile oluşan apoptosis için şart olduğunu göstermiştir. BcL-2 ÜYELERİ: Antiapoptotik Proapoptotik Bcl-2 Bax Bcl-xl Bod Boo Bcl-xs Bcl-w Bid A1 Bim Mcl-1 Blk Bak Antiapoptotik Bcl-2 üyeleri, a.a sıraları en az üç dört bölgede benzerlik gösterir. Bcl-2 ye benzerlik gösterirler. Proapoptotik Bcl-2 lerin hepsinde BH3 bölgesi vardır. Antiapoptotiklerde bu bölge yoktur. Bcl-2 proteinlerinin, transmembran bir C terminali vardır. Bu alan nükleer membran, mitekondri dış membranı, ER membrannın sitozolik tarafında yer alır. Bunlar etkileşim bölgeleridir. Bu bölgeler bazılarında sabit iken bazılarında degişebilir. Örneğin, Bax sitozolik bir proteindir, apoptosisde mitokondrial membrana redistribsiyonu olur. Antiapoptotik Bcl-2 üyeleri kaspaz aktivasyonunu önleyerek antiapoptotik etki gösterirler. Proapoptotik Bcl-2ler sinyalleri adaptör proteinlerde yoğunlaştırır, adaptör proteinler ölüm teşvik edici protein kompleksi Apoptosom un tam bileşimidir. Memelilerde,efektör kaspazlarin aktivasyonu iki farklı mekanizma ile olur; 1-Hücre içinde stresle ortaya çıkan sinyallerle başlar. -Timosit ve embriyonik fibroblastlarda, -DNA hasarında, -Steroid,Strausporin tedavisinde, -Büyüme faktörü yoksunluğunda, oluşan apoptosisler genelde böyledir. Burada Apaf-1 ve Kaspaz 9, Kaspaz 3, gereklidir. Bcl-2 antiapoptotik proteinleriyle bloke edilir. Bu ölümler ihmal ölümleri olarak bilinir. 2-Apoptotik sinyallerle, CD95 ve TNF-R yoluyla apoptosis. FADD ve Kaspaz 8 gereklidir. Bcl-2 apoptotik proteinlerle bloke edilemez. Özellikle lenfositlerdeki apoptosis bu yolla olur. Aynı hücrede TNF-R ve Bcl-2 tarafından kontrol edilen yolların aynı anda bulundugu gösterilmiştir ve muhtemelen aralarında bir bağlantı olduğu tespit edilmiştir. Hücre extraktları ile yapılan çalışmalar, Holocytochrom c, dATP, ATP nin Apaf-1 ile olan Kaspaz 9 aktivasyonunu ilerlettiğini göstrmiştir. Ek larak, Holocytochrom c nin, apoptos altındaki hücrelerde mitekondriden stoplazmaya göç ettiği gösterilmiştir. Apoptosis boyunca hücre ölümü bir çok dokuda, hücre diferansiasyonunun farklı aşamasında meydana gelebilir. Apoptosisdeki anormallikler hastalıkların oluşumunda rol alabilir. Antiapoptotik Bcl-2 ekspresyonu fazla olan miceların tümörogenezise eğilimli olduğu gösterilmiştir. Tek başına Bcl-2 daha az onkojendir fakat l-myc ve pim 1 ile sinerjik etki gösterir. Bcl-2 fazla ekspresyonu neoplastik transformasyonda hücrelerin yaşam süresini uzatmada rol alır ve onkojenik kazanılmış mutasyonları kolaylaştırır. Bcl-2 proapoptotik üyeleri tümör supressör gibi görev yapar. Kemoteropatikler ve radyasyon terapisi tm hücrelerinin apoptosisini teşvik eder. Çalışmalar Kaspaz 8 ve Kaspaz 1 dışındaki kaspazların ilaçla teşvik edilmiş apoptosis için esansiyel uyaranlar olduğunu göstermiştir. Kaspaz 8 i olmayan mice ların kemoterapiye ve radyoterapiye daha duyarlı olduğu Kaspaz 9 u olmayanların da yüksek derecede dirençli olduğu gösterilmiştir. Hücrelerin uygunsuz hayatta kalışları sadece tümörogenezis için geçerli değildir. Bağışıklık sistemi yanıtı hızlı hücre proliferasyonu ile karekterize edilir. Anormal şekilde uzatılmış aktive lenfosit yaşamı, etkin lenfokin üretimi ve bulundukları ortama korkunç zararları ile sonuçlanır. Transgenik mice’ların B lenfositlerinde Bcl-2 nin fazla ekspresyonu veya Bim in olmaması, uzamış humoral yanıt ve plazma hücrelerinin patolojik birikimine yol açar(SLE). Apoptosis viruslara ve intersellüler diğer patojenlere karşı savunma mekanizması olarak kullanılır. Bu patojenlerin bir çoğu yaşadıkları hücre ölümüne karşı engelleyici mekanizmalar geliştirmişlerdir. Örn:Adenovirus Protein E1B55 viral replikasyonu sağlarken, hücreninde apoptosisini aktive eder. Bu Apoptosis de iki Adenovirus proteini E1B55(P53homoloğu), E1B19 (Bcl homoloğu) ile bloke edilebilir. Bcl –2 homologlarına ilaveten virusler daha değişik inhibitörler kazanmıştır. Adenovirus---E3-14.7 Kaspaz 8 i inhibe eder. Compox V.---Crm-A Kaspaz 1 ve 8 inhibe eder. İL-1,İNFg,İNFb üretimini inhibe eder.CD95, TNF-R1 tarafından saglanan apoptosisi engeller. Pox V.---TNF-R homologlarını kodlar , TNF ve lenfotoksinlerin yaptığı olayları nötralize eder. Basulovirus ---P35 , bütün kaspazları inhibe eder. Herpes V.8---Bcl-2 homoloğu ORF-16 ve vFLİP ORF-71(prokaspaz 8 inhibisyonu). Bircok virus hem Bcl-2 hem de reseptör aracılı apoptosisi engelleyebilir.

http://www.biyologlar.com/apoptozis-ve-kaspazlar

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. Yumrulu veya rizomlu jeofitler 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. Su depolayan sukkulentler 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki metabolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan metabolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi-1

TÜRKİYENİN BİTKİ ÖRTÜSÜ

Türkiye, barındırdığı bitki türleri bakımından dünyanın en zengin ülkelerinden biridir. Yaklaşık 9.000 den fazla bitki türünün mevcut olduğu ülkemizde, yüksek dağ çayırlarından, bazı tropik bitkilere; bozkırlardan, iğne yapraklı ve geniş yapraklı ormanlar kadar çok çeşitli bitki toplulukları bulunmaktadır. Dünyanın başka yerlerinde hiç bulunmayan ülkemize has (endemik) bitki türleri de bitki varlığımızın önemli bir kısmını oluşturmaktadır. Ülkemizin bu kadar çeşitli bitki türlerine sahip olmasında bazı faktörlerin etkisi büyüktür. BU faktörlerin başında, kuşkusuz iklim gelmektedir. Bulunduğu konum itibariyle çeşitli iklim özelliklerine sahip olan ülkemizde, bu iklim özellikleri, farklı bitki türlerinin yetişmesine imkân vermiştir, iklim elemanlarından sıcaklık ve yağış ile güneşlenme süresi, bitkilerin yetişmesinde çok etkilidir. Örneğin, özellikle yaz mevsiminde güneşli gün sayısının çok olduğu Akdeniz Bölgesinde, güneş ışığını seven, kuraklığa dayanıklı makiler geniş yer kaplar. Buna karşılık, Doğu Karadenizde sisli – bulutlu ortamları seven ladin, şimşir, fındık gibi bitkiler yetişebilmektedir. İklim elemanlarından yağış da bitki topluluklarının yetişmesi ve dağılışında önemli rol oyar. Bitkiler, su isteklerine bağlı olarak yağış rejimlerinin değiştiği alanlarda, farklı türler hâlinde dağılış gösterirler. Örneğin, maki topluluğu içinde yer alan defne» kocayemiş, zakkum gibi bitkiler, kuraklığa dayanıklı olduklarından Akdeniz Bölgesinde yetişebilmektedir. Buna karşılık, su ihtiyacı yüksek bir bitki olan çınar ise genellikle suyun bol olduğu alanlarda ve 1000 mden daha aşağıda yetişebilmektedir. Ülkemizde bitki örtüsünün farklılığı ve dağılışı üzerinde etkili olan diğer faktörler ise yükselti. Jeolojik yapı ile yüzey şekilleridir. Yükselti, bitkilerin hayat alanını sınırlayan bir etkendir. Çünkü yükselti arttıkça, havadaki su buharı ve sıcaklık azalmakta, belli bir yükseltiden sonra yağış miktarı da düşmektedir. Buna bağlı olarak da farklı yükseltilerde farklı bitkiler yetişebilmektedir. Bitkiler için bir durak yeri ve besin kaynağı olan toprakların fiziksel ve kimyasal özellikleri de bitkilerin dağılışı üzerinde etkilidir. Örneğin, bazı bitkiler, özel toprak şartlarında yetişebilmektedir. Fıstık çamı, dana çok volkanik taşların ayrışması sonucu oluşan kumlu topraklarda yetişir. Bu sebeple fıstık çamı uygun toprakların yer aldığı Aydın ve Manisa çevresi ile Nur dağlarında doğal olarak yetişmektedir. Akdeniz kökenli bir bitki olan kızılcam. Karadeniz Bölgesinde Kızılırmak ve Yeşilırmak vadisindeki bazı kuytu alanlarda yerel olarak yetişir. Yine bir Akdeniz bitkisi olan zeytin de Artvinde Çoruh ırmağı vadisindeki kuytu alanlarda yetiştirilebilmektedir. > > 1.1 ORMANLARI > > Ülkemizdeki ormanlar iklim, yüzey şekilleri, bakı durumu ve toprak cinsine bağlı olarak çeşitlilik-gösterir. Ormanlarımızı genel olarak ağaçların yaprak cinslerine göre, geniş yapraklı ormanlar ve iğne yapraklı ormanlar olmak üzere iki gruba ayırmak mümkündür. Bazı alanlarda iğne yapraklı ormanlar ile geniş yapraklı ormanların bir arada bulunduğu karışık ormanlar da görülür. Ülkemizdeki ormanların bölgelere göre dağılımı şöyledir. > > 1.1.1 Karadeniz Ormanları Karadeniz ormanları, Karadeniz Bölgesi ile Marmara Bölgesindeki Yıldız dağlarının kuzeye bakan yamaçlarındaki ormanlardan oluşmaktadır. Karadeniz Bölgesinde genellikle nemli > > -ılıman ve nemli > > - soğuk iklim şartlarında yetişen geniş ve iğne yapraklı ormanlar bulunmaktadır. Ülkemizdeki bitki türlerinin yansından fazlası, Karadeniz ormanlarında yer almaktadır. Bunun eh önemli sebebi, bölgenin iklim şartlarının birçok bitki türünün yetişebilmesine imkân vermesidir. Karadeniz ormanlarını özelliklerine göre üç gruba ayırmak mümkündür. > 1.1.1.1 Geniş Yapraklı Ormanlar Gürcistan sınırından Yıldız dağlarına kadar uzanan Karadeniz kıyıları boyunca, dağların kuzeye bakan yamaçlarında 1000 m yüksekliklere kadar geniş yapraklı ormanlar hâkimdir. Kışın yaprağını döken ağaçlardan oluşan bu ormanlarda kayın, gürgen, kestane, ıhlamur, meşe, akçaağaç, karaağaç, kızılağaç ve dişbudak gibi ağaç türleri bulunur. > 1.1.1.2 Karışık Ormanlar Karadeniz Bölgesinde özellikle 1000 - 1500 m yükseklikler arasında, iğne yapraklı ve geniş yapraklı ormanlardan oluşan karışık ormanlar bulunur. Bu ormanlar, Orta ve Batı Karadeniz bölümlerinde daha çok kayın, göknar ve sarıçam ağaçlarından oluşur. Doğu Karadeniz bölümünde ise Kayın ve ladin ağaçlarından oluşan karışık ormanlar vardır. > > 1.1.1.3 İğne Yapraklı Ormanlar Karadeniz Bölgesinde, 1200 - 1500 m den itibaren 2000 m ye kadar her zaman yeşil olan iğne yapraklı ormanlar yer alır. Bu kuşaktaki en önemli ağaç türleri Batı Kafideniz bölümünde, göknar, sarıçam ve kayın. Doğu Karadeniz bölümünde ise ladin ve sarıçamlardır. > 1.1.2 Batı Anadolu Ormanları Batı Anadoluda yer alan ormanlarımız, yükseklik şartlarına bağlı olarak değişiklik gösterir. (Marmara Bölgesinin Yıldız dağları dışında kalan kesimlerinde kayın, meşe ve kızılcam ormanları görülür. Güney Marmara bölümünde yer alan Uludağ, Marmara Bölgesinin bir çok ağaç türünü barındıran nadir yerlerindendir. Burada, dağın eteklerinde kısmen çalılıklar ve kestane ağaçları, daha yukarılarda meşe, kayın, göknar, karaçam ve kızılçamlar karışık halde bulunur. Ege Bölgesinde kıyıdan itibaren 600 - 800 m yüksekliklere kadar maki toplulukları ile karışık olarak kızılcam ormanları görülür. Daha yüksek alanlarda ise karaçam ormanları geniş alanlara yayılır. Çünkü kızılcam ağacı, soğuğa fazla dayanıklı değildir. > 1.1.3 Akdeniz Ormanları Bölgede, kıyı boyunca en yaygın ağaç türü kızılçamdır. Alçak kesimlerde makilerle karışık bir hâlde bulunan kızılçamlar, yükseldikçe saf ormanlar meydana getirirler. Kıyı kesimlerinde sığla (günnük) ağaçlarına da rastlanır. Özellikle köyceğiz civarında yaygın olarak yetişen sığla ağacından çıkarılan yağ, kozmetik sanayiinde ham madde olarak kullanılır. Akdeniz Bölgesindeki dağların yüksek kesimlerinde (1000 – 2000 m) sedir, göknak ve karaçamlardan oluşan iğne yapraklı ormanlar yer alır. Akdeniz Bölgesindeki ağaç türlerinden biri olan servi, ender bulunan türlerdendir. Kerestesi çok dayanıklı olan ve direk yapımında kullanılan servi, kızılçamlar ile karışık hâlde bulunur. Bölgede, Isparta civarında bulunan kasnak meşesi endemik bitkilerden birisidir. Ayrıca, Nur dağları üzerinde Karadeniz ormanlarına özgü bir ağaç olan kayın ormanları bulunmaktadır.

http://www.biyologlar.com/turkiyenin-bitki-ortusu

ANORGANİK EVRİM NEDİR

GÜNEŞ SİSTEMİNİN VE ÖZELLİKLE DÜNYANIN OLUŞUMU ÜZERİNE GÖRÜŞLER Evrensel patlamadan belirli bir süre sonra, maddeler, galaksiler ve onların içinde yıldız sistemleri halinde düzenlenmeye başlamıştır. Büyük bir olasılıkla, evren­sel gaz ve toz bulutlarının yoğunlaşmasıyla sabit yıldızlar ortaya çıkmıştır. Yoğunlaş­makta, daha doğrusu büzülmekte olan tüm cisimlerde, meydana gelen yüksek basınçtan ve sürtünmeden dolayı, özellikle merkezlerinde sıcaklık gittikçe artar ve açısal momentumun korunması için kendi etrafında dönme hareketi başlar. Güneşimiz de aynı şekilde oluşmuş, iç tarafında sıcaklık milyonlarca dereceye ulaşmış (yak­laşık 15 milyon santigrat derece> ve kendi etrafında belirli bir hızla dönmeye başla­mıştır. Doğal olarak yüzeyindeki sıcaklık merkezindekinden çok daha azdır (yaklaşık 5000 - 6000 santigrat derece). Şimdiye kadar evrende uydusu olan tek bir yıldız gözlenmiştir (Eylül 1984 tarihinde bir Amerikalı astrofizikçi tarafından, yaklaşık 8 ışık yılı uzaklıkta). Başka uyduların gözlenememesinin nedeni, uyduların, bugünkü aygıtlarla görülemeyecek kadar küçük (uydu olabilmesi için bizim güneşimizden en azından 10 defa daha küçük olmalıdır> ve en yakın yıldızın dört ışık yılı uzakta olmasıdır. Bu nedenle uyduların oluşumu konusunda evrensel bir ilkeyi saptamak çok zordur. Bununla beraber sadece saman yolunda 200.000 kadar uydusu olan yıldız bulunduğu varsayılmaktadır. Güneşin uydularının en önemli özelliği, hepsinin aynı düzlem üzerinde bulun­ması ve bu düzlemin, güneşin ekvator düzlemiyle hemen hemen (sadece 60lik bir açı farkı vardır) çakışmasıdır. Ayrıca güneşin tüm gezegenleri aynı yönde dönmekte­dir. Bu, ilk bakışta, tüm gezegenlerin güneşin ekvatorundan, merkezkaç kuvvetiyle koptuğunu göstermektedir. Fakat güneşin açısal momentumunun gezegenlerden çok küçük olması (güneş, tüm güneş sisteminin kütlesinin % 99.9unu taşımasına karşın, açısal momentumunun ancak % 2sine sahiptir), bu varsayımı tümüyle geçersiz kılmaktadır. Çünkü güneşten kopan her parça, güneşin kendi etrafında dönmesini artıracak, en azından kopan parçadan daha fazla açısal momentuma sahip olmasını sağlayacaktı. Halbuki güneş, gezegenlerinden daha küçük açısal momentuma sahiptir. Gök cisimlerinde açısal momentumun kendi kendine artmasını kanıtlayacak herhangi diğer fiziksel bir etkileşim bulunamamıştır. Dolayısıyla gezegenlerin açısal momentumunun fazlalığı bugüne kadar açıklıkla açıklanamamıştır. Bunun üzerine diğer bir yıldızın güneşin yakınından geçerek, onun ekvator düzleminden parçalar koparmak suretiyle, gezegenleri meydana getirdiği savunul­muştur (= Katastrof Varsayımı). Böylece gezegenlerin ekvator düzleminin, güne­şin ekvator düzlemine neden 60 eğik olduğu da açıklanmış oluyordu. Fakat güneşten merkürü koparan kuvvetin, plütonu kendi üzerine yapıştıracağı hesaplandığı için, bu varsayım da fiziksel açıdan geçersiz görülmektedir. Birçok eksikliğine karşın bugün hala en çok benimsenen ve üzerinden en çok tartışılan görüş, yanlış bir adlandırma ile Meteorit Varsayımıdır. Bu görüşe göre, uydular, güneşle birlikte; fakat bağımsız olarak, uzaydaki gaz ve toz bulutlarından, belki de güneşi meydana getiren materyallerden, soğuk olarak oluşmuştur. Geze­genlerin kütlesi hafif gazları tutacak kadar büyük olmadığı için, hafif gazlar, başta hidrojen olmak üzere uzaya kaçmıştır. Böylece ağır metallerden meydana gelmiş kısımlar gittikçe birbirine yaklaşmış, yoğunluğu ve sıcaklığı yüksek bir çekirdek meydana getirmiştir. Ayda olduğu gibi zaman zaman meydana gelen patlamalarla içteki gazın dışarıya çıkması sağlanmış, böylece kraterler meydana gelmiştir. Uyduların Oluşumu ve Yaşam Koşulları: İçteki en yakın komşumuz Venüs'te sıcaklık 5000C civarında, dıştaki en yakın komşumuz Marsta ise sıcaklık + 25 ile 700C civarındadır. Yalnız bu sonuncu uyduda, atmosfer, dünyadakine göre çok fazla seyreltilmiştir ve bileşimi büyük miktarlarda karbondioksit ve azottan oluşmuştur. Oksijen hemen hemen hiç yoktur. Daha içteki ve daha dıştaki uydular ise daha sıcak ve daha soğuk olduğu için bir yaşamın oluşması için uygun değildir. Anladığımız anlamda bir yaşamın olması, karmaşık moleküllerin oluşmasıyla, bu da çevre sıcaklığının belirli sıcaklık aralıklarında olmasıyla ve kimyasal tepkimele­rin oluşabileceği, tamponlama düzeyi yüksek bir ortamın, yani sıvı halindeki suyun bulunmasıyla mümkündür. Bunun haricinde bir yaşamın düşünülmesi, bugünkü bilimsel kurgumuzun oldukça dışına taşımaktadır. Şimdiye kadar güneşin uyduların­da, yaşamın olduğuna ilişkin bir kanıt bulunamamıştır. Fakat, bu, geçmişte ilkel de olsa bir yaşamın oluşmadığını ve özellikle hala sıcak olan uydularda, gelecekte oluş­mayacağını göstermez. Dünyanın Oluşumu: Güneşten uzaklığı 3. sırada (150 milyon km.) bulunan, ~6 milyar yıl önce, yıldızlararası toz bulutlarından oluşmuş dünya, tanımlayabildiği­miz canlılık formları için, en uygun ortamı oluşturmaktadır. Oluşumunun ilk evrele­rinde gevşek bir yapı gösteren dünyanın büyüklüğü bugünkünden çok daha fazlaydı. Artan yoğunlukla, bu büyük küre gittikçe büzülmeye ve küçülmeye başladı. Büyü­yen basınçla ve kütle konglomeraları halinde bulunan radyoaktif elementlerin parça­lanmasıyla, sıcaklık yükseldi. Bu ısınma, iç tarafın akıcı bir hal almasına ve maddelerin ağırlıklarına göre içten dışa doğru dizilmesine neden oldu. Böylece nikel) ve demir gibi ağır metaller merkeze, hafif metaller ve bileşikler ise kabuk şeklinde dışa yığıldı (yaklaşık tüm bu olaylar 100.000 yıl içerisinde gerçekleşti). Zamanla soğuyan dış kısım (= litosfer) parça parça ağır metalleri de taşımak suretiyle, oluşacak canlılar için gerekli mineralleri sağlamıştır. Soğumuş kabuk, dış yüzde oluşacak karmaşık moleküllerin, içteki sıcaklığın etkisiyle yıkılmasını önlemeye başlamıştı. Fakat bu evrede anladığımız anlamda bir atmosfer henüz oluşmamıştı. Bu evre yaklaşık 2 - 3 milyar yıl sürmüştü. Atmosferin Oluşumu Dünyanın oluşumunda ulaştığımız bu son evrede atmosfer oluşmamıştı. Günkü kütle azlığından dolayı gazların çoğu uzaya kaçmıştı, ancak ağır metallerle bileşik yapan elementler yerin yüzeyinde kalabilmişti. Bu nedenle uydular, dolayısıy­la dünya, diğer gök cisimlerine göre çok daha fazla ağır metallerden yapılmıştır. Örneğin güneşin yarısından fazlası hidrojen, % 98'i hafif elementtir; buna karşın dünyanın çapının yarısından fazlasını kapsayan bir iç küre tamamen nikel ve demir­den oluşmuştur. Asal gazlar bileşik yapamadığı için tümüyle uzaya kaçmıştır. Bu nedenle bugün dünyada asal gaz hemen hemen yoktur. Oksijensiz Evre Üzeri oldukça ince katı bir kabukla örtülen dünya, içteki kızgın ayların dışarıya püskürdüğü yanardağlarla doluydu. Yanardağlardan birçok mineralin yanı sıra, /o 97 si su buharı olan gazlar da çıkıyordu. Bu su buharı soğuyarak yerin yüzüne su halinde toplanamıyordu; çünkü yer kabuğunun dış yüzü hala 1000 G'nin üzerindeydi. Aşağılara kadar inen su buharı sıcak taşküreye çarparak tekrar yükseliyor ve böylece yeryüzünün ısısını sürekli olarak uzaya taşıyarak, taşkürenin soğumasını sağlıyordu. Suyun büyük bir kısmı buhar halinde olduğundan, ilk atmosferin basıncı bugünkün­den yaklaşık 300 defa daha fazlaydı. Her taraf kalın bir sis tabakasıyla örtülmüştü; kesiksiz yağmur bulutları her tarafı kaplamıştı. Bu nedenle güneş ışınları yerin yüzeyi­ne kadar ulaşamıyordu. Yüzeye ulaşan ışıkların kaynağı sadece sürekli meydana gelen şimşeklerdi. Yerkürenin üzerinde bulunan atmosferde ve yer kabuğunun altında bulunan gazlarda serbest oksijen yoktu. Başlangıçta olanlar uzağa kaçmıştı, daha sonra oluşanlar da mineralleri oksitlemek suretiyle bağlanmıştı. Nitekim o devirde oluşup da bugün oksijenle temas etmeyen yer altında kalmış demir yatakları iki değerliklidir (Fe2) Serbest oksijen oluştuktan sonra oluşan demir yatakları üç değerliklidir (Fe3) Serbest oksijenin olmaması, ileride canlıları oluşturacak, inorganik yoldan kazanılmış organik moleküllerin oksitlenmeden saklanılmasını, dolayısıyla canlılığın ortaya çıkmasını sağlamıştır. Bugün karmaşık moleküllerin doğada birikmemesi, serbest oksijenin olmasından dolayıdır. Daha sonra fotosentez yapabilen canlıların yani bitkilerin ortaya çıkmasıyla oluşan serbest oksijen ise, canlı türlerinin çeşitlenmesini ve organizasyonlarının yükselmesini sağlamıştır. Fakat aynı zamanda yeni canlı oluşturabilecek tüm olanakları da önlemiştir. Daha sonra görece­ğimiz gibi, birçok elementi ve minerali içeren, su buharınca zengin bu atmosferin içerisinde, güneş ışınlarının doğrudan etkisi dolayısıyla, inorganik yoldan, aminoasit­ler, polipeptitler, çekirdek asitleri, porfirinler vs. gibi, organik maddeler sentezlenmiş ve oksitlenmeden yer kürenin çukurlarına çökmüştür. Bu arada su buharı aracılığıyla ısı taşınımı ve dolayısıyla soğuma sürmüş ve yeryüzünün sıcaklığı bir zaman sonra 1000C'nin altına düşmüştür. Sıcaklığın 1000C'nin altına düşmesi, atmosferdeki su buharının çok büyük bir kısmının, su halinde, yerkürenin çukur yerlerine toplanma­sına neden olmuştur. Su buharının atmosferden çekilmesi, havanın berraklaşmasını, güneş ışınlarının ve keza kısa dalgalı, yüksek enerjili ışınların tüm etkinliğiyle yerin yüzüne kadar ulaşmasını sağlamıştı (kısa dalgalı ışınlar, yani morötesi ışınlar, daha önce su buharının yoğunluğundan dolayı, serbest oksijen oluştuktan sonra da ozon perdesinden dolayı yeryüzüne ulaşamamıştır). Dünyanın yüzü aşağı yukarı bugünkü görünümü (canlılar hariç) almıştı. Kümeler halinde bulutlar ve mavi gök ortaya çık­mıştı. Atmosfer olayları, özellikle yağmur, fırtına artmış, erozyonla (= aşınımla) kayaçlar yıkanarak ve parçalanarak suların biriktiği okyanuslara taşınmaya başlamış­tı. Büyüklüğü bugünkünden biraz daha az olan okyanuslar ve su birikintileri, mineral tuzlar ve daha önceki dönemde oluşmuş 1km organik maddeler bakımından iyice zenginleşmişti. Oksijenli Evre ve Urey Etkisi 11km organik maddelerle ve zengin mineral tuzlarıyla zenginleşmiş bu su birikin­tilerine, güneş ışınları tüm etkinliğiyle çarpıyordu. Özellikle kısa dalgalı ışınlar (morötesi ışınlar UV), enerjice zengin olduğundan hem sentezlenme tepkimelerini sağlıyor hem de sentezlenmiş karmaşık moleküllerin yıkılmasına neden oluyordu. Bilindiği gibi morötesi ışınlar tek bir dalga boyundan meydana gelmiş ışınlar değildir. Görünebilir ışıktan (3800 A0 - 7200 A0) daha geniş bir spektrum aralığına (100 A0 - 3800 Al sahiptirler. Öyle ki bu spektrum içerisinde bazı morötesi ışınlar, belirli bir sentezleme tepkimesini sağlarken, başka bir morötesi ışın dalgası bu bağın koparılmasına neden olur. Morötesi ışın spektrumunda dar bir aralıkta bulunan bazı morötesi ışınlar hariç (bu aralıktaki morötesi ışınlar insan vücudunda D vitamininin oluşmasını Sağlar) hemen hepsi proteinden yapılmış (diğer bir bileşiklisini zaten tanımıyoruz) canlılar için yıkıcı etki gösterir. Bu nedenle mikroorganizmaların öldürülmesi yani sterilizasyon için, morötesi ışınlar veren lambalar kullanılır. Yüksek enerjili bu ışınlar 10 - 15 metre kalınlığındaki bir aralıkta bulunan su katmanlarının içinde farklı tepkimelere neden oluyordu. Su yüzeyine yakın, daha önce oluşmuş karmaşık moleküller bu ışınlarla kendilerini oluşturan temel birimlere kadar parçalanırken, belirli katmanlarda, belirli dalga boyundaki ışınlar yeni karmaşık moleküllerin sentezlenmesini sağlıyordu. Daha önceki atmosferde, karbonlu ve azot­lu bazı bileşikler; hidrojen içeren metan, karbondioksit, amonyak vs. zaten vardı. Bu bileşiklerden daha karmaşık moleküller oluşuyordu. Karmaşık molekülle­rin bir kısmi su yüzeyine doğru çıkıp, kuvvetli ışınlarla karşılaşarak kendini oluşturan temel maddelere kadar parçalanırken, bir kısmı ağırlığından dolayı daha aşağılara çöküp, yeni karmaşık moleküllerin yapımına katılarak ya da katılmayarak, tabana yığılıyordu ya da belirli bir katmanda asılı olarak duruyordu. Karmaşık moleküllerin birikimi her gün biraz daha artarak, daha sonra oluşacak canlıların temel maddelerini hazırlıyordu. Özellikle protenoid dediğimiz peptit bağlarının oluşumu çok önemliydi. Morötesi ışınların ikinci en önemli etkisi, bizzat su moleküllerinin üzerinde görülmektedir. Bu ışınların bazılarının enerjisi, su moleküllerini, atomlarına kadar parçalanmaya yeter. Fotodissosiyasyon (= ışık ile parçalama) olarak adlandırılan bu olay ile tüm su yüzeylerinden serbest hidrojen (H2) ve serbest oksijen (02) çıkı yordu. Hidrojen hafif element olduğu için sürekli uzaya kaçıyordu. Oksije­nin bir kısmı atmosferin üst kısımlarına doğru yükselirken yüksek enerjili güneş ışınla­rının bombardımanına uğruyor ve ozon tabakasını (O3) meydana getiriyordu. Bir kısmı ise inorganik maddelerin ya da oluşmuş organik maddelerin oksitlen­mesinde kullanılıyordu. Ozon tabakası (= UV filtresi) çok etkili bir morötesi ışın filtresidir. Bu tabaka oluştuktan sonra, artık, D vitaminini oluşturan morötesi ışınlar ve morötesi ışınların görülebilir (yani mor renk) kısmından başka, diğer tüm dalga boy­ları emilmiş ve yeryüzüne ulaşmaları önlenmiştir. Böylece su üzerinden fotodissosi­yasyon ile serbest oksijen elde edilmesi durmuş olur. Ortamdaki serbest oksijen, oksitlenme ile bir zaman sonra bitince, ozon tabakası zayıflar ve morötesi ışınlar tek­rar tüm etkinliğiyle yeryüzüne ulaşmaya ve serbest oksijeni tekrar çıkarmaya başlar. Bu denge,fotosentez yapan canlılar ortaya çıkıncaya kadar aralıksız olarak devam etmiştir. Ayrıntılı araştırmalar ve o devirde meydana gelmiş tortul kayaçların incelenme­si, o devirdeki serbest oksijen miktarının bugünkü serbest oksijen miktarının ancak 1/1000�i kadar olduğunu göstermiştir. Fakat bu orandaki bir serbest oksijen miktarı dahi etkili bir ozon tabakasının oluşmasını sağlayabilir. İşte ozon tabakasının karşılıklı etkileşimle oksijeni belirli bir düzeyde tutmasına Urey Etkisi denir. Ozon tabakası en etkili olarak 2600 - 2800 A0 arasındaki ışınları tutuyordu. Dolayısıyla o devirde oluşmuş olan karmaşık moleküller, bu dalga boyundaki ışınlarla karşılaşmadıklarından, onlara karşı dayanıklı bir yapı da kazanamamışlardı. Diğer dalga boylarına dayanıksız olan birçok karmaşık molekül, parçalanmak sure­tiyle ortadan kalkmıştı ve canlıların yapısına katılamamıştı; ancak bu dalga boylarına (bugün dünyaya ulaşabilen) dayanıklı olanlar yıkılımdan kurtularak, daha sonra olu­şacak canlıların yapısına katılmıştı. 2600 - 2800 A0 dalga boyundaki ışınlar hemen hemen yeryüzüne ulaşmadığı için, bu dalga boyundan zarar görebilecek moleküller de yıkılımdan kurtularak oluşacak canlıların yapısına katılmıştır. Çekirdek asitleri, özellikle DNA, işte bu özellikteki moleküller grubundandır. Bu nedenle bugün 2600 - 2800 A0 boyundaki ışınlar en fazla mutasyon (yani bir çeşit yıkılım) meydana getirmektedir. Keza mikropları öldüren sterilizasyon lambalarının çıkardığı ışınlar da genellikle bu dalga boyundadır. Çünkü bu moleküller oluştuklarında, bu ışınlarla kar­şılaşmamışlar ve dolayısıyla onlara karşı dayanıklı bir yapı kazanamamışlardır. Gerek sulardaki maddelerin birikimi, gerekse ozon tabakasının yapısı, o ortamda, ancak belirli bağların, yani belirli moleküllerin sentezlenmesini mümkün kılmıştı. Oluşabilecek diğer tüm olası bağlar ve moleküller, bu koşullar nedeniyle oluşamamış ve ilk doğal seçilim (= Kimyasal Evrim) bu evrede tüm etkinliğiyle etkisini göster­miştir. Bugün canlılarda bulunan proteinler ve çekirdek asitleri, bu uyumu yapan, doğal seçilimden başarıyla kurtulan moleküllerdir. Bu koşullarda, büyük bir olasılıkla yalnız L - aminoasitler sentezlendiği için, bugün canlılarda, sadece bu tip aminoasitler vardır ve yalnız L - aminoasitleri kodlayacak şifreler oluşmuştur. Başka bir meka­nizmayla çalışabilecek canlıları yapacak diğer tüm moleküller oluşamayarak ya da bu doğal yıkımdan kurtulamayarak evrimin ilk mecrasını çizmiş olmaktadır. Doğal seçilimden kurtulan ilk moleküller başat (= dominant) tipleri meydana getirmiştir. Son olarak, atmosferin evrimiyle ilgili birkaç işlevine daha değinelim: Bilindiği gibi dünya sürekli olarak (saatte 4000 kadar) irili ufaklı gök taslarıyla bombardıman edilmektedir. Bunların çoğu sürtünmeden dolayı yanarak atmosferde küçük parçalara ayrılmaktadır. Böylece canlılar korunmaktadır. Ayrıca atmosferdeki buhar gece ve gündüz arasındaki sıcaklık farkını tamponlamaktadır. Son olarak, oluşan atmosferik hareketler, okyanusların minerallerce zenginleşmesini ve canlıların oluşabileceği ham toprakların meydana gelmesini sağlar.

