Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 79 kayıt bulundu.

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Gürültü Kirliliği

Gürültü İnsanlar üzerinde olumsuz etki yapan ve hoşa gitmeyen seslere gürültü denir. Özellikle büyük kentlerimizde gürültü yoğunlukları oldukça yüksek seviyede olup, Dünya Sağlık Örgütü'nce belirlenen ölçülerin üzerindedir. Gürültü Kirliliği Kent gürültüsünü artıran sebeplerin başında trafiğin yoğun olması, sürücülerin yersiz ve zamansız klakson çalmaları ve belediye hudutları içerisinde bulunan endüstri bölgelerinden çıkan gürültüler gelmektedir. Meskenlerde ise televizyon ve müzik aletlerinden çıkan yüksek sesler, zamansız yapılan bakım ve onarımlar ile bazı işyerlerinden kaynaklanan gürültüler insanların işitme sağlığını ve algılamasını olumsuz yönde etkilemekte, fizyolojik ve psikolojik dengesini bozmakta, iş verimini azaltmaktadır. Gürültünün insan üzerindeki etkilerini 4'e ayırabiliriz: 1.Fiziksel Etkileri: Geçici veya sürekli işitme bozuklukları. 2.Fizyolojik Etkileri: Kan basıncının artması, dolaşım bozuklukları, solunumda hızlanma, kalp atışlarında yavaşlama, ani refleks. 3.Psikolojik Etkileri: Davranış bozuklukları, aşırı sinirlilik ve stres. 4.Performans Etkileri:İş veriminin düşmesi, konsantrasyon bozukluğu, hareketlerin yavaşlaması. Gürültüye maruz kalma süresi ve gürültünün şiddeti, insana vereceği zararı etkiler. Endüstri alanında yapılan araştırmalar göstermiştir ki; işyeri gürültüsü azaltıldığında işin zorluğu da azalmakta, verim yükselmekte ve iş kazaları azalmaktadır. Çalışma ve Sosyal Güvenlik Bakanlığı verilerine göre; meslek hastalıklarının %10'u, gürültü sonucu meydana gelen işitme kaybı olarak tespit edilmiştir. Meslek hastalıklarının pek çoğu tedavi edilebildiği halde, işitme kaybının tedavisi yapılamamaktadır. Bazı Gürültü Türlerinin Desibel Dereceleri ve Psikolojik Etkileri Gürültü Türü Db Derecesi Psikolojik Etkisi Uzay Roketleri 170 Kulak ağrısı, sinir hücrelerinin bozulması Canavar Düdükleri 150 Kulak ağrısı, sinir hücrelerinin bozulması Kulak dayanma sınırı 140 Kulak ağrısı, sinir hücrelerinin bozulması Makineli delici 120 Sinirsel ve psikolojik bozukluklar (III.Basamak) Motosiklet 110 Sinirsel ve psikolojik bozukluklar (III.Basamak) Kabare Müziği 100 Sinirsel ve psikolojik bozukluklar (III.Basamak) Metro gürültüsü 90 Psikolojik belirtiler (II.Basamak) Tehlikeli bölge 85 Psikolojik belirtiler (II.Basamak) Çalar Saat 80 Psikolojik belirtiler (II.Basamak) Telefon zili 70 Psikolojik belirtiler (II.Basamak) İnsan sesi 60 Psikolojik belirtiler (I.Basamak) Uyku gürültüsü 30 Psikolojik belirtiler (I.Basamak) Çeşitli Kullanım Alanlarının Kabul Edilebilir Üst Gürültü Seviyeleri Kullanım Alanı Ses basıncı düzeyi(gündüz) dBA Dinlenme Alanları Tiyatro Salonları 25 Konferans Salonları 30 Otel Yatak Odaları 30 Otel Restoranları 35 Sağlık Yapıları Hastaneler 35 Konutlar Yatak Odaları 35 Oturma Odaları 60 Servis Bölümleri (mutfak, banyo) 70 Eğitim Yapıları Derslikler, Laboratuvarlar 45 Spor Salonu, Yemekhaneler 60 Endüstri Yapıları Fabrikalar (küçük) 70 Fabrikalar (büyük) 80 Gürültüyü Azaltmak İçin Alınabilecek Tedbirler: Hava alanlarının, endüstri ve sanayi bölgelerinin yerleşim bölgelerinden uzak yerlerde kurulması, Motorlu taşıtların gereksiz korna çalmalarının önlenmesi, Kamuoyuna açık olan yerler ile yerleşim alanlarında elektronik olarak sesi yükseltilen müzik aletlerinin çevreyi rahatsız edecek seviyede olmasının önlenmesi, İşyerlerinde çalışanların maruz kalacağı gürültü seviyesinin en aza (Gürültü Kontrol Yönetmeliğinde belirtilen sınırlara) indirilmesi, Yerleşim yerlerinde ve binaların içinde gürültü rahatsızlığını önlemek için yeni inşa edilen yapılarda ses yalıtımı sağlanması, Radyo, televizyon ve müzik aletlerinin evlerde rahatsızlık verecek seviyede seslerinin yükseltilmemesi gerekmektedir. Kaynak: cevreorman.gov.tr

http://www.biyologlar.com/gurultu-kirliligi

Bitlerin Biyolojisi, Bulaşma Yolları ve Zararları

Bitlerin Biyolojisi: Her iki takımdaki bitler yumurtalarını konaklarının kıllarına veya tüylerine yapıştırırlar. Yalnız insan vücut biti yumurtalarını çoğunlukla çamaşırların kıvrımIarına yapıştırır. Yumurtadan ısıya bağlı olarak 1 -3 hafta içinde birinci dönem nymphler çıkar. Yine ısıya bağlı olarak 1 -3 hafta içinde ikinci ve üçüncü dönem nymph devresini tamamlayarak erişkin hale erişirler. Yani bitler gelişmelerinde yarım metamorfoz gösterirler. Bitler stational ve permanet parazit olduklarından konaklarından ayrı olarak uzun süre yaşayamazlar. Tavuk mallophagaları yumurtadan ergin hale gelinceye kadar gelişmelerini aynı konakta geçirirler. Konaklarından ayrılınca ölürler. Bunlarda yumurtadan ergin hale gelene kadar 32 ile 36 gün geçer. Kopulasyon erkek altta dişi üstte olur. Dişi döllenmiş yumurtalarını tüylere bırakır. Bu esnada tüylerin keçeleşmesine sebep olurlar. Yumurtadan 7 -8 günde I.dönem nymphler çıkar, 3 hafta sonra da gömlek değiştirmeler tamamlanarak ergin hale gelirler. Bitlerin Bulaşması: Bit enfestasyonlarında bulaşma yakın temasla olur. Sağlam hayvanlar enfeste olanlarla yakın bir şekilde bulunduğunda bulaşma olur. Bu nedenle kış aylarında hayvanların ahır ve ağıllarda yanyana ve sıkışık olarak bulundurulmaları sonucu sürü içinde parazitler hızla yayılırlar. Bunun için kış aylarında özellikle de kışı uzun süre devam eden yörelerde bit enfestastasyonları daha yaygındır. Bulaşmada bulaşık malzemelerin özellikle de koşum ve tımar takımları büyük rol oynarlar. Bitlerin Yaptığı Zararlar: Bitlerin en önemli etkileri konaklarında irritasyona ve huzursuzluğa neden olmalarıdır. Ayrıca Anoplura takımındaki bitler kan emerekte konaklarına zarar verirler. Yine bazı bit türleri enfeksiyon etkenlerinin bulaşmasında vektör veya arakonak olarak görev yaparlar. Konak üzerinde gezinen bitler konaklarını huzursuz ederek istirahat etmesine, yem yemesine engel olurlar. Buna bağlı olarakta ekonomik kayıplara yol açarlar. Özellikle mallophagalar kanatlılarda yumurta veriminin düşmesine ve gelişmede gerilemeye sebep olurlar. Ayrıca bitler sığırlarda süt üretiminin düşmesine ve danalarda kilo artışında azalmaya yani zayıfkalmasına yol açarlar. Ayrıca koyunlarda yünlere zarar verebilirler. Bitler dışkıları ile yapağıyı kirletip, mat ve görünümünün karışık bir hal almasını sağlarlar. Hayvanlar kaşınma sonucu yaralanmalara maruz kalabilirler ve yapağının dökülmesine neden olurlar. Koyunlarda bacak bitleri irritasyon ve kaşınma sonucu topaIlıklara yol açabilir. Danalarda ısırma ve kılları yutma sonucu midede kıl yumaklan (tricolit) oluşabilir. Hayvan ve insanlardaki bitlerin en önemli etkileri hastalık etkenlerini taşımalarıdır. Bitler insanlara Borrelia recurrentis (dönek ateş, humma-i raci) ve Rochalimaea quintana (siper ateşi) 'yı bulaştırır. İnsanlardaki vücut biti Pediculus humanus corporis Rickettsia prowazeki (bit tifüs etkeni)'ye Spirocheta (Borrelia)'lara, kemiricilerde bulunan Polyplax cinsindeki bitler Haemobartonella, Eperythrozoon ve Francisella türlerine, Haematopinus suis türü domuz humması ve domuz vebasına vektörlük yaparlar ve bu hastalıkları bulaştırırlar. Köpeklerin biti olan Trichodectes canis türü ise yine köpeklerin bir cestodu olan Dipylidium caninum'a arakonaklık yapar. Memeli hayvanlarda bitlere karşı mücadelede solüsyon yada toz halindeki insectisitler kullanılır. Genellikle solüsyon halinde kullanılır. Bu ilaçlar bir sünger ile sürülür yada pülverize edilir. Küçük hayvanlarda ise bu ilaçlar genellikle banyo tarzında kullanılır. Havaların soğuk olduğu zamanlarda ise toz şeklinde kullanılması tercih edilir. Kanatlı mallophagalarına karşı mücadele de ise solüsyon şeklindeki ilaçlar kanatlıların üzerine pülverize edilir. Ayrıca kümesteki çatlak ve oyuklarda ilaçlanmalıdır. Soğuk zamanlarda veya ilacın etkisinin uzun süre devam etmesi istendiğinde toz şeklindeki insectisitler kanatlıların tüyleri arasına serpilir. Bitlerin biyolojik gelişmeleri genel olarak iki hafta içerisinde tamamlandığı için ilaç uygulaması 14 gün aralıkla iki defa tekrarlanmalıdır. Bit enfestasyonlarının teşhisi ise konak üzerindeki bitlerin (ergin) veya kıllara yapışık olan fiçı şeklinde ve kapaklı yumurtaların görülmesiyle yapılır. Hemiptera Takımı (Heteroptera) : (Tahtakurulan, Tısböcekleri, Yarımkanatlılar). Bu takımdaki artropodların ağız organelleri sokmaya ve emmeye elverişlidir. Geçici parazittirler. Genellikle iki çift kanatlan vardır. Bu kanatlardan öndekiler daha sert olup, arkadakiler membranözdür. Bazı türlerde kanatlar iyice küçülmüştür. Gelişmelerinde yarım metamorfoz görülür yani hemimetabol böceklerdir. Büyük çoğunluğu bitkisel besin ile beslendiği halde bazıları da hayvansal besin ile beslenirler. Birçok tür tarımsal bitkilerin zararlıları olarak doğada yaşarlar. Birkaç türde hayvanlardan ve insanlardan kan emerek parazitlenirler. Bunlardan sağlık önemi olanlar Reduviidae ve Cimicidae ailelerinde toplanırlar.  

http://www.biyologlar.com/bitlerin-biyolojisi-bulasma-yollari-ve-zararlari

Zehirli Bitkiler

Tarihin ilk çağlarından günümüze kadar insanlar bitkilerden besinlerini sağlamış ve şifa aramışlardır ve beslenmelerinin yanında önemli hastalıklarını da şifalı bitkilerle tedavi edebilmişlerdir. Ancak her bitkinin düşüldüğü kadar yararlı olmadığı ya da yararlı etkilerinin yanında zararlı olabilen başka etkilerinin de olduğu görülmüştür. Günümüzde de devam eden her ottan şifa arama geleneği özellikle kırsal yörelerde birçok kaza zehirlenmelerinin ortaya çıkmasına neden olmaktadır. Merak sonucu özellikle çocukların bilmedikleri bir bitkinin yemiş, yaprak ya da başka bir kısmının tadına bakmaları ya da zararsız başka bitkilere benzetip toksik bitkiyi yemeleri sonucu sık sık zehirlenmeler olmaktadır. Birçok bitki çok toksik olmalarına karşın kontrollü kullanıldıklarında tedavide yararlı olabilmektedir. Örneğin Digitalis (yüksük otu) afyon (haşhaş), belladon alkaloidleri, veratrum alkaloidleri, vinca alkaloidleri, ipeka vb, gibi birçok bitkisel toksik Madde günümüzde doğal ya da yarı sentetik türevler şeklinde tedavide kullanılmaktadırlar. Ancak bilinçsiz bir şekilde supraterapötik (aşırı) dozlarda uygulandıklarında çok ağır zehirlenme tablolarının ortaya çıkmasına yol açabilirler. Rönesans döneminin ünlü Alman hekimlerinden Paracelsus (l493-1541)’un ‘yalnız miktar zehiri belirler’ (Dosis sola facit venonum) cümlesi bitkisel maddeler için de geçerlidir. Zehirli mantarlar başta olmak üzere diğer toksik bitkilerle akut zehirlenmelerin şiddetini yenilen miktar belirlenmektedir. Bitkilerle zehirlenmeler daha çok kabuklu yemiş ya da meyve kısmıyla olmaktadır. Örneğin Akdiken (Rhamni cathartica) yılan yastığı (Dracunculus vulgaris), güzel avrat otu (Atropa belladonna), hanımeli (Lonicera japonica), yaban yasemini (Solanum dulcamara), taflan (Prunus laurocerasus), ardıç (Juniperus sp.) ökse otu (Viscum album), çoban püskülü (İlex aquifoİiıım) porsuk ağacı (Taxus bacata), sarmaşık (Parthenocissus sp.), it üzümü (Solanum, nigrum) vb, gibi bitkiler kabuksuz ya da kabuklu meyvelerinde bulunan aktif toksik kısımlarıyla zehirlenmelere neden olmaktadırlar. Buna karşılık, birçok bitki diğer kısımlarıyla ya da tüm bitki olarak toksiktirler. Dikenleri ya da keskin kenarlı yapraklarıyla mekanik olarak. özellikle ciltte irritasyon şeklinde toksik etkilere yol açmaktadırlar. Günlük gıda olarak kullandığımız bazı sebzelerin az ya da çok toksik olabildiklerini unutmamak gerekir. Örneğin patatesin toprak üstündeki yeşil kısımları orta şiddette sindirim bozukluklarına neden olmaktadır. Buna karşın,birçok taze sebzenin kurutulmasıyla içerdikleri toksik maddeler aktivitesini kaybetmektedir. Bazı bitkiler aynı cinsten olmalarına karşın toksik etkileri büyük ölçüde değişebilmektedir. Örneğin Aconitum napellus tehlikeli bitkiler içinde en zehirli olanıdır. Buna karşın aynı cinsten Aconitum septentrionale Eskimolar tarafından sebze olarak yenmelerine karşın hiçbir zehirlenmeye neden olmamaktadır. Aynı şekilde Digitalis purpurea güçlü kardiyotoksik etkisi olmasına karşı aynı cinsten olan Digitalis jaune aynı oranda toksik değildir. Bu nedenle, gerek tedavide gerekse gıda olarak kullanılmalarında bitki cins ve türlerinin tanınması gerekir. Bitkilerin içerdikleri toksik maddelerin kaynağı çeşitlidir. Bazıları alkaloid (Protein), bazıları da glikozid ya da heterosid (Saponinli steroidik yapılı siyanojenli vb.) içerebildikleri gibi birçoğunda olduğu gibi karmaşık kompleks yapılı bir toksik madde de içerebilmektedirler. Zehirli bitkilerde bulunan bu toksik maddeler insan ve hayvanlarda iç organlarda meydana getirdikleri lezyonlar sonucu metabolizmayı bozabildikleri gibi deri ve mukozalarda irritasyonlar yaparak hafif ya da ağır bazı zehirlenme belirtilerinin ortaya çıkmasına neden olmaktadırlar. Ancak, farklı hayvan türlerinin ve insanın zehirli bitkilere verdikleri reaksiyon her zaman aynı şiddette ve özellikte olmayabilir. Örneğin. salyangozlar belladonla beslendikleri halde zehirlenmezler, halbuki bu gibi hayvanları yiyen insan ya da memeli hayvanlarda belladon zehirlenme belirtileri görülebilmektedir. 1. ZEHİRLİ BİTKİLERİN TOKSİK UNSURLARI Bitkisel zehirlerin toksik bileşenleri kimyasal yapılan yönünden önemli farklılıklar gösterir. Toksik unsurların çoğu organik karakterdedir. Kimi bitkiler ise, bazı mineral maddeleri, bünyelerinde toksik dozlarda akümüle edebilirler.Alkaloitler ve protidler azotlu organik; glikozitler, tanenler, laktonlar ve benzerleri azotsuz organik zehirlerdir. Selenyum, nitrat-nitrit gibi mineral zehirler ile kimyasal yapılarından çok, etki mekanizmaları daha iyi bilinen östrojenik etkili özdekler, antiVitaminik faktörler ve fotodinamik ajanlar zehirli bitkilerin başlıca toksik unsurlardır. 1.1. Alkaloidler Alkaloitler güçlü farmakolojik etki ve toksisiteye sahip olan, moleküler yapılarında azot bulunan alkali karakterde bitkisel kökenli özdeklerdir. Azot, çoğunlukla heterosiklik bir halkada ya da lateral zincirde bulunur. Genellikle katı ve renksizdirler. Baz halde iken suda çözünmezler; asitlerle oluşturdukları tuzlar suda çözünür. Alkaloitlerin tannat ve iyodür tuzları suda çözünmez. Bu özellik nedeniyle, alkaloit içeren bitkilerle zehirlenmelerde tanenli bileşikler ve iyodürler, sindirim kanalından alkoloit emilimini engellemek için kimyasal antidot olarak kullanılırlar. Alkaloitlerin etki mekanizmaları çok farklıdır Çoğu sentral sinir sistemi (opium alkaloitleri) ve otonom sinir sistemi (antikolinerjik solanase alkaloit ve alfa adrenolitik ergot alkaloitleri) aracılığıyla etkir. Kolşisin ve benzerleri emeto katartik; pirolizidin alkaloitleri de hepatotoksik olarak etkirler. 1.2. Glikozitler (Heterositler) Hidroliz (enzimatik ya da asit ortamda) sonucu bir ya da birkaç molekül şeker (glikoz) ile karbonhidrat olmayan ve aglikoz (genin) olarak adlandırılan ve toksik etkiden sorumlu olan bir madde veren özdeklerdir. Glikoz ve aglikoz arasındaki bağın karakterine göre 0 - glikozitler (Oksijen atomu eterik bağ) ve S - glikozitler (kükürt atomu) olmak üzere iki gruba ayrılırlar. 1.2.1. O-Glikozitler 1.2.1.1. Siyanogenetik Glikozitler Aglikozları, çoğunlukla nitrilli bir alkoldür. Enzimatik hidroliz sonucu şeker molekülleri, siyanhidrik asit (HCN) ve bir keton ya da aromatik aldehit oluşur. Toksiditeden sorumlu olan hidroliz ürünü siyanhidrik asittir. Farklı ailelere ait çoğu yem bitkisi ve yabani türlerde bulunan siyanogenetik glikozitler özellikle ruminantlarda selüler respirasyondan sorumlu enzim sistemini inhibe ederek, akut formda ve yüksek mortaliteyle seyreden zehirlenmeye neden olurlar. Hidroliz, aynı bitkide bulunan özel enzimler ( lineaceae; keten tohumu, emulsin; acı badem) tarafından katalize edildiği gibi, ruminantlarda retikülo-rumen mikroflorası tarafından salgılanan enzimlerle de gerçekleştirilebilir. Vejetasyonun ilk dönemlerinde yüksek olan glikozit düzeyi vejetasyon ilerledikçe azalabilmektedir. Kuraklık, donma ve çiğnenme gibi bitkilerin normal büyüme hızını bozan faktörler HCN düzeyinde artışa neden olur. Silaj glikozitlerin hidrolizini hızlandırır. Böylelikle serbest hale geçen HCN silajın havalandırılmasıyla giderilebilir. Ancak, bu işlem sırasında çalışanların kendileri için önlem almaları gerekir. - Bitki hormonu herbisitler uygulandıkları yörelerde yetişen bitkilerde siyanogenetik glikozit düzeyinin artışına (fitohormonların dolaylı toksisitesi) neden olurlar. HCN düzeyinde fosfatlı gübreler azalmaya azotlu gübreler ve bitki parazitleri ise artışa neden olur. Siyanogenetik glikozit taşıyan bitkilerin toksisitesi değinilen koşullara göre değişkenlik gösteren HCN düzeyi ve glikozit yanında tüketilen bitki miktarı ve tüketim süreci, HCN’in sindirim kanalında liberasyon hızı ile emilim ve dokularda detoksikasyon düzeyine bağımlıdır. Bu nedenle, toksik dozu belirlemek zordur. Siyanogenetik glikozitlere karşı en duyarlı hayvanlar ruminantlardır. Koyun ve keçi muhtemelen enzimatik farklılık nedeniyle sığıra oranla daha dayanıklıdırlar. Tek midelilerde, midenin asit ortamında glikozidi hidrolize eden enzim, kısmen de olsa yıkımlanabilir. HCN, karaciğerde spesifik bir enzim (rodanaz) tarafından tiyosiyanata dönüştürülerek metabolize edilir. Ancak, özellikle sığırda başka metabolik olayların olduğu da düşünülmektedir. Serbest HCN’in ruminantlarda letal dozu 2-2.3 mg/kg dolayındadır. Bu miktar HCN’i glikozit formunda (4-4.5 mg/kg) kısa sürede tüketen ruminantlarda ağır zehirlenme tablosu şekillenir. Otlakta bir hayvan saatte 4 mg/kg düzeyde glikozide saatlerce tolore edebilir. Koyun, günde (gün boyu) 15-20 mg/kg HCN´i detoksike edebilir. Genelde 100 gramında 20 mg (200 ppm) HCN içeren bitkiler, hayvanlarda zehirlenmeye neden olur. Sindirim ya da solunum yoluyla emilen HCN ve siyanürler, selüler respirasyon (hücre solunumu) enzim sistemini (sitokrom a3) bloke ederek histotoksik anoksiye neden olurlar. 1.2.1.2. Steroidik Glikozitler kalp yetmezliğinin etkin ilaçları olan ve çok küçük dozlarda kardiyotonik olarak kullanılan kalp glikozitlerini (dijitalikler) kapsayan bu grup moleküllerin aglikozu, asteroit (siklopentano-perhidrofenantren) halka sistemi ve bunun 17 no’lu karbonuna bağlanan beşgen ya da altıgen bir lakton halkasından ibarettir. Majör glikozit kaynağı olan bitkilerden yüksük otu türleri (Digitalis cariensis, D. davisiana, D. ferruginea D. grandiflora, D. lanata, D. trojana D. viridiflora) ile ada soğanı (Urginea maritima) yanında glikozit kaynağı olarak kullanılmayan, ancak toksik unsur olarak kardiyotonik etkili glikozit içeren inci çiçeği (Convallaria majalis) adonis türleri (A. aestivalis -keklikgözü, A. flammea - kandamlası), zakkum (Nerium oleander) ve kimi Helleborus türleri (Bohça otu, H. orientalis, H. vesicarius) de Anadolu ve Trakya’da yaygın olarak yetişmektedir. Bununla birlikte anılan bu bitkilerle evcil hayvanlarda zehirlenme insidensi azdır.Kimi kaynaklarda saponinler (saponositler) de bu grupta gösterilmektedir. Saponinlerin aglikozu (sapogenin) steroidik ya da triterpenik (oleanan çekirdekli) yapıdadır. Sistemik toksiditeleri az olan saponinler yem bitkilerinde de yaygın olarak bulunurlar. Yaklaşık 80 aileye ait 500’ü aşkın bitki türünden Saponin izole edilmiştir. Ruminantlarda meteorizasyonun temel nedenleri arasındadırlar; kanatlılarda ise, gelişme ve yumurta verimini inhibe ederler. Antrasenik glikozitlerin aglikozları ise, antrasen halkalı bir polifenoldür. Işkın, kara akçaağaç gibi bitkilerde bulunan bu glikozitler yüksek dozda şiddetli purgasyona neden olurlar. 1.2.2. S - Glikozitler (Glusinolatlar) Özellikle Cruciferae (turpgiller) ailesine ait bitkilerin yaprak gövde kök ve özellikle tohumlarında bulunan ve genellikle uçucu olan, S - glikozitler, enzimatik (myrosinase) hidroliz sonucu glikoz ve organik aglikoz oluşturur. Organik aglikoz bir izotiyosiyanat (senevol) bir tiyosiyanat ya da bir organik nitril ve kükürttür. Glusinolatların hidroliz ürünlerinden izotiyosiyanatlar, deri ve mukozalarda irkiltici etkiye (gastro-intestinal, respiratuvar ve renal lejyonlar) sahiptirler. Ayrıca, guatrojenik (proguatrin) etkileriyle tiroid bozukluğuna neden olurlar. Tiyosiyanatlar ise, tiroid bezinde iyot düzeyini düşürürler; böylelikle iyot uygulamasıyla sağaltılabilen bozuklukları oluştururlar. Brassica türü bitkilerde (kolza, lahana, ot lahanası, şalgam) bulunan 5-glikozitler hidrolizle stabil olmayan izotiyosiyanat’a, bu da kristalizasyonla goitrine dönüşür. S-glikozitlerin hidroliz ürünü izotiyosiyanatlar irritan ve antitroit; goitrin ise guatrojen etkilidir. Bu nedenle s-glikozit içeren bitkilerle zehirlenme klinik yönden farklı seyreder 1. Akut zehirlenme izotiyosiyanatların irritan etkisinden kaynaklanan bu sendrom sindirim, solunum bozuklukları ile renal lezyonlar ve nefritle karakterizedir (hardal, turp). 2. Tiroit bozuklukları Bitkilerin yeşil kısımlarında bulunan glusinolatların hidroliz ürünü inorganik izotiyosiyanatlar, dönüşümlü kompetisyonla, tiroitte iyot akümülasyonunu önleyerek iyot yönünden fakir rasyonla beslenen- hayvanlarda guatr şekillenmesine neden olurlar. Bu sendrom iyotla sağaltılabilir. Proguatrinin son ürünü olan goitrin ise tiroksin formasyonunu inhibe ederek iyot kullanımıyla sağaltılamayan tiroit bozukluğuna neden olur. Glusinolatların hidroliz ürünleri plasenta engelini geçer ve sütte de atılırlar. Bu nedenle, gebeliği döneminde glusinolatlı bitkilerle beslenen hayvanların yavrularında (keçi) ve süt emenlerde de tiroit bozuklukları görülür. Glusinolat içeren kimi bitkiler, özellikle kolza ve Lahana etyolojisi tam bilinmeyen, anemi ve hemoglobinüriyle karakterize olan zehirlenmeye de neden olabilirler. 1.3. Saponinler (Saponositler) Kalıcı köpük oluşturmaları ve acı lezzetleriyle karakterize olan saponinler, azotsuz nötr ya da hafif asit karakterli, glikozit benzeri maddelerdir. Aglikon ya da sapogeninleri steroit veya oleanan çekirdekli triterpenik yapıdadır. Soğukkanlı (poiklioterm) hayvanlar için çok toksiktirler. Yerel olarak irkiltici etki oluşturur; eritrositlerin hemolizine neden olurlar. Bitkiler aleminde oldukça yaygındırlar; 500’ü aşkın bitki türünden saponin izole edilmiştir. Kaba yonca (Medicago sativa), karamuk (Agrostemma githago), sabun otu (Saponaria officinalis), gazel boynuzu (Lotus corniculatus), tırfıl (Trifolium repens, T. fragiferum), at kestanesi (Aesculus hippocastanum), bohçaotu (Helleborus orientalis), yılan yastığı (Arum maculatum) yüksek düzeyde saponin içeren bitkilerdir. Saponinlerin toksisitesi kaynak bitkiye, yapılarına ve alınan miktara bağımlıdır. Acı lezzette oluşları tüketimi sınırlandırabilir. Tanen ve kolesterol bağlanmayla saponinleri inaktive edebilirler. Toksisite saponinden çok hidroliz ürünü sapogeninle ilgilidir. Bu nedenle, saponinlerin hidrolizini gerçekleştirebilen sindirim kanalı mikroflorası da (Butryrivibrio) toksisiteyi etkiler. Saponin içeren yem bitkileri ruminantlarda meteorizasyonun başlıca nedenleridir. Rumen içeriğinin yüzeysel tansiyonunu azaltarak stabil köpük oluştururlar. Böylelikle, fermantasyon gazları geğirmeyle (erukasyon) vücut dışına çıkarılamaz. Meteorizasyon oluşumunda kuşkusuz diğer faktörlerin, özellikle sitoplazmik proteinlerin (kaba yoncada % 4) de rolü vardır. Öte yandan, saponin ve sitoplazmik proteinler yanında, bunlarla inaktif kompleks oluşturabilen taneni de içeren bitkilerin (gazel boynuzu) meteorizasyon oluşturma insidensi düşüktür. Kimi saponinler, sindirim kanalından salgılanan enzimleri, özellikle kimotripsini inhibe ederler. Bu özellikteki saponinler sindirim kanalında irritasyona neden olurlar. Saponinler kanatlılarda gelişme ve yumurta verimini inhibe ederler piliç rasyonlarına % 5 oranında katılan kaba yonca unu, içerdiği saponinler nedeniyle, piliçlerde büyümeyi geciktirir. Yumurta tavuğu yemlerine katılan kaba yonca unu (% 10) yumurta verimini düşürür. Saponinlerin bu etkisi, rasyona kolesterol ilavesiyle giderilebilir. Saponinli bitkilerle zehirlenmeye karşı profilaktik önlemler alınmalıdır Bitkilerin pek çoğunda kendilerini savunmaları için bir miktar zehir bulunur. Sonuçta onlar bitki ve bir tehlike anında kaçacak yerleri yok. Bazılarını şirin görüntüsüne aldanmayın çünkü öldürücü olabilirler. Hint baklası Hint yağını bilen ya da kullanan herkes yağı oluşturan maddelerden birinin yani hint baklasındaki bir bileşenin kişiyi birkaç dakikada öldürecek zehre sahip olduğunu tahmin etmez. Meyankökü Bu meyankökü bitkisinin şirin bir görüntüsü var ancak aslında dünyanın en zehirli maddelerinden birisi eğer çiğnenir ya da yutulursa hemen ardından kişinin ölümü gerçekleşir. Boğanotu Canlı mor rengine aldanıp sakın zararsız olduğunu düşünmeyin zira bu bitki en ölümcül bitkilerden bir tanesi. Bushman zehri Afrika’da yaşayan ve oklarının ucuna taktıkları zehirli bitkilerle avlanan bushman insanları bu zehirli bitkiyi özellikle avlanmak için kullanırlar. Çan çiçeği Bu çiçeği salladığınızda çıkan güzel ses sizi aldatmasın. Bir keresinde tadını merak ettiği için bu bitkiden çay yapan 18 yaşındaki bir genç zehirlenerek komaya girdi. Su baldıranı Zehirli baldıran Sokrates tarafından içildiği için çok bilinen bir zehirli bitkidir. Ama su baldıranı da en az onun kadar zehirlidir. İngiliz porsuğu Dünyadaki en zehirli ağaçlardan birisidir. Muhteşem görüntüsü böylesi bir zehri taşıyabileceğini göstermese de panzehiri olmayan ve çabuk etki yapan bir zehirli bitkidir. Loğusa otu Bu bitki daha çok inekler ve koyunlar için tehlikelidir çünkü beyaz çiçeğine ve yemyeşil gövdesine aldanan hayvanlar bitkiyi yerler ve ne yazık ki bu hayvanların ürünlerini tüketen insanlar da zehirlenirler. Kargabüken özü Kloepatra emrindeki hizmetkârlarına bu bitkiyle intihar etmelerini söylemiştir. Çünkü kendisi de intihar etmek istediğinden zehrin etkili olup olmadığını görmek istemiştir. Menispermum bitkisi Bu bitki kuşlar için zehirli olmamasına rağmen insanlar yediğinde ölümcül bir zehre dönüşüyor. Nergis Zehirli bileşenleri olsa da eski zamanlardan beri bu bitki bir şifa bitkisi olarak da kullanılır. Hatta bazı kültürlerde kelliğe iyi geldiği de düşünülür. Zakkum Zakkumun bir yaprağı bile bir kişiyi öldürmeye yeter. Ama ölümler daha çok atlarda ve besi hayvanlarında görülür. Funda Çiçeklerin en güzeli olan funda bitkilerin de en zehirlilerinden birisidir. Yabani acı kiraz Bu kirazlar küçük ama asla yenmezler. Zehir öncelikle solunum sistemini etkiler ve ardından zehirlenme gerçekleşir. Köpeküzümü Bu bitki baştan aşağıya kara zehir taşır. Bunun bir parçasını bile yiyen insanlar görecekler ki öncelikle sesleri kısılacak çünkü bu bitki öncelikle solunumu etkiler

http://www.biyologlar.com/zehirli-bitkiler

Mikrobiyal Biyoteknoloji Bölüm 1

Biyoteknoloji Nedir ? - Biyolojik araç, sistem ve süreçlerin üretim ve hizmet endüstrilerine uygulanması - Endüstriyel uygulamalarda başarılı olabilmek için Biyokimya, Mikrobiyoloji ve Mühendislik bilimlerinin ortak kullanımı ile mikroorganizmaların, doku ve hücre kültürlerinin kapasitelerinin artırılması - Çeşitli yararlı maddelerin üretilmesi için biyolojik özellikleri kullanan bir teknoloji olması - Biyolojik araçlar tarafından üretilen materyallerin daha iyi ürün ve hizmet vermek üzere bilim ve mühendislik ilkelerinin uygulanması - Biyoteknoloji sadece teknik ve süreçlerin toplamına verilen bir addır. - Biyoteknoloji canlı organizmaları ve onların yapıtaşlarını tarım, gıda ve diğer endüstrilerde kullanan bir tekniktir. - Biyoteknoloji konu olarak “multidisipliner” yani bağımsız pek çok bilim dalını birarada barındırır. Eğer biyoteknoloji çalışması yapanları bir liste altında toplamak gerekirse Biyokimyacılar, Mikrobiyologlar,Genetikçiler, Moleküler biyologlar, Hücre biyologları, Botanikçiler, Ziraat mühendisleri, Virologlar, Analitik kimyacılar, Biyokimya mühendisleri, Kimya mühendisleri, Kontrol mühendisleri, Elektronik mühendisleri ve Bilgisayar mühendisleri bu liste içerisinde sayılabilir. BİYOTEKNOLOJİDE MİKROBİYAL SİSTEMLER 1-)Bakteriler ve Cyanobacteria (mavi-yeşil bakteriler) A-) Bakteriler: Toprak, hava, su, hayvan ve bitki yüzeylerinde bulunurlar. Bazıları hastalık etkeni olmakla beraber çoğu zararsız ve organik atıkların geri dönüşümü sırasındaki yararlı etkileri ve birçok faydalı ürünü üretmeleri nedeniyle biyoteknolojide oldukça önemli bir yere sahiptirler. Aynı genusa ait bazı türler endüstriyel açıdan faydalı özelliklere sahipken bazıları insanlar için zararlıdır. Örneğin Bacillus türleri toprakta yaşarlar ve aerop veya fakültatif anaerop metabolizmaya sahiptirler. § B. subtilis endüstride kullanılan amilaz enziminin kaynağıdır. § B. thruringiensis ise birçok bitki zararlısı böceğin patojenidir. Ve bu nedenle böceklere dirençli bitkilerin oluşturulmasında genetik mühendisliğinin önemli çalışma konularından birini oluşturur. § B.athracis ise insanlara patojen etkiye sahiptir ve şarbon hastalığının nedenidir. Prokaryotik biyolojik sistemler: § E.coli dışındaki diğer prokaryotlar § Acremonium chrysogenum § Bacillus brevis § Basillus subtilis, Basillus thuringiensis § Corynebacterium glutamicum § Erwinia herbicola § Peudomonas spp § Rhizobium spp § Streptomyces spp § Trichoderma resei § Xanthomonas campestris § Zymomonas mobilis Bu organizmalar iki grup altında toplanabilir. 1-) Özel bir fonksiyona sahip bir gen için konak olma. Ör: termofillerden izole edilen ve PCR teknolojisinde kullanılan ısıya dirençli DNA polimeraz enziminin E.coli’de klonlanması ve üretimin gerçekleşmesi. 2-)Belirli işleri çok daha etkin yapabilmek için genetik mühendisliği ile geliştirilme. Ör: Endüstriyel açıdan önemli amino asitlerin çok fazla üretilmesi için Corynebacterium glutamicum’un çeşitli türlerinin geliştirilmesi. 2-) Cyanobacteria (mavi-yeşil bakteriler): Mavi-yeşil bakteriler prokaryotlar sınıfına dahil olup fotosentez özelliğine sahiptir. Örnek olarak Anabaena cylindris, Nostok muskorum, Spirulina platensis türleri verilebilir. İlk kez varlıkları fosillerde saptanmıştır. Dünya oluşumunda belki de ilk canlı organizmalardır. Tatlı ve tuzlu suların yüzeylerinde bulunurlar. Karada ise ışığın ve nemin olduğu çamur ve kaya, tahta veya bazı canlı organizmaların yüzeylerinde bulunabilirler. Koyu yeşilimsi-mavi pigmentlerinden dolayı bu isimle adlandırılırlar. Sadece birkaç organizma atmosferik azotu amonyağa redüklemek yoluyla a.a. ve proteinleri üretmek üzere organik asitlere dönüştürülebilir. Azot fikse edebilen bakteriler gibi mavi-yeşil bakterilerde böyle bir yeteneğe sahiptir. Hücreler nitrogenaz enzimi ile bu reaksiyonu gerçekleştirirler. Bu enzim oksijen ile inaktive olur. Bu nedenle azot fikse eden hücrelerin içindeki koşullar anaerobik olmalıdır. Anabaena gibi bazı mavi-yeşil bakterler azot fiksasyonundan sorumlu heterosit adı verilen özel kalın duvarlı hücrelere sahiptirler Mavi-yeşil bakterilerin biyoteknolojik önemi: Mavi-yeşil bakteriler fotosentez yetenekleri, yüksek protein içerikleri ve basit besiyerlerinde hızlı çoğalmaları nedeniyle besin kaynağı olarak kullanım alanına sahiptir. Tek hücre proteini (THP) elde edilmesinde en çok denenen günümüzde insan ve hayvanların beslenmesinde geniş uygulama alanı olan mavi-yeşil bakteriler, diğer mikroorganizmalardan farklı olarak yeterli miktarda karbondioksit, belirli derecede aydınlatma, geniş üretim ortamı gibi özel koşullara gereksinim gösterirler. Sprilulina platensis Afrika ve güney Amerika’da ki sığ göllerde doğal olarak bulunur. Binlerce yıldan beri yöredeki insanlar tarafından toplanan bu algler kurutulduktan sonra besin kaynağı olarak çoğunlukla sos şeklinde veya çorba içinde kullanılmaktadır. Nostoc ise Peru ve Güney doğu Asya ‘da besin maddesi olarak kullanılan bir diğer siyanobakteridir. Gübre olarak kullanılmaları: Mavi-yeşil bakterilerin azot fiksasyon özelliği saptandıktan sonra kurutulmuş Tolypthrix tenuis pirinç tarlasına serpildiğinde azot fiksasyonunda ve verimde artış gözlenmiştir. M-Y bakterilerin Hindistan da pirinç tarlalarında gübre olarak kullanımıyla toprağın havalandırılması sonucunda su geçişi ve toprağın sıcaklığının daha homojen olması sağlanmaktadır. Azot fiksasyonu için M-Y bakterilerin Rhizobium’ların yerini almasının bazı avantajları vardır. Mavi-Yeşil bakteriler havadaki azotu amonyuma redüklerken fotosentez metabolik yolunu kullanırlar. Yani bir bitki ile simbiyotik bir yaşam ve enerji kaynağı olarak herhangi bir organik molekül ilavesi gerekmez. Tarımda azot fikse eden mavi-yeşil bakteriler organik gübre olarak kullanılabilir. Çin, Hindistan, Filipinler gibi pirinç tüketimi fazla olan bölgelerde büyük oranlarda ürerler. Pirincin büyüme sezonunun başında eğer suya siyanobakterlerin başlangıç kültürleri ekilirse pirinç veriminde %15-20 oranında artış olduğu bildirilmektedir. Mavi-Yeşil bakteriler antibiyotiklerin ve diğer biyolojik olarak aktif moleküllerin ticari boyutlardaki üretimi için büyük bir potansiyel oluştururlar. Çünkü Mavi-Yeşil bakteriler heterotrofturlar. Bu özellikleri de onların fermentasyon koşullarında üretilmelerine olanak sağlar. Henüz araştırma aşamasında olan Anacystis nidulans ile yapılan rekombinant DNA teknolojisi çalışmalarıyla nadir bileşiklerin üretiminde kullanımları amaçlanmaktadır. Araştırmalar Mavi-Yeşil bakterilerin güneş enerjisi dönüşüm sisteminde yer alması için devam etmektedir. Anabaena cylindrica heterocystleri vejatatif hücrelerde fotosentez yoluyla oluşturdukları oksijeni dışarı verirler. Azot yokluğunda ise heterositlerde nitrogenaz enzimi katalizörlüğünde elektronlar H+ iyonuna transfer edilerek Hidrojen gazı açığa çıkarırlar. Oksijen ve Hidrojen her ikisi de endüstride ihtiyaç duyulan gazlardır. Sonuç olarak; Fermentör koşullarında üreyebilirler, uzun süreli fizyolojik stabiliteye, basit besin gereksinimine, köpük oluşturmama özelliğine sahiptirler. Diğer alglerden farklı olarak azot fiksasyonu yapabilme farklılığına sahiptirler. Optimum sıcaklık 35oC dir. Karanlıkta veya gün ışığında heterotrofik olarak ürerler. 2-) MAYALAR: Tek hücreli tomurcuklanma veya bölünerek eşeysiz çoğalan ökaryotik mikroorganizmalardır. Mayaların tanımlanması maya biyoteknolojisi için oldukça önemlidir. Örneğin endüstriyel süreçlerde yabani ve kültüre edilmiş mayalar arasındaki farkı gösterebilmek esastır. Bira üretiminde üründe istenmeyen aroma oluşumuna neden olan yabani ırkın karışması veya ekmek mayası üretiminde şeker transport yeteneği daha fazla olan Candida utilis mayasının karışması ekmek mayası üretiminde kullanılan Saccharomyces cerevisiae mayasının üremesini engelleyecektir. Maya genuslarının ayrımında fizyolojik testlerle birlikte morfolojik testler de kullanılır. Günümüzde 700 civarında maya türü tanımlanmıştır. Fakat bu sayı maya çeşitliliğinde sadece çok küçük bir bölümü temsil etmektedir. Tanımlanmamış maya genus ve tür sayısı çok daha fazladır. Maya biyologları için maya çeşitliliğini tanımlamak kadar diğer önemli bir nokta özellikle biyoteknolojik öneme sahip türleri belirleyip saklamak ve koruyabilmektir. Moleküler biyoloji tekniklerinin yaklaşımıyla türler daha hızlı ve kolay bir şekilde karakterize edilebilmektedir. Günümüzde 6 mayanın genom projesi tamamlanmış ve işlevsel genomik çalışmaları ile genlerin işlevlerinin belirlenmesine devam edilmektedir. Maya hücreleri klorofil içermez ve zorunlu olarak kemoorganotrofiktirler. Üremek için organik karbona gerek duyarlar. Karbon metabolizmaları çok çeşitlidir. Örneğin basit şekerleri, polioller, organik ve yağ asitleri alifatik alkoller, hidrokarbonlar ve çeşitli heterosiklik ve polimerik bileşikleri karbon kaynağı olarak kullanabilirler. Bu özellikleri nedeniyle farklı habitatlar için özelleşmiş türler kolaylıkla saptanabilir. Mayalar toprak, hava ve sudan izole edilebilirler. Bazı mayalar ekstrem ortamlarda örneğin ozmofilik mayalar şeker bakımından zengin ortamlarda yaşayabilirler. Bu tür mayalar genellikle gıda bozucu olarak bilinir. Bunun dışında fırsatçı patojen olarak bazı maya türleride örneğin Candida albicans pek çok infeksiyondan sorumludur. Mayalar insanlar için; ekonomik, sosyal ve sağlık açısından oldukça önemli en eski evcilleştirilmiş organizmalardır. Alkollü içeçeklerin üretiminde, ekmek yapımında hamurun kabarması için binlerce yıl öncesinden beri kullanılmaktadırlar. Gerçekte bira yapımı belkide dünyanın ilk biyoteknolojisini temsil etmektedir. Günümüzde mayalar geleneksel gıda fermentasyonunun dışında çok çeşitli alanlarda da kullanılmaktadır. Özellikle genetik mühendisliğiyle geliştirilmiş mayalar hastalıkların önlenmesinde ve tedavisinde kullanılan pek çok farmasötik ajanın üretilmesinde yaygın bir şekilde kullanılmaktadır. Biyoteknolojik Öneme Sahip Bazı Mayalar - Axula adeninivorans: Nitrat ve aminleri asimile eder, 45 C üzerinde üreyebilir, pek çok hidrolaz salgılayabilir. - Candida türleri: C.albicans hidrokarbonlardan aminopenisillanik asit ve B6 vitamin üretimi, C.boidinii NAD, FAD metil ketonlar ve sitrik asit üretimi, C.famata riboflavin, C.maltosa biyokütle proteini için yağ asiti ve alkan kullanımı, C.tropicalis triptofan, C.pelliculosa selülozik materyalden biyokütle proteini, C.utilis, pek çok ürün eldesi, ksilozda üreyebilme, klonlama teknolojisinde kullanım, C.shehatae ksiloz fermentasyonu - Hansenula polymorpha: Heterolog gen anlatımı için kullanılabilen metilotrofik maya. - Kluyveromyces marxianus ve K.lactis: Laktoz ve polyfruktosanı fermente eder. Doğal kakao fermentayonu. Pek çok enzim için kaynak olabilir, klonlama teknolojisinde kullanılabilir. - Pachysolen tannophilus: Bitki lignoselülozik hidrolizatlarından kaynaklı pentoz şekerlerinin fermentasyonu. - Phaffia rhodozyma ve Pichia türleri: Gıda boyası olan astaksantin pigment üretimi. P.guilliermondii riboflavin sentezi ve hidrokarbonlardan biomas protein eldesi. P.methanolica etanol biosensörü olarak kullanılan alkol oksidaz üretimi.P.pastoris metanolden biomas protein eldesi, heterolog gen anlatımı ve insan terapötik proteinlerini üretebilen metilotrofik maya. - Rhodosporidium toruloides: Fenilketanüri tedavisinde kullanılan PAL enzim kaynağı. - Saccharomyces türleri: S.cerevisiae klasik gıda fermentasyonu. Bira, şarap, ekmek, rom, cin yapımı. Yakıt, alkol, gliserol, invertaz ve hayvan besini kaynağı.Rekombinant DNA teknolojisiyle sayısız protein üretimi. - Saccharomycopsis türleri: S.fibuligera amilolitik maya - Schizosaccharomyce pombe: Geleneksel Afrika alkollü bira yapımı. Şarapların deasidifikasyonu. Yüksek etanol ozmotik tolerans, biyokütle protein eldesi, heterolog gen anlatımı ve mutagenez testlerinde kullanım - Schwanniomyces türleri: S.castellii ve S.occidentalis amilolitik mayalar. Nişastanın ve inülinin etanole çevrimi ve heterolog gen anlatımında kullanılabilirler. - Trichosporon cutaneum: Fenol varlığına ilişkin bisensor olarak kullanılır. - Yarrowia lipolytica: Lipid ve hidrokarbonlardan biomas protein eldesi. Sitrik asit ve hücredışı enzim üretimi. Ø Zygosaccharomyces rouxii: Japon soya sosu karakteristik aromasını vermede kullanılan halofilik ve ozmotolerant maya türü. Alkollü içeçeklerin üretiminde mayalar Endüstriyel mayaların çoğu, özellikle de fermente içeçeklerin üretiminde kullanılanlar, genetik bakımından karmaşıktırlar ve stabil bir haploidi göstermezler. Örneğin bira yapımında kullanılan Sacchoromyces türleri poliploid veya anöpliod (diploid-heptaploid) ırklardır. Bu nedenle geliştirilmelerinde eşeyli üreme özelliklerinden yararlanılamaz. Bunun yerine klasik bira tadını veren organoleptik özellikleri iyi olan karakteristik fermentasyon yapan ırklardan doğal seçimle en iyi olan şeçilir. Bunun dışında endüstriyel mayaların geliştirilmesinde şüphesiz genetik mühendisliğinin önemi oldukça fazladır. Rekombinant DNA teknolojisi ile geliştirilen rekombinant mayalar tarafından üretilen biyolojik olarak aktif rekombinant proteinlerin veriminin arttırılmasında iki önemli yaklaşım vardır. Bunlar; moleküler genetik tekniklerin kullanımı ve fermentasyon teknolojisidir. Gıda tüzüğüne uygun olarak ekmek mayasının (glikoz baskısından kaçınmak ve hamurlaşmayı önlemek için) maltoz kullanım genleri değiştirilmiştir. Bira mayasında ise Maltodekstrinleri kısmi olarak parçalayan STA2 genini içeren plazmid bulunmaktadır. Genetik mühendisliği ile geliştirilmiş mayaların lignoselülozik (odunsu) atıkları substrat olarak kullanarak etanol üretmeleri yönünde yoğun çalışmalar yapılmaktadır. Etanol dışında mayaların ürettiği diğer biyoalkoller; gliserol ( alkollü içecekler için aroma katıcı, nitrogliserin türevli patlatıcılar yapımında), ksilitol (şeker yerine diyabetik ürünlerin yapımında), sorbitol, arabinitol (düşük şeker içerikli gıdaların yapımında; ilaçların kaplanmasında yenilebilir kaplama maddesi olarak) Etanolün yenilenebilir kaynaklardan mayalar kullanarak üretilmesi tüm dünyanın ilgisini çeken konulardan biridir. İlk üretim 1930’larda başlamıştır fakat petrol fiyatları düşürülünce teknoloji bırakılmıştır. 1970’deki petrol krizi ile birlikte yeniden gündeme gelmiştir. Brezilya, şeker kamışını ve melası substrat olarak kullanarak ürettiği petrolü yakıt amaçlı kullanmaktadır. Brezilya’da otomobillerin çoğu alkol veya alkol+benzin karışımı (gasohol) ile çalışmaktadır. KÜFLER Küfler hifli mantarlardır. Birçok organizma ve gıda maddesi ( ekmek, meyve, sebze.. vb) üzerinde oluşturdukları pamuk görüntüsündeki doku nedeniyle mayalardan çok daha önce keşfedilmişlerdir. Küfler, endüstride birçok ürünün eldesinde, atıklardan değerli ürünlerin oluşturulmasında kullanılan farklılaşma göstermeyen ve klorofil içermeyen mikroorganizmalardır. Doğada ve toprakta yaygın olarak bulunan küflerden endüstriyel mikrobiyoloji alanında önem taşıyanlar mikroskobik olanlardır. Küflerin üredikleri ortama proteaz, lipaz, karbonanhidrazlar gibi litik enzimleri salgılamaları ve küflerin ürettikleri çeşitli metabolitlerin birçok alanda kullanılabilir olması bu organizmaların endüstrideki önemini oldukça artırmaktadır. Ayrıca insan, hayvan ve bitkiler için patojen olan türleride bulunmaktadır. Küflerin Biyolojisi: Bir küf, protoplazma iplikleri veya uzantıları olan hiflerden ve sporlardan oluşur. Hiflerin yaptığı yumağı misel adı verilir. Hifler, bölmeli hifler ve bölmesiz hifler olarak ikiye ayrılır. Bölmeli hifler bölmeler ile hücrelere ayrılırlar ve her hücrede bir veya iki hücre çekirdeği bulunur. • Bölmesiz hiflere sönositik hif adı da verilir. • Bölme içermezler ve çok çekirdeklidirler. • Üreme hifleri genellikle koloninin yüzeyinde bulunan ve üreyen hücreleri veya sporları taşıyan hiflerdir. • Hifsel üreme ortamın besin koşulları ile yakından ilgilidir. • Beslenme hifleri ise koloniye besin sağlayan hiflerdir. Beslenme hifleri sayesinde hücrenin bulunduğu noktadan uzakta olan substratlara ulaşmaları sağlanır. • Küflerin hücre duvarı glukan, kitosan ve kitin gibi farklı glukoz polimerlerinden yapılabilir.

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-1

BİYOLOJİK ARITMA SİSTEMLERİ

Aktif çamur:Aktif çamur sistemi dengeleme, havalandırma, çöktürme ve dezenfeksiyon ünitelerinden oluşmaktadır. Aktif çamur tekniğine göre çalışan sistemler uygulamada en çok kullanılan sistemlerdir. Aktif çamur kolloidal çözünmüş maddelerin mikroorganizmalar ile çökebilir biyolojik floklara dönüştürüldüğü prosestir ve bu proseste havalandırma havuzu içindeki mikroorganizmaların askıda tutulması esastır. Biyolojik arıtma ünitesi havalandırma sonucu, organik maddelerin askıda büyüyen mikroorganizmalar tarafından parçalanması prensibiyle çalışır. Askıda büyüyen mikroorganizmalar suyun içerisinde bulunan organik maddeleri parçalayarak H2O ve CO2’e çevirirler. Mikroorganizmaların organik maddeleri oksitlemesi sonucu organik maddeler ya okside olur, yada biyokütleye dönüşür. Havalandırma havuzunda gereken arıtma veriminin sağlanması amacıyla havuz içerisinde faaliyet gösteren mikroorganizma sayısını (MLSS) sabit bir değerde tutmak gerekmektedir. Bu nedenle biyokütlenin bir kısmı çöktürme kademesinde fazla çamur olarak sistemden atılırken diğer kısmı havalandırma bölümüne geri devrettirilir. Aktif çamur sistemlerinde bakteriler en önemli mikroorganizmalardır. Çünkü organik maddelerin parçalanmasından sorumludurlar. Aktif çamur sistemlerinin dizaynında çeşitli parametreler kullanılır. Bu parametrelerden bazıları çamur yükü, çamur yaşı ve bekletme süresidir. Biyolojik arıtma, atıksu içerisindeki çözünmüş organik maddelerin bakteriyolojik faaliyetlerle ayrıştırılarak giderilmesi işlemidir. Bakterilerin arıtma işlemini gerçekleştirebilmeleri için pH, sıcaklık, çözünmüş oksijen, toksik maddeler gibi parametrelerin kontrol altında tutulması gerekmektedir. Uygulamaları; aktif çamur sistemleri, biyofilm sistemleri, stabilizasyon havuzları, havalandırmalı lagünler ve damlatmalı filtrelerdir Biyofilm:Damlatmalı filtre sistemlerinde üst kısımdan verilen atık sular damlatmalı filtre içine yerleştirilen dolgu malzemelerinin arasından aşağı doğru akar. Dolgu malzemeleri üzerinde mikroorganizmalar oluşur. Damlatmalı filtre tabanından verilen hava mikroorganizmaların yaşamı için gereklidir. Mikroorganizmalar da atık sudaki organik maddeleri tüketirler. Filtre malzemesi taş dolgu yada plastik dolgu malzemesidir. Biodisk sistemleri seri olarak yerleştirilmiş dairesel disklerden oluşur. Disklerin malzemesi polystrene veya polyvinyl kloriddir. Diskler atık suya batmıştır ve yavaş olarak dönerler. Mikroorganizmalar disklerin yüzeyine tutunup tabaka oluştururlar. Disklerin dönmesi biyokütleyi atık sudaki organik maddelerle temas ettirilir. Diskler sonra da atmosferdeki oksijenle temas eder. Disklerin dönmesi ile aerobik şartlar sağlanır. Stabilizasyon Havuzları:Stabilizasyon havuzlarının işletilmesi basittir ve fazla mekanik ekipmana ihtiyaç göstermezler. Bu sistemler aerobik, anaerobik ve fakültatif stabilizasyon havuzları olarak sınıflandırılır. Havalandırmalı lagünler:Diğer Bu sistemler havalandırma için doğal alanları kullanır. Gerekli oksijen difüzör veya yüzeysel havalandırıcılar vasıtasıyla temin edilir.

http://www.biyologlar.com/biyolojik-aritma-sistemleri

GDO’ LARIN POTANSİYEL FAYDALARI

Genetiği değiştirilmiş organizmaları destekleyen özel endüstri üyeleri, gıda teknolojisi uzmanları, gıda işleyicileri, distribitörler, perakendeciler, gıda uzmanları, bilim insanları, bazı tüketiciler, Amerika’lı çiftçiler, düzenleme ajansları, dünyadaki fakir ve aç insanları savunanlar ile yeşil devrim taraftarları; genetik mühendisliği teknolojisinin son yıllarda çok kolaylaştırıldığını ve bu teknolojiyle, dünya populasyonunun giderek büyümesi sonucu gerekli olan gıda ve ilacın büyük boyutta üretilebileceğini düşünmektedirler. İlave olarak, bu teknolojinin, hızlı büyüyen, hastalık, hava ve böceklere dirençli, herbisitlere dayanıklı bitkisel ürünlerin yanı sıra daha lezzetli, daha güvenli, daha verimli, daha besleyici, uzun ömürlü ve sağlık açısından daha faydalı bitkisel ve hayvansal ürünlerin, endüstriyel ve farmakolojik üretime katkı sağlayacak organizmaların elde edilmesi gibi potansiyel faydalara sahip olacağını düşünmektedirler . Genetiği değiştirilmiş organizmaları destekleyenler, insanlığa faydalarının sınırsız olduğuna ve GDO’ların dünyanın önemli tarım, sağlık ve ekolojik problemlerini potansiyel olarak çözebileceğine inanmaktadırlar. Ayrıca GDO karşıtı düşüncelerin sağlık, çevre ve gelişmekte olan ülkelerdeki çiftçilerin geçimini sağlaması gibi gerçekçi olmayan korkulardan ziyade mantıksız korkular ve ticareti koruma siyasetinden kaynaklandığını düşünmektedirler. GDO teknolojisinin faydalarını şimdiden söylemenin çok erken olmasıyla birlikte potansiyel risklerinin varsayım olduğunu düşünen GDO destekleyicilerine göre genetiği değiştirilmiş organizmaların potansiyel faydaları aşağıda tartışılmıştır: 1. Besin Kalitesinin ve Sağlığa Yönelik Faydalarının Artırılması Gen aktarım teknolojisi ile protein kalitesi – örneğin proteinin metiyonin ve lisin içeriği- artırılarak ürünlerin esansiyel amino asit içeriklerinde artış sağlanabilmektedir . Böylece tavuklarda üremeyi olumsuz etkileyen lisin azlığı dolayısıyla genellikle tahıllarda çok az bulunan lisin miktarının artırılması, et, süt ve yün üretimi kükürt içeren amino asitlere (metiyonin ve sistein) bağlı olan çiflik hayvanlarının besinlerinin bu amino asitlerle zenginleştirilmesi mümkün olabilmektedir . Aynı zamanda çeşitli gıdalardaki protein kullanımının genişlemesiyle organoleptik kaliteyi de içeren fonksiyonel özelliklerin artırılması mümkündür. Örneğin; lipoksigenazların çıkarılması ile soyadaki fasulyemsi tadın uzaklaştırılması amaçlanmaktadır. Beslenmede iyi bir protein kaynağı olan balığın daha kısa periyotta daha iyi büyümesi sağlanarak ucuz olarak üretimi ve böylece su kültürü için uygun şartların gerçekleştirilebilmesi amaçlanmaktadır . GDO’ların karbonhidrat içerikleri artırılarak ketçap, domates sosu vb. yapmak için gıda işlemede kullanılacak domateslere yoğun içerik kazandırılabilmektedir. Monsanto Şirketi tarafından üretilen nişasta içeriği artırılmış Russert Burbank patatesleri ile kızartma işlemi sırasında daha az yağ çeken, pişirme süresi ve maliyeti azaltılmış patates üretimi sağlanmıştır . Ürünlerin besin kalitesi dışında sağlığa yönelik faydalarını artırmak için de GDO üretimi yapılmaktadır. Gen aktarım teknolojisi ile bazı kanserler, kalp hastalığı, körlük (vitamin A durumunda) gelişiminin sebebi ve zararlı bir kimyasal reaksiyon olan biyolojik oksidasyonu yavaşlatan veya engelleyen bileşikler olarak doğal olarak bulunan antioksidan vitaminlerin (karotenoidler, flavonoidler, vitamin A, C ve E) ve minerallerin ürünlerdeki düzeyi artırılmaktadır. Gıda ürünlerindeki antioksidan düzeyinin artırılması toplumda var olan belirli kanser ve diğer kronik hastalıkların oranının azalmasını sağlayabilir. Önemli bir antioksidan olan likopen, genetiği değiştirilmiş domates, domates ürünleri ve biberde bol miktarda bulunmaktadır . Doymuş yağ oranı yüksek olan yağlar, vücutta kolesterol üretiminden sorumludur. Doymuş yağ oranı düşük ve doymamış yağ oranı daha yüksek olan yağlar, sağlık açısından önemli olup kızartma ve diğer işlemlerde kullanılan yüksek sıcaklığa dayanıklıdır. Bu amaçla yaygın olarak kullanılan kanola, soya, ayçiçeği ve yer fıstığı gibi bitkisel sıvı yağlardaki doymamış yağ asidi düzeyini daha da artırmak için bu bitkilerin genetiği değiştirilebilmektedir. Besin değeri artırılmış ürünler yetersiz beslenmeyi azaltmaya yardım edecektir ve gelişmekte olan ülkelerin temel besin ihtiyaçlarını karşılamayı sağlayacaktır. Kassava, birçok üçüncü dünya ülkesinde 500 milyonun üzerinde insanın beslenmesinde önemli bir besin kaynağıdır. Son yıllarda Afrika kassava mozaik virüsüne ve genel mozaik virüslerine dirençli ve yüksek besin değerine sahip kassava üretmek için bu bitkilerin genetiği değiştirilmiştir . 2.Meyve ve Sebzelerin Raf Ömrü ve Organoleptik Kalitelerinin Artırılması Calgene Şirketi’nin ürettiği Flavr Savr domatesleri ABD Gıda ve İlaç İdaresi (US FDA) tarafından onaylanan ilk genetiği değiştirilmiş üründür. Bu domatesler olgunlaşma, yumuşama ve çürüme işlemleri geciktirilerek uzun bir raf ömrüne sahip olan bitkilerdir . Olgunlaşma ve yumuşama, büyük ölçüde, meyve hücreleri tarafından etilen üretimine bağlıdır . Etilen üretiminde rol oynayan genlerin kontrol edilmesi veya farklı bir strateji olarak hücre duvarını bozan bir enzim olan poligalakturonaz enziminin baskılanarak pektin yıkımının ertelenmesi ile meyve ve sebzelerdeki olgunlaşma geciktirilebilmektedir . Böylece koku, lezzet, yumuşaklık/sertlik derecesi gibi yüksek kalitede organoleptik özellikler ve daha uzun raf ömrü sağlanabilir. Olgunlaşmanın yavaşlatılması veya geciktirilmesi, aynı zamanda ahududu, çilek, ananas ve şeftali gibi ürünlerde de yapılabilir.Ürünlerin raf ömürlerinin uzatılması üretici ve satıcı için nakliyat, depolama ve işlenmeyi kolaylaştırmakla birlikte tüketici içinde ürünü uzun süre bozulmadan kullanma imkânı sağlayacaktır. Ürünlerin nakliye ve işlenmeye dayanıklı olması, soğutma sistemlerinin güvensiz, pahalı ve nakliye ağının yetersiz olduğu gelişmekte olan ülkelerdeki çiftçiler ve tüketiciler için de faydalı olacaktır. 3.Bitkisel Ürün Veriminin Artırılması 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun besin gereksiniminin karşılanması önemli bir sorun olarak düşünülmektedir. Ekilebilir alanları artırmak mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek tatlı su kaynakları da hızla azalmaktadır. Artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişletilmesi değil, birim alandan alınan ürün veriminin artırılması gerekmektedir. Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının daartık sınırlarına gelindiği düşünüldüğünde, bitki ve hayvan ıslah çalışmalarında gen aktarım teknolojisinin kullanılması kaçınılmaz görünmektedir .Genetiği değiştirilmiş bitkiler, ürün verimini artırmak için ve böcekler, yabani otlar, herbisitler, virüsler, tuzluluk, pH, sıcaklık, don, kuraklık ve hava gibi çeşitli çevresel faktörlere dayanıklı bitkiler üreterek ürün kaybını azaltmak için kullanılabilirler. Verimin artması ve ürün kaybının azalması ile global ürün üretiminin artışı sağlanabilir. Bir yıllık olan önemli tahıl ürünlerinin genetiği değiştirilerek çok yıllık ürünlere çevrilebilir. Böylece toprağın daha az işlem görmesi (çift sürme vb.) ile erozyonun azalması ve yıl boyunca ürün veriminin alınması sağlanabilir.Ayrıca genetiği değiştirilmiş bitkilerin kuraklığa direnci, tarımda su kullanımını azaltarak suyun yetersiz olduğu bazı tropikal ve kurak bölgelerde bu bitkilerin yetiştirilmesini uygun duruma getirebilir. Ürünlerin diğer çevresel streslere (örneğin; uç sınırdaki pH, tuz, böcekler, sıcaklık vb.) dayanıklılığını artırmak dünyada şu anda ürün üretimi için uygun olmayan ekim alanlarının yeniden kullanılmasına yardım eder. Böylece yağmur ormanları gibi telafi edilemeyecek doğal kaynaklar üzerindeki baskılar azalır .Çevresel streslere dayanıklılık özellikleri çok sayıda genin karmaşık etkileşimi sonucu ortaya çıkıyor olabilir. Bu nedenle bitkilere bu özelliklerin kazandırılması zaman alabilir. 4.Yenilebilir Aşı ve İlaç Üretimi GDO’lar hem gıda hem de ilaç olarak etki edecek ürünler halinde tüketilebilirler. Örneğin brokoli, antioksidan içeriğini zenginleştirmek için; çay, flavonoidlerle zenginleştirilmek için; patates, muz ve domates, aşı depolamak için genetik olarak değiştirilebilir. Özellikle olgunlaştığı zaman çiğ olarak tüketilen muz gibi bazı tropikal ürünler; hepatit, kuduz, dizanteri, kolera ve ishal ile gelişmekte olan ülkelerde yaygın olan diğer bağırsak enfeksiyonlarına karşı kullanılabilen proteinleri üretmek için genetik olarak değiştirilebilmektedir . Yenilebilir ürünlerdeki bu aşılar, bu ürünlerin yetiştirildiği, düşük maliyetle dağıldığı ve özellikle aşı üretimi için kaynağın ve tıbbi alt yapının yetersiz olduğu gelişmekte olan ülkelerde çocuklar için faydalı olacaktır. Bazı biyoteknoloji şirketleri tütün gibi bazı bitkileri ilaç sentezi için değiştirebilmektedir. Tütün, aynı zamanda insan ve çiftlik hayvanlarında kullanılan antikorları üretmek için değiştirilmiştir. İnsan antikoru içeren bitkiler, yaygın olan hastalıklara karşı aşı için pahalı olmayan ve genetik materyal sağlayacak tohumlarında da bu materyali taşıyacaklardır. Ayrıca bu bitkisel aşılar uzun bir raf ömrüne ve stabil bir depolama kapasitesine sahip olacaklardır. Bazı insan genleri, deneysel biyoilaçları büyük miktarlarda üretmek için bitki kromozomuna ilave edilmişlerdir. Tütün ve patates, insan serum albumini üretmek için; kolza tohum yağı ve Arabidopsis, insan nörotransmitteri, lö-enkefalin ve monoklonal antikorlar üretmek için değiştirilmektedir. Son zamanlarda diyabet hastalarının insülini iğne yoluyla alması yerine ağız yoluyla alabilmesi için bitkilerde insülin üretimi amaçlanmıştır. İnsan Hastalıklarının Tedavisinde ve Organ Naklinde Kullanılması Genetiği değiştirilmiş hayvanlar, meme bezindeki sütte fibrinojen gibi rekombinant proteinleri büyük miktarda üretmek için kullanılabilmektedir. Transgenik proteinler, HIV veya deli dana’nın potansiyel kaynağı olarak korkulan verici insan kanından elde edilen kan proteinlerine alternatif olarak kullanılabilirler. Klonlanmış hayvanlar çoğu insan hastalıkları için model olduğundan dolayı bilim insanları halen tedavisi olmayan kistik fibrozis gibi insan hastalıklarını etkili bir şekilde çalışabilmektedir. Genetiği değiştirilmiş hayvanlar, hemofili hastaları tarafından kullanılan pıhtılaşma faktörü veya diyabet hastaları tarafından kullanılan insülin gibi farmakolojik proteinleri üretmek için kullanılabilir . Keçi, koyun ve domuz gibi bazı çiftlik hayvanları klonlanabilir ve insana nakil için uygun olan kalp, karaciğer, böbrek ve fetal hücreler vb. geliştirmek için kullanılabilirler.Doku reddinin önemli bir nedeni insan hücrelerinde bulunmayan fakat domuz hücrelerinin yüzeyinde bulunan α-l,3-galaktoz karbonhidratının immün reaksiyonudur. α -1,3-galaktozil transferaz geninin “knock out” teknolojisi kullanılarak uzaklaştırılması hücre yüzeylerinde bu karbonhidratı taşımayan hayvanların üretilmesini sağlayabilir. Böylece hastalara organ nakli için uzun bekleme periyotları ortadan kaldırılabilir. 6. Bio-fabrikalar ve Endüstriyel Kullanım İçin Ürün Ham Materyali Olarak Kullanımı Genetiği değiştirilmiş organizmalar ilaç endüstrisinde kullanılan vitaminler, monoklonal antikorlar, aşılar, antikanser bileşikleri, antioksidanlar, plastikler, fiberler, polyesterler, afyonlu ilaçlar/uyku ilaçları, interferon, insan kan proteinleri ve karotenoid üretmek için kullanılmaktadır. GDO’lar aynı zamanda gıda endüstrisinde kullanılan protein, enzim, stabilizatör, kıvam artırıcı, emülgatör, tatlandırıcı, koruyucu, renklendirici ve tat verici gibi gıda karışımları üretmek için de kullanılabilirler. Gıda işleme ve patojen belirlemede kullanılan mikroorganizmalar gen aktarımı ile değiştirilebilir. Örneğin, peynir üretiminde kullanılan çimosin, rennin gibi gıda enzimleri mikroorganizmalara aktarılarak daha kolay ve daha ucuz olarak üretilebilmektedir. Gen aktarım teknolojisiile bu gıda, ilaç ve biyoteknoloji endüstrisinde kullanılan maddelerin üretimi geleneksel işlemlere göre çok daha avantajlıdır. Çünkü yeni teknoloji ile arzu edilen bir ürün, fazla miktarda, çok daha ucuz, nakil ve depolama işlemleri daha uygun olarak üretilebilir. 7. Çevresel Faydaları Tarımsal amaçlı bitkilerin çoğunun genetiği değiştirilerek virüsler, böcekler, yabani otlar, herbisitler, hastalık ve çeşitli çevresel etkenlere karşı direnç kazandırılabilirler. Örneğin, patates, soya ve mısır gibi bitkisel ürünlerin çoğuna Bacillus thuringiensis’in (Bt) insektisidal (böcek öldürücü) potansiyele sahip bir geni aktarılarak böceklere karşı dirençli Bt bitkiler elde edilmiştir. Bt proteini mısır kurdu, patates böceği gibi böceklere karşı toksik olmakla beraber insan için toksik değildir ve mide asidi ile parçalanmaktadır. Bitkilere bu protein üretme özelliğinin kazandırılması kimyasal insektisit ihtiyacını ortadan kaldırır ve böylece bu insektisitlerin hedefi olmayan arı, predatör gibi böceklerin zarar görmesi de engellenir. İnsektisidal Bt proteininin bitkinin dokularında üretilmesi ile bitkinin bütün kısımlarına ulaşmayan kimyasal insektisitlere göre daha etkili bir böcek kontrolü sağlanabilir.İnsektisit direncinin yanında bazı bitkiler herbisit uygulamalarına dayanıklı hale getirilmek için genetik olarak değiştirilmektedir. Herbisit dayanıklılığın artması bitkilerin büyüdüğü toprağın daha az işlem görmesini veya hiç işlem görmemesini sağlayarak toprak erozyonunun ve su kaybının azalmasına ve toprak mikrofauna ve mikrofloralarının korunmasına yardım edecektir. Domates, tütün, kabak ve mısır gibi ürünler virüs direnci kazandırılmak için genetik olarak değiştirilmektedir ya da başka bir ifadeyle bu ürünler virüs ve viral hastalıklara karşı aşılanmaktadır. Ayrıca insan gıda zinciri ve çevrede yer alan kanserojen fungusitlere gereksinimi azaltmak için fungus dirençli ürünlerin üretilmesi amaçlanmıştır [2]Günümüzde bitkilerin topraktan daha fazla azotu doğrudan kendilerinin alabilmesi için genetiği değiştirilmiş bitki üretimi artmıştır. Bu da, buharlaşarak veya nehir ağızlarına sürüklenip su kirliğine neden olarak çevreyi tehdit eden kimyasal gübre gereksinimini azaltacağından çevre için yararlı bir uygulama olacaktır.Genetiği değiştirilmiş bitkiler ya da mikroorganizmalar, çevredeki toksik atıkların uzaklaştırılmasını sağladıkları için bioremediasyon için de kullanılabilmektedirler. Bazı araştırmacılar endüstri, tarım ve petrol üretim atıklarının temizlenmesi için hardal yeşili, kaba yonca, nehir kamışları, kavak ağaçları ve özel yabani otların kullanımının ümit verici olduğunu rapor etmişlerdir. Bazı durumlarda bitkiler, çevreye bulaşan zehirleri parçalayıp zararsız hale getirebilmektedirler   

