Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 202 kayıt bulundu.

ARILAR YOK OLMASIN

TEMA Vakfı'nın ''Türkiye Arıcılığındaki Tehlikeler'' raporunda, arılarda 'yanlış arıcılık uygulamaları' ve iklim koşulları nedeniyle yüzde son iki kışta 50 azalma olduğu belirtildi. Raporda, Türkiye'deki 4,5 milyon bal arısı kolonisinin, koloni başına 17 kilogram bal verdiği ve yılda 50-60 bin ton bal üretildiği kaydedildi. Türkiye'deki 20 koloniden sadece bir tanesinin ana arısının değiştirilebildiği belirtilen raporda, şu görüşlere yer verildi: ''Bu ana arıların da damızlık vasıfları ve kaliteleri kontrol edilemedi. Türkiye'de bal kalitesi denetimi yok denecek kadar yetersiz ve göstermelik. Ticari früktozlu ve sakarozlu ballar yaygın olarak pazarlanıyor. Yanlış arıcılık uygulamaları ve olumsuz iklim koşulları nedeniyle son iki kışta yüzde 50'yi geçen koloni kayıpları oldu, bal üretimi düştü. İhracat durdu, ithalat başladı.'' ''BİR DAMLA BAL İÇİN 120 BİN ÇİÇEĞE ZİYARET'' Raporda, bal arılarının nektar ve polen toplamak için çiçekleri ziyaret etmesinin, onların döllenmesini ve ürünün oluşmasını da sağladığı belirtilerek, arıların bir damla bal üretimi için yaklaşık 120 bin çiçeği ziyaret ettikleri kaydedildi. Bitkilerin gelişmesinde, tarımsal ürünlerin oluşmasında ve hayvancılığın ana girdisi yem bitkilerinin veriminde, arıların, su ve gübre kadar önemli olduğu ifade edilen raporda, ''Özellikle zararlı böcek mücadelesi yapılan tarım alanlarında diğer dölleyici böceklerin ölmesi nedeniyle döllenmede mutlaka bal arısına ihtiyaç duyulduğu'' vurgulandı. Raporda, Türkiye'nin bir kıta gibi yedi ayrı iklim özelliği gösterdiği, 12 bin bitkisinin büyük bölümünün nektarlı ve polenli olduğu hatırlatılarak, bozuk mera ve orman alanlarının rehabilite edilmesine paralel olarak ballı bitkilerin miktar ve çeşit olarak daha da artacağı vurgulandı. ''AMERİKAN YAVRU ÇÜRÜKLÜĞÜ'' Türkiye'de eğitim, damızlık, arı sağlığı ve bal kalitesinin kontrolü gibi önemli sorunlar bulunduğu ve arıcılığın usta çırak ilişkisiyle öğrenildiği ifade edilen raporda, modern arıcılık tekniklerinin hala üretici tabanına benimsetilemediği savunuldu. Her yıl Türkiye'de damızlık değeri yüksek en az 2,2 milyon ana arı kullanılması gerektiği ve TÜBİTAK'ın yürüttüğü bir araştırma sonucunda Bitlis'te yüzde 42, Diyarbakır'da yüzde 49, Hatay'da yüzde 52 oranında ''Amerikan yavru çürüklüğü'' tespit edildiği bildirilen raporda, şu görüşlere yer verildi: ''Avrupa Birliği mevzuatına göre, 'Amerikan Yavru Çürüklüğü' görülen kolonilerin yakılması gerekir. AB'ye uyum kuralları gereği Bakanlar Kurulu 'Bu mevzuata uyacağım' diye imza atmıştır, ancak Türkiye'de böyle bir uygulama başlatılamamıştır. Üretimde neredeyse sağlıklı koloni yokken Tarım Bakanlığı'nda arı hastalıklarını teşhis edip doğru tedaviyi önerecek teçhizli ve yetkili bir arı hastalıkları laboratuvarı bulunmamaktadır. Yaygın olan hastalıklara karşın ülke genelinde uyulması gereken tedbirlerle ilgili bir politika da geliştirilememiştir. Üreticiler yoğun arı hastalıkları ile bulaşık kolonileri tedavi etmek amacı ile pek çok kimyasallar kullanmaktadırlar.'' ''PETEKLER, PETROL ÜRÜNÜ NAFTALİN VE PARAFİNDEN'' Türkiye'de naftalin kalıntısız ve parafin katkısız temel petek bulunmadığı bildirilen raporda, bu peteklerin balla birlikte tüketildiği iddia edildi. Naftalin ve parafinin petrol ürünü ve kanserojen olduğu, petekli bal tüketim alışkanlığına sahip tüketicilere temel petekler olmadan petekli balları nasıl yiyeceklerinin anlatılması gerektiği vurgulandı. Üreticilerin ise son yıllarda sakarozun yerine daha ucuz olduğu için glikoza ve früktoza yöneldikleri belirtilen raporda, şunlara yer verildi: ''Bu sahtecilik daha da yaygınlaşmış, hiç arı görmemiş ticari şekerler doğrudan bal diye satılır olmuştur. Ticari glikoz ve früktozun piyasa değeri 1 YTL civarındadır. Bu sanayi ürünleri doğrudan veya doğal balla karıştırılarak en az 7-8 YTL ye bal diye satılmaktadır. Bu durum şekersiz bal üreten ve pazarlayanların aleyhine haksız bir rekabet yaratmaktadır. Nitekim binlerce doğal bal üreticisi balını maliyetinin altında satmak mecburiyetinde kaldıkları için üretimden vazgeçmişler ve arıcılığı bırakmışlardır. Diğer taraftan bal diye ticari früktoza kilogram başına en az 7-8 YTL ödeyen tüketici kandırılmaktadır.'' ARI ÖLÜMLERİ YÜZDE 50-60'LARA ULAŞTI Türkiye'de son iki yıldır kitlesel arı ölümleri görüldüğü, ilk olarak 2007'de Hatay'da 32 bin koloninin öldüğü anımsatılan raporda, Adıyaman, Ardahan ve Ankara'da yüzde 50- 60'lara varan arı ölümlerinin gerçekleştiği bildirildi. Son yıllarda ülke genelinde yaşanan kuraklığın arıcılığı olumsuz etkilediği, 2006 ilkbaharında yaşanan soğukların arı florasını dondurduğu ve kolonilerin de sonbaharda genç nesil yetiştiremedikleri aktarılan raporda, damızlık arıların geniş ölçekli kullanılmaması, kullanılanların vasıfsız olmaları, arı hastalıklarının yaygınlığı ve arıların ''Genetiği Değiştirilmiş Organizma'' (GDO) içeren früktozla beslenmeleri gibi nedenlerden hassaslaşan ve zayıflayan kolonilerinin yaşanan olumsuz iklim koşullarının da tetiklemesi ile öldükleri kaydedildi. Raporda, şöyle denildi: ''Yıllık bal üretimi 60-65 bin tonken, arı ölümlerine paralel olarak iklimsel nedenlerle flora yetersizliği de etkili olmuş, 2007 üretim sezonunda bal üretimi yarı yarıya azalmıştır. Tarım ve Köyişleri Bakanlığı 8 bin ton bal ithaline izin vermiş, arı ve bal cenneti Türkiye, bal ithal eden ülke konumuna düşmüştür. Arılara pancar şekeri yedirilerek üretilen balların bir laboratuvar analiz yöntemi henüz Türkiye'de bilinmemektedir. Pancar şekeri ile bal üretimi Türkiye'de olduğu gibi başka ülkelerde de yaygındır. İthal ballar vitrinlerdedir. Nasıl üretildikleri bilinmeyen ancak dünya piyasasında yaklaşık 2 dolar olan bu balları tüketicimiz en az 10 dolara yemeye devam etmektedir.'' TEMA Vakfı'nın hazırladığı raporun tümüne şu linkten ulaşabilirsiniz.. www.tema.org.tr/TurkiyeAriciligindakiTehlikeler.pdf

http://www.biyologlar.com/arilar-yok-olmasin

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

Kan grupları ve değişik kalıtım biçimleri

A. KAN KARAKTERLERİ1. ABO KarakteriA geni, B geni, O geni olmak üzere üç ayrı alel genle kalıtılır. A ve B genleri O genine baskın, kendi aralarında ise eşbaskındır.Kan grubu, kan alış verişinde çok etkilidir. Bireylerin kan grubunu belirleyen, alyuvarlarında bulunan antijenler (aglütinojen)'dir. Kan plazmasında (serum) ise antijenlere karşı oluşturulmuş antikorlar (aglütinin) bulunur.•* Kan Alış - Verişi Her grubun kendi grubuyla yaptığı alış-verişler idealdir. Yandaki şekilde gösterilen noktalı oklar ise, yarı çökelmeli kan nakilleridir. Ancak acil durumlarda uygulanabilir.•* Aglutinasyon (Çökelme)Uygun olmayan kan nakillerinde kan serumunda bulunan antikorlar alyuvarları birbirine yapıştırıp bağlayarak çökelmelerini sağlarlar. Buna aglütinasyon denir.A antijeni + a antikoru = ÇökelmeAlıcının antikor üreticisi olduğu durumlar kan nakli için uygun değildir. Çünkü, tam çökelme olur.2. Rh KarakteriBu karakter kan grubunun pozitif (+) veya negatifliğini (–) belirler. Pozitiflik geni negatiflik genine baskındır.•* Rh Uyuşmazlığı (Eritroblastosis fetalis)Anne Rh– ve baba Rh+ olduğu zaman, ikinci ve sonraki Rh+ çocuklarda görülebilir. Böyle çocuklar gelişmenin erken evresinde düşük olarak atılabilir veya gelişmesini tamamlayarak doğarlar.İlk gebelikte çocuk Rh+ bile olsa annenin kanı çocuğun kanını tanımaz. Doğum esnasındaki yaralanmalarla tanımış olur ve annenin kanı çocuğun Rh proteinine karşı Rh antikorunu oluşturur. Sonraki gebeliklerde bu antikorlar plasentadan geçerse çocuğun kanını çökeltir ve tahrip edebilir.B. DEĞİŞİK KALITIM BİÇİMLERİ1. Çok AlellikDeğişik canlı türlerinin bazı karakterlerinde alel gen çeşidi ikiden fazladır. Buna çok alellik denir. Ancak, bu durumda da bir birey iki adet alel gen bulundurabilir.Bu durumda bireylerin genotip çeşidi formülüyle bulunabilir.Bireylerin fenotip çeşidinin ne kadar olacağı hakkında kesin bir şey söylenemez. Çok alelliğe en iyi örnekler, insan kan grubu ve tavşanlarda post rengidir.2. Eş Baskınlık (Ekivalentlik)Bir karakteri belirleyen iki farklı gen birbirlerine baskınlık sağlayamazlarsa veya eşit değerde baskınlık oluştururlarsa, dış görünüş (fenotip) iki genin de etkisiyle ortaya çıkar. Böylece heterozigot bireyler üçüncü bir fenotipi göstermiş olurlar. Böyle karekterlerde genotip çeşidi değişmez. Fenotip çeşidi (3) genotip çeşidine eşit (3) olur.3. Çok Genli Kalıtımİnsanlara ait, boy uzunluğu, vücut iriliği, zekilik, deri rengi; hayvanlarda süt verimi, yumurta verimi, meyvelerde büyüklük, tavuklarda ibik şekli gibi birçok karakter bir’den fazla alel gen çifti ile aktarılır. İnsanda deri rengi 2 ayrı gen çiftiyle kalıtılır.Tam bir zenci AABB genotipindedir. Tam bir beyaz ise aabb’dir. Her ikisi çaprazlandığında AaBb genotipli F1 melez olacaktır. F2 de ise tam siyah zenciden beyaza doğru geniş bir açılıma rastlanır.4. Ayrılmama OlayıMayoz bölünme ile gametler meydana gelirken, bölünmenin I. anafaz safhasında homolog kromozomlar, II. anafaz da ise kardeş kromatidler birbirlerinden ayrılamayarak aynı hücreye gidebilirler.Sonuçta kromozom sayısı bir fazla ve bir eksik gametler meydana gelir. Bu anormal gametlerin normal gametlerle döllenmesiyle ise (2n + 1) ve (2n - 1) kromozomlu bireyler meydana gelir.5. Kontrol ÇaprazlamasıBaskın fenotipteki bir bireyin, heterozigot mu, yoksa homozigot mu olduğunu anlamak için yapılır. Bunun için, baskın birey, fenotipine bakıldığında genotipi tahmin edilebilen bireyle (genellikle çekinikle) çaprazlanır. Oluşan bütün bireyler baskın ise, incelenen canlı homozigottur. Ancak çekinik bireyler de oluşursa incelenen canlı heterozigottur.

http://www.biyologlar.com/kan-gruplari-ve-degisik-kalitim-bicimleri-2

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Rutin histopatolojik uygulamalar

Tespit (fiksasyon) Dokular insan vücudundan ayrıldıkları anda canlıdırlar ve taşıdıkları hastalığın (varsa) morfolojik bulgularını sergilerler. Tespit, dokuların o andaki görünümünün ısı, nem ve enzimlerin etkisiyle değişmesini, bozulmasını önlemek amacıyla yapılır. Tespit edilmeyen dokulardaki hücreler bir süre sonra bakterilerin ve içerdikleri sindirici enzimlerin etkisiyle otolize uğrar, morfolojik özelliklerini yitirir ve tanısal amaçlı incelemelerde kullanılamayacak duruma gelirler. Tespit işlemi için genellikle özel sıvılar kullanılır. Doku ve organlar kendi hacimlerinin 10-20 katı kadar tespit sıvısı içine bırakılırlar. Patolojide rutin amaçlar için en yaygın olarak kullanılan tespit sıvısı formalindir. Bu, seyreltik bir formaldehit (H-CHO) solüsyonudur. Tespit işlemi dokunun türü ve kalınlığına göre birkaç saat (karaciğer iğne biyopsisi) ile birkaç hafta (beyin) arasında değişen sürelerde olabilir. Yüzde seksenlik etil alkol, Bouin solüsyonu, Zenker solüsyonu, B5 solüsyonu, Carnoy solüsyonu ve glutaraldehit gibi başka tespit sıvıları da yeri geldikçe kullanılabilir. Sitolojik örneklerin havada kurutulmaları veya ısıtılmaları da tespit yöntemleri arasındadır. Bu tür tespit yöntemlerine daha çok hematolojik ve mikrobiyolojik boyalar kullanılacaksa başvurulur. Uygun formalin solüsyonunda bekletilen dokular aylar-yıllar sonra bile histopatolojik olarak rahatlıkla değerlendirilebilir. Takip (doku işleme) Tespitten sonraki aşamaların hemen hepsi otomatik makinelerde yapılabilir. İlk aşama, çoğunluğu sudan oluşan tespit sıvısının ve dokunun kendisinin başlangıçta içerdikleri suyun uzaklaştırılmasıdır (dehidratasyon). Bu, dokunun sertleşmesine yardım eder. Sert dokuların sonraki aşamalarda çok ince kesilebilmesi mümkün olur. (Bayat ekmekle taze ekmeğin kesilmeleri arasındaki fark gibi). Alkol, dokunun kırılganlığını artıran bir maddedir. Onun da ksilol yardımıyla ortamdan uzaklaştırılması gerekir. Daha sonra da, dokuda başlangıçta su içeren, sonra sırasıyla alkolle ve ksilolle infiltre olan aralıklara ısıtılarak sıvılaştırılmış parafinin girmesi sağlanır. Kullanılan parafin oda sıcaklığında katılaşır.Takibe alınan bütün örnekler numaralanır. Bu numaralar sonraki bütün aşamalarda dokuların konduğu kasetlerin üzerinde, bloklarda, preparatlarda ve raporlarda yer alır. Takip işlemleri, oda sıcaklığı ile 60 C arasındaki sıcaklıklarda yapılır. Negatif basınç (vakum) uygulanması ile, dokuların daha iyi ve daha kısa sürede işlenmeleri sağlanabilir. Ayrıca, özel mikrodalga fırınlar kullanılarak, normal olarak 8-16 saat süren bu işlemlerin süresini belirgin olarak kısaltmak ve 2 saatin altına indirmek mümkündür. Bloklama Parafinle infiltre edilmiş dokular, dikdörtgen prizma biçimindeki kalıplara konulur ve üzerlerine ısıtılmış parafinin dökülüp soğutulmasıyla bloklar elde edilir. Bu durumdaki dokuların çok ince kesilebilmeleri mümkün olur. Kesme Parafin bloklar; mikrotom adlı aygıt ile istenilen kalınlıkta (genellikle 4-5 mikron) kesilir, kesitler ılık su banyosuna, oradan da lamlar üzerine alınırlar. Bu kesitler önce ısıtılıp sonra bir solvent olan ksilole konularak deparafinize edilir, daha sonra da giderek daha sulu hale gelen alkollerden geçirilerek istenilen boyanın uygulanmasına geçilir. Boyama Rutin olarak kullanılan boya hematoksilen (mavi) ve eosindir (kırmızı). Kısaca "HE" veya "H&E" denilir. Bu yöntem ile, hücrelerin çekirdekleri mavi, sitoplazma olarak adlandırılan ve çekirdeği saran kısımları kırmızı-pembe boyanır. Çoğu hastalığın kesin teşhisi için bu yöntem ile boyanmış preparatların değerlendirilmesi yeterli olur. "Frozen section" ve intraoperatif konsültasyon Yukarıdaki rutin histopatolojik işlemlerin sağlıklı olarak yapılabilmesi için en az 10-15 saatlik bir süreye (mikrodalgalı yöntemler dışında) gereksinme vardır. Bu da, rutin patolojik incelemeye alınan bir örneğin tanısının en iyi olasılıkla ancak bir gün sonra verilebileceği anlamına gelir. Oysa, ameliyat sırasında hastada ameliyatın gidişini değiştirebilecek bir durumla karşılaşıldığında, dakikalar içinde verilecek bir tanıya gereksinme duyulabilir. Hastanın anestezi alma süresini uzatmamaya ve yeniden ameliyata alınmasına engel olmaya yönelik bir uygulama olarak "frozen section"a (dondurarak kesme) büyük hastanelerde sıkça başvurulur. Bu yöntem, dokuların istenilen incelikte kesilebilmeleri için dondurulmaları temeline dayanır. Özel bir aygıt (kriyostat) yardımıyla dokular -20 C sıcaklıkta kesilir ve hazırlanan kesitler hızlandırılmış yöntemle boyanırlar. Patolog, bu kesitleri inceleyerek vardığı sonucu ameliyatı yapan cerraha bildirir. Bütün bu işlemler, ameliyathaneye komşu bir patoloji bölümünde yapıldığında, 10-15 dakika kadar sürer. Bazı patoloji bölümlerinin ameliyathane içinde bu amaçla çalışan bir birimi bulunmaktadır. Dondurarak kesme yöntemiyle hazırlanan kesitlerin değerlendirilmesi güçtür ve bu işlem ancak deneyimli patologlar tarafından yapılabilir. Cerrahlar patologlardan "intraoperatif histolojik inceleme" istediklerinde, bu isteklerini mümkünse operasyondan önce, değilse operasyon sırasında ve hasta hakkındaki tüm önemli bilgileri sunarak iletmelidirler. İletişim eksikliği, intraoperatif histolojik incelemeden istenilen verimin alınmasını engeller ve bu uygulamanın hastaya zarar vermesine bile yol açabilir.Sitolojik yöntemler Dokuların insan vücudundan hiç can yakmadan alınması mümkün değil gibidir. Hastalar, seçme şansları olduğunda, tanılarının canları yakılmadan konulmasını tercih ederler. Gelişmiş ülkelerde hastaların bilinçlenmesine ve tıp teknolojisinin gelişmesine paralel olarak, doku almadan da morfolojik değerlendirme yapılabilmesini sağlayan yöntemler hızla yaygınlaşmaktadır. Romanyalı Dr. Aurel Babes tarafından 1927'de ilk kez bildirilen, 1950'lerde George Papanicolaou tarafından yaygınlaştırılan servikovaginal yayma yöntemiyle, rahim ağzından kendiliğinden dökülen hücrelerin morfolojik olarak incelenmesiyle, bir kanserin daha klinik bulgu vermeden yakalanabileceği ilk kez ve kesin olarak gösterilmiştir. Bu yöntemin uygulanması sayesinde, bugün kadınların serviks kanserinden ölmelerine seyrek rastlanmakta ve çoğu kanser daha oluşma aşamasındayken tam olarak çıkarılabilmektedir. Kapladıkları yüzeyden dökülen hücrelerin sitolojik olarak incelenmelerine 'eksfolyatif sitoloji' denilmektedir. (Servikovaginal yayma ve idrar sitolojisi gibi). Ayrıca, bu yöntemle birlikte veya ondan ayrı olarak, deri ve mukozayı kazıyarak hücre elde etmek mümkündür (kazıma yöntemi). Gittikçe yaygınlaşmakta olan 'aspirasyon sitolojisi' yöntemi ise, ulaşabileceği doku ve organların hemen hemen sınırsız olmasıyla diğer bütün sitolojik yöntemlerden ayrılmaktadır. Bu yöntemle, palpe edilebilen bütün organlardaki lezyonlara anesteziye ve özel aletlere gerek duyulmadan ince (dar çaplı) bir enjeksiyon iğnesiyle girilmekte ve aspire edilen hücreler lamlara yayılmaktadır. Derindeki organlara da ultrasound veya bilgisayarlı tomografi gibi görüntüleme yöntemleri eşliğinde girilebilmektedir. Elde edilen hücrelerin değerlendirilmesinde, her organ için ayrı bir bilgi birikimine ve deneyime gereksinme vardır. Bu nedenle, yöntemin yaygınlaşmasının önündeki en büyük engel, bu konuda yetişmiş patolog sayısının azlığıdır. Bir sitolojik incelemenin sonucu değişik koşullarda değişik anlamlar taşıyabileceği için, bu yöntemi uygulamak isteyen klinik doktorlarının patolog ile yakın ilişkide olmaları zorunludur. Dünyada ve ülkemizde pek çok birimde, yüzeysel lezyonların aspirasyonu da patolog tarafından yapılmaktadır. Bu yolla; örneklerin daha iyi alınması, gerekirse aspirasyonun hemen tekrarlanabilmesi ve tanının hem daha çabuk hem daha doğru konulması mümkün olmaktadır.