http://www.biyologlar.com/anorganik-evrim-nedir

Güneş Sisteminin Oluşumu ve Atmosferin Kısa Bir Tarihi

Bu yazımızda sizlere kısaca Güneş sisteminin oluşumundan ve Dünya atmosferinin ilk oluşumundan günümüze kadar süre gelen tarihinden bahsetmek istiyoruz. Bu yazımızda Dünyanın ilkel atmosferinin nasıl tespit edildiğini, hangi gazlardan oluştuğunu ve nasıl değişim geçirdiğini daha iyi anlayacağınızı umuyoruz. Önce güneş sistemimizin nasıl meydana geldiğini anlamak için yazımıza başlayalım. Güneş Sistemi'nin Oluşumu Güneş sistemi, yaklaşık 4.57 milyar yıl önce çoğunluğu hidrojen olmak üzere geniş bir gaz, toz ve buz bulutu halinde başladı. Kütlesi Güneş’inkinden birkaç kat fazlaydı ve sıcaklğı da, atom ve molekül1erin gelişigüzel ısıl devinimlerinin durduğu mutlak sıfırın yaklaşık on derece üzerinde, -263 °C civarındaydı. Bu gaz ve toz bulutunun değişik bölümleri, kütle çekim kuvvetiyle birbirlerine doğru çekildi ve bulut büzüldü. Kütlesel çekim gücü, başlangıçta yani bulutun değişik kısımları birbirinden geniş çapta ayrıyken çok güçlü değildi. Ancak bulut büzülürken kütlesel çekim gücü de hızla arttı. Bu nedenle büzülme çöküntüye dönüşene kadar bulutun hacmi küçüldükçe, büzülme hızı da arttı. Açısal momentum, Güneş nebulası adını alan bu maddelerin tümünün daha sonra Güneşe dönüşecek merkezi bir yıldız olarak çökmesini önledi. İlk baştaki gaz ve toz bulutu Galaksi’deki diğer maddelere göre daha yavaş bir biçimde dönüyordu. Büzülme sırasında açısal momentum korundu. Açısal momentumu aşağıdaki formül eşitliği ile verilir. M = m.v.r Bu eşitlikte M açısal momentumu, m kütleyi, v dönme hızını, r ise dönme eksenine olan uzaklığı gösterir. Açısal momentumun korunumu ilkesine göre (tıpkı bir buz patencisinin kollarını iki yana bitiştirdiğinde daha hızlı dönmesi gibi), yarıçapı küçüldükçe bulutun dönme hızı arttı, Artan dönme hızı Nebulayı oluşturan maddelerin hareketlerini etkileyecek bir başka kuvveti de ortaya çıkardı. Bu kuvvet arabada keskin bir virajı alırken hissettiğimiz merkezkaç kuvvetidir. Bir gezegen, gezegenle Güneş arasındaki kütle çekim kuvveti ve gezegenin Güneş çevresindeki dönüşünün neden olduğu merkez kaç kuvveti sayesinde yörüngede kalır. Nebulanın büzülmesi sırasında açısal momentumun korunması, nebulayı oluşturan maddelerin bir kısmının açısal hızlarının merkezkaç kuvvetin çekim kuvvetiyle dengelenecek kadar artmasına neden oldu. Bu durumdaki maddeler, Nebulanın merkezi çevresinde dönen en yakındaki dairesel yörüngelere yerleşerek, büzülen bulutun gerisinde kaldılar. Bunun sonucunda başlangıçta dağınık olan bulut neredeyse bir bisiklet tekerleği gibi dönen ve merkezinde daha sonra Güneş’in atası haline gelecek yoğun bir gaz topu bulunduran bir diske dönüştü Gezegenlerin hareketiyle ilgili 16. yy verileri ışığında Sir Isaac Newton, iki cisim arasında, bu cisimlerin kütlelerinin çarpımıyla doğru, aralarındaki uzaklığın karesiyle ters orantılı bir çekim kuvveti (F) bulunduğu sonucunu çıkardı. Aşağıdaki bu formülde G evrensel çekim sabitini, m1 ve m2 aralarındaki mesafe r olan cisimlerin kütlesini göstermektedir. Çekim kuvveti Galaksideki yıldızların uzaya yayılmalarını ve gezegenlerin Güneş’in çevresindeki yörüngelerinde kalmalarını sağlar. Çekim kuvveti aynı zamanda bizi ve denizleri dünya üzerinde tutar ve atmosferimizdeki gazları yere yakın düzeyde yoğunlaştırır. Nebulanın hacmi küçülürken içerdiği gaz sıkışır. Sıkışma, gazın sıcaklığının yükselmesine neden olur. Bisiklet pompasının çalışırken ısınmasının nedeni de budur. Bunun tersi yani, sıcaklığın düşmesi gazın genleşmesiyle meydana gelir. Subabı açılan bir lastikten çıkan bava bu nedenle soğuk olur. En çok basınca maruz kalan ve bu nedenle de en fazla ısınan maddeler Güneş’in atasının merkezindeki maddelerdi. Bu maddeler öylesine yüksek bir sıcaklığa ulaştı ki sıcaklığı ile orantılı olan dışa doğru basınç, Güneş’in atasındaki diğer maddelerin ağırlığını kaldıracak duruma geldi. Böylece gaz topunun çekimsel çöküşü, dışa doğru basınçla, içe doğru çekim kuvveti eşitlendiği zaman duraksamaya uğradı. Bununla birlikte, daha çok Nebula maddesi çekim kuvvetiyle içeri emildikçe, Güneş’in atasının merkezindeki gaz sıkışması devam etti. Bu nedenle basınç, Güneş’i oluşturan maddelerin üst tabakalarının artan ağırlığını kaldıracak şekilde artarken sıcaklık da yükseldi. Bir gazın molekülleri sıcaklık yükseldikçe daha hızlı hareket ederler. Bununla birlikte moleküller arasındaki çarpışmanın şiddeti de artar. Artan sıcaklığın Güneş’in atasında bulunan hidrojen gazı üzerindeki ilk etkisi, çarpışmalar sonucunda hidrojen moleküllerinin (H2) ayrı ayrı hidrojen atomlarından oluşan bir gaz (H) üretmek üzere parçalanması oldu. Hidrojen atomu pozitif yüklü bir proton çevresinde salınım gösteren negatif yüklü elektrondan oluşur. Yüksek sıcaklıklar atomlar arasındaki çarpışmaların, elektronları protonlardan ayıracak kadar şiddetli olmasına yol açtı ve Güneş’in iç bölgesi proton ve elektronlardan oluşan bir gaza dönüştü. Aynı işaretli yükler birbirlerini iterler, bu nedenle çarpışmaların protonların birbirleriyle tepkimeye girmesine yol açacak denli şiddetlenmesinden önce son derece yüksek sıcaklıklara (yaklaşık 10 milyon °K) gereksinim vardı. Sonuç olarak sıkışma Güneş’in atasının merkezinde böylesine yüksek bir sıcaklık oluşturdu ve protonlar, dört protonu helyum atomunun çekirdeğine dönüştüren bir nükleer tepkime içinde birleşmeye başladılar, (bkz. Şekil 4). Bu çekirdeğin kütlesi kendisini oluşturmak üzere tepkimeye giren dört protonun kütlesinden daha azdır. Einstein’ın ünlü denklemi E=mc² eşitliği ile verilir. Bu denklemde E enerji, m kütle ve c=3×1010 cm/s’ye eşit olan ışık hızını göstermektedir. Buna göre kaybolan kütle enerjiye dönüşür Kontrollü nükleer füzyon araştırmaları, bu nükleer tepkimenin oluşmasına yetecek sıcaklık derecelerini laboratuvarda elde etmenin ve sürdürmenin yollarını arıyor. Gerekli olan bu sıcaklık, Güneş’in atasında dev bir gaz kütlesinin ağırlığıyla oluşan sıkıştırma sonucundameydana geldi. Güneş’in bir yıldız olarak doğmasına, içindeki nükleer tepkime neden oldu. Güneş’i oluşturan maddelerin başında gelen protonların helyum çekirdekleri oluşturmak üzere tepkimeye girmesi Güneş’in sürekliliğini sağlamaktadır. ATMOSFERİN GEÇİRMİŞ OLDUĞU EVRELER Göktaşı parçalarından elde edilen fiziksel ve kimyasal kanıtlar, Dünya da dahil olmak üzere Güneş sisteminin yaklaşık 4.57 milyar yıl önce oluştuğunu göstermektedir. Bununla birlikte Dünya üzerinde şimdiye kadar bulunan en eski kayaçlar yaklaşık 3.8 milyar yıl öncesine tarihlenmektedir. Bu nedenle Yer’in tarihinin ilk 0.8 milyar yılı hakkında doğrudan bir kayıt bulunmamaktadır. Dünya atmosferinin bugüne kadar geçirmiş olduğu evreler dört ana başlık altında incelenebilir. Astronomik Atmosfer Dünyamızın bundan 4.57 milyar yıl önceki ilk atmosferi evrende en bol bulunan hidrojen (H) ve helyumdan (He) oluşuyordu. Serbest halde Oksijen (O2) hiç yoktu. Ayrıca bu elementlerin yanında metan (CH4) ve amonyak (NH3) gibi hidrojen bileşikleri de ilk atmosferin bileşiminde yer almaktaydı. Bugün pek çok bilim adamı ilk atmosferin dünyanın çok sıcak olan yüzeyinden uzaya kaçtığını tahmin etmektedir. Jeolojik Atmosfer Dünyanın ikinci ve daha yoğun atmosferi dünyanın iç kısımlarındaki erimiş kayalardan volkanik aktiviteler yoluyla yüzeye çıkan gazlar tarafından oluşturulmuştur. Volkanların o zamanlarda çıkardığı gazların bileşimi ile bugünkü bileşiminin aynı olduğu varsayılmaktadır. Bu gazlar %80 subuharı (H2O), %10 karbondioksit (CO2) ve yüzde bir kaç azottur (N). Aradan geçen milyonlarca yıl içerisinde, dünyanın sıcak iç kısmından dışarıya doğru fışkıran gazlar, bulut oluşumuna izin verecek kadar zengin bir subuharı içeriğinin oluşmasını sağladı. Binlerce yıl yeryüzüne düşen yağmurlar akarsuları, gölleri ve okyanusları oluşturdu. Bu peryot boyunca önemli miktarda CO2 okyanuslarda çözündü. CO2’nin diğer önemli bir kısmı da karbonatlı tortul kayaçlar (kireçtaşı, CaCO3) içerisine hapsedildi. Subuharının önemli bir kısmının yoğunlaşması ve CO2’nin azalması sonucu atmosfer azot bakımından daha zengin bir hale geldi. Sayısal modeller ikinci atmosferin başlangıçtaki ortalama sıcaklığının 80-110 °C arasında bir sıcaklıkta olduğunu göstermektedir. Biyolojik Atmosfer Yeryüzünde canlı yaşamının ne zaman başladığı, bunun anaerobik mi, aerobik mi olduğu vb sorular atmosferin evriminde son derece önemlidir. Bilimsel bulgular biyolojik dönem öncesinde Dünya atmosferinde serbest oksijenin olmadığını ortaya koymaktadır. Yaşamın temel organik yapı taşlarının kimyasal sentezi hakkındaki laboratuvar çalışmaları, bu yapıların oksijenin varlığında oluşamayacaklarını göstermektedir. İlkel atmosferlerin oluşumuyla ilgili kuramsal çalışmalarda, oksijenin o kuşullarda bulunmaması gerektiği ortaya çıkmaktadır. Yaşamın ilk oluşumlarına benzedikleri düşünülen günümüzün en basit mikropları üzerinde yapılan çalışmalar ise oksijen içeren bir atmosferde bu mikropların yaşayamayacaklarına işaret etmektedir. Günümüz atmosferinde azottan sonra en bol bulunan oksijenin (O2) bugünkü düzeyine ulaşması oldukça yavaş gelişen bir sürecin sonunda gerçekleşmiştir. Bu süreçte subuharı güneşten gelen yüksek enerjili ışınlar tarafından hidrojen ve oksijene ayrılmıştır (fotodissosiyasyon). Bunlardan oksijen dünya atmosferinde kalırken, daha hafif bir gaz olan hidrojen uzaya kaçmıştır ( H’nin günümüz atmosferindeki hacimsel oranı % 0.0006 kadardır). Bundan 2-3 milyar yıl önce, mevcut O2 oldukça düşük bir düzeyde olmasına karşın, bazı ilkel bitkilerin gelişimi için yeterli olmuş olmalıdır. Belki de ilk bitkiler tamamen oksijensiz (anaerobik) bir ortamda gelişmişlerdir. Çevremizde gördüğümüz organizmalar, hayvanlar, bitkiler ve mantarlar, organizmanın bütünlüğü içinde farklı işlevler görmek üzere özelleşmiş hücrelerden oluşur. Çok hücreli organizmalarda bulunan bu hücrelere ökaryot hücreler adı verilir. Ökaryot hücrenin genetik malzemesi bir çekirdek içindedir. Bu hücrelerde organel adnı alan, zarlarla çevrili, özelleşmiş iç organlar bulunur. Genellikle her organel türünün ayrı bir biyokimyasal işlevi vardır. Bakterilerde bulunan prokaryot hücre, ökaryot hücrenin tersine, ondan belirgin şekilde daha küçüktür. Bu hücre çekirdeksiz olup az sayıda organel içerir. Genetik malzemesi bir zarla çevrili değildir ve hücre protoplazması içine dağılmış durumdadır. Biyokimyasal işlevlerin çoğu hücre çeperinin iç zarında gerçekleşir. Basit yapısı, prokaryot hücrenin ökaryot hücreye göre daha ilkel olduğunu göstermektedir. Fosil kayıtları da bu düşünceyi desteklemektedir. Stromatolit adı verilen kayaçlarda bulunan ve görünüşe göre prokaryot olan mikropların fosilleri 3.5 milyar yıl yaşındadır. Stromatolit adı verilen kayaç şeklindeki fotosentez yapan bakteri kolonileri günümüzde de bulunmaktadır. Kayaç Şeklindeki Stromatolit Kolonisi Oysa şimdiye kadar bulunan ve deneysel olarak büyüklüklerine göre tanımlanan en eski ökaryotlar, sadece 1 milyar 400 milyon yaşındadır. Bilindiği gibi, ökaryot hücrelerden oluşan bütün organizmalar zorunlu olarak aerobiktir (havacıl); yani yalnızca serbest oksijen bakımından zengin ortamlarda yaşayabilirler. Prokaryotlar ise bunun tersine oksijene tam bir tepki çeşitliliği gösterirler. Bazıları zorunlu anaerobiktir (havasız yaşar). Oksijene maruz kaldıklarında ölürler. Diğerleri de zorunlu aerobiktir. Bazıları çevrelerinde bir miktar oksijene gerek duyabilir ya da bunu tolere edebilirse de bu miktar, günümüzde havada bulunan oksijen kadar çok değildir. Maruz kaldıkları oksijen miktarından etkilenmeyen prokaryotlar da vardır. Kimi prokaryotlar oksijensiz bir ortamda evrilmiş ve bu ortama uyum sağlamışken, ökaryotlar aerobik koşullarda ortaya çıkmış ve evrilmişlerdir. Ökaryot hücrenin ortaya çıktığı sırada, Yer üzerinde bol miktarda oksijen olması gerekir. 3.5 milyar yıldan önce yani yaşamın başladığı sıralarda ise oksijen yoktu. Bu tarihler arasında bir yerde atmosfer aerobik hale geldi, (bkz. Şekil 5). Atmosferin bugünkü O2 düzeyine ulaşması bitki gelişiminin bir sonucudur. Bilindiği gibi bitkiler fotosentez esnasında CO2 ve suyu kullanarak kendi besinlerini yaparken çevreye de O2 verirler. Bu nedenle bitki gelişiminden sonra atmosferik oksijen miktarı hızla artarak bundan bir kaç yüz milyon yıl önce bugünkü düzeyine ulaşmıştır. Bilimsel çalışmalar başka hiçbir gezegende aerobik atmosfer bulunmadığını göstermektedir. Yaşam diğer özelliklerinin yanında bu yönüyle de dünyayı benzersiz kılmaktadır. Sosyo-ekonomik Atmosfer (Günümüz) İnsanalrın Endüstri devrimiyle birlikte gündeme gelen hava kirliliği, atmosferin doğal bileşiminde önemli değişikliklere neden olmuştur. Fosil kökenli (petrol, kömür vb.) yakıtların endüstride ve konutlarda yaygın bir şekilde kullanılmaya başlamasıyla CO2 ve subuharı gibi önemli sera gazlarının atmosferdeki konsantrasyonları artmıştır. Bu yüzyılın başlarında 290 ppm olan CO2 konsantrasyonu, 1987 yılında 345 ppm’e çıkmıştır. Bilim adamları bu miktarın izleyen 100 yıl içerisinde 600 ppm’e çıkacağını tahmin etmektedir. Pek çok karmaşık fiziksel ve kimyasal atmosferik süreçleri dikkate alan matematik modeller kullanılarak yapılan öngörüler, CO2 konsantrasyonunun ikiye katlanmasının, yüzey hava sıcaklığında 2-4 °C‘lık bir sıcaklık artışına neden olacağını ortaya koymaktadır. Ayrıca otomobillerin atmosfere bıraktığı gazlar, soğutma ve kozmetik endüstrisinde kullanılan CFC (kloroflorokarbon) vb gazlar da atmosferin doğal bileşimini bozmaktadır. Günümüz atmosferinin % 78’i azot, % 21’i oksijen, % 0.93’ü argon ve geri kalanı da çeşitli eser gazlardan oluşmaktadır. Gelecek nesillere temiz bir atmosfer bırakmak umuduyla... Yaşamın Kökeni. Kaynakça : 1. Yerin Tarihi, J.C.G. Walker (Çev:E. Uluhan), Nar Yayınları, 1996. 2. The Chemical Evolution of the Atmosphere and Oceans, H.D. Holland, Princeton Uni. Press, 1984. 3. Origin of the Solar System, R. Jastrow, A.G.W. Cameron, New York: Charles’s Sons, 1977. 4. Handbook of Atmospheric Science, C.N. Hewitt, A.V. Jackson, Blackwell Publishing, 2003. 5. Universe: An Evolutionary Approach to Astronomy, E. Chaisson, New Jersey, 1988.

http://www.biyologlar.com/gunes-sisteminin-olusumu-ve-atmosferin-kisa-bir-tarihi

İKLİM DEĞİŞİKLİĞİ

1- Ne? Ortak mirasımız;“Karbon Uygarlığı ” Milyonlarca yıllık doğal süreçlerle oluşan karbon varlıklarımızı sorumsuzca harcıyoruz.Son 125 yılda 1 trilyon varil petrol tüketildi, küresel orman varlığı ise 1850-1980 yılları arasında %15 azaldı. 2- Neden? Dünyanın Battaniyesi Kalınlaştı CO2 ve diğer sera gazları,dünyanın ortalama sıcaklığının yaklaşık 15oC düzeyinde kalmasını sağlar.Ama fosil yakıtların tüketilmesi ve orman alanlarının yok edilmesi sonucunda,1750 yılından bu yana atmosferdeki CO2 birikimi %30,CH4 birikimi %150, N2O birikimi %17 artarak 2004 yılında son 500,000 yılın en yüksek düzeylerine ulaştı. . 3- Nasıl? Dünyanın Ateşi Yükseldi. Son yüzyılda küresel ortalama sıcaklık en az 0,6oC arttı.Önlem alınmazsa, 21.yüzyılın sonunda ise sıcaklık artışının 5oC ’yi geçebileceği öngörülüyor. Son 50 milyon yılda bu kadar kısa bir sürede bu kadar büyük bir sıcaklık artışı görülmedi.1998 ve 2005 tarihin en sıcak yılları arasında ilk sıralarda. Son 200 yıldaki en sıcak 10 yıl son 20 yılda yaşandı. 4- Sonuç? Bu kadar sıcaklık artışı Dünyanın Dengesini Bozdu. 1970’ten bu yana eriyerek yok olan kutuplardaki buzul alanı,Türkiye ’nin yüzölçümünün 2 katına eşit.2005 yılında;Bombay’da tarihin en büyük sel felaketi yaşanırken,Amazonlarda,Afrika ’da ve Avustralya ’da son 60-100 yılın en kurak mevsimi yaşandı,Atlantik Kasırga sezonu ise kasırga sayısı, şiddeti ve süresi açısıdan rekor kırdı. 5- Yani? Felaketler herkesin başına gelebilir, SİZİN DE Kuzey Kutbunda Inuit halkının yaşam alanları eriyen buzullar nedeniyle yok oluyor.Pasifik adalarının yerlileri ise deniz seviyesinin yükselmesi halinde yurtlarından ayrılıp mülteci olacaklar.Avrupa ’da aşırı sıcaklıklar bir ayda 20.000 ’den fazla insanın yaşamına mal oldu.Katrina Kasırgası’nın toplam maliyeti 150 milyar ABD Dolarını aştı. 6- Dahası? Beterin beteri; ANİ İKLİM DEĞİŞİKLİKLERİ Bilim insanlarına göre felaket senaryoları arasında;artan sıcaklıkların Sibirya buzulları altındaki binlerce ton sera gazını serbest bırakmasıyla küresel ısınmanın kontrolden çıkması,eriyen buzulların ise okyanuslardaki su akıntılarını yavaşlatarak ya da durdurarak Kuzey yarımkürenin ani bir buzul çağına girmesi yer alıyor. Amerika Birleşik Devletleri Çevre Koruma Ajansı (U.S. Environmental Protection Agency) web tabanlı coğrafi bilgi sistemleri ile iklim üzerindeki değişiklikleri ve etkileri, geleçeğe dair hazırlanan modellemeleri web sitesinde yayınlamaktadır. www.epa.gov

http://www.biyologlar.com/iklim-degisikligi

DOĞAL VE KUVVETLENMİŞ SERA ETKİSİ NEDİR?

Yeryüzündeki tüm yaşam biçimleri için vazgeçilmez bir ortam olan atmosfer, kendilerine özgü fiziksel ve kimyasal özellikleri bulunan birçok gazın karışımından oluşur. Atmosferin bileşimi durağan değildir; zamandan zamana, yerden yere değişebilir. Atmosferi oluşturan başlıca gazlar, azot (% 78.08) ve oksijen (% 20.95), temiz ve kuru hava hacminin % 99’unu oluşturur. Bu gazlar atmosferin en bol bulunan bileşenleri ve Yerküre üzerindeki yaşam için çok önemli olmalarına karşın, hava olaylarını etkilemedeki görevleri küçüktür ya da önemsizdir. Kalan yaklaşık % 1’lik kuru hava bölümü, etkisiz bir gaz olan argon (% 0.93) ile nicelikleri çok küçük olan bazı eser gazlardan oluşur. Atmosferdeki birikimi çok küçük olmakla birlikte, önemli bir sera gazı olan CO2, % 0.037 oranı ile dördüncü sırada yer alır. Doğal Sera Etkisi Atmosferdeki doğal sera etkisinin varlığı ve işlevi, daha küçük bir ölçekte, tarımsal üretimde kullanılan bitki seralarının çalışma sistematiği ile benzeştirilebilir. Bitki seralarında kullanılan cam ya da plastik kaplamalar, kısa dalgalı güneş ışınımlarını geçirmekte, buna karşılık uzun dalgalı yer (kızıl ötesi ya da termik) ışınımının büyük bölümünün kaçmasına engel olmaktadır. Sera içinde tutulan termik ışınım, seranın ısınmasını sağlayarak, hassas ya da ticari değeri bulunanbitkiler için uygun bir yetişme ortamı oluşturur. Bitki seralarının içindeki sıcaklığın istenen değerlerde olmasını sağlamak için, hava koşullarındaki değişimler dikkate alınarak, havalandırma pencereleri kullanılır ya da ek ısıtma yapılır.Yerküre’nin sıcaklık dengesinin kuruluşundaki en önemli süreç olan doğal sera etkisinin oluşumu da, atmosferin kısa dalgalı güneş ışınımını geçirme, buna karşılık uzun dalgalı yer ışınımını emme ya da tutma eğiliminde olmasına bağlıdır. Gelen güneş ışınımının yaklaşık % 31’i yüzeyden, atmosferdeki aerosollerden ve bulut tepelerinden yansıyarak uzaya geri döner. Güneş enerjisinin Yerküre-atmosfer sisteminde tutulan % 69’luk bölüm, iklim sistemini oluşturan ana bileşenlerce (atmos­fer, hidrosfer, litosfer ve biyosfer) kullanıldıktan sonra uzun dalgalı yer ışınımı olarak atmosfere geri verilir. Giden kızıl ötesi ışınımın önemli bir bölümü sera gazlarınca ve bulutlarca emilir ve atmosfere geri salınır. “Atmosferdeki gazların gelen Güneş ışınımına karşı geçirgen, buna karşılık geri salınan uzun dalgalı yer ışınımına karşı çok daha az geçirgen olması nedeniyle, Yerküre’nin beklenenden daha fazla ısınmasını sağlayan ve ısı dengesini düzenleyen doğal süreç” doğal sera etkisi olarak adlandırılır. Yeryüzü, sera etkisi sayesinde, bu sürecin bulunmadığı ortam koşullarına göre yaklaşık 33 °C daha sıcaktır. Güneş ışınımı ile yer ışınımı arasındaki bu dengeyi ya da enerjinin atmosferdeki ve atmosfer ile kara ve okyanus arasındaki dağılışını değiştiren herhangi bir etmen, iklimi de etkileyebilir. “Yerküre/atmosfer sisteminin enerji dengesindeki herhangi bir değişiklik” ise ışınımsal zorlama olarak adlandırılır. Yerküre’nin güneşin çevresinde izlediği yörüngedeki ve kendi eksen eğimindeki yavaş değişimler, güneş ışınımının mevsimsel ve enlemsel dağılışını etkilemektedir. Bu yüzden, bazı bilimciler, eskiden beri iklim değişikliklerinin (örneğin, buzul ve buzularası çağların) oluşmasından, Yerküre’nin eksen eğimindeki değişimleri ve yörüngesindeki sapmaları da sorumlu tutmuştur. Kuvvetlenmiş Sera Etkisi Sanayi devriminden bu yana yoğunlaşan insan etkinlikleri (örn.; kömür, petrol, doğal gaz gibi fosil yakıtların yakılması), orman alanlarının yok edilmesi ve endüstriyel süreçlerde ortaya çıkan gazlar) nedeniyle, atmosferdeki sera gazı birikimlerinde belirgin bir artış gözlemlenmektedir. BM İklim Değişikliği Çerçeve Sözleşmesi (İDÇS) ve onun Kyoto Protokolü (KP) başlıca altı sera gazının (CO2, CH4, N2O, hidrofluorokarbonlar (HFC’ler), perfluorokarbonlar (PFC’ler) ve sülfür heksafluorid (SF6)), kontrol altına alınmasını öngörmektedir. Stratosferdeki ozon tabakasının incelmesine neden olan klorofluorokarbonlar (CFC’ler) ise Montreal Protokolü’nce denetlenmektedirler. Özellikle atmosferdeki birikiminin büyüklüğü ve artış hızı ile yaşam süresi dikkate alındığında, öteki sera gazlarına göre CO2’nin önemi daha iyi anlaşılır.Bu yüzden, Mauna Loa (Hawaii) Gözlemevi’ndeki atmosferik karbondioksit izleme programı, küresel iklim değişikliği çalışmalarının temelini oluşturur. 1958 yılından beri yapılmakta olan Mauna Loa ölçümlerine göre, Yerküre atmosferindeki CO2 birikimi çok hızlı bir biçimde artmaktadır. Mauna Loa’nın yayımlanan son ölçüm sonuçları, 1958 yılında yaklaşık 315 ppmv olan atmosferdeki yıllık ortalama CO2 birikiminin, 2003 yılında yaklaşık 376 ppmv’e yükseldiğini gösteriyor. Küresel ölçümler, öteki sera gazlarının çoğunun atmosferik birikimlerinin de arttığını kanıtlıyor. Sera gazı birikimlerindeki bu artışlar, Yerküre’nin daha fazla ısınmasına yol açan pozitif ışınımsal zorlamanın oluşmasını sağlar. “Yerküre/atmosfer ortak sisteminin enerji dengesine yapılan pozitif katkı”, kuvvetlenmiş sera etkisi olarak adlandırılır. Bu ise, Yerküre atmosferindeki doğal sera gazları (su buharı, CO2, CH4, N2O ve O3) yardımıyla yüz milyonlarca yıldan beri çalışmakta olan doğal sera etkisinin kuvvetlenmesi anlamını taşır. (Şekil.3) Ancak bitkisel sera örneğinden farklı olarak, Yeryüzü’nün doğal sera etkisinin kuvvetlenmesi sonucunda ortaya çıkan küresel ısınmanın etkisini zayıflatacak bir “havalandırma penceresi” yoktur. Bu nedenle, insan kaynaklı sera gazlarının salımlarının kontrol altına alınması ve azaltılması, iklim değişikliği ile mücadelenin en önemli adımlarını oluşturur. Kaynak: www.cevreonline.com

http://www.biyologlar.com/dogal-ve-kuvvetlenmis-sera-etkisi-nedir

KURBAĞA BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Türkiye’de göl, dere, çay, nehir gibi iç sularda ve bazı nemli ortamlarda yaşayan pek çok kurbağa türü bulunmaktadır. Kurbağaların hemen hepsi üreme zamanlarında suya bağımlı olup, hayatlarının diğer zamanlarında karada yaşamaktadırlar. Kurbağalar, ilkbahar ve yaz aylarında sulara yumurta bırakır. Yumurtaların bırakıldığı bazı su ortamlarının yaz aylarında kuruması sebebiyle kurbağa yumurta ve larvaları olumsuz şekilde etkilenmekte ve hatta büyük bir kısmı ölmektedir. Buna rağmen ülkemizde doğal ortamlarda yetişen kurbağaların toplanarak yapılan üretim miktarları aşağıdaki gibidir. Amerika Birleşik Devletleri ve Uzak Doğu Ülkelerinde semi-intensif şekilde kurbağa üretimi yapılmakta olup, henüz ülkemizde doğadan toplamanın dışında üretim yapılmamaktadır. BİYOLOJİSİ Kurbağaların Türkiye’de 11 türü bulunmakta, bunlardan bazıları; Rana, Hyla, Bufo, Pelabotes, Bombina ve Palodytes tir. Bu türler içerisinde ekonomik değeri olan ve ihracaatı yapılan Rana cinsinin ülkemizde 5 türü yaşamaktadır. Kurbağalar, omurgalılar hayvanlar grubuna girip, bu hayvanlar arasındaki yerlerini şu şekilde belirlemek mümkündür: Şube (Phylum) : Chordata Alt-Şube (Subphylum) : Vertebrata Sınıf (Classis) : Amphibia Takım (Ordo) : Anura Aile (Familia) : Ranidae Cins (Genus) : Rana Tür (Species) : Rana ridibunda (Ova K.) Rana dalmatına (Çevik K.) Rana macrocnemis (Uludağ K.) Rana cameranoi (Şerit K.) Rana holtzi (Toros K.) ÜREMELERİ Kurbağaların cinsi olgunluğa gelmeleri dişilerde 1-2, erkeklerde 3-4 yaşları sonunda ulaşırlar. Eşeysel olgunluğa ulaşan kurbağalar üreme zamanı geldiğinde suya girerler ve larva safhalarının sonuna kadar da suda kalırlar. Daha sonraları kurbağalar karasal yaşama geçerler. Erkek kurbağaların vücut yapıları dişilerden oldukça iri (büyük) olduğundan ayırt etmek zor değildir. Erkeklerin kulak zarı daha büyük ve gözler daha iridir. Erkeklerin gırtlakları parlak sarı renkli dişilerinki ise beyaz ve kahverengi beneklidir. Yetişkin erkek kurbağalar üreme mevsiminde bazı sesler çıkartırlar ses çıkartma üreme zamanları Şubat ayı sonu ile Ağustos ayı sonuna kadar devam etmektedir ve bu sayede erkekler kolayca ayırt edilir. Kurbağalarda gerçek bir çiftleşme yoktur. Bunun için bu çiftleşmeye kucaklaşma (amplexus) denilmektedir. Kurbağaların çiftleşmeleri genelde geceleri olur ve senede 3-4 dönem yumurtlama olmaktadır. Her dönemde 5.000-10.000 adet arasında yumurta bırakmaktadırlar. Kurbağalar ayrı eşeylidirler. Erkek ve dişi üreme organları ayrı fertte bulunur. Erkeklerdeki testislerde olgunlaşan spermatozoonlar bir kanal ile böbreklere oradanda dışarıya atılırlar. Testisler üzerinde sarı renkli bir çift yağ cisimciği vardır. Bunlar kurbağaların kış uykularında beslenmelerini sağlar. Dişi kurbağalarda bir çift ovaryum bulunur. Ovaryumların büyüklükleri yaşa ve mevsime göre değişiklik göstermektedir. Ovaryumların üzerinde erkeklerde olduğu gibi bir çift yağ cisimciği bulunur. Bu yağ cisimleri kış aylarında dişi kurbağanın kış uykusunda beslenmesini sağlar. Yumurta ve Larvalar Ovaryumda olgunlaşan yumurtalar vücut boşluğuna dökülürler. Buradan yumurta kanalına geçer oradan uterusa ve daha sonra kloak yoluyla dışarıya atılırlar. Yumurta , yumurtlama borusundan geçerken etrafı jelatin bir kılıfla sarılır. Yumurta suya düşünce bir kılıf şiştikten sonraki halidir. Bu jelatin madde yapışkan olduğunda yumurtalar bir grup teşkil eder. Jelatin içindeki embriyo geliºerek larva meydana gelir. Bu larvalar kılftan hareketli bir halde çıkar ve serbest yüzmeye başlar. Bunlara iribaş veya tetar denir. İribaşların ilk safhasında dış solungaçlar gelişir ve solunumu bunlarla yapar. Kurbağa yumurtaları küreseldir. Yumurta çapı 7-10mm civarındadır. Bir dişi kurbağa ortalama olarak 9.000 yumurta yumurtlamaktadır. Yaşlı kurbağalar 12.000 adete kadar da yumurtlayabilirler. Yumurtalar yaklaşık 3 gün içerisinde açılır. 1-1.5 ay sonra iç solungaçlarla yüzgeçler gelişir. İribaşlar 2-2.5 aylık olunca arka bacaklar, 4 aylık olunca ön bacaklar gelişir. 6-6.5 aylık olunca metamorfoz (başkalaşım) geçirerek kuyruk, solungaç ve solungaç yarıkları tamamiyle yok olur. Yerine alkciğerler gelişir ve böylece kurbağalar karasal yaşama başlarlar. Bu safhada kurbağalar herbivordur (bitkiyle beslenirler). Kurbağalarda başkalaşım sonucu şekil değiştirme kuyruğun tamamen yok olmasıdır. Şekil değiştirmede önemli olan su ısısıdır. Su ısısı 16 C0 nin altına düştüğü zaman yavrular şekil değiştirmeyi yapamazlar. Bunun için yavrular güneş ışığında belirli zamanlarda tutularak şekil değiştirmelerine yardımcı olunmalıdır. Eğer yavrular şekil değiştirmeyi gerçekleştiremezlerse ölüm kaçınılmaz olur. Beslenmelerİ Ergin kurbağalar (Anura) yalnız canlı ve hareketli böcek, solucan ve küçük yumuşakçalarla beslenirler. Sucul formlardan büyük formda olanları küçük balık ve kuş gibi hayvanlarla da geçinebilirler. Hatta bazı türler kendi larvalarını da yiyebilirler (kanibalizm). Kuyruksuz kurbağada (Anura’da) olduğu gibi dil öne doğru fırlatılarak dilin yapışkan uçları ile avlarının yakalanmasını sağlar. Bir çok su kurbağasında (Ranidae) ava nişan alınarak dil fırlatılır. Kuyruksuz kurbağa larvaları ise sudaki alglerle ve ölü hayvan kırıntılarıyla geçinirler. Çünkü bunların ağızları büyük besinleri yutmaya elverişli değildir. Larvalar ile erginler birbirlerine rakip olmamak için aynı tür besinlerle beslenmezler. Besinleri protein açısından oldukça zengindir. Soğuk kanlı hayvanlar olduklarından vücütlarında çok fazla miktarda yağ ve glikojen depo etmeye gerek duymazlar. Çünkü bunların metabolizması oldukça düşük düzeydedir.Uygun sıcaklıklarda ve besin sunumunda kurbağalar çok miktarda besin alabilme yeteneğindedirler. Bunun yanısıra bir aydan fazla açlığa dayanabilirler. Yumurtadan çıkan yavrularda başın altında vitellüs (besin) kesesi vardır. Yavrular ilk bir hafta bu besinleri kullanırlar. Besin kesesi kullanımı bittikten sonra (asorbe olduktan sonra) dışarıdan besin almak zorundadırlar. Soğuk kanlı olmaları ve ince olan derileriyle fazla miktarda su kaybettiklerinden , aşırı sıcaklık ve kuraklığa karşı dayanıklı değillerdir. Sucul iki yaşamlılar kış uykusu için göl ve nehirlerin donmayan dip kısımlarına çekilirler. DüşmanlarI Kurbağa larvaları Rhynchota (Hortumlular), Coleoptera (Kin kanatlılar) gibi sucul böcekler tarafından yenir. Aynı zamanda Odonata (Tayyare böcekleri) larvalarıda genç evrelerinde kurbağa larvaları ile beslenmektedir. Lucilia adı verilen bir sinek yumurtalarını Bufo ve Rana türleri üzerine bırakır. Birkaç gün içinde çıkan larvalar bu kurbağalarda doku bozuklukları, daha sonrada ölümler meydana getirirler. Kurbağa Kültürü Diğer su canlılarında ( balıklar, kabuklular v.s.) olduğu gibi kurbağalarında suni üretiminde son yıllarda büyük başarı sağlanmıştır. Kurbağa kültüründe kullanılan yetiştirme havuzları ve özellikleri şu şekildedir. Yetİştİrme HavuzlarI Kurbağa yetiştirciliğinde kullanılan havuzların her birinin alanı değişik olabileceği gibi 50-60m2 olanlar tavsiye edilir. Bir kurbağa yetiştirme çiftliğinin kurulması için toplam 5-6 bin m2’lik bir alan yeterlidir. Böyle bir çiftlikte 5 çeşit havuz yapılması gerekmektedir. Bu havuzlar; · Yumurtlama havuzları · Kuluçka havuzları · Yavru ( iribaş ) havuzları · Genç yavru havuzları · Yetişkin havuzları Yumurtlama Havuzları Genel olarak bu havuzlar 10-15m2 arasında değişen büyüklüklerde yapılmaktadır. Bu havuzlar toprak olduğu için, etrafına ağaçlar ve yüksek bitkiler dikilmek suretiyle tabi bir ortam şekli yaratılmalıdır. Havuzların derinliği değişik olmakla birlikte herbir havuzda 1/3’lük kısmının derinliği 10cm. olmalıdır. Yumurtlama havuzlarına konacak anaç seçiminde kuvvetli olanlar seçilir ve bir erkeğe 3 yada 4 dişi gelecek şekilde seçilmeli ve yumurtlama havuzlarına bırakılırlar ve bekletilirler. Bu sırada havuzlarda bulunan anaçlar rahatsız edilmemelidirler. Kuluçka Havuzları Anaç havuzlarından elde edilen yumurtalar geniş bir kepçe yardımıyla toplanır ve bu yumurtaların %10-15’inden iribaş elde edilir. Yumurtaları havuzlara aktarılmasından sonra su hiç karıştırılmamalıdır. Yumurtaların açılmasında su, ısı ve zaman önemli bir faktördür. Yumurtalar 24-27Co arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş- çıkışı sağlanmalıdır. Kuluçka havuzları betondan inşaa edilmelidir ve havuzlar 40 cm. derinlikte olmalıdır. Havuzlarda bu devrede su akımı önemlidir. Bu nedenle havuzların su giriş ve çıkışı uygun şekilde yapılmalıdır. Larva (İribaş) Havuzları Yumurtadan çıkan larvalar bir hafta boyunca besin kesesini kullanırlar, daha sonra dışarıdan besin almak zorundadırlar. Bu aşamada yumurta sarısı ile beslenmeleri gerekir. İribaş yavruları ilk ay içerisinde balık ve yer fıstığı unu daha sonra tatlı patates unu, pirinç kepeği, mutfak artıkları ve değersiz yiyeceklerle beslenirler. Yiyecekler su yüzeyinde yüzecek şekilde altları delik kaplarla verilmelidir. Günde iki öğün yem verilmelidir. Çıkan yumurtalardan yaklaşık %10-15’inden iribaş elde edilir. Yumurtalar geniş bir kepçe ile su içinde alınarak kuluçka havuzlarına konulurlar. Yumurtalar havuza nakledilikten sonra havuzlar hiç karıştırılmamalıdır. Yumurtaların açılmasında su ısısı ve zaman önemli bir faktördür. Yumurtalar 24-27C0 arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş çıkışı sağlanmalıdır. Kuluçka havuzlarının; derinliği 30-40 cm. arasında ve zeminleri çamur olmalıdır. Böylece havuzların su ısısının sabit tutulması ile yavruların büyüme güvenliği sağlanmış olur. Larva havuzların dikdörtgen şeklinde olması tavsiye edilir. Uygulamada 1m2 ye 1.000 adet olacak şekilde kurbağa larvaları larva havuzlarına konulur. Eğer akarsuya larvalar konulacak ise m2ye 2.000 adet yavru konulmalıdır. Bu arada yavruları boylama eleklerinden geçirerek sınıflandırma yapılır ve ayrı havuzlara koymak gerekir. Genç Yavru Havuzları Genç yavru havuzlarının su derinliği 15-35 cm. arasında olmalı ve her bir havuzun 1/4 kadarlık kısmı sudan daha yüksekte olmalıdır. Yani yavrular gerektiğinde çıkabilmeleri için havuzda susuz bir sahaya gereksinimleri vardır. Yavrular bu havuzlara ancak 3. Aylarını doldurduktan sonra nakledilmelidirler. Genç havuzlarının 1 m2sine 100-120 arasında yavru konulmalıdır. Fakat yavrular 6-7 cm uzunluğunda iseler bu sayı 60-80 arasında olmalıdır.Bütün yavrulara şekil değiştirene kadar yem verilmez. Şekil değiştiren kurbağalar arasında yine bir seleksiyon uygulanır ve aynı büyüklükte olanlar seçilerek aynı havuzlara bırakılırlar. Bu işlem yavrular büyüyünceye kadar devam eder. Şekil bozukluğu gösterenler ve kuyruk atamayanlar ortamdan uzaklaştırılır.Çünkü kanibalizm olayı meydana gelir. Havuza bırakılan genç yavrulara toprak solucanları, sinek larvaları, küçük balıklar, küçük karidesler ile diğer canlı hayvansal besinler verilmelidir. Sinek larvalarının havuzların içinde çoğalmaları için balık artıkları konmalıdır. Çünkü bu artıklar sinekleri cezbeder ve sinek yumurtalarının çoğalmaları için uygun ortam sağlanmış olur. Buda ucuz bir şekilde yavruların ihtiyacının karşılanması demektir. Hava sıcaklığı 20-26 C0 olduğu zaman daha fazla besin verilmelidir ve verilen besin miktarı yüksek ve düşük ısıda azaltılmalıdır. Ortalama verilen besin miktarı %10 kadar olmalıdır. Günde iki defa beleme yapılmalıdır. Besinin kurbağalara eşit olarak verilmesi gerekir bunun içinde yem toprak yüzeyine dağıtılmalıdır. Daha sonra yem küçük tepsilere konulur, tepsinin yarısına toprak solucanı, kurtçuk diğer yarısına da küçük balık, karides, v.s. konur. Tepsi kısmen suya batırılır. Bu işlemde amaç kurbağaların doğadan yem yeme alışkanlığını geliştirebilmelerini sağlamaktır. Bu arada ölen kurbağalar ortamdan uzaklaştırılmalıdır. Yavrular doğal besinlerden alabilecekleri zamana kadar bu iºleme devam edilir. Yetişkin Havuzları Yetişkin kurbağa havuzları genç yavru havuzlarına benzer. Yalnız havuzlardaki su derinliği 30 ile 40 cm. de devamlı korunmalıdır. Bu havuzlarda genç yavru havuzlarındaki gibi kara kısmı yoktur. Yalnız bunun yerine yüzen yem platformları yapılmalıdır. Havuzların etrafı kurbağaların kaçmamaları düşmanları tarafından yenmemeleri için çitle çevrilmelidir. Bu çitler naylondon olabileceği gibi ağaç veya demirden de olabilir. Havuzun yüzeyi de yine böyle bir çitle kaplanmalıdır. Kurbağalar üçüncü aylarını doldurduktan sonra yetişkin havuzlarına nakledilirler. Yetişkin havuzlarında bazen larva veya genç yavrular bulunabilir. Bunları bir-iki haftada bir seçerek havuzdan ayırmak gerekir. Bu havuzların 1 m2sine 12 cm. boyundakilerden 50 adet, 15 cm. boyundakilerden 20-30 adet hesabıyla konulmalıdır. Yetişkin kurbağaların maliyetini düşürmek için iri salyangozların eti kıyılarak yem haline getirilerek verilmelidir. Kurbağalar soğuk kanlı hayvanlar oldukları için kış uykusuna yatarlar. Isı çok düştüğü zaman aktiviteleri ve beslenmeleri durma noktasına gelir, ısı yükseldiğinde ise tekrar aktif hale geçip yem alabilmektedirler. Isının fazla düşmediği kış aylarında bütün yıl beslenebilirler. Kurbağalar şekil değiştirmeyi (metamorfoz) tamamladıktan aşağı yukarı 7-8 ay sonra pazar ağırlığına ulaşırlar. PAZARLAMA Kurbağaların normal pazarlama ağırlığı 150-220 gr arasında değişmektedir. Kurbağalar bu ağırlığa 8-10ay gibi kısa bir sürede ulaşabilmektedir. Bu ağırlık ideal satış ağırlığıdır. Türkiye’de doğal ortamdan toplanan kurbağaların ihracaatı yapıldığı için standart bir ağırlık yoktur. Canlı, donmuş bacak, taze bacak ve konserve şeklinde ihracattaları yapılmaktadır. Türkiye’nin ihracaatının %80’ ini canlı ve donmuş bacak şeklindeki kurbağalar teşkil etmektedir. Konserve şeklindeki ihracaat toplam ihracaatın çok az bir kısmını oluşturur. AVLANMALARI Kurbağaların doğadan toplanmalarında çeşitli kepçeler kullanılmaktadır. Şekil- Kurbağalar avlanma zamanlarında suya bağımlı oldukları için, kullanılan kepçelerin sudan etkilenmeyen ve suyu geçiren ince ağlardan yapılmalıdır. Bunun için ergin kurbağa avlanma kepçesi daha uzun ve büyüktür. İstenilen uzunluğa getirilebilen bir seyyar sap vardır.Larvalar için kullanılan kepçeler daha küçük ve göz açıklıkları daha sıktır. Kurbağalar ellede yakalanabilir Bunun için gece tercih edilir. Işığının kuvvetli olması sonucu kurbağalar ışık etrafında toplanırlar rahatlıkla yakalanırlar.Yalnız derileri kısmen zehirli olduğundan, elle temastan sonra, göz ve dudak gibi ince derili ve nemli kısımlara, suyla yıkamadan ellerin sürülmemesi gerekir. TAŞINMALARI Canlı olarak taşınmaları kısa mesafelerdeki nakilleri naylon torba, çuval bez çanta ve buna benzer bir kap içinde yapılabilir. Uzak mesafelerdeki nakiller ise gemi ambarlarında, kara taşımacılığında frigo-frig tırlarda ısı yalıtımı olan kutular içine konulmalı ve bunlarla nakledilmelidir. Nakil esnasında ortamın serin ve nemli olmasına dikkat edilmelidir. LİTERATÜR 1. BAŞOĞLU, M.- ÖZETİ,N. 1973 Türkiye Amfibileri (The Amphibians of Turkey) E.Ü.fen Fakültesi Kitaplar Servisi No 50 2. TOLUNAY, A.M. Özel Zooloji 3. GÖKALP.N 1980 Kurbağaların Biyolojik Özellikleri ve suni üretimleri Su ürünleri Bölge Müdürlüğü 4. DEMİRSOY A. Yaşamın Temel Kuralları 5. KURU M. Omurgalılar Zooljisi Su Ürün. Müh. M. Suat İNAN Tarım ve Köyişleri Bakanlığı, TÜGEM