http://www.biyologlar.com/gdo-larin-potansiyel-faydalari

Evrim ve Termodinamiğin İkinci Yasası

Evrim kuramına karşı çıkanlar, inançlarını daha bilimsel bir ambalajla sunmak için termodinamiğin ikinci yasasını çarpıtıyorlar.Termodinamiğin ikinci yasası, doğada hangi süreçlerin olup olamayacağını öngörür. Birinci yasanın (enerjinin korunumu yasası) izin verdiği tüm işlemlerde sadece bazı enerji dönüşüm türleri mümkün olabilmektedir. Aşağıdaki süreç örnekleri, termodinamiğin birinci yasası ile uyumludur; fakat ikinci yasayla kontrol edilen bir düzende olmalıdır: (1) Sıcaklığı farklı iki cisim termal olarak temas ettirilirse, sıcak cisimden soğuk cisme doğru ısı akışı olur, fakat soğuktan sıcağa doğru asla ısı akışı olmaz.. (2) Tuz, suda kendiliğinden çözülür, fakat tuzlu sudan tuzu elde etmek için bazı dış işlemler gerekir. (3) Bir lastik top yere düştüğü zaman bir dizi sıçramadan sonra sonuçta durur; olayı tersine çevirmek mümkün değildir. (4) Bir sarkacın salınım genliği, destek noktasındaki sürtünme ve hava molekülleri ile çarpışmadan dolayı zamanlan azalır ve sonuçta durur. Burada sarkacın başlangıç mekanik enerjisi ısı enerjisinie çevrilir. Burada enerjinin ters dönüşümü mümkün değildir. Bu örnekler, tek yönlü süreçlerdir yani tersinmez süreçlerdir. Bu olayların hiçbiri, kendiliğinden ters yönde oluşmaz. Eğer oluşsaydı termodinamiğin ikinci kanununa aykırı olurdu (Dip not:Daha kesin olarak, zaman tersinmezliği anlamında olaylar beklenmedik sırada oluşur. Bu görüşe göre, olayların bir yönde olma olasılığı diğer yönde olma olasılğından çok çok fazladır.)Termodinamik işlemlerin tek yönlü karakteri, zaman için bir yön oluşturur. Ters yönde gösterilen komik hareketlerle dolu bir filmde olaylar, zaman tersinirli bir dünyadan anlamsız bir sıralamada oluşur. Çok çeşitli şekilde ifade edilebilen termodinamiğin ikinci kanunun, pekçok önemli uygulamalara sahiptir. Mühendislik açısından, belki de en önemli uygulama, bir ısı makinasının veriminin sınırlı olmasıdır. Basit ifadeyle, ikinci kanın ısıyı tümüyle, sürekli olarak başka bir enerjiye çeviren bir makinanın yapılmasının mümkün olmadığını söyler. Entropi kavramının asıl yeri termodinamiktir. Fakat önemi istatistik mekanik alanında daha da artmıştır. Çünkü bu inceleme yöntemi, entropi kavramını başka bir yolla açıklar.İstatistiksel mekanikte bir maddenin davranışı, madde içerisindeki atom ve moleküllerin istatistiksel davranışları ile tanımlanır. Bu şekildek incelemenin ana sonuçlarından biri: Yalıtılmış sistemler düzensizliğe eğlimlidir ve entropileri bu düzensizliğin bir ölçüsüdür. Örneğin odanızdaki havadda bulunan gaz moleklüllerini düşününüz. Eğer bütün moleküller askerler gibi düzenli hareket etselerdi, bu çok düzenli bir hal olurdu. Bu pek olağan olmayan bir haldir. Eğer molekülleri görebilseydik onların rastgele, her doğrultuda hareket ettiklerini, birleri ile çarpıştıklarını, çarpışma sırasında hızlarının değiştiğini, bazılarının daha yavaş bazılarını daha hızlı gittiğini izleyecektik. Bu, hayli düzensiz ve hata en muhtemel olan haldir. Bütün fiziksel olaylar, en olası duruma ulaşma eğilimindedi ve böyle düzensiz bir durum, düzensizliğin daima arttığı bir durumdur. Entropi, düzensizlik ölçüsü olduğu için aşağıdaki gibi anlatılabilir: Bütün doğal olaylarda evrenin entropisi artar. Bu, termodinamiğin ikinci yasasının başka bir biçimde anlatımıdır. Peki bu yasayla evrimin ilişkisi nedir? İkinci yasa ısıyı yokuş yukarı itmeyi yani soğuk cisimden sıcak cisme ısı aktarma olayında olduğu gibi, olasılık dışı bırakmaz ya da düzesizlikten düzenli duruma geçeşe de izin vermektedir. Böyle bir işlem için dışardan enerji gerektiği, örneğin sürekli elektrik verilmesi gibi açıkça ifade etmektedir. Bunun kanıtı çok uzağımızda değildir. Örneğin, mutfaktaki buzdolabı elektrikle çalışarak, daha soğuk olan içerden dışarıya ısı atmaktadır.(Serway, Fizik, 22. Bölüm,587-588) Evrim ve Entropi Enerjinin korunumu yasasını ilk olarak bir fizikçi değil bir tıp adamı açıklığa kavuşturmuştu. Bunun için deneyinde o da fareleri kullanmıştır. “Besinler yandığında ne kadar enerji oluştuğunu saptayabilirsiniz. Bir miktar besini farelere yedirirseniz, tıpkı yanmada olduğu gibi, besin oksijen etkisiyle karbon dioksite dönüşür. Enerjiyi, her iki durumdaki enerjiyi ölçerseniz canlı varlıkların cansızlarla aynı şeyi yaptığını görürsünüz. Enerjinin korunumu yasası öbür olgular için geçerli olduğu kadar yaşam için de geçerlidir Şunu da eklemek isterim: “cansız” olan şeyler için doğru olduğunu bildiğimiz her yasanın yaşam denilen o büyük olgu için sınandığında da doğru çıkması çok ilginç bir şey. Fizik yasaları bağlamında, çok daha karmaşık olan canlı varlıklarda olup bitenlerin yaşamayan varlıklarda olup bitenlerden farklı olmasını gerektiren bir bulgu henüz yoktur...” (R. Feynman, FYÜ s: 80-81) “ Canlı varlıkların en küçük molekülleri proteinlerdir. Bunlarda tirbüşon özelliği vardır ve sağa doğru dönerler. Şu kadarını söyleyebiliriz ki, aynı şeyleri kimyasal olarak yapabilirsek ve de sağa değil sola doğru yaparsak, biyolojik olarak işlemezler; çünkü, başka proteinlerle karşılaştıklarında uyumu sağlayamazlar. Sol yönlü bir yiv sol yönlü bir yive uyar; fakat sol ve sağ birbirine uymaz. Kimyasal yapılarında sağ yönlü yivi olan bakteriler “sol ve sağ yönlü” şekeri ayırt edebilirler. Bunu nasıl başarıyorlar? Fizik vi kimya iki tür molekülü de üretebilir; ancak onları ayırt edemez. Ama biyoloji ayır edeilyor. Şöyle bir açıklama akla yakın görünüyor: Çok, çok eskiden, hayat daha yeni başladığında, raslantı sonucu bir molekül ortaya çıktı ve üreyerek yayıldı vs. Uzun yıllar boyunca bu tuhaf görünümlü, çatallı yumruları olan damlacıklar birbirleriyle gevezelik edip durdular İşte bizler de başlangıçtaki bu birkaç molekülün evlatlarından başka bir şey değiliz. Bu ilk moleküllerin öyle değil de böyle bir şekil almaları tesadüf sonucunda oldu. Ya bu ya diğeri ya sağ ya da sol olmak zorundaydı. Sonra kendilerini çoğalttılar ve hala da çoğalmaya devam ediyorlar.Bu, bir atölyedeki vidalara benzer. Sağ yönlü vidalar kullanarak sağ yönlü vidalar yaparsınız, vs. Bu gerçek, yani bütün canlı moleküllerde aynı tür yiv bulunması, moleküler düzeye kadar inen canlı soyunun hep aynı niteliği taşıma özelliğinin belki de en anlamlı ifadesidir.(R. Feynman, FYÜ, s: 113-114) Entropi İki şey aynı sıcaklıkta olduğu zaman bir denge oluştuğunu söyleriz, ancak bu onların enerjilerinin de aynı olduğu anlamına gelmez; sadece, birinden enerji çıkarmanın öbüründen çıkarmak kadar kolay olduğunu belirtir. Sıcaklık “enerji verme kolaylığı” gibi bir şeydir. Onları yanyana koyarsanız, görünürde hiçbir şey olmaz. Enerjiyi eşit olarak ileri geri birbirlerine geçirirler; ancak, net sonuç sıfındır. Öyleyse, nesnelerin hepsi aynı sıcaklığa ulaşınca, bir şey yapmak için kullanabileceğimiz enerji yoktur. Ters-çevrilmezlik ilkesi öyledir ki, eğer cisimlerin sıcaklıkları farklı ise ve kendi hallerine bırakılırsa zaman geçtikçe sıcaklıkları birbirine yaklaşır ve enerjinin kullanılabilirliği giderek azalır. Bu, entropinin durmadan arttığını söyleyen entropi yasasının değişik bir ifadesidir. Sözcükler üstünde durmayalım. Bir başka deyişle, kullanılabilir enerji durmadan azalıyor da diyebeliriz. Bu, düzensiz molekül hareketleri kaosunun yol açtığı bir dünya özelliğidir. Farklı sıcaklıktaki şeyler kendi hallerine bırakılırlarsa aynı sıcaklıkta olmaya yönelirler. Aynı sıcaklıktaki iki şeyiniz, örneğin yanmayan bir ocak üstüne konulmuş su varsa, ocak ısınıp su donmayacaktır. Ancak, yanan bir ocak ve buz varsa tersi olacaktır. Demek ki tek yönlülük, her zaman kullanılabilir enerjinin kaybedilmesine yol açar. Bu konuda söyleyeceklerim bu kadar. Ancak bazı temel özellikler hakında birkaç noktaya da değinmek isitiyorum. Burada ters-çevrilmezlik gibi bir sonucu apaçık olan, ancak yasaların aşikar bir sonucu olmayan, temel yasalardan farklı bir örneğimiz var. Bunun nedenini anlamak birçok analizi gerektirir. Bu sonuç, dünyanın ekonomisi ve aşikar görünen her konudaki gerçek davranışı bakımından çok önemlidir. Belleğim, özelliklerim, geçmiş ile gelecek arasındaki fark tamamen bununla içiçedir. Ancak yasaları bilmek bunu kolayca açıklamaya yetmiyor; birçok analiz de gerekiyor. Fizik yasalarıyla olgular arasında aşikar ve doğrudan bir uyum olmaması sık karışlaşılan bir durumdur. Yasalar, değişik ölçülerde, deneyimlerrden soyutlanmışlardır. Bu özel durumda, yasal ters-çevrilebilir oldukları halde olguların çerilememesi buna örnektir. Ayrıntılı yasalarla gerçek olguların temel özelllikleri arasında çoğu zaman büyük uzaklıklar vardır. Örneğin, bir buzula uzaktan bakıp denize düşen kayaları, buz hareteldreni vb, gördüğünüzde onun küçük altıgen buz kristallerinden oluştuğunu hatırlamanız gerekli değildir. Fakat, buzun yürümesinin gerçekten de altıgen buz kristallerinden kaynaklandığını biliyoruz. Buzulun rdavranışlarını anlamak için uzun zaman gerekir (gerçekte, kristalleri ne ölçüde incelemiş olursa olsun hiç kimse buz hakkkında yeterli bilgi sahibi değildir). Buna karşın, kristalleri gerçekten anlarsak sonunda buzulları da anlayacağımızı umuyoruz. Bu derslerde fizik yasalarının temel öğelerinden sözetmemize karşın, hemen ekleyelim ki temel fizik yasalarını bugün bilebildiğimiz kadar bilmek, herhangi bir şeyi hemen anlamamızı sağlamıyor. Bunun için zaman gerekiyor., yine de ancak kısmen anlayabiliyoruz. Sanki doğa, gerçek dünyadaki en önemli şeylerin, bir sürü yasanın karışık bir rastlantısal sonucuymuş gibi göründükleri bir şekilde düzenlenmiş. Bir örnek gerekirse, proton ve nötron gibi bazı nükleer parçacıkları içeren atom çekirdekleri çok karmaşıktırlar. Enerji düzeyi dediğimiz bir şeylere sahiptirler ve değişik enerji değerleri olan durum veya koyullarda bulunurlar. Farklı çekirdeklerin enerji düzeyleri de birbirinden farklıdır. Enerji düzeylerinin durumunu saptamak karmaşık bir matematiksel problemdir; bunu ancak kısmen çözebiliyoruz. Düzeylerin kesin durumu son derece karmaşık bir şeyin sonucudur. Bu nedenle, içinde 15 parçacık bulunan nitrojen 2.4 milyon voltluk bir düzeyi, bir başkasının da 7.1 düzeyi vb olmasında şaşılacak bir şey yoktur. Doğa hakkında çok ilginç olan bir şey vardır: Tüm evrenin kendine özgü yapısı belirli bir çekirdekteki özel bir enerji düzeyinin durumuna bağımlıdır. Karbon-12 çekirdeğinde 7.82 milyon voltluk bir düzey olduğu saptanmıştır. Bu da akla gelebilecek her şey için çok büyük önem taşımaktadır. Durum şöyledir: Hidrojenle başlayalım. Başlangıçta Dünya neredeyse tümüyle hidrojenmiş gibi görünüyor. Çekimin etkisiyle hidrojen sıkışıp ısınıyor ve nükleer reaksiyon gerçekleşiyor; helyum oluşuyor.. Sonra helyum hidrojenle kısmen birleşerek daha ağır birkaç element oluşturuyor. Ancak, daha ağır olan bu eylementler hemen dağılıp helyuma dönüşyorlar.Bu nedenle bir ara, dünyadaki bütün diğer elementlerin nasıl ortaya çıktıkları anlaşılamıyordu. Çünkü, yıldızlardaki üretim süreci, hidrojenle başlayarak helyum ve yarım düzineden az başka elementten fazlasını ortaya çıkaramazdı. Bu problem karşısında Fred Hoyle (İnrgiliz astoronum) ve Edwin Salpeter (Amerikalı fizikçi), bir çıkış yolu bulunduğunu öne sürdüler. Buna göre, üç helyum atomu bir leşip bir karbon atomu yapabiliyorsa, bir yıldızda bunun ne sıklıkta oluşabileceğini kolayca hesaplayabiliriz. Sonuç şunu ortaya çıkardı: karbon ancak tek bir rastlantısal olanakla oluşabelirdi. Eğer karbonda 7.82 düzeyi olmadığı zamankinden biraz daha uszun bir süre beraber kalabilirlerdi. Biraz daha uzun kaldıklarında, başka bir şeylerin oluşması ve yeni elementler yapılması için gerekli zaman sağlanacaktı. Eğer karbonda 7.82 milyon voltluk bir enerji düzeyi varsa, periyoduk tablodaki diğer elementelerin nereden geldiği anlaşılabilirdi. Böylece dolaylı ve tepetaklak bir irdeleme ile karbonda 7.82 milyon voltluk bir düzey varolduğu tahmin edildi; laboratuvar deneyleri de bunun gerçek olduğunu gösterdi. Bu nedenle dünyada, bütün öbür elementelerin varolaması, karbondaki bu özel düzeyin varlığı ile yakından ilişkilidir. Karbondaki bu üzel düzeyin varlığı ise fizik yasaların bilen bizlere, etkileşim içinde bulununan 12 karmaşık parçacığın çok karmaşık bir rastlanıtsal sonucu olduğu izlenimini veriyor. Bu örnek fizik yasalarını anlamanın dünyadaki önemli şeyleri doğrudan anlamayı gerektirmediğini çok güzel gösteren bir örnektir. Gerçek deneyimler çoğunlukla temel yasalardan çok uzaktırlar. Dünya hakkında tartışırken onu hiyerarşik bir düzen içinde ve muhtelif düzeylerde ele alırız.Bundan kastettiğim, dünyayı sınırları kesin ve belirli düzeylere ayırmak değil. Fikirlerin hiyerarşisinden ne anladığımı bir grup kavramı açıklayarak göstereceğim. Örneğin, bir uçta fiziğin temel yasaları bulunuyor. Kesin açıklamalarının temel yasalarla yapılacağını düşündüğümüz yaklaşık kavramlar için başka başka terimler icat ederiz; örneğin “sıcaklık”. Sıcaklığın titreşim olduğunu düşünüyoruz; sıcak bir şey için kullandığımız sözcük de titreşen atomlar kütlesi için kullandığımız sözcüktür. Fakat sıcaklık hakkında konuşurken titreşen atomları unuttuğumuz da olur. Tıpkı buzullar hakında konuşunrken altıgen buzları ve ilk başta yağan kar taneciklerini unuttuğumuz gibi. Aynı şeye başka bir örnek de tuz kristalleridir.Bunlar temelde bir sürü proton, nötron ve elktrondan oluşur. Ancak bütün temel etkileşim düzenini içeren bir “tuz kristali” kavramımız vardır. Basınç da aynı türden bir kavramdır. Buradan bir üst basamağa çıkarsak, bir başka düzeyde maddelerin özelliklerini buluruz. Örneğin, ışığın bir şey içinden geçerken ne kadar büküldüğünü gösteren “kırılma endeksi” veya suyun kendini biradrada tuttuğunu gösteren “yüzey gerilimi”. Bunların her ikisi de sayılarla ifade edilir. Bunun atolmların çekimlerinden vb. kaynaklandığını görmek için bir çok yasa taramak gerektiğini sizlere hatırlatırım. Ama yine de “yüzey gerilimi” terimini kullanırız ve bunu tartışırken içerilerde ne olup bittiğine her zaman pek aldırlmayız. Hiyerarşide bir basamak daha yukarı çıkalım.Su konusunu ele alırsak dalgalar, bir de fırtına diye bir şey çıkıyor karşımıza. “Fırtına” sözcüğü de çok büyük bir olaylar topluluğunu ifade eder. Sonra “güneş lekeleri”, birer nesneler topluluğu olan “yıldızlar” var. Her zaman fazla geriye giderek düşünmeye değmez. Gerçekten bunu yapamayız da. Çünkü yukarılara çıktıkça araya gittikçe zayıflayan yeni basamaklar girer. Hepsini birden ele alarak düşünmeyi henüz başaramadık. Bu karmaşıklık sıralamasında yukarılara çıktıkça, fiziksel dünhyada son derece karmaşık bir şey olan, maddeyi son derece incelikli bir karmaşıklıkla düzenlemeyi gerektiren, kas-seğirmesi veya sinir uyarısı gibi şeylerle karşılaşırız. Daha sonra da “kurbağa” gibi şeyler gelir. Çıkmaya devam ediyoruz; “insan”, “tarih”, “politika” vb. sözcük ve kavramlara, daha üst düzeydeki şeyleri anlamak için kullanığımız bir dizi kavrama geliyoruz; çıkmayı sürdürerek kötülük, güzellik, umut gibi şeylere ulaşıyoruz. Dinsel bir mecaz yaparsak, hangi uç Tanrı’ya daha yakındır? Güzellik ve umut mu, yoksa temel yasalar mı? Söylenmesi gerekinin şu olduğunu sanıyorum: Varlığın içiçe geçmiş bağlantılarının tümüne bakmamız gerekir. Bütün bilimler, yalnız bilimler değil bütün entellektüel kökenli çabalar, hiyererşik basamaklar arasında aşağıya ve yukarıya doğru olan bağlantıları bulmaya; güzellikle tarih, tarihle insan psikolojisi.insan psikolojisiyle beyinin işlevleri, beyihnsel isinrsel uyarılar, sinirsel uyarılarla kimya vb arasında bağlantı kurmaya yönelik çabalardır. Bugün bunu yapkmıyoruz. kendimiz kandırıp bu şeyin bir ucundan öbüüne uzanan birdoğru çizebileceğimiz sanmanın yararı yoktur; çünkü, böyle bir göreceli hiyerarşinin varolduğunu yeni yeni görmeye başladık. İki uçtan birinin Tanrı’ya daha yakın olduğunu da sanmıyorum. İki uçtan birinde durmak, iskelenin yalnızca o ucunda yürüyüp olan bitenleri tam olarak anlamanın o yönde ggerçekleşeceğine inanmak yanlıştır. Kötülük, güzellik ve umuttan yana veya temel yasalardan yana olmak; bütün dünyayı derinliğine kavramanın yalnız o yolla olacağını ummak doğru değildir. Bir uçta uzmanlaşanın öbür uçta uzmanlaşanı önemsememesi akla uygun değildir. Bu iki ucun arasında çalışan büyük kütle sürekli olarak, bir adımı diğeri ile birleştirerek, dünyayı gittikçe daha iyi anlamamızı sağlıyor. Bu yolla, hem iki uçta hem de ortada çalışarak yavaş yavaş bu içiçe hiyerarşinin olağanüstü büyük dünyasını anlamaya başlıyoruz. (R. Feynman, Fizik YasalarıÜzerine,TÜBİTAK y, s: 140-147) Krallıklar ve Karanlıklar “Demiştik ki, Australantrop ya da türdeşlerinden birinin, artık yalnızca somut ve gerçek deneyini değil de bir öznel deneyini bir kişisel “benzerleştirme” nin içeriğini iletmeyi başardığı gün yeni bir dünya doğmuştu:Düşünler dünyası. Yeni bir evrim, kültür evrimi olanak kazanıyordu.İnsanın fiziksel evrimi, artık dilin evrimiyle sıkı bir bilik içinde, onun ayıklanma koşullarını altüst eden etkisine derinden bağlı larak daha uzun süre devam edecektir. Modern insan bu ortak yaşarlığın ürünüdür. Onu başka yoldan anlamak ya da yorumlamak olanaksızdır. Her canlı varlık bir taşıldır da. İçinde proteinlerinin mikroskopik yapısına dek atalarının damgasını değilse ible, izleri taşır: Bu insanın kalıtçısı olduğu fiziksel ve “düşünsel” ikilikten dolaylı, bütün hayvan türlerinden çok onun için doğrudur. Yüzbinlerce yıl boyunca, düşünsel evrimin, ancak hayatın hemen korunmasına doğrudan bağlı olaylar için önlem almaya elverişli bir beyin kabuğunun yavaş gelişmesinin baskısı altında, fiziksel evrimin ancak çok az önünde yürüdüğü düşünülebilir:Benzerleştirme gücüyle işlemleri ortaya çıkaran dili gelişmeye itecek olan ayıklanmamnın yoğun baskısı burdan gelir. taşılların tanıklık ettiği bu evrdimin şaşırtıcı hızı da yine buradan gelir. Fakat bu birlikte evrim sürdükçe, doğrudan maddi sinir sitmenin gelişmesinin baskıları gtigide yok etmesiyle, düşünsel ibleşimin daha çok bağımsızlık kazanması kaçınılmazdı. Bu evrimin sonucunda insan, insan-altı evrene egemenliğini yayıyor ve orada gizlenen tehlikelerden daha az etkileniyordu. Evrimin birinci aşamasına son veren ayıklama baskısı da artık azalacak, hiç olmazsa başka bir niteliğe bürünecekti. Bir kez çevresine gemen olduktan sonra insanın artık kendinden başka önemli düşmanı kalmıyordu. Doğrudan tür içinde ölümüne kavga artık insan türünde ayıklanmanın başlıca etmeni oldu. Hayvanların evriminde son derece seyrek rastlanan bir olgu. Günümüzde hayvan türleri içinde, belirli ırk ve topluluklar arasında, tür içi savaş bilinmez. Büyük memelilerde erkekler arasında sık görülen çarpışmaların bile, yenilenin ölümüyle sonuçlandığı çok seyrektir. Bütün uzmanlar, doğrudan kavganın yani yani Spencer’ın “struggle for life” ının, türlerin gelişiminde pek küçük bir işlevi olduğunu kabul etme konusunda birleşirler. İnsanda durum böyle değil. türün, hiç olmazsa belli bir gelişme ve yayılma düzeyinden sonra, kabile ya da ırk kavgası, evrim etmeni olarak, kuşkusuz önemli bir iş görür. Neandertal adamının birden bire yok oluşunun, atamız Homo sapiens ‘in uyguladığı bir soy kırımının sonucu olması çok olasıdır. Bunun son olduğu da söylenemez: Bildiğimiçz tarihsel soy kırımlarının sayısı az değil. Bu ayıklanma baskısı insanı hangi yönde etkiler? Bunun daha çok zeka, imgelem, irade ve tutku taşıyan ırkların yayılmasını kolaylaştırması olabileceği açıktır. Fakat bu, bireysel gözüpeklik yerine çete bağlılığını ve takım saldırganlığını, girişkenlikten çok kabile yasalarının sayfın tutulmasını da geliştirmiş olmalı. Bu yalınlaştırıcı şemaya yapılacak bütün eleştirileri kabul ediyorum. İnsan evriminin iki ayrı evreye ayrıldığını da ileri sürmüyorum. Benim yaptığım, insanın yalnız kültürel değil, fizik evriminde de kuşkusuz önemli bir işlevi olan başlıca ayıklanma baskılarını sıralamaya çalışmaktır. Buradaki önemli nokta, yüz binlerce yıl boyunca, kültürel evrimin fiziksel evrimi etkilemekten geri kalamayacağıdır; her tür hayvandan çok insanda ve doğrudan onun sonsuz özerkliği nedeniyle, ayıklama baskısını yönlendiren şey davranıştır . Davranış, genellikle otomaik olmatan çıkıp da kültürel olduktan sonra, kültürel özelliklerin de genomun evrimi üzerine baskı yapması gerekir. Bu da, kültürel evrimin gittikçe artan hızının onu genomdan tümüyle koparmasına dek sürer.(s:145) *** Açıktır ki, modern toplumlarda bu kopma toptandır. Burada ayıklanma ortadan kalkmıştır. Hiç olmazsa Darwinci anlamıyla “doğal” bir yanı kalmamıştır. Bizim toplumlarımızda, ayıklanma, henüz bir işlev gördüğü ölçüde, “en yeterlinin varkalması”nı yani daha çağdaş terimlerle “en yeterli” olanın kalıtsal varkalaşını, soyun daha çok yaylılması yoluyla, kolaylaştırmaz.Zeka, tutku, gözüpeklik ve imgelem gerçi modrn toplumlarda da her zaman başarı öğeleridir. Fakat bu kalıtsal değil kişisel başarıdır. Oysa evrimde önemli olan yalnızca birincidir. tersine, herkesin bildiği gibi istatistikler, zeka bölümü (ya da kültür düzeyi) ile aile başına düşen çocuk sayısı arasında tersi bir ilişki bulunduğunu gösreriyor. Buna karşı aynı istatistikler, evli çiftiler arasındaki zeka bölümü için olumlu bir ilişki bulunduğunu gösteriyor. Bu, en yüksek kalıtsal gizilgücü, göreli sayıları gittikçe azalan bir azınlığa doğru toplama olasılığı gösteren tehlikeli bir durumdur. Dahası var: Yakın zamanlara dek görece “ileri” toplumlarda bile, hem fiziksel hem de düşünsel açıdan en az yeterli olanların elenmesi özdevinimli ve acımasızdı. Çoğu erginlik çağına uluşamazdı. Günümüzde bu kalıtsal sakatlardan birçoğu, döl vermeye yetecek kadar yaşıyor. Bilginin ve toplumsal törenin ilerlemesi sonucurnda, türü, doğal ayıklanmanın yok olmasıyla kaçınılmazlaşan alçalmaya karşı savunun mekanizma, artık eğer en ağır kusurlar dışında işlemez olmuştur. Sık sık sergilenen bu tehlikelere karşı moleküler kalıtımdaki son ilerlemelerden beklenen çareler öne sürülüyor. Kimi yarı-bilginelrden yayılan bu yanılgıyı dağıtmak gerek. belki de kalıtsal kusurlar iyileşirilebilir, fakatbu, kusurlu kişinin yalnızca kendisi içindir, soyundan gelenler için değil. . Çağdaş moleküler kalıtımbilim bize, bir “üstün insan”yaratmak üzere kalıtsal birikimi yeni niteliklerle zenginleştirmek, bir yol göstermek şöyle dursun, böyle bir umudun boşluğunu açıklıyor: Genomun mikroskopik oranları bugün için, kuşkusuz her zaman olduğu gibi, bu tür oyunlara elverişli değildir. Bilimkurgu kuruntuları bir yana, insan türünü “iyileştirme”nin tek yolu, bilinçli ve sıkı bir ayıklama uygulaması olabilir. Bunu kim ister, buna kim yürek bulur? tür için, iler toplumlardaki ayıklanmama ya da ters ayıklanma tehlikesinin sürdüğü bir gerçektir. Ancak tehlikenin önemli boyutlar kazanması uzun bir süreye bakar: Diyelim on ya da on beş kuşak, yan birçok yüzyıl. Oysa modern toplumlar, başka yönden de ivedi ve ağır tehditlerle karşıkarşıyadır.(s:146) *** Burada sözünü ettiğim şey, ne nüfus patlaması, ne doğanın yıkımı, hatta nede megatonlardır (1 milyon ton TNT’ninkine eşit patlama gücü) bu daha derin ve daha ağır bir hastalık ruhun hastalığıdır. Bu, o hastalyğı yaratıp gittikçe de ağırlaştıran düşünsel evrimin en büyük dönüm noktasıdır. Üç yüz yıldan beri bilimde ortaya çıkan olağanüstü gelişmeler, bugün insanı, gerek kendisi ve gerekse evrenle ilişkisi üzerine kurduğu ve on binlerce yıldır kök salmış olan anlayışı, çok acılı biçimde değiştirmeye zorlamaktadır. Oysa ruh hastalığı olsun megatonlar olsun, hepsi de yalın bir düşüncenin sonucudur: Doğa nesneldir, gerçek bilginin tek kaynağı mantıklı deneyin sistematik karşılaşmasıdır. nasıl olmuş da, düşünceler ülkesinde, böylesine yalın ve açık bir düşünce, Homo sapiens’in doğşundan ancak yüz bin yıl sonra gün ışığına çıkabilmiş; nasıl olmuş da Çin’deki gibi çok yüksek uygarlıklar, Batı’dan öğrenmedin önce bunu bilememişler; yine nasıl olmuş da, Batı’da da o düşüncenin, sonunda mekanik sanatların arı pratiği içindeki tutsaklığından krtulabilmesi için Thales ile Pythagoras’tan Galilei, Descartes ve Bacon’a dek 2500 yıla yakın zaman geçmesi gerekmiş, bütün bunları anlamak çok zor.(s:146) Bir biyolog için kavramların evrimiyle canlı katmanlarının (dirimyuvarını) evrimin karşılaştırılması çekici olabilir. çünkü soyutun evreni dirimyuvarını, bunun cansız evreni aştığından daha çok aşmış bile olsa, kavramlar, organizmaların özelliklerinden bir bölümünü saklamıştır. Düşünceler de organizmalar gibi yapılarını yineleyip çoğaltmaya yönelirler; onlar gibi içeriklerini kaynaştırır, yeniden birleştirir ve ayırırlar ve sonunda onlar gibi evrim gösterirler ve kuşkusuz bu evrimde ayıklanmanın payı büyüktür. düşüncelerin evrimi üzerine bir kuram önerme denemesine girişmeyeceğim Fakat hiç olmazsa orada işlev alan başlıca etmenleri tanımlama yoluna gidilebilir. Bu ayıklanmanın, zorunlu olarak, iki düzeyde işlemesi gerekir: Düşüncenin kendi düzeyi, edim (davranış) düzeyi. Bir düşüncenin edim değeri, onu kabul eden bireye ya da topluluğa getirdiği davranış değişikliğine bağlıdır. Kendisini benimseyen insan topluluğuna daha çok tutarlılık, tutku ve kendine güven veren düşünce, bunun sonucu olarak topluluğun yayılma gücünü de artıracaktır ve bu, düşüncenin kendisinin de yükselmesi demektir.Bu yükselme değerinin, düşüncenin içerdiği nesnel doğrunun niceliğiyle zorunlu bir ilişkisi yoktur. Bir dinsel ideolojinin bir toplum için oluşturduğu güçlü dayanak, gücünü kendi yapısından değil, bu yapının kabul edilişinden, kendini benimsetmesinden alır. Bunun için de böyle bir düşüncenin yayılma gücünü edim gücünden ayırmak zordur. Yayılma gücünün kendi içinde çözümlenmesi çok daha zordur.Bu gücün, zihinde daha önceden kurulmuş olan yapılara ve bunlar arasında, daha önce kültürün taşımış olduğu düşüncelere ve kuşkusuz, saptanması bizim için çok zor olan kimi doğuştan yapılara da bağlı olduğunu söylemekle yetinelim. Fakat görülüyor ki, en üstün yayılma gücü taşıyan düşünceler, insanı, içinde bunalımından kurtulabileceği içkin bir yazgıdaki yerini belirleyerek açıklayanlardır (s:147) *** Yüzbinlerce yıl boyunca bir insanın yazgısı, onun dışında hayatını sürdüremeyeceği kendi toplumunun, yani oymağının yazgısından ayrılamazdı. Oymağa gelince, o da yalnızca birliğine dayanarak kendini savunabilir, yaşayabilirdi. Bu birliği örgütleyen ve güvenceye alan yasaların büyük öznel gücü buradan gelir. Birisinin çıkıp bunlara aykırı davrandığı durumlar olabilir; fakat kuşkusuz hiç kimsenin onları yadsıması düşünülemez. Bu tür toplumsal yapıların zorunlu olarak ve öylesine uzun bir süre boyunca kazandığı çok (s:147) büyük açıklayıcı önem düşünüldüğünde, bunların insan beyninin doğuştan kategorilerinin kalıtsal evrimini etkilemediklerini kabul etmek kolay değildir. Bu evrim yalnızca oymak yasasının kabulünü kolaylaşttırmakla kalmayıp, ona üstünlük sağlayarak onu kuran mitik açıklama gereksinimini de yaratmış olmalı. Biz o insanların torunlarıyız. Bu açıklama dileği, varoluşun anlamını bulmaya bizi zorlayan bunalım, kuşkusuz bize onların kalıtıdır. Bütün mitlerin bütün dinlerin, bütün felsefelerin ve bilimin kendisinin yaratıcısı da bunalımdır. Bu buyurucu gereksinimin, doğuştan, kalıtsal yabsanın diliyle bir yerde yazılı olduğundan ve kendi kendine geliştiğinden, ben kandi payıma şüphe etmiyorum. İnsan türünün dışında, karıncalar, beyaz karıncalar ve arılar bir yana, hayvanbal alanın hiçbir yerinde böylesine yüksek düzeyde ayrımlaşmış toplumsal örgütlenmeler bulunmaz. Toplumsal böceklerde kuruluşların değişmezliğini sağlayan hiçbir şey kültürel kalıtımdan gelmez, hepsi kalıtsal aktarımdan gelir. Toplumsal davranış onlarda tümüyle doğuştan, özdevinimseldir. İnsanda toplumsal kuruluşlar, salt kültürel olarak, hiçbir zaman böyle bir dengeliliğe ulaşamayacaktır; ayrıca, bunu kim ister ki? Mitleri ve dinleri bulmak, geniş felsefe sistemleri kurmak, insanın, toplumsal hayvan olarak arı bir özdevinimliliğe boyun eğmeden hayatını sürdürebilmek için ödemek zorunda kaldığı bedeldir. Fakat salt kültrel kalıt, toplumsal yapılara destek vurmak için, kendi başına yeterince güçlü olamazdı. Bu kalıta, düşünce için gerekli besini sağlamak üzere, bu kalıtımsal destek gerekirdi. Eğer böyle olmasaydı, türümüzde, toplumsal yapının temelindeki din olayının evrenselliği nasıl açıklanabilirdi? Yine, mitlerin, dinlerin ve felsefi ideolojilerin tükenmez çeşitliliği içinde hep aynı “biçim” in bulunmasını nasıl açıklamalı? Kolayca görülebilir ki, bunalımı yatıştıracak yasayı kurmaya yönelik “açıklama” ların hepsi de “tarih”, daha doğrusu, bireyoluştur(Ontogenie). İlkel mitlerin hemen hepsi, davranışları, topluluğun kaynaklarınıaçıklayan ve onun toplumsal yapısını dokunulmaz geleneklere oturtan, az ya da çok tanrısal kahramanlarla ilgilidir: tarih yeniden yapılmaz. Büyük dinler de aynı biçimde, esinli bir peygamberin öyküsüne dayanır; peygamber kendisi her şeyin kurucusu değilse de, kurucuyu temsil eder, onun yerine konuşur ve insanların tarihini ve yazgılarını anlatır. Bütün büyük dinler içinde kuşkusuz Yahudi-Hıristiyan geleneği, bir tanrı (s:148) peygamberiyle zenginleşmeden önce bir çöl oymağının davranışlarına doğrudan bağlı olan tarihselci yapısıyla, en “ilkel” olanıdır. Budacılık ise, tersine, daha yüksek dereceden ayırmlaşmıyş olarak, özgün biçimi içinde yalnızca Karma’ya, bireysel yazgıyı yöneten aşkın yasaya bağlanır. Budacılık insanların değil, ruhların öyküsüdür. Platon’dan Hegel ve Marx ’a dek, büyük felsefe sistemlerinin hepsi, hem açıklayıcı hem kuralcı bireyoluşlar önerirler. Gerçi Platon’da bireyoluş terisne dönmüştür. Tarihin akışında; o, ideal biçimlerin gittikçe çözülüşünü görürü ve Devlet ’te özet olarak, bir zamanı geri çevirme makinesi işletmeye çalışır. Hegel gibi Marx için de tarih, içkin, zorunlu ve iyiye yönelik bir tasarıya göre açılır. Marksist ideolojinin ruhlar üzerindeki büyük gücü, yalnızca İnsanın kurtuluşu için verdiği sözden değil, aynı zamanda ve kuşkusuz hepsinden önce, bireyoluşsal yapısından, geçmiş şimdiki ve gelecekteki tarih için yaptığı tam ve ayrıntılı açıklamadan gelir. Bununla birlikte, insan tarihiyle sınırlanmış olarak, “bilim”in verileriyle bezenmiş de olsa, tarihsel maddecilik yine de eksik kalmıştı. Buna, düşüncenin gerekli gördüğü toptan yorumu getirecek diyalektik maddeciliği de eklemek gerekiyordu: Bunda, insanlığın ve evrenin tarihleri aynı öncesiz-sonrasız yasalar altında birleşmiştir. *** Eğer, yokluğu derin bir iç bunalımına neden olacak bir tam açıklama gereksiniminin doğuştan olduğu doğruysa; eğer iç daralmasını yatıştırabilecek tek açıklama biçimi, İnsanın anlamını, ona doğanın tasarı içinde zorunlu bir yer vererek anlatacak olan bir toptan tarih açıklama biçimiyse; eğer doğru, anlamlı ve yatıştırıcı görünmek için “açıklama”nın uzun canlıcı (animist) gelenek içinde erimesi gerekiyorsa; işte o zaman, düşünce dünyasında, tek bozulmamış doğru kaynağı olarak nesnel bilgi kaynağının görülebilmesi için neden binlerce yıl geçmesi gerektiği anlaşılır. Hiçbir açıklama önermeden, başka her türden düşünsel besin karşısında bir çileci vazgeçişe zorlayan bu düyşünce, doğuştan iç daralmasını yatıştıramazdı; tersine onu ağırlaştırırdı. Bu düşünce insan doğasının doğrudan özümsediği yüz bin yıllık bir geleneği bir çırpıda sileceğini öne sürüyordu; insanın doğayla olan eski canlıcı (s: 149) bağlaşmasının bozulduğuhnu bildiriyor; bu değerli bağlaşmanın yerine, yalnızlıktan donmuş bir evrende tasalı bir arayıştan başka bir şey getirmiyordu. Katı etik bir büyüklenme dışında hiçbir desteği görünmeyen böyle bir düşünce nasıl kabul edilebilirdi? kabul edilmedi, kabul edilmiyor da. Her şeye karşın yine de etkinlik gösteriyyorsa, bu yalnızca onun olağanüstü edimsel gücüne dayanıyor. Üç yüz yılda, nesnellik boyutuna göre kurulan bilim, ruhlarda olmasa bile pratikte, toplumdaki yerini buldu. Modern toplumlar bilim üzerine oturur. Bu toplumlar, zenginliklerini, güçlerini ve eğer istenirse insan için daha büyük zenginlik ve güçlülüklerin de olabileceği inancını bilimden alır. Fakat bunun yanında da, nasıl ki bir türün biyolojik evrimindeki ilk “seçim” bütün soy sopunun geleceğini bağlayabildiyse, başlangıçtaki bir bilimsel uygulamanın bilinçsiz seçimi de kültürün evrimini tek yönlü bir yola çevirdi; öyle bir yol ki,19. yy ilericiliği, bunun şaşmaz biçimde insanlığın olağanüstü gelişmesine götürdüğünü düşünüyordu; oysa bugün önümüzde bir cehennem çukuru açıldığını görüyoruz. Modern toplumlar, bilimin kendilerine sağladığı zenginlik ve güçleri aldılar, fakat yine bilimin en derin anlamlı bildirisini almadılar, belki işitmediler bile. Bildirinin istediği: Yeni ve tek bir bilgi kaynağı tanımı, törel temellerin toptan gözden geçirilmesi, canlıcı gelenekten tam bir kopma, “eski bağlaşım” ın kesinlikle bırakılıp yeni bir anlaşmaya gidilmesi zorunluluğunun kabulü. Bilimden aldıkları bütün güçlerle donanmış olarak bütün zenginliklerden yararlanan bu toplumlar, o bilimin temelden yıktığı değer sistemlerine göre yaşamak, çocuklarına onları öğretmek istiyorlar. Bizden önce hiçbir toplum böyle bir acı çekmedi. İlkel kültürlerde de, klasiklerde de, bilgilerle değerlerin kaynakları canlıcı gelenek içinde kaynaşmıştır. tarihte ilk kez uygarlık, bir yandan değerlerini korumak için canlıcı geleneğe umutsuzca bağlı kalıp, bir yandan da bir bilgi ve doğru kaynağı olarak ona sırt çevirmeye ve kendini biçimlendirmeye çalışıyor.Batı’nın “özgürlükçü” toplumlarının, kendi töre kaynakları olarak bugün de yarım ağızla öğrettikleri şeyler, Yahudi-Hıristiyan geleneğinin, bilimci ilericiliğin, insanın “doğal” haklarına inanmanın ve yaratıcı pragmacılığın tiksindirici bir karışımıdır. Marksist toplumlar da sürekli olarak, maddeci ve diyalektik bir tarih dini öğretiyorlar; görünüşte özgürlükçülerinkine göre daha sağlam bir çerçeve, fakat belki de bugüne dek ona gücünü vermiş olan esnemezlik yüzünden; ötekinden (s: 150) daha da çürük. Ne olursa olsun, canlıcılık içinde kök salmış bu sistemlerin hepsi nesnel bilginin dışında, doğrudan dışındadırlar; saygı duymadan ve hizmet etmeden kullanmak istedikleri bilime kesinlikle karşıdırlar .kopma öylesine büyük, yalan öylesine açıktır ki, bu durum, biraz kültürü olan, biraz düşünüebilen ve her türden yaratmanın kaynağındaki törel bunalımı duyabilen herkesin vicdanına saplanmakta ve acı vermektedir. Bu acıyı çekenler, insanlar arasında, toplumun ve kültürün, evrim için izleyecekleri yolun sorumluluğunu duyan ya da duyacak olanlardır. Modern ruhun hastalığı, törel ve toplumsal varlığın kökündeki bu yalandır. Bugün bilimsel kültür karşısında pek çok kimsede, kin değilse bile korku, daha doğrusu yabancılaşma duygusu uyandıran şey, az çok bulanık biçimde tanılanmış olan bu hastalıktır.Çokluk kızgınlık, bilimin teknolojik alt ürünlerine, bombalara; doğanın yıkımına, nüfustan gelen tendide yönelik görünür.Doğal olarak, teknolojinin bilim olmadığı, bir yandan da atom gücünün kullanılmasının insanlığın yaşaması için vazgeçilmez duruma geleceği türünden bir yanıt bulmak kolaydır; doğanın yıkımının, teknolojinin ileri gittiğini değil yetersiszliğini gösterdiği söylenebilir; nüfus patlaması her yıl milyonlarca çocuğun ölümden kurtarılmasının sonucu olduğuna göre, çocukları yeniden ölüme mi bırakmalı, diye sorulabilir. Bunlar, hastalığın belirtileriyle nedenlerini birbirine karıştıran yüzeysel söylevlerdir. karşı çıkma, gerçekte, bilimin esas iletisinedir. korku, günah korkusudur: Kutsal değerleri kirletme korkusu, haklı bir korku. Bilimin değerlere saldırdığı doğrudur. Bunu doğrudan yapmaz, çünkü yargoıç değildir ve onları görmemesi gerekir : Fakat Avusturalya yerlilerinden diyalektik maddecilere dek hepsinde, canlıcı geleneğin, değerleri, töreleri, ödevleri, hakları ve yasakları üzerine oturttuğu mitik ya da felsefi bireyoluşları yıkar. İnsan bu iletiyi bütün anlamıyla kabul ediyorsa, demek binlerce yıllık düşündün iuyanmış ve kendi mutlak yalnızlığı, kökten yabancılığıyla karşı karşıya gelimştir. Artık bir çingene gibi, içinde yaşadığı evrenin bir kıyısında bulunduğunu bilir: müziği karşısında sağır, umutlarına da, acılarına da, suçlarına da ilgisiz bir evren. O zaman da suçu kim tanımlayacak? İyiyi kötüden kim ayıracak? Bütün geleneksel sistemler töreye ve değerleri insanın erimi dışında tutmuşlardır. Değerler insanın değildi: Onlar vardılar ve insana egemendiler. Fakat insan, o değerlerin de, onlara egemen olanın da kendisi olduğunu öğrenince, şimdi de onları, evrenin (s:151) duygusuz boşluğu içinde eriyip dağılmış görüyor. İşte o zaman modern insan, yalnız cisimler değil ruhun kendisi üzerindeki korkunç yıkım gücünü de artık öğrenmiş olduğu bilime dönüyor, daha doğrusu ona karşı çıkıyor. *** Nereye başvurmalı? Nesnel doğru ile değerler kuramının birbirine yabancı, birinden ötekine geçilemeyen iki alan olduğunu bir kez ve kesin olarak kabul mü etmeli? Yazar olsun, filozof olsun, hatta bilim adamı olsun, modern düşünürlerin büyük bölümünün tutumu budur: Ben bu tutumun insanların büyük bölümündeki iç daralmasını besleyip artıracağına, bu yüzden deo onlar için kabul edilmmez olduğuna inanmakla kalmıyorum, aynı zamanda iki önemli açıdan bunu mutlak olarak yanlış buluyorum: -Öncelikle, değerler ile bilginin, gerek eylem, gerekse sylemde, her zaman ve mutlaka birbirine bağlı oluşu. - Sonra ve özellikle de, “doğru” bilginin tanımının, son çözümlemede, etik düzeyde bir koyuta dayanması yüzünden. Bu iki noktadan her biri birer kısa açıklama ister. Etik ile bilgi, eylemde ve eylem yoluyla, kaçınılmaz biçimde birbirine bağlıdır: Eylem, bilgi ile değerleri birlikte ortaya sürer ya da sorguya çeker. her eylem bir etiği anlatır, belli değerlere yarar ya da zarar verir, bir değerler seçimi yapar ya da öyle görünür. Öte yandan, her eylemde bir bilginin bulunması zorunlu görünür ve buna karşı eylem de bilginin iki kaynağından biridir. Bir canlıcı sistemde, etik ile bilginin birbirine karışması çatışma yaratmaz, çünkü canlıcılık bu iki kategori arasındaki her türlü kökten ayırımı ortadan kaldırır, onları aynı gerçeğin iki görünüşü sayar. İnsanın “doğal” sayılan “hak”ları üzerine kurulmuş bir toplumsal etik düşüncesi bu tutumu yansıtır ve bu tutum Marksizmin getirdiği moralin tanımlanması girişimlerinde, hem de çok daha sistemli ve vurgulanmış biçimde ortaya çıkar. Nesnellik koyutunun, bilginin doğruluğunun zorunlu koşulu olduğu bir kez kabul edildiğide, doğrunun kendisinin aranmasında vazgeçilmez olan kökten bir ayırımı, etik alanıyla bilgi alanı arasına yerleşmiş olur. Bilginin kendisi ("epistemolojik değer” dışında) her değer yargısının dışındadır, buna karşı etik, özünde öznel olduğuna göre, bilgi alanının her zaman dışında kalır.(s:152) Bilim son aşamada, bir belit (axiome) olarak konmuş olan bu kökten ayırım yaratmıştır. Burada belirtmekten kendimi alamıyorum, eğer kültür tarihinde biricik olan bu olay, başka bir uygarlıkta değil de Hıristiyan batıda ortaya çıkmışsa; bu belki de bir bölümüyle, kilisenin kutsal alan ile dindışı alan arasındaki ayırımı kabul etmiş olmasındandır. Bu ayırımı yalnızca bilime (dinsel alan sınırı dışında kalarak) kendi yolunu arama olanağı vermekle kalmıyor, düşünceyi, nesnellik ilkesinin ortaya koyduğu çokdaha kökten bir ayrılık için de haırlamış oluyordu. Batılılar kimi dinlerde dinsel ile dindışı arasında bir ayırımı bulunmayışını, bulunamayacağını anlamakta güçlük çekerler. Hinduizmde her şey dinsel alanda kalır; hatta “dindışı” kavramı anlaşılmaz bir şeydir. Bunları ayıraç içinde söylemiştik, konumuza dönelim. Nesnellik koyutu, “eski bağlaşım” ın yıkılışını belirterek, aynı zamanda bilgi yargılarıyla değer yargıları arasındaki her türlü karışıklığı da önlüyor.Fakat geride yine de bu iki kategorinin, söylem de içinde olmak üzere eylemdeki kaçınılmaz birliği kalıyor. İlkeden ayrılmamak için, her türlü söylemin (ya da eylemin) yalnızca, birleştirdiği iki kategorinin ayırımını koruyup açıklaması durumunda ya da ölçüde, anlamlı ya da gerçeğe uygun olduğunu kabul edeceğiz.Böyle tanımlandığında, gerçeğe uygunluk kavramı, etik ile bilginin örtüştükleri ortak alan oluyor; burada değerlerle gerçeklik, birlikte fakat kaynaşmamış olarak, bu sesi duyabilecek dikkatli insana bütün anlamlarını açıklar. Buna karşı, iki kategorinin karışıp kaynaştığı gerçeğe uymayan söylem, en zararlı anlamsızlıkla, bilinçsiz de olsa, en büyük yalandan başka bir yere ulaştırmaz. Görülüyor ki, bu tehlikeli karışımın en sürekli ve en sistemli uygulama alanı ("söylem”i Descartesçı anlamında alarak) “siyasal” söylemdir. Bu yalnız meslekten politikacıların durumu da değildir. Bilim adamaları da, kendi alanları dışında, değerler kategorisiyle bilgi kategorisi arasındaki ayırımı görmekte tehlikeli bir yetersizlik gösterirler. Fakat bu da başka bir ayraçtı. Bilginin kaynağına dönelim. Demiştik ki, canlıcılık, bilgi önermeleriyle değer yargıları arasında bir ayırma yapmak istemez, ayrıca yapamaz da; çünkü Evren’de ne denli özenle gizlenmiş olursa olsun bir amaç bulunduğu kabul edildiğinde böyle bir ayırmanın anlamı kalmaz. nesnel bir sistemdeyse tersine, bilgiyle değerler arasındaki her kaynaşma yasaklanmıştır.(s: 153)Fakat ( bu en önemli noktadır; bilgiyle değerlerin mantıksal olarak kökten bağlantılı olduğu sorunu) b u yasaklama, nesnel bilgiyi kuran bu “ilk buyruk”, kendisi nesnel değildir, olamaz da: Bu bir ahlak kuralı, bir disiplindir. Gerçek bilgi değerleri tanımaz; fakat gerçek bilgiyi kurmak için bir yargı, daha doğrusu, bir değer beliti(axiome) gerekir. Açıktır ki, nesnellik koyutunu doğru bilginin koşulu olarak almak, bir bilgi yargısı değil, bir etik seçimdir, çünkü koyutun kendisine göre bu yargıcılı (arbitral) seçimden önce doğru bilgi bulunamaz.. Nesnellik koyutu, bilginin yasasını belirlemek üzere, bir değer tanımlıyor ve bu değer nesnel bilginin kendisidir. demek nesnellik koyutunu kabul etmek, bir etiğin, yani bilgi etiğinin, temel önermesini ortaya koymak oluyor. Bilgi etiğinde, bilgiyi kuran, bir ilksel değerin etik seçimidir. Onun, hepsi de insanlarca kabul erdillmesi gereken, içkin, dinsel ya da “doğal” bilgi üzerinde kurulduğu savında olan canlıcı etikten kökten ayrıldığı nokta buradadır.Bilgi etiği insana kendini kabul ettirmez, tersine, onu her söylemin ya da her eylemin gerçeğe uygunluğunun belitsel koşulu yaparak kendine kabul ettiren insandır. Discous de la Methode bir kuralcı epistemoloji önerir, ancak herşeyden önce onu bir kez de bir moral düşünme ve meditasyon olarak okumak gerek. Gerçeğe uygun söylem ise bilginin temelidir, insanlara büyük güçler sağlar ve bu güçler günümüz insanını hem zenginleştirip hem de tehdit eder, ona özgürlük sağladığı kadar tutsaklık da getirebilir. Bilimle örülmüş olan ve onun ürünleriyle yaşayan modern toplumlar, aşşırı ilaçtan zehirlenen birisi gibi onun tutsağı olmuşlardır. Maddi güçleri, bilginin temelindeki bu etikten, ahlaki zayıflıkları ise yine de başvurmaktan çekinmedikleri, fakat bilginin bozmuş olduğu değer sistemlerinden gelir. Bu çatışma öldürücüdür. Ayaklarımızın dibinde açıldığını gördüğümüz uçurumun nedeni budur. Modern dünyanın yaratıcısı olan bilgi etiği, o dünya ile uyuşabilecek, kavranmış ve kabul edilmiş duruma geldiğinde de onun evrimine yön verebilecek tek etiktir. *** Kavranmış ve kabul edilmiş dedik. Buna olanak var mı? Eğer yalnızlık kaygısı ve zolayıcı bir toptan açıklmama gerekisnimi, benim sandığım gibi doğuştansa; çağların derinliklerinden gelen bu kalıt yalnız kültürel değil, doğal olarak kalıtımsalsa; bu çetin, soyut ve (Raslantı ve Zorunluluk, s: 154) gururlu etik, kaygıyı yok edebilir, istekleri karşılayabilir mi? Bilemem.Fakat herşeye karşın büsbütün de olanaksız olmadığı düşünülemez mi? İnsanda, bilgi etiğinin sağlayamadığı bir “açıklama”dan da öte, belki bir aşma, bir üstünlük gereksinimi de vardır. Ruhlarda her zaman yaşayan büyük toplumcu düşün gücü bunun tanığı gibi görünüyor. Hiçbir değer sistemi, gereektiğinde uğruna kendini vermesini doğru gösterecek biçimde bireyi aşan bir ülkü önermedikçe, gerçek bir etik oluşturduğunu öne süremez. Bilgi etiği, doğrudan tutkusunun yüksekliği nedeniyle, belki de bu aşma gereksinimini karşılayabilir. Aşkın bir değer olarak doğru bilgiyi tanımlar ve insana, artık onu kullanmayıp, özgür ve bilinçlmi bir seçimle ona hizmet etmeyi önerir. Nedir ki bu da bir insancılıktır(humanisme), çünkü insana, bu aşkınlığın yaratıcısı ve koruyucusu olarak saygı duyar. Bilgi etiği bir anlamda da “etiğin bilgisi” dir, yani tutkuların, dileklerin ve biyolojik varlığın sınırlarının bilgisi: İnsanın içinde, saçma olmasa da olağandışı ve salt bu olağadışılığından dolayı değeril olan hayvanı görür; öyle bir hayvan ki, dirimyuvarı ve düşünceler dünyası gibi iki alanda birden yaşadığı için, einsan sevgisiyle birlikte sanat ve şiirde kendini gösteren bu acılı ikiliğin hem işkencesi altında hem de zenginliği içindedir. Canlıcı sistemlerin hepsi de, tersine, biyolojik insanın görmezden gelinmesini, alçaltılması ya da bastırılmasını, onun hayvanal koşullarına bağlı kimi özelliklerinden tiksinme ve korku duyulmasını az çok yeğlemişlerdir.Buna karşı bilgi etiği, insanı, yerine göre ona egemen olmayı bilmek koşuluyla, bu kalıta saygı gösterip onu kabul etmeye özendirir: İnsanın en yüksek niteliklerine, özgeciliğe, yüce gönüllülüğe ve yaratıcı tutkuya gelince, bilgi etiği bunların hem toplumsal biyolojik kaynaklaranı bilir hem de kendi tanımladığı ülküye yararlı aşkın değerlerini kabul eder. **** Sonuç olarak bilgi etiği benim gözümde, gerçek bir toplumculuğun(sosyalizm) üzerine urulabileceği hem ussal hem de bilinçili olarak ülkücü tek tutumdur. 19. yy’ın bu büyük düşü genç ruhlarda, acı veren bir yoğunlukla yaşamaktadır. Acı vericiliği, bu ülkünün uğradığı ihanetler ve kendi adına işlenen cinayetler yüzündendir. Bu derin özlemin, felsefi öğretisini canlıcı bir (Raslantı ve Zorunluluk, s: 155) ideolojiiçinde bulması acıklı, ancak belki de kaçınılmazdır. Diyalektik maddecilik üzerine kurulan tarihsel kehanetçiliğin, daha doğşundan büyük tehditlerle dolu olduğunu görmek kolaydı, nitekim bunlar gerçekleşmiştir. Diyalektik maddecilik, bütün öteki canlıcıklarından da daha çok, değer ve bilgi kategorilerinin birbiriyle karıştırılmasına dayanmaktadır. Onun, temelden gerçekdışı bir söylem içinde, yokluğa düşmek istemeyen her insanın, önünde boyun eğmekten başka yapacak ya da başvuracak bir şeyinin bulunmadığı tarih yasalarını “bilimsel” olarak kurmuş olduğunu ileri sürebilmesinin nedeni bu karışıklıktır. öLdürücü olmadığı zaman çocukça olan bu yasalardan kesinlikle kurtulmak gerek. Gerçeğe uygun bur toplumculuğun, yandaşlarının ruhuna kök salmış olduğunu savunduğu, bilimin alay konusu ve özünde gerçekdışı olan bir ideoloji üzerine kurulması olanağı var mı? topluculuğun tek umudu, bir yüzyıldanberi kendine egemen olan ideolojinin “düzeltilmesinde” (revizyonunda) değil, bu ideolojinin toptan bırakılmasındadır. Bu durumda gerçekten “bilimsel” bir toplumcu hümanizma, doğrunun kaynağını ve ahlakını eğer bilginin kendisinin kaynaklarında, bilgiyi özgür bir seçimle bütün öteki değerlerin ölçüsü ve güvencesi olarak en büyük değer yapan etikte değilse nerede bulabilir? Bu etiğin ahlaksal sorumluluğu, doğrudan bu beltisel seçimin özgürlüğüne dayanır. toplumsal vi siyasal kurumların temeli ve bu nedenle de onların gerçeğe uygunluğunun ölçüsü olarak, yalnızca bilgi etiği gerçek bir toplumculuğa götürebilir. düşüncenin, bilginin ve yaratıcılığın aşkın cennetinin savunulmasına, genişletilmesine ve zenginleştirilmesine adanmış kurumları o kabul ettirir. İnsan bu cennette oturu. ve canlıcığını hem yalancı tutsaklıklarından hem de maddi baskılarından gitgide kurtularak, kendisine, o cennetin hem uyruğu hem de yaratıcısı diye en değerli ve en biricik özünde hizmet eden kurumların koruyuculuğunda, sonunda gerçeğe uygun olarak yaşayabilir. Bu belki de bir ütopyadır. Fakat tutarsız bir düşde değildir. Bu, bütün gücünü mantıksal tuturlığından alan bir düşüncedir. Bu, gerçeği araşyışın zorunlu olarak varacağı sonuçtur. Eski bağlaşma çözüldü; insan artık bir rastlantıyla içine düştüğü bu evrenin duygusuz enginliği içinde yalnız olduğunu biliyor. Yazgısı gibi görevi de bir yerde yazılı değildir. Bir yanda cennet (krallık), bir yanda cehennem (karanlıklar): Seçmek kendine kalmış.”(Kitap bu satırlarla bitiyor) (J.Monod,Raslantı ve Zorunluluk s:143-156)

http://www.biyologlar.com/evrim-ve-termodinamigin-ikinci-yasasi

Gürültü Kirliliğine Adım Adım ( Ses Kirliliği )

Çevre sorunlarından önemli olan biri de sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan gürültü kirliliğidir. İstenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslertopluluğu... Zaman zamn tarlada bir tarktör, kimizaman inşaaat makineleri, Kimi zaman caddede ilarleyen araçların korna, ve motor sesi, çoğu zamanda yüksek volümde dinlenilen müzik parçaları... Peki gürültü kirliliğini oryata çıkran etmenler neleridir. Bu önemli etmenlerden birkaçını şöyle sıralayabiliriz. Plansız kentleşme, Sanayileşme, Ekonomik yetersizlikler, Hızlı nüfus artışı İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olması Bazı Gürültü Türlerinin Desibel cinsinden dereceleri ve Psikolojik Etkilerine bir bakacak olursak... Uyku gürültüsü 30 Psikolojik belirtiler (I.Basamak) İnsan sesi 60 Psikolojik belirtiler (I.Basamak) Telefon zili 70 Psikolojik belirtiler (II.Basamak) Çalar Saat 80 Psikolojik belirtiler (II.Basamak) Tehlikeli bölge 85 Psikolojik belirtiler (II.Basamak) Metro gürültüsü 90 Psikolojik belirtiler (II.Basamak) Kabare Müziği 100 Sinirsel ve psikolojik bozukluklar (III.Basamak) Motosiklet 110 Sinirsel ve psikolojik bozukluklar (III.Basamak) Makineli delici 120 Sinirsel ve psikolojik bozukluklar (III.Basamak) Canavar Düdükleri 150 Kulak ağrısı, sinir hücrelerinin bozulması Uzay Roketleri 170 Kulak ağrısı, sinir hücrelerinin bozulması Gürültünün insan üzerindeki etkileri: 1.Fizyolojik Etkileri: Kan basıncının artması, dolaşım bozuklukları, solunumda hızlanma, kalp atışlarında yavaşlama, ani refleks. 2.Fiziksel Etkileri: Geçici veya sürekli işitme bozuklukları. 3.Performans Etkileri: İş veriminin düşmesi, konsantrasyon bozukluğu, hareketlerin yavaşlaması. 4.Psikolojik Etkileri: Davranış bozuklukları, aşırı sinirlilik ve stres. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Gürültüyü İçin Alınabilecek Tedbirler: · Hava alanlarının, endüstri ve sanayi bölgelerinin yerleşim bölgelerinden uzak yerlerde kurulması, · Motorlu taşıtların gereksiz korna çalmalarının önlenmesi, · Kamuoyuna açık olan yerler ile yerleşim alanlarında elektronik olarak sesi yükseltilen müzik aletlerinin çevreyi rahatsız edecek seviyede çalınmaması, · İşyerlerinde çalışanların maruz kalacağı gürültü seviyesinin en aza indirilmesi, · Yerleşim yerlerinde ve binaların içinde gürültü rahatsızlığını önlemek için yeni inşa edilen yapılarda ses yalıtımının sağlanması, · Radyo, televizyon ve müzik aletlerinin evlerde rahatsızlık verecek seviyede yüksek sesle dinlenilmemesi, . Aşırı gürültü yapan kurum veya kuruluşların şehir dışına taşınması şeklinde sıralanabilir .

http://www.biyologlar.com/gurultu-kirliligine-adim-adim-ses-kirliligi-

Mikroorganizmalar

Mikroorganizmalar, çıplak gözle görülemeyecek kadar küçük ve tek hücreli canlılardır. Bakteriler, mayalar, küfler, algler ve protozoa temel mikroorganizmalardır. Şapkalı mantarlar, yosunlar, likenler de aslında mikroorganizmalardır, ancak bunlarda farklılaşmış hücreler ve/veya birleşmiş hücreler olduğu için normal bitkilere benzer görünümdedirler. Tek bir hücreden milyonlarcası çoğalarak koloni denilen ve çıplak gözle görülebilen yapılar oluşur. Ekmeğin, yoğurdun üzerindeki küfler, reçelin üzerindeki mayalar, sirkenin üzerinde toplanan sirke anası, vücutta çıkan iltihaplı sivilceler ve çıbanlar aslında koloni denilen yapılardır. Dünyada 500.000 - 6.000.000 arasında farklı türde mikroorganizma olduğu sanılmaktadır. Bugüne kadar bunların %5 'inden daha azı olduğu kabul edilen 3500 bakteri, 90.000 fungi (maya, küf, şapkalı mantar), 100.000 protist (alg ve protozoa) tanımlanabilmiştir. Mikroorganizmaların Yarar ve Zararları Mikroorganizmaların pek çok yararı vardır. 1-.Doğadaki organik maddeleri bozarak doğaya kazandırır. 2- Çeşitli gıdalar mikroorganizmalar ile elde edilir (yoğurt, kefir, kımız gibi süt ürünleri, tüm alkollü içecekler, sirke, boza, uzak doğu kökenli soy sos gibi çeşitli ürünler, ekmeğin mayalanması, tek hücre proteini). 3- Çeşitli endüstriyel ürünler mikroorganizmalar ile elde edilir (alkol, aseton, butanol vs). 4- Biyolojik atık su arıtımında mikroorganizmalar kullanılır, buradan çıkan çamur değerli bir organik kütledir. 5- Biyogaz reaktörlerinde mikroorganizmalardan yararlanılır. 6- Maden yatakları mikroorganizmalar ile ıslah edilir. 7- Biyolojik gübre, biyoinsektisid üretiminde mikroorganizmalar kullanılır. 8- Doğadaki C, N, P, S gibi çevrimlerde mikroorganizmalar önemlidir. 9- Genetik pek çok çalışmada mikroorganizmalardan yararlanılır. 10-Bağırsaklarda bulunan bazı mikroorganizmalar K vitamini sentezinde faydalıdır. 11-Vücudumuzun normal florasında bulunan m.o.lar zararlı m.o.ların vücudumuza yerleşmesini engellemeye çalışır. 12-Toprakta verimliliği artırır........vs….. Mikroorganizmaların zararlarıda vardır. 1- Mikroorganizmalar insanları, bitkileri ve hayvanları hastalandırırlar ve öldürürler. 2- İnsan ve hayvanlarda çeşitli zehirlenmelere neden olurlar. 3- Gıdaları bozarak kullanılamayacak hale getirirler. 4- Ekonomik zarar ve kayıplara neden olurlar. 5- Ürün kalitesini ve verimini düşürür. 6- İşgücü kayıplarına sebep olurlar……vs Mikroorganizmaları yararlı ve zararlı olarak sınıflandırmak mümkün değildir. İnsanların denetim altında olmak üzere yararlı olan bir mikroorganizma başka bir yerde zararlı olabilir. Örneğin sirke yapımında kullanılan bakteri şarap fabrikasına bulaşırsa işletmenin tüm şarabı sirke haline gelir ve büyük ekonomik kayıp yapar. Genetik çalışmalarda kullanılan mikroorganizmalardan bazıları hastalık yapma (patojen) özelliği taşırlar. Küflü peynir yapımında kullanılan küfler beyaz peynire bulaşırsa hiç bir sağlık sorunu olmaz ancak beyaz peynir küflenmiş görünümde olacağı için tüketici tarafından alınmaz, ayrıca yasal olarak bu peynirin satılması da mümkün değildir. Mikroorganizmaların Büyüklükleri Mikroorganizmalar, gözle görülemeyecek kadar küçük olmaları nedeniyle, ancak mikroskoplar altında görülebilir ve ölçülebilirler. Bakterilerin boyutları, üreme durumuna, besiyerinin bileşimine ve çevresel koşullara göre değişebilir. Hatta, saf kültürlerde bile değişik boyutlara sahip mikroplara rastlanabilmektedir. Ancak, üreme fazındaki kültürlerde, bakteriler, boyutları bakımından bir örneklilik (homojenite) gösterirler. Kültürler durma ve ölme dönemine girerse, normalinden çok daha büyük formlara rastlamak olasıdır. Bu nedenle doğruya yakın bilgiler, kültürler üreme fazında iken, yapılan ölçümlerden elde edilebilir. Mikroplarda, boyamak için, yapılan bazı işlemlerden dolayı olabilecek büzülmeler dikkate alınmazsa, boyalı preparatlar ölçümler için tercih edilirler. Gerektiğinde natif preparatlardan da yararlanılabilir. Mikroorganizmaların (bakteri, virus, mantar, protozoa, vs.) büyüklüklerini belirlemede internasyonal metrik sisteme ait ölçü birimlerinden yararlanılır.Ökaryotik organizmalar ve bakteriler mikrometre (µm =10-6 m), viruslar nanometre (nm =10-9 m), atom ve moleküller de Angstrom (A°, 10-10 m) olarak ölçülmektedirler.

http://www.biyologlar.com/mikroorganizmalar

Bitki Doku Kültürü

Bitki doku kültürü; aseptik şartlarda, yapay bir besin ortamında, bütün bir bitki, hücre (meristematik hücreler, süspansiyon veya kallus hücreleri), doku (çeşitli bitki kısımları=eksplant) veya organ (apikal meristem, kök vb.) gibi bitki kısımlarından yeni doku, bitki veya bitkisel ürünlerin (metabolitler gibi) üretilmesidir.Yeni çeşit geliştirmek ve mevcut çeşitlerde genetik varyabilite oluşturmak doku kültürünün temel amaçları arasında sayılabilir. Bu nedenle bitki doku kültürleri genetiksel iyileştirme çalışmalarında önemli bir rol oynamaktadır. Ayrıca kaybolmakta olan türlerin korunmasında ve çoğaltılması zor olan türlerin üretiminde, çeşitli doku kültürü yöntemleri rutin olarak uygulanmaktadır (Babaoğlu ve ark., 2001-Bitki Biyoteknolojisi Cilt I-Doku Kültürü ve Uygulamaları- Bölüm 1. Temel Laboratuvar Teknikleri). Bitki doku kültürü işlemlerinde ve genetik iyileştirmelerde kullanılan temel sistem bitki rejenerasyonu yani bitkinin hücre, doku ve organlarından klonlanmasıdır. Bitki rejenerasyonu, kültürü yapılan hücrelerin özellikleri itibariyle üç kısımda incelenebilir; 1) organize olmuş meristematik hücreleri ihtiva eden somatik dokulardan rejenerasyon, 2) meristematik olmayan somatik hücrelerden rejenerasyon ve 3) mayoz bölünme geçirmiş gametik hücrelerden rejenerasyon. Birinci tip rejenerasyonda uç ve yan meristemlerden bitkiler çoğaltılır. Buna meristem kültürü yoluyla klonal çoğaltım denilir. Elde edilen hücreler tamamen donör (verici) bitkiye benzerler. İkinci tip rejenerasyon; doğrudan bir bitki parçasının (eksplant denilir) kesilmiş yüzeylerindeki belirli somatik hücrelerin bir kısmının genellikle besin ortamına ilave edilen bitki büyüme düzenleyicilerinin (özellikle oksin ve sitokininler) etkisiyle bölünerek ve organize olarak, organları ve daha sonra da bitkiyi (direkt organogenesis) veya bir somatik hücrenin sürekli bölünerek embriyo ve daha sonra da tam bir bitkiyi oluşturması (direkt somatik embriyogenesis) şeklinde olabilir. Ayrıca her iki durum, belirli bir kallus, proto-kallus veya hücre süspansiyonu oluşumu devresinden sonra da ortaya çıkabilir (indirekt rejenerasyon). Ortaya çıkan bitkilerde bazı kalıtsal veya geçici varyasyonlar oluşabilir. Son olarak normal kromozom sayısının yarısını ihtiva eden hücrelerden de direkt veya dolaylı yollarla bitki rejenerasyonu olabilir. Bu durumda donör bitkinin kromozom sayısının yarısına sahip, genellikle steril olan haploid bitkiler elde edilebilir. Bu bitkicik, doku veya hücrelerde kromozom katlaması yoluyla fertil (dihaploid veya katlanmış haploid) bitkiler elde edilir. Bitki doku kültürlerinin bitki ıslahındaki uygulama alanları Türler arası melezlemelerden sonra embriyo kültürü: Zigot oluşumundan sonra ortaya çıkan (post-zigotik) uyuşmazlıklar in vivo melezlemelerde embriyo oluşumunu veya oluşan embriyoların yaşamalarını engellemektedir. Bu embriyolar özel besin ortamlarında doku kültürü ile geliştirilmekte ve yeni melez bitkiler elde edilebilmektedir. Bu tekniğe embriyo kurtarma tekniği denilmektedir (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 10). Haploid bitki üretiminde anter (polen) ve yumurtalık (ovül) kültürü: Özellikle kendine döllenen bitkilerde yapılan klasik bitki ıslahı melezlemeleri sonrası, hatların saflaştırılması (homozigotlaşması) uzun zaman almaktadır. Mayoz bölünme geçirmiş haploid sayıda kromozoma sahip hücrelerde (polen/mikrospor veya megaspor) veya bu hücreleri ihtiva eden bitki kısımlarının (anter veya yumurtalık) doku kültürü yoluyla elde edilen hücrelerinde veya rejenerantlarında yapılan kromozom katlanması sonucu %100 homozigot bitkiler elde edilebilmektedir. Bu tekniğe in vitro haploidi tekniği denir (Maheswari ve ark., 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 5). Somaklonal varyasyon: Kallus oluşturan veya totipotent olup yeni bitkiler meydana getirebilen hücreler uzun süreli kültürlerde veya kısa süreli de olsa yüksek bitki büyüme düzenleyicileri içeren ortamlarda bu yeteneklerini (kompotens) yitirebilmektedirler. Bu hücrelerden oluşan yeni bitkilerde gen veya kromozom bozuklukları sonucu kalıtsal ve fenotipik varyasyonlar (somaklonal varyasyon) ortaya çıkmaktadır. Bu varyasyonlar, yeni çeşit geliştirme ve iyileştirmelerde ıslahçılar tarafından kullanılmaktadır (Chrispeels ve Sadava, 1994). Somaklonal varyasyon sonucu ortaya çıkan değişiklikler arasında, bazı pigmentlerin yapısındaki farklılaşmalar sonucu çiçek renginin, yaprak ve çiçek morfolojisinin, tohum veriminin, bitki canlılığı ve iriliğinin, uçucu yağ kompozisyonu ve hastalıklara tolerans veya dayanıklılığın değişmesi sayılabilir (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 11). İn vitro seleksiyon: Tek hücre seviyesinde; tuz, herbisitler, patojenler vb. faktörlere karşı dayanıklılığa göre yapılan seleksiyonlar sonucu, bu hücrelerden elde edilen bitkilerde ilgili faktörlere dayanıklı veya toleranslı bitkiler ortaya çıkabilir. Bu tekniğe in vitro seleksiyon denilmektedir. İn vitro döllenme: Bazı durumlarda (özellikle dış ortama alıştırılamayan bitkilerden tohum almak için) doku kültürü ile elde edilen bitkiler laboratuvar şartlarında tozlaştırılmaktadır. Fakat bu uygulama çok sınırlı kalmıştır. İn vitro germplazm muhafazası: Totipotent hücrelerin in vitro kültürü, kallus veya süspansiyon hücreleri şeklinde uzun süreli olarak veya belirli aralıklarla yeniden oluşturularak saklanabilir ve ihtiyaç duyulduğunda bu hücrelerden yeni bitkiler oluşturulabilir. Alternatif olarak ilgili hücreler, meristemler veya elde edilen minyatür bitkiler düşük sıcaklıkta (4 0C), çok az besin maddesine ve alana ihtiyaç göstererek aseptik şartlarda saklanabilir (1-4 yıl). Benzer şekilde çok düşük sıcaklıklarda –196 0C), sıvı azot içinde doku ve hücreler hızlı bir şekilde dondurulup saklanabilirler. Bu doku kültürü teknikleri in vitro germplazm muhafazasında önemlidir ve gen ve tohum bankalarına alternatif oluşturmaktadır (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 9). Somatik hücre melezlemesi (protoplast füzyonu): Protoplast füzyonu ve somatik melezleme, pre-zigotik eşeysel uyuşmazlıklar nedeniyle, klasik melezleme ile elde edilemeyen hibritlerin elde edilmesinde kimyasal ve fiziksel metotlar kullanılarak uygulanan bir tekniktir. Elde edilen somatik melez hücreden (heterokaryon), kallus oluşumu ve bitki rejenerasyonu yoluyla yeni bitkilerin elde edilmesi sistemin en önemli ve en gerekli parçasıdır. Bu işlem genel anlamda genetik kopyalamadır ve bitkilerde yaklaşık 30 yıldan beri uygulanmakta olup en başarılı örneği tütün bitkisinde görülmüştür (Ochatt ve Power, 1992) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 4). Gen transferi: Doku kültürlerinin bitkileri iyileştirmede en önemli ve yaygın olarak kullanılan uygulamalarından birisi de, gen veya genlerin bitkilere aktarılmasıdır. Bunun için mutlaka tekrarlanabilir bir hücre-bitki rejenerasyonu (organogenesis ve somatik embriyogenesis) sistemine ihtiyaç vardır (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 2, 3 ve 4). Bitki doku kültürünün ticari ve ıslah dışı uygulamaları Hastalıksız bitki elde edilmesinde meristem kültürü: Tüm apikal meristem veya buradan alınan küçük embriyonik parçalar kültüre alınarak uygulanan tekniğe meristem kültürü denir. Çok az miktarlarda bitki büyüme düzenleyicileri ilave edildiğinde uç ve yan meristemlerden birçok yeni bitkicikler elde edilebilmektedir. Bu metotla elde edilen bitkiler her bakımdan birbirinin benzeridirler (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 6). Mikroçoğaltım: Organize meristemlerden, henüz olgunlaşmamış veya olgunlaşmasını tamamlamış somatik hücrelerden direkt (organogenesis veya somatik embriyogenesis) veya indirekt (kallus, protoplast vb.) yollarla bitkilerin çoğaltılması ve köklendirilmesi işlemine genel olarak mikroçoğaltım denilmektedir. ABD'de doku kültürünün ticari uygulaması 1970' de başlamış (orkidelerde ve süs bitkilerinde) ve bu yolla elde edilen ürünlerin pazar değeri bu gün yılda 15 milyar dolara ulaşmıştır. Daha az sürgün elde edilmesine rağmen uç ve yan meristemlerden kitle çoğaltım ticari olarak diğerlerinden daha fazla kullanılan bir metottur (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 8). Aşağıda bir videoda ticari doku kültürü üretim laboratuvarından görüntüler vardır. Benzer konularda diğer videolar da görülebilir. Tüm çalışmalar steril şartlarda laminar hava akışlı kabin içinde yapılmaktadır. Sentetik tohum üretimi (somatik embriyolar): Somatik embriyoların çeşitli metotlarla kaplanması sonucu sentetik (yapay) tohumlar elde edilmektedir. Sentetik tohumların, hibritlerin somatik çoğaltımında, erkısır ve ebeveyn hatların muhafazasında ve odunsu bitkilerin elit genotiplerinin elde tutulmasında kullanımı konusunda oldukça fazla çalışma yapılmaktadır. Sekonder metabolit üretimi (kallus-hücre süspansiyonları): İn vitro hücre kültürleri sekonder metabolit üretiminde de önemli bir kaynak olarak görülmektedir. Bitki sekonder metabolitleri, bitki büyüme ve gelişmesinde doğrudan kullanılmayan maddelerdir. Işık mikroskobu ile görülebilen sekonder metabolitlerin (tanenler, antosiyaninler, karetenoitler) yanında UV ışığı ile görülebilenleri (alkaloitler) de vardır. Son yıllarda sekonder metabolit üretimi için ot verimi yüksek, çok yıllık, geniş adaptasyon kabiliyetine sahip ve azotlu gübre kullanımı oldukça az olan yonca, alternatif bir bitki olarak gösterilmektedir. İlgili enzim alındıktan sonra yoncanın geriye kalan kısmı ot olarak kullanılabilir (Austin, 1997) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 7). Kimeralar: Doku kültüründe, özellikle süs bitkilerinde üzerinde önemle durulan konulardan birisi de kimeralardır. Kimerik bitkiler; farklı türlerin protoplastlarının karışık kültürü ve bitki rejenerasyonu, mutasyon uygulamaları sonucu bitki rejenerasyonu çalışmaları, apikal meristemle ilgili yapılan mikro-cerrahi çalışmaları ve gen transferi yapılması sırasında, bir bitkiyi oluşturan bütün hücrelerin ilgili gen veya genleri taşımaması durumlarında (özellikle partikül bombardımanı metodu ve apikal meristemler kullanıldığında) elde edilebilmektedir. Bitki doku kültürlerinin temel araştırmalardaki uygulamaları Doku kültürü, protoplast izolasyonu ve füzyonu, hücre, doku ve bitki beslenmesi, sitogenetik çalışmalar, morfogenesis çalışmaları ve biyolojik azot fiksasyonu gibi temel araştırmalarda da kullanılmaktadır. Bu tür araştırmalar genellikle sistem geliştirmede faydalı olmaktadır. Doku Kültüründe Temel Teknikler Doku kültürü işlemleri bir çok aşamadan oluşmaktadır. Bunlar: 1) Uygun bir laboratuvar düzeninin kurulması, 2) Kullanılacak bitki parçalarının (eksplant) ve besin ortamlarının seçimi, hazırlanması ve sterilizasyonu, 3) Kallus ve hücre süspansiyonlarının oluşturulması, 4) Kallus veya hücre süspansiyonlarından veya doğrudan somatik veya gametik hücrelerden bitki rejenerasyonunun uyarılması (organogenesis, somatik embriyogenesis veya meristem çoğaltımı yoluyla), 5) Oluşan sürgünlerin çoğaltılması ve boylarının uzatılması, somatik embriyoların olgunlaştırılması, 6) Uzayan sürgünlerin köklendirilmesi, 7) Köklenen bitkilerin dış ortama alıştırılması (aklimatizasyon). Bunlar arasında en önemlisi, uygun laboratuvar imkanlarının sağlanmasıdır. Doku Kültüründe en önemli konu steril işlemleri yapabilecek bazı temel alet ve ekipmanlara veya iyi bir laboratuvara sahip olmak gerekmektedir. Doku kültüründe en temel konular bitki parçaları ve kullanılacak alet ekipmanların iyice temizlenmesi (sterilizasyon), besin ortamlarının hazırlanması ve kültüre alınacak yerin belirlenmesidir.

http://www.biyologlar.com/bitki-doku-kulturu-3

IŞIK SOLUNUMU (FOTORESPİRASYON)

Kloroplastlarda CO2 RuBP karboksilaz enzimi katalizörlüğünde RuBP tarafından yakalanarak PGA oluşturulup C3 yoluna katılır. Ancak O2 yokluğunun çok fazla olması durumunda aynı enzim RuBP ile O2’in birleşmesini sağlar. Bu durumda enzime RuBP oksijenaz denir. Esasen RuBP oksijenaz ve karboksilaz aynı enzim olup Rubisko olarak adlandırılır. Böylece 1 molekül fosfoglikolik asit (P-glikolat) ile 1 molekül PGA meydana gelir. Glikolik asit, peroksizomlarda taşınır. Burada glikolik asit ile O2, glikolat oksidaz enzimi katalizörlüğünde birleştirilerek glioksilik asit oluşturulur. Dolayısıyla fotorespirasyona glikolik asit yolu da denir. Bu esnada oluşan hidrojenperoksit (H2O2) zehirli bir madde olduğundan peroksizomlarda katalaz enzimiyle suya parçalanır. Daha sonra da glioksilattan glisin ve serin gibi amino asitler sentezlenir ve CO2’in bir kısmı serbest bırakılır. Bu olay ışıkta meydana geldiği ve olayda O2 kullanıldığı için ışık solunumu denilmiştir. Burda amaç ATP sentezlemek olmadığından, bu gerçek bir solunum değildir. Işıklandırılmış bir yaprakta fotosentezin aleyhine çalışan bir olaydır. Bu olayın fotosentezin verimini yarı yarıya azalttığı tesbit edilmiştir. Ancak bu sırada bazı aminoasitlerin sentezlenmeside bir avantajdır. Bütün bitkiler ışık solunumu yapmazlar. C3 bitkilerinin tümü ışık solunumu yaparken C4 bitkileri ya hiç yapmazlar veya çok az yaparlar. Çünkü C4 bitkilerinde glikolat oksidaz enzimi ya hiç yok veya çok azdır. Bu da C4 bitkilerinde fotosentez veriminin yüksek olmasının bir diğer sebebidir. Işık solunumu sırasıyla kloroplast, peroksizom ve mitokondride gerçekleşir. Serin amino asitten gliserat ve PGA oluşarak C3 yoluna entegrasyon oluyorsa fotosentezin aleyhine bir durum meydana gelmez. Ancak bitkinin amino asitlere ihtiyacı varsa amino asitler sentezlenecektir ve C3 yolu ile entegrasyon geçişi olarak kalkacaktır. KEMOSENTEZ Ototrof yaşayan sadece yeşil bitkiler değiller bazı bakterilerde ototrofturlar. Ancak bu bakteriler ışığı kullanarak değil kimyasal maddeleri okside ederek açığa çıkardıkları enerji kullanılarak CO2’di karbonhidratlara indirgerler. Bu olaya kemosentez adı verilir. Kemosentez bakterileri bu yaşam biçimleriyle doğada madde döngüsüne katkı sağlarlar. Bir çok toksik maddeyi etkisiz hale getirirler ve erimeyen bazı maddeleri eriterek kullanılır hale koyarlar. Başlıca kemosentez tipleri: Azot oksidasyonu : Toprakta bitki ve hayvan kalıntılarından oluşan NH (amonyak) Nitrosomans cinsi bakteriler tarafından nitrite (NO) çevrilir. Bu reaksiyonda açığa çıkan enerji nitrosomanslarca kemosentezde kullanılır. Ortaya çıkan HNO’lerde diğer bir bakteri grubu olan Nitrobakteriler tarafından nitrata dönüştürülürler ve bitkilere azot sağlamış olurlar. Kükürt oksidasyonu : Beggiatoa, Thiospirillum gibi kükürt bakterileri HS ve S okside ederek enerji sağlarlar ve kemosentez yaparlar. Demir oksidasyonu: Leptotrhrix, spirophyllum gibi bakterileri iki değerli demiri (Fe)üç değerli demire (Fe) demire okside ederek kemosentez yaparlar(PAS). Kemosentezde KH sentezinin nasıl seyrettiği pek bilinmemektedir. SOLUNUM Tüm canlı hücrelerin yapmak zorunda olduğu bir yıkım olayıdır. Amaç hücrenin kendine yetecek enerjiyi temin etme isteğidir. Bu enerji bilindiği gibi sentez ürünlerinde ki kimyasal bağlarda saklıdır. Karbonhidratlar, yağlar ve proteinler başlangıçta güneşten aldıkları enerjiyi solunum reaksiyonlarıyla ATP olarak dışarı vererek canlıların metabolik, büyüme, gelişme, vücut ısısı ayarlama ve eylemlerini gerçekleştirme gibi aktivitelerde kullanmalarında olanak sağlar . Temel organik maddelerin solunum reaksiyonları yolunda parçalanıp kimyasal bağ enerjilerini ATP’ ye dönüştürmeleri için öncelikle yapı taşlarına ayrışmaları gerekmektedir. Örneğin; Nişatanın → glikoza yağ moleküllerinin → yağ asitleri ve gliserol’a proteinlerin → amino asitler’e hidroliz olmaları ve hücrelere kadar taşınmaları şarttır. Solunum sistemli bir yanma olayıdır. Organik moleküller, başta şeker olmak üzere hücrelerde kademe kademe yıkılarak, karbon iskeletlerindeki bağlardan çıkan enerji mitokondri kristalarında yerleşmiş ETS (Elektron Taşıma Sistemi) vasıtasıyla ATP’ye dönüştürülür. Buna oksidatif fosforilasyon yada biyolojik yanma denir. Petrol, odun, kömür gibi fosil yolla organik yakacakların yanması durumunda ise C iskeletlerdeki bağlardan hızla salınan enerjide ısı, ışık olarak etrafa yayılır. Bu bir kimyasal yanmadır. Solunumdaki yanmadan farklıdır. Solunumda esas amaç enerji temini yani ATP üretimi olsada, bu sırada metabolizma için gerekli bir çok yan üründe meydana gelmektedir. Örneğin; çeşitli organik asitler, amino asitler, nükleotidler, pigmentler v.s. oluşmaktadır. Solunum için kullanılan öncelikli molekül glukoz’dur. Glukoz un bulunduğu hücrede daima yıkıma uğrayan bu 6 C’lu molekül olmaktadır. Solunum sitoplazmada başlayıp mitokondride devam eden bir çok biyokimyasal olayın ard arda seyrettiği bir döngüdür. Bütün yüksek bitkiler ve organizmalar solunum (aerobik solunum) yaparlar ama bazı mikroorganizmalar oksijen kullanmadan Enzimleri sayesinde oksijensiz olarak solunum(anaerobik solunum) yaparlar, buna fermentasyon denir. Oksijenli solunum glukoz kullanıldığında başlıca üç aşamada gerçekleşir. 1 - Glikoliz Safhası (sitoplazmada gerçekleşir) 2 - Krebs Döngüsü (mitokondri matriksinde gerçekleşir) 3 - Elektron Taşınım Sistemi (mitokondri kristalarında gerçekleşir) GLİKOLİZ Hücre sitoplazmasında glukozun oksijene gereksinim duyulmadan iki pirüvik asite (pirüvat) kadar parçalanması olayıdır. Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır. Bu ATP’ler ve enzimler sayesinde öncelikle iki 3C’lu aldehite dönüşen glikoz molekülü bir inorganik fosfat (Pi) girişi, 2 H+ ve 4 ATP çıkışı sağlayan bir dizi reaksiyondan sonra 2PA’ te dönüşür ve bu pirüvik asitler normal yolda mitokondrilere taşınırlar. Olağan dışı durumlarda ise Laktik Asit (LE)’e dönüşmek suretiyle 4ATP çıkışının devam etmesini sağlar (anaerobik solunum). KREBS ÇEMBERİ Mitokondri matriksinde PA (3C) ’ tin Asetil CoA (2C)’ya dönüşmesiyle başlayan bu reaksiyonlar döngüsünde 3C’lu molekülün tüm karbonları CO2’te dönüşür. Sonuçta 4 NADH2, bir FADH2 ve substrat reaksiyonu ile bir ATP ortaya çıkmaktadır. 1 glukoz molekülü için bu çıktılar ikiye katlanacaktır. Bu çemberde meydana gelen organik asitler üç karboksil grubu ihtiva ettiği için bu çembere Trikarboksilik Asit Çemberi (TCA)’de denir ELEKTRON TAŞINIM SİSTEMİ Bu sistem mitokondri kristalarında bulunur. ETS’de elektron ve hidrojen taşıyan özel maddeler vardır. Elektron taşınırken ATP sentaz (moleküler değirmen) enziminin aktivasyonuyla ATP sentezi olur. Buna oksidatif fosforilasyon adı verilir. Taşınan elektronlar en son akseptorden (sitokrom a3) ayrılınca matriksteki 2H+ ve O2 ile birleşerek H2O teşkil eder. Buna da terminal oksidasyon denir. Mitokondride cereyan eden bütün bu olaylar (TCA, oksidatif fosforilasyon ve terminal oksidasyon) için O2 gereklidir. O2 yokluğunda meydana gelmezler. ETS’de ATP sentezi, kemiozmotik teoriye göre , oksidatif fosforilasyon ile şöyle olmaktadır; ETS’de yeralan bazı akseptörler H+ ve elektron alarak indirgenir. Bunlar, flavinmononükleotid (FMN) ve ubikinon (UQ) dur. Bunlar hidrojenleri zarlar arası boşluğa pompalarken elektronları elektron akseptörlerine (sitokromlar ve Fe-S proteinleri) verirler. Elektronlar bu şekilde H2O’a kadar taşınırlar. Matriksdeki TCA’dan veya sitoplazmadaki glikolizden gelen hidrojenler bu şekilde zarlar arası boşluğa bırakıldıkça burası asitleşir ve zar potansiyeli oluşur. Bu durumda ATP sentaz enzimi aktive olarak hidrojenleri matrikse geçirir. Bu sırada enzimin katalizörlüğünde ATP sentezi olur. Hidrojen ve elektronlar krista zarındaki ETS’ye NADH2 veya FADH2 halinde getirilerek ETS’ye katılırlar. TCA’nın NADH2’leri ETS’nin başından itibaren zincire katıldığından ve üç yerde hidrojen pompalanması olduğundan NADH2 başına 3 ATP sentezlenir. Oysa TCA’nın FADH2’leri ve glikoliz NADH2’leri ETS’ye UQ’dan itibaren katıldıklarından iki yerde hidrojen pompalanması olur ve 2 ATP sentezlenir. Glikolizden gelen NADH2’ler başına 2ATP sentezlendiğinin sebebi şudur; sitoplazmadan mitokondriye geçişte mitokondri zarında bulunan ve gliserol fosfat mekiği denilen özel bir transport sistemiyle NADH2’lerin H+’leri mitokondri içine geçirilir ve bir flavoprotein (FAD) üzerinden UQ’a aktarılır. Yani sitoplazmadan gelen H+’ler ETS’ye ortadan katıldığı için iki yerde H+ pompalanmasına ve dolayısıyla 2ATP sentezine sebep olur. SOLUNUMDA ENERJİ BİLANÇOSU Glikoliz ve TCA’dan ayrılan Hidrojenleri NAD veya FAD yakalar ve NADH2 veya FADH2 halinde ETS’ ye getirirler. Yapılarındaki hidrojen ve elektronları ETS’ye verip tekrar iş başına dönerler. Şekil’de NADH2 ve FADH2’lerin hangi reaksiyonlardan kaynaklandığı ve her birisi için kaç ATP sentezlendiği belirtildi. Bunları toplarsak 16 ATP eder. Fakat bu reaksiyonlar iki defa meydana geldiğinden 16 x 2 = 32 ATP yapar. Şu halde oksidatif fosforilasyon yoluyla solunumda 32 ATP sentezlenir. Bir de 2 tane glikolizden 2 tane de TCA’dan fosforilatif yolla direkt ATP sentezi vardı. Bunları da eklersek 36 ATP eder. Yani glikoz molekülünün solunuma girip okside olmasıyla 36 ATP sentezlenir. Yapılan hesaplamalarda bir glikozun yıkımıyla esasında 686 Kkal’lik bir enerji çıkmaktadır. Oysa bir ATP’nin hidroliziyle 7,4 Kkal’lik bir enerji açığa çıkar ve 36 x 7,4 = 266,4 Kkal’lik bir enerji solunumda ATP halinde tutulmuş olur. Geriye kalan 420 Kkal2lil enerji ısı olarak yayılır. Yani glikozdan açığa çıkarılan enerjinin % 40 kadarı ATP halinde tutulabilmektedir. SOLUNUM SIRASINDA MEYDANA GELEN YAN ÜRÜNLER Solunumun esas amacı ATP sentezi yapmaktır. Fakat bu esnada değişik basmaklardan kaynaklanan çeşitli organik maddelerin sentezi de yapılır. Bu yüzden solunum bir taraftan yıkılma ve parçalanma iken diğer taraftan organiklerin sentezine sebep olan bir merkezdir. SOLUNUM KATSAYISI Solunumun ölçülmesi, bitkilerin solunumla tükettiği O2’nin ve dışarı verdiği CO2’nin ölçülmesine dayanır. Bu bakımdan solunumda oluşan CO2’in tüketilen O2’e oranı solunum katsayısı olarak adlandırılır ve RQ sembölü ile gösterilir. Solunumda KH’ların kullanılması durumunda bu katsayı 1’dir. Yani KH’ların solunumunda verilen CO2 alınan O2’e eşittir. Mesela; Solunumda yağlar gibi oksijence fakir organik maddeler okside edildiğinde oksidasyon için daha çok O2’e ihtiyaç olduğudan CO2 / O2 oranı düşük olacağından solunum katsayısıda 1’den azdır. Mesela; Yapısında bol oksijen ihtiva eden organik maddelerin oksidasyonu için az oksijen gerekli olduğundan bunların solunum katsayıları 1’den büyüktür. Mesala organik asitler bu şekilde oksijence zengindir. Oksijence fakir olan proteinlerinde solunum katsayıları 1’den azdır. Görüldüğü gibi, solunum yapan bir bitki dokusunda solunum katsayısını ölçerek o dokunun solunumda kullandığı organik madde grubunun ne olduğu hakkında genel bir bilgi sahibi olabiliriz. Normal koşullarda bitkiler ve hayvanlar solunumda öncelikle KH’ları kullanırlar. Ancak depo maddeleri tükenince diğer indirgenmiş maddeleri (yağlar, proteinler gibi) solunum substratı olarak kullanmaya başlarlar. Yağların ve proteinlerin solunuma katkısı KH’ın katkısından farklıdır. Bu maddelerin yıkımında glikoliz safhası yoktur. FERMANTASYON Oksijen olmaksızın besinler nasıl okside edilir? Oksidasyon, elektronların sadece oksijene değil, elektronların herhangi bir elektron alıcısına verilmesidir. Glikoliz, gulukozu iki molekül pirüvata oksitler. Glikolizin oksitleyici ajanı oksijen değil, NAD+’dır. Özet olarak, glikoliz ekzergonik olup, açığa çıkan enerjinin bir kısmı substrat – seviyesinde fosforilasyon ile net olarak 2 ATP üretmek için kullanılır. Eğer oksijen varsa, gulukozdan uzaklaştırılan elektronları taşıyan NADH bu elektronları elektron taşıma zincirine verdiğinde, oksidatif fosforilasyon ile ek ATPler üretilir. Ancak oksijen olsa da olmasa da, yani koşullar aerobik de anaerobik de olsa glikoliz 2 ATP üretir. (aer hava ve bios canlılık demektir; “an” olumsuzluk belirtir) Organik besinlerin anaerobik yıkımı, fermantasyon ile gerçekleşir. Fermantasyon glikolizin uzantısı olup, glikolizin oksidasyon basamağında ortaya çıkan elektronları kabul edecek yeterli NAD+ sağlandığı sürece, substrat seviyesinde ATP üretebilir. NADH dan NAD+ oluşturacak bir mekanizma olmaksızın, hücrenin NAD+ havuzu glikoliz sırasında tükenir ve oksitleyici bir ajan olmadığı için glikoliz durur. Aerobik koşullarda elektronların elektron taşıma zincirine aktarılmasıyla, NADH dan NAD+ oluşturulması sürer. Bu işlemin anaerobik alternatifi, NADH dan glikolizin son ürünü olan pirüvata elektron aktarımıdır. Fermantasyon, glikoliz ile elektronların NADH’dan pirüvata ya da pirüvat türevlerine aktarılmasıyla yeniden NAD+ üreten tepkimeleri kapsar. Bu NAD+ glikoliz ile şekerin okside edilmesi için tekrar kullanılır ve substrat seviyesinde fosforilasyon aracılığı ile net olarak 2 ATP üretilir. Pirüvattan oluşturulan son ürünlere göre bir çok fermantasyon tipi vardır. Alkolik Fermantasyonda pirüvat 2 basamakta etanole dönüştürülür. İlk basamakta pirüvattan CO2 uzaklaştırılır ve 2 karbonlu bir bileşik olan asetaldehit oluşur. İkinci basmakta ise, asetaldehit NADH ile etanole redüklenir. Böylece glikoliz için gerekli olan NAD+ yenilenmiş olur. Laktik Asit Fermantasyonu sırasında pirüvat NADH tarafından doğrudan doğruya redüklenir. Bu sırada CO2 salınmaz. Genelde mikroorganizmalar fermantasyon yapar. Ancak oksijen yetersizliğinde, su stresinde (fizyolojik kuraklık) yüksek bitkilerde biraz yapar. Fazlası bitkiler için toksiktir. Bazı tohumlarda tohum çimlenmesinin ilk basamaklarında da olabilir. Fermantasyon yapan bakterilerin bazısı oksijensiz ortamda yaşar (obligat anaeroblar). Mesela, Basillus botilinus. Bazı mikroorganizmalar ise hem oksijenli hem de oksijensiz ortamda yaşayabilirler (fakültatif anaeroblar). Mesela, Saccharomyces cerevisia mantarı. PENTOZ FOSFAT YOLU Yaşlı ve hasta bitkilerde görülen bu yolda genellikle 5C’lu şekerler sentezlendiği için bu yola pentoz fosfat yolu adı verilir. Pentoz fosfat yolu sitoplazmada cereyan eder ancak karanlıkta kloroplastlarda da meydana gelir. Bu yol glikolizden ayrılıp tekrar ona bağlanan bir yan yoldur. Glikoz-6-Fosfat tan itibaren başlar ve riboz gibi 5 C’lu şekerler sentezlenir. İki önemli ürün nükleik asitlerin yapısında bulunan 5C’lu şekerler ve indirgenme reaksiyonlarının vazgeçilmezi olan NADPH2 sentezlenir. Bu yol bitki hücrelerinde glikoliz ve TCA reaksiyonları ile birlikte yürür. Dışarı verilen CO2’in ¼ nin bu yolla sentezlendiği hesaplanmıştır. GLİOKSİLAT YOLU: Bitkilerde yağlar şekerlere dönüştürülemez. Ancak endospermlerinde yağ depolayan tohumlarda (ay çiçeği, hint yağı, soya gibi) çimlenme sırasında yağlar şekere dönüştürülebilmektedir. Çimlenme sonucu meydana gelen plumula, radikula gibi organalara besin gerektiğinde, endospermadan yağ taşınımı mümkün olmadığı için bu sırada yağlar şekere çevrilerek bu organlara taşınmaktadır. Bu yola glioksilat yolu denir. Reaksiyonlar endosperm hücrelerinde buluna glioksizom adı veilen organellerde gerçekleşmektedir. Bu reaksiyonların yürümesini sağlayan malat sentataz ve izositraz enzimleri sadece glioksizomlarda bulunur. Glioksizomlarda sadece yağ depolayan endosperm hücrelerinde bulunduğu için bu olay başka dokularda görülmez. Glioksilat yolu hem mitokondrideki TCA çemberiyle hem de sitoplazmadaki glikoneogenaz youluyla irtibatlı olarak çalışır. ALTERNATİF SOLUNUM YOLU Siyanür (CN-), azid (N3-) ve karbon monoksit (CO) gibi inhibitörler şekilde gösterilen solunumun ETS safhasını inhibe ederek solunumu engeller. Bu inhibisyon, ETS’nin son basamağında görev yapan sitokrom oksidaz enziminin bloke olmasıyla meydana gelir. Bitkilerde siyanüre dirençli bir alternatif solunum yolu bulunduğu anlaşılmış ancak henüz detaylı bilgi elde edilememiştir. Mevcut bilgilere göre, normal solunumda elektron taşınımı elektronlar 1. ubikinon ’dan sitokrom b ’ye değil kısa yoldan henüz mahiyeti tam bilinmeyen ve terminal oksidaz adı verilen siyanüre dirençli bir enzim üzerinden oksijene taşınır. Dolayısıyla alternatif solunum yolunda ATP sentezi ya hiç olmaz ya da çok az olur. Çünkü ETS’de elektron akışı sağlanamadığı için yeterli bir H+ pompalanması ve zar potansiyeli oluşmaz. Dolayısıyla solunumda açığa çıkan enerji ortama ısı enerjisi olarak dağılır.

http://www.biyologlar.com/isik-solunumu-fotorespirasyon

Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

GİBERELLİNLER : Bitki Boyu Düzenleyicileri

Giberellinler Japonya’da 2. Dünya Savaşı yıllarında keşfedilmiştir, fakat bu sırada batı ile ilişkiler kopuk olduğundan batı bu keşfi 1950’lerde öğrenmiştir. Yüzyıl önce, Asya‟daki çiftçiler çeltik tarlalarındaki pirinç fidelerinin aşırı ölçüde boylandıklarını ve ince kaldıklarını gözlediler. Bu durumda, fideler olgunlaşmadan ve çiçek oluşturmadan önce, ince ve cılız oluyor ve bu sebepten dik duramayıp erkenden ölüyordu veya verim düşüyordu. Japon bitki pataloğu Kurusowa, 1926‟da, sersem fide hastalığı denen bu hastalığa Ascomycetes türü olan Gibberella fujikuroi isimli mantarın sebep olduğunu buldu. 1930‟lu yıllara kadar, fungusun giberellin adı verilen (Gibberella fujikuroi türüne itafen) bir kimyasal salgılayarak pirinç gövdelerinin aşırı uzamasına neden olduğunu buldular. Araştırmacılar, 1950‟lerde bitkilerinde giberellinleri sentezlediklerini keşfettiler. Her ne kadar sayıları her bir bitki türünde çok daha az ise de, bilim adamları son 40 yılda bitkilerde doğal olarak sentezlenen 100‟den fazla giberellin bulmuşlardır. Bunlar GA1,GA2,GA3…. şeklinde isimlendirlirler. En yaygın olanı ise GA3 yani giberellik asit (giberellan çekirdek)‟tir. Diğer giberellinler bu temel yapıya bağlı çeşitli yan gruplara sahiptir. Giberellin Biyosentezi ve Metabolizması Giberellin sentezi, bitkide asetil-KoA‟nın asetil biriminden başlar. Solunumdan kaynaklanan mevalonik asit yoluyla birkaç reaksiyondan sonra giberellin sentezlenir. Giberellinler diterpenler grubundadır. Giberellin sentezinin kaurenik aside kadar sitopolazmada, ancak giberellinlerin birbirine dönüşümünün kloroplastlarda olduğu bilinmektedir. 20 karbonlu kauren tüm gibberellinlerin çıkış noktasıdır. Piyasada giberellin antagonisti (büyüme engelleyici) olarak satılan Fosfon-D, Amo-1618, CCC gibi sentetik engelleyiciler giberellin sentezinin belirli reaksiyonlarını inhibe ederler. Bitkide genç yapraklarda ve daha çok tohum embriyosunda sentezlenirler. Buralardan bitkinin diğer kısımlarına taşınırlar. Çimlenen tohumlarda floem vasıtasıyla fideye taşınan giberellinlerin, genç yapraklardan diğer kısımlara hangi yolla taşındığı çelişkilidr. Daha çok floem dışıyollarla korteks ve öz parankimasından difüzyonla taşındığı düşünülmektedir. Dolayısıyla giberellinlerin taşınımı oksin taşınımı gibi polar olmayıp, olasılıkla, her yönde aynı hızdadır. Giberellinler sentezlendikten sonra çok yavaş parçalanırlar. Giberellinleri parçalayan enzimler bilinmemektedir. Giberellinler şekerlerle veya proteinlerle birleşerek inaktive olurlar. Ayrıca aktif olan giberllinler daha az aktif giberellinlere kolayca dönüşebilmektedir. Örneğin, GA4‟ün daha az aktif GA34‟e dönüşümü çok sık gerçekleşir. Giberellinlerin Fizyolojik Etkileri ve Pratik Değeri Gövde Uzaması Giberellinler esas olarak kökler ve genç yapraklarda üretilir. Giberellinler hem yapraklarda hem de gövdelerde büyümeyi teşvik etmekle birlikte, kök büyümesi üzerinde çok az etkiye sahiptir. Giberellinler, gövdelerde hücre uzamasını ve hücre bölünmesini uyarır. Oksinler gibi giberellinler de hücre gevşemesine neden olurlar. Ancak bunu çeperi asitleştirerek yapmazlar. Bir varsayıma göre, giberellinler hücre çeperi gevşetici enzimleri uyarmaktadır. Bu enzimler hücre çeperine ekspansinlerin girişini kolaylaştırmaktadır. Böylece, büyüyen bir gövdede uzamayı artırmak için oksin ve sitokininle birlikte hareket etmektedir. Bu süreçte, oksin hücre çeperini asitleştirmekte ve ekspansinleri aktifleştirmekte; giberellinler ise ekspansinlerin girişini kolaylaştırmaktadır. Cüce bitkilere (mutantlar) giberellin uygulanarak, giberellinlerin gövde uzamasına artırıcı etkisi ortaya konmuştur. Örneğin, bazı cüce bezelye bitkilerine (Mendel‟in çalıştığı türler dahil) giberellin uygulanırsa, çoğunlukla yanıt alınmaz. Çünkü, bu bitkiler önceden optimum dozda hormon üretmişlerdir. Çiçek sapının hızla büyümesi giberellinin teşvik ettiği gövde uzaması ile ilgili en dikkat çekici durumdur. Lahana benzeri bitkiler vejetatif evrede rozet formundadırlar: yani çok kısa internodyumlu oluşları nedeniyle toprağa çok yakındırlar. Bitki üreme evresine geçince; giberellinlerin artması internodyum uzamasını hızla artırır. Bunun sonucunda gövde uçlarındaki çiçek tomurcuklarının boyu uzar. Meyve Büyümesi Pek çok bitkide, meyve bağlanması için hem oksin hem de giberellinlerin bulunması gerekir. Giberellinlerin en önemli ticari uygulaması, Thompson isimli çekirdeksiz isimlere püskürtülmesidir. Hormon, tüketicilerin istediği biçimde, üzüm tanelerinin büyümesini ve salkımların internodyumlarının uzamasını sağlar. Taneler arasında hava dolaşımını artırdığından, diğer meyvelerin ve diğer mikroorganizmaların hastalık bulaştırıcı etkisi de azalır. Çimlenme Tohum embriyoları, zengin bir giberellin kaynağıdır. Suya batırıldıktan sonra, embriyodan serbest bırakılan giberellinler dormansinin kırılması ve çimlenmenin başlaması için tohuma sinyal gönderir. Çimlenme için ışık yada düşük sıcaklık gibi özel ortam koşullarına gereksinim duyan bazı tohumlara giberellin uygulanması durumunda dormansi kırılır. Giberellinler depo besin elementlerini mobilize eden α – amilaz gibi sindirici enzimlerin sentezini teşvik ederek tahıl fidelerinin büyümesini destekler. Ayrıca giberellinler çiçeklenme hormonu olarak bilinir. Bir çok bitkide çiçeklenmeyi teşvik eder. Gerek fotoperyodizmle gerekse vernalizasyonla çiçek açmada giberellinler rol alırlar. ABSİSİK ASİT : Stres Hormonu Absisik asit (ABA) kimyasal grup olarak seskuiterpenler grubundan bir maddedir. ABA‟nın giberellinlerle ortak noktası her ikisinin de ana grup olarak terpenlerden olmalarıdır. ABA bitkiler tarafından sentezlenen en önemli engelleyici hormondur. Tomurcuk dormansisinden önce ortaya çıkan kimyasal değişiklikleri çalışan bir araştırma grubu ve yaprak absisyonundan (son baharda yaprak dökülmesi) önce ortaya çıkan kimyasal değişiklikleri çalışan bir diğer ekip, 1960‟da, aynı bileşiği yani absisik asiti (ABA) izole etmiştir. Aynı yıllarda başka araştırma grupları akça ağaç ve baklada da ABA‟yı izole ettiler. Daha sonrayapılan çalışmalarda ABA‟nın ciğer otları, algler, bakteriler ve mantarlar dışında genel olarak bitki aleminde mevcut olduğu tespit edildi. ABA bulunmayan bitkilerde başka engelleyicilerin bulunduğu düşünülmektedir. Diğer açıdan işin garip tarafı ise, şu anda, ABA‟nın ne tomurcuk dormansisinde ne de yaprak absisyonunda önemli bir rol oynamadığı düşünülmektedir; fakat ABA bir çok etkiye sahip önemli bir bitki hormonudur. Şu ana değin incelediğimiz oksin, sitokinin ve giberellinlerin aksine, ABA büyümeyi yavaşlatıcı etki gösterir. Genel olarak büyüme hormonlarının etkilerine zıt etki yapar. Bir yada daha fazla büyüme hormonuna ABA oranı, fizyolojik etki gösterecek sonucu belirler. ABA Biyosentezi ve Metabolizması ABA 15 karbonlu bir seskuiperten olup kloroplastlarda ve diğer plastidlerde mevalonik asit yoluyla sentezlenir. Kaynaklandığı öncül maddenin bir ksantofil karotenoidi olan vialoksantin‟in fotokimyasal veya enzimatik yıkımıyla başladığı belirtilmektedir. (bu yol izopentil difosfat (IPP) la başlar ve C40 ksantofili olan vialoksantinle devam eder). Bu yıkımın ilk ürünü ksantoksin‟dir ki bununda bir engelleyici madde olduğu ve fototropizmada rol oynadığı ileri sürülmektedir. ABA‟nın inaktivasyonu ya karboksil grubuna bir glukoz bağlanmasıyla yada faseik asit ve dihidro fasetik asit‟e oksitlenmesiyle olmaktadır. ABA‟nın bitkide başlıca sentez yerleri yaşlı yapraklar, gövde ve yeşil meyvalardır. Tohumlarda da sentezlendiği bazı bitkilerde ise tohumlara başka yerlerden taşındığı düşünülmektedir. ABA’nın taşınımı giberellin taşınımına benzer. Hem ksilemden hem floemden taşındığı gibi parankima hücrelerinden difüzyonla da her yönde taşınabilir. Kuraklıkta, tuzlulukta, mineral eksikliği gibi çeşitli stres şartlarında yaprakta ABA sentezi artar. ABA‟nın bu ekstrem koşullarda bitkiye dayanıklılık sağladığı düşünülmektedir. Kuraklık stresinde ABA‟nın stomaların kapanmasına yol açtığı ve böylece transpirasyonla su kaybınıo azalttığı bilinmektedir. ABA’nın Fizyolojik Etkileri ve Pratik Değeri Tohum Dormansisi Tohum dormansisi, yaşamın sürmesinde büyük önem taşır; çünkü dormansi tohumun optimum ışık, sıcaklık ve nemlilik koşullarında çimlenmesini sağlar. Sonbaharda çevreye yayılan bir tohumun, kış koşullarında ölmesini engelleyecek şekilde, hızla çimlenmesini önleyen nedir? Bu tür tohumların ilkbaharda çimlenmesini hangi mekanizmalar sağlar? Hatta, meyvenin nemli iç ortamında, karanlıkta, tohumların çimlenmesini engelleyen nedir? Bu soruların yanıtı ABA‟dır. Tohum olgunlaşması sırasında ABA düzeyi, 100 kat artabilir. Olgunlaşan tohumlardaki yüksek ABA düzeyi, çimlenmeyi engeller ve özel proteinlerin üretimini teşvik eder. Bu proteinler, olgunlaşmayla birlikte oluşan aşırı su kaybına karşı tohumun ayakta kalmasına yardım eder. ABA, bazı yollarla yok edilir yada etkisizleştirilirse, tohumlar çimlenir. Bazı çöl bitkilerinin tohumlarında dormansi, sadece şiddetli yağmurların ABA‟yı tohumdan yıkayarak uzaklaştırmasıyla kırılır. Diğer tohumlar ise ABA‟nın etkisizleştirilmesi için ışığa yada uzun süren düşük sıcaklığa gereksinim duyar. Çoğunlukla ABA‟nın giberelline oranı, tohumun uyku halinde kalıp kalmayacağını yada çimlenip çimlenmeyeceğini belirler; çimlenme için suya daldırılmış tohumlara ABA ilave edilirse, tohumlar yeniden dormansi koşullarına döner. Tohumlar henüz koçan içindeyken çimlenen bir mısır mutantı, işlevsel bir transkripsiyon faktöründen yoksundur; bu transkripsiyon faktörü belirli genlerin ifade edilmesini sağlamak için ABA‟ya gereksinim duyar. Kuraklık Stresi ABA, bitkilerin kuraklığa karşı koymasını sağlayan asıl iç sinyaldir. Bir bitki solmaya başlayınca yapraklarda ABA birikerek stomaların hızla kapanmasını sağlar. Bunun sonucu transpirasyon (buharlaşmayla su kaybedilmesi) azalır ve su kaybı önlenir. ABA bekçi hücrelerinin (stomalarda bekçi ve arkadaş hücreleri ile birlikte bir por bulunur) plazma zarındaki dışa doğru yönelmiş potasyum (K+) kanallarının açılmasını artırır. Bunu, kalsiyum gibi sekonder mesajcıları etkileyerek yapar. Potasyum kanallarının açılmasıyla, bekçi hücrelerinden büyük miktarda potasyum çıkışı olur. Suyun ozmotik olarak kaybı, bekçi hücrelerinin turgorunun azalmasına ve stoma porunun küçülmesine neden olur. Bazı durumlarda su kıtlığı kök sistemini gövde sisteminden daha önce baskı latına alır. Köklerden yapraklara taşınan ABA, erken uyarı sistemi olarak iş görür. Solgunluğa özellikle duyarlı mutantlar genelde ABA üretemezler. Ayrıca, ABA‟nın hücrede RNA ve protein sentezini engelleyici etkisininde olabileceğine dair deneysel veriler vardır. ABA‟nın pratik kullanımı çok nadirdir. Tahıllarda dane verimini artırmak ve yatmaya karşı mukavemet kazandırmak için, bazı durumlarda da sormansi süresini uzatmak ve çeşitli stres şartlarına karşı bitkiye dayanıklılık sağlamak için kullanılır. ABA pahalı ve kolayca katabolize olduğu için bunun yerine fosfon-D kullanılmaktadır. ETİLEN : Gaz Hormon Kömür gazının bahçe ışıklandırılmasında kullanıldığı 19. yüzyılda, gaz lambalarından çıkan aydınlatma gazı sızıntısı çevredeki ağaçların yapraklarını erkenden dökmelerine neden olmuştur. Dimitri Neljubow isimli bir Rus bilim adamı, 1901‟de aydınlatma gazındaki aktif faktörün etilen gazı (C2H4) olduğunu göstermiştir. Ayrıca etilenin bitkiler tarafından sentezlenen (üretilen) bir hormon olduğu, ve bununla birlikte, etilen miktarının ölçümünü basitleştiren gaz kromatografisi tekniği geliştirilince yaptığı iş önemli ölçüde kabul görmüştür. Bitkiler, kuraklık, su baskını, mekanik basınç, zarar ve enfeksiyon gibi streslere yanıt olarak etilen üretir. Aynı zamanda meyve olgunlaşması ve programlanmış hücre ölümü sırasında etilen üretilir. Ayrıca dıştan yüksek konsantrasyonlarda oksin uygulanmasından sonrada etilen üretilmektedir. Dikkat çekici olan bir diğer noktada; daha önce kök uzamasının engellenmesi gibi, oksinle ilişkilendirlen bir çok biyolojik etkinin, şu an oksinin uyardığı etilen üretimine bağlı olduğudur. Etilen Biyosentezi ve Metabolizması 1970‟li yıllarda etilen sentezinin bitkide metionin amino asitinden kaynaklandığı belirlendi. Metionin‟den amino siklopropan karboksilik asit (ACC), ondanda dekarboksilasyon ve deaminasyonla etilen oluşmaktadır. Etilen sentezinin ACC üzerinden olduğunu, avokado meyvesinin hasatından sonra olgunlaşmasında meyvede ACC ve etilen konsantrasyonlarının pozitif korelasyonlu değişim göstermeleri doğrulamıştır. Amino etoksivinil glisin (AVG) ve aminooksi asetik asit (AOA) bileşiklerinin etilen sentezini inhibe ettikleri bilinmektedir. CO2 gazıda yüksek konsantrasyonlarda etilen üzerinde inhibisyon gösterir. Depolanırken olgunlaşması istenmeyen meyvelere CO2 gazının inhibisyon etkisi uygulanır. Gümüş iyonları ve bazı maddelere etilenin bağlanmasıyla, etilen sentezi inhibe edilir. Etilenin Fizyolojik Etkileri ve Pratik Değeri Mekanik Strese verilen Üçlü Yanıt: Bir Sinyal İletim Yolunun İncelenmesinde Mutantların Kullanılması Kaya gibi hareketsiz bir nesnenin altında kalmış ve topraktan yukarıya doğru yükselmeye çalışan bir bezelye fidesini düşünelim. Gövde üstündeki engeli ittikçe, narin yapılı uç bölge mekanik strese maruz kalır,. Bu, fideyi etilen üretmeye teşvik eder. Etilen ise fideyi üçlü yanıt olarak adlandırılan bir büyüme manevrası yapmaya teşvik eder. Bu manevra fidenin engeli aşmasını sağlar. Şekil 19‟da görebileceğiniz bu yanıt gövde uzamasının yavaşlaması, gövdenin kalınlaşması (dayanıklılığı artırır) ve gövdenin yatay olarak büyümesine neden olan bir eğrilme olmak üzere üç kısımdan oluşur. Gövde büyümeye devam ettikçe ucu nazikçe yukarıya dokunur. Eğer bu yoklama sonucu yukarda katı bir cisim olduğunu saptarsa yeniden etilen üretir ve gövde yatay olarak büyümeye devam eder. Bununla birlikte, eğer fidenin uç kısmı katı bir cisim algılamazsa etilen üretimi azalır ve normal olarak yukarı doğru büyümesini sürdürür. Gövdenin yatay olarak büyümesini fiziksel engelden ziyade etilen teşvik eder; ayrıca, fiziksel bir engelle karşılaşmaksızın serbestçe büyüyen fidelere dıştan etilen uygulanması, üçlü yanıttın oluşmasına neden olmaktadır (Şekil 19). Araştırmacılar bu yanıtta yer alan sinyal iletim yollarını araştırmak için anormal üçlü yanıt veren Arabidopsis mutantları üzerinde çalışmışlardır. Etilene duyarsız (ein) mutantlara etilen uygulanınca bu bitkiler üçlü yanıt verememişlerdir. İşlevsel bir etilen reseptörüne sahip olmadıklarından bazı ein mutant tipleri, etilene duyarsızdırlar. Diğer mutantlar ise, toprak dışında, fiziksel bir engelin bulunmadığı hava ortamında bile üçlü yanıt vermişlerdir. Bu tip mutantların bazılarında düzenleyici bir bozukluk bulunur. Bu bozukluk böyle mutantların 20 kat daha fazla etilen üretmelerine neden olur. Bu tür aşırı etilen üreten (eto) mutantlarda fenotip, fidelere etilen sentezi inhibitörleri uygulanmasıyla iyileştirilebilir. Üçüncü tip mutantlar hava ortamında bile üçlü yanıt verirler; ancak, üçlü yanıt (ctr) mutantları olarak adlandırılan bu mutantlar etilen sentezi inhibitörlerine yanıt vermezler. Bu durumda, etilen mevcut olmasa bile etilen sinyal yolu işlevini sürdürür. ctr mutantlarından etkilenen bir gen, bir protein kinazı kodlamak için açılır. Bu mutasyonun etilene verilen yanıtı aktifleştirmesi, yabani-tip allelin normal kinaz ürününün, etilen sinyal iletim işleminin negatif bir düzenleyicisi olduğunu düşündürmektedir. Yabani tip bitkilerde bu yolun nasıl çalıştığına ilişkin bir varsayım aşağıda verilmiştir: Etilenin etilen reseptörüne bağlanması kinazı aktif hale getirir. Bu negatif düzenleyicinin inaktif hale gelmesi üçlü yanıt için gerekli proteinlerin sentezlenmesini sağlar. Şekilde verildiği gibi; bu yolda iki membran proteini, bir engelleyici protein (CTR1), bir de transkripsiyon faktörü olan protein (EIN3) vardır: (eğer etilen varsa) ilki etilen reseptörü (ETR1) ve ikincisi bir kanal proteini olan (EIN2) dir. EIN2 bir sekonder mesajcıya etki eder ve buda bir transkripsiyon faktörü olan EIN3‟ü aktive eder. EIN3 etilen etkisini üretmek üzere ifade olacak genleri harekete geçirir. Eğer etilen yoksa; etilen reseptörü olan ETR1 inaktif kalır ve CTR1‟i inaktif edemez. Aktif kalan CTR1, membran proteini olan EIN2‟yi inaktif tutar. EIN2 nin aktivitesi olmayınca transkripsiyon faktörü olan EIN3 inaktif kalır ve nukleusta herhangi bir etki gösteremez. Apoptosis: Programlanmış Hücre Ölümü Bir yaprağın sonbaharda döküldüğünü yada tek yıllık bir bitkinin çiçek verdikten sonra öldüğünü düşünün. Yada içerdiği canlı maddenin parçalanması sonucu, içi boşalan bir trakenin farklılaşmasındaki son basamağı düşünün. Bu olayların tümü, belirli hücrelerin veya organların yada tüm bitkinin programlanmış ölümünü kapsar. Belirli bir zamanda ölmek için kalıtsal olarak programlanmış hücreler, organlar ve bitkiler, basitçe hücresel mekanizmayı kapatıp ölümü beklemez. Bunun yerine apoptosis olarak adlandırılan programlanmış hücre ölümünü yaparlar. Bu, bir hücrenin yaşamında en yoğun olduğu süreçlerden biridir. Apoptosis esnasında yeni genlerin ifade olmasına gerek duyulur. Bu sırada oluşan yeni enzimler, klorofil, DNA, RNA, proteinler ve zar lipitleri dahil pek çok kimyasal bileşeni parçalar. Bitki parçalanma ürünlerini kurtarabilir. Hücrelerin, organların yada tüm bitkinin apoptosisi sırasında etilen patlaması yaşanır. Yaprak Absisyonu Her sonbaharda yaprakların dökülmesi bir adaptasyondur. Kökten kışın topraktan su absorblayamadığından, bu adaptasyon kış aylarında yaprak döken ağaçların kurumasını önler. Yapraklar dökülmeden önce, ölmekte olan yapraklardan pek çok önemli element geri kazanılarak gövdenin parankima hücrelerinde birikir. Bu besin elementleri, bir sonraki bahar ayında gelişmekte olan yapraklar tarafından yeniden kullanılır. Sonbaharda tekrar üretilen kırmızı pigmentler ve yaprakta önceden bulunan, ancak sonbaharda koyu yeşil klorofilin parçalanmasıyla görünür hale gelen sarı ve turuncu karoteneyidler, yapraklara sonbahar rengini verir. Bir sonbahar yaprağı dökülünce, petiyolün kaidesinin yakınında bir absisyon tabakası oluşur. Daha sonra yaprak buradan koparak yere düşer. Absisyon tabakasındaki küçük parankima hücreleri çok ince çeperli olup, iletim demetlerinin çevresinde lifler bulunmaz. Hücre çeperlerindeki polisakkaritler daha da zayıflar. Sonuçta, rüzgarın da etkisi ile yapraktaki ağırlık absisyon tabakasının kopmasına neden olur. Hatta yaprak dökülmeden önce, absisyon tabakasının dala bakan tarafında mantar tabakası bir iz oluşturur. Bu iz bitkiyi patojenlere karşı korur Absisyonu, etilen ve oksin dengesindeki değişiklik kontrol eder. Yaşlanan bir yaprak, giderek daha az oksin üretir. Bu, absisyon tabakasındaki hücrelerin etilene karşı duyarlılıklarını artırmaktadır. Etilenin absisyon tabakası üzerindeki etkisi arttıkça, selülozu ve hücre çeperlerinin diğer bileşenlerini parçalayan enzimler üretilmektedir. Meyve Olgunlaşması Meyveler, çiçekli bitkilerde tohumların yayılmasına yardım eder. Ekşi, sert ve yeşil olan olgunlaşmamış meyveler, tohum olgunlaşması esnasında yenilebilir hale gelir. Meyvede etilen üretiminin patlaması, enzimatik olarak bu olgunlaşmayı tetikler. Hücre çeperi bileşenlerinin enzimatik olarak parçalanması ve nişastaların ile asitlerin şekerlere dönüşümü meyveyi tatlandırır. Yeni kokuların ve renklerin üretilmesi, olgunlaşan meyvenin, bu tohumları yiyen ve dağıtan hayvanları cezp etmesine yardım eder. Olgunlaşma sırasında bir zincir reaksiyonu ortaya çıkar; etilen olgunlaşmayı tetikler, olgunlaşmada etilen üretiminin artmasına neden olur. Bu, fizyolojide pozitif geri beslenmenin nadir örneklerinden biridir. Sonuçta etilen üretiminde dev bir patlama meydana gelir. Hatta etilen bir gaz olduğundan, olgunlaşma sinyali bir meyveden diğerine geçer; geçerken de çürük bir elma bir kasa elmayı çürütebilir. Eğer yeşil bir meyve satın alırsanız, meyveleri plastik bir torbada tutarak olgunlaşmayı hızlandırabilirsiniz. Çünkü plastik torba içinde etilen gazı birikir. Ticari amaçlı olarak, meyvelerin çoğu etilen gazı düzeyleri artırılmış dev depolarda olgunlaştırılır. Diğer durumlarda ise doğal etilenin sebep olduğu olgunlaşmayı geciktirmek için önlem alınır. Örneğin, elmalar karbondioksit içeren depolarda tutulur. Hava sirkülasyonu etilen birikimini önler ve yeni etilen sentezi engellenir. Sonbaharda toplanmış ve bu şekilde depolanmış elmalar, yaz aylarında bile satışa sunulabilir. Etilenin, meyvelerin hasat sonrası fizyolojilerindeki önemi düşünüldüğünde, etilen sinyal iletim yolları ile ilgili genetik mühendisliğin potansiyel olarak ticari önemi büyüktür. Örneğin, moleküler biyologlar isteğe bağlı olarak olgunlaşan domates meyveleri üretmiştir. Bunu, etilen sentezinde gerekli genlerden birinin transkripsiyonunu durduran bir antisens RNA yerleştirerek yapmışlardır. Yeşil haldeyken toplanan bu tür meyveler, etilen gazı verilmediği taktirde olgunlaşmayacaktır. Bu tür yöntemlerin geliştirilmesi meyve ve sebzelerin çürümesini önleyecektir. Bu sorun, şu an birleşik devletlerde ve bazı ülkelerde hasat edilen ürünün yarısına yakın kısmını yok etmektedir. BRASSİNOSTEROİDLER Brasinosteroidler büyümeyi teşvik edici karakteristik aktiviteleri ile, bitki hormonlarının yeni bir grubudur. 1979‟da kolza bitkisi (Brassica napus L.) poleninden izole ve karakterize edilmişlerdir. Sonradan 44 bitkide bundukları rapor edilmiş ve bitki aleminde muhtemelen her yeder bulundukları kabul edilmiştir. Brassinosteroidler, 37 Angiosperm (9 monokotil ve 28 dikotil), 5 Gimniosperm, 1 pteridofit ve 1 alg olmak üzere 44 bitki türünde izole edilmişlerdir. Brassinosteroidler, çok düşük konsantrasyonlarda etki gösterirler. Brassinosteroidler, büyüme gibi çeşitli gelişimsel etkileri , tohumların germinasyonu, rizogenez, çiçeklenme ve senesens gibi pleotropik etkileriyle dikkate alınmıştır. Ayrıca, çeşitli abiyotik stres durumlarına karşı da bitkiye dayanıklılık sağlamaktadırlar. Brassinosteroidlerin Biyosentezi ve Metabolizması 1974‟te ilk brassinosteroid olan brassinolid keşfedildi. Biyolojik olarak aktif olan bu bitki büyüme düzenleyicisi bir steroid lakton olarak C28H48O6 (MA: 480) formülü ile desteklendi. 1982‟de büyümeyi destekleyici, diğer bir steroid madde, kestane (Castenea crenata) üzerinde böcekler tarafından tahrip edilen kısımlardan izole edildi ve kastesteron (castesteron) olarak adlandırıldı. Brassinolid ve castesteronun keşfi, bitki aleminde büyümeyi destekleyici steroid hormonlarının varlığı düşüncesini desteklemiştir. Brassinosteroidler, doğal polihidroksi steroidlerin yeni bir grubudur. Şimdiye kadar tanımlanan doğal brassinosteroidler genel bir 5α-kolestan yapısına sahiptirler ve bunların varyasyonları yapı üzerindeki işlevlerinin çeşit ve oryantasyonundan oluşmaktadır. Fitosterol ailesine ait bileşikler C27, C28, C29 brassinosteroidler olarak sınıflandırılır. Şu ana kadar 42 brassinosteroid ve 4 brasinosteroid bileşiği karakterize edilmiştir. Brassinosteroidler BR1, BR2, …BRn şeklinde isimlendirilirler. Bitki steroidleri asetil Ko-A, mevalonat, izopentenil pirofosfat, geranil pirofasfat ve farnesil pirofosfattan, isoprenoid yolla sentezlenirler. Mevalonatla başlayan bu yol sonunda sikloartenol sentezlenir. Bu doğal yolun dışında, sentetik olaraktan kampesterol‟den brasinoid‟e kadar sentetik bir yolla sentezlenebilirler. Bitkide gelişmekte olan dokular, olgun dokulşara göre daha fazla konsantrasyonlarda brassinosteroidleri içerirler. Polen ve genç tohum zengin brassinosteroid kaynağıdır. Yapraklar ve sürgünler düşük konsantrasyonlarda brassinosteroid içerirler. Brassinosteroidlerin Fizyolojik Etkileri ve Pratik Değeri Brassinosteroidlerin analizinde göze çarpan iki test vardır; birincisi, fasulyede ikinci internod oluşumu testi ve diğeri pirinç laminasında eğilme testidir. Fasulyede ikinci intenod oluşumu testi, brassinolidin kolza bitkisinden izolasyonunda geliştirilmiştir. Fasulye fidesindeki ikinci internod kesilip, lanolin macunuyla brassinolid uygulanmasıyla uzama, eğilme, şişme ve iki ayrı parçaya ayrılma (splitleşme) göstermiştir. Uzama, eğilme ve şişme düşük konsantrasyonda, iki ayrı parçaya ayrılma ise yüksek konsantrasyonda gerçekleşmiştir. Bu, brasinosteroidlerin büyümeye etkilerinden biridir. Brassinosteroidler genç vejetatif dokuların gelişimine etki ederler. Soya fasulyesi ve bezelye epikotillerinde, Arabidopsis pedinkullarında, yulaf koleoptillerinde uzamayı ve büyümeyi teşvik ederler. Kök gelişimini engellerler fakat gövde gelişimini teşvik ederler. Hücre bölünmesini ve uzamasını, polen tübü uzamasını teşvik ederler. Yaprak absisyonunu geciktirler (Citrus) ve ksilemde farklılaşmayı artırırlar. İletim demetlerinin farklılaşmasında rol alırlar. Tohum germinasyonunu teşvik eder, aynı zamanda absisik asitin inhibe edici etkisini yok ederler. Brassinosteroidler üzüm meyvelerine spreyle muamele edildiğinde; sonbaharda çiçek sayısını artıran, kışın (aynı muamele yapıldığında) çiçek sayılarını azaltan etki göstererek çiçeklenmede rol oynarlar. Brassinosteroidler, Xanthium gibi bazı cinslerde senesensi hızlandırırlar. Ayrıca bitkilerin abiyotik stres şartlarına karşı dayanıklığını artırırlar; düşük sıcaklığa maruz kalan pirinç ve domates bitkilerinde brassinosteroid uygulamasıyla büyümenin daha iyi olduğu gözlenmiştir; mısır ve lahana fidelerinde de düşük sıcaklık stresine karşı toleransı artıran etki gösterirler. Bu etkilerin oksin etkilerine çok benzemesinden dolayı brassinosteroidlerin, oksinden farklı bir hormon olarak kabul edilmesi yıllar sürmüştür. Ek olarak brasinosteroidler kimyasal yapı olarak hayvanlarda bulunan steroid hormonlarına en benzer gruptur; bitki ve hayvan steroid hormonlarının benzer kimyasal yapıları, belirli genlerin ifade olmasında benzer etkiler göstermektedir. Şöyle ki; bitki steroidleri insanlardaki eşey hormonları gibi, aynı olan pek çok şeyi yaparlar. Bir bitkide steroid fazla olduğunda, o bitki daha büyük, daha dayanıklı ve daha kuvvetli olmaktadır. Örneğin; mutasyon nedeniyle bitkiler steroid üretmediklerinde cüceleşirler. Steroidler aynı zamanda bitkide eşeyli üremeyi düzenlemektedirler (burada; belirli bir molekül grubunun farklı organizmalarda sinyal molekülleri olarak iş görmesi ilginçtir). Bir bitkinin steroid sentezlemek için kullandığı enzimlerin çoğu, kendi steroid çeşitlerini üreten hayvanlarda da bulunmaktadır. Dolayısıyla bu enzimlerle ilgili bazı genlerin, bitkiler ve hayvanların bir milyar yıldan daha uzun bir süre önce ortak bir atadan dallanmaları sebebiyle korunmuş olma olasılığı vardır. Buna karşın, steroidlere yanıtlarla ilgili sinyal yolundaki moleküller, bitki ve hayvanlarda çok büyük bir farklılık göstermektedir. KAYNAKLAR Purves, Sadava ve arkadaşları, Life – The Science of Biology, 7inci baskı. Campbell ve Reece, Biology, 6ncı baskı. Salisbury ve arkadaşları, Plant Physiology. Taiz ve Zeiger, Plant Physiology, 3üncü baskı. Ram Rao S. ve ark., Brassinosteroids – A new class of phytohormones, Current Science, Vol. 82, No. 10, 2002. Haydarabad, Hindistan. Kocaçalışkan İ., Bitki Fizyolojisi, Dumlupınar Üniversitesi www.pubmedcentral.nih.gov 4e.plantphysiol.org www.whfreeman.com www.hhmi.org