http://www.biyologlar.com/rutin-histopatolojik-uygulamalar

Patolojinin Tarihçesi

İlk çağlarda; hastalıkların tanrıların insanları cezalandırmak için kullandıkları bir araç olduğuna inanılıyordu. Her hastalık bir günahın, suçun cezasıydı. Bu inanç, din adamlarının etkinliğini ve gücünü de artırıyordu. Batı Anadolu ağırlıklı eski Yunan uygarlığında ve sonraları ibni Sina'nın yaklaşımlarında, hastalıklar ile tanrı(lar) arasındaki bağı koparma çabaları olmuştur. Atardamarlarda hava değil, kan bulunduğunun anlaşılması bile, insanlık tarihinin yakın dönemlerindedir (Galen, MS 200). Orta çağ boyunca Avrupa'da hastalıkların içsel ve dışsal nedenleri olduğu yönünde (ilahi olmayan) düşünceler ortaya atılmış ve böyle düşünenler genellikle bundan zarar görmüşlerdir! Rönesans ile birlikte, hastalıklar konusunda fiziksel neden-sonuç ilişkileri gündeme gelmiş, salgın hastalıklardan insandan insana geçen etkenlerin sorumlu olabileceği gibi görüşler "gözleme dayanarak" ortaya atılmıştır. Dolayısıyla, "gözlem"in hastalıkları anlama açısından önem kazanması ve bugün anladığımıza yakın anlamda patolojik incelemeler yapılması rönesans ile başlar. Eski Mısır uygarlığında da "haruspex" isimli saray görevlilerinin belli hayvanların organlarını kesip inceledikleri bilinmektedir. Özellikle karaciğerin kesit yüzünü değerlendiren "haruspex"leri ilk patologlar olarak görmek mümkün olabilir. Ancak, "haruspex"lerin (sözcük anlamı:kâhin)incelemeleri o karaciğerde ne olduğunu açıklamayı değil, uğruna bir hayvanın karaciğeri çıkarılan kişinin geleceğinin ne olduğunu tahmin etmeyi amaçlıyordu! Patologluk, bu falcılık yönünü zamanla kaybetmiştir!. Patolojinin büyükbabası olarak kabul edilebilecek kişi, Padua Üniversitesi anatomi profesörü Giovanni Battista Morgagni'dir (1682-1771 veya 1777). Morgagni'nin 1761'de yayımladığı kendi yaptığı 700 otopsiyi anlattığı kitabı bir dönüm noktasıdır. Bundan sonraki dönemde "etiyoloji", "lezyon" ve "semptom" arasında ilişki kurularak bugün bildiğimize yakın, tanrısal yönü olmayan, bir "hastalık" kavramı oluşmuştur. Bu dönemde Bichat, Laennec, Dupuytren, Hodgkin, Addison, Paget, Rokitansky gibi adları bugün de yaşayan hekimler, patoloji bilgisinin artmasına katkıda bulunmuşlardır. Giovanni Baptista Morgagni (1682-1771), Valsalva'nın öğrencisidir. İtalya'da Padua Üniversitesinde 50 yıldan uzun süre görev yapmış ünlü bir hekim olan Morgagni, 1761 yılında, 80 yaşındayken De Sedibus adlı kitabını yayımlamış ve burada 700'den fazla olguda klinik bulgular ile otopsi bulgularını karşılaştırmıştır. Tanımladıkları arasında; mitral darlığı, endokardit, angina pektoris, siroz, spina bifida, patent duktus arteriosus, foramen ovale bulunmaktadır. Kolposkobu bulan, parasentezi ilk gerçekleştiren hekimdir. İnsan ve hayvanların aynı mikroskobik yapıtaşlarından (hücrelerden) yapıldığını ilk kez söyleyen, histolojinin babası olarak kabul edilen Theodor Schwann (1810-1882) da böyledir. Patolojinin 1980'lere kadar kullanılmakta olan yaklaşımlarının hemen tümünün kaynağı olarak "hücresel patoloji"nin kurucusu Rudolph Ludwig Karl Virchow gösterilmektedir. Histopatolojik incelemeye dayanan bu yaklaşımda "hücre"; yaşamı, hastalıkları ve ölümü açıklamaya yönelik tüm çabaların odak noktasını oluşturur. Virchow, hastalıklı hücrelerin de sağlam hücrelerden oluştuğunu vurgulayan ilk bilim adamıdır. Rudolph Ludwig Karl Virchow (1821-1902), günümüzdeki anlamı ile patolojinin babası olarak kabul edilir. Mikroskobun hastalıkların tanısında etkin biçimde kullanımını savunmuştur. Döneminin pek çok ünlü hekimi (Rokitansky dahil), mikroskobik incelemenin önemine inanmıyor ve bu yaklaşımı küçümsüyorlardı. Virchow; tromboz, atrofi, hiperplazi ve iskemi terimlerini ilk kez kullanmış, pek çok hastalığı bu gün bildiğimiz biçimleriyle ilk kez tanımlamıştır. Yaşadığı dönem için devrim niteliğinde olan -hemen tümünde haklı olduğu zamanla anlaşılan- görüşleri nedeniyle zorluklarla karşılaşmıştır. Daha 30 yaşına gelmeden fibrinojen, lökositoz ve lökemiyi tanımlamış; yerel lezyonlara cerrahi girişim yapılmasının anlamsız olduğunu düşünenlere karşı çıkmıştır. İnfarktüs, amiloid, kalsifikasyon ilk kez Virchow tarafından doğru biçimde açıklanmıştır. Lösin ve tirozin amino asitleri Virchow tarafından tanımlanmıştır. Her hücrenin bir hücreden meydana gelmesi gerektiğini (omnis cellula a cellula) yüksek sesle ve inatla söyleyen ilk doktordur. (Bu görüş, o zamanlar çoğunluk tarafından gülünç bulunuyordu). Art arda verdiği 20 konferansın ardından 1858'de yayımlanan Fizyolojik ve Patolojik Histolojiye Dayanan Hücresel Patoloji kitabı, hastalıkların mikroskobik incelenmesi yaklaşımının temeli olarak kabul edilir. Anatomik patolojinin tıp fakültelerinde zorunlu bir ders olarak kabul edilmesi de Virchow sayesindedir. Politik radikalliği ile de bilinen Virchow'un 2000 kadar makalesi ve kitabı bulunmaktadır. Günümüzde, moleküler yöntemlerin gelişmesi ile bu tür yöntemler de patolojik incelemelerde gittikçe artan biçimde kullanılmaya başlanmıştır. Bunlar arasında, DNA başta olmak üzere, "genetik materyal" ile ilgili olanların önemi özellikle artmaktadır. Ülkemizde patoloji, Osmanlı döneminin tek tıp fakültesi olan askeri tıp fakültesinde (Gülhane) Alman bilim adamları tarafından ilk kez uygulanmıştır. Dolayısıyla, Patoloji Türkiye'ye Gülhane ile gelmiştir. İlk Türk patologlarının tümü askerdir. Ülkemizde patolojinin kısa bir tarihi bu konuda daha fazla bilgi edinmenizi sağlayabilir. Tıp eğitiminde patolojinin yeri Günümüzde tıp fakültesi düzeyindeki bütün okullarda patoloji en ağırlıklı derslerden biri olarak okutulmakta ve ders saati sayısının çokluğu açısından da pek çok kurumda ilk sırayı almaktadır. Bu dersler bir veya iki seneye yayılmaktadır. Gelişmiş ülkelerde de, yalnızca 'ders anlatma' yolu ile öğretim pek çok kurumda neredeyse tümüyle ortadan kalkmakta olmasına rağmen, öğrencinin başarısının değerlendirilmesinde patoloji bilgisinin ölçülmesi önemini korumaktadır. Patoloji öğretiminden beklenen; öğrencinin hastalıklı doku ve organları inceleyerek, neden (etiyoloji) ve sonuç (hastalık bulguları) arasındaki bağlantıları kavrayabilmesini sağlamaktır. Patoloji eğitimi, hastalıklar bilgisine görsel bir boyut kattığı için, öğrenilenlerin daha anlaşılır ve kalıcı olmasını sağlama açısından önemlidir. Bu yönleriyle patoloji, 'temel' bir tıp dalıdır. Patolojide öğrenilenler, hemen tüm klinik dallarda o dala özgü bilgilerin öğrenilmesini kolaylaştırır. Tıp pratiğinde patolojinin yeri ve patoloji uzmanının işlevleri Patolog, hemen yalnızca yataklı sağlık kurumlarında hizmet veren, hem cerrahi hem dahili bilim dalları ve servisler ile ilişkili bir uzmandır. Patolog, aşağıda ayrıntılı olarak sıralanan işlevleri yerine getirirken özel laboratuar yöntemlerinden sürekli olarak yararlanır; bu açıdan patoloji bir 'laboratuar' bilim dalı olarak görülebilir. Ülkemizdeki akademik uygulamalarda ise patoloji, 'cerrahi' bilim dalları arasında yer alır. Tıp Fakültelerinde Patoloji Anabilim Dalı, idari açıdan Cerrahi Tıp Bilimleri Bölüm Başkanlığı'na bağlıdır. Tanı: Patologdan en çok beklenen, hastalıklı olduğu düşünülen doku ve organları inceleyerek hastaya belli bir hastalık tanısı koyması veya konulmuş olan bir tanının doğruluğunu değerlendirmesidir. Doku ve organlar vücuttan değişik biçimlerde alınır ve patoloğun incelemesine sunulurlar. (Örnekler: Lenf düğümü biyopsisi ile lenfoma adlı kötü huylu tümörün tanısının konulması; endoskobik yolla alınmış bir mide biyopsisi örneğinde gastrit mi, peptik ülser mi, kanser mi bulunduğunun saptanması...) Tedavi: Patolog, koyduğu tanıyla tedavinin biçimini belirleyebilir.(Örnek: Lenf düğümü biyopsisinde tüberküloz tanısı anti tüberküloz ilaçların, lenfoma tanısı ise antineoplastik ilaçların kullanılacağını belirler). Gittikçe daha yaygınlaşan bir diğer işlev ise, dokuda tedavinin yol açtığı değişikliklerin incelenmesiyle tedavinin etkinlik derecesinin belirlenmesidir. Bu uygulama, hastalığın gidişi konusunda tahmin yapmaya da olanak verir. (Örnek: Kemoterapiden sonra osteosarkoma dokusunun tümüyle ortadan kalkmış olması hastanın kullanılmış olan ilaçlardan yararlandığını gösteren bir bulgudur). Transplantasyon uygulamalarının yaygınlaşmasıyla, patologların transplante edilecek organı transplantasyondan önce ve sonra incelemeleri istenmektedir. Bir organın transplantasyona uygun olup olmadığı hemen yalnızca patolojik inceleme ile belirlenebilir. Fonksiyonları bozulmaya yüz tutan transplante bir organdaki sorunlar da patolojik inceleme yapılmadan tam olarak anlaşılamaz. Bulunacak çözüm yolları patolojik inceleme ile belirlenir. Patologların hastaların tedavisindeki rolü, her zaman dolaylıdır. Tarama: Görülme sıklığı yüksek olan hastalıkların belirgin bozukluklara yol açmadan saptanabilmesi için, risk altındaki kişilerin olabildiğince kolay ve ucuz yollarla incelenmesi anlamında kullanılır. Patoloji pratiğinde bu, ya kendiliğinden dökülen veya küçük bir travmayla dökülmesi sağlanabilen hücrelerin (doku veya organ değil !) incelenmesiyle (sitolojik inceleme) yapılır. (Örnek: Yakınması olmayan orta yaşlı bir kadın hastada tarama amacıyla yapılan vaginal yaymada normal olmayan hücrelerin saptanması ve çok kötü gidişli olabilecek bir tümörün henüz gelişme sürecindeyken yok edilebilmesinin sağlanması). Öte yandan, sitolojik yöntemlerin önemli bir kısmı "tarama" değil "tanı" amaçlıdır. Bunların kullanım alanı hızla genişlemektedir. Dünyanın pek çok ülkesinde olduğu gibi, ülkemizde de böyle sitolojik incelemeler patoloji uzmanları tarafından yapılmaktadır. Otopsi: Tıp eğitiminin en önemli öğelerinden biri olan otopsi, öğrencilere ve doktorlara derslerin ve kitapların sağlayabileceğinin çok ötesinde yarar sağlayan bir eğitim yöntemidir. Tıp teknolojisinin ve buna dayalı tanı/tedavi yöntemlerinin çok gelişmiş olduğu ülkelerde bile hastanede ölen hastaların otopsilerinde, hasta yaşarken tanısı konulamamış pek çok hastalık saptanmaktadır. Bunların bazıları, hastanın tedavi biçiminin değiştirilmesini gerektirebilecek niteliktedir. (Örnek: Metabolik hastalığı olduğu düşünülen bir olguda kötü huylu tümör saptanması). Kitap sayfalarında kalan veya ezberlenen bilgilerin morfolojik karşılıklarının görülmesi, edinilen bilgilerin özümlenmesini sağlamaktadır. Bu nedenle, bir doktorun otopsi eğitimi olmadan yetişmesi bağışlanamaz bir eksikliktir. Çoğu patoloji anabilim Dalında yılda 1-2 tıbbi otopsi bile yapılmamaktadır. Bu sayı kabul edilemeyecek kadar düşüktür. Patolojik yöntem ve yaklaşımlar Patolojinin bir tıp dalı olarak yöntemleri ve işleyişi diğer dallardan kısmen farklıdır. Klinik bir dal olmamasına rağmen, patoloji, çoğu kez klinik çalışmaların ya içinde yer alır veya çalışmalarından elde ettiği verilerle hastaların tanı ve tedavilerine doğrudan katkılarda bulunur. Patolojinin çalışma alanı hastalıklı organ ve dokuların incelenmesiyle sınırlı değildir. Deneysel, teorik ve teknik pek çok konuda patolojik çalışmalar yapılmaktadır. Patolojik inceleme ve çalışmalar ancak yeterli anatomi, histoloji ve fizyoloji bilgisine sahip kişilerce yürütülebilir. Patolog, ilgili uzmanların bulunabildiği akademik ortamlar dışında, çoğu kez bu konulardaki klinik soruları en kolay cevaplayabilecek kişi konumundadır. Bir hastanenin işleyişi içinde patoloji bölümünün katkısı; hastalardan tarama veya tanı amacıyla hücre/doku örneklerinin alınmasıyla veya organların çıkarılmasıyla başlar. Bu örneklerin önce dış görünümleri (makroskobi) değerlendirilir ve mikroskop altında incelenmesi gerekli görülen kısımlar seçilerek ayrılır. Patolojik incelemenin en kritik ve en çok deneyim gerektiren aşamasının bu olduğu kabul edilebilir. Patolojiyi en iyi yansıttığı düşünülen kısımlar örneklenip, çok ince (4-5 mikron kalınlıkta) kesitlerin alınabilmesine olanak verecek işlemlerden (doku takibi) geçirilir ve hazırlanan kesitler rutin olarak "hematoksilen-eosin" yöntemiyle boyanır. (Hücre çekirdekleri mavi, sitoplazmalar kırmızı boyanır). Daha sonra, bu boyanmış kesitlerin ışık mikroskobunda incelenmesiyle morfolojik bir değerlendirme yapılır. Bu değerlendirmenin birtakım kuralları olmakla birlikte, temelde, morfolojik incelemeler subjektiftir. Bu subjektifliğin asıl nedeni, canlı organizmaların özellikleri için 'normal'in kesin sınırlı olarak tanımlanamamasıdır. (Normal saç rengi nedir? Normal boy kaç santimetredir?) Dolayısıyla; belli bir organ veya hücrenin görünümünün normalden ne kadar sapmış olduğu sorusunun yanıtı, kaçınılmaz olarak kişisel ve subjektiftir. Patolojik incelemenin sonuçta subjektif olması, onun kuralları ve sistematiği olmasına engel değildir. Tıbbi bir değerlendirmenin işe yararlılığının ve güvenilirliğinin ölçüsü, hastanın tanı ve tedavisine yapılan katkıdır. Bir dokudaki bütün atomların adlarını ve miktarlarını objektif, bilimsel (ve pahalı!) yollarla saptamak mümkündür ancak, bunun bir lenfoma olgusunun tanı ve tedavisine katkısı yoktur! Subjektif morfolojik değerlendirme, patoloğun tanıya ulaşmada kullandığı yollardan yalnızca birisidir. Patolog, yeri geldiğinde biyokimyasal, farmakolojik, mikrobiyolojik, genetik, moleküler biyolojik verileri kullanabilir; özel yöntem ve düzeneklerin yardımıyla dokular üzerinde nitel (kalitatif ) veya nicel (kantitatif) incelemeler yapabilir. Bunlar arasında histokimya, immunohistokimya, in situ hibridizasyon, DNA sitometrisi, digital görüntü analizi gibi yöntemler sayılabilir. Bu yöntemlerin hemen tümü, GATA Patoloji Anabilim Dalı'nda da kullanılmaktadır. Ülkemizde patolojik değerlendirmelerin objektif, ölçülebilir, yinelenebilir biçimde yapılmasına olanak veren ilk Nicel Patoloji Laboratuvarı Gülhane'dedir. Patoloğun en sık kullandığı düzenek ışık mikroskobudur. Işık mikroskobu ile sağlanabilecek büyültme yaklaşık x 1000 ile sınırlıdır ve görünür ışığın dalga boyundan kaynaklanan bu sınırın teknolojik ilerleme ile aşılması mümkün değildir. Laser, X ışını, ultrasound kullanarak veya digital yöntemlerle değişik mikroskoplar yapılmakta ve bunların kendilerine özgü kullanım alanları bulunmaktadır. Günümüzde, tek tek atomların görüntülenmesine izin veren özel mikroskoplar (scanning tunneling microscope) bile geliştirilmiştir. 'Elektronmikroskop' ise, temel olarak "tarayıcı" (scanning) ve "geçişimsel" (transmission) adlı iki biçimde kullanılmaktadır. Bunların ilki, çok çarpıcı "üç boyutlu" görüntüler sağlayabilmesine rağmen, dar bir kullanım alanına sahiptir ve sık görülen hastalıkların tanısında hemen hemen hiç rolü yoktur. "Transmission" elektronmikroskopi ise daha çok araştırma amacıyla kullanılmakta, nadiren tanısal açıdan da gerekli olabilmektedir. Bu mikroskopların büyültme gücü ışık mikroskobundan yüzlerce kere fazladır. Ancak, büyültme ne kadar fazlaysa tanının o kadar kolay ve doğru olacağını düşünmek yanlış olur. Her inceleme yönteminin olduğu gibi, elektron mikroskobinin de kendine özgü bir kullanım alanı vardır. Önünüzdeki sayfayı okumak için bir dürbün veya teleskop kullanmaya çalışırsanız, elektron mikroskobunun ne zaman işe yarayabileceği konusunda sağlıklı bir görüşe ulaşabilirsiniz! Çok pahalı ve emek-yoğun olan elektronmikroskopla rın yerine (onlardan çok daha ucuz olmayan!) "lazer taramalı konfokal mikroskoplar" da kullanılmaya başlanmıştır. Işık kaynağı lazer olan bu mikroskoplarda büyültme elektronmikroskopla rdakine yakındır. Lazer taramalı konfokal mikroskopları özel yapan, kesit kalınlığından etkilenmemeleri, daha az emek-yoğun olmaları ve sağladıkları verilerin tümüyle digital olmasıdır. Bu sayede hiçbir boya maddesi kullanmadan hücre organellerini değişik renklerde göstermek ve üç boyutlu görüntüler elde etmek mümkün olmaktadır. Bu mikroskopların henüz rutin patolojik incelemede yeri yoktur. Patoloji; doku kültürü, in situ hibridizasyon, immunohistokimya, akım sitometrisi, digital görüntü analizi gibi daha pek çok yöntemi tanısal veya araştırma amaçlı olarak kullanır. Bunların kullanımı gittikçe artmakta ve patolojik incelemede morfolojinin rolü yıldan yıla azalmaktadır. Bu, Virchow ekolünün yerini artık moleküler yaklaşımların almakta olduğunun göstergesidir; buna göre, hastalıkların değerlendirileceği temel birimler artık "hücre altı" yapılardır... Patolog, yukarıdaki yöntemlerden biri veya birkaçı ile yaptığı incelemesinin sonunda bir rapor düzenler. Bu rapor yalnızca bir tanı içerebileceği gibi, bir ayırıcı tanı veya öneriler listesi biçiminde de olabilir. Patolog, tıbbi konsültasyon ve danışma mekanizmasının bir parçasıdır; bu nedenle, bir hasta ile ilgili düşüncesi sorulduğunda (kendisine organ veya doku örneği gönderildiğinde) bütün klinik bulgular ve değerlendirmelerden haberdar edilmelidir. Patologdan herhangi bir hastanın herhangi bir yerinden alınmış herhangi bir örneğe tanı koymasını istemek, bir doktorun ellerini, gözlerini bağlayıp kulaklarını tıkayarak bir hastaya tanı koymasını ve onu tedavi etmesini istemekten farksızdır. Patolojik incelemenin en çok bilinen yolu 'sorular zinciri'dir. Bu yol, özellikle patolojik inceleme yöntemleri konusunda kısıtlı bilgi ve deneyimi olanlar tarafından izlenir. Deneyim arttıkça, tanı adeta otomatikleşir ve tanılar milisaniyelerle belirtilen süreler içinde konulabilir. Sorular zincirine (basitleştirilmiş) bir örnek: Sıra Soru Karşılık 1 Bu bir lenf düğümü mü? Evet 2 Bu görünüm normal mi? Hayır 3 Burada olmaması gereken türde hücreler var mı? Hayır 4 Hücrelerin birbirine oranı değişmiş mi? Evet 5 Hücreler atipik mi? Evet 6 Bu bir lenfoma mı? Evet Yukarıdaki sıra ile yapılan bir akıl yürütme sonucunda ulaşılan tanı lenfoma olacaktır. Yukarıdaki tabloda anlatılan, öğrencilerin laboratuar çalışmaları sırasında inceleyecekleri bütün hematoksilen-eosin boyalı kesitler (preparatlar) karşısında izlemeleri gereken yoldur. Örnek: Bu appendiks vermiformis mi ? 'evet' ; mukozada ülserasyon var mı? 'evet' ; düz kas tabakasında nötrofil lökosit infiltrasyonu görülüyor mu? 'evet' ; tanı: akut appendisit. Deneyimli patologlar sorular zincirine ek olarak "patern (örnek, model, biçim) tanıma" yöntemini de (çoğu kez farkında olmadan) kullanırlar. Bu yöntem, patoloğun mikroskoptaki görüntü ile karşılaştığı anda lezyona tanı koyması biçiminde özetlenebilir. Saptanan görüntü ile o patoloğun daha önce karşılaştığı ve adını bildiği bir görüntü arasında yeterli derecede benzerlik varsa, bu süreç çok kısa süre içinde tanı ile sonlanır. "Cognitive" (bilişsel) psikolojinin alanına giren bu çok karmaşık ve ilgi çekici sürecin ayrıntıları bilinmemektedir. Rutin histopatolojik uygulamalar Tespit (fiksasyon) Dokular insan vücudundan ayrıldıkları anda canlıdırlar ve taşıdıkları hastalığın (varsa) morfolojik bulgularını sergilerler. Tespit, dokuların o andaki görünümünün ısı, nem ve enzimlerin etkisiyle değişmesini, bozulmasını önlemek amacıyla yapılır. Tespit edilmeyen dokulardaki hücreler bir süre sonra bakterilerin ve içerdikleri sindirici enzimlerin etkisiyle otolize uğrar, morfolojik özelliklerini yitirir ve tanısal amaçlı incelemelerde kullanılamayacak duruma gelirler. Tespit işlemi için genellikle özel sıvılar kullanılır. Doku ve organlar kendi hacimlerinin 10-20 katı kadar tespit sıvısı içine bırakılırlar. Patolojide rutin amaçlar için en yaygın olarak kullanılan tespit sıvısı formalindir. Bu, seyreltik bir formaldehit (H-CHO) solüsyonudur. Tespit işlemi dokunun türü ve kalınlığına göre birkaç saat (karaciğer iğne biyopsisi) ile birkaç hafta (beyin) arasında değişen sürelerde olabilir. Yüzde seksenlik etil alkol, Bouin solüsyonu, Zenker solüsyonu, B5 solüsyonu, Carnoy solüsyonu ve glutaraldehit gibi başka tespit sıvıları da yeri geldikçe kullanılabilir. Sitolojik örneklerin havada kurutulmaları veya ısıtılmaları da tespit yöntemleri arasındadır. Bu tür tespit yöntemlerine daha çok hematolojik ve mikrobiyolojik boyalar kullanılacaksa başvurulur. Takip (doku işleme) Tespitten sonraki aşamaların hemen hepsi otomatik makinelerde yapılabilir. İlk aşama, çoğunluğu sudan oluşan tespit sıvısının ve dokunun kendisinin başlangıçta içerdikleri suyun uzaklaştırılmasıdır (dehidratasyon). Bu, dokunun sertleşmesine yardım eder. Sert dokuların sonraki aşamalarda çok ince kesilebilmesi mümkün olur. (Bayat ekmekle taze ekmeğin kesilmeleri arasındaki fark gibi). Alkol, dokunun kırılganlığını artıran bir maddedir. Onun da ksilol yardımıyla ortamdan uzaklaştırılması gerekir. Daha sonra da, dokuda başlangıçta su içeren, sonra sırasıyla alkolle ve ksilolle infiltre olan aralıklara ısıtılarak sıvılaştırılmış parafinin girmesi sağlanır. Kullanılan parafin oda sıcaklığında katılaşır. Takibe alınan bütün örnekler numaralanır. Bu numaralar sonraki bütün aşamalarda dokuların üzerinde, bloklarda, preparatlarda ve raporlarda yer alır. Takip işlemleri, oda sıcaklığı ile 60 C arasındaki sıcaklıklarda yapılır. Negatif basınç (vakum) uygulanması ile, dokuların daha iyi ve daha kısa sürede işlenmeleri sağlanabilir. Ayrıca, özel mikrodalga fırınlar kullanılarak, normal olarak 8-16 saat süren bu işlemlerin süresini belirgin olarak kısaltmak ve 2 saatin altına indirmek mümkündür. Otomatik doku işleme aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Formalin (3 saat), alkoller (4 saat), aseton (30 dakika), ksilol (1,5 saat), parafin (2 saat). Program, akşam başlatılmakta; sabah, dokular bloklanmaya hazır olmaktaBloklama Parafinle infiltre edilmiş dokular, dikdörtgen prizma biçimindeki kalıplara konulur ve üzerlerine ısıtılmış parafinin dökülüp soğutulmasıyla bloklar elde edilir. Bu durumdaki dokuların çok ince kesilebilmeleri mümkün olu Kesme Parafin bloklar; "mikrotom" adlı aygıt ile istenilen kalınlıkta (genellikle 4-5 mikron) kesilir, kesitler ılık su banyosuna, oradan da lamlar üzerine alınırlar. Bu kesitler önce ısıtılıp sonra bir solvent olan ksilole konularak deparafinize edilir, daha sonra da giderek daha sulu hale gelen alkollerden geçirilerek hidrate edilir ve istenilen boyanın uygulanmasına geçilir. Sayfa başına dön! Boyama Rutin olarak kullanılan boya hematoksilen (mavi) ve eosindir (kırmızı). Kısaca "HE" veya "H&E" denilir. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Ksiloller (6 dakika), alkoller (3 dakika), su (2 dakika), hematoksilen (6 dakika), su (1 dakika), asit-alkol (10 saniye), su (1 dakika), amonyak (5 saniye), su (1 dakika), eozin (45 saniye), su (1 dakika), alkoller (1 dakika), ksiloller (5 dakika). "Frozen section" ve intraoperatif konsültasyon Yukarıdaki rutin histopatolojik işlemlerin sağlıklı olarak yapılabilmesi için en az 10-15 saatlik bir süreye (mikrodalgalı yöntemler dışında) gereksinme vardır. Bu da, rutin patolojik incelemeye alınan bir örneğin tanısının en iyi olasılıkla ancak bir gün sonra verilebileceği anlamına gelir. Oysa, ameliyat sırasında hastada ameliyatın gidişini değiştirebilecek bir durumla karşılaşıldığında, dakikalar içinde verilecek bir tanıya gereksinme duyulabilir. Hastanın anestezi alma süresini uzatmamaya ve yeniden ameliyata alınmasına engel olmaya yönelik bir uygulama olarak "frozen section"a (dondurarak kesme) büyük hastanelerde sıkça başvurulur. Bu yöntem, dokuların istenilen incelikte kesilebilmeleri için dondurulmaları temeline dayanır. Özel bir aygıt ("cryotome") yardımıyla dokular -20 C sıcaklıkta kesilir ve hazırlanan kesitler hızlandırılmış yöntemle boyanırlar. Patolog, bu kesitleri inceleyerek vardığı sonucu ameliyatı yapan cerraha bildirir. Bütün bu işlemler, ameliyathaneye komşu bir patoloji bölümünde yapıldığında, 10-15 dakika kadar sürer. Bazı patoloji bölümlerinin ameliyathane içinde bu amaçla çalışan bir birimi bulunmaktadır. Dondurarak kesme yöntemiyle hazırlanan kesitlerin değerlendirilmesi güçtür ve bu işlem ancak deneyimli patologlar tarafından yapılabilir. Cerrahlar patologlardan "intraoperatif histolojik inceleme" istediklerinde, bu isteklerini mümkünse operasyondan önce, değilse operasyon sırasında ve hasta hakkındaki tüm önemli bilgileri sunarak iletmelidirler. İletişim eksikliği, intraoperatif histolojik incelemeden istenilen verimin alınmasını engeller ve bu uygulamanın hastaya zarar vermesine bile yol açabilir. Sitolojik yöntemler Dokuların insan vücudundan hiç can yakmadan alınması mümkün değil gibidir. Hastalar, seçme şansları olduğunda, tanılarının canları yakılmadan konulmasını tercih ederler. Gelişmiş ülkelerde hastaların bilinçlenmesine ve tıp teknolojisinin gelişmesine paralel olarak, doku almadan da morfolojik değerlendirme yapılabilmesini sağlayan yöntemler hızla yaygınlaşmaktadır. Romanyalı Dr. Aurel Babes tarafından 1927'de ilk kez bildirilen, 1950'lerde George Papanicolaou tarafından yaygınlaştırılan 'servikovaginal yayma' yöntemiyle, uterus boynundan (cervix uteri) kendiliğinden dökülen hücrelerin morfolojik olarak incelenmesiyle, bir kanserin daha klinik bulgu vermeden yakalanabileceği ilk kez ve kesin olarak gösterilmiştir. Bu yöntemin uygulanması sayesinde, bugün kadınların serviks kanserinden ölmelerine seyrek rastlanmakta ve çoğu kanser daha oluşma aşamasındayken tam olarak çıkarılabilmektedir. Kapladıkları yüzeyden dökülen hücrelerin sitolojik olarak incelenmelerine 'eksfolyatif sitoloji' denilmektedir. (Servikovaginal yayma ve idrar sitolojisi gibi). Ayrıca, bu yöntemle birlikte veya ondan ayrı olarak, deri ve mukozayı kazıyarak hücre elde etmek mümkündür (kazıma yöntemi). Gittikçe yaygınlaşmakta olan 'aspirasyon sitolojisi' yöntemi ise, ulaşabileceği doku ve organların hemen hemen sınırsız olmasıyla diğer bütün sitolojik yöntemlerden ayrılmaktadır. Bu yöntemle, palpe edilebilen bütün organlardaki lezyonlara anesteziye ve özel aletlere gerek duyulmadan ince (dar çaplı) bir enjeksiyon iğnesiyle girilmekte ve aspire edilen hücreler lamlara yayılmaktadır. Derindeki organlara da ultrasound veya bilgisayarlı tomografi gibi görüntüleme yöntemleri eşliğinde girilebilmektedir. Elde edilen hücrelerin değerlendirilmesinde, her organ için ayrı bir bilgi birikimine ve deneyime gereksinme vardır. Bu nedenle, yöntemin yaygınlaşmasının önündeki en büyük engel, bu konuda yetişmiş patolog sayısının azlığıdır. Bir sitolojik incelemenin sonucu değişik koşullarda değişik anlamlar taşıyabileceği için, bu yöntemi uygulamak isteyen klinik doktorlarının patolog ile yakın ilişkide olmaları zorunludur. Dünyada ve ülkemizde pek çok birimde, yüzeysel lezyonların aspirasyonu da patolog tarafından yapılmaktadır. Bu yolla; örneklerin daha iyi alınması, gerekirse aspirasyonun hemen tekrarlanabilmesi ve tanının hem daha çabuk hem daha doğru konulması mümkün olmaktadır. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program (Papanicolaou boyası) şöyledir: Hematoksilen (8 dakika), su (3 dakika), alkol (1 dakika), orange-G (5 dakika), su (1 dakika), alkol (15 saniye), EA-50 (5 dakika), su (2 dakika), alkoller (2 dakika), ksiloller (6 dakika). Sayfa başına dön! Sonuç Patoloji; anatomi ve fizyolojide öğrenilen bilgilere, hastalıklı organların çıplak gözle veya mikroskop altındaki anormal görünüşlerini ekleyerek hastalıkların daha kolay anlaşılmasını sağlar. Görünüşlerin karar vermeye çok yardımcı olduğu alanlarda, patolojik incelemenin tanıya ve uygun tedavi yönteminin belirlenmesine katkısı da çok büyüktür. Günümüzde, tümörlerin tanısı başta olmak üzere, pek çok hastalığın kesin tanısı için patolojik inceleme gereklidir.