http://www.biyologlar.com/kurbaga-biyolojisi-ve-yetistirme-teknikleri

MİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-Izmir Mollusca filumunun Bivalvia klasisi içinde yer alan Mytilidae familyası geniş bir yayılım alanına sahiptir. Bu familyanın en önemli türleri ise Mytilus galloprovincialis (kara midye veya Akdeniz midyesi) ve Mytilus edulis (mavi midye veya Avrupa midyesi), Modiolus barbatus (at midyesi) ve Perna sp., (Afrika midyesi)’dir. Ülkemiz sularında ise Mytilidae familyasının ekonomik olarak değerlendirilen yukarıdaki türlerden Mytilus galloprovincialis ve Modiolus barbatus olmak üzere 2 türü bulunmaktadır. Mytilus galloprovincialis İzmir’den Karadeniz sularına kadar toplanırken, Modiolus barbatus avcılığı en fazla Ayvalık ve civarından yapılmaktadır. Toplanan midyelerin bir kısmı taze veya işlenmiş olarak yurtiçinde değerlendirilirken önemli bir kısmı yurtdışına pazarlanmaktadır(Alpbaz, 1993; Alpbaz, 1997). 2-MİDYELERİN MORFOLOJİSİ VE BİYOLOJİSİ Mytilid kabukları mikro yapıya sahiptirler. Ilıman bölgelerde kabuk 2 veya 3 tabakalı argonit ve kalsitten oluşurken diğer bölgelerdeki kabuklar 2 tabaka argonit ve sedef tabakasına sahiptirler(Gosling, 1992). Genel olarak M. galloprovincialis’in kabukları ön(anteriör), arka(posteriör), ventral ve dorsal kenar olmak üzere dört kısıma ayrılabilir. Ön kenar çok kısa olup kabuklar burada birbirlerine bağlıdır. Ventral kenar bysus ipliklerinin çıktığı kenardır. Önden arkaya kadar düz bir yapıdadır. Ventralin tam tersi kenar ise dorsal kenarı oluşturur. Kavisli olması dikkat çekicidir. Posterior kenar ise midye kabuklarının açıldığı uç kısma denilmektedir. Anteriör-dorsal kenarda kabukların birbirine bağlı durmasını sağlayan boynuza benzeyen ligament yer alır. Ligament iki kabuk arasında düz bir oluk içersindedir. Ligament kabukların kapama kaslarının kapama kuvetlerinin tersi yönde bir kuvvete sahiptir. Ölen midyede kaslar kapama kuvvetini kaybettiklerinden ligamentin aksi yöndeki elastikiyetinden dolayı kabuklar açık kalır. Kabukların üzerinde umbodan itibaren küçük eliptik daireler şeklinde başlayan ve kenara paralel olarak devam eden büyüme çizgileri vardır. Midye uygun olmayan ekolojik şartlara maruz kaldığında büyüme çizgilerinde anormal bir sıklaşma, yukarı doğru kabarma veya aşağıya doğru çökme görülür. Midyelerin sağ kabukları sol kabuklarından 1mm kadar daha yüksektir (Uysal, 1970). Kabuğun ventralinde bysus yarığı vardır. Bu yarık periostrakum kıvrımlariyle örtülüdür. Hayvanın ventralinde bulunan periostrakum kıvrımları, kabuklar kapandığında yastık görevi görürler. Kabuklar kapandığında bysus ipliklerinin çıktığı bu alandan içeri su veya istenmeyen maddenin girmesini engellerler. Kabuklara içten bakıldığında kolayca fark edilebilen iki renk görülür. Orta kısım beyazımsı sedef parlaklığındadır. Kenarlara doğru renk koyu mavi olur. Bu iki kısım birbirinden manto çizgisi ile ayrılırlar. Manto kabuk üzerinde belirgin bir iz bırakır. Kabuklar kapama kası kesilerek açıldığında manto boşluğunda şu kısımlar göze çarpar: Kabuk içersine yerleşmiş ve buraya sıkıca bağlanmış manto lobları; anteriörde kabukların kenetlendiği gaga şeklindeki dişli kısmın hemen alt tarafında ligament ekseni üzerinde, ince yarık şeklinde bir ağız; ağız etrafında altta ve üstte birer çift olmak üzere 4 adet ağız kolu(palial palp) bulunur. Bunların birbirine bakan kısımları oluklu olup, üzerleri kirpikli epitel hücreleri ile örtülüdür. Ağızdan sonra özafagus ve ortaya yakın yerde ligament ekseni üzerinde, dil şeklinde koyu kahverengi kızılımsı renkte bir ayak ve ayağı öne, arkaya bağlayan kaslar görülür. Ayağın hemen arka tarafında bysus iplikleri, bunların çıktıkları ve bissogen bezlerinin bulunduğu bir şişkinlik yer almaktadır. Bu şişkinliği tabiben, genital kanalların bol olarak bulunduğu mesosoma, ayağın önüne ve arkasına doğru uzanan “V” şeklinde kaslar, özafagusun iki tarafında ve kasların üzerinde, serebral ganglionlar, anteriör kasların altında ve mide etrafında koyu kahverengi karaciğer bezleri bulunur. Bunların üzerinde vücudun iki tarafında labial palplerden posteriör kapama kasına kadar, bir çift bojanus organı uzanmaktadır. Bojanus organlarının dış kenarları boyunca, kenar bantları ile vücut duvarına tesbit edilmiş, uçları serbest birçok flamentten oluşan kitap yaprağı şeklinde iki çift solungaç, longitüdinal olarak ağızın dış kenarından posteriör kapama kasına kadar uzanır. Solungaç bantları ile posteriör kapama kası arasında üreme, boşaltım ve anüs açıklıkları, dorsalde ligamentin bittiği yerden posteriöre doğru uzanan perikard boşluğu ve bu boşlukta kalp bulunur (Uysal, 1970; Seed, 1976; Gosling, 1992). Midyeler 2-100µm boyutlarında olan organik ve inorganik her türlü partikülü süzerek beslenirler. Ortalama 7-8cm boyundaki bir midye saatte 10-15lt suyu süzme özelliğine sahiptir. Midyelerin filtrasyon hızı üzerine; -midye büyüklüğü, -partikül büyüklüğü, -partikül yoğunluğu, -partikül türü, -su sıcaklığı, -su akıntısı etkilidir(Bayne ve ark., 1976). Midyelerde beslenme az olduğunda büyüme yavaşlar veya durur. Et verimi düşer ve gonadlarda olgunlaşma tam olmaz, alınan döller dayanıksız ve küçük olur. Sıcaklığın 8-10oC civarında olduğu kış aylarında ise midyeler, partikül organik madde içerisinde yer alan ve canlı organizma olmayan kısmı ek besin olarak kullanmaktadırlar(Stirling ve Okumuş, 1995). Kabuklu su canlılarında büyümeyi sıcaklık ve besin durumu etkilemektedir(Seed, 1976; Langdon ve Newell, 1990). 3-ÜREME BİYOLOJİSİ Midyelerde çoğalma sistemi bütün vücuda yayılmış kanallar ve kanalcıklardan meydana gelir. Kanalcıkların uçları bağ dokuda ve genital organlarda son bulur. Bu kanal ve kanalcıklardan meydana gelen sistem, manto loblarının her tarafındaki bağ dokusu içersine yayılmış durumdadır. Üreme zamanlarında, genital organların bulunduğu manto dokusu tamamen cinsiyet hücreleri ile doludur. Bunlar mesosomada, perikardial boşluğun hemen altında, vücudun yan duvarlarında, karaciğerin hemen üzerindeki dokularda yayılırlar. Genel olarak üreme sistemi solungaçlar, kaslar ve ayak hariç vücudun her tarafına yayılmıştır. Mantonun anteriöründe yani karaciğerin üstünde , lateralde ve mesosomada mevcut kanallardan gelen kanalların birleşmesi ile oluşan genital kanal, mantonun iç yüzeyine , buradan arkaya döner; vücudun diğer tarfından gelen diğer kanal ile birlikte bir kanal halinde ventral kanalda solungaçların kenarına paralel olarak uzanır ve posteriör kapama kasının hemen yanından dışarı açılır. Burası canlının çoğalma organı açıklığıdır ve kontrolü altında açılıp kapanır(Seed ve Suchanek, 1992). Bütün mantoya yayılan genital organlarda ve vbağ dokusunda üreme mevsimlerinde , yoğun olarak cinsiyet hücreleri görülebilmektedir. İzmir Körfezi’nde midyeler Eylülden Mayıs-Hazirana kadar döl verebilmektedirler. Fakat en yoğun döl verimi Eylül-Ekim ve Mart-Nisan aylarında olmaktadır. Midyeler döllerini bıraktıktan sonra 1 ay içinde kendini tekrar toplayarak yeni döl üretmektedir. Midyeler ayrı eşeyli olup, olgun erkeklerde gonadlar krem-beyaz, dişilerde ise portakal sarısı tonlarındadır. Kabuklar kapalı iken cinsiyet ayrımı yapılamaz. Ancak midye kabuğunu su içinde hafif açtığında renklenme fark edilebilirse cinsiyetleri hakkında konuşulabilir. Yumurta bırakma süresi ve miktarı bulundukları ortamdaki besin türlerine ve bolluğuna, tuzluluk ve su sıcaklığına bağlı olarak değişmektedir. 3.1. Midyelerde Gonad Gelişim Safhaları Midyelerde gonad olgunlaşma süreci 4 aşamada tamamlanır: Dinlenme Safhası: Canlı bu safhada, seksüel dinlenme safhasındadır. Bağ dokusu iyi gelişmiştir. Manto fildişi rengindedir. Manto dokularında foliküller yoktur. Safha 1-Bu safhada, genital kanalların epitelial tabakalarından cinsiyet hücreleri meydana gelmeye ve foliküllerde gametogenez görülmeye başlar. Foliküller hızla artarak monto dokusunu kaplar. Erkekte çoğalma kanalcıklarında spermatidler, dişide germinal epitelyumdan tomurcuklanma ile meydana gelen oositler bulunur. Bu safhada, foliküllerin gelişme derecesine ve bağ dokusundaki glikojen miktarına göre, biraz değişiklik göstermesine rağmen manto rengi dişilerde kırmızı kahverengi veya portakal renginde, erkeklerin ise açık portakal sarısıdır. Safha 2-İyi gelişmiş foliküllerde olgun olmayan sperm ve yumurtalar bulunur. Foliküllerde yağ hücreleri görülür ve glikojen miktarı artar. Erkeğin mantosu kahverengi toprak renginde ve çok fazla foliküllerle kaplıdır. Dişinin mantoso portakal kırmızı tonlarında olup, bunun üzerinde kayısı renginde ovaryumlar tesbit edilir. Erkeğin mantosu dişininkinden daha düzgünce bir görünüştedir. Safha 3-Bu safhada midye olgundur. Mantonun bağ dokusu hemen hemen foliküllerle kaplıdır. Manto şişkincedir. Manto dişilerde portakal veya kırmızımsı, erkeklerde ise süt beyaz veya kirli beyazdır. Safha 4-Midyeler bütün cinsiyet hücrelerini dökmeye başlarlar. Bu esnada manto incelir ve şeffaflaşır. Üreme hücrelerini dökme aralıklı bir şekilde devam ederse, bu esnada erkeklerin mantosu beyazımsı, dişilerinki ise kırmızımsı olur. Üreme mevsiminde boşalan genital organlar, tekrar cinsiyet hücreleri ile doldurulur. Üreme hücrelerinin tekrar olgunlaşması ekolojik şartlara bağlı olarak, bir ayı geçmemek üzere değişir. Yaz aylarında folikül teşekkülü durur. Canlı bu dönemde seksüel dinlenme aşamasındadır. Midyeler ayrı eşeyli olmakla beraber çok nadir olarak hermafroditlik görülür (Lubet, 1959; Sugiura, 1962). Manto içersindeki dokularda gelişen sperm ve yumurtalar olgunlaşınca genital kanallardaki siller vasıtası ile dışarı atılırlar. Bu hücrelerin dışarı atılmasında bazı uyarılar etkili olmaktadır. Erkeler spermlerini ince uzun ip şeklinde su içine fışkırtarak 3-5cm mesafeye yayarlar. Sperm salımından sonra midye etrafındaki suyun rengi sütümsü bir renk alır. Dişiler de yumurtalarını üreme organı açıklığından ince uzun paketler halinde 2-3cm mesafeye yayarlar. Paketler halinde suya bıakılan yumurtalar kürevi bir şekil aldıktan sonra, birbirlerinden ayrılarak pembe veya kırmızı bir renkte zeminde birikirler. Üreme hücrelerinin bırakılması bazen devamlı olarak 2-3 saat ve bazen de aralıklı olarak 2-3 gün devam edebilir. Eğer cinsiyet hücrelerinin hepsi bırakılmaz içeride kalırsa, hücreler dejenere olur ve vücut taraından absorbe edilir(Field, 1922). Dalgalar ve su hareketleri suya bırakılan yumurta ve spermlerin yayılıp birbirine karışmasına ve döllenmenin olmasına neden olur. Ortalam bir dişi 5-12milyon arası yumurta üretebilir. Olgun yumurtalar alesital tipte, soluk kahverengi, küre şeklinde ve 60-70µm çapındadır. Yumurtaların ortasında kısmında nukleus, nucleus etrasında da yumurta granülleri yer alır. Spermler toplu iğne şeklinde olup, baş, boyun ve kuyruk bölgelerinden oluşur. Sperm 3.5-5µm’dur. Spermlere hareket sağlyan kuyrukları ise 40-60µm arasında değişen uzunluklara sahiptir. 3.2 Midyelerden Döl Alım Yöntemleri Doğal şartlar altında gonadları olgunlaşmış midyeler uygun şartlarda(sıcaklık, tuzluluk gibi) döllerini suya bırakırlar. Eğer gonadları dolu midyelerin dölleri bir seferde alınmak isteniyorsa bazı uyarı yöntemler(şoklar) uygulanarak midyenin döllerini suya bırakması sağlanır. Midyelerin ortam sıcaklığından 8-10°C düşük ve yüksek sıcaklıktaki sularda 1-2dk. bekletilmesiyle termik şok, bulundukları suya düşük voltta elektrik verilmesiyle elektrik şoku, addüktör kasının bir iğne ile uyarılması ile mekanik şok ve manto boşluğuna KCl solusyonu verilmesi ile kimyasal şok yapılmış olur. Şok yöntemler ile elde edilen fazla sperm solusyonu anaç tanklarına bırakıldığında uyarılmamış dişilerin döllerini bıraktıkları görülür. 3.3Yumurtaların İnkübasyonu ve Larva Özelikleri 20°C’de ilk bölünme döllenmeden yaklaşık 45 dak. sonra olur. Döllenmeden 24 saat sonra silli trakofora safhasına ulaşılır. Bu safhada büyüme ve hareket çok hızlı olup, larva sillerini kullanarak hareket eder. 30 saat sonra, trakofora larvasında sindirim sistemi ve dorsal bölgenin posteriör tarafında, kabuk bezinin faliyeti sonucunda kalınlaşan bir kabuk görülür. BU kabuk hızlı bir şekilde gelişerek önce tek, daha sonra sağ ve sol tarafta olmak üzere iki kabuk haline gelir. Önceleri küçük olan kabuklar döllenmeden 40 saat sonra tüm vücudu kaplar. 48 saat sonra kabuklar tamamen vücudu örterek, boyu 95 µm, eni 70µm ve kalınlığı 70µm “veliger” larva safhasına ulaşılır. Bu safhada bir velum üzerinde uzun bir kamçı ve bunun etrafında siller görülmektedir. Bir tehlike anında velum kabuk içine çekilerek kabuklar kapama kasları ile sıkıca kapatılır(Bayne ve ark., 1976). Midye larvaları yaklaşık olarak 2-4 hafta planktonik bir yaşam sürerek su sütununda aktif olarak yüzer ve beslenirler. Larva 140-150µm boya ulaştığında kabukların bağlandıkları noktada yuvarlanmış umbo görülür. Bu değişim ile larva, düz menteşeli durumdan umbo safhasına geçer. Larva 210-230µm boya ulaştığında umbo yavaş yavaş menteşeden yayılır ve küçük bir tomurcuk halini alır. Kabuk boyu 220-230µm’ye ulaştığında larvada bazı yapılar gelişmeye başlar. Göz noktası gelişir ve larva 245µm’ye ulaştığında kaybolur. Larva 195-210µm iken ayak oluşur ve 215-240µm boya ulaşan larvalarda ise ayak aktif hale gelir. Yaklaşık 260µm’ye ulaşan larvalar pediveliger denir ve bu aşamada metamorfoz geçirmeye hazırdırlar. Bununla beraber uygun bir substrat olmadığı taktirde metamorfoz 10°C’de 40 günün üzerinde 20°C’de 2 gün ertelenebilir. Metamorfozun gecikmesi durumunda büyüme çok azalır ve velum kısmen dejenere olur. Larva beslenemez ve yüzme bozulur. Ölüm oranı artar(Dare, 1976). 3.4 Larval Gelişim Midye larvaları 15–30 gün içinde metamorfoz aşamasına ulaşır ve yerleşmeye başlarlar. Larval yaşam süresi yeterli ve uygun besine, sıcaklığa, tuzluğa ve diğer değişkenlere bağlıdır. 3 haftalık bir larval dönem sonunda larva ağırlığı 0.1µg’dan 1.0µg’a ulaşır. Larva günlük olarak ağırlığının %30-60’ı kadar besine gereksinim duyar. Larva ölümleri su ortamında var olabilecek predatör organizmalardan kaynaklanabileceği gibi su kalitesindeki ekstrem değişikliklerden de kaynaklanmaktadır. Birçok vertebrate ve invertebrate bu hareketli larvaları besin olarak tüketebilmektedir. Bivalv larvalarının bulunduğu bir stoğun %3’nün poliket (Neptys ciliata) larvaları tarafından günlük besin olarak kullanılabilmektedir. Diğer ölümler ise aynı türün veya diğer suyu süzerek beslenen türlerin ergin bireyleri tarafından da bu larvalar filtre edilebilmektedirler. 3.4.1Büyümeye sıcaklığın etkisi Midye larvalarında kabuk boyuna göre büyüme eğrisi bazı verilerde linear olmasına karsın genelde sigmoidal şekildedir.Midye larvaları 5°C’de büyüme durur. Sıcaklık 10-16 arasında büyüme oranı artar ve yüksek sıcaklıklarda ise büyüme yavaşlar veya bazı populasyonlarda durur. Bu sıcaklık aralıkları populasyonların bulundukları bölgeye göre az değişiklikler gösterir. 3.4.2 Büyümeye tuzluluğun etkisi Bazı midye populasyonlarında büyüme ‰19’da durur, ‰30-32’de ise normal büyüme gösterirken, bazı pulasyonlarda ise ‰14 tuzlulukta bile büyümenin olduğu tespit edilmiştir. Midye larvalarının büyümesi üzerinde tuzluluk ve sıcaklık birbirleri ile ilişkili ve larvalar üzerinde etkili parametrelerdendir. Optimum larval büyüme 20°C’de ve ‰25-30 tuzlulukta olur. Büyüme sıcaklık 25°C‘ye çıktığında ve 10°C’nin altına düştüğünde, tuzlulkise ‰40 gibi yüksek veya çok düşük olduğunda azalmaya başlar. Midye larvalarının Büyüme istekleri dar tuzlukluk ve sıcaklık aralığındadır. Bu hayatta kalmaları için duydukları istekten daha dardır. 3.4.3 Larval Beslenme Midye larvaları süzebilecekleri büyüklükte olan her partikülü filtre edebilmektedirler. Kültür şartlarında bu süzülen maddelerin değerlendirilmesi ve değerlendirilenlerin de besinsel kalitelerinin iyi olması istenir. Larva besini olarak kullanılabilecek birçok alg hücresi üzerinde araştırmalar yapılarak bunlardan hangilerinin uygun besin olduğu tespit edilmiştir. Chlorella sp. hücre duvarının kalın olması ve metabolik artıklarının bivalve larvaları için toksik olması nedeni ile kabuklu larvalarının beslenmesinde tercih edilen bir fitoplankton türü değildir. Daha çok hücre duvarı olmayan flagellalı hücre türleri besin olarak tercih edilmektedir. Verilecek besin miktarı kültür sıcaklığına, larva sayısına ve alg kültür yaşına bağlı olarak değişir. Tek tür ile besleme yapmaktan ziyade karışık türler ile yapılacak besleme ile larvalar daha hızlı bir büyüme gösterirler. Isochrysis galbana, Monochrysis lutheri, Phaedactylum tricornutum, Dunaliella tertiolecta, Tetraselmis suecica, Chaetoceros calcitrans larva beslemede kullanılan başlıca fitoplankton türlerindendir(Bayne ve ark., 1976). 3.4.4 Metamorfoz ve Substrat Seçimi Pediveliger larvalar zemine iner ve ayağı ile sürünerek uygun yer arar. Midye kültür halatları gibi uygun bir substrat bulduğunda, pediveliger larvalarda yerleşme işlemi başlar. Bunun için bysal bez salgılarıyla kendini substrata yapışır. Bu işleme yerleşme adı verilir. Bu onun sesil hayata geçişinin başlangıcıdır. Midye kendini bysus iplikleri ile yapıştırdığında velum tamamen kaybolur ve suda yüzme aktivitesi sona erer. Midye larvaları filamentli yapıları yapışmak için tercih ederler. Düz, ürüzsüz bir zeminden çok pütürlü ve üzerinde fouling organizmaların tutunduğu yüzeyleri tercih ederler. Bu tercihlerinde kimyasall cezbedilicilikten çok, morfolojik cezbedici özelliği söz konusudur(Dare, 1976). 4-MİDYE YETŞTİRME TEKNİKLERİ Midyelerin üreme döneminin uzun olması nedeni ile doğal ortamdan yavru bireyler uygun sistemler ile kolaylıkla temin edilebilmektedir. Laboratuvar şartları altında başarılı bir şekilde yumurtlatılıp larva yetiştiriciliği yapılabilmesine karşın larva kültürü üreticilere ek bir maliyet getirmektedir. Bu sebeple tam kontrollü yumurtadan pazara yetiştiricilikten ziyade yarı kontrollu olarak yavru aşamadan pazara kadar kültür uygulamaları yapılmaktadır. Yumurta ve larva çalışmaları daha çok biyolojik, fizyolojik ve genetik çalışmalar için yapılmaktadır. Bir diğer yumurta ve larva üretim nedeni ise deniz balıkları ve krustase larvalarına zooplankton olarak ek beslemede kullanılmak amacıyla üretilmektedir. 4.1 Yavru Toplama Midye üreticileri için yavru toplama işlemi kültür içim önemli bir bölümü oluşturur. Yetiştiriciler ihtiyaç duydukları yavruları kendileri toplayabilecekleri gibi sadece bu iş ile uğraşan kişilerden de satın alarak yavru ihtiyaçlarını karşılamaktadırlar. Genellikle larva biyolojisinden yararlanarak pelajik-planktonik yaşamdan sesil yaşama geçerken midye stoklarının olduğu bölgelere midye larvalarının yapışmaları için cezbeden kollektörler bırakılır(Dare, 1976). Bu kollektörlere tutunan genç bireyler kültür alanlarına taşınarak uygun kültür sisteminde büyümeye alınırlar. Doğal ortamdan kollektörler vasıtası ile yavru midyelerin toplanmasında aşağıdaki konulara dikkat edilir: -Midye yataklarının olduğu bir bölge olmalıdır -Midyelerin üreme döneminde kollektörler denize bırakılmalıdır. -Fouling organizmaların az olduğu veya tutunmalarının az olacağı dönemde kollektörler denize bırakılmalıdır. Bu alanlara kollektörler bırakılmadan önce ön çalışmalar yapılmalı ve midyelerin ürediği fakat fouling organizmaların az olduğu zaman seçilmelidir. Eger fazla olursa midye yerine bu organizların toplanması gerçekleştirilmiş olur. -Yavruların tutunmak için tercih edecekleri kollektörler seçilmelidir. -Düz olmayan, pürüzlü ve filamentli yapılar kollektör olarak kullanılmalıdır. 4.1.1 Kollektörler ve Özellikleri Günümüzde midye yavrularının toplanması için kullanılan birçok kollektör materyali vardır. Bunlar doğal materyaller (bitki liflerinden hazırlanan halatlar, Manila halatları) ile sentetik (polypropilen ) halat ve sentetik (polyetilen) ağlardır. Kuzey Amerika’da denize sarkıtılan polipropilen halatlar ile denize bir perde gibi bırakılan farklı göz açıklığındakı polietilen ağlar kullanılmaktadır. Günümüzde en fazla kullanılan ve en iyi sonucu veren materyall hindistan cevizi liflerinden hazırlanan halatlardır. Bu halatlar filamentli yapısı nedeni ile midye yavru toplamada etkili sonuçlar vermektedir. Yavru toplamak için kazıklar kullanıldığında, bunların üzerinde balanusların ve kırmızı alglerin yapışmasını beklemek gerekmektedir. Midye spatları bu yapıların üzerine ağaç materyale oranla daha fazla tutunmaktadır. Kollektörlerin denize bırakılma zamanı kadar, denizdeki konumları da önemlidir. Halatlar denize dik durumdan ziyade deniz yüzeyine paralel olacak şekilde bırakılırlar. Kollektörlerin denize bırakılma derinliği de önemlidir. Midye yavruları su yüzeyine yakın yüzeylere yoğun miktarlarda tutunurlar. 3 m derinliğe bırakılan bir polipropilen halatın 1cm2’lik yüzey alanına tutuna yavru midye(spat) sayısı 100 iken 10 m derinliğe bırakılan halat üzerine tutunan spat sayısı 10’a düşmektedir. Bu sayı farklı bölgelerde değişebilir. Fakat derinliğe bağlı olarak midye spatlarının tutunma oranı azalır. İspanya’da Fuentes ve Molares (1994)‘de yaptıkları bir çalışmada 9 metreden 11.2 spat/4cm2, 5 metreden 29.1 spat/4cm2 ve 1 metreden ise 35.3 spat/4cm2 elde etmişlerdir. Eğer kollektör olarak ağlar kulanılıyorsa bu ağların göz açıklıkları önemlidir. 22mm göz açıklığındaki bir ağa tutunacak spat sayısıs 13mm göz açıklığındaki bir ağa göre çok daha az olacaktır. Bu şekilde tutunmanın fazla olduğu alanlarda spat toplama kontrol altına alınabilkir. Ayrıca Büyük gözlü ağlarda daha az midye tutuduğundan midyelerin büyümesi için daha geniş bir alan sağlar. Halatların uzunluğu ve çapları ülkeler ve spat toplayan üreticilere göre bazı farklılıklar gösterebilir. Maine’de13mm çapında ve Manila halatları kullanılırken, 16mm çapında ve 8m uzunluğunda polipropilen halatlar kollektör olarak kullanılmaktadır. Her üretici kendi şartlarında en iyi sonucu veren kollektörü tercih etmelidir. Bir bölgede ve ya ülkede başarılı bir şekilde kullanılan materyal aynı sonucu başka bir yerde göstermeyebilir. Diğer bir yavru toplama yöntemi ise dreçler ile midye yavrularının bol olduğu alanlarda avlanmasıdır. Pazara sunulmak üzere yapılan midye hasatları esnasında da var olan küçük bireyler ayrılarak tekrar büyümeleri için yetiştirme alanlarına bırakılmaktadırlar. İspanya’da kıyılardan midye yavruları elle toplanmaktadır. Yavru midyelerin yoğun olduğu alanlardan toplanan midyelerin zaman kaybetmeden kültür alanlarına taşınması gerekmektedir. Böylece midyeler daha az strese maruz kalırken büyüme ve yaşama oranları da yüksek olur. 4.2 Kültür Yöntemleri Avrupa’da midye kültürünün 700 yıl önce Fransa’dan ağaç kütükler ile yüklenen geminin 1235 yılında kaza yapması sonucu başladığı bilinmektedir(Mason, 1971). Gemiden kurtulan Patrick Walton adlı bir gemici üzerine ağ koyarak ağaç kütüklerini deniz kuşlarını yakalamak için kullanmıştır. Bu işlem için tam başarılı olamamıştır. Fakat bu esnada bu kütüklere fazla miktarda midyelerin turtunduğunu gözlemiştir. Böylece bu kazıkları midye toplamada ve büyütmede kullanarak besinini temin etmiştir. Küçük nbir değişiklik ile Waltson sistemi günümüzde kazık kültür sistemine dönüşmüştür. Bu sistem halen Fransa’nın batı kıyılarınsda kullanılan en etkili sistemdir. 13.yy’dan sonra Avrupa’da birçok midye kültür yöntemi geliştirilmiştir. Genel olarak 4 temel kültür yöntemi vardır. Bu yöntemlerin etkinliği ülkere göre değişiklik göstermektedir. Son yarım yüzyılda bu kültür yöntemlerine 1 yeni yöntem ilave olmuştur. Bu yüzen halatlarda yapılan midye kültürüdür. Kültür yöntemlerini genel olarak zeminde ve zeminden uzakta olmak üzere ikiye ayırabiliriz: 1- Zeminde -Dip Kültürü 2- Zeminden uzak -Kazık veya kütüklerde kültür -Raf kültürü -Sallarda kültür -Halatlarda kültür olarak sınıflamak mümkündür(Mason, 1971). 4.2.1 Kültür Alanının Seçimi Midye kültürüne başlamada önce yetiştiriciliği yapılacağı alanın dikkatle seçilmesi gerekmektedir. Kültür alanının midyelerin hızlı büyüyüp gelişmesine izin verecek sıcaklık, tuzluluk değerlerine,belli bir su akıntısına, yeterli ve uygun besin miktarına sahip olmalıdır. Toksik planton patlamaları ile evsel ve endüstriyel girdiler olmamalıdır. Uygulanak üretim sistemi arazi şartlarına uygun olmalı ve sistem deniz ulaşımı üzerinde kurulmamalıdır. 4.2.1.1 Dip Kültürü Bu yöntemde genel prensip midye yavrularının çok bol olan yerlerden toplanıp daha hızlı büyüyüp, daha fazla et dolgunluğuna sahip olacağı alanlara seyrek olarak bırakılmasına dayanır. 8-13mm büyüklüğündeki 1 yıllık olan midye yavruları doğal midye yataklarından dreçler yardımı ile toplanırlar. Taze olarak tüketime sunulacak olan güçlü addüktör kasına sahip kalın kabuklu midyeler gel-git etkisindeki deniz alanına bırakılırken ince kabuklu olup işlenecek midye yavruları 3-6m derinliğindeki kültür alanlarına tasınırlar. Bu midyeler bu alanlarda 18-24 ayda 7cm olan pazar boyuna ulaşırlar. Bazı Hollanda’lı üreticiler %30-40et verimi elde edebilmek için midyeleri 2.5-3 yıl sonra hasat etmektedirler. Bazı zeminler çamurlu yapıya sahip olabilir. Bu durumda midyelerin hasatı yine dreçler yardımı ile olur. Bu midyeler beslenmeleri esnasında bünyelerine bu çamur materyalinden de alırlar. Bu durumdaki midyeler pazara sunulmadan once taşlı veya çakıllı bir zemine yerleştirilerek var olan çamur birikintisinin temizlenmesi sağlanır(Hurlburt ve Hurlburt, 1980). Bu yöntem yaklaşık 150 yıldır Hollanda’da başarılı bir şekilde uygulanmaktadır. Ortalama midye yataklarından 5.5kg/m2 verimle 22ton/dönüm/yıl midye hasatı yapmaktadırlar. 4.2.1.2 Kazık veya Kütüklerde Kültür Fransa’nın Atlantik, Britany ve Normandy’nin kuzey kıyılarında yaygın olarak kullanılan bir kültür yöntemidir. Bu kıyılar rüzgarlara karşı korumasızdır. Gel-git çok fazla olduğu için su sıcaklığı 4-21°C arasında tuzluluğu ise ‰29-34 arasında sezona bağlı olarak değişmektedir. Bu aşırı gel-git’in yetiştiriciler açısından dezavantajı olduğu gibi avantajları da vardır. Sular çekildiğinde üreticiler midye kazıklarında çalışmalarını yaparlar(Goulletquer ve ark., 1994). Meşe ağacı en iyi kazık materyalidir. Genellikle 20cm çapında 3m uzunluğunda kazıklar kullanılmaktadır. Bu kazıklar deniz tabanına 1.5-2m dışarıda kalacak şekilde çakılırlar. Kazıkların alttan30cm’lik kısmına deniz yıldızlarının, yengeçlerinve diğer predatör organizmaların tırmanmasını engellemek için pürüzsüz plastik sarılır. Kazıklar 1m aralıklar ile dikilir ve her kazık sırası arasında 3m mesafe bırakılır. Bu aralıklar bölgeden bölgeye değişiklik gösterir. Bu kazık sıraları arasında sular çekildiği zaman at arabaları, traktörler, bisikletler ile gidilerek çalışmalar yapılır. Gel-git’in az olduğu bölgelerde ise ulaşım aracı olarak tekneler kullanılır. Kazıkların kültür alanı üstte kalan 1.5m’lik kısımdır. Walton’un gelmiş olduğu Aiguillon körfezi’nde 2.5 milyon kazık (Her sırada 50 kazığın kullanıldığı ve 50 000’den fazla sıranın olduğu) kullanılır. Toplam olarak Fransa kıyıları boyunca 1100km’lik bir alanda kazık kültürü yapılmaktadır(Bardach ve ark., 1972). Gel-git’in az olduğu alanlarda yavru midyeleri toplamak amacıyle doğal midye yataklarının olduğu yerlere halatlar(kollektörler) bırakılır. Birkaç hafta içinde midye yavruları bu halatlara yapışır. Yavru midyelerin tutunduğu bu halatlat kazıkların bulunduğu alanlara taşınır. Gel-git’in fazla olduğu bölgelerde ise yüksek su akıntısı (hareketi)olduğu için midye yavrularının tutunmasını engeller. Bu nedenle bu bölgelere yavru midyelerin tutunduğu halşatların taşınması çok önemlidir. Spatların tutunmuş olduğu kollektörler kazıklar üzerine tek tek sarılır. Bu sarma işlemi esnasında halat kazık üzerine bir çivi yardımı ile sabitlenir. Daha sonra “S” ve “Z” şeklinde sarılırlar. Bu midyeler çok kısa bir süre içinde büyüyerek kazığın tamanını kaplarlar. Başlangıçta kollektör üzerinde tutunmuş midye sayısı çok olduğu için büyüyen midyeler sıkışır. Midyelerin hızlı büyümeye devam edebilmeleri için kazıklardaki midlere kazınarak toplanır. Bu amaçla mekanik alatlerden yayalanıldığı gibi sular yükseldiğinde tekne ile kazıların yanına gidip kepçe benzeri bir kenarı bıçaklı bir aparat ile elle da toplanabilir. Bu işlem zaman alıcı ve işçiliği fazla olduğu için ekonomik durumu iyi olan üreticiler mekanik olarak çalışan aletlerden yararlanır. Bunlar alt kısmı açılabilir sert plastik ile kapatılıp açılabilen iki kapaktan oluşan bir büyük silindir tüptür. Tekneden elektronik olarak kontrol edilir. Alt kapaklar kapatılır. Bir vinç yardımı ile silindir kaldırılıp tekneden kazığı tamamen içine alacak şekilde geçirilir. Alt kapaklar yine tekneden kontrol edilerek sıkıca kapatılır. Vinç yardımı ile yukarı çekilirken midyelerde sıyrılarak bu silindir. İçine dolar. Tekneye alınan silindir içindeki midyeleri tanklara boşaltılır. Bu alet aynı zamanda midyelerin hasatında da kullanılmaktadır. Kazıklardan toplanan mnidye yavruları 15cm çapındaki ve 2m uzunluğundaki plastik ağdan hazırlanmış Bu esneyebilen silindirler tekrar aynı şekilde kazıkların üzerine sarılırlar. Bu işlemden sonra 6-7cm olan Pazar boyuna midyelerin ulaşması 12-18 ayı alır. Bu midyeler 20 kg’lık torbalar içinde pazarlanırlar. Midye kültür alanları Fransız hükümeti tarafından toksik organizmaların açısından takip edilir. Böyle bir tehlike görüldüğünde ise midye hasatı tehlike geçene kadar durdurulur. Midye kültür alanları hükümetten kiralanır ve çoğu aile işletmesidir. Birkaç büyük çiftlik dışında(75 000 kazık ile çalışan) genellikle 15 000-20 000 kazık ile üretimi gerçekleştiriler. Bir kazıktan 9,1-11,3kg/yıl canlı midye ve ya 4,5kg/yıl et hasatı yapılabilmektedir. Bir dönüm alandan bir yıl içinde 5 ton canlı midye veya 1 800 ton et üretimi yapılabilmektedir. Fransa’da midyeler taze tüketilir. Üretimin büyük bir kısmı iç tüketimi karşılamak için yapılır. Talebin fazla olduğu yıllarda ise komşu ülkelerden midye ithal ederler. 4.2.2 Sal Kültürü İspanya’nın Kuzeybatı Atlantik kıyılarında 5 körfez vardır. Bu körfezlerin kıyıları denize dik ve sarptır. Bunların toplam uzunluğu 24km genişliği ise 3-10km olup ortalama 30m(max.60m) derinliğe sahiptirler. Körfezlerin ağız kısımları adalar tarafından okyanus fırtınalarına ve dalgalarına karşı korunmaktadır. Yıllık yüzey su sıcaklığı 9-21°C ve tuzluluğu ise ‰35 ‘dir. Bu alanda Sal kültürü 30 yıldan beri uygulanmaktadır.(Figueras, 1989; Figueras, 1990; Fuentes ve Molares, 1994) Midye kültüründe kullanılan sallar oldukça basit malzelerden yapılmaktadır. İlk kullanılan malzemeler eski tekne gövdeleriydi. Daha sonraları sallar 4-6 köşeli duba ve ya yüzdürülen metal aksamdan yapılmaya başlamıştır. Günümüzde en yaygın kullanılan malzeme ise strafor ve fiberglas materyaldir. Ahşap salların ana bedeni oluşturan çerçeve 5cm2’lik yüzey alanına sahip okalüptüs ağacından hazırlanan krişlerden hazırlanmaktadır. Herbir kriş 45-50cm aralıklar ile ana bedene sıkıca bağlanmaktadır. Bu salların büyüklükleri değişmekle beraber ortalama 23m x 23m olacak şekilde hazırlanır ve bu sala 700 halat asılabilir. Ana beden yüzdürücüler ile alttan desteklenerek batması engellenir. Sallar her iki ucundan beton ağırlıklar ile deniz dibine yaklaşık 20 tonluk beton ağırlıklar ile sabitlenir. Böylece salın bir alanda sabit kalması sağlanmış olur. Sallara asılan halatları uzunluğu 9m’dir. Bu halların uzunluğu deniz tabanına değmeyecek şekilde ayarlanır. Böylece midyeler deniz yıldızlarının, yengeçlerin ve diğer dipte yaşayan predatör organizmaların zarar vermesi engellenmiş olur. Sonbaharda sahil boyunca taşlara tutunmuş olan yavru midyeler toplanır ve suda birkaç çinde eriyebilen rayon fileleri içerisine bir halat ile yerleşririlirler. Fileler sallardan sarkırılırlar. File eriyene kadar midyeler file içindeki halata bysus iplikleri ile tutunurlar.Bu midyeler bir yıl içinde 8-10cm boya ulaşırlar. İlkbaharda ise sallardan boş halat kollektörler sarkıtılarak yeni midye yavruları toplanmaktadır(Bardach ve ark.,1972). Midyeler halatlara tutunduktan sonra pazar boyuna ulaşması 18 ayı alır. İspanya bu şekilde sallarda yetiştirlen midyeler hızlı büyümeleri ve et oranlarının yüksek olması nedeni ile dünyaca bilinen en kaliteli midyelerdir. Midyelerin et verimi %35-50 arasında değişir. Kültür esnasında midyelerin birkaç kez seyreltilmesi gerekmektedir. Böylece hem midyelerin büyüme hızları düşmemekte hem de halatların aşırı ağırlıktan dolayı kopması engellenmiş olmaktadır. Bu işlem ile bir halat 2-3 halata bölünebilmektedir. Bu halatlar 13mm naylon veya 25mm esparto bitkisinden hazırlanmaktadır. Halatların her 40-50cm’sine 30cm boyunda ve 20mm kalınlığında tahta çubuklar yerleştirilerek halat üzerinde büyüdükçe ağırlaşan midye kümelerinin aşağıya kaymasını engellemektir. 9m uzunluğundaki bir halat 113kg /yıl midye üretir. 700 halatlı bir ise 80 ton kabuklu midye üretir. Bu da 41 ton midye eti demektir. Yoğun olarak midye üretiminin yapıldığı alanın 1 dönümünde ise 90 800kg midye eti yıllık olarak üretilebilmektedir. İspanyol midye üreticileri diğer canlıların kültürü ile uğraşan üreticilere göre midyelerin doğal ortamdan yararlanarak büyümesi, herhangibir ek masrafı ve yapay besleme sorunun olmaması nedeni ile 200 kat daha karlıdırlar. Bu halatların hasatı vinçli tekneler ile yapılır. Halatlar vinç ile kaldırılır teknede bulunan bir metal sepet içine Sal bağlantıları kesiler yerleştirilir. Hasat edilen midyeler İspanya içi veya dışına satılmadan önce kanunlarına göre mutlaka 24 saat depurasyon işlemine tabii tutulmalıdır. Bu basit depurasyon işleminde midyeler tanlara alınır. Hafif klor solusyonu içeren sürekli deniz suyuna 48 ssat maruz bırakılırlar. Böylece midyeler bünyelerinde bulunabilecek istenmeyen maddeleri bu ytemiz akışkanlı suya bırakarak etleri temizlenmiş olacaktır. Bu işlemden sonra midyeler bu klorlu sudan çıkarılır ve süzülür, 3 saat sularının akması beklenir ve 15 kg’lık fileler içerisinde soğutmanın olmadığı kapalı bir araç içinde 3 gün gibi uzun süre dayanabilirler. İspanya’da deniz alanı ve sallar hükümetten kiralanmaktadır. Bir aile ortalama büyüklükteki 2-4 midye salını rahatlıkla idare edebilmektedir. Büyük şirketler ise 20-30 Sal ile çalışmaktadır. İspanya üretiminin %95’i Galiçya körfezlerinden yapılmaktadır. Üretimin %25’ Fransa ve Italya’ya satılmaktadır. 4.2.3 Halatlarda Kültür Bu sistem deniz yüzeyine horizontal serilen ana halat bedeninden ve bunların yüzdürücülerinden oluşur. Bu ana bedene vertikal olarak hem kollektör amaçlı halatlar asılabileceği gibi hem de midyelerin bu halatlarda büyümesi sağlanabilmektedir. Horizontal olan ana bedeb 60m uzunluğunda olup 6m aralıklar ile 200lt’lik plak bidonlar ile yüzdürülmektedir. Bu ana beden tek olarak hazırlanabileceği gibi aralarındaki mesafe 1m olacak şekilde bir çift olarak da hazırlanabilmektedir. Bu anabedenler arası mesafe 3m olur. Vertikal halatlat ise 50cm aralıklar ile bağlanır ve uzunlukları 6,5m’dir. Bu halatların uzunluğu , aralarındaki mesafeler yine üreticilere göre değişiklikler göstermektedir(Figueras, 1989). Bu sistemlerde yavru toplama doğrudan sisteme asılan halat kollektörler ile yapılmaktadır. İlkbaharda halatlara tutunan midyeler 14-16 ay sonra 6-7cm boya ulaşırlar. Fazla tutunmuş midye yoksa bu midyelerde seyreltme işlemi yapılmaz. Bu sistemin en önemli avantajı ağır kış şartlatına karşı dayanıklı olmasıdır. Gelgit’in 1m gibi az olduğu yerlerde uygulannan bu istemde operasyon da vinçli tekneler ile yapılmaktadır. Kış şartlarının çok ağır geçtiği ülkelerde su yüzeyi buz tutmaktadır. Bu durumda ne midyeler ne de sistem hiçbir zarar görmez. Kışı ağır geçen İsveç’de yılda 1 dönümden 13 600-15 900kg midye eti elde edilebilmektedir. Kültür sitemleri ülkeler göre faklılıklar gösterebilir (Tablo 1). Bir ülkenin kullandığı sistemin tamamen aynısını yapmaktansa, kültürü yapılacak alanın şartlarına uygun sistem bazı modofikasyonlar ile kullanılabilir. Kültür alanında böyle bir sistemin küçük br modeli hazırlanarak midyelerin tutunma veya büyüme oranları ile sistemin dayanıklılığı test edilmelidir(Hickman, 1992). Kültür yöntemleri içerisinde bugün en fazla tercih edilen ve kullanılan sal ve halat kültürleridir. Aynı bölgede dipte yapılan kültüre göre sallarda veya halatlarda yapılan kültürün %50 daha fazla verim verdiği bilinmektedir. Bu sistemler ile deniz alanından maksimum bir verim alınırken zeminde var olan predatör canlılardan da midyeler korunmuş olmaktadır. Sal ve halat kültürlerinde ise foling organizmalar ile predatör balıklar problemi vardır. Foulingin fazla olduğu dönemlerde midye fileleri veya halatları sık sık kontrol edilmelidir. Eğer fazla miktarda fouling organizma midyeler üzerine yapışırsa onların su ile olan temaslarını engelleyecektir. Bu durumdaki midyelerde su alış verişi azalacağından sudan hem besinini hem de oksijenini sağlayamayan midyeler kısa bir süre sonra öleceklerdir. Bu organizmalar ile halatlara veya sallara binen yük artacak ve sistem batma tehlikesi ile karşı karşıya kalacaktır. Predatör organizmaların başında balıklar, yengeçler, deniz yıldızları ve deniz kuşları gelmektedir. Midyeleri besin olarak kullanarak zarar vermektedirler(Fuentes ve ark., 1994; Lök ve Köse, 1999). Entegre Kültür Uygulamaları Suyu süzerek beslenen midye gibi kabuklu su canlıları son yıllarda deniz balıkları kültür alanlarında birlikte kültür uygulamaları artmıştır. Bu sistemde ağ kafeslerden belli mesafeye(20-50m) yerleştirilen halat veya sal kültür sistemlerinde midye veya istiridye kültürleri yapılmaktadır. Balık besleme esnasında suda çözünenen yemler kabuklular tarafından değerlendirildiği gibi, yemlerin çözünmesi ile suya karışan azotlu bileşikler ile beslenerek çoğalan fitoplankton hücreleri de kullanılmaktadır. Böylece ağ kafeslerinin bulunduğu bölge kabuklular tarafından filtre edilip temizlenirken, yeni bir ürünün üretimi hiçbir yemleme yapmadan söz konusu olmaktadır (Hindioğlu, 1998) 5-Sonuç Kabuklu su ürünleri içerisinde ülkemizde en iyi bilinen tür midye olmasına karşın henüz bilinçli bir yetiştiricilik çalışması başlamamıştır. Bilimsel araştırmalar yanında ağ kafes üreticileri yüzdürücülere bol miktarda tutunan midyeleri basit sistemlerde kültür çalışmalarını denemeye başlamışlardır. Gelecekte ağ kafeslerde balık yetiştiriciliği ile birlikte kültür uygulamalarının başlaması ile hem çevre hem de kabuklu su ürünleri üretimi açısından yararlı olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E. Ü. Su Ür. Fak. Yay. 26-82. Alpbaz, A.G., 1997. Dünyada ve Türkiye’de su ürünleri yetiştiriciliğinin dünü, bugünü ve geleceği. Akdeniz Balıkçılık Kongresi. E.Ü.Su.Ür. Fak.Yay. 5-15. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Culture of mussels. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms . pp. 760-776. Bayne, B.L., Widdows, J., Thompson, R.J., 1976. Physiology: I. In: Bayne, B.L.(ed.). marine mussels: their ecology and physiology. Cambridge University Press. pp. 122-159. Dare, P. J., 1976. Settlement, growth and production of the mussel, Mytilus edulis L., in Morecambe Bay, England. Fish. Invest. (Ser.2), 28: 1. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Figueras, A. J., 1989. Mussel culture in Spain and France. World Aquaculture, 20(4): 8-17. Figueras, A., 1990. Mussel culture in Spain. Mar. Behav. Physiol., 16: 177-207. Fuentes, J., Reyero, I., Zapata, C., Alvarez, G., 1992. Influence of stock and culture site on growth rate and mortality of mussels (Mytilus galloprovincialis Lmk.) in Galicia, Spain. Aquaculture, 131-142. Fuentes, J., Molares, J., 1994. Settlement of the mussel Mytilus galloprovincialis on collectors suspended from rafts in the Ria de Arousa /NW pf Spain): annual pattern and spatial variability. Aquaculture,122: 55-62. Gosling, E.M., 1992. Systematics and geographic distribution of Mytilus. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp. 1-17. Goulletquer, P. T., Joly, J. P., LeGagneur, E., Ruelle, F.,1994. Mussel (Mytilus edulis) culture along the Normandy coastline (France) : Stock assessment and growth monitoring. ICES Statutory Meeting , Shellfish Committee, K: 10, p. 11. Hickman, R.W.,1992. Mussel cultivation. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp.465-510. Hindioğlu, A. 1998. Deniz balıkları yetiştiriciliği ile kabuklu kültürünün entegrasyonu. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı, Türkiye Kıyıları 98 Bildiriler Kitabı, 22-25 Eylül 1998 ODTÜ Ankara s. 261-271 Hurlburt, C.G., Hurlburt, S.W., 1980. European mussel culture technology and its adaptability to North American waters. In: Lutz, R.A.(ed). Mussel culture and harvest: A North American perspective. Developments in aquaculture and fisheries science, 7. Elsevier scientific publishing company,New York pp.69-98 Langdon, C. J., Newell, R. I. E., 1990. Utilization of detritus and bacteria as food sources by two bivalve suspension feeders, the oyster Crassostrea virginica and the mussel Geukensia. Mar. Ecol. Prog. Ser. 58: 299-310. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Lubet, P. E., 1959. Reserches sur le cycle sexuel et L’emission des Gametes Chez les Pectinides et les Mytilides. Rev. Trav. Ist. Pm. 23(4), pp. 396-545, Paris. Mason, J. 1971. Mussel cultivation. Underwater Journal 3: 52-59. Seed, R., 1976. Ecology. In: Bayne, B. L.(ed), Marine mussels: their ecology and physiology, Cambridge University Press, pp: 13-65. Seed, R., Suchanek, T.H., 1992. Population and community ecology of Mytilus. In: Gosling, E.(ed.). The mussel Mytilus: Ecology, physiology, genetics and culture. Elsevier, New York, pp. 87-157. Stirling,H.P. ve Okumus, I., 1995. Growth and production of mussels (Mytilus edulis L.) suspended at salmon cages and shellfish farms in two Scottish sea lochs. Aquaculture, 134: 193-210. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole, 123: 203-206. Uysal, H., 1970. Türkiye sahillerinde bulunan midyeler “Mytilus galloprovincialis Lamarck” üzerinde biyolojik ve ekolojik araştırmalar. E.Ü. Fen Fak., İlmi Raporlar Serisi , No.79, 79p.