http://www.biyologlar.com/giberellinler-bitki-boyu-duzenleyicileri

Orman, Çevre ve Ekosistem

Tüm dünyada olduğu gibi ülkemizde de binlerce yıldır ormanların değeri; genellikle ormanların kereste üretim kapasitesi ile ya da ormanlardan elde edilen yakacak miktarıyla ölçülmüştür. Binlerce yıldır hakim olan bu düşünce sonucu önce ağaçlar kesilmiş veya yakılmış, daha sonra toprak çoraklaşıncaya veya tamamen verimsiz hale gelinceye kadar otlatılmış ya da ektansif tarla tarımı yapılmıştır. Bunun en acı örneğini iç Anadolu ve Doğu Anadolu'da göz alabildiğine uzanan bozkırlarda görmekteyiz. Bilimsel verilere göre bundan 10.000 yıl öncesine kadar % 70'i ormanlarla kaplı olan Anadolu, yıllarca o kadar insafsızca tahrip edilmiştir ki; bugün birçok insana "Çölleşmeye yüz tutmuş bu alanlar neden yurt tutulmuştur?" sorusunu sorduracak bozkırlar haline getirilmiştir. 20. Yüzyıla kadar, usulsüz faydalanmalar, doğal nedenler, savaşlar ve yangınlarla tahrip edilen orman alanları, günümüzde hızlı nüfus artışı sonucunda ortaya çıkan yeni tarım alanları kazanma arzusu, daha fazla yapacak ve yakacak ihtiyacı ve sanayileşme sonucu ortaya çıkan asit yağmurları gibi yeni sorunlarla karşı karşıya kalmıştır. Çeşitli kaynaklara göre bugün dünyamızda her otuz saniyede, bir hektar orman yok edilmekte olup, insanlığın geleceğini tehdit eder boyutlara ulaşmıştır. Ormanların yapacak ve yakacak değeri; bulunduğu ekosistemin, sonuçta ülkenin ve tüm yeryüzünün ekolojik dengesinin sağlanmasındaki işlevleri ve önemi yanında oldukça az öneme sahiptir. Bu nedenlerle ormanlarla ilgili yönetim planları hazırlanırken; tüm çevre koruma, sosyal ve ekonomik konular bir arada düşünülmeli, program ve stratejiler geliştirilirken ekolojik bütünlük ve sürdürülen üretkenliğin devamı göz önünde bulundurulmalıdır.Ormanların yapacak ve yakacak dışındaki sayısız değerlerinin başlıcalarını şöyle sıralayabiliriz: •Ormanlar, çeşitli ağaç türlerinin yanında, çok zengin orman altı bitki türleri, yaban hayvanları, mikro organizmalar, böcekler, kuşlar, balıklar ve memeliler için en önemli tabiatlardan biridir. Bu özelliklerinden dolayı doğal dengenin korunması, işlenmesi ve genetik kaynakların devamının sağlanması açısından son derece değerli ekosistemlerdir. Özellikle tropikal yağış ormanları, biyolojik üretkenlik açısından yeryüzünün en zengin parçalarıdır. •Ormanlar, çevrenin iklimini önemli ölçüde etkiler. Yıllık sıcaklık değişmelerin! azaltarak, yörenin iklimini yumuşatır. Havanın nemini ve yağışları artırır ve düzenli yağmasını sağlar. Rüzgarların şiddetini azaltır. Bunların yanında, sera etkisi yapan gazları toplama kapasitesiyle, global ölçekte tüm yeryüzünü tehdit eden iklim değişikliğini yavaşlatıcı etki yapar. Yeşil bitkiler, özümleme ile her yıl atmosferdeki toplam karbonun % 14'ü olan,100 milyon ton karbonu alır. Yaklaşık aynı miktardaki karbon da bitki solunumu ve organik maddelerin çürümesiyle atmosfere verilir.Milyonlarca yıldır bitkiler özümleme ile atmosferdeki CO2 gazını kullanarak dengede tutmuştur. Fakat son yıllarda organik kökenli yakıtların tüketimindeki artış, atmosferdeki CO 2 dengesini tehdit eder boyutlara ulaşmıştır. Bunun sonucu ısının 1 derece artması bile yeryüzünde büyük değişmelere neden olacak ve çok tehlikeli sonuçlar yaratacaktır. Aynı zamanda ormanlar, denizlerden sonra en fazla O2 üreten doğal kaynaktır. Bir araştırmaya göre 25 metre boyunda ve 15 metre tepe çapındaki bir kayın ağacı saatte 1,7 Kg. O2 üretmektedir. Bu miktar 72 kişinin bir saatte tükettiği O2 miktarına eşdeğerdir. Yine aynı kayın ağacı bir saatlik özümleme sırasında 2.350 Kg.CO 2 gazını kullanmakta olup, bu değerde 40 kişinin bir saatte çıkardığı CO 2 miktarına eşittir. İnsan sağlığı açısından ormanların diğer bir özelliği de, atmosferdeki gaz, duman, buhar ve toz şeklindeki maddeleri tutarak zararlı etkilerini önler ya da zarar derecelerini önemli ölçüde azaltır. •Ormanlar dünya su çevriminde ve rejiminde düzenleyici rol oynadığı gibi, bulundukları bölgenin su kaynaklarının verimliliğini arttıran, devamlılığını, düzenliliğini ve su kalitesini sağlayan en önemli doğal regülatörlerdir. Özellikle su rejimi üzerinde olumlu etkisi Türkiye gibi dağlık arazilerde daha büyük önem taşımaktadır. Bu tür arazilerde yağışla gelen suların arazide uzun süre tutulmasını, bütün canlıların bu sudan azami derecede faydalanmasını sağlamakta, sel ve taşkınları engelleyerek büyük zararları önlemektedir. •Ormanların bir başka özelliği de toprak oluşumunu ve verimini arttırıcı etki yapması, erozyonu engelleyerek toprak kaymasını önlemesidir. Ülkemiz topraklarının, topogratik yapısı nedeniyle % 90'ından fazlasının çeşitli derecelerde erozyona uğramakta, her yıl akarsularla, 10 cm kalınlığında ve Kıbrıs Adası büyüklüğündeki, 500 milyon ton ağırlığında toprak kitlesi denizlere taşınmaktadır. Bu kadar şiddetli bir erozyonun olduğu bir ülkede, tarımın geleceği için tehlike çanları çalmaya başlamış demektir. Bugün sulama ve enerji üretimi amacıyla, iç ve dış kaynaklı çok büyük paralar karşılığında kurulan barajlarımızın pek çoğu, havzada ağaçlandırma çalışmalarına önem verilmediği için şiddetli erozyon sonucu hızla dolma tehlikesi ile karşı karşıya kalmıştır. Nitekim Keban Barajı Fırat ve Murat nehirleri, Munzur Çayı, Peri ve Çatlı suları ile yılda toplam 31.5 milyon ton sediment taşınmaktadır. Böylece barajın faaliyete geçtiği 1974 yılından bu yana, baraj tabanında 550 milyon tonun üzerinde sediment toplandığı tahmin edilmektedir. Maalesef, genellikle ormanlardan uzak ve tamamen çıplak olan baraj havzalarımızın hemen hepsinde aynı durum söz konusudur. Bu nedenle bir an önce baraj havzalarında arazi kullanım planları yapılarak, tarım yapılan sahalarda koruyucu tedbirlerin alınması, süratle ağaçlandırma çalışmalarının yapılması gerekmektedir. •Ormanlar yerel halk için sosyo kültürel bir çevre oluşturmaktadır. Çevresini süsler, güzelleştirir ve doğal peyzajı tamamlayarak estetik etkisini artırır. İnsanların piknik yapma, eğlenme, dinlenme, gezip dolaşma ile dağ sporları, kayak yapma ve avcılık gibi sportif faaliyetlerin yapılmasına, her türlü kamp alanlarının kurulmasına uygun koşullar yaratır. Orman içinde ateş yakmak da çok tehlikelidir. Çeşitli ve zorunlu nedenlerle ateş yakarsak, isimiz bittikten sonra ateşin üzerine toprak atıp iyice ve tam olarak söndürmeliyiz. Söndürülmeyen ateşi rüzgar sağa sola götürür, yangın çıkmasına neden olur.Biz yakmamış olsak bile ormanda iyice sönmemiş ateş görürsek hemen söndürmeleyiz. Kendimiz söndüremiyorsak çevreden yardım istemeliyiz; karakola, muhtara, resmî kuruluşlara haber vermeliyiz. Bu, bir vatandaşlık görevidir. Kaçak ağaç kesimini önlemek: Kaçak ağaç kesmek de ormanları yok eden başka bir sebeptir. Ormandan izinsiz ağaç kesmek, bindiğimiz dalı kesmek demektir. Çünkü usulsüz ağaç kesmek, ormanların büyüyüp gelişmesini engeller.Ormandan ağaç kesmenin bir yolu vardır. Orman mühendisleri, ormanda her yıl hangi ağaçların kesileceğin! belirtirler. Belirtilen bu ağaçlar kesilmelidir. Buna "düzenli kesim" denir. Düzenli kesimle hem ihtiyaçlar karşılanır, hem de ormanların büyümesi, gelişmesi sağlanır. Keçilerden korumak: Keçiler de ormanların baş düşmanıdır. Çünkü keçiler, genç fidanların uç dallarını yemesini pek severler. Ormana girince küçük demez, büyük demez, yetişebildikleri her şeyi yerler. Bu yüzden uç dalları koparılmış fidanlar da büyüyemez, ölür. Körpe fidanlar böyle yok ola ola, orman da köyümüzden, kentimizden uzaklaşır.Yapılacak iş ormana zararlı olan keçi yerine, koyun, inek gibi hayvanları beslemek ya da keçileri ormandan uzak tutmaktır. Tarla açmayı önlemek: Ormanın değerini bilmeyenler, bazan bir karış toprak için binlerce ağaca kıyarak tarla açarlar. Bu şekilde tarla açmak, bize hiçbir şey kazandırmaz. Gerçekte orman toprağı çok verimli değildir. Bu yüzden ormandan açılan tarlalar pek verimli olmaz. Birkaç yıl ekildikten sonra verim iyice düşer. Emeğimizin karşılığını alamayız. Alamayınca da üç beş yıla bir yeni tarla açmak isteriz. Sonunda memleketimizde orman kalmaz.Tarla yoksa, orman işlerinde çalışılmalıdır. Hayvan beslenmelidir. Arıcılık, tavukçuluk yapılmalıdır. Ormanların Yararları Faydaları Nelerdir? ORMANLARIN YARARLARI A) Doğal Dengeyi Sağlar : Eğimli sahalarda ormanlar toprağı örgü şeklinde sararak toprakların aşınmasını önler. Toprak tabakasına saldığı kökleri ile suyun derinlere sızması için, küçük kanalcıklar oluşturur.Böylece ormanlık sahalara düşen yağışlar toprağa sızar ve oradan yer altı suyuna, derelere ve kaynaklara kavuşur. Ormanların diğer önemli tarafı,doğadaki besin maddelerinin dolaşımını sağlamasıdır. Toprağa düşen dal ve yapraklar; bakteriler tarafından organik maddeye dönüşür.Organik madde, topraktaki bitki besin maddesini artırarak bitki örtüsünün daha iyi gelişmesini sağlar. Diğer taraftan toprağa karışan organik madde toprakta gözenekli bir yapı oluşturur.Bu da yağışların toprağa sızmasını sağlar.  B) Ormanlar Dinlendirici Etki Yapar : Orman içi mesire yerleri ve milli park alanları, önemli dinlenme yerleridir. Ülkemizde son yıllarda önemli milli parklar kurulmuştur.Bunlar;Yozgat çamlığı, Kaçkar Adana(soğuksu),Kızılcahamam, Kuş Cenneti, Uludağ,Yedigöller,Dilek yarımadası(Aydın). Spil dağı, Kızıldağ(Yalvaç), Termosos, Köprülü Kanyon, Olimpos, Beydağları, Altınbeşik mağarası (Antalya)Kovada (Isparta), Mercan vadisi, Maçka, Altındere, Hatilla vadisi, Beyşehir,Karagöl, Nemrut Dağı (Adıyaman), Başkomutanlık (Afyon), Honaz Dağı (Denizli) C) Odun, Kereste Ve Bazı Sanayi Kollarına Ham Madde Sağlar: Ormanlardan yakacak odun ve kereste üretilir.Yılda ortalama 6-8 milyon m3 tomruk elde edilir. Bunlar inşaatta, kağıt üretiminde,ambalaj sanayisinde, maden ocaklarında destek ,PTT ve enerji hatlarında taşınma direği olarak kullanılır. Ayrıca çamdan elde edilen reçine, kimya sanayiinde, boya yapımında kullanılır. Ormanlarımızdan odun ve kereste üretimi orman işletmelerine yapılır.Odunu büyük bir bölümü yakacak olarak evlerin ısıtılmasında kullanılınır.Evlerin ısıtılmasında enerjinin beşte biri odundan sağlanır. Ormanlarımızı., korunan ormanlar ve verimli parklar hariç işletmemiz gereklidir. Ormanlarımız, orman içinde ve orman kenarında yaşayan köylülerimizin önemli gelir kaynağıdır. Köylerimizin üçte ikisi orman içinde ve kenarında kurulmuştur.Nüfusumuzun onda biri ormanlardan yararlanmaktadır.Bu yönü ile de ormanlarımız vatandaşlarımıza iş temin eden doğal kaynaktır. Kısaca Ormanların Faydaları 1-Odun ve kereste ihtiyacımızı sağlar. 2-Eğimli yamaçlarda erozyonu önler 3-Her türlü dinlenme ihtiyacımıza cevap verir. 4-Yurt savunmasında, çeşitli yönlerden kolaylık sağlar. 5-Yabani ve özellikle av hayvanlarını barındırır. 6-Yağış sularını yer altına toplar,bunlarında kaynaklar halinde çıkmasını sağlar. 7-Havadaki oksijen ve karbondioksit dengesini sağlar. Not: Ormanlardan sürekli faydalanmak için ormancılığın üç temel ilkesi vardır. a-Ormanların genişletilmesi b-Devamlı korunması c-İşletilmesi Ormanların Faydaları Ormanlar; ağaçlarla birlikte diğer bitkiler, hayvanlar, mikroorganizmalar gibi canlı varlıklarla toprak hava, su , ışık ve sıcaklık gibi fiziksel çevre faktörlerinin birlikte oluşturdukları karşılıklı ilişkiler dokusunu simgeleyen ekosistemler olup, dünya yaşamı için vazgeçilmezdirler... - Ormanlar yaşantımızın her safhasında ihtiyaç duyduğumuz yapacak ve yakacak hammadde kaynağıdır. Bunun yanı sıra bitkisel nitelikli tohum, çiçek, kozalak vb. ile mineral nitelikli çakıl, kum vb.hammadde kaynaklarının bir kısmı da ormanlardan elde edilmektedir. - Ormanlar, bitkiler ve hayvanlar için doğal bir su kaynağıdır. Kar ve yağmur biçimindeki yağışı yapraklı, dalları, gövdesi ve kökleri ve tutarak sellerin ve taşkınların oluşmasını önler. Ayrıca yer altı sularının oluşmasına yardım eder. - Ormanlar erozyonu önler. Ormanlar rüzgarın hızını azaltır, toprağı kökleri ile tutarak yağışların ve akarsuların toprağı taşımasını önler. - Ormanlar, yaban hayatı ve av kaynaklarını koruru. Nesli tükenmekte olan hayvanların üretimi, korunması ve barınmasında koruma alanları oluşturur. Bu sahalar milyonlarca canlının yuvasıdır. - Ormanlar bitki örtüsü ve toprak içerisinde büyük miktarda karbon depoladıklarından, ikim üzerinde olumlu etkiler yapar. Aşırı sıcaklıkları düzenler, bir ısı tamponu gibi görev yapar. Sıcağı soğuğu dengeler, yaz sıcaklığını azaltırken, kış sıcaklığını artırır, radyasyonu önler. - Su buharını yoğunlaştırarak yağmur haline gelmesini sağlar. Rüzgar hızını azaltarak toprak ve kar savurmalarını ve rüzgarın kurutucu etkisini yok eder. Bu nedenle açık alanlara oranla ormanlarda gündüzler serin geceler ise sıcaktır. - Ormanlar, eğelenme, dinlenme ve boş zamanları değerlendirme imkanı sağlar. Havası, suyu, doğal görünümleri ve sakin ortamı ile özellikle şehirlerde yaşayan insanları kendisine çeker. Bu yönüyle insanların beden ve ruh sağlığı üzerinde olumlu rol oynar. - Yerleşim alanları çevresindeki hava kirliliğini ve gürültüyü önlemesi ile insan sağlığı bakımından büyük önem taşır. Ormanların insan sağlığı üzerindeki bütün bu olumlu yararları nedeniyle büyük kentlerin çevresinde ormanlar yetiştirilmekte, dinlenme yerleri kurulmaktadır. - Ormanlar, orman içinde ve dışında yaşayan insanlara çeşitli iş alanları sağlar, işsizliği önlemede etkin rol oynar, böylece köyden kente göçü azaltır. - Ormanlar, ulusal savunma ve güvenlik bakımından da çok önemlidir. Askeri birliklerin savaş tesisleri ile araç ve gereçlerinin gizlenmesinde, savaş ekonomisi bakımından değer taşıyan reçine, katran ve tanenli maddelerin elde edilmesini sağlar, - Ayrıca ormanlar barajların ekonomik ömrünü uzatır, doğal afetleri önler, ülke turizmine katkıda bulunur, - Ormanlar, doğal güzellikleri ve sayılmayacak kadar çok faydalarıyla iyi baktığımız takdirde tükenmez bir doğal kaynaktır. Dünyada ve Ülkemizde Orman Varlığı Dünya kara alanlarının %30’nu kaplayan ormanlar 3.8 milyar hektardır. Tropikal ve yarı tropikal ormanlar bu alanın % 56’sını teşkil etmektedir. Dünya ormanlarının % 95’i doğal orman, % 5’ ise ağaçlandırma ile tesis edilen suni ormanlardır. Ülkemizin ormanlık alanı ise 20.7 milyon hektar olup yurdumuzun genel alanının % 26.8’sini oluşturmaktadır. Ormanlarımızda yetişen asli ağaç türlerimiz; kestane, kayın, meşe, kızılağaç, kavak, huş, ıhlamur, dişbudak, akçağaç, karağaç, çınar, söğüt, ceviz ve sığla gibi yapraklı ağaçlar ile çam, göknar, ladin, sedir, ardıç, servi ve porsuk gibi iğne yapraklı ağaçlardır... Ormanların Ülkemiz Ekonomisindeki Yeri Ormancılık sektörünün ülke ekonomisine olan katkılarını para ile ölçülebilen ve para ile ölçülemeyen katkılar olarak ikiye ayrılmak gerekir. Odun kökenli orman ürünleri üretimi, orman tali ürünleri üretimi, işlendirmeye katkısı, bölgeler arası gelişmişlik farkını azaltıcı etkisi, ödemeler dengesini olumlu yönde etkilemesi, mineral nitelikli katkıları, tarım, hayvancılık ve turizme olan katkıları para ile ölçülebilen katkılardır. İlkim, toprak su gibi doğal kaynakların korunması ve dengede tutulması, rüzgar ve kumul hareketlerine karşı önleyici perde görevi görmesi, su akışını düzenlemesi, yer altı ve yer üstü su kaynaklarının sürekliliğini sağlayarak çoraklaşmayı önlemesi, erozyonu önlemesi dolayısıyla tarım alanları ile barajların ekonomik ömrünü uzatması, çığ ve sel baskınlarını önlemesi halkın rekreasyon ihtiyaçlarını karşılaması, insan sağlığını olumlu yönde etkilemesi ve iş verimliliğini artırması ise para ile ölçülemeyen katkılardır. Ülkemizde çok önemli bir sektör olan ormancılık ülke kalkınmasında "itici ve teşvik edici" stratejik bir rol oynar.

http://www.biyologlar.com/orman-cevre-ve-ekosistem

Dogal Çevreyi Etkileyen Sorunlar

1. Hava Kirliligi 2. Su Kirliligi 3. Gürültü Kirliligi 4. Görüntü Kirliligi 5. Toprak Kirliligi 6. Hızlı Nüfus Artışı “Tanrı affeder, bazen insanlar da, fakat doga hiçbir şeyi affetmez.” William JAMES 1.Hava Kirliligi: Atmosferdeki toz, gaz, duman, is ve kokunun canlılara zarar verecek boyuta ulaşmasına hava kirliligi denir. Atmosfer; yerden rüzgârla kalkan tozlar, yanan kömür petrol ve odundan çıkan duman, araba egzozlarından çıkan kurşun ve karbon monoksit ve yanan kömürden çıkan kükürt dioksit ile kirlenmektedir. Özellikle fosil yakıtlardan çıkan karbondioksit gazı atmosferde sera etkisi yapmaktadır. Atmosferdeki karbondioksit gazı dünyadan geriye yansıyan uzun dalga ışınlarının hapsedilmesine ve troposferin ısınmasına yol açmaktadır.”Sera etkisi”diye nitelendirilen bu durum atmosferde farklılıklara neden olmaktadır. Deodorantlar, saç spreyleri, parfümler gibi tüplerdeki gazlara itici gücü veren CFC ( Kloroflorokarbon ) gazları ise atmosferde serbest kaldıklarında ozon atomlarını çözerek “ozon tabakasının incelmesine” neden olmaktadır. Bu durumun bir sonucu olarak cilt kanseri riski ve gözlerde katarakt oluşma olaylarında artış gözlenmektedir. Yine atmosfere bırakılan bazı gazlar, bitkilerde fotosentezi yavaşlatıp agaç yapraklarında bozulmalara, tarımsal üretimde azalmalara neden olmaktadır. Özellikle kömürle çalışan termik santrallerin bacalarından hiçbir arıtmaya tabii tutulmadan atmosfere verilen sülfürik asit yagışlarla asit yagmurlarına dönüşmekte; bitkilere ve ormanlara büyük zararlar vermektedir. Yüksek binaların bacalarından çevreye yayılan kükürt dioksit gazı akciger kanserine neden olmaktadır. Hava taşıtları da kirlilige neden olmaktadır. Örnegin Boeing 727 modeli uçak 265.000 kilogram kirli su, 80 kilogram zehirli atık, 5.000 kilogram zehirli hava üretmektedir. Bir jet uçagı 6.000 Volkswagen otomobiline eşit derecede duman çıkararak havayı kirletmektedir. Dünya çevresinde 2000 kilometre uzaklıga kadar olan mesafede 3 milyon kilogram çöp dönmekte ve bu miktar her gün biraz daha artmaktadır. Şehirlerin yer seçiminde yapılan yanlışlıklar ile yüksek katlı binaların rüzgârların önünü kesmesi de hava kirliligine neden olmaktadır. Türkiye’de havayı kirleten tesislerin başında linyit ile çalışan termik santraller gelmektedir. Bu santrallerin kükürt oranı yüksek linyit kömürü kullanmaları temel etkendir. 2000 yılında bu santrallerden atmosfere verilen kükürt dioksit miktarı 2.000.000 ton civarındadır. Yatagan, Soma, Tunçbilek, Afşin-Elbistan gibi şehirlerde termik santraller nedeniyle hava kirliligi üst boyutlardadır. Erzurum, Kayseri, Sivas, Ankara gibi şehirlerde ise evsel ısınma ve daglar arasındaki konum özellikleri nedeniyle hava kirliliginde özellikle kış mevsiminde artış gözlenmektedir. Demir-çelik endüstrisi, Gübre endüstrisi, Çimento fabrikaları, Petrokimya fabrikaları, Deri fabrikaları, Kâgıt ve selüloz fabrikaları, Şeker fabrikaları, Tekstil endüstrisi, Tarımsal mücadele ilacı üreten fabrikalar, Boya fabrikaları ile Termik enerji santralleri hava kirliliginde büyük paya sahiptir. Bursa, İzmit, İzmir, Kırıkkale, İstanbul, İskenderun, Karabük ve Adana şehirlerindeki hava kirliliginde sanayi tesislerinin payı büyüktür. İstanbul, Bursa, Sivas, Çanakkale, Kütahya, Eskişehir ve Diyarbakır Türkiye’nin en kirli kentleri arasındadır. 1952’de Londra’da 3000 insan solunum yetmezligi sonucu olmuştur. 1981’de İspanya’nın Madrid şehrinde yemek yagına karışan zehirli maddeler 340 kişinin ölmesine, 3000 insanın da zehirlenmesine yol açmıştır.1985 yılında Hindistan’ın Bhopal şehrinde kimyasal ilaç üreten bir fabrikadan çevreye yayılan metilizosiyanat gazı 3.000 insanın ölümüne 300.000 insanın zehirlenmesine yol açmıştır. Meksiko şehrindeki Paseo de la Reforma bulvarındaki çiçekler kirli hava nedeniyle çok çabuk öldüklerinden çiçek dikim işi iki ayda bir yenileniyor. Los Angeles’teki bir bulvarda gerçek bitkiler yetişmediginden plastik agaç ve çitler konulmuştur. “Su çetin bir hasımdır. Bütün hataları keşfetmesini bilir ve en küçük yanlışı pahalı ödetir.” J. CHAİLLEY 2.Su Kirliligi: Su kirliliginde; gübrelerin bünyesindeki kimyasallar, tarım ilaçları, petrol ürünleri, radyoaktif atıklar, deterjanlar, rüzgâr ve akarsu erozyonu, kanalizasyon atıkları, çöpler ile is ve duman etkili olmaktadır. Bu kirleticilerin çogu akarsu, göl ve denizlere dökülmektedir. Örnegin denizlere her yıl yaklaşık 200.000 ton petrol, 320.000 ton fosfor, 800.000 ton azot, 60.000 ton deterjan, 21.000 ton çinko, 3900 ton kurşun, 240 ton krom ve 100 ton cıva bırakılmaktadır. ABD’de her yıl denize atılan çöp miktarı 7 milyon tondur. Akdeniz’e yılda 4–5 milyar ton sanayi atıgı dökülmektedir. Bu nedenle pek çok deniz canlısı ölmekte, yaşama ve üreme alanları yok olmaktadır. Dünyanın en büyük tatlı su gölü olan Baykal, kıyılarındaki kâgıt fabrikalarının zehirli atıkları ile kirlenmektedir. Petrokimya sanayi Azerbaycan’ın Sumgayıt şehrini yaşanmaz hale getirmiştir. Hazar Denizine dökülen Volga Nehri, Rusya Federasyonundaki sanayii atıklarının % 40’ını taşımaktadır. Oysa denizler dünya için termostat işlevi görüp, her yıl 3 milyar ton karbondioksiti emerek atmosferi yaşanır kılmaktadır. Yine dünya protein ihtiyacının % 14’ü denizlerdeki balıklardan saglanmaktadır. Denizlerdeki bitki ve hayvan türlerinin 500’ü ilaç hammaddesi olarak kullanılmaktadır. Türkiye’de de su kirliligi üst boyutlardadır. Özellikle hızlı şehirleşmeye baglı olarak evsel ve endüstriyel atıkların su ortamlarına arıtılmadan verilmesi kirliligi artırmıştır. Ayrıca su havzalarındaki yapılaşma ile yapay kimyasalların su ortamlarına karışması da kirliligi artırmaktadır. Porsuk, Ergene, Susurluk, Gediz, Küçük Menderes, Bakırçay, Sakarya nehirleri ile Nilüfer Çayındaki kirlilik had safhadadır. Çevresindeki sanayi tesisleri nedeniyle, Manyas, İznik, Van, Sapanca, Burdur ve Akşehir gölleri de kirlilik tehdidi altındadır. Küçük yerleşim merkezlerinde kanalizasyonun biriktirildigi fosseptik çukurlarından sızan sular, yeraltı sularına karışmaktadır. Sanayii tesislerinin ulaşım kolaylıgı ve su bollugu nedeniyle ova tabanlarını tercih etmesi de ( Bursa, Adapazarı, Balıkesir, Ergene, Gediz ve Çukurova gibi...) yeraltı sularının hızla kirlenmesine yol açmaktadır. Endüstri tesisleri, yazlık konutlar ile turizm tesislerinin belli bir planlama olmadan, kurallara uyulmadan kıyılara kurulması da başta körfezler olmak üzere kıyıların hızla kirlenmesine neden olmaktadır. Bu nedenlerle Haliç, İzmit, Gemlik, İzmir ve İskenderun körfezleri hızla kirlenmektedir.21 Ülkenin atıkları Karadeniz’e taşınmaktadır. Havzasındaki 300 nehirle yılda 500 milyon metreküp endüstriyel ve evsel atık bu denize boşalmaktadır. Aşırı avlanma ve kirlenme nedeniyle Karadeniz’deki balık üretimi 500.000 tondan 100.000 tona düşmüştür. 23 ticari balık türü ise beşe inmiş durumdadır. Türkiye’de 3215 belediyenin yalnızca 141’inde kanalizasyon sistemi vardır. Türkiye’deki atık suların yaklaşık % 78’i arıtılmadan ırmak, göl ve denizlere oldugu gibi bırakılmaktadır. Sulardaki insan saglıgına zararlı maddeler, salgın ve bulaşıcı hastalıklara neden olmaktadır.( kolera, tifo, dizanteri gibi ) Zehirli atıklar oksijen dengesini bozarak göl ve nehirleri yaşanabilir olmaktan çıkarır. Dünyada 1.300.000.000 kişi saglıklı sudan yoksundur. Her yıl 5.000.000 kişi saglıksız sulardan bulaşan hastalıklarla ölmektedir. 10.000.000 kişi kilometrelerce uzaktan su taşımaktadır. Irmak ve göl sularındaki kullanım son 40 yılda iki katına çıkmıştır. Dünyadaki temiz suyun %50’si yalnızca insanlar tarafından kullanılıyor. “Eski haliyle karşılaştırıldıgı zaman topragımız, hastalıktan çürümüş birinin iskeletine benzemektedir. Tombul ve yumuşak tarafları kaybolmuş, geriye çıplak bir ceset / leş kalmıştır.” PLATON 3.Toprak Kirliligi: Nüfus artışına baglı yanlış arazi kullanımının neden oldugu toprak erozyonu toprak kirliliginde ilk sırayı almaktadır. Yanlış ve aşırı ilaç kullanımı, bilinçsiz gübre kullanımı ile endüstriyel atıklar da toprak kirliliginde önemli bir yere sahiptir. Ev ve tesislerin bacalarından çıkan emisyonların asit yagmurları ile topraga inmesi, çöp toplama havzalarındaki atıkların yüzey suları ile derinlere taşınması topragın yapısını tamamen degiştirmektedir. Çogu yerde maden ocaklarının işletilmesi sırasında yüzeye çıkarılan agır metaller de topraga zarar vermektedir. Nükleer atıklar genelde topraga gömülmektedir. Bunlar yeraltı suları ile topraga yayılarak ortamı kirletmekte, canlı yaşamını olumsuz etkilemektedir. Hayvan dışkısı da toprak kirliligine yol açmaktadır. Zira günümüzde kullanılan teknolojiler nedeniyle geçmişte gübre olarak kullanılan bu dışkılar belli alanlarda toplanmaktadır. Anız yakılması da topraga büyük zarar vermektedir. Anız yakılması yangına yol açtıgı gibi, toprak verimini azaltmakta erozyona davetiye çıkartmaktadır. Türkiye’nin en verimli toprakları erozyonla deniz, göl ve çukurlara taşınmaktadır. Normal koşullarda 1 santimlik bir toprak tabakasının oluşması için gerekli süre yaklaşık 250–1000 arasındadır. Görüldügü gibi binlerce yılda oluşan toprak tabakası, erozyonla 15–20 yıl gibi kısa bir süre içerisinde kaybolmaktadır. Sadece Fırat Nehrinin yılda taşıdıgı toprak miktarı 108 milyon ton civarındadır. Türkiye’de erozyona baglı yıllık toprak kaybının 1milyar ton civarında oldugu tahmin edilmektedir. Türkiye akarsu havzalarında çok şiddetli erozyon %36, orta şiddette erozyon %31, hafif erozyon ise %28 civarındadır. Dünyada ise yılda 75 milyar ton toprak erozyonla taşınmaktadır. Erozyon dogal dengeyi bozmakta; canlı ve bitki türlerinin azalmasına neden olmaktadır. Taşınan bu topraklardan dolayı; tarımsal üretim potansiyeli azalmakta, baraj ve sulama sistemleri zarar görmekte, suyolları ve limanlar zarar görmektedir. Bu nedenle erozyon topragın kaybedilmesi, dogal kaynakların tükenmesi demektir. Bundan dolayı tarımsal ve hayvansal ürünlerde büyük açıklar oluşmakta, milyarlarca dolar ödenerek bugday, pirinç, yaglı tohum, et, şeker v.s ithal edilmektedir. Örnegin 1988’de kişi başına düşen bugday üretimi 387 kg iken, 1995’de bu rakam 280 kg’a düşmüştür. Bugdaydaki gerileme % 25’tir.Aynı dönemde pirinç ve susamda yaşanan üretim azlıgı % 34, ayçiçeginde % 43, soyada % 75’tir.Aynı şekilde hayvan sayısı 1987–1995 arasında sıgırda % 21, koyunda % 32, keçide ise % 33 azalma göstermiştir. Erozyon, barajların çok kısa sürede devre dışı kalması demektir. İnsanların aşsız ve işsiz kalması demektir. Oysa bilinmelidir ki toprak üretilemeyen, satın alınamayan çok degerli bir kaynaktır. Şu unutulmamalıdır ki Aşagı Mezopotamya’da Sümer, Akad ve Babil uygarlıkları ile Sarı Irmak boylarındaki Çin uygarlıklarının yıkılmasında susuzluk ve toprak erozyonu çok önemli rol oynamıştır. “Ya bizler kentlerimizin kirlenmesini ortadan kaldıracagız; ya da kentlerimizin kirlenmesi bizleri...” Robert F. KENNEDY 4.Gürültü Kirliligi: Gürültü; istenmeyen ve insanı rahatsız eden ses olarak tanımlanabilir. Teknolojik gelişmenin sonucu olan gürültü gelişmiş ülkelerde tüm çevre sorunları arasında ilk sırayı almaktadır. İnşaatlardaki tadilat ve onarımlar, ulaşım araçları ( uçak, tren, helikopter, motorlu taşıtlar v.s ) elektrikli aletler ( kompresörler, matkap, elektrik süpürgesi, mutfak robotu, hidrofor, havalandırma v.s ) yazlık eglence yerleri, bar ve diskotekler, su ve tüp satıcıları, müzik aletleri gürültüye neden olmaktadır. Trafigin sıkışık oldugu arterler ile trafik ışıklarının geçiş alanlarında minibüs, taksi ve otobüslerin çaldıgı gereksiz kornalar insanları fazlasıyla rahatsız etmektedir. Bu durum başta çocuk, hasta ve yaşlılar olmak üzere tüm insanların ruh saglıgını olumsuz etkilemektedir. Her türlü gürültü işitme saglıgını bozmakta, algılamayı olumsuz etkilemektedir. Son yıllarda kalp ve damar rahatsızlıklarında büyük artış gözlenmektedir. Çogu kez iş performansının azalmasına da neden olmaktadır. Büyük şehirlerde yanlış yapılaşma ve yeşil alan azlıgı da gürültünün rahatsızlık katsayısını artırmaktadır. Yüksek ses ve gürültüden dogal ortamda ki diger canlılar da rahatsız olmaktadır. “Çevresel tehlikeler artık yalnızca kuş meraklılarını ilgilendirmiyor; bu tehlikenin çanları hepimiz için çalıyor.” Frank M. POTTER 5.Görüntü Kirliligi: Teknolojinin gelişmesiyle birlikte görüntü kirliliginde büyük artış olmuştur. Hızlı ve denetimsiz yapılaşma mimari estetikten yoksun binaların artmasına neden olmuştur. İskân izni olmadan yapılan, yapılırken iyi denetlenmeyen binaların kat sayısında, mimari tarzında, dogal çevreyle uyumunda belli bir standart yoktur. Cadde ve sokaklar gelişigüzeldir. Araç giriş ve çıkışına, araç park etmeye çogu kez uygun degildir. Cadde ve sokaklarda araçların çift taraflı park edilmesi, trafik akışını zorlaştırmaktadır. Araçların kaldırımlara çıkması yaya yolunu kapamakta, sokakta araçların çift yönlü park etmesi yaşlı, hasta, çocuk ve özürlülerin geçişlerini güçleştirmektedir. Sıvanmamış, boyanmamış, çatısı olmadıgından inşaat demirleri açıkta kalmış binalar, çatı, balkon ve duvarları istila eden anten ve vericiler; balkonlara asılan çamaşırlar, yıgılan eşyalar... telefon, elektrik ve reklam direkleri, panolar çevre ahengini fazlasıyla bozmaktadır. Yabancı bir ülkedeymiş izlenimi veren alışveriş merkezi, magaza ve dükkân isimleri ile günlük konuşmalarda kullanılan gereksiz yabancı sözcükler fazlasıyla rahatsız edicidir... Carousel, Capitol, Town Center, Galerıa, Fly Inn ( Alışveriş merkezleri ) Show, Flash, Star, Cine 5, Number One, Prima, Discovery Channel ( Televizyon ) Best, Capitol, Energy, Joy, Kiss, Power, Classic, City ( Radyo ) Cınemax, Movıeplex, Pyramıd, Prestıge, Cınepol, Prıncess, Cınemass, Holıdayplex, Rexx, Grandhouse ( sinema ) Fitness Center, Cafe Bar, Fast Food, Shopping Center, Show Room, Travel Agency, Jeans Sportwear, Garden Flower, Catering Service ( şirket ) Academic Hospital, İnternational Hospital, Central Hospital, ( Hastahane ) Square Hotel, The Plaza Hotel, Ritz Carlton, Hotel Princes, ( Otel ) Hey Gırl, Cosmopolıtıan, Amıca, Marıe Claire, Esquire, Formsante,Home Art, Bazaar, Voyager, Capital, Gezi Travel, Country Homes, House Beautiful ( Dergi )...gibi “Dünya üç grup insandan oluşur; sonuçları ortaya çıkaran ve olayları yaratan küçük seçkin bir grup, olup bitenleri seyreden oldukça büyük diger bir grup ve nelerin olup bittigini bilmeyen muazzam bir kalabalık.” M. BUTLER 6.Hızlı Nüfus Artışı: Dünya nüfusu son yüzyılda 1,5 milyardan 6 milyara çıkmıştır. Hızlı nüfus artışı dogal kaynaklar ve çevre üzerinde büyük baskı yaratmaktadır. Özellikle gelişmekte olan ülkelerde kalkınma hızının, nüfus artış hızının gerisinde kalması pek çok soruna neden olmaktadır. Gelecekte besin kaynakları, enerji ve su kaynakları, toprak, orman ve diger dogal kaynaklar hızla artmaya devam eden dünya nüfusuna yeterli gelecek mi? Mevcut dogal kaynakların böylesine bir tüketime yetmeyecegi çok açıktır. “Dünya, aç oldukları için uyuyamayanlarla, açlardan korktukları için uyuyamayanlar arasında bölünmüş durumdadır.” Paulo FREİRE Zira milyarlarca insan kaynakları giderek tükenen, çevre dengesi bozulan bir dünyada ayakta kalabilme mücadelesi vermektedir. * Yetersiz beslenme, * Saglıksız barınma, * Çocuk ölümleri, * İşsizlik, * Dogal çevrenin kirlenip bozulması, * Egitim hizmetlerinden mahrum kalma * Dogal kaynakların hızla tükenmesi hızlı nüfus artışının neden oldugu sonuçlardan bazılarıdır. “Bir ulusun büyüklügü, nüfusun çoklugu ile degil, akıllı ve erdemli kişilerin sayısıyla ölçülür.” Victor HUGO Günümüzde 500 milyona yakın insan aç ya da kötü beslenmektedir. 200 milyona yakın çocuk temel egitimden yoksundur. 8000 yıl önce 6.000.000.000 hektar olan dünya orman varlıgı % 50 azalarak günümüzde 3.000.000.000 hektara düşmüştür. Dünya ormanlarının % 75’i yüksek risk altındadır. Dünyada her yıl 16.000.000 hektar orman alanı yok edilmektedir. Akdeniz’e kıyısı olan Avrupa Birligi ülkelerinde her yıl 110.000 hektar orman yanmaktadır. Afrika’da her yıl 4,8 milyon hektar, Asya’da ise 4,7 milyon hektar orman yok edilmektedir. Denizlerdeki balıkların dörtte biri aşırı avlanma nedeniyle tükenmiştir. Dünyanın akcigerleri yok oluyor. Doganın 3 milyar yılda biriktirdigi oksijen tükeniyor, besin zincirinin alt halkaları birer birer devreden çıkıyor. Kolera ve sıtma gibi hastalıklar suların kirlendigi fakir bölgelerde hızla yayılıyor. “Önce gelincikleri yolduk, Nar agaçlarını tuttuk kurşuna, Ardından andızları devirdik, Aptallık, bilinçsizlik, bir hiç ugruna Sonra sıra ormanlara geldi, Yüz binlerce dönüm ateş yaktık, Sivas’a kadar gidip bulduk, Dikili tek agaç bırakmadık Şimdi damlarda yanıp söner, İsli lambalar gibi insan gözleri, Daha çok atılacak, it gibi sokaklara, Delik deşik insan ölüleri.” Cahit KÜLEBİ Sonuç olarak çevre sorunlarını en aza indirerek yaşanabilir bir dünya yaratmak elimizdedir. Bunun için: Silahlanma ve savaşa harcanan paralar azaltılmalı, onun yerine yenilenebilir enerji, toplu taşımacılık, dogal dokusu bozulmamış yaşanabilir kentler kurulmalıdır. Tarım alanlarının konut ve sanayi tesisleriyle yok edilmesine izin verilmemelidir. Sulak alanlar, bataklıklar, göller, akarsular, nadir ekosistemler koruma altına alınmalıdır. Sanayii ve santral gazları filtre edilmeden atmosfere bırakılmamalıdır. Denizlere ve okyanuslara milyarlarca kilo çöp ve atık madde atılmasından vazgeçilmelidir. Sular arıtılmadan deniz ve göllere verilmemeli, arıtılan suların bir kısmı yeniden kullanılmalıdır. Enerji üretimi için linyit, fuel-oil, radyoaktif elementler ile çalışan santraller yerine su gücü, rüzgâr ve jeotermal enerji ile çalışan santraller tercih edilmelidir. Çimento fabrikaları, linyitle çalışan termik santraller ve agır sanayi tesislerinin bacalarına katı parçacık ile kirleticileri süzecek filtreler takılmalıdır. Yakıt tasarrufu saglama, bilinçli ısınma ile hava ve çevre kirliliginin zararları konusunda insanlar bilinçlendirilmelidir. Mevcut ormanlar korunmalı, azalan orman varlıgını artırmak için agaçlandırma seferberligi başlatılmalıdır. Araziden ve topraktan yararlanma konusunda insanlar egitilmelidir. Mera hayvancılıgı yerine ahır hayvancılıgı teşvik edilmeli, aşırı otlatılmanın önüne geçilmelidir. Çöpler yerleşim yeri ve su kaynaklarına uzak bölgelerde depolanmalıdır. Çöpler sınıflandırılarak toplanmalı; geri dönüşümü olanlar ( kâgıt, cam, demir v.s ) yeniden kullanılmalıdır. Çöplerden enerji ve gübre üretiminde yararlanılmalıdır. Zehirli, tarımla mücadele ilaçları çok az kullanılmalı, biyolojik mücadeleye önem verilmelidir. Yanlış sulama ve gübreleme yöntemlerinden kaçınılmalı, tarım uzmanlarının bu konudaki öneri ve uyarıları dikkate alınmalıdır. Maden ocakları, çöp toplama alanları toprakla kapatılarak yeşil alanlara dönüştürülmelidir. Orman köylüleri ekonomik ve sosyal yönden desteklenmeli, yeni geçim kaynakları yaratılmalıdır. Motorlu taşıtların egzoz borusuna susturucu takılmalı, toplu taşımacılık metro ile yeraltına indirilmeli, bisiklet kullanımı yaygınlaştırılmalıdır. Kaynak: kursunkalem.com

http://www.biyologlar.com/dogal-cevreyi-etkileyen-sorunlar

Çevre Kirliliği

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür. İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. SU KİRLİLİĞİ Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. HAVA KİRLİLİĞİ Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. TOPRAK KİRLİLİĞİ Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. SES KİRLİLİĞİ Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. RADYASYON Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır.

http://www.biyologlar.com/cevre-kirliligi-1

Genel biyoloji vize soruları

1.Hücre zarının görevi nedir? - Hücre içi ile hücre dışı arasında madde alış verişini sağlayan esnek, canlı ve seçici geçirgen bir zardır. 2.Endoplazmik retikulum kaç çeşittir ve görevi nedir? - Üzerine ribozom taşıyan granüllü ve granülsüz olmak üzere iki çeşittir. Hücre içinde maddelerin taşınması, depolanması ve kimyasal reaksiyonların yapıldığı yerdir. 3.Sentrozomun görevi nedir? - Kendini çoğaltmak ve bölünme sırasında iğ ipliklerini meydana getirmek. 4.Çekirdeğin görevleri nelerdir? - Metabolizmayı kontrol etmek - Karakterleri oğul canlılara aktarmak. 5.Yaşlanan bitki hücrelerinde bir tek büyük kofulun bulunmasının nedeni nedir? - Bitkilerde metabolizma artığı ürünlerin kofullarda depolanması. 6.Hücre çeperinin yapısı nasıldır? - Selülozdan meydana gelir. Çeper üzerinde kütin, lignin, süberin, kalsiyum ve silisyum gibi maddeler birikerek çeperin farklılaşmasına neden olur. 7.Bitkilerde çiçek ve meyvelerin renklerini ne verir? - Plastidler ve koful özsuyunda bulunan antokyan denilen madde. 8.Hücrenin bölünme nedenlerini yazın. - Hücre yüzeyini artırmak ve hacmini küçültmek için -Hücrenin büyümesi çekirdeğin etki alanını sınırlar. Çekirdeğin etki alanını artırmak için hücre bölünür. 9.Kloroplast ve mitokondrinin ortak özellikleri nelerdir? - Çift zarlıdırlar - Kendilerine ait DNA’ları vardır. ATP’nin sentezlendiği yerlerdir. 10.Mitoz olayının en önemli sonucu nedir? - Hücreden hücreye kalıtsal devamlılığı sağlar. Mitoz sayesinde, yeni meydana gelen hücreler ana-baba hücrenin sahip oldukları yeteneğin aynısına sahip olurlar. Bu da kendini eşleyen DNA moleküllerinin her oğul hücreye tam bir takım halinde geçmesiyle mümkün olur. 11.Ökaryot hücrelerde hücre bölünmesi hangi iki evreden oluşur? - Mitoz olarak adlandırılan çekirdek bölünmesi ve sitokinez olarak adlandırılan sitoplazma bölünmesi. 12.Mitoz bölünmenin safhalarının isimleini sırasıyla yazın. - Profaz, metafaz, anafaz, telofaz 13.İnsan gametinde kaç kromozom bulunur? - İnsan gametinde 23 kromozom bulunur? Bunların kaç tanesi otozom, kaç tanesi gonozomdur? - İnsan gametinde 23 kromozom bulunur. Bunlardan 22 tanesi otozom, 1 tanesi gonozomdur. 14.İnsanlarda erkeklerin ve dişilerin vücut hücrelerindeki kromozom formülünü yazınız. - Erkeklerde (44 + XY), Dişilerde (44 + XX) 15.Bitki hücresinin mitoz bölünme sırasında ara plağı ile ikiye bölünmesinin nedeni nedir? - Hücre zarının dışında selüloz çeperin bulunması. 16.Mayoz bölünme hangi hücrelerde görülür? - Üreme organlarında üreme ana hücrelerinde (Yumurtalık ve testislerde) görülür. 17.Mayoz bölünme ile ne sağlanır? - Dölden döle kromozom sayısının sabit kalması korunur. - Gen çeşitliliğine sebep olur. 18.Oogenezde aktif olmayan hücrelere ne ad verilir? - Kutup hücreleri. 19.İnsanlar ve amipler arasında mitoz bölünme hangi yönden farklıdır? - İnsanlarda mitoz bölünme büyüme, gelişme ve eskiyen yerlerin onarımını sağlar. Amiplerde mitoz bölünme çoğalmayı sağlar. 20.Bir insanın bazal metabolizması ölçülürken hangi şartlara dikkat edilmelidir? - En son alınan besinin ölçme işleminden 12 saat önce alınmasına - Ölçme sırasında kişinin tam dinlenme halinde tutulmasına - Ölçme sırasında ortam sıcaklığının belirlenmesine - Vücut yüzeyinin hesaplanmasına 21.ATP’nin molekül yapısı nasıldır? - Adenin denilen azotlu bir organik baz, Riboz denilen 5 karbonlu bir şeker ve üç fosfat grubundan yapılmış bir moleküldür. 22.ATP sentezi kaç yolla olur? - Oksijenli solunum - Oksijensiz solunum - Fotosentez 23.Eğer organizmalar enerjiyi karbonhidratlarda değil, ATP de depolasalardı ne gibi problemler olurdu? - Hücre içi daha asidik olurdu. - Fosfor şu an bulunduğundan daha çok kullanılırdı. 24.Bir nükleotidin yapısında 5 karbonlu şekerle azotlu organik bazın oluşturduğu kısma ne denir? - Nükleozit 25.mRNA’nın görevi nedir? - Hücredeki RNA miktarının % 5’ini oluşturur. DNA da bulunan genetik bilgiyi belli şifreler (kodon) halinde çekirdekten sitoplazmaya aktarır. 26.Hücre hayatında DNA’nın iki önemli görevini açıklayın. - Temel hücresel görevleri kontrol etmek - Genetik direktiflerin oğul döllere aynen iletilmesini sağlamak. 27.DNA modelinden faydalanılarak hangi biyolojik olaylar açıklandı? - DNA’nın hücre bölünmesinden önce kendini nasıl eşlediği - Protein sentezi için nasıl şifre taşıdığı - Mutasyonun nasıl meydana geldiği açıklandı. 28.Genetik şifre nedir? Genetik şifre bütün canlılarda aynı mıdır? - DNA’dan gönderilen hücre içindeki bütün olayları etkileyen mesajlara denir. - Genetik şifre her canlıda farklıdır. 29.DNA’nın neden mRNA gibi bir aracı yardımıyla çalışmak zorunda olduğu düşünülür? - DNA büyük bir molekül olduğu için çekirdekten dışarı çıkmaz. Proteinler çekirdek dışında, endoplazmik retikulum boyunca dağılmış olan ribozomlarda sentezlenirler. Direktiflerin çekirdekten sitoplazmaya taşınabilmesi için bir aracıya ihtiyaç vardır. 30.tRNA’nın protein sentezindeki görevi nedir? - tRNA hücre içindeki Amino asitleri tanır ve bunları proteinlerin sentezlendiği ribozomlara taşır. 31.DNA’nın Replikasyon yapması hücre bölünmesi açısından neden önemlidir? - Hücre bölünmesi ile özellikler yeni hücrelere geçer. Bir türün bütün bireylerindeki hücreler aynı tip ve sayıda kromozoma sahip olur. 32.Virüsler, canlılara has özelliklerden hangilerine sahiptirler? - DNA veya RNA içermeleri - Konak hücre içinde üremeleri - Mutasyona uğramaları - Üremeleri sırasında yeni gen kombinezonları oluşturmaları 33.Virüslerin çoğalmasını hangi faktörler sınırlamaktadır? - Virüslerin üremeleri konak hücrelere yayılma ve orada çoğalma yetenekleri ile sınırlıdır. 34.DNA içeren virüslere örnek veriniz? - Bakteriyofaj, çiçek hastalığı, suçiçeği ve uçuk (herpes) virüsü. 35.RNA içeren virüslere örnek veriniz? - Tütün mozaik virüsü, çocuk felci, grip, AİDS, kızamık, kabakulak ve patates, salatalık, marul bitkilerinde hastalık yapan virüsler. 36.Virüslerle mücadele etmek neden zordur? - Çeşitleri fazladır, - Çok küçüktürler - Antibiyotikten etkilenmezler. - Çabuk ürerler ve konakçı canlıyı kullanırlar. 37.Işık enerjisi kullanarak besin sentezleyen bakteriler nasıl adlandırılır? - Fotoototrof bakteriler 38.Şekillerine göre bakterilerin isimlerini yazın. - Yuvarlak (Coccus), çubuk (bacillus), spiral (spirillum), virgül (vibriyon) 39.Bakteriler oksijen ihtiyaçlarına göre nasıl adlandırılırlar? - Oksijen varlığında yaşayanlar (aerob bakteri), oksijensiz ortamda yaşayanlar (anaerob bakteri), her iki ortamda da yaşayanlar (geçici aerob ve geçici anaerob bakteriler) 40.Bakterilerde solunum enzimleri nerelerde bulunur? - Sitoplazmada veya hücre zarında bulunur. 41.Bakteri populasyonunda geometrik dizi şeklinde çoğalma neden sürekli olmaz? - Bakteriler çoğalmaları için ortamdaki su ve besin maddelerini bitirirler. Bu sırada ortamda alkol ve asitli bileşiklerle beraber zehirli atıklar da meydana gelir. Bu durum bakterilerin sayıca artışını engeller. 42.Bakterilerde endospor nedir ve hangi şartlarda meydana gelir? - Endospor bakteri sitoplazmasının su kaybederek büzülmesi ve etrafının dayanıklı bir zarla çevrilmesiyle bakterinin içinde oluşur. Bu olay üreme değildir. Bakterinin elverişsiz ortamlarda uzun zaman canlı kalabilmesini sağlar. Endospor yüksek sıcaklıkta ve kurak ortamlarda oluşur. 43.Ototrof ve saprofit bakterilerin parazit bakterilere üstün olmasını sağlayan özellik hangisidir? - Gelişmiş enzim sistemine sahip olmaları. 44.Prokaryot bir hücredeki protein sentezinin ökaryot hücreye göre daha hızlı olmasının nedeni nedir? - Çekirdek zarının bulunmaması. 45.Tatlı sularda yaşayan bazı bir hücrelilerdeki Kontraktil kofulların temel görevi nedir? - Fazla suyu aktif taşıma yaparak difüzyonun tersi yönde boşaltmak. 46.Çok hücreli organizmalarda doku, organ ve organ sistemlerine niçin ihtiyaç duyulur? - Organizmanın bütünlüğünün devamı için - Enerjinin korunumu için. 47.Hücrelerin özelleşmesi bir canlıya nasıl üstünlük sağlar. - Enerjinin daha verimli kullanılmasına yol açar. - İri parçalar halinde besinlerden yararlanma imkanı doğar 48.Çok hücreli organizmaların gelişimine bağlı olarak, bir hücreli organizmalarda bulunmayan ne gibi bir özel problem vardır? - İç çevreden atıkların uzaklaştırılması - Besin maddelerinin bütün hücrelere dağıtılması - Organizmanın kendini eşleme olayı - Hücre içi ve hücreler arası kontrol ve koordinasyon. 49.Özelleşmiş hücre nedir? - Belirli görevleri yapmak üzere farklılaşmış, şekil ve yapı bakımından benzer hücrelerdir. Kas ve sinir hücreleri özelleşmiş hücrelerdir.Özelleşmiş hücreler dokuları, organları ve sistemleri meydana getirir. 50.Aktif taşımanın özellikleri nelerdir? - Enerji harcanır - Taşıma az yoğun ortamdan çok yoğun ortama doğrudur - Canlı hücrelerde görülür. - Enzimler kullanılır. 51.Pasif taşımanın özellikleri nelerdir? - Enerji harcanmaz - Taşıma çok yoğun ortamdan az yoğun ortama doğrudur. - Canlı ve cansız hücrelerde görülür. - Sıcaklık ve hareket difüzyonu artırır. 52.Hücrenin çok yoğun ortama konması halinde su kaybetmesi olayına ne ad verilir? - Plazmoliz. 53.Hücrenin az yoğun ortama konması halinde su alarak şişmesi olayına ne ad verilir? - Deplazmoliz 54.Büyük moleküllü katı maddelerin hücre içine aktif taşıma ile alınmasına ne denir? - Fagositoz 55.Büyük moleküllü sıvı maddelerin hücre içine aktif taşıma ile alınmasına ne denir? - Pinositoz 56.Deplazmoliz halindeki bir bitki hücresini saf suda bekletmeye devam edildiğinde koful sürekli su alarak büyür ve sitoplazmayı hücre çeperine doğru iter bu olaya ne denir? - Turgor 57.Bitki hücrelerine giren suyun hücrenin içinden dışına doğru yaptığı etkiye ne denir? - Turgor basıncı 58.Doğadaki canlıların özelliklerine, yaşayışlarına ve akrabalık derecelerine göre gruplandırılmasına ne denir? - Sınıflandırma (Taksonomi), 59.Ortak bir atadan gelen, yapı ve görev bakımından benzer özelliklere sahip, yalnızca kendi aralarında serbestçe üreyebilen ve verimli (kısır olmayan) yavrular oluşturan bireyler topluluğuna ne denir? - Tür 60.Sınıflandırmada kullanılan basamaklar (sınıflandırma) en küçük topluluktan en büyüğüne doğru nasıl sıralanır? - Tür, cins, familya, takım, sınıf, şube, alem olarak sıralanır. 61.Sınıflandırmada alemden türe doğru inildikçe birey sayısı ve ortak özellikler nasıl değişir? - Birey sayısı azalır, ortak özellikler artar. 62.Sınıflandırmada türden aleme doğru çıkıldıkça birey sayısı ve ortak özellikler nasıl değişir? - Birey sayısı artar, ortak özellikler azalır. 63.Havanın serbest azotunu yakalayarak toprakta azotlu bileşikleri oluşturan ve toprağın verimini artıran canlı grubu hangisidir? - Mavi-yeşil algler. 64.Basit bölünme ile çoğalan ve basit beslenme ihtiyaçları olan öncü organizma hangisidir? - Mavi-yeşil algler. 65.Bakterilerin antibiyotiğe ve kimyasal maddelere karşı kazandığı direnci nesiller boyu aktaran DNA kısmına ne denir? - Plazmid 66.Heterotrof bakteri çeşitlerinin isimleri nedir? - Parazit bakteriler - Saprofit (Çürükçül) bakteriler. 67.Güneş enerjisini kullanmadan inorganik maddeleri oksidasyonla elde ettikleri enerji ile su ve karbondioksitten besin üreten bakterilere ne denir? 68.Protozoaların çeşitleri nelerdir? - Kamçılılar (flagellata), Kökayaklılar (Rhizopoda), Sporlular (sporozoa), Sililer (cilliata) 69.Protistlerden olan öglenanın özelliği nasıldır? - Kamçılı olduklarından hareketlidirler bu nedenle hayvan olarak değerlendirilirken, klorofil taşıdıklarından dolayı da bitki olarak değerlendirilirler. 70.İnsanlarda uyku hastalığına sebep olan ve Çeçe sineği tarafından taşınan sporlu canlının adı nedir?

http://www.biyologlar.com/genel-biyoloji-vize-sorulari

Bitkilerde virüs hastalıkları

SERALARDA GÖRÜLEN ÖNEMLİ VİRÜS HASTALIKLARI Yrd. Doç. Dr. Mustafa GÜMÜŞ Prof. Dr. Ülkü YORGANCI Ege Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü Domates Mozayığı Tütün Mozayık Virüsü’nün domatese özelleşmiş ırkları neden olmaktadır. Bitkilerde hafif ve orta şiddette çalılaşma gözlenir. Virüs, yeşil ırk grubuyla bulaşınca, açık ve koyu yeşil bir mozayık meydana gelir. Yapraklarda uzama, dişlilik artması gibi şekil bozuklukları görülür. Buruşukluk, dönüklük ve iplik yapraklılık gibi yaprak ayası daralması ortaya çıkar. Sarı ırklardaki bulaşmalarda ise çok şiddetlidir. Yaprak damarları, yaprak sapı ve bitki gövdesinde kahverengi-siyah çizgi veya bant şeklinde ölü alanlara yol açar. Meyvelerde renk değişiklikleri, şekil bozuklukları ve lekeler oluşur. Ürün azalır. Çiçeklenme öncesi bulaşmalar daha fazla ürün kaybına neden olurlar En önemlisi ise şaşırtma sırasındaki bulaşmalardır. Domateslerde virüsler ve özellikle domates mozayık virüsü %30-50 arasında ürün kayıbı yaparlar. Domates mozayık virüsüne yakalanan meyvelerin tohumlarının da yarısı virüse bulaşmaktadır. Çiçeklenme sonrası bulaşmalarda, gece sıcaklığının aniden 18oC’nin altına düştüğü ve nemin %80’den fazla olduğu zamanlarda meyve içi kahverengileşir. Virüs belirtileri domates çeşidine, virüs ırkına ve çevre koşullarına göre farklı olmaktadır. Virüslerin yetiştirilen bitkilerde ve yabancı bitkilerde konukçuları olmaktadır. Virüsler, temasla, tohumla ve böceklerle taşınmaktadırlar. Domates Çift Virüslü Çizgi Hastalığı: Domates Mozayık Virüsü ile Patates X Virüsü’nün karışık bulaşması sonucu ortaya çıkmaktadır. Genç bitkilerin öldüğü, şiddetli bir şok şeklinde görülür. Yaşlı bitkiler kendilerini toparlayabilir, fakat gelişmeleri zayıftır. Ürün miktarında büyük bir düşme olur. Oluşan meyveler ise lekelidir. Kısmen ölü alanlara ve bozuk şekillere sahiptir. Temasla, böceklerle ve tohumla taşınmaktadır. Hıyar Mozayık Virüsü Bu virüsün çok sayıda konukçusu vardır. Domateste “İplik Yapraklılık”, biberde “Rozet Hastalığı” ve hıyarda “Hıyar Mozayığı” hastalıklarının nedenidir. Domatesteki belirtileri çok değişmektedir. Genellikle yaprak yüzeyi daralır ve sadece orta damar kalır. Çalılaşma ve mozayik belirtileri gözlenir. Meyveler küçüktür. Çökük lekeler ve içte siyahlaşma görülür. Ekonomik değerini kaybeder. Biberde oluşturduğu Rozet Hastalığı’nda boğum aralarında kısalma olur. Bu nedenle sürgün ucunda yaprak yığılması görülür. Öncelikle uç yapraklar çok daralmış ve şekli bozulmuştur. Yapraklarda damar araları açık renklidir. Meyve tutumu azalır. Meyveler küçük, şekilleri bozuk ve sert dokuludur. Bulaşma zamanına göre gelişme geriler. Verimde %10-30 kadar kayıp olur. Hıyarda ise Hıyar Mozayığı’na yol açar. Genç yapraklardaki mozayik, yaprak yaşlandıkça zayıflar. Kıvrılmış ve hafif kıvırcıklaşmış yapraklar ancak yarı büyüklüğüne ulaşabilir. Yaprak sapı ve gövdede boğum araları kısalır. Yan sürgünlerin sayıları azalır. Meyvedeki belirtiler değişmektedir. Genç meyvede çoğu zaman mozayik şeklinde lekelenme olur. Bazı durumlarda, sıcaklık 27oC’yi geçerse meyve üzerinde renksiz dikenimsi çıkıntılar görülür. Erkek çiçeklerin sayılarında artma, dişi çiçeklerinde ise azalma olur. Hastalık şiddetli ise verim alınmadan bitkiler ölebilir. Bu üç önemli konukçu dışında virüs, 300 kadar bitki türünün hastalanmasına yol açar. Kabak ve kavun da ekonomik zarar oluşturduğu konukçulardandır. Temasla ve yaprak bitleriyle taşınmaktadır. Domates Bronz Lekelilik Hastalığı (Lekeli Solgunluk Hastalığı) Hastalığıa, Lekeli Solgunluk Virüsü neden olmaktadır. Virüsün domatesteki belirtileri değişkenlik göstermektedir. Çift Virüslü Çizgi Hastalığı’nın belirtilerine benzer. Genç yapraklarda bronz renkli küçük lekeler oluşur. Genç bitkilerin büyüme uçlarında, uç yaprakların aşağı doğru kıvrılması ve solması gibi görünümler ortaya çıkar. Domates bitkilerinin gövdesinde ve yaprak sapında kahverengi çizgiler oluşabilir. Hastalıklı bitkiler bodurlaşır. Bitki çiçeklenme öncesi hastalığa yakalanırsa meyve oluşmaz. Çiçeklenme sonrası hastalanan bitkilerin meyvelerinde iç-içe halkalar şeklinde lekeler görülür. Virüs, 160’ın üzerinde bitkide hastalık yapabilmektedir. Hastalık, Thripsler aracılığı ile yayılmaktadır. Virüs, larvalar tarafından alınır ve ergin böceklerle taşınır. Domates Sarı Yaprak Kıvırcıklığı Hastalığı Hastalığa Domates Sarı Yaprak Kıvırcıklık Virüsü neden olmaktadır. Hastalığın ilk belirtisi yaprak kenarlarında ve damar aralarındaki sararmalardır. Hasta bitkilerin yaprakcıkları içe ve dışa doğru kıvrılır. Yaprak ayası aşırı derecede küçülür. Olgunlaşan meyvelerde zarar görülmezken, yeni meyve oluşumu engellenir. Hastalığa çiçeklenme öncesi yakalanan bitkiler bodurlaşır. Önemli miktarda ürün kaybı olur. Virüs, tütünü de içeren bazı bitkilerde hastalık yapar. Beyaz sinekler hastalığın taşıyıcısıdırlar. Biberde Mozayik Hastalığı Biber, bir çok virus hastalığına yakalanır. Biberde mozayik oluşturan virüsler içinde en yaygını ve en fazla zarar yapanı Tütün Mozayik Virüsü’dür. Bu virüsün biberlerdeki belirtileri solgunluk, bodurlaşma, bitki sapları üzerinde ölü alanlar, yaprak dökülmesi, yapraklarda mozayik belirtileri ve meyvelerde şekil bozuklukları yanısıra güneş yanıklığı gibi ölü alanlar sayılabilir. Hastalık, temas ve tohumla taşınmaktadır. Kabak Mozayığı Kabak Mozayik Virüsü, Hıyar Mozayik Virüsü, Karpuz Mozayik Virüsü, veya Kabak Sarı Mozayik Virüsü bu hastalığa neden olmaktadır. Kabak yapraklarında şekil bozuklukları, küçülme ve mozayik lekelenmesi görülür. Meyvelerde de lekelenme ve şekil bozuklukları oluşur. Etmen Kabak Sarı Mozayik Virüsü olduğunda belirtiler çok şiddetlidir. Kabak Mozayık Virüsü yaprak bitleriyle ve tohumla taşınmaktadır. Marul Mozayığı Hastalığa Marul Mozayik Virüsü neden olmaktadır. Hasta bitkilerde tam baş oluşması olmaz. Bitkiler küçük kalır. Yapraklarda açık-sarı ve yeşil lekeler oluşur. Yaprak kenarlarındaki dişlenme belirginleşir. Ölü alanlara rastlanır. Virüs, yaprak bitleriyle ve tohumla taşınır. Yaygın Fasulye Mozayığı Hastalığa Yaygın Fasulye Mozayik Virüsü neden olmaktadır. Hastalığın etkisi çeşit, bulaşma zamanı, virüs ırkı ve çevre koşullarına göre değişmektedir. Dayanıklı çeşitlerde bulaşmadan 8-14 gün sonra oluşan yapraklar sarımsı renk alırlar. Mozayik belirtisi yanısıra yaprak ayası daralır, aşağı doğru kıvrılır. Mozayik lekelerinde koyu yeşil kalan kısımlar siğil şeklinde çıkıntılar oluştururlar (Kabarcıklı Mozayık). Hasta bitkiler küçük kalır. Hassas çeşitlerde çiçekten sonra şok şeklinde solgunluk oluşur. Hastalık, temasla, tohumla, ve yaprak bitleriyle taşınmaktadır. Virüs Hastalıklarından Korunmak İçin Ne Yapılmalıdır? Virüs belirtileri, virüsün ırkına, konukçunun çeşidine, iklim koşullarına ve bulaşma dönemine göre değişmektedir. Bu nedenle hastalığı tahmin etmeye çalışmak zaman zaman üreticileri yanlış uygulamalara yöneltmektedir. Virüs hastalığından şüphe duyulduğunda yapılacak en doğru davranış uzmana başvurmaktır. Virüs hastalıklarının ilaçlı mücadelesi yoktur. Hastalanan bitkiyi iyileştirmek de mümkün değildir. Bu nedenle virüs hastalıkları ile mücadelede aşağıdaki önerilere uyulmalıdır. Virüsten ari tohum veya fide kullanılmalı, Virüse dayanıklı çeşitler seçilmeli, Taşıyıcı olan yaprak biti, beyaz sinek gibi böceklerle mücadele edilmeli, Hastalık etmeni virüsün veya taşıyıcı böceklerin saklanabileceği çevredeki yabancı otlar yok edilmeli, Seradaki havalandırmalar böceklerin geçemeyeceği kadar küçük delikli tül veya tel ile kapatılmalı, Bitkiler şaşırtılırken, tepe ve koltuk alınırken ellerin ve aletlerin %10 luk Teepol, %10’luk Sodyumtrifosfat veya sabun çözeltisine batırılmalı, Üretim dönemi sonunda bitki artıkları en kısa zamanda seradan uzaklaştırılmalıdır. Çileklerde virüs hastalıkları Virüsler mikroskopla bile görülemeyen çok küçük hastalık etmeni canlılardır. Virüslerin bazıları çileklerde hastalıklara neden olurlar. Çoğu virüs hastalığı 2 veya daha fazla virüsün kombinasyonundan oluşur. Bir virüs veya belirli kombinasyonları bitkide açık belirtiler veya göze çarpan irilik kaybı göstermeyebilir. Ancak çeşitli nedenlerle bitki zayıfladığında etkisini hemen gösterirler. Özellikle gelişme şartlarının uygun olmaması nedeniyle bitkide görülen zayıflama ile hemen ortaya çıkarlar. Bitki ilave bir virüsle enfekte olduğunda açık belirtileri derhal ortaya çıkabilir. Bir çilek bitkisi virüs hastalıklarından genelde kurtulamaz ve enfeksiyon ana bitkilerden kol bitkilerine geçer. Virüslerin taşınımında afitlerin büyük önemi vardır. Virüs taşınmasını çoğunlukla Pentatrichopus spp. afitleri etkilidir. Hastalıklı alandan hastalıksız alanlara uçan bu böcekler virüs hastalığının farklı alanlara da yayılımını sağlar. Buruşma, sararma, çok gövdelilik, yaprak bükülmesi, beneklenme ve aster sarılığı en çok karşılaşılan virüs hastalıklarıdır. Kesin belirtileri olmayan alelade oluşan diğer virüs hastalıkları isimsizdir. Bu tip hastalıklara neden olan virüsler sadece indexleme ile tanımlanabilir. İndexleme indikatör bir bitkiye test edilmesi gereken bitkinin aşılanması şeklinde yapılır. Şayet test edilen bitki virüsle bulaşıksa indikatör bitki kesin belirtiler gösterir. Tüm virüs hastalıkları bitkileri zayıflatır kol oluşumunu engeller ve meyve verimini azaltır. Buruşma ve sarma en zararlı virüs hastalıkları arasındadır. Buruşma verimi %50 veya daha fazla düşürür. Sararma verimi ve kaliteyi düşürür ve bitkinin yaşamını kısaltır. Açık belirtiler üretmeyen virüs hastalıkları %50 oranında verimi düşürebilir. Gerçek kanıya deneysel bitkiler üzerinde test edilerek varılabilir. Tüm çilek çeşitleri bu tip hastalıklarla zayıflatılabilir, fakat bazı çeşitler diğerlerine göre daha hassastır. Belirtiler Tanımlanabilen virüs hastalıklarından bazılarının belirtileri şu şekildedir; Buruşma (Crinkle) Bitkiler normale göre daha açık yeşil tondadır. Yapraklar yere yatma eğilimindedir. Yaprak sapları kısadır. Bazı yapraklar şekilsizdir ve buruşuk bir görünümleri vardır. Bu tip yapraklar genellikle çok sayıda, yüzeye yayılmış iğne ucu boyutlarında sarı noktalara sahiptir. Meyve kalitesinde ve verimde düşüşlere sebep olur. Dünyanın hemen hemen her yanına yayılmış vaziyettedir. Afitlerle taşınan diğer virüslerle kombinasyon oluşturduğunda hastalık çok ciddi boyutlar kazanır. Çok gövdelilik (Multiplier) Bu tip virüsün bulaştığı çilek bitkisi, aşırı uzamış ve çok sayıda gövdeye sahiptir. Bazen bu gövde sayıları yüzlerle ifade edilebilir. Yaprak sapları ince ve çoğu kere normalden daha kısadır. Yaprakların 1/3 veya yarıya yakını normal boyutta, diğer yapraklar ise çok küçük boyuttadır. Sadece birkaç kısa kol bulunur veya hiç kol bulunmaz. Bitki bodur görünümlü olup normal bitkilerden belirgin bir şekilde farklılık gösterir. Çiçeklenme ve ürün çok az oluşur veya hiç oluşmaz. Sararma (Yellows) Bitkiler cüceleşmiştir ve çok sayıda kola sahiptir.Yapraklar genellikle ters kap şeklindedir. Bu yapraklar mat yeşil merkeze ve sarı kenarlara sahiptir. Yaprak Bükülmesi (Leaf Roll) Yapraklar aşağıya dönük kap gibi olma eğilimindedir. Genellikle bükülerek veya yuvarlanarak içiçe katlanarak tüp şeklini alır. Aster Sarılığı (Aster Yellows) Bu hastalığın tanınan iki alt grubu vardır; eastern ve western aster sarılığı, İlk belirtileri, genç yapraklarda sararma, cüceleşme ve kap şeklini alma biçiminde kendini gösterir. Daha sonra ilk belirtileri gösteren bitkiler aniden ölür. Bitkilere bağlı kol bitkileride aniden ölür. Bazen bitki ölmeden önce anormal yeşil yapraklı çiçekler oluşturur. Hastalık arazide ortaya çıktığında genellikle sadece birkaç bitkide kendini gösterir. Bununla birlikte, bazen, arazideki bitkilerin yarıdan fazlası hastalıktan etkilenebilir. Bu hastalığın en önemli belirtisi meyveler üzerinde çıkar. Meyveler üzerindeki akenlerden ve petallerden yeşil yapraklar oluşabilir. Bu belirtiler bir arazideki her bitkide bir veya birkaç meyvede ortaya çıkabilir. Sonraki safhada meyve gelişimi durur. Ciddi bir şekilde enfekte olmuş bitkilerdeki yaşlı yapraklar kırmızımsı mor renk oluşturabilir ve genç yapraklar küçük kısa saplar meydana getirir. Yayılma oranı yıldan yıla büyük değişiklik gösterir. Yeşil Taç Yaprağı (Green Petal) Bu hastalık meyve ve vejetatif aksamın her ikisinde de diğer bitkilerden farklı bir şekilde belirtiler ortaya çıkarır. Bitkide sıklıkla bodurluk oluşur. Bu bitkiler üzerindeki yaşlı yaprakların rengi mor-kırmızımsı renge dönüşür ve yeni çıkan yapraklar parlak sarı renkte ve küçük boyutludur. Bu hastalığın sonucunda bitki çöker ve ölür. Hernekadar bazı küçük normal şekilli meyveler oluşturulabilirse de, broccoli çiçekciklerine benzeyen çiçek tablası ile oluşmuş birkaç meyvenin oluşması bu hastalığın belirgin bir özelliğidir. Bu oluşum sürekli olma eğilimindedir ve normal meyve oluşumundaki yaşlanma, yani olgunlaşma, oluşmaz. 2.1.2. Koruma ve Kontrol Şayet arazide sadece birkaç bitkide buruşma ve sararma belirtisi görülürse hemen bunlar ortadan kaldırılmalıdır. Hastalık taşıyıcısı olan afitleri kontrol altına almak için insektisitler kullanılmalıdır. Bu yolla bir yaş altındaki bahçelerde oldukça iyi sonuçlar alınabilir. Şayet hastalık çok sayıda bitkide ortaya çıkmışsa yöredeki yetkili kişilere bilgi vererek enfeksiyon kaynağının belirlenmesinde yardım alınabilir. Bunun yanı sıra enfekte olan bitkilerin derhal ortadan kaldırılması pratik olacaktır. Arazideki bitkilerde çok gövdelilik veya yaprak yuvarlama hastalığı ortaya çıkarsa, sonraki dikimlerde hastalıklı bitkiler kesinlikle kullanılmamalıdır. Aster sarılığı bulaşmış bitkiler yerlerinde bırakılabilirler; genellikle bu bitkiler ölürler ve sağlıklı bitkiler onların üzerinde gelişmeye devam ederler. Virüs hastalıklarından kaynaklı zarardan korunmak için, sadece virüssüz fideler kullanıldığı ve dikimden sonra virüs taşıyıcısı böceklerin hareketinin azaltıldığı veya engellendiği şartlar altında yetiştiricilik yapmak gerekir. Yeni dikim alanları mevcut çilek alanlarından mümkün olduğu kadar uzağa kurulmalıdır. Hasattan sonra eski alan derhal sürülmelidir ve erken ilkbahar ile sonbaharda mevcut olan uçan afitlere karşı insektisitler kullanılmalıdır. Virüssüz fideler, yaygın olarak bulunan fidelere veya virüsle enfekte olmuş fidelere göre çok daha iri ve verimli olacaktır. Hatta bu virüs hastalığı görülmeyen yerlerde bile kendini gösterecektir. Virüssüz fide temin etmek için özellikle virüssüz olduklarına dair sertifikaya sahip fidelikler tercih edilmelidir. Virüssüz çilek bitkileri, virüsle bulaşmış bitkilerin yakınına ve afitlerin mevcut olduğu yerlere dikildikten sonra enfekte olabilirler. Virüs hastalıklarının problem olduğu alanlarda insektisitler yeni dikim alanları üzerinde kanatlı afitlerin oluşumunu engellemek amacıyla erken ilkbahar ve sonbaharda dikkatli bir şekilde uygulanmalıdır. Yeni bitkilerle bahçe kurulduktan sonra hemen afitlere karşı insektisit uygulanır ve herhangibir afit mevcudiyeti sözkonusu ise uygulamaya 3 hafta devam edilir. Şayet afitler meyve tutumundan sonrada görülüyorsa ilaçlamaya devam edilir. Meyve hasadı sırasında ilaçlama ihtiyacı ortaya çıkarsa uygulanacak ilaca bağlı olarak bir süre meyve hasat edilmemelidir. Bu konudaki bilgi ilaç üreticisi firma tarafından ambalaj kaplarında bildirilmiştir. Hasat sonunda veya Eylül ün ilk günlerinde ilaçlama tekrar edilir.