http://www.biyologlar.com/patolojinin-tarihcesi

ANOVA (Analysis of Variance)

Bugün ki yazımda t-testinin genelleştirilmiş hali olan F-testi ANOVA’dan bahsetmek istiyorum. ANOVA ikiden fazla grup ortalamalarının karşılaştırılmasında kullanılan parametrik bir yöntemdir. T-testi F-testinin özel durumu olarak düşünebiliriz. T-testinde sadece iki grup karşılaştırılması yapılmaktadır. Parametrik yöntem olması gereği bazı varsayımlar gerektirmektedir. En önemli varsayımı grupların varyanslarının eşit olduğu varsayımıdır. Bu varsayım bozulduğunda sonuçların önemli derecede etkileneceği literatürde geçmektedir. Diğer varsayımlar ise, normal dağılım şartı ve gözlemlerin birbirinden bağımsız olmasıdır. Normallik şartı göz ardı edilebilmesine rağmen varyansların homojenliği varsayımı katı bir koşuldur. Aşağıdaki tabloda örnek bir veri yapısını görebiliriz. Araştırmacı 3 farklı hastalık grubundaki hastaların albümin değerlerini ölçmüş ve aşağıdaki gibi bulmuş. Albümin değerlerin hastalık gruplarına göre değişip değişmediğini öğrenmek istiyor. (Kaynak: Uygulamalı Çok Değişkenli İstatistiksel Yöntemler-Reha Alpar, Not: Örnek olması sebebiyle verinin sadece bir kısmını aldım.) Albümin değerini tek yönlü ANOVA ile gruplara göre değişiklik gösterip göstermediğini inceleyebiliyoruz. Bu tarz verip tipini t-testi ile karşılaştırıldığını şahit oldum. Maalesef hatalı bir analiz yöntemidir. Sebebi de I.tip hata dediğimiz hatayı büyütmesidir. ANOVA ile tek bir hipotez kurarak %5 yanılma payıyla(%95 güven düzeyinde çalıştığımızı düşünürsek) çalışırken. T-testi ile ikili grup karşılaştırması yaptığımız için ; Kronik Hepatit- Siroz Kronik Hepatit-Malignite Siroz-Malignite Olmak üzere 3 farklı hipotez kuruyoruz. Bu da güven düzeyini düşürmektedir. Kısa bir hesapla; (0,95)3 = 0,86 olur. Buradan yanılma payıda 1-0,86=0,14 olmuş olur. T-testi ile yaptığımız karşılaştırmada üç farklı hipotez kurduğumuz için ANOVA ile test ettiğimizde yanılma payı %5 iken t-testi ile %14’lere kadar çıkmaktadır. Daha fazla değişken olduğunu düşünürsek hata payı iyice artacaktır. Bu nedenle de bu sonuçlara göre yorum yapmak tabi ki yanlış olacaktır. Üç ve üçten fazla grup karşılaştırılması yapılacağı zaman ANOVA yapılması doğru olur. Bu kullandığımız veri tek yönlü-ANOVA’ya uygun örnektir. İki yönlü ANOVA da sıklıkla karşılaşılan bir analizdir. Hastalık gruplarına ait örneğimize bir de cinsiyet değişkeni eklendiğini düşünürsek; verimiz aşağıda ki hale gelmektedir. Hastalık ve Cinsiyet faktörleri aynı anda incelenmek istendiğinde ve ortak etkileşimlerinin sonuçlar üzerinde anlamlı istatistiksel farklılık yaratıp yaratmadığını incelememizi sağlar. 28 Haziran 2013 CumaANOVA (Analysis of Variance) Uzun bir aradan sonra tekrar merhaba. Bugün ki yazımda t-testinin genelleştirilmiş hali olan F-testi ANOVA’dan bahsetmek istiyorum. ANOVA ikiden fazla grup ortalamalarının karşılaştırılmasında kullanılan parametrik bir yöntemdir. T-testi F-testinin özel durumu olarak düşünebiliriz. T-testinde sadece iki grup karşılaştırılması yapılmaktadır. Parametrik yöntem olması gereği bazı varsayımlar gerektirmektedir. En önemli varsayımı grupların varyanslarının eşit olduğu varsayımıdır. Bu varsayım bozulduğunda sonuçların önemli derecede etkileneceği literatürde geçmektedir. Diğer varsayımlar ise, normal dağılım şartı ve gözlemlerin birbirinden bağımsız olmasıdır. Normallik şartı göz ardı edilebilmesine rağmen varyansların homojenliği varsayımı katı bir koşuldur. Aşağıdaki tabloda örnek bir veri yapısını görebiliriz. Araştırmacı 3 farklı hastalık grubundaki hastaların albümin değerlerini ölçmüş ve aşağıdaki gibi bulmuş. Albümin değerlerin hastalık gruplarına göre değişip değişmediğini öğrenmek istiyor. (Kaynak: Uygulamalı Çok Değişkenli İstatistiksel Yöntemler-Reha Alpar, Not: Örnek olması sebebiyle verinin sadece bir kısmını aldım.) Kronik Hepatit Siroz Malignite 5 3 0,8 5,1 4,3 1,3 4,5 3,4 2,2 4,7 1,8 2,7 2,8 2,2 1,9 5,3 2,7 1,4 4,7 2,5 2,6 4,5 3,1 1 3,6 2,8 1,5 3,8 1,5 0,7 Albümin değerini tek yönlü ANOVA ile gruplara göre değişiklik gösterip göstermediğini inceleyebiliyoruz. Bu tarz verip tipini t-testi ile karşılaştırıldığını şahit oldum. Maalesef hatalı bir analiz yöntemidir. Sebebi de I.tip hata dediğimiz hatayı büyütmesidir. ANOVA ile tek bir hipotez kurarak %5 yanılma payıyla(%95 güven düzeyinde çalıştığımızı düşünürsek) çalışırken. T-testi ile ikili grup karşılaştırması yaptığımız için ; Kronik Hepatit- Siroz Kronik Hepatit-Malignite Siroz-Malignite Olmak üzere 3 farklı hipotez kuruyoruz. Bu da güven düzeyini düşürmektedir. Kısa bir hesapla; (0,95)3 = 0,86 olur. Buradan yanılma payıda 1-0,86=0,14 olmuş olur. T-testi ile yaptığımız karşılaştırmada üç farklı hipotez kurduğumuz için ANOVA ile test ettiğimizde yanılma payı %5 iken t-testi ile %14’lere kadar çıkmaktadır. Daha fazla değişken olduğunu düşünürsek hata payı iyice artacaktır. Bu nedenle de bu sonuçlara göre yorum yapmak tabi ki yanlış olacaktır. Üç ve üçten fazla grup karşılaştırılması yapılacağı zaman ANOVA yapılması doğru olur. Bu kullandığımız veri tek yönlü-ANOVA’ya uygun örnektir. İki yönlü ANOVA da sıklıkla karşılaşılan bir analizdir. Hastalık gruplarına ait örneğimize bir de cinsiyet değişkeni eklendiğini düşünürsek; verimiz aşağıda ki hale gelmektedir. Hastalık ve Cinsiyet faktörleri aynı anda incelenmek istendiğinde ve ortak etkileşimlerinin sonuçlar üzerinde anlamlı istatistiksel farklılık yaratıp yaratmadığını incelememizi sağlar. Kronik Hepatit Siroz Malignite Cinsiyet 5 3 0,8 E 5,1 4,3 1,3 K 4,5 3,4 2,2 K 4,7 1,8 2,7 E 2,8 2,2 1,9 E 5,3 2,7 1,4 E 4,7 2,5 2,6 K 4,5 3,1 1 E 3,6 2,8 1,5 K 3,8 1,5 0,7 K ise şöyledir; Tek yönlü ANOVA: H0: Hastalık gruplarına göre Albümin değerleri farklılık göstermemektedir. H1: Hastalık gruplarına göre Albümin değerleri arasında en az biri farklıdır. Çift yönlü ANOVA: Üç farklı hipotez kurulur. H0: Hastalık gruplarına göre Albümin değerleri farklılık göstermemektedir. H1: Hastalık gruplarına göre Albümin değerleri arasında en az biri farklıdır. H0: Cinsiyete göre Albümin değerleri farklılık göstermemektedir. H1: Cinsiyete göre Albümin değerleri arasında en az biri farklıdır. H0: Hastalık grupları ve cinsiyetin ortak etkileşimine göre Albümin değerleri farklılık göstermemektedir. H1: Hastalık grupları ve cinsiyetin ortak etkileşimine göre Albümin değerleri arasında en az biri farklıdır. Çift yönlü ANOVA ile her bir gruptaki değişkenlerin kendi içinde anlamlılıklarını inceleyebildiğimiz gibi ortak etkileşimini de inceleyebiliyoruz. Eğer karar aşamasında, Tek yönlü ANOVA için düşünürsek, P-değeri red bölgesine düşerse hastalık grupları arasında en az birinin fark yarattığını söyleyebiliriz. Fakat farkı hangi grubun yarattığını öğrenmek istediğimizde ise post-hoc testlerine başvurmamız gerekir. Tukey HSD testi en çok bilinen ve kullanılan test olmasına rağmen verinin yapısına göre diğer post-hoc testlerine de başvurmak gerekebilir. Çünkü kendi aralarında avantajları ve dezavantajları vardır.

http://www.biyologlar.com/anova-analysis-of-variance

Gürültü Kirliliği

Gürültü İnsanlar üzerinde olumsuz etki yapan ve hoşa gitmeyen seslere gürültü denir. Özellikle büyük kentlerimizde gürültü yoğunlukları oldukça yüksek seviyede olup, Dünya Sağlık Örgütü'nce belirlenen ölçülerin üzerindedir. Gürültü Kirliliği Kent gürültüsünü artıran sebeplerin başında trafiğin yoğun olması, sürücülerin yersiz ve zamansız klakson çalmaları ve belediye hudutları içerisinde bulunan endüstri bölgelerinden çıkan gürültüler gelmektedir. Meskenlerde ise televizyon ve müzik aletlerinden çıkan yüksek sesler, zamansız yapılan bakım ve onarımlar ile bazı işyerlerinden kaynaklanan gürültüler insanların işitme sağlığını ve algılamasını olumsuz yönde etkilemekte, fizyolojik ve psikolojik dengesini bozmakta, iş verimini azaltmaktadır. Gürültünün insan üzerindeki etkilerini 4'e ayırabiliriz: 1.Fiziksel Etkileri: Geçici veya sürekli işitme bozuklukları. 2.Fizyolojik Etkileri: Kan basıncının artması, dolaşım bozuklukları, solunumda hızlanma, kalp atışlarında yavaşlama, ani refleks. 3.Psikolojik Etkileri: Davranış bozuklukları, aşırı sinirlilik ve stres. 4.Performans Etkileri:İş veriminin düşmesi, konsantrasyon bozukluğu, hareketlerin yavaşlaması. Gürültüye maruz kalma süresi ve gürültünün şiddeti, insana vereceği zararı etkiler. Endüstri alanında yapılan araştırmalar göstermiştir ki; işyeri gürültüsü azaltıldığında işin zorluğu da azalmakta, verim yükselmekte ve iş kazaları azalmaktadır. Çalışma ve Sosyal Güvenlik Bakanlığı verilerine göre; meslek hastalıklarının %10'u, gürültü sonucu meydana gelen işitme kaybı olarak tespit edilmiştir. Meslek hastalıklarının pek çoğu tedavi edilebildiği halde, işitme kaybının tedavisi yapılamamaktadır. Bazı Gürültü Türlerinin Desibel Dereceleri ve Psikolojik Etkileri Gürültü Türü Db Derecesi Psikolojik Etkisi Uzay Roketleri 170 Kulak ağrısı, sinir hücrelerinin bozulması Canavar Düdükleri 150 Kulak ağrısı, sinir hücrelerinin bozulması Kulak dayanma sınırı 140 Kulak ağrısı, sinir hücrelerinin bozulması Makineli delici 120 Sinirsel ve psikolojik bozukluklar (III.Basamak) Motosiklet 110 Sinirsel ve psikolojik bozukluklar (III.Basamak) Kabare Müziği 100 Sinirsel ve psikolojik bozukluklar (III.Basamak) Metro gürültüsü 90 Psikolojik belirtiler (II.Basamak) Tehlikeli bölge 85 Psikolojik belirtiler (II.Basamak) Çalar Saat 80 Psikolojik belirtiler (II.Basamak) Telefon zili 70 Psikolojik belirtiler (II.Basamak) İnsan sesi 60 Psikolojik belirtiler (I.Basamak) Uyku gürültüsü 30 Psikolojik belirtiler (I.Basamak) Çeşitli Kullanım Alanlarının Kabul Edilebilir Üst Gürültü Seviyeleri Kullanım Alanı Ses basıncı düzeyi(gündüz) dBA Dinlenme Alanları Tiyatro Salonları 25 Konferans Salonları 30 Otel Yatak Odaları 30 Otel Restoranları 35 Sağlık Yapıları Hastaneler 35 Konutlar Yatak Odaları 35 Oturma Odaları 60 Servis Bölümleri (mutfak, banyo) 70 Eğitim Yapıları Derslikler, Laboratuvarlar 45 Spor Salonu, Yemekhaneler 60 Endüstri Yapıları Fabrikalar (küçük) 70 Fabrikalar (büyük) 80 Gürültüyü Azaltmak İçin Alınabilecek Tedbirler: Hava alanlarının, endüstri ve sanayi bölgelerinin yerleşim bölgelerinden uzak yerlerde kurulması, Motorlu taşıtların gereksiz korna çalmalarının önlenmesi, Kamuoyuna açık olan yerler ile yerleşim alanlarında elektronik olarak sesi yükseltilen müzik aletlerinin çevreyi rahatsız edecek seviyede olmasının önlenmesi, İşyerlerinde çalışanların maruz kalacağı gürültü seviyesinin en aza (Gürültü Kontrol Yönetmeliğinde belirtilen sınırlara) indirilmesi, Yerleşim yerlerinde ve binaların içinde gürültü rahatsızlığını önlemek için yeni inşa edilen yapılarda ses yalıtımı sağlanması, Radyo, televizyon ve müzik aletlerinin evlerde rahatsızlık verecek seviyede seslerinin yükseltilmemesi gerekmektedir. Kaynak: cevreorman.gov.tr