http://www.biyologlar.com/midye-biyolojisi-ve-yetistirme-teknikleri

İSTİRİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK - Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-izmir Mollusca bireylerinin tüketimi insanoğlunun tarihi ile yakından ilgilidir. Bugün arkeolojik verilerden de anlaşılacağı gibi, deniz kıyısında yerleşim alanları oluşturmuş insanların balık avlamadan önce bu sabit canlıları tükettikleri bilinmektedir. Mağaralarda çok miktarda yenmiş midye ve istridye kabukları bulunmuş; ve bunların bir kısmından kolye yapılmışlardır. Doğal ortamlardan toplanarak tüketim ilk günden bu güne kadar gelmektedir. İlk kültür çalışmaları 17. yüzyılda Japonlar tarafından ele alınmıştır. Bambu kamışları dikerek istridyelerin bunların üzerine tutunmasını sağlayarak yetiştirmişlerdir. Yine bambu kamışlarından sal yaparak denizde sadece dikey değil yatay olarak da yetiştiriciliği başlatmışlardır. Bu dönemde yavruların çoğu doğadan toplanmaktadır. İnsan kontrolü altında ilk yavru üretimi 1879 yılında ele alınmıştır. 1920’de ise kültüre alınacak boya kadar yetiştirilmişlerdir. Bugün birçok ülke yarı kontrollü olarak dipte, kazıklarda, halatlarda, rafta ve sallarda yetiştiricilik yaparken, tam kontrollü olarak yumurtadan pazar boyuna kadar istiridye üretimini de başarılı bir şekilde yapmaktadırlar. Istiridye yetiştiriciliğinde söz sahibi olan ülkelerin birkaçını ve yetiştirdikleri türleri sıralayacak olursak şöyledir; Japonya Crassostrea gigas Fransa Ostrea edulis, Crassostrea angulata, C. gigas Amerika Crassostrea virginica Portekiz Crassostrea angulata Filipinler Crassostrea eradelis Avustralya Crassostrea commercialis Ingiltere Ostrea edulis İnsan gıdası olarak yararlanılan kabuklu su canlıları görüldüğü gibi dış ülkelerde önemli bir yer tutmaktadır. Ülkemizde ise kabuklu deniz canlılarının tüketimi sadece deniz kıyısı olan bölgelerde yaygındır. Kıyı harici şehirlerimizde bu kabuklu canlıların pazarlandığını görmek sanırız pek mümkün değildir. Bu kabuklu su canlıları son yıllarda ülkemizde tanınmaya başlanmıştır. Ülkemizde tüketiminin pek fazla olmamasına rağmen dış talebin yüksek olaması nedeni ile bazı ihracatçılar bu canlıları doğadan toplatarak Italya, Ispanya, Yunanistan gibi ülkelere pazarlanmaktadır(Alpbaz, 1993). İstridyenin Sistematikdeki Yeri Phylum: Mollusca Classis: Bivalvia (Lamelibranchiata) Ordo: Filibranchiata Familia: Ostreidae Genus: Ostrea (Linne, 1758) Species : Ostrea edulis (Linne) Ostrea lurida (Carpenter) Ostrea angasi (Sowerby) Ostrea chilensis (Philippi) Genus: Crassostrea (Sacco, 1897) Species: Crassostrea gigas (Thunberg) Crassostrea virginica (Glein) Crassostrea angulata (Lamarck) Crassostrea rhizophorae (Guilding) Crassostrea madrasensis (Preston) Ülkemiz sularını temsil eden tek tür Ostrea edulis’tir. Marmara Denizi, Ege Denizi, Akdeniz ve Karadeniz’in Istanbul Boğazı ile birleştiği noktada görülmektedir. -Genus: Crassostrea (Sacco, 1897) Olgun istiridyelerde kabuklar karınlı ve uzundur. CaCo3’ın depolanması nedeniyle kabuklar yapraksı görünümdedir, ve sol kapağın karınlı alanı içerideki canlının gelişmesine imkan verir. Sağ kapakçık tamamen düzdür. C. gigas’ta süslü yapıda kapak mevcuttur. Ovipardırlar ve büyük üreme kabiliyetine sahiptirler. Intertidal zonda yaşarlar. Tuzluluk değişimlerine dayanıklı olduklarından acı sularda kolonize olabilirler. C. gigas Pasifik Okyanusu kökenlidir. Ayrıca S.S.C.B.’nin Vladivostok Denizi’nde, Sacolin Adası’nda, Japonya’da lokal 2 ırkı vardır. Iwata bölgesinde, Hiroşima’da, Kore’de, Kuzey Amerika’da (Alaska’dan, Kalifornya’ya kadar) yayılım gösterir(Korringa, 1976a). Bazı araştırıcılar C. gigas ve C. angulata’nın aynı tür olduğunu belirtirler. Portekiz türünün C. gigas’tan türediğini, 15-17. yüzyıla kadar ticaret seferleri yapan tahta gemilere yapışarak Avrupa’ya gelip yerleştiklerini söylemektedirler. Bununla birlikte bu iki türün farklı özellikler gösterdiği belirlenmiştir. Bunlar; solunum metabolizması, küçük zerrecikleri tutma özelliği, büyüme kabiliyeti, üreme şekilleri, farklı hastalıklar karşısındaki durum fizyolojik olarak her iki ırkın az da olsa farklılık gösterdiği tespit edilmiştir. -Genus: Ostrea (Linne, 1758) Kabuk oval şekilli olup, belirsiz kanca burunlu (gagalı), yaprak şeklinde, sarımsı kahverengi renge sahiptir. Sol kabuk hafif küp, sağ kabuk yassı görünümdedir. En önemli türü O.edulis olup max. 12cm, genellikle 6-7cm uzunluğunda olurlar. Yetişkin türlerde bireyin şekli yuvarlaktır. Sınırlı bir üreme vardır ve larvipardır. Tuzlu sularda yaşayıp bulanıklılığa karşı toleransı azdır. Doğal ve kültür yatakları daima denizin içerisinde olmalıdır(Infralittoral zon). Bu daha çok Kuzey Avrupa türü olup Norveç’ten Fransa’ya kadar (Ingiltere, Almanya, Hollanda, Irlanda ve diğer ülkeler) uzanır. Daha güneyde Ispanya kıyıları ile Fas’ın güney ucuna kadar yayılmışlardır(Korringa, 1976b). Akdeniz’de Fransa, Italya, Sicilya’dan Karadeniz’e kadar uzanır. Ülkemizde sahil ötesi kumlu, çamurlu veya kayalık bölgelerde yaşarlar. 2-İSTRİDYENİN BİYOLOJİSİ Morfolojik olarak Ostrea edulis dairesel şekilli iki kabuktan meydana gelmiştir.Her iki kabuk dorsal kenarlarından boynuza benzeyen ligamentlerle birbirine bağlanmıştır. Ligamentin esnekliği kabukların açık durmasını sağlar. Bu, hasta yada ölü istridyenin karakteristik bir özelliğidir. Açılmış kabukların canlılığı herbiri ayrı fonksiyona sahip olan iki kısma ayrılmış adductor kası tarafından kontrol edilir. Adduktor kası merkezdedir ve her iki kabuğa sıkıca yapışmış durumdadır. Vücut kısmı addüktör kası ile mafsal arasında uzanır. Kalp, bağırsak, böbrek, mide bu bölümdedir. Gonadlar da buradadır. Üreme zamanında gonadlar tüm yüzeyi kaplayarak krem beyaz görünüm alırlar. Manto, vücut kısmının her iki yanını kaplayan düz bir dokudur ve kabuk kenarı boyunca sabit olarak uzanır. Manto kenarlarında bulunan materyalin ilavesi sonucu kenar kısmında kabuk oldukça gelişmiştir. İstridye kabuklarının %95’den fazlası kalsiyum karbonattır. Manto vücudun iki yanında kabukla vücut arasında bir örtü gibi bağ dokuya asılıdır. Bu nedenle bir ada gibidir. Mantonu uçları üç yaprak şeklindedir. Bunlardan iki sıra kabuk üretiminde görev alırlar, içteki ve en geniş olanı vücut ile kabuk arasında perde görevi yapar. Mantonun öbür ucundaki yapraklar ayrı ayrı veya birlikte hareket ederek suyun manto içine akışını kontrol eder, bu durumda kabuklar yuva gibidir. Manto bölgesine giriş manto uçlarının birleşmesi ile sınırlandırılır. Küçük organizmaların girmesine ve suyun atılmasına olanak verir. İstiridye solungaçları vücudun 2/3’ünü sarar. Belli aralıklar ile birbirine bağlanmış küçük filamentlerden oluşur. Su, manto boşluğundaki su alma bölümünden filamentler üzerinde bulunan kırbaç biçimindeki sayısız sillerin hareketi ile su tüplerine hareket eder. Bunlar sadece suyun hareketini sağlamaz, aynı zamanda istiridyenin besinin oluşturan küçük parçaları da sudan filtre eder. Bu süzülen su, solungaç tüplerine geçer ve oradan su verme bölümüne, en sonunda manto boşluğundan dışarı atılır. Solungaçlar dört adet yarı ay şeklinde tabakalardan ibarettir. Manto uçlarının birleşmesi, manto kısmını manto odası ve solungaçları içeren geniş bir oda küçük bir boşaltım odası olmak üzere ikiye ayırır. Ayrıca bir boşaltım kanalı içerir. Bu manto ile vücudun sağ yanı arasında bulunur ve istiridyelerin özellikle çamurlu ortamda yaşamasına yardımcı olur(Walne, 1974). Solungaçlar basit bir süzgeç mekanizması değildir. Aynı zamanda komplex bir ayırma aygıtı gibi olup, uygun gıdanın yeterli miktarda ayırım ve değerlendirilmesini yapar. Gıdasını teşkil edecekler ağıza, diğerleri atık bölgeye liflerin yardımı ile yollanır. Çok iri olanlar mantonun altına düşürülür (Walne, 1974). Kabuklularda solungaç yapısı birbirlerine benzemesine karşın farklılık filamentlerin bağlantı şeklinde olup, Mytilus edulis’te filamentler arası organik bağlara rastlanmaz. Fakat istiridyelerde bu olay yukarıda görüldüğü gibi bulunmaktadır. Örneğin akivadeslerde bu filament bağlantılarının derecesi istiridyelerde bulunanlardan çok daha yüksektir. İstiridyenin sağ kabuğu düzdür ve larva metamorfoza ulaştığında kendini sol kabuk üzerinde zemine tespit eder. Uygun koşullarda istiridyeler bütün gün boyunca kabuklarını açıp su içerisindeki planktonları ve zerrecikler halindeki organik maddeleri, hatta su içerisindeki mineraller maddeleri bile süzerek gıda olarak kullanırlar(Claus, 1981). Böylece su içerisindeki organik maddeleri ete çeviren canlılar olarak önem kazanırlar. Su akımının esas rolü şüphesiz ki beslenme üzerinedir. Fakat bunun yanında su, sindirim sisteminde ve böbreklerde oluşan atıkları uzaklaştırmaya yarar ve ayrıca canlıya O2 sağlar. İstiridyelerin filtrasyon hızını sıcaklık, suyun debisi ve partikül konsantrasyonu etki eder. 3-İSTİRİDYELERDE ÜREME İstridyeler eşeyli üreme gösterirler. Üreme organları erkek ve dişi gametleri oluşturur. Bunların üreme mevsimi ilkbahar sonu ile sonbahar arasında olup havaların ısınmasıyla başlar, soğumaya başlaması ile sona erer. Her iki seksdeki gonadlar birçok hayvanda bulunan ile karşılaştırıldığında basit yapıdadır. Sindirim sistemi üzerinde yerleşmiş durumdadır. Avrupa istiridyesi, Ostrea edulis, olgun durumda iken gonadlar 2 veya 3mm kalınlığında bir tabaka biçimindedir. Seksler arasındaki farklılık yumurta ve sperm varlığından hariç dış görünüşten belli olamaz. 3.1 İstiridyelerin Gonad Gelişim Safhaları İstiridyelerin gonad safhalarını belirlemek için alınan histolojik örneklerde gonad aşamaları beş grup altında değerlendirilmektedir(Cole 1942; Brausseau, 1995; Garcia-Dominguez ve ark., 1996, Yolkolu, 2000). Bu gruplar: Safha 0 Dinlenme Safha 1 Ilk Gametogenesis Safha 2 Olgunlaşmaya başlama Safha 3 Döl atımına hazır Safha 4 Kısmı olarak döl atımı olarak sınıflandırılır. 3.1.1 Dinlenme safhası Bu safhada olan bireylerde istiridyelerin cinsiyetinin belirlenmesi açısından histolojik olarak herhangi bir ip ucu yoktur. Ortamda cinsiyeti belirleyici olan germ(cinsiyet) hücreleri bulunmamaktadır. 3.1.1.1 Testis Safha 1: Ilk gametogenesis safhasındadır. Bu özellikte olan örneklerde foliküler küçüktür, yuvarlak veya oval şekillidir. Bağ dokusunun kapladığı alan geniştir. Spermatagonialar bir arada ve koyu renklidir. Safha 2:Foliküller oldukça büyümüştür. Bağ dokusunun kapladığı alan iyice azalmıştır. Spermatozoalar merkeze doğru yönelmiştir ve kırmızı şeritler halinde kuyruklar belirgindir. Safha 3: Istiridyelerin döl atımına hazır olduğu safhadır. Foliküller şişip birleşmiş ve çoğunluğu tamamen spermatazoa ile doludur ve kuyrukları kırmızı renktedir ve açıkca belirgindir. Maturasyon ile incelmeye başlamış olan folikül duvarlarının iç kısmına doğru spermatositler ve spermatidler sıralandırılmışlardır. Serbest spermatazoalar follikül lümellerine tamamen yerleşmişlerdir. Çok sayıda hareketli spermatazoa görülmektedir. Bağ dokusu alanı azalmıştır. Safha 4:Foliküller tamamen boşalmış ve dinlenme safhasına geçilmiştir. Bu da ortamda inaktif olan spermatagoniumlardan anlaşılmaktadır. Foliküller arası bağ dokusu iyice gelişmiştir. 3.1.1.2 Ovaryum Safha 1: Foliküller başlangıçta küçük, boş ve belirgin değildir. Folikül duvarları, gelişen oositler ve kök hücreleri ile belirginleşmiştir. Oogonia ve primer oositler küçüktür ve yumurta sarısı yoktur. Bu aşamadaki primer oositlerin çekirdeği büyüktür ve belirgindir. Sık demetler şeklinde folikül duvarına doğru yapışma olmaktadır. Oogenesis ilerlemektedir. Birkaç büyük oositin uzamaya başlaması ile genç oositler bölünmektedir. Safha 2: Oositler, lumenlere doğru genişlemiş ve yığılmaya başlamıştır. Sekonder oositler yoğun miktarda görülmektedir. Primer oosit ve serbest oosit birkaç tanedir. Bu serbest oositler, lümel merkezinde görülmektedir. Hala folikül duvarları ile bağlantılı olan uzamış oositler ile hemen hemen olgunlaşmış olan oositler yoğun olarak bulunmaktadır. Oositler konik ve oval şekildedirler. Bağ dokusunun alanı iyice azalmıştır. Safha 3: Birleşmiş foliküller, bir çekirdekçiği ve çekirdeğinin gözüktüğü polygonal şekilli, tamamen serbest olan oositler ile doludur. Sekonder oosit bir kaç tanedir. Safha 4: Oositler olgunlaşmış atıma hazır hale gelmişlerdir. Bağ dokusu tekrar belirginleşmeye başlamıştır. Ayrıca oositlerin şekli hekzogenal hale gelmiştir. Bazı boşalmış ve yıkıma uğramış foliküller bulunmaktadır. Avrupa istiridyesi, Ostrea edulis sukseksif hermafroditizm gösterir. Seksüel olgunluğa ilk ulaştığı zaman gonad normal olarak bir erkek gibi gelişir ve sperm verir. Gonad spermi bıraktıktan sonra dişi safhasına geçer ve sperm yerine yumurta üretir. Bu düzenli bir şekilde tüm yaşamı boyunca devam eder. Erkek tarafından dışarı bırakılan spermalar dişi tarafından su alma kanalı ile alınarak yumurtalar dişinin içinde döllenir. Döllenmiş yumurtalar 8-10 gün kadar dişinin palial boşluğunda kuluçkalandıktan sonra dışarıya serbest yüzen veliger larva durumunda bırakılırlar(Alpbaz ve Hindioğlu, 1991). Avrupa istiridyesinin döl verimi üzerine sıcaklığın, besinin, büyüklüğün ve yaşın etkisi büyüktür Avrupa istiridyesinin larva boyu 150-190µm büyüklüktedir. 120-130µm büyüklükte larvalar görülse de, yetiştiricilikte büyük larvalar alınır. Küçük larvalar elenir. Böylece daha dayanıklı ve sağlıklı bireyler elde edilebilir. Suya bırakılan veliger larvaları velumları sayesinde hareket ederler. Besin olarak fitoplanton tüketirler. 10-15 gün pelajikte yaşamlarını sürdüren larvalar 290-300µm ve bazen de 360µm büyüklükte iken zemine inerek, hayatlarının geri kalan kısmını sürdürecekleri sert bir substratuma kendilerini tespit ederler. Larvanın kuru ağırlığı hareketli dönemi boyunca 1µg’dan 4µg’a çıkar. Bunun %75-80’i kabuk ağırlığıdır. Yeni bırakılmış bir larvanın kuru ağırlığının %14’ü glikojen, %15,5-22,5’i yağdır. Crassostrea genusuna ait istiridyeler ise 100 milyonun üzerinde yumurta dökebilmektedirler. Bu yumurtaların hepsi aynı zamanda değil, üreme dönemi boyunca bırakılırlar. Crassostrea gigas’da ise dişi birey yumurtalarını deniz suyuna bırakır ve erkek bireyin bıraktığı spermalar ile su içinde döllenme olur. Yumurtalar yaklaşık 50µm büyüklükte olup çok küçüktürler. Yumurtalar ovaryumda iken armut şeklindedir. Ovaryumdan bırakılıp su ortamında döllendikten sonra spiral şekil alır. Birinci ve ikinci polar vücut görünerek yarılma devam eder. Gelişme, morula, blastula ve gastrula safhalarına doğru ilerler. Veliger safhada larvanın velumu ortaya çıkar ve aktif hareket etmeye başlar. Daha sonra D şekilli larvaya dönüşür. Larvada umbo oluştuğunda umbo safhasındadır ve kabuk uzunluğu 0,2mm’ye ulaştığında metamorfoz başlar(Bardach ve ark., 1972). Larva metamorfoz aşamasına geldiğinde anacına benzer bir hal alır. Her iki genusda da benzer belirti olan göz noktası ve ayağın görülmesi metamorfozun en önemli işaretidir. Zemine inen larvada velum kaybolur ve yüzme hareketi ayak ile sürünme hareketine dönüşür. Uygun substrat bulduğunda kendini sol kabuğundan salgıladığı özel bir salgı ile oraya yapıştırarak sesil hayatı başlamış olur. Hareket kabiliyeti artık bitmiştir. 4-İSTİRİDYE YETİŞTİRİCİLİĞİ İstiridye kültüründe yavru bireyler ya kuluçkahanelerde üretilerek ya da doğal alanlardan toplanarak elde edilmektedir. Kuluçkahaneden yavru üretimi gerçekleştirilirse, genetik seleksiyonlar yapılarak hızlı büyüyen, zor şartlara karşı dayanıklı, et verimi fazla, hastalıklara karşı dayanıklı bireylerin elde edilmesi söz konusu olabilmektedir(Rodriguez ve Frias, 1992). Doğal ortamdan toplanan yavrularda ise böyle bir seleksiyon şansı yoktur. 4.1. Kuluçkahaneden Yavru Temini Bu kültür yönteminde kıyısal alanda bir kuçkahane binasının olması gerekmektedir. Bir istiridye kuluçkahanesinde filtre odası, fitoplankton üretim birimi, anaç, larva ve yavru üretim birimi olmalıdır. 4.1.1. Deniz Suyu İstiridye kültüründe suyun filtrasyonu önemli bir konudur. Anaç ve yavru biriminde kullanılan suyun 40-60µm’lik kum filtrelerinden geçmesi yeterli olurken, fitoplankton ve larva üretiminde kullanılacak suyun 20, 10, 5, 1µm’lik kartuj filtrelerinden geçerek partiküllerden ve suda bulunabilecek diğer organizmalardan ayrılması gerekmektedir. Bazı üreticiler deniz suyu ile gelebilecek bazı organizmaların istiridye larvaları tarafından besin olarak değerlendirilebileceğini düşünerek kaba bir filtrasyon yapmaktadırlar. Fakat üretimi riske atmamak için iyi bir filtrasyon ve sterilizasyon önemlidir. Suyun iyi filtre edilmiş olması U.V. ışınları ile yapılacak sterilizasyon etkisini arttırmaktadır. 4.2. Anaç Özellikleri Genellikle istiridye anaçları üretim zamanında doğal stok alanlarından döl almak amacıyla kuluçkahaneye getirilir ve döl alma işlemi tamamlandıktan sonra tekrar denize bırakılırlar. Bu anaçlar hızlı büyüyen, zor şartlara karşı dayanıklı, et oluşturma kapasitesi yüksek, düzgün kabuk şekilli gibi özelliklere sahip istiridye stoklarından seçilmasi tercih edilir. 4.2.1. Anaç istiridyelerden döl alım yöntemleri Olgun istiridyelerden yumurta ve larva elde etmek için birkaç yöntem vardır. İstiridyenin yumurta ve larvalarını ortama normal olarak kendi isteği ile bırakması haricinde yumurtlamayı uyarıcı şok yöntemler de uygulanır. Bu şok yöntemler şöyledir; Termik şok: Şok yöntemlerin en çok kullanılanıdır. Olgun istiridyelerin ani olarak sıcak sudan soğuk suya, soğuk sudan sıcak suya bırakılması ile olur (Field, 1922). Bu işlem birkaç defa tekrarlanır ve istiridyenin larva bırakması beklenir. Kimyasal şok: İstiridyelerin manto boşluğuna 2cc, 0.5 mollük KCL solüsyonu enjekte etmek sureti ile yapılmaktadır. (Bayne; 1965) Elektrik şok: İstiridyelere düşük voltta elektrik verilmek sureti ile uygulanır (Iwata, 1950; Sugiura, 1962). Mekanik şok: İstiridyelerin adduktor kasına enjektör iğnesi ile dokunularak uyarı yapılmaktadır (Loosanoff ve Davis, 1963). Diğer Yöntemler Diseksiyon yöntemi Olgun İstiridyelerin kapama kasları kesilerek gonadlardaki yumurta veya spermler C.gigas’ta alınırken, O. edulis’te palial boşluktaki larvalar alınabilir. Sperm solusyonu Yumurtlamayı uyarmak için suya sperm solüsyonu verildiğinde de istiridyeler bir süre sonra yumurta bırakmış olur. Bu amaçla şok uygulamalar sonrasında elde edilecek fazla sperm solusyonu kullanılabilir. Şok yönetemlerin uygulanmasından yaklaşık 30dk sonra istiridyeler döllerini su ortamına dökerler. Eğer istiridyeler döllerini bırakmaya hazır değiller ise şok yöntemler ile başarılı bir sonuç elde edilemez. İstiridyeler bilindiği gibi yaz aylarını üreme için kullanılır. Kışın ise doğada üreme görülmez. Laboratuvarda uygun koşullar yaratılarak kış aylarında da istiridye üretimi yapılabilir. Bunun için doğal ortamdan alınan istiridyeler 10°C sıcaklıktaki suya bırakılırlar. Ortama alışan damızlıkların tutulduğu havuzdaki su sıcaklığı tedrici olarak 18°C’ye veya biraz daha yüksek sıcaklığa çıkartılır. Bu sıcaklıkta istiridyeler 2-4 hafta tutulur. Bu süre üretim mevsimine bağlı olarak değişir. İstiridyeler bu süre içerisinde gonadlarını olgunlaştırırlar ve sıcaklık 20°C’ye ulaştığında döllerini dökerler. Bu işleme gonad olgunlaştırarak döllerin alınması işlemi denilir. Burada kullanılan anaçlar genellikle genetik olarak istenilen özelliklere sahip özel anaçlardır. 4.3. Larva Kültürü Yumurta veya larvalar anaç biriminde elde edildikten sonra larva birimine alınırlar. Burada 50lt’den 2tona kadar silindir-konik polyester tanklar kullanılabilmektedir. Tank hacmi üretim kapasitesine ve üreticinin tercihine bağlı olarak değişir. Bu tankların alt kısmında bir su çıkış vanası olur. Tanklar 40watt’lık floresan lambalar altına yerleştirilir. Tuzluluğu ‰33-35 ve sıcaklığı 20-22 °C olan iyi filtre edilip sterilize edilmiş deniz suyu doldurulur. Bu tanklara başlangıçta veliger larvaları 10 adet/ml’yi geçmeyecek şekilde stoklanır. Larvalar büyüdükçe stoklama yoğunluğu 3-5adet/ml’ye indirilir. Tankların temizliği gün aşırı yapılır. Tank suyu tamamen süzülerek larvalar yıkanır ve temiz su ile doldurulmuş yeni tanka aktarılırlar. Bu temizlik işlemi larva kültür boyunca devam eder. Veliger safhasında 170-190µm büyüklükte olan larvalar metamorfoza yakın gözlenmiş safhada iken 240-350µm boya ulaşırlar. 4.3.1 Fitoplankton Üretimi Kuluçkahanede bulunan anaç, larva ve yavru istiridyelerin besinleri bu birimde üretilerek temin edilir. Larva beslemede açıklanan Wells-glancy veya Milford yöntemine göre kültür gerçekleştirilmektedir 4.3.1.1 Wells-glancy yöntemi Wells-glancy yönteminde deniz suyu sadece kum filtresinden geçirilir ve sera ortamındaki büyük hacimli tanklara(20-30 tonluk) gönderilir. Tanklara deniz suyu ile gelen fitoplankton hücrelerinin artmasına izin verecek nutriyent karışımı verilir. Bu tank suyu 5-6 gün içinde kahverengi veya yeşil renk aldığında doğrudan larva tanklarında besleme amaçlı kullanılır. Bu yöntemin dezavantajı deniz suyu iyi filtre edilmediği için zararlı fitoplanktonlar türleri de kısa sürede çoğalarak istiridye larvalarına zarar verebilir. Suyla birlikte gelen zooplanktonlar hem larvalara predatör olarak zarar verdiği gibi bazıları da ortamda çoğalan besine ortak olur. Deniz suyu sterilize edilmediği için hastalıklara neden olabilecek mikroorganizma bulaşması da söz konusu olabilir. Böyle bir kültür yönteminde larva yetiştirciliği riske atılmış olmaktadır. Bu yönteme dayalı yapılan fitoplankton kültürü daha çok yavru veya anaç beslemede kullanılabilir. Wells-glancy yöntemi fitoplankton üretim masrafını çok azalttığı için tercih edilmektedir(Bardach ve ark., 1972). 4.3.1.2. Milford yöntemi Milford yönteminde ise alg hücreleri tek tek ayrı tüplerde ve saf kültür olarak inkübatörde muhafaza edilir. Larva kültürüne başlamadan önce bu hücreler steril şartlar altında arttırılmaya başlar. Kültür suyu 0.45µm göz açıklığındaki Milipore filtreden süzüldükten sonra otoklavda sterilize edilir. Kültür hacmi 6lt’yi geçtiğinde suyun filtrasyonu 1µm’lik kartuj filtrelerde, sterilizaysonu ise U.V. lambalarından yararlanarak yapılır. Böylece larva beslemede istenilen hücrelerin kültürü ayrı tanklarda yapılmış olur. Kültür biriminin iyi bir fitoplankton artışı sağlanması için 18-22°C arasında olması sağlanır. Şeffaf polyester tanklar veya naylon torbalarda(50-500lt hacimli) kültür gerçekleştirilir(Bardach ve ark., 1972). 4.3.2 Larva Besleme Milford yöntemine göre kültüre alınan fitoplankton hücrelerinden larvalara ilk olarak Isochrysis galbana ve Monochrysis lutheri besin olarak verilir. Larvalar büyüdükçe Tetraselmis suecica, Dunaliella tertiolecta, Chaetoceras calcitrans gibi besinler kullanılmaktadır. Genellikle tek tür beslemesinden ziyade karışık türler ile besleme iyi sonuç vermektedir. Isochrysis galbana, Monochrysis lutheri 100 000 hücre/ml, Tetraselmis suecica, Dunaliella tertiolecta 50 000-80 000 hücre/ml larva tankında olacak şekilde besleme yapılır. Karışık besleme başlangıçta %50 Monochrysis lutheri ve %50 Isochrysis galbana, larva metamorfoza yaklaştığında ise %20-30 Tetraselmis suecica ile karışık besleme yapılır. Beslemede kullanılacak fitoplankton hücrelerinin canlı olmasına dikkat edilir. Bu nedenle logaritmik artış fazında iken fitoplankton hasat edilerek larvalara verilir. Chlorella sp., ve Phaedactylun tricornutum besleyici değeri düşükolduğu için kullanılması tercih edilmez. Ayrıca Chlorella sp kalın hücre duvarına sahip olmaları nedeniyle larvalar tarafından sindirilememekte ve metabolik artıkları istiridye larvaları için toksik etkiye neden olmaktadır. Bu sebeplerden dolayı kabuklu larva kültüründe besin olarak kullanılmazlar(De Pauw, 1981). Son yıllarda kurutulmuş alg tozlarının kullanılması ile kuluçkahaneler fitoplankton üretim birimlerini küçültmüşler veya tamamen kaldırmışlardır. İhtiyaç duydukları kadar toz fitoplanktonu satın alarak larva beslemede kullanmaktadırlar(De Pauw, 1981). Metamorfoz Larva kültüründe metamorfoz dönemi en önemli dönemlerden biridir. Larvaların günlük sayımları ve ölçümleri alınırken göz ve ayak noktasının oluşumu çok iyi takip edilmelidir. Bu dönemde larvalar zemine iner ve kendilerine uygun gördüklere yerlere yapışırlar. Larva kontrolü iyi yapılmadığı taktirde larvalar tank çeperlerine yapışırlar ve buralardan çıkarılmaları çok zor olur. Böylece bir larva üretim dönemi başarısızlıkla bitmiş olur. Metamorfoz aşamasına gelen larvalar ya ayrı tanlara alınırlar ya da bulundukları tanklar içersine yapışma işlemi başlamadan önce çeşitli kollektör malzemeleri bırakılarak larvaların bunların üzerine yapışması sağlanır. Burada kullanılan kollektör malzemesi larvanın en çok tercih ettiği materyal olan istiridye kabuklarıdır. Bir ip üzerine 3-4 cm aralıklar ile dizilen istiridye kabukları larva tanklarının içerisine tank dibine değecek boyda hazırlanarak sık bir sekilde tank yüzeyinden aşağı doğru sarkıtılırlar. 3-5 gün içinde larvalar bu kabuklar üzerine tutunarak metamorfozlarını tamamlamış olurlar. Bu yeni tutunmuş istiridye yavrularına “spat” adı verilir. Yeni tutunmuş bir spat 1,2-5,7mg canlı ağırlığa sahiptir. Bu spatlar 10-11 hafta sonra 220-500mg canlı ağırlığa ulaşır. Yavrular kollektörler vasıtası ile yetiştirme alanlarına taşınarak uygun sistemlerde büyümeye alınırlar(Utting, 1988). Eğer spatlar tek tek herhangi bir yüzeye yapışık istenmiyorsa, metamorfoz aşamasında iken su sikülasyonunun olduğu spat tanklarına alınırlar. Bu tanklar. 50cm genişliğinde, 30cm derinliğinde olup 2m uzunluğundadır. Tankların içine derinliği 10-15cm olan altı plankton bezi ile çevrelenmiş tepsiler tabanları dibe değmeyecek şekilde yerleştirilir. Tanka su girişi herbir tepsinin üstünden olurken su çıkışı ana tankın sifon çıkışından olmaktadır. Başlangıçta tepsilerin plankton bezi büyüklüğü 150µm’dir. Bu sistemin esas özelliği larvalar bu tepsilere yerleştirilmeden önce kum haline getirilmiş istiridye ve midye kabuklarının tepsi tabanındaki plankton bezini örtecek şekilde yayılmasıdır. Plankton bezi başlangıç boyunun larva boyuna göre çok küçük olmasının nedeni de bu kabukların tepsiden akıp gitmesini engellemek içindir. Kabuk tozu serpilen tepsilere larvalar bırakılır ve 3-5 gün içinde larvalar bu kabuk tozlarına yapışırlar. Zaman içinde spat istiridyeler büyüdükçe kabuk tozları görünmez, spatlar gözle rahatlıkla görünür hale gelirler. Spat büyüklüğüne paralel olarak tepsinin plankton bezi göz açıklığı arttırılır. Spatların 2-3mm boya kadar bu sistemlerde kalabilmektedir. Bu aşamada verilen deniz suyu sadece kaba filtreden geçmektedir ve besin olarak da diatom ağırlıklı besleme yapılmaktadır. Kuluçkahanelerde yapılan larva çalışmaları sırasında metamorfoz aşamasına yaklaşan istiridye larvalarının tutunmasını uyarmak ve hızlandırmak için bazı neuroaktif bileşikler kullanılmaktadır (Shau-Hwaitan ve Wong, 1995). Bazı araştırıcılar bu amaçla sıcaklığı arttırırken bazıları da tank suyuna kabuklu glikojeni, potasyum klorür veya bakır klorür solusyonu kullanırlar(Nell ve Holliday, 1986).. Bu bileşikler larvalarda göz noktası ve ayak oluştuktan sonra kullanılarak larvaların hemen hepsinin aynı anda metamorfozu tamamlaması sağlanmış olur. Kuluçkahanede 3-4mm boya ulaşana kadar spat istiridyeler tuttulur. Bu aşamadan sonra deniz alanında hazırlanmış olan uygun sistemlere taşınarak yetiştiriciliğe devam edilir. 4.4. Doğal Ortamdan Yavru Temini İstiridyelerin yavruları doğal ortamdan ya dreçler ile avlanarak toplanırlar ya da istiridye yataklarının olduğu alanlara üreme dönemlerinde bırakılan çeşitli malzemelerden hazırlanmış kollektörler ile toplanırlar. İstiridyeler biyolojik yapılarından dolayı tutunmak için özellikle kendi anaç kabuklarına benzer materyalleri tercih etmektedirler. Eğer ortamda kabuk yoksa, spatlar buldukları sert substrata kendini yapıştırırlar(Pascual ve Zampatti 1995). Birçok ülkede, yarı kontrollü yetiştiricilik çalışmalarında, spat istiridyelerin toplanmasında, geleneksel yöntemlerin yanında geliştirilmiş yeni malzemelerden hazırlanan kollektörler de kullanılmaktadır. 4.4.1 Kollektör Tipleri Spat toplamada kullanılacak kollektör tipi önemlidir. Şimdiye kadar birçok materyal ve dizayn kullanılmıştır. Fakat bunlardan hiçbiri için her yerde ve her tür için çok iyi sonuç veren sistem denilemez. Bir tür için iyi olan kollektör diğer bir tür için arzu edilen sonucu vermeyebilir(Bardach ve ark., 1972). Uzak doğuda mangrov (Rhizophora sp., Avicennia sp.) bitkilerinin kökleri ile başlayan spat toplama işlemi günümüzde kiremit, çeşitli mollusk kabukları(midye, istiridye, tarak gibi), ahşap, PVC, metal materyallerin kullanımına kadar uzanmaktadır. (Burrell, 1980; Heral, 1990). 4.4.1.1 Kabuk kollektörler Japonya’dan Amerika’ya kadar çok yaygın bir kullanım alanına sahiptir. Bir ucu sivri olan özel çekiçlerle delinen kabuklar, 2 m. uzunluğundaki galvaniz tele dizilmektedir. Teldeki kabuk sayısı 80 ila 100 arasında değişmektedir. Kabuklar arasında mesafe bırakabilmek için önceleri bambu kamışlar kullanılmaktaydı, ancak maliyet ve geri dönüşüm açısından daha karlı olan plastik tüpler son yıllarda tercih edilmektedir. Kabukların bol olduğu bölgelerde ise herhangi bir mesafe bırakmadan ip veya galveniz tel üzerine üst üste gelecek şekilde kabuklar dizilerek kollektörler hazırlanmaktadır (Korringa, 1976a-b; Haven ve ark., 1987; Mann ve ark., 1990). Fransa’da Ostrea edulis spatlarının toplanmasında kabuk kollektörler içerisinde en iyi sonucu midye kabukları vermektedir. Bu kabuklar ince uzun ağ fileler içerisine yerleştirilmekte ve daha önceden hazırlanmış olan metal çerçeveler üzerine bağlanarak deniz tabanına bırakılmaktadır. Bunlar daha çok gel-git’in olmadığı derin sulara yerleştirmektedir (Heral, 1990). Hazırlanan tüm kabuk kollektör çeşitleri raf veya sallardan sarkıtılarak denize bırakılırlar. Bir çok kuluçkahanede, çeşitli kabuklular kırılıp toz haline getirildikten sonra metamorfoz aşamasına gelmiş larvaların yerleştirildiği tavaların tabanına serilmekte ve larvaların bu kabuk tozlarına tutunması sağlanmaktadır. Bu istiridye yavrularının tek tek elde edilmesi amacıyla da avantajlı bir yöntemdir. Bu şekilde elde edilen spat istiridyeler torbalara yerleştirilip kültür sistemlerine yerleştirlmektedir(Pascual ve Zampatti, 1995). 4.4.2 Kiremitler Kollektör olarak kullanılan kremitler, yaklaşık olarak yarı silindirik şekildedir. 33cm uzunluğunda, 15cm genişliğinde ve ortalama 5cm yüksekliğindedirler. Bu kiremitlerden birinin ortalama ağırlığı 900gr’dır. Kiremitler 10’luk gruplar halinde bir araya getirilirler ve Bouquets olarak adllandırılırlar. Bu onluk grupların oluşturulması için kısa kenarından 7,5cm uzaklıkta iki delik açılmaktadır. 110cm uzunluğunda 1,5mm kalınlığında galvanizli tel ile köşeler kesişecek şekilde birbirine bağlanmaktadır. Daha sonra kirece batırılıp kuruyuncaya kadar bekletilmektedir Kiremit kollektörlerde, kireç solusyonunun kullanılması ile spatlar kiremitler üzerinden rahatlıkla çıkarılmaktadır(Walne, 1974; Korringa, 1976a-b; Heral, 1990). Hollanda’da S-tipi kiremitler istiridye yavrusu toplamak için daha uygun olduğu bildirilmektedir (Dutch Tipi). Burada kullanılan kiremitlerin kuru ağırlıkları 2kg’dır. Ancak deniz suyu içindeki ağırlıkları ortalama 2,5kg. cıvarındadır. 35x23cm boyutlarında ve 13mm kalınlığındadırlar. Bu kiremitler de kreç ile kaplandıktan sonra denize bırakılmaktadırlar (Korringa,1976b). Gerek Crassostrea gerekse Ostrea türleri için gel-git’in olduğu alanlarda yaygın olarak kullanılan kremit kollektörler zemine yerleştirilmektedir. Kollektörlerin bırakılacağı alanlar daha önceden deniz yıldızları ve yengeçlerden temizlenerek kollektör veriminin olumsuz etkilenmesi önlenmiş olur. 4.4.3. Plastik malzemeler Günümüzde geleneksel olarak kullanılan bir çok materyalin yanında kolay şekil verilebilen plastik malzemeler de kullanılmaktadır. Bu malzemelerin maliyeti diğer kollektörlere göre daha yüksek olmasına karşın, tekrar kullanılması nedeni ile tercih edilmektedir. PVC çubuklar, yarı silindir plastik kollektörler, plastik levhalar ve fileler en çok kullanılan plastik materyal tipleridir(Korringa, 1976a-b). Dayanıklı ve hafifitirler., spat hasatı pratiktir. 4.4.4. Bambu kamışı ve ahşap materyaller Özellikle Filipinler’de Crassostrea eradelie için kullanılan bir kollektördür. Hazırlanışı basit olduğu için Filipin’li üreticiler tarafından özellikle tercih edilmektedir. Bu bambu kamışlar 5-10cm çapında ve sağlam olanları tercih edilmektedir. Bambu kamışları kesildikten sonra güneşte kurutulmakta ve eğer kalın bambu kamışları varsa bunlar da ikiye ayrılarak kullanılmaktadır. Daha önceleri bu ülkede istiridye kabukları yaygın olarak kollektör yapımında kullanılmasına karşın, bambu kamışlarının iyi bir spat toplayıcı olmasının belirlenmesinden sonra istiridye kabuklarının kullanımı azalmaya başlamıştır. Kullanılan bu kamışlar intertidal alanlara 0,3-0,7m aralıklar ile yanyana dikilmektedir. Her bir bambu sırası arasında bir küçük tekne gezebilecek kadar mesafe bırakılmaktadır. Bambu kamışlarının sıralar halinde kullanımının dışında kamışların bir araya getirilmesi ile ızgaralar hazırlanmıştır. Hazırlanan bu ızgaralar deniz dibine dik olacak şekilde ve özellikle gel-git alanlarına yerleştirilmektedir (Bardach ve ark., 1972). 4.4.5. Ahşap ızgaralar Avusturalya’da Crassostrea commercialis ‘in spatlarını toplamada tahta ızgaralardan yararlanılır. 2m uzunluğundaki ve 22-25mm2 yüzey alanına sahip olan bu çıtalar belli aralıklar ile kafes şeklinde çakılarak ızgaralar oluşturulur. Bunlar zeminden 1-1,3m yukarıdaki raflara üst üste gelecek şekilde yerleştirilerek tren yoluna benzer uzun hatlar oluşturulur. Her bir sıra arasında tekne girecek kadar mesafe bırakılır(Kesteven, 1941). Pek yaygın olmamakla birlikte, ahşap kaplamalar güneş altında kurutulup spral şekline getirilerek, spat toplama için kullanılmaktadır (Quayle,1969). 4.4.6 Kayrak taşı Kayrak taşı, özellikle Fransa’da kullanılan materyaldir. İnce kare parçalar halinde kesilen taşlar bir çelik tel üzerine araları 4-5cm mesafe ile dizilirler. Tel üzerindeki taş adeti 15 ila 20 adet arasındadır. Bu şekilde hazırlanan kollektörler gel-git etkisinde olan raf sistemlerinin üzerine yerleştirilerek kullanılmaktadır. Bu taşlar aynı zamanda ince uzun dirtdörtgen şeritler halinde de değerlendirilebilmektedir. Hazırlanan dirtdörtgen plakalar aralarında 5-6cm’lik mesafe ile yan yana gelecek şekilde birleştirilirler ve raflar üzerine bırakılırlar(Berthome ve ark., 1984). 4.4.7 Spat toplamada kullanılan diğer malzemeler İngiltere’nin bazı bölgelerinde kullanılan, ince bir beton tabakası ile kaplanmış yumurta kolileri Karasal hayvanların kümesi olarak kullanılan küçük tel kafesler, Seramikten hazırlanmış, çatı kremitlerine benzer yarı silindirik yapılar, Plastik ile kaplanmış tel ızgaralar, Çimentolu alçı taşı, İnce dilimler halinde kesilmiş lastik parçaları çeşitli dizaynlarda hazırlanarak kollektör olarak kullanılmaktadır((Bardach ve ark., 1972; Mann ve ark., 1990; Soniat ve ark., 1991; Lök ve Yolkolu, 1999). Günümüze kadar birçok kollektör materyali ve dizaynı denenmiş olmasına karşın genel olarak en iyi kollektör şudur demek yanlış olur. Bir tür veya bölge için iyi olan bir kollektör, diğer bir tür ve bölge için arzu edilen sonucu vermeyebilir. Bir yörede kullanılacak olan kollektörün seçiminde dikkat edilecek belli başlı özellikler vardır. Bu özelliklerin başında istiridyenin türü gelmektedir ki, yetiştiriciliği yapılacak olan türün özellikle hangi materyallere tutunduğunu belirlemek gerekmektedir. Kullanılacak olan kollektör tipinin ekonomik açıdan maliyetinin düşük olması ve tekrar kullanılabilirliğinin olabilmesi yada dayanıklılığının uzun vadeli olması tercih sebebini oluşturmaktadır. Yine seçilen kollektör tipinin o yörede bol miktarda olması aranılan özellikler arasındadır. Larvalar yapışmak için temiz, sert yüzeyleri tercih eder. Kollektörler yapışkan, kaygan veya düz zeminli olmamalıdır. Kaba yüzeyler larvalar tarafından daha çok tercih edilmektedir. Kollektör rengi önemsizdir. Kollektörler batabilme özelliğine sahip olmasına karşın hafif olmalı, larvaların hareketine izin verecek kadar kollektörler arasında su hareketi olmalıdır. Kollektörler ile yavru toplama işlemine başlamadan önce, o bölgede mevcut olan istiridye yatakları ve bu istiridyelerin üreme zamanlarının çok iyi belirlenmesi gerekmektedir. Bu amaçla araştırıcılar bölgede plankton çekimi yapıp istiridye larvalarının bolluğunu ve yaşını takip ederek en uygun zamanı bildirirler. Bazı bölgelerde ise üreticiler geçmiş yılların tecrübesine göre kollektörlerini denize bırakırlar. Eğer kollektörler denize çok erken bırakılırlarsa çok fazla sayıda balanus veya diğer arzu edilmeyen fouling organizmalar kollektörlere yapışır ve spat toplama başarısını olumsuz etkiler. Kollektörlerin bırakılacağı alanlarda yapılacak ön çalışmalar ile en iyi kollektör tipi ve en uygun spat toplama zamanı tespit edilir(Mori, 1987). Larva toplama zamanı araştırma istasyonları tarafından belirlenir ve ilgilenen üreticilere ilan edilir. Yeni yapışan larva 0.3mm büyüklüğündedir. Yaklaşık bir ay sonra 1-1.5cm olur. Bu boydan sonra kollektörden ayrılarak büyütme alanlarına transfer edilirler. Bazı yetiştiriciler kollektör tipleri uygun ise spatları ayırmadan ya aynı alanda ya da gelişmenin daha iyi olacağı başka bir alana taşıyarak uygun kültür sistemlerine yerleştirilerek büyümeye alınırlar. 5- YETİŞTİRİCİLİK YÖNTEMLERİ Gerek kuluçkahaneden elde edilen ve gerekse doğal alanlardan toplanan yavru istiridyeler, pazar boyuna kadar büyütülecekleri yetiştirme alanlarına yerleştirilirler. Yetiştirme alanlarının seçiminde aşağıdaki konulara dikkat edilmelidir: a) İstiridyenin büyümesine izin verecek uygun su koşullarına(sıcaklık, tuzluluk) sahip olmalıdır. b)Evsel ve endüstriyel bir atık girdisi olmamalıdır. c)Plankton açısından zengin olmalıdır. d) Toksik plankton patlaması olmamalıdır. e)Suda belli bir su akıntısı olmalı, durgun su olmamalıdır f)Denizyolu ulaşımı üzerinde olmamalıdır. 5.1 Dip Kültürü Gel-git etkisindeki kıyı alanlarında uygulanana en eski kültür yöntemidir. İplere dizilmiş olan kabuk kollektörler spatlar tutunduktan sonra iplerden çıkarılarak spatlar ile birlikte deniz tabanına bırakılırlar. Bu genç bireyler 22 ay bu alanda kalırlar. Bir yaz sezonunun geçmesi et dolgunluğu için yeterli olmaktadır. İstiridyeler sonbaharda hasat edilirler. Hasat işlemi elle veya dreçler ile yapılır. Toplanan istiridyeler basınçlı su ile yıkanarak temizlenir ve pazara sunulurlar. Bu dip kültür sistemi zemine hazırlanan raylı sistemler ile biraz daha geliştirilmiştir. Raylı sistemlere istiridye büyüklüğüne uygun göz açıklığına sahip kasalar yerleştirilir. Kasaların üstü ağ fileler ile örtülür. Böylece sular yükseldiğinde kasa içersindeki istiridyelere bazı organizmaların zararı olmayacaktır. Ayrıca kasalara yerleştirilen istiridyeler zemine direk temastan kurtulmuş olmaktadırlar. Böylece istiridye üstünde çamur birikerek boğulma riski de azaltılmış olmaktadır(Iversen, 1976). 5.2.Sehpalarda kültür Dip kültüründe zararlı organizmalar ve istiridyeler üzerinde çamur birikmesi verimin düşük olmasına neden olmaktadır. Bu nedenle üreticiler ilk zeminden uzak kültür yöntemi olarak sehpa sistemini uygulamaya başlamışlardır. Gelgitin fazla olduğu yerlerde zeminden 30cm yukarıda ve 2m uzunlukta olacak şekilde metal çubuklardan 30-40cm genişliğinde sehpalar yapılmaktadır. Bu sehpalar üzerine kollktörlerden temizlenen veya kuluçkahanelerden alınan spatlar plastik torbalar içersine konarak yerleştirilir. Plastik gözenekli torbalar sehpalara her iki ucundan metel maşalar ile sabitlenirler. İstiridyeler büyüdükçe torbaların göz açıklığı da büyültülür. 2-2,5 yıl sonra istiridyeler hasat edilir. Bu sistemin en önemli sorunu torbalar üzerinde makro alg birikiminin fazla olması ve gözenekleri kapatmasıdır. Torbalar sık sık kontrol edilmeli ve fazla alg birikimi temizlenmelidir. Temizleme işleminde algin tamamı alınmaz. Kalan algler torba üzerinde sular çekildiğinde gölgeleme yaptığı için istiridyelerin sıcaklıktan etkilenmesini azaltır(Bardach, ve ark., 1972). 5.3.Raf Kültürü Raf kültürü ile istiridye yetiştiriciliği hem horizontal, hem de vertikal alanda yapılır hale gelmiştir. Gelgit etkisinin az olduğu deniz derinliği 1.5-2m’den 5-6m’ye kadar olan kıyısal alanlarda raf kültürü uygulanmaktadır. Bazı üreticile gelgit etkisindeki alanlarda da uygulamaya almaktadır. Bambu kamışlar aralarında 2-3m mesafe olacak şekilde 2 ila 5m derinliklerdeki suların bulunduğu yerlere çakılırlar. Diğer bambular ise denize dik çakılan kazıkların üstlerine yatay olarak olarak bağlanırlar. Bu rafların dizaynı uzun ikili sıralar halinde olabileceği gibi 10x10m ebatlarında da yapılabilir. Bu durumda bambu sıraları arasındaki mesafeler 50-60cm olacak şekilde ayarlanır. İstiridye spatlanın tutunduğu kollektörler yatay bambu kamışlarının üzerinden 40-50cm aralıklar ile sarkıtılarak spatların büyümesine izin verilir. Bu sistemde kollektör uçlarının deniz tabanına değmemesine dikkat edilir. Böylece zararlı organizmalardan kollektörler uzak tutulmuş olur. Raf sisteminde bambu kamışı dışında dayanıklı ahşap materyaller ve deniz suyuna dayanıklı metal konstrüksiyon da kullanılmaktadır(Korringa, 1976a-b). 5.4 Sal Kültürü Sallarda yetiştiricilik genellikle iç denizlerde uygulanır. Salların inşasında tropik kuşakta 10-15cm çaplı bambular veya sedir ağacı kullanılmaktadır. Birbirine 30 veya 60cm aralıkla monte edilirler. Salların ebadı, 9x5,4m dir. Bu büyüklükdeki bir sal, 500-600 adet istiridye kollektörü(spatlı) taşır. Salların yüzdürülmesinde tercihen dayanıklı plastik variller (50 galonluk), fıçılar veya yüzdürücüler (stypor) kullanılır. Sallar 5-10m aralıklarla birbirlerine bağlanır. Bir ünite yaklaşık 10 saldan teşekküldür. Salların büyüklükleri ve sayıları değişiklik gösterebilir(Bardach, ve ark., 1972; Burrell, 1980). Sallar genellikle bambulardan yapılır. Plastik borularda bu amaçla kullanılabilir (PVC sulama boruları). Bu tür malzemenin esneme payı fazladır. Elemanlar 8 numara telle bağlanır. Salların sabitlenmesi için (deniz demiri) çapalar kullanılır, diğer bir yöntem ise, biri 3 tonluk, diğeri 5 tonluk iki beton bloğun yardımı ile sabitlemektir. Sert havalarda salı sürükleyen dalgalar güçlü ise, 3 tonluk bloğu oynatırlar. 5 tonluk bloğu oynatmaya çalışırken dalga aralarında 3 tonluk blok boşu alarak dibe çöker ve salın sürüklenmesini önler. Çapalı sabitlemede çapayı bırakmak ve ipin kopması çok görülmüştür. Bir salın ömrü 5 yıldan fazla olabilmektedir. Sal kültürü ile 25mm büyüklüğündeki bir istiridye 9 ay içinde pazar büyüklüğüne ulaşabilmektedir. Bu sistem ile su alanında hem horizantal, hem de vertikal olarak yararlanma söz konusudur. Dipte yapılan bir kültür ile karşılaştırıldığında verim en az%50 artmaktadır. 5.5. Halatlarda Kültür Aralarında 3-6m mesafe ile bir kalın halat üzerine sabitlenmiş yüzdürücülerden oluşur. Yüzdürücü olarak 30-40 lt hacimli plastik bidonlardan yararlanılır. Bu sistem tek halat ile hazırlanabileceği gibi arasında 30-40cm mesafe olacak şekilde çift halat olarak da hazırlanabilir. Uzunluğu 60-75m arasında değişir. Her hattın ucunda duruma göre 1-3 arası çapa bulunur ve deniz dbine sabitlenir. Her ünitede 10-12 yüzdürücü vardır.Yüzdürücülere bağlı olan ana halat bedene spatlar tutunmuş kabuk kollektörler asılabileceği gibi, içinde istiridye olan ağ fileler de asılabilir. İstiridye kollektörleri veya fileleri 30cm aralıkla asılırlar. Sahilden uzak derin sularda kurulabilir ve zor hava şartlarına karşı dayanıklıdır. Sistemin yıpranma ömrü diğer sistemlere göre daha uzundur. Planktonnun daha az olduğu derin, sahilden uzak sularda kurulması tercih edilen bir sistem olduğundan spatların Pazar boyuna ulaşması 2 yılı geçebilir(Bardach, ve ark., 1972; Iversen, 1976; Burrell, 1980). 5.6 Kafes Kültürü Kollektörler ile toplanıp bir yıl sonra seyreltilen istiridyelerden güzel şekilli olanlar seçilirler. Tel çerçeveli ızgara şeklindeki kafeslere herbirinin ayrı ayrı konabileceği bölmelere istiridyeler yerleştirilir, sal veya halat sistemlerinden asılır. Yaklaşık 6-8 ay sonra 10-20 cm uzunluğa ve 10-30 gr et ağırlığına ulaşır. Bu yöntem daha çok istiridyeler pazara çiğ olarak sunulacağı durumlarda uygulanır. Izgara sistemi nedeni ile sıkışan istiridyelerde kabuk şekli düzgün olarak büyüme gerçekleştiğinden tüketici tarafında tercih edilmektedir. Sal veya halat kültür alanlarındaki yerleşim akıntı, tuzluluk, besin ve yerel balıkçılık aktivitelerine bağlı olarak ayarlanmalıdır. Yoğun istiridye ölümleri kıyısal ve acı sularda yapılan kültür alanlarında ve doğal stoklarda görülmektedir. Bu ölümlerin başlıca nedenleri; -yetersiz beslenme -aşırı yağmurlar ve seller nedeni ile oluşan ekstrem tuzluluk ve sıcaklık değerleri, -predatörlerin aşırı üreyip yayılması, -çamur birikimi, -düşük oksijen seviyeleri, -yoğun stoklamalar -hastalıklardır. Bunlara ilaveten yaz aylarında seksüel olgunlaşma ve yumurtlama esnasında da anaç istiridyelerde yoğun ölümler görülmektedir. 6-Zararlı Organizmalar İstridye doğal ortamda iken suda mevcut olan diğer canlılar tarafından da bazı etkilere maruz kalmaktadır. Bu etkilerin başında onları besin olarak kullananlar, yaşadıkları ortama ve besine ortak olanlar, üzerinde yaşayarak direk ve indirek etki edenler veya kabuklarını delip içine girerek yaşamlarını istiridye içinde geçirenler gelmektedir. Kabuklu yetiştiricileri bu zararlıları bilip önlem almak zorundadırlar. Bu zararlıları predatörler(bazı balık türleri, yengeçler, istiridye matkabı, deniz yıldızı, ahtopot ve deniz kuşları (Haemotopus ostrolegus), rakip canlılar ve fouling, boring organizmalar olarak sınıflandırmak mümkündür(Korringa,1976a-b, Spencer, 1990; Lök ve Köse, 1999). Bunların dışında kabuklularda toksik madde birikimlerine neden olan Gonyaulax sp., Dinophysis sp. gibi fitoplanton türlerinin olduğu alanlardan istiridye hasatı yapılmamalı veya toksik etkisi geçene kadar beklenmelidir. Toksik fitoplankton patlamaları sonucunda toplanıp tüketilen istiridye, midye gibi kabuklu su canlıları bünyelerinde biriktirdikleri toksite nedeni ile insanlarda ölümlere kadar varan sonuçlar ile karşılaşılabilmektedir(Hindioğlu, 1998). 7- SONUÇ İstiridye kültürü Romalılar zanında başlamış ve günümüze kadar birçok kültür yöntemi ve sistemi geliştirilmiştir. Kültür uygulamaları ülkelere, istiridye türüne ve üreticinin tercihine göre değişiklik göstermektedir. Üreticiler kendi ülke şartları için en uygun sistemi geliştirmişler ve halen daha başarılı sonuçlar alma yönünde çalışmalar devam etmektedir. Ülkemizde ise istiridye kültürünün başlatılması hem ekonomik sonuçları hem de uygun deniz alanlarının değerlendirimesi açısından önemli olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E.Ü. Su ürünleri Fakültesi yayınları No. 26, s. 82-130. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Oyster culture. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms :. pp. 674-742. Bayne, B. L., 1965. Growth and delay of metamorphosis of the larvae of Mytilus edulis(L.) Ophelia, Vol:2, No:1, Denmark. Berthome, J.P., Prou, J., Razet, D. & Garnier, J., 1984. Premiere approche d’unemethode d’estimation previsionelle de la production potentielle d’huitre creuse C.gigas d’elavage. Haliotis 14 39-38. Brausseau, D. J.,1995. Gametogenesis and spawning in intertidal oysters (Crassostrea virginica) from Westrn Long Island Sound. Journal of Shellfish Research. Vol.14, No.2 pp.483-487. Burrell, Jr.V.G., 1980. Oyster culture. In: Huner,J.V., ve Brown E.E.(eds), Crustacean and Mollusk Aquaculture in the United States. pp. 235-305. Claus, C., 1981. Trends in nursery rearing of Bivalve Molluscs. In:Claus, C., De Pauw, N., Jaspers, E.(eds) Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.1-33. Cole, H. A., 1942.Primary sex phase in Ostrea edulis. Quart. J. Micros. Sci., 83. pp. 317-356. De Pauw, N., 1981. Use and Production of Microalgae as Food for Nursery Bivalves. In:Claus, C., De Pauw, N., Jaspers, E.(eds). Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.35-69. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Garcia-Dominguez F., Ceballos-Vazquez , P. B., Qezada A.T. 1996. Spawning cycle of the pearl oyster, Pinctada mazatlanica (Hanley, 1856) (Pteriidae) at Isla Espirito Santo, Baja California Sur, Mexico. Journal of Shellfish Research, Vol.15, No.2. pp.293-303. Haywood, E. L., Soniat, T. M.1992. The use of cement-stabilizied gypsum as cultch for the Eastern oyster, Crassostrea virginica (Glein, 1791). J Shellfish Res.vol.11, No.2 pp. 417-419. Haven, D. S., Zeigler, J. M., Dealteris, J. T., Whitcomb, J. P., 1987. Comparative Attachment, Growth and Mortalities of Oyster (Crassostrea virginica) Spat on Slate and Oyster Shell In The James River, Virginia. Journal of Shellfish Research , Vol:6, No:2, pp. 45-48. Heral, M.,1990. Traditional oyster culture in France. In: Barnabe, G. (ed.), Aquaculture Vol.1, pp. 342-387. Hindioğlu, A., Alpbaz, A., 1991. İstiridye (Ostrea edulis, L.1758) larvası üretimi üzerine araştırmala. Eğitiminin 10.yılında Su Ürünleri Sempozyumu, sayfa: 578-589. Hindioğlu, A., Serdar, S., Yolkolu, S., 1998. Kabuklularda (Bivalve-Mollusk) algal biotoksin ve insan üzerindeki etkileri. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı,Türkiye Kıyıları 98 Bildiriler Kitabı,22-25 Eylül 1998.ODTÜ Ankara pp.173-187. Iversen, E.S., 1976. Farming the edge of the sea, pp.134-158. Surrey England. Iwata , K. S., 1950. Spawing Mytilus edulis discharge by electirical stimulation. Bull. Jap. Soc. Scic. Fish. 15, pp.443-446. Loosanoff, V.L., Davis, H.C., 1963. Rearing Molluscs. Advances in Marine Biology. Vol. I, pp. 14-106. Academic Press, London. Lök, A., Yolkolu, S., 1999. İstiridye yavrularının (spat) toplanmasında kullanılan kollektör tipleri. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.109-114. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Mann, R.; Barber, B.J.; Whitcomb, J. P., Walker, K. S., 1990. Settlement of oysters, C. virginica (Glein, 1791), on oyster shell, expanded shale and tire chips in the James River, Virginia. J Shellfish Res, vol. 9, No.1 pp.173-175. Mori, K., 1987. Managed coastal water for oyster culture in Japan. In: Michael, R. G.(eds.).Ecosystems of the World 29 Managed Aquatic Ecosystems pp.125-143. Nell, A. J., Holliday J. E., 1986. Effects of potassium and copper on the settling rate of Sydney rock oyster (Saccostrea commercialis) larvae. Aquaculture, 58 pp.263-267. Kesteven, G.L., 1941. The biology and cultivation of oysters in Australia. CSIRO, Divisionof Fisheries. Report 5, pp.1-32. Korringa, P., 1976a. Farming the cupped oysters of the genus Crassostrea P.219. Elsevıer Scientific Publishing Company-Newyork Korringa, P.,1976b. Farming the flat oysters of the genus Ostrea P.231 Elsevier Scientific Publishing Company-Newyork. Pascual, M.S., Zampatti, E.A., 1995. Evidence of a Chemically mediated adult-larval interaction triggering settlement in Ostrea puclchana: applications in hatchery production-Aquaculture133, pp.33-34 Rodriguez J., Frias, J. A., 1992. Tropical mangrove oyster production from hatchery-raised seed in Cuba. Journal of Shellfish Research, vol. 11, No.2, pp.455-460. Quayle,D. B., 1969. Pacific oyster culture in British Columbia. Fisheriesresearch Board of Canada Biological Station, Nanaimo, B.C. pp. 57-65. Shau-Hwaitan ve Tat-meng Wong, 1995. Introduction of settlement and Metamorphosis in The Tropical Oyster, Crassostrea belcheri (Sowerby), byNeuroactive Compounds, Journal of Shellfish Research, vol. 14 pp.435-438. Soniat, T. M., R. C. Bioadhurst III & E.L. Haywood III. 1991.Alternatives to clamshell as cultch for oysters, and the use of gypsum for the production of cultchless oyster. J Shellfish Res. 10:405-410. Spencer, B.E., 1990. Cultivation of Pacific oysters. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. No: 63, p.47. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole Cilt:123, pp.203-206. Utting, S.D., 1988. The growth and survival of hatchery-reared Ostrea edulis L. spat in relation to environmental conditions at the on-growing site.Aquaculture,69:27-38. Walne, P. R., 1974. Culture of Bivalve Mollusch 50 years experience at Conwy.Fishing News Books Ltd. Farnham, Surrey England. Yolkolu, S., 2000. İstiridye (Ostrea edulis)’nin gonad gelişimi ve cinsiyet oranı üzerine bir araştırma. E.Ü. Su Ürünleri Fakültesi. Yüksek Lisans Tezi, p.69.