http://www.biyologlar.com/bitkilerde-virus-hastaliklari

EVRİMİN MEYDANA GELMESİNDE ROLÜ OLAN FAKTÖRLER

1- Ortam Koşulları Canlılar, yer ve onu çevreleyen atmosferin “biyosfer” olarak tanımlanan dar bir kalınlığında yaşarlar. Toprakta tüm canlılık, ağaç köklerinin ulaşabildiği derinliğe kadar uzanır. Biyosfer içinde yaşam, belli başlı deniz, tatlı su, ve kara ortamlarında yer almaktadır. Hava, kaldırma kuvvetinin zayıflığı nedeniyle sürekli kullanılan bir yaşam ortamı olmamıştır. Bu ortamlar içinde, canlılığın gelişmesi için en uygun olanın, deniz ortamı olduğu düşünülmektedir. Denizler, yeterli kaldırma kuvveti ile canlılara sağladığı kolaylık yanında; ozmotik basınç farkından doğan olumsuzluğun tatlı suya göre daha az olduğu; sıcaklık, ışık ve elementlerin dağılımı gibi fiziksel ve kimyasal koşulların, kara ortamına göre tekdüze (homojen) olduğu bir ortamdır. Kara ortamı, fiziksel ve kimyasal koşullar bakımından yıllık, mevsimlik, günlük ve saatlik değişiklikler gösteren bir ortamdır. Kara ortamında, zamansal ve coğrafik boyutlarda karşılaşılan farklı koşullar (heterojenite) nedeniyle ortaya çıkan ekosistem (= Yerin bir bölgesinde canlı ve cansız varlıkların birlikte oluşturdukları ekolojik birlik) çeşitliliği, tatlı su ve deniz ortamlarına göre çok daha fazladır. Kara ortamına uymuş (adaptasyon) canlıların tür sayısının su ortamına uymuş canlılardan fazla olmasının başlıca nedeni, karasal ekosistemlerin çeşitliliğinin fazla oluşudur. Yaşam ortamlarında, basınç, sıcaklık, ışık, nem, O2, CO2, tuzluluk derecesi, H konsantrasyonu, besinsel elementler, organik ve toksik maddeler bilinen belli başlı çevresel değişkenlerdir. Tür (=Morfolojik olarak yeterli ölçüde biribirlerine benzeyen ve kendilerine benzer yavrular meydana getiren canlılar) düzeyinde ve hatta bireysel olarak her canlı için, bu değişkenlerin bulunabileceği en düşük (minimum); en yüksek (maksimum) ve en uygun (optimum) değerleri vardır. Canlılar için bulundukları ortam koşullarında meydana gelen değişiklikler yaşamsal öneme sahiptir. Örneğin, tam başkalaşım (holometaboli) geçirerek erginleşen ve sonunda bir kelebek olan Şpek Böceği (Bombyx mori) nin gelişimi, bütünüyle çevresel koşulların kontrolu altındadır. Yumurtalar, Dut Ağacının yapraklanmasına sebep olan çevresel koşullara (özellikle sıcaklığa) bağlı olarak açılarak kurtcuk (larva)lar meydana gelirler. Kurtcuklar beslenme konusunda Dut yapraklarına öylesine bağımlıdırlar ki, bulamadıkları durumda başka bitkilerin yaprakları üzerinde beslenemediklerinden ölürler (monofag canlı). Çünkü, Dut yaprağının kimyasal kompozisyonu, Şpek Böceği kurtcuklarının bu yaprakları ısırması, hatta yutması için özel bileşikler içermektedir. Canlılar, bir ekosistem içinde rastgele bulunmak yerine, Şpek Böceği-Dut Ağacı örneğinde olduğu gibi, bir ilişkiye dayalı olarak bir arada bulunurlar. Ekosistem içinde, aralarında kurdukları karşılıklı ilişkilere dayalı olarak bir arada bulunan populasyon (=Belli bir bölgede yaşayan aynı türden canlılar) ların meydana getirdiği topluluk (community), adeta bir canlı gibi değişen çevresel koşullara uymaya çalışır. Bunu yaparken, bazı populasyonlarını kaybedebileceği gibi çevresel koşulların yeni kompozisyonuna uyum sağlayan yeni populasyonları da üretebilir. Hatta, bir türe ait eski ve yeni populasyonlar arasındaki fark tür düzeyinde olabilir. Bu ortam şartlarının neden olduğu bir türleşme ya da evrimleşmedir. 2- Eşeyli Üreme Eşeysiz üreme canlılar arasında görülen ilkel bir üreme şeklidir. Eşeysiz üremenin bilinen 3 şekli, spor oluşturma (bazı bakteriler ve mantarlarda), tomurcuklanma ( örneğin Chlorohydra viridissima da) ve ikiye bölünme ( örneğin Amip gibi) dir. Bu şekilde üreyen canlılar, genotipik olarak kendilerini kopyalarlar ve populasyonu meydana getiren fertler, kalıtsal özellikleri bakımından biribirlerinin aynıdır. Tomurcuklanma ve spor oluşturma şekillerinde canlının bir bölümü veya oluşturduğu sporlar sonraki dölü meydana getirdiği halde; ikiye bölünerek üreme şeklinde canlının tamamı bölünmeye uğradığı için, bu çoğalma şeklinin eşeysiz üremenin en ilkel şekli olduğu düşünülmektedir. Ancak, konumuz açısından önemli olan, eşeysiz çoğalmanın bütün örneklerinde meydana gelen fertlerin genotipik olarak aynı özelliklere sahip olmasıdır. Buna karşın, eşeyli üreme genotipik olarak farklı kompozisyona sahip olan fertler arasında (erkek ve dişi) gen alış-verişini sağlayan bir çoğalma şeklidir. Bu çerçevede, erkek ve dişi fertler tarafından meydana getirilen ve her biri farklı dizilişte ve haploid sayıda (bir organizmayı oluşturan somatik hücrelerin sahip oldukları kromozom sayısı “2n” nın yarısı olan “n” sayıda) kromozoma sahip olan eşey hücreleri (sırasıyla sperm ve yumurta) birleşerek yavru hücre (zigot = iki gametin birleşmesinden meydana gelen, “2n” kromozoma sahip diploid hücre) yi meydana getirirler. Burada evrim açısından önemli olan, farklı genetik kompozisyona sahip olan fertlerin meydana getirdikleri ve bu kompozisyonun yarısına sahip olan eşey hücrelerinin birleşmesinden yeni ve orijinal bir genotipin meydana gelmesidir. Örnekle açıklamak gerekirse, diploid kromozom sayısı 6 olan bir canlının kromozomlarından 3 ü babadan, 3 ü anneden gelmektedir. Dolayısıyla bu canlı 23 = 8 farklı kromozom kombinasyonunda gamet meydana getirebilmektedir. Zigotun meydana gelebilmesi için gerekli olan karşı cins de 8 farklı kromozom kombinasyonunda gamet oluşturabilmektedir. Böylece, erkek ve dişi gametlerin birleşmesi durumunda, meydana gelebilecek farklı kromozom kombinasyonuna sahip fertlerin sayısı 8 X 8 = 64 dür. Bu canlının insan (2n = 46) olduğu düşünülürse, erkek ve dişilerde farklı kromozom kompozisyonundaki gametlerin sayısı 223 olduğundan bu gametlerin birleşmesiyle meydana gelebilecek farklı kromozom kompozisyonunda fert sayısı 223 X 223 = 246  70 tirilyondur. Bu örnek, aynı zamanda tek yumurta ikizleri dışında, kardeşlerin neden biribirlerine benzemediklerini açıklar. Eşeyli çoğalmada canlılar gen alış-verişini, sperm ve yumurta hücrelerinin oluşumu sırasında geçirdikleri mayoz bölünmesi (redüksiyon bölünmesi) nin "diploten / profaz" evresinde karşılıklı gelen ana ve babaya ait kromozomlar arasındaki parça değişimi (crossing-over) ile sağlarlar. Böylece, erkek ve dişi eşeylerin gonad hücreleri arka arkaya geçirdikleri bir mayoz ve bir mitoz bölünmesi sonunda 4 spermatozoon ve l yumurta hücresi meydana getirirler Her canlı, üyesi olduğu tür için özel olan sayıda kromozoma sahiptir. Örneğin insanda bu sayı 46 dır. Mayoz bölünmesi, eşey hücrelerinin kromozom sayılarını yarıya indirerek, bunların birleşmesinden meydana gelen döllenmiş yumurta (zigot) da kromozom sayısının tür için karakteristik olan sayıda kalmasını sağlayan bir bölünmedir. Bu özelliği ile mayoz bölünme, örneğin insanda kromozom sayısının ardışık her dölde 46, 92, 184,... şeklinde artmasını önlemektedir. Mayoz bölünmenin, birbirinden kesin sınırlarla ayrılamayan dört evresinden ilki olan Profaz evresinde sırasıyla, kromozomlar iplik şeklinde görünür hale gelirler (Leptoten); anne ve babadan gelen homolog kromozomlar fermuar kapanması gibi, bir ucdan başlayarak boydan boya karşılıklı gelirler (Zigoten); "sinapsis" olarak tanımlanan bu işlem sonunda "bivalent" adı verilen kromozom çiftleri oluşur. Bivalenti oluşturan kromozomlar kısalıp kalınlaşırken kromatidlerine ayrılırlar (Pakiten). Bivalenti oluşturan kromozomlar kısalıp kalınlaşma sırasında biribirleri üzerine öylesine burulup bükülürler ki, homolog kromozomların kromatidleri arasında kesişmeler meydana gelir (Diploten). Kesişme noktaları (chiasma) nda meydana gelen kopmalara bağlı olarak, homolog kromozomların kardeş olmayan kromatidleri arasında genlerin karşılıklı olarak değiştirilmesiyle anne ve babadan gelen kalıtım materyali karışmış olur (crossing-over). Böylece, anne ve babanın sahip oldukları karakter çeşitliliği içinden farklı gen kompozisyona sahip yeni gametler; ya da çevresel koşullara karşı alternatif zigot oluşturacak farklı gametler meydana gelmiş olur (Diakinez). Çekirdek zarının yok olmaya başlamasıyla mayoz profazı sona ermiş olur. Metafazda, sentromerler hücrenin iki ayrı kutbunda yerlerini alırlar. Sentromerler arasında iğ iplikleri oluşur. Bivalentler iğ iplikleri üzerinde, sentromerleri ekvatoryal düzleme eşit uzaklıkta olacak şekilde dizildikten sonra, kromozomlar fermuar şeklinde biribirlerinden ayrılmaya başlarken kesişme noktaları uçlara kayar (terminalizasyon). Anafazda, homolog kromozom çiftleri biribirlerinden tamamen ayrılarak karşılıklı kutuplarda toplanırlar. Telofazda, Şğ iplikleri yok olurken bivalentlerin yarımları etrafında çekirdek zarları oluşmaya başlar. Mayoz bölünmede yukarıdaki şekilde tanımlanan evrelerin süreleri farklıdır. Bundan sonra, anne ve babanın kromozom sayısının yarısına (insanda n=23) sahip olan 2 erkek ve 1 dişi eşey hücresi, yukarıda da belirtildiği gibi, geçirdikleri mitoza benzeyen ikinci bir bölünmeyle 4 spermatozoon ve 1 yumurta hücresi meydana getirirler. Bu şekilde oluşan her gamet ve onların birleşmesinden meydana gelen her fert, ortam koşullarına uyma açısından ait olduğu türün yeni bir şansıdır. Buna karşın eşeysiz üremeyle çoğalan bir populasyon değişen ortam koşullarına uyma konusunda, farklı genotipe sahip bireyleri bulunmadığından yok olma tehlikesiyle karşı karşıyadır. Nitekim, tür sayıları karşılaştırılırsa, eşeyli çoğalan türlerin sayısı, daha yakın bir geçmişe sahip olmalarına rağmen eşeysiz çoğalan türlerin sayısından daha fazladır. Örneğin, herhangi bir kelebek populasyonu laboratuvar koşullarında yetiştirilmek istenirse, bireyler laboratuvarda yetiştirme kafesleri içinde kendi aralarında döllenmek zorunda kalacaklarından, bir süre sonra populasyon içinde heterozigot (homolog kromozomlarda belli bir karakter üzerinde etkili olan karşılıklı genlerin farklı yönde etkiye sahip olması) fertlerin sayısı azalacak ve populasyon küçülecektir. Bunu önlemek için, başka laboratuvarlardan getirilen fertlerin populasyona karıştırılması gerekecektir. Nitekim, heterozigot fertlerden oluşan populasyonların bulundukları ortamdaki büyüme yeteneklerinin homozigot (homolog kromozomlarda belli bir karakter üzerinde etkili olan karşılıklı genlerin aynı yönde etkiye sahip olması) fertlerden oluşan populasyonlardan fazla olduğu bilinmektedir. Şnsan populasyonlarında da yaşanan buna benzer olaylar vardır. Ekonomik veya kültürel gerekçelerle kendi içinde kız alıp-veren bir populasyonda görülen küçülme veya zayıflığın nedeni, populasyon içinde homozigotluğun artmasına karşın, heterozigotluğun azalmasıdır. 3- Bireysel Değişiklikler (Varyasyon) Türler arasındaki farklar dışında, aynı tür içinde veya aynı ana ve babadan meydana gelmiş fertler arasında çeşitli karakterler (morfolojik, fizyolojik ve karşı eylem) bakımından görülen farklara bireysel değişiklik (varyasyon) denir. Aynı türden bireylerin, saç, deri ve göz renginde olduğu kadar boy uzunluğu ve şişmanlık, hatta zorluklara karşı dayanma gücü gibi karakterleri arasındaki farklar; tek yumurta ikizleri arasında en az olmak üzere, karşılaştırılan örnekler arasındaki akrabalık derecesinin azalmasıyla ters orantılı olarak artar. Yapılan çalışmalar, bu karakterlerde meydana gelen değişikliklere, canlıyı oluşturan tüm karakterleri kontrol eden ve dölden döle aktarılmasını sağlayan kalıtsal nitelikli iç faktörler(genotip) ile canlının içinde yaşadığı ve fiziksel, kimyasal, biyolojik özellikleri bulunan dış faktörler (çevresel) in neden olduğunu göstermiştir. Ana çizgileriyle nasıl işlediği aşağıda anlatılan, bu iç ve dış faktörlerin birlikte etkisi altında meydana gelen canlıya fenotip denir. A- Genotipik değişiklikler (Mutasyonlar) Bir populasyonun herhangi bir dölünde görülen değişikliğin sonraki döllerde de görülmesine kalıtsal (genotipik) değişiklik, bu değişikliği meydana getiren kromozomlardaki yapısal ve sayısal değişikliklere de Mutasyon denir. Mutasyonlar organizmanın eşey hücrelerinde veya somatik hücrelerinde meydana gelebilir. Eşeyli çoğalan canlılarda, eşey hücrelerinde meydana gelen mutasyonların kalıtsal niteliği olmasına karşın, somatik hücrelerde meydana gelen mutasyonların ilgili hücre, doku veya organizmada meydana getirdiği değişiklikler (kanserleşme gibi) dışında kalıtsal bir etkisi bulunmamaktadır. Örneğin, siyah gözlü bir Sirke Sineği (Drosophila sp.) populasyonunda nadiren 1-2 tane kırmızı gözlü sinek ortaya çıkabilir. Bunların kendi aralarında çaprazlanmasıyla, populasyon içinde kırmızı gözlü fertlerin sayısı artar. Hatta, nesiller sonra populasyon tamamen kırmızı gözlü bireylerden oluşabilir. Böylece, bu populasyonun tamamı kalıtsal bir değişikliğe uğramıştır. Bir kural olmamakla birlikte kalıtsal değişiklikler derecelenme göstermezler. Örneğin, siyah ve kırmızı gözlü sinekler arasında kahverengi gözlü fertlere rastlanmaz. Ancak, ortaya çıkması çok sayıdaki genin işleyişine bağlı olan karakterlerde derecelenme görülebilmektedir. Genlerin mutasyona uğrama dereceleri farklıdır. Örneğin, Drosophila sp. de göz renginde değişikliğe neden olan mutasyon kolay meydana gelmesine ve sık görülmesine karşın, metabolik işlemleri kontrol eden genlerde mutasyon ender olarak meydana gelmektedir. Canlılar arasında mutasyona uğrama sıklığı bakımından da fark bulunmaktadır. Bu oran, bakterilerde 1.10-7; Meyve Sineğinde 1.10-5 hücre ve insanda 1.10-4 hücre düzeyindedir. Mutasyonlar, crossing-over dışında, kromozomlarda oluşan sayısal ve yapısal değişiklikler ile genlerin moleküler yapısında meydana gelen değişiklikleri kapsar. Bunlardan, kromozomların gen sırasında meydana gelen yapısal değişiklikler ve genlerdeki moleküler değişikliklerin mutasyon etkisinin, kromozom sayısında meydana gelen değişikliklere oranla yüksek olduğu, gen fizyolojisi alanında yapılan çalışmalarla ortaya konmuştur. a) Defisiyens ve Delesyon: Kromozomdan parça eksilmesi durumunda yapılan adlandırmadır. Kromozomun ucundan parça eksilmesi “Defisiyens”, uçlar arasında bir bölgeden parça eksilmesi “Delesyon” olarak adlandırılmaktadır. Şekil 2a da kromozomda meydana gelen iki kırılma sonunda kırıklar arasındaki parçanın kaybına neden olan mutasyon (delesyon) görülmektedir. b) Duplikasyon: Homolog kromozomlar arasında parça değişmesi sonunda, kromozomlardan birinde bir bölümün tekrarlanmasıdır. Şekil 2a da homolog Kromozomlardan birinde oluşan iki kırıkdan sonra ortaya çıkan asentrik parçanın, homolog kromozomların diğerinde oluşan bir kırığa yerleşmesi sonunda mutasyona uğramış, eksik ve tekrarlı parçalara sahip yeni homolog kromozom çifti görülmektedir. c) Şnversiyon: Kromozomdan kopan bir parçanın 1800 dönerek eski yerine ters olarak yerleşmesidir. yapışan parçanın sentromerli olması durumunda “perisentrik inversiyon”; sentromersiz olması durumunda “parasentrik inversiyon” olarak tanımlanır. d) Translokasyon: Homolog olmayan kromozomlar arasında, kromozom parçalarının tek yönlü (basit) veya çift yönlü (resiprokal) olarak yer değiştirmesidir. Herhangi bir canlıda, bir karakterin genotipik özelliklerini belirleyen nükleotid grubu “gen” olarak isimlendirilmektedir. Bu tanıma göre, bir canlıya ait herhangi bir karakter çok sayıda nükleotid‟in kontrolu altında meydana gelmektedir. Dolayısıyla, bir geni meydana getiren nükleotid‟lerden birine ait baz‟da (adenin, guanin, timin veya sitozin) meydana gelen herhangi bir kimyasal değişiklik gen mutasyonu olarak adlandırılmaktadır (Şekil 2b). Bu şekildeki bir değişikliğe, radyomimetik madde veya mutagen olarak isimlendirilen; X ,  ve ultraviyole ışınları gibi değişik dalga boyunda radyasyonlar veya hardal gazı ve kolşisin gibi kimyasallar sebep olmaktadır. Gen mutasyonuyla, genellikle baskın (dominant) genler çekinik (resesif) gen haline gelirler ve canlı için çoğu kez zararlı olurlar. Zararlı gene sahip olan fert, var olan koşullar içinde çoğalamadan ölür ve söz konusu gen, populasyonun gen havuzunu terkeder. Bir başka durumda, mutant gen var olan çevresel koşullara karşı etkisiz (nötr) kalmasına rağmen, zamanla değişen ortam koşullarında fenotipe bir avantaj sağlayabilir ve doğal seçimle bu genin populasyonun gen havuzu içindeki sıklığı artar. B- Fenotipik değişiklikler (Modifikasyonlar) Herhangi bir karakter için kalıtsal olarak biribirinin aynı olan canlılarda ortam etkisine bağlı olarak meydana gelen değişiklikler fenotipe özgü olduklarından “fenotipik değişiklik” veya “modifikasyon” olarak adlandırılır. Kalıtsal bir temele dayanmadığı için evrim üzerine bir etkisi bulunmamasına rağmen bir değişiklik (varyasyon) olması nedeniyle, genotipik değişikliklerden farkının belirtilmesi için üzerinde durulacaktır. Bilindiği gibi, tek yumurta ikizleri kalıtsal özellikleri bakımından biribirlerinin aynıdır. Şkizler bebeklik döneminde anneleri tarafından bile zor ayırd edilmelerine rağmen, ilerleyen yaşlarıyla birlikte elde ettikleri fırsatlar ve bulundukları ortamların farklılığına bağlı olarak, morfolojik ve psikolojik özellikleri bakımından ayırd edilmeye başlarlar. Şleri yaşlarda ekonomik, sosyal, kültürel ve morfolojik özellikleri bakımından biribirinden farklı iki ayrı fenotip meydana gelir. Bir arı kovanında hepsi dişi olmakla birlikte kraliçe ve işçiler arasındaki fark da çevresel koşullara bağlı olarak meydana gelmektedir. Döllenmemiş yumurtalardan erkek arılar, döllenmiş yumurtalardan kraliçe veya işçi arılar meydana gelmektedir. Döllenmiş yumurtalardan çıkacak bireylerin kraliçe ya da işçi olmaları yumurtaların bırakıldıkları petek gözünün niteliklerine bağlıdır. Sıradan gözlere bırakılan yumurtalardan işçi arılar meydana gelirken; Niteliği diğerlerinden farklı olan ve işçi arılar tarafından farklı bir ihtimam gösterilen petek gözüne bırakılan yumurtadan kraliçe meydana gelir. Bu örnekte, bireyler arasında kalıtsal farklılık bulunmamasına rağmen, beslenme şekline (çevresel koşullar) bağlı olarak arılar arasında bir kast farkı meydana gelmiştir. Fenotipik değişiklikler derecelenme de gösterebilirler. Örneğin, kendi çiçek tozu ile döllenen bir Fasulye bitkisinde, aynı bakla içindeki dane (tohum) ler büyüklüklerini belirleyen genotipleri bakımından aynıdır. Ancak, her dane gelişmesi için gerekli olan hacim, su, besin ve ışık miktarı gibi çevresel faktörlere farklı derecelerde sahip olduklarından büyüklükleri farklı olmaktadır. Burada önemli olan, bir bakla içindeki danelerin en büyüğü ve en küçüğü arasında daha küçük, daha büyük gibi ara dereceler göstermeleridir. Bir canlıda, erken gelişim evrelerinde çevresel bir etkiye bağlı olarak meydana gelen ve kalıtsal değişikliklere benzeyen fakat, dölden döle geçmeyen değişikliklere “fenokopi” denir. Örneğin, uterusda, embriyonik gelişimin radyasyona daha duyarlı olduğu evrelerde iyonizan radyasyona maruz kalan memeli embriyolarında sonradan görülen anormallikler; bireyin yaşaması ve verimliliği (fertilitesine) üzerinde etkili değil ise, bu anormalliklerin yavrulara taşınmadığı görülür. Yani, etki kalıtsal (genotipik) değil fenotipiktir. Tarım, hayvancılık ve insan sağlığı amacıyla zararlı böceklere karşı yürütülen mücadele yöntemlerinden biri de “radyasyonla kısırlaştırılmış fertlerin salıverilmesi” yöntemidir. Bir Pamuk zararlısı olan Spodoptera littoralis kelebeğinin kısırlık dozunun araştırılmasında; 40 Gy  radyasyonuna (60Co) maruz bırakılan yumurta, larva ve pupalar erginleştikten sonra bireyler arasında nadiren de olsa görülen kanat büküklüğü anormalliğinin kelebeklerin daha sonraki döllerine taşınmadığı, yani radyasyona bağlı olarak meydana gelen değişikliğin fenokopi kapsamında olduğu görülmüştür. 4- Doğal ayıklanma Genotipik olarak biribirinin aynı olan tek yumurta ikizleri dışında, eşeyli çoğalan tüm canlılar biribirlerinden farklıdır. Aralarında, besin, yaşama alanı, barınak ve eş bulma gibi gereksinimler için bir rekabet vardır. Rekabete, parazit ve yırtıcıların baskısına karşı avantaj sağlayan genotipik özelliklere sahip organizmaların hayatta kalmalarına ve kendilerinden sonraki nesilleri meydana getirmek üzere çoğalmalarına karşın; benzer özelliklere sahip olmayanların ölmesine veya üreyememesine sebep olarak, populasyonun gen kompozizyonunun zaman içinde, gereksinimlere uygun olarak değişmesine neden olan biyolojik işlem “doğal ayıklanma” olarak tanımlanabilir. Doğa, koşullarına uygun olan değişiklikleri koruma, elverişsiz olan değişiklikleri uzaklaştırma eğilimindedir. Doğal ayıklanma, Darwin‟in teorisinde yer verdiği, evrime yol açan başlıca mekanizmadır. Doğal ayıklanma sonunda hayatta kalanların üreme (özellikle eşeyli üreme) üzerindeki baskısıyla, populasyona avantaj sağlayan değişiklikler (mutasyonlar); gelecek döllere geçer ve populasyonun gen havuzunda zaman içinde birikerek sonunda populasyonun değişmesine yol açarlar. Bu evrimsel bir değişmedir. Doğal ayıklanma olayını anlatabilmek için, bu konuda klasikleşmiş bir örneği kullanmak yararlı olacaktır. Endüstrileşmeye bağlı olarak gece kelebeklerinde meydana gelen renk değişikliğini izlediği bir çalışmasında Kettlewell, 1848 yılında önemli derecede endüstrileşmiş bir şehir olan Manchester de normal olarak açık renkli, benekli kelebeklerden oluşan Biston betularia populasyonu içinde 1 adet siyah renkli mutant kelebek buldu. Aynı populasyon üzerinde 1895 yılında yaptığı gözlemde ise kelebeklerin %99 unun siyah renkli olduğunu gördü. Aradan geçen zaman içinde, mutant form populasyon içinde normal formun yerini almıştı. Normalde açık renkli olan kelebeklerin, sanayiden kaynaklanan kurumla kararmış olan ağaç kabukları üzerinde avcı kuşlar tarafından kolayca farkedilerek avlanmalarına karşın, koyu renkli kelebekler ortama uyduklarından sağ kalabilmişlerdir. Kettlewell, mutant genin tekrar sayısındaki artışa doğal seçimin sebep olduğunu göstermek için, 1957 yılında, etiketlediği koyu ve açık renkli B. betularia bireylerini Manchester de kuşların bol bulunduğu bir alana ve Dorset'deki bir ormana salıverdi. Bir süre sonra, yakalanan etiketli bireylerden siyah renklilerin Manchester de; normal renklilerin Dorset de yaşayabildiklerini belirledi. Buna göre, kuvvetli bir olasılıkla B. betularia nın siyah mutantları 1848 yılından önce de meydana geliyordu, fakat hava kirliliği olmadığından, açık renkli likenlerle örtülü ağaçlar üzerinde koyu renkli mutantlar avcı kuşlar tarafından kolayca farkedildiklerinden, populasyon içindeki koyu renk geni avcı kuşların baskısı altında bulunuyordu. Ancak, sanayi devriminden sonra likenlerin yok olmasıyla, koyu renkli ağaç kabuğu üzerinde görünür hale gelen açık renkli kelebekler avcı kuşlar tarafından avlandıklarından bu kez populasyon içindeki açık renk geni avcıların baskısı altında kalmıştır Doğal ayıklanma, bir dölden sonrakine geçen genlerin tekrar sayısında meydana getirdiği değişiklikle, belli genlerin farklı derecede dölden döle geçmesine yardım ederek türleşmeyi sağlar. Böylece, süregelen çevresel koşullar içinde en etkili gen birliklerinin oluşmasına yardım eder ve fenotipde çevresel uyumla ilgili değişiklikleri meydana getirir. Populasyon içinde, aile dışı (genotipik olarak uzak) bireyler arasında meydana gelen birleşmelere (outbreeding) bağlı olarak heterozigotluk; aile içi (genotipik olarak yakın) bireyler arasında meydana gelen birleşmelere (inbreeding) bağlı olarak homozigotluk gelişir. Bilindiği gibi, homozigotluk fenotipde çekinik genlerin karşılıklı gelme şansını artıran ve populasyon içinde genotipik çeşitliliği azaltan; heterozigotluk ise bunun tersine, fenotipde çekinik ve dominant genlerin karşılıklı gelme şansını artıran ve çevresel koşullara karşı daha dayanıklı bir populasyon meydana getirmek üzere genotipik çeşitliliği artıran bir olgudur. Çevresel koşullar, doğal seçim mekanizmasıyla populasyonu isteği doğrultusunda değişmeye zorlar. Populasyonun gen havuzu içinde çevresel koşullar için elverişli genotipler doğal seçimle belirlenir ve gen havuzunda tutulur. Bu işlem sürecinde, çevresel koşullara rağmen populasyonda Resim 1. Biston betularia nın açık ve koyu renkli fertleri solda likenle kaplı bir ağaç gövdesi, sağda yalın ağaç kabuğu üzerinde. zayıflığa neden olan genler populasyonun gen havuzundan uzaklaşır. Yani, doğal seçim sonunda genotipik çeşitliliğin bir bölümü kaybedilir. Bu arada, çevresel koşullara karşı populasyonu avantajlı veya dezavantajlı kılmayan genler (nötr genler), genellikle gen havuzundaki varlıklarını sürdürürler. Çevresel koşullar değişmediği sürece populasyon için bir sorun yoktur. Ancak, bir değişme söz konusu olduğunda, populasyonun hayatta kalabilmesi sahip olduğu alternatif genlerin fazlalığına bağlıdır. O zamana kadar çekinik veya nötr durumda kalmış olan genlerin sayısı, populasyonun yeni koşullara uyma konusunda sahip olduğu yaşamsal alternatiflerdir. Doğada kendiliğinden meydana gelen ve çevre koşullarına daha iyi uyum sağlayan fertlerin seçiminden başka, yarış atları ve daha verimli bitkiler elde etmek gibi ekonomik amaçlara yönelik olarak insan eliyle yürütülen “yapay seçim” çalışmaları da bulunmaktadır. Bilimsel deneylerde kullanılmak üzere istenen niteliklere sahip yavruların kendi aralarında ve ana-babalarıyla çiftleştirilmesiyle, istenen özellikleri verecek genler bakımından homozigot fertler elde edilir. Yapay seçimin en ileri ürünü “arı döl” (inbred ırk) dür. Kendileşme sonunda oluşan homozigotluk, genellikle bulunduğu canlının yaşama yeteneğini azaltmaktadır. Bu şekilde elde edilen populasyonun fertleri dayanıksızdırlar ve özenli bakıma muhtaçtırlar. Doğal seçime benzer sonuçlar veren, fakat oluşumu farklı olan bir başka olay "genetik sürüklenme" (genetik drift) dir. Genellikle küçük ve ayrı kalmış populasyonlar için önemli olan bu olay, gen tekrar sayılarının doğal seçim yerine tesadüfe bağlı olarak değişmesidir. Doğal seçim bakımından bireye avantaj sağlamayan ve kan gruplarını veren genlerin populasyon içindeki tekrar sayıları üzerinde, genetik sürüklenmenin belirleyici olduğu ileri sürülmektedir. Örneğin, koyu renkli kurbağalardan oluşan bir populasyon içinde ortaya çıkan açık renkli iki kurbağa, karayolunu geçerken kaza sonucu ezilip ölseler ve bu kurbağalar evvelce ürememiş olsalar, populasyonun, bu kurbağaların sahip oldukları açık renk genini kaybetmesi tamamen tesadüfe bağlı olarak meydana gelmiştir ve doğal seçimle bir ilgisi yoktur. Ancak, bir populasyonda oluşan herhangi bir değişiklik, doğal seçim ve genetik sürüklenmenin ortak etkisi altında meydana gelmektedir. 5- Uyum (Adaptasyon) Yerin biyosfer kalınlığı içinde, canlıların morfolojik ve fizyolojik bakımdan uyabilecekleri çok çeşitli ortamlar bulunmaktadır. Bir populasyon, bir organizma veya genel olarak bir canlı organizasyonun içinde bulunduğu koşullara uygun olarak değişmesi “uyum” olarak tanımlanır. Uyum, bir ölçüde ferdi yeteneğe bağlı olarak ve bir ölçüde de genetik bakımdan heterojen olan populasyonlarda, B. betularia örneğinde olduğu gibi, doğal seleksiyona bağlı olarak meydana gelmektedir. Bir populasyonun fertleri, bulundukları ortamın koşullarında meydana gelen değişiklik sonunda, özel koşullara sahip olan farklı ekosistem ya da biyomlara göç edebilirler. Göç eden populasyonlar, sahip oldukları gen havuzu içindeki çeşitliliğe bağlı olarak, meydana getirdikleri çeşitli gen kompozisyonlarına sahip bireyler arasından yeni koşullara uygun genotiplerle bulundukları ortama uyarlar. Bu şekilde farklı ortam koşulları için meydana gelen genotipik uyumlar, canlılarda büyük bir çeşitliliğin ortaya çıkmasına neden olmuştur. Başlangıçda aynı türe ait olan fertlerin dağılarak farklı ortamlarda, farklı ekolojik koşullara uymuş “ekotip” ler meydana getirmesine neden olan evrimsel değişme “adaptif radyasyon” olarak tanımlanır. Doğadaki bitki ve hayvan türleri, genellikle kendileşme yerine eşeysel yolla çoğalırlar. Ayrı eşeyli bir türün farklı populasyonlarına ait fertleri arasında gerçekleşen çiftleşmeler populasyonların gen havuzu içindeki gen çeşitliliğini artırmaktadır. Bir populasyonun gen havuzunda sahip olduğu gen çeşitliliği ne kadar fazla ise, değişen ortam koşullarına dayanabilen fertler üretme ve dolayısıyla populasyonun varlığını sürdürebilme şansı o kadar fazladır. Canlılar arasında genotipik uyumun çeşitli şekillerine rastlanmaktadır. Örneğin, Şsveç‟in kuzeyindeki dağlık bölgelerden getirilen Solidago virgaurea bitkisinin, güneydeki deneme bahçelerine ekildikten sonra da, buradaki türdeşlerine göre boylarının kısa kalması ve erken çiçek açması bir genotipik uyumdur. Kuzeyde yazlar kısa olduğundan, bitkinin soyunu devam ettirebilmesi için çiçeklenme, tohum tutma ve tohumlarının olgunlaşması süratli olmak zorundadır. Bitki başardığı genotipik uyumla bu koşullara dayanabilmiştir. Ancak söz konusu uyum genotipik olduğundan, kuzeyde kazandığı özelliklerini yaz mevsimi uzun süren güneydeki tarlalarda değiştirmemiştir. Afrika‟da yaşaşan yerli insanların derilerinin koyu renkli olması da genotipik bir uyum örneğidir. Bu insanların derilerinde yaygın olarak bulunan melanin pigmenti, derinin daha alt tabakalarında bulunan hassas hücreleri kuvvetli güneş ışınlarının zararlı etkisinden korur. Ancak bu örnekteki uyum da genotipik olduğundan, Afrika yerlilerinin daha az güneşli kuzey ülkelerine gitmesi onların deri renginde bir değişikliğe neden olmaz. Böcekler, canlılar aleminde tür çeşitliliği en fazla olan sınıftır. Böylesine zengin tür çeşitliliğine sahip oluşları, çok çeşitli ortam koşullarına uymak zorunda kalmış ve bunu başarmış olmaları ile açıklanabilir. Diğer nedenler, yaşam süreleri kısa olduğu için birim zaman diliminde çok sayıda döl vermeleri ve her defasında çok sayıda yavru meydana getirebilmeleridir. Bilinen canlı türlerinin yarıdan fazlasını kapsayan (yaklaşık 750 000 tür) böcekler sınıfında, 3 çift yürüme bacağına sahip olmaları, her bacağın 5 segmentten (koksa, trohanter, femur, tibia, tarsus) yapılmış olması gibi ortak özellikler yanında; türler arasında, yaşadıkları ortamın gereklerine ve beslenme şekillerine göre önemli farklar da vardır. Örneğin, bal arısı (Apis mellifica) nın son ayak segmentinde pürüzlü yüzeylerde tutunabilmesi için kitin bir çengel, düz yüzeylerde tutunabilmesi için çengelin hemen arkasında “arolium” denen bir yapışma tabanı bulunur. Buna karşın, dana burnunda (Gryllotalpha gryllotalpha) ön bacaklar kazmaya uygun şekle dönmüştür. Böceklerin ağız parçaları esas olarak, 1 çift mandibul, 1 çift maksil ve labiumdan ibarettir. Ancak, çeşitli gruplarda beslenme şekillerine uygun olarak, örneğin hamam böceğinde (Periplaneta americana) çiğneyici, bal arısında (Apis mellifica) yalayıcı – emici, kelebeklerde (Lepidoptera takımı) emici ve sivri sineklerde (Culex pipiens) sokucu – emici işlevi yerine getirecek şekilde değişmiştir (Şekil 3). Aralarındaki işlevsel farka rağmen bu organların embriyonik gelişimleri arasında görülen benzerlik “homologi tarzı benzerlik” tanımlanmaktadır. Bu karşılaştırma yöntemi, “analogi tarzı benzerlikler” ile birlikte “Evrimin Kanıtları – Morfolojiden sağlanan kanıtlar” başlığı altında tartışılacaktır. Uyum, bazı canlılarda bir korunma mekanizması olarak gelişmiştir. Ağaç kurbağası (Hyla spp.) yeşil rengi ile ağaçlar üzerinde, tarla kuşları kanat ve kuyruk desenleriyle bulundukları zemin üzerinde, pisi balığı değişik zeminlere uygun olarak rengini değiştirerek, gece kelebekleri kanat desenleriyle gündüz üzerine kondukları ağaçlar üzerinde, avcıları tarafından farkedilemezler. Özellikle böcekler arasında görülen ve “mimikri” olarak adlandırılan korunma amaçlı bir başka uyum şeklinde, canlılar renk, şekil ve hareketleriyle kendilerini zehirli hayvanlara benzeterek, yırtıcı hayvanları, özellikle kuşları korkutarak korunmaya çalışırlar. 6- Ayrı kalma (izolasyon) mekanizmaları Belli bir coğrafik bölgeyi kullanan aynı türden canlılara “populasyon” adı verilir. Aşağıda anlatılan doğal engeller nedeniyle, bir populasyonu meydana getiren bireyler kendi aralarında çiftleşerek, fertil bireyler meydana getirme olanağını kaybedebilirler. Böylece, söz konusu engel öncesinde, aynı gen havuzunu kullanan populasyon yerine; engel sonrasında farklı gen havuzlarına sahip birden fazla populasyon meydana gelebilir. Sonuçda, biribirinden ayrı kalan populasyonlar, içinde bulundukları koşullara uygun şekilde değişerek kendi gen havuzlarını oluştururlar. Bu gen havuzu, engel öncesindeki gen havuzunun ve/veya engelden sonra meydana gelen diğer populasyonların gen havuzunun kompozisyonlarından farklı olabilir. Alt tür, ırk veya ekotip olarak tanımlanan ilk farklılıklar; populasyonların gen havuzu kompozisyonlarının giderek farklılaşması sonunda, kendi aralarında çaprazlanamayan yeni türlerin ortaya çıkmasına neden olabilir. a) Coğrafik ayrı kalma Başlangıçda aynı populasyona ait olan bireylerin; yüksek sıradağ, nehir, biribiriyle ilişkisini kaybetmiş göller ve denizlerle ayrılmış kara parçaları gibi engellerle, farklı ortamları kullanan populasyonlara bölünmeleri Örneğin, Şsviçre, Şskandinavya ve Şngiltere göllerinde, tatlı su balıklarından Salvelinus genusunun farklı tür ve ırklarına rastlanması; başlangıçda aynı türe ait olan bireylerin coğrafik bir engele bağlı olarak biribirlerinden ayrı kalarak gen alış verişinde bulunamamaları ve farklı ortamlarda hayatta kalmak için değişerek farklı populasyonları, giderek farklı ırkları ve farklı türleri meydana getirdikleri şeklinde açıklanmaktadır. Orta Anadoluda dişli sazan olarak bilinen Cyprinodontidae familyasından Aphanius anatolias Leidonfrost, 1921 (Kosswigichthys asquamatus Sözer, 1942) türünün, Gölcük Gölü (Isparta), Burdur Gölü (Burdur), Acı Göl (Afyon) ve Hazar Gölünde (Elazığ) bulunduğu bilinirken bu cins içinde Aphanius burduricus Akşıray, 1948 olarak tanımlanan türün endemik olarak Burdur Gölünde bulunduğu bilinmektedir. Bu türün, yukarıdaki örnekde olduğu gibi bir taraftan bulunduğu ortamın koşullarına uyarken, diğer taraftan ana populasyon ile gen alış verişinin son bulması sonucunda giderek farklılaştığı düşünülmektedir. Güney Amerikada Ekvador kıyılarından 600 mil uzakta bulunan Galapagos adalarında yaşayan Fringillidae familyasından Geospiza türlerinin Güney Amerika ana karasında yaşayanlardan farklı olmasını Darwin; volkanik olan bu adaların ana karadan uzakta meydana gelmiş olmasına rağmen bu adalara ulaşan Geospiza türünün ana kara ile arasında gen alış verişinin son bulması ve adalarda yaşayan Geospiza türlerinin, bulundukları koşullara uygun gen çeşitliliğine sahip populasyonlar meydana getirmesi sonunda, giderek farklılaşan populasyonların farklı türlere dönüştüklerini savunmuştur. Coğrafik ayrı kalma sonunda ortaya çıkan türleşmeye bir başka örnek Limantria dispar kelebeğinde görülmektedir. Yaprağını döken ağaçların, özellikle meşe ağacının zararlısı olan L. dispar Avrupanın batısından Japonyaya kadar geniş bir alanda dağılmıştır. Bu türün biribirine yakın olan populasyonları (örneğin, Anadolu ne Şran yarımadası populasyonları) kendi aralarında fertil yavrular meydana getirirlerken, Avrupa ve Japon adalarında yaşayan populasyonların kendi aralarında çiftleşemedikleri ve bazı morfolojik farklarla biribirlerinden ayrıldıkları bildirilmektedir. Bu durum, gen alış verişini engelleyecek şekildeki bir coğrafik uzaklığın türleşmeye neden olabileceğini göstermektedir. Coğrafik ayrı kalma sonunda ortaya çıkan türleşme “allopatrik” türleşme olarak da adlandırılmaktadır. Benzer bir ayrı kalma şekli, Avrupa ve Asyada yaygın olarak bulunan Parus major adlı kuş türünde görülmüştür. Bu türün doğuya yayılan iki kolundan biri Himalaya dağlarının kuzeyinden, diğeri güneyinden geçerek Çin‟e ulaşmıştır. Şki göç yolu üzerindeki kuşlar arasında çiftleşmenin başarılamaması, aralarında çiftleşme açısından bazı engellerin meydana geldiğini göstermektedir. b) Ekolojik ayrı kalma Aynı coğrafik bölge içinde farklı ortam koşullarına uymuş olan populasyonlar arasında ekolojik nedenlerle ayrı kalma söz konusu olabilmektedir. Coğrafik ayrı kalmada olduğu gibi, ekolojik ayrı kalmada da, populasyonlar bulundukları ortamların farklı oluşu nedeniyle bir araya gelemezler ve gen alış verişinde bulunamazlar. Örneğin, Afrika da yaşayan Anopheles cinsi sivrisineklerden A. melas türü yumurtalarını tuzlu sulara bırakırken, A. gambiae tatlı su birikintilerine bırakmaktadır. Kuzey Amerikada yaşayan Peromyscus cinsi sıçanlardan P. maniculatus bairdii nin göl kenarındaki kumluklarda, P. maniculatus gracilis in ormanlarda yaşadığı bildirilmektedir. Aynı coğrafik bölge içinde farklı habitatlara uymuş canlılara bir başka örnek, Drosophila cinsidir. D. quinaria orman içi nemli alanlardaki meyvalar üzerinde; D. palustris bataklıklarda çürüyen bitkiler üzerinde; D. transversa ise yıllık bitkilerin bulunduğu kuru alanlarda mantarlar üzerinde beslenirler. Bu örneklerde adı geçen tür ve alt türlerin “adaptif radyasyon” sonunda; yumurta bırakma, yaşam alanı seçme ve beslenme gibi konularda yaptıkları tercihlerle, belli ekolojik nişlere uyum sağladıkları ve aralarında buna bağlı olarak gen alış verişi kesildiğinden ayrı kaldıkları ileri sürülmektedir. “Simpatrik” türleşme olarak da bilinen bu ekolojik ayrı kalma şekli ile ilgili olarak; Bursa, Uludağda yaşayan Kınkanatlılar üzerinde yapılan bir çalışmada, dağın farklı yüksekliklerinde Carabus cinsinin farklı alt türlerine rastlandığı bildirilmiştir. Türleşme olasılığı bulunan bu alt türlerin meydana geliş nedeni, yüksekliğe bağlı olarak değişen çevresel koşullardır veya farklı alt türlere ait canlıların, bulundukları yüksekliğe ve bununla değişen çevre sıcaklığına bağlı olarak üreme dönemlerinin farklı zamanlarda olması ve bu nedenle aralarında gen alış verişinin kesilmiş olamasıdır. c) Cinsel ayrı kalma Pek çok türün erkek ve dişi eşeyleri arasında, birleşme öncesinde gerçekleştirdikleri davet ve beğeni davranışları vardır. Biribirinden ayrılma sürecindeki populasyonlar, aynı zaman ve yerde bulunmalarına rağmen, birleşme yönündeki istek ve kabullerini doğru değerlendiremedikleri için birleşemezler. Duyu organlarıyla algılanan bu durum “cinsel ayrı kalma” olarak isimlendirilir. Örneğin, Şpek böceği Bombtx mori nin dişileri tarafından abdomenindeki salgı bezlerinden salgılanan feromon, ancak bu türün erkekleri tarafından antenlerindeki koku alma organlarıyla tanınır ve birbirinden uzakta olan erkeğin dişiyi bulmasını sağlar. Hatta, farklı türün dişilerine sürülen bu feromonla, Bombyx mori erkeklerini farklı türden bir dişiyle birleşme konusunda kandırmanın mümkün olduğu bilinmektedir. Feromonların güçlü etkisinden tarımsal mücadelede de yararlanılmakta ve bir zararlı böceğe ait bireyler türe özgü feromonların kullanıldığı koku tuzaklarıyla toplanmakta ve zararlı populasyonun üremesi kontrol altına alınabilmektedir. Görmeye bağlı olarak, bazı türlerde karşı cinsin görünüşü ve karşı cins tarafından algılanan davranışları birleşmenin gerçekleşebilmesi için gereklidir. Örneğin, Equus caballarus (kısrak) ile Equus asinus somaliensis (eşek) arasında normal koşullarda güçlükle gerçekleşen birleşme, gözlerin bağlanması durumunda kolaylaşmaktadır. Kadife kelebeği olarak bilinen Eumenis semele nin erkekleri, cinsel isteklerini göstermek için, önlerinden geçen türdeş dişileri izlediği gibi, başka böcekleri ve yere düşen yaprakları bile izlerler. Bu davranışın bir cinsel davet olduğunu ancak türdeşi bir dişi algılayabilir ve birleşmek için yere konar. Cinsel ayrı kalma ve bundan sonra anlatılacak olan ayrı kalma şekilleri, morfoloyik yapıları biribirine benzeyen türlere ait fertlerin aynı yer ve zamanda bir arada bulunmaları nedeniyle bir çeşit davranış kompleksine dönüşebilir. Onlarca yıl eskiye ait bir bilgi olarak, Şznik ve Küçükçekmece gölleri ile Kağıthanede yaşadığı bildirilen üç dikenli balık, Gasterosteus aculeatus erkeği, üreme mevsimleri olan Nisan ve Haziran ayları arasında, bitki kök ve liflerini, böbrekleri tarafından salgılanan yapışkan iplikle tutturarak meydana getirdiği ceviz veya yumruk büyüklüğündeki yuvayı su dibine veya bitkiler arasına kurar. Bu dönemde erkeğin dorsali mavi-yeşil, abdomen ve operkulumu kiraz kırmızısı rengindedir. Bu görünümdeki erkeğin kurduğu yuvaya dişi tarafından 80-100 yumurta bırakılır ve yumurtalar erkek tarafından korunur. Bu örnekte olduğu gibi, dişinin yumurta bırakması için erkekten beklenenler, adeta bir görünüş ve davranışlar kompozisyonudur. Kuşlarda ve böceklerde görülen ileri derecede renklenme ve kuşlarda görülen çok çeşitli ötme şekillerinin, birer ayrı kalma mekanizması olarak geliştiği düşünülmektedir. Örneğin, Danaburnunun farklı alt türlerinden Nemobius fasciatus fasciatus, N. f. socius ve N. f. linnulus erkek ve dişilerinin kendi alt türlerine ait sesleri tanıyarak uyarıldıkları bildirilmiştir. Türleşme sonunda cinsel ayrı kalmaya neden olan mekanizmalar, daha belirginleşir ve küçük bir ayrıntıda yapılacak yanlışlık karşı cins tarafından farklı şekilde değerlendirilir ve ferdin hayatına mal olabilir. Örümceklerde birleşme öncesi davranışlar arasında, erkek örümceğin dişi önünde yaptığı dans hareketleri önemli bir yer tutar. Türe özgü olan dans veya benzeri hareketlerde yapılan yanlışlık erkeğin ölümüne neden olabilmektedir. d) Mekanik ayrı kalma Hayvanlar aleminde tür sayısı en fazla olan canlılar böceklerdir ve biyosferin hemen her yerinde bulunurlar. Bu yaygınlık ve çeşitlilik aynı zaman ve yerde birden fazla tür ve alt türün bulunmasına neden olur. Buna bağlı olarak, ayrı kalma mekanizmaları ve özellikle mekanik ayrı kalmanın böcekler arasında çok geliştiği düşünülmektedir. Hatta, aynı türe ait erkek ve dişilerin dış genital organlarının bir anahtar-kilit uyumu sergilediği görülmektedir. Bu anlatılanlardan anlaşılacağı gibi, mekanik ayrı kalma; biribirine yakın türler ve hatta aynı cinsin türleri arasında, dış ve/veya iç genital organlar arasındaki fark nedeniyle, verimli bir birleşmenin gerçekleşemeyişini tanımlar. e) Gametik ayrı kalma İç ve dış döllenme yapan hayvanlarda, spermatozoonlar karşı eşeyin genital organlarına veya ortama bırakıldıktan sonra; sperm ve yumurta hücrelerinin birleşmesine herhangi bir şekilde engel olan mekanizmalar “gametik ayrı kalma” olarak adlandırılmaktadır. Gametler düzeyinde; Yumurta hücresi tarafından salınan ve “ginogamon” adı verilen kimyasal madde, kendi türünden bireylere ait spermatozoonları uyararak kendine çeker, yabancı bir türe ait spermatozoonları ise aglutine eder. Spermatozoonlar tarafından salınan ve “androgamon” adı verilen kimyasal madde ise, yumurta hücresi tarafından salınan ve yabancı spermatozoonları aglutine eden ginogamonların bu etkisini durdurmaya çalışır. Ayrıca, yumurtayı dölleyebilmek için yumurta zarını eritir. Görüldüğü gibi gamonların etkileri türe özeldir. Ancak, olgunlaşmamış yumurta ve spermlere ait gamonların aynı kalitede olmadıkları bilinmektedir. Fizyolojik olarak, dişi genital organların durumu spermatozoonların hareketi, canlı kalabilme ve yumurtaya ulaşma gibi özellikleri üzerinde etkilidir. Örneğin, spermlerin hareketi üzerinde etkili olan vajina ve uterus ortamının pH ve ozmolarite değerleri türe özgü değişiklikler gösterebilmektedir. Bağışıklık bakımından, genel olarak, bir organizmaya giren yabancı madde organizma tarafından red edilir veya zararsız hale getirilir. Bu yabancı madde, elimize batan bir kıymık gibi çevresinde oluşturulan iltahapla dışarı atılır veya midyenin içine giren kum tanesinin etrafını sedefle sarması gibi zararsız hale getirir. Benzer şekilde, yabancı bir türe ait olan spermatozoonlar dişinin genital organı için yabancı bir maddedir ve yabancılığın derecesine göre dişi genital sisteminin koruma mekanizması uyarılabilir. Örneğin, Drosophila türleri arasında yapılan çaprazlamada, yabancı spermatozoonların uterusda şişmeye neden olarak yumurtalara ulaşamadıkları görülmüştür. Gen alış verişi sona ermiş olan populasyonlar arasında görülen bu ayrı kalma mekanizmaları aslında, türlerin biribirleriyle karışmasını önleyen mekanizmalardır. Buraya kadar anlatılan ayrı kalma mekanizmalarına rağmen, farklı türlere ait spermatozoon ve yumurta hücrelerinin birleşerek zigotun meydana geldiği durumlarda; türlerin karışmalarını önlemek üzere “melezlerin erken ölümü” ve “melezlerin kısır oluşu” gibi iki mekanizma daha bulunmaktadır. f) Melezlerin erken ölümü Zigotu meydana getiren türler arasındaki akrabalık derecesi ile zigotun erken ölümü arasında ters bir ilişki bulunmaktadır. Tür veya alt tür düzeyinde yakın olan canlılar arasında meydana gelen zigotun ölümü geç evrelerde; Takım veya aile düzeyinde farklı olan canlılar arasında meydana gelen zigotun ölümü erken evrelerde görülmektedir. Örneğin, Triton polmatus dişisi ile T. cristatus erkeği arasındaki çaprazlamadan meydana gelen melezler fertil hale gelmeden ölmelerine karşın; Echinodermata ve Mollusca gibi uzak gruplara ait canlılar arasında yapılan çaprazlama sonucunda meydana gelen zigotun, ilk segmentasyon bölünmesinde babadan ve anneden gelen kromozomlarını kaybettikleri bildirilmektedir. Bazı çaprazlamalardan meydana gelen melezler arasında sadece erkek veya dişi bireylerin yaşadıkları görülmüştür. Örneğin, Drosophila melanogaster dişisi ile D. simulans erkeği arasında yapılan çaprazlamadan kısır dişiler meydana gelmekte, erkekler ölmektedir. Bu, nadir olmayan ve gen akışını azaltan bir olay olması bakımından ayrı kalmaya hizmet eden önemli bir mekanizmadır. g) Melezlerin kısır oluşu Farklı türler ve biribirinden ayrı kalarak farklılaşmış populasyonlar arasında görülen bir diğer ayrı kalma mekanizması, meydana gelen melezlerin kısır olması şeklindedir. Melez, kural olarak, genotipleri biribirinin aynı olmayan ana babanın birleşmesinden meydana gelen yavrulara verilen isimdir. Geniş manada ve bu tanıma göre, homozigot olan populasyonlar dışında kalan bütün canlılar melezdir. Ancak bu başlık altında konu edilen, bir türün farklı iki alt türüne veya iki türe ait organizmalar arasında meydana gelen yavrulardır. Bu konuda en çok bilinen örnek, Equus caballarus dişisi (kısrak) ile eşek, Equus asinus somaliensis erkeği arasındaki çaprazlamadan meydana gelen “katır” ile, Equus caballarus erkeği (aygır) ile Equus asinus somaliensis dişisi arasındaki çaprazlamadan meydana gelen “bardo” dur. Katır nadiren fertil olmakla birlikte, katır ve bardo kendi aralarında kısırdırlar. Genel olarak kısırlığın nedeni çok çeşitli olmakla birlikte, genital organların (testis ve yumurtalık) körelmiş olması veya mayozda karşılıklı gelen homolog kromozomların, aralarındaki benzemezliğe bağlı olarak eşleşememesi başlıca kısırlık nedenleridir. Eşleşememeye neden olan benzemezlik, katırın gonatlarında I. Mayoz bölünmenin zigoten evresinde allel genlerin farklı kromozomlarda yer almalarından kaynaklanmaktadır. Fertil melez oluşumu balıklar arasında da görülen bir olaydır. Genellikle yapay veya koşulları bozulmuş ortamlarda ve ebeveyn türlerin çok yakın akraba olduğu durumlarda; yani adaptif radyasyon sonunda ortaya çıkan ekotipler veya ayrı kalma mekanizmaları gelişmekte ve henüz tamamlanmamış olan yakın akraba populasyonlar arasında meydana gelmektedir. Bir ölçüye kadar biribirlerinden ayrı kalmış populasyonlar arasında meydana gelen melezler; sağlıksız oluşları ve kendi aralarında veya ebeveynleriyle birleştirilmeleri sonunda elde edilen yavru veriminin melez olmayanlardan az olması nedeniyle populasyondan elenirler. Laboratuvar koşullarında meydana getirilen canlı melezler, doğal olarak asla meydana gelmezler.

http://www.biyologlar.com/evrimin-meydana-gelmesinde-rolu-olan-faktorler

FİTOREMEDİASYON

Toprak kirliliğinin kontrolünde kullanılan fiziksel ve kimyasal arıtma yöntemleri, uygulama kolaylığı ve uygulama süresinin kısalığı gibi bazı avantajlara sahip olmasına rağmen, gerek arıtma masrafının yüksek olması, gerekse arıtma sonucunda ortaya çıkan diğer kirletici formlarının nihai gideriminin zorlukları nedeniyle çevresel açıdan fazla tercih edilmemektedir. Kimyasal arıtmaya alternatif olarak kullanılan ve kısaca bitkiler kullanılarak topraktan yerinde(in-situ) organik ve metal kirleticilerin giderimi olarak tarif edilen fitoremediasyon yöntemi, yeni ortaya konmuş, ekonomik ve ekolojik olması ile özel donanım gerektirmemesi ve uygulanan bölgenin yeniden kullanılabilmesine imkan vermesi gibi avantajlara sahip olması nedeniyle günümüzde tercih edilen bir yöntem haline gelmektedir. a) Fitoremediasyonla ağır metal giderimi Bitkiler tarafından topraklardan alınma potansiyeline sahip kirleticiler, metaller (Ag, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Zn), metalloidler ( As,Se), radionükleidler (90Sr, 137Cs, 239Pu, 238U, 234U), ametaller ( ve diğer organik bileşikler ( TPH, PAHs,Pestisitler, PCBs) olmak üzere birçok maddeyi kapsamaktadır. Ancak bitkilerce bir kirleticinin topraktan alınabilmesi için, öncelikle toprak şartlarının bitkinin isteklerine uygun olması gerekmektedir. Toprak pH’sı bu konuda en önemli parametrelerden biri olarak öne çıkmaktadır. Diğer taraftan topraktan ağır metal alma performansı yüksek olan bitkilerin, genel olarak özel coğrafik alanlarda yetiştikleri ve buna bağlı olarak özel gelişme şartları gerektirdikleri belirlenmiştir. Ancak çok yaygın alanlarda gelişebilen ve fitoremediasyon amacıyla başarılı bir şekilde kullanılan bitkilere de rastlanılmaktadır (2). Bitkiler tarafından alınan bir kısım metaller, bitki bünyesindeki enzimler aracılığıyla bozunmakta ve kimyasal formlarını değişikliğe uğramaktadır (Şekil 1). Çoğu metaller ise herhangi bir bozunmaya uğramadan bitkinin yaprak ve saplarında birikerek, bitkinin hasadıyla ortamdan uzaklaşmaktadırlar Bazı bitkilerin topraktan ağır metal alımına karşı yüksek oranda etkili olduğu ve bu tür bitkilerin ağır metal zehirliliğine karşı toleranslı olduğu belirlenmiştir (4). Hipertoplayıcı olarak da isimlendirilen bu bitkilerin arasında Brassicaceae, Euphorbiaceae, Asteraceae, Lamiaceae ve Scrophulariaceae bitki familyaları sayılabilir (5). Topraktaki ağır metallerin bitki kökleri tarafından alınabilecek forma gelmesi, fitoremediasyon verimini etkileyen faktörlerin başında gelmektedir. Bu amaçla kullanılan kompleks yapıcı şelatların bitkilerde metallerin alınabilirliğini arttırdığı (6) tespit edilmiştir. Fitoremediasyonun önemli avantajlarından birisi proses maliyetinin son derece ekonomik olmasıdır. Bu konuda yapılan bir çalışmada, 0,4 da genişliğinde, kurşunla kirlenmiş bir alanının temizlenmesi için 30 yıllık tahmini masraflar aşağıdaki gibi hesaplanmıştır. • Alanı kazıyarak uzaklaştırma için 12,000,000 dolar, • Toprak yıkama yöntemi için 6,300,000 dolar, • Toprak üstünün kapatılması için 600,000 dolar, • Fitoextraksiyon için ise 200,000 dolar (7). Fitoremediasyonla bitkilerin alabildiği maksimum ağır metal konsantrasyonları, aşağıda mg metal / kg bitki kuru ağırlığı cinsinden aşağıda verilmektedir. • 1,250 mg/kg As (8). • 9.4 mg/kg Cd (8). • 110 mg/kg Pb (9). • 1,165 mg/kg Zn (9). Yapılan araştırmalarda Thlaspi c. bitkisinin topraktaki farklı pH ortamında ve farklı konsantrasyonlardaki Cd metaline karşı (Şekil 3) en olumlu tepkiyi yüksek pH’larda verildiği görülmektedir. b) Fitoremediasyon teknolojilerinin karşılaştırılması (2) Fitoremediasyon kirleticilerin bitkiler kullanılarak giderilmesi teknolojisine genel olarak verilen bir isimdir. Bu isim altında birçok farklı teknoloji yer almaktadır. Bu teknolojileri fitoekstraksiyon, fitostabilizasyon, fitodegradasyon, fitovolatilizasyon, rizodegredasyon, rizofiltrasyon, hidrolik kontrol, vejetatif örtü sistemleri ve riparian buffer strips olarak sınıflandırmak mümkündür. Bu teknolojilerin her biri farklı ortamlarda farklı amaçlar için kullanılabilmektedir. Tablo 1’de, çeşitli ortamlar için kullanılan fitoremediasyon teknolojileri ve bu amaçla kullanılabilen uygun bitki türleri yer almaktadır. c) Fitoremediasyon amacıyla kullanılan bitkilerin uzaklaştırılması Bitki kullanılarak topraklardan alınan ağır metal alma işleminde amaç, toprak tarafından tutulmuş halde bulunan ağır metallerin daha kontrol edilebilir ve taşınabilir forma dönüştürülmesidir. Bu nedenle fitoremediasyon yöntemi, nihai bir uzaklaştırma veya giderme yöntemi olarak düşünülmemektedir. Nihai uzaklaştırma veya giderim, fitoremediasyon sonucunda ortaya çıkan bitkilerin yakılarak veya uygun bir depolama alanında depolanarak gerçekleştirilebilmektedir. Bitkide biriken selenyum gibi bazı metallerin hayvan beslenmesinde yararlı olması nedeniyle bu tür bitkilerin, hayvan yemi olarak değerlendirilmesi de mümkündür. Tablo 2’de farklı fitoremediasyon tekniklerinde artık bitkisel malzemenin nihai giderim yolları verilmektedir. Toprak kirliliği açısından en önemli çevre kirletici gruplardan birini oluşturan metallerin kontrolünde kullanılan fiziksel ve kimyasal arıtma yöntemlerinin, yüksek maliyetleri ve arıtma sonucunda ortaya çıkan kirleticilerin nihai gideriminin zorlukları nedeniyle çevresel açıdan fazla tercih edilmemektedir. Bu amaçla kullanılan ve bitkiler kullanılarak ağır metal ve diğer bir kısım kirleticilerin giderimi olarak tanımlanan fitoremediasyon yöntemi ise gerek ekonomik olması gerekse ekolojik olarak kullanımının tercih edilmesi nedeniyle yaygın olarak kullanılan bir yöntem haline gelmektedir. Fitoremediasyon kapsamı altında kullanılan bir çok farklı teknoloji ve bitki türünün bulunması, bu teknolojinin kullanım imkanını arttırmaktadır. Ancak fitoremediasyon yönteminin, nihai bir uzaklaştırma veya giderme yöntemi olarak değerlendirilmemesi gerekmemektedir. Nihai giderim, fitoremediasyon sonucunda ortaya çıkan bitkilerin yakılarak, uygun özelliklere sahip ise yem bitkisi olarak kullanılarak veya uygun bir depolama alanında depolanarak gerçekleştirilmektedir. KAYNAKLAR 1. Kirleticiler-1, Ağır Metaller, 2006. Çevre için hekimler derneği, (www.cevrehekim.org) 2. Introduction to Phytoremediation, 2000. EPA/600/R-99/107 3. www.edumedia-sciences.com/a420_l2-phytoremediation.html, 2006. 4. Cunningham, S.D., Ow, D.W., 1996. Promises and prospects of phytoremediation. Plant Physiology 110, 715-719. 5. Baker, A.J.M. 1995. Metal hyperaccumulation by plants: our present knowledge of the ecophysiological phenomenon. Will plants have a role in bioremediation. 14th Annualsymposium on current topics in plant biochemistry, physiology and molecular biology, Columbia, MO, pp. 7-8. 6. Martens, S.N., and R.S. Boyd. 1994. The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia 98:379–384. 7. Cunningham SD, Ow DW. 1996. Promises and prospects of phytoremediation. Plant Physiol 110: 715-719 8. Pierzynski, G. M., J. L. Schnoor, M. K. Banks, J. C. Tracy, L. A. Licht, and L. E. Erickson. 1994. Vegetative Remediation at Superfund Sites. Mining and Its Environ. Impact (Royal Soc. Chem. Issues in Environ. Sci. Technol. 1). pp. 49-69. 9. Pierzynski, G. M., and A. P. Schwab. 1992. Reducing Heavy Metal Availability to Soybeans Grown on a Metal Contaminated Soil. pp. 543-553. In L. E. Erickson, S. C. Grant, and J. P. McDonald (eds.), Proceedings of the Conference on Hazardous Waste Research, June 1-2, 1992, Boulder, CO. Engineering Extension, Kansas State University, Manhattan, KS. Ömer VANLI* Mustafa YAZGAN** * İTÜ Fen Bilimleri Enstitüsü, Maslak, vanli@itu.edu.tr ** İTÜ Çevre Mühendisliği Bölümü, Maslak, yazgan@itu.edu.tr Araştırmasından alıntı yapılmıştır.

http://www.biyologlar.com/fitoremediasyon

Ses Kirliliği

Gürültü; insanlar üzerinde olumsuz etki yapan ve hoşa gitmeyen seslere denir. Özellikle büyük kentlerimizde gürültü yoğunlukları oldukça yüksek seviyede olup, Dünya Sağlık Örgütü'nce belirlenen ölçülerin üzerindedir. Gürültü (ses) Kirliliği Kent gürültüsünü artıran sebeplerin başında trafiğin yoğun olması, sürücülerin yersiz ve zamansız klakson çalmaları ve belediye hudutları içerisinde bulunan endüstri bölgelerinden çıkan gürültüler gelmektedir. Meskenlerde ise televizyon ve müzik aletlerinden çıkan yüksek sesler, zamansız yapılan bakım ve onarımlar ile bazı işyerlerinden kaynaklanan gürültüler insanların işitme sağlığını ve algılamasını olumsuz yönde etkilemekte, fizyolojik ve psikolojik dengesini bozmakta, iş verimini azaltmaktadır. Gürültünün insan üzerindeki etkilerini 4'e ayırabiliriz: 1-) Fiziksel Etkileri: Geçici veya sürekli işitme bozuklukları. 2-) Fizyolojik Etkileri: Kan basıncının artması, dolaşım bozuklukları, solunumda hızlanma, kalp atışlarında yavaşlama, ani refleks. 3-) Psikolojik Etkileri: Davranış bozuklukları, aşırı sinirlilik ve stres. 4-) Performans Etkileri: İş veriminin düşmesi, konsantrasyon bozukluğu, hareketlerin yavaşlaması. Gürültüye maruz kalma süresi ve gürültünün şiddeti, insana vereceği zararı etkiler. Endüstri alanında yapılan araştırmalar göstermiştir ki; işyeri gürültüsü azaltıldığında işin zorluğu da azalmakta, verim yükselmekte ve iş kazaları azalmaktadır. Çalışma ve Sosyal Güvenlik Bakanlığı verilerine göre; meslek hastalıklarının %10'u, gürültü sonucu meydana gelen işitme kaybı olarak tespit edilmiştir. Meslek hastalıklarının pek çoğu tedavi edilebildiği halde, işitme kaybının tedavisi yapılamamaktadır. Bazı Gürültü Türlerinin Desibel Dereceleri ve Psikolojik Etkileri Gürültü türü dB derecesi Psikolojik Etkisi Uzay roketleri 170 Kulak ağrısı, sinir hücrelerinin bozulması Canavar düdükleri 150 Kulak ağrısı, sinir hücrelerinin bozulması Kulak dayanma sınırı 140 Kulak ağrısı, sinir hücrelerinin bozulması Makineli delici 120 Sinirsel ve psikolojik bozukluklar (III.Basamak) Motosiklet 110 Sinirsel ve psikolojik bozukluklar (III.Basamak) Kabare müziği 100 Sinirsel ve psikolojik bozukluklar (III.Basamak) Metro gürültüsü 90 Psikolojik belirtiler (II.Basamak) Tehlikeli bölge 85 Psikolojik belirtiler (II.Basamak) Çalar saat 80 Psikolojik belirtiler (II.Basamak) Telefon zili 70 Psikolojik belirtiler (II.Basamak) İnsan sesi 60 Psikolojik belirtiler (I.Basamak) Uyku gürültüsü 30 Psikolojik belirtiler (I.Basamak) GÜRÜLTÜNÜN NEDEN OLDUĞU RAHATSIZLIKLAR 30-65 dB: Konforsuzluk, sıkılma duygusu, kızgınlık konsantrasyon ve uyku bozukluğu 65-90 dB: Kalp atışı değişimi, solunum hızlanması, beyindeki basıncın azalması. 90-120 dB: Metabolizmada bozukluk, başağrısı 120-140 dB: İç kulakta bozukluk 140 dB ve üzeri: Kulak zarının patlaması Çeşitli Kullanım Alanlarının Kabul Edilebilir Üst Gürültü Seviyeleri Tiyatro Salonları 25 dB Konferans Salonları 30 dB Otel Yatak Odaları 30 dB Otel Restoranları 35 dB Hastaneler 35 dB Yatak Odaları 35 dB Derslikler, Laboratuvarlar 45 dB Oturma Odaları 60 dB Spor Salonu, Yemekhaneler 60 dB Servis Bölümleri (mutfak, banyo) 70 dB Fabrikalar (küçük) 70 dB Fabrikalar (büyük) 80 dB Gürültüyü Azaltmak İçin Alınabilecek Tedbirler: •Hava alanlarının, endüstri ve sanayi bölgelerinin yerleşim bölgelerinden uzak yerlerde kurulması, •Motorlu taşıtların gereksiz korna çalmalarının önlenmesi, •Kamuoyuna açık olan yerler ile yerleşim alanlarında elektronik olarak sesi yükseltilen müzik aletlerinin çevreyi rahatsız edecek seviyede olmasının önlenmesi, •İşyerlerinde çalışanların maruz kalacağı gürültü seviyesinin en aza (Gürültü Kontrol Yönetmeliğinde belirtilen sınırlara) indirilmesi, •Yerleşim yerlerinde ve binaların içinde gürültü rahatsızlığını önlemek için yeni inşa edilen yapılarda ses yalıtımı sağlanması, •Radyo, televizyon ve müzik aletlerinin evlerde rahatsızlık verecek seviyede seslerinin yükseltilmemesi gerekmektedir. Gürültü Kontrol Yönetmeliği Gürültü Kontrol Yönetmeliği, yerleşim birimleri içinde konser, kutlama, miting gibi toplantıların, havai fişek kullanımının kısıtlanması, trenlere susturucu takılması, yüksek sesli makinaların kullanım saatlerinin azaltılması gibi önlemler içeriyor. Yönetmelik, eğlence merkezlerine gürültü ölçüm cihazları takılması, yol kenarlarına ağaç ve betondan ses duvarları oluşturulması, binalarda ses yalıtımına uygun malzemeler kullanımının mecburi olması gibi bir çok önlemi içeriyor. Bunların 2013 yılına kadar uygulamaya konulması planlanıyor. 30 desibelin üzerindeki sesler insan sağlığı açısından tehdit oluşturuyor.

http://www.biyologlar.com/ses-kirliligi

YILAN BALIĞI BİYOLOJİSİ VE YETİŞTİRİCİLİĞİ

Yılan balıkları eski yıllardan beri insanların ilgisini çekmiştir. Su bulunan bir çok yerde yılan balığına rastlandığı halde yumurtlama ve yavrulama sırasında izlenememesi, yumurtalı veya karnında yavru bulunan bir balığa rastlanamaması bu ilginin çok eskiden beri doğmasına neden olmuştur. Dünyadaki toplam yılan balığı istihsali; Avrupa yılan balığı (Anguilla anguilla ) (1990-1991) 23 950 ton, Japon yılan balığı ( Anguilla japonica ) 109 100 ton, Amerikan yılan balığı ( Angıilla rostrata ) 2 850 ton, diğer yılan balığı türleri ise 1 500 ton olup toplam 137 400 tondur. Dünya su ürünleri istihsalinde çok önemli bir yer tutan yılan balıkları ülkemizde yetiştiricilikte bir yer bulamamıştır. İç su ve dalyanlarımızdan 400 ton yılan balığı yakalanmıştır (DİE, 1997). Yılan balıklarının büyük bir ekonomik önemi vardır. Özellikle fümesi sevilerek yenmekte olduğundan Avrupa’ya ihraç edilmekte ve ülkemiz için önemli bir döviz kaynağı oluşturmaktadır. Bu çalışma, yılan balığı yetiştiriciliği için gerekli bilgilerin derlenmesi ile oluşturularak ülkemiz için konunun önemini açıklanmıştır. Bu bilgilerin ışığında hiç de azımsanmayacak potansiyele sahip olduğumuz yılan balığı yetiştiriciliği konusunda devlet desteği ile gerekli girişimlerin yapılması önem arz etmektedir. Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Coğrefik Dağılım Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Avrupa Yılan Balığının Yaşam Döngüsü Yılan balıklarının biyolojik döngüsünde başlıca üç nokta vardır. - Bu üç yılan balığının yaşam süresi oldukça uzundur(Avrupa yılan balığında 15 yıla kadar) - Yalnızca bir kez ürerler. - Hayatlarının büyük bir kısmı tatlı sularda geçer. Denizde uzun bir göç süresi vardır. Yumurtlama alanı Yılan balıklarının doğal ortamda üremesi gözlemlenememiştir. Ancak markalanan bireyler Atlantik okyanusunda takip edilmiştir (Tesch, 1973) ve pek çok avlama sahası ayrıntılı olarak incelenmiştir. Danimarkalı Schmidt 1904-22 yılları arasında yaptığı çalışmalar sırasında Avrupa yılan balığının yumurtalarını Meksika körfezine bıraktıklarını ispatlamıştır. İlk göç Avrupa yılan balıkları Bermuda adalarının güneydoğusunda tam olarak bilinmeyen bir derinlikte üremektedirler. En küçük larvalara (7 mm) 75 ile 300 metre derinlikler arasında rastlanmıştır. Leptosefalus larvaları ilk bahar başında yumurtadan çıkarlar ve Golfstrim akıntıları ile Avrupa kıyılarına doğru göç ederler. Bu sırada 75 mm boya sahip olan leptosefaluslar metamorfoz geçirirler ve söğüt veya defne yaprağı şeklinden yılan balığını andırır silindirik bir şekil alırlar. Başlangıçta şeffaf bir görünümde olan yılan balıklarında , 7-8 ay sonra pigmentleşme gerçekleşir ve akarsulara girerler. Hayatlarının ilk dönemine denizde başlarlar ve bu aşamada planktonik bir hayat sürerler. Yavrular su hareketlerine karşı direnç gösteremezler. Yanlardan yassılaşmış bir vücuda sahip olan leptosefalusler büyük gözlere ve büyük dişleri olan geniş bir ağza sahiptirler. Bu aşamada karnivordurlar ve besinlerini zooplanktonlardan sağlarlar. Larvalar gece gündüz periyodunda, farklı derinliklerde bulunurlar. Geceleri yüzeye yakın yerlerde (35-130 metre) yakalanırken gündüzleri 300-600 metre derinlikler arasında dağılım gösterirler. Leptosefaluslar Avrupa kıyılarına doğru yaklaştıkça büyümelerini tamamlamış olurlar. İlkbahardan yaza kadar İspanyanın kuzey kıyısından, Feroe adalarının batı kıyılarına kadar dağılım gösterirler. Metamorfozu başlamamış bireylere metamorfozu devam etmekte olan bireylerin bulunduğu kıyılardan çok daha uzakta rastlanmıştır. Genel olarak leptosefaluslerin kıta sahanlığına yaklaşmaları iki buçuk yıl sonra olur. Yumurtadan şeffaf elver konumuna yaklaşık üç yılda gelmektedirler ( Tesch, 1987). İlk Metamorfoz Larvaların büyük bir çoğunluğu metamorfoz sürecini kıta sahanlığında, ağustos-eylül aylarında tamamlarlar. Bu metamorfozda aşağıdaki değişikliklere rastlanmaktadır. - Ağırlık ve boyda meydana gelen bir azalma. Örneğin leptosefalus safhasında olan (tanesi yaklaşık 1,5 g) 75 mm boyundaki larvaların yaklaşık 700 tanesi 1 kg gelirken, elver haline geçmiş aynı boy larvaların yaklaşık on misli vücut ağırlıklarından kaybettikleri ve 7 000 tanesinin 1 kg geldiği görülür. - Morfolojik değişimi, Söğüt yaprağı şeklinde yassı olan leptosefaluslar silindirik bir yapıya ulaşırlar. Bu şekildeki yılan balığı yavrularına elver adı verilir. - Beslenme durur. Planktonik larvada bulunan dişler kaybolur. - Ağırlığı azalır ve sindirim organları kısalır. - Troid ve hipofiz etkinliğinin artması ile endokrin sistemin çalışmasının değişmesi, davranış değişikliğine, Gel-git akıntılarına ve tatlı sulara olan duyarlılığın artmasına ve iç sulara göç etmesine sebep olur. Tatlı suya ilk göç (anadrom göç) Şeffaf elverler su akıntılarını takip ederek kıyı sularında toplanırlar. Metamorfoz ergin yılan balığına benzeyinceye kadar devam eder. Pigmentasyon sonucunda sırt kısmı zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara “sarı” yılan balığı denir. Sarı yılan balıklarının tatlı suda büyümesi On dört on beş yıl kadar süren bu aşamada sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenmenin başlaması pigmentasyonun son safhasında ve ağırlık artışı başladığında ortaya çıkar. Beslenme karnivor olarak bentik omurgasızlarla ve belli bir boyu aştıktan sonra diğer balıklarla olmaktadır. Büyüme oldukça yavaştır. Yılan balığının gelişimi yaşadığı ortam şartlarına bağlıdır. Dişiler, erkek bireylerden boy olarak daha uzun olup, erkekler 50 cm den küçük, dişiler 45-150 cm arasında, nadiren 200 cm boy ve 4-6 kg ağırlığa kadar ulaşmaktadırlar. Buna rağmen çoğunlukla, yakalanan dişilerde ağırlık 250-400 gram ve boy 70-80 cm kadardır. Gonatların dişi yönünde gelişmeye başlaması 15-20 cm. den itibaren olmaktadır. Cinsel farklılaşmanın başlıca belirtileri cinsiyet organları üzerinde görülmez. Büyümedeki farklılaşma ve erkek bireylerin nehir ağızlarında kalırken dişi bireylerin kaynağa yakın yerlerde bulunması ile cinsiyet ayırt edilir. Göç etme eğilimindeki bu farklılaşma çok erken safhalarda, şeffaf elver yada elver aşamasında görülür. İkinci metamorfoz Deniz suyuna geçmek üzere ikinci kez ortam değiştirmeleri sırasında yılan balıklarında oluşan morfolojik değişiklikler beş başlık altında toplanabilir. - Kahve rengi ve zeytin yeşili olan vücut rengi değişir, karın gümüşi beyaza döner. Sırt ve yüzgeç rengi koyulaşır. Dalgalı renklenme kaybolur. Yılan balıklarının tüketici tarafından en çok talep edildiği şekli gümüşi yılan balığı safhasıdır. - Etlerindeki yağ oranı artarak vücut ağırlığının % 30’ unu geçebilir. Bu yağlanma yılan balığının Saragossa’ya doğru yaptığı uzun göçe dayanmasını sağlar. - Tesch’e göre göz çapı iki katı kadar artar. Bu sayede daha az riskli bir yolculuk yapar. Bununla birlikte ışıktan kaçma davranışı ortaya çıkar. - Pektoral yüzgeçler yuvarlak şekillerini kaybederek erken olgunluk döneminde sivrileşirler. - Son olarak olgunlaşmanın ilerlemesi ile cinsel organlar gelişir. Vücutlarında çok fazla yağ depolarlar. Diseksiyon yapılarak cinsiyet teşhis edilebilir. Gonatların gelişimi deniz ortamına geçtikten sonra gerçekleşir. İkinci göç ( katadrom göç) Bu, yılan balıklarının doğduğu yere geri döndüğü üreme göçü olup, Anguilla anguilla için 5000 km. dir. Gümüşi yılan balıkları sonbaharda, tatlı suları terk ettiklerinde gonatlar hala tam olarak olgunlaşmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Tatlı suda yakalanan örneklerde sindirim sisteminin köreldiği ve işlevini yitirdiği gözlenmiştir. Gümüşi yılan balıkları Saragossa’da ki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaştığı süreye kadar denizde beslenmeden hayatta kalabilmektedirler. Hayatlarında bir kez yaptıkları üreme sonucunda yaşam süreçleri son bulur. Yılan balıklarının bu göç sırasında yönlerini nasıl buldukları günümüzde hala bilinmemektedir. Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. · Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. · Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. · Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Durgun Su Yöntemi Japonya ve Tayvan’da kullanılan en eski ve yaygın olan metottur. Balıkların oksijen ihtiyaçlarını su içindeki fitoplanktonlar ile karşılanması bu yetiştirmenin temel prensiplerinden biridir. Geceleri oksijen miktarını çok dikkatli bir şekilde takip edilmesi gerekir. Özellikle fazla balığın stoklandığı, suyun sıcaklığının fazla olduğu dönemlerde, konunun önemi daha da artmaktadır. Suya oksijen kazandırmak için suyu karıştıran makineler yada basınçlı hava veren düzenek kullanılır. Bu yetiştirme yönteminde havuzlara çok az (%10) su verilir. Verilen suyun havuz suyunu karıştırmaması havuzun bir köşesinden girip, diğer köşesinden dışarı çıkması sağlanır. Böylece havuzdaki plankton varlığının korunması ve suyla sürüklenip gitmesi önlenmiş olur. Bu yetiştirme yönteminde metre karede 2- 4 kg balık yetiştirilebilir. Başarılı bir yetiştirme için su sıcaklığının 23-30 °C arasında olması gereklidir. Bu şartlarda iki yıl veya daha az sürede 150-200 grama ulaşması gerekir. Bu ağırlığa Tayvan’da 1,5 yılda , İngiltere’de 4 yılda, Japonya’da 2 yılda ulaşır. Güney Ege ve Akdeniz’de yılın 8-9 ayı su sıcaklığı 20 °C den yukarıda tutulabileceğinden yılan balığı yetiştiriciliği bu bölgelerimizde karlı olabilir. Yılan balıklarına 12 °C nin altında yem verilse dahi gelişme olmaz. Bu yetiştirme yönteminde havuz alanı 3-4 dekar arasında tutulur. Akarsu Yöntemi Akarsu yönteminde havuzların alanı 150-300 m² dir. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyunun olması gerekir. Birim sahada yetiştirilebilecek balık miktarı verilebilecek oksijene, dolayısıyla suya bağlı olarak değişir. Yöntemin başarılı olabilmesi için su sıcaklığının 23 °C üzerinde olması gerekir. Bu yetiştirme yönteminde üretime alınacak balıkların başlangıç olarak ağırlıklarının yaklaşık 30 g. olması tavsiye edilmektedir. Çünkü suyun hızla değiştiği ortamda yavrularda gelişme iyi olmamaktadır. Bu yöntemle yetiştiricilik yapan işletme sayısı oldukça azdır. Ağ Kafeslerde Yetiştirme Yöntemi Japonya’da ağ kafeslerde yapılan sazan ve alabalık yetiştiriciliğinin aynısıdır. Bu amaçla bu havuzlar iç sularda ve göllerde kullanılmaktadır. Japonya’da Şizouka balıkçılık deneme istasyonunda derinliği 1,5 m olan 8 mm göz açıklığında ağlar ile ağ havuzlarda yapılan deneme oldukça olumlu sonuçlar vermiştir. Bu denemede toplam 23,3 kg yılan balığı konulmuş, 38 gün sonra 38,6 kg balık, ortalama 180 g ağırlıkta hasat edilmiştir. Bu çalışmada dondurulmuş uskumru eti kullanılmış olup, yem dönüşüm katsayısı 7,35 bulunmuştur. Bu denemede ortalama su sıcaklığının 25,5 °C, tuzluluğun %0 21, birim alandaki verim 7,7 kg olarak tespit edilmiştir. Tünel Yöntemi Bu metotla ticari bir işletme kurulmamış olmakla beraber tünel yöntemi ile yılan balığı yetiştirilebileceği denemelerle gösterilmiştir. Bunda amaç, yılan balığının karanlık saklanacak yeri bulunan doğal ortamına benzeyen bir alanın sağlanmasıdır. Bunun için balıkların gündüz saklanmasının mümkün kılacak karanlık tüneller suya yerleştirilir. Havuzlarda ılık akarsu yöntemi kullanılmıştır. Sirkülasyon Yöntemi Devamlı olarak sirküle edilen suyun kullanılması, yetiştirme çalışmalarında olumlu sonuçlar alınmıştır. Bu tür bir çalışmada iki adet havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan su devamlı olarak bir motopomp vasıtası ile filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel temizlenmesinin yanı sıra biyolojik temizleme de gerçekleşir. Filtre kumu ve taşlarındaki bakteriler balıkların atıklarındaki nitrit, nitrat ve amonyak gibi toksik kimyasal bileşikleri azota kadar indirgeyerek zararsız hale getirirler. Bu tür bir çalışmanın başarılı olabilmesi için kullanılan havuzların kapasitesi, filitrasyon yüzeyi, filtre yapan temizleyici kütlenin kalınlığı, kullanılan pompaların kapasitesi, su kalitesi, sudaki oksijen miktarı, sıcaklık ve artık yemlerin temizlenmesi gibi pek çok konuyla ilgilidir. Bu tür bir yetiştirme yöntemi, ancak kullanılacak suyun kısıtlı olduğu yerlerde düşünülebilir. Bu yöntemle küçük bir alanda fazla miktarda balık üretimi mümkün kılınabilir. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: - Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. - Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. - Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. - Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. - Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. - Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. - Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. - Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. - Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; - Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7' nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme sırasında sık sık boylama yapılır. Bu şekilde büyüme daha iyi olur. Yetiştiriciliğin son safhası büyütme havuzlarında gerçekleşir. 660 m² havuza her biri 10 g olan ( 100 adedi 1 kg ) 300 kg balık yani m² ye 50-60 balık konur. Burada amaç 150-200 g ağırlığında pazarlanacak bireyler elde etmektedir. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. 30- 40 cm ye kadar erkek ve dişi bireyler arasında büyüme bakımından bir fark yoktur. Bu uzunluktan sonra özellikle avrupa yılan balığı erkek bireylerin büyümesinde bir düşüş görülür (Şekil x ). Erkekler en fazla 50 cm büyürler. Bu boydaki ağırlık 100-120 g dır. Dişi bireyler 50-70 cm ye kadar boya ve 300-500 g ağırlığa kadar büyüyebilirler. Erkek dişi arasındaki oran erkek lehine 20:1 dir. Cinsiyet farklılaşması 14-20 cm arasında olur. Bu boya kadar balık aynı zamanda hem erkek hem de dişi cinsiyet hücrelerini taşır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. KAYNAKLAR Alpbaz, A.,Hoşsucu, H., 1988, İç Su Balıkları Yetiştiriciliği, Ege Üniv. Su Ürünleri Y.O. Yay No:12, 1-98 s. İzmir. Anonim, 1985, Yılan Balığı, T.C. Ziraat Bankası Ege Bölge Müdürlüğü, Su Ürünleri Çalışmaları/1, (Çev) Hakkı Çakır, 62 s., İzmir. Çelikkale, M.,S., 1994, İç Su Balıkları ve Yetiştiriciliği, Cilt 1, 2. Baskı, Karadeniz teknik Üniv. Sürmene Den.Bil Fak. Yay NO: 2, 337-362 s Trabzon. DİE., 1991, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1583, Ankara 1995, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara 1997, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara Gault, J., 1986, L’élevage de l’anguille,(in) Aquaculture, (ed) Barnabe, G., Technique et Documantation-Lavoisier, 739-771 pp, Paris. Geldiay,R., Balık, S., 1996, E Ege Üniv. Su Ürünleri Fakültesi, Yay No:16, 2. Baskı, E.Ü. Basımevi, 204-209 s, İzmir. Tesch, F.,W., 1983, Der Aal, Biologie und Fischerei, Verlag Paul Parey, 340p, Hamburg und Berlin. Usui, A., 1974, Eel Culture, Fishing News (Books), Ltd.,186 p, England. Kaynak; tarim.gov.tr