http://www.biyologlar.com/gurultu-kirliligi

GÜVERCİN HASTALIKLARI

GÜVERCİN HASTALIKLARI

CİRCOVİRÜS Son yıllarda saptanan bu hastalık oldukça yenidir. Bu nedenle hastalık ve sonuçları hakkında bilinenler fazla değildir. Hastalığa Circovirus adı ile bilinen bir virüs türü neden olmaktadır. Bu virüs daha çok genç kuşları ve yeni yavruları etkilemektedir. Hastalık ilk başlarda solunum yolları sorunları şeklinde kendini gösterir. Ağırlık kaybı ve ishal vardır. Daha ileri aşamalarda tüylerin büyümesinde karakteristik anormallikler ve vücut dokularının özellikle de iç organların gelişiminde anormallikler gözlenebilir. Virüsün vücuttaki en önemli etkisi. Dalak, Bursa Fabrici ve Thymus üzerindedir. Thymus (timüs) göğüs kemiğinin arkasında bulunan bir iç salgı bezidir. Bursa Fabrici ise kloak’ın urodaeum adı verilen orta kısmında yer alan çıkıntı şeklinde bir organdır. Bunların işlevleri vücudun savunma mekanizması ve bağışıklık sisteminin gelişmesi ve işlemesini sağlamaktır. Virüs bu organlarda hücreleri tahrip ederek organlara zarar verir ve kuşun bağışıklık sistemini olumsuz etkiler. Böylelikle kuşlarımız hastalıklara karşı savunmasız hale gelirler. Kuşlarımızın bildiğimiz bütün güvercin hastalıklarına yakalanmaları çok daha kolay olur. Hastalığa yakalanan kuşlarımız ise daha zor tedavi edilebilir hale gelirler. Virüsün güvercinlerdeki etkisi AİDS’in insanlardaki etkisine benzetilebilir. Circovirus başlı başına bir hastalık gibi görünmemekte ve her zaman ikincil derece kliniksel belirtiler veren bir enfeksiyon olarak değerlendirilmektedir. Bunun nedeni bu virüsün kendi başına belirgin bir hastalık tablosu sunmaması ancak daha çok diğer hastalıklarla birlikte olduğunda fark edilebilmesidir. Circovirus’ün vücuda girmesinin ardından özellikle Chalamydia, Ornithosis, Pasteurella, PMV1, Trichomonas, Aspergillus gibi hastalıklar ortaya çıkma eğiliminde olurlar. Virüsün bulaşma şeklinin temas sonucu olduğu genel kabul görmektedir. Hijyenik koşullara dikkat edilmesi virüsün bulaşmasını engelleyici olacaktır. Bilinen bir tedavi şekli yoktur. İlaç tedavisi sadece bu hastalıkla birlikte görülen yan hastalıklar için uygulanabilir. Ancak güvercinimizin savunma sistemini güçlendirici vitamin ve mineral takviyeleri yararlı olacaktır. E-COLİ “Eshericia coli” adı verilen bir bakterinin neden olduğu hastalıktır. Kısaca E. Coli adı ile anılmaktadır. İnsanda ve hayvanlarda bağırsaklarda bulunan bu bakteri aslında bağırsak florasının bir parçasıdır. Ancak normalden fazla miktarda bulunması sonucu hastalık kendini gösterir. Güvercinlerde hastalığın en belirgin göstergesi ishaldir. Bu hastalığa yakalanan kuşlarımız süratli ve şiddetli bir şekilde su ve elektrolit kaybına uğrarlar. Özellikle genç kuşları çabuk etkiler. Genç kuşlarda şiddetli vakalar ani ölümle sonuçlanabilir. Yetişkin kuşlarda ölüm pek görülmez ancak, kuşlarımızın gücünü kaybetmesine bağlı olarak diğer hastalıkların ortaya çıkışı hızlanabilir. Çabuk bulaşan ve kolay yayılan bir hastalıktır. BELİRTİLERİ En belirgin belirtisi sulu ishal şeklinde dışkıdır. Dışkının rengi yeşil ve sarımsı bir tondadır. Hasta kuşlarda bağırsak iltihabı oluştuğu için dışkının kokusu normalden daha kötü kokuludur. Hasta kuşlarda performans tamamen düşer. Genel bir kayıtsızlık hali gelir. Yeme karşı isteksizlik vardır. Aşırı ve çabuk zayıflama saptanabilir. Hastalığa neden olan bakteri, kan dolaşımına girerek kuşun vücudunun herhangi bir organına yerleşebilir. Bu durum sonucu kuşta sistematik bozukluklar gözlenebilir. Mikrobun yerleştiği vücut bölgesine göre kuş değişik belirtiler verebilir. Örneğin mikrop kanatlara yerleşirse, kanatlarda tutulma olur ve buna bağlı olarak kuş kanadını taşıyamıyormuş gibi davranabilir. Kanat düşürür, kanatlarını yerde sürüklemeye başlar. Mikrop ayaklara yerleşirse topallama veya yürüyememe gibi sorunlarla karşılaşılabilir. Benzer belirtiler güvercinlerde Salmonella, Cocidiosis ve Hexamitiasis gibi hastalıklarda da vardır. Kuşun sorunlarının hangi hastalıktan kaynaklandığının doğru tespit edilmesi gerekmektedir. Hastalığın kesin tanısı dışkının mikroskobik analizi ile yapılabilir. BULAŞMA ŞEKLİ Hasta kuşların dışkılarında hastalık mikrobu bol miktarda bulunur. Kuşlarımızın yediği yem ve içtiği sulara bu dışkıların bulaşması yolu ile hastalık yayılır. Ayrıca coli mikrobu salmalarımızın içinde bulunan ve güvercin tozu dediğimiz beyaz toza, karışarak solunum yolu ile de alınabilir. Salma içi temizliğine dikkat edilmesi, hijyenik koşullara uyulması gibi önlemler alarak hastalığı engellemek mümkündür. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri kökenli bir hastalık olduğu için tedavisinde antibiyotikler kullanılmaktadır. İlaçla tedavi edilebilen bir hastalıktır. Amoxycilin, Trimetoprim ve Sulfadiazin, Furazolidon etken maddeli ilaçlar hastalığın tedavide kullanılmaktadır. Bu etken maddeleri taşıyan bazı ilaçlar şunlardır. ALFOXİL 20 GR TOZ Abfar firmasının üretimi olan ilaç, toz şeklindedir. Etken madde olarak 100 gr poşette 20 gr amoxycilin bulundurur. Güçlü bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde özellikle CRD ve E. Coli enfeksiyonlarında etkilidir. Ticari şekli 100 gramlık 10 aleminyum poşetten oluşan bir kutu şeklindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 10 mg ilaç vermektir. (bu yarım poşet ilacın binde biri kadardır) İlaç kuşların içme sularına her gün taze olarak karıştırılıp verilir. İlaç uygulamasına 3 gün devam edilir. ATAVETRİN ORAL SÜSPANSİYON Atabay ilaç firmasının üretimi olan ilaç, bir şurup şeklindedir. Etken madde olarak her ml’de, 80 mg Trimetoprim ve 400 mg sulfadiazin bulundurur. Geniş spektrumlu ve kesin tesirli bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Salmonella, E.Coli gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, kuş başına 7.5 mg etken maddedir. Bunu sağlayabilmek için 5 litre suya 0.5 ml ilaç karıştırmak gerekmektedir. Tedaviye 5 gün süre ile devam edilir. 4-5 gün ilaca ara verilip iyileşme sağlanmamışsa aynı doz tekrar edilebilir. Ticari şekli 50 ve 200 ml’lik şişeler halindedir. 1 Ölçek 40 cc’dir. Burada dikkat edilmesi gereken önemli bir nokta, sulfa grubu ilaçları kuşlarımızda kullandığımızda kuşlarımızın kalsiyum kaynaklarından uzak tutulması gerektiğidir. Kalsiyum içeren ilaçlar, gaga taşları, gritler, ahtapot kemikleri, kursak taşı gibi materyallerin salmadan uzaklaştırılması gerekmektedir. FURAVET TOZ Vilsan ilaç firmasının bir üretimidir. İlaç toz şeklinde olup her gramı 250 mg Neomcine ve 200 mg Furazolidon bulundurur. İlaç piyasada 20 ve 100 gramlık ambalajlar halinde satılmaktadır. Bu ilaç kombinasyonu geniş etkili bir anti - bakteriyeldir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Streptococcosis, Salmonella, E.Coli, Pasteurelosis (kolera) ve CRD gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, 2 litre içme suyuna yarım gram ilaç koyarak tedaviye her gün yenilenecek sularla 5 gün kadar devam etmektir. HAEMOPHILLUS Bu hastalığın nedeni Haemophillus adlı bir bakteridir. Bu bakteri güvercinlerimizin solunum yollarına yerleşerek burada çeşitli sorunlara yol açar. Hastalığın en önemli belirtisi kuşun her iki göz kapağında belirgin şişme ve göz sulanması ile birlikte gözlerde ve burunda akıntı gözlenmesidir. Bu hastalığı, diğer CRD hastalıklarına bağlı göz sorunlarından ayıran en önemli özellik hastalığın her iki gözde aynı anda görülmesidir. Ayrıca gözün iç dokusunda şişme vardır. Bunun yanı sıra solunum yollarında çeşitli problemler vardır. Nefes alma güçlüğü, aksırma vb. Hastalık doğrudan temas veya hastalık mikrobunu taşıyan göz ve burun akıntılarının salma tabanında biriken toz ve dışkılara bulaşarak, kuşlarımızın yedikleri yem ya da içtikleri sulara taşınması yolu ile yayılır. Hastalığın tedavisinde antibiyotikler olumlu sonuç vermektedir. Özellikle Tetracyline grubu antibiyotikler kullanılmaktadır. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. Haemoproteus adı verilen protozonun neden olduğu bir hastalıktır. Bu protozonun, Haemoproteus Columbae, Haemoproteus Sacharrovi, Haemoproteus Maccallumi adı ile bilinen üç türü güvercinleri etkilemektedir. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hastalığın yayılabilmesi için bu protozonun, güvercinin vücuduna girmeden önce ara konak görevi görecek bir canlının içinde gelişim göstermesi gerekmektedir. Bu canlı, bütün güvercin yetiştiricilerinin çok iyi tanıdığı atsineğidir. Hippobosca Equina veya Pseudolynchia Canariensis bilimsel adı ile tanılan atsineği, Haemoproteus hastalığının taşıyıcı ve bulaştırıcısıdır. Hastalık bu nedenle daha çok yaz aylarında karşımıza çıkar. Yabani güvercinlerin büyük bir yüzdesi bu mikrobu ( protozonu ) taşımaktadır. BELİRTİLERİ Hastalığın belirtileri Plasmodiosis ( sıtma ) hastalığına çok benzer. Hatta tamamen aynı belirtilere sahip olduklarını da söyleyebiliriz. Bu nedenle her iki hastalığı birbirinden ayırabilmek oldukça zordur. Bu konuda kesin tanı kan analizleri sonucu verilebilmektedir. Ateş yükselir 43 dereceye kadar çıkar ve nöbetler halinde tekrarlanır. Sarımtırak renkli ve beyaz posalı ishal şeklinde bir dışkı gözlenebilir. Hasta kuşlarda genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Alyuvarların oksijen taşıyıcı gücü azalır. Solunum sıklığı artar. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Haemoproteus’da ölüm pek görülmez ancak yan hastalıklara karşı uyanık olmak gerekmektedir. BULAŞMA ŞEKLİ Atsinekleri aracılığı ile bulaşan bir hastalıktır. Atsineği hastalığı taşıyan bir güvercinden kan emer ve bu işlem sonrası mikrobu alır. Mikrop sineğin vücudu içinde bir gelişim seyri izler ve son olarak sineğin tükürük bezlerine ulaşır. Yeni bir kan emme seansı sırasında ise buradan başka bir güvercine bulaştırılır. Güvercinin vücuduna giren mikrop 6 hafta kadar sürecek bir süreç sonucu olgunlaşır ve hastalığı bulaştırabilecek konuma gelir. Ancak güvercinde hastalık belirtileri mikrobun alınmasını takiben 15 – 30 gün sonra görülmeye başlar. Hastalıktan korunabilmek için özellikle yaz aylarında atsineklerine karşı önlemler alınmalıdır. Salmanın tel kafesle kapatılarak sineklerin girişi engellenebilir. Kuşlarınızın yabani güvercinlerle olan temasını tamamen kesmeniz gerekmektedir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bu hastalığın tedavisinde kullanılan ilaçlar, Plasmodiosis ( sıtma ) hastalığında kullanılan ilaçların aynısıdır. Bu ilaçlar, quinin ( kinin ) türevleri olan Clorquine, Primaquine ve Quinacrine etken maddesine sahip ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. TUBERCULOSIS (VEREM) GENEL BİLGİLER Güvercinlerde görülen verem hastalığıdır. Mycobakterium avium adlı bir bakterinin neden olduğu bu hastalık, yaygın ve bulaşıcı bir özellik taşır. Söz konusu bakterinin 20 kadar çeşidi bulunmakla birlikte yaygın olarak 3 tipi ile karşılaşırız. Bunlar insanda, sığırlarda ve kuşlarda hastalığa neden olan türlerdir. İnsanda ve sığırlarda görülen türü kuşlarda görülmez ancak bazı papağanlar bu durumun istisnasıdır. Kuşlarda görülen türü ise insanda ve sığırlarda da görülür. Bu nedenle kuşlardan insana ve diğer bazı memeli hayvanlara bulaşabilen bir hastalıktır. Hatta yabani güvercinlerin hastalığın ciddi birer taşıyıcısı olduğunu ve hastalığı hayvanlara bulaştırmada önemli bir rol oynadıklarını söyleyebiliriz. Yavaş gelişen sinsi bir hastalıktır. Kuşlarımız hastalığı bir süredir taşıyor olmakla birlikte belirtileri oldukça geç fark edilmeye başlar. Zamanla belirginleşen ağırlık kaybı, solgunluk hastalığın dikkat çekici özelliğidir. Tedavisi olmayan bir hastalık olup genellikle ölümle sonuçlanmaktadır. BELİRTİLERİ Ağırlık kaybı ve ciddi zayıflama ile birlikte, gözlerde, tüylerde solgunluk ve matlaşma, ağız içi mükozasında belirgin renk kaybı gözlenir. Kansızlık, ishal, baş tüylerinin kısmen dökülerek kelleşmesi, elle yoklandığında göğüs kemiğinin keskin kenarının kolayca hissedilmesi gibi belirtilerin yanı sıra, mikrop bölgesel lenf bezlerinde şişme ve yerel yaralara neden olabilir. Güvercinin iç organlarında özellikle karaciğer ve dalakta sarı – yeşil peynirimsi yumrular şeklinde doku yapısı değişiklikleri meydana gelir. Bunlar ölü kuşlar üzerinde yapılacak inceleme ile tespit edilebilirler. Ayrıca yaşayan kuşlarda yapılacak kan analizi hastalığın kesin teşhisini sağlar. BULAŞMA ŞEKLİ Hasta kuşların dışkıları hastalık mikrobunu taşır. Bunların sağlıklı kuşlarımızın tükettikleri yem ve içme sularına karışması hastalığın yayılmasını sağlar. Mikrobun salmalarımızdaki güvercin tozu dediğimiz beyaz toza bulaşarak solunum yolu ile de alınması mümkündür. Kuşlarımızın bu mikrobu toprak, mineral taşları ve grit gibi kaynaklarını yerken de alabilir. Kötü hijyenik koşullar, salmaların güneş ışığı görmemesi örneğin bodrum, depo gibi güneş görmeyen kapalı alanlarda kuş yetiştirilmesi gibi olaylar hastalık için uygun ortam yaratırlar. Salmanızın serçe, sığırcık, yabani güvercin gibi kuşlara açık olması kuşlarınıza hastalık bulaşma riskini artırır. TEDAVİSİ Ne yazık ki tedavisi olmayan bir hastalıktır. Hasta kuştan insana da mikrop geçme durumu olduğu için tedaviye çabalamak anlamsız ve zararlı olabilir. Eğer kuşunuzun hastalığının Tuberculosis ( verem ) olduğuna eminseniz bu kuşu hemen ayırmak ve söylemeye de dilim varmıyor ama imha etmek yapılacak en doğru yoldur. Çünkü hastalığı iyileştirme ihtimalimiz yoktur ve ölüm kaçınılmaz sondur. İmha yöntemi olarak öldürmek ve yakarak yok etmek önerilmektedir. HEXAMİTİASİS GENEL BİLGİLER Güvercinlerde Hexamit columbae adı verilen bir protozonun neden olduğu hastalıktır. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hexamitiasis hastalığına güvercinlerin yanı sıra tavuklar, hindiler, bıldırcınlar, keklikler, ördekler ve bazı kuş türlerinde de rastlanmaktadır. Ancak diğer türlerde hastalığa neden olan Hexamit protozonu daha farklıdır. Hastalığın karakteristik özelliği bağırsak iltihabına bağlı olarak gelişen ishal ve özellikle de kanlı ishaldir. Hastalık daha çok yaz aylarında yaygınlık kazanmakta ve özellikle genç kuşlarda daha fazla görülmektedir. Hastalığın yayılmasını önlemek için salma içi hijyenik koşullara dikkat edilmesi çok önemlidir. BELİRTİLERİ Hastalık ilk belirtisini kusma ile gösterir. Yenilen yemlerin kusulması hastalığın bir başlangıç belirtisi olmakla birlikte, mutlak değildir. Yani bu hastalığa yakalanan kuşlar mutlaka kusacak diye bir koşul yoktur. Ayrıca bu kusma başka nedenlerle olabilecek kusmalarla karıştırılabilir. Bu nedenle kusmayı takip eden günlerde yapılacak gözlemler önemlidir. Hasta kuşlarda ilk dikkati çeken özellik dışkılarının sulu ve köpüklü oluşudur. Daha sonraki aşamalarda gelişen bağırsak iltihabına bağlı olarak dışkıda kan gözlenebilir. Dışkının diğer bir özelliği de normalden daha fazla kötü bir kokuya sahip olmasıdır. Hasta kuşların ağız içi incelemesinde ağız içi mükozasında yara saptanabilir. Hastalığın gelişimine bağlı olarak, kuşlarda kayıtsızlık, bir kenara çekilip tüy kabartma ve düşünme hali ortaya çıkar. Kuşun yeme karşı ilgisi azalır ve hasta kuş daha az yem tüketmeye başlar. Buna karşın su tüketiminde bir artma vardır. Hastalığın tedavisine geç başlanması durumunda kuşlarımızda belirgin bir kilo kaybı gözlenir. Kilo kaybı özellikle genç kuşları fazlasıyla etkiler ve ölümler gelebilir. Ölüm öncesi kuşlarda titreme hali gibi bir durum saptanabilir. Aşırı kilo kaybına uğrayan kuşlarımızın tedavisini yapıp bu hastalığı ortadan kaldırsak bile kilo kaybından kaynaklanan gelişim noksanlığı bu kuşlarımızı kalan ömürleri boyunca etkiler. BULAŞMA ŞEKLİ Hastalık mikrobu, hasta kuşların dışkıları yolu ile yayılır. Dışkıda bol miktarda bulunan mikrop, bir şekilde kuşlarımızın yediği yemlere veya içtiği sulara bulaşabilir. Mikrop bulaşmış yiyeceği yiyen ya da içen kuş mikrobu alır. Mikrop vücuda girdikten sonra kuluçka süresi 4 – 5 gün kadardır. Yani mikrobun alınmasını takiben 5 gün kadar sonra hastalık belirtileri kendini göstermeye başlar. HASTALIĞIN TEŞHİSİ Hexamitiasis hastalığında hastalık belirtileri diğer güvercin hastalıklarından, Salmonella, E. Coli, Coccidiasis ve PMV1’e benzerlik gösterir. Bu nedenle kesin teşhis önemlidir. Hasta kuşların dışkılarında yapılacak mikroskobik inceleme sonucu hastalığın kesin tanısı yapılabilir. HASTALIĞIN TEDAVİSİ İlaçla tedavi edilebilen bir hastalıktır. Hexamitiasis tedavisinde, Ronidazole, Metranizadol, Dimetridazole etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeleri taşıyan güvercinler için özel üretilmiş ilaçlar yalnız yurt dışında bulunmaktadır. Yurdumuzda bunlardan sadece metronizadol etken maddeli olan bazı ilaçlar beşeri ilaç ( insanların tüketimi için hazırlanan ) olarak bulunmaktadır. Dozaj ve kullanım biçimi ayarlanarak bu ilaçlardan yararlanılabilir. Aşağıda ilk önce yurt dışında bulunan şekilleri tanıtıldıktan sonra ülkemizde bulabileceğimiz türleri hakkında da bilgi verilecektir. Bu iki ilaç Ronidazole etken maddesine sahiptir: RİDZOL-S : Toz şeklinde olan ilaç, Jeeds European firmasının bir üretimidir. %10’luk konsantreye sahip olan ilaç 4.5 litre suya bir çay kaşığı karıştırılarak 7 gün süre ile kullanılır. Yurtdışı fiyatı 20 –60 Dolar’dır. DACZAL TABLET : Dac Firmasının bir üretimi olan ilaç 5 mg’lık tabletler şeklindedir. Güvercin başına 1 tablet düşecek şekilde 7 gün süre ile verilir. Yurtdışı satış fiyatı 11.95 Dolar’dır. Bu iki ilaç Metranidazole etken maddesine sahiptir: FİSHZOLE TABLET : Thomas lab firmasının bir üretimi olan ilaç, tablet başına 250 mg ilaç bulundurmaktadır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Yurtdışı satış fiyatı 15.95 Dolardır. FLAGYL : Jeeds European firmasının bir üretimi olan ilaç, toz şeklindedir. 4.5 litre suya bir çay kaşığı kadar karıştırılarak 8 gün kadar kullanılır. Yurtdışı fiyatı 20 – 55 Dolardır. Bu ilaç, Dimetridazole etken maddesine sahiptir: HARKANKER SOLUB : Harkanker firmasının üretimi olan ilaç,toz şeklinde olup kuşların içme sularına karıştırılarak kullanılmaktadır. Bir poşet ilaç 4.5 litre suya karıştırılarak kuşlara 7 gün süresince verilir. Yurtdışı satış fiyatı 12.95 Dolar’dır. Ülkemizde bu etken maddelere karşılık gelen beşeri ilaçlar : Ülkemizde yukarda belirtilen 4 etken maddeden sadece Metranidazol içeren beşeri ilaç (insanların tüketimi için hazırlanmış) bulunmaktadır. Bu etken maddeyi taşıyan ilaçlar arasında Metrajil, Flagly ve Nidazol sayılabilir. METRAJİL : 250 mg’lık tablet şeklindedir. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. FLAGLY SÜSPANSİYON : 125 mg’lık toz halindedir. Su ile karıştırılıp şurup haline getirildikten sonra, kuşların içme sularına bir litre suya günlük olarak 5 ml karıştırılır. Tedaviye 3 gün süre ile devam edilir. NİDAZOL : 250 mg’lık tablet şeklinde olanı kullanılmalıdır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. PARAMYXOVİRÜS (SALLABAŞ) PMV-1 kısa ismiyle tanınan bu hastalık güvercin hastalıkları içinde en bulaşıcı ve ağır olanlarından birisidir ve Paratifo ile beraber en fazla güvercin ölümüne yol açan hastalıktır.. Ülkemizde genelde "sallabaş" adı ile bilinmesine rağmen, aslen sallabaş bir çok hastalıklardan dolayı güvercinlerimizde baş gösterebilen bir hastalık belirtisidir. Paratifo, zehirlenme, bakterisel enfeksiyonlar bu hastalıkların başında gelir ve hepsi kuşta sallabaş hareketinin görünmesine neden olur. Bu hastalıklardan bazıları ötekilerine göre daha kolay tedavi edilebilir ve bazılarının tedavisi yoktur. Fakat duymuş olabileceklerinizin aksine sahte sallabaş diye bir hastalık yoktur. Bu nedenle baş dönmesi dışında baska belirtilere bakılmadan her hangi bir tedavi yöntemine geçmek yanlış olabilir. PMV-1 kümes hayvanları hastalığı olan "Newcastle" hastalığı virüsünün yakın akrabasıdır. Fakat çeşitli kaynaklarda belirtildigi gibi "Newcastle" hastalığı değildir. PMV-1 tavuklara bulaşmıyacağı gibi "Newcastle" da güvercinlere bulaşmaz. Bu nedenle PMV işaretleri gösteren güvercinlere "Newcastle" hastalığı ilaçları kullanmak faydasızdır. (PMV 1 aşılarında Newcastle virüs kullanımı, bu virüsün paramyxovirosis ile yakın akrabalılığından istifade etmek amacıyla olup, tedavi amaçlı ilaçların bu ilişki kurularak kullanılmamasını belirtmek isterim. Not: Makaleye bu nokta veteriner arkadaşlardan gelen uyarılar sonucu eklemiştir) PMV-1'in bulaşma yolları doğrudan temas veya patojen taşıyan tozdur. Bu toz (salmalarımızda olan beyaz toz) hava yoluyla bulaşıma neden olabileceği gibi at sineği, sivri sinek, sinek, fare veya insanlar tarafındanda bir sonraki kuşa geşebilir. Bu nedenle salmaların havalandırma koşullarının ideal olması büyük derecede önemlidir. Salmalara sineklerin ve farelerin girmesini engelleyici önlemler alınması sadece bu hastalığa karşı değil bir çok hastalığa karşı etkin bir önlemdir. Bütün bu nedenlerin yanında bence en büyük tehlike insanlardan gelmektedir. Ziyaret ettiğimiz salmalarda dokunduğumuz kuşlardan veya elbiselerimize (özellikle ayakkabı tabanına) tutunan tozlardan en büyük zarar gelmektedir. Kuslarımızı görmeye gelen kuşçularda bu riske dahildir. Güvercin beslemenin sosyal bir hayat tarzı olduğunu düşünürsek bu riskleri ortadan kaldırmanın mümkün olmadığını fakat önlemler alınabileceğini görürüz. Bu önlemleri düşünürken aklımızda bulundurmamız gereken bir gerçek sadece gözle görünür belirtileri taşıyan kuşların bu tür hastalıklara sahip olmadığıdır. Başı dönmüş bir kuşun bu hastalığın son aşamalarında olduğu ve büyük bir olasılıkla aynı salmada daha bir çok kuşun bu hastalığı taşıdığı (hasta veya taşıyıcı durumunda) başka bir gerçektir. Bu tür riskleri olabildiğince azaltmak için bence yapılabilecek şeyler şunlardır: * Ziyaret eden kişilerin kuşlarınıza dokunmalarına izin vermeyin. Eğer ziyaretciniz usta bir kuşçuysa nedenlerini anlıyacaktır. * Salmalarınıza yürüyerek girilebiliyorsa, ziyaretcilerinizi ya dışarıda tutun yada kullanmaları için bir iki çift terlik bulundurun. * Ziyaret ettiğiniz bir kuşçudan geri geldiğinizde salmanıza gitmeden ellerinizi dezenfekte edici bir sabunla yıkayıp elbiselerinizi ve ayakkabınızı değiştirin. * Satın aldığınız kuşları kendi kuşlarınızın yanına almadan en az 30 gün ayrı bir salmada tutup gözleme alın. Çoğu virüs ve bakterilerin yaşam devri 30 gün olduğu için kendisini göstermemiş hastalıkların kuşlarınızı etkilemeden ortaya çıkmalarını sağlamış olursunuz. * Salmanızın havalandırmasına büyük önem verin. Bu kuşların dışında sizin sağlığınız içinde önemli. * Yemlik, suluk ve banyoluklarınızı salmanın dışında tutmayın. Vahşi hayvanların bunları kullanmasını engelleyin. * Serçe, kumru gibi vahşi kuşların salmanıza girmesini engelleyin. Kuşlarımızı etkileyecek bakteri, virüs ve parazitlerin vahşi hayvanlarda doğal olarak olabileceğini ve bu hayvanları sizin gözlemliyebileceğiniz şekilde etkilemiyebileceğini unutmayın. * Kuşlarınızı taşıdıkları parazitlerden arındırın. Bunların kuşlarınızın zayıf düşüp hastalıklara kolay hedef olmasına yol açacağını bilin. * Kuşlarınızı yerde yemlemeyin. Yemlik kullanmak çoğu hastalık risklerini elemine edecektir. * Kuslarınıza her gün taze su verin. * Suluk ve yemliklerinizi temiz tutup içlerine dışkı ve toz girmesini engelleyin. * Salmalarınızı temiz tutun. * Salmaların zemininin her zaman kuru olmasına dikkat edin (bakteri ve virüsler bu ortamda yaşamlarını sürdüremez ve çoğalamazlar). Dışkıları devamlı temizleyin. Çoğu hastalıkların ve kurtların bu yolla bulaştığını unutmayın. * Hastalık belirtileri gösteren kuşlarınızı hemen ötekilerinden ayırın. Bunlar benim yapmaya çalıştığım ve tavsiye ettiğim şeyler. Bunlardan her yapılan kuşlarınızın hastalanma olasılığını biraz daha azaltır. Kuşlara dokunmanın bu hastalıkla ilgisini ben kötü bir anı ile biliyorum: Yıllar önce Atlanta'dan ziyaretime gelen arkadaşım Eran'la beraber Afganistanlı bir arkadaşın kuşlarını seyretmeye gittik. Güzel bir gün geçirdik. Beraber kuşlarını uçurduk, yeni çıkan yavrularına baktık. Akşam üzeri bizim eve geldik. Eran daha ilk defa benim kuşları görüyordu. Ona ilk gösterdiğim kuş benim dumanlıların yavrusuydu. Övüne övüne gösterdim ve yavruyu anlata anlata bitiremedim. Kuş Eran'ında bayağı hoşuna gitti. Ondan sonra ergen kuşları uçurup seyrettik. Onlarda inmeden benim dumanlı yavruyu havaya attım. Daha ikinci uçuşu olduğu halde beni mahcup etmedi. Bir iki kere kuyruğunun üstünde kaydı ve ilk taklasını attı. Nasıl ama dedim. Kuş böyle olur. Daha sarı sarı tüyleri var. İki tur daha atabilse oyuna girecek. Benim gurur kaynağım. Kuşları içeri soktuk. Aksam yemeğini yiyip Eran'ı hava alanına götürdüm ve yolcu ettim. Ertesi gün akşam üzeri yine kuşlara gittigimde her zamanki gibi gözlerimin ilk aradığı kuş dumanlı yavruydu. Fakat bu sefer hafif bir halsizliği vardı. Pek uçmakta istemedi. Bende zorlamadım. Bundan sonra her gün dahada kötüye gitti ve bir süre sonra kafasıda dönmeye başladı. Ne kadar uğrastıysam nafile. Ben bunları yaparken bir gün Afganistanlı arkadaştan e-mail geldi. Halim kötü diyordu. Kuşlarım teker teker dökülüyor. Her gün bir iki tanesi ölüyor. Ne yapacağımı bilmiyorum. Birden ziyaret ettiğimiz gün aklıma geldi. Söylediğine göre ilk ölen kuş biz gittiğimizde ilk gösterdiği kuştu ve bende elime alıp incelemiştim. Eve geri geldigimde arkadaşıma kusları göstereceğim diye heyecanla ellerimi yıkamadığımıda hatırladım. İlk dokunduğum kuşumda gözüm gibi baktığım dumanlı yavrumdu. Bazen böyle hatalarımızla öğreniyoruz. Umarım benim öğrendiklerimde başkalarının hata yapmadan öğrenmesine katkıda bulunur. PMV-1'e geri dönelim: Bu hastalığın işaretleri ilk olarak kuşların fazla su içmeye başlaması ve sulu dışkularuyla başlar. Kısa zamanda kuşlarda sinir sistemi sorunları görülür. Felç, boyun titremesi, fazla ürkeklik ve klasik vücudun (özellikle boyun) dönmesi veya kıvrılması. Sinir sistemi bozukluklarının başlamasından önce bu hastalığı teşhis edebilmek için şüphelendiğiniz kuşu sırtının üzerinde yere bırakarak veya aniden yanında elinizi çırparak korkutup havalanmasını sağlıyabilirsiniz. Sinirsel bozukluk gözle görünmese dahi bu hastalığı taşıyan kuşda etkisi başlamışdır ve kuş sağlıklı olduğunda yapabileceği gibi korkutulduğunda normal bir kalkış yapamaz. Uçuşa kalkışında bir bozukluğa şahit olabilirsiniz. Sırt üstü pozisyondan ayağa kalkmasıda sorunlu olabilir. Şüphelendiğiniz kuşu gözlem altına aldığınızda yemini yerde verirseniz, yem yemekte güçlük çektiğini görebilirsiniz. Tam yeme gaga atarken başının kenara çekmeside klasik bir işaret. Hastalık ilerledikce bu hareket dahada ağırlaşacak ve kafasının tamamen dönmesine kadar gidecektir. Bu kuşları beslemek için kenarları alçak olan tabak şeklinde yemlikler ve suluklar kullanabilirsiniz. Fakat hastalık ilerledikce yem yemek ve su içmek kuş için imkansızlaşacaktır. Bu durumda elle beslemeye geçmeniz gerekebilir. Hastalıkları bu seviyeye gelen kuşların bazıları hemen ölürler ve bazılarıda yaşadıkları halde hayatlarının sonuna kadar hafif sinir sistemi bozuklukları gösterirler. Sonuçta bu hastalıktan kuşların kurtulması mümkün değildir. Yaşayanlarda taşıyıcı haline gelirler. Boyun dönmesinin ve öteki sinirsel bozuklukların bir çok hastalığa özellikle Paratifo'yada özgü olduğunu düşünürsek bu hastalığa kesin teşhis koymanın tek yolu alınacak kanın labaratuarda analize edilmesidir. PMV-1 taşıyan kuş iki üç hafta içinde antikor (kana dışarıdan giren maddelere karşı savunmaya geçen madde) üretmeye başlar ve bu antikorlar labaratuarda teşhis edilebilir. Çoğunlukla PMV-1'e yakalanan kuşlarda Paratifoda mevcuttur. Paratifo kendisini ilk iki üç gün içinde gösterdiği için test sırasında bu hastalığıda aramak yerindedir. İlk teşhisden sonra kuş paratifo için tedavi edilirse ve iyileşme gösterirse bu PMV-1 virüsüne karşı vücudun savunmasını kolaylaştırır. Dolayısıyla, anlıyacağınız gibi PMV-1'in antibiyotiklerle veya her hangi başka bir ilaçla tedavisi mümkün değildir. Yapılabilecek tek şey bu hastalığa karşı sağlıklı kuşları her yıl aşılamaktır. Konuıtuğum bazı kişiler bu aşının sadece 6 ay vücuda yararlı oldugunu ve 6 ay sonra tekrarlanması gerektiğini savunuyor. PMV-1 aslında tek başına kuşları öldürmez. Kuşların ölüm nedenlerinin başında yem ve su alamamaları gelir. Bunun yanında PMV-1 kuşun vücut savunma sistemini aşırı derecede yıprattığı için aynı zamanda kuşda baska hastalıklarda mevcuttur. Bunların başında daha önce dediğim gibi paratifo gelir. Pamuk ve Coccidiosis bunu takip eder. Hastalanan kuşlarınızın tedavi edilemiyeceği ve ölmiyenlerin bile taşıyıcı hale geleceği düşünülürse, istemesekde bir ilaç bulunana kadar tek çözüm bu kuşların imha edilmesidir. Ne olursa olsun, bu hastalığı taşıyan kusları satmak veya başkalarına vermek yapılmaması gereken bir şeydir. Bulaşıcılık özelliği çok fazla olduğu için PMV-1 salgınına yol açacak bir harekettir. Umarım kimse kendi kuşlarında yaşadığı duyguları başka bir kuşçunun veya kuşçuların yaşamasını istemez. Eğer hasta kuşlarınız sizin için çok değerliyse ve imha edemiyecekseniz, öteki kuşlarınızdan her zaman ayrı tutulmalı ve öteki kuşlarınızında devamlı aşılarının yapılması gerekmektedir. Bu hastalığı geçiren kuşların aşılanması mümkün değildir. Eğer kuşlarınız aşılanmamışsa ve bu hastalığın bir kuşunuzda mevcut olduğunu düşünüyorsanız, acil olarak geri kalan kuşlarınızı aşılıyabilirsiniz. Fakat aşıyı vurduktan sonra antikorun iki üç hafta içinde üretilmeye başlamasından dolayı bu süre içinde hastalığa yakalanan başka kuşlarınızda olabilir. Hasta kuşları imha ettikten veya salmadan çıkarttıktan sonra arta kalan yemlerin ve dışkıların her gün temizlenmesi ve salmanın bir ucundan öteki ucuna kadar dezenfekte edilmesi şarttır. Dezenfekte etmek için "SANICOOP" gibi hazır temizleyiciler kullanabileceğiniz gibi kloraklı çamaşır suyuda kullanabilirsiniz. Bundan bahsetmişken bu tür dezenfekte işlemlerini gelenek haline getirip en az haftada bir bütün yemlik ve sulukları dezenfekte etmenizi ve buna yapabildiğiniz kadar bütün salmayı eklemenizi tavsiye ederim. PMV-1 hastalığı süresince kuşlarınıza genel antibiyotik vererek yan hastalıklarla başa çıkmanız ve B vitamini takviyesiyle kuşunuza yardımcı olmanız, değerli kuşlarınızın kendilerini en kısa zamanda toparlamalarına yardımcı olur. PLASMODİOSİS (SITMA) GENEL BİLGİLER Bu hastalık, malaria ya da sıtma adı ile bildiğimiz hastalığın güvercinlerde görülen türüdür. “Güvercin Sıtması” olarak adlandırabileceğimiz bu hastalığa neden olan mikrop, plasmodiasis ( plasmodium ) adı verilen tek hücreli bir protozondur. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Güvercin sıtmasının bulaşma ve yayılmasına neden olan en önemli etken sivrisineklerdir. Bu hastalık yaz aylarında hızlı bir şekilde yayılır ve bir çok güvercini etkiler. Yabani güvercin türlerinde oldukça yaygındır. Yapılan bir araştırmaya göre yaz aylarında yabani güvercinlerin % 35’inde bu hastalığa rastlanmıştır. SİVRİSİNEKLER Sürekli güvercinlerin üzerinde yaşama eğiliminde olmadıklarından güvercinlerin bir dış paraziti olarak adlandırılmamakla birlikte sivrisinekler, zaman zaman güvercinlerden de kan emmektedirler. Özellikle bazı türleri kuşları ve güvercinleri tercih etme eğilimindedirler. Sivrisinekler, güvercin sıtmasına neden olan başlıca mikrop taşıyıcı canlılardır. Bataklık alanlar, su birikintileri, dere ve nehir kenarları, gibi sulak alanlar sivrisineklerin üreme ve gelişme alanlarını oluşturur. Dişi sinek buralara larvalarını bırakarak çoğalır. Sivrisinekler kan emerek yaşayan birer canlıdırlar. Ancak sadece dişi sivrisinekler kan emerler. Dişilerin yumurta geliştirebilmeleri için kana ihtiyaçları vardır. Erkek sivrisinekler ise su ya da bitki özsularıyla karınlarını doyururlar. Dişi sineğin kan emdikten sonra bu kanı sindirme işlemi ortalama üç – dört gün sürer. Bu süre içinde yumurtalar olgunlaşır. Daha sonra kan emme işlemi tekrarlanır. Yumurtalar 3 gün içersinde açılır ve 20 – 22 derece sıcaklıktaki bir su da 15 günlük bir sürenin sonunda erginleşirler. Dişi sivrisineklerin ömrü, yaz aylarında fazla aktiviteden dolayı 2 ay kadardır. Buna karşın kış aylarında 9 ay kadar yaşarlar. Erkek sivrisinekler ise çok daha az ömürlüdürler. Çoğu, çiftleşmeden hemen sonra ölürler. Sivrisinekler kan emmek için genellikle geceyi beklerler. Kanını emeceği canlıyı bulmasında kısa mesafelerde sıcaklık ve nem gibi uyarılar, gelişmiş duyu organları sayesinde kolayca algılanabilir. Sivrisinek kan emeceği canlının çıplak bir noktasına konar ve kan emmek için özelleşmiş hortumu sayesinde bu işi gerçekleştirir. Ağız parçaları deriyi delebilecek tarzda sokucu bir yapıdadır. Her sokuşta yaraya tükürük akıtılır böylelikle kan emilmese bile hastalık taşıyan mikroplar bulaştırılabilir. Sivrisinek türleri içersinde, Culidae familyasına dahil olan Anopheles, Culex ve Aedes türleri yaygın olarak gözlenen ve gerek insan ve gerekse hayvanlardan kan emen türlerdir. Bu türler kuşlar ve güvercinlerden de kan emerler. Özellikle Culex pipiens’i adı ile bilinen tür özellikle kuşları tercih etmektedir. Ancak bu türler içinde sadece Anopheles türü üyeleri sıtma mikrobunu taşırlar. Ülkemizde sıtma mikrobu taşıyan Anopheles türleri arasında Anopheles sacharovi ile Anopheles maculipenis en yaygın rastlananlardır. Anopheles türlerini diğer sivrisineklerden ayırt etmenin en kolay yolu bir yere konduğunda duruş şekline bakmaktır. Anopheles türleri kondukları zemine vücutları dar açı yapacak şekilde dururlar. Diğer türlerin vücutları zemine paralel konumdadır. Ayrıca Anopheles türlerinin uzun ayakları, yuvarlaklaşmış pulları ve hafif benekli kanatları bulunur. Bu özelliklere bakarak uzman olmayan birisi bile hastalık taşıyıcısı Anopneles’i diğerlerinden ayırt edebilir. HASTALIĞIN BELİRTİLERİ En dikkat çekici özellik nöbetler halinde tekrarlayan ateş yükselmesidir. Kuşu etkileyen plasmodium türüne göre ateş süreleri ve tekrarlanma sıklıkları değişebilir. Bu dönemlerde kuş birden durgunlaşır, bir kenara çekilip düşünmeye ve tüy kabartmaya başlar. Nöbet geçtiğinde kısmen düzelmiş gibi bir görüntü sunar ancak genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Böyle bir durumda ölümcül sonuçlar doğurabilir. Hastalığın kesin teşhisi kan analizi ile yapılabilir. Tedavi edilmemesi durumunda hastalık kronikleşme eğilimi gösterir ve zamanla böbrekleri tahrip ederek kuşun ölümüne neden olabilir. HASTALIĞIN TEDAVİSİ VE KULLANILAN İLAÇLAR İlaçla tedavi edilebilen bir hastalık olmakla birlikte hastalığın teşhisinde gecikilmesi ve tedaviye geç başlanması sonucu tedavisi zor hale gelebilir. Hastalıktan kaçınabilmek için özellikle salmalarınızın içine sivrisineklerin girmesini engellemek gerekmektedir. Uygun gözenekli bir kafes teli kullanılabilir. Kuşlarımızın diğer yabani güvercinlerle ve başka kuşlarla olan temasını engellemek yerinde olur. Quinie ( kinin ) etken maddeli ilaçlar hastalığın tedavisinde kullanılmaktadır. Bu ilaçlar, Clorquine, Primaquine ve Quinacrine etken maddelerine sahip olan çeşitli ticari isimlerdeki ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. Pox (Frengi - Çiçek) Frengi, halk arasında bazen çiçek olarakta geçer, "borreliota avium" virüsünün neden olduğu bir hastalıktır. Özellikle posta güvercinlerinde olmak üzere çoğunlukla sıcak havalı bölgelerde ortaya çıkar. Çoğu virüs nedenli hastalıkların aksine bulaşıcılığı dışkılardan değil, kan emici parazitlerden (sivri sinek, kene, sakırga, uyuz böceği etc.) dolayıdır. Parazitler taşıyıcı görevi yapıp hastalığı güvercinden güvercine bulaştırır. Bu virüs temasla bulaşabileceği gibi içme suyunda günlerce yaşayabilir. Virüs hasta kuşlar tarafından salya ve sümük ile vücuttan atılabilir. Bu sıvılar yerde kuruduktan sonra tozlaşarak hava yoluyla bulaşıma neden olabilir. Virüsün bu yolla vücuda girebilmesi için güvercinin vücudunda yaranın (kavga sırasında göz ve gaga kenarındaki yaralanmalar gibi) mevcut olması lazımdır. Virüs vücutta bulduğu yaralardan kan sistemine geçip burada çoğalır ve bu safhadan sonra yeniden deri yüzeyine gelip burada tomurcuklanır. Tomurcuklanma insanlarda görülen çiçek hastalığına benzer (hastalık isminide buradan almıştır). Tomurcuklanma çoğunlukla derinin tüylerle kaplı olmadığı kısımlarda baş gösterir. Göz çevresi, gaga başlangıcı ve bacaklar tomurcuklanmanın kabuklaşmış bir şekilde görülebileceği bölgelerdir. Hastalık hızla ilerler ve ve tamurcuklar irin üretmeye başlarlar. Hastalığı öldürücü yapanda bu özelliğidir. Virüs burun, ağız veya boğaza yerleşip irin üretmeye başladığında kuşların nefes alması ve yem yemesi büyük derecede zorlaşır. Hasta kuşun boğazına bakıldığında sarı ve sert irin parçaları görülebilir. Bu parçalar tomurcuk yaralarından çıkarak oluştuğundan sıyrılması veya deriden koparılması oldukca zordur. Bu safhada akılda bulundurulması gereken en önemli şey görülen belirtilerin pamuk (trichomoniasis) ile aynı olmasıdır. Pamuk tedavisi altında bulunan bir kuşun tedaviye cevap vermemesi halinde frengi tedavisine geçilmesinde fayda vardır. Bu iki hastalığın aynı zamanda bir kuşda mevcut olma olasılığıda yüksektir. Frengiyi pamuktan ayırmanın en kolay yolu tomurcuklanmanın bacaklarda veya pamuğun olmıyacağı bir şekilde göz çevresinde bulunmasıdır. Bunun yanında mikroskop altında teşhis konulabilir. Frengi daha çok genç kuşlarda ortaya çıkar. Yavruların derisinde kahverengimsi renklenmeler görülebilir. Frengili bir kuşun nefes alma ve yeme sorunlarının dışında yan hastalıklara karşı açık olması başka bir sorundur. Bu konuda yardımcı olabilmek için A vitamini takviyesi yaparak derinin dayanıklılığını arttırıp tomurcuk yaralarının hızla iyileşmesini sağlıyabilirsiniz. Frengi geçiren kuşlar hayatlarının sonuna kadar bu hastalığa bağımsızlık kazanır (Burada frenginin değişik varyasyonlarının var olduğu unutulmamalı. Bağımsızlık sadece kuşun atlattığı varyasyona karşı oluşur). Yıllık frengi aşısı (İğne yerine kuşun baldırından yolunan bir kaç tüyle derinin tüy deliklerinden kanamasını sağlayıp buraya sürülecek süngerimsi bez parçaları ile veriliyor) bu hastalığa karşı kuşlarınızın en sağlam savunması olur. Colombovac'ın frengi ve paratifo karışım aşısı kullanılarak iki hastalığa karşı birden aşılıyabilirsiniz. Bu aşı iğneyle her kusa 0.02cc ölçüsünde boyundan verilir. 6 haftalıktan küçük kuşlara aşı yapmamanız ve bir kere açılan aşı paketini bir daha kullanmak üzere elinizde tutmamanız önemlidir. Frengi tek başına kuşları zor öldüreceği için tek yapacağı şey kuşların çirkin bir görünüşte olmalarını saşlamasıdır. Asıl sorun yan hastalıklardan gelmektedir. Bunun dışında pamukla beraber baş göstermesi bir çok kuşunuzu kaybetmenize neden olabilir. Hastalık sırasında 1/4 Carnidazole tabletini kuşlara ağızdan 6 gün süresince verip bunu 7 gün süresiyle Albon vererek takip etmek bu yan hastalıkların etkisini ortadan kaldırır. Bunların dışında Pox Dry ilacını hem frengi hemde pamuk yaraları üzerine sürerek hızlı bir şekilde kurumalarını sağlıyabilirsiniz. Bu hastalığın bulaşmasının en büyük nedeni parazitler olduğu için salmanızda kuşlara değmiyecek yerlerde parazit (sinek?) kağıdı kullanabilirsiniz. Belli bir süre sonra bu kağıtların güvercin tozu nedeniyle etkisiz hale gelmesi doğal. Bu durumda kağıtları sıcak suda sabunla hafifce yıkayıp yeniden kullanabilirsiniz. Bunu yaparken pilastik eldiven takmanız iyi olur. Eğer bu kağıtları kullanmak zor geliyorsa (kuşlara sert bir şekilde yapışırlar) boş bir cam kavanoza beş altı tane kağıt şeridini koyup salmada geceleri ağzını açabilirsiniz. Böylece kuşlarınıza zarar vermesini ve tozlardan etkilenmesini engellemiş fakat sinek, sivri sineklerden kurtulmuş ve öteki parazitleride salmadan uzaklaştırmış olursunuz. Kronik Solunum Yolu Hastalıkları Chronic Respiratory Disease İngilizce adından kısaltılarak CRD adı ile anılan ve Türkçe’ye “kronik solunum yolları hastalıkları” olarak çevirebileceğimiz bu hastalık tek bir hastalığın adı değil, solunum yollarında görülen bütün hastalıkları kapsayan ortak bir adlandırmadır. Güvercinlerde görülen CRD hastalıkları 3 tanedir. Bu yazı kapsamında söz konusu 3 hastalık hakkında bilgi verilecektir. Bu hastalıklar şunlardır ; 1 ) Ornithosis 2 ) Coryza 3 ) Mycoplasmosis Solunum yollarında görülen bu hastalıklar güvercinlerde çok yaygındır. Kış aylarında havanın soğumasına paralel olarak bu hastalıklarda da artma gözlenir. Bu hastalıklar aslında pek çok faktörün karşılıklı etkileşimi sonucu gelişmektedir. Kuşlarımız için öldürücü bir hastalık görünümü sunmamakla birlikte bazı ağır vakalar ölüm riski taşımaktadırlar. Ancak asıl sorun CRD hastalıklarının, başka hastalıklarla birlikte görülme eğiliminde olmasıdır. Bu durum kuşlarımızda ciddi güç kaybı yaratmakta ve hayati risk tehlikesi artmaktadır. Kuşlarımızda görülen uçuş yeteneklerinin azalmasının en önemli nedenleri arasında CRD hastalıkları gelmektedir. Stres etmenleri, kötü hijyenik koşullar vb. hastalığın gelişmesinde çok önemli rol oynarlar. Bu etkenler yok edilmediğinde hastalık geçmiş gibi görünse bile her zaman tekrarlama eğilimindedir. Şimdi bu hastalıkları tek tek ele almak istiyoruz. ORNİTHOSİS GENEL BİLGİLER Chlamydia Psittaci adı verilen bir bakterinin neden olduğu hastalıktır. Psittacosis adı ile de bilinen bu hastalığa, bazen etken olduğu mikrop nedeni ile Chlamydia hastalığı da denilmektedir. Aslında bir solunum yolları hastalığıdır. Güvercinlerde dikkat çekici belirtisi gözlerde olduğu için bir göz hastalığı olarak algılanır. Güvercinler arasında yaygın olarak gözlenen hastalıklardan biridir. Bir çok kuş türünde gözlenen bu hastalık dünya çapında yayılmıştır. Diğer evcil olmayan kuş türleri hastalığı taşıyıcı rol oynamaktadırlar. Kuşların yanı sıra insan ve diğer memeli hayvanlarda da görülmektedir. Yaygın olarak papağanlar, güvercinler, hindiler ve ördeklerde rastlanır. Chlamydia Psittaci kendi içinde hem RNA hem de DNA bulunduran bir bakteri olmakla birlikte üreyebilmek için içinde bulunduğu vücuttan bu maddeleri almak durumundadır. Bunun sonucu olarak vücut hücrelerinde bozulmalara neden olur. BELİRTİLER Hastalık uzun süre belirgin bir belirti vermeyebilir. Bu nedenle gözden kaçar ve dikkat edilmez. Ancak kuşun güç kaybına bağlı olarak kendini birden ortaya koyabilir. İlk aşamalarda kuşlarımızdaki performans eksikliğinin yaygın sebebi olabilir. İyi uçan bir kuşumuzun belirgin başka bir neden olmaksızın uçuş gücünün düşmesi dikkatimizi çekmelidir. Yavru kuşlarda yavaş gelişme durumu dikkat çekicidir. Hastalık, sonraki aşamalarda iştahsızlık, tüy kabartma, kilo kaybı, karışık tüyler, titreme, gerginlik hali, yeşilimsi ishal ve solunum yolları sorunları ile kendini gösterir. Daha ağır vakalarda mikrop karaciğere yayılır ve burada iltihaba neden olur. Bu aşamada hastalık ölümcül olabilir. Hastalığı geçiren ve tedavi olan kuşlar kısmen bu mikroba karşı güç kazanırlar ve tekrar bu hastalığa yakalanma riskleri azalır. Mikrop vücuda girdikten bir süre sonra gözlerde ve özellikle de tek gözde yaşarma ve akıntı ile kendini belli eder. Aslında başka belirtileri olmakla birlikte bunlar genellikle dikkatten kaçmaktadır. Böyle olduğu için Ornithosis sanki bir göz hastalığı gibi algılanmakta ve bir çok kaynakta Ornithosis ( one eye cold ) olarak belirtilmektedir. ONE EYE COLD ( TEK GÖZ SOĞUK ALGINLIĞI ) Chlamydia Psittaci mikrobun gözlere yayılması durumunda ilk belirtiler gözde yaşarma ve akıntıdır. Daha sonra kuşun gözünün etrafı tam yuvarlak bir halka şeklinde hafif şişer ve kızarır. Su toplamış gibi bir görünümü vardır. Genellikle tek gözde ortaya çıkar. Bu nedenle hastalığa İngilizce “One Eye Cold” denilmektedir. Tedavi edilmediği taktire bu kızarıklık gözün etrafına doğru yayılır ve genişler. Gözdeki yaşarma ve akıntı mikropludur ve mikrobun etrafa bulaşmasına yol açar. Güvercinlerde gözlerde belirti veren diğer bir hastalık olan Coryza ile karıştırılmamalıdır. Bazı durumlarda gözdeki enfeksiyon körlük ile sonuçlanabilir. BULAŞMA ŞEKLİ Kuşların mikrop taşıyan göz akıntıları salmalarımızın içinde bulaşmaya neden olurlar. Mikrop salma içindeki güvercin tozu dediğimiz beyaz toza bulaşarak taşınır. Solunum yolu ile diğer kuşlara geçer. Hasta kuşlarla aynı banyo suyunda yıkanan diğer kuşlar hastalığı kapabilirler. Bu hastalığın önemli bir özelliği insana da bulaşmasıdır. Eğer güvercininizden mikrop kapmak istemiyorsanız dikkat etmeniz ve hasta kuşlarınızı süratle tedavi etmeniz gerekmektedir. Güvercin tozunun solunması yolu ile mikrop insana geçebilmektedir. Hastalık mikrobu güvercin tarafından bırakıldıktan sonra 48 saat kadar salma içinde aktif konumdadır. Bu süre içinde mikrop alınırsa mikrobu alan insanın hassaslığına bağlı olarak 5 – 14 gün arasında hastalığın ilk belirtileri görülmeye başlar. İnsandaki belirtiler gribe benzer. Ateş, baş ağrısı, göğüs ağrısı, yorgunluk, kuru öksürük ve bazı vakalarda mide bulantısı ve kusma görülür. HASTALIĞIN TEŞHİSİ Hastalığın kesin teşhisi kan tahlili ile yapılabilir. Ölü kuşlar üzerinde yapılacak otopside karaciğerde yapılacak inceleme ile belirlenebilir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri nedenli bir hastalık olduğundan antibiyotiklerle tedavi edilebilmektedir. Antibiyotik uygulaması oldukça olumlu sonuçlanmaktadır. Çeşitli antibiyotikler bu amaçla kullanılabilir. Yurt dışında bu hastalık için üretilmiş olan güvercin ilaçlarında yaygın olarak Chlortetracyline ve Doxycyline etken maddeli ilaçlar kullanılmaktadır. Ayrıca kuşların multivitamin takviyesine gereksinimleri vardır. Tedavi sırasında kuşların kalsiyum kaynaklarından ( grit taşları, gaga taşları vb) uzak tutulması gerekmektedir. Çünkü kalsiyum Chlortetracyline’nin ve Doxycyline’nin etkisini azaltmaktadır. Yumurtlama dönemlerinde olan kuşlarda bu ilaçlar kullanılmamalıdır. DEVAMİSİN OBLET Chlortetracyline Hydrochloride etken maddeli bir ilaçtır. Her oblette 500 mg etken madde bulunur. 12 Obletlik ambalajlar halinde piyasada satılmaktadır. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Vetaş ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur, Güvercinler için kullanılabilecek doz, kuş başına günde 15 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ¼ tablet karıştırmak uygun olabilir. DOXİVET –10 SOLÜSYON Doxycyline Hiklat etken maddeli bir ilaçtır. Farmavet ilaç firmasının bir üretimidir. 1 ml ilaçta 100 mg etken madde bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur. Ticari şekli 1 ve 5 litrelik ambalajlar halindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 25 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ½ ml karıştırmak uygun olabilir. TERRAMYCİN GÖZ MERHEMİ Beşeri ( insanlar için üretilmiş) bir ilaçtır. Pfizer firmasının bir üretimi olup, eczanelerde bulunur. Etken maddesi, Oxytetracyline ve B vitaminidir. Antibakteriyel etkili bu merhemin deri ve göz için olan iki tipi bulunmaktadır. Göz için olanı güvercinlerde One eye cold hastalığında haricen yani dışarıdan sürülmek sureti ile kullanılabilir. Günde 1 – 2 kez dıştan göze sürülür. Ticari şekli 3.5 gr’lık tüpler halindedir. BAVİTSOLE ORAL SOLÜSYON Bayer ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. A, D3, E ve C vitaminleri bulunduran kompleks bir ilaçtır. Güvercinlerde her türlü vitamin eksikliklerinde, çeşitli hastalıkların tedavisinde takviye olarak ve sulfa grubu ilaçlar ile antibiyotiklerin yanında destekleyici olarak kullanılabilir. Bu ilacı tercih etmemin önemli bir nedeni içinde kalsium bulundurmamasıdır. Böylece sulfa grubu ilaçlar ile bazı antibiyotiklerin yanında kullanılması gayet uygundur. Ticari şekli 1 litrelik solüsyon halindedir. Güvercinler için 1 litre içme suyana 10 kuş hesabıyla 1 cc ilaç katılarak kullanılabilir. İlaç kullanımına 5 gün devam edip bir süre ara verdikten sonra tekrar başlanabilir. CORYZA ( CATARRH ) GENEL BİLGİLER “Akut Nezle” adı ile Türkçeleştirebileceğimiz bu hastalığa Hemophilus İnfluenzae adlı bir bakteri neden olmaktadır. Kış aylarında daha çok görülen bir hastalıktır. Hastalığın mikrobu güvercinin üst solunum yollarına yerleşir ve çeşitli rahatsızlıklar yaratır. Çoğu zaman Ornithosis ve mycoplasmasis ile bağlantılı olarak gelişir. Hızlı bir gelişme gösterir. Hassas bazı kuşlarda mikrobun vücuda girişinden itibaren 3 gün içinde hastalığın belirtileri görülmeye başlar. BELİRTİLER Başlangıçta kuşun boğazda sümük salgısı vardır. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Kuşta solunum zorluğu, hırıltılı soluma, ses çıkartırken hırıltılı tonlar gözlenebilir. Sulu yeşilimsi bir ishal ile birlikte ağırlık kaybı, uçma isteksizliği ve yavru veriminde düşme vardır. En belirgin özellik, burun akıntısı ve her iki gözde de yaşarmaların olmasıdır. Burun akıntısı ve sümük kokuludur. Sinüslerde şişme gözlenir. Buna bağlı olarak kuşun yüzünde ve özellikle göz altlarından buruna doğru olan bölümlerde, alın kısmında hissedilir bir şişme oluşur. Öldürücü bir hastalık değildir. Bu hastalıktan ölüm oranı oldukça düşüktür. Ancak güvercinlerde ciddi strese neden olan bu durum diğer hastalıkların ortaya çıkma ihtimalini hızlandırır. BULAŞMA ŞEKLİ Diğer evcil olmayan kuşlarla her türlü temasın kesilmesi gerekir. Bu kuşlar mikrobu taşıyıcıdırlar. Hasta kuşların akıttıkları göz yaşı ve sümük gibi salgılar mikropludur. Bu salgıların kuruyup toz haline gelmesi ve bu tozun solunması yolu ile hastalık bulaşabilir. Ayrıca aynı salgıların içme suyuna bulaşması ile bu suları içen kuşlarda hastalanabilirler. Doğrudan temas ise başka bir bulaşma yoludur. Eğer salmanızda bir güvercin hastalandıysa mikrobun bütün salmaya yayıldığını düşünerek önlem almanız gerekmektedir. Temizlik, salma içinde havadar bir ortam yaratılması rutubetin önlenmesi ve hijyenik koşullara uyulması hastalık riskini azaltacaktır. HASTALIĞIN TEŞHİSİ Kesin olarak teşhis edebilmek için burun veya göz akıntısının laboratuvar analizi gereklidir. HASTALIĞIN TEDAVİSİ Bakterilerin neden olduğu bir hastalık olduğu için antibiyotiklerle tedavi edilebilmektedir. Antibiyotiklerin yanı sıra vitamin takviyesi de önemlidir. Ornithosis için kullanılan ilaçlar aynen Coryza için de kullanılabilir. Farklı olarak Tylosin ve Eritromycin etken maddeli antibiyotikler ilave edilebilir. Vitamin olarak yukarda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. TYLAN SOLUBE Tylosin etken maddeli bir antibiyotiktir. Lilly - Ellanco fimasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Kullanılacak doz 10 güvercin için 1 gram ilaç 2 litre içme suyuna karıştırılarak verilebilir. İlaç tedavisi 2 gün sonra kesilmelidir. Ağır durumlarda tedavi 5 güne kadar uzatılabilir. ERİTROM TOZ Eritromycin etken maddeli bir antibiyotiktir. 1 gram ilaç 55 mg etken madde içerir. Ticari şekli 50 ve 225 gr’lık cam kavanoz halindedir. Vetaş ilaç firmasının bir üretimi olup veteriner ilaçları satan eczane ve ecza depolarında bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. 1 litre içme suyuna 1 ölçek ilaç ( 2.5 gr ) karıştırılarak 5 gün süre ile kullanılır. kullanılır. MYCOPLASMOSİS ( MYCOPLASMA ) GENEL BİLGİLER “Kronik Nezle” olarak adlandırabileceğimiz bir hastalıktır. Hastalık genellikle diğer solunum yolları hastalıklarının ( Ornithosis ve Coryza ) bir devamı şeklinde kendini gösterir. Hastalığın etkeni mycoplasma denilen bakteri kökenli bir organizmadır. BELİRTİLERİ Hastalık belirti olarak diğer solunum yolları hastalıkları ile benzer bir görüntü sunduğu için ayırt edilmesi oldukça zordur. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Burunun dış deliklerinde sümük şeklinde oluşum vardır. Burun akıntısı gözlenebilir. Aksırma vardır. Sinüslerdeki şişmeye bağlı olarak yüzde ve özelliklede alın bölgesinde şişlik görülebilir. Kuşun ateşinde yükselme saptanabilir. Özellikle geceleri hırıltılı soluma, hırıltılı ses çıkarma ve nefes alıp verme zorlukları gözlenebilir. Kuş nefes alırken burnu tıkalı olduğu için gagasını açma ihtiyacı hisseder. Solunum yetersizliğine bağlı olarak kandaki oksijen miktarı azalır ve kuşun derisinin rengi mavimsi bir görünüm kazanabilir. Kuşun karın ya da göğüs bölgesindeki tüyler aralanıp deri rengi kontrol edilebilir. Güvercinlerimizin uçuş performansını ve yumurta üretimini olumsuz etkiler. Bu hastalıktan ölüm olayı görünmez ancak bu hastalığın en önemli özelliği diğer bazı hastalıklarla birlikte seyretmesidir. Böyle olduğunda kuşumuz için ölümcül risk yaratır. BULAŞMA ŞEKLİ Bu mikroorganizma sadece canlı vücutlarda yaşayabilir. Kuşun vücudunun dışında yaşam süresi 15 – 20 dakika ile sınırlıdır. Bu nedenle fazla bulaşıcı bir hastalık değildir. Bulaşma daha çok direk temas yolu ile olmaktadır. Evcil olmayan diğer kuş türleri mikrobu taşıyıcıdırlar. Hastalığın yayılmasını sağlayan en önemli etkenler arasında, olumsuz hijyenik koşullar, salma içinde rutubetli ve havasız ortam başta gelmektedir. HASTALIĞIN TEŞHİSİ Kesin tanı hasta kuşun kan analizi ile olabilir. Kuşun salgıladığı balgamın tahlili ise hastalığın aşamaları ve seyri konusunda bir fikir vermektedir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın tedavisinde antibiyotikler ve vitaminler kullanılmaktadır. Ancak genellikle başka hastalıklarla birlikte görüldüğü için ilaç seçimi buna göre değişebilir. Enrofloxacin, Oxytetracyline, Chlortetracyline ve Doxycyline, Tyolisin etken maddeli ilaçlar tercih edilmektedir. Vitamin olarak yukarıda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. BAYTRİL % 2.5 ORAL SOLÜSYON : Bayer ilaç firmasının bir üretimidir. Kuvvetli bir anti – bakteriyeldir. Etken maddesi Enrofloxacin’dir. 1 cc ilaç 25 mg etken madde içerir. Aynı ilacın % 10 konsantrasyona sahip olanı da vardır. Ancak %2.5’luk olan güvercinler için daha uygundur. Hem de fiyat olarak daha ucuzdur. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde kısa adı CRD olan kronik solunum yolları hastalıklarında ve Salmonella’da kullanılmaktadır. Kullanılacak doz, güvercin için, kuş başına 5 mg’dır. Bu dozu sağlayabilmek için, 2 litre suya 0.5 cc ilaç karıştırmak uygundur. Tedaviye 5 gün süre ile devam edilmelidir. Ticari şekli 20, 50, ve 100 ml’lik şişeler halindedir. Salmanızda yumurtlamak üzere olan kuşlarınız ya da bir aydan küçük yavrularınız varsa bu ilacı kullanmayınız. Yavrularda sakatlıklara neden olabilmektedir. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. CADİDİASİS(TERS KURSAK) GENEL BİLGİLER Sour crop İngilizce adından Türkçe’ye çevirerek “ters kursak” olarak adlandırabileceğimiz bu hastalığın bir diğer adı da Candida’dır. Ancak hastalık Mycosis, Muget, Yeast ve Trush adları ile de bilinmektedir. Fungal bir hastalıktır. Fungal ( mikotik ) hastalıklar, toplumda yaygın adı ile mantar hastalıkları olarak bilinirler. Cadidiasis de sindirim bölgesinde özelliklede üst sindirim bölgesinde görülen müzmin formlu bir mantar hastalığıdır. Mantar mikrobunun yerleşerek hastalığa neden olduğu bölge, proventriculus olarak da adlandırılan ve kursaktan sonra yemlerin geçtiği ilk durak olan bezlimidedir. Kümes hayvanları, serçeler, su kuşları ve güvercinler gibi bir çok kuş türünde yaygın olarak gözlenen bir hastalık türüdür. Hastalığa neden olan mikrop Candida abbicans adı verilen bir mantar organizmasıdır. Bu mikrop daha çok bozuk yem üzerinde bulunmaktadır. Güvercinlere bayat ve küflü yem verilmesi hastalık riskini çok artırmaktadır. Güvercinlere verdiğimiz yemlere mutlaka dikkat etmemiz gerekmektedir. Verilen yemlerin taze olduğunun göstergesi bu yemlerin çimlenme yeteneğini kaybetmemiş olmasıdır. Yem olarak “kısır tohum” kullanımı doğru değildir. HASTALIĞIN SEYRİ VE BELİRTİLERİ Mantar mikrobu, bezlimide de küçük yaralara neden olmaktadır. Bu yaralar ufak boğumlar oluşturarak zaman zaman bir aşağıda yer alan ve taşlık adı ile bilinen kaslımideye yemlerin geçişini engellemektedir. Bu durum bezlimide de yemlerin birikerek buranın şişmesine neden olur. Bu şişlik bezlimideyi çevreleyen kan damarlarına basınç yapar ve yer yer bu damarların patlayarak kanamasına neden olur. Bu kanama güvercinin ağzından kan gelmesi şeklinde kendini gösterir. Bazen yuva içinde yerde gördüğümüz ve anlam veremediğimiz kan birikintilerinin nedeni bu tür bir kanama olabilir. Bezlimidenin bu şekilde tıkanması aynı zamanda kursakta şişmeye de neden olur ve kuş ara sıra kusarak bu birikintiyi atmaya çalışır. Kusmuğun kokusu, normalden daha kötüdür. Özet olarak kursakta şişme ve zaman zaman tahıl içeriğinin kusulması ile birlikte ağızdan kan gelmesi gibi durumlar bize kuşumuzda Cadidiasis hastalığının bulunduğunu göstermektedir. Bunun yanı sıra ağız içinde veya damakta görülen küçük beyaz mantar oluşumları hastalığı belirlememizi sağlar. Daha net olan bu göstergelerin yanı sıra, kayıtsızlık, iştah kaybı, ağırlık kaybı, kuşun performansında düşme, genç kuşlarda yavaş büyüme, yetişkin kuşlarda telek çürümesi ve tüy yarılması gibi durumlar bu hastalığın diğer belirtileridir. Boğazdan alınacak örnekler üzerinde yapılacak kültür testi ile hastalığa kesin teşhis koyulabilir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın deri enfeksiyonu ve tüy çürümesi şeklinde seyretmesi durumunda, banyo sularına karıştırılacak Bakır sülfat sorunun çözümü için yararlıdır. Bakır sülfat için 1 / 2000 oranında sulandırma uygundur. Bunun için 4.5 litre banyo suyuna yarım çay kaşığı ilaç karıştırmak gerekir. Bakır sülfat, sülfürik asidin bakır II okside etkimesi ile oluşan bir tuzdur. Parlak mavi kristaller halindedir ve piyasada “göz taşı” adı ile satılmaktadır. Kimyasal madde satan yerlerde bulunabilir. Ankara’da Ulus’ta Modern Çarşı’nın üst katında var. Hastalığın bezlimide de görülmesi durumunda Nystatin etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeyi bulunduran güvercinler için üretilmiş özel bir ilaç ülkemizde yoktur. İçinde bu etken maddeyi bulunduran beşeri bir ilaç eczanelerde bulunabilir. Bu ilaç veteriner hekim kontrolünde gerekli doz ayarlaması yapılarak güvercinlere kullanılabilir. Bu ilaç hakkında kısa bilgiler aşağıda verilmiştir. MİKOSTATİN SÜSPANSİYON Her ml de 100.000 IU etken madde bulunmaktadır. Bristol-Myers squibb firmasının bir üretimidir. Anti fungal etkilidir. Canker (Pamuk) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Kaynak: veterinerhekimiz.com