http://www.biyologlar.com/istiridye-biyolojisi-ve-yetistirme-teknikleri

DOĞAL VE KUVVETLENMİŞ SERA ETKİSİ NEDİR ?

Yeryüzündeki tüm yaşam biçimleri için vazgeçilmez bir ortam olan atmosfer, kendilerine özgü fiziksel ve kimyasal özellikleri bulunan birçok gazın karışımından oluşur. Atmosferin bileşimi durağan değildir; zamandan zamana, yerden yere değişebilir. Atmosferi oluşturan başlıca gazlar, azot (% 78.08) ve oksijen (% 20.95), temiz ve kuru hava hacminin % 99’unu oluşturur. Bu gazlar atmosferin en bol bulunan bileşenleri ve Yerküre üzerindeki yaşam için çok önemli olmalarına karşın, hava olaylarını etkilemedeki görevleri küçüktür ya da önemsizdir. Kalan yaklaşık % 1’lik kuru hava bölümü, etkisiz bir gaz olan argon (% 0.93) ile nicelikleri çok küçük olan bazı eser gazlardan oluşur. Atmosferdeki birikimi çok küçük olmakla birlikte, önemli bir sera gazı olan CO2, % 0.037 oranı ile dördüncü sırada yer alır. Doğal Sera Etkisi Atmosferdeki doğal sera etkisinin varlığı ve işlevi, daha küçük bir ölçekte, tarımsal üretimde kullanılan bitki seralarının çalışma sistematiği ile benzeştirilebilir. Bitki seralarında kullanılan cam ya da plastik kaplamalar, kısa dalgalı güneş ışınımlarını geçirmekte, buna karşılık uzun dalgalı yer (kızıl ötesi ya da termik) ışınımının büyük bölümünün kaçmasına engel olmaktadır. Sera içinde tutulan termik ışınım, seranın ısınmasını sağlayarak, hassas ya da ticari değeri bulunanbitkiler için uygun bir yetişme ortamı oluşturur. Bitki seralarının içindeki sıcaklığın istenen değerlerde olmasını sağlamak için, hava koşullarındaki değişimler dikkate alınarak, havalandırma pencereleri kullanılır ya da ek ısıtma yapılır.Yerküre’nin sıcaklık dengesinin kuruluşundaki en önemli süreç olan doğal sera etkisinin oluşumu da, atmosferin kısa dalgalı güneş ışınımını geçirme, buna karşılık uzun dalgalı yer ışınımını emme ya da tutma eğiliminde olmasına bağlıdır. Gelen güneş ışınımının yaklaşık % 31’i yüzeyden, atmosferdeki aerosollerden ve bulut tepelerinden yansıyarak uzaya geri döner. Güneş enerjisinin Yerküre-atmosfer sisteminde tutulan % 69’luk bölüm, iklim sistemini oluşturan ana bileşenlerce (atmos­fer, hidrosfer, litosfer ve biyosfer) kullanıldıktan sonra uzun dalgalı yer ışınımı olarak atmosfere geri verilir. Giden kızıl ötesi ışınımın önemli bir bölümü sera gazlarınca ve bulutlarca emilir ve atmosfere geri salınır. “Atmosferdeki gazların gelen Güneş ışınımına karşı geçirgen, buna karşılık geri salınan uzun dalgalı yer ışınımına karşı çok daha az geçirgen olması nedeniyle, Yerküre’nin beklenenden daha fazla ısınmasını sağlayan ve ısı dengesini düzenleyen doğal süreç” doğal sera etkisi olarak adlandırılır. Yeryüzü, sera etkisi sayesinde, bu sürecin bulunmadığı ortam koşullarına göre yaklaşık 33 °C daha sıcaktır. Güneş ışınımı ile yer ışınımı arasındaki bu dengeyi ya da enerjinin atmosferdeki ve atmosfer ile kara ve okyanus arasındaki dağılışını değiştiren herhangi bir etmen, iklimi de etkileyebilir. “Yerküre/atmosfer sisteminin enerji dengesindeki herhangi bir değişiklik” ise ışınımsal zorlama olarak adlandırılır. Yerküre’nin güneşin çevresinde izlediği yörüngedeki ve kendi eksen eğimindeki yavaş değişimler, güneş ışınımının mevsimsel ve enlemsel dağılışını etkilemektedir. Bu yüzden, bazı bilimciler, eskiden beri iklim değişikliklerinin (örneğin, buzul ve buzularası çağların) oluşmasından, Yerküre’nin eksen eğimindeki değişimleri ve yörüngesindeki sapmaları da sorumlu tutmuştur. Kuvvetlenmiş Sera Etkisi Sanayi devriminden bu yana yoğunlaşan insan etkinlikleri (örn.; kömür, petrol, doğal gaz gibi fosil yakıtların yakılması), orman alanlarının yok edilmesi ve endüstriyel süreçlerde ortaya çıkan gazlar) nedeniyle, atmosferdeki sera gazı birikimlerinde belirgin bir artış gözlemlenmektedir. BM İklim Değişikliği Çerçeve Sözleşmesi (İDÇS) ve onun Kyoto Protokolü (KP) başlıca altı sera gazının (CO2, CH4, N2O, hidrofluorokarbonlar (HFC’ler), perfluorokarbonlar (PFC’ler) ve sülfür heksafluorid (SF6)), kontrol altına alınmasını öngörmektedir. Stratosferdeki ozon tabakasının incelmesine neden olan klorofluorokarbonlar (CFC’ler) ise Montreal Protokolü’nce denetlenmektedirler. Özellikle atmosferdeki birikiminin büyüklüğü ve artış hızı ile yaşam süresi dikkate alındığında, öteki sera gazlarına göre CO2’nin önemi daha iyi anlaşılır.Bu yüzden, Mauna Loa (Hawaii) Gözlemevi’ndeki atmosferik karbondioksit izleme programı, küresel iklim değişikliği çalışmalarının temelini oluşturur. 1958 yılından beri yapılmakta olan Mauna Loa ölçümlerine göre, Yerküre atmosferindeki CO2 birikimi çok hızlı bir biçimde artmaktadır. Mauna Loa’nın yayımlanan son ölçüm sonuçları, 1958 yılında yaklaşık 315 ppmv olan atmosferdeki yıllık ortalama CO2 birikiminin, 2003 yılında yaklaşık 376 ppmv’e yükseldiğini gösteriyor. Küresel ölçümler, öteki sera gazlarının çoğunun atmosferik birikimlerinin de arttığını kanıtlıyor. Sera gazı birikimlerindeki bu artışlar, Yerküre’nin daha fazla ısınmasına yol açan pozitif ışınımsal zorlamanın oluşmasını sağlar. “Yerküre/atmosfer ortak sisteminin enerji dengesine yapılan pozitif katkı”, kuvvetlenmiş sera etkisi olarak adlandırılır. Bu ise, Yerküre atmosferindeki doğal sera gazları (su buharı, CO2, CH4, N2O ve O3) yardımıyla yüz milyonlarca yıldan beri çalışmakta olan doğal sera etkisinin kuvvetlenmesi anlamını taşır. (Şekil.3) Ancak bitkisel sera örneğinden farklı olarak, Yeryüzü’nün doğal sera etkisinin kuvvetlenmesi sonucunda ortaya çıkan küresel ısınmanın etkisini zayıflatacak bir “havalandırma penceresi” yoktur. Bu nedenle, insan kaynaklı sera gazlarının salımlarının kontrol altına alınması ve azaltılması, iklim değişikliği ile mücadelenin en önemli adımlarını oluşturur.