http://www.biyologlar.com/yilan-baligi-biyolojisi-ve-yetistiriciligi

İSTİRİDYE BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Aynur LÖK - Ege Üniversitesi Su Ürünleri Fakültesi, Yetiştiricilik Bölümü Bornova-izmir Mollusca bireylerinin tüketimi insanoğlunun tarihi ile yakından ilgilidir. Bugün arkeolojik verilerden de anlaşılacağı gibi, deniz kıyısında yerleşim alanları oluşturmuş insanların balık avlamadan önce bu sabit canlıları tükettikleri bilinmektedir. Mağaralarda çok miktarda yenmiş midye ve istridye kabukları bulunmuş; ve bunların bir kısmından kolye yapılmışlardır. Doğal ortamlardan toplanarak tüketim ilk günden bu güne kadar gelmektedir. İlk kültür çalışmaları 17. yüzyılda Japonlar tarafından ele alınmıştır. Bambu kamışları dikerek istridyelerin bunların üzerine tutunmasını sağlayarak yetiştirmişlerdir. Yine bambu kamışlarından sal yaparak denizde sadece dikey değil yatay olarak da yetiştiriciliği başlatmışlardır. Bu dönemde yavruların çoğu doğadan toplanmaktadır. İnsan kontrolü altında ilk yavru üretimi 1879 yılında ele alınmıştır. 1920’de ise kültüre alınacak boya kadar yetiştirilmişlerdir. Bugün birçok ülke yarı kontrollü olarak dipte, kazıklarda, halatlarda, rafta ve sallarda yetiştiricilik yaparken, tam kontrollü olarak yumurtadan pazar boyuna kadar istiridye üretimini de başarılı bir şekilde yapmaktadırlar. Istiridye yetiştiriciliğinde söz sahibi olan ülkelerin birkaçını ve yetiştirdikleri türleri sıralayacak olursak şöyledir; Japonya Crassostrea gigas Fransa Ostrea edulis, Crassostrea angulata, C. gigas Amerika Crassostrea virginica Portekiz Crassostrea angulata Filipinler Crassostrea eradelis Avustralya Crassostrea commercialis Ingiltere Ostrea edulis İnsan gıdası olarak yararlanılan kabuklu su canlıları görüldüğü gibi dış ülkelerde önemli bir yer tutmaktadır. Ülkemizde ise kabuklu deniz canlılarının tüketimi sadece deniz kıyısı olan bölgelerde yaygındır. Kıyı harici şehirlerimizde bu kabuklu canlıların pazarlandığını görmek sanırız pek mümkün değildir. Bu kabuklu su canlıları son yıllarda ülkemizde tanınmaya başlanmıştır. Ülkemizde tüketiminin pek fazla olmamasına rağmen dış talebin yüksek olaması nedeni ile bazı ihracatçılar bu canlıları doğadan toplatarak Italya, Ispanya, Yunanistan gibi ülkelere pazarlanmaktadır(Alpbaz, 1993). İstridyenin Sistematikdeki Yeri Phylum: Mollusca Classis: Bivalvia (Lamelibranchiata) Ordo: Filibranchiata Familia: Ostreidae Genus: Ostrea (Linne, 1758) Species : Ostrea edulis (Linne) Ostrea lurida (Carpenter) Ostrea angasi (Sowerby) Ostrea chilensis (Philippi) Genus: Crassostrea (Sacco, 1897) Species: Crassostrea gigas (Thunberg) Crassostrea virginica (Glein) Crassostrea angulata (Lamarck) Crassostrea rhizophorae (Guilding) Crassostrea madrasensis (Preston) Ülkemiz sularını temsil eden tek tür Ostrea edulis’tir. Marmara Denizi, Ege Denizi, Akdeniz ve Karadeniz’in Istanbul Boğazı ile birleştiği noktada görülmektedir. -Genus: Crassostrea (Sacco, 1897) Olgun istiridyelerde kabuklar karınlı ve uzundur. CaCo3’ın depolanması nedeniyle kabuklar yapraksı görünümdedir, ve sol kapağın karınlı alanı içerideki canlının gelişmesine imkan verir. Sağ kapakçık tamamen düzdür. C. gigas’ta süslü yapıda kapak mevcuttur. Ovipardırlar ve büyük üreme kabiliyetine sahiptirler. Intertidal zonda yaşarlar. Tuzluluk değişimlerine dayanıklı olduklarından acı sularda kolonize olabilirler. C. gigas Pasifik Okyanusu kökenlidir. Ayrıca S.S.C.B.’nin Vladivostok Denizi’nde, Sacolin Adası’nda, Japonya’da lokal 2 ırkı vardır. Iwata bölgesinde, Hiroşima’da, Kore’de, Kuzey Amerika’da (Alaska’dan, Kalifornya’ya kadar) yayılım gösterir(Korringa, 1976a). Bazı araştırıcılar C. gigas ve C. angulata’nın aynı tür olduğunu belirtirler. Portekiz türünün C. gigas’tan türediğini, 15-17. yüzyıla kadar ticaret seferleri yapan tahta gemilere yapışarak Avrupa’ya gelip yerleştiklerini söylemektedirler. Bununla birlikte bu iki türün farklı özellikler gösterdiği belirlenmiştir. Bunlar; solunum metabolizması, küçük zerrecikleri tutma özelliği, büyüme kabiliyeti, üreme şekilleri, farklı hastalıklar karşısındaki durum fizyolojik olarak her iki ırkın az da olsa farklılık gösterdiği tespit edilmiştir. -Genus: Ostrea (Linne, 1758) Kabuk oval şekilli olup, belirsiz kanca burunlu (gagalı), yaprak şeklinde, sarımsı kahverengi renge sahiptir. Sol kabuk hafif küp, sağ kabuk yassı görünümdedir. En önemli türü O.edulis olup max. 12cm, genellikle 6-7cm uzunluğunda olurlar. Yetişkin türlerde bireyin şekli yuvarlaktır. Sınırlı bir üreme vardır ve larvipardır. Tuzlu sularda yaşayıp bulanıklılığa karşı toleransı azdır. Doğal ve kültür yatakları daima denizin içerisinde olmalıdır(Infralittoral zon). Bu daha çok Kuzey Avrupa türü olup Norveç’ten Fransa’ya kadar (Ingiltere, Almanya, Hollanda, Irlanda ve diğer ülkeler) uzanır. Daha güneyde Ispanya kıyıları ile Fas’ın güney ucuna kadar yayılmışlardır(Korringa, 1976b). Akdeniz’de Fransa, Italya, Sicilya’dan Karadeniz’e kadar uzanır. Ülkemizde sahil ötesi kumlu, çamurlu veya kayalık bölgelerde yaşarlar. 2-İSTRİDYENİN BİYOLOJİSİ Morfolojik olarak Ostrea edulis dairesel şekilli iki kabuktan meydana gelmiştir.Her iki kabuk dorsal kenarlarından boynuza benzeyen ligamentlerle birbirine bağlanmıştır. Ligamentin esnekliği kabukların açık durmasını sağlar. Bu, hasta yada ölü istridyenin karakteristik bir özelliğidir. Açılmış kabukların canlılığı herbiri ayrı fonksiyona sahip olan iki kısma ayrılmış adductor kası tarafından kontrol edilir. Adduktor kası merkezdedir ve her iki kabuğa sıkıca yapışmış durumdadır. Vücut kısmı addüktör kası ile mafsal arasında uzanır. Kalp, bağırsak, böbrek, mide bu bölümdedir. Gonadlar da buradadır. Üreme zamanında gonadlar tüm yüzeyi kaplayarak krem beyaz görünüm alırlar. Manto, vücut kısmının her iki yanını kaplayan düz bir dokudur ve kabuk kenarı boyunca sabit olarak uzanır. Manto kenarlarında bulunan materyalin ilavesi sonucu kenar kısmında kabuk oldukça gelişmiştir. İstridye kabuklarının %95’den fazlası kalsiyum karbonattır. Manto vücudun iki yanında kabukla vücut arasında bir örtü gibi bağ dokuya asılıdır. Bu nedenle bir ada gibidir. Mantonu uçları üç yaprak şeklindedir. Bunlardan iki sıra kabuk üretiminde görev alırlar, içteki ve en geniş olanı vücut ile kabuk arasında perde görevi yapar. Mantonun öbür ucundaki yapraklar ayrı ayrı veya birlikte hareket ederek suyun manto içine akışını kontrol eder, bu durumda kabuklar yuva gibidir. Manto bölgesine giriş manto uçlarının birleşmesi ile sınırlandırılır. Küçük organizmaların girmesine ve suyun atılmasına olanak verir. İstiridye solungaçları vücudun 2/3’ünü sarar. Belli aralıklar ile birbirine bağlanmış küçük filamentlerden oluşur. Su, manto boşluğundaki su alma bölümünden filamentler üzerinde bulunan kırbaç biçimindeki sayısız sillerin hareketi ile su tüplerine hareket eder. Bunlar sadece suyun hareketini sağlamaz, aynı zamanda istiridyenin besinin oluşturan küçük parçaları da sudan filtre eder. Bu süzülen su, solungaç tüplerine geçer ve oradan su verme bölümüne, en sonunda manto boşluğundan dışarı atılır. Solungaçlar dört adet yarı ay şeklinde tabakalardan ibarettir. Manto uçlarının birleşmesi, manto kısmını manto odası ve solungaçları içeren geniş bir oda küçük bir boşaltım odası olmak üzere ikiye ayırır. Ayrıca bir boşaltım kanalı içerir. Bu manto ile vücudun sağ yanı arasında bulunur ve istiridyelerin özellikle çamurlu ortamda yaşamasına yardımcı olur(Walne, 1974). Solungaçlar basit bir süzgeç mekanizması değildir. Aynı zamanda komplex bir ayırma aygıtı gibi olup, uygun gıdanın yeterli miktarda ayırım ve değerlendirilmesini yapar. Gıdasını teşkil edecekler ağıza, diğerleri atık bölgeye liflerin yardımı ile yollanır. Çok iri olanlar mantonun altına düşürülür (Walne, 1974). Kabuklularda solungaç yapısı birbirlerine benzemesine karşın farklılık filamentlerin bağlantı şeklinde olup, Mytilus edulis’te filamentler arası organik bağlara rastlanmaz. Fakat istiridyelerde bu olay yukarıda görüldüğü gibi bulunmaktadır. Örneğin akivadeslerde bu filament bağlantılarının derecesi istiridyelerde bulunanlardan çok daha yüksektir. İstiridyenin sağ kabuğu düzdür ve larva metamorfoza ulaştığında kendini sol kabuk üzerinde zemine tespit eder. Uygun koşullarda istiridyeler bütün gün boyunca kabuklarını açıp su içerisindeki planktonları ve zerrecikler halindeki organik maddeleri, hatta su içerisindeki mineraller maddeleri bile süzerek gıda olarak kullanırlar(Claus, 1981). Böylece su içerisindeki organik maddeleri ete çeviren canlılar olarak önem kazanırlar. Su akımının esas rolü şüphesiz ki beslenme üzerinedir. Fakat bunun yanında su, sindirim sisteminde ve böbreklerde oluşan atıkları uzaklaştırmaya yarar ve ayrıca canlıya O2 sağlar. İstiridyelerin filtrasyon hızını sıcaklık, suyun debisi ve partikül konsantrasyonu etki eder. 3-İSTİRİDYELERDE ÜREME İstridyeler eşeyli üreme gösterirler. Üreme organları erkek ve dişi gametleri oluşturur. Bunların üreme mevsimi ilkbahar sonu ile sonbahar arasında olup havaların ısınmasıyla başlar, soğumaya başlaması ile sona erer. Her iki seksdeki gonadlar birçok hayvanda bulunan ile karşılaştırıldığında basit yapıdadır. Sindirim sistemi üzerinde yerleşmiş durumdadır. Avrupa istiridyesi, Ostrea edulis, olgun durumda iken gonadlar 2 veya 3mm kalınlığında bir tabaka biçimindedir. Seksler arasındaki farklılık yumurta ve sperm varlığından hariç dış görünüşten belli olamaz. 3.1 İstiridyelerin Gonad Gelişim Safhaları İstiridyelerin gonad safhalarını belirlemek için alınan histolojik örneklerde gonad aşamaları beş grup altında değerlendirilmektedir(Cole 1942; Brausseau, 1995; Garcia-Dominguez ve ark., 1996, Yolkolu, 2000). Bu gruplar: Safha 0 Dinlenme Safha 1 Ilk Gametogenesis Safha 2 Olgunlaşmaya başlama Safha 3 Döl atımına hazır Safha 4 Kısmı olarak döl atımı olarak sınıflandırılır. 3.1.1 Dinlenme safhası Bu safhada olan bireylerde istiridyelerin cinsiyetinin belirlenmesi açısından histolojik olarak herhangi bir ip ucu yoktur. Ortamda cinsiyeti belirleyici olan germ(cinsiyet) hücreleri bulunmamaktadır. 3.1.1.1 Testis Safha 1: Ilk gametogenesis safhasındadır. Bu özellikte olan örneklerde foliküler küçüktür, yuvarlak veya oval şekillidir. Bağ dokusunun kapladığı alan geniştir. Spermatagonialar bir arada ve koyu renklidir. Safha 2:Foliküller oldukça büyümüştür. Bağ dokusunun kapladığı alan iyice azalmıştır. Spermatozoalar merkeze doğru yönelmiştir ve kırmızı şeritler halinde kuyruklar belirgindir. Safha 3: Istiridyelerin döl atımına hazır olduğu safhadır. Foliküller şişip birleşmiş ve çoğunluğu tamamen spermatazoa ile doludur ve kuyrukları kırmızı renktedir ve açıkca belirgindir. Maturasyon ile incelmeye başlamış olan folikül duvarlarının iç kısmına doğru spermatositler ve spermatidler sıralandırılmışlardır. Serbest spermatazoalar follikül lümellerine tamamen yerleşmişlerdir. Çok sayıda hareketli spermatazoa görülmektedir. Bağ dokusu alanı azalmıştır. Safha 4:Foliküller tamamen boşalmış ve dinlenme safhasına geçilmiştir. Bu da ortamda inaktif olan spermatagoniumlardan anlaşılmaktadır. Foliküller arası bağ dokusu iyice gelişmiştir. 3.1.1.2 Ovaryum Safha 1: Foliküller başlangıçta küçük, boş ve belirgin değildir. Folikül duvarları, gelişen oositler ve kök hücreleri ile belirginleşmiştir. Oogonia ve primer oositler küçüktür ve yumurta sarısı yoktur. Bu aşamadaki primer oositlerin çekirdeği büyüktür ve belirgindir. Sık demetler şeklinde folikül duvarına doğru yapışma olmaktadır. Oogenesis ilerlemektedir. Birkaç büyük oositin uzamaya başlaması ile genç oositler bölünmektedir. Safha 2: Oositler, lumenlere doğru genişlemiş ve yığılmaya başlamıştır. Sekonder oositler yoğun miktarda görülmektedir. Primer oosit ve serbest oosit birkaç tanedir. Bu serbest oositler, lümel merkezinde görülmektedir. Hala folikül duvarları ile bağlantılı olan uzamış oositler ile hemen hemen olgunlaşmış olan oositler yoğun olarak bulunmaktadır. Oositler konik ve oval şekildedirler. Bağ dokusunun alanı iyice azalmıştır. Safha 3: Birleşmiş foliküller, bir çekirdekçiği ve çekirdeğinin gözüktüğü polygonal şekilli, tamamen serbest olan oositler ile doludur. Sekonder oosit bir kaç tanedir. Safha 4: Oositler olgunlaşmış atıma hazır hale gelmişlerdir. Bağ dokusu tekrar belirginleşmeye başlamıştır. Ayrıca oositlerin şekli hekzogenal hale gelmiştir. Bazı boşalmış ve yıkıma uğramış foliküller bulunmaktadır. Avrupa istiridyesi, Ostrea edulis sukseksif hermafroditizm gösterir. Seksüel olgunluğa ilk ulaştığı zaman gonad normal olarak bir erkek gibi gelişir ve sperm verir. Gonad spermi bıraktıktan sonra dişi safhasına geçer ve sperm yerine yumurta üretir. Bu düzenli bir şekilde tüm yaşamı boyunca devam eder. Erkek tarafından dışarı bırakılan spermalar dişi tarafından su alma kanalı ile alınarak yumurtalar dişinin içinde döllenir. Döllenmiş yumurtalar 8-10 gün kadar dişinin palial boşluğunda kuluçkalandıktan sonra dışarıya serbest yüzen veliger larva durumunda bırakılırlar(Alpbaz ve Hindioğlu, 1991). Avrupa istiridyesinin döl verimi üzerine sıcaklığın, besinin, büyüklüğün ve yaşın etkisi büyüktür Avrupa istiridyesinin larva boyu 150-190µm büyüklüktedir. 120-130µm büyüklükte larvalar görülse de, yetiştiricilikte büyük larvalar alınır. Küçük larvalar elenir. Böylece daha dayanıklı ve sağlıklı bireyler elde edilebilir. Suya bırakılan veliger larvaları velumları sayesinde hareket ederler. Besin olarak fitoplanton tüketirler. 10-15 gün pelajikte yaşamlarını sürdüren larvalar 290-300µm ve bazen de 360µm büyüklükte iken zemine inerek, hayatlarının geri kalan kısmını sürdürecekleri sert bir substratuma kendilerini tespit ederler. Larvanın kuru ağırlığı hareketli dönemi boyunca 1µg’dan 4µg’a çıkar. Bunun %75-80’i kabuk ağırlığıdır. Yeni bırakılmış bir larvanın kuru ağırlığının %14’ü glikojen, %15,5-22,5’i yağdır. Crassostrea genusuna ait istiridyeler ise 100 milyonun üzerinde yumurta dökebilmektedirler. Bu yumurtaların hepsi aynı zamanda değil, üreme dönemi boyunca bırakılırlar. Crassostrea gigas’da ise dişi birey yumurtalarını deniz suyuna bırakır ve erkek bireyin bıraktığı spermalar ile su içinde döllenme olur. Yumurtalar yaklaşık 50µm büyüklükte olup çok küçüktürler. Yumurtalar ovaryumda iken armut şeklindedir. Ovaryumdan bırakılıp su ortamında döllendikten sonra spiral şekil alır. Birinci ve ikinci polar vücut görünerek yarılma devam eder. Gelişme, morula, blastula ve gastrula safhalarına doğru ilerler. Veliger safhada larvanın velumu ortaya çıkar ve aktif hareket etmeye başlar. Daha sonra D şekilli larvaya dönüşür. Larvada umbo oluştuğunda umbo safhasındadır ve kabuk uzunluğu 0,2mm’ye ulaştığında metamorfoz başlar(Bardach ve ark., 1972). Larva metamorfoz aşamasına geldiğinde anacına benzer bir hal alır. Her iki genusda da benzer belirti olan göz noktası ve ayağın görülmesi metamorfozun en önemli işaretidir. Zemine inen larvada velum kaybolur ve yüzme hareketi ayak ile sürünme hareketine dönüşür. Uygun substrat bulduğunda kendini sol kabuğundan salgıladığı özel bir salgı ile oraya yapıştırarak sesil hayatı başlamış olur. Hareket kabiliyeti artık bitmiştir. 4-İSTİRİDYE YETİŞTİRİCİLİĞİ İstiridye kültüründe yavru bireyler ya kuluçkahanelerde üretilerek ya da doğal alanlardan toplanarak elde edilmektedir. Kuluçkahaneden yavru üretimi gerçekleştirilirse, genetik seleksiyonlar yapılarak hızlı büyüyen, zor şartlara karşı dayanıklı, et verimi fazla, hastalıklara karşı dayanıklı bireylerin elde edilmesi söz konusu olabilmektedir(Rodriguez ve Frias, 1992). Doğal ortamdan toplanan yavrularda ise böyle bir seleksiyon şansı yoktur. 4.1. Kuluçkahaneden Yavru Temini Bu kültür yönteminde kıyısal alanda bir kuçkahane binasının olması gerekmektedir. Bir istiridye kuluçkahanesinde filtre odası, fitoplankton üretim birimi, anaç, larva ve yavru üretim birimi olmalıdır. 4.1.1. Deniz Suyu İstiridye kültüründe suyun filtrasyonu önemli bir konudur. Anaç ve yavru biriminde kullanılan suyun 40-60µm’lik kum filtrelerinden geçmesi yeterli olurken, fitoplankton ve larva üretiminde kullanılacak suyun 20, 10, 5, 1µm’lik kartuj filtrelerinden geçerek partiküllerden ve suda bulunabilecek diğer organizmalardan ayrılması gerekmektedir. Bazı üreticiler deniz suyu ile gelebilecek bazı organizmaların istiridye larvaları tarafından besin olarak değerlendirilebileceğini düşünerek kaba bir filtrasyon yapmaktadırlar. Fakat üretimi riske atmamak için iyi bir filtrasyon ve sterilizasyon önemlidir. Suyun iyi filtre edilmiş olması U.V. ışınları ile yapılacak sterilizasyon etkisini arttırmaktadır. 4.2. Anaç Özellikleri Genellikle istiridye anaçları üretim zamanında doğal stok alanlarından döl almak amacıyla kuluçkahaneye getirilir ve döl alma işlemi tamamlandıktan sonra tekrar denize bırakılırlar. Bu anaçlar hızlı büyüyen, zor şartlara karşı dayanıklı, et oluşturma kapasitesi yüksek, düzgün kabuk şekilli gibi özelliklere sahip istiridye stoklarından seçilmasi tercih edilir. 4.2.1. Anaç istiridyelerden döl alım yöntemleri Olgun istiridyelerden yumurta ve larva elde etmek için birkaç yöntem vardır. İstiridyenin yumurta ve larvalarını ortama normal olarak kendi isteği ile bırakması haricinde yumurtlamayı uyarıcı şok yöntemler de uygulanır. Bu şok yöntemler şöyledir; Termik şok: Şok yöntemlerin en çok kullanılanıdır. Olgun istiridyelerin ani olarak sıcak sudan soğuk suya, soğuk sudan sıcak suya bırakılması ile olur (Field, 1922). Bu işlem birkaç defa tekrarlanır ve istiridyenin larva bırakması beklenir. Kimyasal şok: İstiridyelerin manto boşluğuna 2cc, 0.5 mollük KCL solüsyonu enjekte etmek sureti ile yapılmaktadır. (Bayne; 1965) Elektrik şok: İstiridyelere düşük voltta elektrik verilmek sureti ile uygulanır (Iwata, 1950; Sugiura, 1962). Mekanik şok: İstiridyelerin adduktor kasına enjektör iğnesi ile dokunularak uyarı yapılmaktadır (Loosanoff ve Davis, 1963). Diğer Yöntemler Diseksiyon yöntemi Olgun İstiridyelerin kapama kasları kesilerek gonadlardaki yumurta veya spermler C.gigas’ta alınırken, O. edulis’te palial boşluktaki larvalar alınabilir. Sperm solusyonu Yumurtlamayı uyarmak için suya sperm solüsyonu verildiğinde de istiridyeler bir süre sonra yumurta bırakmış olur. Bu amaçla şok uygulamalar sonrasında elde edilecek fazla sperm solusyonu kullanılabilir. Şok yönetemlerin uygulanmasından yaklaşık 30dk sonra istiridyeler döllerini su ortamına dökerler. Eğer istiridyeler döllerini bırakmaya hazır değiller ise şok yöntemler ile başarılı bir sonuç elde edilemez. İstiridyeler bilindiği gibi yaz aylarını üreme için kullanılır. Kışın ise doğada üreme görülmez. Laboratuvarda uygun koşullar yaratılarak kış aylarında da istiridye üretimi yapılabilir. Bunun için doğal ortamdan alınan istiridyeler 10°C sıcaklıktaki suya bırakılırlar. Ortama alışan damızlıkların tutulduğu havuzdaki su sıcaklığı tedrici olarak 18°C’ye veya biraz daha yüksek sıcaklığa çıkartılır. Bu sıcaklıkta istiridyeler 2-4 hafta tutulur. Bu süre üretim mevsimine bağlı olarak değişir. İstiridyeler bu süre içerisinde gonadlarını olgunlaştırırlar ve sıcaklık 20°C’ye ulaştığında döllerini dökerler. Bu işleme gonad olgunlaştırarak döllerin alınması işlemi denilir. Burada kullanılan anaçlar genellikle genetik olarak istenilen özelliklere sahip özel anaçlardır. 4.3. Larva Kültürü Yumurta veya larvalar anaç biriminde elde edildikten sonra larva birimine alınırlar. Burada 50lt’den 2tona kadar silindir-konik polyester tanklar kullanılabilmektedir. Tank hacmi üretim kapasitesine ve üreticinin tercihine bağlı olarak değişir. Bu tankların alt kısmında bir su çıkış vanası olur. Tanklar 40watt’lık floresan lambalar altına yerleştirilir. Tuzluluğu ‰33-35 ve sıcaklığı 20-22 °C olan iyi filtre edilip sterilize edilmiş deniz suyu doldurulur. Bu tanklara başlangıçta veliger larvaları 10 adet/ml’yi geçmeyecek şekilde stoklanır. Larvalar büyüdükçe stoklama yoğunluğu 3-5adet/ml’ye indirilir. Tankların temizliği gün aşırı yapılır. Tank suyu tamamen süzülerek larvalar yıkanır ve temiz su ile doldurulmuş yeni tanka aktarılırlar. Bu temizlik işlemi larva kültür boyunca devam eder. Veliger safhasında 170-190µm büyüklükte olan larvalar metamorfoza yakın gözlenmiş safhada iken 240-350µm boya ulaşırlar. 4.3.1 Fitoplankton Üretimi Kuluçkahanede bulunan anaç, larva ve yavru istiridyelerin besinleri bu birimde üretilerek temin edilir. Larva beslemede açıklanan Wells-glancy veya Milford yöntemine göre kültür gerçekleştirilmektedir 4.3.1.1 Wells-glancy yöntemi Wells-glancy yönteminde deniz suyu sadece kum filtresinden geçirilir ve sera ortamındaki büyük hacimli tanklara(20-30 tonluk) gönderilir. Tanklara deniz suyu ile gelen fitoplankton hücrelerinin artmasına izin verecek nutriyent karışımı verilir. Bu tank suyu 5-6 gün içinde kahverengi veya yeşil renk aldığında doğrudan larva tanklarında besleme amaçlı kullanılır. Bu yöntemin dezavantajı deniz suyu iyi filtre edilmediği için zararlı fitoplanktonlar türleri de kısa sürede çoğalarak istiridye larvalarına zarar verebilir. Suyla birlikte gelen zooplanktonlar hem larvalara predatör olarak zarar verdiği gibi bazıları da ortamda çoğalan besine ortak olur. Deniz suyu sterilize edilmediği için hastalıklara neden olabilecek mikroorganizma bulaşması da söz konusu olabilir. Böyle bir kültür yönteminde larva yetiştirciliği riske atılmış olmaktadır. Bu yönteme dayalı yapılan fitoplankton kültürü daha çok yavru veya anaç beslemede kullanılabilir. Wells-glancy yöntemi fitoplankton üretim masrafını çok azalttığı için tercih edilmektedir(Bardach ve ark., 1972). 4.3.1.2. Milford yöntemi Milford yönteminde ise alg hücreleri tek tek ayrı tüplerde ve saf kültür olarak inkübatörde muhafaza edilir. Larva kültürüne başlamadan önce bu hücreler steril şartlar altında arttırılmaya başlar. Kültür suyu 0.45µm göz açıklığındaki Milipore filtreden süzüldükten sonra otoklavda sterilize edilir. Kültür hacmi 6lt’yi geçtiğinde suyun filtrasyonu 1µm’lik kartuj filtrelerde, sterilizaysonu ise U.V. lambalarından yararlanarak yapılır. Böylece larva beslemede istenilen hücrelerin kültürü ayrı tanklarda yapılmış olur. Kültür biriminin iyi bir fitoplankton artışı sağlanması için 18-22°C arasında olması sağlanır. Şeffaf polyester tanklar veya naylon torbalarda(50-500lt hacimli) kültür gerçekleştirilir(Bardach ve ark., 1972). 4.3.2 Larva Besleme Milford yöntemine göre kültüre alınan fitoplankton hücrelerinden larvalara ilk olarak Isochrysis galbana ve Monochrysis lutheri besin olarak verilir. Larvalar büyüdükçe Tetraselmis suecica, Dunaliella tertiolecta, Chaetoceras calcitrans gibi besinler kullanılmaktadır. Genellikle tek tür beslemesinden ziyade karışık türler ile besleme iyi sonuç vermektedir. Isochrysis galbana, Monochrysis lutheri 100 000 hücre/ml, Tetraselmis suecica, Dunaliella tertiolecta 50 000-80 000 hücre/ml larva tankında olacak şekilde besleme yapılır. Karışık besleme başlangıçta %50 Monochrysis lutheri ve %50 Isochrysis galbana, larva metamorfoza yaklaştığında ise %20-30 Tetraselmis suecica ile karışık besleme yapılır. Beslemede kullanılacak fitoplankton hücrelerinin canlı olmasına dikkat edilir. Bu nedenle logaritmik artış fazında iken fitoplankton hasat edilerek larvalara verilir. Chlorella sp., ve Phaedactylun tricornutum besleyici değeri düşükolduğu için kullanılması tercih edilmez. Ayrıca Chlorella sp kalın hücre duvarına sahip olmaları nedeniyle larvalar tarafından sindirilememekte ve metabolik artıkları istiridye larvaları için toksik etkiye neden olmaktadır. Bu sebeplerden dolayı kabuklu larva kültüründe besin olarak kullanılmazlar(De Pauw, 1981). Son yıllarda kurutulmuş alg tozlarının kullanılması ile kuluçkahaneler fitoplankton üretim birimlerini küçültmüşler veya tamamen kaldırmışlardır. İhtiyaç duydukları kadar toz fitoplanktonu satın alarak larva beslemede kullanmaktadırlar(De Pauw, 1981). Metamorfoz Larva kültüründe metamorfoz dönemi en önemli dönemlerden biridir. Larvaların günlük sayımları ve ölçümleri alınırken göz ve ayak noktasının oluşumu çok iyi takip edilmelidir. Bu dönemde larvalar zemine iner ve kendilerine uygun gördüklere yerlere yapışırlar. Larva kontrolü iyi yapılmadığı taktirde larvalar tank çeperlerine yapışırlar ve buralardan çıkarılmaları çok zor olur. Böylece bir larva üretim dönemi başarısızlıkla bitmiş olur. Metamorfoz aşamasına gelen larvalar ya ayrı tanlara alınırlar ya da bulundukları tanklar içersine yapışma işlemi başlamadan önce çeşitli kollektör malzemeleri bırakılarak larvaların bunların üzerine yapışması sağlanır. Burada kullanılan kollektör malzemesi larvanın en çok tercih ettiği materyal olan istiridye kabuklarıdır. Bir ip üzerine 3-4 cm aralıklar ile dizilen istiridye kabukları larva tanklarının içerisine tank dibine değecek boyda hazırlanarak sık bir sekilde tank yüzeyinden aşağı doğru sarkıtılırlar. 3-5 gün içinde larvalar bu kabuklar üzerine tutunarak metamorfozlarını tamamlamış olurlar. Bu yeni tutunmuş istiridye yavrularına “spat” adı verilir. Yeni tutunmuş bir spat 1,2-5,7mg canlı ağırlığa sahiptir. Bu spatlar 10-11 hafta sonra 220-500mg canlı ağırlığa ulaşır. Yavrular kollektörler vasıtası ile yetiştirme alanlarına taşınarak uygun sistemlerde büyümeye alınırlar(Utting, 1988). Eğer spatlar tek tek herhangi bir yüzeye yapışık istenmiyorsa, metamorfoz aşamasında iken su sikülasyonunun olduğu spat tanklarına alınırlar. Bu tanklar. 50cm genişliğinde, 30cm derinliğinde olup 2m uzunluğundadır. Tankların içine derinliği 10-15cm olan altı plankton bezi ile çevrelenmiş tepsiler tabanları dibe değmeyecek şekilde yerleştirilir. Tanka su girişi herbir tepsinin üstünden olurken su çıkışı ana tankın sifon çıkışından olmaktadır. Başlangıçta tepsilerin plankton bezi büyüklüğü 150µm’dir. Bu sistemin esas özelliği larvalar bu tepsilere yerleştirilmeden önce kum haline getirilmiş istiridye ve midye kabuklarının tepsi tabanındaki plankton bezini örtecek şekilde yayılmasıdır. Plankton bezi başlangıç boyunun larva boyuna göre çok küçük olmasının nedeni de bu kabukların tepsiden akıp gitmesini engellemek içindir. Kabuk tozu serpilen tepsilere larvalar bırakılır ve 3-5 gün içinde larvalar bu kabuk tozlarına yapışırlar. Zaman içinde spat istiridyeler büyüdükçe kabuk tozları görünmez, spatlar gözle rahatlıkla görünür hale gelirler. Spat büyüklüğüne paralel olarak tepsinin plankton bezi göz açıklığı arttırılır. Spatların 2-3mm boya kadar bu sistemlerde kalabilmektedir. Bu aşamada verilen deniz suyu sadece kaba filtreden geçmektedir ve besin olarak da diatom ağırlıklı besleme yapılmaktadır. Kuluçkahanelerde yapılan larva çalışmaları sırasında metamorfoz aşamasına yaklaşan istiridye larvalarının tutunmasını uyarmak ve hızlandırmak için bazı neuroaktif bileşikler kullanılmaktadır (Shau-Hwaitan ve Wong, 1995). Bazı araştırıcılar bu amaçla sıcaklığı arttırırken bazıları da tank suyuna kabuklu glikojeni, potasyum klorür veya bakır klorür solusyonu kullanırlar(Nell ve Holliday, 1986).. Bu bileşikler larvalarda göz noktası ve ayak oluştuktan sonra kullanılarak larvaların hemen hepsinin aynı anda metamorfozu tamamlaması sağlanmış olur. Kuluçkahanede 3-4mm boya ulaşana kadar spat istiridyeler tuttulur. Bu aşamadan sonra deniz alanında hazırlanmış olan uygun sistemlere taşınarak yetiştiriciliğe devam edilir. 4.4. Doğal Ortamdan Yavru Temini İstiridyelerin yavruları doğal ortamdan ya dreçler ile avlanarak toplanırlar ya da istiridye yataklarının olduğu alanlara üreme dönemlerinde bırakılan çeşitli malzemelerden hazırlanmış kollektörler ile toplanırlar. İstiridyeler biyolojik yapılarından dolayı tutunmak için özellikle kendi anaç kabuklarına benzer materyalleri tercih etmektedirler. Eğer ortamda kabuk yoksa, spatlar buldukları sert substrata kendini yapıştırırlar(Pascual ve Zampatti 1995). Birçok ülkede, yarı kontrollü yetiştiricilik çalışmalarında, spat istiridyelerin toplanmasında, geleneksel yöntemlerin yanında geliştirilmiş yeni malzemelerden hazırlanan kollektörler de kullanılmaktadır. 4.4.1 Kollektör Tipleri Spat toplamada kullanılacak kollektör tipi önemlidir. Şimdiye kadar birçok materyal ve dizayn kullanılmıştır. Fakat bunlardan hiçbiri için her yerde ve her tür için çok iyi sonuç veren sistem denilemez. Bir tür için iyi olan kollektör diğer bir tür için arzu edilen sonucu vermeyebilir(Bardach ve ark., 1972). Uzak doğuda mangrov (Rhizophora sp., Avicennia sp.) bitkilerinin kökleri ile başlayan spat toplama işlemi günümüzde kiremit, çeşitli mollusk kabukları(midye, istiridye, tarak gibi), ahşap, PVC, metal materyallerin kullanımına kadar uzanmaktadır. (Burrell, 1980; Heral, 1990). 4.4.1.1 Kabuk kollektörler Japonya’dan Amerika’ya kadar çok yaygın bir kullanım alanına sahiptir. Bir ucu sivri olan özel çekiçlerle delinen kabuklar, 2 m. uzunluğundaki galvaniz tele dizilmektedir. Teldeki kabuk sayısı 80 ila 100 arasında değişmektedir. Kabuklar arasında mesafe bırakabilmek için önceleri bambu kamışlar kullanılmaktaydı, ancak maliyet ve geri dönüşüm açısından daha karlı olan plastik tüpler son yıllarda tercih edilmektedir. Kabukların bol olduğu bölgelerde ise herhangi bir mesafe bırakmadan ip veya galveniz tel üzerine üst üste gelecek şekilde kabuklar dizilerek kollektörler hazırlanmaktadır (Korringa, 1976a-b; Haven ve ark., 1987; Mann ve ark., 1990). Fransa’da Ostrea edulis spatlarının toplanmasında kabuk kollektörler içerisinde en iyi sonucu midye kabukları vermektedir. Bu kabuklar ince uzun ağ fileler içerisine yerleştirilmekte ve daha önceden hazırlanmış olan metal çerçeveler üzerine bağlanarak deniz tabanına bırakılmaktadır. Bunlar daha çok gel-git’in olmadığı derin sulara yerleştirmektedir (Heral, 1990). Hazırlanan tüm kabuk kollektör çeşitleri raf veya sallardan sarkıtılarak denize bırakılırlar. Bir çok kuluçkahanede, çeşitli kabuklular kırılıp toz haline getirildikten sonra metamorfoz aşamasına gelmiş larvaların yerleştirildiği tavaların tabanına serilmekte ve larvaların bu kabuk tozlarına tutunması sağlanmaktadır. Bu istiridye yavrularının tek tek elde edilmesi amacıyla da avantajlı bir yöntemdir. Bu şekilde elde edilen spat istiridyeler torbalara yerleştirilip kültür sistemlerine yerleştirlmektedir(Pascual ve Zampatti, 1995). 4.4.2 Kiremitler Kollektör olarak kullanılan kremitler, yaklaşık olarak yarı silindirik şekildedir. 33cm uzunluğunda, 15cm genişliğinde ve ortalama 5cm yüksekliğindedirler. Bu kiremitlerden birinin ortalama ağırlığı 900gr’dır. Kiremitler 10’luk gruplar halinde bir araya getirilirler ve Bouquets olarak adllandırılırlar. Bu onluk grupların oluşturulması için kısa kenarından 7,5cm uzaklıkta iki delik açılmaktadır. 110cm uzunluğunda 1,5mm kalınlığında galvanizli tel ile köşeler kesişecek şekilde birbirine bağlanmaktadır. Daha sonra kirece batırılıp kuruyuncaya kadar bekletilmektedir Kiremit kollektörlerde, kireç solusyonunun kullanılması ile spatlar kiremitler üzerinden rahatlıkla çıkarılmaktadır(Walne, 1974; Korringa, 1976a-b; Heral, 1990). Hollanda’da S-tipi kiremitler istiridye yavrusu toplamak için daha uygun olduğu bildirilmektedir (Dutch Tipi). Burada kullanılan kiremitlerin kuru ağırlıkları 2kg’dır. Ancak deniz suyu içindeki ağırlıkları ortalama 2,5kg. cıvarındadır. 35x23cm boyutlarında ve 13mm kalınlığındadırlar. Bu kiremitler de kreç ile kaplandıktan sonra denize bırakılmaktadırlar (Korringa,1976b). Gerek Crassostrea gerekse Ostrea türleri için gel-git’in olduğu alanlarda yaygın olarak kullanılan kremit kollektörler zemine yerleştirilmektedir. Kollektörlerin bırakılacağı alanlar daha önceden deniz yıldızları ve yengeçlerden temizlenerek kollektör veriminin olumsuz etkilenmesi önlenmiş olur. 4.4.3. Plastik malzemeler Günümüzde geleneksel olarak kullanılan bir çok materyalin yanında kolay şekil verilebilen plastik malzemeler de kullanılmaktadır. Bu malzemelerin maliyeti diğer kollektörlere göre daha yüksek olmasına karşın, tekrar kullanılması nedeni ile tercih edilmektedir. PVC çubuklar, yarı silindir plastik kollektörler, plastik levhalar ve fileler en çok kullanılan plastik materyal tipleridir(Korringa, 1976a-b). Dayanıklı ve hafifitirler., spat hasatı pratiktir. 4.4.4. Bambu kamışı ve ahşap materyaller Özellikle Filipinler’de Crassostrea eradelie için kullanılan bir kollektördür. Hazırlanışı basit olduğu için Filipin’li üreticiler tarafından özellikle tercih edilmektedir. Bu bambu kamışlar 5-10cm çapında ve sağlam olanları tercih edilmektedir. Bambu kamışları kesildikten sonra güneşte kurutulmakta ve eğer kalın bambu kamışları varsa bunlar da ikiye ayrılarak kullanılmaktadır. Daha önceleri bu ülkede istiridye kabukları yaygın olarak kollektör yapımında kullanılmasına karşın, bambu kamışlarının iyi bir spat toplayıcı olmasının belirlenmesinden sonra istiridye kabuklarının kullanımı azalmaya başlamıştır. Kullanılan bu kamışlar intertidal alanlara 0,3-0,7m aralıklar ile yanyana dikilmektedir. Her bir bambu sırası arasında bir küçük tekne gezebilecek kadar mesafe bırakılmaktadır. Bambu kamışlarının sıralar halinde kullanımının dışında kamışların bir araya getirilmesi ile ızgaralar hazırlanmıştır. Hazırlanan bu ızgaralar deniz dibine dik olacak şekilde ve özellikle gel-git alanlarına yerleştirilmektedir (Bardach ve ark., 1972). 4.4.5. Ahşap ızgaralar Avusturalya’da Crassostrea commercialis ‘in spatlarını toplamada tahta ızgaralardan yararlanılır. 2m uzunluğundaki ve 22-25mm2 yüzey alanına sahip olan bu çıtalar belli aralıklar ile kafes şeklinde çakılarak ızgaralar oluşturulur. Bunlar zeminden 1-1,3m yukarıdaki raflara üst üste gelecek şekilde yerleştirilerek tren yoluna benzer uzun hatlar oluşturulur. Her bir sıra arasında tekne girecek kadar mesafe bırakılır(Kesteven, 1941). Pek yaygın olmamakla birlikte, ahşap kaplamalar güneş altında kurutulup spral şekline getirilerek, spat toplama için kullanılmaktadır (Quayle,1969). 4.4.6 Kayrak taşı Kayrak taşı, özellikle Fransa’da kullanılan materyaldir. İnce kare parçalar halinde kesilen taşlar bir çelik tel üzerine araları 4-5cm mesafe ile dizilirler. Tel üzerindeki taş adeti 15 ila 20 adet arasındadır. Bu şekilde hazırlanan kollektörler gel-git etkisinde olan raf sistemlerinin üzerine yerleştirilerek kullanılmaktadır. Bu taşlar aynı zamanda ince uzun dirtdörtgen şeritler halinde de değerlendirilebilmektedir. Hazırlanan dirtdörtgen plakalar aralarında 5-6cm’lik mesafe ile yan yana gelecek şekilde birleştirilirler ve raflar üzerine bırakılırlar(Berthome ve ark., 1984). 4.4.7 Spat toplamada kullanılan diğer malzemeler İngiltere’nin bazı bölgelerinde kullanılan, ince bir beton tabakası ile kaplanmış yumurta kolileri Karasal hayvanların kümesi olarak kullanılan küçük tel kafesler, Seramikten hazırlanmış, çatı kremitlerine benzer yarı silindirik yapılar, Plastik ile kaplanmış tel ızgaralar, Çimentolu alçı taşı, İnce dilimler halinde kesilmiş lastik parçaları çeşitli dizaynlarda hazırlanarak kollektör olarak kullanılmaktadır((Bardach ve ark., 1972; Mann ve ark., 1990; Soniat ve ark., 1991; Lök ve Yolkolu, 1999). Günümüze kadar birçok kollektör materyali ve dizaynı denenmiş olmasına karşın genel olarak en iyi kollektör şudur demek yanlış olur. Bir tür veya bölge için iyi olan bir kollektör, diğer bir tür ve bölge için arzu edilen sonucu vermeyebilir. Bir yörede kullanılacak olan kollektörün seçiminde dikkat edilecek belli başlı özellikler vardır. Bu özelliklerin başında istiridyenin türü gelmektedir ki, yetiştiriciliği yapılacak olan türün özellikle hangi materyallere tutunduğunu belirlemek gerekmektedir. Kullanılacak olan kollektör tipinin ekonomik açıdan maliyetinin düşük olması ve tekrar kullanılabilirliğinin olabilmesi yada dayanıklılığının uzun vadeli olması tercih sebebini oluşturmaktadır. Yine seçilen kollektör tipinin o yörede bol miktarda olması aranılan özellikler arasındadır. Larvalar yapışmak için temiz, sert yüzeyleri tercih eder. Kollektörler yapışkan, kaygan veya düz zeminli olmamalıdır. Kaba yüzeyler larvalar tarafından daha çok tercih edilmektedir. Kollektör rengi önemsizdir. Kollektörler batabilme özelliğine sahip olmasına karşın hafif olmalı, larvaların hareketine izin verecek kadar kollektörler arasında su hareketi olmalıdır. Kollektörler ile yavru toplama işlemine başlamadan önce, o bölgede mevcut olan istiridye yatakları ve bu istiridyelerin üreme zamanlarının çok iyi belirlenmesi gerekmektedir. Bu amaçla araştırıcılar bölgede plankton çekimi yapıp istiridye larvalarının bolluğunu ve yaşını takip ederek en uygun zamanı bildirirler. Bazı bölgelerde ise üreticiler geçmiş yılların tecrübesine göre kollektörlerini denize bırakırlar. Eğer kollektörler denize çok erken bırakılırlarsa çok fazla sayıda balanus veya diğer arzu edilmeyen fouling organizmalar kollektörlere yapışır ve spat toplama başarısını olumsuz etkiler. Kollektörlerin bırakılacağı alanlarda yapılacak ön çalışmalar ile en iyi kollektör tipi ve en uygun spat toplama zamanı tespit edilir(Mori, 1987). Larva toplama zamanı araştırma istasyonları tarafından belirlenir ve ilgilenen üreticilere ilan edilir. Yeni yapışan larva 0.3mm büyüklüğündedir. Yaklaşık bir ay sonra 1-1.5cm olur. Bu boydan sonra kollektörden ayrılarak büyütme alanlarına transfer edilirler. Bazı yetiştiriciler kollektör tipleri uygun ise spatları ayırmadan ya aynı alanda ya da gelişmenin daha iyi olacağı başka bir alana taşıyarak uygun kültür sistemlerine yerleştirilerek büyümeye alınırlar. 5- YETİŞTİRİCİLİK YÖNTEMLERİ Gerek kuluçkahaneden elde edilen ve gerekse doğal alanlardan toplanan yavru istiridyeler, pazar boyuna kadar büyütülecekleri yetiştirme alanlarına yerleştirilirler. Yetiştirme alanlarının seçiminde aşağıdaki konulara dikkat edilmelidir: a) İstiridyenin büyümesine izin verecek uygun su koşullarına(sıcaklık, tuzluluk) sahip olmalıdır. b)Evsel ve endüstriyel bir atık girdisi olmamalıdır. c)Plankton açısından zengin olmalıdır. d) Toksik plankton patlaması olmamalıdır. e)Suda belli bir su akıntısı olmalı, durgun su olmamalıdır f)Denizyolu ulaşımı üzerinde olmamalıdır. 5.1 Dip Kültürü Gel-git etkisindeki kıyı alanlarında uygulanana en eski kültür yöntemidir. İplere dizilmiş olan kabuk kollektörler spatlar tutunduktan sonra iplerden çıkarılarak spatlar ile birlikte deniz tabanına bırakılırlar. Bu genç bireyler 22 ay bu alanda kalırlar. Bir yaz sezonunun geçmesi et dolgunluğu için yeterli olmaktadır. İstiridyeler sonbaharda hasat edilirler. Hasat işlemi elle veya dreçler ile yapılır. Toplanan istiridyeler basınçlı su ile yıkanarak temizlenir ve pazara sunulurlar. Bu dip kültür sistemi zemine hazırlanan raylı sistemler ile biraz daha geliştirilmiştir. Raylı sistemlere istiridye büyüklüğüne uygun göz açıklığına sahip kasalar yerleştirilir. Kasaların üstü ağ fileler ile örtülür. Böylece sular yükseldiğinde kasa içersindeki istiridyelere bazı organizmaların zararı olmayacaktır. Ayrıca kasalara yerleştirilen istiridyeler zemine direk temastan kurtulmuş olmaktadırlar. Böylece istiridye üstünde çamur birikerek boğulma riski de azaltılmış olmaktadır(Iversen, 1976). 5.2.Sehpalarda kültür Dip kültüründe zararlı organizmalar ve istiridyeler üzerinde çamur birikmesi verimin düşük olmasına neden olmaktadır. Bu nedenle üreticiler ilk zeminden uzak kültür yöntemi olarak sehpa sistemini uygulamaya başlamışlardır. Gelgitin fazla olduğu yerlerde zeminden 30cm yukarıda ve 2m uzunlukta olacak şekilde metal çubuklardan 30-40cm genişliğinde sehpalar yapılmaktadır. Bu sehpalar üzerine kollktörlerden temizlenen veya kuluçkahanelerden alınan spatlar plastik torbalar içersine konarak yerleştirilir. Plastik gözenekli torbalar sehpalara her iki ucundan metel maşalar ile sabitlenirler. İstiridyeler büyüdükçe torbaların göz açıklığı da büyültülür. 2-2,5 yıl sonra istiridyeler hasat edilir. Bu sistemin en önemli sorunu torbalar üzerinde makro alg birikiminin fazla olması ve gözenekleri kapatmasıdır. Torbalar sık sık kontrol edilmeli ve fazla alg birikimi temizlenmelidir. Temizleme işleminde algin tamamı alınmaz. Kalan algler torba üzerinde sular çekildiğinde gölgeleme yaptığı için istiridyelerin sıcaklıktan etkilenmesini azaltır(Bardach, ve ark., 1972). 5.3.Raf Kültürü Raf kültürü ile istiridye yetiştiriciliği hem horizontal, hem de vertikal alanda yapılır hale gelmiştir. Gelgit etkisinin az olduğu deniz derinliği 1.5-2m’den 5-6m’ye kadar olan kıyısal alanlarda raf kültürü uygulanmaktadır. Bazı üreticile gelgit etkisindeki alanlarda da uygulamaya almaktadır. Bambu kamışlar aralarında 2-3m mesafe olacak şekilde 2 ila 5m derinliklerdeki suların bulunduğu yerlere çakılırlar. Diğer bambular ise denize dik çakılan kazıkların üstlerine yatay olarak olarak bağlanırlar. Bu rafların dizaynı uzun ikili sıralar halinde olabileceği gibi 10x10m ebatlarında da yapılabilir. Bu durumda bambu sıraları arasındaki mesafeler 50-60cm olacak şekilde ayarlanır. İstiridye spatlanın tutunduğu kollektörler yatay bambu kamışlarının üzerinden 40-50cm aralıklar ile sarkıtılarak spatların büyümesine izin verilir. Bu sistemde kollektör uçlarının deniz tabanına değmemesine dikkat edilir. Böylece zararlı organizmalardan kollektörler uzak tutulmuş olur. Raf sisteminde bambu kamışı dışında dayanıklı ahşap materyaller ve deniz suyuna dayanıklı metal konstrüksiyon da kullanılmaktadır(Korringa, 1976a-b). 5.4 Sal Kültürü Sallarda yetiştiricilik genellikle iç denizlerde uygulanır. Salların inşasında tropik kuşakta 10-15cm çaplı bambular veya sedir ağacı kullanılmaktadır. Birbirine 30 veya 60cm aralıkla monte edilirler. Salların ebadı, 9x5,4m dir. Bu büyüklükdeki bir sal, 500-600 adet istiridye kollektörü(spatlı) taşır. Salların yüzdürülmesinde tercihen dayanıklı plastik variller (50 galonluk), fıçılar veya yüzdürücüler (stypor) kullanılır. Sallar 5-10m aralıklarla birbirlerine bağlanır. Bir ünite yaklaşık 10 saldan teşekküldür. Salların büyüklükleri ve sayıları değişiklik gösterebilir(Bardach, ve ark., 1972; Burrell, 1980). Sallar genellikle bambulardan yapılır. Plastik borularda bu amaçla kullanılabilir (PVC sulama boruları). Bu tür malzemenin esneme payı fazladır. Elemanlar 8 numara telle bağlanır. Salların sabitlenmesi için (deniz demiri) çapalar kullanılır, diğer bir yöntem ise, biri 3 tonluk, diğeri 5 tonluk iki beton bloğun yardımı ile sabitlemektir. Sert havalarda salı sürükleyen dalgalar güçlü ise, 3 tonluk bloğu oynatırlar. 5 tonluk bloğu oynatmaya çalışırken dalga aralarında 3 tonluk blok boşu alarak dibe çöker ve salın sürüklenmesini önler. Çapalı sabitlemede çapayı bırakmak ve ipin kopması çok görülmüştür. Bir salın ömrü 5 yıldan fazla olabilmektedir. Sal kültürü ile 25mm büyüklüğündeki bir istiridye 9 ay içinde pazar büyüklüğüne ulaşabilmektedir. Bu sistem ile su alanında hem horizantal, hem de vertikal olarak yararlanma söz konusudur. Dipte yapılan bir kültür ile karşılaştırıldığında verim en az%50 artmaktadır. 5.5. Halatlarda Kültür Aralarında 3-6m mesafe ile bir kalın halat üzerine sabitlenmiş yüzdürücülerden oluşur. Yüzdürücü olarak 30-40 lt hacimli plastik bidonlardan yararlanılır. Bu sistem tek halat ile hazırlanabileceği gibi arasında 30-40cm mesafe olacak şekilde çift halat olarak da hazırlanabilir. Uzunluğu 60-75m arasında değişir. Her hattın ucunda duruma göre 1-3 arası çapa bulunur ve deniz dbine sabitlenir. Her ünitede 10-12 yüzdürücü vardır.Yüzdürücülere bağlı olan ana halat bedene spatlar tutunmuş kabuk kollektörler asılabileceği gibi, içinde istiridye olan ağ fileler de asılabilir. İstiridye kollektörleri veya fileleri 30cm aralıkla asılırlar. Sahilden uzak derin sularda kurulabilir ve zor hava şartlarına karşı dayanıklıdır. Sistemin yıpranma ömrü diğer sistemlere göre daha uzundur. Planktonnun daha az olduğu derin, sahilden uzak sularda kurulması tercih edilen bir sistem olduğundan spatların Pazar boyuna ulaşması 2 yılı geçebilir(Bardach, ve ark., 1972; Iversen, 1976; Burrell, 1980). 5.6 Kafes Kültürü Kollektörler ile toplanıp bir yıl sonra seyreltilen istiridyelerden güzel şekilli olanlar seçilirler. Tel çerçeveli ızgara şeklindeki kafeslere herbirinin ayrı ayrı konabileceği bölmelere istiridyeler yerleştirilir, sal veya halat sistemlerinden asılır. Yaklaşık 6-8 ay sonra 10-20 cm uzunluğa ve 10-30 gr et ağırlığına ulaşır. Bu yöntem daha çok istiridyeler pazara çiğ olarak sunulacağı durumlarda uygulanır. Izgara sistemi nedeni ile sıkışan istiridyelerde kabuk şekli düzgün olarak büyüme gerçekleştiğinden tüketici tarafında tercih edilmektedir. Sal veya halat kültür alanlarındaki yerleşim akıntı, tuzluluk, besin ve yerel balıkçılık aktivitelerine bağlı olarak ayarlanmalıdır. Yoğun istiridye ölümleri kıyısal ve acı sularda yapılan kültür alanlarında ve doğal stoklarda görülmektedir. Bu ölümlerin başlıca nedenleri; -yetersiz beslenme -aşırı yağmurlar ve seller nedeni ile oluşan ekstrem tuzluluk ve sıcaklık değerleri, -predatörlerin aşırı üreyip yayılması, -çamur birikimi, -düşük oksijen seviyeleri, -yoğun stoklamalar -hastalıklardır. Bunlara ilaveten yaz aylarında seksüel olgunlaşma ve yumurtlama esnasında da anaç istiridyelerde yoğun ölümler görülmektedir. 6-Zararlı Organizmalar İstridye doğal ortamda iken suda mevcut olan diğer canlılar tarafından da bazı etkilere maruz kalmaktadır. Bu etkilerin başında onları besin olarak kullananlar, yaşadıkları ortama ve besine ortak olanlar, üzerinde yaşayarak direk ve indirek etki edenler veya kabuklarını delip içine girerek yaşamlarını istiridye içinde geçirenler gelmektedir. Kabuklu yetiştiricileri bu zararlıları bilip önlem almak zorundadırlar. Bu zararlıları predatörler(bazı balık türleri, yengeçler, istiridye matkabı, deniz yıldızı, ahtopot ve deniz kuşları (Haemotopus ostrolegus), rakip canlılar ve fouling, boring organizmalar olarak sınıflandırmak mümkündür(Korringa,1976a-b, Spencer, 1990; Lök ve Köse, 1999). Bunların dışında kabuklularda toksik madde birikimlerine neden olan Gonyaulax sp., Dinophysis sp. gibi fitoplanton türlerinin olduğu alanlardan istiridye hasatı yapılmamalı veya toksik etkisi geçene kadar beklenmelidir. Toksik fitoplankton patlamaları sonucunda toplanıp tüketilen istiridye, midye gibi kabuklu su canlıları bünyelerinde biriktirdikleri toksite nedeni ile insanlarda ölümlere kadar varan sonuçlar ile karşılaşılabilmektedir(Hindioğlu, 1998). 7- SONUÇ İstiridye kültürü Romalılar zanında başlamış ve günümüze kadar birçok kültür yöntemi ve sistemi geliştirilmiştir. Kültür uygulamaları ülkelere, istiridye türüne ve üreticinin tercihine göre değişiklik göstermektedir. Üreticiler kendi ülke şartları için en uygun sistemi geliştirmişler ve halen daha başarılı sonuçlar alma yönünde çalışmalar devam etmektedir. Ülkemizde ise istiridye kültürünün başlatılması hem ekonomik sonuçları hem de uygun deniz alanlarının değerlendirimesi açısından önemli olacaktır. KAYNAKLAR Alpbaz, A., 1993. Kabuklu ve eklembacaklılar yetiştiriciliği. E.Ü. Su ürünleri Fakültesi yayınları No. 26, s. 82-130. Bardach, J. E., Ryther, J.H., McLarney, W. O., 1972. Oyster culture. Aquaculture, The Farming and Husbandry of Freshwater and Marine Organisms :. pp. 674-742. Bayne, B. L., 1965. Growth and delay of metamorphosis of the larvae of Mytilus edulis(L.) Ophelia, Vol:2, No:1, Denmark. Berthome, J.P., Prou, J., Razet, D. & Garnier, J., 1984. Premiere approche d’unemethode d’estimation previsionelle de la production potentielle d’huitre creuse C.gigas d’elavage. Haliotis 14 39-38. Brausseau, D. J.,1995. Gametogenesis and spawning in intertidal oysters (Crassostrea virginica) from Westrn Long Island Sound. Journal of Shellfish Research. Vol.14, No.2 pp.483-487. Burrell, Jr.V.G., 1980. Oyster culture. In: Huner,J.V., ve Brown E.E.(eds), Crustacean and Mollusk Aquaculture in the United States. pp. 235-305. Claus, C., 1981. Trends in nursery rearing of Bivalve Molluscs. In:Claus, C., De Pauw, N., Jaspers, E.(eds) Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.1-33. Cole, H. A., 1942.Primary sex phase in Ostrea edulis. Quart. J. Micros. Sci., 83. pp. 317-356. De Pauw, N., 1981. Use and Production of Microalgae as Food for Nursery Bivalves. In:Claus, C., De Pauw, N., Jaspers, E.(eds). Nursery Culturing of Bivalve Molluscs European Mariculture Society Specıal Publication. No.7 pp.35-69. Field, I. A., 1922. Biology and Economic Value of the Sea Mussel Mytilus edulis. Bull. U. S. Bur. of Fisheries, Vol: 38, pp. 127-259, Washıngton. Garcia-Dominguez F., Ceballos-Vazquez , P. B., Qezada A.T. 1996. Spawning cycle of the pearl oyster, Pinctada mazatlanica (Hanley, 1856) (Pteriidae) at Isla Espirito Santo, Baja California Sur, Mexico. Journal of Shellfish Research, Vol.15, No.2. pp.293-303. Haywood, E. L., Soniat, T. M.1992. The use of cement-stabilizied gypsum as cultch for the Eastern oyster, Crassostrea virginica (Glein, 1791). J Shellfish Res.vol.11, No.2 pp. 417-419. Haven, D. S., Zeigler, J. M., Dealteris, J. T., Whitcomb, J. P., 1987. Comparative Attachment, Growth and Mortalities of Oyster (Crassostrea virginica) Spat on Slate and Oyster Shell In The James River, Virginia. Journal of Shellfish Research , Vol:6, No:2, pp. 45-48. Heral, M.,1990. Traditional oyster culture in France. In: Barnabe, G. (ed.), Aquaculture Vol.1, pp. 342-387. Hindioğlu, A., Alpbaz, A., 1991. İstiridye (Ostrea edulis, L.1758) larvası üretimi üzerine araştırmala. Eğitiminin 10.yılında Su Ürünleri Sempozyumu, sayfa: 578-589. Hindioğlu, A., Serdar, S., Yolkolu, S., 1998. Kabuklularda (Bivalve-Mollusk) algal biotoksin ve insan üzerindeki etkileri. Özhan, E. (ed.) Türkiye’ nin Kıyı ve Deniz Alanları II. Ulusal Konferansı,Türkiye Kıyıları 98 Bildiriler Kitabı,22-25 Eylül 1998.ODTÜ Ankara pp.173-187. Iversen, E.S., 1976. Farming the edge of the sea, pp.134-158. Surrey England. Iwata , K. S., 1950. Spawing Mytilus edulis discharge by electirical stimulation. Bull. Jap. Soc. Scic. Fish. 15, pp.443-446. Loosanoff, V.L., Davis, H.C., 1963. Rearing Molluscs. Advances in Marine Biology. Vol. I, pp. 14-106. Academic Press, London. Lök, A., Yolkolu, S., 1999. İstiridye yavrularının (spat) toplanmasında kullanılan kollektör tipleri. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.109-114. Lök, A., Köse, A., 1999. İstiridye kültüründe karşılaşılan zararlı organizmalar. Sualtı Bilim Teknolojisi Toplantısı Bildiriler Kitabı SBT-99. s.114-119. Mann, R.; Barber, B.J.; Whitcomb, J. P., Walker, K. S., 1990. Settlement of oysters, C. virginica (Glein, 1791), on oyster shell, expanded shale and tire chips in the James River, Virginia. J Shellfish Res, vol. 9, No.1 pp.173-175. Mori, K., 1987. Managed coastal water for oyster culture in Japan. In: Michael, R. G.(eds.).Ecosystems of the World 29 Managed Aquatic Ecosystems pp.125-143. Nell, A. J., Holliday J. E., 1986. Effects of potassium and copper on the settling rate of Sydney rock oyster (Saccostrea commercialis) larvae. Aquaculture, 58 pp.263-267. Kesteven, G.L., 1941. The biology and cultivation of oysters in Australia. CSIRO, Divisionof Fisheries. Report 5, pp.1-32. Korringa, P., 1976a. Farming the cupped oysters of the genus Crassostrea P.219. Elsevıer Scientific Publishing Company-Newyork Korringa, P.,1976b. Farming the flat oysters of the genus Ostrea P.231 Elsevier Scientific Publishing Company-Newyork. Pascual, M.S., Zampatti, E.A., 1995. Evidence of a Chemically mediated adult-larval interaction triggering settlement in Ostrea puclchana: applications in hatchery production-Aquaculture133, pp.33-34 Rodriguez J., Frias, J. A., 1992. Tropical mangrove oyster production from hatchery-raised seed in Cuba. Journal of Shellfish Research, vol. 11, No.2, pp.455-460. Quayle,D. B., 1969. Pacific oyster culture in British Columbia. Fisheriesresearch Board of Canada Biological Station, Nanaimo, B.C. pp. 57-65. Shau-Hwaitan ve Tat-meng Wong, 1995. Introduction of settlement and Metamorphosis in The Tropical Oyster, Crassostrea belcheri (Sowerby), byNeuroactive Compounds, Journal of Shellfish Research, vol. 14 pp.435-438. Soniat, T. M., R. C. Bioadhurst III & E.L. Haywood III. 1991.Alternatives to clamshell as cultch for oysters, and the use of gypsum for the production of cultchless oyster. J Shellfish Res. 10:405-410. Spencer, B.E., 1990. Cultivation of Pacific oysters. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. No: 63, p.47. Sugiura, Y., 1962. Electirical induction of spawing in two marine invertebrates (Urechis unucintus and hermahproditic Mytilus edulis). Biol. Bull. Woods Hole Cilt:123, pp.203-206. Utting, S.D., 1988. The growth and survival of hatchery-reared Ostrea edulis L. spat in relation to environmental conditions at the on-growing site.Aquaculture,69:27-38. Walne, P. R., 1974. Culture of Bivalve Mollusch 50 years experience at Conwy.Fishing News Books Ltd. Farnham, Surrey England. Yolkolu, S., 2000. İstiridye (Ostrea edulis)’nin gonad gelişimi ve cinsiyet oranı üzerine bir araştırma. E.Ü. Su Ürünleri Fakültesi. Yüksek Lisans Tezi, p.69.

http://www.biyologlar.com/istiridye-biyolojisi-ve-yetistirme-teknikleri

Çernobil reaktör kazası 26 Nisan 1986

1972’de Ukrayna’daki (O dönemde SSCB’nin bir parçasıydı) Kiev’in 140 km kuzeyinde bulunan Çernobil Nükleer Santralı’nda gerçekleşen kaza, her biri 1.000 Megawatt (MW) gücünde olan dört reaktörüni hatalı tasarımının yanı sıra, reaktörlerden birinde deney yapmak için güvenlik sisteminin devre dışı bırakılıp peşpeşe hatalar meydana gelmesi nedeniyle oldu. Deneyin yapılacağı 25 Nisan 1986 günü, önce reaktörün gücü yarıya düşürüldü, ardından da acil soğutma sistemi ile deney sırasında reaktörün kapanmasını önlemek için tehlike anında çalışmaya başlayan güvenlik sistemi devre dışı bırakıldı. 26 Nisan günü saat 00:23’i biraz geçe teknisyenler deneyin son hazırlıklarını tamamlamak üzere ek su pompalarını çalıştırdılar. Bunun sonucunda gücünün yüzde 7’siyle çalışmakta olan reaktörde buhar basıncı düştü ve buhar ayırma tamburlarındaki su düzeyi güvenlik sınırının altına indi. Normal olarak bu durumda reaktörün güvenlik sistemine ulaşması gereken sinyaller de teknisyenler tarafından engellendi. Su düzeyini yükseltmek için buhar sistemine koşulların oluştuğuna karar verildi.Büyük patlama ise saat 01:23 meydan geldi. Deneyin amacı, reaktörün çalışması aniden durdurulduğunda, buhar türbinlerinin daha ne kadar süreyle çalışmayı sürdüreceğini ve böylece ne kadar süre acil güvenlik sistemine güç sağlayabileceğini öğrenmekti. Geriye kalan öteki acil güvenlik sinyali bağlantılarını da kestikten sonra türbinlere giden buhar akışı durduruldu. Bunun sonucunda dolaşım pompaları ve reaktörün soğutma sistemi yavaşladı. Yakıt kanallarında ani bir ısı yükselmesi görüldü ve yapısal özellikleri nedeniyle reaktör tümüyle denetimden çıkmış oldu. Tehlikeyi farkeden teknisyenler reaktörün durdurulmasını sağlamak amacıyla bütün denetim çubuklarını derhal sisteme sokmaya karar verdiler. Ama aşırı derecede ısınmış bulunan reaktörlerde saat 01:26’te, yani deneye başlanmasından bir dakika sonra iki patlama oldu. Bu patlamanın ayrıntıları tam olarak bilinmemekle birlikte, denetim dışı bir çekirdek tepkimesinin gerçekleşmiş olduğu anlaşılmaktadır. Üç saniye içinde reaktörün gücü %7’den %50’ye fırladı. Yakıt parçacıklarının soğutma suyuyla karşılaşması, suyun bir anda buhara dönüşmesine yol açtı. Oluşan aşırı buhar basıncı reaktörün ve santral binasının tepesini uçurdu. Reaktördeki zirkonyum ve grafitin yüksek sıcaklıktaki buharla karşılaşması sonucu oluşan hidrojen yanarak bütün santralı alevler içinde bıraktı. 26 Nisan 1986 saat: 01:23’ te 4 numaralı reaktör çekirdeğinde patlamalara neden olan katastrofik güç artışı yaşadı. Bu patlamalar, atmosfere çok miktarda radyoaktif yakıtın ve ham maddenin yayılmasına, ve kolayca tutşabilen grafit moderatörünün tutuşmasına neden oldu. Reaktör herhangi bir sağlam muhafaza kazanı ile kaplanmadığı için, yanan grafite moderatörü dumanla taşınan radyoaktif parçacıkların yaılımını arttırdı. Normal kapama işleminde meydana gelen kaza olası acil bir durumda devreye giren soğutma özelliği güvenliğinin planlanmış bir testi sırasında oluştu. Yapılmaya Çalışılan Deney: Nükleer güç reaktörleri, aktif olarak güç üretmediğinde bile, radyoaktif maddelerin bozulma ısısını gidermek için genellikle soğutucu akışı tarafından sağlanan soğutma işlemine ihtiyaç duyar. Basınçlı su reaktörleri, atık ısıyı çıkarmak için yüksek basınçlı su akışını kullanır. Kaza durumundaki bir reaktörün acil olarak durdurulmasından sonra, çekirdek hala başlangıçta tesisin toplam ısı üretiminin yaklaşık olarak % 7’ si kadar ciddi miktarda bir artık ısı üretir. Bu artık ısı soğutucu sistemleri tarafından çıkarılmazsa, ısı çekirdeğin zarar görmesine neden olabilir. Çernobilde patlayan reaktör, yaklaşık olarak 1600 ayrı yakıt kanalından oluşuyordu ve her operasyonel kanal saatte 28 ton’luk (7400galon) su akışına ihtiyaç duyuyordu. Enerji hatları şebekesinin çökmesi durumunda harici gücün, tesisin soğutucu su pompalarını acilen çalıştırmak için uygun olmayacağı yönünde endişeler vardı. Çernobil reaktörlerinin 3 tane yedek dizel jeneratörü vardı. Her jeneratör 15 saniye içinde devreye girebiliyordu, fakat tam hıza ulaşması ve ana soğutucu su pompalarından bir tanesini çalıştırmak için gerekli olan 5.5 MW ‘lik kapasiteye ulaşması 60-75 saniye alıyordu. Bu bir dakikalık güç aralığının kabul edilemez olduğu düşünülüyordu ve buhar tirbünü rotasyonel enerjisi (ya da açısal momentum)ve artık buhar basıncının (tirbün vanaları kapalı), acil durum dizel jeneratörleri yeterli dönme hızına ve voltaja ulaşana kadar, ana soğutucu su pompalarını çalıştırabilecek elektiriği üretmek için kullanılabileceği öne sürülüyordu. Teorik olarak, analizler, bu artık momentumun ve buhar basıncının, acil durum jeneratörlerinden gelen harici enerjinin başlangıcındaki kesinti ve yeterli tam güce ulaşması arasında köprü olabilecek gücü 45 saniyeliğine sağlayabilecek potansiyele sahip olduğunu gösteriyordu. Bu yeterliliğin hala deneysel olarak doğrulanması gerekiyordu ve önceki testler hep başarısızlıkla sonuçlanmıştı. 1982’ de gerçekleştirilen ilk test, tirbün jeneratörünün uyarım voltajının yetersiz kaldığını; türbinin aniden kapanmasından sonra gerekli manyetik alanı devam ettiremediğini, gösterdi. Sistem 1984’ te modifiye edilerek tekrarlandı, fakat sonuç yine başarısız oldu. 1985’ te testler üçüncü sefer yapıldı ve yine olumsuz sonuçlarla bitti. Test prosedürü 1986 da tekrar edilecekti, ve bu testin 4 numaralı reaktörün bakım için kapatılması esnasında yapılması planlandı. Test, reaktörün elektrik kaynaklarının sekanslarını cereyan verme üzerine odaklandı. Test prosedürü, bir acil durum kapatmasıyla başlamış oldu. Reaktörün güvenliği üzerinde zararlı etkisi tahmin edilmiyordu, bu yüzden test programı reaktörün tasarım şefi ya da bilimsel idarecisi ile koordineli olarak yapılmadı. Bunun yerine sadece tesis direktörü tarafından onaylandı. Test parametrelerine göre deneyin başlangıcında reaktörün ısı üretimi 700 MW’ nin altında olmamalıydı. Test koşulları planlandığı gibi olsaydı, test hemen hemen başarıyla gerçekleşebilirdi; nihai felaket, onay verilen test prosedürüne aykırı olarak deney başlar başlamaz reaktör verimini arttırmaya zorlamaktan kaynaklandı. Çernobil santrali, 2 yıl, ilk 60-75 saniye boyunca toplam elektrik gücü kaybını karşılama kapasitesi olmadan çalıştı, ve bu yüzden önemli bir güvenlik özelliğinden yoksundu. İstasyon yöneticileri büyük olasılıkla ilk fırsatta bunu düzeltmek istedi, ki bu ciddi sorunlar meydana geldiğinde bile neden deneye devam ettiklerini ve gerekli izni neden Sovyet nükleer bakım düzenleyicisinden almadıklarını açıklar(üstelik 4 no lu reaktörde bir temsilci bulunmasına rağmen. Deney prosedürünün amaçları: 1- Reaktör 700MW-800MW arasında daha düşük bir güç seviyesinde çalışıyor olacaktı. 2- Buhar tirbünü jeneratörü tam hızıyla çalışıyor olacaktı. 3- Bu koşullar sağlandığında, türbin jeneratörünün buhar desteği kapatılacaktı. 4- Türbin jeneratörü performansının, soğutma pompalarına otomatik olarak güç sağlayan ve çalıştıran acil durum dizel jeneratörleri sıralanana kadar, soğutma pompaları için gerekli köprü gücü sağlayıp sağlayamayacağı belirlenecekti. 5- Acil durum jeneratörleri normal yeterli hıza ve voltaja ulaştıktan sonra, türbin jeneratöre serbest bırakılacaktı. Kaza öncesindeki Koşullar: Testin uygulanmasını sağlayan koşullar 25 Nisan 1986 günü gündüz vardiyasından önce oluşturuldu. Gündüz vardiyasındaki işçiler önceden uyarıldı ve bu işçiler oluşturulan prosedürlere aşinaydı. Elektrik mühendislerinden oluşan özel bir ekip yeni voltaj düzenleme sistemini test etmek üzere oradaydı. Planlandığı gibi gündüz vardiyasının işe başlamasıyla 01:06 25 Nisanda güç ünitesinin randımanı kademeleri olarak azaltılmaya başlandı ve güç seviyesi nominal 3200 MW ısı seviyesinin % 50 sine düşürüldü. Bu noktada bir diğer bölgesel güç istasyonu beklenmedik bir şekilde devre dışı kaldı ve Kiev elektrik şebekesi denetçisi akşamları oluşan yoğun elektrik talebini karşılayacak güce ihtiaç duyulduğu için çernobilde daha fazla güç azaltılmasının ertelenmesini talep etti. Çernobil santrali yöneticisi testin ertelenmesini kabul etti. Saat 23:04 te kiev elektrik şebekesi denetçisi reaktörün kapatılma işlemine devam edilmesi için izin verdi. Bu gecikmenin bazı ciddi sonuçları vardı; gündüz vardiyası geçeli çok olmuştu ve akşam vardıyası da çıkmaya hazırlanıyordu, ve gece vardıyası da işin yapılacağı gece yarısına kadar nöbeti devralmayabilirdi. Plana göre test gündüz vardiyasında bitirilmliydi ve gece vardiyası sadece santralde beklenmedik bir kapanma olursa soğutma sistemlerinin bozulma ısısını devam ettirmekle yükümlüydü. Testi uygulamak ve hazırlanmak için gece vardiyasının zamanı çok kısıtlıydı. Vardiya değişimi sırasında güç seviyesinde % 50 den aşağı ani bir düşüş gerçekleştirildi. Alexander akimov gece vardiyası şefiydi, ve Lenoid taptunov kontrol çubuklarının hareketi dahil reaktörün operasyonel iderasinden sorumlu yöneticiydi. Genç bir mühendis olan Taptunow daha önce üç aylığına bağımsız bir yüksek mühendis olarak çalışmıştı. Test planı 4 numaralı reaktörün güç çıkışının kademeli olarak 700 MW-1000MW lik ısı seviyesine düşürülmesini gerektiriyordu. Test planında yer alan 700 mw seviyesine 26 Nisan 00:05 te ulaşıldı; ancak çekirdekteki nötron soğurucu ksenon 135 elementinin doğal yapısı yüzünden daha fazla azaltma işlemi yapılmasa bile reaktör gücü azalmaya devam etti. Güç yaklaşık olarak 500MW seviyesine ulaştığı için, Taptunov kasıtsız olarak reaktörü neredeyse kapatma noktasına getiren denetim çubuklarını devreye soktu. Taptunov ve Akimov radyasyon hastalığından öldüğü için ayrıntılı ve gerçek detayların bilinmesi zor. Reaktör gücü hemen hemen bir kapanma seviyesi olan 30 MW lik ya da daha az ısıya düştü, bu, test için güvenli olarak planlanan baştaki minimum güç seviyesinin yaklaşık olarak % 5 idi. Kontrol dairesi personeli, bunun üzerine kontrol çubuklarının büyük bölümünü yukarı çekerek gücü tekrar eski haline getirme kararı aldı. Birkaç dakika, personelin çubukları çekmesi, güç çıkışının artması ve ardından planlanan 700 MW değerinden çok daha düşük bir değer olan 160-200 MW de sabitlenmesi arasında geçti. İlk kapatma sırasındaki ani azaltma ve seviyenin 200 MW nin daha da altına düşmesi, ksenon 135 elementinin birikmesiyle reaktör çekirdeğindeki zehirlenmenin artmasına yol açtı. Bu, reaktör gücünün yükselmesini kısıtladı ve zehirlenme etkisini yok etmek için ek denetim çubuklarının reaktör çekirdeğinden çıkarılmasını zorunlu hale getirdi. Reaktörün düşük güçte ve yüksek zehirlenme oranında çalışması, dengesiz çekirdek sıcaklığı ile soğutucu akışı ve muhtemelen dengesiz nötron akısı ile birleşti. Bu noktada çeşitli alarmlar çalmaya başladı. Kontrol odası, su/buhar tamburlarının seviyesiyle ilgili ve besleme suyunun akış hızında değişiklikler ya da farklılıklar olduğuyla ilgili art arda gelen acil durum uyarıları aldı,bunun yanında tahliye vanalarının artan buharı bir türbin kondenserine tahliye etmek için açıldığını belirten ve nötron güç denetçisinden gelen uyarılar vardı. Bu periyotta 00:35 ile 00:45 arasında, termal termal hidrolik parametrelerle ilgili görünüşte reaktör gücünü korumak için dikkate alınmadı. Reaktör acil durum koruma sistemi acil durum sinyalleri, türbin jeneratörlerinin her ikisinin kapanmasına neden olan bir hatayı tetikledi. Bir süre sonra 200 mw lik güç seviyesinde daha çok ya da daha az sabit bir duruma ulaşıldı ve test hazırlıkları devam etti. Test planının bir parçası olarak ilave su pompaları 26 Nisan 00:05 te devreye sokuldu. Reaktör üzerinde artan soğutucu akışı oranı, reaktör çekirdeğinin hava girş deliği soğutucusu sıcaklığının güvenlik payını azaltan ve suyun kabarcıklı kaynama sıcaklığını daha da yakınlaştıran bir artışa neden oldu. Akış saat 01:09 da izin verilen limiti aştı. Aynı zamanda, ilave su akışı tüm çekirdek sıcaklığını düşürdü ve çekirdekteki buhar boşluğunu azalttı. Ayrıca, su nötronları emdiği için ek su pompalarının devreye sokulması reaktör gücünü azalttı. Bu, operatörlerin güç devamını sağlamak amacıyla manual kontrol çubuklarını daha ileriye çekmek için harekete geçmesine neden oldu. Tüm bu yapılanlar kararsız bir reaktör konfigürasyonu oluşmasını sağladı. İlk olarak reaktörün ani durmasında devreye sokulan, güvenlik çubuklarının değerini sınırlayabilecek kontrol çubukları hemen hemen çıkarılmak üzereydi. Dahası reaktör soğutucusu kaynamayı azaltmıştı, fakat kaynama payını sınırlamıştı, bu yüzden her güç farklılığı su tarafından emilen nötronu azaltarak kaynama üretebilirdi. Reaktör, tasarımcılar tarafından oluşturulan güvenli çalıştırma koşullarının açık bir şekilde dışında olan kararsız bir konfigürasyondaydı. Kazanın etkileri İngiltere'nin Galler bölgesinde kazadan iki hafta sonra saptanan yüksek radyoaktivite nedeniyle yeşil alanlara koyun ve sığırların girişi engellenmiştir. Araştırmalarda ilk yıl doz açısından en fazla radyoaktiviteye maruz kalan Avrupa ülkesi Bulgaristan olarak belirlenmiştir. Sıralama açısından ise şemada yer alan ülkeler doz sırasına göre şu şekilde sıralanmıştır:[1] Birleşmiş Milletler'e bağlı kuruluşlar olan Uluslararası Atom Enerjisi Ajansı, Uluslararası Sağlık Örgütü, Dünya Bankası gibi kurumların ve Rusya, Beyaz Rusya ve Ukrayna yetkililerinin oluşturduğu bir organizasyon olan Çernobil Forumu 2005 yılında “Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts” (Çernobil’in Mirası: Sosyo-ekonomik, Çevresel ve Sağlık Bakımından Etkileri) başlıklı bir rapor yayınlamıştır. En yüksek radyasyon dozlarına, sayıları bini bulan acil durum çalışanları ve Çernobil personeli maruz kaldı. Çalışanların bazıları için maruz kaldıkları dozlar öldürücü oldu. Zaman içinde Çernobil’de çalışan kurtarma personelinin sayısı 600 bini buldu. Bunların bazıları, çalışmaları boyunca yüksek düzeyli radyasyona maruz kaldılar. Çöken radyoaktif iyodinden kaynaklanan çocukluk tiroid kanseri, kazanın en önemli sağlık sorunlarından birisidir. Kazadan sonraki ilk aylarda, radyoaktif iyodin düzeyi yüksek sütlerden içen çocuklar yüksek radyasyon dozları aldılar. 2002 yılına kadar bu grup içinde 4000’den fazla tiroid kanseri teşhis edildi. Bu tiroid kanserlerinin büyük bölümünün radyoiyodin alımından kaynaklanmış olması çok muhtemeldir. Bağımsız kaynaklar yüzlerce yıl boyunca Pripyat ve komşu bölgelerde yerleşimin güvenli olmadığını söylemektedirler. Ayrıca bölgeye giriş çıkışlar hala polis kontrolünde olup bazı bölgelere giriş yapılamamaktadır.

http://www.biyologlar.com/cernobil-reaktor-kazasi-26-nisan-1986

HAYVAN VE İNSAN KOPYALAMA

Organ nakli, doğum kontrolü, büyük ameliyatlar derken genetikçiler, hayvan kopyamayı da başardı. İskoçya’da Ian Wilmut, Dolly adını verdiği kuzuyu kopyaladı. Sonra Hawai’de fare, Kore’de inek, İskoçya’da domuz kopyalandı.Güney Kore de türü azalan bir kaplan türünü kopyalamaya hazırlanıyor (Hürriyet, 24 Mayıs 1999) “... Bizim (biyologların), hapsedilme tehditini de içeren sayısız ve kesin kuralla dizginlenmesi gereken büyük işadamları olduğumuz söylenir. Tüm bunlar genlerimizi oluşturan DNA’nın olası en kötü şeyleri kışkırtabileceğinin düşünülmesi nedeniyledir. Bu tamamen aptalca; çevremizde beni, DNA’dan daha az ürküten başka bir öğe düşünemiyorum.” James Watson, 1977 “Uyarı profesyonellerinin genetekçilerin uğursuz güçlerini lanetlemeleri için, 1970'li yılların başında, biyologların, DNA rekombinasyon tekniklerini oluşturarak laboratuvarlarında doğayı taklit edebileceklerini keşfetmeleri ve böylece moleküler biyolojiyi kuramsal gettosondan çıkarmaları yetti. Bilimi, özellikle de insanın bilinmesiyle ilgili olduğunda, şeytanlaştırmaya çalışan insanlara daima rastlanır. On beş yildir, genetikçilerin uluslarasi küçük toplulugu, bilimsel perhiz, sakinimlilik, otosansür, kendini sinirlama, erteleme, yani kisacasi, Watson’in bu bölümün epigrafi olan sözlerini kendisinden aldigim, rasyonalizmin canlandiricisi Fransiz filozof Pierre- Andre Taguieff’in güzel bir biçimde söyledigi gibi, araştirmalarin gönüllü olarak kesilmesini buyuran bir entellektüel baskiyla karşi karşiyadir.Taguieff’in dedigi gibi: Fransiz usulü bilim karşiti vahiycilik, birçok açidan, 60'li yillarin sonunda ABD’de başlatilan büyük “acemi büyücü” avinin küçük ve gecikmiş bir yansimasindan başka bir şey degildir. Belki gecikmiş yansima; ama şu son yillarda Avrupa’da, şimdi de bizi yüzyil sonu korkularimizdan kurtarmaya yazgili, ahlaki uzmanligini tuhaf bir biçimde biyoloji ve tisbba bakmiş tüm bu “etik komiteler”i-de Gaulle’ün deyimiyle bu yeni tür “ivir zivir”i- yaratan, bu gecikmiş yansimadir.Sirasi gelmişken, tüm sanayileşmiş ülklerin bilimsel bütçelerinin çok büyük bölümünü yutan nükleer ve askeri araştirmalar gibi diger gerçek tehlike ve sapmalar konusunda bu komiteleree danişmayi düşünen var mi? Oysa bana, insanligin gen sagaltimindan çok askeri elektronikten kaygi duymasi gerekirmiş gibi geliyor. Hiç şüphesiz, bilimin şeytanlaştirilmasindaki bu yeni akim amacina ulaşamiyor; perhize çagri, dogum kontrolünde oldugu gibi bilimsel kontrol için de zavalli bir yöntemdir.Ama gelinb de, Taguieff’in terimleriyle, yalnizca kuşkunun mantigina boyun egen, kaygan zeminden başka kanit tanimayan ve sapmalari önleme adina, mutlak tutuculugun biyoloji sapagina, hatta bilimin totaliter denetimine dogru bizzat sapan yeni lanetçilere laf anlatin. Biyolojideki ilerlemeler ve insanın kendi üzerinde edindiği yeni olanaklar, ahlakçıların hayal güçlerini her zaman çalıştırmıştır. Bazıları bizi, geleceğin doktor Frankenştayn’larının korkunç bir “biyokrasi”si olarak betimlemekten çekinmiyorlar. Sanki gerçek bir saygısızlık olanağı varmış gibi, bizi “insan genomuna ve bütünlüğüne saygı”nın kutsal ilkesiyle tehdit ediyorlar. Böyşle bir yaklaşım, bu alandaki ilk sorumsuzun bir takım kopyalama hataları yapmadığı, onlarsız biyolojik evrimin asla olamayacağı “mutasyonlar”a başvurmadığı zamanlar, her döllenmede her zaman farklı yerni bir varlık oluşturan ve “ufak tefek düzeltmeler”le yetinen doğa olduğunu unutmak demektir. Ayrıca, aynı zamanda hekim de olan bir başka filozofun, François Dagognet’nin söylediği gibi, bizim genetik konusundaki kaygımız, temmodel olarak, türün üreme engeline takıldığı hayvanlara gönderimde bulunmak gibi bir dar görüşlülüğü yansıtmaktadır. Ama bakış tarzı, karışma ve melezleşmenin sıkça görülen fenomenler haline geldiği bitkisel alan da dahil, canlıların bütününe doğru genişletildiğinde söz konusu tabu ortadan kalkmaktadır. Ve nedeni bellidir: çok eski zamanlardan beri insanlar, bitki türleri üzerinde kasıtlı değiştirmeler uyguladılar. İnsanın canlıya ilişkin mantığı bu yolla sarsıldı. Ve sonra, canlının doğal düzenini kutsallaştırmak niye? Biyolojik yönden, programlanmış olmamaya programlanmış insan, niçin başarısızlıkları da dahil olmak üzere, genetik lotarya karşısında diz çökmek ve ona saygı göstermek zorunda olacaktır kı? Genetik kalıtımıza egemen olmak hiç şüphe yok ki, insanın evriminde yeni bir evreyi işaretleyecektir; buna döneceğim. Bu evrimi bir kabusmuşçasına tasarlamak zorunda değiliz. İnsan genomunun bilinmesiyle ortaya çıkan kaygılar şu soruyla özetlenelir: -Şimdilik bize yalnizca hastalarin iyimleştirilmesinin söz konusu oldugunu söylüyorsunuz. Çok iyi. Buna karşi çikmak zor. Ama, siz genetikçilerin az ya da çok yakin bir gelecekte, insani kendi karariniza göre dönüştürme erkine, cüce ya da devlerden, güçlü ya da zayiflardan, üstün zekali ya da ilkel kölelerden oluşacak “irklar” yaratma erkine sahip olmayacaginizi bize kim garanti ediyor? Megalomaniniz ya da ittakarliginiz sonucu, davraniş genlerimizle, hatta zeka genlerimizle “oynama” egilimi duymayacaginizi bize kim söylüyor? Şimdiden “gen nakledilmiş” fareler yapiyorsunuz, “gen nakledilmiş insan” cehennemi ne zaman? Bu kaygılar, insanın genetik kalıtına ilişkin olarak geri, kolaycı ve biyolojik bilgiye dayanmayan bir bakışı yansıtır. Son yirlmi beş yıldır moleküler biyolojinin gelişimi, bize genetik rekombinasyon mekanizmalarının ve genlerin dışavurumunun iki şeyi güvence altına aldığını öğretti: insanın sonsuz çeşitliliği ve insan fenotipinin(Dip not:Fenotip, bireyin gelişimi sırasında ve çevresel etkenlerin denetimi altında genotipinin-gen kalıtının- gerçekleşmesine uyan belirgin vasıflarının bütünüdür) bozulamayacak karmaşıklığı.Bu iki biyolojik gerçekten bir parçacık haberdarn olan herkes, Jim Watson gibi, hiçbir şeyin üzerinde çalıştığımız o molekülden, yani DNA’dan daha az ürkütücü olmadığı ve bunda yeni bir Pandora kutusu(Dip not: Yunan mitolojsinin güzel Pandora’sı. Prometheus’un tanrı katından çaldığı ateşi getirdiği insanları cezalandırmak için dünyaya gönderilmişti. tanrılar Pandora’ya içinde bütün kötülüklerin bulunduğu bir kutu emanet etmişti. Merakını yenemeyen Pandora kutuyu açtı ve böylece tüm kötülükler dünyaya yayıldı. Biraz da acıyarak, bilimin bu yeni engizisyoncularının kafalarının da evrensel ilk günah mitosu tarafından kurcalandığını düşünüyorum!) görmenin gülünç olacağı sonucuna varacaktır.(236-238) Karmaşik tahrip edilebilir; ama onu kolaylaştirmak, onunla “oynamak “, onu azaltmak istemek hiç de gerçekçi degildir. Insanligin genetik olarak tekbiçimlileştirilmesi fantezisi bir tür biyolojik anlamsizliktir.Bunu istesek bile yapamazdik. İnsanlık, genetik yasaları kendi yararına kullanabilir, kullanabilecektir; ama onları değiştiremeyecektir. Anımsatmak gerekir mi; dönemin yaygın yinelemesine uygun biçimde, “bir üstün ırk”ın ayıklanması yoluyla türün iyileşktirilmesi anlamındaki Nazi tipi öjenizm, tam bir fiyasko olmuştur.Psikopat diktatörün sanrıları, genetiğin bilgisine hiçbir şey borçlu değildi. Bu sanrılar, toplama kampları ve gaz odaları aracılığıyla girişilen bir soykurumun sözümona bilimsel doğrulanışından başka bir şey değildi. Ekonomik bunalım ve milliytçiliklerle her türlü karanlıkçıların tırmanış dönemlerinde, ırkçı ve totaliter tüm ideolojik hortlamaları bıkıp usanmadan ifşa etmek, entellektüellerin ve bilimcilerin görevidir. Ama geçmişin vahşeti geleceğin açılımları karşısında bizi dehşetten donakalmış bir halde bırakmamalı, tabu haline gelmiş sözcükler aracılığıyla hedefimizi şaşırtmamalıdır... En son tıbbi tekniklere başvurarak ağır hastalıkları olmayan bir çocuğa sahip olmak, gebeliği önleyebilmek, çocuk düşürme hakkı, yani iyi anlaşılmıyş öjenizm, kuşkusuz bireyin tümüyle özgür seçimiyle uygulandığında iyi bir şeydir. Biz zengin ülke topluluklarının bu tartışmaları, bizim kendi ülkelerimizde yararlandığımız doğum kontrol sisteminin olanaklarına ulaşmaya çamlışan yoksul ülkelerin kadın ve erkeklerine oldukça şaşırtıcı gelebilecektir... Gerçekte, totaliter rejimlerin normalleştirici fantezilerin çok ötesinde, yüzyilin bu son çeyreginde biyoloji, insan düşüncesini çeşitlilik ve karmaşikligin mantigina aliştirmak için hiç şüphesiz en fazla ugraşmiş olan bilimdir. Kendimi geleceğin ahlaki sorunlarını çözmek için hiçbir şekilde yetkin görmüyorum. Ben daha çok, gelecek kuşakların neyi kabul edilebilir ya da edilemez sayacaklarını bulmek için o kuşakların kendilerine güvenme eğilimindeyim. Ahlakın kendi değişmezleri vardır; ama bunlar, bilim ve bilgiyle birlikte evrimleşirler. Bugün bilgisizlikle kendimize yasakladığılmız şeylere, belki de yarın, daha iyi bir bilmenin ışığında izin vereceğiz. Okuru rahatlatır mı bilmem; ama genetiğin yasalarına egemen olmanın kaygılanacak fazla bir yanı bulunmadığını, buna karşılık umut verecek çok yanı olduğunu bana düşündüren nedenleri, burada gözden geçirmek isterim. Çeşitliligin Genetigi Buraya kadar patolojilere yol açan mutasyonları, genomun oyunbozanlık rolünü üstlenenleri gördük. Gerçekten de genom programının en acil hedefi, bizi genetik hastalıklara karşı silahlandırmaktıdr. Ama uzun dönemli hedefi daha temellidir ve biyolojik düzenlenişimizin bütününü daha iyi anlamayı amaçlıyor. kuşaklar boyu biriken mutasyonlarin hepsi (bu ortalama olarak her 300 bazda bir degişiklik noktasi, yani genomun bütününde yaklaşik on milyon polimorf nokta eder) hastaliklara yol açmaz. Çok şükür. Kalitimla aktarilan bu mutasyonlarin büyük çogunlugunun hiçbir kötü sonucu yoktur.(Ek Not:Genomun 3 milyar bazi arasindan, ortalama olarak 300 bazdan biri insandan insana degişir. Bunlar mutasyon noktalaridir.Bu noktalirn herbirinde baz “degişir”; ama yine de, genetik alfabenin yalnizca dört harfi oldugundan, seçim yalnizca dört olasilik arasinda yapilir: A,T,C,G. Örnegin A harfi yerinde bir T, bir C, ya da bir G olacaktir. Her bir degişiklik bölgesi için, topluluk içinde en fazla yalnizca dört allel vardir..s:291) Öncelikle, mutasyohlardan çoğu basit bir istatistik olgu sonucu genomun kodlayıcı olmayan bölgelerini (DNA’nın yüzde 90'nından fazlası) etkiledikleri ve uslu uslu sessiz kaldıkları için: gözlemlenbildiği üzere fenotipte kendilerini dışa vurmazlar. Sonra da bu kez asıl genlere (protein kodlayan, DNA dizilerinden yaklaşık yüzde 10'una) düşkün mutasyonların çoğu “nötr” oldukları için... Ya ana babanın alleliyle kodlanan proteinlerle aynı işleve sahip “eş anlamlı” bir protein kodlayan geni değişime uğratırlar. Ya da organizmanın düzgün işleyişinde bir değişiklik yapmaksızın, yalnızca insanların çeşitliliğine yol açan farklı proteinleri kodlarlar. En sonunda, geriye genomu bozan mutasyonlar kalır. Yüz bin genimizi etkileyen yaklaşık bir milyon mutasyon noktası olduğu varsayılabilirken, tek ya da çok etkenli, yaklaşık üç bin genetik hazstalık saptanmıştır. Mutasyonların çeşitlendirici rollerinin, bozucu rollerinden daha ağır bastığı görülüyor. Bozuk kabul edilen genlerin sayısı hesaplanmak istenirse, kafanızda genlerimizin bir milyon ya da yalnızca 997 000 polimorf noktasını gönlünüzce birleştirmeye çalışın [Dip not: Bu sayıları yalnızca büyüklüğü göstermek için veriyorum. Gerçekte her genetik hastalık ille de bir nokta mutasyonuna denk gelmez;ama bir mutasyonlar biyeşiminin ya da kromozomların rekombinasyonu sırasında ortaya çıkan kazalırın sonucu da olabilir.)Genetik rulet düşleyemeyeceğimiz kadar çok fazla sayıda bireysel bileşim sağlar. Biz, şu ya da bu deri rengi ya da başka bir yapısal özelliği sağlayan on kadar özel allele ayrıcalık tanımak isteseydik bile geriye kalan milyonlarca allel sonsuz çeşitliliği güvenceye almaya yetecekti. İnsan türünü tekbiçimlileştirmek hiç de kolay değildir. En fazlası ve biraz kötü bir şansla, bazı çekinik hastalıkları kolaylaştırmayı başaracaktık ki, bu da esasen, çok sınırla bir topluluk içinde kuşaklar boyu uygulanan her endogamide ortaya çıkan bir şeydir ve değişkenliğin, potansiyel mozayikliği de diyebileceğimiz genel kaynağına gerçek bir zarar vermez. Bireysel değişiklikle her türlü genetik akıl yürütmenin başlangıç noktasıdır.Bu temel gözlem verisi Darwin’in ilk esin kaynağ oldu; bu veri olmaksızın onun doğal ayıklanma kuramının hiçbir anlamının olmayacağı çoğu kez unutulur.”En uygun olanın ayıklanmasıW”na gelince, türün ortamın sonsuz çeşitliliğine uyum sağlamasına izin vermesi nedeniyle, Darwin’den sonra ileri sürüldüğünün tersine, çok daha az tekbiçimlileştiricidir. Evet, biz farklı olmaya mecburuz! Birkaç saniye için (daha fazlasına dayanılmaz) tamamen özdeş varlıklarla dolu bir dünya düşlemeye çalışalım! Rahatlayalım. Böyle bir olasılık, bir biyolojik olanaksızlıktır. Sonuçta kendimizi paylamaya, farklılık “hakkı”mızı ileri sürmeye, bizi sağduyuya zorlaması için tüm etik kaynakları harekete geçirmeye hiç gerek yok. Hoşumuza gitsin ya da gitmesin, her birimiz insan türünü ayni büyük izlegi üzerindeki farkli birer degişikligiz. Şu son yirmi otuz yillik biyolojik araştirmanin en şaşirtici keşiflerinden biri (60'li yillarda Jean Dausset’nin öncülügünü yaptigi HLA sisteminin aydinlatilmasiyla), yalnizca protein düzeyinde degil, genlerimiz düzeyinde de söz konusu oldugu anlaşilan bu olaganüstü insani polimorfizmdir. Mutasyonlar ve DNA rekombinasyonlari bizim en iyi korumalarimiz, normalleşitici heveslerimizin karşisindaki en etkili engellerdir. Farkliliga ve dolaysiyla bireye saygi içinde özgürlük, bundan böyle bir hümanist talepten daha fazla bir şeydir: hakliligini genlerimizde bulmuştur. Genetik kalıtımızın olağanüstü değişkenliğinin keşfi, yalnızca ırk kavramını değil, türe özgü temel özellikler dışındaki biyolojik “norm” kavramını da sonsuza kadar yıktı. Leonardo da Vinci güzelliğin ölçütü olacak bir altın sayı bulunduğuna inanıyordu. Çabalarına rağmen onu asla bulamadı.Çok mükemmel bir nedenden dolayı: ideal norm, bizim basitlmeştirici zihnimizce yaratılmış bir soyutlamadan başka bir şey değildir. Mükemmellik gibi güzelliğe atfettiğimiz kurallar da bir kültürden diğerine, bir dönemden diğerine, hatta bir bireyden diğerine göre değişir. İnsanın özdeş baskısı yoktur! Kuşkusuz, evrim her yeni türe ait yeni işlevlerin ortaya çıkmasına katkıda bulunur. Ama her türün ne bir ana öbeği ne de modeli vardır. Büyük evrim kuramcılarından biri olan Theeodosius Dobzansky’nin yazdığı gibi, genetik koşullanma yalnızca, tek bir insan doğası değil, ama insan doğaları olduğu anlamına gelir . Norm, norm olmamasıdır. Bu biyolojik gerçek, evrimin mantığını dile getirmekten başka bir şey yapmaz.(S:243) Farklılık, türün devamı için zorunludur. Öğrencilerimle beraberken daima şu düşüncenin üzerinde dururum: hepimiz farklı olduğu için hala buradayız. Aksi halde, ne iz ne de ben olacaktık. Burada olmamı, benim gibi olmamış (bugün de benim gibi olmayan ), ama belki de benim bizzat dayanamayacak olduğum bir saldırıdan sağ kalabilmiş olan ötekine borçluyum. Doğada saf soy yoktur. Olsaydı, hayatta kalamazdı. Laboratuvarda üretilenler, iste hücreler, ister drosofiller (sirke sineği) ya da beyaz fareler söz konusu olsun, özgürlüğün bedelini hemen yaşamlarıyla öderler. Eğer sivri sinekler farklı böcekölrüncülerine karşı şeytansı bir direnç gösteriyorlarsa, bu onların genetik polimorfizmlerinin her defasında bazılarının kendilerini kurtarmalarını, sonra da gelecek yok edici bombardımana kadar büyüyüp çoğalmalarını sağlaması nedeniyledir.Gelecek, dirençli azınlıklarda, marjinallerde ve uyum göstermeyenlerdedir! Buna göre, insan sivri sinakten daha az polimorf değildir. Yoksa, dünyanın bizzat yaratmış olduğu çetrefil karmaşıklıklarına nasıl uyum sağlardı? Bu polimorfizm, elli bin ya da yüz bin yıl önce homo sapiens ’in ilk marifetleri döneminde olduğu gibi, bugün için de doğrudur. küçük avcı-toplayıcı gruplar neden yaşamlarını sürdürebildiler? Tüm erkeklerav için uygun bacaklara ve gözlere, tüm kadınlar yenebilecek ot ve taneleri kesin olarak tanıma yeteneğine ve hep birlikte ateşi ya da barutu yeniden icat etme becerisine sahip olmaları nedeniyle mi? Tam olarak böyle değil. Bunu iyi biliyoruz. Her insan grubu, tıpkı bugünkü gibi, miyoplarına, artiritlilerine, keskin gözlülerine ya da koşu şampiyonlarına; yavaş düşünenlerine, hızlı düşünenlerine, liderlerine ve diplomatlarına, melankoliklerine ve neşelilerine, sanatçılarına ve eylem adamlarına, serserilerine ve ahlak hocalarına vb.. sahipti. kısacası her türden ve özellikle de her konumdan insanlar bulunuyordu. Dönemin küçük sürüleri, en azından benim gibi Roy Lewis’in olağanüstü romanı Babamı Niçin Yedim’ e inanırsanız, muhtemelen kendi “tutucular”ına ve “ilerlemeciler”ine bile sahipti. Onların da, vanya dayı gibi, toplanma çığlığı(s:244) “Ağaçlara Dönüş!” olan kendi tepkicileri ve baba Edouard gibi ateşi icat edip çayırları yaktıktan sonra, “Olanaklar olağanüstü !” diye haykırmaktarn geri durmayan dirençli icatçıları vardı. Tarihöncesine dair çalakalem yazılmış bu gülünç yapıtta bilerek başvurulmuş anakronik öğelerin ardında, yazarın derin bir antropolojik gerçekliğe parak bastığına inanıyorum.Hiç şüphe yok ki, yazarın kendilerine atfettiği bilgece dilin ötesinde, ilkel (ve yine de biyolojik olarak bizim kadar ya da az farkla evrimleşmiş) insanlar, Roy Lewis’in yeniden keşfettiği gibi, bugün bizi bölen davranışlarımızı aratmayan farklılık ve incelikteki davranışlarıyla insani entrika ve gülünçlüklere sahip bir çeşitlilik içindeydiler. Musee de l’Homme’ un son sergilerinden birinin, Hepimiz akrabayız, hepimliz farklıyız şeklindeki güzel başlığını açıklamak gerekirse, biz birbirimize benzeriz ve hepimiz farklıyız. Evt. Bunan yakınmak için ve bunun gizlenmesi için hiçbir neden yok. Mavi gözlü mü kara gözlü mü, ince-uzun mu kısa mı, beyaz tenli mi siyah ya da esmer mi.. olmak daha iyidir? Herkesin, en azından bir parça uygar olduğunu ileri süren herkesin hemfikir olacağı gibi, bunlar saçma sapan sorulardır. Ama zihinsel yeteneklerle, zekayla ve davranışlarla ilgili sorunlara gelince, karışıklık genel bir hal alır. Bazıları, yetenek ve zeka farklılıklarında genetik bir kökeni kabul etmekle insanlığa karşı bir suç işlediklerini düşüneceklerdir. Diğerleri, genlerimizin bazı sorumlulukları olduğunu bahane ederek tüm güçleriyle herkesin zekasını kendi ölçütlerine göre ölçmek ve davranışlarımızın tüm gizini hayvanlarda keşfetmek isteyeceklerdir. Gerçekte bunlar nedir? Örneğin zeka diye adlandırılan şey, doğal ya da insanın yarattığı çevrenin kavranmasını hedefleyen bir yetenekler mozayiğidir. Bu yeteneklerin bireşim mekanizması hiç şüphesiz tükenmez olanaklara sahiptir. Bir zeka geni değil, ama daha çok her insanın zekasının tek, karmaşık ve dinamık düzenlenişini oluşturan onbinlerce özellik temelindeki bir gen yığınının olması, gerçeği daha uygundur. Akla uygun tek çıkarsama bir zeka bulunmadığı, zekanın sayısız biçimlerinin olduğudur. Ortam burada fazlasıyla rol oynar. Bazı halklar, diğerleri tarafından ayırıcalıklı kılınandan farklı zeka biçimleri geliştirmek zorunda kalabilirler. Bir grup insana yaşamını Kalahari çölünde ya da Ekvator ormanlarında sürdürmesi için gereken zeka, elbette New York ya da Paris’teki bir büroda çalışmak için gereken zkanın eşi değildir. Aynı zeka değildir; ama kesinlikle eşdeğeridir. Boşimanların ya da Pigmelerin gözünde bizler cahil kişileriz. Boşimanların birbirinden ince farkları olan ve sabah ya da akşam çiğinin damıtılabileçcceği bsayısız bitkileri ayrıştırdıkları yerde, biz yalnızca çöl görürüz. Pigmeler ise, Joseph Conrad’ın Karanlığın Yüreği ’nden (Çev: Sinan Fişek, İletişim Yay: 1994) başka bir şey görmediği yerde, ormanı kolayca okurlar. Ama genetik çeşitlilik ayni kültür içindeki bireyler arasinda da rol oynar. Zeka burada da,genetikçilerin polimorf diyecekleri gibi çok biçimlidir. Müzisyenin zekasi matematikçinin zekasiyla belli bir benzerlige sahip görünür;ama matematikçlerin ve müzisyenlerin kendileri çok çeşitli mizaçlara sahiptiler. Ressamin zekasi yöneticinin, organizatörün, diplomatin, düzenbazin,filozofun, deneycinin,çalgi yapimcisinin,icatçiin, hatibin, eğitimcinin vb zekalarından başka ve şairinkiyle biraz benzerliği olabilen romancınınkiyle aynı değildir. Diğerlerinin zekasından yararlanabilme zekasına da sahip olmak ve bu durumda, anlaşılacağı üzere, en büyük çoğulculuğu savunmak mümkündür! (Daniel Cohen, Umudun Genleri s:236-246...) Bilim ve Çevre Bilimin gelişmesi ve onun teknolojik uygulamalari, doganin kirlenmesinde ve kirletilmesinde rol oynuyor. Bu doğru. " Diğer taraftan bilim adamları da bilmeceleri yanıtlayarak işe başlarlar, ondan sonra da ya küçük parmaklarını ya da tüm dünyayı havaya uçurabilecek deneylere girişirler. Bilim daha sorumlu bir biçimde davranmak zorunda değil midir? Bu sorunun yanıtı açıktır: bilim tümüyle ahlak dışı ve tümüyle sorumsuzdur. Bilim adamları, gerçi davranışlarında kendi ahlak kuralları ve sorumluluk duyguları (ya da bunların yokluğu ) tarafından yönlendirilirler ama sonuçta kendilerini bilimin temsilcileri değil, insan olarak görür ve buna uygun bir davranış biçimi gösterirler. Örneğin bir zamanlar D o ğ a adını verdiğimiz şeyi bugün Çevre' ye indirgemiş bulunuyoruz ve yakında belki de Çöplük olarak adlandırmamız gerekecektir. Peki bu bilimin suçu mu? Doğru, bilim doğanın ölümüne yolacan koşulların ortaya çıkmasında rol oynayabilir, ama unutmayalım ki doğayı yaşatacak çözümler de yine bilimin elindedir. Bilim, bize ancak çevrenin korunması ya da kirliliğin önlenmesi için gereken önlemleri sağlayabilir- karar insanlarındır. Bilim, soruları ( en azından bazı soruları) yanıtlar, ama karar alamaz. Kararları (ya da en azından bazı kararları ) ancak insanlar alabilir." (Raslantı ve Kaos s: 162-163) D. Ruelle, bilimin bu savunmasını son derece belirsiz ve karamsar bir yorumla bitiriyor: " Ama fiziksel ve kültürel çevremize vermekte olduğumuz zararlara karşın varlığımızı sürdürmeyi başarabilecek miyiz? İşte bunu bilmiyoruz. Geçmişte olduğu gibi bugün de insanlığın geleceğini kestirebilme olanağına sahip değiliz ve daha güzel bir geleceğe mi yoksa önüne geçilemez bir sona mı yaklaşmakta olduğumuzu bilmiyoruz" (s:163) Bu görüşler eleştirilmeye değer. İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayinin 22’sinden itibaren, Iskoçya’nin Edinburg kentinde, biyoteknoloji alaninda tuhaf bir gelişme kaydedildigi, "Dünyanin sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladi. Bilim çevreleri de basin da şaşkindi, çünkü, seçkin yazarlarin ve bazi bilim adamlarinin birkaç gündür zaten haberdar olduklari ve konuyu "patlatmayi" bekledikleri bu gelişme, bir biçimde basina sizmiş, dilden dile dolaşmaya başlamişti bile. Normalde pek de ciddiye alinmayacak böyle bir "dedikodunun" bu denli yayilabilmesi, işin içine çeşitli dallarda makalelere yer veren saygin bilimsel dergi Nature’in adinin karişmasiyla olmuştu. Gerçekten de Nature, dedikodu niteligini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayinlayacagini bilim yazarlarina duyurmuş ve bu tarihe kadar "ambargolu" olan bir basin bülteni dagitmişti. Bati ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazirladiklari yazilari, ambargonun bittigi tarihte, ayni anda yayina verirler. Ancak, aralarinda ünlü The Observer’in da bulundugu bazi dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynagi olan Nature ve ambargoya saygi gösteren çogu nitelikli dergi ve gazetede yer almamasi da, dedikodu trafigini artirmiş, ortaya atilan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmiş gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, ayni ekip 1995 yilinda embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayimlatmişti. Bu deney de basina yansimiş, ancak, son gelişmeler kadar yanki uyandirmamişti. Ne de olsa bu yöntem, döllenmiş yumurtanin kazayla bölünüp tek yumurta ikizlerine yol açtigi bildik süreçlerden farksizdi. Siklikla unutuldugu için tekrarlamakta yarar var ki, Wilmut’un son başarisinin önemi, işe somatik bir hücrenin çekirdegiyle başlamasinda yatiyor. Bu başarinin ortaklarini anarken PPL Tibbi Araştirmalar şirketini de atlamamak gerek. Borsalarda tirmanişa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarini belirleyerek hem de maddi olanaklari yaratarak kuzu Dolly’nin varliginin temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdigi başari şöyle özetlenebilir: Yetişkin bir koyundan alinan somatik bir hücrenin çekirdegini dahice bir yöntemle, başka bir koyuna ait, çekirdegi alinmiş bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adini, ünlü şarkici Dolly Parton’dan alan kuzu Dolly, isim annesinin degilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmiş ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, sogukkanli bir süreç. Zaten Dolly’nin araştirmacilar arasindaki adi da en az varligi kadar "sogukkanlica" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sirlarini kaybetme kaygisiyla maddi hedeflerini pek açiga vurmamakla birlikte, hemofili hastalari için koyunlara insan kani pihtilaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarini veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açisindan G1, S ve G2 alt evrelerine ayirmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dişindaki bileşenlerin çogaldigi bir dinlenme dönemi. S, DNA’nin bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanip, hücrenin mitoz yoluyla bölünmeye hazirlandigi süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkinda bilinenler, yukarida kaba hatlariyla anlatilanlarla sinirli. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sir olarak kalacaga benziyor. Ancak, herkesin olup bitenler hakkinda ayni bilgilere sahip olmasi, deneyin başarisi konusunda kimsenin şüphe duymamasini gerektirmiyor. 277 denemeden sadece birinin başarili olmasi başta olmak üzere, çogu uzmanin takildigi pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliginin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştirmacilar, yumurta hücresindeki DNA’lari tümüyle temizleyememiş olabilirler. Dolayisiyla Dolly, siradan bir koyun olabilir." Slack, alinan meme hücresinin henüz tamamen özelleşmemiş olabilecegini, böyle vakalara meme hücrelerinde, bedenin diger kisimlarina göre daha sik rastlanilabildigini de ekliyor. Zaten Wilmut da, bedenin diger kisimlarindan alinan hücrelerin ayni sonucu verebileceginden bizzat şüpheli. Örnegin, büyük olasilikla kas veya beyin hücrelerinin asla bu amaçla kullanilamayacaklarini belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanilabilecek canlilar arasinda biraz "ayricalikli" bir örnek. Koyun embriyolarinda hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başliyor. Geleneksel laboratuvar canlisi farelerde ise ayni süreç ilk bölünmeden itibaren gözlenebiliyor. Insanlarda ise ikinci bölünmeden itibaren... Bu durum, ayni deneyin fare ve insanlarda asla başarili olamamasi olasiligini beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu.