http://www.biyologlar.com/guvercin-hastaliklari

DENİZ EKOSİSTEMLERİNDEKİ BOZULMALAR

Deniz ekosistemlerindeki bozulma bir bütün olan çevrenin yapı ve işleyişini olumsuz etkiler. Bazı varlıkların azalması diğer bazı varlıkların azalmasına da neden olur. Madde döngülerinin gerçekleşmesi zorlaşır. Sonuçta doğadaki enerji tükenmeye doğru gider. 1. Dünya Coğrafyasının Değişmesi Ekosistemin yapı ve işleyişini oluşturan iklim, toprak, hava, bitki hayvan gibi faktörlerin olumsuz yönde değişmesi çevrenin ekolojik özelliklerini de değiştirir. - Uzun süren kuraklıklar sonucu bir ekosistemdeki bitki ve hayvan sayısı hızla azalır. - Suların kirlenmesi sonucu suya ışık girişi azalır, suyun hava oranı düşer. - Toprakta oluşan tahribat ve kirlenmeler önce bitkilerin sonrada diğer canlıların zamanla ölmesine neden olur. - Ormanların kesilmesi ve yanması çevrenin çölleşmesine ve sonrasında küresel ısınmaya etkide bulunur. 2. İklimin Değişmesi İklim şartlarının değişmesi , ekosistemdeki canlı yaşam ve dağılışını etkiler. İklimi değişen bir bölgede bazı canlılar göç ederken, bazı canlılar ölür veya şartlara uymaya çalışır. Ozon tabakasının incelmesi, ormanların azalması, havanın kirlenmesi, yağışların azalması, çölleşmenin başlaması bir bölgedeki iklimin ve coğrafik yapının değişmesine etkide bulunur. 3. Erozyonların Oluşması Toprağın su ve rüzgar etkisiyle aşınıp , taşınmasına erozyon denir. Çevredeki bitki örtüsünün azalması, şiddetli yağmurların yağması, karların kısa sürede erimesi, fırtınaların oluşması, toprağın yanlış sürülmesi, eğimli alanlardaki ormanların yanması gibi etkenler erozyonların oluşmasına neden olur. Erozyonlar sonucu bir bölgenin toprağı tahrip olur. Tarım toprağının ürün verimi azalır. Erozyonu önlemek için en etkili yöntem eğimli ve çorak toprakların ağaçlandırılmasıdır. Çünkü bitki kökleri toprağı tutarak erozyonla sürüklenmesini önler. Erozyona uğrayan bir bölgede toprağın yapısı değişeceği için canlıların yaşamı da tehlikeye girer. 4. Su Kaynaklarının Azalması Suların kirlenmesi ve kuruması sonucu çevredeki kullanılabilir su oranı azalır. Çevredeki su kaynaklarının azalmasına, yağışların düşmesine, tarımsal verimin düşmesine ve hidroelektrik santrallerdeki enerji üretiminin kısılmasına neden olur. Bu durum canlıların beslenmesini olumsuz olarak etkiler. Su oranı azlan topraklarda daha az sayıda bitki yaşar. Ortama uyan bazı hayvanlar bu topraklarda barınır. Kısacası çevre zamanla çölleşir. Doğal özelliklerini de zamanla kaybeder. 5. Enerji Kıtlığının Başlaması Madenlerin azalması sonucu termik santraller, su kaynaklarının azalması sonucu hidroelektrik santralleri, petrolün azalması sonucuda ulaştırma araçlarının kullanım oran ve verimi azalır. Enerji kıtlığının başlaması durumunda insanların sosyal yaşamı felç olur. Besin zincirinin oluşumunu sağlayan enerji nakli gerçekleşemez. Ortamın biyolojik dengesi bozulur. 6. Canlı Çeşitliliğinin Azalması Ekosistemdeki fiziksel ve kimyasal şartların değişmesi canlıların yaşama, yayılış ve üramesini etkiler. Bozulan şartlara uyanlar yaşarken diğerleri yok olur. Çevredeki bitki sayısının azalması besin zincirindeki canlı tür ve sayısının azalmasına neden olur. Örneğin, ormanların yanma ve kesilmesi sonucu buralarda barınan tüketici canlıların büyük kısmı ölür.

http://www.biyologlar.com/deniz-ekosistemlerindeki-bozulmalar

Kümeleme Analizi

İnsanın doğası gereği yeni bir bilgiyi öğrenmek, ve öğrendikten sonra bu bilgiyi kolay ve hızlı bir şekilde geri çağırmak için beynimizde sınıflara ayırırız. Giysi dolabımıza kıyafetlerimizi ayırarak koyduğumuz gibi. Pantolonlarımız bir yerde, kazaklarımız ayrı bir yerde olduğu gibi. Benzer giysileri bir araya koyarız çünkü bulmak istediğimizde nereye bakmamız gerektiğini biliriz hemde ulaşmak daha hızlı ve pratiktir. Verimizde benzer gözlemlerin olduğunu düşünüyorsak ve sınıflara ayırmak istiyorsak kümeleme analizi kullanırız. Kümeleme analizi veriya ait değişkenleri kullanarak, benzer gözlemleri kümeleme işlemidir. Biyoinformatikte genel resmi vermesi ve sonraki adıma ışık tuttuğu için sıkça kullanılan bir analiz yöntemidir. Benzer genleri kümelemek istediğimizde, bir gen ailesine sahip sekansları kümelemek için, gen ve protein anatasyonu yapabilmek için gibi işlemlerde kullanılır. Kümeleme analizi yapabilmek için bir çok yöntem mevcuttur. Verinin yapısına göre yöntemlerin avantajları ve dezavantajları vardır. Keşfedici veri analizinden sonra uygun yöntem seçilebilir. Bir diğer konu ise küme sayısının araştırmacı tarafından belirlenmesi yada algoritma tarafından belirlenmesidir. Eğer veri hakkında önceden bir bilgi varsa(hiyerarşik olmayan kümeleme) araştırmacı tarafından belirlenmesi avantajlı olabilir. Eğer hiç bir bilgi yoksa algoritma tarafından belli küme sayısına bölünür (Hiyerarşik kümeleme) ve doğruluğunu geçerlemek için ANOVA gibi analizler kullanılabilir. Kümelere ayrılan bir veri üzerinde çalışmak çoğu zaman daha avantajlıdır. Kümelerin karakteristik özellikleri keşfedilebilir ve uygun bir model kurularak değişkenler üzerinden yorum yapılabilir.

http://www.biyologlar.com/kumeleme-analizi

Bitlerin Biyolojisi, Bulaşma Yolları ve Zararları

Bitlerin Biyolojisi: Her iki takımdaki bitler yumurtalarını konaklarının kıllarına veya tüylerine yapıştırırlar. Yalnız insan vücut biti yumurtalarını çoğunlukla çamaşırların kıvrımIarına yapıştırır. Yumurtadan ısıya bağlı olarak 1 -3 hafta içinde birinci dönem nymphler çıkar. Yine ısıya bağlı olarak 1 -3 hafta içinde ikinci ve üçüncü dönem nymph devresini tamamlayarak erişkin hale erişirler. Yani bitler gelişmelerinde yarım metamorfoz gösterirler. Bitler stational ve permanet parazit olduklarından konaklarından ayrı olarak uzun süre yaşayamazlar. Tavuk mallophagaları yumurtadan ergin hale gelinceye kadar gelişmelerini aynı konakta geçirirler. Konaklarından ayrılınca ölürler. Bunlarda yumurtadan ergin hale gelene kadar 32 ile 36 gün geçer. Kopulasyon erkek altta dişi üstte olur. Dişi döllenmiş yumurtalarını tüylere bırakır. Bu esnada tüylerin keçeleşmesine sebep olurlar. Yumurtadan 7 -8 günde I.dönem nymphler çıkar, 3 hafta sonra da gömlek değiştirmeler tamamlanarak ergin hale gelirler. Bitlerin Bulaşması: Bit enfestasyonlarında bulaşma yakın temasla olur. Sağlam hayvanlar enfeste olanlarla yakın bir şekilde bulunduğunda bulaşma olur. Bu nedenle kış aylarında hayvanların ahır ve ağıllarda yanyana ve sıkışık olarak bulundurulmaları sonucu sürü içinde parazitler hızla yayılırlar. Bunun için kış aylarında özellikle de kışı uzun süre devam eden yörelerde bit enfestastasyonları daha yaygındır. Bulaşmada bulaşık malzemelerin özellikle de koşum ve tımar takımları büyük rol oynarlar. Bitlerin Yaptığı Zararlar: Bitlerin en önemli etkileri konaklarında irritasyona ve huzursuzluğa neden olmalarıdır. Ayrıca Anoplura takımındaki bitler kan emerekte konaklarına zarar verirler. Yine bazı bit türleri enfeksiyon etkenlerinin bulaşmasında vektör veya arakonak olarak görev yaparlar. Konak üzerinde gezinen bitler konaklarını huzursuz ederek istirahat etmesine, yem yemesine engel olurlar. Buna bağlı olarakta ekonomik kayıplara yol açarlar. Özellikle mallophagalar kanatlılarda yumurta veriminin düşmesine ve gelişmede gerilemeye sebep olurlar. Ayrıca bitler sığırlarda süt üretiminin düşmesine ve danalarda kilo artışında azalmaya yani zayıfkalmasına yol açarlar. Ayrıca koyunlarda yünlere zarar verebilirler. Bitler dışkıları ile yapağıyı kirletip, mat ve görünümünün karışık bir hal almasını sağlarlar. Hayvanlar kaşınma sonucu yaralanmalara maruz kalabilirler ve yapağının dökülmesine neden olurlar. Koyunlarda bacak bitleri irritasyon ve kaşınma sonucu topaIlıklara yol açabilir. Danalarda ısırma ve kılları yutma sonucu midede kıl yumaklan (tricolit) oluşabilir. Hayvan ve insanlardaki bitlerin en önemli etkileri hastalık etkenlerini taşımalarıdır. Bitler insanlara Borrelia recurrentis (dönek ateş, humma-i raci) ve Rochalimaea quintana (siper ateşi) 'yı bulaştırır. İnsanlardaki vücut biti Pediculus humanus corporis Rickettsia prowazeki (bit tifüs etkeni)'ye Spirocheta (Borrelia)'lara, kemiricilerde bulunan Polyplax cinsindeki bitler Haemobartonella, Eperythrozoon ve Francisella türlerine, Haematopinus suis türü domuz humması ve domuz vebasına vektörlük yaparlar ve bu hastalıkları bulaştırırlar. Köpeklerin biti olan Trichodectes canis türü ise yine köpeklerin bir cestodu olan Dipylidium caninum'a arakonaklık yapar. Memeli hayvanlarda bitlere karşı mücadelede solüsyon yada toz halindeki insectisitler kullanılır. Genellikle solüsyon halinde kullanılır. Bu ilaçlar bir sünger ile sürülür yada pülverize edilir. Küçük hayvanlarda ise bu ilaçlar genellikle banyo tarzında kullanılır. Havaların soğuk olduğu zamanlarda ise toz şeklinde kullanılması tercih edilir. Kanatlı mallophagalarına karşı mücadele de ise solüsyon şeklindeki ilaçlar kanatlıların üzerine pülverize edilir. Ayrıca kümesteki çatlak ve oyuklarda ilaçlanmalıdır. Soğuk zamanlarda veya ilacın etkisinin uzun süre devam etmesi istendiğinde toz şeklindeki insectisitler kanatlıların tüyleri arasına serpilir. Bitlerin biyolojik gelişmeleri genel olarak iki hafta içerisinde tamamlandığı için ilaç uygulaması 14 gün aralıkla iki defa tekrarlanmalıdır. Bit enfestasyonlarının teşhisi ise konak üzerindeki bitlerin (ergin) veya kıllara yapışık olan fiçı şeklinde ve kapaklı yumurtaların görülmesiyle yapılır. Hemiptera Takımı (Heteroptera) : (Tahtakurulan, Tısböcekleri, Yarımkanatlılar). Bu takımdaki artropodların ağız organelleri sokmaya ve emmeye elverişlidir. Geçici parazittirler. Genellikle iki çift kanatlan vardır. Bu kanatlardan öndekiler daha sert olup, arkadakiler membranözdür. Bazı türlerde kanatlar iyice küçülmüştür. Gelişmelerinde yarım metamorfoz görülür yani hemimetabol böceklerdir. Büyük çoğunluğu bitkisel besin ile beslendiği halde bazıları da hayvansal besin ile beslenirler. Birçok tür tarımsal bitkilerin zararlıları olarak doğada yaşarlar. Birkaç türde hayvanlardan ve insanlardan kan emerek parazitlenirler. Bunlardan sağlık önemi olanlar Reduviidae ve Cimicidae ailelerinde toplanırlar.  