http://www.biyologlar.com/dogal-ve-kuvvetlenmis-sera-etkisi-nedir-

İklim değişikliği, istilacı yabancı türler ve asidifikasyonun üçlü etkisi

Balıkçılar, sağlıklı deniz ekosistemlerine oldukça bağımlıdır, ancak iklim değişikliği işlerin yürüyüşünü tamamen değiştirdi. İstanbul Üniversitesi'nden Nuran Ünsal göç modellerindeki değişikliklere ve balık stokları üzerindeki etkilerine dikkat çekiyor. Yüksek ekonomik değere sahip palamut, lüfer ve uskumru gibi göç eden balık türleri sonbahar aylarında güneye, Akdeniz'e doğru ve ilkbahar aylarında beslenmek üzere kuzeye, Karadeniz'e doğru göç ederler. Ancak, her geçen yıl daha az sayıda balık Boğazlar üzerinden göç etmektedir. ‘Gerekli akımlar için hayati öneme sahip olan su sıcaklığındaki ve mevsimsel rüzgarlardaki değişiklikler bu balıkların göç modellerini bozmuştur.’, Profesör Ünsal, ‘bu türler doğru su sıcaklığı, yem miktarı ve yeterli beslenme süresi gibi çok spesifik şartlara ihtiyaç duyarlar. ‘Yirmi yıl önce Eylül ayında güneye göç ediyorlardı. Karadeniz'de su sıcaklığının ısınmasıyla birlikte, balıkların artık Ekim ayının ortasına veya Kasım ayının başına kadar güneye göç etmesine gerek kalmamıştır. Bu da balıkların Akdeniz'de daha kısa bir süre kalmasına ve neticesinde kuzeye döndüklerinde sayı ve hacim olarak daha küçük olmalarına neden olmaktadır.’ Sıcak sulardaki balıklar yüksek bir tehdit altındalar: adaptasyon geçirdikçe, metabolizmaları hızlanıyor. Daha hızlı ve çoğu zaman daha küçük yetişkin boyutuna kadar büyüyorlar ve yüksek metabolizmalarını desteklemek üzere daha fazla yeme ve daha fazla oksijene ihtiyaç duyuyorlar. Aynı zamanda, su sıcaklığı yükseldikçe, suyun içeriğindeki oksijen miktarı da azalmaktadır. Birçok balık ‘oksijen sıkışması’ olarak adlandırılan tehlikeyle karşı karşıyadır: ihtiyaçları artarken, kaynakları azalmaktadır. İklim değişikliği ayrıca deniz suyunun tuzluluk oranını ve asitliğini ve katman oluşturma şekillerini de değiştirmektedir. Bu değişikliklerin etkileri oldukça yıkıcı olabilir. Mercan kayalıklarının yıkılması, istilacı türlerin ve hastalıkların yayılması, piramidin en üstündeki türlerin yok olması ve nihayetinde deniz besin zincirinin tüm yapısının değişmesi bu ciddi etkilerden bazılarıdır. İstilacı türler 1980'li yılların sonuna doğru, Karadeniz'deki hamsi stokları birçok faktöre dayalı olarak azalmıştır. Bu faktörler arasında aşırı avlanma, besin artışı (özellikle Tuna Nehri kaynaklı), iklim değişikliği nedeniyle su sıcaklıklarının yükselmesi ve bölgeyi orijinal olarak kuzey batı Atlantik'ten gelen yeni bir türün, bir taraklı denizanası olan ­Mnemiopsis leidyi'nin istila etmesi sayılabilir. Mnemiopsis leidyi, büyük olasılıkla Karadeniz'den geçen kargo gemilerinden boşaltılan balast sularından, balık lavralarından ve organizmalardan beslenmektedir, böylece hamsi sürüleri için yeterli besin kalmamaktadır. 1990'lı yıllarda, kuzey batı Atlantik menşeli başka bir taraklı denizanası türü olan Beroe ovata görülmüş ve Karadeniz ekosistemine yanlışlıkla gelen bir tür olan Mnemiopsis leidyi türünü yok etmeye başlamıştır. Mnemiopsis leidyi açısından bu baskın türün ortaya çıkması, 1991 yılından 1993 yılına kadar su sıcaklıklarının düşmesi, besin akımlarının azalması ve yaşanan çöküş nedeniyle balıkçılık faaliyetlerinin azalması hamsi stokları üzerindeki baskıları bir miktar azaltmıştır. Bu nedenle, Karadeniz ekosistemi bazı iyileşme belirtileri göstermektedir. Benzer bir ekosistem kayması da Baltık Denizi'nde gözlenmiştir. Aşırı avlanma ve iklim değişikliği, ringa balığı ile çaçabalığı arasında dominant türü değiştirerek, Baltık balık topluluğunu etkilemiştir. Bilinçli olarak veya kazara ortaya çıkmasından bağımsız olarak, istilacı yabancı türler insanlara, ekosistemlere ve yerli bitki ve hayvan türlerine zarar verebilir. İstilacı türlerin yol açtığı problemlerin iklim değişikliği, ticaret hacminin artması ve turizm sektörünün yükselmesi nedeniyle önümüzdeki yüzyılda daha da kötüleşmesi beklenmektedir. Mavi karbon: asit testi Dünyadaki okyanuslar devasa ‘mavi’ karbon havuzları (veya karbondioksit depoları) olarak kabul edilmektedir. Aslında, okyanuslar karadaki ormanların açık ara önünde gezegenimizdeki en büyük karbon deposudur. Bu doğal havuzlar bin yıllarca işlevlerini etkin şekilde yerine getirmiş, sera gazları nedeniyle meydana gelen ani iklim değişikliklerine karşı gezegenimiz için bir tampon görevi üstlenmiştir. Ancak günümüzde, atmosferdeki karbon dioksit miktarı karasal alanların ve okyanusların absorbe edebileceğinden çok daha hızlı bir şekilde artmaktadır. Atmosferden karbon dioksit alımının artması, okyanusların ortalama asitlik değerini artırmıştır. 2100 yılına kadar okyanuslar büyük ihtimalle son 20 milyon yıl içerisinde olmadıkları kadar asidik olacaklardır. Asidifikasyon, birçok deniz organizmasının kabuklarını ve iskelet malzemelerini oluşturmak için ihtiyaç duyduğu kalsiyum karbonatın iki çeşidi olan aragonit ve kalsit yapımı için gerekli olan karbonat iyonu miktarının azalmasına neden olmaktadır. Avrupalı araştırmacılar, deniz besin zincirinin başlangıcından itibaren mikroskobik organizmaların kabuklarında ve iskeletlerinde değişiklikler gözlemlemeye başlamıştır. Düşen kalsifikasyonun oranının, bu organizmaların ve dolayısıyla bu organizmalar ile beslenen daha kalabalık türlerin yaşam kabiliyetlerini kısa vadede olumsuz yönde etkilemesi muhtemeldir. Özellikle mercanlar, bizim mercan kayalıkları olarak gördüğümüz yapıyı meydana getiren iskeletlerini oluşturmak için kalsifikasyon mekanizmasını kullandıklarından risk altındadır. Mercan adaları ayrıca iki milyona yakın deniz türüne ev sahipliği yapmakta ve dünya genelindeki gelişmekte olan ülkelerde gerçekleştirilen balıkçılık faaliyetlerinin dörtte birinin kaynağını oluşturmaktadır. Asidifikasyonun sonuçları, deniz organizmalarının kalsifikasyonu üzerindeki doğrudan etkilerden daha fazlasıdır. Suyun asitliğinin artması, kalamar gibi solungaçlı türler üzerinde önemli bir etkiye sahip olabilir (11). Okyanus asidifikasyonunun sonuçlarının tamamı henüz belirlenememiştir, ancak her yıl bu ‘mavi karbon havuzlarının’ yaklaşık yüzde yedisinin kaybolduğu tahmin edilmektedir. Bu değer 50 yıl önceki kayıp oranının yedi katına eşittir. Kara ormanları gibi, deniz ekosistemlerinin de iklim değişikliği ile mücadelede önemli bir görevi vardır. Her iki ekosistemin de kaybedilmesinin yıkıcı sonuçlara yol açacağı kesindir, ancak okyanus yüzeyi altındaki yaşamın ne hızda değişebileceği henüz tam olarak belirlenememiştir. www.eea.europa.eu/tr/articles/denizler

http://www.biyologlar.com/iklim-degisikligi-istilaci-yabanci-turler-ve-asidifikasyonun-uclu-etkisi

AROMATİK VE TIBBİ BİTKİLER

Doğaya dönüşümün bir slogan haline geldiği günümüz dünyasında tıbbi ve aromatik bitkiler Türkiye'de de önemli bir yere gelmiştir. Türkiye pek çok bitkinin gen merkezi olmasının yanında, bazı endemik türlerin de bulunduğu coğrafik bölgeleri içermektedir. İnsanlar yüzyıllardan beri hastalıklara karşı elde ettikleri bitkiler ile çare bulmaya çalışmışlardır. Hastalıkları, bitkiler ile tedavi etme yöntemleri oldukça başarılı sonuçlar vermiştir. Bundan dolayı bitkilerin tedavide kullanımı, günümüze kadar devam etmiştir. Birçoğu tesadüfen, birçoğu da merak sonucu denenerek etkileri anlaşılan doğal ilaçlar, kulaktan kulağa yayılarak herkes tarafından tanınmış ve yıllar geçtikçe daha farklı bitkilerin başka dertlere de deva oldukları anlaşılmıştır. Diğer bir gelişme de bu bitkilerin, beslenmede lezzet, koku, tad verici ve iştah açıcı özelliklerinin anlaşılması ve kullanımının yaygınlaşmasıdır. Dünyanın gelişmiş ülkeleri özellikle tedavide bitkisel kaynaklara yönelmiş durumdadırlar. Tedavide kullanılan ilaçların önemli bir kısmını doğal kaynaklı ilaçlar oluşturmaktadır. Doğal kaynaklı ilaçların kullanım oranı gelişmiş ülkelerde %60, gelişmekte olan ülkelerde ise %4 civarındadır. Bugün Türkiye florasında 9000'in üzerinde bitki türü olduğu kabul edilmiştir. Bu bitkilerin 1000 kadarı, ilaç ve baharat bitkileridir. Dünya'da yaşam standardı yükseldikçe tüketim de artmaktadır. Bu artış, tıbbi ve aromatik bitkiler içinde geçerlidir. Bu bitkilerin tüketim alanı çok geniştir. En önemli kullanım alanı ise ilaç, parfüm, kozmetik, diş macunu, sabun şeker sanayi olup ayrıca baharat olarak tüketilmektedir. 1. ADAÇAYI: 1.1. LATİNCE ADI: Salvia Officinalis 1.2. İNGİLİZCE ADI: Garden Sage 1.3. MAHALLİ ADLARI: Adaçayı, Ayı Kulağı, Misk Adaçayı, Diş Otu 1.4. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDEKİ YAYILIŞI: Adaçayının bugüne kadar 500 türü tesbit edilmiştir. Bu türler tropik ve subtropik bölgelerde dağınık olarak bulunurlar. Ülkemizde ise yaklaşık 90 kadar salvia türü bilinmektedir. Adaçayları bir ya da çok yıllık, çoğunlukla güzel kokulu, çalı görünüşünde ve tüylü bitkilerdir. Ülkemizde Akdeniz ve Ege bölgelerinde; dağlarda, steplerde, tarım arazileri civarında ve ormanlık sahalarda yetişmektedir. Tıbbi özelliği olan salvia officinalis l. Ülkemizde tabii olarak yetişmemekte, ancak tohumu temin edildiğinde kolaylıkla kültüre alınarak yetiştirilebilmektedir. 1.5. KULLANILAN BÖLÜMLERİ:Kurutulmuş Yaprakları 1.6. SANAYİDEKİ KULLANIM ALANI: Adaçayı yapraklarının enfüzyonu ilaç sanayinde gargaralar ve şurupların bileşimine girerek boğaz ağrıları ve iltihaplarına karşı kullanıldığı gibi, dezenfekten, antiseptik olarak bunun yanında da mide ve barsak spazmlarını çözücü ilaçların yapımında değerlendirilir. Ayrıca hoşa giden kokuları sebebiyle kozmetik sanayinde de geniş kullanım alanı bulunmakta, özellikle dinlendirici vasıftaki banyo köpüklerinin imalinde kullanılmaktadır. Son yıllarda tedavi edici özelliği olan diğer bitkiler ile karıştırılıp poşet halinde hazırlanan çayları da piyasaya çıkmaktadır. Uçucu yağda bulunan thujol zehirli bir madde olup; düşük dozlarda titreme ve halisünasyon yüksek dozlarda da saraya benzer titremeler akabinde uyuşukluk ve bitkinlik şeklinde etki ettiğinden günlük maximum doz önemli olup, genellikle enfüzyonu kullanılır. 1.7. HALK ARASINDAKİ KULLANIMI: Halk arasında çay gibi demlenerek (enfüzyonu) boğazdaki iltihaplanmalar, yorgunluk, sinir zafiyetine karşı kullanılır. Ayrıca balve sirke ile karıştırılarak ruhi depresyonlar, şiddetli soğuk algınlıkları ve bazı kadın hastalıklarına karşı kullanılmaktadır. İshal kesici ve iştah artırıcı olarak da faydalanılmaktadır. 1.8. DROG OLARAK ÖZELLİKLERİ: Yatıştırıcı, midevi idrar söktürücü, terletici, dinlendirici, ağız ve boğazlarda antiseptik, dezenfektan özellikleri vardır. 1.9. VERİM: Avrupa'da yeşil-yaş herba verimi, ilk yılda 300-400 kg/da ikinci ve üçüncü yıllarda 800-1200 kg/da arasındadır. Ege bölgesinde yapılan bir denemede ilk sene 862 kg/da ikinci sene 2141 kg/da üçüncü sene, 2384 kg/da yeşil herba elde edilmiştir. Gübre verilmeksizin yapılan üretimden ise 1238 kg/da; 5 kg/da azot verilince 2333 kg/da;10kg/da azot verilince 3481 kg/da yeşil herba alınmıştır. (ilisulu -1992) 1.10. DIŞ TİCARETİ: Doğada kendiliğinden üreyen adaçayları, toplanıp pazarlanır, alım satımı yapılır. Halen batı ve güney illerimizde en çok olmak üzere hemen hemen tüm baharatçılarda satılmaktadır. Fransa, Almanya, A.B.D ve diğer bazı ülkelerde üretimi yapılmaktadır. Günümüzde en çok doğal yetişen adaçayları tüketilmektedir. 2. KEKİK: 2.1. LATİNCE ADI: Thymus Sp. 2.2. İNGİLİZCE ADI: Garden Thyme 2.3. MAHALLİ ADLARI: Yabani Kekik, Sater Otu, Nemamul Otu. 2.4. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDEKİ YAYILIŞI: Çalı ya da çalımsı görünümde ve kokulu olan kekikler (labiatae) lamiaceae familyasının dünya üzerinde 40 türle temsil edilen bir cinstir. Genellikle derin olmayan gevşek, ılımlı, humuslu ve kalkerli toprakları seven bu bitkiler Avrupa ve Asya'da, akdeniz bölgesinde, kuzey Afrika'dan habeşistan' a kadar uzanan yerlerde ve kanarya adalarında bulunmaktadır. Ülkemizde ise yaklaşık olarak 35 kadar kekik türü 1500 m rakıma kadar olan yerlerde ve yaylalarda yaygın olarak bulunurlar. Bu türlerden bir kısmının endemik olduğu literatürde yer almaktadır. Ülkemizde 14 adeti endemik olarak yetişen 37-40 arasında tür mevcuttur. Thymus vulgaris, (adi kekik, kekik, büyük kekik, sater) ülkemizde doğal olarak Yetişmez. Thymus serpyllum (kır kekiği, yabani kekik, kekik, sater) ülkemizde, Asya ve Avrupa'da yaygındır. Ülkemizde yaygın olduğu yerler: Bursa, İzmit, Doğu Karadeniz, Kayseri' dir. Thymus longicaulis sp. Chavbardii var. Antelyensis, Antalya'da yetişen endemik taksonlardan'dır. Beyaz kekik batı ve Güney Anadolu bölgesin' de kurak yerlerde yetişir. YABANİ KEKİK: Akdeniz bölgesi ve Anadolu' da pek çok varyetesi var. İZMİR KEKİĞİ YADA PEYNİR KEKİĞİ: Batı ve Güney Anadolu genel yayılış sahasıdır. İSTANBUL KEKİĞİ YADA MERCAN KÖŞK: Ender olarak da eşek kekiği olarak anılır. Trakya ve Batı Anadolu genel yayılış sahasıdır. BEYAZ KEKİK: Güney ve Batı Anadolu'da bilhassa Manisa ve Muğla civarında yayılış gösterir. 2.5. KULLANILAN BÖLÜMLERİ: Dallı Çiçekli Tepe Ve Yaprakları 2.6. SANAYİDE KULLANIM ALANI: İlaç sanayinde antiseptik imalatında kullanıldığı gibi bronşlardaki koyu kıvamlı salgıyı sıvılaştırdığından öksürük şuruplarının bileşimine girer. Antibiyotik etki olarak mikroorganizmaların üremesini geciktirdiği veya tamamen durdurduğu için, ağız antiseptiği olarak gargara yapımında faydalanılmaktadır. Derideki mantar hastalıklarına karşı inhibör etkisi olduğundan, mantar ilaçlarının bileşiminde de yer almaktadır. Kimya sanayinde ise değerli bir kimyasal madde olan timolun elde edilmesinde kullanıldığı gibi parfümeri ve kozmetik sanayinde de banyo köpüklerinin yapımında ve problemli ciltlerin tedavisinde kullanılmaktadır. 2.7. HALK ARASINDA KULLANIM ALANI: Kekiklerin çiçekli dal ve yaprakları halk arasında çay gibi demlenerek içilmek suretiyle kandevarınını düzenleyici, rahatlatıcı etkisinden faydalanılmaktadır. Ayrıca kansızlık, boğmaca, kellik, diş ve mide ağrılarında uyuz, nefes kokması, lumbago, barsak parazitlerinin ve gazlarının giderilmesinde, romatizma ile bazı kadın hastalıklarında tedavi amacıyla kullanılmaktadır. Kekik türlerinden çeşitli et yemeklerinde baharat olarak da faydalanılmaktadır. 2.8. DROG OLARAK ÖZELLİKLERİ: Dolaşım uyarıcısı, antispazmatik, idrar söktürücüdür. Düşük dozlarda kullanıldığında balgam söktürücü, yüksek dozlarda alındığı taktirde antiseptik ve bazı barsak kurtlarını düşürücü etkisi vardır. 2.9. VERİM Kekik o yıl ekilmiş ise ilkbahar da biçim yapılmaz. Böylece az verim alınır. Orta Avrupa koşullarında ilk yıl 100-150 kg/da, ikinci yıl 200-450 kg/da kuru herba, 1000-1800 kg/da yaş herba alınmaktadır. Üçüncü yıl verim azalır. Genelde 3 yıl için üretim yapılır. (İlisulu'dan Ceylan 1981) 2.10. DIŞ TİCARETİ: Türkiye kekiğin en önde gelen ülkelerinden biridir. Türkiye kekik ihracatında %19 'la 2. Sıradadır. 1. Sırada ABD yer alır. Türkiye'den kekik ithalatı yapan ülkelerden %52 'sini ABD oluşturmaktadır. Geri kalan kısmı ise Almanya, İtalya, İngiltere, Yunanistan ve Fransa 'dır. Almanya, Fransa, ABD gibi ülkelerde yetiştirildiği, piyasası ve ekonomik ortamı olduğu bilinmektedir. Ülkemizde ise; İzmir, Antalya gibi illerimizde az da olsa üretilip pazarlanmaktadır. Ancak doğal olarak yetişen kekikler, toplanıp kurutularak büyük şehir piyasalarına sürülür. ABD, Almanya, Yunanistan, Fransa, İngiltere, Kanada ve İtalya başta olmak üzere 30 kadar ülkeye ihracat yapmaktayız. 3. NANE: 3.1. TAKIM: Tubiflorales 3.2. FAMİLYA: Lamiaceae 3.3. KÖKENİ VE YAYILIŞI: Anavatanının, Orta Avrupa ve Asya olduğu belirtilen nane, çok çeşitlilik gösterir ve geniş bir yayılış alanına sahiptir. Çoğunlukla Avrupa ve Asya'da yayılan 90 kadar türü bulunmaktadır. Ülkemizde ise 7 türe ait 12 takson yayılış göstermektedir. Ilıman iklimlerde, bu türler. M. Pulegium, M. Arvensis, M. Aguatica, M. Piperita, M. Longifolia, M. Suaveolens, M. Spicata'dır. Bunlardan M. Longifolia, M. Rotundifolia, M. Pulegium, M. Aquatica, Batı Anadolu'da yayılmıştır. (Öztürk, Seçmen, Pirdal-1991) ılıman iklimlerde, Amerika, Avrupa ve Asya'da tarımı yapılır. Kaynak ülkeler: ABD, Yugoslavya, Mısır, Fas, Macaristan, Bulgaristan, İspanya, Almanya, Romanya, Arjantin, Meksika, Brezilya, İngiltere, Polonya, Yunanistan'dır. M. Arvensis ise özellikle Japonya'da yetiştirilir. Kaynak ülkeleri: Çin, Japonya, Brezilya, Güney Afrika, Tayvan, Arjantin. Nane, çok eski bir kültür bitkisidir. İngiltere'de botanikçi John Ray'ın (1921) tavsiyelerinden sonra, tıbbi bitkiler arasına girmiştir. 3.4. KULLANILAN KISMI: Nanenin; yaprakları, çiçekli dalları ile yapraklarından elde edilen uçucu yağı kullanılır. 3.5. FAYDALANMA YÖNLERİ: Nane eskiden beri mutfakta, kızartmalarda, çorbalarda, salatalarda ve birçok yemeklerde; iştah açıcı, çeşni ve lezzet verici olarak kullanılmaktadır. Bu amaçla memleketimizin her yerinde halkımız evlerinin bahçelerinde, saksılarda, az da olsa nane yetiştirmektedir. Kuduz köpeklerinin ısırmasında, arı sokmasında tedavi edici olarak ayrıca, kokusundan faydalanılarak fare ve güve gibi hayvanların zararlarını önlemede kullanıldığı belirtilmektedir. (İlisulu'dan Arslan - 1975) Günümüzde, nanenin halk ilacı olarak kullanımına devam edilmektedir. Esas önemi; antiseptik, anaztezik, serinletici, ferahlatıcı, yatıştırıcı, gaz söktürücü bulantı kesici özelliklerinin olmasıdır. İshale karşı da etkilidir. Nane esansı, kuvvetli bir zehir ise de günde az miktarda birkaç damla alınırsa, mide ağrısına, buluntılara iyi gelir. Birçok ilaçların yapımında, şekercilik, dişmacunu, ciklet, sabun, parfümeri sanayinde ham madde olarak kullanılır. Nanenin uçucu yağı, ülkemizde limon uçucu yağından sonra en çok kullanılan bir yağdır. Henüz ülkemizde ithal edilmektedir. Çünkü, elde edilmesi şu anda mümkün değildir. Yıllık ithalatımız, 200-3600 kg arasındadır. (1952-1961) Nane, çay gibi kaynatıldığında hıçkırığı keser. Suyu, sirke ile içildiğinde kan tükürmeyi keser. Akrep sokmalarında yakısı yara üzerine konursa ve ayrıca’da çiğnenirse hasta iyileşir. Taze yaprakları yenildiğinde solucan düşürür. Kavut ile birlikte merhem – yakı yapılırsa karın tümörünü geçirir. Sert dil, yaprağı ile birkaç defa ovulur ise sertliği giderir. Yaprağın lapası, basura iyi gelir. Kanın akmasını durdurur, sarılık hastalığını geçirir. Nane, ezilerek masaj yapıldığında, dildeki kekemeliği geçirir. (Yıldız- 1983) 3.6. YETİŞTİRİLMESİ: İKLİM VE TOPRAK İSTEKLERİ: Nane, mutedil iklimlerde iyi yetişir. Yağışları yeterli ve dağılışının da iyi olmasını ister. Devamlı bulutlu havalardan çok, güneşli ve az bulutlu havalardan hoşlanır. Taban suyu yüksek olan yerlerde ve sulanabilen kurak bölgelerde yetiştirilmesi mümkündür. (İlisulu- 1992) Nane, pratik olarak her türlü toprakta yetişebilir. Fakat, toprağın normal düzeyde nem içermesi şarttır. Genellikle kumlu – tınlı, kireçce fakir. , nötr ve zayıf alkali, azotlu, organik maddece iyi durumlu ve nispeten tuzlu topraklarda yetişmektedir. Çok asitli topraklar, ekimden önce kireçlenmelidir. Çamurlu topraklar, nane tarımı için uygun değildir. Nanenin yetişmesi için uygun olan topraklar; soğan kereviz lahana vb. Sebzelerin yetiştirilmesinde de kullanılan, iyi drene edilmiş, gübreli topraklardır. Bu topraklar, kuvvetli ve hızlı gelişmeyi sağlayan besin elementlerini içerirler. Ayrıca; patates, mısır yetiştirilen kumlu, çakıllı, kuvvetli ve çok verimli topraklar nane tarımı için uygundur. (Öztürk, Seçmen, Pirdal- 1991) EKİM- DİKİM: Nane, çoğunlukla üç şekilde üretilir. A-) Tohumla Üretim B-) Yeraltı Sürgünleriyle Üretim C-) Gövde Çelikleriyle Üretim A-) TOHUMLA ÜRETİM: Pratikte pek uygulanmayan bir üretim şeklidir. Hem üretimi zordur, hem de elde edilen nanelerin ayrı yapıda olması ihtimali fazladır. Tohumla üretim, çoğunluk ıslah çalışmalarında kullanılan bir yöntemdir. (İLİSULU’DAN –1992) Üretimi için İzmir’de yapılan denemelerde elde edilen yeşil ve kuru herba miktarı şöyledir: (İLİSULU’ DAN CEYLAN – 1979) B-) YERALTI SÜRGÜNLERİYLE ÜRETİM: Nanenin esas üretim şeklidir. Günümüzde ülkemizde ve dünya’nın birçok ülkesinde bu şekilde üretim yapılmaktadır. Yukarıda belirtilen ve İzmir’de yapılan üretim denemesi de bu şekilde yapılmıştır. Yeraltı sürgünlerinin dikimi, ilkbahar’da veya sonbahar’da yapılır. Bu yeraltı sürgünleri aynı zamanda topraküstü sürgünlerini de kapsamalıdır. İyi ve istenilen özellikleri kapsayan nane çeşitlerinden alınan sürgünlü rizom numuneleri, önceden açılmış çizilere ucu uca gelecek şekilde veya aralıklı olarak yatırılır. Üstleri, nemli toprakla örtülür veya bol su verilir. Sıra araları 35, 60, 75, 90cm; sıra üzerleri ise 20, 30, 75 cm. Olarak ayarlanır. Burada, çeşit özelliği, toprağın fizikselve kimyasal yapısı etkilidir. Derin ve verimli topraklarda aralıklar fazla tutulur. İri bitki veren çeşitlerde sıra araları geniş tutulur. Hızlı büyüyerek sıra aralarını çabucak kapatır. Bu durum, çapalama ve seyreltme ile önlenir. (İLİSULU-1992) BAKIM: İlk sene sıra araları sık sık çapalanarak, yabancı otların gelişmeleri önlenir. Taban ve ağır topraklarda ve iyi hazırlanmış tarlalarda çapa işleri daha da önem kazanır. Eğer sıra aralarının kapanmaması istenirse, her biçimden sonra sıra araları, kazayağı veya frezelerle işlenmelidir. Bitki, tarlayı iyice kapattığında, yabancı otlar, elle yolunmalıdır. Bu taktirde herbisit kullanımı uygundur. Bu konuda ülkemizde herhangi bir çalışma yapılmamıştır. (İLİSULU-1992) Nane, büyüme mevsiminde suya ihtiyaç duyar. Çoğunlukla sulanarak yetiştirilir. Genellikle mayıs’ta ihtiyaca yetecek oranda 1-2 haftalık sürelerle sulama yapılmalıdır. Sulamada yağmurlama sistemi de kullanılabilir. (ÖZTÜRK, SEÇMEN, PİRDAL-1991) Ticari gübreler, tüm bölgelerde nane yetiştiricileri tarafından kullanılır ve genellikle bitki besin maddesince fakir olan topraklarda uçucu yağ verimini arttırır. Serin ve yağışlı yerlerde genç bitkilerin verimini artırmak için 4,5 dönüme, 12-24 kg’lık azot verilir. Gübre, ekim öncesi serpilmelidir. Gübre verilirken stolonlar ike temas etmemesine dikkat edilmelidir. Sulamayla nane yetiştirilen kuvvetli ve kumlu topraklarda, 4,5 dönüme genellikle amonyum sülfat veya amonyum nitrat olarak verilen azotun değeri, 60 kg’dır. Potasyum ve fosforun biri veya her ikiside toprak analizi sonunda gerektiğinde verilmelidir. (ÖZTÜRK, SEÇMEN, PİRDAL- 1991) HASAT: Nane, genellikle çiçeklenme başlangıcında hasat edilir. Memleketimizde, nanenin çiçeklenmesine pek müsaade edilmez. Bir yılda 2-3 biçim yapılır. Toprak seviyesinden birkaç cm yukarıdan biçilir. Ekim alanının genişliğine göre; orak, tırpan, çayır biçme makinası ile hasatı yapılır. (İLİSULU-1992) Çiçeklenme devresinde, nane yağının genellikle daha iyi olduğu düşünülmektedir. Bitkilerin, fazlaca çiçeğe sahip olduğu zaman, çiçeklerden elde edilen yağın kalitesi değişir. Çok güneşli uzun gün ile uzun büyüme mevsimi, erken çiçeklenme ve yüksek yağ verimi üzerinde etkili olmaktadır. Bu nedenle, böyle yerlerde nane, çiçeğinin en bol olduğu devrede toplanmalıdır. Soğuk yerlerde ürün toplama, çiçeklenme başlamadan önce;ılıman yerlerde ise normal olarak temmuz sonunda başlanmalıdır. Ağustos- eylül aylarının ortasına kadar devam edebilmektedir. Eğer ürün toplama zamanından önce bitkinin alt yaprakları dökülürse ürün, erken toplanmalıdır. Biçimden sonra 1-2 gün kuruyuncaya kadar devam edebilmektedir. Eğer ürün toplama zamanından önce bitkinin alt yaprakları dökülürse ürün, erken toplanmalıdır. Fazla yağış üründe yağ miktarını azalttığı için toplama işlemi, yağışlardan önce yapılmalıdır. Biçimden sonra 1-2 gün kuruyuncaya kadar serili bırakılır. Daha sonra da tırmıkla toplanır. Eğer çok kurumuş ise elle toplanarak ürün kaybı önlenmelidir. 2-3 gün kadar kuruduktan sonra taşınmalıdır. (ÖZTÜRK, SEÇMEN, PİRDAL- 1991) MUHAFAZA: Kurutulmuş nane drogu, kuru, havalanabilir yerlerde, pazarlanıncaya kadar saklanır. İyi muhafaza edilmeyen nane, nemden dolayı küflenip bozulur. Ülkemiz, kuru iklim kuşağında bulunduğu için küflenme ihtimali düşüktür. (İLİSULU -1992) PAZARLAMA: Kuru yaprak halinde veya toz halinde kilo ile veya küçük paketler veya poşetler içinde firmalar tarafından pazarlanmaktadır. Nane yağı, birtakım işlemlerle elde edilir. Nane yağı, pazara çıkarıldığı gibi; parfümeri, ilaç, sabun, diş macunu, gıda sanayine pazarlanmaktadır. EKONOMİK ÖNEMİ: Nane, ilaç sanayinde önemli bir yer tutmakta ve çeşitli endüstri kollarında büyük ölçüde kullanılmaktadır. Özellikle batı Avrupa ülkelerinde naneye olan ihtiyaç, her geçen gün daha da artmaktadır. Böylece dünya pazarında daima alıcı bulmaktadır. Böyle büyük alıcılar bulan nanenin birçok ülkede geniş olarak üretimi yapılmaktadır. Türkiye’de ise az miktarda üretim yapılmaktadır. (İLİSULU-1992) Nane ülkemizde yalnız ihraç edilen bir bitkidir. 4. BİBERİYE: 4.1. TAKIM: Tubiflorales 4.2. FAMİLYA: Lamiaceae 4.3. CİNS: Rosmarinus 4.4. TÜR: Rosmarinus Officinalis L. 4.5. MAHALLİ ADLARI: Kuşdili, Hasaban, Lacivert Gül, Itırların Prensi 4.6. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDEKİ YAYILIŞI: Dünyanın birçok yerinde kültürü yapılmaktadır. Başta Türkiye olmak üzere özellikle Akdeniz'e kıyısı olan ülkelerde 1500-1700 m yüksekliklere kadar yetişme ortamı bulmuştur. Çok sayıda varyete ve forma sahiptir. Akdeniz havzası başta olmak üzere ılıman ve sıcak iklim bölgelerinde kültüre alınmıştır. Akdeniz ülkelerinde yabani olarak yetişir. Yayıldığı ülkeler Portekiz, Yugoslavya, Fransa, İspanya, Tunus, Fas, Cezayir ve İtalya'dır. Ülkemizin batı ve güney kıyılarında yabani olarak yetişir. Park ve bahçelerde yetiştirilir. Baharat v.b. Amaçlarla kültürü yapılamaz. Baharat olarak da fazla kullanılmaz. Uçucu yağ üretimi yok denecek kadar azdır. Bunun yanında, birçok ülkede doğal yetişen biberiye toplanmakta ve değerlendirilmektedir. Ancak istatistiği tutulmamaktadır. Bu nedenle rakamla ekonomik önemi belirtilememektedir. 4.7. BİTKİSEL ÖZELLİKLERİ: Çalımsı karakterli bir bitkidir. Sapı lifsi yapıda, ince, narin, çok dallı ve diktir. Genç dalları dört köşelidir. Yaprakları karşılıklı, sapsız ve kulakçıksızdır. Yaprakları çam yapraklarına benzer. Yaprak ayası uzunca, oldukça etli, üst tarafı tüysüz, koyu renkli; alt tarafı ise çok tüylü ve beyazımtrak yeşil renklidir. Yaprak kenarları alt tarafa doğru kıvrık olup kışın yapraklarını dökmez. Yaprakları dil şeklinde, 2-3 cm uzunlukta, 2-4 mm genişliktedir. Yaprak ayası derimsi, dar, şeritsi veya mızraksıdır. Yaprak ucu küttür. Taban kısmı çok kısa sap şeklinde daralmıştır. Çiçekleri, dalların ucunda ve yaprak koltuklarında küçük topluluklar halindedir. Bütün sene çiçeklidir. Ve çiçekleri bir eksen üzerinde salkım şeklindedir. Çanak yaprakları tüp şeklinde, iki dudaklı ve çok tüylüdür. Taç yaprakları da tüp şeklinde ve iki dudaklıdır. Çiçekleri mavimsi beyaz, mor ve eflatun renklidir. Üst dudakta iki dar lop, alt dudakta üç dar lop bulunur. Alt dudağın orta lobu diğerlerinden daha büyük ve çukurdur. Stamerler iki tanedir. Flament, korolla tüpünden daha uzun, kıvrık, mor renklidir ve tabanında küçük bir diş yapısında çıkıntısı vardır. Dişi organ iki karperli, stilusu uzun ve kıvrık, stigması iki parçalıdır. Çiçeklerinde nektarium bulunur. Meyvesi esmer, küçük fındıksı yapıdadır. Yapraklarında %8 tanen, %1-2 uçucu yağ ve acı madde bulunur. 4.8. FAYDALANMA YÖNLERİ: En ucuz baharatlardandır. Mutfakta et, sebze, omlet,çorba, sos ve salatalar da, hemen hemen her türlü gıdada sevilerek tüketilir. Gıda sanayinde baharat ve yan ürünleri başta olmak üzere, alkolsüz içecek, çeşni ürünü ve etlerde, ayrıca şekerleme, dondurma ve fırın ürünlerinde kullanılır. Gıda sanayinin kullanımının dışında, son zamanlarda sentetikler kadar etkili biberiye antioksidanları üretilmekte ve değerlendirilmektedir. Ayrıca parfümeri, kozmetik ve eczacılıkta kullanılır. Özellikle spazm çözücü, romatizma, gargara, tavman, burkulmalara karşı fiziksiyon, idrar söktürücü, tenter, ateş düşürücü, astım ve birçok hastalığa karşı faydalıdır. 4.9. YETİŞTİRİLMESİ: İKLİM VE TOPRAK İSTEKLERİ: Yetiştiği yerler yazları kurak, kışları yağışlı geçen bölgelerdir. 1500-1700 m yüksekliğe kadar yayılmasında iklim değişikliklerine dayanıklı olması ve serin iklim koşullarında da rahatlıkla üretilebilmesi etkendir. Toprak isteği yönünden fazla seçici bir bitki değildir. (İLİSULU -1992) EKİM-DİKİM:Kendisi doğal olarak yetişmekte olan bir bitkidir. Tohumlarını saçarak koloniler oluşturmaktadır. Tohumları ekilerek kolay üretilebildiği gibi, çok koku yayan biberiye bitkileri vejetatif olarak çelik alma yoluyla da üretilebilir. Bahçelerde,tarlalarda ve kısmen gölgelik yerlerde rahatlıkla yetiştirilir. BAKIM:Kendisi ürediği için bakımı hakkında yeterli bilgimiz yoktur. Fakat, bakımında fazla zorluk çekilmeyeceği anlaşılmaktadır. (İLİSULU-1992) HASAT-TOPLAMA: Biberiye, akdeniz kıyılarında işlenmemiş bölgelerde bütün yıl çiçek açan bir bitkidir. Bu bitkinin bütün yıl çiçek açan dalları toplanır, demet yapılır ve gölgede kurutulur. Böylece her zaman kullanılır. (İLİSULU-1992) 4.10. VERİM: Doğadan toplandığı için dekara verimini söylemek isabetli olmaz. Ancak sık ekilmiş bir biberiye kolonisinden bir kişi filizleri kırarak günde 400-700 kg yaş drog toplayabilir 5-7 kg yaş drogtan ise 1kg kuru drog elde edilir. (İLİSULU- 1992) 4.11. MUHAZAFA -PAZARLAMA: Elde edilen yaş filizli, çiçekli droglar gölgede kurutulurlar. Kutularda tarla ve çuvallarda saklanır, pazarlanır. Satın alınırken iyi saklanmış olmasına, kokusunun azalıp azalmamasına, böçek ilacı yapılmamış olmasına dikkat edilmelidir. (İLİSULU-1992) 5. LAVANTA: 5.1. LATİNCE: Lavundula L. 5.2. İNGİLİZCE ADI: Lavender. 5.3. MAHALLİ ADLARI: Lavanta, Gargan, Karabaş Otu. 5.4. BİTKİ HAKKINDA GENEL BİLGİ ÜLKEMİZDEKİ YAYILIŞI: Lamiaceae familyasının bir cinsi olan lavantaların dünya üzerinde yaklaşık olarak 26 türü mevcuttur. Çok yıllık ve yaklaşık 1m. Ye kadar boylanabilen bir bitkidir. Lavantalar dünya üzerinde başta orta Avrupa olmak üzere, Akdeniz ülkeleri, kanarya adaları, Habeşistan ve Doğu Hindistan'da yayılış göstermektedir. Fransa, İspanya ve İtalya'da uçucu yağ oranı yüksek olan bazı türler büyük oranda kültür bitkisi olarak yetiştirilmektedir. Dünya üzerinde yaygın olarak bulunan iki tür l. Officinalis l. Ve l. Angustifolia mill. (subsp. Angustifolia) syn.:spica l. olup bunların içinden l. Angustifolia ile diğer bir lavanta türü olan l. Stoechas l. Ülkemizde tabii olarak yetişmektedir. Bu türlerin yayılış alanı şöyledir: L. ANGUSTİFOLİA MİLL. (SUBSP. ANGUSTİFOLİA) SYN: SPİCA L.: İstanbul, Akdeniz Ve Ege Bölgesinde. L. STOECHAS L.: İstanbul Civarı, Ege Ve Akdeniz Bölgesi Tabii Yayılış Alanıdır. 5.5. KULLANILAN BÖLÜMLERİ: Tıbbi amaçla taze çiçekli dal uçları, parfümeri ve kozmetik sanayi için ise kısmen kurutulmuş çiçek ve yaprakları. 5.6. SANAYİDEKİ KULLANIM ALANI: İlaç sanayinde bazı preperatlara koku vermede,merkezi sinir sistemini düzenleyici ilaçların bileşiminde yer almaktadır. Ancak sanayide bünyelerindeki linalol ve linalil asetatdan dolayı da parfümeri ve kozmetikte cilt temizleyici losyon, kokulu banyo sabunu ve köpüklerinin yapımında kullanılmaktadır. 5.7. HALK ARASINDAKİ KULLANIM ALANI: Halk arasında çay gibi demlenerek baş dönmesi ve sinirsel sıkıntılara karşı içilir. Alkol ve zeytin yağında bekletilerek elde edilen tentürüde kullanılmaktadır. 5.8. DROG OLARAK ÖZELLİKLERİ: Sivilceler astım, bronşit, saç dökülmeleri, kadın hastalıkları, sinir hastalıkları, bazı cilt hastalıkları, akciğer hastalıkları, romatizma, tenya, öksürük ve baş dönmesine karşı kullanılan ilaçların bileşimine girmektedir. 5.9. YETİŞTİRİLMESİ: İKLİM VE TOPRAK İSTEKLERİ: Toprak yönünden seçici olmayan bir bitkidir. Ancak; kuru, hafif kireçce zengin yerleri sever. Özellikle toprağın belli derinlikte yeterli neme sahip olması gerekir. Lavanta çiçekleri, soğuğa fazla dayanıklı değildir. Fakat, orta Avrupa koşullarda kışı geçirecek kadar soğuğa dayanıklı bazı türleri mevcuttur. (İLİSULU'DAN CEYLAN - 1981) Deniz seviyesinden 1350 m. Yükseklikte yetişir. Açık, güneşli havalar ve taşlık, eğimli yerler yetişmesi için uygundur. EKİM- DİKİM: Tohum ile üretildiği gibi vejetatif olarak da üretilebilir. Vejetatif üretim, yan kök sürgünleri veya yaşlı bitkilerden elde edilebilecek çelikler ile yapılabilir. Ancak, uygulama daha çok tohumla yapılmaktadır. Tohumlar, önce yastık ve seralara ekilir. Genellikle yastık ve seralara şaşırtılır. İlkbahar'da tarlaya dikimi yapılır. Yastıklara ekim yapıldığında, 40-50 gr tohumluk 15 metrekarelik yere ekilir ve buradan 1 dekarlık alana yetecek kadar fide elde edilir. Tarlaya dikim, bölgelere göre nisan ve haziran aylarına kadar değişir. İlk sene; kısa saplı, oldukça zayıf bitkiler oluşur. Çiçeklenme, ikinci yıldan itibaren başlar. Dikimde, 40x30 veya 40x40 cm mesafe uygulanır. Kurulan plantasyondan, 2-3 yıl faydalanılır. Almanya koşullarında 4-5 yıl; güney Afrika'da 3 yıl yararlanıldığı belirtilmektedir. (İLİSULU -1992) BAKIM: Toprağın havalandırılması ve yabancı otların temizlenmesi, bakım işlerini oluşturmaktadır. Bunun için ara sıra özellikle sulamadan sonra çapa işlemi yapılmalıdır. Ayrıca, bitkilerin hafif donlardan zarar görmemeleri için, üstlerinin özellikle almanya için patates veya diğer bitki artıkları ile örtülmesi önerilmektedir. Kireçce zengin toprak istemektedir. 2-3 yılda bir kompost ile gübrelenmesi, olumlu etkide bulunmaktadır. Azotlu ve fosforlu gübreleri seven bir bitkidir. Dekara 4-6 kg azot, 8-12 kg k2o, 2-7,5 kg p2o5 verilmesi önerilir. (İLİSULU' DAN CEYLAN -1981) HASAT: Yan dallardaki çiçek başlarında, orta saptaki başakların da çiçeklendiği dönemde, hepsi birlikte hasat edilir. 15 ağustos 'tan sonra lavanta çiçeğinin hasat, birkaç defa edilmemesi önerilmektedir. Çiçekteki uçucu yağ oranı, tam çiçeklenme devresine kadar belirgin bir şekilde artmaktadır. Bu nedenle, iyi kalitede bir lavanta çiçeği droğu, bu devredeki hasatta elde edilir ancak, ceplerindeki uçucu yağ miktarı, çiçeklenme sonuna kadar çoğalmaktadır. Hasat; çiçek başak sapından, başaktan 10 cm kadar aşağıdan orak v. B. İle biçilerek yapılır. Lavanta çiçeğinde eş zamanlı bir çiçeklenme olmadığından hasat, birkaç seferde tamamlanır. Kodekslere göre, sadece çanak yapraklarıyla birlikte hasat, elle çiçekleri toplanarak da yapılabilir. KURUTMA: Lavanta çiçeğini, güneşte kurutmamak gerekir. Güneşte kurutmada, renk ve aroma zarar görür. Suni kurutmada ise çok dikkatli olmak gerekir. Sıcaklığın 30 c civarında olmasına özen gösterilmelidir. Saplarıyla hasat edilmiş lavanta çiçeğinde sapların ayıklanması, kurutmadan sonra yapılır. Eğer endüstriyel yağ alınması amaçlanmış ise sapların ayıklanması, kurutmadan sonra yapılır. Eğer endüstiriyel yağ alınması amaçlanmış ise sapların ayıklanması mutlak gerekli değildir. (İLİSULU - 1992) VERİM: Lavanta'nın verimi, değişken özellik gösterir. Heeger'e göre lavanta çiçeği, 30-50 kg/da; herba (lavanta yaprağı, sapı, çiçeği) 150-200 kg/da arasında değişmektedir. Daha sonraki yıllarda verim ve uçucu yağ miktarının arttığı görülmüştür. MUHAFAZA, AMBALAJ VE PAKETLEME: Güneş ışınlarından korunmuş, rutubetsiz, havalanması iyi depolarda muhafaza edilmelidir. Küçük paketler veya poşetler halinde uygun şekilde ambalajlanarak pazarlanabilir. (İLİSULU- 1992) 5.10. EKONOMİK ÖNEMİ: Lavanta çiçeği, doğal olarak üreyebildiği gibi bugün birçok ülkede ve ülkemizde, kültürü yapılarak üretilmektedir. Ülkemizde üretim miktarı, kesin olarak belli değildir. Ülkemizde drog olarak ithalatı yapılmamakta, ancak etken maddeleri ithal edilmektedir. (İLİSULU- 1992) 6. OĞULOTU: 6.1. TAKIM: Tubiflorales 6.2. FAMİLYA: Lamiaceae 6.3. CİNS: Melissa 6.4. TÜR: Melissa Officinalis (Adi Oğulotu, Oğulotu, Kovanotu, Melissa, Limonotu, Acem, Turincin) 6.5. KÖKENİ VE YAYILIŞI: Akdeniz bölgesi ve Doğu Anadolu Bölgesi’nde doğal yetişir. İspanya ve Doğu Avrupa ülkelerinde kültürü yapılır. Yabani formları bütün Akdeniz ülkelerinde ve güney Alplerde bulunmaktadır. 10. Yüzyılda araplar, kalp kuvvetlendirici, kişi gücünü artırıcı olarak kullanmıştır ve melankoliye iyi geldiği bildirilmiştir. Ancak 20. Yüzyıl başlarında bu bitkinin özelliği ortaya çıkmıştır. Alttür ve varyeteleri ılıman iklimlerde yabani olarak veya Akdeniz ülkeleri ve K.Amerika’da kültür bitkisi olarak yetişmektedir. Tohum ayırma ve çelikle üretilir. Yayıldığı ülkeler; Fransa, Bulgaristan, Almanya, Romanya’dır. Ülkemizde ise İstanbul, Bursa, Ege ve Akdeniz bölgesinde yaygın olarak yetişmektedir. 6.6. BİTKİSEL ÖZELLİKLERİ: Çok yıllık otsu bir bitkidir. Çok lifli, rengi beyazımsıdan açık kahverengiye kadar değişen ve çok sayıda yan kökleri kapsayan bir köke sahiptir. Sapı dik ve yarı dik olup 60-100 cm kadar boylanır. Enine kesiti 4 köşeli olup üzeri tüylüdür. Yaprakları dekussat dizilişi olup 1,5- 3,5 cm uzunluğundaki bir sap ile gövdeye bağlanır. Yaprakları oval veya kalp şeklinde olup uç kısmı sivridir. Yaprak 2,8 cm boyunda, 1. 5-5 cm genişliğinde ve kenarları dişlidir. Genellikle alt yapraklar, üst yapraklardan büyüktür. Alt yüzü çıplak, üst yüzü ise genellikle fırça tüylerle kaplıdır. Yaprağın enine kesitinde üst üste epidermis onun altında, palizat tabakası, sonra gevşek yapılı paranşim (sünger) tabakası, en altta ise epidermis bulunur. Epidermis hücreleri, yaprak üst yüzeyinde, alt yüzeyinden daha kuvvetlidir. Her iki yüzeyde de çok sayıda tek hücreli konimsi tüyler bulunur. Özellikle damarlar üzerinde uzun ve 3-5 hücreli tüyler vardır. Druze tüylerinin 3 farklı tipi bulunur. Bunlara göre yapraklardaki yağ oranı değişebilir. Bu formlar: Kısa Saplı, Genellikle Tek Hücreli Tüyler. Uzun Saplı Ve Büyük Hücreli Tüyler. Karakteristik Druze Tüyleri Topluluğu Olduğu Bilinir. Oğulotu'nun çiçekleri oldukça küçük, sarımtrak, beyaz veya pembe renkte yapraklar hizasında 6-12'si bir arada halka halinde dizilmişlerdir. Çanak yaprakların 2 dudaklı, üst tarafının düz ve 3 dişli, taç yapraklarının 2 dudaklı olduğu ve 4 erkek organın bulunduğu, kokusunun hoş, limonlu ve tadının acı olduğu bildirilmektedir. Çiçeklerin sap uçlarında küme halinde bulunduğunu, renklerinin mavimsi beyaz, açık leylak veya sarımsı beyaz olabildiğini, erdişi çiçekler yanında yalnız dişi veya yalnız erkek çiçeklerin bulunabileceğini belirtmektedir. Tohumlarının ortalama bin dane ağırlığı 0,620 gr'dır. Tohumlarının çimlenme kabiliyetinin % 70'den çok ve safiyetinin % 95 olması istenir. Çimlenme kabiliyetini 2-3 yıl devam ettirebilir. 6.7. FAYDALANMA YÖNLERİ: Faydalanma yönleri, daha çok Avrupa'da bilinir. Az miktarlarda özel yemeklerde kullanılır. Çorba, salata, et, sebze, yumurta, peynir, tatlı ve içeceklerde kullanılır. Gıda sanayinde baharat halinde ekstrakt veya uçucu yağı likör, alkolsüz içecek, fırın ürünleri, dondurma ve şekerlemelerde kullanılır. Gıda sanayi dışında parfümeri, kozmetik sanayinde, eczacılıkta kullanılır. Ayrıca çay olarakta tüketilir. Bitkinin yaprakları, çiçekli dalları kullanılır. Çiçek açma mevsiminde toplanır ve gölgede kurutulur. Midevi, teskin edici, ferahlatıcı olarak infüzyon %1) halinde kullanılır. Kullanımı sırasında taze olanı tercih edilmektedir. Eskiden beri halk hekimliğinde gaz çıkartıcı, ateş düşürücü, sinirleri yatıştırıcı, kuvvetlendirici, olarak kullanıldığı ve 2 gr. Oğulotu yağının yorgunluk giderici, uyku getirici, tansiyon düşürücü, nabız atışlarını yavaşlatıcı ve nefes darlığına da kullanıldığı belirtilmektedir. Oğulotunun suyu, damıtıcı olarak elde edilirse daha çok etkili olduğu belirtilmektedir. Oğulotundan elde edilen suyun bir damlasında bulunan kuvvet, tazesinden kaynatılarak elde edilen 25 gr'da bulunmadığı, bu nedenle kalp rahatsızlıklarının en büyük ilacı olduğu, kalp çarpıntısını ve nefes darlığını giderdiği, zekayı arttırdığı, insanlardaki korkuyu izole ettiği ve daha birçok rahatsızlığa iyi geldiği bildirilmektedir. Oğulotu yağı, eczacılıkta "melissa ruhu" olarak bilinir. Birçok sinir, mide, kalp ilaçlarının yapımında kullanılmakta, astım ve başağrısına, bağırsak sancılarına çok iyi geldiği belirtilmektedir. 6.8. YETİŞTİRİLMESİ İKLİM VE TOPRAK İSTEKLERİ: Fazla kuru olmayan, sıcak ve güneşli yerleri sevdiği besin maddelerince zengin olan kumlu- tınlı topraklarda iyi yetiştiği; belirli ölçüde gölgeye dayanıklı olduğu, fazla rutubetli ve gölgeli yerlerde, özellikle kaliteli drogları elde etme imkanı bulunmadığı belirtilmektedir. EKİM- DİKİM: Oğulotunun yetiştirilmesinin, başlıca üç yöntemle yapılabileceği bildirilir. A-) VEJETATİF ORGANLARLA YAPILAN ÜRETİM: Bitkinin toprak üstü veya toprak altı organlarından yararlanılır. Toprak üstü organlarından koltuk altı sürgünleri alınır. Özellikle yaşlanmış bitkilerde ilkbaharda sürgünler biraz uzayınca bunlardan alınarak yeni üretim yapılır. Toprakaltı organlarından yararlanılacak ise sonbaharda veya ilkbaharda çok erken devrede söküm yapılarak istenilen sıra arası mesafede dikimler yapılır. B-) Yastıklarda fidelerin yetiştirilmesi ve bunların tarlaya şaşırtılması: Bunun için 50-80 gr 12-15 m 'lik yere ekilir. Bundan elde edilecek fide, 1 dekarlık alan için yeterlidir. Yastıklara ekimi yapılan tohumlar 3-4 hafta sonra çimlenir. Yeterince büyüyüp dikilecek duruma geldiğinde tarlaya şaşırtma işlemi, sonbaharda ve ilkbaharda yapılır. Şaşırtma, eğer sonbaharda yapılacak olursa, yastıklara tohumların temmuz - ağustos aylarında ekimleri gereklidir. Genç bitkiler, donlara hassas olduklarından, sonbaharda şaşırtma yapıldıktan sonra bitkilerin üzerlerinin, tahıl saplarıyla örtülmesi tavsiye edilir. Şaşırtma ilkbaharda yapılacaksa yastıklara ekim, kış aylarında yapılır. Daha canlı fideler elde etmek için yastıklardan başka bir yastığa şaşırtma yapılır. Bir müddet bekletildikten sonra oradan tarlaya şaşırtılır. Tarlaya dikimde sıra arsı veya sıra üzeri mesafeleri, oğulotunun büyüme tipine göre değişmektedir. Yatık büyüyenler, 50 x 40 cm; dik büyüyenler ise 40 x 30 cm. Aralıklarla dikimleri yapılmaktadır. C-) Doğrudan doğruya tarlaya ekim: bu yöntem,yaygın olmadığı gibi literatürlerde de pek rastlanmamaktadır. Ancak, Bornova ve menemen ekolojik şartlarında yapılan uygulamalarda, tohumları erken sonbaharda tarlaya ekmekte de üretim yapabilme imkanı olduğu anlaşılmıştır. Fakat bu yöntem üzerinde daha detaylı çalışmaların yapılabilmesi sıra arsı mesafeleri, atılacak tohum miktarı ve en önemlisi ekim zamanının tam olarak belirtilmesi gerekir. BAKIM: En önemli bakım işi, yabancı ot çapası ve ot almadır. Bu işlemler özellikle bitkinin ilk gelişme öneminde önemlidir. Nem ve sıcaklık uygun olduğu taktirde kısa zamanda hızla büyür ve toprak yüzeyini kaplar Ege bölgesinde ise çapa ve sulama, mutlaka gerekir. Sulama işlemi ise fideler büyümeye başladığında ya da biçimden sonra yapılmalıdır. İlk çapadan sonra, bitkiler toprak yüzeyini kaplamadan önce ikinci çapanın yapılması gerekir. Sulamanın sıklığı, yetiştirildiği bölgenin durumuna ve gelişme zamanına göre değişmekle beraber özellikle yaz aylarında her biçimde 2-3 kez sulanması gerekmektedir. İyi bir şekilde gübreleme, verime çok etkide bulunur. Gübrenin bir kısmı da her biçimden sonra verilmesinin, uygun olduğu belirtilmektedir. Dekara 6-8 kg azot vermek, yeterlidir. HASAT- BİÇİM: Genellikle yılda 3 kez ve çiçeklenmeden hemen önceki devrede biçilmesi uygundur. Yaprakların, ağustos ayında çok fena koktuğunu, bu nedenle Haziran ayında daha çiçek açmadan biçilip kurutulması gerektiği belirtilmektedir. Biçimi, toprak seviyesinden 5-10 cm yukarıdan yapılır. Ayrıca son biçimin çok geç kalmaması, kışı geçirebilmesi için son biçimden sonra biraz sürgün vermesi gerektiği, biçilen yeşil herbanın bastırmaya karşı çok hassas olduğu, bu nedenle biçilen yeşil herbanın bastırmaya karşı çok hassas olduğu, bu nedenle biçilen yeşil herbanın taşınması esnasında bastırılması halinde basılan yerlerin kurutma esnasında siyaha dönüştüğünü, bunun ise kaliteyi çok olumsuz etkilediği kaydedilmektedir. Oğulotunun haziran ayında çiğden sonra ve kuru zamanlarda toplanması gerektiği, böyle olmazsa bitkide kötü bir koku oluştuğu ve her türlü kullanma özelliğini kaybettiği belirtilmektedir. Küçük işletmelerde biçimden hemen sonra sap yaprak ayrımı yapılarak kurutulduğu büyük işletmelerde ise biçimden hemen sonra yeşil herbanın küçük parçalara ayrıldığı, bu parçaların vantilasyonla ve sap yaprak kısımlarının ayrıldığı, fakat bu yöntemle elde edilen droğun pek kaliteli olmadığı, çünkü içinde belli ölçüde sap parçacıkları bulunduğu ayrıca parçalanmaile yapraklarda önemli uçucu yağ kaybı söz konusu olduğu belirtilmektedir. 6.9. KURUTMA: Biçimden hemen sonra kurutmanın yapılması gerekmektedir. Aksi halde yaprakların rengi koyulaşmakta hatta koyu kahverengiye dönüşmektedir. Kurutma sıcaklığının 20-35 c arasında olması 40 c yi geçmemesi istenir. Bitkinin tümünü iyi havalanan bir yerde, serili olarak yarı yarıya gölgede veya güneş'te kurutulabileceğini bildirmektedir. 6.10. VERİM: Oğulotunun verimi, dikim zamanında, ekolojik şartlara göre büyük varyasyon göstermekte, özellikle ilk yıl verim düşük olmakta, ikinci yıldan itibaren arttığı, yeşil herba veriminin ilk yıl 200-1000 kg/da, ikinci yıl 1000-2000 kg/da arasında değiştiği, buna göre kuru drog yaprak miktarı dekara 100-200 kg civarında elde edildiği belirtilmektedir. 6.11. MUHAFAZA, AMBALAJ VE PAZARLAMA: Küçük demetler halinde asıl olarak saklanabileceği veya bitkinin tüm özelliklerinin toplandığı, yaprakların muhafazası gerekli olduğu belirtilmektedir. Güneş ışınlarından korunmuş, nemsiz, havalanması iyi depolarda muhafaza edilmelidir. Küçük paketler veya poşetler halinde uygun şekilde ambalajlanarak pazarlanır. 6.12. EKONOMİK ÖNEMİ: Oğulotu, doğal olarak yetişebildiği gibi, Avrupa ülkelerinde kültürü yapılmaktadır. Ülkemizde kültüre alma çalışmaları, devam etmektedir. İstatistiki kayıtlarda ülkemizdeki üretime dair herhangi bir bilgiye rastlanmamıştır. Fakat birçok yerde doğada kendiliğinden yetiştiği bilinmektedir. İthalat: Oğulotunun ithalatı ülkemizde drog olarak yapıldığına dair istatistiki bir kayda rastlanmamıştır. Ancak, uçucu yağ ithalatının yapıldığı belirtilmektedir. İhracat: Ülkemizde oğulotunun ihracatının yapıldığını gösteren bir kayıta rastlanmamıştır. Bu bitkinin üretimi belli bir plan ve program dahilinde yapıldığında ihracaatı yapılan bitkiler arsında kolaylıkla yeralabileceği söylenmektedir. 7. ANASON: 7.1. LATİNCE ADI: Pimpinella Anisum L. 7.2. İNGİLİZCE ADI: Garden Sage 7.3. MAHALLİ ADLARI: Anason 7.4. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDE YAYILIŞI: Anason çok eski bir kültür bitkisidir. Kökeninin neresi olduğu tam olarak bilinmemektedir. Ancak Mısır, Suriye, Kıbrıs, Yunanistan, Ege adaları ve Türkiye'nin olabileceği kanısı yaygındır. Bugün anason değişik iklim bölgelerinde yayılmıştır. Ancak sıcak iklim bölgelerindeki yaygınlığı daha fazladır. Anasonun kültürü bir çok ülkede yapılmaktadır. İspanya, Balkan ülkeleri, Güney Rusya ve Türkiye en fazla anason üretimi yapan ülkelerdir. Anason sıcak, orta nemlilikte iklimden hoşlanır. Yurdumuzun özellikle Ege, Marmara ve Güney Anadolu bölgeleri iklim yönünden uygun yörelerdir. Anason üretimi yıllık 20. 000 ton dolayındadır. Yurdumuzda en fazla anason antalya - denizli- burdur- Muğla ve İzmir yörelerinde üretilmektedir. ABD, Brezilya, Hollanda, Almanya, Fransa, İtalya, İspanya ve Yunanistan Türkiye'nin %74 anasonunu alırlar. 7.5. VERİM: Anasonda verim bölge ekolojik koşullarına, yetiştirme tekniğine ve kullanılan çeşide göre büyük değişiklik göstermektedir. Bornova koşullarında ispanya, çeşme ve Isparta kökenli anasonların kasım, şubat ve mart aylarındaki ekimlerinde en yüksek verim şubat ekiminden elde edilmiş bulunmaktadır. Burada çeşme (İzmir) çeşidi ortalama 43 kg/da, ispanya çeşidi ise 73 kg/da verim vermiştir. Literatürde verimin 50-100 kg/da arasında değiştiği belirtilmektedir. 7.6. KULLANILAN BİTKİ KISMI: Fractus Anisi İçerdiği etken madde:anoson meyvesi uçucu yağ içermektedir. Bunun oranı %1. 5-3 arasında değişmektedir. 7.7. KULLANIM ALANI: Anason midevi, karminatif, iştah açıcı ve koku verici etkilere sahiptir. Anasonun karminatif etkisi mide ve bağırsaklarda fermantasyona engel olmasından ileri gelmektedir. Ayrıca anason bazı içkilerin (rakı, anitez) hazırlanmasında da kullanılmaktadır. 8. FESLEĞEN 8.1. TAKIM:Tubiflorales 8.2. FAMİLYA:Lamiaceae 8.3. CİNS:Ocimum 8.4. TÜR: Ocimum Basillicum L. 8.5. KÖKENİ VE YAYILIŞI: Nane, kekik ve yabani kekiğin akrabasıdır. Kökeni güney Asya özellikle Hindistan'dır. Uzak ülkelerden onu ilk defa getiren İskender'dir. Fesleğen Sezar'ların Roma'sında XII. Yüzyılda güney Fransa'da ekilip biçilen bir bitkiydi. 8.6. BİTKİSEL ÖZELLİKLERİ: Fesleğen tek yıllık bir bitkidir. İnce, dallanmış kökleri vardır. Dallanmış veya dallanmamış dik veya yarı dik, 50-60 cm yükseklikte saplara sahiptir. Yapraklar çeşitlere göre değişmekle birlikte genellikle yumurtamsı uzun, taban kısmı küt, az dişli ve saplıdır. Tabandan itibaren dallanma veya dallanmayansap veya yapraklar çıplak ve zayıf tüylüdür. Yaprak rengi açık yeşilden koyu yeşile kadar değişir. Az veya çok fazla olan yaprak yüzü bazende dalgalıdır. Büyük veya küçük yapraklar vardır. Çiçek sapın ucunda bulunur. Çiçekler genelde altısı bir arada bulunan başak görünümündedir. Alt kısmında başaktaki çiçekler seyrek, üst kısmında sıktır. Taç yapraklar beyaz renklidir. Meyvesi yumurta şeklinde uzunumsu eliptik şekle kadar değişir. Karın kısmı keskin köşelidir. Uzunluğu 1,5-2,0 mm, kalınlığı ise genellikle 1. 0 mm kadardır. Hilum daha açık renkli ve belirgindir. Meyvenin yüzeyi kırışık ve damarlıdır. Rengi koyu kahverengidir. 8.7. ETKEN MADDESİ:Çiçekler dalı veya yapraklarının distilasyonu ile uçucu yağ elde edilir. Uçucu yağın oranı %0. 1-0. 45 arasındadır. Uçucu yağın en önemli kısmını methyl cavicol (estragol), lilanol ve acimine teşkil eder. Herbada doneli maddeler vardır. Ticari ölçüde yağ birimi bilinmemektedir. Deneme, ekimleri dönümünden 2-4 kg yağ alınabileceğini göstermiştir. Buhar destilasyonu ile ayrılan yağından 37 bileşik (madde) tespit edilmiştir. Fidedeki önemli yağ maddesi methyleugenol 'dür. Dorg olarak sap, yaprak ve çiçekleri kullanılır. 8.8. FAYDALANMA YÖNLERİ: Fesleğen çok uzun zamandan beri ilaç olarak kullanılan güzel kokulu bir bitkidir. Halk arasında birçok hastalığa karşı kullanılmasına karşın modern ilaçlarda önemli bir yeri yoktur. Öksürükte, mide rahatsızlıklarında, idrar yolları hastalıklarında, streste ve çeşitli çayların bileşiminde kullanılır. İlaç sanayinde, yiyecek endüstrisinde konserve yiyeceklerde ve içkilerde kullanılır ve bakterilere karşı koruyucu bir özelliği vardır. Fesleğen kokusu sivrisinek ve tahta kurusu gibi haşaratı kaçırır. Zafiyeti ve hazımsızlığı giderir, arı sokmalarında faydalanılır. 8.9. YETİŞTİRİLMESİ: Fesleğen yabancı ot bulunmayan temiz bir tarla ister. Ekim nöbetinde çiftlik gübresi ile iyi gübrelenmiş çapa bitkisinden sonra gelmesi önerilmektedir. Tarlavari üretimde tohum direkt tarlaya mibzerle ekilebilir. Bu durumda dekara kullanılacak tohumluk miktarı 0,6-1,0 kg civarındadır. Sıra arası ise 30-40 cm' dir. Ekim soğuk bölgelerde don tehlikesi geçtikten sonra yapılmalıdır. Ege bölgesinde eğer ön sulama olanağı varsa eylül ayında ekmek en uygunudur. Eğer ekim sonbaharda yapılamayacak durumda ise ilkbaharda erken ekime gidilmesi gerekmektedir. Soğuk bölgelerde sonbaharda ekme olanağı bulunmadığından zorunlu olarak ilkbaharda ekim yapılmaktadır. Ancak aslında bu bölgelerde ilkbaharda da tarlaya geç girilebildiği ve son don tehlikesi geç ilkbahar' da ortadan kalktığından bu tarihlerden sonra yapılan ekimlerle oldukça geç kalınmaktadır. İşte bu geç durumu gidermek için direkt tarlaya ekim yanında fide şeklinde üretimde söz konusudur. Bu durumda kıştan yastıklara ekim yapılmakta ilkbahar da fideler tarlaya 30 x 25 cm aralıklarla şaşırtılmaktadır. Yastıklara 60-80 gr tohum bir dekar yer için yeterli fideyi sağlayabilmektir. Fesleğen bol besinli toprakları tercih eden bir bitkidir. Bu nedenle zengin topraklarda yetiştirilmesi yanında üretiminde kimyasal gübrelerinde kullanılması gerekmektedir. Bunun için ekiminde dekara 4-6 kg n, 3-5 kg p2o5 ve 10-12 kg/da k2o verilmesi önerilmektedir. Ancak bu miktarlar fakir topraklarda en az 1/3 oranında arttırılmalıdır. Fesleğenin vegetasyon devresi esnasında en önemli sorunu yabancı otlarla mücadeledir. Özellikle kurak bölgelerde yabancı ot yanında sulamada iyi bir gelişim için üzerinde durulması gereken kültürel önlemlerdendir. 8.10. HASAT: Biçme genel olarak çiçeklenme başlangıcında yapılır. Uygun yıllarda birden fazla biçim söz konusudur. Ege koşullarında verim, geciktikçe azalmakla beraber üç biçim yapılabilmiştir. Biçimi takiben bitkileri sıkı demet yapmadan taşımalı ve 30-35 c de kurutmalıdır. 8.11. VERİM: Almanya şartlarında ortalama drog herba verimi 80-150 kg/ da arasında değiştiği belirtilmektedir. Eğer ikinci biçim yapılabilir ise bunun 200 kg/da'ı bulabileceği bildirilmektedir. Ege koşullarında ise yapılan ön araştırmalarında drog herba miktarının 350 kg/da 'ı bulduğu saptanmıştır. 8.12. HASTALIK VE ZARARLILARI: Fesleğende en fazla görünen hastalık mantarların yaptıkları yaprak lekeleridir. Genç devrede yaprak bitkilerinin de zararı oldukça büyük olmaktadır. 8.13. KULLANILAN BİTKİ KISMI: Herba Basilici 8.14. ETKEN MADDELERİ: Fesleğenin çiçekli dal ve yapraklarının destilasyonu ile uçucu yağ elde edilmektedir. Uçucu yağ oranı %0.1- %0.45 arasında değişir. Uçucu yağın en önemli kısmını methylcavucol (astragol) ve linalol teşkil eder. Ayrıca fesleğen herbasında taneli maddelerde vardır. Fesleğen midevi, balgam söktürücü ve idrar yolları antiseptiği olarak kullanılır.