http://www.biyologlar.com/hayvan-ve-insan-kopyalama

AROMATİK VE TIBBİ BİTKİLER

Doğaya dönüşümün bir slogan haline geldiği günümüz dünyasında tıbbi ve aromatik bitkiler Türkiye'de de önemli bir yere gelmiştir. Türkiye pek çok bitkinin gen merkezi olmasının yanında, bazı endemik türlerin de bulunduğu coğrafik bölgeleri içermektedir. İnsanlar yüzyıllardan beri hastalıklara karşı elde ettikleri bitkiler ile çare bulmaya çalışmışlardır. Hastalıkları, bitkiler ile tedavi etme yöntemleri oldukça başarılı sonuçlar vermiştir. Bundan dolayı bitkilerin tedavide kullanımı, günümüze kadar devam etmiştir. Birçoğu tesadüfen, birçoğu da merak sonucu denenerek etkileri anlaşılan doğal ilaçlar, kulaktan kulağa yayılarak herkes tarafından tanınmış ve yıllar geçtikçe daha farklı bitkilerin başka dertlere de deva oldukları anlaşılmıştır. Diğer bir gelişme de bu bitkilerin, beslenmede lezzet, koku, tad verici ve iştah açıcı özelliklerinin anlaşılması ve kullanımının yaygınlaşmasıdır. Dünyanın gelişmiş ülkeleri özellikle tedavide bitkisel kaynaklara yönelmiş durumdadırlar. Tedavide kullanılan ilaçların önemli bir kısmını doğal kaynaklı ilaçlar oluşturmaktadır. Doğal kaynaklı ilaçların kullanım oranı gelişmiş ülkelerde %60, gelişmekte olan ülkelerde ise %4 civarındadır. Bugün Türkiye florasında 9000'in üzerinde bitki türü olduğu kabul edilmiştir. Bu bitkilerin 1000 kadarı, ilaç ve baharat bitkileridir. Dünya'da yaşam standardı yükseldikçe tüketim de artmaktadır. Bu artış, tıbbi ve aromatik bitkiler içinde geçerlidir. Bu bitkilerin tüketim alanı çok geniştir. En önemli kullanım alanı ise ilaç, parfüm, kozmetik, diş macunu, sabun şeker sanayi olup ayrıca baharat olarak tüketilmektedir. 1. ADAÇAYI: 1.1. LATİNCE ADI: Salvia Officinalis 1.2. İNGİLİZCE ADI: Garden Sage 1.3. MAHALLİ ADLARI: Adaçayı, Ayı Kulağı, Misk Adaçayı, Diş Otu 1.4. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDEKİ YAYILIŞI: Adaçayının bugüne kadar 500 türü tesbit edilmiştir. Bu türler tropik ve subtropik bölgelerde dağınık olarak bulunurlar. Ülkemizde ise yaklaşık 90 kadar salvia türü bilinmektedir. Adaçayları bir ya da çok yıllık, çoğunlukla güzel kokulu, çalı görünüşünde ve tüylü bitkilerdir. Ülkemizde Akdeniz ve Ege bölgelerinde; dağlarda, steplerde, tarım arazileri civarında ve ormanlık sahalarda yetişmektedir. Tıbbi özelliği olan salvia officinalis l. Ülkemizde tabii olarak yetişmemekte, ancak tohumu temin edildiğinde kolaylıkla kültüre alınarak yetiştirilebilmektedir. 1.5. KULLANILAN BÖLÜMLERİ:Kurutulmuş Yaprakları 1.6. SANAYİDEKİ KULLANIM ALANI: Adaçayı yapraklarının enfüzyonu ilaç sanayinde gargaralar ve şurupların bileşimine girerek boğaz ağrıları ve iltihaplarına karşı kullanıldığı gibi, dezenfekten, antiseptik olarak bunun yanında da mide ve barsak spazmlarını çözücü ilaçların yapımında değerlendirilir. Ayrıca hoşa giden kokuları sebebiyle kozmetik sanayinde de geniş kullanım alanı bulunmakta, özellikle dinlendirici vasıftaki banyo köpüklerinin imalinde kullanılmaktadır. Son yıllarda tedavi edici özelliği olan diğer bitkiler ile karıştırılıp poşet halinde hazırlanan çayları da piyasaya çıkmaktadır. Uçucu yağda bulunan thujol zehirli bir madde olup; düşük dozlarda titreme ve halisünasyon yüksek dozlarda da saraya benzer titremeler akabinde uyuşukluk ve bitkinlik şeklinde etki ettiğinden günlük maximum doz önemli olup, genellikle enfüzyonu kullanılır. 1.7. HALK ARASINDAKİ KULLANIMI: Halk arasında çay gibi demlenerek (enfüzyonu) boğazdaki iltihaplanmalar, yorgunluk, sinir zafiyetine karşı kullanılır. Ayrıca balve sirke ile karıştırılarak ruhi depresyonlar, şiddetli soğuk algınlıkları ve bazı kadın hastalıklarına karşı kullanılmaktadır. İshal kesici ve iştah artırıcı olarak da faydalanılmaktadır. 1.8. DROG OLARAK ÖZELLİKLERİ: Yatıştırıcı, midevi idrar söktürücü, terletici, dinlendirici, ağız ve boğazlarda antiseptik, dezenfektan özellikleri vardır. 1.9. VERİM: Avrupa'da yeşil-yaş herba verimi, ilk yılda 300-400 kg/da ikinci ve üçüncü yıllarda 800-1200 kg/da arasındadır. Ege bölgesinde yapılan bir denemede ilk sene 862 kg/da ikinci sene 2141 kg/da üçüncü sene, 2384 kg/da yeşil herba elde edilmiştir. Gübre verilmeksizin yapılan üretimden ise 1238 kg/da; 5 kg/da azot verilince 2333 kg/da;10kg/da azot verilince 3481 kg/da yeşil herba alınmıştır. (ilisulu -1992) 1.10. DIŞ TİCARETİ: Doğada kendiliğinden üreyen adaçayları, toplanıp pazarlanır, alım satımı yapılır. Halen batı ve güney illerimizde en çok olmak üzere hemen hemen tüm baharatçılarda satılmaktadır. Fransa, Almanya, A.B.D ve diğer bazı ülkelerde üretimi yapılmaktadır. Günümüzde en çok doğal yetişen adaçayları tüketilmektedir. 2. KEKİK: 2.1. LATİNCE ADI: Thymus Sp. 2.2. İNGİLİZCE ADI: Garden Thyme 2.3. MAHALLİ ADLARI: Yabani Kekik, Sater Otu, Nemamul Otu. 2.4. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDEKİ YAYILIŞI: Çalı ya da çalımsı görünümde ve kokulu olan kekikler (labiatae) lamiaceae familyasının dünya üzerinde 40 türle temsil edilen bir cinstir. Genellikle derin olmayan gevşek, ılımlı, humuslu ve kalkerli toprakları seven bu bitkiler Avrupa ve Asya'da, akdeniz bölgesinde, kuzey Afrika'dan habeşistan' a kadar uzanan yerlerde ve kanarya adalarında bulunmaktadır. Ülkemizde ise yaklaşık olarak 35 kadar kekik türü 1500 m rakıma kadar olan yerlerde ve yaylalarda yaygın olarak bulunurlar. Bu türlerden bir kısmının endemik olduğu literatürde yer almaktadır. Ülkemizde 14 adeti endemik olarak yetişen 37-40 arasında tür mevcuttur. Thymus vulgaris, (adi kekik, kekik, büyük kekik, sater) ülkemizde doğal olarak Yetişmez. Thymus serpyllum (kır kekiği, yabani kekik, kekik, sater) ülkemizde, Asya ve Avrupa'da yaygındır. Ülkemizde yaygın olduğu yerler: Bursa, İzmit, Doğu Karadeniz, Kayseri' dir. Thymus longicaulis sp. Chavbardii var. Antelyensis, Antalya'da yetişen endemik taksonlardan'dır. Beyaz kekik batı ve Güney Anadolu bölgesin' de kurak yerlerde yetişir. YABANİ KEKİK: Akdeniz bölgesi ve Anadolu' da pek çok varyetesi var. İZMİR KEKİĞİ YADA PEYNİR KEKİĞİ: Batı ve Güney Anadolu genel yayılış sahasıdır. İSTANBUL KEKİĞİ YADA MERCAN KÖŞK: Ender olarak da eşek kekiği olarak anılır. Trakya ve Batı Anadolu genel yayılış sahasıdır. BEYAZ KEKİK: Güney ve Batı Anadolu'da bilhassa Manisa ve Muğla civarında yayılış gösterir. 2.5. KULLANILAN BÖLÜMLERİ: Dallı Çiçekli Tepe Ve Yaprakları 2.6. SANAYİDE KULLANIM ALANI: İlaç sanayinde antiseptik imalatında kullanıldığı gibi bronşlardaki koyu kıvamlı salgıyı sıvılaştırdığından öksürük şuruplarının bileşimine girer. Antibiyotik etki olarak mikroorganizmaların üremesini geciktirdiği veya tamamen durdurduğu için, ağız antiseptiği olarak gargara yapımında faydalanılmaktadır. Derideki mantar hastalıklarına karşı inhibör etkisi olduğundan, mantar ilaçlarının bileşiminde de yer almaktadır. Kimya sanayinde ise değerli bir kimyasal madde olan timolun elde edilmesinde kullanıldığı gibi parfümeri ve kozmetik sanayinde de banyo köpüklerinin yapımında ve problemli ciltlerin tedavisinde kullanılmaktadır. 2.7. HALK ARASINDA KULLANIM ALANI: Kekiklerin çiçekli dal ve yaprakları halk arasında çay gibi demlenerek içilmek suretiyle kandevarınını düzenleyici, rahatlatıcı etkisinden faydalanılmaktadır. Ayrıca kansızlık, boğmaca, kellik, diş ve mide ağrılarında uyuz, nefes kokması, lumbago, barsak parazitlerinin ve gazlarının giderilmesinde, romatizma ile bazı kadın hastalıklarında tedavi amacıyla kullanılmaktadır. Kekik türlerinden çeşitli et yemeklerinde baharat olarak da faydalanılmaktadır. 2.8. DROG OLARAK ÖZELLİKLERİ: Dolaşım uyarıcısı, antispazmatik, idrar söktürücüdür. Düşük dozlarda kullanıldığında balgam söktürücü, yüksek dozlarda alındığı taktirde antiseptik ve bazı barsak kurtlarını düşürücü etkisi vardır. 2.9. VERİM Kekik o yıl ekilmiş ise ilkbahar da biçim yapılmaz. Böylece az verim alınır. Orta Avrupa koşullarında ilk yıl 100-150 kg/da, ikinci yıl 200-450 kg/da kuru herba, 1000-1800 kg/da yaş herba alınmaktadır. Üçüncü yıl verim azalır. Genelde 3 yıl için üretim yapılır. (İlisulu'dan Ceylan 1981) 2.10. DIŞ TİCARETİ: Türkiye kekiğin en önde gelen ülkelerinden biridir. Türkiye kekik ihracatında %19 'la 2. Sıradadır. 1. Sırada ABD yer alır. Türkiye'den kekik ithalatı yapan ülkelerden %52 'sini ABD oluşturmaktadır. Geri kalan kısmı ise Almanya, İtalya, İngiltere, Yunanistan ve Fransa 'dır. Almanya, Fransa, ABD gibi ülkelerde yetiştirildiği, piyasası ve ekonomik ortamı olduğu bilinmektedir. Ülkemizde ise; İzmir, Antalya gibi illerimizde az da olsa üretilip pazarlanmaktadır. Ancak doğal olarak yetişen kekikler, toplanıp kurutularak büyük şehir piyasalarına sürülür. ABD, Almanya, Yunanistan, Fransa, İngiltere, Kanada ve İtalya başta olmak üzere 30 kadar ülkeye ihracat yapmaktayız. 3. NANE: 3.1. TAKIM: Tubiflorales 3.2. FAMİLYA: Lamiaceae 3.3. KÖKENİ VE YAYILIŞI: Anavatanının, Orta Avrupa ve Asya olduğu belirtilen nane, çok çeşitlilik gösterir ve geniş bir yayılış alanına sahiptir. Çoğunlukla Avrupa ve Asya'da yayılan 90 kadar türü bulunmaktadır. Ülkemizde ise 7 türe ait 12 takson yayılış göstermektedir. Ilıman iklimlerde, bu türler. M. Pulegium, M. Arvensis, M. Aguatica, M. Piperita, M. Longifolia, M. Suaveolens, M. Spicata'dır. Bunlardan M. Longifolia, M. Rotundifolia, M. Pulegium, M. Aquatica, Batı Anadolu'da yayılmıştır. (Öztürk, Seçmen, Pirdal-1991) ılıman iklimlerde, Amerika, Avrupa ve Asya'da tarımı yapılır. Kaynak ülkeler: ABD, Yugoslavya, Mısır, Fas, Macaristan, Bulgaristan, İspanya, Almanya, Romanya, Arjantin, Meksika, Brezilya, İngiltere, Polonya, Yunanistan'dır. M. Arvensis ise özellikle Japonya'da yetiştirilir. Kaynak ülkeleri: Çin, Japonya, Brezilya, Güney Afrika, Tayvan, Arjantin. Nane, çok eski bir kültür bitkisidir. İngiltere'de botanikçi John Ray'ın (1921) tavsiyelerinden sonra, tıbbi bitkiler arasına girmiştir. 3.4. KULLANILAN KISMI: Nanenin; yaprakları, çiçekli dalları ile yapraklarından elde edilen uçucu yağı kullanılır. 3.5. FAYDALANMA YÖNLERİ: Nane eskiden beri mutfakta, kızartmalarda, çorbalarda, salatalarda ve birçok yemeklerde; iştah açıcı, çeşni ve lezzet verici olarak kullanılmaktadır. Bu amaçla memleketimizin her yerinde halkımız evlerinin bahçelerinde, saksılarda, az da olsa nane yetiştirmektedir. Kuduz köpeklerinin ısırmasında, arı sokmasında tedavi edici olarak ayrıca, kokusundan faydalanılarak fare ve güve gibi hayvanların zararlarını önlemede kullanıldığı belirtilmektedir. (İlisulu'dan Arslan - 1975) Günümüzde, nanenin halk ilacı olarak kullanımına devam edilmektedir. Esas önemi; antiseptik, anaztezik, serinletici, ferahlatıcı, yatıştırıcı, gaz söktürücü bulantı kesici özelliklerinin olmasıdır. İshale karşı da etkilidir. Nane esansı, kuvvetli bir zehir ise de günde az miktarda birkaç damla alınırsa, mide ağrısına, buluntılara iyi gelir. Birçok ilaçların yapımında, şekercilik, dişmacunu, ciklet, sabun, parfümeri sanayinde ham madde olarak kullanılır. Nanenin uçucu yağı, ülkemizde limon uçucu yağından sonra en çok kullanılan bir yağdır. Henüz ülkemizde ithal edilmektedir. Çünkü, elde edilmesi şu anda mümkün değildir. Yıllık ithalatımız, 200-3600 kg arasındadır. (1952-1961) Nane, çay gibi kaynatıldığında hıçkırığı keser. Suyu, sirke ile içildiğinde kan tükürmeyi keser. Akrep sokmalarında yakısı yara üzerine konursa ve ayrıca’da çiğnenirse hasta iyileşir. Taze yaprakları yenildiğinde solucan düşürür. Kavut ile birlikte merhem – yakı yapılırsa karın tümörünü geçirir. Sert dil, yaprağı ile birkaç defa ovulur ise sertliği giderir. Yaprağın lapası, basura iyi gelir. Kanın akmasını durdurur, sarılık hastalığını geçirir. Nane, ezilerek masaj yapıldığında, dildeki kekemeliği geçirir. (Yıldız- 1983) 3.6. YETİŞTİRİLMESİ: İKLİM VE TOPRAK İSTEKLERİ: Nane, mutedil iklimlerde iyi yetişir. Yağışları yeterli ve dağılışının da iyi olmasını ister. Devamlı bulutlu havalardan çok, güneşli ve az bulutlu havalardan hoşlanır. Taban suyu yüksek olan yerlerde ve sulanabilen kurak bölgelerde yetiştirilmesi mümkündür. (İlisulu- 1992) Nane, pratik olarak her türlü toprakta yetişebilir. Fakat, toprağın normal düzeyde nem içermesi şarttır. Genellikle kumlu – tınlı, kireçce fakir. , nötr ve zayıf alkali, azotlu, organik maddece iyi durumlu ve nispeten tuzlu topraklarda yetişmektedir. Çok asitli topraklar, ekimden önce kireçlenmelidir. Çamurlu topraklar, nane tarımı için uygun değildir. Nanenin yetişmesi için uygun olan topraklar; soğan kereviz lahana vb. Sebzelerin yetiştirilmesinde de kullanılan, iyi drene edilmiş, gübreli topraklardır. Bu topraklar, kuvvetli ve hızlı gelişmeyi sağlayan besin elementlerini içerirler. Ayrıca; patates, mısır yetiştirilen kumlu, çakıllı, kuvvetli ve çok verimli topraklar nane tarımı için uygundur. (Öztürk, Seçmen, Pirdal- 1991) EKİM- DİKİM: Nane, çoğunlukla üç şekilde üretilir. A-) Tohumla Üretim B-) Yeraltı Sürgünleriyle Üretim C-) Gövde Çelikleriyle Üretim A-) TOHUMLA ÜRETİM: Pratikte pek uygulanmayan bir üretim şeklidir. Hem üretimi zordur, hem de elde edilen nanelerin ayrı yapıda olması ihtimali fazladır. Tohumla üretim, çoğunluk ıslah çalışmalarında kullanılan bir yöntemdir. (İLİSULU’DAN –1992) Üretimi için İzmir’de yapılan denemelerde elde edilen yeşil ve kuru herba miktarı şöyledir: (İLİSULU’ DAN CEYLAN – 1979) B-) YERALTI SÜRGÜNLERİYLE ÜRETİM: Nanenin esas üretim şeklidir. Günümüzde ülkemizde ve dünya’nın birçok ülkesinde bu şekilde üretim yapılmaktadır. Yukarıda belirtilen ve İzmir’de yapılan üretim denemesi de bu şekilde yapılmıştır. Yeraltı sürgünlerinin dikimi, ilkbahar’da veya sonbahar’da yapılır. Bu yeraltı sürgünleri aynı zamanda topraküstü sürgünlerini de kapsamalıdır. İyi ve istenilen özellikleri kapsayan nane çeşitlerinden alınan sürgünlü rizom numuneleri, önceden açılmış çizilere ucu uca gelecek şekilde veya aralıklı olarak yatırılır. Üstleri, nemli toprakla örtülür veya bol su verilir. Sıra araları 35, 60, 75, 90cm; sıra üzerleri ise 20, 30, 75 cm. Olarak ayarlanır. Burada, çeşit özelliği, toprağın fizikselve kimyasal yapısı etkilidir. Derin ve verimli topraklarda aralıklar fazla tutulur. İri bitki veren çeşitlerde sıra araları geniş tutulur. Hızlı büyüyerek sıra aralarını çabucak kapatır. Bu durum, çapalama ve seyreltme ile önlenir. (İLİSULU-1992) BAKIM: İlk sene sıra araları sık sık çapalanarak, yabancı otların gelişmeleri önlenir. Taban ve ağır topraklarda ve iyi hazırlanmış tarlalarda çapa işleri daha da önem kazanır. Eğer sıra aralarının kapanmaması istenirse, her biçimden sonra sıra araları, kazayağı veya frezelerle işlenmelidir. Bitki, tarlayı iyice kapattığında, yabancı otlar, elle yolunmalıdır. Bu taktirde herbisit kullanımı uygundur. Bu konuda ülkemizde herhangi bir çalışma yapılmamıştır. (İLİSULU-1992) Nane, büyüme mevsiminde suya ihtiyaç duyar. Çoğunlukla sulanarak yetiştirilir. Genellikle mayıs’ta ihtiyaca yetecek oranda 1-2 haftalık sürelerle sulama yapılmalıdır. Sulamada yağmurlama sistemi de kullanılabilir. (ÖZTÜRK, SEÇMEN, PİRDAL-1991) Ticari gübreler, tüm bölgelerde nane yetiştiricileri tarafından kullanılır ve genellikle bitki besin maddesince fakir olan topraklarda uçucu yağ verimini arttırır. Serin ve yağışlı yerlerde genç bitkilerin verimini artırmak için 4,5 dönüme, 12-24 kg’lık azot verilir. Gübre, ekim öncesi serpilmelidir. Gübre verilirken stolonlar ike temas etmemesine dikkat edilmelidir. Sulamayla nane yetiştirilen kuvvetli ve kumlu topraklarda, 4,5 dönüme genellikle amonyum sülfat veya amonyum nitrat olarak verilen azotun değeri, 60 kg’dır. Potasyum ve fosforun biri veya her ikiside toprak analizi sonunda gerektiğinde verilmelidir. (ÖZTÜRK, SEÇMEN, PİRDAL- 1991) HASAT: Nane, genellikle çiçeklenme başlangıcında hasat edilir. Memleketimizde, nanenin çiçeklenmesine pek müsaade edilmez. Bir yılda 2-3 biçim yapılır. Toprak seviyesinden birkaç cm yukarıdan biçilir. Ekim alanının genişliğine göre; orak, tırpan, çayır biçme makinası ile hasatı yapılır. (İLİSULU-1992) Çiçeklenme devresinde, nane yağının genellikle daha iyi olduğu düşünülmektedir. Bitkilerin, fazlaca çiçeğe sahip olduğu zaman, çiçeklerden elde edilen yağın kalitesi değişir. Çok güneşli uzun gün ile uzun büyüme mevsimi, erken çiçeklenme ve yüksek yağ verimi üzerinde etkili olmaktadır. Bu nedenle, böyle yerlerde nane, çiçeğinin en bol olduğu devrede toplanmalıdır. Soğuk yerlerde ürün toplama, çiçeklenme başlamadan önce;ılıman yerlerde ise normal olarak temmuz sonunda başlanmalıdır. Ağustos- eylül aylarının ortasına kadar devam edebilmektedir. Eğer ürün toplama zamanından önce bitkinin alt yaprakları dökülürse ürün, erken toplanmalıdır. Biçimden sonra 1-2 gün kuruyuncaya kadar devam edebilmektedir. Eğer ürün toplama zamanından önce bitkinin alt yaprakları dökülürse ürün, erken toplanmalıdır. Fazla yağış üründe yağ miktarını azalttığı için toplama işlemi, yağışlardan önce yapılmalıdır. Biçimden sonra 1-2 gün kuruyuncaya kadar serili bırakılır. Daha sonra da tırmıkla toplanır. Eğer çok kurumuş ise elle toplanarak ürün kaybı önlenmelidir. 2-3 gün kadar kuruduktan sonra taşınmalıdır. (ÖZTÜRK, SEÇMEN, PİRDAL- 1991) MUHAFAZA: Kurutulmuş nane drogu, kuru, havalanabilir yerlerde, pazarlanıncaya kadar saklanır. İyi muhafaza edilmeyen nane, nemden dolayı küflenip bozulur. Ülkemiz, kuru iklim kuşağında bulunduğu için küflenme ihtimali düşüktür. (İLİSULU -1992) PAZARLAMA: Kuru yaprak halinde veya toz halinde kilo ile veya küçük paketler veya poşetler içinde firmalar tarafından pazarlanmaktadır. Nane yağı, birtakım işlemlerle elde edilir. Nane yağı, pazara çıkarıldığı gibi; parfümeri, ilaç, sabun, diş macunu, gıda sanayine pazarlanmaktadır. EKONOMİK ÖNEMİ: Nane, ilaç sanayinde önemli bir yer tutmakta ve çeşitli endüstri kollarında büyük ölçüde kullanılmaktadır. Özellikle batı Avrupa ülkelerinde naneye olan ihtiyaç, her geçen gün daha da artmaktadır. Böylece dünya pazarında daima alıcı bulmaktadır. Böyle büyük alıcılar bulan nanenin birçok ülkede geniş olarak üretimi yapılmaktadır. Türkiye’de ise az miktarda üretim yapılmaktadır. (İLİSULU-1992) Nane ülkemizde yalnız ihraç edilen bir bitkidir. 4. BİBERİYE: 4.1. TAKIM: Tubiflorales 4.2. FAMİLYA: Lamiaceae 4.3. CİNS: Rosmarinus 4.4. TÜR: Rosmarinus Officinalis L. 4.5. MAHALLİ ADLARI: Kuşdili, Hasaban, Lacivert Gül, Itırların Prensi 4.6. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDEKİ YAYILIŞI: Dünyanın birçok yerinde kültürü yapılmaktadır. Başta Türkiye olmak üzere özellikle Akdeniz'e kıyısı olan ülkelerde 1500-1700 m yüksekliklere kadar yetişme ortamı bulmuştur. Çok sayıda varyete ve forma sahiptir. Akdeniz havzası başta olmak üzere ılıman ve sıcak iklim bölgelerinde kültüre alınmıştır. Akdeniz ülkelerinde yabani olarak yetişir. Yayıldığı ülkeler Portekiz, Yugoslavya, Fransa, İspanya, Tunus, Fas, Cezayir ve İtalya'dır. Ülkemizin batı ve güney kıyılarında yabani olarak yetişir. Park ve bahçelerde yetiştirilir. Baharat v.b. Amaçlarla kültürü yapılamaz. Baharat olarak da fazla kullanılmaz. Uçucu yağ üretimi yok denecek kadar azdır. Bunun yanında, birçok ülkede doğal yetişen biberiye toplanmakta ve değerlendirilmektedir. Ancak istatistiği tutulmamaktadır. Bu nedenle rakamla ekonomik önemi belirtilememektedir. 4.7. BİTKİSEL ÖZELLİKLERİ: Çalımsı karakterli bir bitkidir. Sapı lifsi yapıda, ince, narin, çok dallı ve diktir. Genç dalları dört köşelidir. Yaprakları karşılıklı, sapsız ve kulakçıksızdır. Yaprakları çam yapraklarına benzer. Yaprak ayası uzunca, oldukça etli, üst tarafı tüysüz, koyu renkli; alt tarafı ise çok tüylü ve beyazımtrak yeşil renklidir. Yaprak kenarları alt tarafa doğru kıvrık olup kışın yapraklarını dökmez. Yaprakları dil şeklinde, 2-3 cm uzunlukta, 2-4 mm genişliktedir. Yaprak ayası derimsi, dar, şeritsi veya mızraksıdır. Yaprak ucu küttür. Taban kısmı çok kısa sap şeklinde daralmıştır. Çiçekleri, dalların ucunda ve yaprak koltuklarında küçük topluluklar halindedir. Bütün sene çiçeklidir. Ve çiçekleri bir eksen üzerinde salkım şeklindedir. Çanak yaprakları tüp şeklinde, iki dudaklı ve çok tüylüdür. Taç yaprakları da tüp şeklinde ve iki dudaklıdır. Çiçekleri mavimsi beyaz, mor ve eflatun renklidir. Üst dudakta iki dar lop, alt dudakta üç dar lop bulunur. Alt dudağın orta lobu diğerlerinden daha büyük ve çukurdur. Stamerler iki tanedir. Flament, korolla tüpünden daha uzun, kıvrık, mor renklidir ve tabanında küçük bir diş yapısında çıkıntısı vardır. Dişi organ iki karperli, stilusu uzun ve kıvrık, stigması iki parçalıdır. Çiçeklerinde nektarium bulunur. Meyvesi esmer, küçük fındıksı yapıdadır. Yapraklarında %8 tanen, %1-2 uçucu yağ ve acı madde bulunur. 4.8. FAYDALANMA YÖNLERİ: En ucuz baharatlardandır. Mutfakta et, sebze, omlet,çorba, sos ve salatalar da, hemen hemen her türlü gıdada sevilerek tüketilir. Gıda sanayinde baharat ve yan ürünleri başta olmak üzere, alkolsüz içecek, çeşni ürünü ve etlerde, ayrıca şekerleme, dondurma ve fırın ürünlerinde kullanılır. Gıda sanayinin kullanımının dışında, son zamanlarda sentetikler kadar etkili biberiye antioksidanları üretilmekte ve değerlendirilmektedir. Ayrıca parfümeri, kozmetik ve eczacılıkta kullanılır. Özellikle spazm çözücü, romatizma, gargara, tavman, burkulmalara karşı fiziksiyon, idrar söktürücü, tenter, ateş düşürücü, astım ve birçok hastalığa karşı faydalıdır. 4.9. YETİŞTİRİLMESİ: İKLİM VE TOPRAK İSTEKLERİ: Yetiştiği yerler yazları kurak, kışları yağışlı geçen bölgelerdir. 1500-1700 m yüksekliğe kadar yayılmasında iklim değişikliklerine dayanıklı olması ve serin iklim koşullarında da rahatlıkla üretilebilmesi etkendir. Toprak isteği yönünden fazla seçici bir bitki değildir. (İLİSULU -1992) EKİM-DİKİM:Kendisi doğal olarak yetişmekte olan bir bitkidir. Tohumlarını saçarak koloniler oluşturmaktadır. Tohumları ekilerek kolay üretilebildiği gibi, çok koku yayan biberiye bitkileri vejetatif olarak çelik alma yoluyla da üretilebilir. Bahçelerde,tarlalarda ve kısmen gölgelik yerlerde rahatlıkla yetiştirilir. BAKIM:Kendisi ürediği için bakımı hakkında yeterli bilgimiz yoktur. Fakat, bakımında fazla zorluk çekilmeyeceği anlaşılmaktadır. (İLİSULU-1992) HASAT-TOPLAMA: Biberiye, akdeniz kıyılarında işlenmemiş bölgelerde bütün yıl çiçek açan bir bitkidir. Bu bitkinin bütün yıl çiçek açan dalları toplanır, demet yapılır ve gölgede kurutulur. Böylece her zaman kullanılır. (İLİSULU-1992) 4.10. VERİM: Doğadan toplandığı için dekara verimini söylemek isabetli olmaz. Ancak sık ekilmiş bir biberiye kolonisinden bir kişi filizleri kırarak günde 400-700 kg yaş drog toplayabilir 5-7 kg yaş drogtan ise 1kg kuru drog elde edilir. (İLİSULU- 1992) 4.11. MUHAZAFA -PAZARLAMA: Elde edilen yaş filizli, çiçekli droglar gölgede kurutulurlar. Kutularda tarla ve çuvallarda saklanır, pazarlanır. Satın alınırken iyi saklanmış olmasına, kokusunun azalıp azalmamasına, böçek ilacı yapılmamış olmasına dikkat edilmelidir. (İLİSULU-1992) 5. LAVANTA: 5.1. LATİNCE: Lavundula L. 5.2. İNGİLİZCE ADI: Lavender. 5.3. MAHALLİ ADLARI: Lavanta, Gargan, Karabaş Otu. 5.4. BİTKİ HAKKINDA GENEL BİLGİ ÜLKEMİZDEKİ YAYILIŞI: Lamiaceae familyasının bir cinsi olan lavantaların dünya üzerinde yaklaşık olarak 26 türü mevcuttur. Çok yıllık ve yaklaşık 1m. Ye kadar boylanabilen bir bitkidir. Lavantalar dünya üzerinde başta orta Avrupa olmak üzere, Akdeniz ülkeleri, kanarya adaları, Habeşistan ve Doğu Hindistan'da yayılış göstermektedir. Fransa, İspanya ve İtalya'da uçucu yağ oranı yüksek olan bazı türler büyük oranda kültür bitkisi olarak yetiştirilmektedir. Dünya üzerinde yaygın olarak bulunan iki tür l. Officinalis l. Ve l. Angustifolia mill. (subsp. Angustifolia) syn.:spica l. olup bunların içinden l. Angustifolia ile diğer bir lavanta türü olan l. Stoechas l. Ülkemizde tabii olarak yetişmektedir. Bu türlerin yayılış alanı şöyledir: L. ANGUSTİFOLİA MİLL. (SUBSP. ANGUSTİFOLİA) SYN: SPİCA L.: İstanbul, Akdeniz Ve Ege Bölgesinde. L. STOECHAS L.: İstanbul Civarı, Ege Ve Akdeniz Bölgesi Tabii Yayılış Alanıdır. 5.5. KULLANILAN BÖLÜMLERİ: Tıbbi amaçla taze çiçekli dal uçları, parfümeri ve kozmetik sanayi için ise kısmen kurutulmuş çiçek ve yaprakları. 5.6. SANAYİDEKİ KULLANIM ALANI: İlaç sanayinde bazı preperatlara koku vermede,merkezi sinir sistemini düzenleyici ilaçların bileşiminde yer almaktadır. Ancak sanayide bünyelerindeki linalol ve linalil asetatdan dolayı da parfümeri ve kozmetikte cilt temizleyici losyon, kokulu banyo sabunu ve köpüklerinin yapımında kullanılmaktadır. 5.7. HALK ARASINDAKİ KULLANIM ALANI: Halk arasında çay gibi demlenerek baş dönmesi ve sinirsel sıkıntılara karşı içilir. Alkol ve zeytin yağında bekletilerek elde edilen tentürüde kullanılmaktadır. 5.8. DROG OLARAK ÖZELLİKLERİ: Sivilceler astım, bronşit, saç dökülmeleri, kadın hastalıkları, sinir hastalıkları, bazı cilt hastalıkları, akciğer hastalıkları, romatizma, tenya, öksürük ve baş dönmesine karşı kullanılan ilaçların bileşimine girmektedir. 5.9. YETİŞTİRİLMESİ: İKLİM VE TOPRAK İSTEKLERİ: Toprak yönünden seçici olmayan bir bitkidir. Ancak; kuru, hafif kireçce zengin yerleri sever. Özellikle toprağın belli derinlikte yeterli neme sahip olması gerekir. Lavanta çiçekleri, soğuğa fazla dayanıklı değildir. Fakat, orta Avrupa koşullarda kışı geçirecek kadar soğuğa dayanıklı bazı türleri mevcuttur. (İLİSULU'DAN CEYLAN - 1981) Deniz seviyesinden 1350 m. Yükseklikte yetişir. Açık, güneşli havalar ve taşlık, eğimli yerler yetişmesi için uygundur. EKİM- DİKİM: Tohum ile üretildiği gibi vejetatif olarak da üretilebilir. Vejetatif üretim, yan kök sürgünleri veya yaşlı bitkilerden elde edilebilecek çelikler ile yapılabilir. Ancak, uygulama daha çok tohumla yapılmaktadır. Tohumlar, önce yastık ve seralara ekilir. Genellikle yastık ve seralara şaşırtılır. İlkbahar'da tarlaya dikimi yapılır. Yastıklara ekim yapıldığında, 40-50 gr tohumluk 15 metrekarelik yere ekilir ve buradan 1 dekarlık alana yetecek kadar fide elde edilir. Tarlaya dikim, bölgelere göre nisan ve haziran aylarına kadar değişir. İlk sene; kısa saplı, oldukça zayıf bitkiler oluşur. Çiçeklenme, ikinci yıldan itibaren başlar. Dikimde, 40x30 veya 40x40 cm mesafe uygulanır. Kurulan plantasyondan, 2-3 yıl faydalanılır. Almanya koşullarında 4-5 yıl; güney Afrika'da 3 yıl yararlanıldığı belirtilmektedir. (İLİSULU -1992) BAKIM: Toprağın havalandırılması ve yabancı otların temizlenmesi, bakım işlerini oluşturmaktadır. Bunun için ara sıra özellikle sulamadan sonra çapa işlemi yapılmalıdır. Ayrıca, bitkilerin hafif donlardan zarar görmemeleri için, üstlerinin özellikle almanya için patates veya diğer bitki artıkları ile örtülmesi önerilmektedir. Kireçce zengin toprak istemektedir. 2-3 yılda bir kompost ile gübrelenmesi, olumlu etkide bulunmaktadır. Azotlu ve fosforlu gübreleri seven bir bitkidir. Dekara 4-6 kg azot, 8-12 kg k2o, 2-7,5 kg p2o5 verilmesi önerilir. (İLİSULU' DAN CEYLAN -1981) HASAT: Yan dallardaki çiçek başlarında, orta saptaki başakların da çiçeklendiği dönemde, hepsi birlikte hasat edilir. 15 ağustos 'tan sonra lavanta çiçeğinin hasat, birkaç defa edilmemesi önerilmektedir. Çiçekteki uçucu yağ oranı, tam çiçeklenme devresine kadar belirgin bir şekilde artmaktadır. Bu nedenle, iyi kalitede bir lavanta çiçeği droğu, bu devredeki hasatta elde edilir ancak, ceplerindeki uçucu yağ miktarı, çiçeklenme sonuna kadar çoğalmaktadır. Hasat; çiçek başak sapından, başaktan 10 cm kadar aşağıdan orak v. B. İle biçilerek yapılır. Lavanta çiçeğinde eş zamanlı bir çiçeklenme olmadığından hasat, birkaç seferde tamamlanır. Kodekslere göre, sadece çanak yapraklarıyla birlikte hasat, elle çiçekleri toplanarak da yapılabilir. KURUTMA: Lavanta çiçeğini, güneşte kurutmamak gerekir. Güneşte kurutmada, renk ve aroma zarar görür. Suni kurutmada ise çok dikkatli olmak gerekir. Sıcaklığın 30 c civarında olmasına özen gösterilmelidir. Saplarıyla hasat edilmiş lavanta çiçeğinde sapların ayıklanması, kurutmadan sonra yapılır. Eğer endüstriyel yağ alınması amaçlanmış ise sapların ayıklanması, kurutmadan sonra yapılır. Eğer endüstiriyel yağ alınması amaçlanmış ise sapların ayıklanması mutlak gerekli değildir. (İLİSULU - 1992) VERİM: Lavanta'nın verimi, değişken özellik gösterir. Heeger'e göre lavanta çiçeği, 30-50 kg/da; herba (lavanta yaprağı, sapı, çiçeği) 150-200 kg/da arasında değişmektedir. Daha sonraki yıllarda verim ve uçucu yağ miktarının arttığı görülmüştür. MUHAFAZA, AMBALAJ VE PAKETLEME: Güneş ışınlarından korunmuş, rutubetsiz, havalanması iyi depolarda muhafaza edilmelidir. Küçük paketler veya poşetler halinde uygun şekilde ambalajlanarak pazarlanabilir. (İLİSULU- 1992) 5.10. EKONOMİK ÖNEMİ: Lavanta çiçeği, doğal olarak üreyebildiği gibi bugün birçok ülkede ve ülkemizde, kültürü yapılarak üretilmektedir. Ülkemizde üretim miktarı, kesin olarak belli değildir. Ülkemizde drog olarak ithalatı yapılmamakta, ancak etken maddeleri ithal edilmektedir. (İLİSULU- 1992) 6. OĞULOTU: 6.1. TAKIM: Tubiflorales 6.2. FAMİLYA: Lamiaceae 6.3. CİNS: Melissa 6.4. TÜR: Melissa Officinalis (Adi Oğulotu, Oğulotu, Kovanotu, Melissa, Limonotu, Acem, Turincin) 6.5. KÖKENİ VE YAYILIŞI: Akdeniz bölgesi ve Doğu Anadolu Bölgesi’nde doğal yetişir. İspanya ve Doğu Avrupa ülkelerinde kültürü yapılır. Yabani formları bütün Akdeniz ülkelerinde ve güney Alplerde bulunmaktadır. 10. Yüzyılda araplar, kalp kuvvetlendirici, kişi gücünü artırıcı olarak kullanmıştır ve melankoliye iyi geldiği bildirilmiştir. Ancak 20. Yüzyıl başlarında bu bitkinin özelliği ortaya çıkmıştır. Alttür ve varyeteleri ılıman iklimlerde yabani olarak veya Akdeniz ülkeleri ve K.Amerika’da kültür bitkisi olarak yetişmektedir. Tohum ayırma ve çelikle üretilir. Yayıldığı ülkeler; Fransa, Bulgaristan, Almanya, Romanya’dır. Ülkemizde ise İstanbul, Bursa, Ege ve Akdeniz bölgesinde yaygın olarak yetişmektedir. 6.6. BİTKİSEL ÖZELLİKLERİ: Çok yıllık otsu bir bitkidir. Çok lifli, rengi beyazımsıdan açık kahverengiye kadar değişen ve çok sayıda yan kökleri kapsayan bir köke sahiptir. Sapı dik ve yarı dik olup 60-100 cm kadar boylanır. Enine kesiti 4 köşeli olup üzeri tüylüdür. Yaprakları dekussat dizilişi olup 1,5- 3,5 cm uzunluğundaki bir sap ile gövdeye bağlanır. Yaprakları oval veya kalp şeklinde olup uç kısmı sivridir. Yaprak 2,8 cm boyunda, 1. 5-5 cm genişliğinde ve kenarları dişlidir. Genellikle alt yapraklar, üst yapraklardan büyüktür. Alt yüzü çıplak, üst yüzü ise genellikle fırça tüylerle kaplıdır. Yaprağın enine kesitinde üst üste epidermis onun altında, palizat tabakası, sonra gevşek yapılı paranşim (sünger) tabakası, en altta ise epidermis bulunur. Epidermis hücreleri, yaprak üst yüzeyinde, alt yüzeyinden daha kuvvetlidir. Her iki yüzeyde de çok sayıda tek hücreli konimsi tüyler bulunur. Özellikle damarlar üzerinde uzun ve 3-5 hücreli tüyler vardır. Druze tüylerinin 3 farklı tipi bulunur. Bunlara göre yapraklardaki yağ oranı değişebilir. Bu formlar: Kısa Saplı, Genellikle Tek Hücreli Tüyler. Uzun Saplı Ve Büyük Hücreli Tüyler. Karakteristik Druze Tüyleri Topluluğu Olduğu Bilinir. Oğulotu'nun çiçekleri oldukça küçük, sarımtrak, beyaz veya pembe renkte yapraklar hizasında 6-12'si bir arada halka halinde dizilmişlerdir. Çanak yaprakların 2 dudaklı, üst tarafının düz ve 3 dişli, taç yapraklarının 2 dudaklı olduğu ve 4 erkek organın bulunduğu, kokusunun hoş, limonlu ve tadının acı olduğu bildirilmektedir. Çiçeklerin sap uçlarında küme halinde bulunduğunu, renklerinin mavimsi beyaz, açık leylak veya sarımsı beyaz olabildiğini, erdişi çiçekler yanında yalnız dişi veya yalnız erkek çiçeklerin bulunabileceğini belirtmektedir. Tohumlarının ortalama bin dane ağırlığı 0,620 gr'dır. Tohumlarının çimlenme kabiliyetinin % 70'den çok ve safiyetinin % 95 olması istenir. Çimlenme kabiliyetini 2-3 yıl devam ettirebilir. 6.7. FAYDALANMA YÖNLERİ: Faydalanma yönleri, daha çok Avrupa'da bilinir. Az miktarlarda özel yemeklerde kullanılır. Çorba, salata, et, sebze, yumurta, peynir, tatlı ve içeceklerde kullanılır. Gıda sanayinde baharat halinde ekstrakt veya uçucu yağı likör, alkolsüz içecek, fırın ürünleri, dondurma ve şekerlemelerde kullanılır. Gıda sanayi dışında parfümeri, kozmetik sanayinde, eczacılıkta kullanılır. Ayrıca çay olarakta tüketilir. Bitkinin yaprakları, çiçekli dalları kullanılır. Çiçek açma mevsiminde toplanır ve gölgede kurutulur. Midevi, teskin edici, ferahlatıcı olarak infüzyon %1) halinde kullanılır. Kullanımı sırasında taze olanı tercih edilmektedir. Eskiden beri halk hekimliğinde gaz çıkartıcı, ateş düşürücü, sinirleri yatıştırıcı, kuvvetlendirici, olarak kullanıldığı ve 2 gr. Oğulotu yağının yorgunluk giderici, uyku getirici, tansiyon düşürücü, nabız atışlarını yavaşlatıcı ve nefes darlığına da kullanıldığı belirtilmektedir. Oğulotunun suyu, damıtıcı olarak elde edilirse daha çok etkili olduğu belirtilmektedir. Oğulotundan elde edilen suyun bir damlasında bulunan kuvvet, tazesinden kaynatılarak elde edilen 25 gr'da bulunmadığı, bu nedenle kalp rahatsızlıklarının en büyük ilacı olduğu, kalp çarpıntısını ve nefes darlığını giderdiği, zekayı arttırdığı, insanlardaki korkuyu izole ettiği ve daha birçok rahatsızlığa iyi geldiği bildirilmektedir. Oğulotu yağı, eczacılıkta "melissa ruhu" olarak bilinir. Birçok sinir, mide, kalp ilaçlarının yapımında kullanılmakta, astım ve başağrısına, bağırsak sancılarına çok iyi geldiği belirtilmektedir. 6.8. YETİŞTİRİLMESİ İKLİM VE TOPRAK İSTEKLERİ: Fazla kuru olmayan, sıcak ve güneşli yerleri sevdiği besin maddelerince zengin olan kumlu- tınlı topraklarda iyi yetiştiği; belirli ölçüde gölgeye dayanıklı olduğu, fazla rutubetli ve gölgeli yerlerde, özellikle kaliteli drogları elde etme imkanı bulunmadığı belirtilmektedir. EKİM- DİKİM: Oğulotunun yetiştirilmesinin, başlıca üç yöntemle yapılabileceği bildirilir. A-) VEJETATİF ORGANLARLA YAPILAN ÜRETİM: Bitkinin toprak üstü veya toprak altı organlarından yararlanılır. Toprak üstü organlarından koltuk altı sürgünleri alınır. Özellikle yaşlanmış bitkilerde ilkbaharda sürgünler biraz uzayınca bunlardan alınarak yeni üretim yapılır. Toprakaltı organlarından yararlanılacak ise sonbaharda veya ilkbaharda çok erken devrede söküm yapılarak istenilen sıra arası mesafede dikimler yapılır. B-) Yastıklarda fidelerin yetiştirilmesi ve bunların tarlaya şaşırtılması: Bunun için 50-80 gr 12-15 m 'lik yere ekilir. Bundan elde edilecek fide, 1 dekarlık alan için yeterlidir. Yastıklara ekimi yapılan tohumlar 3-4 hafta sonra çimlenir. Yeterince büyüyüp dikilecek duruma geldiğinde tarlaya şaşırtma işlemi, sonbaharda ve ilkbaharda yapılır. Şaşırtma, eğer sonbaharda yapılacak olursa, yastıklara tohumların temmuz - ağustos aylarında ekimleri gereklidir. Genç bitkiler, donlara hassas olduklarından, sonbaharda şaşırtma yapıldıktan sonra bitkilerin üzerlerinin, tahıl saplarıyla örtülmesi tavsiye edilir. Şaşırtma ilkbaharda yapılacaksa yastıklara ekim, kış aylarında yapılır. Daha canlı fideler elde etmek için yastıklardan başka bir yastığa şaşırtma yapılır. Bir müddet bekletildikten sonra oradan tarlaya şaşırtılır. Tarlaya dikimde sıra arsı veya sıra üzeri mesafeleri, oğulotunun büyüme tipine göre değişmektedir. Yatık büyüyenler, 50 x 40 cm; dik büyüyenler ise 40 x 30 cm. Aralıklarla dikimleri yapılmaktadır. C-) Doğrudan doğruya tarlaya ekim: bu yöntem,yaygın olmadığı gibi literatürlerde de pek rastlanmamaktadır. Ancak, Bornova ve menemen ekolojik şartlarında yapılan uygulamalarda, tohumları erken sonbaharda tarlaya ekmekte de üretim yapabilme imkanı olduğu anlaşılmıştır. Fakat bu yöntem üzerinde daha detaylı çalışmaların yapılabilmesi sıra arsı mesafeleri, atılacak tohum miktarı ve en önemlisi ekim zamanının tam olarak belirtilmesi gerekir. BAKIM: En önemli bakım işi, yabancı ot çapası ve ot almadır. Bu işlemler özellikle bitkinin ilk gelişme öneminde önemlidir. Nem ve sıcaklık uygun olduğu taktirde kısa zamanda hızla büyür ve toprak yüzeyini kaplar Ege bölgesinde ise çapa ve sulama, mutlaka gerekir. Sulama işlemi ise fideler büyümeye başladığında ya da biçimden sonra yapılmalıdır. İlk çapadan sonra, bitkiler toprak yüzeyini kaplamadan önce ikinci çapanın yapılması gerekir. Sulamanın sıklığı, yetiştirildiği bölgenin durumuna ve gelişme zamanına göre değişmekle beraber özellikle yaz aylarında her biçimde 2-3 kez sulanması gerekmektedir. İyi bir şekilde gübreleme, verime çok etkide bulunur. Gübrenin bir kısmı da her biçimden sonra verilmesinin, uygun olduğu belirtilmektedir. Dekara 6-8 kg azot vermek, yeterlidir. HASAT- BİÇİM: Genellikle yılda 3 kez ve çiçeklenmeden hemen önceki devrede biçilmesi uygundur. Yaprakların, ağustos ayında çok fena koktuğunu, bu nedenle Haziran ayında daha çiçek açmadan biçilip kurutulması gerektiği belirtilmektedir. Biçimi, toprak seviyesinden 5-10 cm yukarıdan yapılır. Ayrıca son biçimin çok geç kalmaması, kışı geçirebilmesi için son biçimden sonra biraz sürgün vermesi gerektiği, biçilen yeşil herbanın bastırmaya karşı çok hassas olduğu, bu nedenle biçilen yeşil herbanın bastırmaya karşı çok hassas olduğu, bu nedenle biçilen yeşil herbanın taşınması esnasında bastırılması halinde basılan yerlerin kurutma esnasında siyaha dönüştüğünü, bunun ise kaliteyi çok olumsuz etkilediği kaydedilmektedir. Oğulotunun haziran ayında çiğden sonra ve kuru zamanlarda toplanması gerektiği, böyle olmazsa bitkide kötü bir koku oluştuğu ve her türlü kullanma özelliğini kaybettiği belirtilmektedir. Küçük işletmelerde biçimden hemen sonra sap yaprak ayrımı yapılarak kurutulduğu büyük işletmelerde ise biçimden hemen sonra yeşil herbanın küçük parçalara ayrıldığı, bu parçaların vantilasyonla ve sap yaprak kısımlarının ayrıldığı, fakat bu yöntemle elde edilen droğun pek kaliteli olmadığı, çünkü içinde belli ölçüde sap parçacıkları bulunduğu ayrıca parçalanmaile yapraklarda önemli uçucu yağ kaybı söz konusu olduğu belirtilmektedir. 6.9. KURUTMA: Biçimden hemen sonra kurutmanın yapılması gerekmektedir. Aksi halde yaprakların rengi koyulaşmakta hatta koyu kahverengiye dönüşmektedir. Kurutma sıcaklığının 20-35 c arasında olması 40 c yi geçmemesi istenir. Bitkinin tümünü iyi havalanan bir yerde, serili olarak yarı yarıya gölgede veya güneş'te kurutulabileceğini bildirmektedir. 6.10. VERİM: Oğulotunun verimi, dikim zamanında, ekolojik şartlara göre büyük varyasyon göstermekte, özellikle ilk yıl verim düşük olmakta, ikinci yıldan itibaren arttığı, yeşil herba veriminin ilk yıl 200-1000 kg/da, ikinci yıl 1000-2000 kg/da arasında değiştiği, buna göre kuru drog yaprak miktarı dekara 100-200 kg civarında elde edildiği belirtilmektedir. 6.11. MUHAFAZA, AMBALAJ VE PAZARLAMA: Küçük demetler halinde asıl olarak saklanabileceği veya bitkinin tüm özelliklerinin toplandığı, yaprakların muhafazası gerekli olduğu belirtilmektedir. Güneş ışınlarından korunmuş, nemsiz, havalanması iyi depolarda muhafaza edilmelidir. Küçük paketler veya poşetler halinde uygun şekilde ambalajlanarak pazarlanır. 6.12. EKONOMİK ÖNEMİ: Oğulotu, doğal olarak yetişebildiği gibi, Avrupa ülkelerinde kültürü yapılmaktadır. Ülkemizde kültüre alma çalışmaları, devam etmektedir. İstatistiki kayıtlarda ülkemizdeki üretime dair herhangi bir bilgiye rastlanmamıştır. Fakat birçok yerde doğada kendiliğinden yetiştiği bilinmektedir. İthalat: Oğulotunun ithalatı ülkemizde drog olarak yapıldığına dair istatistiki bir kayda rastlanmamıştır. Ancak, uçucu yağ ithalatının yapıldığı belirtilmektedir. İhracat: Ülkemizde oğulotunun ihracatının yapıldığını gösteren bir kayıta rastlanmamıştır. Bu bitkinin üretimi belli bir plan ve program dahilinde yapıldığında ihracaatı yapılan bitkiler arsında kolaylıkla yeralabileceği söylenmektedir. 7. ANASON: 7.1. LATİNCE ADI: Pimpinella Anisum L. 7.2. İNGİLİZCE ADI: Garden Sage 7.3. MAHALLİ ADLARI: Anason 7.4. BİTKİ HAKKINDA GENEL BİLGİ VE ÜLKEMİZDE YAYILIŞI: Anason çok eski bir kültür bitkisidir. Kökeninin neresi olduğu tam olarak bilinmemektedir. Ancak Mısır, Suriye, Kıbrıs, Yunanistan, Ege adaları ve Türkiye'nin olabileceği kanısı yaygındır. Bugün anason değişik iklim bölgelerinde yayılmıştır. Ancak sıcak iklim bölgelerindeki yaygınlığı daha fazladır. Anasonun kültürü bir çok ülkede yapılmaktadır. İspanya, Balkan ülkeleri, Güney Rusya ve Türkiye en fazla anason üretimi yapan ülkelerdir. Anason sıcak, orta nemlilikte iklimden hoşlanır. Yurdumuzun özellikle Ege, Marmara ve Güney Anadolu bölgeleri iklim yönünden uygun yörelerdir. Anason üretimi yıllık 20. 000 ton dolayındadır. Yurdumuzda en fazla anason antalya - denizli- burdur- Muğla ve İzmir yörelerinde üretilmektedir. ABD, Brezilya, Hollanda, Almanya, Fransa, İtalya, İspanya ve Yunanistan Türkiye'nin %74 anasonunu alırlar. 7.5. VERİM: Anasonda verim bölge ekolojik koşullarına, yetiştirme tekniğine ve kullanılan çeşide göre büyük değişiklik göstermektedir. Bornova koşullarında ispanya, çeşme ve Isparta kökenli anasonların kasım, şubat ve mart aylarındaki ekimlerinde en yüksek verim şubat ekiminden elde edilmiş bulunmaktadır. Burada çeşme (İzmir) çeşidi ortalama 43 kg/da, ispanya çeşidi ise 73 kg/da verim vermiştir. Literatürde verimin 50-100 kg/da arasında değiştiği belirtilmektedir. 7.6. KULLANILAN BİTKİ KISMI: Fractus Anisi İçerdiği etken madde:anoson meyvesi uçucu yağ içermektedir. Bunun oranı %1. 5-3 arasında değişmektedir. 7.7. KULLANIM ALANI: Anason midevi, karminatif, iştah açıcı ve koku verici etkilere sahiptir. Anasonun karminatif etkisi mide ve bağırsaklarda fermantasyona engel olmasından ileri gelmektedir. Ayrıca anason bazı içkilerin (rakı, anitez) hazırlanmasında da kullanılmaktadır. 8. FESLEĞEN 8.1. TAKIM:Tubiflorales 8.2. FAMİLYA:Lamiaceae 8.3. CİNS:Ocimum 8.4. TÜR: Ocimum Basillicum L. 8.5. KÖKENİ VE YAYILIŞI: Nane, kekik ve yabani kekiğin akrabasıdır. Kökeni güney Asya özellikle Hindistan'dır. Uzak ülkelerden onu ilk defa getiren İskender'dir. Fesleğen Sezar'ların Roma'sında XII. Yüzyılda güney Fransa'da ekilip biçilen bir bitkiydi. 8.6. BİTKİSEL ÖZELLİKLERİ: Fesleğen tek yıllık bir bitkidir. İnce, dallanmış kökleri vardır. Dallanmış veya dallanmamış dik veya yarı dik, 50-60 cm yükseklikte saplara sahiptir. Yapraklar çeşitlere göre değişmekle birlikte genellikle yumurtamsı uzun, taban kısmı küt, az dişli ve saplıdır. Tabandan itibaren dallanma veya dallanmayansap veya yapraklar çıplak ve zayıf tüylüdür. Yaprak rengi açık yeşilden koyu yeşile kadar değişir. Az veya çok fazla olan yaprak yüzü bazende dalgalıdır. Büyük veya küçük yapraklar vardır. Çiçek sapın ucunda bulunur. Çiçekler genelde altısı bir arada bulunan başak görünümündedir. Alt kısmında başaktaki çiçekler seyrek, üst kısmında sıktır. Taç yapraklar beyaz renklidir. Meyvesi yumurta şeklinde uzunumsu eliptik şekle kadar değişir. Karın kısmı keskin köşelidir. Uzunluğu 1,5-2,0 mm, kalınlığı ise genellikle 1. 0 mm kadardır. Hilum daha açık renkli ve belirgindir. Meyvenin yüzeyi kırışık ve damarlıdır. Rengi koyu kahverengidir. 8.7. ETKEN MADDESİ:Çiçekler dalı veya yapraklarının distilasyonu ile uçucu yağ elde edilir. Uçucu yağın oranı %0. 1-0. 45 arasındadır. Uçucu yağın en önemli kısmını methyl cavicol (estragol), lilanol ve acimine teşkil eder. Herbada doneli maddeler vardır. Ticari ölçüde yağ birimi bilinmemektedir. Deneme, ekimleri dönümünden 2-4 kg yağ alınabileceğini göstermiştir. Buhar destilasyonu ile ayrılan yağından 37 bileşik (madde) tespit edilmiştir. Fidedeki önemli yağ maddesi methyleugenol 'dür. Dorg olarak sap, yaprak ve çiçekleri kullanılır. 8.8. FAYDALANMA YÖNLERİ: Fesleğen çok uzun zamandan beri ilaç olarak kullanılan güzel kokulu bir bitkidir. Halk arasında birçok hastalığa karşı kullanılmasına karşın modern ilaçlarda önemli bir yeri yoktur. Öksürükte, mide rahatsızlıklarında, idrar yolları hastalıklarında, streste ve çeşitli çayların bileşiminde kullanılır. İlaç sanayinde, yiyecek endüstrisinde konserve yiyeceklerde ve içkilerde kullanılır ve bakterilere karşı koruyucu bir özelliği vardır. Fesleğen kokusu sivrisinek ve tahta kurusu gibi haşaratı kaçırır. Zafiyeti ve hazımsızlığı giderir, arı sokmalarında faydalanılır. 8.9. YETİŞTİRİLMESİ: Fesleğen yabancı ot bulunmayan temiz bir tarla ister. Ekim nöbetinde çiftlik gübresi ile iyi gübrelenmiş çapa bitkisinden sonra gelmesi önerilmektedir. Tarlavari üretimde tohum direkt tarlaya mibzerle ekilebilir. Bu durumda dekara kullanılacak tohumluk miktarı 0,6-1,0 kg civarındadır. Sıra arası ise 30-40 cm' dir. Ekim soğuk bölgelerde don tehlikesi geçtikten sonra yapılmalıdır. Ege bölgesinde eğer ön sulama olanağı varsa eylül ayında ekmek en uygunudur. Eğer ekim sonbaharda yapılamayacak durumda ise ilkbaharda erken ekime gidilmesi gerekmektedir. Soğuk bölgelerde sonbaharda ekme olanağı bulunmadığından zorunlu olarak ilkbaharda ekim yapılmaktadır. Ancak aslında bu bölgelerde ilkbaharda da tarlaya geç girilebildiği ve son don tehlikesi geç ilkbahar' da ortadan kalktığından bu tarihlerden sonra yapılan ekimlerle oldukça geç kalınmaktadır. İşte bu geç durumu gidermek için direkt tarlaya ekim yanında fide şeklinde üretimde söz konusudur. Bu durumda kıştan yastıklara ekim yapılmakta ilkbahar da fideler tarlaya 30 x 25 cm aralıklarla şaşırtılmaktadır. Yastıklara 60-80 gr tohum bir dekar yer için yeterli fideyi sağlayabilmektir. Fesleğen bol besinli toprakları tercih eden bir bitkidir. Bu nedenle zengin topraklarda yetiştirilmesi yanında üretiminde kimyasal gübrelerinde kullanılması gerekmektedir. Bunun için ekiminde dekara 4-6 kg n, 3-5 kg p2o5 ve 10-12 kg/da k2o verilmesi önerilmektedir. Ancak bu miktarlar fakir topraklarda en az 1/3 oranında arttırılmalıdır. Fesleğenin vegetasyon devresi esnasında en önemli sorunu yabancı otlarla mücadeledir. Özellikle kurak bölgelerde yabancı ot yanında sulamada iyi bir gelişim için üzerinde durulması gereken kültürel önlemlerdendir. 8.10. HASAT: Biçme genel olarak çiçeklenme başlangıcında yapılır. Uygun yıllarda birden fazla biçim söz konusudur. Ege koşullarında verim, geciktikçe azalmakla beraber üç biçim yapılabilmiştir. Biçimi takiben bitkileri sıkı demet yapmadan taşımalı ve 30-35 c de kurutmalıdır. 8.11. VERİM: Almanya şartlarında ortalama drog herba verimi 80-150 kg/ da arasında değiştiği belirtilmektedir. Eğer ikinci biçim yapılabilir ise bunun 200 kg/da'ı bulabileceği bildirilmektedir. Ege koşullarında ise yapılan ön araştırmalarında drog herba miktarının 350 kg/da 'ı bulduğu saptanmıştır. 8.12. HASTALIK VE ZARARLILARI: Fesleğende en fazla görünen hastalık mantarların yaptıkları yaprak lekeleridir. Genç devrede yaprak bitkilerinin de zararı oldukça büyük olmaktadır. 8.13. KULLANILAN BİTKİ KISMI: Herba Basilici 8.14. ETKEN MADDELERİ: Fesleğenin çiçekli dal ve yapraklarının destilasyonu ile uçucu yağ elde edilmektedir. Uçucu yağ oranı %0.1- %0.45 arasında değişir. Uçucu yağın en önemli kısmını methylcavucol (astragol) ve linalol teşkil eder. Ayrıca fesleğen herbasında taneli maddelerde vardır. Fesleğen midevi, balgam söktürücü ve idrar yolları antiseptiği olarak kullanılır.

http://www.biyologlar.com/aromatik-ve-tibbi-bitkiler

BİYOMİMETİK NEDİR?

Gerek biyomimetik, gerekse biyomimikri doğadaki modelleri inceleyen, sonra da bu tasarımları taklit ederek veya bunlardan ilham alarak insanların problemlerine çözüm getirmeyi amaçlayan yeni bilim dallarıdır. Biyomimetik, insanların doğada bulunan sistemleri taklit ederek yaptıkları maddelerin, aletlerin, mekanizma ve sistemlerin tümünü ifade eden bir terimdir. Doğadaki tasarımlar örnek alınarak yapılan aletlere, özellikle nanoteknoloji,1 robot teknolojisi, yapay zeka (AI), tıbbi endüstri ve askeri donanım gibi alanlarda kullanılmak için gerek duyulmaktadır. Biyomimikri, ilk defa Montanalı bir yazar ve bilim gözlemcisi olan Janine M. Benyus tarafından ortaya atılmış bir kavramdır. Türkçe karşılığı "biyotaklit" olan bu kavram, daha sonra pek çok kişi tarafından yorumlanmış ve uygulamaya geçirilmiştir. Biyomimikri hakkında yapılan yorumlardan biri şöyledir: Biyomimikrinin ana teması doğadan model, ölçü ve akıl olarak öğrenecek çok şeyimiz olduğudur. Bu araştırmacıların ortak noktası, doğadaki tasarıma saygı göstermeleri ve insanların karşılaştıkları problemlerin çözümünde bunları kullanarak ilham almalarıdır.2 Ürün kalitesini ve verimini artırmada doğadan faydalanan şirketlerden biri olan Interface'in ürün stratejisti David Oakley de biyotaklit konusunda şunları söyler: Doğa, benim iş ve tasarım konularında akıl hocam, yaşam tarzım için bir model. Doğanın sistemi milyonlarca senedir çalışıyor… Biyotaklit, doğadan öğrenmenin bir yoludur.3 Nitekim bilim adamları hızla yaygınlaşan bu fikri benimsemişler, önlerindeki benzersiz ve kusursuz modelleri örnek alarak çalışmalarına hız kazandırmışlardır. Özellikle endüstri alanında doğadaki gibi uygun hammaddeler ve ekonomik sistemler geliştirmeyi amaçlayan bilim adamları ve araştırmacılar, şimdi el birliğiyle doğayı nasıl taklit edeceklerinin yollarını araştırmaktadırlar. Doğadaki tasarımlar en az malzeme ve enerji ile en fazla verim almaları, kendi kendilerini onarma özellikleri, geri-dönüşümlü ve doğa-dostu olmaları, sessiz çalışmaları, estetik, dayanıklı ve uzun ömürlü olmaları bakımından teknolojik çalışmalara örnek teşkil ederler. High Country News adlı bir gazetede biyomimetik bilimsel bir hareket olarak tanımlanmış ve şöyle bir yorum yapılmıştır: Doğal sistemleri model alarak, bugün kullandığımızdan çok daha uzun süreli teknolojiler oluşturabiliriz.4 Biomimicry adlı kitabın yazarı Janine M. Benyus ise, doğada gördüğü mükemmellikler üzerinde düşünerek, doğadaki modellerin taklit edilmesi gerektiğine inanmıştır. Onu böyle bir yaklaşımı savunmaya yönelten örneklerden bazıları şunlardır: -Arı kuşlarının 10 gramdan daha az bir yakıtla Meksika Körfezi'ni geçebilmeleri, -Yusufçukların en iyi helikopterlerden bile daha iyi manevra yapabilmeleri, -Termit kulelerinde bulunan iklimlendirme ve havalandırma sistemlerinin, donanım ve enerji sarfiyatı bakımından insanların yaptıklarından çok daha üstün olmaları, -Yarasanın çok-frekanslı ileticisinin, insanların yaptığı radarlardan daha verimli ve duyarlı çalışması, -Işık saçan alglerin vücut fenerlerini aydınlatmak için çeşitli kimyasalları biraraya getirmeleri, -Kutup balıkları ve kurbağaların donduktan sonra yeniden hayata dönmeleri ve organlarının buz nedeniyle hasara uğramaması, -Bukalemunun ve mürekkep balığının, bulundukları ortamla tam bir uyum içinde olacakları şekilde derilerinin renklerini, desenlerini anında değiştirmeleri, -Arıların, kaplumbağaların ve kuşların haritaları olmadan uzun mesafeli uçuşlar yapabilmeleri, -Balinaların ve penguenlerin oksijen tüpü kullanmadan dalmaları, -DNA sarmalının bilgi depolama kapasitesi, -Yaprakların fotosentez işlemi ile, yılda 300 milyar ton şeker üretimi yaparak dünyanın en büyük kimyasal işlemini gerçekleştirmesi... Yukarıda sadece birkaç örneğine yer verdiğimiz doğadaki hayranlık uyandıran bu gibi mekanizma ve tasarımlar, teknolojinin birçok alanını zenginleştirme potansiyeline sahiptir. Bilgi birikimimizin artması ve teknolojik imkanların gelişmesi ile birlikte bu potansiyel her geçen gün daha da ortaya çıkmaktadır. Örneğin 19. yüzyılda doğanın taklidi sadece estetik açıdan uygulama sahasına sahipti. Dönemin ressam ve mimarları doğadaki güzelliklerden etkilenmiş, yaptıkları eserlerde bu yapıların dış görünüşlerini örnek almışlardı. Ama doğadaki tasarımların olağanüstülüğünün ve bunların taklidinin insanlar için fayda sağlayacağının anlaşılması, ancak doğal mekanizmaların moleküler seviyede incelenmesiyle başlamıştır. Çünkü doğadaki kusursuz düzen, detaya inildikçe daha da şaşırtıcı bir boyut kazanmaktadır. Biyomimetikle ortaya çıkan malzeme ve aletler gelecekte de kullanılabilecek yapıdadır: Yeni solar hücreler, gelişmiş robotlar ve uzay gemilerinin malzemeleri gibi... Bu bakımdan doğadaki tasarımlar çok ileri bir teknolojiye ufuk açmaktadır. Kaynak: www.istanbul.edu.tr      

http://www.biyologlar.com/biyomimetik-nedir

Su Kirliliği Kontrolunde Teknolojik Yaklaşımlar ve Arıtma Yöntemlerinin Sınıflandırılması

Pis suların arıtılmasında kullanılan yöntemler, fiziksel etkilerin önem taşıdığı temel işlemler ile kimyasal ve biyolojik kimyasal ve biyolojik reaksiyonların ağırlık taşıdığı temel süreçler olmak üzere iki ana gruba ayrılabilir. Temel işlemlerde pis suyun niteliği değişmez halbuki temel süreçlerde nitelik değişimi vardır. • Bir arıtma tesisinde temel işlemlerin yer aldığı ünitelere örnek olarak ızgaralar, karıştırma, çökeltme, yumaklaştırma, yüzdürme, filtrasyon, kurutma, destilasyon, santrifüj, dondurma ve ters ozmoz üniteleri verilebilir. • Temel süreçler ise kendi içinde kimyasal temel süreçler ve biyolojik temel süreçler olarak ikiye ayrılırlar. Kimyasal çökeltme, nötralizasyon, adsorpsiyon, dezenfeksiyon, kimyasal oksidasyon, kimyasal redüksiyon, yakma, iyon değişimi ve elektrodiyaliz birer kimyasal temel süreçtir. Biyolojik temel süreçler ise aerobik, anaerobik, aerobik-anaerobik (fakültatif) olarak üç grupta incelenirler. Temel işlemler Pis surların arıtılmasında kullanılan temel işlemler; askıdaki maddelerin sudan ayrılmasını, ayrışabilen maddelerin ayrıştırılmasını ve ayrışmayan maddelerin sudan bazı özel yöntemlerle uzaklaştırılmasını sağlar. Bu amaçla uygulanan yöntemleri üç ana grupta toplamak mümkündür. • Çökeltme havuzları (basit ve yumaklaşmalı çökeltme) • Izgaralar ve filtreler • Santrifüjler (genellikle çamur arıtmasında) Bu temel işlemler pis sulardan ayrılması istenen askıdaki katı maddeye göre iki grupta incelenebilir: • Askıdaki katı madde ayrışamaz ise, bu maddelerin suyun içinden alındıktan sonra özelliklerini değiştirmesi diye bir durum yoktur. Bu maddelerde arıtma verimi genelde yüksek bir derecededir. Buna karşın söz konusu maddelerin alındıktan sonra uzaklaştırılması problem yaratabilmektedir. • Askıdaki katı madde biyolojik olarak ayrışabilen cinsten ise, bu maddelerin sudan alınması sonucunda elde edilen çamur, özelliklerini değiştirmeye başlar. Buradaki problem, çamurun genellikle çok yüksek olan su içeriğidir. Ayrıca, biyolojik olarak ayrışabilen maddeler bir aşamadan daha geçmelidir. Günümüzde bu aşama genellikle anaerobik ısıtmalı çürütme tanklarında gerçekleşir. Doğru boyutlandırılmış ve uygun çalıştırılan çökeltme havuzlarında evsel pis su için BOİ giderme verimi % 30-35 arası değişir. Bu verim oldukça düşük olmasına rağmen ucuza elde edilir. Çok yüksek verimli temel işlemlere örnek olarak destilasyon, dondurma ve ters ozmoz sayılabilir. Bunların verimleri % 90-95 arasındadır. Ancak çok yüksek işletme giderleri nedeniyle kullanımları sınırlıdır. Biyolojik temel süreçler Genellikle biyolojik temel süreçler doğadaki oksidasyon süreçlerinin bir simülasyonu (benzeşimi) niteliğindedir. Ancak bu süreçler içindeki reaksiyonlar kontrollu olarak gerçekleştirilmekte ve reaksiyon hızlarının doğadakine oranla daha yüksek olmasına çaba gösterilmektedir. Doğa ile benzeşimi yapılan olaylar akarsudaki aerobik reaksiyonlar ve akarsu tabanındaki çökellerde (sedimentlerde) görülen aerobik, anaerobik, aerobik-anaerobik reaksiyonlardır. Aerobik süreçler En yaygın şekilde uygulanan aerobik arıtma yöntemleri, aktif çamur sistemleri, damlatmalı filtreler ve aerobik stabilizasyon havuzlarıdır. Aktif çamur süreçleri genellikle büyük kentlerin pis sularının arıtımında kullanılmakta, damlatmalı filtreler ise daha küçük yerleşimlerin pis sularının ve biyolojik olarak ayrışabilen endüstri sularının arıtılmasında uygulama alanı bulmaktadır. Aerobik stabilizasyon havuzları ise büyük alan gereksinimi göstermekte ve bu yüzden arazi fiyatlarının ucuz olduğu yöreler de ve küçük yerleşimlerin pis sularının arıtılmasında ekonomik olmaktadır. Sayılan bu üç sürecin bekleme süreleri, oksijen gereksinimleri ve süreç sırasında oluşan biyolojik katı madde (mikroorganizma kütlesi) açısından farklılıkları olmakla beraber, her üçünde de temelde aynı biyokimyasal reaksiyonlar gerçekleşmektedir. Bu biyokimyasal reaksiyonlar iki aşamada gerçekleşirler. Sentez aşamasında, organik kirleticiler mikroorganizma kütlesine dönüşmektedir. Mikroorganizma kütlesi basıt olarak C5H7NO2 , organik madde ise CH2O formülleri ile tanımlanacak olursa, bunun üretimi, gerekli enzimlerin katkısı ile aşağıdaki reaksiyon sonucunda gerçekleşir. Biyokimyasal Sentez enzimler 8CH2O+ NH3 + 3O2 C5H7NO2 + 3CO2 + 6H2O + E Burada E reaksiyon sırasında tüketilen enerjiyi göstermektedir. Solunum aşamasında ise oluşan mikroorganizma kütlesi endojen respirasyon (iç solunum) ile azalma gösterir. Organik maddenin sadece sentez aşamasının kullanılması ile bile oldukça yüksek derecede bir pis su arıtması mümkün olmaktadır. Bunun nedeni, pis suda çözünür halde bulunan organik kirleticilerin çökebilir biyolojik kütleye dönüşmesi ve çökeltme ile pis sudan ayrılabilmesidir. Bu aşamada arıtmaya etkili olan olay yalnızca biyokimyasal sentez olmamakta, giderme veriminde hücre zarına adsorpsiyon ve flokülasyon (yumaklaşma) da önemli bir rol oynamaktadır. Mikroorganizma kütlesinin endojen respirasyonu aşağıdaki reaksiyon ile gösterilebilir. Biyokimyasal Solunum C5H7NO2 + 5O2 5CO2 + NH3 + 2H2O + E Bu reaksiyondaki tek amaç enerji üretimidir. Endojen respirasyon sonucunda çıkan NH3 'ün oksidasyonu gerekiyorsa, süreç nitrifikasyon aşamasına uzatılır. Toksik maddeler ve pH'tan çok etkilenen nitrifikasyon organizmaları, sentez aşamasındaki karbonlu maddelerin oksitlenmesi için gerekli oksijenden daha fazla oksijen isterler. Söz konusu reaksiyon şu şekildedir. NH3+ 2O2 HNO3 + H2O + ΔE Aktif çamur süreci Bu süreçte sentez aşaması dominant olan olgudur. Aktif çamur, sümüksü bir yapı içinde yerleşmiş çeşitli bakteri türlerinden ve aynı yapı içindeki protozoalardan oluşmaktadır. Aktif çamur sürecinde son çökeltme havuzunda toplanan çamurun sadece bir kısmı anaerobik çürütme tanklarına gönderilir. Diğer kısmı ise geri dönüş çamuru olarak sisteme döndürülmektedir (Şekil 5.8). Anaerobik çürütme tankına birim zamanda gönderilen çamur miktarı, aynı süre içinde sistemde birim zamanda üretilen mikroorganizma kütlesine eşittir. Geri dönüş çamuru, giriş suyuna karıştırılıp havalandırma havuzunda 2-6 saat havalandırılır. Havalandırmadan çıkan su, son çökeltme havuzunda biyolojik kütleden arındırılır. Aktif çamur sürecinde arıtma verimini etkileyen faktörler şunlardır: • Geri dönüş çamuru oranı, • Havalandırma süresi, • Havalandırma debisi. Geri dönüş oranının yüksek olması sistem boyutlarını küçültmekte, tesisin işletilmesi güçleşmekte ve iyi yetiştirilmiş işletme personeline gereksinim duyulmaktadır. Aynı zamanda sistem performansının da sürekli olarak ölçüm ve kontrolu gerektirmektedir. Tasarımı iyi yapılmış bir aktif çamur tesisinin BOİ arıtma verimi % 80-90 arasında değişmektedir. Daha yüksek arıtma verimlerinin elde edilmesi mümkünse de bu durumlarda gerek ilk yatırım ve gerekse de havalandırmada harcanacak enerjinin marjinal giderleri hızlı bir şekilde artmaktadır. Damlatmalı filtreler Bu süreçler gerçekte, filtre olarak çalışmazlar. Bunlara biyolojik reaksiyon yatakları denmesi daha doğru bir yaklaşımdır. Damlatmalı filtre Damlatmalı filtreler Bu süreçler gerçekte, filtre olarak çalışmazlar. Bunlara biyolojik reaksiyon yatakları denmesi daha doğru bir yaklaşımdır. Damlatmalı filtre genellikle kırık taşlardan meydan gelen yüksek geçirimli bir yataktan oluşmaktadır. Günümüzde yatak malzemesi olarak plastik de kullanılmaktadır. Uygulamada zaman zaman taş kümürü hatta tahta bile görülmüştür. Plastik dolgu malzemesi hafif olduğundan ve daha büyük yüzey sağlıyabileceğinden avantajlı olabilir. Damlatmalı filitrelerde pis su döner veya sabit fiskiyelerle filtre yüzeyine serpilmekte ve daha sonra filtre içinden taşların yüzeyinden sızarak aşağıya doğru akmaktadır. Filtrenin altında bir alt drenaj sistemi bulunur. Alt drenaj sisteminin görevi, filtre çıkış suyunu toplayıp uzaklaştırmak, havalandırmayı sağlamak ve filtre içinde sürekli olarak aerobik koşulların geçerliliğini korumaktır. Pis su içindeki organik kirleticiler, dolgu malzemesi yüzeyine yapışık olarak büyüyen ve biyofilm adı verilen yapı içinde bulunan mikroorganizmalar tarafından ayrıştırılır. Biyofilm çeşitli katmanlardan oluşur. Dış katmanlarda organik madde mikroorganizmalar tarafından aerobik olarak ayrıştırılır ve yeni biyolojik kütle sentezi yapılır. Sentez sonucunda biyofilm kalınlaşacağı için, yüzeyden kazanılan oksijenin biyofilmin tüm derinliğine difüzyonla organik madde taşınımını sınırlandırmaktadır. Böylece dolgu malzemesi yüzeyine yakın bölgede yaşayan mikroorganizmalar endojen (iç solunum) faza girer ve yüzeye yapışma yeteneklerini kaybederler. Bunun sonucunda biyofilm dolgu malzemesi yüzeyinden, yukarıdan gelen pis suların neden olduğu hidrolik kayma gerilmesi sonucunda, koparak uzaklaşır. Yerine yeni biyofilm büyümeye başladığı için aynı süreç periyodik olarak tekrarlanmaktadır. Kopan biyofilm parçacıklarını tutabilmek için damlatmalı filtre çıkış suyu bir çökeltme havuzundan geçirilmelidir. Damlatmalı filtre yönteminde de yer yer geri dönüş uygulanmakla beraber bu işlem, aktif çamur tesislerindeki kadar önemli değildir. Bunun nedeni, süreçte yer alan aktif mikroorganizmaların büyük bir çoğunluğunun dolgu maddesi yüzeyinde yapışık halde bulunması ve aktif çamur havuzunda olduğu gibi biyolojik kademenin çıkış suyu içinde yüzer vaziyette olmamasıdır. Geri dönüş uygulandığı zaman bunun ana amacı, giriş suyunun seyreltilmesi ve çıkış suyunun bir defa daha reaktörden geçirilerek biyolojik arıtma veriminin arttırılmasıdır. Damlatmalı filtre sistemlerinde özellikle geri dönüş göz önüne alındığında çeşitli seçenekler ortaya çıkar. Bunlardan birine ait örnek Şekil 5.9 ‘da görülmektedir. Hatta bazı arıtma tesislerinde değişik işletme koşulları altında (kirlilik yükü, sıcaklık, kirletici tipi) değişik geri dönüş şekillerinin uygulanması söz konusu olmaktadır. Damlatmalı filtreleri karakterize eden iki parametre: • Hidrolik yükleme hızı , • Organik yükleme hızıdır. Hidrolik yükleme hızı birim zamanda (gün) filtrenin birim yüzeyine (m2) verilen pis su olarak tanımlanır ve biyofilmi kopartacak olan hidrolik kesme hızları açısından önemlidir. Organik yükleme hızı ise, filtrenin birim hacmine (m3) birim zamanda (gün) verilen BOİ miktarı olarak tanımlanmakta ve biyofilmdeki metabolizma hızını etkilemektedir. Hidrolik ve organik yükleme hızlarına göre damlatmalı filtreler, düşük hızlı veya yüksek hızlı sistemler şeklinde ikiye ayrılabilir. Düşük hızlı bir damlatmalı filtrenin işletilmesi oldukça basittir. Biyofilmin içindeki mikroorganizma toplumu yüksek oranda nitrifikasyon bakterileri içerir. Bu yüzden düşük hızlı damlatmalı filtrelerin suyunda yüksek nitrit (NO2-) ve nitrat (NO3-) konsantrasyonlarına rastlanır. Düşük hızlı damlatmalı filtrelerde genellikle geri dönüş uygulanmaz. BOİ giderme verimi % 80 -85 arasında değişir. Bu filtrelerin olumsuz yanı özellikle sıcak mevsimlerde koku oluşumu ve sinek üremesidir. Yüksek hızlı damlatmalı filtrelerin özelliği daha düşük arıtma verimi (%65 - 85) ve geri dönüş uygulamasıdır. Yüksek hızlı damlatmalı filtre sistemlerinde geri dönüş suyunun kontrolu, koku ve sineklerin önlenmesi ile süreç veriminin artırılması açısından büyük önem taşımaktadır. Böylece yüksek hızlı filtrelerin işletilmesi daha karmaşık olmakta ve iyi sonuç elde edebilmek için iyi yetiştirilmiş işletme personeline gereksinim duyulmaktadır. Özetlemek gerekirse, damlatmalı filtrelerin olumlu yönleri, yüksek nitrifikasyon etkisi, oldukça düşük işletme ve bakım masrafılar ve olağanüstü iklim koşulları altında işletebilme özellikleridir. Bu sistemlerin olumsuz yönleri ise koku ve sinek oluşumu, yüksek alan gereksinimi ve yüksek ilk yatırım masrafları olmaktadır. Aerobik stabilizasyon havuzları Aerobik stabilizasyon havuzları sığ havuzlardır. buradaki arıtma süreci, ilke olarak geri dönüşsüz bir aktif çamur süreciyle eşdeğerdir. Aktif çamur süreciyle aerobik stabilizasyon arasındaki fark, ikincisinde mikroorganizma derişiminin düşük oluşudur. Bu süreçte oluşan biyolojik kütle daha yüksek bir mineralizasyon düzeyindedir. Oksijen temini, doğal olarak su yüzeyinde, alglerin fotosentezinden ve zaman zaman da yapay havalandırmadan sağlanır. Aerobik havuzlarda veriminin yükseltilmesi için havuz içeriğinin sürekli olarak karıştırılıp, tabakalaşma ve bakteri çökelmesinin önlenmesi gerekir. Burada BOİ giderme verimi çok yüksektir (%95). Ancak bu havuzların çıkış suyunda yüksek alg derişimleri görülmektedir. Bu alglerin giderilmemesi halinde sürecin çıkış suyu, alıcı ortam olarak kullanılan yüzeysel suya, arıtılmamış pis suya yakın derecede bir BOİ yükü getirebilir. Bu durumda alınabilecek önlem, havuzda oluşan alglerin toplanmasıdır. Aerobik stabilizasyon havuzlarının çıkış suları oldukça yüksek derişimlerde azot ve fosfor bileşikleri içerebilirler. Bu nütrientler alıcı ortamda ötrofikasyona ve dolayısıyla aşırı bir oksijen gereksinimine neden olabilirler. Aerobik stabilizasyon havuzları için özet olarak, küçük kırsal yerleşim bölgeleri için popüler bir arıtma seçenegi olduğu söylenebilir. Bu tür bölgelerde arazi fiyatı düşüktür. Ayrıca stabilizasyon havuzlarının ilk yatırım ve işletme giderleri, diğer arıtım süreçlerine oranla düşük olmaktadır. Aerobik-anaerobik (Fakültatif) süreçler Fakültatif havalandırmalı havuzlarda suyun karışımı sağlanmaz. Bunun sonucunda mikroorganizmaların bir kısmı çökelerek havuz dibinde anaerobik bir tabaka oluşturur. Böylece fakültatif havuzlar, aerobik üst tabaka ve anaerobik alt tabaka olmak üzere iki bölgeden meydana gelir. Aerobik üst tabakada algler ve aerobik bakteriler, anaerobik alt tabakada ise fakültatif ve mutlak anaerobik bakteriler bulunur. Fakültatif havuzlarda arıtmanın büyük yükünün fakültatif alt tabakada giderilmesi istenir. Ancak üstteki aerobik tabaka, arıtmaya belirli bir ölçüde katkıda bulunduğu gibi koku problemlerinin önlenmesinde de etkin olur. BOİ giderme verimi aerobik stabilizasyon havuzlarda olduğu gibi % 95 derecesindedir. Bu tür havuzların avantajı, suyun karıştırılması gerekmediği için enerji, ekipman ve iş gücünden tasarruf sağlamasıdır. Anaerobik süreçler Anaerobik süreçlerde organik madde serbest oksijen olmaksızın ayrıştırılır. Bu süreçlerin pis su arıtmasında en önemli uygulama alanları, aerobik ve biyolojik ünitelerden çıkan çamurların (biyolojik kütle) stabilizasyonu ve pis suların anaerobik olarak doğrudan arıtılmasıdır. Anaerobik ayrışma iki aşamada gerçekleşir ve iki tür bakteri etkindir. Birinci aşamada organik maddeler organik asitlere dönüştürülür. İkinci aşamada ise organik asitler CH4 ve CO2' te dönüşür. İkinci aşamayı oluşturan bakteriler mutlak anaerobtur. Dolayısıyla bunların büyüme hızları çok yavaştır. Bunun sonucunda anaerobik süreçlerin bekleme süreleri çok yüksek olmaktadır. Tam karışımlı bir anaerobik reaktörde bekleme süreci 10-30 gün arasında değişmektedir. Süreç sırasında oluşan CH4 gazı gerek ortamın ısıtılması ve gerekse reaktör tankının karıştırılması için ihtiyaç duyulan enerjiyi sağlayabilmektedir. Anaerobik süreçler sonucnda oluşan ürünlerin (stabilize olmuş çamur), son uzaklaştırmadan önce suyunun alınması gereklidir. Suyun uzaklaştırılması için de kullanılacak temel işlemler, santrüfüj, filtre presleri ve arazide kurutmadır. Son yıllarda pis suların doğrudan anaerobik olarak ayrıştırılması giderek önem kazanmaktadır. Bunun nedeni anaerobik süreçlerin aerobik süreçlere kıyasla çok daha düşük olan enerji gereksinimidir. Kimyasal temel süreçler Kimyasal temel süreçler, pis suların arıtımında ilk olarak uygulanan yöntemlerdir. Daha sonraları, biyolojik temel süreçlerin gelişmesiyle bu yöntemler terk edilmiştir. Ancak son yıllarda kimyasal süreçlerin pis su arıtımında tekrar daha yaygın bir şekilde kullanılmaya başlandığı görülmektedir. Özellikle biyolojik arıtma süreçleri içinde etkilenmeyen bileşenlerin kimyasal süreçlerle arıtılmasına çalışılmaktadır. Kimyasal birim süreçlerin ortak özelliği, genellikle düşük yatırım giderleriyle, yüksek işletme giderlerine sahip olmalarıdır. Bu yüzden kimyasal süreçler, özel arıtma gerektiren pis sularda veya bu tip bir arıtmanın genel arıtma süreci içinde, çok kısa süre uygulanması gerektiğinde kullanılır. Kimyasal çöktürme Kimyasal çöktürme, pis sularda mevcut olan ve uzaklaştırılması istenen iyonların arıtılmasında kullanılır. Bu yöntemin en önemli uygulaması fosfor bileşiklerinin uzaklaştırılması olmaktadır. Bilindiği gibi fosfor alıcı ortamlarda ötrofikasyona neden olmaktadır. Kimyasal çöktürme ile fosfor gideriminde alüminyum ve demir tuzları (Al2(SO4)3, FeCl3, Fe2 (SO4)3) ile sönmüş kireç (Ca(OH)2) kullanılmaktadır. Koagülasyon Koagülasyon, kolloidal partiküllerin biraraya getirilerek çökebilir veya filtrelenebilir bir hale gelmesini sağlayan bir süreçtir. Kimyasal koagülantlar, partiküller arasındaki itici kuvvetlerin azaltılmasına yönelik etkileriyle bunların biraraya gelmesini ve yumaklar oluşturmalarını kolaylaştırırlar. Pis suların ileri düzeyde arıtılmasında genellikle aluminyum ve demir (III) tuzları kullanılmaktadır. Koagülasyon süreçleri büyük molekül yapısına sahip polimerler aracılığıyla hızlandırılabilir. Dezenfeksiyon Gaz fazındaki klor, pis sulardaki patojen mikroorganizmaların zararsız hale getirilmesinde yaygın olarak kullanılmaktadır. Genellikle klorlama işlemi arıtma tesislerinin çıkış suyuna uygulanmaktadır. Bunun nedeni klorun çok kuvetli bir oksitleyici oluşu ve pis suda bulunan indirgenmiş nitelikteki tüm organik ve anorganik bileşikleri oksitleyebilme özelliğidir. Dolayısıyla arıtılmamış pis suların klorlanması, dezenfeksiyon için çok yüksek klor dozları gerektireceğinden, ekonomik olmamaktadır. Ancak, arıtma tesislerinin bulunmadığı ve pis suların alıcı ortamda halk sağlığı açısından sakıncalar yarattığı durumlarda yüksek dozajlı klorlama uygulanabilmektedir.

http://www.biyologlar.com/su-kirliligi-kontrolunde-teknolojik-yaklasimlar-ve-aritma-yontemlerinin-siniflandirilmasi

Bitki Doku Kültürü

Bitki doku kültürü; aseptik şartlarda, yapay bir besin ortamında, bütün bir bitki, hücre (meristematik hücreler, süspansiyon veya kallus hücreleri), doku (çeşitli bitki kısımları=eksplant) veya organ (apikal meristem, kök vb.) gibi bitki kısımlarından yeni doku, bitki veya bitkisel ürünlerin (metabolitler gibi) üretilmesidir. Yeni çeşit geliştirmek ve mevcut çeşitlerde genetik varyabilite oluşturmak doku kültürünün temel amaçları arasında sayılabilir. Bu nedenle bitki doku kültürleri genetiksel iyileştirme çalışmalarında önemli bir rol oynamaktadır. Ayrıca kaybolmakta olan türlerin korunmasında ve çoğaltılması zor olan türlerin üretiminde, çeşitli doku kültürü yöntemleri rutin olarak uygulanmaktadır (Babaoğlu ve ark., 2001-Bitki Biyoteknolojisi Cilt I-Doku Kültürü ve Uygulamaları- Bölüm 1. Temel Laboratuvar Teknikleri). Bitki doku kültürü işlemlerinde ve genetik iyileştirmelerde kullanılan temel sistem bitki rejenerasyonu yani bitkinin hücre, doku ve organlarından klonlanmasıdır. Bitki rejenerasyonu, kültürü yapılan hücrelerin özellikleri itibariyle üç kısımda incelenebilir; 1) organize olmuş meristematik hücreleri ihtiva eden somatik dokulardan rejenerasyon, 2) meristematik olmayan somatik hücrelerden rejenerasyon ve 3) mayoz bölünme geçirmiş gametik hücrelerden rejenerasyon. Birinci tip rejenerasyonda uç ve yan meristemlerden bitkiler çoğaltılır. Buna meristem kültürü yoluyla klonal çoğaltım denilir. Elde edilen hücreler tamamen donör (verici) bitkiye benzerler. İkinci tip rejenerasyon; doğrudan bir bitki parçasının (eksplant denilir) kesilmiş yüzeylerindeki belirli somatik hücrelerin bir kısmının genellikle besin ortamına ilave edilen bitki büyüme düzenleyicilerinin (özellikle oksin ve sitokininler) etkisiyle bölünerek ve organize olarak, organları ve daha sonra da bitkiyi (direkt organogenesis) veya bir somatik hücrenin sürekli bölünerek embriyo ve daha sonra da tam bir bitkiyi oluşturması (direkt somatik embriyogenesis) şeklinde olabilir. Ayrıca her iki durum, belirli bir kallus, proto-kallus veya hücre süspansiyonu oluşumu devresinden sonra da ortaya çıkabilir (indirekt rejenerasyon). Ortaya çıkan bitkilerde bazı kalıtsal veya geçici varyasyonlar oluşabilir. Son olarak normal kromozom sayısının yarısını ihtiva eden hücrelerden de direkt veya dolaylı yollarla bitki rejenerasyonu olabilir. Bu durumda donör bitkinin kromozom sayısının yarısına sahip, genellikle steril olan haploid bitkiler elde edilebilir. Bu bitkicik, doku veya hücrelerde kromozom katlaması yoluyla fertil (dihaploid veya katlanmış haploid) bitkiler elde edilir. Tablo: Bitki doku kültüründe önemli çalışmalar (Pierik, 1993; Kung, 1993; Endress, 1994). Tarih Çalışmalar Araştırıcılar 1902 İlk izole edilmiş hücrelerin kültürü Haberlandt 1904 Olgun embriyoların kültürü Hanning 1917 Biyoteknoloji teriminin ilk defa kullanımı Karl Ereky 1920 Oksinin tanımlanması Went ve ark. 1922 Kök ve sürgün uçlarının laboratuvarda çoğaltımı Kotte ve Robbins 1924 İlk embriyo kurtarma tekniği (mısır) Dieterich 1934 İlk sürekli kök kültürleri (domates) White 1934 İlk kallus kültürleri Gautheret 1942 İlk kallus kültürlerinden sekonder metabolit eldesi Gautheret 1946 Sürgün uçlarından (apikal meristem) ilk bitki eldesi Ball 1953 DNA'nın yapısının belirlenmesi Watson ve Crick 1954 Hücre süspansiyonlarından ilk bitki eldesi Muir ve ark. 1957 İlk sitokininin tanımlanması ve organ oluşumunda sitokinin/oksin oranının öneminin ortaya konulması Skoog ve Miller 1958 İlk somatik embriyogenesis (havuç) Steward ve ark. 1960 Enzimler kullanılarak ilk canlı protoplast izolasyonu Cocking 1962 MS besin ortamının geliştirilmesi Murashige ve Skoog 1965 Tek hücreden bitki rejenerasyonu Vasil ve Hilderbrandt 1967 İlk haploid bitkinin üretimi (anter polen kültürü) Bourgin ve Nitsch 1968 B5 ortamının geliştirilmesi Gamborg ve ark. 1970 HEPA filtrelerin kullanılmaya başlanması 1971 Protoplastlardan ilk bitki rejenerasyonu Nagata ve Takabe 1978 Cinsler arası ilk somatik melezleme Melchers ve ark. 1983 Transgenik ilk bitkinin elde edilmesi (tütün) Murai ve ark. 1986 Transgenik ilk bitkinin tarla testleri (tütün) - 1990 Sentetik tohum geliştirme ve hızlı dondurma yoluyla germplazm muhafazası çalışmalarının başlaması - 1995 İlk rekombinant insan gıdası (Flavr Savr, domates) Bitki doku kültürlerinin bitki ıslahındaki uygulama alanları Türler arası melezlemelerden sonra embriyo kültürü: Zigot oluşumundan sonra ortaya çıkan (post-zigotik) uyuşmazlıklar in vivo melezlemelerde embriyo oluşumunu veya oluşan embriyoların yaşamalarını engellemektedir. Bu embriyolar özel besin ortamlarında doku kültürü ile geliştirilmekte ve yeni melez bitkiler elde edilebilmektedir. Bu tekniğe embriyo kurtarma tekniği denilmektedir (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 10). Haploid bitki üretiminde anter (polen) ve yumurtalık (ovül) kültürü: Özellikle kendine döllenen bitkilerde yapılan klasik bitki ıslahı melezlemeleri sonrası, hatların saflaştırılması (homozigotlaşması) uzun zaman almaktadır. Mayoz bölünme geçirmiş haploid sayıda kromozoma sahip hücrelerde (polen/mikrospor veya megaspor) veya bu hücreleri ihtiva eden bitki kısımlarının (anter veya yumurtalık) doku kültürü yoluyla elde edilen hücrelerinde veya rejenerantlarında yapılan kromozom katlanması sonucu %100 homozigot bitkiler elde edilebilmektedir. Bu tekniğe in vitro haploidi tekniği denir (Maheswari ve ark., 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 5). Somaklonal varyasyon: Kallus oluşturan veya totipotent olup yeni bitkiler meydana getirebilen hücreler uzun süreli kültürlerde veya kısa süreli de olsa yüksek bitki büyüme düzenleyicileri içeren ortamlarda bu yeteneklerini (kompotens) yitirebilmektedirler. Bu hücrelerden oluşan yeni bitkilerde gen veya kromozom bozuklukları sonucu kalıtsal ve fenotipik varyasyonlar (somaklonal varyasyon) ortaya çıkmaktadır. Bu varyasyonlar, yeni çeşit geliştirme ve iyileştirmelerde ıslahçılar tarafından kullanılmaktadır (Chrispeels ve Sadava, 1994). Somaklonal varyasyon sonucu ortaya çıkan değişiklikler arasında, bazı pigmentlerin yapısındaki farklılaşmalar sonucu çiçek renginin, yaprak ve çiçek morfolojisinin, tohum veriminin, bitki canlılığı ve iriliğinin, uçucu yağ kompozisyonu ve hastalıklara tolerans veya dayanıklılığın değişmesi sayılabilir (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 11). İn vitro seleksiyon: Tek hücre seviyesinde; tuz, herbisitler, patojenler vb. faktörlere karşı dayanıklılığa göre yapılan seleksiyonlar sonucu, bu hücrelerden elde edilen bitkilerde ilgili faktörlere dayanıklı veya toleranslı bitkiler ortaya çıkabilir. Bu tekniğe in vitro seleksiyon denilmektedir. İn vitro döllenme: Bazı durumlarda (özellikle dış ortama alıştırılamayan bitkilerden tohum almak için) doku kültürü ile elde edilen bitkiler laboratuvar şartlarında tozlaştırılmaktadır. Fakat bu uygulama çok sınırlı kalmıştır. İn vitro germplazm muhafazası: Totipotent hücrelerin in vitro kültürü, kallus veya süspansiyon hücreleri şeklinde uzun süreli olarak veya belirli aralıklarla yeniden oluşturularak saklanabilir ve ihtiyaç duyulduğunda bu hücrelerden yeni bitkiler oluşturulabilir. Alternatif olarak ilgili hücreler, meristemler veya elde edilen minyatür bitkiler düşük sıcaklıkta (4 0C), çok az besin maddesine ve alana ihtiyaç göstererek aseptik şartlarda saklanabilir (1-4 yıl). Benzer şekilde çok düşük sıcaklıklarda –196 0C), sıvı azot içinde doku ve hücreler hızlı bir şekilde dondurulup saklanabilirler. Bu doku kültürü teknikleri in vitro germplazm muhafazasında önemlidir ve gen ve tohum bankalarına alternatif oluşturmaktadır (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 9). Somatik hücre melezlemesi (protoplast füzyonu): Protoplast füzyonu ve somatik melezleme, pre-zigotik eşeysel uyuşmazlıklar nedeniyle, klasik melezleme ile elde edilemeyen hibritlerin elde edilmesinde kimyasal ve fiziksel metotlar kullanılarak uygulanan bir tekniktir. Elde edilen somatik melez hücreden (heterokaryon), kallus oluşumu ve bitki rejenerasyonu yoluyla yeni bitkilerin elde edilmesi sistemin en önemli ve en gerekli parçasıdır. Bu işlem genel anlamda genetik kopyalamadır ve bitkilerde yaklaşık 30 yıldan beri uygulanmakta olup en başarılı örneği tütün bitkisinde görülmüştür (Ochatt ve Power, 1992) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 4). Gen transferi: Doku kültürlerinin bitkileri iyileştirmede en önemli ve yaygın olarak kullanılan uygulamalarından birisi de, gen veya genlerin bitkilere aktarılmasıdır. Bunun için mutlaka tekrarlanabilir bir hücre-bitki rejenerasyonu (organogenesis ve somatik embriyogenesis) sistemine ihtiyaç vardır (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 2, 3 ve 4). Bitki doku kültürünün ticari ve ıslah dışı uygulamaları Hastalıksız bitki elde edilmesinde meristem kültürü: Tüm apikal meristem veya buradan alınan küçük embriyonik parçalar kültüre alınarak uygulanan tekniğe meristem kültürü denir. Çok az miktarlarda bitki büyüme düzenleyicileri ilave edildiğinde uç ve yan meristemlerden birçok yeni bitkicikler elde edilebilmektedir. Bu metotla elde edilen bitkiler her bakımdan birbirinin benzeridirler (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 6). Mikroçoğaltım: Organize meristemlerden, henüz olgunlaşmamış veya olgunlaşmasını tamamlamış somatik hücrelerden direkt (organogenesis veya somatik embriyogenesis) veya indirekt (kallus, protoplast vb.) yollarla bitkilerin çoğaltılması ve köklendirilmesi işlemine genel olarak mikroçoğaltım denilmektedir. ABD'de doku kültürünün ticari uygulaması 1970' de başlamış (orkidelerde ve süs bitkilerinde) ve bu yolla elde edilen ürünlerin pazar değeri bu gün yılda 15 milyar dolara ulaşmıştır. Daha az sürgün elde edilmesine rağmen uç ve yan meristemlerden kitle çoğaltım ticari olarak diğerlerinden daha fazla kullanılan bir metottur (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 8). Aşağıda bir videoda ticari doku kültürü üretim laboratuvarından görüntüler vardır. Benzer konularda diğer videolar da görülebilir. Tüm çalışmalar steril şartlarda laminar hava akışlı kabin içinde yapılmaktadır. Sentetik tohum üretimi (somatik embriyolar): Somatik embriyoların çeşitli metotlarla kaplanması sonucu sentetik (yapay) tohumlar elde edilmektedir. Sentetik tohumların, hibritlerin somatik çoğaltımında, erkısır ve ebeveyn hatların muhafazasında ve odunsu bitkilerin elit genotiplerinin elde tutulmasında kullanımı konusunda oldukça fazla çalışma yapılmaktadır. Sekonder metabolit üretimi (kallus-hücre süspansiyonları): İn vitro hücre kültürleri sekonder metabolit üretiminde de önemli bir kaynak olarak görülmektedir. Bitki sekonder metabolitleri, bitki büyüme ve gelişmesinde doğrudan kullanılmayan maddelerdir. Işık mikroskobu ile görülebilen sekonder metabolitlerin (tanenler, antosiyaninler, karetenoitler) yanında UV ışığı ile görülebilenleri (alkaloitler) de vardır. Son yıllarda sekonder metabolit üretimi için ot verimi yüksek, çok yıllık, geniş adaptasyon kabiliyetine sahip ve azotlu gübre kullanımı oldukça az olan yonca, alternatif bir bitki olarak gösterilmektedir. İlgili enzim alındıktan sonra yoncanın geriye kalan kısmı ot olarak kullanılabilir (Austin, 1997) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 7). Kimeralar: Doku kültüründe, özellikle süs bitkilerinde üzerinde önemle durulan konulardan birisi de kimeralardır. Kimerik bitkiler; farklı türlerin protoplastlarının karışık kültürü ve bitki rejenerasyonu, mutasyon uygulamaları sonucu bitki rejenerasyonu çalışmaları, apikal meristemle ilgili yapılan mikro-cerrahi çalışmaları ve gen transferi yapılması sırasında, bir bitkiyi oluşturan bütün hücrelerin ilgili gen veya genleri taşımaması durumlarında (özellikle partikül bombardımanı metodu ve apikal meristemler kullanıldığında) elde edilebilmektedir. Bitki doku kültürlerinin temel araştırmalardaki uygulamaları Doku kültürü, protoplast izolasyonu ve füzyonu, hücre, doku ve bitki beslenmesi, sitogenetik çalışmalar, morfogenesis çalışmaları ve biyolojik azot fiksasyonu gibi temel araştırmalarda da kullanılmaktadır. Bu tür araştırmalar genellikle sistem geliştirmede faydalı olmaktadır. Doku Kültüründe Temel Teknikler Doku kültürü işlemleri bir çok aşamadan oluşmaktadır. Bunlar: 1) Uygun bir laboratuvar düzeninin kurulması, 2) Kullanılacak bitki parçalarının (eksplant) ve besin ortamlarının seçimi, hazırlanması ve sterilizasyonu, 3) Kallus ve hücre süspansiyonlarının oluşturulması, 4) Kallus veya hücre süspansiyonlarından veya doğrudan somatik veya gametik hücrelerden bitki rejenerasyonunun uyarılması (organogenesis, somatik embriyogenesis veya meristem çoğaltımı yoluyla), 5) Oluşan sürgünlerin çoğaltılması ve boylarının uzatılması, somatik embriyoların olgunlaştırılması, 6) Uzayan sürgünlerin köklendirilmesi, 7) Köklenen bitkilerin dış ortama alıştırılması (aklimatizasyon). Bunlar arasında en önemlisi, uygun laboratuvar imkanlarının sağlanmasıdır. Doku Kültüründe en önemli konu steril işlemleri yapabilecek bazı temel alet ve ekipmanlara veya iyi bir laboratuvara sahip olmak gerekmektedir. Doku kültüründe en temel konular bitki parçaları ve kullanılacak alet ekipmanların iyice temizlenmesi (sterilizasyon), besin ortamlarının hazırlanması ve kültüre alınacak yerin belirlenmesidir.

http://www.biyologlar.com/bitki-doku-kulturu

Fonotip Nasıl Ortaya Çıkar

Fenotip, bir canlının sahip olduğu özelliklerin (karakterlerinin) tamamını ifade eder. Ancak fenotip deyince, bir canlının belirli bir veya birkaç karakterinin görünümü anlaşılır. Bu durumda, çalışma amacına bağlı olarak, karakter gruplarına giren özelliklerin tamamı ya da herhangi birisi, fenotipi açıklamada kullanılır. Taksonomistler, çalıştıkları bireyler ya da birey toplulukları hakkındaki ilk bilgileri, onların fenotiplerine bakarak elde ederler. Fenotip, çıplak gözle de görülebilir, moleküler düzeyde de araştırılıp incelenebilir. Örneğin, bir çiçekli bitkinin gözle görülebilen morfolojik özelliklerin bütünü, ya da hergangi biri, o bitkinin fenotipi olabildiği gibi, aynı bitkinin DNA molekülünün dizilim sırası da o bitkinin fenotipini, adı geçen karakteler bakımından tanımlamada kullanılabilir. Her fenotip, ya da bir bireyin her karakteri, o bireyin genotipi ile çevresinin birbirleriyle değişik derecelerde etkileşimi sonucu ortaya çıkmaktadır. Bunu bir model şeklinde özetlersek; Model 1. Basit genel bir modeldir. Bu modele göre bir canlının fenotipi [ölçülüp, gözlenebilen karakter(ler)i], potansiyel olarak canlının genotipi (genleri) tarafından ortaya çıkarılmaktadır. Başka bir deyişle, genotip, fenotipi ortaya çıkaran potansiyel bir etkendir. Bu potansiyel etken, çevre faktörlerinin de devreye girmesiyle, canlının fenotipinin ortaya çıkmasını sağlar. Örneğin, karaçam (Pinus nigra) oluşumunda, tohumun anne-babasından aldığı kalıtsal özeliklere bağlı olarak 20-30 metre boy kadar varan bir karaçam ağacını ortaya çıkarma potansiyeli vardır. Eğer bu oluşum, zigot oluşumundan itibaren, çok uygun çevre koşullarında gelişip büyümüşse genotipinde yazılı olan en yüksek potansiyele olaşacak görünüş bakımından boylu poslu bir ağaç olacaktır. Öte yandan, eğer aynı tohum gelişiminden itibaren fidan ve/veya genç ağaç safhalarında, uygun olamayan çevre koşullarında gelişmişse, bozuk yapılı, zayıf, kısa boylu bir ağaç olarak ortaya çıkacaktır. Ama, yetiştiği çevre koşulları ne olursa olsun, ağaç yine karaçam olacaktır. Çevre farklığı ağacın boyunu, tepe çatısını, kalınlığını, genel görünüşünü, erkek çiçek, dişi çiçek, kozalak ve tohum büyüklüğünü, tohum verimini vb. etkilemekte, fakat “karaçama” özgü olan ve kalıtsal olan özelliklerini değiştirememekte, ya da çok dar sınırlar içinde değiştirebilmektedir. Model 2. Model 1’deki verilen modeli biraz daha ayrıntılarıyla, gen düzeyinden başlayıp ara kademeleri de belirterek, model 2 şeklinde de gösterebiliriz. Burada, bir DNA molekülü veya onun bir parçası olan gen, fenotipi ortaya çıkarmadan önce, bir çok başka ara işlevlerin yerine getirilmesini sağlamaktadır. DNA molekülü, hücre içinde mevcut bir çok başka kimyasalların da katkısıyla, önce RNA molekülünü üretmekte, RNA molekülü, enzim ve proteinlerin üretilmesinde görev almakta, bu enzim ve proteinler, çok çeşitli metabolik, fizyolojik, biyokimyasal işlemlerden ve olaylardan geçtikten sonra, en sonunda ilgili fenotipin ortaya çıkmasını sağlamaktadır. Tabii ki, bu işlemlerin yürütülmesi sırasında, canlının içinde bulunduğu çevrenin de önemli bir etkisi olmaktadır. Örneğin, değişik metabolik ve fizyolojik etkinliklerin yerine getirilmesi sırasında, canlının bünyesinde bazı mineral besin elementlerinin bulunmaması, ya da yetersiz olması; yetişme ortamının sıcaklığının veya pH derecesinin optimal değerden aşırı yüksek ya da düşük olması vb. çevre faktörleri canlı vücudunda olması gereken söz konusu etkinliklerin ve kimyasal reaksiyonların aksamasına ya da yerine getirilmesine yol açacaktır. Bu ve benzeri çevre faktörlerinin, canlının değişik gelişim aşamalarında, değişik derecelerde ve farklı yönlerde etki yapmasıyla, genetik potansiyel, kendisini fenotipte tam olarak gösterememektedir. Sonuç olarak aynı genotipe sahip olsalar bile, gelişim süreçlerinin ve/veya yaşamlarının şu ya da bu evresinde, zaman ya da mekan içinde, farklı çevre faktörlerine maruz kaldıkları için, daha farklı fenotiplere sahip olabilmektedir. Model 3. Yukarıda verilen Model 1 ve Model 2, tek bir lokus (bir kromozomda belirli bir noktada varolan gen) tarafından kontrol edilen fenotipler için geçerli olabilir. Oysa, canlıların karakterlerinin büyük bir bölümü, bir değil, çok sayıda gen tarafından kontrol edilir. Başka bir deyişle, belirli bir fenotipin ortaya çıkmasında birden fazla gen, değişik ölçülerde ve değişik yönlerde katkılar yapmaktadır. Bu etkileşimler daha ziyade, sıra ile birbirini izleyen biyosentetik reaksiyonların yerine getirilmesi sırasında katalizör olarak görev alan enzimlerin (ve bu enzimleri üreten genlerin) etkisinden ileri gelmektedir. Model 3, sadece tek bir genin değil, bir çok genin etkisiyle ortaya çıkan bir fenotipin modelini göstermektedir. Bu modelde, birden fazla sayıda genin, hem birbiriyle hem çevre faktörleriyle etkileşimler yaparak, bir fenotipin ortaya çıkışı izlenebilir SİSTEMATİK HİYERARŞİ 1. Tüm Dünya’da gerçek ve etkili bir iletişimin sağlanabilmesi için standart bir hiyerarşi gereklidir. 2. Belirli bir kategorik tür, organik çeşitliliği kavrayabilmemiz için esastır. Bundan dolayı hiyerarşideki bütün diğer kategoriler doğrudan ya da dolaylı olarak bu düzeyle ilişkilidir. 3. Bütün canlıların, aynı genel yolla türedikleri kabul edilir (doğal seçim yoluyla evrimsel olarak). MANTIKSAL YAPI Linné’nin sisteminde, hiyerarşik yapı sınıf sınıf içinde (veya kutu kutu içinde) bir sistem olarak gözlenir. Linné tarafından geliştirilen hiyerarşinin başarısı tesadüfi değildir. Başarılı kurgusunun ve kullanımının nedenlerinden birisi, o zamanlar kullanılan daha basit hiyerarşilere dayanmasıdır, yani birdenbire keşfedilip ortaya konmamış olmasıdır. Bu ilk hiyerarşiler, başta Aristo olmak üzere eski Yunanlılar tarafından geliştirilen kavramlara dayanır. Linné hiyerarşisinin başarısının ikinci nedeni, Linné’nin ansiklopedik dehasıdır. Linné bizzat kendisinin bildiği bütün bitki ve hayvanları sınıflandırarak göstermiştir. Fakat Linné hiyerarşisinin etkenliğini sağlayan üçüncü ve temel bir neden vardır. İster ilkel, isterse gelişmiş olsun, tüm toplumlar çevrelerindeki nesneleri sınıflandırırlar. İnsan beyni, nesne veya fikirleri koordine veya subordine etmeden aralarındaki bağlantı veya ilişkileri takdir edemez. İnsanın bütün ürünleri, bilgisi, aletleri, gelenekleri, hatta bilimsel teorileri ve ilişkileri bile hiyerarşik olarak kurgulanmıştır. Böyle birkaç nedenden dolayı, Linné hiyerarşisi öğeleri arasında belirli bir kurguya ve ilişkiye sahiptir. Bu hiyerarşinin öğeleri, bir birey, takson ve kategori mantıki olarak analiz edilebilir. Hiyerarşide iki türlü ilişki söz konusudur: Dikey ve yatay İki türlü dikey ilişki vardır. a. Bireyle dahil olduğu takson ve taksonla bulunduğu kategori, b. Yüksek bir taksonla alçak bir takson arasındaki. Birinci tip dikey ilişki bir üyelik ilişkisidir. Örneğin bir insan, Hasan Taş, yüksek düzeydeki Memeliler ile alçak düzeydeki Homo sapiens arasındaki çeşitli taksonların üyesidir (tablo), Buna karşılık, her biri birer kategorinin üyesidir; Memeliler sınıf kategorisinin; Homo sapiens tür kategorisinin üyesidir. İkinci tip dikey ilişki, içerme veya dahil olmadır ki, yüksek ve alçak taksonlar arasındaki bağlantıdır. Örneğin Homo sapiens Homo’ya aynı biçimde Homo’da Hominidae’ye dahildir. (tablo). Yatay ilişki, bireylerde kategoriler arasında olanıdır. Kuşkusuz, hiyerarşinin amaçları bakımından, tüm bireyler denk kabul edilir. Benzer şekilde kategoriler de denktir ve basitçe hiyerarşideki basamakları işaretler. Kategorilerin dikey olarak birbirini içermesi, esasen hiyerarşinin merdivensi yapısı ve faydasını bozar. Linné hiyerarşisinin, yukarıdaki mantıksal analizinden kaynaklanan zorluklardan birisi “Gregg paradoksu” denilen çelişkili durumdur. Bu monotipik taksonların (yani bir tane alt birimi olan takson) mantıki kabulünden kaynaklanır. Problem mantıksal açıdan şöyle bir ilişki vardır. Ginkgo = cins, Ginkgo biloba = tür, Ginkgo = Ginkgo biloba ve bundan ötürü cins = tür. Eğer bu iki kategori aynı ise, o zaman hiyerarşinin merdivensi yapısı, bozulur. Böyle sorunların bir çözümü olarak, monotipik taksonların en az bir tane bilinmeyen veya fosil takson daha içerdiğini kabul etmek görekmektedir. Böylece “çelişki”den kaçınılabilir. KAYNAK: www.sistematiginesaslari.8m.com/5.htm