http://www.biyologlar.com/bitlerin-biyolojisi-bulasma-yollari-ve-zararlari

Ekosistem Çeşitleri

Belirli bölgede bulunan ve birbiri ile dolaylı ya da dolaysız ilişkide olan canlılarla bu canlıların yer aldığı cansız çevre Ekosistemi oluşturur. Doğada büyük ekosistemler ve bunların içerisinde de daha küçük ekosistemler bulunur. Tabiat farklı özellikte pek çok ekosistemin birleşmesinden oluşur Kara ve su ekosistemi olmak üzere başlıca iki çeşit ekosistem bulunur. Kara ekosistemlerini çayırlar çöller, mağara, step, tundra, ova, dağ gibi daha küçük olan ekosistem parçaları oluşturur. Su ekosistemlerini de okyanus, deniz, Göl, ırmak, havuz, bataklık gibi ekosistem parçaları oluşturur. Çevredeki ekosistemlerin birleşmesiyle yeryüzünün doğal ortamı oluşmaktadır. Çevredeki her ekosistem çeşidinin kendisine has olan farklı fiziksel ve kimyasal özellikleri bulunur. Ekosistemdeki Bozulmaların Çevreye Etkileri Ekosistemdeki bozulma bir bütün olan çevrenin yapı ve işleyişini olumsuz etkiler Bazı varlıkların azalması diğer bazı varlıkların azalmasına da neden olur. Madde döngülerinin gerçekleşmesi zorlaşır. Sonuçta doğadaki enerji tükenmeye doğru gider. 1.Dünya Coğrafyasının Değişmesi Ekosistemin yapı ve işleyişini oluşturan iklim, Toprak, Hava, bitki hayvan gibi faktörlerin olumsuz yönde değişmesi çevrenin ekolojik özelliklerini de değiştirir Uzun süren kuraklıklar sonucu bir ekosistemdeki bitki ve hayvan sayısı hızla azalır suların kirlenmesi sonucu suya ışık girişi azalır, Suyun Hava oranı düşer Toprakta oluşan tahribat ve kirlenmeler önce bitkilerin sonrada diğer canlıların zamanla ölmesine neden olur Ormanların kesilmesi ve yanması çevrenin çölleşmesine ve sonrasında küresel ısınmaya etkide bulunur 2.İklimin Değişmesi İklim şartlarının değişmesi ekosistemdeki canlı yaşam ve dağılışını etkiler İklimi değişen bir bölgede bazı Canlılar göç ederken, bazı canlılar ölür veya şartlara uymaya çalışır. Ozon tabakasının incelmesi, ormanların azalması, Havanın kirlenmesi, yağışların azalması, çölleşmenin başlaması bir bölgedeki iklimin ve coğrafik yapının değişmesine etkide bulunur 3.Erozyonların Oluşması Toprağın su ve rüzgar etkisiyle aşınıp taşınmasına Erozyon denir çevredeki bitki örtüsünün azalması şiddetli yağmurların yağması, karların kısa sürede erimesi, fırtınaların oluşması, toprağın yanlış sürülmesi, eğimli alanlardaki ormanların yanması gibi etkenler erozyonların oluşmasına neden olur Erozyonlar sonucu bir bölgenin toprağı tahrip olur. Tarım toprağının ürün verimi azalır. Erozyonu önlemek için en etkili yöntem eğimli ve çorak Toprakların ağaçlandırılmasıdır. Çünkü bitki kökleri toprağı tutarak erozyonla sürüklenmesini önler. Erozyona uğrayan bir bölgede toprağın yapısı değişeceği için canlıların yaşamı da tehlikeye girer 4.Su Kaynaklarının Azalması Suların kirlenmesi ve kuruması sonucu çevredeki kullanılabilir su oranı azalır çevredeki su kaynaklarının azalmasına, yağışların düşmesine, tarımsal verimin düşmesine ve hidroelektrik santrallerdeki enerji üretiminin kısılmasına neden olur. Bu durum canlıların beslenmesini olumsuz olarak etkiler su oranı azlan Topraklarda daha az sayıda bitki yaşar. Ortama uyan bazı hayvanlar bu topraklarda barınır kısacası çevre zamanla çölleşir doğal özelliklerini de zamanla kaybeder 5.Enerji Kıtlığının Başlaması Madenlerin azalması sonucu termik santraller, su kaynaklarının azalması sonucu hidroelektrik santralleri, petrolün azalması sonucuda ulaştırma araçlarının kullanım oran ve verimi azalır. Enerji kıtlığının başlaması durumunda insanların sosyal yaşamı felç olur. Besin zincirinin oluşumunu sağlayan enerji nakli gerçekleşemez. Ortamın biyolojik dengesi bozulur. 6.Canlı Çeşitliliğinin Azalması Ekosistemdeki fiziksel ve kimyasal şartların değişmesi canlıların yaşama, yayılış ve üramesini etkiler Bozulan şartlara uyanlar yaşarken diğerleri yok olur. Çevredeki bitki sayısının azalması besin zincirindeki canlı tür ve sayısının azalmasına neden olur Örneğin ormanların yanma ve kesilmesi sonucu buralarda barınan tüketici canlıların büyük kısmı ölür. Ekosistem Çeşitleri Ekosistemelerin incelenmesinde kara ve su olmak üzere başlıca iki büyük sistem ayırt edilebilir. Bir su ekosistemi en küçük su birikintisinden okyanusa kadar değişen ortamlardaki karşılıklı ilişkileri kapsar. Ortamların farklılığına karşın, suyun canlılar üzerindeki etkisi bu Ekosistemde yaşayan Canlılarda benzer özellikler yaratmıştır Hem Su, hem çok daha karmaşık yaşam biçimlerinin gözlendiği kara ekosistemelerini tek tek incelemek olanaksızdır. Bu sistemlerin topluca incelenmesi ise birçok önemli ayrıntının, fiziksel ve kimyasal bileşenlerin canlıların değişik çevrelerin özelliklerine göre geliştirdiği uyum biçimlerinin enerji akışı ve besin çevriminde ortaya çıkan özelliklerin göz ardı edilmesine yol açar bu nedenle canlıların yaşadığı çevreler belli tipler altında toplanarak incelenir. Genellikle su ekosistemleri deniz Suyu ve tatlı su (ya da denizler ve iç denizler) olarak ayrılabilir iç sularda kendi içinde durgun Sular (göller) ve akarsular olmak üzere iki alt bölüme ayrılır Kara ekosistemleri yaşama ortamlarına ya da kara çevrelerine göre kutup bölgeleri ve tundra, kuzey ve ılıman bölge ormanları, çayır, otlak, çöl ve yarı çöl alanlar, cangıllar ve yağmur ormanları, savanlar ve öbür astropik ormanlar biçiminde ayrılır. Egemen bitki örtüsü temelinde belirlenen bu tiplerin yanı sıra değişik ölçütlere dayanarak farklı sınıflandırmalar da yapılmaktadır. Su ekosistemi: Okyanuslar, denizler veya tatlı sular (Ör: Gölet, bataklık, sazlık, ve nehirler…vb) gibi alanlardaki yaşayan canlıların çevre ilişkisini incelen bir çeşit ekosistemlerdir.

http://www.biyologlar.com/ekosistem-cesitleri

Zehirli Bitkiler

Tarihin ilk çağlarından günümüze kadar insanlar bitkilerden besinlerini sağlamış ve şifa aramışlardır ve beslenmelerinin yanında önemli hastalıklarını da şifalı bitkilerle tedavi edebilmişlerdir. Ancak her bitkinin düşüldüğü kadar yararlı olmadığı ya da yararlı etkilerinin yanında zararlı olabilen başka etkilerinin de olduğu görülmüştür. Günümüzde de devam eden her ottan şifa arama geleneği özellikle kırsal yörelerde birçok kaza zehirlenmelerinin ortaya çıkmasına neden olmaktadır. Merak sonucu özellikle çocukların bilmedikleri bir bitkinin yemiş, yaprak ya da başka bir kısmının tadına bakmaları ya da zararsız başka bitkilere benzetip toksik bitkiyi yemeleri sonucu sık sık zehirlenmeler olmaktadır. Birçok bitki çok toksik olmalarına karşın kontrollü kullanıldıklarında tedavide yararlı olabilmektedir. Örneğin Digitalis (yüksük otu) afyon (haşhaş), belladon alkaloidleri, veratrum alkaloidleri, vinca alkaloidleri, ipeka vb, gibi birçok bitkisel toksik Madde günümüzde doğal ya da yarı sentetik türevler şeklinde tedavide kullanılmaktadırlar. Ancak bilinçsiz bir şekilde supraterapötik (aşırı) dozlarda uygulandıklarında çok ağır zehirlenme tablolarının ortaya çıkmasına yol açabilirler. Rönesans döneminin ünlü Alman hekimlerinden Paracelsus (l493-1541)’un ‘yalnız miktar zehiri belirler’ (Dosis sola facit venonum) cümlesi bitkisel maddeler için de geçerlidir. Zehirli mantarlar başta olmak üzere diğer toksik bitkilerle akut zehirlenmelerin şiddetini yenilen miktar belirlenmektedir. Bitkilerle zehirlenmeler daha çok kabuklu yemiş ya da meyve kısmıyla olmaktadır. Örneğin Akdiken (Rhamni cathartica) yılan yastığı (Dracunculus vulgaris), güzel avrat otu (Atropa belladonna), hanımeli (Lonicera japonica), yaban yasemini (Solanum dulcamara), taflan (Prunus laurocerasus), ardıç (Juniperus sp.) ökse otu (Viscum album), çoban püskülü (İlex aquifoİiıım) porsuk ağacı (Taxus bacata), sarmaşık (Parthenocissus sp.), it üzümü (Solanum, nigrum) vb, gibi bitkiler kabuksuz ya da kabuklu meyvelerinde bulunan aktif toksik kısımlarıyla zehirlenmelere neden olmaktadırlar. Buna karşılık, birçok bitki diğer kısımlarıyla ya da tüm bitki olarak toksiktirler. Dikenleri ya da keskin kenarlı yapraklarıyla mekanik olarak. özellikle ciltte irritasyon şeklinde toksik etkilere yol açmaktadırlar. Günlük gıda olarak kullandığımız bazı sebzelerin az ya da çok toksik olabildiklerini unutmamak gerekir. Örneğin patatesin toprak üstündeki yeşil kısımları orta şiddette sindirim bozukluklarına neden olmaktadır. Buna karşın,birçok taze sebzenin kurutulmasıyla içerdikleri toksik maddeler aktivitesini kaybetmektedir. Bazı bitkiler aynı cinsten olmalarına karşın toksik etkileri büyük ölçüde değişebilmektedir. Örneğin Aconitum napellus tehlikeli bitkiler içinde en zehirli olanıdır. Buna karşın aynı cinsten Aconitum septentrionale Eskimolar tarafından sebze olarak yenmelerine karşın hiçbir zehirlenmeye neden olmamaktadır. Aynı şekilde Digitalis purpurea güçlü kardiyotoksik etkisi olmasına karşı aynı cinsten olan Digitalis jaune aynı oranda toksik değildir. Bu nedenle, gerek tedavide gerekse gıda olarak kullanılmalarında bitki cins ve türlerinin tanınması gerekir. Bitkilerin içerdikleri toksik maddelerin kaynağı çeşitlidir. Bazıları alkaloid (Protein), bazıları da glikozid ya da heterosid (Saponinli steroidik yapılı siyanojenli vb.) içerebildikleri gibi birçoğunda olduğu gibi karmaşık kompleks yapılı bir toksik madde de içerebilmektedirler. Zehirli bitkilerde bulunan bu toksik maddeler insan ve hayvanlarda iç organlarda meydana getirdikleri lezyonlar sonucu metabolizmayı bozabildikleri gibi deri ve mukozalarda irritasyonlar yaparak hafif ya da ağır bazı zehirlenme belirtilerinin ortaya çıkmasına neden olmaktadırlar. Ancak, farklı hayvan türlerinin ve insanın zehirli bitkilere verdikleri reaksiyon her zaman aynı şiddette ve özellikte olmayabilir. Örneğin. salyangozlar belladonla beslendikleri halde zehirlenmezler, halbuki bu gibi hayvanları yiyen insan ya da memeli hayvanlarda belladon zehirlenme belirtileri görülebilmektedir. 1. ZEHİRLİ BİTKİLERİN TOKSİK UNSURLARI Bitkisel zehirlerin toksik bileşenleri kimyasal yapılan yönünden önemli farklılıklar gösterir. Toksik unsurların çoğu organik karakterdedir. Kimi bitkiler ise, bazı mineral maddeleri, bünyelerinde toksik dozlarda akümüle edebilirler.Alkaloitler ve protidler azotlu organik; glikozitler, tanenler, laktonlar ve benzerleri azotsuz organik zehirlerdir. Selenyum, nitrat-nitrit gibi mineral zehirler ile kimyasal yapılarından çok, etki mekanizmaları daha iyi bilinen östrojenik etkili özdekler, antiVitaminik faktörler ve fotodinamik ajanlar zehirli bitkilerin başlıca toksik unsurlardır. 1.1. Alkaloidler Alkaloitler güçlü farmakolojik etki ve toksisiteye sahip olan, moleküler yapılarında azot bulunan alkali karakterde bitkisel kökenli özdeklerdir. Azot, çoğunlukla heterosiklik bir halkada ya da lateral zincirde bulunur. Genellikle katı ve renksizdirler. Baz halde iken suda çözünmezler; asitlerle oluşturdukları tuzlar suda çözünür. Alkaloitlerin tannat ve iyodür tuzları suda çözünmez. Bu özellik nedeniyle, alkaloit içeren bitkilerle zehirlenmelerde tanenli bileşikler ve iyodürler, sindirim kanalından alkoloit emilimini engellemek için kimyasal antidot olarak kullanılırlar. Alkaloitlerin etki mekanizmaları çok farklıdır Çoğu sentral sinir sistemi (opium alkaloitleri) ve otonom sinir sistemi (antikolinerjik solanase alkaloit ve alfa adrenolitik ergot alkaloitleri) aracılığıyla etkir. Kolşisin ve benzerleri emeto katartik; pirolizidin alkaloitleri de hepatotoksik olarak etkirler. 1.2. Glikozitler (Heterositler) Hidroliz (enzimatik ya da asit ortamda) sonucu bir ya da birkaç molekül şeker (glikoz) ile karbonhidrat olmayan ve aglikoz (genin) olarak adlandırılan ve toksik etkiden sorumlu olan bir madde veren özdeklerdir. Glikoz ve aglikoz arasındaki bağın karakterine göre 0 - glikozitler (Oksijen atomu eterik bağ) ve S - glikozitler (kükürt atomu) olmak üzere iki gruba ayrılırlar. 1.2.1. O-Glikozitler 1.2.1.1. Siyanogenetik Glikozitler Aglikozları, çoğunlukla nitrilli bir alkoldür. Enzimatik hidroliz sonucu şeker molekülleri, siyanhidrik asit (HCN) ve bir keton ya da aromatik aldehit oluşur. Toksiditeden sorumlu olan hidroliz ürünü siyanhidrik asittir. Farklı ailelere ait çoğu yem bitkisi ve yabani türlerde bulunan siyanogenetik glikozitler özellikle ruminantlarda selüler respirasyondan sorumlu enzim sistemini inhibe ederek, akut formda ve yüksek mortaliteyle seyreden zehirlenmeye neden olurlar. Hidroliz, aynı bitkide bulunan özel enzimler ( lineaceae; keten tohumu, emulsin; acı badem) tarafından katalize edildiği gibi, ruminantlarda retikülo-rumen mikroflorası tarafından salgılanan enzimlerle de gerçekleştirilebilir. Vejetasyonun ilk dönemlerinde yüksek olan glikozit düzeyi vejetasyon ilerledikçe azalabilmektedir. Kuraklık, donma ve çiğnenme gibi bitkilerin normal büyüme hızını bozan faktörler HCN düzeyinde artışa neden olur. Silaj glikozitlerin hidrolizini hızlandırır. Böylelikle serbest hale geçen HCN silajın havalandırılmasıyla giderilebilir. Ancak, bu işlem sırasında çalışanların kendileri için önlem almaları gerekir. - Bitki hormonu herbisitler uygulandıkları yörelerde yetişen bitkilerde siyanogenetik glikozit düzeyinin artışına (fitohormonların dolaylı toksisitesi) neden olurlar. HCN düzeyinde fosfatlı gübreler azalmaya azotlu gübreler ve bitki parazitleri ise artışa neden olur. Siyanogenetik glikozit taşıyan bitkilerin toksisitesi değinilen koşullara göre değişkenlik gösteren HCN düzeyi ve glikozit yanında tüketilen bitki miktarı ve tüketim süreci, HCN’in sindirim kanalında liberasyon hızı ile emilim ve dokularda detoksikasyon düzeyine bağımlıdır. Bu nedenle, toksik dozu belirlemek zordur. Siyanogenetik glikozitlere karşı en duyarlı hayvanlar ruminantlardır. Koyun ve keçi muhtemelen enzimatik farklılık nedeniyle sığıra oranla daha dayanıklıdırlar. Tek midelilerde, midenin asit ortamında glikozidi hidrolize eden enzim, kısmen de olsa yıkımlanabilir. HCN, karaciğerde spesifik bir enzim (rodanaz) tarafından tiyosiyanata dönüştürülerek metabolize edilir. Ancak, özellikle sığırda başka metabolik olayların olduğu da düşünülmektedir. Serbest HCN’in ruminantlarda letal dozu 2-2.3 mg/kg dolayındadır. Bu miktar HCN’i glikozit formunda (4-4.5 mg/kg) kısa sürede tüketen ruminantlarda ağır zehirlenme tablosu şekillenir. Otlakta bir hayvan saatte 4 mg/kg düzeyde glikozide saatlerce tolore edebilir. Koyun, günde (gün boyu) 15-20 mg/kg HCN´i detoksike edebilir. Genelde 100 gramında 20 mg (200 ppm) HCN içeren bitkiler, hayvanlarda zehirlenmeye neden olur. Sindirim ya da solunum yoluyla emilen HCN ve siyanürler, selüler respirasyon (hücre solunumu) enzim sistemini (sitokrom a3) bloke ederek histotoksik anoksiye neden olurlar. 1.2.1.2. Steroidik Glikozitler kalp yetmezliğinin etkin ilaçları olan ve çok küçük dozlarda kardiyotonik olarak kullanılan kalp glikozitlerini (dijitalikler) kapsayan bu grup moleküllerin aglikozu, asteroit (siklopentano-perhidrofenantren) halka sistemi ve bunun 17 no’lu karbonuna bağlanan beşgen ya da altıgen bir lakton halkasından ibarettir. Majör glikozit kaynağı olan bitkilerden yüksük otu türleri (Digitalis cariensis, D. davisiana, D. ferruginea D. grandiflora, D. lanata, D. trojana D. viridiflora) ile ada soğanı (Urginea maritima) yanında glikozit kaynağı olarak kullanılmayan, ancak toksik unsur olarak kardiyotonik etkili glikozit içeren inci çiçeği (Convallaria majalis) adonis türleri (A. aestivalis -keklikgözü, A. flammea - kandamlası), zakkum (Nerium oleander) ve kimi Helleborus türleri (Bohça otu, H. orientalis, H. vesicarius) de Anadolu ve Trakya’da yaygın olarak yetişmektedir. Bununla birlikte anılan bu bitkilerle evcil hayvanlarda zehirlenme insidensi azdır.Kimi kaynaklarda saponinler (saponositler) de bu grupta gösterilmektedir. Saponinlerin aglikozu (sapogenin) steroidik ya da triterpenik (oleanan çekirdekli) yapıdadır. Sistemik toksiditeleri az olan saponinler yem bitkilerinde de yaygın olarak bulunurlar. Yaklaşık 80 aileye ait 500’ü aşkın bitki türünden Saponin izole edilmiştir. Ruminantlarda meteorizasyonun temel nedenleri arasındadırlar; kanatlılarda ise, gelişme ve yumurta verimini inhibe ederler. Antrasenik glikozitlerin aglikozları ise, antrasen halkalı bir polifenoldür. Işkın, kara akçaağaç gibi bitkilerde bulunan bu glikozitler yüksek dozda şiddetli purgasyona neden olurlar. 1.2.2. S - Glikozitler (Glusinolatlar) Özellikle Cruciferae (turpgiller) ailesine ait bitkilerin yaprak gövde kök ve özellikle tohumlarında bulunan ve genellikle uçucu olan, S - glikozitler, enzimatik (myrosinase) hidroliz sonucu glikoz ve organik aglikoz oluşturur. Organik aglikoz bir izotiyosiyanat (senevol) bir tiyosiyanat ya da bir organik nitril ve kükürttür. Glusinolatların hidroliz ürünlerinden izotiyosiyanatlar, deri ve mukozalarda irkiltici etkiye (gastro-intestinal, respiratuvar ve renal lejyonlar) sahiptirler. Ayrıca, guatrojenik (proguatrin) etkileriyle tiroid bozukluğuna neden olurlar. Tiyosiyanatlar ise, tiroid bezinde iyot düzeyini düşürürler; böylelikle iyot uygulamasıyla sağaltılabilen bozuklukları oluştururlar. Brassica türü bitkilerde (kolza, lahana, ot lahanası, şalgam) bulunan 5-glikozitler hidrolizle stabil olmayan izotiyosiyanat’a, bu da kristalizasyonla goitrine dönüşür. S-glikozitlerin hidroliz ürünü izotiyosiyanatlar irritan ve antitroit; goitrin ise guatrojen etkilidir. Bu nedenle s-glikozit içeren bitkilerle zehirlenme klinik yönden farklı seyreder 1. Akut zehirlenme izotiyosiyanatların irritan etkisinden kaynaklanan bu sendrom sindirim, solunum bozuklukları ile renal lezyonlar ve nefritle karakterizedir (hardal, turp). 2. Tiroit bozuklukları Bitkilerin yeşil kısımlarında bulunan glusinolatların hidroliz ürünü inorganik izotiyosiyanatlar, dönüşümlü kompetisyonla, tiroitte iyot akümülasyonunu önleyerek iyot yönünden fakir rasyonla beslenen- hayvanlarda guatr şekillenmesine neden olurlar. Bu sendrom iyotla sağaltılabilir. Proguatrinin son ürünü olan goitrin ise tiroksin formasyonunu inhibe ederek iyot kullanımıyla sağaltılamayan tiroit bozukluğuna neden olur. Glusinolatların hidroliz ürünleri plasenta engelini geçer ve sütte de atılırlar. Bu nedenle, gebeliği döneminde glusinolatlı bitkilerle beslenen hayvanların yavrularında (keçi) ve süt emenlerde de tiroit bozuklukları görülür. Glusinolat içeren kimi bitkiler, özellikle kolza ve Lahana etyolojisi tam bilinmeyen, anemi ve hemoglobinüriyle karakterize olan zehirlenmeye de neden olabilirler. 1.3. Saponinler (Saponositler) Kalıcı köpük oluşturmaları ve acı lezzetleriyle karakterize olan saponinler, azotsuz nötr ya da hafif asit karakterli, glikozit benzeri maddelerdir. Aglikon ya da sapogeninleri steroit veya oleanan çekirdekli triterpenik yapıdadır. Soğukkanlı (poiklioterm) hayvanlar için çok toksiktirler. Yerel olarak irkiltici etki oluşturur; eritrositlerin hemolizine neden olurlar. Bitkiler aleminde oldukça yaygındırlar; 500’ü aşkın bitki türünden saponin izole edilmiştir. Kaba yonca (Medicago sativa), karamuk (Agrostemma githago), sabun otu (Saponaria officinalis), gazel boynuzu (Lotus corniculatus), tırfıl (Trifolium repens, T. fragiferum), at kestanesi (Aesculus hippocastanum), bohçaotu (Helleborus orientalis), yılan yastığı (Arum maculatum) yüksek düzeyde saponin içeren bitkilerdir. Saponinlerin toksisitesi kaynak bitkiye, yapılarına ve alınan miktara bağımlıdır. Acı lezzette oluşları tüketimi sınırlandırabilir. Tanen ve kolesterol bağlanmayla saponinleri inaktive edebilirler. Toksisite saponinden çok hidroliz ürünü sapogeninle ilgilidir. Bu nedenle, saponinlerin hidrolizini gerçekleştirebilen sindirim kanalı mikroflorası da (Butryrivibrio) toksisiteyi etkiler. Saponin içeren yem bitkileri ruminantlarda meteorizasyonun başlıca nedenleridir. Rumen içeriğinin yüzeysel tansiyonunu azaltarak stabil köpük oluştururlar. Böylelikle, fermantasyon gazları geğirmeyle (erukasyon) vücut dışına çıkarılamaz. Meteorizasyon oluşumunda kuşkusuz diğer faktörlerin, özellikle sitoplazmik proteinlerin (kaba yoncada % 4) de rolü vardır. Öte yandan, saponin ve sitoplazmik proteinler yanında, bunlarla inaktif kompleks oluşturabilen taneni de içeren bitkilerin (gazel boynuzu) meteorizasyon oluşturma insidensi düşüktür. Kimi saponinler, sindirim kanalından salgılanan enzimleri, özellikle kimotripsini inhibe ederler. Bu özellikteki saponinler sindirim kanalında irritasyona neden olurlar. Saponinler kanatlılarda gelişme ve yumurta verimini inhibe ederler piliç rasyonlarına % 5 oranında katılan kaba yonca unu, içerdiği saponinler nedeniyle, piliçlerde büyümeyi geciktirir. Yumurta tavuğu yemlerine katılan kaba yonca unu (% 10) yumurta verimini düşürür. Saponinlerin bu etkisi, rasyona kolesterol ilavesiyle giderilebilir. Saponinli bitkilerle zehirlenmeye karşı profilaktik önlemler alınmalıdır Bitkilerin pek çoğunda kendilerini savunmaları için bir miktar zehir bulunur. Sonuçta onlar bitki ve bir tehlike anında kaçacak yerleri yok. Bazılarını şirin görüntüsüne aldanmayın çünkü öldürücü olabilirler. Hint baklası Hint yağını bilen ya da kullanan herkes yağı oluşturan maddelerden birinin yani hint baklasındaki bir bileşenin kişiyi birkaç dakikada öldürecek zehre sahip olduğunu tahmin etmez. Meyankökü Bu meyankökü bitkisinin şirin bir görüntüsü var ancak aslında dünyanın en zehirli maddelerinden birisi eğer çiğnenir ya da yutulursa hemen ardından kişinin ölümü gerçekleşir. Boğanotu Canlı mor rengine aldanıp sakın zararsız olduğunu düşünmeyin zira bu bitki en ölümcül bitkilerden bir tanesi. Bushman zehri Afrika’da yaşayan ve oklarının ucuna taktıkları zehirli bitkilerle avlanan bushman insanları bu zehirli bitkiyi özellikle avlanmak için kullanırlar. Çan çiçeği Bu çiçeği salladığınızda çıkan güzel ses sizi aldatmasın. Bir keresinde tadını merak ettiği için bu bitkiden çay yapan 18 yaşındaki bir genç zehirlenerek komaya girdi. Su baldıranı Zehirli baldıran Sokrates tarafından içildiği için çok bilinen bir zehirli bitkidir. Ama su baldıranı da en az onun kadar zehirlidir. İngiliz porsuğu Dünyadaki en zehirli ağaçlardan birisidir. Muhteşem görüntüsü böylesi bir zehri taşıyabileceğini göstermese de panzehiri olmayan ve çabuk etki yapan bir zehirli bitkidir. Loğusa otu Bu bitki daha çok inekler ve koyunlar için tehlikelidir çünkü beyaz çiçeğine ve yemyeşil gövdesine aldanan hayvanlar bitkiyi yerler ve ne yazık ki bu hayvanların ürünlerini tüketen insanlar da zehirlenirler. Kargabüken özü Kloepatra emrindeki hizmetkârlarına bu bitkiyle intihar etmelerini söylemiştir. Çünkü kendisi de intihar etmek istediğinden zehrin etkili olup olmadığını görmek istemiştir. Menispermum bitkisi Bu bitki kuşlar için zehirli olmamasına rağmen insanlar yediğinde ölümcül bir zehre dönüşüyor. Nergis Zehirli bileşenleri olsa da eski zamanlardan beri bu bitki bir şifa bitkisi olarak da kullanılır. Hatta bazı kültürlerde kelliğe iyi geldiği de düşünülür. Zakkum Zakkumun bir yaprağı bile bir kişiyi öldürmeye yeter. Ama ölümler daha çok atlarda ve besi hayvanlarında görülür. Funda Çiçeklerin en güzeli olan funda bitkilerin de en zehirlilerinden birisidir. Yabani acı kiraz Bu kirazlar küçük ama asla yenmezler. Zehir öncelikle solunum sistemini etkiler ve ardından zehirlenme gerçekleşir. Köpeküzümü Bu bitki baştan aşağıya kara zehir taşır. Bunun bir parçasını bile yiyen insanlar görecekler ki öncelikle sesleri kısılacak çünkü bu bitki öncelikle solunumu etkiler

http://www.biyologlar.com/zehirli-bitkiler

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Mikrobiyal Biyoteknoloji Bölüm 1