http://www.biyologlar.com/aromatik-ve-tibbi-bitkiler

Kirlenmiş Suda Bulunan Maddelerin Etkileri ve Toksikolojisi

Kirli sulara çeşitli kaynaklardan karışması muhtemel kirleticilerin türleri ve canlılara olan sınır konsantrasyonları belirtilmiştir. Oksijen eksikliğinin nedeni olarak kolay ayrışabilir organik maddeler Kolay ayrışan organik maddece zenginleşmiş sularda oksijen yetmezliği ortaya çıkabilir. Asimilasyonun yetersiz kalması halinde alglerde solunum ile oksijen azalmasına neden olurlar. Oksijenin suda çözünürlüğü ve suda yaşayan canlıların oksijen gereksinimi sıcaklığa bağlıdır. Sazan için en az 4 mg/l, alabalık için 10 mg/l O2 nin suda bulunması gereklidir. Oksidasyon zehirleri Oksidasyon zehirleri arasında klorun büyük pratik önemi vardır. İçme suyunun 5-25 mg Cl2/l ile klorlanması, suların kendiliğinden temizlenmesine olumsuz yönde etki eder. Algler klora karşı çok hassastırlar. Bu nedenle alglerle mücadelede klor kullanılır. 1.4 mg Cl2/l tatlı suda yaşayan birçok algler için öldürücüdür. Öldürücü doz balık yavruları için 0.05 mg Cl2/l , büyük balıklar (alabalık) için 0.1 mg Cl2/ l, sazan için 0.4 mg Cl2/l dir. Zehirli gazlar Amonyak: 18 °C de 1 l suda 554 g NH3 çözünür. İçme suyunun NH3 içeriği 0.05 mg/l den az olmalıdır. Sazanlar 2 mg/l ye, alabalıklar 0.8 mg/l ye tahammül edebilir. Hidrojen sülfür: Bu gaz suda çok iyi çözünür. Anaerobik şartlarda organik maddenin parçalanması sonucu oluşur. Kuvvetli bir solunum ve enzim zehiridir; pH yükseldikçe zehir etkisi azalır. Balıklar için zehirlilik sınırı 1 mg/l civarındadır (alabalıklar için 0.6 mg/l). SO2, Kükürt dioksit (sülfüroz asidi): Balıklar için zehirlilik sınırı 16 mg SO2/l civarındadır. Suda ayrıca HCI varsa bu sınır 0.5 mg SO2/l ye kadar düşer. Asitler ve bazlar Kirlenmiş sularda görülen en önemli mineral asitler HCI, H2SO4 ve HNO3 tür. Bunların zehir etkisi, neden oldukları pH değişikliğinden ve anyonlarından ileri gelir. Düşük pH derecelerinde diğer zehirli maddelerin de etkisi artar. Ayrıca asitler, sudaki karbonatlara etki ederek CO2 in açığa çıkmasına ve dolaylı olarak balıkların ölmesine neden olurlar. Balıklar için öldürücü pH 4.5-5 arasındadır (derelerde yaşayan alabalıklar için pH = 4.8). Sazanlar için bu pH değeri öldürücüdür. Bazlar olarak kirlenmiş sularda NaOH, KOH ve Ca (OH)2 bulunur. Bunların zararlı etkileri pH yükselmesinden ileri gelir. pH 9.2 den itibaren zararlı etki başlar. Sazanlar alkali pH’ ya çok az hassastır, pH 10.8 e dayanabilirler. Ağır metaller Çok küçük miktarlarda bile genellikle kuvvetli zehir etkisine sahip olan bu maddeler, kirlenmiş sularda metal, katyon, tuz ve kısmen anyon (örneğin kromat) şeklinde bulunurlar. Bunlar hem kirlenmiş suların kendiliğinden temizlenmesi engelleyebilir, hem de bu suların arıtılmamış veya arıtılmış halde sulamada kullanılmasını veya arıtma atıklarının gübre olarak kullanılmasını sınırlandırabilirler. Ağır metaller hücrelerde plasmanın sertleşmesine, şişme ve büzülmeye neden olur. Proteinleri de çöktürürler, bunun sonucu solunum intensitesi ve buna bağlı olarak oksijen tüketimi azalır. Mangan Mangan ve demir, ağır metaller arasında en zehirsiz metaller sayılırlar. Katyon olarak manganın zararlılık sınırı alabalık için 75 mg/l, sazanlar için 600 mg/l dir. Litrede 0.5 demir veya mangan içeren içme suları mürekkep tadında olur (veya mürekkep kokusu hissedilir). Nikel Bu metalin zararlılık sınırı balıklar için 1-5 mg/l, küçük su canlıları için ise 3-4 mg/l dir. 6 mg Ni /l dozu sudaki mikrobiyolojik olayları engeller. Krom Bu metal kirlenmiş sularda hem katyon, hemde anyon (kromat, bikromat veya kromik asit) olarak bulunabilir. Anyon şekli katyon şeklinden daha etkilidir. Balıklar için toksisite sınırı 28-80 mg Cr/l veya 15 mg/l kromat veya bikromat, içme suyunda sınır değeri olarak 0.05 mg Cr /l verilmektedir. Kurşun Kirlenmiş sulardaki Pb konsantrasyonu 0.1 mg/l den az ise suda yaşayan canlılar bundan pek etkilenmezler. Hassas balıklar için 0.1 - 0.2 mg Pb/ l toksisite sınırını teşkil eder (sert sularda bu sınır 1 mg Pb/l dir). İçme sularında en fazla 0.05 mg Pb/l bulunmaktadır. Demir Demir de mangan gibi göreceli olarak zehirsiz sayılmaktadır. Buna rağmen sulardaki yüksek demir konsantrasyonu mikrofloranın büyük ölçüde değişmesine neden olur. Demiroksit, demirhidroksit ve iki değerlikli demir bileşikleri fazla zararlı değildirler. Çeşitli demir bileşikleri sert olmayan sularda pH yı düşürmek suretiyle balıklara zehir etkisi yaparlar. Demirhidroksit balıkların solungaçlarını tıkayarak ölmelerine sebep olur. 1 mg Fe/l (sert sularda 30 mg Fe/l ) balıklar için zararlıdır. İçme sularında 0.5 mg Fe/l renk ve tatla anlaşılabilir. Çinko Belirli konsantrasyonlarda çinko sulardaki mikroflorayı olumsuz yönde etkiler. Balıklar için toksisite sınırı 0.3 mg/l (sert olmayan sularda 0.15 mg/l) dir. Bakır ve nikel, çinkonun zehir etkisini arttırırlar. İçme suyunda 5 mg/l zararsız sayılmaktadır. Bakır Bakır küçük canlılar için de yüksek derecede zehirlidir. Hafif alkali sularda hidroksit, çürüyen organik madde içeren sularda sülfür şeklinde çökelir. Bakır balıklar için kuvvetli bir zehirdir. Alabalıklar için toksite sınırı 0.14 mg Cu/l dir (Cu çözünen tuz olarak suda bulunuyorsa). Sert sularda zehir etkisi daha azdır. Suda çözünmüş halde bulunan diğer tuzlar bakırın zehir etkisini azaltır. 2.5 mg Cu/l yüksek su bitkilerine zarar vermez. İçme sularında en fazla 0.05 mg Cu/l bulunmaktadır. Civa Bu metal ve bileşikleri hem endüstriyel kaynaklardan hem de tohumlarda kullanılan ilaçlardan sulara karışırlar. Civa mikrofloraya kuvvetli zehir etkisi yapar. 100 mg Hg/l mikrobiyal aktivitenin durmasına neden olur. Balıklar için letalite (ölüm) sınırları 0.25 mg Hg/l (alabalık) ile 0.80 mg Hg/l (sazan) arasında bulunur. Civanın organizmada birikmesi mümkündür. Turna balıklarının içinde, yaşadıkları suya nazaran 3000 misli fazla Hg içerdikleri saptanmıştır. Federal Almanya’da müsaade edilen sınır değerler: İçme sularında maksimum 40 μg/l, taze balık etinde 0.5 -1.0 ppm'in altında. Ren Nehrin'de 0.01 - 0.05 μg /l düzeyinde bulunmaktadır. Nitrat ve nitritler Bu bileşikler sadece belirli ve dar bir alanda zehirli sayılabilirler. Balıklar ve diğer su hayvanları için nitratın toksisite sınırı 3-13 g/l, nitritin 20-30 mg/l dir. İçme suyunda en fazla 45 mg NO3/l bulunmalıdır. Daha yüksek değerler methemoglobin hastalığına neden olur (bilhassa çocuklarda). Fosfatlar Fosfor bileşikleri önemli bitki besin maddeleridirler. Su hayvanlarına olan etkileri, ancak suda fazla miktarda bulunup pH değerini veya suyun tampon sistemini değişikliğe uğrattığı zaman göze çarpar. Temizlik malzemelerinde (deterjan ve benzeri) bulunan polifosfatlar veya fosfor bileşikleri, suyun yüzey gerilimini değiştirerek (köpük teşekkülü) biyolojik olayları olumsuz yönde etkileyebilirler. Kompleks fosfatlar ayrıca suya sertlik veren maddeleri inaktif hale getirerek suyun sertliğini bir ölçüde giderebilirler ve bu suretle diğer bazı zehirli maddelerin etkisinin artmasına neden olabilirler; ayrıca ağır metalleri kompleks bağlama ile bağlayabilirler. Sularda kompleks fosfatlar kısa zamanda bitkilerce kolay alınabilen ortofosfata parçalanırlar. İçme suyunda 7 mg P2O5 / l (üst sınır) zararsızdır. Alıcı sularda fosfor artışının 4 nedeni vardır: • İnsan ve besin atıkları • Gübreler • Endüstri atıkları • Deterjanlar. Fosfatın tarımda, endüstri ve evlerde kullanımı son 10 yılda üstsel bir artış göstermiştir. Göllere besin (P) girdisi şu kaynaklardan olmaktadır: • 1/2’si tarımsal yüzey akış • 1/4’ü deterjanlar • 1/4’ü diğer kaynaklar Klorür, sülfat ve bor Federal Almanya’da yapılan araştırmalara göre yeraltı suları ve nehir sularında 40- 200 mg Cl- /l klorür saptanmıştır. Bu klorür iyonları topraktan drenaj suları ve ayrıca kentsel atık suları ile su kaynaklarına ulaşmaktadır. Federal Almanya’da yemek tuzları nedeni ile kullanılan ve büyük miktarda atık sularına intikal eden klorür miktarı yılda 200 000 ton Cl- olarak tahmin edilmektedir. Ayrıca endüstri atık suları ile nehirlere yaklaşık 2500 mg/l değerinde klorür ilave olmaktadır. Klorür ve sülfatın toksisitesi, yüksek konsantrasyonlarda ozmotik etkilerinden ileri gelmektedir. Genel olarak içme suyunda Cl- ve SO4-2 için 350 mg/l altındaki konsantrasyonlar zararsızdır. ABD de 250 mg/l üst limit olarak kabul edilmektedir. Tatlı su balıkları için toksik sınır 6000 mg/l Cl- dür . Sülfatlar sulama sularında klorürden daha az toksittirler. Kaliteli sularda konsantrasyon 192-336 mg/l düzeyindedir. İzin verilebilir maksimum değer 336-576 mg/l düzeyindedir. Bor, sularda borik asit (H3BO3) veya sodyum borat olarak bulunmaktadır. Boraksın toksik sınırı balıklar için 3-7 gB/l dir. Suların kendiliğinden temizlenmesi için gerekli mikrobiyal aktivite 10 g/l bor ile büyük ölçüde engellenir. 1-2 g/l borik asidin balıklara toksik olduğu belirtilmektedir. Sulama sularında 0.5 mg B/l den fazla konsantrasyonları bazı bitki türlerine zararlı olabilir. Orta ve dayanıklı tür bitkiler, sulama suyundaki 1-4 mg/l konsantrasyona dayanabilmektedirler. Drenaj sularındaki bor değeri 0.7 mg/l den fazla olmamalıdır. Siyanürler ve zehirli organik bileşikler Genel olarak siyanürün balıklar için toksisite sınırı 0.03-0.25 mg CN/l olarak verilmekte ise de bu, balık türü ve bileşik çeşidine bağlıdır. Örneğin tatlı su kefali için sodyum siyanat (NaOCN)'ın maksimum limiti 75 ppm dir. Buna karşılık alabalık için 0.05 ppm NaCN 24 saatte, 1 ppm ise 20 dakikada tamamen öldürücü olmaktadır. Su sıcaklığının artması ile zehir etkisi artmaktadır. İçme suyunda en fazla 0.05 mg CN- / l bulunmalıdır. Petrol ve Türevleri: Petrol su yüzeyinde ince bir film oluşturarak gaz alışverişini engeller. Sulardaki normal bakteri florası petrol ve türevlerince engellenir. Bu arada naften asitleri, fenoller ve merkaptan özellikle toksiktir. Merkaptanın balıklar için toksik dozu 0.6 -1.5; naften asitlerinin 1-5 mg/l dir. Benzinin toksisite sınırı 50 mg/l , benzenin 5-20 mg/l dir. Bazı literatüre göre toksisite sınırı normal benzinde 10- 260 mg/l, süper benzinde 40-100 mg/l dir. Fenoller Fenoller su mikroflorası tarafından parçalanabilirler. Konsantrasyon 200 mg/l yi geçince mikropların sayısında azalma görülür. Bazı su bitkileri de (Scirpus Lacustris) fenolleri parçalayabilirler. 1μg/l fenol suyun tadını ve 20μg/l fenol balık etinin tadını bozar. Balıklar için toksisite sınırı 6-7 mg/l fenol'dur. Poliklor- naftalinler ve bifeniller Bu bileşikler teknikte hidrolik yağlar, plastik endüstrisinde yumuşatıcı ve elektroteknikte izolasyon materyali olarak kullanılır klor içeriği arttıkça bu bileşikler katı bir yapı kazanırlar. Bunlar yağda eriyen ve DDT gibi hayvansal organizmalarda biriken bileşiklerdir. Bunlardan PCB (poliklor bifenil) hayvansal organizmalarda DDT den daha çok birikmiş bulunuyor. Bunların toksikolojisi henüz yeteri kadar araştırılmadığından bu konuda kesin bir şey söylemek mümkün değildir. Bu bileşiklerin havada ve suda bulunan miktarları mikrogram düzeyini aşmamalıdır. Bunların organizmalarda birikmesi sadece ortamdan değil, aynı zamanda besin zinciri vasıtasıylada olmaktadır. Bilhassa PCB nin mikrobiyolojik parçalanması hakkında birşey bilinmemektedir. Deterjanlar Kirlenmiş sularda bulunan deterjanların büyük kısmı evlerden gelmektedir. Deterjanlar hidrofil ve hidrofob gruplar içeren organik bileşiklerdir. Çözünmeyen kalsiyum sabunları teşkil etmezler ve düşük pH derecelerinde hidrolize olmazlar. Deterjanların etki bakımından en aktif kısmı uzun bir zincir teşkil eden lipofil kısımdır; bu kısım protoplazmadaki; lipoidlerle reaksiyona girer. Balıklarda solungaç ve diğer organlarda kanama olur, ciğerlerde deterjanlar birikir. Ayrıca deterjanlar suda bulunan yağları emülsiyon haline getirerek organizmaya geçmesini kolaylaştırırlar. Balıklar için öldürücü doz 5-10 mg/l arasında bulunurken, (katyonik deterjanlarda 0.02-0.1 mg/l) 1.2-2 mg/l lik konsantrasyonlar sulardaki algleri yok etmeye yeterlidir. Deterjanın içerdiği yüzey aktif bileşiklerin yanısıra içindeki katkı maddelerinden Na-tripol fosfatlar çöl sularında aşırı su bitkisi gelişimine, verim azalmasına ve gölde yaşlanma sürecinin (ötrofikasyon) hızlanmasına neden olmaktadır. Bunun dışında deterjanlar, evsel ve endüstriyel atıksularla nehir, deniz ve göllere ulaşarak köpük oluştururlar. Köpükler su yüzeyini kaplayarak havalanmaya engel olurlar. • Kısa sürede ayrışma özelliğindeki LAB (Lineer Alkil Benzen) aktif maddeli deterjanlar ayrışma sırasında sudaki C=O’ni hızla tükettiğinden suda ani O2 eksikliği yaratabilir. • Sularda birleşme mg/l düzeyindeki deterjan (1-3 mg/l ABS (Alkil Benzen Sülfonat), 0,6-1,5 mg/l LAS (Lineer Alkil Sülfonat)) balıklara zararlı etki yapar. 0,1 mg/l deterjan aktif maddesi balık yumurtalarında anormalliğe neden olur. 1960’lı yılların başına kadar dünyada deterjan üretiminde aktif madde olarak petrol kökenli bir madde olan DDB (Dodesil Benzen) kullanılmıştır. Dallanmış zincirli bir yapısı olan alkil benzen sülfonat’ın biyolojik bozunabilirliğinin çok az ve yavaş olması nedeniyle, su ortamında, arıtım tesislerinde, yoğun köpük oluşumu ile suya O2 aktarımını engellediği, böylece hem su canlılarını, hem de suyun kendini arıtım özelliğine olumsuz etki yaptığı, saptanarak kullanımı yasaklanmıştır. Bunun yerine 1964/65 yıllarında kolay ayrışabilen düz zincir yapılı alkil benzen süfonatlar kullanılmaya başlanmıştır. Ve tüm atıkların arıtıldıktan sonra çevreye verilmesi sıkı kontrole bağlanmıştır. 1982 yılında aktif maddelerin biyolojik bozunabilirliklerinin % 80’in üzerinde olması zorunluluğu getirilmiştir. • Çevre kirlenmesi yönünden deterjan ele alındığında en önemli neden deterjanların su ortamında ayrışma veya ayrışmama durumudur. • Ayrışma niteliği düşük, sert (DDB) deterjanlar yüzey sularından toprağa, kuyu ve kaynak sularına girmekte, düşük miktarlarda bile suyun koku ve tadını değiştirmekte ve içme suları ile insan bünyesine girmektedir. Pestisidler ve herbisidler Bu konuya toprak kirlenmesi bölümünde geniş yer verilecektir. Burada sadece suda ve içinde yaşayan canlılarda yapılan bazı gözlemler anlatılacaktır. Bu maddeler daha çok tarımsal alanlardan çıkan sularda, kültür topraklarından sızan sularda ve sebze-meyve işleyen fabrikaların kirlenmiş sularında bulunurlar. Uçaklarla yapılan tarımsal mücadele sonucunda da bu maddeler sulara karışabilirler. Pestisidlerden, klorlanmış hidrokarbonlar balıklar için son derece zehirlidirler. Organik fosfor bileşikleri balıklar için fazla zehirli değildir. Tanınmış pestisidlerin su faunasına olan zehirli etkilerine dayanılarak şu gruplama yapılmıştır. I. Çok zehirli maddeler: Suların yakınında kesinlikle kullanılmamaları ve artıklarının kesinlikle sulara karışmaması gerekir. Örnek: DDT emülsiyonu, azinphos, karbamatlar. II. Zehirli maddeler: İçinde balıkların yaşadığı sulardan uzak tutulmaları gerekir.Örnek: Lindan, Chlordan, Heptachlor, Parathion, Chlorthion, Diazinon, Malathion, Nikotin Preparatları, Perris, Rotenon, Pyrethrum, Karbolineum (meyve ağaçları) ve DDT (püskürtme ve toz şeklinde) III. Sığ sularda balıklar ve bunlara yem olan küçük canlılar için tehlikeli olabilecek maddeler: Trichlorphon, Demeton. IV. Normal dozda kullanıldığı zaman az zehirli olan maddeler (uzman kişilere danışılarak kullanılmaları gerekir): Kloratlar, Dalapon, Simazin, Paraquat.