http://www.biyologlar.com/fonotip-nasil-ortaya-cikar

Pestisitlerin İnsan Ve Çevre Üzerine Etkileri

Pestisit deyimi, insektisit (böcek öldürücü), herbisit (yabani ot öldürücü), fungusit (küf öldürücü), rodentisit (kemirgen öldürücü) vb. şeklinde sınıflandırılan kimyasal maddelerin tümünü kapsamaktadır. Pestisitler, etkili maddelerinin kökenlerine göre de gruplara ayrılabilir: 1. İnorganik maddeler 2. Doğal organik maddeler a) Bitkisel maddeler b) Petrol yağları vb. 3. Sentetik organik maddeler a) Klorlu hidrokarbonlar b) Organik fosforlular c) Diğer sentetik organik maddeler ( azotlu bileşikler, piretroidler) Pestisitlerin kullanımı çok eski tarihlere dayanmaktadır. M.Ö. 1500’lere ait bir papirüs üzerinde bit, pire ve eşek arılarına karşı insektisitlerin hazırlanışına dair kayıtlar bulunmuştur. 19.yy’da zararlılara karşı inorganik pestisitler kullanılmış, 1940’lardan sonra pestisit üretiminde organik kimyadan faydalanılmış, DDT ve diğer iyi bilinen insektisit ve herbisitler keşfedilmiştir. Bugüne kadar 6000 kadar sentetik bileşik patent almasına karşın, bunlardan 600 kadarı ticari kullanım olanağı bulmuştur. Ülkemizde tarımı yapılan kültür bitkileri, sayıları 200’ü aşan hastalık ve zararlının tehdidi altında olup yeterli savaşım yapılmadığı için toplam ürünün yaklaşık 1/3’i kayba uğramaktadır. Bu kayıpların önlenmesi bakımından pestisitlerin daha uzun yıllar büyük bir kullanım potansiyeline sahip olacağı kuşkusuzdur. Formülasyon olarak 30 000 ton civarında olan pestisit kullanımımızda en yoğun kullanılan gruplar sırasıyla herbisitler, insektisitler, fungusitler ve yağlardır. Bununla beraber, yoğun ve bilinçsiz pestisit kullanımının sonucunda gıdalarda, toprak, su ve havada kullanılan pestisitin kendisi ya da dönüşüm ürünleri kalabilmektedir. Hedef olmayan diğer organizmalar ve insanlar üzerinde olumsuz etkileri görülmektedir. Pestisit kalıntılarının önemi ilk kez 1948 ve 1951 yıllarında insan vücudunda organik klorlu pestisitlerin kalıntılarının bulunmasıyla anlaşılmıştır. Pestisitlerin bazıları toksikolojik açıdan bir zarar oluşturmazken, bazılarının kanserojen, sinir sistemini etkileyici ve hatta mutasyon oluşturucu etkiler saptanmıştır. Pestisit kalıntılarının en önemli kaynağı gıdalardır. Bu nedenle 1960 yılında FAO ve WHO “Pestisit Kalıntıları Kodeks Komitesi”ni kurmuşlar ve bu komitenin çalışmaları sonucu konu ile ilgili tanımlamalar yapılmış, bilimsel araştırma verilerine dayanılarak gıdalarda bulunmasına izin verilen maksimum kalıntı değerleri saptanmıştır. Ülkemizde de tarımsal ürünlerde kullanılan pestisitlerin gıdalarda bulunması müsaade edilebilir maksimum miktarları ürün ve ilaç bazında belirlenmiştir. Bu bilgilere Tarım Bakanlığının Web sayfasından kolaylıkla ulaşmak mümkündür. Pestisitlere Karşı Dayanıklılık Oluşumu Savaşımda kullanılan pestisitlere karşı zararlı ve hastalıkların dayanıklılık kazandıkları bilinmektedir. Dayanıklılığın pratikteki anlamı hastalık ve zararlıların daha önce kendilerine karşı başarıyla uygulanan toksik maddelerden artık etkilenmedikleridir. 1970’de dayanıklı olarak saptanan tür sayısı 244 iken, 1980’de bu sayı 428’e yükselmiştir. Tarımsal ürün zararlılarında meydana gelen çeşitli tipteki dayanıklılıklar sonucunda pestisitin etkinliğindeki azalmayı aşmak için daha yüksek dozlarda uygulama gerekmekte, bu da hem maliyetin artmasına ve ürün veriminde azalmalara yol açmakta, hem de üründe ve çevrede kalıntı miktarının ve kirliliğin artmasına neden olmaktadır. İnsanlar Üzerine Etkileri Pestisitlerin insanlarda belirli miktarlarda toksik olmaları nedeniyle savaşımda çalışan herkesin bunların kullanımı sırasında meydana gelebilecek potansiyel zarardan sakınmaları gerekir. İnsanların pestisitlere maruz kalması mesleki zehirlenmeler veya kaza ile meydana gelebilmektedir. Her iki tür zehirlenmenin ana nedenleri: 1. Halkın bu konuda yetersiz eğitime sahip olması ve pestisitlerin toksisite potansiyellerinin bilinmemesi, 2. Uygun olmayan koşullarda depolama, 3. Kaza ile saçılma sonucu gıdaların kontamine olması, 4. Dikkatsiz yükleme ve taşıma, 5. Yıkanmamış pestisit kaplarının kullanımı, 6. Genel bakım ve atık değerlendirme işlemleri Çevre Üzerine Etkileri Tarımsal alanlara, orman veya bahçelere uygulanan pestisitler havaya, su ve toprağa, oradan da bu ortamlarda yaşayan diğer canlılara geçmekte ve dönüşüme uğramaktadır. Bir pestisitin çevredeki hareketlerini onun kimyasal yapısı, fiziksel özellikleri, formülasyon tipi, uygulama şekli, iklim ve tarımsal koşullar gibi faktörler etkilemektedir. Pestisitlerin püskürtülerek uygulanması sırasında bir kısmı evaporasyon ve dağılma nedeniyle kaybolurken, diğer kısmı bitki üzerinde ve toprak yüzeyinde kalmaktadır. Havaya karışan pestisit rüzgarlarla taşınabilir; yağmur, sis veya kar yağışıyla tekrar yeryüzüne dönebilir. Bu yolla hedef olmayan diğer organizma ve bitkilere ulaşan pestisit, bunlarda kalıntı ve toksisiteye neden olabilir. Toprak ve bitki uygulamalarından sonra toprak yüzeyinde kalan pestisitler, yağmur suları ile yüzey akışı şeklinde veya toprak içerisinde aşağıya doğru yıkanmak suretiyle taban suyu ve diğer su kaynaklarına ulaşabilirler. Eğim, bitki örtüsü, formülasyon, toprak tipi ve yağış miktarına bağlı olarak taşınan pestisitler, bu sularda balık ve diğer omurgasız su organizmalarının ölmesine; bu organizmalardaki pestisit kalıntısının insanların gıda zincirine girmesi ve kontamine olmuş suların içilmesiyle kronik toksisitenin oluşmasına neden olurlar. Toprağa geçen pestisitler güneş ışınlarının etkisiyle fotokimyasal degradasyona, bitki, toprak mikroorganizmaları ve diğer organizmaların etkisiyle biyolojik degradasyona uğramakta; toprak katı maddeleri (kil ve organik madde) tarafından adsorlanıp desorplanmakta veya kimyasal degradasyona uğramaktadırlar. Toprak içine geçmiş pestisitler kapiller su vasıtasıyla toprak yüzeyine taşınmakta ve buradan havaya karışabilmektedir. Toprağın yapısı, kil tipi ve miktarı, organik madde içeriği, demir ve alüminyum oksit içeriği, pH’sı ve toprakta var olan baskın mikroorganizma türleri tüm bu olayları etkileyen faktörlerdir. Toprakta pestisitin tutulmasıyla hareketi ve biyolojik alımı engellenmekte ve çeşitli şekillerde degradasyonu ile ya toksik özelliğini kaybetmekte ya da daha toksik metabolitlerine dönüşebilmektedir. Pestisitin kendisinin ya da toksik dönüşüm ürünlerinin hedef olmayan yerleri veya organizmaları kontamine etmesi istenmediğinden tüm bu olayların bilinmesi ve incelenmesi önem taşımaktadır. Kaynak: Dr. Ülkü Yücel - Ankara Nükleer Araştırma ve Eğitim Merkezi, Nükleer Kimya Bölümü Türkiye' de Tarım İlaçları Endüstrisi ve Geleceği Günümüz dünyasının en önemli sorunlardan biri de hızla artan dünya nüfusudur. FAO'nun raporlarına göre her yıl insanlara 15-20 milyon ton gıda maddesi gerekmektedir. Dünyanın yüzölçümü sınırlı olduğundan bu ihtiyacı karşılayacak üretim için yeni alanların tarıma açılması mümkün değildir.Mevcut alanlardan daha fazla üretim yapılabilmesi için tarım ilaçları bugün bütün dünyada kullanılmasından vazgeçilemeyecek maddeler olarak kabul edilmektedir. Dünyada tarım ilacı üretimi 3 milyon ton civarında, yıllık satış tutarı ise 25-30 milyar dolar arasında değişmektedir. Dünya pestisit pazarı 1998 de 1993'e göre % 2.5 luk yıllık büyüme ile 31 milyar dolara ulaşmıştır. Türkiyede ise 1999 sonu itibariyle 2000 e yakın ruhsatlı ilaç olup bunlar içerisinde yer alan teknik madde sayısı 300 civarındadır. Bunların 16 tanesi ülkemizde üretilmekte olup, diğerleri ithal edilmekte veya hazır ilaç olarak ülkemize girmektedir. Yıllık pestisit satışının 250 M $ civarında olduğu ülkemizde birim alana kullanılan ilaç miktarı gelişmiş ülkelere göre çok düşük düzeyde kalmaktadır. Türkiye'ye kıyasla Fransa ve Almanya'da 9, İtalya'da 15, Hollanda'da 35, Yunanistan'da 12, Belçika'da 21, ABD de 15, İsviçre ve Japonyada 17kat daha fazla ilaç tüketilmektedir. Türkiye'de ilaç kullanımı daha çok polikültür tarımın yapıldığı Akdeniz ve Ege bölgelerinde yoğunlaşmaktadır. Entegre tarımın başlatılmasına yönelik güçlü girişimler, sürdürülebilir tarıma ulaşılması bakımından acilen gereklidir. Dünya’da Entegre Ürün Yönetimi(ICM-Integrated Crop Management) hareketleri, çevreyi ve insanı tek bir sistem olarak gören (holistik) çiftçilik yaklaşımını vurgulamaktadır. Tüm kıtalarda kültürel uygulamalar (örn. bitki rotasyonu, zararlı izleme) ile biyolojik, biyoteknolojik ve kimyasal Bitki Koruma ilaçlarını bir arada içeren Entegre Mücadele(IPM-Integrated Pest Management) girişimleri Bitki Koruma ürünlerinin kullanımını, güvenli ve çevreye saygılı hale getirmek için takip edilmesi gereken yoldur. Sektörün global derneği GCPF(Global Crop Protection Federation) tarafından başlatılıp desteklenen özel “Güvenli Kullanma Projeleri”nin hedefi budur. Bu amaçla GCPF, dünya çapında yeni ve sürdürülebilir çözümlerin uygulamasını güçlendirmek üzere kamu-özel ortaklığını kurmaya ve uluslararası kurumlar, hükümetler ve resmi olmayan kurumlar ve diğer taraflar ile diyalogda bulunmak için çaba göstermektedir. Günümüz dünyasının en önemli sorunlarından biri de hızla artan dünya nüfusudur. Çünkü, dünya nüfusu gittikçe artmasına karşın dünyanın yüzölçümü değişmemektedir. Hatta erozyon, yeni yerleşim yerlerinin açılması, yeni fabrikalar kurulması gibi nedenlerle tarıma elverişli alanlar giderek azalmaktadır. Diğer taraftan, FAO'nun raporlarına göre, halihazırdaki dünya nüfusunun % 40'ı yeterli derecede beslenememekte, hatta açlığa bağlı nedenlerle her yıl 20 milyon insan ölmektedir. Yine FAO'nun raporlarına göre her yıl, başta tahıl olmak üzere bu insanlara 15-20 milyon ton gıda maddesi gerekmektedir. Dünyanın yüzölçümü sınırlı olduğundan bu ihtiyacı karşılayacak üretim için yeni alanların tarıma açılması mümkün değildir. O halde yapılacak iş, birim alandan elde edilecek ürün miktarını arttırmaktır. Bunun için de modern tekniklerin ve girdilerin kullanılması bir zorunluluktur. Tarım ilacı da bu girdilerin başında gelmektedir. Bugün tarım ilacı kullanılmadan üretim yapılması halinde, ürün miktarında ortalama % 65 oranında kayıp olmaktadır.Bazı hastalık ve zararlılara karşı son yıllarda bulunan dayanıklı çeşitler yine de gerekli sonucu sağlayamamıştır. Ayrıca gübreleme, sulama, toprak işlemesi vb. verimi arttırıcı kültürel yöntemler bazı bitkilerde hastalık ve zararlıların daha da artmasına neden olmuştur. Bu sebeplerden dolayı, tarım ilaçları bugün bütün dünyada kullanılmasından vazgeçilemeyecek maddeler olarak kabul edilmektedir. Dünyada Tarım İlacı Kullanımı Dünyada tarım ilacı üretimi 3 milyon ton civarındadır. Pestisitlerin yıllık atış tutarı ise 25-30 milyar dolar arasında değişmektedir. Dünya pestisit pazarı 1998 de 1993'e göre % 2.5 luk yıllık büyüme ile 31 milyar dolara ulaşmıştır. 1999 da ise 1998 e göre % 1 lik bir büyüme tahmin edilmektedir. Tonaj olarak ise yılda % 1 den daha az bir büyüme beklenmektedir. Şekil 1 de görüldüğü gibi Herbisitler tarım ilaçları içinde % 47'lik bir payla birinci sırayı almaktadır. Bunu % 29 ile insektisitler izlemekte, fungisitlerin ise % 19'luk bir payı bulunmaktadır. Herbisitler ve insektisitler kullanımın % 70'in üstündeki bir bölümünü kapsamaktadır. Diğer pestisit grupları ise % 5'lik bir paya sahiptir. Türkiye'de birim alana kullanılan ilaç miktarı gelişmiş ülkelere göre çok düşük düzeyde kalmaktadır. Ülkemizde hektara kullanılan ilaç miktarı 0.5 kg. iken bu miktar Fransa ve Almanya'da 4.4 kg., İtalya'da 7.6 kg., Hollanda'da 17.5 kg., Yunanistan'da 6.0 kg., Belçika'da 10.7 kg.'dır. Diğer bir deyişle Türkiye'ye kıyasla Fransa ve Almanya'da 9, İtalya'da 15, Hollanda'da 35, Yunanistan'da 12, Belçika'da 21, ABD de 15, İsviçre ve Japonyada 17kat daha fazla ilaç tüketilmektedir. 1992 yılında Rio de Janeiro'da düzenlenen “BM Çevre ve Kalkınma Konferansı (UNCED)”nda sürdürülebilir kalkınma için taslak olarak 21 no.lu Gündem benimsendi. 21 no.lu Gündemin 14.Kısmı, yani “Sürdürülebilir Tarım ve Kırsal Kalkınma”, 2025 yılında tahmin edilen nüfusun %83’ünün kalkınmakta olan ülkelerde yaşayacağını belirtmektedir. Gündeme göre, "gıda ve lif üretimi taleplerini karşılayacak mevcut kaynaklar ve teknolojiler belirsizliğini korumaktadır. Tarım bu sorunu, halen kullanımda olan alandan alınan ürünü artırarak ve böylece daha fazla araziye yayılma gerekliliğini önleyerek karşılamalıdır." Bu bağlamda "sürdürülebilir yoğunlaşma" gidilmesi gereken yol olarak önerilmiş olup, Global Crop Protection Federation (GCPF) bu hedefin gerçekleştirilmesine katkıda bulunmaya çalışmaktadır Dünya’da Entegre Ürün Yönetimi(ICM-Integrated Crop Management) hareketleri, çevreyi ve insanı tek bir sistem olarak gören (holistik) çiftçilik yaklaşımını vurgulamaktadır.Tüm kıtalarda kültürel uygulamalar (örn. bitki rotasyonu, haşere izleme) ile biyolojik, biyoteknolojik ve kimyasal Bitki Koruma ilaçlarını bir arada içeren Entegre Mücadele(IPM-Integrated Pest Management) girişimleri ürünlerinin kullanımı, güvenli ve çevreye saygılı olmalıdır. Sektörün global derneği GCPF(Global Crop Protection Federation) tarafından başlatılıp desteklenen özel “Güvenli Kullanma Projeleri”nin hedefi budur. Bu projeler Guatemala, Kenya ve Tayland gibi özellikle gelişen ülkelerdeki durumu ele almaktadır. GCPF, 73 ülkede dünyanın araştırmaya dayalı mahsul koruma sektörünün yaklaşık %90’ını temsil etmektedir. Tarımsal Araştırma-Geliştirmeye yaptığı önemli yatırım - 3 milyar ABD dolarından fazla veya 1998 cirosunun yaklaşık % 10’u -, Entegre Ürün Yönetimi kapsamında yeni bilimsel çözümler geliştirerek sürdürülebilir tarıma yönelik uzun vadeli katkılarda bulunmaktadır. Entegre Mücadele(IPM) 21 no.lu Gündemin sürdürülebilir tarima yönelik yaklaşiminin kilit unsurudur: • Bölgesel çok branşlı projelerin güçlendirilmesi ve EntegreMücadelenin tarımda gıda ve değerli mahsuller açısından sosyal, ekonomik ve çevresel yararını sergileyen Entegre Mücadele agları kurmak. • Biyolojik, fiziksel ve kültürel kontrollerin, ayrıca kimyasal kontrollerin türünün bölgelerin şartlarının dikkate alınarak seçilmesini kapsayan uygun Entegre Mücadele geliştirmek Çeşitli projeler Bitki Koruma sektörü, resmi ve gayriresmi kurumlar arasındaki işbirliğinin ne kadar başarılı olabileceğini göstermiştir: Modern bilimin kapsamlı kullanılması sayesinde, GCPF üyeleri tüm yeni Bitki Koruma ilaçlarının neredeyse tamamını geliştirmektedir. Halen dünya piyasasının %85’ine sahiptirler. Tüm GCPF üyesi şirketler Pestisitlerin Dağıtılması ve kullanılmasında Uluslararası FAO Tüzüğü’ne imza atmıştır. Bu şirketler Zirve’nin belirlediği hedefe ulaşılmasına yardımcı tarım tekniklerinin varolduğu inancındadırlar ve bu şirketlere göre sözkonusu yöntemler tüm dünyada başlatılabilir. Modern Bitki Koruma ürünleri, tarımsal üretimin dünyada artan gıda gereksinimini karşılamaya devam etmesini sağlamaya yardımcı olacaktır. Hem bu ürünler hem de çiftçilik aynı zamanda ekonomik ve çevreye ve insan sağlığına uyumlu kalacaktır. Habitatın Korunması ve Biyolojik Çeşitlilik Bakımından Bitki Koruma Sektörü Ürünlerinin Kullanılmasının Yararları Tarih bize insanın ürünlerini koruyamadığı, dolayısıyla sağlıklı gıdada yetersizliklerle karşılaştığı zamanların fazla geçmişte kalmış olmadığını göstermektedir. İrlanda’da 1846 ile 1851 arasında yaşanan ve 1,5 milyon insanın patates mildiyösü sonucu öldüğü büyük kıtlık buna en iyi örnektir. O zamandan günümüze dek tarım bilimi ve uygulaması ile ilgili araştırmalar, gıda üretiminde olağanüstü bir ilerlemeye yol açmıştır. Aynı zamanda dünyadaki nüfus artışı; yüksek verimli çiftçilikle doğal kaynakların korunması arasındaki karşılıklı ilişkilerin anlaşılmasını zorunlu kılmıştır. Modern Dünya toplumuna bol, kolayca temin edilebilen, yüksek kaliteli ve makul fiyatlı gıda sunulmaktadır. Ancak, çok az kişi çiftlik düzeyinde temel gıda üretiminin gerçek sorunlarının farkındadır ve bunları dikkate almaktadır. Bitki Koruma ürünleri genellikle risk faktörü olarak görülmekte ve yararları gözardı edilmekte ya da unutulmaktadır. Ancak, bir risk değerlendirmesinde, riskin kabul edilebilir olup olmadığına karar verebilmek için yararlardan da sözedilmelidir. Gıda Temini Son yıllarda yapay Bitki Koruma İlaçları kullanan modern yoğun tarımın insanlığa sağladıkları: • 1960 yılından bu yana dünya kalori üretimini iki katına çıkarmıştır. • Yemeklik yağ, et, meyve ve sebze gibi kaynak-yoğun gıda üretimini üç katına çıkarmıştır. • Üçüncü Dünyada kişi başına gıda üretimini %25 artırmıştır. • Bu dönemde dünya nüfusu 2,5 milyardan 5,5 milyara çıkmış olmasına rağmen tarıma ayrılan alanı 1950 ile günümüz arasında 1,4 milyar hektarda sabit tutmuştur. • İlave 26 milyon km2 alanın, gelecek yüzyılın sonunda iki katına çıkacak olan mevcut nüfusun beslenmesine ayrılmasını önlemiştir. Yüksek verimli tarım talebinin artmasının tek nedeni nüfus artışı değildir.Çoğu Asya’daki hızla gelişen ülkelerde bulunan ve beslenme alışkanlıklarını geliştirmeye başlayacak düzeyde gelir elde etmekte olan 2 milyar civarında insanın yüksek proteinli gıda isteği de bu talebin artmasına neden olacaktır. Bu amansız gıda taleplerinin karşılanmasında ancak yoğun ve bilime dayalı tarıma güvenilebilir. Bitki Koruma ürünleri gıdanın üretiminin yanısıra aynı zamanda depolanmış pirinç ve diğer taneli hububat gibi ana gıdaların korunması bakımından da zorunludurlar. Modern koruma yöntemleri kullanılarak gıda stokları asgari masrafla fire vermeden yıllarca korunabilir. Bu stoklar, sabit fiyatlardan sürekli gıda arzı için de ön koşuldur. Amerika’da 1980’li yılların sonuna doğru hububat bölgesinde bir yıllık kuraklık, dünya gıda stoğu düzeyini FAO’nun öngördüğü asgari düzeyin altına indirmeye yetmişti. Ayrıca, şehirleşmiş modern toplum çok gelişmiş bir lojistik sistem olmadan beslenememektedir. Bu sisteme mahsulün son derece hassas tarımsal üretimi, hasadı, depolanması ve nakliyesi dahildir. Bitki Korıma İlaçları kullanılmazsa, bu sistem hızla çökecektir. Tüketiciye doğrudan pazarlama yapılan küçük ölçekli çiftçilik çok sınırlı bir pazar kesimini temsil etmekte olup, şehirli nüfusların ihtiyacı olan muazzam gıda miktarlarının sürekli temini garantisini veremez. Sağlığa Katkıları Düşük maliyetli taze meyve ve sebzenin yeterli düzeyde sağlanmasıyla kanser ve kalp hastalığı gibi “modern” canilere karşı da insanın en iyi şekilde savunulur. Yeterli düzeyde yüksek kaliteli gıda temini, tıbbi bakımda istikrarlı ilerleme ile birlikte insanın yaşam süresinin ve refahının istikrarlı olarak iyileştirilmesinde başlıca faktördür. Geçmişte Avrupa’da yüz binlerce ızdıraplı ölüme yol açmış olan çavdar mahmuzu gibi yaşamı tehdit eden fungal hastalıklar ve aflatoksin gibi fungal toksinlerin neden olduğu kanserler, hububat ve fıstık üretimi ve depolanmasında fungisitler kullanılarak önlenmektedir. Son çalışmalar, son derece kanserojen mikotoksinlere, organik yetiştirilmiş hububatlarda Bitki Koruma ürünleri kullanılarak yetiştirilmiş hububatlara göre çok daha sık rastlandığını kesinlikle ortaya koymuştur. Bitki Koruma ürünleri aynı zamanda sıtma, şistosomiasis, filiarsis, tripanazoma ve onkoseriasis gibi taşıyıcıyla bulaşan hastalıkları kontrol ederek milyonlarca hayatı kurtarmaktadır. Bu durum tropik veya subtropik iklimler ile de sınırlı değildir. Evlerde, restoranlarda ve hastanelerde hamamböceği gibi hastalık taşıyıcı haşerelerin kontrolü, Avrupa’da kanatlı karınca ve diğer ahşap oyan haşerelerin yol açtığı maddi tahribatın önlenmesinde de olduğu gibi Bitki Koruma ürünlerine bağlıdır. Herbisitlerin kullanılması sadece mahsulden daha yüksek verim alınmasını sağlamakla kalmayıp, aynı zamanda çiftlikte yaşayanların çalışma koşullarında iyileşme sağlamıştır. Bunun sonucunda çalışanların kas ve iskelet sorunlarının insidansı azalmış, genel sağlıkları ve üretkenlikleri iyileşmiştir. Arka bahçede veya yerleşim yerinin yeşil alanlarında çapalama uygun hatta tatminkar olabilir, ancak büyük ölçekli çifçilikte kullanışlı değildir. Bitkisel Üretim Hannover Üniversitesi'nden Dr. E.C. Oerke tarafından yakın bir geçmişte yapılan bir çalışma, Bitki Koruma İlaçları kullanılarak ve kullanılmadan bütün dünyadaki mevcut besin ve fiber verimliliğini ayrıntılarıyla ortaya koymuştur. Bu çok önemli çalışma, aşağıda bazı örnekleri verilen mahsuller üzerinden Bitki Koruma ürünlerin çekilmesinin küresel etkisini incelemektedir. Buğdayda, hastalıkların, böceklerin ve yabani otların neden olduğu kayıplar %27 oranındadır, ancak Bitki Koruma İlaçları olmasaydı bu oran %53'e çıkardı. Arpa kayıpları iki kat daha fazla artarak %40, mısır kayıpları ise %52'ye ulaşırdı. Tahıl dışı ürünler arasında yer alan patates Dünya gıda rejiminde ve ekonomisinde önemli bir yere sahiptir ve insanın beslenme rejiminde ana tahılların ardından beşinci önemli enerji kaynağını oluşturur. Küresel olarak, bitkisel üretimin %50'si insanlar tarafından tüketilir, yaklaşık %30'u da hayvan yemi olarak kullanılır. İlaç kullanılmaması durumunda Avrupa'daki patates ürünü kaybı %76 oranına ya da hektarda 30 tona ulaşacaktı. Bunlara benzer kayıpların sonuçları hemen kullanıma hazır ürün miktarındaki bir düşme ve buna bağlı olarak tüketici için daha yüksek fiyatlar ve devletler için daha düşük ihracat gelirleri şeklinde kendini göstermektedir. Çiftçiler de bundan zarar görecektir. Örneğin Almanya'da çiftçiler, brüt gelirlerinde %57 oranında bir düşme ile karşılaşacaktır. Tarımsal ürünlerin serbestçe dolaşımı da modern Bitki Koruma İlaçlarının kullanılmaması yüzünden tehdit altında kalacaktı. Örneğin limon bir çok ülke için önemli bir ihraç ürünüdür. Bitki karantinası yönetmelikleri, Akdeniz meyva sineği bulaşmış limonun ihracatını engellemektedir. Buna benzer bir durum birkaç yıl önce hükümet makamları limon ağaçlarının malathion ile ilaçlanmasını yasaklamaya kalkıştıklarında Kaliforniya'lı üreticilerin de başına gelmişti. Çevresel Etki Bitki Koruma İlaçları birçoğumuzun zannettiği gibi sorunun değil çevresel çözümün bir parçasıdır. Görünürde, bu yazıda belirtilen gıda üretimindeki kazançların tamamı çevresel açıdan desteklenebilir türdedir. Bitki Koruma İlaçları kullanılmadan düşük verimli tarım sürdürülemez, çünkü dünya nüfusunu besleme çabası ile, bu yetersiz üretim senaryosu yabani hayat alanlarının büyük bir bölümünün ekime ayrılmasını gerektirecektir. Bazı kişilerin algılama şekli ve Bitki Koruma İlaçlarının yabani flora ve faunayı öldürdüğü şeklindeki ortak iddia, bilimsel ve mantıksal açıdan dayanaktan yoksundur. Eski geniş spektrumlu ve kalıcı Bitki Koruma İlaçlarının yerini büyük oranda daha dar hedeflere yönelik ve daha az kalıcı kimyasallar almıştır. Bunlar, hedeflenenin haricinde etkilere sahip olup olmadıkları konusunda laboratuvarlarda kapsamlı testlere tabi tutulmuşlardır. Hektar başına kilogram yerine gram düzeyinde dozajlar ile yıllar yerine haftalar ile ölçülen kalıcılık süreleri artık birer istisna değil kural haline gelmiştir. Yüzmilyonlarca dolar ve uzun yıllar süren araştırma ve testler, pazarlama ve kullanımdan önce yeni bir Bitki Koruma İlacı için harcanmaktadır. Bitki Koruma İlaçları, bitkisel ürünlere zarar veren funguslar ile, bu bitkileri tüketilmeden önce imha edecek olan yabancı ot ve böcekleri kontrol altına almak için tasarlanmıştır. Bunların hedef alanının dışında kalan canlı türleri ile yabani hayat üzerindeki tahmini olmaktan çok ölçülmüş olan etkileri asgari düzeydedir. Kimyasal temele dayalı tarımın yoğunlukla uygulandığı bölgelerde ortadan kalkan yabani canlı türlerinin yok olma sebebi bu sektörde kullanılan kimyasallar değil bunların yaşama alanlarının yerini bizzat tarım alanlarının almış olmasıdır. Yabani hayatı korumanın tek yolu yabani canlıların yaşama alanlarını korumaktır. Her türlü insan faaliyetinin canlı türlerinin çeşitliliği üzerinde genel bir etkisi olduğuna dair ve sağlam bir temele sahip çok az sayıda kanıt vardır. En iyi verilerin bir bölümü, insan faaliyetlerinin yoğun tarım ve ormancılık da dahil olmak üzere, her konuda en yüksek düzeyde olduğu ABD'den gelmektedir. Bu ülkede, bitki, hayvan, fungus ve mikro organizma türlerinin sayısının 250.000 civarında olduğu tahmin edilmektedir. Tahmini olarak 87 omurgalı türü 1492 yılından beri ortadan kalkmıştır. Bu arada, Balık ve Vahşi Yaşam Servisi halen tehdit veya tehlike altında olan 822 canlı türünün sıralamasını vermekte ve 300 adet canlı türünü de bu duruma aday olarak göstermektedir. Toplam olarak, yukarıda belirtilen kategorilerde yaklaşık olarak 1200 canlı türü veya başka bir ifade ile tahmini toplam canlı türlerinin yaklaşık olarak yüzde 0,5'i bulunmaktadır. Diğer yandan, ABD Teknoloji Değerlendirmesi Bürosu, insanların bilerek veya diğer yollardan ABD kökenli olmayan yaklaşık 4500 canlı türünü Amerika ortamına getirdiğini tahmin etmektedir. Bunların bazıları yararlıdır (görünüşte ABD'deki bütün gıda bitkileri dışarıdan getirilen türlerdir), bazıları da değildir. Ancak bunların tümü ortam içindeki biyolojik çeşitliliği arttırmaktadır. Dolayısıyla, tarımın hem kimyasal hem de enerji yoğun olduğu bir ülke örneği ile karşı karşıya bulunuyoruz ve ülkenin biyolojik çeşitliliğinin önemli bir biçimde olumsuz yönde etkilendiğine dair elimizde hiçbir kanıt yoktur. Kimyasal olmayan organik tarım, Bitki Koruma İlaçları ve kimyasal gübreler kullanılarak yoğun ekim yapılmış alanlardaki mahsulün en fazla %50’sini üretebilir ki organik tarımda bu düzey bile geniş araziler üzerinde tutarlı biçimde kanıtlanmalıdır. 1965 ve 1990 arasında Hindistan’da buğday üretimi 12 milyon tondan 55 milyon tona çıkmıştır. Bu artışta, tarım arazilerindeki 9 milyon hektarlık artışın da (14-23 milyon arasında) rolü bulunmaktaydı. Eğer Yeşil Devrim’in bitki türlerini ıslah etme, bitkinin korunması, sulama, mekanizasyon ve çiftçilerin eğitimi gibi yararları sözkonusu olmasaydı, bunun yerine 40 milyon hektarlık yerleşim alanının tarla halinedönüştürülmesi gerekecekti. Günümüzden 2100 yılına kadar insan nüfusunun iki katına çıkmasını engelleyebilecek geçerli ya da etik açıdan uygun bir yol yoktur. Gelişmiş ülkelerde her zaman görüldüğü gibi, ekonomide istikrar arttıkça nüfus artışı da durma düzeyine yaklaşır. Yine de, önümüzdeki yüzyılın sonunda nüfus artışındaki moment nedeniyle dünya nüfusu şu andaki 5,5 milyardan 10 milyar civarına çıkmış olacaktır. Bu nedenle sorulması gereken soru, refahın artmasıyla birlikte pek çoğu düşük kalorili karbonhidrat diyetlerinden yüksek kalorili protein diyetlerine terfi edecek olan kişilerin çoğunlukta olacağı bu kadar yüksek sayıda insana nasıl yeterli gıda sağlanabileceğidir. Yanıt düşük girdili “destekleyici/sürdürülebilir” tarım değildir. Büyük olasılıkla Amerika Birleşik Devletleri, 2050 yılında organik tarım teknikleriyle nüfusunu doyurabilecek az sayıda ülkeden biri olacaktır, ancak bu durum da ABD’nin ürün fazlasını, gıda üretiminde kendine yetemeyen ülkelerdeki insanlara vermesine engel olacaktır. Daha önce belirtildiği gibi, yüksek girdili tarım 1950 yılında, 14 milyar hektarlık tarım alanında ( yaklaşık olarak Güney Amerika’nın yüzölçümü), gittikçe artan bir nüfusu doyurabilmeyi başarmıştır. Aradaki dönemde nüfus iki katına çıkmıştır. Yeniden iki katına çıkacaktır. Kabul etmemiz gereken gerçek şudur: ‘Gerekli gıdanın sağlanabilmesi için milyarlarca hektar habitatı daha tarım alanına çevirmek istemiyorsak, yoğun tarımı daha da yoğun hale getirmemiz gerekir.’ Kimyasal bazlı yoğun tarımın doğal biyolojik çeşitlilik üzerindeki etkilerinden savunulması güç biçimde şikayet etmek yerine, eğer yabani hayata zarar vermek yerine onu korumayı amaçlıyorsak, düşük girdili tarım nedeniyle ne kadar arazinin kaybolacağını kendimize sormamız gerekir. Yukarıda sonuç olarak belirtilmiş olduğu gibi, yoğun modern tarımda Bitki Koruma İlaçlarının kullanımı yabani hayat alanlarını aslında korumaktadır. Çevreyi korumak için verilen savaş, sadece dünyanın ıssız alanlarındaki seçilmiş bölgelerde değerlendirilmemelidir. Etkin modern tarımda mahsulün azalması, Hint alt-kıtasında olduğu gibi yoğun nüfuslu yarı-ari ülkelerdeki kırılgan ekosistemlerde aşırı gerilimle sonuçlanacaktır. Hudson Enstitüsü’nden Dr. D. T. Avery’ye göre “Dünyadaki yabani hayat alanlarını ve böylece yabani hayatıkorumak için tek yol, yüksek verimli tarımı daha yüksek verimli tarıma dönüştürmektir.” Ayrıca, Bitki Koruma İlaçlarının uygun ve doğru kullanımını baz alan modern ekim sistemleri, en destekleyici nitelikteki üretim metodunu oluşturmaktadır. Örnek vermek gerekirse, dünyadaki en önemli çevre sorunlarından biri erozyondur. Koruyucu tarımla kombine kullanılan ve bitkileri öldüren ilaçlar, bu sorunu %50-98 azaltmıştır. Diğer bilimsel gelişmeler de, girdi kayıplarının (enerji, gübre ve Bitki Koruma İlaçları) en aza indirilebileceğini ve Bitki Koruma İlaçlarının kullanıldığı entegre tarımın toprağın verimini artırdığını açıkça göstermektedir. Yoğun tarım kesinlikle çevrenin korunmasıyla çelişki içinde değildir; tam tersine çevrenin korunmasında destekleyici rol oynamaktadır.

http://www.biyologlar.com/pestisitlerin-insan-ve-cevre-uzerine-etkileri-1

Biyolojik Çeşitlilik, Çevre sorunları ve Etkileri

1- Biyolojik Çeşitlilik : Bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğine biyolojik çeşitlilik denir. Her ekosistemin kendine özgü bir biyolojik çeşitliliği vardır ve biyolojik çeşitlilik bir doğal zenginliktir. Bir ülkedeki bitki ve hayvan türleri, hem o ülkenin, hem de dünyanın biyolojik zenginliği olarak kabul edilir. Bir ekosistemdeki biyolojik çeşitliliğin fazla olması o ekosistemin diğer ekosistemlere göre üstün olması anlamına gelmez. Biyolojik çeşitlilik sürdürülebilir kalkınmanın sağlanmasına yardımcı olur ve üç farklı kavramdan oluşur. Bunlar genetik çeşitlilik, tür çeşitliliği ve ekosistem çeşitliliğidir. Bir tür içindeki bireylerin sahip olduğu kalıtsal özelliklerin yani bireylerin genetik yapılarının farklı genetik çeşitliliği oluşturur. Bir ekosistemde yaşayan ve genetik olarak birbirlerine benzerlik gösteren türlerin sayısı tür çeşitliliğini oluşturur. Belli bir bölgede yaşayan bitkiler ve hayvanlar gibi canlı varlıklarla toprak, su, hava ve mineraller gibi cansız varlıkların çeşitliliği, ekosistem çeşitliliğini oluşturur. Ekosistemlerin görevi, canlıların yaşamlarını ve nesillerini sürdürebilmek için uygun ortamın hazırlanmasını sağlamaktır. Ekosistemler, canlı ve cansız varlıklardan oluşur ve bir ekosistemin özelliğini, o ekosistemi oluşturan su, sıcaklık, ışık, nem, toprak, hava, rüzgâr, iklim gibi cansız varlıklar belirler. Bu cansız varlıkların canlılarla olan etkileşimi, ekosistemlerin çeşitliliğini belirler. Ekosistemlerin orman, göl, çöl, dağ, sazlık, akarsu, okyanus gibi çeşitleri vardır. Bu çeşitlilik arttıkça, ekosistemde yer alan habitat ve tür çeşitliliği de artar. NOT : 1- Orman ve okyanus ekosistemlerinde canlı türü sayısı, çöl ve kent ekosistemlerindeki canlı türü sayısından daha fazladır. 2- Canlı türlerinin sayısı 5 – 30 milyon arasında tahmin edilmektedir. Dünyada toplam 1.742.000 canlı türünün tanımlandığı ve 4.926.000 canlı türünün bulunabileceği belirtilmektedir. 2- Biyolojik Çeşitliliğin Faydaları : İnsanlar, tarım ve teknolojide sahip olduğu bugünkü seviyeye, biyolojik çeşitlilik ve zenginlik sonucu ulaşmıştır. Biyolojik çeşitliliğin ve ekosistemlerin sağladığı faydalar insan hayatının devamı için gereklidir. Biyolojik çeşitliliği oluşturan bitki ve hayvan türleri tarım, eczacılık, tıp, hayvancılık, ormancılık, balıkçılık ve sanayi alanlarında, temiz su ve hava sağlanmasında kullanılırlar. Biyolojik çeşitliliği oluşturan bitki ve hayvan türlerinin sayısının ve çeşitliliğinin fazla olması, o ülkeye ekonomik kazanç sağlar. Biyolojik çeşitlilik, ekosistemleri dengede tutar, gezegeni yaşanabilir hale getirir, insanların sağlığını, çevreyi ve ekosistemleri destekler. a) Bitki Çeşitliliğinin Faydaları : Bitkiler havayı temizler, erozyonu önler, toprağa organik madde kazandırır, toprak yorgunluğunu giderir. Diğer canlılara barınma ve beslenme ortamı sağlayarak ekosisteme devamlılık kazandırırlar. Ülkemize özgü olarak yetiştirilen çam, meşe, palamut, kavak, ardıç türü ağaçlar ormancılıkla ilgili fayda sağlar. Acur, taflan, çitlenbik, iğde, göleviz, ahlat (yaban armudu), alıç, delice, idris, melengiç, hünnap, üvez, yonca, mürdümük gibi sebze ve meyveler tıp alanında fayda sağlar. b) Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Bazı böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının ve çeşitliliğinin sürmesini ve bu sayede ekosistemin sürekliliğini sağlar. Böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlar. Bazı böcek türleri de kuşlar, balıklar, sürüngenler gibi hayvanların besin kaynağı durumundadır. Ülkemizin çeşitli yerlerindeki doğal çevreye uyum sağlamış koyun, keçi, inek, sığır gibi türler hayvancılıkla ilgili fayda sağlar. Ülkemize özgü olarak bulunan alabalık, kefal ve levrek türü balıklar balıkçılıkla ilgili fayda sağlar. c) Ekosistem Çeşitliliğinin Faydaları : Doğaya dayalı turizme eko turizm denir. Eko turizm son yıllarda artan bir öneme sahiptir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. NOT : 1- Her bölgenin kendine özgü biyolojik çeşitliliği yani bitki ve hayvan türleri vardır ve bir bölgenin biyolojik çeşitliliğini o bölgedeki ekosistemleri oluşturan cansız varlıklar belirler. 2- Bitki Çeşitliliğinin Faydaları : İnsanoğlu, eski çağlarda tarım toplumuna geçmesinden günümüze kadar çok sayıda bitki türünü kültüre almıştır. Tarih boyunca 3000 kadar bitki türünün beslenmede kullanıldığı ve bunların % 30’unun gıda üretiminin çoğunu karşıladığı belirtilmektedir. Geri kalan türlerin de tarım için önemi büyüktür. Bugün Genetik Mühendisliği ve Biyoteknolojideki ilerlemeler sonucu, günümüzde kullanılan çeşitlere yabani akrabalarından gen aktarımı yapılarak zararlı böcek, hastalık, yabancı otlar ve kuraklığa dayanıklı yeni çeşitler elde edilmektedir. Bugün, tarımda kullanılmayan doğada bulunan birçok bitkinin gelecekte tarımda kullanılma potansiyeli vardır. Bugün kültürü yapılan birçok meyve ve sebzenin ilk defa kültüre alındığı yer Türkiye’dir. Bu türlerin ülkemizde bulunan yabani akrabalarının paha biçilmez değeri vardır. Birçok bitki türü, tıp ve eczacılıkta eski çağlardan beri kullanılmaktadır. Son yüzyılda, biyokimya bilimindeki gelişmeler sonucu birçok bitkiden çeşitli bileşikler elde edilmiştir. Günümüzde 250.000 bitki türünden, ancak 5.000 ‘inin eczacılık değeri yönünden incelendiği kaydedilmektedir. Gelecek yıllarda bilimdeki ilerlemelere bağlı olarak birçok bitkiden, değişik hastalıklar için bileşiklerin elde edilmesi mümkündür. Ülkemiz tıp ve eczacılıkta kullanılan ve aromatik bitkiler yönünden zengin bir çeşitliliğe sahiptir. Ayrıca süs bitkisi olarak ve peyzaj düzenlemelerinde kullanılan soğanlı bitkilerce de zengindir. Önümüzde ki yıllarda, bu yönüyle değerlendirilebilecek çok sayıda bitki türü bulunmaktadır. Yine tarımsal zararlıların mücadelesinde bazı bitkilerden elde edilen bitkisel kökenli ilaçlar kullanılmaktadır. Doğadaki birçok bitki, bu yönüyle de önem arz etmektedir. 3- Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Yine kültüre alınan hayvanların yabani akrabaları, hayvan ıslahında kullanılmaktadır. Böceklere bakıldığında 1.200.000 böcek türünden, ancak 750 tür kültür bitkilerinde zararlı olmaktadır. Geri kalan türler bizim için faydalı türlerdir. Bunlardan bazıları tarımda zararlı türlerin üzerinde beslenerek bu türlerin savaşımında kullanılmaktadır. Bitkilerin büyük çoğunluğu tozlaşma için böceklere gereksinim duymaktadır. Böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının devamlılığı ve çeşitliliğine olanak vermekte ve ekosistemin devamlılığını sağlamaktadır. Yine böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlamakta adeta doğada birer gönüllü temizlik işçisi gibi çalışmaktadır. Bazı türler de kuşlar, balıklar, sürüngenler gibi hayvanların gıda kaynağı durumundadır. Tüm bu yönleriyle, yeryüzündeki yaşamın böceklere bağlı olduğunu söylemek fazla abartılı olmaz. 4- Ekosistemin Ekoturizm Olarak Sağladığı Faydalar : Doğaya dayalı turizm, ekoturizm olarak adlandırılmaktadır. Ekoturizm son yıllarda artan bir önem arz etmektedir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. A.B.D.’de Milli Parklar Servisi’nin 1998 yılı ölçümlerine göre, yaklaşık 300.000 turistin milli parkları ziyareti ile, direk ve dolaylı gelir olarak 14 milyar dolar gelir elde edilmiştir. Benzer durum dünyanın diğer ülkelerinde de vardır. Dünya Turizm organizasyonu, ekoturizmin uluslar arası turizmin % 7’sine karşılık geldiğini bildirmektedir. Ülkemizde de Fethiye’de bulunan Kelebekler Vadisindeki kelebekleri görmek amacıyla, tatil sezonu boyunca günübirlik olarak 15.000 turistin ziyaret ettiği bildirilmektedir. Biyolojik çeşitlilik ve doğal güzellikler bakımından, dünyada eşsiz bir yere sahip ülkemiz, ekoturizmde büyük potansiyel arz etmektedir. Ülkemizin sahip olduğu doğal güzellikler ve biyolojik zenginlikler yurt içi ve dışında yeterince tanıtılmalı ve ekoturizm geliştirilmelidir. SORU : 1- Yaşanılan bölgede en çok yetiştirilen sebzeler hangileridir? 2- Yaşanılan bölgeye özgü bitki ve hayvan türleri nelerdir? 3- Yaşanılan bölgedeki bitki ve hayvanların sayısı ve çeşitliliği diğer bölgelerde de aynı mıdır? 4- Bitki ve hayvan türlerinin sayıca fazla olması, bölgenin doğal zenginliklerinin bir göstergesi midir? 5- Kaç değişik kuş türü biliyoruz? 6- Kaç değişik balık türü biliyoruz? 7- Kaç değişik çiçek çeşidi biliyoruz? 8- Çeşitlilik nedir? 9- Bir bölgedeki bitki ve hayvan türlerinin çeşitliliği, o yerin hangi özelliğini ortaya koyar? 10- Ders kitabında verilen resimlerdeki canlılardan hangileri ülkemizde yaşamaktadır? 11- Ders kitabında verilen resimlerdeki canlılardan hangilerinin nesli tükenmek üzeredir? 12- Ülkemizde farklı ekosistemlerin biyolojik çeşitliliğini oluşturan bitki ve hayvan türleri nelerdir? 3- Biyolojik Çeşitliliğin Azalması ve Yok Olması : Bir ekosistemde, bölgede, ülkede veya dünyada yaşan herhangi bir canlı türünün yok olması o canlının neslinin tükenmesi yani biyolojik çeşitliliğin azalması, canlı türlerinin yok olması da biyolojik çeşitliliğin yok olması anlamına gelir. İklim değişikliliği, kirlenme, doğal kaynakların aşırı kullanımı, sürdürülebilir olmayan kaynakların kullanımı ve hızlı nüfus artışı biyolojik çeşitliliğin azalmasına ve türlerin yok olmasına neden olur. Habitatların yok olması veya zarar görmesi, birçok bitki ve hayvan türünün neslinin yok olmasına neden olur. Biyolojik çeşitliliğin korunması için 1992’de 172 ülkenin katıldığı Rio Zirvesi olarak bilinen Birleşmiş Milletler (BM) Çevre ve Kalkınma Konferansı yapılmış ve İklim Değişikliği ve Biyolojik Çeşitlilik sözleşmeleri imzaya açılmıştır. Rio Zirvesi’ne katılan, aralarında Türkiye’nin de bulunduğu 156 ülke Biyolojik Çeşitlilik Sözleşmesi’ni (BÇS) imzalayarak, kendi sınırları içerisindeki bitkilerin ve hayvanların çeşitliliğinin tam olarak korunması sorumluluğunu üstleneceklerine, ayrıca gelecek nesillerin doğal kaynaklara olan ihtiyaçlarından ödün vermeden günümüz ihtiyaçlarının karşılanması için çeşitli yollar aranması konusunda anlaşmaya varmıştır. • Önceki yıllarda yaşayan mamut, bizon, moa, dinozor gibi canlılar günümüzde yaşamamaktadır yani nesilleri tükenmiştir. • Önceki yıllarda ülkemizde yaşayan Anadolu leoparı, Asya fili, kunduz, aslan gibi canlılar şuan ülkemizde yaşamamaktadır ve ülkemizde nesli tükenmiştir. • Şu an ülkemizde yaşayan Akdeniz foku, kelaynaklar, deniz kaplumbağaları, alageyik, boz ayı, kardelen çiçeği ve salep yapımında kullanılan orkideler nesli tükenmek üzere olan canlılardır. NOT : 1- Türkiye'de 500'den fazla habitat çeşidinde 10.000'den fazla çiçekli bitki ve eğrelti; 400'den fazla kuş; 500'den fazla balık; 100.000'den fazla sürüngen ve 160.000'den fazla omurgasız hayvan türü kayıtlıdır. SORU : 1- Biyolojik çeşitlilik yok olabilir mi? 2- Biyolojik çeşitliliğin yok olması nasıl gerçekleşir ve ne gibi sonuçlar getirir? 3- Canlıların neslinin tükenmesi, biyolojik çeşitliliğin azalması anlamına gelir mi? 4- Ülkemizin Biyolojik Zenginlikleri : Ülkemizin Asya ve Avrupa kıtaları arasında bir köprü görevi görmesi, ayrıca çok değişik iklim ve coğrafi yapıya sahip olması nedeniyle, bitki ve hayvan türleri bakımından oldukça zengin bir çeşitliliğe sahiptir. Türkiye’de 120 memeli, 413 kuş, 93 sürüngen 18 kurbağagil, 276 deniz balığı, 192 tatlı su balığı ve 60–80.000 böcek türünün bulunduğunu bilinmektedir. Yine ülkemiz bitki türleri bakımından da oldukça zengindir. Bütün Avrupa kıtasında 12.000 bitki türü bulunmasına karşın ülkemizde 9.000 bitki türü bulunmakta ve bu türlerin % 30’u dünyada sadece Türkiye’ de bulunmaktadır. Oldukça fazla sayıda bitki ve hayvan türünün tanımlandığı yer ve anavatanı ülkemizdir. Tüm bu yönleriyle Türkiye, biyolojik çeşitlilik bakımından bir kıta özelliği göstermekte olup dünyada eşsiz bir yere sahiptir. 5- Biyolojik Çeşitliliğin Korunması : Biyolojik çeşitlilik, bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğidir. Ülkemizde ve dünyada nesli tükenme tehlikesiyle karşı karşıya olan bitkiler kardelen ve salep yapımında kullanılan orkidelerdir. Deniz kaplumbağaları, Akdeniz fokları, bozayı, Ankara keçisi, Tuj koyunları, alageyik, sülün ise nesli tükenme tehlikesiyle karşı karşıya olan hayvanlardandır. İster bitki ister hayvan olsun bu canlıların nesillerinin konuna altına alınması için tabiat parklarının, doğal yaşam alanlarının oluşturulması, organik tarımın tercih edilmesi ve insanların bu konularda eğitilmesi gerekmektedir. Çiftçiler aşırı otlatmanın, bitkilerin aşırı toplanmasının, ormanların arazi kazanmak amacıyla tahrip edilmesinin biyolojik çeşitlilik açısından olumsuz etkileri konusunda bilinçlendirilmelidir. Kıyı habitatlarının tahrip edilmesi, balıkçılığın ve avlanmanın aşırı ve kontrolsüz yapımı engellenmelidir. Ayrıca bu türlerin korunması ve denetimi için mekanizmalar geliştirilmelidir. Biyolojik çeşitlilik tüm dünyanın ortak zenginliğidir. Bugünün ihtiyaçlarını karşılayarak gelecek kuşaklara da bu çeşitliliği aktarabilmek amacıyla biyolojik çeşitliliğin korunması gereklidir. C- ÇEVRE SORUNLARI VE ETKİLERİ : 1- Ekosistemlerin Bozulma Nedenleri (Çevre Sorunları) : Çevre sorunları, insanların yaşadığı problemlerden biridir çevre sorunlarının yani ekosistemlerdeki bozulmaların bir kısmı doğal yolla, bir kısmı da insan etkisiyle oluşur. İnsanlara ve ekosistemlere zarar veren doğal kaynaklı bozulmalar, su, toprak ve hava hareketleriyle oluşur. Su taşkınları, depremler, erozyon, volkanik hareketler (yanardağ patlamaları), fırtına, kasırga, uzun siren kuraklık ekosistemlerin bozulmasına yol açan doğal afetlerdir. İnsanlar, bulundukları ekosistemlerdeki (çevrelerindeki) canlı ve cansız varlıkları etkileyerek ekosistemlerin bozulmasına yol açarlar. İnsanlar, ekosistemlerdeki doğal varlıklarla iç içe yaşarken zamanla teknolojinin gelişmesi ve doğal kaynakların bilinçsiz kullanılması sonucu doğanın dengesi bozulmuş ve birçok çevre sorunu ortaya çıkmıştır. Hızlı nüfus artışı, bilinçsiz sanayileşme, düzensiz şehirleşme, doğal kaynakların bilinçsiz kullanılması, nükleer silahlar ve nükleer santral patlamaları, biriktirilmiş suların (barajlardaki suların) taşkınlara neden olması, orman tahribatı ve çığ gibi olaylar doğal denge üzerinde olumsuz etkiler yaparak çevre kirliliğine yani ekosistemlerin bozulmasına yol açan insan kaynaklı faktörlerdir. Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. SORU : 1- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunları nelerdir? 2- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunlarının sebepleri ve sonuçları nelerdir? 3- Ülkemizi ve dünyayı tehdit eden çevre sorunları dünyayı nasıl etkiler? 4- Ekosistemler zamanla neden değişip bozulmaktadır? 5- Ekosistemlerdeki bozulmalar beraberinde hangi sonuçları getirin? 6- Çok küçük bir ekosistemin zarar görmesi tüm dünyayı nasıl etkiler? 2- Çevre Kirliliğine Neden Olan (İnsan Kaynaklı) Faktörler : a) Orman Tahribatı : Orman yangınları, ihmal, dikkatsizlik, kaçak yapılaşma ve arazi açmak için ağaçların bilinçsizce kesilmesi gibi sebepler yüzünden ormanlar tahrip olmaktadır. Bunun sonucunda ekosistemlerin doğal dengesi bozulmakta, ormanda yaşayan canlı türleri ve bu türlerin habitatları yok olmakta, toprak zenginliği kaybolmaktadır. (Ülkemizde orman yangınlarının kayıtları 1937 yılında tutulmaya başlanmıştır. Bu kayıtlara göre yaklaşık 1,5 milyon hektar ormanlık alan yok olmuştur). SORU : 1- Ülkemizdeki orman tahribi sadece ülkemizi mi etkiler? 2- Orman tahribi nasıl engellenebilir? 3- Ormanların kaybı hayatımızı nasıl etkiler? b) Çığ : Yüksek yerlerdeki karların şiddetli ses etkisiyle dağın yamaçlarına yuvarlanmasına çığ denir. Eğimli arazi üzerinde birikmiş büyük kar örtüsü, yer çekimi etkisiyle kaydığında çığ oluşur. Çığ genellikle bitki örtüsü olmayan, dağlık eğimli arazilerde görülür. Çığlar beraberinde toprak, taş ve ağaçları da sökerek götürür. Bu şekilde meydana gelen aşınma ve taşınma, toprağı verimsizleştirerek canlıların yaşamını tehlikeye sokar. Çığlar, tarım alanlarının veriminin düşmesine ve su kaynaklarının kirlenmesine neden olur. SORU : 1- Çığdan korunma yolları nelerdir? c) Nükleer Silahlar ve Nükleer Santral Patlamaları : Nükleer silahlar, nükleer kazalar ve bu kazalar sonunda ortaya çıkan nükleer atıklar kirlenmeye sebep olur. (1986 yılında yaşanan Çernobil Nükleer Enerji Santrali Kazası’nın yarattığı olumsuz etkiler, bu kirliliğin en canlı örneğidir. Bu olaydan ülkemizin en çok Karadeniz Bölgesi’nin etkilendiği tespit edilmiştir). SORU : 1- Nükleer kirlilik sadece belli bir bölgeyi mi etkiler? 2- Nükleer kirliliğin canlılar ve onların çevreleri üzerindeki olumsuz etkileri nelerdir? d) Biriktirilmiş Suların Taşkınlara Yol Açması : Barajların yıkılması sonucu oluşan taşkınlar, bitki örtüsüne, ekili alanlara toprağın verimli tabakasının taşınmasına neden olur. e) Aşırı Nüfus Artışı : Bir bölgedeki ya da ekosistemdeki nüfus artışını ya da azalışını o ekosistemdeki göçler, doğum ve ölüm olayları belirler. Nüfus artışının az olduğu dönemde insan tarafından çevreye verilen zarar doğal yollarla kendiliğinden düzeltilebiliyordu. Nüfus artışı fazla olduğu için; • Doğal kaynaklar aşırı kullanıldı. • Barınma amacıyla yeşil alanlar yok edildi. • Büyük kentler çevre kirliliğine yol açtı. • Araçların egzoz gazları hava kirliliğine yol açtı. • Soğutucularda kullanılan karbon maddesi ozon tabakasını inceltti. • Tarımsal alanlarda yapılan ilaçlamalar yararlı böcekleri de yok etti. • Evsel atıklar, lağım suları ve sanayi atıkları çevreyi kirletti. • Tarımda üretimi arttırmak için aşırı kullanılan gübreler çökerek toprağın ve yeraltı sularının kirlenmesine yol açtı. f) Plansız Sanayileşme : Nüfusun hızla artması sonucu sanayi gelişmiş ve bunun sonucu çevre (hava, toprak, su) zarar görmüş, kirlenmiştir. • Tarla ekmek için orman arazilerinin kesilmesi. • Artan kereste ihtiyacı nedeniyle ormanların kesilmesi. • Fabrika bacalarına filtre takılmaması. • Fazla ürün elde etmek için tarımda aşırı gübreleme ve ilaçlama yapılması. • Fabrika atıklarının arıtılmadan suya ya da toprağa verilerek su ve toprağı kirletmesi. g) Doğal Kaynakların Bilinçsiz Kullanılması : Bir ekosistemdeki hava, toprak, su, hayvanlar, bitkiler, yeraltı zenginlikleri ve doğal güzellikler o ekosistemdeki doğal kaynakları oluştururlar. Doğal kaynakların bilinçsiz kullanılması çevre kirliliğine yol açar. • Kimyasal ve biyolojik silahların kullanılması. • Gereksiz tarım ilaçları ve böcek öldürücülerin kullanılması. • Soğutucuların ve spreylerin fazla kullanılması. • Ev ve sanayi atıklarının çevreye dağılması. • Nükleer silahların ve radyasyona yol açan maddelerin kullanılması. • Kalitesiz fosil yakıtların (kömür, petrol, doğal gaz) kullanılması. 3- Çevre Kirliliğinin Sonuçları : Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. a) Hava Kirliliği : Atmosferde bulunan zararlı gazların (karbon oksitleri, kükürt oksitleri ve azot oksitleri) miktarının artmasına hava kirliliği denir. Hava kirliliğinin canlı ve cansız varlıklar üzerinde olumsuz etkileri vardır. Havayı katı ve gaz halindeki maddeler kirletir. Sanayi tesislerinden filtre edilmeden bırakılan gazlar, araç egzozlarından çıkan gazlar, fosil yakıtların (petrol, kömür ve doğal gaz) yanmasından oluşan gazlar (evlerin ısıtılmasında, taşıtlarda ve sanayi tesislerinde fosil yakıtların aşırı kullanılması sonucu) hava kirliliği oluşur. Hava kirliliği sonucu asit yağmurları oluşur, sera etkisi artar ve ozon tabakası delinir. Sera etkisi ve ozon tabakasındaki incelme, iklim üzerinde tüm Dünya’da (küresel boyutta) değişikliklere yol açar. Kullanılan fosil yakıtların oluşturduğu katı ve gaz halindeki atıkların (fosil yakıtların yanması ile havaya karışan karbon oksitleri, kükürt oksitleri ve azot oksitleri), suya ve su döngüsüne karışması sonucu bu atıkların yağış olarak yeryüzüne inmesine asit yağmuru denir. Güneş’ten gelen ışınların bir kısmı yeryüzü tarafından soğurulurken bir kısmı da uzaya geri yansır. Yeryüzünden yansıyan bu ışınların bir kısmı, atmosferde soğurularak havanın ısınmasına sebep olur. Güneş ışınlarının bir kısmının uzaya gönderilmesinin engellenmesine sera etkisi denir. Sera etkisine neden olan gazların (başta karbondioksit olmak üzere) miktarının artması, soğurulan güneş ışınlarının miktarının artmasına sebep olur. Bunun sonucunda atmosferin ve Dünya’nın sıcaklığı aşırı yükselir. Atmosferdeki sera etkisinin artmasına küresel ısınma denir. Küresel ısınma sonucunda buzullar erimeye ve okyanuslardaki su seviyeleri yükselmeye başlar ve küresel çölleşme gerçekleşir. Hava kirliliğine sebep olan (flora klora karbon gibi itici ve soğutucu olarak kullanılan) gazlar ozon tabakasının incelmesine sebep olur. Ozon tabakasının incelmesi sonucu Güneşin zararlı ultraviyole ışınları yeryüzüne ulaşır ve bu ışınlar biyolojik çeşitliliği olumsuz etkiler ve canlıların bağışıklık sistemini bozar. (Flora klora karbon gibi itici ve soğutucu olarak kullanılan gazların kullanılmaması konusu Brezilya'da ulusların imzasına açılmış ve iki ülke bu antlaşmayı imzalamıştır. Bu ülkeler Türkiye ve A.B.D.dir). 1- Havanın Canlılar İçin Önemi (*) : 1- Canlılar havasız yaşayamaz. 2- Solunum için bazı canlılar (insanlar ve oksijenli solunum yapan canlılar) oksijene ihtiyaç duyarlar. Havadaki oksijen, suya ve toprağa geçer, buradaki canlılarda oksijen kullanır. 3- Yeşil bitkiler, fotosentez yaparken havadaki karbondioksiti kullanır ve oksijen üretir. 4- Havanın azotu bazı bitkiler tarafından, (azot bağlayıcı) bakteriler yardımıyla alınarak protein yapımında kullanılır. (Canlıların temel yapısını proteinler oluşturduğu için önemlidir). 5- Havadaki su buharı canlılar için gereklidir. 2- Hava Kirliliğinin Etkileri (*) : 1- Solunum sistemi hastalıklarına neden olur. (Astım, bronşit, akciğer kanseri). 2- Yeşil alanlar yok olur, tarım ve hayvancılık olumsuz etkilenir. 3- Dolaşım sistemi hastalıklarına neden olur. (Kalp yetmezliği, damar tıkanıklığı). 4- Kağıt, kumaş, sanat eserleri, tarihi kalıntılar, araçlar ve evlerin yıpranmasına neden olur. 5- Kirli havada biriken kurşun oranı saçların dökülmesine neden olur. 3- Hava Kirliliğinin Önlenmesi (*) : 1- Sanayi tesisleri katı, sıvı ve gaz atıklarını arıtarak doğaya bırakmalıdır. (Yönetim bu gereçler için sanayi kuruluşlarına uzun vadeli ve düşük faizli krediler vererek kontrolü çevre örgütlerine devir etmelidir). 2- Havayı kirletmeyen doğal gaz, rüzgar, güneş enerjisi ve nükleer enerji gibi enerji kaynakları desteklenmelidir. 3- Bacalardan ve egzozlardan çıkan gazlar, yenilenebilir enerji kaynakları kullanılarak zararsız hale getirilmelidir. 4- İnsanların yeşil bitkileri ve ormanları kullanmaları sağlanarak, yeşil alanlar çoğaltılmalıdır. (Evlerin çevrelerinin beton duvarlarla çevrilmesi yasaklanarak, belediyeler aracılığı ile mülklerin yeşil bitkilerle sınırlandırılması sağlanmalıdır). SORU : 1- Asit yağmurlarının çevremiz üzerindeki olumsuz etkileri nelerdir? 2- Sera etkisi hayatımızı nasıl etkiler? 3- Asit yağmurları, sera etkisi ve ozon tabakasının delinmesi gibi Dünya’yı etkileyen bu çevre problemleri ülkemizi nasıl etkilemektedir? b) Su Kirliliği : Sanayi kuruluşlarının ve enerji üretim santrallerinin atıkları, nüfus artışı, şehirleşme, deniz taşımacılığı ve kazalar, asit yağmurları, foseptikler, çöplükler, tarımda kullanılan ilaçlar, doğal ve yapay gübreler su kirliliğine neden olur. Su kirliliği, tüm canlıların hayatını tehlikeye sokar. İçme ve kullanma suları daima temiz olmalıdır. Su kirliliğinden dolayı deniz, göl ve akarsularda her türlü üretim düşer, içme ve kullanma suyu bulmakta güçlük çekilir, suya bağlı ekosistemlerde doğal denge bozulur. Ülkemizin üç tarafı denizlerle çevrili olduğundan deniz kirliliği de önem taşımaktadır. Sakarya ve Gediz Nehirleri, Akşehir Gölü ve Tuz Gölü, İzmit ve İzmir Körfezleri ile Marmara Denizi ülkemizde su kirliliğinin görüldüğü yerlerdendir. SORU : 1- Ülkemizdeki su kirliliği Dünya’yı nasıl etkilemektedir? 2- Su kirliliğine nasıl çözüm bulunabilir? c) Toprak Kirliliği : Yerleşim alanlarından çıkan atıklar ve çöpler, sanayi atıkları, egzoz gazları, kimyasal (organik ve mineral) gübreler, tarımla mücadele ilaçlarının kullanımı, yanlış arazi kullanımı, su ve rüzgar erozyonu, ile ulaşım ağı toprak kirliliğine neden olur. Bir yerde belirli kalınlıktaki toprağın oluşabilmesi için milyonlarca yıl geçmesi gerekmektedir Bunun için doğal kaynaklardan biri olan toprağın çok iyi korunması gerekir. Son yıllarda (yirminci yüzyılın başından itibaren) modern tarıma geçilmesi ve sanayileşmenin hızlanması ile birlikte, toprak kirliliği de bir çevre sorunu olarak ortaya çıkmıştır. Toprak kirliliği ürün kalitesinin düşmesine, topraktaki organik ve inorganik maddelerin azalmasına ve dolayısıyla ekosistem dengesinin bozulmasına yol açabilmektedir. SORU : 1- Toprak kirliliği hangi çevre sorunlarını beraberinde getirir? 4- Çevre Kirliliğinin Sonuçları : Çevre kirliliği sonucu; 1- Dünya’nın coğrafyası değişir. 2- Dünya’nın iklimi değişir. 3- Erozyonlar oluşur ve toprağın verimini düşürür. 4- Su kaynakları azalır ve kurur. 5- Enerji kıtlığı başlar. 6- Biyolojik çeşitlilik (canlı çeşitliliği) azalır. 7- Beslenme sorunu doğar. 5- Çevreyi Korumak İçin Alınacak Önlemler : 1- Sanayileşmede çevreye zarar vermemek için gerekli tedbirlerin alınması gerekir. 2- Canlı türlerinin ve nesillerinin devamının sağlanması gerekir. 3- Bilinçli tarım yapılması gerekir. 4- Ormanların yok edilmemesi gerekir. 5- Su kaynaklarının kirletilmemesi gerekir. 6- Geri dönüşümlü ürünlerin kullanılması gerekir. 7- Tüketim maddelerinin geri dönüştürülebilecek şekilde kullanılması gerekir. 8- Yenilenebilir enerji kaynaklarının kullanılması gerekir. 9- Yenilenemez enerji kaynaklarının kullanılmaması gerekir. 10- Eğitime önem verilmesi ve tutumlu olunması gerekir. 11- Sürdürülebilir kalkınma yapılması gerekir. SORU : 1- Çok sayıda kurum ve kuruluşun çevre konusunda faaliyet göstermesi çevre sorunlarının çözülmesi için yeterli midir? Neden? 2- Ülkemizde bu konuda çalışan kuruluşlardan hangilerinin isimlerini ve nasıl öğrendiniz? 3- Çevre sorunlarıyla ilgili, gönüllü kuruluşlardan birine üye olarak çalışmak isteseydiniz hangisini tercih ederdiniz? Neden? NOT : 1- Çevre sorunlarının sınır tanımaz özelliğinden dolayı uluslararası iş birliği zorunlu bir hale gelmiştir. Bu konudaki ilk uluslararası düzeyde toplantı 1972 yılında, Birleşmiş Milletler Teşkilatı tarafından düzenlenen Stokholm 1. Çevre Konferansı’dır. Bu toplantı sonunda, çevreye verilen önemi vurgulamak için 5 Haziran günü “Dünya Çevre Günü” olarak kabul edilmiştir. 2- Uluslararası düzeyde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Birleşmiş Milletler Kalkınma Programı (UNDP) • Dünya Meteoroloji Teşkilatı (WMO) • Dünya Sağlık Teşkilatı (WHO) 3- Ülkemizde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Çevre Bakanlığı • Tübitak • Türkiye Ormancılık Derneği • Türkiye Bitki Koruma Derneği • Türkiye Erozyonla Mücadele • Ağaçlandırma ve Doğal Varlıkları Koruma Vakfı (TEMA) • Türkiye Çevre Eğitim Vakfı 4- Zoolog : Hayvanların anatomik ve fizyolojik özelliklerini inceleyen, onları özelliklerine göre sınıflandıran ve çeşitli etmenlerin hayvanlar üzerindeki etkilerini araştıran kişilere zoolog denir. Zoologlar araştırmacı veya uygulayıcı olarak görev yaparlar. Araştırmacı olarak çalışan zoolog; yeryüzündeki hayvanların yaşayışlarım, doğal ortamları içinde gözlem yolu ile inceler. Hayvanların anatomik ve fizyolojik özelliklerini laboratuarlarda inceler ve elde edilen verilere göre hayvanları sınıflandırır. Hayvanların evrimini, fosilleri inceleyerek araştırır. Uygulama alanında çalışan zoolog; çeşitli ilaçların hayvanlar üzerindeki etkisini deneysel olarak inceler, tarımda böcekler ve diğer zararlı hayvanlarla mücadele yöntemleri geliştirir, milli parklardaki hayvanlar için uygun ortamlar oluşturulmasına çalışır, ülke dışına çıkarılmaya ya da yurt dışından getirilmeye çalışılan hayvan türleri konusunda görüş bildirir, hastanelerde doku ve hücre incelemeleri yapar. Zoolog olmak isteyenlerin üst düzeyde genel yeteneğe sahip, doğayı seven, canlılarla uğraşmaktan hoşlanan, meraklı ve iyi bir gözlemci, fen bilimlerine özellikle biyolojiye ilgili ve bu alanda başarılı, sabırlı, araştırmacı ve bilimsel meraka sahip ve estetik anlayışı yüksek kimseler olmaları gerekir. Zoologlar çalışmalarını laboratuarda ve açık havada yürütürler. Çalışırken biyologlarla, ziraat mühendisleriyle, veteriner hekimlerle, kimyagerlerle ve kimya mühendisleri ile iletişim halindedirler. 1- Biyolojik Çeşitlilik : Bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğine biyolojik çeşitlilik denir. Her ekosistemin kendine özgü bir biyolojik çeşitliliği vardır ve biyolojik çeşitlilik bir doğal zenginliktir. Bir ülkedeki bitki ve hayvan türleri, hem o ülkenin, hem de dünyanın biyolojik zenginliği olarak kabul edilir. Bir ekosistemdeki biyolojik çeşitliliğin fazla olması o ekosistemin diğer ekosistemlere göre üstün olması anlamına gelmez. Biyolojik çeşitlilik sürdürülebilir kalkınmanın sağlanmasına yardımcı olur ve üç farklı kavramdan oluşur. Bunlar genetik çeşitlilik, tür çeşitliliği ve ekosistem çeşitliliğidir. Bir tür içindeki bireylerin sahip olduğu kalıtsal özelliklerin yani bireylerin genetik yapılarının farklı genetik çeşitliliği oluşturur. Bir ekosistemde yaşayan ve genetik olarak birbirlerine benzerlik gösteren türlerin sayısı tür çeşitliliğini oluşturur. Belli bir bölgede yaşayan bitkiler ve hayvanlar gibi canlı varlıklarla toprak, su, hava ve mineraller gibi cansız varlıkların çeşitliliği, ekosistem çeşitliliğini oluşturur. Ekosistemlerin görevi, canlıların yaşamlarını ve nesillerini sürdürebilmek için uygun ortamın hazırlanmasını sağlamaktır. Ekosistemler, canlı ve cansız varlıklardan oluşur ve bir ekosistemin özelliğini, o ekosistemi oluşturan su, sıcaklık, ışık, nem, toprak, hava, rüzgâr, iklim gibi cansız varlıklar belirler. Bu cansız varlıkların canlılarla olan etkileşimi, ekosistemlerin çeşitliliğini belirler. Ekosistemlerin orman, göl, çöl, dağ, sazlık, akarsu, okyanus gibi çeşitleri vardır. Bu çeşitlilik arttıkça, ekosistemde yer alan habitat ve tür çeşitliliği de artar. NOT : 1- Orman ve okyanus ekosistemlerinde canlı türü sayısı, çöl ve kent ekosistemlerindeki canlı türü sayısından daha fazladır. 2- Canlı türlerinin sayısı 5 – 30 milyon arasında tahmin edilmektedir. Dünyada toplam 1.742.000 canlı türünün tanımlandığı ve 4.926.000 canlı türünün bulunabileceği belirtilmektedir. 2- Biyolojik Çeşitliliğin Faydaları : İnsanlar, tarım ve teknolojide sahip olduğu bugünkü seviyeye, biyolojik çeşitlilik ve zenginlik sonucu ulaşmıştır. Biyolojik çeşitliliğin ve ekosistemlerin sağladığı faydalar insan hayatının devamı için gereklidir. Biyolojik çeşitliliği oluşturan bitki ve hayvan türleri tarım, eczacılık, tıp, hayvancılık, ormancılık, balıkçılık ve sanayi alanlarında, temiz su ve hava sağlanmasında kullanılırlar. Biyolojik çeşitliliği oluşturan bitki ve hayvan türlerinin sayısının ve çeşitliliğinin fazla olması, o ülkeye ekonomik kazanç sağlar. Biyolojik çeşitlilik, ekosistemleri dengede tutar, gezegeni yaşanabilir hale getirir, insanların sağlığını, çevreyi ve ekosistemleri destekler. a) Bitki Çeşitliliğinin Faydaları : Bitkiler havayı temizler, erozyonu önler, toprağa organik madde kazandırır, toprak yorgunluğunu giderir. Diğer canlılara barınma ve beslenme ortamı sağlayarak ekosisteme devamlılık kazandırırlar. Ülkemize özgü olarak yetiştirilen çam, meşe, palamut, kavak, ardıç türü ağaçlar ormancılıkla ilgili fayda sağlar. Acur, taflan, çitlenbik, iğde, göleviz, ahlat (yaban armudu), alıç, delice, idris, melengiç, hünnap, üvez, yonca, mürdümük gibi sebze ve meyveler tıp alanında fayda sağlar. b) Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Bazı böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının ve çeşitliliğinin sürmesini ve bu sayede ekosistemin sürekliliğini sağlar. Böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlar. Bazı böcek türleri de kuşlar, balıklar, sürüngenler gibi hayvanların besin kaynağı durumundadır. Ülkemizin çeşitli yerlerindeki doğal çevreye uyum sağlamış koyun, keçi, inek, sığır gibi türler hayvancılıkla ilgili fayda sağlar. Ülkemize özgü olarak bulunan alabalık, kefal ve levrek türü balıklar balıkçılıkla ilgili fayda sağlar. c) Ekosistem Çeşitliliğinin Faydaları : Doğaya dayalı turizme eko turizm denir. Eko turizm son yıllarda artan bir öneme sahiptir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. NOT : 1- Her bölgenin kendine özgü biyolojik çeşitliliği yani bitki ve hayvan türleri vardır ve bir bölgenin biyolojik çeşitliliğini o bölgedeki ekosistemleri oluşturan cansız varlıklar belirler. 2- Bitki Çeşitliliğinin Faydaları : İnsanoğlu, eski çağlarda tarım toplumuna geçmesinden günümüze kadar çok sayıda bitki türünü kültüre almıştır. Tarih boyunca 3000 kadar bitki türünün beslenmede kullanıldığı ve bunların % 30’unun gıda üretiminin çoğunu karşıladığı belirtilmektedir. Geri kalan türlerin de tarım için önemi büyüktür. Bugün Genetik Mühendisliği ve Biyoteknolojideki ilerlemeler sonucu, günümüzde kullanılan çeşitlere yabani akrabalarından gen aktarımı yapılarak zararlı böcek, hastalık, yabancı otlar ve kuraklığa dayanıklı yeni çeşitler elde edilmektedir. Bugün, tarımda kullanılmayan doğada bulunan birçok bitkinin gelecekte tarımda kullanılma potansiyeli vardır. Bugün kültürü yapılan birçok meyve ve sebzenin ilk defa kültüre alındığı yer Türkiye’dir. Bu türlerin ülkemizde bulunan yabani akrabalarının paha biçilmez değeri vardır. Birçok bitki türü, tıp ve eczacılıkta eski çağlardan beri kullanılmaktadır. Son yüzyılda, biyokimya bilimindeki gelişmeler sonucu birçok bitkiden çeşitli bileşikler elde edilmiştir. Günümüzde 250.000 bitki türünden, ancak 5.000 ‘inin eczacılık değeri yönünden incelendiği kaydedilmektedir. Gelecek yıllarda bilimdeki ilerlemelere bağlı olarak birçok bitkiden, değişik hastalıklar için bileşiklerin elde edilmesi mümkündür. Ülkemiz tıp ve eczacılıkta kullanılan ve aromatik bitkiler yönünden zengin bir çeşitliliğe sahiptir. Ayrıca süs bitkisi olarak ve peyzaj düzenlemelerinde kullanılan soğanlı bitkilerce de zengindir. Önümüzde ki yıllarda, bu yönüyle değerlendirilebilecek çok sayıda bitki türü bulunmaktadır. Yine tarımsal zararlıların mücadelesinde bazı bitkilerden elde edilen bitkisel kökenli ilaçlar kullanılmaktadır. Doğadaki birçok bitki, bu yönüyle de önem arz etmektedir. 3- Hayvan Çeşitliliğinin Faydaları : İnsanlar, ilk çağlardan günümüze kadar hayvanları avlayarak, evcilleştirerek gıda kaynağı olarak, taşımacılıkta, giyimde ve tıpta kobay amaçlı kullanmışlardır. Yine kültüre alınan hayvanların yabani akrabaları, hayvan ıslahında kullanılmaktadır. Böceklere bakıldığında 1.200.000 böcek türünden, ancak 750 tür kültür bitkilerinde zararlı olmaktadır. Geri kalan türler bizim için faydalı türlerdir. Bunlardan bazıları tarımda zararlı türlerin üzerinde beslenerek bu türlerin savaşımında kullanılmaktadır. Bitkilerin büyük çoğunluğu tozlaşma için böceklere gereksinim duymaktadır. Böcekler, bitkilerin tozlaşmasını sağlayarak bitki yaşamının devamlılığı ve çeşitliliğine olanak vermekte ve ekosistemin devamlılığını sağlamaktadır. Yine böceklerin önemli bir kısmı, organik maddelerin ayrışmasını ve tekrar toprağa kazandırılmasını sağlamakta adeta doğada birer gönüllü temizlik işçisi gibi çalışmaktadır. Bazı türler de kuşlar, balıklar, sürüngenler gibi hayvanların gıda kaynağı durumundadır. Tüm bu yönleriyle, yeryüzündeki yaşamın böceklere bağlı olduğunu söylemek fazla abartılı olmaz. 4- Ekosistemin Ekoturizm Olarak Sağladığı Faydalar : Doğaya dayalı turizm, ekoturizm olarak adlandırılmaktadır. Ekoturizm son yıllarda artan bir önem arz etmektedir. Teknolojik ilerlemeler ve yaşam biçimine bağlı olarak stres altındaki insanlar, doğada kendini dinlendirmektedir. Milli parklara ve doğaya gidilerek stres atılmaktadır. A.B.D.’de Milli Parklar Servisi’nin 1998 yılı ölçümlerine göre, yaklaşık 300.000 turistin milli parkları ziyareti ile, direk ve dolaylı gelir olarak 14 milyar dolar gelir elde edilmiştir. Benzer durum dünyanın diğer ülkelerinde de vardır. Dünya Turizm organizasyonu, ekoturizmin uluslar arası turizmin % 7’sine karşılık geldiğini bildirmektedir. Ülkemizde de Fethiye’de bulunan Kelebekler Vadisindeki kelebekleri görmek amacıyla, tatil sezonu boyunca günübirlik olarak 15.000 turistin ziyaret ettiği bildirilmektedir. Biyolojik çeşitlilik ve doğal güzellikler bakımından, dünyada eşsiz bir yere sahip ülkemiz, ekoturizmde büyük potansiyel arz etmektedir. Ülkemizin sahip olduğu doğal güzellikler ve biyolojik zenginlikler yurt içi ve dışında yeterince tanıtılmalı ve ekoturizm geliştirilmelidir. SORU : 1- Yaşanılan bölgede en çok yetiştirilen sebzeler hangileridir? 2- Yaşanılan bölgeye özgü bitki ve hayvan türleri nelerdir? 3- Yaşanılan bölgedeki bitki ve hayvanların sayısı ve çeşitliliği diğer bölgelerde de aynı mıdır? 4- Bitki ve hayvan türlerinin sayıca fazla olması, bölgenin doğal zenginliklerinin bir göstergesi midir? 5- Kaç değişik kuş türü biliyoruz? 6- Kaç değişik balık türü biliyoruz? 7- Kaç değişik çiçek çeşidi biliyoruz? 8- Çeşitlilik nedir? 9- Bir bölgedeki bitki ve hayvan türlerinin çeşitliliği, o yerin hangi özelliğini ortaya koyar? 10- Ders kitabında verilen resimlerdeki canlılardan hangileri ülkemizde yaşamaktadır? 11- Ders kitabında verilen resimlerdeki canlılardan hangilerinin nesli tükenmek üzeredir? 12- Ülkemizde farklı ekosistemlerin biyolojik çeşitliliğini oluşturan bitki ve hayvan türleri nelerdir? 3- Biyolojik Çeşitliliğin Azalması ve Yok Olması : Bir ekosistemde, bölgede, ülkede veya dünyada yaşan herhangi bir canlı türünün yok olması o canlının neslinin tükenmesi yani biyolojik çeşitliliğin azalması, canlı türlerinin yok olması da biyolojik çeşitliliğin yok olması anlamına gelir. İklim değişikliliği, kirlenme, doğal kaynakların aşırı kullanımı, sürdürülebilir olmayan kaynakların kullanımı ve hızlı nüfus artışı biyolojik çeşitliliğin azalmasına ve türlerin yok olmasına neden olur. Habitatların yok olması veya zarar görmesi, birçok bitki ve hayvan türünün neslinin yok olmasına neden olur. Biyolojik çeşitliliğin korunması için 1992’de 172 ülkenin katıldığı Rio Zirvesi olarak bilinen Birleşmiş Milletler (BM) Çevre ve Kalkınma Konferansı yapılmış ve İklim Değişikliği ve Biyolojik Çeşitlilik sözleşmeleri imzaya açılmıştır. Rio Zirvesi’ne katılan, aralarında Türkiye’nin de bulunduğu 156 ülke Biyolojik Çeşitlilik Sözleşmesi’ni (BÇS) imzalayarak, kendi sınırları içerisindeki bitkilerin ve hayvanların çeşitliliğinin tam olarak korunması sorumluluğunu üstleneceklerine, ayrıca gelecek nesillerin doğal kaynaklara olan ihtiyaçlarından ödün vermeden günümüz ihtiyaçlarının karşılanması için çeşitli yollar aranması konusunda anlaşmaya varmıştır. • Önceki yıllarda yaşayan mamut, bizon, moa, dinozor gibi canlılar günümüzde yaşamamaktadır yani nesilleri tükenmiştir. • Önceki yıllarda ülkemizde yaşayan Anadolu leoparı, Asya fili, kunduz, aslan gibi canlılar şuan ülkemizde yaşamamaktadır ve ülkemizde nesli tükenmiştir. • Şu an ülkemizde yaşayan Akdeniz foku, kelaynaklar, deniz kaplumbağaları, alageyik, boz ayı, kardelen çiçeği ve salep yapımında kullanılan orkideler nesli tükenmek üzere olan canlılardır. NOT : 1- Türkiye'de 500'den fazla habitat çeşidinde 10.000'den fazla çiçekli bitki ve eğrelti; 400'den fazla kuş; 500'den fazla balık; 100.000'den fazla sürüngen ve 160.000'den fazla omurgasız hayvan türü kayıtlıdır. SORU : 1- Biyolojik çeşitlilik yok olabilir mi? 2- Biyolojik çeşitliliğin yok olması nasıl gerçekleşir ve ne gibi sonuçlar getirir? 3- Canlıların neslinin tükenmesi, biyolojik çeşitliliğin azalması anlamına gelir mi? 4- Ülkemizin Biyolojik Zenginlikleri : Ülkemizin Asya ve Avrupa kıtaları arasında bir köprü görevi görmesi, ayrıca çok değişik iklim ve coğrafi yapıya sahip olması nedeniyle, bitki ve hayvan türleri bakımından oldukça zengin bir çeşitliliğe sahiptir. Türkiye’de 120 memeli, 413 kuş, 93 sürüngen 18 kurbağagil, 276 deniz balığı, 192 tatlı su balığı ve 60–80.000 böcek türünün bulunduğunu bilinmektedir. Yine ülkemiz bitki türleri bakımından da oldukça zengindir. Bütün Avrupa kıtasında 12.000 bitki türü bulunmasına karşın ülkemizde 9.000 bitki türü bulunmakta ve bu türlerin % 30’u dünyada sadece Türkiye’ de bulunmaktadır. Oldukça fazla sayıda bitki ve hayvan türünün tanımlandığı yer ve anavatanı ülkemizdir. Tüm bu yönleriyle Türkiye, biyolojik çeşitlilik bakımından bir kıta özelliği göstermekte olup dünyada eşsiz bir yere sahiptir. 5- Biyolojik Çeşitliliğin Korunması : Biyolojik çeşitlilik, bir bölgedeki bitki ve hayvan türlerinin ve çeşitlerinin sayıca zenginliğidir. Ülkemizde ve dünyada nesli tükenme tehlikesiyle karşı karşıya olan bitkiler kardelen ve salep yapımında kullanılan orkidelerdir. Deniz kaplumbağaları, Akdeniz fokları, bozayı, Ankara keçisi, Tuj koyunları, alageyik, sülün ise nesli tükenme tehlikesiyle karşı karşıya olan hayvanlardandır. İster bitki ister hayvan olsun bu canlıların nesillerinin konuna altına alınması için tabiat parklarının, doğal yaşam alanlarının oluşturulması, organik tarımın tercih edilmesi ve insanların bu konularda eğitilmesi gerekmektedir. Çiftçiler aşırı otlatmanın, bitkilerin aşırı toplanmasının, ormanların arazi kazanmak amacıyla tahrip edilmesinin biyolojik çeşitlilik açısından olumsuz etkileri konusunda bilinçlendirilmelidir. Kıyı habitatlarının tahrip edilmesi, balıkçılığın ve avlanmanın aşırı ve kontrolsüz yapımı engellenmelidir. Ayrıca bu türlerin korunması ve denetimi için mekanizmalar geliştirilmelidir. Biyolojik çeşitlilik tüm dünyanın ortak zenginliğidir. Bugünün ihtiyaçlarını karşılayarak gelecek kuşaklara da bu çeşitliliği aktarabilmek amacıyla biyolojik çeşitliliğin korunması gereklidir. C- ÇEVRE SORUNLARI VE ETKİLERİ : 1- Ekosistemlerin Bozulma Nedenleri (Çevre Sorunları) : Çevre sorunları, insanların yaşadığı problemlerden biridir çevre sorunlarının yani ekosistemlerdeki bozulmaların bir kısmı doğal yolla, bir kısmı da insan etkisiyle oluşur. İnsanlara ve ekosistemlere zarar veren doğal kaynaklı bozulmalar, su, toprak ve hava hareketleriyle oluşur. Su taşkınları, depremler, erozyon, volkanik hareketler (yanardağ patlamaları), fırtına, kasırga, uzun siren kuraklık ekosistemlerin bozulmasına yol açan doğal afetlerdir. İnsanlar, bulundukları ekosistemlerdeki (çevrelerindeki) canlı ve cansız varlıkları etkileyerek ekosistemlerin bozulmasına yol açarlar. İnsanlar, ekosistemlerdeki doğal varlıklarla iç içe yaşarken zamanla teknolojinin gelişmesi ve doğal kaynakların bilinçsiz kullanılması sonucu doğanın dengesi bozulmuş ve birçok çevre sorunu ortaya çıkmıştır. Hızlı nüfus artışı, bilinçsiz sanayileşme, düzensiz şehirleşme, doğal kaynakların bilinçsiz kullanılması, nükleer silahlar ve nükleer santral patlamaları, biriktirilmiş suların (barajlardaki suların) taşkınlara neden olması, orman tahribatı ve çığ gibi olaylar doğal denge üzerinde olumsuz etkiler yaparak çevre kirliliğine yani ekosistemlerin bozulmasına yol açan insan kaynaklı faktörlerdir. Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. SORU : 1- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunları nelerdir? 2- Ülkemizi ve Dünya’mızı tehdit eden önemli çevre sorunlarının sebepleri ve sonuçları nelerdir? 3- Ülkemizi ve dünyayı tehdit eden çevre sorunları dünyayı nasıl etkiler? 4- Ekosistemler zamanla neden değişip bozulmaktadır? 5- Ekosistemlerdeki bozulmalar beraberinde hangi sonuçları getirin? 6- Çok küçük bir ekosistemin zarar görmesi tüm dünyayı nasıl etkiler? 2- Çevre Kirliliğine Neden Olan (İnsan Kaynaklı) Faktörler : a) Orman Tahribatı : Orman yangınları, ihmal, dikkatsizlik, kaçak yapılaşma ve arazi açmak için ağaçların bilinçsizce kesilmesi gibi sebepler yüzünden ormanlar tahrip olmaktadır. Bunun sonucunda ekosistemlerin doğal dengesi bozulmakta, ormanda yaşayan canlı türleri ve bu türlerin habitatları yok olmakta, toprak zenginliği kaybolmaktadır. (Ülkemizde orman yangınlarının kayıtları 1937 yılında tutulmaya başlanmıştır. Bu kayıtlara göre yaklaşık 1,5 milyon hektar ormanlık alan yok olmuştur). SORU : 1- Ülkemizdeki orman tahribi sadece ülkemizi mi etkiler? 2- Orman tahribi nasıl engellenebilir? 3- Ormanların kaybı hayatımızı nasıl etkiler? b) Çığ : Yüksek yerlerdeki karların şiddetli ses etkisiyle dağın yamaçlarına yuvarlanmasına çığ denir. Eğimli arazi üzerinde birikmiş büyük kar örtüsü, yer çekimi etkisiyle kaydığında çığ oluşur. Çığ genellikle bitki örtüsü olmayan, dağlık eğimli arazilerde görülür. Çığlar beraberinde toprak, taş ve ağaçları da sökerek götürür. Bu şekilde meydana gelen aşınma ve taşınma, toprağı verimsizleştirerek canlıların yaşamını tehlikeye sokar. Çığlar, tarım alanlarının veriminin düşmesine ve su kaynaklarının kirlenmesine neden olur. SORU : 1- Çığdan korunma yolları nelerdir? c) Nükleer Silahlar ve Nükleer Santral Patlamaları : Nükleer silahlar, nükleer kazalar ve bu kazalar sonunda ortaya çıkan nükleer atıklar kirlenmeye sebep olur. (1986 yılında yaşanan Çernobil Nükleer Enerji Santrali Kazası’nın yarattığı olumsuz etkiler, bu kirliliğin en canlı örneğidir. Bu olaydan ülkemizin en çok Karadeniz Bölgesi’nin etkilendiği tespit edilmiştir). SORU : 1- Nükleer kirlilik sadece belli bir bölgeyi mi etkiler? 2- Nükleer kirliliğin canlılar ve onların çevreleri üzerindeki olumsuz etkileri nelerdir? d) Biriktirilmiş Suların Taşkınlara Yol Açması : Barajların yıkılması sonucu oluşan taşkınlar, bitki örtüsüne, ekili alanlara toprağın verimli tabakasının taşınmasına neden olur. e) Aşırı Nüfus Artışı : Bir bölgedeki ya da ekosistemdeki nüfus artışını ya da azalışını o ekosistemdeki göçler, doğum ve ölüm olayları belirler. Nüfus artışının az olduğu dönemde insan tarafından çevreye verilen zarar doğal yollarla kendiliğinden düzeltilebiliyordu. Nüfus artışı fazla olduğu için; • Doğal kaynaklar aşırı kullanıldı. • Barınma amacıyla yeşil alanlar yok edildi. • Büyük kentler çevre kirliliğine yol açtı. • Araçların egzoz gazları hava kirliliğine yol açtı. • Soğutucularda kullanılan karbon maddesi ozon tabakasını inceltti. • Tarımsal alanlarda yapılan ilaçlamalar yararlı böcekleri de yok etti. • Evsel atıklar, lağım suları ve sanayi atıkları çevreyi kirletti. • Tarımda üretimi arttırmak için aşırı kullanılan gübreler çökerek toprağın ve yeraltı sularının kirlenmesine yol açtı. f) Plansız Sanayileşme : Nüfusun hızla artması sonucu sanayi gelişmiş ve bunun sonucu çevre (hava, toprak, su) zarar görmüş, kirlenmiştir. • Tarla ekmek için orman arazilerinin kesilmesi. • Artan kereste ihtiyacı nedeniyle ormanların kesilmesi. • Fabrika bacalarına filtre takılmaması. • Fazla ürün elde etmek için tarımda aşırı gübreleme ve ilaçlama yapılması. • Fabrika atıklarının arıtılmadan suya ya da toprağa verilerek su ve toprağı kirletmesi. g) Doğal Kaynakların Bilinçsiz Kullanılması : Bir ekosistemdeki hava, toprak, su, hayvanlar, bitkiler, yeraltı zenginlikleri ve doğal güzellikler o ekosistemdeki doğal kaynakları oluştururlar. Doğal kaynakların bilinçsiz kullanılması çevre kirliliğine yol açar. • Kimyasal ve biyolojik silahların kullanılması. • Gereksiz tarım ilaçları ve böcek öldürücülerin kullanılması. • Soğutucuların ve spreylerin fazla kullanılması. • Ev ve sanayi atıklarının çevreye dağılması. • Nükleer silahların ve radyasyona yol açan maddelerin kullanılması. • Kalitesiz fosil yakıtların (kömür, petrol, doğal gaz) kullanılması. 3- Çevre Kirliliğinin Sonuçları : Hava kirliliği, su kirliliği ve toprak kirliliği ve nükleer kirlilik çevre kirliliği sonucu oluşan kirlenmelerdir. a) Hava Kirliliği : Atmosferde bulunan zararlı gazların (karbon oksitleri, kükürt oksitleri ve azot oksitleri) miktarının artmasına hava kirliliği denir. Hava kirliliğinin canlı ve cansız varlıklar üzerinde olumsuz etkileri vardır. Havayı katı ve gaz halindeki maddeler kirletir. Sanayi tesislerinden filtre edilmeden bırakılan gazlar, araç egzozlarından çıkan gazlar, fosil yakıtların (petrol, kömür ve doğal gaz) yanmasından oluşan gazlar (evlerin ısıtılmasında, taşıtlarda ve sanayi tesislerinde fosil yakıtların aşırı kullanılması sonucu) hava kirliliği oluşur. Hava kirliliği sonucu asit yağmurları oluşur, sera etkisi artar ve ozon tabakası delinir. Sera etkisi ve ozon tabakasındaki incelme, iklim üzerinde tüm Dünya’da (küresel boyutta) değişikliklere yol açar. Kullanılan fosil yakıtların oluşturduğu katı ve gaz halindeki atıkların (fosil yakıtların yanması ile havaya karışan karbon oksitleri, kükürt oksitleri ve azot oksitleri), suya ve su döngüsüne karışması sonucu bu atıkların yağış olarak yeryüzüne inmesine asit yağmuru denir. Güneş’ten gelen ışınların bir kısmı yeryüzü tarafından soğurulurken bir kısmı da uzaya geri yansır. Yeryüzünden yansıyan bu ışınların bir kısmı, atmosferde soğurularak havanın ısınmasına sebep olur. Güneş ışınlarının bir kısmının uzaya gönderilmesinin engellenmesine sera etkisi denir. Sera etkisine neden olan gazların (başta karbondioksit olmak üzere) miktarının artması, soğurulan güneş ışınlarının miktarının artmasına sebep olur. Bunun sonucunda atmosferin ve Dünya’nın sıcaklığı aşırı yükselir. Atmosferdeki sera etkisinin artmasına küresel ısınma denir. Küresel ısınma sonucunda buzullar erimeye ve okyanuslardaki su seviyeleri yükselmeye başlar ve küresel çölleşme gerçekleşir. Hava kirliliğine sebep olan (flora klora karbon gibi itici ve soğutucu olarak kullanılan) gazlar ozon tabakasının incelmesine sebep olur. Ozon tabakasının incelmesi sonucu Güneşin zararlı ultraviyole ışınları yeryüzüne ulaşır ve bu ışınlar biyolojik çeşitliliği olumsuz etkiler ve canlıların bağışıklık sistemini bozar. (Flora klora karbon gibi itici ve soğutucu olarak kullanılan gazların kullanılmaması konusu Brezilya'da ulusların imzasına açılmış ve iki ülke bu antlaşmayı imzalamıştır. Bu ülkeler Türkiye ve A.B.D.dir). 1- Havanın Canlılar İçin Önemi (*) : 1- Canlılar havasız yaşayamaz. 2- Solunum için bazı canlılar (insanlar ve oksijenli solunum yapan canlılar) oksijene ihtiyaç duyarlar. Havadaki oksijen, suya ve toprağa geçer, buradaki canlılarda oksijen kullanır. 3- Yeşil bitkiler, fotosentez yaparken havadaki karbondioksiti kullanır ve oksijen üretir. 4- Havanın azotu bazı bitkiler tarafından, (azot bağlayıcı) bakteriler yardımıyla alınarak protein yapımında kullanılır. (Canlıların temel yapısını proteinler oluşturduğu için önemlidir). 5- Havadaki su buharı canlılar için gereklidir. 2- Hava Kirliliğinin Etkileri (*) : 1- Solunum sistemi hastalıklarına neden olur. (Astım, bronşit, akciğer kanseri). 2- Yeşil alanlar yok olur, tarım ve hayvancılık olumsuz etkilenir. 3- Dolaşım sistemi hastalıklarına neden olur. (Kalp yetmezliği, damar tıkanıklığı). 4- Kağıt, kumaş, sanat eserleri, tarihi kalıntılar, araçlar ve evlerin yıpranmasına neden olur. 5- Kirli havada biriken kurşun oranı saçların dökülmesine neden olur. 3- Hava Kirliliğinin Önlenmesi (*) : 1- Sanayi tesisleri katı, sıvı ve gaz atıklarını arıtarak doğaya bırakmalıdır. (Yönetim bu gereçler için sanayi kuruluşlarına uzun vadeli ve düşük faizli krediler vererek kontrolü çevre örgütlerine devir etmelidir). 2- Havayı kirletmeyen doğal gaz, rüzgar, güneş enerjisi ve nükleer enerji gibi enerji kaynakları desteklenmelidir. 3- Bacalardan ve egzozlardan çıkan gazlar, yenilenebilir enerji kaynakları kullanılarak zararsız hale getirilmelidir. 4- İnsanların yeşil bitkileri ve ormanları kullanmaları sağlanarak, yeşil alanlar çoğaltılmalıdır. (Evlerin çevrelerinin beton duvarlarla çevrilmesi yasaklanarak, belediyeler aracılığı ile mülklerin yeşil bitkilerle sınırlandırılması sağlanmalıdır). SORU : 1- Asit yağmurlarının çevremiz üzerindeki olumsuz etkileri nelerdir? 2- Sera etkisi hayatımızı nasıl etkiler? 3- Asit yağmurları, sera etkisi ve ozon tabakasının delinmesi gibi Dünya’yı etkileyen bu çevre problemleri ülkemizi nasıl etkilemektedir? b) Su Kirliliği : Sanayi kuruluşlarının ve enerji üretim santrallerinin atıkları, nüfus artışı, şehirleşme, deniz taşımacılığı ve kazalar, asit yağmurları, foseptikler, çöplükler, tarımda kullanılan ilaçlar, doğal ve yapay gübreler su kirliliğine neden olur. Su kirliliği, tüm canlıların hayatını tehlikeye sokar. İçme ve kullanma suları daima temiz olmalıdır. Su kirliliğinden dolayı deniz, göl ve akarsularda her türlü üretim düşer, içme ve kullanma suyu bulmakta güçlük çekilir, suya bağlı ekosistemlerde doğal denge bozulur. Ülkemizin üç tarafı denizlerle çevrili olduğundan deniz kirliliği de önem taşımaktadır. Sakarya ve Gediz Nehirleri, Akşehir Gölü ve Tuz Gölü, İzmit ve İzmir Körfezleri ile Marmara Denizi ülkemizde su kirliliğinin görüldüğü yerlerdendir. SORU : 1- Ülkemizdeki su kirliliği Dünya’yı nasıl etkilemektedir? 2- Su kirliliğine nasıl çözüm bulunabilir? c) Toprak Kirliliği : Yerleşim alanlarından çıkan atıklar ve çöpler, sanayi atıkları, egzoz gazları, kimyasal (organik ve mineral) gübreler, tarımla mücadele ilaçlarının kullanımı, yanlış arazi kullanımı, su ve rüzgar erozyonu, ile ulaşım ağı toprak kirliliğine neden olur. Bir yerde belirli kalınlıktaki toprağın oluşabilmesi için milyonlarca yıl geçmesi gerekmektedir Bunun için doğal kaynaklardan biri olan toprağın çok iyi korunması gerekir. Son yıllarda (yirminci yüzyılın başından itibaren) modern tarıma geçilmesi ve sanayileşmenin hızlanması ile birlikte, toprak kirliliği de bir çevre sorunu olarak ortaya çıkmıştır. Toprak kirliliği ürün kalitesinin düşmesine, topraktaki organik ve inorganik maddelerin azalmasına ve dolayısıyla ekosistem dengesinin bozulmasına yol açabilmektedir. SORU : 1- Toprak kirliliği hangi çevre sorunlarını beraberinde getirir? 4- Çevre Kirliliğinin Sonuçları : Çevre kirliliği sonucu; 1- Dünya’nın coğrafyası değişir. 2- Dünya’nın iklimi değişir. 3- Erozyonlar oluşur ve toprağın verimini düşürür. 4- Su kaynakları azalır ve kurur. 5- Enerji kıtlığı başlar. 6- Biyolojik çeşitlilik (canlı çeşitliliği) azalır. 7- Beslenme sorunu doğar. 5- Çevreyi Korumak İçin Alınacak Önlemler : 1- Sanayileşmede çevreye zarar vermemek için gerekli tedbirlerin alınması gerekir. 2- Canlı türlerinin ve nesillerinin devamının sağlanması gerekir. 3- Bilinçli tarım yapılması gerekir. 4- Ormanların yok edilmemesi gerekir. 5- Su kaynaklarının kirletilmemesi gerekir. 6- Geri dönüşümlü ürünlerin kullanılması gerekir. 7- Tüketim maddelerinin geri dönüştürülebilecek şekilde kullanılması gerekir. 8- Yenilenebilir enerji kaynaklarının kullanılması gerekir. 9- Yenilenemez enerji kaynaklarının kullanılmaması gerekir. 10- Eğitime önem verilmesi ve tutumlu olunması gerekir. 11- Sürdürülebilir kalkınma yapılması gerekir. SORU : 1- Çok sayıda kurum ve kuruluşun çevre konusunda faaliyet göstermesi çevre sorunlarının çözülmesi için yeterli midir? Neden? 2- Ülkemizde bu konuda çalışan kuruluşlardan hangilerinin isimlerini ve nasıl öğrendiniz? 3- Çevre sorunlarıyla ilgili, gönüllü kuruluşlardan birine üye olarak çalışmak isteseydiniz hangisini tercih ederdiniz? Neden? NOT : 1- Çevre sorunlarının sınır tanımaz özelliğinden dolayı uluslararası iş birliği zorunlu bir hale gelmiştir. Bu konudaki ilk uluslararası düzeyde toplantı 1972 yılında, Birleşmiş Milletler Teşkilatı tarafından düzenlenen Stokholm 1. Çevre Konferansı’dır. Bu toplantı sonunda, çevreye verilen önemi vurgulamak için 5 Haziran günü “Dünya Çevre Günü” olarak kabul edilmiştir. 2- Uluslararası düzeyde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Birleşmiş Milletler Kalkınma Programı (UNDP) • Dünya Meteoroloji Teşkilatı (WMO) • Dünya Sağlık Teşkilatı (WHO) 3- Ülkemizde çevreyle ilgili faaliyet gösteren önemli kuruluşlardan bazıları; • Çevre Bakanlığı • Tübitak • Türkiye Ormancılık Derneği • Türkiye Bitki Koruma Derneği • Türkiye Erozyonla Mücadele • Ağaçlandırma ve Doğal Varlıkları Koruma Vakfı (TEMA) • Türkiye Çevre Eğitim Vakfı 4- Zoolog : Hayvanların anatomik ve fizyolojik özelliklerini inceleyen, onları özelliklerine göre sınıflandıran ve çeşitli etmenlerin hayvanlar üzerindeki etkilerini araştıran kişilere zoolog denir. Zoologlar araştırmacı veya uygulayıcı olarak görev yaparlar. Araştırmacı olarak çalışan zoolog; yeryüzündeki hayvanların yaşayışlarım, doğal ortamları içinde gözlem yolu ile inceler. Hayvanların anatomik ve fizyolojik özelliklerini laboratuarlarda inceler ve elde edilen verilere göre hayvanları sınıflandırır. Hayvanların evrimini, fosilleri inceleyerek araştırır. Uygulama alanında çalışan zoolog; çeşitli ilaçların hayvanlar üzerindeki etkisini deneysel olarak inceler, tarımda böcekler ve diğer zararlı hayvanlarla mücadele yöntemleri geliştirir, milli parklardaki hayvanlar için uygun ortamlar oluşturulmasına çalışır, ülke dışına çıkarılmaya ya da yurt dışından getirilmeye çalışılan hayvan türleri konusunda görüş bildirir, hastanelerde doku ve hücre incelemeleri yapar. Zoolog olmak isteyenlerin üst düzeyde genel yeteneğe sahip, doğayı seven, canlılarla uğraşmaktan hoşlanan, meraklı ve iyi bir gözlemci, fen bilimlerine özellikle biyolojiye ilgili ve bu alanda başarılı, sabırlı, araştırmacı ve bilimsel meraka sahip ve estetik anlayışı yüksek kimseler olmaları gerekir. Zoologlar çalışmalarını laboratuarda ve açık havada yürütürler. Çalışırken biyologlarla, ziraat mühendisleriyle, veteriner hekimlerle, kimyagerlerle ve kimya mühendisleri ile iletişim halindedirler. Hazırlayan:MURAT ÜSTÜNDAĞ Kayseri Mithatpaşa İlköğretim Okulu Fen ve Teknoloji Öğretmeni