http://www.biyologlar.com/kirlenmis-suda-bulunan-maddelerin-etkileri-ve-toksikolojisi

ADENOZIN DEAMINAZ

Bazı şeyler ziyaretçiler için gizlidir. Lütfen görmek için kayıt olun yada giriş yapın.Örnek Cinsi : Serum ,plevra sıvısı,perikard sıvısı,periton sıvısı,BOS/ dondurulmus Örnek Miktari : 1 ml (en az 0.5 ml) Metod : PHOT Genel Bilgiler : Adenozin deaminaz eritrositler, lökositler, akciger, karaciger, mide, genitoüriner sistem ve serumda bulunur. Enzim aktivitesi çocuklarda tüberküloz olgularinda diger respiratuar hastaliklardan çok daha yüksektir. Hepatit, siroz, hemakromatozis, neoplastik hastaliklarla baglantili tikanma sariliklari, prostat ve mesane kanseri, hemolitik anemi, gut, talasemi major, tüberküloz, otoimmün hastaliklar serumdaki seviyesinin yükseldigi durumlar arasindadir. Plevral sivida adenozin deaminaz tayini genellikle tüberküloz plörit tanisi için kullanilir.

http://www.biyologlar.com/adenozin-deaminaz

AMIP ANTIKORU

Örnekcinsi: Serum Örnek özellikleri: Hemoliz olmamalidir.Açlik gerektirmez. Metod: IHA Genel bilgiler: Ekstra-intestinal amebiasis (özellikle karaciger apsesi) tanisinda kullanilir. Kullanilan yöntemin spesifitesi yüksek, sensitivitesi degiskendir. Karaciger apselerinde %100, amebik dizanterilerde %98 oranda antikorun yükseldigi görülür

http://www.biyologlar.com/amip-antikoru

Türkiye'de Su Kirliliği Sorunları

Büyük bir su potansiyeline sahip olan ülkemizde düzensiz kentleşme ve endüstrileşme sonucu su kirliliği hızla yayılma göstermektedir. Arıtma tesislerinin bulunmaması, çevre sağlığı görevini ve kontrollerini tamamiyle yüklenen bir organizasyon olmaması nedeniyle kirliliğin boyutları farkında olunamayan ciddi boyutlarda gelişme göstermektedir. Hemen belirtmek gerekir ki, su kaynaklarımızın ne kadarının doğal kriterler bakımından sağlıklı bir düzeyde olduğunu belirtmek zordur. Su kirliliği alanında yapılan çalışmalar yetersiz ve dağınıktır. Bazı körfezlerimiz ile kirlenmenin yüksek düzeylerde olduğu bazı akarsu ve göllerimize ait yapılan çalışmalardan, buralardaki kirlenmenin düzeyi hakkında bilgiler edinilmiştir. Körfez ve denizlerimizdeki kirlenme düzeyi a. İzmit Körfezi Çevresinde yoğun gelişme gösteren endüstri ve yerleşim alanının etkisinde kalan İzmit Körfezi 300 km2 alanlı en derin noktasının 183 m olduğu, 48 km uzunluk ve 2-10 km genişliğinde bir körfezdir. Körfeze yaklaşık 120 civarında kuruluşun atıkları boşalmaktadır. Özellikle akıntının düşük olduğu doğu bölgesinde ve yerleşim ile endüstri kuruluşlarının sık olduğu kuzey sahillerinde kirlilik önemli düzeydedir. Sanayi kuruluşlarının atık sularında çeşitli maddeler, pH, BOI5 (BOD5), KOI (KOD), renk, bulanıklık gibi tüm kirlilik kritarleri sınır değerleri aşmaktadır. Ayrıca Pirelli, Seka, Petrol Ofisi, İpraş, Petkim, Besin Sanayi, Süperfosfat Sanayi, Hereke Sümerbank Fabrikası, Bayer Tarım, Zirai Alet Fabrikaları ve Mezbaha gibi kuruluşların atık sularında koli bakterisinin izin verilenin üzerinde bulunması da çevre sağlığı açısından dikkat çekicidir. Körfezin doğu kesiminde ve kuzey sahillerinde muhtelif kesitlerdeki analiz raporlarından özellikle sahile yakın kesimlerde çözünmüş oksijenin balıkların yaşayamayacağı düzeye indiği, BOİ, KOİ ve koli bakterisi değerlerinin çok yüksek boyutlara ulaştığı görülmektedir. Kirlilik kıyılarda fazla, körfez ortasına doğru daha azdır. Bölgenin güney tarafında önemli kirletici kaynakların bulunmamasına karşın, doğudan dökülen derelerin etkisi ile taban yükselmesi ve belirli düzeyde organik kirlilik görülmektedir. Rüzgarla yayılan yağ ve benzeri yüzücü atıklar geniş bir yüzey kaplamaktadırlar. Gölcük kanalizasyonları ve askeri tesisler nedeniyle körfezin güney sahillerinin en kirli bölümü Gölcük yöresidir. b. Gemlik Körfezi Gemlik ve yöresinin en önemli endüstriyel faaliyetinin zeytincilik ve sabunculuk olması nedeniyle kent içinde yağ ve sabun imal eden küçük kuruluşların, evsel atık sularına karışan kirli suları körfezi kirleten önemli kaynaklardır. Ayrıca suni ipek ve viskoz ürünleri fabrikası, azot sanayi ve diğer bazı küçük sanayi de kirliliği arttırmaktadırlar. Körfeze ortalama olarak yılda 6.9 x 106 m3 atık su karışmaktadır. Yapılan analizlere göre körfez sularında BOİ ve KOİ ve askı madde değerleri oldukça yüksektir. Körfeze en fazla atık suyu suni ipek ve viskoz sanayi bırakmakta olup, bu şekilde meydana getirilen kirlilik 340 bin nüfusun oluşturacağı kirliliğe eşdeğer bulunmaktadır. Ağır metaller ve reaksiyon bakımından da kirlenmeler saptanmış bulunmaktadır. Normal deniz suyunda çinko miktarları 7-21 mg/l düzeyinde bulunurken, fabrikanın asit deşarj kanalları ile ortalama 2300 ppm dolaylarında çinko körfeze bırakılmaktadır. c. Haliç Kağıthane ve Alibey derelerinin birleştiği ağızdan Sarayburnuna kadar 7.5 km uzunluğunda olan Haliç'in en geniş yeri 750 m dir. Haliç sularının kirlenmesi ve Haliç’in dolmasında rol oynayan atık sularını iki grupta toplayabiliriz: • Yerleşim yerlerinden gelen pis sular, kanalizasyon ve endüstri atık suları. Yapılan bir incelemeye göre İstanbul’da kanalizasyon, pis su ve endüstri atık sularının % 25 i Haliç'e dökülmektedir. Bunun günlük miktarı 30 000 m3 ’tür. • Kısmen yerleşim yerlerinden ve büyük kısmı Alibey ve Kağıthane dereleri havzalarından gelen ve yağışlar ile oluşan yüzey suları. Bu iki dere 192.4 ve 181.6 km2 lik havzalara sahip olup, fazla miktarda sediment taşımaktadırlar. Bir yıl içinde Haliç'e taşınan sediment miktarı 93 510 m3 olup bunun Haliç deniz tabanı olan 1.42 x 106 m2 ye yayıldığı kabul edilirse her yıl tabanın 6.6 cm yükselmesi gerektiği ortaya çıkar ki bu 10 yıllık ölçümler sonucu saptanmış ve tabanın yılda 10 cm yükseldiği saptanmıştır. Her türlü endüstriyel, evsel artıklar ve erozyon nedeniyle, Haliç her geçen gün içinde dolmakta, su sirkülasyonun bulunmayışı nedeniyle de dip kısmında kalın bir çamur tabakası bulunmaktadır. Organik maddenin fazlalığı yüzünden otrofikasyon başlamış, serbest oksijen düzeyi asgariye düşmüş ve H2S oluşumu hızlanmıştır. Haliç'e doğrudan verilen veya dere suları ile gelen sabun fabrikalarının sodyum ve çinko tuzları, boya ve apre tesislerinin, madeni eşya fabrikalarının metal tuzları deniz canlılarının yaşamı üzerinde son derece zararlı olmaktadır. Asit, yağ, tuz kireçli maddeler, organik asitler, gliserin, soda, amonyak, katran, naftalin ve benzeri maddeler bütün su ürünleri üzerinde olumsuz etki yapmaktadır. Yapılan araştırmalara göre balıklar l mg/l düzeyinde deterjan içeren sulardan derhal uzaklaşmaktadırlar. Ençok zararı ise yumurtadan yeni çıkmış balıklar ile bunlara yem görevini yapan diğer küçük canlılar görmektedir. Marmara Denizinde, İstanbul çevresinde bazı mevkilerde yapılan ölçümlere göre deterjan düzeyinin 2.1 mg/l olduğu kesimler bulunmaktadır. Sulara ve oradan su canlılarına taşınan toksik elementlerden birisi de civa olup besin zincirinde ilerledikçe konsantrasyonu artmakta ve zehirlenmelere neden olmaktadır. Marmara Denizinde avlanılan balık ve midyelerde ortalama civa konsantrasyonu 0.4 ppm düzeyinde bulunmaktadır. Japonya’da bazı mevkilerdeki değerler çok yüksek olarak saptanmıştır (midyelerde 11.4-39.0 ppm, balıklarda 10.0-35.7 ppm). Besin maddelerinde Dünya Sağlık Teşkilatı'na göre kabul edilen en yüksek civa miktarı 0.05 ppm, ABD standartlarına göre 0.5 ppm dir. Ege denizinde kirlenme araştırmaları, ağır metal iyonları ve pestisid kalıntıları analizleri kontrol edilerek yapılmıştır. Otuz kadar balık türünde yapılan analizlere göre 1972 yılı itibariyle civa yönünden sularımızda önemli bir sorun olmadığı belirtilmektedir. Klorlu insektisidlerin kalıntı miktarları Dünya Sağlık Örgütü (WHO) nün tolerans limitlerinin altında kalmaktadır. İzmir Körfezinde zaman zaman görülen kırmızı su çiçeklenmesi (Red Tides) önemli bir kirlilik göstergesidir. Körfeze gün geçtikçe artan şekilde gelen kentsel atık suları ve beraberlerinde getirdikleri fazla miktardaki nitrat ve fosfat elementleri, su dinamiğinin hareketsiz veya çok az olduğu koy ve körfezlerde, özellikle sıcak mevsimlerde bazı bitki planktonlarının aşırı derecede çoğalmalara neden olurlar. Bu organizmaların fazla çoğalması, bulunduğu su ortamına, içindeki kırmızı pigmentlerden dolayı kırmızımsı bir görünüm verir. İzmir Körfezinde 1955 yılından beri Temmuz ve Ağustos aylarında devamlı olarak meydana gelen bu olay nedeni ile balıklarda kitle ölümleri görülmektedir. İzmir körfezinin ilk kirlilik nedeni Gediz Nehri iken, bunun yatağının değiştirilmesinden sonra, artan sanayileşme ve şehirleşme, körfezdeki kirliliğin kaynakları olmuştur. Akdeniz sahillerinde de avlanılan değişik türden 234 balık üzerinde yapılan pestisid kalıntı analizlerine göre; DDT türevleri 0.100-0.147; BNC izomerleri 0.104-0.150; aldrin 0.022-0.039; endrin 0.015-0.0244; dieldrin 0.013-0.048 ppm değerlerinde ölçülmüştür. En yüksek değerler Alanya ve Silifke kesimlerinde avlanılan balıklarda saptanmıştır.

http://www.biyologlar.com/turkiyede-su-kirliligi-sorunlari

KALBİN İÇİNDEKİ BOŞLUKLARIN YAPISI

Kalp dört gözlüdür. Bunlar: Atrium dextrum, atrium sinistrum, ventriculus dexter ve ventriculus sinister. AT­Rİ­UM­’LA­RIN GENEL YAPISI Atrium’lar damarlardan (venler) gelen kanın ventricül’lere geçmesini sağlayan kalbin boşluklarıdır. Kal­bin ta­ba­nin­da bu­lu­nan at­ri­um­lar at­ri­um dext­rum ve si­nist­rum ol­mak üze­re iki ta­ne­dir­ler. At­ri­um­lar ven­ler­le al­dık­la­rı kir­li ka­nı vent­ri­cül­le­re nak­let­me­ye ya­rar­lar. Bu ne­den­le faz­la bir drenç­le kar­şı­laş­ma­dık­la­rın­dan do­la­yı du­varı ventrit­ri­cül'­le­rin du­va­rın­dan in­ce­dir. At­ri­um­la­rın öne doğ­ru uzan­tiıla­riına au­ri­cu­la de­nir .Auricula’nın sağ at­ri­u­m’da­ki­ne au­ri­cu­la dext­ra, sol at­ri­u­mda­ki­ne au­ri­cu­la si­nist­ra de­nir. Au­ri­cu­la­la­rın için­de­ki kas ka­bar­ti­la­ri­na Mm. pectinati de­nir. At­ri­um dext­ru­mu vent­ri­cu­lus dex­te­re bir­leş­ti­ren de­li­ğe os­ti­um at­ri­o­vent­ri­cu­la­re dext­ra de­nir. At­ri­um si­nist­ru­mu vent­ri­cu­lus si­nis­te­re bir­leş­ti­ren de­li­ğe os­ti­um at­ri­o­vent­ri­cu­la­re si­nist­ra de­nir. İki at­ri­u­mu bir­bi­rin­den ayıran bol­me­ye sep­tum in­te­rat­ri­a­le de­nir. Bu­nun Üze­rin­de emb­ryo­nal do­nem­de bir de­lik bu­lu­nur bu de­li­ğe fo­ra­men ova­le de­nir. Bu de­lik do­ğum­dan son­ra ka­pa­nır. Eğer kapanma olmazsa doğumdan sonrada iki atriumu birbirine bağlayarak vücutta karışık kan dolaşımını sağlar. Bu duruma patent foramen ovale denir. Teşhisinden sonra ameliyatla tedavisi gerekir. AT­Rİ­UM DEXT­RU­M’UN YA­PI­SI Bu atrium v. cava superior ile üst tarafın v. Cava inferior ile alt tarafın ve ostium sinus coronarii ile kalbin kendi kirli kanı toplar. Bu kanı os­ti­um at­ri­o­vent­ri­cu­la­re dext­ra ile sağ ventricül’e gönderir. v. cava superior bu atriuma yukarıdan v. cava inferior ise aşağıdan girer. At­ri­um dext­ru­m’un ar­ka­sın­da­ki v.ca­va in­fe­ri­o­run sa­ğin­dan yu­ka­ri doğ­ru yük­se­len olu­ğa sul­cus ter­mi­na­lis at­rii dext­ri de­nir bu­nun sağ at­ri­um için­de­ki kis­mi­na cris­ta ter­mi­na­lis at­rii dext­ri de­nir. Bu oluk ve­ya kris­ta sağ at­ri­u­mun asıl at­ri­um par­ça­sı ile at­ri­u­ma do­kü­len ven­le­rin bu­lun­du­ğu kısım ara­sın­da­ki sını­rin emb­ryo­nal ka­lıntısıdır. Sağ at­ri­u­mun ar­ka du­va­rının iç yü­zün­de v.ca­va­la­rın ara­sin­da­ki ka­bar­tı­ya to­rus in­ter­ve­no­sus de­nir. Sağ at­ri­u­mun öne doğ­ru uzan­ti­si­na au­ri­cu­la dext­ra de­nir. Bu­nun için­de­ki kas ka­bar­ti­la­ri­na Mm. pectinati de­nir. V. ca­va in­fe­ri­o­r’un sağ at­ri­u­ma açıl­diığı yer­de­ki ça­pi 3-3.5 cm dir. Bu­nun açıl­ma ye­rin­de tam ol­ma­yan bir ka­pak bu­lu­nur bu ka­pa­ğa val­vu­la ve­nae ca­vae in­fe­ri­o­ris de­nir. Si­nus co­ro­na­ri­u­s’un sağ at­ri­u­m’a açıl­dığı ye­re os­ti­um si­nus co­ro­na­rii de­nir. Bu­ra­da bu­lu­nan tam ol­ma­yan ka­pa­ğa val­va si­nus co­ro­na­rii (the­be­sii) de­nir. Sağ at­ri­u­m’un üst du­va­ri­na giren v.ca­vae su­pe­ri­or'un açıl­ma ye­rin­de ka­pak bu­lun­maz. Sağ at­ri­u­m’un sağ vent­ri­kü­l’e açıl­dığı yer­de­ki de­li­ğe os­ti­um at­ri­o­vent­ri­cu­la­re dext­ra de­nir. Bu­ra­da val­vu­la tri­cus­pi­da­lis de­ni­len (Üçlü klapak) ka­pak bu­lu­nur. Bu de­lik­ten sağ at­ri­um­da­ki kan sağ vent­ri­kü­le ge­çer. AT­Rİ­UM Sİ­NİST­RUM'UN YA­PI­SI Sağ at­ri­u­mun ön­den bü­yük kısmı go­rü­lür­ken sol at­ri­u­mun sa­de­ce au­ri­cu­la si­nist­ra'sı go­rü­lür. Sol at­ri­um kal­bin ar­ka­sın­da ye­ral­mak­ta­dir. Bu­ra­nın­ öne doğ­ru olan uzan­tısı­na au­ri­cu­la si­nist­ra de­nir. Bu­ atriumdaki kas ka­bar­tı­la­rına Mm. pectinati de­nir. V. pul­mo­na­lis­ler ak­ci­ğer­ler­de ok­si­je­ne ol­muş ka­nı bu­ra­ya ge­ti­rir­ler. Bu ven­ler sağ­da ve sol­da ge­nel­lik­le iki ta­ne­dir­ler. Ba­zen iki ta­rahfta ve­ya tek ta­raf­ta üç adet ola­bi­lir. Bu at­ri­um ile sol vent­ri­kül ara­sın­da bu­lu­nan de­li­ğe os­ti­um at­ri­o­vent­ri­cu­la­re si­nist­ra de­nir. Bu­ra­da bu­lu­nan ka­pa­ğa mit­ral ka­pak (val­va mit­ra­lis) de­nir. Bu at­ri­u­m’u sağ at­ri­um­dan ayı­ran böl­me­nin (sep­tum in­te­rat­ri­a­le) ü­ze­rin­de bu­lu­nan fo­ra­men ova­le­nin ar­tığına falx sep­ti de­nir. VENT­Rİ­KÜL­LERİN YAPISI (VENT­Rİ­CU­Lİ COR­DİS) Vent­ri­kül­ler kal­bin sul­cus co­ro­na­ri­us­’tan apex cor­di­se ka­dar olan kısmını mey­da­na ge­ti­rir­ler. Sağ ve sol ol­mak üze­re iki ta­ne­dir (Vent­ri­cu­lus dex­ter - si­nis­ter). İki vent­ri­kü­lü bir­bi­rin­den ayı­ran böl­me­ye sep­tum in­ter­vent­ri­cu­la­re de­nir. Sep­tum in­ter­vent­ri­cu­la­re'­nin kalp te­pe­sin­de ka­lan kısmı ka­lın­dır bu­ra­ya Pars mus­cu­la­ris de­nir, at­ri­um­la­ra doğ­ru yükseldikçe incelen kısmına pars memb­ra­na­cea denir. Vent­ri­kül’­le­rin içe­ri­sin­de kas­la­rin mey­da­na ge­tir­di­ği ka­bar­tılar bu­lu­nur. Bun­la­ra tra­be­cu­la car­nea ve m.pa­pil­la­ris de­nir. Sağ vent­ri­kül ka­nı ak­ci­ğer­le­re sol vent­ri­kül ka­nı tüm vü­cu­da pom­pa­lar bu ne­den­le sol vent­ri­külün myo­kard ta­ba­ka­si sağ­da­kin­den ka­lın­dır. Vent­ri­kül­le­rin ara­sın­da ön­de bu­lu­nan olu­ğa sul­cus in­ter­vent­ri­cu­la­ris an­te­ror, ar­ka­da­ki olu­ğa sul­cus in­ter­vent­ri­cu­la­ris pos­te­ri­or de­nir. Bun­la­rın kalp te­pe­sin­de bir­leş­ti­ği yer­de­ki çen­ti­ğe in­cis­su­ra api­cis cor­dis de­nir. Her vent­ri­kül’de iki kısım ayırt edi­lir. Bun­lar­dan bi­ri­si ka­nın gi­riş yo­lu di­ğe­ri ise ka­nın çıkış yo­lu­dur. Sağ vent­ri­kül­de­ki ka­nın çıkış yo­lu­na co­nus ar­te­ri­o­sus de­nir. VENT­Rİ­CU­LUS DEX­TER: Bu vent­ri­kül kal­bin fa­ci­es ster­no­cos­ta­li­si­nin bü­yük bo­lü­mü­nü (2/3) mey­da­na ge­ti­rir. Bu vent­ri­kü­lün için­de­ki tra­be­cu­la car­ne­a­lar­dan bir ta­ne­si bü­yük­tür. Bu ya­pı sep­tum in­te­rat­ri­a­le­’den kalp te­pe­si­ne doğ­ru uzan­dık­tan son­ra bu­ra­dan vent­ri­kü­lün diş du­va­riına at­lar bu­na tra­ba­cu­la sep­to­mar­gi­na­lis (mo­de­ra­tor bant) de­nir. Bu­nun için­de his huz­me­si de­ni­len kal­bin ile­tim sis­te­mi bu­lu­nur. Bu vent­ri­kül­de os­ti­um at­ri­o­vent­ri­cu­la­re dext­ra ile co­nus ar­te­ro­sus ara­sın­da ibik şek­lin­de bir kas ka­bar­tısı bu­lu­nur. Bu­na cris­ta sup­ra­vent­ri­cu­la­ris de­nir. Bu vent­ri­kül ile sağ at­ri­um ara­sın­da os­ti­um at­ri­o­vent­ri­cu­la­re dext­ra bu­lu­nur bu­ra­da val­va tri­cus­pi­da­lis (tri­cus­pid-üç­lü ka­pak) de­ni­len bir ka­pak bu­lu­nur. Bu vent­ri­kül­den a. pul­mo­na­li­s’in çıktığı yer­de bu­lu­nan de­li­ğe os­ti­um trun­ci pul­mo­na­le de­nir. Bu­ra­da val­vu­la se­mi­lu­na­ris de­ni­len ya­rımay şek­lin­de ka­pak­lar (Val­va trun­ci pul­mo­na­lis) bu­lu­nur. A.pul­mo­na­li­s’in baş­lan­gıç kıs­mın­da­ki ge­niş­li­ğe bul­bus a.pul­mo­na­lis de­nir. VENT­Rİ­CU­LUS Sİ­NİS­TER: Bu vent­ri­kül kal­bin mar­go op­tu­su­s’u ile fa­ci­es ster­no­cos­ta­li­s’i­nin az bir kis­mi­ni (1/3) ve fa­ci­es di­yaph­rag­ma­ti­ca­nın bü­yük bir kısmını mey­da­na ge­ti­rir. Apex cor­dis sol vent­ri­kül ta­ra­fin­dan mey­da­na ge­ti­ril­miş­tir. Bu vent­ri­kül ile sol at­ri­um ara­sın­da bu­lu­nan de­li­ğe os­ti­um at­ri­o­vent­ri­cu­la­re si­nist­ra de­nir bu­ra­da val­va bi­cus­pi­da­lis (mit­ral-iki­li ka­pak) de­ni­len bir ka­pak bu­lu­nur. Bu vent­ri­kül­den aor­tae'nın çıktığı yer­de bu­lu­nan de­li­ğe os­ti­um aor­tae de­nir. Bu­ra­da Üç ta­ne val­vu­la se­mi­lu­na­ris de­ni­len ya­ri­may şek­lin­de ka­pak (Val­va aor­tae) bu­lu­nur. Aor­ta­nİn baş­lan­giç kis­min­da­ki ge­niş­li­ğe bul­bus aor­tae de­nir Mit­ral ve tri­cus­pid ka­pa­ğın ya­pısı: Bu kapaklar atriumlar ile ventriküllerin arasında bulunurlar, kanın atriumdan ventriküle geçmesini atriuma geri dönmemesini sağlarlar. Bu kapakla­rın her bi­ri­ne cus­pis de­nir. Sağ atrium ile sağ ventricülün arasındaki delik olan ostium atrioventriculare dextra’da bulunan val­va tri­cus­pi­da­lis de­ni­len ka­pak üç ta­ne­dir. Bun­la­rın ön­de­ki­ne cus­pis an­te­ri­or, ar­ka­da­ki­ne cus­pis pos­te­ri­or, sep­tum in­ter­vent­ri­cu­la­re ta­ra­fın­da­ki­ne cus­pis sep­ta­lis de­nir. Sol atrium ile sol ventricülün arasındaki delik olan ostium atrioventriculare sinistra’da bulunan val­va bicus­pi­da­lis de­ni­len ka­pak iki ta­ne­dir. Bun­la­rın ön­de­ki­ne cus­pis an­te­ri­or, ar­ka­da­ki­ne cus­pis pos­te­ri­or de­nir. Cus­pis­ler yel­ken şek­lin­de­dir. Bun­lar ventricüldeki m. pa­pil­la­ris de­ni­len kas kabartılarına chor­da ten­di­nea de­ni­len ya­pılar­la bağ­lıdır­lar. Bu ka­pak­lar at­ri­um ta­ra­fın­dan ge­len ka­nın vent­ri­kü­le geç­me­si­ne mü­sa­de eder­ler fa­kat vent­ri­kül­de­ki ka­nın at­ri­u­ma dön­me­si­ne en­gel olur­lar. Bu işi ya­par­ken bun­la­rin ser­best yü­zey­le­ri bir­bir­le­ri­ne ya­pışır­lar. Chor­da ten­di­nea'ler ise m. pa­pil­la­ris­le­rin ka­sıl­ma­sı ile ka­pa­ğın ge­ri ters dön­me­si­ni en­gel­ler. Eğer m. pa­pil­la­ris'­ler ile chor­da ten­di­na­e­’ler ol­ma­say­dı bu ka­pak­lar vent­ri­kül­de sis­tol esa­na­sın­da ba­sıncın art­ma­si ile ser­best uç­la­ri at­ri­um ta­ra­fına dö­ner­ler­di. Ya­rı­may (se­mi­lu­nar) ka­pak­la­rin ya­pısı: Bu kapaklar ventriküldeki kanın atar damarlara geçmesini ve geri kalbe dönmemesini sağlar. Bunlar aortae ve a. pulmonalis’in kalpten çıktıkları ostium trun­ci pul­mo­na­le ve os­ti­um aor­tae'de bulunurlar. Her iki delikte üçer ta­ne­dir­ler. Kuş yu­va­sı şek­lin­de­ olan bu kapakların ser­best ke­nar­la­rı da­ma­rın lü­me­ni­ne doğ­rudur. Bu ser­best ke­nar­la­rın­daki ka­bar­tıya no­du­lus val­vu­la se­mi­lu­na­ris de­nir. Bu ka­pak­lar ser­best ke­nar­la­rının bir­bir­le­ri­ne değ­me­si ile ka­pa­nır. Vent­ri­kül­de sis­tol sıra­sın­da­ki ba­sıncın art­ma­si ile ser­best ke­nar­lar bir­bi­rin­den uzak­la­şir. Böy­le­ce kan vent­ri­kül­den aor­ta­ya ve­ya a. pul­mo­na­li­se ge­çer. Vent­ri­kü­lün di­as­to­lün­de ise ka­pa­ğın ser­best ke­nar­la­rı bir­bi­ri­ne de­ğe­rek de­li­ği ka­pa­tır böy­le­ce atar­da­ma­ra ge­çen kan ge­ri do­ne­mez. Bu ka­pak­la­rın iç kısmın­da­ki boş­lu­k (si­nus) gü­ver­cin yu­va­sına ben­ze­di­ği için si­nus val­sal­vae de­nir. Os­ti­um trun­ci pul­mo­na­le­de val­vu­la se­mi­lu­na­ris'lerin ön­de­ki­ne val­vu­la se­mi­lu­na­ris an­te­ri­or, sağ­da­ki­ne val­vu­la se­mi­lu­na­ris dext­ra, sol­da­ki­ne val­vu­la se­mi­lu­na­ris si­nist­ra de­nir. Os­ti­um aor­tae'deki valvula semilunaris'’erin ar­ka­da­ki­ne val­vu­la se­mi­lu­na­ris pos­te­ri­or, sağ­da­ki­ne val­vu­la se­mi­lu­na­ris dext­ra, sol­da­ki­ne val­vu­la se­mi­lu­na­ris si­nist­ra de­nir. NOT:Kal­pe bu­lu­nan ka­pak­la­rin hep­si kal­bin is­ke­le­ti­ne (tri­go­num fib­ro­sum) tu­tu­nur­lar. Bu is­ke­le­tin ka­pak­la­rin çev­re­sin­de yap­tığı hal­ka­ya anu­lus fib­ro­sus de­nir.

http://www.biyologlar.com/kalbin-icindeki-bosluklarin-yapisi

Neden terliyoruz?

Genel olarak sıcaklığının yükseldiği, dans, spor gibi fiziksel aktiviteler sırasında terleriz. Terleyerek vücudumuzun ısısını sabit tutmuş oluruz. Bunun için vücuda yayılmış en az 2 milyon ter bezi görev yapmaktadır. Fiziksel aktiviteler dışında da heyecan, korku, utanma ve sıkılma gibi pek çok olay, fizyolojik bir neden olmadığı halde bizi terletir. Vücut ısısı dış sıcaklıklar veya gerilim yüzünden artış gösterdiğinde kan dolaşımı hızlanır. Böylece, ter bezlerinin aktif hale geldiği vücudun üst kısmına doğru bir sıcaklık akımı başlar. Deri üzerinde oluşan ter bu durumda hemen buharlaşıp, deriyi soğutur. Bu sayede insan bir gün içinde kendini fazla yormadan iki litreye kadar su kaybeder. Terlemenin ikinci önemli fonksiyonu ise vücuttaki zehirli maddelerin dışarı atılmasıdır. Bu nedenle saunalara sık sık gidilmesi önerilir. Aynı koşullarda terleme oranı kişiden kişiye göre de değişebilir. Ortalama olarak bir insan günde 0.5 ile 1 litre arası terler. Terleme nedir? Terleme tümüyle istemimiz dışında gelişen, metabolizmamızın doğal bir fonksiyonudur. Üstelik vücudumuz için iki önemli işlevi vardır; cildi nemlendirip, vücut ısısını sabitler ve vücudun boşaltım sistemine katkıda bulunur. Ter aslında salgılandığında renksiz ve kokusuzdur. Fakat, bakteriler koltukaltı gibi sıcak ve nemli ortamlarda hızla çoğalarak bu salgının kötü kokmasına neden olur. [color=]Terlemeye karşı ne yapabiliriz[/color]? Ter kokusu için çok çeşitli çözümler var. En önemlisi temiz olmak. Bunun yanısıra da terlemenin yarattığı rahatsızlığı bir takım önlemler alarak en aza indirebilirsiniz; Rahat ve hava alan kıyafetler giyin. Özellikle pamuklu kıyafetleri tercih edin. Vücut temizliğine özen gösterin. Özellikle koltuk altında oluşan istenmeyen tüyleri alarak kötü kokuyu büyük ölçüde önleyebilirsiniz. Kahve, alkol ve yakıcı gıdalardan uzak durun. [color=]Ne kullanmalıyız[/color]? Ter kokusunu azaltmanın iki yolu var; Deodorant ve antiperspirantlarla gün boyu hoş kokmak çok zor değil. Ancak deodorant ve antiperspirant birbirinden ayrı şeylerdir. Bu iki ürün en çok terlemeye karşı verdikleri savaş konusunda birbirlerinden ayrılırlar; [color=]Deodorantlar[/color] Deodorantlar antibakteriyel bazı maddeler ve alkol içerirler. Bu sayede de bakteri üremesini denetim altına alarak, ter kokusunun oluşmasını önlerler. Terin ayrışması için bakteriler belirli enzimlere gerek duyar. Bu nedenle bazı deodorantlar bahsedilen bu tür enzimlerden içerir. Diğer yandan ise daha çok parfüm yağları içerdiklerinden dolayı da güzel koku yayarlar. Örneğin Fa dedodorantları hijyenik tazelik sunarlar ve bu sayede de bakteri artışını durdururlar. Bu sayede deri hem korunmuş hem de bakım görmüş olur. Deodorant kullanırken dikkkat etmeniz gereken en önemli nokta deodorantı temiz ve kuru koltuk altına uygulamanızdır. Terli bir koltuk altına deodorantı sıkmak, oluşmuş ter kokusu ile deodorantın karışımından oluşan daha ağır ve kötü bir kokuya neden olur. Ayrıca giysinin üzerine sıkmak da kokuyu engellemez. Bu arada sprey deodorantları, koltuk altına 15 cm’lik mesafeden kutuyu dik tutarak püskürtmeniz gerektiğini de sakın unutmayın. [color=]Anti-perspirantlar[/color] Antiperspirantlar, terlemeyi deodorantlara oranla daha fazla önlerler. Ter oranını ayarlayıp, çok fazla ter üretilmesine engel olurlar. Ter üretimini aliminyum tuzları sayesinde engelleyip, ter bezlerini sıkıştırırlar. İçerdikleri alüminyum kloride ve benzeri aktif maddeler ile vücuttaki terlemeyi engeller, nemi azaltır ve kokuları sayesinde de tazelik verirler. İçindeki maddelere göre etki süresi ve gücü değişim gösterir. Ancak antiperspirant ürünler daha çok pudralı formül içerdikleri için, genellikle koltuk altına uygulanmalıdır. Kıyafet üzerine sıkılan antiperspirant ürünlerin hiçbir etkisi yoktur. Koltuk altına sürülen antiperspirant ürün, ter bakterilerinin pudra tabakası dışına çıkmasını engeller ve böylece bakteriler kuruyup gider. Alkol içermediklerinden dolayı vücut için son derece hafiftirler. Ayrıca ferahlatıcı bir etki sağlarlar. Tercihiniz ister deodorant, ister antiperspirant olsun, her ikisi de ter kokusunu azaltmak ve günlük yaşamda karşılaşacağınız gergin veya stresli anları kolaylaştırmak için size yardımcı olacaktır.

http://www.biyologlar.com/neden-terliyoruz

ANTIDIÜRETIK HORMON/ADH

Örnek Cinsi : Plazma (EDTA) /dondurulmus (ek olarak serum) Örnek Özellikleri : Örnek dondurulmalidir. Örnek aç olarak alinmalidir. Örnek sogutulmus tüplere alinmali ve hemen sogutuculu santrifüjle plazma ayrilmalidir. Osmolalite ölçümü için 2-8 ºC´de serum örnegi de gönderilmelidir. Örnek Miktari : 3 ml (en az 2 ml) Metod : RIA Genel Bilgiler : Antidiüretik Hormon (ADH), arka hipofizden, plazma osmolalitesinin artmasi ve damar içi volumün azalmasi durumlarinda salgilanir. ADH salinimi, susuzluk ve sivi alimindan da etkilenir. Yükseldigi durumlar: Uygunsuz ADH salinimi sendromu, ektopik ADH salinimi, Nefrojenik Diabetes Insipitus, Guillain-Barré Sendromu, beyin tümörü, beyin vaskuler ve infeksiyöz hastaliklaridir. Azaldigi durumlar: Santral Diabetes Insipitus, psikojenik polidipsi ve nefrotik sendromdur. Özellikle polidipsi ve hiponatremisi olan hastalarin degerlendirilmesinde kullanilir. Sivi elektrolit bozukluklarinin degerlendirilmesinde, diabetes insipitus teshisinde de kullanilir.

http://www.biyologlar.com/antidiuretik-hormonadh

Plastik Ambalajların Sağlık Üzerine Etkileri

Plastik imhası bütün dünyada çözümlenmemiş bir sorundur. Ayrıca plastik materyalin yanması veya yakılması ile açığa CO, HCN, HCl, benzen, fosgen gibi zehirli gazlar çevreyi tehdit etmekte, yangınlarda duman ve zehirli gazlara bağlı ölümleri artırmaktadır. Bazı plastik türlerinin kullanım amaçları ve sağlık üzerine etkileri verilmiştir. Polivinil Klorid (PVC) Besin paketleri, plastik streç, kozmetik, bina kiremitleri, emzik, banyo perdesi, oyuncak, su boruları, su hortumu, şişme havuzlarda Kanser nedeni olabileceği, doğum defektleri, genetik değişiklikler, kronik bronşit, ülserler, cilt rahatsızlıkları, görme kaybı, KC disfonksiyonu Fitalatlar(DEHP, DINP ve diğer) Yumuşak vinil ürünler (Fitalat içeren vinil kıyafetler), ayakkabı, yazıcı mürekkebi, ağıza alınmayan oyuncaklar ve çocuk ürünleri, vinil döşeme ve kan tüpleri, streç film, cerrahi eldiven, solunum cihaz ve maskeleri, diğer tıbbı aletler Endokrin, gelişme ve üreme rahatsızlıkları, doğum defektleri, hormonal değişiklikler, kısırlık, immün sistem zayıflığı, endometriozis Polistiren Et, balık, yoğurt ve peynirin konulduğu fom kaplar, fom bardak ve sert tabaklar, disposable çatal-kaşık-bıçak, boya, servis tepsileri, oyuncaklar Göz, kulak ve burunda irritasyon, İşçilerde lenfatik ve hematopoetik kanser oranlarının yükseldiği belirlenmiştir. Polietilen (PET) Su ve soda şişeleri, içecek bardakları, besin saklama kapları ve streç film, plastik çantalar, mutfak araç gereçleri, oyuncaklar. İnsan karsinojeni olabilir Polyester Yatak, kıyafet, çocuk bezi, besin paketleri ,tamponlar, döşemecilik Göz ve solunum bölgesinde irritasyon, akut cilt lezyonları Akrilik Kıyafet, battaniye, halı, yapıştırıcı, kontak lens, takma diş, çocuk bezi, besin hazırlamada kullanılan kaplar, boyalar Solunumda güçlük, bulantı, kusma, ishal,baş ağrısı ve yorgunluk Tetrafluro etilen Teflon kaplarda, su tesisatı ve araçlarında Göz, boğaz ve burunda irritasyon ve solunumda güçlük Poliüretan Fom Yastık, döşeme Bronşit, öksürük, cilt ve gözde problemler, toluen diizosyanatın açığa çıkmasıyla şiddetli akciğer problemleri

http://www.biyologlar.com/plastik-ambalajlarin-saglik-uzerine-etkileri

 
3WTURK CMS v6.03WTURK CMS v6.0