http://www.biyologlar.com/biyolojik-cesitlilik-cevre-sorunlari-ve-etkileri

Sera Gazlarının Ekolojik Denge Üzerindeki Olumsuz Etkileri Nelerdir

Dünya üzerine düşen güneş ışınlarından çok, dünyadan yansıyan güneş ışınlarıyla ısınır Bu yansıyan ışınlar başta karbondioksit ve su buharı olmak üzere atmosferde bulunan gazlar tarafından tutulur, böylece dünya ısınır Işınların bu gazlar tarafından tutulmasına da sera etkisi denir Atmosferde bu gazların miktarının artması ısınmayı artırır. Günümüzdeki tehlike, karbondioksit ve diger sera gazlarinin miktarindaki artışın bu dogal sera etkisini şiddetlendirmesinde yatmaktadır Binlerce yıldır dünyamizdaki karbon kaynakları kararlı kalırken, şimdi modern insanoğlu aktiviteleri-fosil yakıtlarin kullanımı, ormanların yokoluşu, aşırı tarım yapılması, atmosfere büyük miktarlarda karbondioksit ve diger sera gazlarının atmosfere salınmasına sebep olmaktadır Sera etkisi dünyamızı nasıl değiştiriyor? Yeryüzü güneşten gelen bir ışık enerjisi alır Bu enerjinin bir kısmı bulutlar ve yer yüzeyi tarafından yansıtılır Geriye kalan kısım atmosfer ve yeryüzü tarafından toplanır Yeryüzü, bir kısmı atmosfer tarafından soğurulan kızılötesi ışınlar yayar Bu kızılötesi ışınların uzaya giden kısmıyla yeryüzünde biriken güneş enerjisi dünyanın ortalama sıcaklığını sabitleyebilecek şekilde dengelenir Eğer atmosfer daha fazla kızılötesi ışın soğurursa, yeryüzü topladığından daha az enerji yayar ve bu ısınmasına neden olur Bu durum, ilk sıcaklıktan daha yüksek bir sıcaklıkta yeni bir denge sağlanana dek yeryüzün ışımasını artırır Buna sera etkisi denir Sera etkisi olmasaydı yeryüzündeki ortalama sıcaklık -18 derece olurdu Oysa,bugün sıcaklık 15 derece Kısaca kızılötesi ışınların atmosfer tarafından tutulması “sera etkisi” olarak adlandırılır, çünkü bitki seralarındaki camların iç tarafı, gezegenin atmosferi gibi görünen güneş ışınlarını geçirme ve nesneler tarafından seranın içine salınan kızılötesi ışınların bir kısmını geçirmeyerek tutma özelliğine sahiptir Ancak bu etki seraların içine hakim olan sıcaklığın tek sorumlusu değildir Camların iç tarafı havanın dolaşımını ve dolayısıyla ısının taşınarak azalmasını engeller Bu durum özellikle rüzgar kuvveti dikkate alındığında daha önemlidir Ancak, sera etkisinin bu son özelliği gezegeni çevreleyen uzay boşluğu için geçerli değildir ve bu anlamda sera etkisi olarak adlandırılan olaya dahil değildir Kızılötesi ışınları soğuran tüm gazlar sera etkisine neden olan gazlardır Bunlar, karbondioksit, su buharı, azot protoksit, ozon ve sentetik endüstri molekülleridir Etkileri, yoğunluklarına ve molekül başına soğurma kapasitelerine bağlıdır Yoğunlukla ilgili olarak su buharının durumu ayrıcalıklıdır, çünkü yeryüzünde bolca bulunan su iklim sisteminin ayrılmaz parçasıdır Su buharının atmosferdeki yoğunluğu havanın onu tutma kapasitesi ile belirlenir Endüstriyel çağın başından beri insan faaliyetleri sera etkisi yaratan başka gazların salımına sebep oluyor ve bu gazların atmosferdeki yoğunluğu belirgin ve düzenli bir şekilde artıyor Ek sera etkisi de küresel ısınmayı tetikliyor Bu “radyoaktif gelişme” 1990 ile 2004 yılları arasında yüzde 20 oranında artış gösterdi. Gezegenimiz 4,65 milyar yıllık tarihi boyunca birçok kez ısınmış ve soğumuştur Günümüzde dünyamız yine hızlı bir ısınma periyoduna girmiştir ve bu kez diğerlerinden farklı olarak, oldukça fazla bir nüfus kitlesiyle bu etkiye maruz kalacaktır Küresel ısınmayı sade bir tanımlama ile; “atmosfer, okyanuslar ve kara kütleleri yüzeyindeki sıcaklıktaki yükselme” olarak tanımlayabiliriz Bu ısınmaya kömür, petrol ve doğal gaz gibi fosil yakıtların yakılması sonucu atmosfere dahil olan sera gazlarının neden olduğu sanılmaktadır Sera Etkisi Dünyamızı aydınlatan ve ısıtan enerjinin kayna ğ ı güne ş tir Güneşten, gezegenimizin yüzeyine ulaşan kısa dalgalı radyasyon, ışıktan ısıya dönüşmek suretiyle dünyamızı ısıtır Yeryüzü, bu radyasyonun bir kısmını uzun dalgalı kızılötesi ışın olarak uzaya geri yansıtır Bu uzun dalgalı kızılötesi ışınların büyük bölümü uzaya geri dönerken, bir bölümü dünya atmosferinde sera gazları vasıtasıyla tutulu kalmaktadır Atmosferde kızılötesi ışınların tutulması ve yansıtılması sırasında, tıpkı seradaki camlar gibi ısıyı muhafaza etme özelliklerinden dolayı bu gazlara “sera gazı” adı verilmiş tir Bu gazların atmosfer içindeki miktarlarının artması ile atmosfer, güne ş yoluyla dünyamıza sağlanan ısının tutulmasını tekrar geriye bırakılmasını sağlayan bir yalıtkana dönüşmektedir Sera Gazı Çeşitleri Sera gazları tabii olarak do ğ ada bulunurlar ve ayrıca insanların çeşitli faaliyetleri sonucu ortaya çıkarlar Sera gazları içerisinde en bol miktarda bulunanı okyanuslar, denizler, göller ve akarsulardan buharlaşma yoluyla atmosfere karışan su buharıdır Karbon dioksit (CO2) ikinci en fazla bulunan sera gazıdır Organik maddenin çürümesi, hayvan ve insanlarını solunumu, yanardağ patlamaları gibi birçok do ğ al olaylar sonucu atmosfere dahil olmaktadır Ayrıca, insanlar fosil yakıtlar, katı atıklar, ağaç ve ağaç ürünleri yakmak suretiyle evlerini ısıtmak, motorlu taşıtlar kullanmak ve elektrik üretmek amaçlarıyla atmosfere dahil olan karbon dioksit miktarını arttırırlar 18nci yüzyılın ortalarındaki Sanayi Devrimi’nden bu yana atmosferdeki miktarı 281 ppm’den 368 ppm’e ulaşarak %31’lik bir artış göstermiştir Metan (CH4), atmosfer içerisinde daha etkili yalıtkanlık yaratan bir gazdır Aynı miktardaki karbon dioksite oranla en az 20 kat daha fazla ısıyı tutabilmektedir Kömür, doğal gaz ve petrolün üretim ve taşınması esnasında atmosfere dahil olmaktadır Metan, büyükbaş hayvanlar başta olmak üzere kimi hayvanların sindirim yan ürünü olarak ortaya çıkmasının yanında atık alanlarındaki organik maddelerin bozuşmasından da meydana gelmektedir Sanayi Devrimi’nden bu yana atmosferdeki metan miktarı iki kattan daha fazla artmıştır Diazot monoksit (N2O), esas olarak tarım topraklarının işlenmesi ve fosil yakıtların yakılması sonucu ortaya çıkmaktadır Çok güçlü yalıtkanlık özelli ğ i olan bir gazdır Aynı miktardaki karbon dioksitin tuttuğundan yaklaşık 300 kat fazla ısı tutma özelliğine sahiptir Atmosferdeki miktarı, sanayileşme öncesindeki düzeyle kıyaslandığında %17’lik bir artı ş göstermiştir Sera gazları, aynı zamanda modern ve teknolojik bir hayatın devamı için gerekli üretim işlemleri sonucunda da meydana gelmektedir - Alüminyumun eritilmesinden perflorlu bileşikler meydana gelmektedir - Otomobil koltukları, mobilyalar ve yalıtımda kullanılan köpükler de dahil olmak üzere birçok maddenin üretimi esnasında hidroflorokarbonlar meydana gelmektedir - Kimi gelişmekte olan ülkelerde montajı yapılan buzdolaplarına hâlâ soğutucu gaz olarak kloroflorokarbonlar kullanılmaktadır 20nci yüzyıl boyunca, atmosfer içerisinde büyük miktarlarda artış gösteren bu sentetik kimyasalların bazıları atmosfer sıcaklığını arttırma özelliklerinin yanında, dünyamızı morötesi ışınların olumsuz etkilerinden koruyan ozon tabakasına da zarar vermektedirler 2000 yılında triflorometil sülfür pentaflorid adında yeni bir sentetik bileşiğin atmosferde hızlı bir şekilde arttı ğ ı belirlenmiştir Bu gazın diğer bilinen sera gazlarından çok daha fazla ısı tutma özelli ğ i olması endişe vericidir ve endüstriyel kaynağı hâlâ bulunamamıştır Küresel Isınmanın Etkileri Dünya üzerindeki tüm yaşamlar sera etkisi ile yakından ilişkilidir Sera etkisi olmayan bir dünya, yaklaşık 33 o C’lik bir soğuma ile karşı karşıya kalır ki, bu da dünyamızın bir kutuptan diğerine buzlarla kaplanması anlamına gelmektedir Ancak, sera gazlarının atmosferde aşırı bir şekilde artması da sürekli ısınma şeklinde dengelerin bozulması tehdidini yaratmaktadır Dünyanın ortalama yüzey sıcaklı ğ ı 15 o C’dir Geçti ğ imiz yüzyılda bu sıcaklık 0,6 o C’lik bir artış göstermiş tir Kıtalar üzerindeki sıcaklık okyanuslar ve denizlere oranla daha fazla artmıştır 1950 yılından bu yana deniz yüzeyi sıcaklı ğ ı kara yüzeyindekinin ancak yarısı kadar artmıştır Gece sıcaklıklarında da her 10 yılda ortalama 0,2 o C artı ş görülmüş tür IPCC (Intergovernmental Panel On Climate Change)’nin 2001 yılında yayımlanan üçüncü değerlendirme raporunda 2100 yılına kadar dünyamızdaki ortalama sıcaklığın 1,4-5,8 o C arasında artacağı belirtilmektedir Bu artışın 1990-2025 yılları arasında 0,4-1,1 o C, 1990-2050 yılları arasında 0,8-2,6 o C civarında seyredeceği kurgulanmaktadır Küresel ısınmaya bağlı olarak geçti ğ imiz yüzyılda kar örtüsü ve buzul boyutlarında küçülmeler ya ş andı 1960’ların sonlarından bu yana Kuzey Yarıküre’de kar örtüsünde %10’luk bir azalma oldu Orta ve daha yukarı enlemlerde göl ve nehirlerin yıllık buzla kaplı kalma sürelerinde yaklaşık 2 haftalık bir kısalma oldu 20nci yüzyıl boyunca dağ buzullarında da büyük çapta zirveye doğru çekilmeler yaşandı 1950’lerden 2000’e kadar geçen sürede Kuzey Yarıküre’de bahar ve yaz aylarındaki deniz buzulu boyutlarında %10-15 oranında küçülmeler yaşandı 20nci yüzyılın son 30 yılında Arktik deniz buzulu kalınlığında yaklaşık %40’lık bir azalma ya ş andı Önümüzdeki süreçte de ısınmaya bağlı olarak okyanusların ılıklaşmasıyla birlikte da ğ buzullarının ve kutuplardaki buz örtüsünün erimeye devam etmesi beklenmekte ve deniz seviyelerinin de 9-100 cm arasında yükseleceği tahmin edilmektedir 20nci yüzyıl boyunca deniz seviyelerinde 10-25 cm arasında bir artı ş oldu ğ u saptanmıştır Sibirya’nın batısında 11 bin yıldır donmuş halde bulunan ve yaklaşık Fransa ve Almanya büyüklüğündeki turbalıklar küresel ısınmanın etkisiyle son 3-4 yıldır erimeye başladılar Son 40 yıl içinde bu yörede 3 o C’lik bir sıcaklık artışı görülmüştü Artık geri dönüşü olmayan bu erime olayının sonucunda atmosfere milyarlarca ton metan gazı dahil olacak CO2 gazından 20 kat daha fazla ısı tutabilme özelli ğ i olan CH4 gazının bu düzeyde atmosfere salınımı küresel ısınma hızını ve şiddetini bu güne kadar yapılan tahminler üzerinde arttıracaktır Deniz seviyesinde görülecek yükselme, birçok kıyı bölgesi yerleşimini olumsuz yönde etkileyecektir Örneğin deniz seviyesinde meydana gelecek 100 cm’lik bir artışla Hollanda’nın %6’sı, Bangladeş ’in %17,5’i ve birçok adanın ya tümü ya da büyük bölümü sular altında kalacaktır Denizlerdeki yükselme kıyı ekosistemlerinde büyük değişiklikler yaratacak, denizlere yakın alçak düzlüklerde yeni bataklıklar meydana gelecektir Denizlerin karalar üzerinde ilerlemesi ile oluşacak arazi kayıplarının yanında kıyı erozyonlarında da artışlar görülecektir Mevsimler bazı bölgelerde daha uzun olmaya başlayacak, kış ve gece sıcaklıkları, yaz ve gündüz sıcaklıklarından daha fazla artma eğiliminde olacaktır Isınan bir dünyada sıcak stresinden dolayı daha çok insan ölecek, tropik bölge hastalıkları serin iklim bölgelerine doğru yayılma gösterecektir Isınmayla birlikte okyanus ve denizlerden daha fazla su buharlaşacak ve dünya daha rutubetli olacaktır Bu da yağışların artmasına neden olacaktır Kıtalar üzerine düşen yağış miktarı son yüzyıl içerisinde %1’lik bir artış göstermiş tir Gücünü suyun buharlaşmasından alan kasırgalar muhtemelen daha da güçlü olacaklardır El Nino kasırgası önceki yüz yıllık periyotla karşılaştırıldığında son 20-30 yıllık süreçte daha sık, uzun süreli ve şiddetli görülmeye başlanmıştır Sert ve devamlı rüzgarlar, suyun topraktan daha hızlı bir şekilde buharlaşmasına yol açacak, bu da bazı bölgelerin eskisinden de daha kurak olmalarına neden olacaktır 20nci yüzyıl boyunca orta ve daha yukarı enlemlerdeki kıtalar üzerine düşen yağış ta %5-10 arasında artış saptanmıştır Yoğun yağış sıklığında da %2-4’lük artış (24 saatte 50 mm) görülmüştür Buna karşılık subtropikal alanlardaki karalara düşen yağışta %3’lük azalma olmuştur Özellikle kuzey ve batı Afrika ve Akdeniz ülkelerinin kimilerinde yağışlarda düşüş yaşanmıştır Son 10 yılda Asya ve Afrika gibi bazı kıtalarda kuraklık ve sıcaklık şiddetlerinde artış olmuştur İklimi ısınmış bir dünyada muhtemelen önceden oldu ğ undan daha fazla tarım ürünü üretilebilecektir Ancak, bu üretim ille de ş u anda verimli olan bölgelerde olmayıp serin iklim kuşaklarına doğru kayacaktır Kuzey Yarıküre’de özellikle üst enlemlerde son 40 yıllık süreçte, ürün yetiştirme sezonunda her on yılda 1-4 gün uzama belirlenmiştir Küresel ısınma ve nemin artmasına paralel olarak gelecekte tarım ürünlerine ve ormanlara daha fazla böcek ve hastalık musallat olacaktır Küresel ısınmanın etkisiyle hayvanlar ve bitkiler kutuplara ve üst dağlık kesimlere yüksek rakımlara doğru göç edeceklerdir Ancak, bu göç yollarını tıkayan kentler ya da tarım arazileri ile karşılaşan ve bunları aşamayan bitki türlerinin nesilleri tükenecektir Küresel Isınmanın Türkiye Üzerindeki Olası Etkileri Türkiye, küresel ısınmanın potansiyel etkileri açısından risk grubu ülkeler arasındadır Ülkemiz küresel ısınmanın özellikle su kaynaklarının zayıflaması, orman yangınları, kuraklık ve çölleşme ile bunlara bağlı ekolojik bozulmalar gibi olumsuz yönlerinden etkilenecektir IPCC’nin 2002 yılı yayımlanan V Teknik Raporu’nda; 1901-2000 yılları arasında Türkiye’de -her 10 yılda sıcaklık 0,2 o C’ye kadar arttığı, -yağış ta ortalama %10 düşüş olduğu, 2071-2100 yılları arasında ise -Samsun’dan Adana’ya bir hat çizildiğinde bunun batı kısmının 3-4 o C, doğu kısmının ise 4-5 o C civarında ısınacağı, -günlük yağış miktarında 0,25 mm’ye kadar düşeceği, -buharlaşma ve evaporasyonun artacağı, -yaz kuraklığının artacağı, -yağıştaki azalış , sıcaklık, evaporasyon ve kuraklıktaki artışla doğrudan bağlantılı olarak orman yangınlarında artış olacağı, -su kaynaklarındaki zayıflamaya bağlı olarak iç sularda yaşayan balık türlerinde azalma yaşanacağı, -sularda meydana gelecek sıcaklık artışının üreme bozukluklarına yol açacağı, -arazi kullanımında meydana gelecek değişikliklerin erozyonu artıracağı, belirtilmektedir Dünya Su Kaynakları ve Tarım Toprakları Dünya üzerindeki en yaşlı kayalar oldukları belirlenen Greenland’daki Isua kayaları içerisinde 3,8 milyar yıllık suya rastlanmıştır Suyun kökeni ile ilgili birçok teori bulunmakla birlikte yeryüzünde bu zamandan daha önce suyun varlığına dair başka kanıt bulunamamıştır Dünyadaki toplam su miktarı 1,4 milyar km 3 olup, bu suyun %97,5’i tuzlu su, geriye kalan %2,5’i tatlı su kaynaklarından olu ş maktadır Tatlı suların da ancak %0,3’ü göllerde, akarsularda, barajlarda ve göletlerde bulunmaktadır Dünyamızda 1,4 milyar insan yeterli içme suyundan yoksundur 2,3 milyar kişi sağlıklı suya hasrettir ve yılda 7 milyon kişi su ile ilgili hastalıklardan ölmektedir Dünyada kişi başına su tüketimi yılda ortalama 800 m 3 civarındadır Ayrıca, dünyada 800 milyon kişi gıda yetersizliği ile karşı karşıyadır Dünyadaki toplam su tüketiminin %73’ü sulamada kullanılmaktadır 1995 yılı itibarıyla dünyada sulanan tarım alanları 253 milyon hektar iken, 2010 yılında 290 milyon hektara, 2025 yılında ise 330 milyon hektara ulaşması beklenmektedir Dünyada toplam işlenebilir tarım arazisi 3,2 milyar hektardır Son yıllarda kişi başına düşen tarım arazisi gelişmiş ülkelerde %14,3 azalırken, gelişmekte olan ülkelerde %40 oranında azalmıştır Birleşmi ş Milletler Gıda ve Tarım Örgütü (FAO)’ne göre kişi başına düş en tarım arazisi 0,23 hektar olup, 2050 yılında bu miktar 0,15 hektara kadar düşecektir Türkiye’nin Su Kaynakları ve Tarım Toprakları Ülkemizin yenilenebilir su potansiyeli 234 milyar m 3 olup bulun 41 milyar m 3 ’ü yeraltı suları, 193 milyar m 3 ’ü yerüstü sularından meydana gelmektedir Ülkemizde çeşitli amaçlara yönelik kullanımlarda teknik ve ekonomik anlamda tüketilebilecek yüzey ve yeraltı suyu miktarının 110 milyar m 3 olduğu belirlenmiştir Bir ülkenin su zengini sayılabilmesi için yılda ortalama kişi başına 10000 m 3 su potansiyeline sahip olması gerekir Su potansiyeli 1000 m 3 ’ten az olan ülkeler “Su Fakiri” kabul edilmektedir Ki ş i başına düşen kullanılabilir su potansiyeli 3690 m 3 olan ülkemiz, dünya ortalaması olan 7600 m 3 ’ün oldukça altında olmasından dolayı su fakiri olmamakla birlikte su kısıtı bulunan ülkeler arasındadır Kişi başına düşen kullanılabilir su miktarımız 1735 m 3 ’tür Devlet İstatistik Enstitüsü, 2025 yılına kadar ülkemiz nüfusunun 80 milyona varacağını tahmin etmektedir Bu durumda kişi başına düşecek kullanılabilir su miktarımız 1300 m 3 ’e düşecektir Ülkemizin yüzölçümü 78 milyon hektar olup bunun sadece 28 milyon hektarlık kısmı ekilebilir arazilerden meydana gelmiştir Suyun Tarımdaki Önemi Kıtlık ve açlığın dünyayı ciddi olarak tehdit etti ğ i 21nci yüzyılda toprak ve su en önemli stratejik maddeler olarak kabul edilmektedir Günümüzden 6000 yıl önce Mezopotamya bölgesinde Sümerler, hendekler kazarak Fırat ve Dicle’nin sularını tarlalarına akıtmakla insanoğlunun ilk sulu tarıma geçmesini sağladılar ve uygarlığı başlattılar Kentler kuruldu, nüfus arttı, ortaya yönetici sınıflar çıktı Benzer geliş meler Mısır’ın Nil, Hindistan’ın İndus vadileriyle Çin’de Sarı Nehir civarında yaş andı Suyun en verimli şekilde değerlendirilmesi 2nci Dünya Savaşı’ndan sonra başlamıştır Sava ş tan sonra insanların beslenme ve giyinme gibi gereksinimlerinin artı ş ı topraktan daha fazla yararlanmayı zorunlu hale getirmiş ve bunun da etkin sulama ile sağlanabileceği sulama yatırımlarına öncelik verilmiştir Türkiye’de de modern anlamda sulama projelerinin geliştirilmesi, 1950’li yılların başında DS İ ve TOPRAKSU gibi kamu kurumlarının kurulması ile büyük bir hız kazanmıştır Ülkemizde ekilebilir araziler limitine 1970’li yıllarda ulaşılmış , bu tarihten itibaren ise tarımsal üretimin arttırılması ancak ülke genelinde geliştirilen modern sulama projeleri ile mümkün olabilmiştir Ülkemiz topraklarının 25,8 milyon hektarlık kısmı sulanabilir arazilerden oluşmaktadır Ekonomik olarak sulanabilir arazi miktarı ise 8,5 milyon hektardır DSİ , Mülga Köy Hizmetleri Genel Müdürlüğü ve halk sulamalarıyla bu alanın ancak 4,9 milyon hektarlık kısmı sulamaya açılabilmiştir Sektörel bazda yapılan su tüketim tahminlerinde, ülkemizin ekonomik olarak sulanabilir 8,5 milyon hektar arazisinin, bu i ş için ayrılan ödenekler dikkate alındığında, tamamının sulamaya açılabilmesi için yaklaşık 100 yıl daha gerekmektedir Dünyadaki sulanan alanlar ekili alanların sadece %17’lik kısmını oluşturmalarına karşın, toplam bitkisel üretimin %40’ı bu alanlardan elde edilmektedir Suyun Yanlış Kullanımının Sonucu: Çölleşme! Kurak ve yarı kurak iklim kuşağında yer alan ülkemizde kuraklık ve çölleşme sorunlarının küresel ısınma ile daha da artacağı dikkate alındığında sulama, aynı zamanda önemli bir sorunu da beraberinde getirmektedir; toprakların tuzlanması, yani arazi kalitesinin bozulması, çölleşme! Yağışlı bölgelerde, toprak içerisinde doğal olarak bulunan tuzlar yağmur sularıyla akarsulara ve yer altı sularına taşınır, bunlar aracılığıyla da deniz ya da göllere kadar ulaşır Bu nedenle yağışlı bölge topraklarında genellikle tuz birikmesi olmaz İklimi sıcak, yağış ı az bölgelerde tarımsal üretim ve verimi arttırmak amacıyla toprağa kontrolsüz-gelişigüzel verilen sular, içlerinde doğal olarak bulunan tuzu toprağın içine dahil ederler Fazla verilen bu su, aynı zamanda taban suyunu yükseltmek suretiyle toprak ve taban suyu içinde bulunan tuzları da yukarı doğru harekete geçirir Sıcağın etkisiyle beraberinde toprak yüzeyine kadar taşıdığı tuzları burada bırakarak, hızla buharlaşmak suretiyle, toprak yüzeyinde buzlanma yaratır, tarımsal üretimi sınırlar ve verimi düşürür Fırat Nehri’nin iyi kalitedeki suyu bile her yıl 10 dekar toprağa 1,1 ton civarında eriyebilir tuzlarını dahil etmektedir 1940 yıllarında dizel motopompların kullanılmaya başlanmasıyla birlikte sulama masraflarının düştüğü Suriye’nin Fırat Nehri havzasında yeni alanlar tarıma kazandırılmıştır 1980 yılına kadar geçen süreçte, bu arazilerin yarısına yakın kısmında son derece yüksek tuz konsantrasyonları meydana gelmiş ve bu alanların büyük bir kısmı terk edilmiştir Aynı durum şu anda GAP Bölgemizde de görülmektedir Harran Ovası’nın topraklarında belirgin bir tuzlanma başlamıştır GAP Bölgesinin kalan toprakları da sulamaya açıldıkça, bu problem o kısımlarda da görülecektir Sadece Harran Ovası de ğ il, tüm GAP topraklarının ilerideki en önemli sorunu tuzluluk olacaktır Bugün, bir zamanlar “verimli ay” olarak tanımlanan Mezopotamya bölgesindeki toprakların %80’i tuzlanarak elden çıkmıştır Dünya tarihinde su kaynakları yönetimi uygarlıkların gelişmesinde ve hatta çöküşlerinde her zaman önemli roller oynamıştır Mısır, Çin, Hindistan, Mezopotamya uygarlıklarında, hanedanlıkların yıkılması ile su kaynakları yönetimi arasında yakın ili ş kiler bulunmaktadır Mezopotamya’da drenajın olmayı ş ı ya da yetersizliği, sulama suyunun alt katmanlardaki tuzu bitki kök derinli ğ ine çıkartması ve sulama suyundaki tuzun bitki kök bölgesinde birikmesi sonucunda tarım alanlarında tuzlanmaya neden olmuştur Ülkemizde tuzlu, sodyumlu ve borlu topraklar İ ç Anadolu başta olmak üzere 1,6 milyon hektar alan kaplarlar Özellikle batı ve güney bölgelerimizde aşırı sulamalar sonucu toprak kalitesi bozulmuş , tuzlanma, zararlı ve hastalık oranları artmış ve verim düşmeye başlamış tırÇukurova, Gediz, Söke ve Amik Ovaları tipik örneklerdir Dünyada hâlâ pek çok sulama projesi, kısa vadeli ve akılcı olmayan planlamalar yüzünden tarım topraklarında tuzlanmaya neden olmaktadır Bugün dünyada tuzlanmanın yılda 2 milyon hektar gibi bir miktarla yayıldığı ve bu nedenle sulama sayesinde elde edilen üretim artışının sağladığı gelirlerin büyük oranlarda azalmasına neden olduğu görülmektedir Tüm dünyada olduğu gibi ülkemizdeki su tüketiminin %73’ü tarım sektöründe gerçekleşmektedir Erozyonun Barajlarımız ve Sularımız Açısından Önemi Büyük yatırımlar yapılarak çeşitli amaçlar için tesis edilen, bir amacı da sulama olan barajlarımız, akarsu ve yüzey akışların taşıdığı toprak materyali ile planlanan ekonomik ömürlerinden daha kısa sürede dolmakta ve işlevlerini yitirmektedir Genelde ekonomik ömürleri 50 yıl olarak belirlenen bazı barajların aşırı erozyon etkisi ile 15-20 yılda doldukları görülmüştür (Karamanlı 13 yıl, Altınapa 10 yıl, Kartalkaya 19 yıl, Kemer 22 yıl) Yapılan ölçümlere göre; - Dicle Nehri’nin 26,7 milyon ton/yıl - Fırat Nehri’nin 16,8 milyon ton/yıl - Kızılırmak Nehri’nin 15,7 milyon ton/yıl - Çoruh Nehri’nin 7,8 milyon ton/yıl sediment taşıdığı tespit edilmiştir Fırat üzerinde tesis edilmiş olan Keban Barajı’na her yıl en az 32 milyon ton toprak taşınmış ve tesis tarihi olan 1974 yılından 2001 yılına dek yaklaşık olarak 850 milyon ton toprak baraj tabanına yığılmıştır Dünya genelinde erozyonla kaybedilen toprak miktarı 24 milyar tondur Ülkemizde her yıl kaybolan 500 milyon tona yakın verimli topraklarla birlikte 9 milyon ton bitki besin maddesi de yitirilmektedir Bu özelli ğ i ile de erozyon, ekosistemin ve suların kirletilmesinde en büyük etken olmaktadır Çünkü yüzey akışları ile taşınan bitki besin maddeleri (gübre dahil) ve tarım ilaçları su kaynaklarının kirlenmesine neden olmaktadır Ülkemizdeki ortalama yıllık toprak kaybı Avrupa’da olu ş an kaybın 9,5 katı, Avustralya’da olu ş an kaybın 2,9 katı, Amerika’da oluşanın 1,6 katıdır Barajlar, akarsuların taşıdıkları toprak materyalini tutmak suretiyle denize kavuştukları yerlerde oluşturdukları deltaların beslenmesini engellemekte, denizlerin deltaları aşındırmasına-kıyı erozyonuna neden olmakta, denizlerin karalar üzerinde ilerlemeleri sorununu da yaratmaktadır Sonuç Olarak Hem ekolojik dengenin korunması, hem de insan topluluklarının sürdürülebilir gelişiminin sağlanması için, su ve toprak kaynaklarının bugünkü ve gelecekteki ihtiyaçları karşılayabilecek en akılcı bir şekilde kullanılması gerekmektedir Bugün yeryüzünde en çok yararlanılan yenilenebilir su kaynağı akarsulardır (dünyada yenilenebilir su rezervi yılda yaklaşık 42750 km 3 olarak tahmin edilmektedir) Özellikle dünya nüfusunun ve buna bağlı olarak ta gıda ihtiyacının hızlı bir şekilde artış göstermesi insanoğlunun akarsuları, en fazla su tüketen sektör olan tarımda hemen hemen son damlasına kadar kullanmasına yol açmıştır Akarsuların aşırı ve plansız kullanımlarının olumsuzluklarına örnek vermek gerekirse, Aral Gölü’nü besleyen Amu Derya ve Siri Derya nehirlerinin aşırı ve plansız kullanımları, bu gölün oldukça küçülmesine yol açmış , bundan dolayı da 20 balık türü ortadan kalkmış ve balıkçılığın bitmesine neden olmuştur Bir başka örnek ise, Ganj Nehri gibi dünyamızdaki birçok büyük akarsu günümüzde deltasına kadar ulaşamamaktadır Önümüzdeki süreçte denizlerin yükselmesiyle bu gibi akarsu yatakları vasıtasıyla tuzlu sular karaların içlerine ilerleyecekler, toprak ve su kaynaklarında tuzlanmaya neden olacaklardır Kurak mevsimler boyunca yararlanabilmek ve küresel ısınmanın ülkemiz üzerindeki olumsuz etkilerini azaltabilmek amacıyla, elbette akarsularımız üzerindeki baraj ve özellikle de gölet sayımızı arttırmamız gerekmektedir Ancak bu yapılaşma asla akarsularımızın do ğ al akışını ve doğanın dengesini büyük ölçüde etkileyecek yapılaşmalar olmamalıdır Küçük birikimler sağlayacak göletlerin yapımına ağırlık verilmelidir Su kaynaklarımızı arttırmaktan daha önemlisi, bu kaynakların insanlarımız tarafından en verimli şekilde kullanılması bilincinin oluşturulmasıdır Nüfusu hızla artan İstanbul’da önemli su rezervuarları olan Elmalı Barajı ile Küçükçekmece gölü çevrelerinin yo ğ un yerle ş im ve sanayi alanına dönüşmesi sonucu bu kaynaklar kullanma suyu olarak dahi şehre verilememektedir Yerleşim ve sanayi alanları Büyükçekmece gölü koruma kuş aklarına kadar dayanmış durumdadır Bu kaynakların ve bunları besleyen akarsuların çevresinde gelişigüzel kimyasal gübre ve zirai mücadele ilacı kullanmakta kirlili ğ e ve su kalitesinin bozulmasına neden olmaktadır Özellikle azotlu gübre kullanımındaki hatalar N2O emisyonunu da artırmaktadır Trakya’yı boydan boya geçen ve Meriç Nehri’ne birle ş en Ergene Nehri kirlilikten dolayı tarımsal sulamada dahi kullanılamamaktadır Oysa birçok gelişmiş ülkede büyük kentlerdeki su kaynakları ve havzaları ormanlarla çevrilmiş tir ve kirlenmediğinden dolayı da arıtılmaksızın kullanıma sunulabilmektedir Toprakların üretkenlik kapasitesinin düşmesi ya da yok olması çölleşme olarak tanımlanabileceğinden tarım toprakları üzerinde hızlı kentleşme ve sanayileşme yaşanan Bursa, Sakarya ovaları, Çukurova, İzmir, Manisa, Kocaeli ve İstanbul Türkiye’nin en hızlı çölleşen yöreleridir Oysa gelecekte küresel ısınmanın etkisiyle tarımında önemli verim kaybı yaşayacak Türkiye’nin tarım topraklarını kaybetmemesi, su kaynaklarını cömertçe kirletmemesi gerekmektedir Günümüzde tarımsal üretim miktar ve verimini, kaliteli tohumlar kullansak dahi ancak sulamayla arttırmamız mümkün oldu ğ undan gerek yeraltı gerekse yer üstü su kaynaklarımızı temiz ve planlı kullanmalıyız Yıllık çekilebilir yeraltı suyu rezervi 12,3 km 3 olan ülkemizde, tarım alanlarının sulanmasında özellikle bu su kaynaklarımızı da devreye sokmamız gerekir Ancak, kuraklığın şiddetli görüldü ğ ü devrelerde yeraltı sularına fazla yüklenmemek, yerüstü su kaynaklarını bu dönemlerde devreye sokmak yararlı olacaktır Özellikle denizlere yakın bölgelerde yeraltı sularında aşırı kullanım, deniz sularının bu alanlara ilerlemesine neden olmakta ve tuzlanan bu kaynakları tekrar geri kazanmak mümkün olmamaktadır Türkiye, küresel ısınmanın özellikle yağışın azalması, sıcaklığın ve dolayısıyla kuraklığın artmasına bağlı olarak arazi kullanım şekli ve tarım metotları ile su kaynaklarının kullanımı ve su kalitesi konusunda özen göstermelidir Ülkemizde adeta bir gelenek haline gelen ormanların ve meraların tahrip edilmesinin önüne geçilmelidir Önemli karbon yutak alanı olan bu alanların amacı dışında kullanılmaları hem verimli yüzey toprağının yok olmasına, hem de yaratılan erozyonla su kaynaklarının siltasyonla kalitelerinin bozulmasına ve baraj göllerinin hızlı dolmasına yol açmaktadır Yanlış arazi kullanımı yağışla gelen suyun toprağa sızmasını da önlemekte yüzey akışa geçerek sele ve yeraltı su kaynaklarının beslenememesine yol açmaktadır Gelecekte daha kurak bir periyoda girecek Türkiye’de erozyon kontrolü ve suyun toprakta muhafaza edilmesi önem kazanmaktadır Suyun toprakta muhafazasını sağlayan anızın tahrip edilmesinin önüne geçilmelidir Toprak yüzeyi anızsız nadasa bırakılmamalıdır Suyun muhafazası açısından topraklar yüzlek sürülerek hafifçe kabartılmalıdır Yüksek verimli kurağa dayanıklı tohumlar geliştirilmelidir Baraj gölleri altında verimli tarım topraklarının kalmamasına özen gösterilmelidir Sulama amaçlı inşa edilerek tarımsal üretimi ve verimliliği arttırmayı amaçlayan bir baraj, aynı zamanda tarımsal üretimin gerçekleşme alanı olan verimli alüviyal toprakları suları altında bırakarak yok etmemelidir Sulamaya açılan bölgelerde, topraklarda tuzlanmanın önlenmesi açısından mutlaka drenaj sistemleri kurulmalıdır Ülkemizde tarımsal üretim planlaması yapılmadığından, sulamaya açılan bölgelerde ekilecek bitki deseni köylünün insiyatifine bırakılmakta, buna sulama konusundaki bilgisizlikte eklenince sulamadan yeterli randıman alınamadı ğ ı gibi topraklarımızın üretkenlik kapasitesi de düşmektedir Sürekli baraj ve gölet in ş a etmenin yanında çiftçi, sulu tarım konusunda eğitilmeli ve denetim altında tutulmalıdır Eskiden in ş a edilmiş olup, bugün bakımsızlıktan dolayı işlevini kaybetmiş oldukça fazla sulama tesisi bulunmaktadır İklime dayalı olumsuzluklardan ülke tarımımızın en az düzeyde etkilenmesi için ülkemizin tarım kesimi ve bu kesimle muhatap olan tarım kurumları devlet tarafından daha fazla desteklenmeli, Tarım Bakanlığı’nın 1984 tarihli reorganizasyonu ile kapatılan TOPRAKSU Genel Müdürlüğü zaman kaybedilmeden kurularak toprak ve su kaynaklarının yönetimi tek elde toplanmak suretiyle mücadeleye derhal başlanmalıdır.

http://www.biyologlar.com/sera-gazlarinin-ekolojik-denge-uzerindeki-olumsuz-etkileri-nelerdir

Ekosistemler ve Biyolojik Çeşitlilik

1.Ekosistemler 2.Biyolojik Çeşitlilik 3.Çevre Sorunları ve Etkileri Okul bahçesine çıkıp gözlerimizi kapattığımızı hayal edelim.Gözlerimiz kapalıyken hangi sesleri duyuyoruz?Duyduğumuz seslerden hangilerinin doğal,hangilerinin yapay olduğunu belirleyelim.Şimdi' de bir ormanda olduğumuzu hayal edelim. Gözlerimiz kapalıyken duyduğumuz seslerin kaynaklarını söyleyelim.Bir ortamdaki doğal seslerin çeşitliliği buradaki canlı çeşitliliği hakkında bize bilgi verir mi? Neden? Aşağıda fotoğraflarını gördüğümüz yerlerdeki çevre sorunlarının sebepleri neler olabilir?Bu sorunlar o ortamdaki canlıların yaşamlarını,dolayısıyla ülkemizi ve dünyayı nasıl etkilemektedir?Çevre sorunlarının oluşumunda sizin de bir rolünüzün olduğunu düşünüyor musunuz?Neden? Yukarıdaki soru ve yönergelerden de anlaşıldığı gibi bu ünitede,çevremizde bulunan canlı ve cansız varlıklar arasındaki etkileşimlerle,ülkemizdek i ve dünyadaki çevre sorunlarını ve bu çevre sorunlarının çözüm yollarını ele alacağız. 1.Ekosistemler Anahtar Kavramlar tür habitat popülasyon ekosistem Yukarıdaki fotoğraflara hangi renkler hakimdir?Ortamın özellikleriyle bu renkler arasında bir ilişki olabilir mi?Bu ortamlarda hangi canlılar yaşamaktadır?Çölde yaşayan bir canlı, yağmur ormanında veya okyanus dibinde de yaşayabilir mi?Neden? Bir önceki sayfada okuduğumuz mısraların baş harflerini birleştirdiğimizde ortaya çıkan kelimenin ne anlama geldiğini aşağıdaki etkinliği yaparak öğrenelim. Canlılar yaşam alanlarında tek başlarına bulunmazlar. Diğer canlılarla hatta cansızlarla etkileşim halindedirler.Bu etkileşimin sebepleri neler olabilir?Beslenme ve üremenin bu etkileşimde bir rolü olabilir mi? Şimdi organizmalardan hangilerini tür olarak adlandırabildiğimizi, türlerin popülasyonları nasıl oluşturduğunu,popülasyond aki türlerin yaşam alanlarını ve sadece canlıları değil,cansız faktörleri de içeren ekosistemleri birlikte inceleyelim. Aşağıda Şanlıurfa Ceylanpınar' da yaşayan bir Anadolu ceylanının fotoğrafı görülmektedir. Birbiriyle çiftleşebilen ve üreme yeteneğine sahip, ortak atadan gelen benzer özellikteki organizmalara tür denir. Buna göre Anadolu ceylanı, Kangal köpeği, Van kedisi, sarıçam vb. birer türdür. Peki etrafımızda gördüğümüz her canlı bir tür müdür? Katır ve Kurt köpeği için ne söyleyebiliriz? İnsanlar da bir türe ait bireyler midir? Aşağıdaki fotoğrafta ise birden fazla Anadolu ceylanı bulunmaktadır. Belli bir bölgede yaşayan, aynı türden bireylerin oluşturduğu topluluğa popülasyon denir. Bu fotoğraf Ceylanpınar'daki geyik popülasyonunun bireylerine aittir. Öyleyse yan yana bulunan ve fiziksel şartları birbirinden farklı olan iki göldeki sazan balıkları aynı popülasyona ait örnekler olabilir mi? Her tür hayatını kendisi için uygun olan bir ortamda sürdürür. Örneğin ceylanlar ormanda, kangurular Avusturalya 'da ikinci kefali Van gölünde kelaynaklar Birecik' de kayalıklarda yaşar. Bir canlının yaşam alanı ya da arandığı zaman bulunduğu yer habitat olarak adlandırılır. Öyleyse bizim habitatımız neresidir? Aşağıdaki fotoğrafta ise ceylanlar sık ağaçlarla kaplı bir ormanda, diğer canlılarla birlikte görülmektedir. Ceylanların yaşadığı yerde sadece canlılar mı görülüyor? Canlıların yaşamını sürdürebilmesi için hava,su,toprak gibi cansız faktörlere ve güneş ışığına ihtiyacı vardır.Bu nedenle bir ortamdaki canlı ve ansız faktörler,bu çevrede hangi canlıların yaşayacağını belirler.Belli bir habitattaki hayvan ve bitki topluluğu ile bu topluluğun içinde yaşadığı çevrede oluşan,aralarında madde alışverişi olan ve büyük ölçüde kendi kendine yeten sistem ekosistem olarak adlandırılır.Buna göre göl,deniz ve ormanlar birer ekosistem midir?Neden? Yaşadığımız dünyada her şey belli bir düzen içerisindedir.Hücre içindeki moleküller,atomlardan oluşmaktadır.Hücreler dokuları,dokular,organlar ı,organlar sistemleri,bir araya gelen sistemler de organizmayı oluşturur.Peki, organizmalar bir araya geldiğinde oluşan birimlere ne ad verilir?Aşağıdaki şemada atomdan üzerinde yaşadığımız gezegene kadar uzanan akışı inceleyelim. Küçük bir uğur böceğinden kavak ağacına kadar bütün canlılar,hem birbiriyle hem de çevredeki canlılarla etkileşim içindedir.Bir ekosistemde yaşayan insanlar,hayvanlar,bitkil er mantarlar ve mikroorganizmalar o ekosistemin canlı faktörlerini oluşturur.Cansız faktörler ise hava,su,toprak,rüzgar ve güneş ışığıdır.Bir ekosistemi diğerlerinden ayıran bu faktörlerin etkisini ve farklı ekosistemleri birlikte inceleyelim. Bir ekosistemdeki canlı çeşitliliğini belirleyen cansız faktörlerin en önemlilerinden biri iklimdir. Ekosistemlerin iklimleri birbirine benzer mi?Bir bölgedeki yağış,nem,rüzgar ve sıcaklık özellikleri,oradaki bitki örtüsü ile hayvan çeşitliğini belirler.Peki,her ekosistemde aynı canlılar mı yaşar? Sıcak ve kurak iklimin hakim olduğu çöllerde yaşayan canlıların,buralarda yaşamlarını sürdürebilmelerini sağlayacak çeşitli özelliklere sahip olmaları gerekir.Örneğin burada yaşayan bitkiler kaktüslerde olduğu gibi gövdelerin su ve besin depolar.Çöl fareleri de yiyecek bulamadıkları zaman açlıktan ölmemek için kuyruklarında yağ depolar.Yağışın,suyun ve bitki örtüsünün yeterli ölçüde bulunmadığı ortamlara çöl ekosistemi hakimdir.En büyük çöl ekosistemi Sahra çölü' dür Yeryüzün en büyük ekosistemlerinden biri de deniz ekosistemlerdir. Bu ekosistem de mikroskobik canlılardan dünyanın en büyük memeli hayvanlarına kadar pek çok canlı yaşamaktadır. Denizlerdeki tuz oranı,bitki örtüsü, suyun derinliği,sıcaklığı,ışık miktarı bu ekosistemdeki hayvan türlerinin çeşitliliğini belirler.Denizlerde fotosentez yapan canlılar ile bu canlıları yiyerek beslenen küçük canlılar bulunur.Yunus ve balina gibi hayvanlar ise besinlerini denizlerdeki diğer canlılardan karşılarlar.Ülkemizin üç tarafını çeviren denizlerde de olduğunu gibi deniz ekosistemleri birbirinden farklı özellikler gösterir.Dünyanın en büyük deniz ekosistemi Hazar Denizinde görülmektedir. Yağmur ormanları yağış ve sıcaklığının çok yüksek ve değişmez olduğu bölgelerde bulunur.Bu ormanlar doğal kaynaklardan yana çok zengindir,dünya ikliminin dengede tutulması acısından da öne taşır.Bu ekosistemler,yırtıcı kuşlardan palmiyeler,maymunlardan çalılara kadar birçok canlı türünü barındırır.Yağmur ormanlarının en büyüğü Amazon ormanlarıdır.Kent ekosistemindeki iklim şartları ve canlı çeşitliliği diğer ekosistemlerle benzerlik gösterir mi? Bu ekosistemin özellikleri burada yaşayan canlıları nasıl etkilemektedir? Canılar yaşamlarını sürdürebilmek için beslenmek zorundadır. Besinlerini değişik kaynaklardan sağlar.Bitkiler kendi besinlerini kendileri üretirken hayvanların bazıları otla,bazıları etle,bazıları hem ot hem etle beslenir.Bu yüzden hayvanlar otla beslenenler,etle beslenenler,hem etle hem otla beslenenler olmak üzere üç guruba ayrılır.Canlılar arsındaki beslenme ilişkisini bir zincirin halkalarına benzetebiliriz.Bu zincirdeki her bir halka bir canlıyı temsil eder.Aşağıda bir besin zinciri örneği görülmektedir. Yukarıda görülen besin zincirine benzer başka besin zinciri örnekleri de verebilir miyiz? Bu besin zincirlerinin bir araya gelerek bir ağ oluşturduğunu söyleye bilir miyiz? Yandaki resmi inceleyerek canlılar arasındaki beslenme ilişkilerinin önemini açıklayabilirmiyiz? Her ekosistem çok sayıda farklı besin zinciri içerir ve bunlar bir araya gelerek besin ağını oluşturur. Yeryüzündeki tüm canlılar çok büyük ve karmaşık bir besin ağı içinde birbirine bağlanmıştır.Farklı beslenme biçimleri,farklı ekosistemleri birbirine bağlanmaktadır.Peki,insan ların içinde yer aldığı besin ağı örnekleri oluşturabilir miyiz? Anahtar Kavram Biyolojik çeşitlilik Yaşadığınız bölgede en çok yetiştirilen sebzeler hangileridir? Bölgelerine özgü bitki hayvan türlerini sayabilir misiniz? Yaşadığınız bölgedeki bitki ve hayvanların sayısı ve çeşitliliği,diğer bölgelerde de aynımıdır? Bitki ve hayvan türlerinin sayıca fazla olması,bölgenizin doğal zenginliğinin bir göstergesi midir? Bir ekosistemin görevi canlıları barındırarak onlara nesillerini sürdürebilmeleri için uygun ortamı hazırlamaktır.İklim,topra k ve su gibi cansız faktörlerin canlılarla olan etkileşimi,ekosistemlerin çeşitliliğini ortaya çıkarmaktadır.Ekosistemle rin orman,,dağ,sazlık akarsu gibi çeşitleri vardır.Bu çeşitlilik arttıkça ekosistem içinde yer alan ve tür çeşitliliği de artmaktadır. Öyleyse çeşitlilik ne demektir? Bir bölgedeki bitki ve hayvan türlerinin çeşitliliği o yerin hangi özellini ortaya koyar? Bu soruların cevaplarını '' Biyolojik çeşitlilik'' adlı etkinliği yaparak öğrenelim. Bir bölgedeki bitki ve hayvan türlerini ve çeşitlerinin sayıca zenginliği biyolojik çeşitlilik anlamına gelir.Bir ülkedeki tüm bitki ve hayvan türleri hem o ülkenin hem de dünyanın biyolojik zenginliklerinden sayılır.Ülkemizdeki farklı ekosistemlerin biyolojik çeşitliliğini oluşturan bitki ve hayvanlara örnek verebilir miyiz?Özellikle tarım,eczacılık,tıp,hayva ncılık,ormancılık,balıkçı lık ve sanayi alanında kullanılan türler bu açıdan önemlidir.Örneğin,hayvanc ılıkla ilgili olarak ülkemizin çeşitli yerlerindeki doğal çevreye uyum sağlamış sığır,koyun,keçi türleri yetiştirilmektedir.Ülkemi ze özgü olarak ormancılıkta çam ve meşe türleri; balıkçılıkta ise alabalık,kefal ve levrek bulunmaktadır.Köy ve kasaba pazarında rastlanabilen acur, taflan,çitlembik,iğde, göleviz ,ahlat,alıç,delice,idris, melengiç,hünnap,üvez,yonc a mürdümük gibi sebze ve meyveler de ülkemizin biyolojik zenginliklerindendir. Biyolojik çeşitlilik, ekosistemleri dengede tutar,gezegenimizi yaşanılabilir hale getirir; sağlığımızı,çevremizi ve ekonomimizi destekler.Buna rağmen doğal kaynakların bilinçsiz kullanımı ve hızlı nüfus artışı ekosistemdeki türlerin giderek yok olmasına sebep olmaktadır.Habitatların kaybolması veya zarar görmesi birçok bitki ve hayvanın neslinin tükenmesine yol açmaktadır.Öyleyse canlıların neslinin tükenmesi,biyolojik çeşitliliğin azalması anlamına mı gelir?Örneğin,çevrenizde yaşayan dinozor,mao veya mamut gördünüz mü?Anadolu leoparı,Asya fili,kunduz ve aslan bunda yıllar önce ülkemizde yaşamış,ancak şu an nesli tükenmiş canlılardandır.Bunun yanı sıra ülkemizde Akdeniz foku,kelaynaklar,deniz kaplumbağaları,alageyik,b ozayı,kardelen çiçeği ve salep yapımında kullanılan orkideler nesli tükenme tehlikesiyle karşı karşıya olan türlerdendir.Sizde nesli tükenmiş ya da tükenme tehlikesi altında olan canlılara örnek verebilir misiniz? Çevremizde yaşayan bitki ve hayvanlar da bizler gibi birer canlıdır. Onlarda bizim gibi sevgiye ve korunmaya ihtiyaç duyar.Peki,bizler bitki ve hayvanlara olan sevgimizi nasıl gösterebiliriz? Bitki ve hayvanların korunmasına yönelik yöresel, ulusal ve uluslararası alanda faaliyet gösteren organizasyonlar var mıdır? Bu organizasyonların amaçları ve çalışmaları nelerdir?Bireysel olarak veya gurup halinde katkı sağlayabileceğiniz organizasyonların çalışmalarına katılarak çevrenizdeki insanların bu konuda bilinçlendirilmelerini sağlamak ister misiniz?Bu konuda ne tür çalışmalar yapılabilir? Bitki ve hayvanlara olanlara olan sevgimiz, biyolojik çeşitliliğin korunmasında rol oynar.Biyolojik çeşitliliğin korunması,doğal kaynakların bilinçli kullanımı yoluyla Dünya'nın geleceği için uzun vadeli bir yatırım sağlar. 3. Çevre Sorunları ve Etkileri Anahtar kavramlar Çevre sorunları Küresel ısınma Asit yağmuru Sera etkisi Ülkemizde çevre için alarm veren noktalar: Beyşehir gölü: Erozyon ve sulama amaçlı kontrolsüz su alımı nedeniyle ölüyor. Akdeniz: Nesli tükenme tehlikesi altında olan foklar için yapılan çalışmalar olumlu sonuç vermiyor Hasankeyf: küçük kerkenez ve tavşancıl gibi türler sular altında kalarak yok olacak. Niğde: Aralarında nesli tükenmekte olan dikkuyruk ördeklerininde yer aldığı yaklaşık 110 tür su kuşunun son yaşam alanlarından Akkaya göleti, atıklarla kirletiliyor. Giresun: Şebinkarahisar, Alucra ve Çamoluk ilçelerindeki erozyon tehdidi,tüm ilçelerin atıklarını dere ve denize akıtması,fındık tarım için kullanılan kimyasal gübreler sorunların başında geliyor. Karadeniz: Atıklarla kirleniyoruz. Ticari değeri olan 26 tür balıktan sadece 6 tür kaldı.Her yıl yaklaşık 3000 yunus ölüyor. Toroslar: Dağların eteklerinden toplanıp yurt dışına gönderilen kardelen çiçeği bilinçsiz toplama yüzünden 60 yıl öncesine göre yaklaşık %90 azaldı. Torunlarımız Kavrulacak: Bilim insanına göre 2100lü yıllarda yaşayacak torunlarımız,şimdilerde bizi bunaltan sıcakları ''mumla arayacak''.Bilim insanları dünya sıcaklığının gelecekte çok daha fazla artacağını belirleyerek yaklaşık 80 yıl sonrasının ortalama sıcaklığını da hesapladı.Tahmini hesaplara göre şu anda 1,7C sıcaklığa sahip olan gezegenimizin sıcaklığı ortalama 4,9Ca kadar yükselecek. Tehdidin Boyutları:2002 yılında Avustralya"da yaşanan şiddetli kuraklığın temel sebebi küresel ısınmaydı. Kuzey Pasifik"teki somun popülasyon,bölgedeki sıcaklığın normalden 6 derece daha artması yüzünden büyük düşüş görüldü. Kaliforniya kıyılarında yüzlerce deniz kuşunun denizlerin ısınması yüzünden besin kıtlığı çektiği ve bunun sonucunda öldüğü görüldü.Avusturalya'daki Great Barrier sürdürülebilir olamayan balıkçılık yöntemleri ve iklim değişikliği yüzünden çok yakında yok olama tehlikesi ile karşı karşıya kalacak. Küre Isındıkça Grönland Eriyor: Kuzey yarım küreni en büyük buz kütlesi olan Grönland adası küresel ısınma sebebiyle eriyor.Amazon ormanları da küresel ısınmanın bir başka kurbanı olacak.Brezilya hükümetinin yaptığı araştırmalar,dünyanın akciğeri sayılan Amazon'un 2003 yılında yitirdiği ormanlık alan miktarının rekor seviyeye ulaştığını gösteriyor.Ülkemizi ve dünyamızı tehdit eden önemli çevre sorunlarıyla ilgili bir çok haberi gazete ve televizyonlardan öğreniyoruz.Geleceğimizi tehlikeye sokan bu sorunların sebeplerini ve sonuçlarını birlikte öğrenelim. Torunlarımıza Bunları mı Bırakacağız? Ekosistemler zamanla neden değişip bozulmaktadır?Bu bozulmalar beraberinde hangi sonuçları getirir? Çok küçük bir ekosistemin zarar görmesi tüm dünyayı nasıl etkiler? İnsanlar doğayla iç içe yaşarken zamanla teknolojiden faydalanmaya ve doğal kaynakları bilinçsizce kullanmaya başlamışlardır. Bunu sonucunda da doğanın dengesi bozulmuş ve birçok çevre sorunuyla karşı karşıya kalınmıştır.Hızlı nüfus artışı,bilinçsiz sanayileşme ve düzensiz şehirleşme çevre sorunlarının temel sebepleri olmuştur. Şimdi ülkemizi ve dünyayı tehdit eden bu çevre sorunlarından bazılarını inceleyelim. Hava Kirliliği Hava kirliliğini çevredeki canlılar ve cansızlar üzerinde olumsuz etkileri vardır.Evlerin ısıtılmasında kullanılan yakıtların artıkları,taşıtlar,sanayi tesisleri gibi faktörler hava kirliliğine sebep olmaktadır.Hava kirliliği denince ilk akla gelenler asit yağmurları,sera etkisi ve ozon tabakasının delinmesidir.Günümüzde insanların yol açtığı hava kirliliğinin en kötü sonuçlarından biri,asit yağmurlarıdır.Fosil yakıtların yakılması sonucu atmosferde kükürt ve azot içeren gazlar birikir.Bu gazlar su buharıyla birleşince bir kimyasal tepkime oluşur.Bu tepkime sonucu sülfürik asit ve nitrik asit damlaları oluşur.Bunlar yağışlarla birlikte yeryüzüne iner.Bu şekilde yeryüzüne inen yağışlar,asit yağmurlarıdır.Peki sizce asit yağmurlarının çevremiz üzerindeki olumsuz etkileri nelerdir? Asit yağmurları ağaçların.tarihi eserlerin ve yandaki fotoğrafta görüldüğü gibi binaların zarar görmesine neden olur.Su ve toprakta yaşayan canlıların yaşamını tehdit eder.Canlı türlerinin yok olmasına sebep olabilir. Asit yağmurlarının zararlı etkilerini azaltmak amacıyla ısı yalıtımı yapmak,çevre dostu temiz enerji kaynaklarını kullanmak ve toplu taşıma araçlarını tercih etmek gibi önlemler alabiliriz. Hava kirliliğinin bir diğer sonucu da sera etkisidir.Güneş" ten gelen ışınların bir kısmı yeryüzü tarafından soğurulurken bir kısmı da uzaya geri yansır.Yansıyan bu ışınların bir kısmı,atmosferde soğurularak havanın ısınmasına sebep olur.Atmosferdeki ( başta karbondioksit olmak üzere) sera etkisi yapan gazların miktarının artması,soğurulan ışınların da artmasına sebep olur.Sera etkisi adı verilen bu olay,atmosferin ve Dünya"nın sıcaklığını yükseltmektedir.Bu ısınmanın sonucunda küresel ısınma gerçekleşmekte ve dolaysıyla buzulların erimeye ve okyanuslardaki su seviyelerinin yükselmeye başladığı görülmekte küresel çölleşme olması beklenmektedir.Sizce bu durum hayatımızı nasıl etkiler? Hava kirliliğine sebep olan gazlar ozon tabakasının da incelmesine sebep olmaktadır.Ozon tabakasının incelmesi bitki ve hayvanlarda bazı olumsuz durumlar yaratarak biyolojik çeşitliliği olumsuz yönde etkilemektedir.Tüm canlıların bağışıklık sistemini bozmaktadır. Asit yağmurları, sera etkisi ve ozon tabakasının delinmesi gibi Dünya"yı etkileyen bu çevre problemleri ülkemizi nasıl etkilemektedir? Su Kirliliği Endüstriyel atıklar, evsel atıklar,tarımsal mücadele araçları,doğal ve yapay gübreler, sanayi kuruluşlarının olumsuz etkisi vb. suların kirlenmesine yol açmaktadır.Bu durum, tüm canlıların hayatını tehlikeye sokmaktadır.Ülkemizin üç tarafı denizlerle çevrili olduğundan deniz kirliliğide önem taşımaktadır.Sakarya ve Gediz nehirleri,Akşehir gölü ve Tuz gölü,İzmit ve İzmir körfezleri ile Marmara denizi ülkemizde su kirliliğinin görüldüğü yerlerdendir.Sizce ülkemizdeki su kirliliği Dünya" yı nasıl etkilemektedir? Buna nasıl çözüm bulunabilir? Toprak Kirliliği Yirminci yüzyılın başından itibaren modern tarıma geçilmesi ve sanayileşmenin hızlanması ile birlikte toprak kirliliği de bir çevre sorunu olarak ortaya çıkmaya başlamıştır.Yerleşim alanlarından çıkan atıklar,egzoz gazları,endüstriyel atıklar,tarımsal mücadele ilaçları ve kimyasal gübreler toprak kirliliğine sebep olan en önemli etkenlerdir.Toprak kirliliği hangi çevre sorunlarını beraberinde getirir? Orman Tahribi Ormanlar, doğanın ayrılamaz bir parçasıdır.Pek çok canlıya ev sahipliği yapar.Erozyon ve çölleşmeyi önler,kereste,ilaç hammaddesi ve besin gibi bir çok maddeyi sağlar.Yaşamımızda bu kadar önemli bir yere sahip olan ormanlar her yıl ülkemizde ve dünyada çeşitli sebeplerle tahrip edilmektedir.Ormanlarda yaşanan bu sorunların sebeplerini ‘"Ormanlarımızı Koruyalım"" adlı etkinliğimizde bulmaya çalışalım. Orman yangınları,ihmal,dikkatsi zlik,kaçak yapılaşma ve arazi açmak için ağaçların bilinçsizce kesilmesi gibi sebepler yüzünden ormanlar tahrip olmaktadır.Bunun sonucunda ekosistemlerin doğal dengesi bozulmakta, ormanda yaşayan canlı türleri ve bu türlerin habitatları yok olmakta toprak zenginliği kaybolmaktadır. Ülkemizde orman yangınlarının kayıtları 1937 yılında tutulmaya başlanmıştır.Bu kayıtlara göre yaklaşık 1,5 milyon hektar ormanlık alan yok olmuştur.Ülkemizdeki ormanların tahribi sadece ülkemizi mi etkiler?Ormanların tahribini nasıl engelleyebiliriz?Ormanlar ın kaybı hayatımızı nasıl etkiler? Çığ Çığların tarım alanlarının veriminin düşmesi ve su kaynaklarının kirlenmesi üzerindeki etkilerini hiç düşündünüz mü? Eğimli arazi üzerinde birikmiş büyük kar örtüsü, yer çekimi etkisiyle kaydığından çığ oluşur.Çığ genellikle bitki örtüsü olmayan,dağlık eğimli arazilerde görülür.Çığlar beraberinde toprak,taş ve ağaçları da sökerek götürür.Bu şekilde meydana gelen aşınma ve taşınma,toprağı verimsizleştirerek canlıların yaşamını tehlikeye sokar.Peki çığdan korunma yolları nelerdir? Nükleer Kirlilik Nükleer silahlar nükleer kazalar ve bu kazalar sonunda ortaya çıkan nükleer atıklar kirlenmeye sebep olmaktadır.Yandaki fotoğrafta görülen nükleer patlama olayı bu durumun etkilerini ne derecede önemli boyutta olduğunu ortaya koymaktadır. 1986 yılında yaşanan Çernobil nükleer enerji santrali kazasının yarattığı olumsuz etkiler, bu kirliliğinen canlı örneğidir.Bu olaydan ülkemizin en çok Karadeniz bölgesinin etkilendiği tespit edilmiştir.Sizce nükleer kirlilik sadece belli bir bölgeyi mi etkiler?Nükleer kirliliğin canlılar ve onların çevreleri üzerindeki olumsuz etkileri nelerdir? Temiz Çevre, Sağlıklı Gelecek Çevreyi Korumak için Bize Düşenler · Ormanlarımızı koruyalım. · Ağaçlandırma çalışmalarına katılalım. · Geri dönüşümlü ürünleri kullanalım. · Güneş,rüzgar ve akarsu gibi yenilenebilir enerji kaynaklarını kullanmaya çalışalım. · Enerji tüketimini azaltmak için lambaları,televizyon ve bilgisayar gibi aletleri kullanmadığımız zamanlarda kapalı tutalım. · Aşırı ve bilinçsiz avlanma konusunda çevremizdekileri uyaralım. · Doğal kaynakları bilinçli kullanalım. · Çevre eğitimine önem verelim. · Yakın yerlere giderken otomobile binmek yerine yürüyelim ya da toplu taşıma araçlarını kullanalım. · Evimizin ve iş yerimizin ısı yalıtımını yapalım. Atatürk ve Çevre Sevgisi Atatürk Orman Çiftliği Atatürk"ün doğa ve ağaç sevgisinin en belirgin örneğidir.Atatürk,1925 yılında kendi maaşından ödeyerek çiftliğin bu günkü yerini satın almıştır.Bu araziyi daha sonra devlete devretmiştir.O yıllarda bataklık ve boş bir arazi halinde olan çiftlik bugün insanların dinlenebiliceği bir yer haline gelmiştir. Atatürk, yaşadığı yılların şartları içinde çevre ve tabiat güzelliği kavramlarına ışık tutan eşsiz bir önderdir.Onun kişiliğinde,bitki ve hayvan sevgisinin önemli bir yeri vardır. Anıtkabir"de dünya uluslarının gönderdikleri fidanlarla oluşturulan Barış Parkı,barışı seven Ata"nın çevreci kişiliğiyle bütünleşmiştir.Afet İnan,Atatürk"ün Cumhurbaşkanlığı Köşkü olarak Çankaya"yı seçmesinin sebebini şöyle anlatmıştır:""Atatürkün Çankaya"yı seçmesindeki etken,birkaç büyük karakavak ve söğüt ağaçlarının burada bulunmasıydı.Onların rüzgarlı günlerindeki hışırtısından daima zevk duyardı."

http://www.biyologlar.com/ekosistemler-ve-biyolojik-cesitlilik

ODTÜ, Kıbrıs’a güneş santrali kuruyor

ODTÜ, Kıbrıs’a güneş santrali kuruyor

Orta Doğu Teknik Üniversitesi Kuzey Kıbrıs Kampüsü’de 1 Megawatlık foto-voltail güneş enerji santrali kuruluyor.Gündem Kıbrıs’ta yer alan habere göre Ertek ve Solar Power Konsorsiyumunun üstlendiği güneş enerji santralinin kurulumunun Şubat ayı sonunda tamamlanması hedefleniyor. KIB-TEK’in onayının ardından üretime başlayacak olan santral, iki yıl boyunca yüklenici firma tarafından işletilecek.Bir yıl boyunca yapılan ölçümler ve modellemeye dayalı hesaplamalar, kampüs dahilindeki güneş enerji potansiyelinin, dünyada kurulu güneş enerji santrallerinin ortalama veriminin iki katına yakın olduğunu gösteriyor. Konuyla ilgili olarak ODTÜ Kuzey Kıbrıs Kampüsü Rektörü Prof. Dr. Turgut Tümer, ODTÜ Kuzey Kıbrıs Kampüsü’nün kuruluşundan buyana enerji ve çevre konularını araştırmada öncelik verdiklerini belirterek, kendi öz kaynakları ile yürüttükleri bir proje ile bölgedeki rüzgar ve güneş potansiyellerini belirlediklerini söyledi.Tümer, ülkede büyük bir güneş enerji potansiyeli bulunduğuna dikkati çekerek, bu avantajlı durumu değerlendirmek üzere güneş santrali oluşturma kararı aldıklarını anlattı. Santralın sadece bir üretim tesisi değil bir araştırma merkezi ve birçok projenin modeli olarak görülmesi gereğine de işaret eden Tümer, amaçlarının sadece tüketimi karşılamak değil, santrali güneş enerjisi konusunda ilgi odağı haline getirmek ve bilgi üretmek olduğunu vurguladı.ODTÜ Kuzey Kıbrıs Kampüsü Elektrik Elektronik Mühendisliği Öğretim Üyesi Yardımcı Doçent Dr. Murat Fahrioğlu da projenin teknik detayları hakkında bilgiler verdi.Fahrioğlu, yaptıkları ölçümlere göre Güney İspanya haricinde Avrupa’nın en iyi güneşinin Kıbrıs’a düştüğüne dikkati çekerek, ülkemizde bu konuda yapılan çalışmaları anlattı.(Gündem Kıbrıs)https://yesilgazete.org

http://www.biyologlar.com/odtu-kibrisa-gunes-santrali-kuruyor

Transgenik ürünler (GDO) ve potansiyel etkileri

Gen aktarımlı ürünlerin, üretim ve kullanımının yaygınlaşmasının, getirileriyle birlikte götürülerinin de olduğu göz önünde bulundurularak halkı doğru bilgilendirmek gerekir. Türkiye’nin transgenik ürünler konusunda kendi sistemli alt yapısını (laboratuar, teknik eleman, personel) geliştirmesi, teknolojisini kendi üretmesi ve küresel sermayenin ülke tarımında bağımlılığa yol açacak zinciri kıracak bir politika izlemesi zorunludur. Tüzün Arık Bıyıklı Transgenik ürünler (GDO) ve potansiyel etkileri DNA teknolojisindeki gelişmeler baş döndürücü hızda ilerlemektedir. Bu teknoloji ile ilgili bir haberin yer almadığı gün sayısı yok gibidir. Bilim insanları DNA teknolojisinin gücünün farkına varır varmaz, potansiyel tehlikeleri konusunda endişe duymaya başlamışlardır. Günümüzde olası tehlikelerle ilgili toplumsal endişe, tarımda kullanılan genetik olarak değiştirilmiş (GD) organizmalar üzerine yoğunlaşmıştır. Yaygın deyimle, bir “GD (veya GM) organizma” doğal olmayan yollardan bir ya da daha fazla geni kazanan canlıdır. Biyoteknolojik yöntemlerle, canlıların sahip olduğu gen dizilimleri biçimlendirilerek (modifiye edilerek) mevcut özelliklerinin değiştirilmesi veya yeni özelliklerin kazandırılması sağlanabilir. Bu tip canlılara transgenik canlılar da denir. GMO (Genetik olarak modifiye edilmiş organizma), GDO (Genetik yapısı değiştirilmiş organizma) ya da transgenik canlı, birbiri yerine sıkça kullanılan terimlerdir. DNA teknolojisinin pratik uygulamaları oldukça geniştir. Bu teknoloji tıp ve eczacılık endüstrisine yeniden şekil vermiş olup; adli, çevresel ve tarımsal uygulamaları da mevcuttur. Bir süreden beri de, tarımsal üretimi artırmak amacıyla bilim insanları DNA teknolojisini kullanmaktadırlar. Tarımsal alanda çalışan bilim insanları geç olgunlaşma, verim artırma, geç bozulma ve hastalıklara karşı direnç gösterme gibi istenen özellikleri kodlayan genlere sahip olan bir takım transgenik ürünler elde etmişlerdir. Bitkileri genetik olarak değiştirmek, pek çok hayvana göre daha kolaydır. Bitkinin tek bir doku hücresi, kültürde gelişerek olgun bir bitki oluşturabilir. Bu yüzden, genetik biçimlendirmeler, tek bir hücre üzerinde yapılabilir ve bu hücre, yeni özelliklere sahip bir canlının elde edilmesinde kullanılabilir (1). Yapay yollarla genetik olarak değiştirilmiş ilk transgenik ürün 1960’lı yılların başında üretilmiş, ilk ciddi üretim 1967 yılında patates üretimi ile başlamıştır. Bu çalışmalar 1979’da süt ineklerine enjekte edilen sentetik büyüme hormonu, 1980’de ABD, Almanya ve Belçika’daki araştırmacıların patojenik bir bakteriyi kullanarak, transgenik bitkilerin üretimi için yeni metotlar bularak, domatesin uzun sürede olgunlaşmasını sağlayan çalışmalar ile devam etmiştir. 1983-1989 yılları arasındaki araştırmalar, bitki ve hayvanların genetik transformasyonuna izin veren daha gelişmiş DNA tekniklerinin ilerlemesini içermiştir. 1990’lı yıllarda genetik mühendisliği yolu ile ilk olarak halkın tüketimine uygun peynir üretilmiş fakat bu üretim fazla dikkat fazla çekmemiştir. Araştırmalar ve uygulamalar; 1993 yılında domuzlardaki yem tüketimini azaltarak et verimini arttırmak ve 1994 yılında yeni bir domates çeşidi (FlavrSavr domatesi) geliştirilmesi şeklinde günümüze ulaşmıştır (2). Yakın zamanda transgenik pirinç bitkisi geliştirilmiştir. “Altın pirinç” adı verilen bu bitki, vücudumuzda A vitamini yapımında kullandığımız beta-karoteni içermektedir. Bu vitamini yapabilme yeteneğini veren genler, nergis ve bir bakteriden gelmektedir. Geçtiğimiz birkaç yıl içerisinde, İsrailli bilim insanları tarafından üretilen içi limon ve gül aroması tadında dışı ise domatese benzeyen genetik harika olarak nitelendirilen bir çeşit domates üretilmiştir. 1960-1970’li yıllarda tarımda “Yeşil Devrim” adı verilen bir değişim başlatılmıştır. Bu amaçla, değişimde sadece verim artışı hedeflenmiş, sentetik kimyasal tarım ilaçları ve mineral gübrelerin kullanımı artmıştır. Bu durumun yarattığı olumsuz etkiler günümüzde GDO’nun bir kurtarıcı olarak görülmesine neden olmuştur. Bunun yanı sıra, artan dünya nüfusuna paralel olarak artan besin ihtiyacını karşılamak için genetik olarak değiştirilmiş bitkilerin tarımı (tarımsal biyoteknoloji) 21.yüzyıla damgasını vurmuştur. Besin üretiminin artırılması insancıl bir konu olarak görülmektedir. Arazi ve su, besin üretimi için sınırlayıcı kaynaklar olduğundan, en iyi seçenek mevcut araziler üzerindeki ürünü artırmaktır düşüncesinden yola çıkan bir grup bilim insanı, modern tarımsal biyoteknoloji ile üretilen GDO’lu ürünleri savunurken, bir grup bilim insanı ise, bu ürünlerin potansiyel zararlarından söz etmektedir (3, 4). GD ürünlerin getirdiği yararları ve riskleri, madalyonun iki yüzüne benzetebiliriz. GDO’ların yararları toplumda, medyada ve hazırlanan raporlarda geniş bir yelpazede ve süslü bir şekilde sunulurken, potansiyel riskleri göz ardı edilecek kadar azmış gibi, dar bir çerçevede, anlatılmaktadır. GD (GM) ürünlerin yararları arasında şunlar sıralanmaktadır: - Besin miktarının artırılması ve içeriğinin zenginleştirilmesi. - Besinlerin alerjik özelliklerinin azaltılması. - Besinlerin aşılama amacıyla kullanılması. - Besinlerin tedavi amacıyla kullanımı (3). - Hastalık ve zararlılara karşı tarım ilacı (pestisit ve herbisit) kullanımını azaltmak suretiyle tarımsal girdileri düşürmek ve birim alandan daha fazla gelir elde etmek. - Abiyotik stres şartlarına (kuraklık, soğuk, tuzluluk) dayanabilen bitkiler elde etmek suretiyle verimi artırmak. - Endüstri bitkilerinin kullanıldığı yan sanayinin ihtiyacına yönelik yeni bitki çeşitlerini geliştirmek (5). - Besinlerin raf ömrünü uzatmak, bitkisel yağ kalitesini arttırmak. GDO kullanımının riskleri Gen aktarımlı bitkilerin (GDO’ların) kullanımının sağlayabileceği yukarıda belirtilen pratik yararların yanında, bu ürünlerin ekosistemde ve gelişmekte olan ülkelerin sosyo-ekonomik yapılarında çeşitli sorunlara yol açabileceği düşünülmektedir (6). Bu riskleri üç ana başlık altında toplamak mümkündür: - Sosyoekonomik etkileri. - İnsan ve hayvan sağlığı konusundaki riskleri. - Tarımsal ve doğal biyoçeşitlilik konusundaki riskler; kısacası ekolojik etkiler. GDO kullanımının sosyoekonomik etkilerini şu alt başlıklar altında belirtmek yararlı olacaktır: - Geleneksel tarım sistemlerinin yerine dışa bağlı teknolojilerin gelişmesi. - Tarımsal biyoteknolojinin neden olabileceği ekonomik kayıplar. - Genetik kararsızlık ve beraberinde getirdiği ürün kaybı. - Entelektüel mülkiyet hakları ve tohum ruhsatıyla ilgili kısıtlayıcı uygulamalar; gıda üretimi ile dağıtımının bir tekelin kontrolüne geçmesi sonucunda tarımsal ürün yetiştiricisinin ve tüketicilerin olumsuz etkilenmesi. GDO’nun insan ve hayvan sağlığı konusundaki potansiyel riskleri ise: - Yatay gen transferinin yeni patojen (hastalık yapan) bakteriler ve virüsler yaratma potansiyeli. - Transgenik DNA’nın transgenik besinlerin tüketiminden sonra hücrelere bulaşma, hastalık virüslerini yenileme ve hücre genomuna yerleşme tehlikesi. - Türler arasındaki patojenlerin yatay gen transferi yoluyla güç kazanması. - Transgen ürünlerin neden olduğu toksik ya da alerjik etkiler. - Antibiyotik dirençli genlerin yatay gen transferi yoluyla bağırsak bakterilerine ve patojenlere yayılması. - Pestisit dirençli transgenik ürünler ile birlikte toksin pestisitlerin kullanımının, tarım işçilerinde pestisit kaynaklı hastalıklara ve içme suyu kaynaklarının kirlenmesine yol açacak biçimde artması şeklinde sıralanabilir. Tarımsal ve doğal biyoçeşitlilik konusunda GDO kullanımının sakıncalarını şu şekilde belirtebiliriz: - Transgenlerin çapraz tozlaşma yoluyla yabani türler arasında yayılması. - Herbisit dirençli transgenik bitkilerle birlikte kullanılan etkili herbisitlerin (yabani otları yok etmek için kullanılan kimyasal madde) kontrolsüz uygulamalarının yerli tarımsal ve doğal çeşitliliğe zarar vermesi. - Belli başlı zararlılarda biyopestisit direnci evriminin hızlanması. - Genetik kirlenme riski. - Hedef olmayan türler ile yararlı böcek türlerinin zarar görmesi (7). Tüm bu olası riskler genel olarak değerlendirildiğinde, bir ülkenin ekosistem, tür, gen ve ekolojik olaylar çeşitliliği, yani biyolojik zenginliği tehdit altına girebilir. Sistem, tüm dinamik özelliğini, canlılığını ve güzelliğini kaybedebilir. Belirli bir yaşam ortamında yer alan canlı türlerinin çoğu birlikte evrimleşmişlerdir. Evrimsel ilişkiye bağlı olarak uzun zaman içerisinde ortaya çıkan canlı çeşitliliği yok olursa ya da homojenize olursa (tek tipleşirse) besin zinciri kopar, ekolojik ağ dağılır ve ekosistem görevini yapamaz. Bir bölgenin ekolojik sağlığı, o bölgedeki canlı türü çeşitliliği arasındaki dengeye bağlıdır. Tedbirler Sonuç olarak, gen aktarımlı ürünlerin, üretim ve kullanımının yaygınlaşmasının, getirileriyle birlikte götürülerinin de olduğu göz önünde bulundurularak halkı doğru bilgilendirmek gerekmektedir. Bu nedenle, doğal çevrenin korunması ve ulusal gen kaynaklarının ülke çıkarları için kullanımının mümkün olabilmesi için, bu ürünlerin yönetimini sağlayabilecek etkili bir biyogüvenlik sisteminin uygulanması kaçınılmaz görünmektedir. Bu çerçevede, ulusal gen kaynaklarının küreselleşme baskısına karşı korunabilmesi ve modern biyoteknoloji uygulamalarıyla en iyi şekilde değerlendirilebilmesi için yapılması gerekenler şu noktalarda toplanabilir: - GDO’lu ürünlerin kontrolsüz alanlarda ekimine izin verilmemesi. - Gümrüklerde ve iç piyasada etkin bir denetim sisteminin oluşturulması. - GDO’ların üretim ve kullanımına bağlı olarak ortaya çıkabilecek ekolojik ve sosyoekonomik risklerin en aza indirgenmesi. - Türkiye’nin transgenik ürünler konusunda kendi sistemli alt yapısını (laboratuar, teknik eleman, personel) geliştirmesi, teknolojisini kendi üretmesi ve küresel sermayenin ülke tarımında bağımlılığa yol açacak zinciri kıracak bir politika izlemesi gerekmektedir. KAYNAKLAR 1) Campbell and Reece, “Biyoloji”, Çev. Prof. Dr. Ertunç Gündüz, Prof. Dr. Ali Demirsoy ve Prof. Dr. İsmail Türkan, Palme Yayıncılık. 2008. 2) R. Tunalıoğlu, 2004, “Genetiği Değiştirilmiş Organizmalar”, T.E.A.E Bakış, Sayı: 7 Nüsha: 2. 3) İ. Kulaç, Y. Ağırdil ve M. Yakın; 2006, “Sofralarımızdaki Tatlı Dert, Genetiği Değiştirilmiş Organizmalar ve Halk Sağlığına Etkileri”, Türk Biyokimya Dergisi 31(3);151-155. 4) T. Atsan ve T. E. Kaya, 2008, “Genetiği Değiştirilmiş Organizmaların Tarım ve İnsan Sağlığı Üzerine Etkileri”, UÜ Ziraat Fakültesi Dergisi 22 (2), 1-6. 5) İ. Tiryaki ve Z. Acar, 2005, “Genetik Yapısı Değiştirilmiş Bitkiler: Dünü, Bugünü ve Geleceği”, OMÜ Zir. Fak. Dergisi, 20 (2):121-126. 6) O. Özdemir, 2003, “Genetik Olarak Değiştirilmiş Organizmaların (GDO’ların) Etkilerinin Küreselleşme Çerçevesinde Ele Alınması”, DOA Dergisi Sayı:9;113-133. 7) Ho Mae-Wan, “Genetik Mühendisliği”, Çev. Emral Çakmak, Türkiye İş Bankası Kültür Yayınları, 1999. Alıntı: bilimvegelecek.com.tr

http://www.biyologlar.com/transgenik-urunler-gdo-ve-potansiyel-etkileri

Kültür Suyu İncelenmesi

Kültür Suyu Hazırlanması: Gerekli olan maddeler: Havuz suyu, kavanoz, kurumuş yaprak parçacıkları, bitki tohumları, vitamin hapları. Ön Hazırlık: Silindir biçiminde bir cam kavanozu, iç tabanından itibaren 1/3 yüksekliğe kadar kuru ot, saman veya bahçede topladığımız kuru ağaç yaprakları ile doldurun. Bunları bastırmak için üzerine temiz bir taş koyun. Önceden havuz, çeşme yalağı, dere kenarı, su birikintisi kenarlarından küçük şişelere topladığınız örnekleri bu kaba dökün. Tohumları yada vitamin haplarını ezerek kaba ekleyin. Kültürlerimizin Verimini Artıracak Şartlar: Kültürlerimizi hiçbir zaman güneş ışınlarına direk göstermemeliyiz. Güneş ışınları kültürlerimizi fazla ısıtır, ayrıca ultraviyole ışınları ile öldürücü etki yapar. Bu nedenle kültürler doğrudan güneş ışını almayan bir pencerenin orta aydınlıkta olan bir yanına konulmalıdır. Kültürlerin yanında eter, kloroform, amonyak gibi kolay buharlaşan sıvılar, yoğun asitler ve toz halindeki kimyasal maddelerle çalışılmamalıdır. Bir kültüre batırdığımız bageti iyice yıkayıp temizlemeden diğerine batırmamalıyız. Kültürlerin çevresini ve onlarla ilgili bütün malzemeyi çok temiz tutmalıyız. Kültür Suyunun İncelenmesi: Hazırlanan kültür yaklaşık bir haftalık süreyle gelişim periyodunda bırakılmalıdır. Daha sonra bu kültürden damlalıkla alınan bir damlayı temiz bir lam üzerine 45º açı yapacak şekilde koyup dikkatle kapatarak mikroskopta inceleme yapılabilir. Kültür suyu içindeki canlılar çok hızlı hareket ediyorlarsa ve incelemek güç oluyorsa hareketlerinin yavaşlatılması gerekir. Bunun için de bir filtre kağıdı vasıtasıyla lam ile lamel arasından bir miktar su çekilebilir yada lam lamel arasına bir miktar pamuk lifleri konulabilir. Kültür suyunda genel olarak Tek Hücreli Canlılardan Kamçılılar, silliler, amip, algler vb. canlılar görülebilir, bunun yanında mikroskobik çok hücreli canlılarda gözlemlenebilir.

http://www.biyologlar.com/kultur-suyu-incelenmesi

Restriksiyon enzimi

Restriksiyon enzimi veya restriksiyon endonükleazı çift zincirli DNA moleküllerindeki belli nükleotit dizilerini tanıyan ve her iki zinciri birlikte kesen bir enzim türüdür.[1][2][3] Bu özel enzimler, bakteri ve arkelerde bulunurlar ve virüslere karşı bir savunma mekanizmasına aittirler. [4][5] Konak bakteri hücresinde restriksiyon enzimleri seçici olarak yabancı DNA'ları keserler; konak DNA'yı restriksiyon enziminin etkinliğinden korunmak için bir değiştirme (modifikasyon) enzimi (bir metilaz) tarafından metillenir. Bu iki süreç toplu olarak restriksiyon modifikasyon sistemi olarak adlandırılır.[6] Bir restriksiyon enzimi DNA'yı kesmek için DNA çift sarmalının her şeker-fosfat omurgasından (yani her zincirden) birer kere olmak üzere iki kesme yapar. Keşifleri İlk restriksiyon enzimi HindIII'ün saflaştırılmasını[7] takiben pekçok başka restriksiyon enzimi keşfedilmiş ve karakterize edilmiştir.[8] 1978'de Daniel Nathans, Werner Arber ve Hamilton Smith restriksiyon enzimini keşiflerinden dolayı Nobel Tıp Ödülünü almışlardır. [9] Bu keşifleri rekombinant DNA teknolojisinin gelişimine öncülük etmiş, bunun sayesinde örneğin insülinin büyük miktarlarda üretimi için E. coli bakterisi kullanılabilmiştir.[10] 3000 üzerinde restriksiyon enzimi detaylı olarak çalışılmıştır, bunlardan 600'den fazlası ticari olarak elde edilebilir.[11] Bu enzimler laboratuvarlarda DNA modifikasyon ve maniplasyonlarında rutin olarak kullanılmaktadırlar.[12][13][14] Tanıma bölgesi Restriksiyon enzimleri spesifik bir nükleotit dizisi tanır [2] ve DNA'da çift zincirli bir kesik oluşturur. Tanıma dizilerinin uzunluğu 4 ila 8 nükleotit olup, çoğu palindromiktir, yani DNA'daki azotlu bazların dizisi ileri ve geri aynı okunur.[15] Teorik olarak DNA'da iki çeşit palindromik dizi olabilir. Yansımalı palindrom normal metinlerdeki gibi olur, aynı DNA dizisi üzerindeki dizinin normal ve tersten okunuşu aynı olur (örneğin GTAATG gibi). Evirtik (İng. inverted) tekrarlı palindrom da iki yönden aynı okunur ama ileri ve geri diziler komplemanter dizilerde yer alır. Örneğin GTATAC dizisinde olduğu gibi, bu dizinin komplemanter dizisi tersten okununca CATATG elde edilir.[16] Evirtik tekrarlar restriksiyon enzimlerinde daha yaygındır ve yansımalı palindromik dizilerden daha önemli biyolojik role sahiptir. EcoRI retriksiyon enziminin yaptığı kesme "yapışkan" uçlar üretir, EcoRI restriction enzyme recognition site.svg buna karşın SmaI retriksiyon enziminin yaptığı kesme "küt" uçlar üretir SmaI restriction enzyme recognition site.svg Her restriksiyon enzimi için DNA'daki tanıma bölgeleri farklıdır, kesim sonucu meydana gelen yapışkan ucun iplik uzantısının uzunluğu, dizisi ve zincir yönü (5' veya 3' yönünde) farklılıklar üretir. [17] Aynı diziyi tanıyan farklı tanıma enzimleri neoşimerler olarak bilinir. Bunlar çoğunlukla diziyi iki farklı yerden keserler; eğer hem tanıma dizileri hem de kesme yerleri aynıysa bu enzimler izoşizomer olarak adalandırılır. Bakteriler ürettikleri restriksiyon enzimlerinin kendi DNA'larını kesmemesi için, DNA metilazasyonu yoluyla nükleotitlerini değiştirerek (modifiye ederek) korurlar.[4] Tipler Restriksiyon endonükleazlar üç[18][19] veya dört[20][21][22] genel grupta kategorize edilirler (Tip I, II ve III), bileşenleri, enzim kofaktör gereksinimleri, hedef dizilerinin özellikleri ve DNA kesim yerinin hedef diziyle ilişkisine bağlı olarak. Tip I İlk keşfedilen restriksiyon enzimleri Tip I restriksiyon enzimleri olmuştur ve bunlar E. colinin iki farklı suşuna (K-12 ve B) özgüdürler.[23] Bu enzimler tanıma bölgelerinden en azından 1000 baz çifti uzaklıktaki farklı bölgeleri keserler. Tanıma bölgesi asimetriktir ve 6-8 nükleotitlik bir boşlukla ayrılan iki kısımdan oluşur, biri 3-4 nükleotit içeren ve diğeri 4-5 nükleotit içeren. S-Adenozil metyonin (AdoMet), adenozin trifosfat (ATP) ve magnezyum iyonları (Mg2+) gibi birkaç enzim kofaktörü bu enzimlerin etkinliği için gereklidir. Tip I restriksiyon enzimleri, HsdR, HsdM ve HsdS olarak adlandırılan üç altbirime sahiptirler; HsdR kesme için; HsdM konağın DNAsına metil grupları eklemek için; ve HsdS metiltransferaz etkinliğine ek olarak, tanıma bölgesinin kesim özgüllüğü için gereklidirler.[18][23] Tip II Tip II enzimler tip I enzimlerden birkaç yönden farklıdır. Tek tip proteinden oluşmuş dimer yapıya sahiptirler; tanıma bölgeleri genelde bölünmüş değildir, palindromiktir ve 4-8 nükleotit uzunluktadır; DNA'yı tanıdıkları ve kestikleri yer aynıdır; etkinlikleri için ATP veya AdoMet'e gerek göstermezler, kofaktör olarak genelde sadece Mg2+ gereksinimleri vardır. 1990'lar ve 2000'lerde bu enzim sınıfının tüm özelliklerin taşımayan yeni enzimler keşfedildiği için bu büyük enzim ailesini alt sınıflara ayıran yeni bir adlandırma sistemi geliştirildi.[15] Bu altgruplar bir sonek harf ile belirtilir. Tip IIB restriksiyon enzimleri (örneğin BcgI and BplI) mültimeriktir, yani birden çok altbirimden oluşur.[15] DNA'yı tanıma dizisinin iki tarafından kesip çıkarırlar. Kofaktör olarak hem AdoMet hem de Mg2+ gereksinirler. Tip IIE restriksiyon endonükleazları (örneğin NaeI) tanıma dizilerinden iki kopyası ile etkileştikten sonra DNA'yı keserler.[15] Bir tanıma dizisi kesme hedefi olarak etkir, öbürü ie enzimin kesme verimini artıran, yani hızlandıran bir alosterik unsur olarak etkir. Tip IIF enzimler (örneğin NgoMIV) Tip IIE enzimlere benzer, onlar da tanıma dizilerinin iki kopyası ile etkileşir, ama ikisi birden keser.[15] Tip IIG enzimler (Eco57I gibi) tek bir altbirime sahiptir, klasik Tip II restriksiyon enzimleri gibi, ama etkin olmak için AdoMet kofaktörüne gerek duyarlar.[15] Tip IIM restriksiyon endonükleazları, DpnI gibi, metillenmiş DNA'yı tanıyıp kesebilirler.[15] Tip IIS restriksiyon enzimleri (FokI gibi) palindromik olmayan asimetrik tanıma dizilerinden beli bir uzaklıkta keserler.[15] Bu enzimler dimer olarak çalışabilir. Benzer olarak, Tip IIT restriksiyon enzimleri (örneğin Bpu10I ve BslI) iki farklı altbirimden oluşur. Bazıları palindromik dizileri tanır, bazılarının tanıma dizileri ise asimetriktir.[15] Tip III Tip III restriksiyon enzimleri (örneğin EcoP15) birbirine dönük olan iki ayrı, palindromik olmayan dizi tanırlar. DNA'yı tanıma yerinden 20-30 baz uzakta keserler.[25] Bu enzimler birden çok altbirime sahiptir; DNA metilasyonu ve restriksiyonu için, sırasıyla, AdoMet ve ATP kofaktörlerine gerek duyarlar.[26] Tip IV Tip IV restriksiyon enzimleri metillenmiş DNA'yı keser. Bunlar iki farklı altbirimden oluşur. DNA kesimi için Mg2 ve GTP kofaktör olarak gereklidir. Tanıma yeri iki parçalıdır. Metillenmiş bazlar arasında birden fazla kesim olur.[21] Yapay Restriksiyon Enzimleri Yapay restriksiyon enzimleri üretmek için doğal ve tasarımlı bir DNA bağlayıcı bölge ile bir nükleaz bölgesi (genelde FokI restriksiyon enziminin kesme bölgesi) birleştirilir.[27] Bu tür yapay restriksiyon enzimleri arzu edilen DNA dizilerini tanıyabilecek şekilde tasarlanabilir, ayrıca tanıma bölgelerinin uzunluğu 36 baz çifti uzunluğa varabilir.[28] Çinko parmak nükleazlar yapay restriksiyon enzimlerinin en yaygın kulanılanlarıdır, genelde genetik mühendislik[29][30][31][32] ve standart gen klonlama uygulamalarında da[33] Other artificial restriction enzymes are based on the DNA binding domain of TAL effectors.[34][35] kullanılırlar. 1970'lerde keşfedilmelerinden beri çeşitli bakterilerde yüzlerce restriksiyon enzimi tespit edilmiştir. Her enzim elde edildiği bakteriye göre adlandırılır, bakterinin cinsi, türü ve suşuna dayalı bir adlandırma sistemine göre.[36][37] Örneğin EcoRI restriksiyon enziminin adı yandaki kutuda açıklandığı şekilde türetilmiştir. Uygulamalar Saflaştırılmış restriksiyon enzimleri çeşitli bilimsel uygulamalardaki DNA manipülasyonlarında kullanılır. restriksiyon enzimleri gen klonlaması ve protein ifadesi deneylerinde, Plazmit vektörlerlerin içine genler sokmak için kullanilirlar. Gen klonlama deneylerinde kullanılan plazmitlerde genelde kısa bir "çoklu bağlayıcı" dizi (İng. polylinker; çoklu klonlama yeri) bulunur. Gen parçalarını plazmit vektörün içine sokarken bu diziler kolaylık sağlar; genin içinde doğal olarak bulunan restriksiyon yerleri DNA'yı kesmek için kullanılacak endonükleaz seçimini etkiler, çünkü arzu edilen DNA'ya zarar vermeden onun uçlarının kesilmesi gerekmektedir. Bir gen parçasının bir vektörün içine klonlamak için hem plazmit DNA'sı hem de gen parçası aynı restriksiyon enzimi ile kesilir, sonra bunlar DNA ligaz olarak adlandırılan bir enzimle birbirlerine yapıştırılır.[38][39] Restriksiyon enzimleri DNA'da bulunan tek baz değişikliklerini (tek nükleotit polimorfizmleri, veya "SNP"leri) spesifik olarak tanıyarak gen alellerini ayırdetmekte kullanılırlar.[40][41] Bunun için o alelde bulunan bir restriksiyon yerinin bir SNP tarafından değişikliğe uğraması gerekmektedir. Bu yöntemle, bir DNA numunesini dizilemeden, bir retriksiyon enzimi ile onu genotiplemek mümkün olur. Numune önce DNA parçaları oluşturacak şekilde restrilksiyon enzimi ile sindirilir, sonra farklı büyüklükteki parçalar jel elektroforezi ile ayrıştırılır. Genelde, doğru restriksiyon yerine sahip olan aleller jelde iki görünür bant meydana getirir, değişlikliğe uğramış restriksiyon yeri olan parçalar ise kesilmezler ve sadece bir bant oluştururlar. Bant sayısı kişinin genotipini gösterir. Bu işlem bir restriksiyon haritalaması örneğidir. Benzer şekilde, restriksiyon enzimleri Southern blot yöntemiyle genomik DNA'nın kesilmesinde kullanılır. Bu yöntem ile, bir kişinin genomunda bir genin kaç kopyası (veya paralogu) olduğu belirlenebilir. Bu yöntemin bir diğer uygulamasında belli bir toplulukta kaç tane gen mutasyonu (polimofizmi) olduğu belirlenebilir, buna restriksiyon parçası uzunluk polimorfizmi (İng. restriction fragment length polymorphism, RFLP) denir.[42] ^ Roberts RJ (November 1976). "Restriction endonucleases". CRC Crit. Rev. Biochem. 4 (2): 123–64. PMID 795607. ^ a b Kessler C, Manta V (August 1990). "Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3)". Gene 92 (1-2): 1–248. doi:10.1016/0378-1119(90)90486-B. PMID 2172084. ^ Pingoud A, Alves J, Geiger R (1993). "Chapter 8: Restriction Enzymes". Burrell, Michael. Enzymes of Molecular Biology. 16. Totowa, NJ: Humana Press. ss. pages 107-200. ISBN 0-89603-234-5. ^ a b Arber W, Linn S (1969). "DNA modification and restriction". Annu. Rev. Biochem. 38: 467–500. doi:10.1146/annurev.bi.38.070169.002343. PMID 4897066. ^ Krüger DH, Bickle TA (September 1983). "Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts". Microbiol. Rev. 47 (3): 345–60. PMC =pmcentrez 281580. PMID 6314109. ^ Kobayashi I (September 2001). "Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution". Nucleic Acids Res. 29 (18): 3742–56. doi:10.1093/nar/29.18.3742. PMC =pmcentrez 55917. PMID 11557807. ^ Roberts RJ (April 2005). "How restriction enzymes became the workhorses of molecular biology". Proc. Natl. Acad. Sci. U.S.A. 102 (17): 5905–8. doi:10.1073/pnas.0500923102. PMC =pmcentrez 1087929. PMID 15840723. ^ Danna K, Nathans D (December 1971). "Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae". Proc. Natl. Acad. Sci. U.S.A. 68 (12): 2913–7. doi:10.1073/pnas.68.12.2913. PMC =pmcentrez 389558. PMID 4332003. ^ "The Nobel Prize in Physiology or Medicine". The Nobel Foundation. 1978. Erişim tarihi: 2008-06-07. ^ Villa-Komaroff L, Efstratiadis A, Broome S, Lomedico P, Tizard R, Naber SP, Chick WL, Gilbert W. (August 1978). "A bacterial clone synthesizing proinsulin". Proc. Natl. Acad. Sci. U.S.A. 75 (8): 3727–31. PMC =pmcentrez 392859. PMID 358198. ^ Roberts RJ, Vincze T, Posfai J, Macelis D. (2007). "REBASE--enzymes and genes for DNA restriction and modification". Nucleic Acids Res 35 (Database issue): D269-70. doi:10.1093/nar/gkl891. PMID 17202163. ^ Primrose, Sandy B.; Old, R. W. (1994). Principles of gene manipulation: an introduction to genetic engineering. Oxford: Blackwell Scientific. ISBN 0-632-03712-1. ^ Micklos, David A.; Bloom, Mark V.; Freyer, Greg A. (1996). Laboratory DNA science: an introduction to recombinant DNA techniques and methods of genome analysis. Menlo Park, Calif: Benjamin/Cummings Pub. Co. ISBN 0-8053-3040-2. ^ Adrianne Massey; Helen Kreuzer (2001). Recombinant DNA and Biotechnology: A Guide for Students. Washington, D.C: ASM Press. ISBN 1-55581-176-0. ^ a b c d e f g h i Pingoud A, Jeltsch A (September 2001). "Structure and function of type II restriction endonucleases". Nucleic Acids Res. 29 (18): 3705–27. doi:10.1093/nar/29.18.3705. PMC =pmcentrez 55916. PMID 11557805. ^ Molecular Biology: Understanding the Genetic Revolution, by David P. Clark. Elsevier Academic Press, 2005. ISBN 0-12-175551-7. ^ Goodsell DS (2002). "The molecular perspective: restriction endonucleases". Stem Cells 20 (2): 190–1. PMID 11897876. ^ a b Bickle TA, Krüger DH (June 1993). "Biology of DNA restriction". Microbiol. Rev. 57 (2): 434–50. PMC =pmcentrez 372918. PMID 8336674. ^ Boyer HW (1971). "DNA restriction and modification mechanisms in bacteria". Annu. Rev. Microbiol. 25: 153–76. doi:10.1146/annurev.mi.25.100171.001101. PMID 4949033. ^ Yuan R (1981). "Structure and mechanism of multifunctional restriction endonucleases". Annu. Rev. Biochem. 50: 285–319. doi:10.1146/annurev.bi.50.070181.001441. PMID 6267988. ^ a b Rao DN, Sistla S (2004). "S-Adenosyl-L-methionine-dependent restriction enzymes". Crit. Rev. Biochem. Mol. Biol. 39 (1): -. doi:10.1080/10409230490440532. PMID 15121719. ^ Williams RJ (2003). "Restriction endonucleases: classification, properties, and applications". Mol. Biotechnol. 23 (3): -. PMID 12665693. ^ a b Murray NE (June 2000). "Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle)". Microbiol. Mol. Biol. Rev. 64 (2): 412–34. PMC =pmcentrez 98998. PMID 10839821. ^ PDB 1qps Gigorescu A, Morvath M, Wilkosz PA, Chandrasekhar K, Rosenberg JM (2004). "The integration of recognition and cleavage: X-ray structures of pre-transition state complex, post-reactive complex, and the DNA-free endonuclease". Alfred M. Pingoud. Restriction Endonucleases (Nucleic Acids and Molecular Biology, Volume 14). Berlin: Springer. ss. 137–178. ISBN 3-540-20502-0. ^ Dryden DT, Murray NE, Rao DN (September 2001). "Nucleoside triphosphate-dependent restriction enzymes". Nucleic Acids Res. 29 (18): 3728–41. doi:10.1093/nar/29.18.3728. PMC =pmcentrez 55918. PMID 11557806. ^ Meisel A, Bickle TA, Krüger DH, Schroeder C (January 1992). "Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage". Nature 355 (6359): 467–9. doi:10.1038/355467a0. PMID 1734285. ^ Kim YG, Cha J, Chandrasegaran S (February 1996). "Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain". Proc. Natl. Acad. Sci. U.S.A. 93 (3): 1156–60. doi:10.1073/pnas.93.3.1156. PMC =pmcentrez 40048. PMID 8577732. ^ Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (September 2010). "Genome editing with engineered zinc finger nucleases". Nat. Rev. Genet. 11 (9): 636–46. doi:10.1038/nrg2842. PMID 20717154. ^ Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (May 2009). "High-frequency modification of plant genes using engineered zinc-finger nucleases". Nature 459 (7245): 442–5. doi:10.1038/nature07845. PMC =pmcentrez 2743854. PMID 19404258. ^ Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (May 2009). "Precise genome modification in the crop species Zea mays using zinc-finger nucleases". Nature 459 (7245): 437–41. doi:10.1038/nature07992. PMID 19404259. ^ Ekker SC (2008). "Zinc finger-based knockout punches for zebrafish genes". Zebrafish 5 (2): 121–3. doi:10.1089/zeb.2008.9988. PMC =pmcentrez 2849655. PMID 18554175. ^ Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (July 2009). "Knockout rats via embryo microinjection of zinc-finger nucleases". Science 325 (5939): 433. doi:10.1126/science.1172447. PMC =pmcentrez 2831805. PMID 19628861. ^ Tovkach A, Zeevi V, Tzfira T (October 2010). "Expression, purification and characterization of cloning-grade zinc finger nuclease". J Biotechnol. doi:10.1016/j.jbiotec.2010.10.071. PMID 21029755. ^ Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (October 2010). "Targeting DNA double-strand breaks with TAL effector nucleases". Genetics 186 (2): 757–61. doi:10.1534/genetics.110.120717. PMC =pmcentrez 2942870. PMID 20660643. ^ Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (Au