Biyoteknoloji Nedir ? - Biyolojik araç, sistem ve süreçlerin üretim ve hizmet endüstrilerine uygulanması - Endüstriyel uygulamalarda başarılı olabilmek için Biyokimya, Mikrobiyoloji ve Mühendislik bilimlerinin ortak kullanımı ile mikroorganizmaların, doku ve hücre kültürlerinin kapasitelerinin artırılması - Çeşitli yararlı maddelerin üretilmesi için biyolojik özellikleri kullanan bir teknoloji olması - Biyolojik araçlar tarafından üretilen materyallerin daha iyi ürün ve hizmet vermek üzere bilim ve mühendislik ilkelerinin uygulanması - Biyoteknoloji sadece teknik ve süreçlerin toplamına verilen bir addır. - Biyoteknoloji canlı organizmaları ve onların yapıtaşlarını tarım, gıda ve diğer endüstrilerde kullanan bir tekniktir. - Biyoteknoloji konu olarak “multidisipliner” yani bağımsız pek çok bilim dalını birarada barındırır. Eğer biyoteknoloji çalışması yapanları bir liste altında toplamak gerekirse Biyokimyacılar, Mikrobiyologlar,Genetikçiler, Moleküler biyologlar, Hücre biyologları, Botanikçiler, Ziraat mühendisleri, Virologlar, Analitik kimyacılar, Biyokimya mühendisleri, Kimya mühendisleri, Kontrol mühendisleri, Elektronik mühendisleri ve Bilgisayar mühendisleri bu liste içerisinde sayılabilir. BİYOTEKNOLOJİDE MİKROBİYAL SİSTEMLER 1-)Bakteriler ve Cyanobacteria (mavi-yeşil bakteriler) A-) Bakteriler: Toprak, hava, su, hayvan ve bitki yüzeylerinde bulunurlar. Bazıları hastalık etkeni olmakla beraber çoğu zararsız ve organik atıkların geri dönüşümü sırasındaki yararlı etkileri ve birçok faydalı ürünü üretmeleri nedeniyle biyoteknolojide oldukça önemli bir yere sahiptirler. Aynı genusa ait bazı türler endüstriyel açıdan faydalı özelliklere sahipken bazıları insanlar için zararlıdır. Örneğin Bacillus türleri toprakta yaşarlar ve aerop veya fakültatif anaerop metabolizmaya sahiptirler. § B. subtilis endüstride kullanılan amilaz enziminin kaynağıdır. § B. thruringiensis ise birçok bitki zararlısı böceğin patojenidir. Ve bu nedenle böceklere dirençli bitkilerin oluşturulmasında genetik mühendisliğinin önemli çalışma konularından birini oluşturur. § B.athracis ise insanlara patojen etkiye sahiptir ve şarbon hastalığının nedenidir. Prokaryotik biyolojik sistemler: § E.coli dışındaki diğer prokaryotlar § Acremonium chrysogenum § Bacillus brevis § Basillus subtilis, Basillus thuringiensis § Corynebacterium glutamicum § Erwinia herbicola § Peudomonas spp § Rhizobium spp § Streptomyces spp § Trichoderma resei § Xanthomonas campestris § Zymomonas mobilis Bu organizmalar iki grup altında toplanabilir. 1-) Özel bir fonksiyona sahip bir gen için konak olma. Ör: termofillerden izole edilen ve PCR teknolojisinde kullanılan ısıya dirençli DNA polimeraz enziminin E.coli’de klonlanması ve üretimin gerçekleşmesi. 2-)Belirli işleri çok daha etkin yapabilmek için genetik mühendisliği ile geliştirilme. Ör: Endüstriyel açıdan önemli amino asitlerin çok fazla üretilmesi için Corynebacterium glutamicum’un çeşitli türlerinin geliştirilmesi. 2-) Cyanobacteria (mavi-yeşil bakteriler): Mavi-yeşil bakteriler prokaryotlar sınıfına dahil olup fotosentez özelliğine sahiptir. Örnek olarak Anabaena cylindris, Nostok muskorum, Spirulina platensis türleri verilebilir. İlk kez varlıkları fosillerde saptanmıştır. Dünya oluşumunda belki de ilk canlı organizmalardır. Tatlı ve tuzlu suların yüzeylerinde bulunurlar. Karada ise ışığın ve nemin olduğu çamur ve kaya, tahta veya bazı canlı organizmaların yüzeylerinde bulunabilirler. Koyu yeşilimsi-mavi pigmentlerinden dolayı bu isimle adlandırılırlar. Sadece birkaç organizma atmosferik azotu amonyağa redüklemek yoluyla a.a. ve proteinleri üretmek üzere organik asitlere dönüştürülebilir. Azot fikse edebilen bakteriler gibi mavi-yeşil bakterilerde böyle bir yeteneğe sahiptir. Hücreler nitrogenaz enzimi ile bu reaksiyonu gerçekleştirirler. Bu enzim oksijen ile inaktive olur. Bu nedenle azot fikse eden hücrelerin içindeki koşullar anaerobik olmalıdır. Anabaena gibi bazı mavi-yeşil bakterler azot fiksasyonundan sorumlu heterosit adı verilen özel kalın duvarlı hücrelere sahiptirler Mavi-yeşil bakterilerin biyoteknolojik önemi: Mavi-yeşil bakteriler fotosentez yetenekleri, yüksek protein içerikleri ve basit besiyerlerinde hızlı çoğalmaları nedeniyle besin kaynağı olarak kullanım alanına sahiptir. Tek hücre proteini (THP) elde edilmesinde en çok denenen günümüzde insan ve hayvanların beslenmesinde geniş uygulama alanı olan mavi-yeşil bakteriler, diğer mikroorganizmalardan farklı olarak yeterli miktarda karbondioksit, belirli derecede aydınlatma, geniş üretim ortamı gibi özel koşullara gereksinim gösterirler. Sprilulina platensis Afrika ve güney Amerika’da ki sığ göllerde doğal olarak bulunur. Binlerce yıldan beri yöredeki insanlar tarafından toplanan bu algler kurutulduktan sonra besin kaynağı olarak çoğunlukla sos şeklinde veya çorba içinde kullanılmaktadır. Nostoc ise Peru ve Güney doğu Asya ‘da besin maddesi olarak kullanılan bir diğer siyanobakteridir. Gübre olarak kullanılmaları: Mavi-yeşil bakterilerin azot fiksasyon özelliği saptandıktan sonra kurutulmuş Tolypthrix tenuis pirinç tarlasına serpildiğinde azot fiksasyonunda ve verimde artış gözlenmiştir. M-Y bakterilerin Hindistan da pirinç tarlalarında gübre olarak kullanımıyla toprağın havalandırılması sonucunda su geçişi ve toprağın sıcaklığının daha homojen olması sağlanmaktadır. Azot fiksasyonu için M-Y bakterilerin Rhizobium’ların yerini almasının bazı avantajları vardır. Mavi-Yeşil bakteriler havadaki azotu amonyuma redüklerken fotosentez metabolik yolunu kullanırlar. Yani bir bitki ile simbiyotik bir yaşam ve enerji kaynağı olarak herhangi bir organik molekül ilavesi gerekmez. Tarımda azot fikse eden mavi-yeşil bakteriler organik gübre olarak kullanılabilir. Çin, Hindistan, Filipinler gibi pirinç tüketimi fazla olan bölgelerde büyük oranlarda ürerler. Pirincin büyüme sezonunun başında eğer suya siyanobakterlerin başlangıç kültürleri ekilirse pirinç veriminde %15-20 oranında artış olduğu bildirilmektedir. Mavi-Yeşil bakteriler antibiyotiklerin ve diğer biyolojik olarak aktif moleküllerin ticari boyutlardaki üretimi için büyük bir potansiyel oluştururlar. Çünkü Mavi-Yeşil bakteriler heterotrofturlar. Bu özellikleri de onların fermentasyon koşullarında üretilmelerine olanak sağlar. Henüz araştırma aşamasında olan Anacystis nidulans ile yapılan rekombinant DNA teknolojisi çalışmalarıyla nadir bileşiklerin üretiminde kullanımları amaçlanmaktadır. Araştırmalar Mavi-Yeşil bakterilerin güneş enerjisi dönüşüm sisteminde yer alması için devam etmektedir. Anabaena cylindrica heterocystleri vejatatif hücrelerde fotosentez yoluyla oluşturdukları oksijeni dışarı verirler. Azot yokluğunda ise heterositlerde nitrogenaz enzimi katalizörlüğünde elektronlar H+ iyonuna transfer edilerek Hidrojen gazı açığa çıkarırlar. Oksijen ve Hidrojen her ikisi de endüstride ihtiyaç duyulan gazlardır. Sonuç olarak; Fermentör koşullarında üreyebilirler, uzun süreli fizyolojik stabiliteye, basit besin gereksinimine, köpük oluşturmama özelliğine sahiptirler. Diğer alglerden farklı olarak azot fiksasyonu yapabilme farklılığına sahiptirler. Optimum sıcaklık 35oC dir. Karanlıkta veya gün ışığında heterotrofik olarak ürerler. 2-) MAYALAR: Tek hücreli tomurcuklanma veya bölünerek eşeysiz çoğalan ökaryotik mikroorganizmalardır. Mayaların tanımlanması maya biyoteknolojisi için oldukça önemlidir. Örneğin endüstriyel süreçlerde yabani ve kültüre edilmiş mayalar arasındaki farkı gösterebilmek esastır. Bira üretiminde üründe istenmeyen aroma oluşumuna neden olan yabani ırkın karışması veya ekmek mayası üretiminde şeker transport yeteneği daha fazla olan Candida utilis mayasının karışması ekmek mayası üretiminde kullanılan Saccharomyces cerevisiae mayasının üremesini engelleyecektir. Maya genuslarının ayrımında fizyolojik testlerle birlikte morfolojik testler de kullanılır. Günümüzde 700 civarında maya türü tanımlanmıştır. Fakat bu sayı maya çeşitliliğinde sadece çok küçük bir bölümü temsil etmektedir. Tanımlanmamış maya genus ve tür sayısı çok daha fazladır. Maya biyologları için maya çeşitliliğini tanımlamak kadar diğer önemli bir nokta özellikle biyoteknolojik öneme sahip türleri belirleyip saklamak ve koruyabilmektir. Moleküler biyoloji tekniklerinin yaklaşımıyla türler daha hızlı ve kolay bir şekilde karakterize edilebilmektedir. Günümüzde 6 mayanın genom projesi tamamlanmış ve işlevsel genomik çalışmaları ile genlerin işlevlerinin belirlenmesine devam edilmektedir. Maya hücreleri klorofil içermez ve zorunlu olarak kemoorganotrofiktirler. Üremek için organik karbona gerek duyarlar. Karbon metabolizmaları çok çeşitlidir. Örneğin basit şekerleri, polioller, organik ve yağ asitleri alifatik alkoller, hidrokarbonlar ve çeşitli heterosiklik ve polimerik bileşikleri karbon kaynağı olarak kullanabilirler. Bu özellikleri nedeniyle farklı habitatlar için özelleşmiş türler kolaylıkla saptanabilir. Mayalar toprak, hava ve sudan izole edilebilirler. Bazı mayalar ekstrem ortamlarda örneğin ozmofilik mayalar şeker bakımından zengin ortamlarda yaşayabilirler. Bu tür mayalar genellikle gıda bozucu olarak bilinir. Bunun dışında fırsatçı patojen olarak bazı maya türleride örneğin Candida albicans pek çok infeksiyondan sorumludur. Mayalar insanlar için; ekonomik, sosyal ve sağlık açısından oldukça önemli en eski evcilleştirilmiş organizmalardır. Alkollü içeçeklerin üretiminde, ekmek yapımında hamurun kabarması için binlerce yıl öncesinden beri kullanılmaktadırlar. Gerçekte bira yapımı belkide dünyanın ilk biyoteknolojisini temsil etmektedir. Günümüzde mayalar geleneksel gıda fermentasyonunun dışında çok çeşitli alanlarda da kullanılmaktadır. Özellikle genetik mühendisliğiyle geliştirilmiş mayalar hastalıkların önlenmesinde ve tedavisinde kullanılan pek çok farmasötik ajanın üretilmesinde yaygın bir şekilde kullanılmaktadır. Biyoteknolojik Öneme Sahip Bazı Mayalar - Axula adeninivorans: Nitrat ve aminleri asimile eder, 45 C üzerinde üreyebilir, pek çok hidrolaz salgılayabilir. - Candida türleri: C.albicans hidrokarbonlardan aminopenisillanik asit ve B6 vitamin üretimi, C.boidinii NAD, FAD metil ketonlar ve sitrik asit üretimi, C.famata riboflavin, C.maltosa biyokütle proteini için yağ asiti ve alkan kullanımı, C.tropicalis triptofan, C.pelliculosa selülozik materyalden biyokütle proteini, C.utilis, pek çok ürün eldesi, ksilozda üreyebilme, klonlama teknolojisinde kullanım, C.shehatae ksiloz fermentasyonu - Hansenula polymorpha: Heterolog gen anlatımı için kullanılabilen metilotrofik maya. - Kluyveromyces marxianus ve K.lactis: Laktoz ve polyfruktosanı fermente eder. Doğal kakao fermentayonu. Pek çok enzim için kaynak olabilir, klonlama teknolojisinde kullanılabilir. - Pachysolen tannophilus: Bitki lignoselülozik hidrolizatlarından kaynaklı pentoz şekerlerinin fermentasyonu. - Phaffia rhodozyma ve Pichia türleri: Gıda boyası olan astaksantin pigment üretimi. P.guilliermondii riboflavin sentezi ve hidrokarbonlardan biomas protein eldesi. P.methanolica etanol biosensörü olarak kullanılan alkol oksidaz üretimi.P.pastoris metanolden biomas protein eldesi, heterolog gen anlatımı ve insan terapötik proteinlerini üretebilen metilotrofik maya. - Rhodosporidium toruloides: Fenilketanüri tedavisinde kullanılan PAL enzim kaynağı. - Saccharomyces türleri: S.cerevisiae klasik gıda fermentasyonu. Bira, şarap, ekmek, rom, cin yapımı. Yakıt, alkol, gliserol, invertaz ve hayvan besini kaynağı.Rekombinant DNA teknolojisiyle sayısız protein üretimi. - Saccharomycopsis türleri: S.fibuligera amilolitik maya - Schizosaccharomyce pombe: Geleneksel Afrika alkollü bira yapımı. Şarapların deasidifikasyonu. Yüksek etanol ozmotik tolerans, biyokütle protein eldesi, heterolog gen anlatımı ve mutagenez testlerinde kullanım - Schwanniomyces türleri: S.castellii ve S.occidentalis amilolitik mayalar. Nişastanın ve inülinin etanole çevrimi ve heterolog gen anlatımında kullanılabilirler. - Trichosporon cutaneum: Fenol varlığına ilişkin bisensor olarak kullanılır. - Yarrowia lipolytica: Lipid ve hidrokarbonlardan biomas protein eldesi. Sitrik asit ve hücredışı enzim üretimi. Ø Zygosaccharomyces rouxii: Japon soya sosu karakteristik aromasını vermede kullanılan halofilik ve ozmotolerant maya türü. Alkollü içeçeklerin üretiminde mayalar Endüstriyel mayaların çoğu, özellikle de fermente içeçeklerin üretiminde kullanılanlar, genetik bakımından karmaşıktırlar ve stabil bir haploidi göstermezler. Örneğin bira yapımında kullanılan Sacchoromyces türleri poliploid veya anöpliod (diploid-heptaploid) ırklardır. Bu nedenle geliştirilmelerinde eşeyli üreme özelliklerinden yararlanılamaz. Bunun yerine klasik bira tadını veren organoleptik özellikleri iyi olan karakteristik fermentasyon yapan ırklardan doğal seçimle en iyi olan şeçilir. Bunun dışında endüstriyel mayaların geliştirilmesinde şüphesiz genetik mühendisliğinin önemi oldukça fazladır. Rekombinant DNA teknolojisi ile geliştirilen rekombinant mayalar tarafından üretilen biyolojik olarak aktif rekombinant proteinlerin veriminin arttırılmasında iki önemli yaklaşım vardır. Bunlar; moleküler genetik tekniklerin kullanımı ve fermentasyon teknolojisidir. Gıda tüzüğüne uygun olarak ekmek mayasının (glikoz baskısından kaçınmak ve hamurlaşmayı önlemek için) maltoz kullanım genleri değiştirilmiştir. Bira mayasında ise Maltodekstrinleri kısmi olarak parçalayan STA2 genini içeren plazmid bulunmaktadır. Genetik mühendisliği ile geliştirilmiş mayaların lignoselülozik (odunsu) atıkları substrat olarak kullanarak etanol üretmeleri yönünde yoğun çalışmalar yapılmaktadır. Etanol dışında mayaların ürettiği diğer biyoalkoller; gliserol ( alkollü içecekler için aroma katıcı, nitrogliserin türevli patlatıcılar yapımında), ksilitol (şeker yerine diyabetik ürünlerin yapımında), sorbitol, arabinitol (düşük şeker içerikli gıdaların yapımında; ilaçların kaplanmasında yenilebilir kaplama maddesi olarak) Etanolün yenilenebilir kaynaklardan mayalar kullanarak üretilmesi tüm dünyanın ilgisini çeken konulardan biridir. İlk üretim 1930’larda başlamıştır fakat petrol fiyatları düşürülünce teknoloji bırakılmıştır. 1970’deki petrol krizi ile birlikte yeniden gündeme gelmiştir. Brezilya, şeker kamışını ve melası substrat olarak kullanarak ürettiği petrolü yakıt amaçlı kullanmaktadır. Brezilya’da otomobillerin çoğu alkol veya alkol+benzin karışımı (gasohol) ile çalışmaktadır. KÜFLER Küfler hifli mantarlardır. Birçok organizma ve gıda maddesi ( ekmek, meyve, sebze.. vb) üzerinde oluşturdukları pamuk görüntüsündeki doku nedeniyle mayalardan çok daha önce keşfedilmişlerdir. Küfler, endüstride birçok ürünün eldesinde, atıklardan değerli ürünlerin oluşturulmasında kullanılan farklılaşma göstermeyen ve klorofil içermeyen mikroorganizmalardır. Doğada ve toprakta yaygın olarak bulunan küflerden endüstriyel mikrobiyoloji alanında önem taşıyanlar mikroskobik olanlardır. Küflerin üredikleri ortama proteaz, lipaz, karbonanhidrazlar gibi litik enzimleri salgılamaları ve küflerin ürettikleri çeşitli metabolitlerin birçok alanda kullanılabilir olması bu organizmaların endüstrideki önemini oldukça artırmaktadır. Ayrıca insan, hayvan ve bitkiler için patojen olan türleride bulunmaktadır. Küflerin Biyolojisi: Bir küf, protoplazma iplikleri veya uzantıları olan hiflerden ve sporlardan oluşur. Hiflerin yaptığı yumağı misel adı verilir. Hifler, bölmeli hifler ve bölmesiz hifler olarak ikiye ayrılır. Bölmeli hifler bölmeler ile hücrelere ayrılırlar ve her hücrede bir veya iki hücre çekirdeği bulunur. • Bölmesiz hiflere sönositik hif adı da verilir. • Bölme içermezler ve çok çekirdeklidirler. • Üreme hifleri genellikle koloninin yüzeyinde bulunan ve üreyen hücreleri veya sporları taşıyan hiflerdir. • Hifsel üreme ortamın besin koşulları ile yakından ilgilidir. • Beslenme hifleri ise koloniye besin sağlayan hiflerdir. Beslenme hifleri sayesinde hücrenin bulunduğu noktadan uzakta olan substratlara ulaşmaları sağlanır. • Küflerin hücre duvarı glukan, kitosan ve kitin gibi farklı glukoz polimerlerinden yapılabilir.

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-1

BİYOLOJİK ARITMA SİSTEMLERİ

Aktif çamur:Aktif çamur sistemi dengeleme, havalandırma, çöktürme ve dezenfeksiyon ünitelerinden oluşmaktadır. Aktif çamur tekniğine göre çalışan sistemler uygulamada en çok kullanılan sistemlerdir. Aktif çamur kolloidal çözünmüş maddelerin mikroorganizmalar ile çökebilir biyolojik floklara dönüştürüldüğü prosestir ve bu proseste havalandırma havuzu içindeki mikroorganizmaların askıda tutulması esastır. Biyolojik arıtma ünitesi havalandırma sonucu, organik maddelerin askıda büyüyen mikroorganizmalar tarafından parçalanması prensibiyle çalışır. Askıda büyüyen mikroorganizmalar suyun içerisinde bulunan organik maddeleri parçalayarak H2O ve CO2’e çevirirler. Mikroorganizmaların organik maddeleri oksitlemesi sonucu organik maddeler ya okside olur, yada biyokütleye dönüşür. Havalandırma havuzunda gereken arıtma veriminin sağlanması amacıyla havuz içerisinde faaliyet gösteren mikroorganizma sayısını (MLSS) sabit bir değerde tutmak gerekmektedir. Bu nedenle biyokütlenin bir kısmı çöktürme kademesinde fazla çamur olarak sistemden atılırken diğer kısmı havalandırma bölümüne geri devrettirilir. Aktif çamur sistemlerinde bakteriler en önemli mikroorganizmalardır. Çünkü organik maddelerin parçalanmasından sorumludurlar. Aktif çamur sistemlerinin dizaynında çeşitli parametreler kullanılır. Bu parametrelerden bazıları çamur yükü, çamur yaşı ve bekletme süresidir. Biyolojik arıtma, atıksu içerisindeki çözünmüş organik maddelerin bakteriyolojik faaliyetlerle ayrıştırılarak giderilmesi işlemidir. Bakterilerin arıtma işlemini gerçekleştirebilmeleri için pH, sıcaklık, çözünmüş oksijen, toksik maddeler gibi parametrelerin kontrol altında tutulması gerekmektedir. Uygulamaları; aktif çamur sistemleri, biyofilm sistemleri, stabilizasyon havuzları, havalandırmalı lagünler ve damlatmalı filtrelerdir Biyofilm:Damlatmalı filtre sistemlerinde üst kısımdan verilen atık sular damlatmalı filtre içine yerleştirilen dolgu malzemelerinin arasından aşağı doğru akar. Dolgu malzemeleri üzerinde mikroorganizmalar oluşur. Damlatmalı filtre tabanından verilen hava mikroorganizmaların yaşamı için gereklidir. Mikroorganizmalar da atık sudaki organik maddeleri tüketirler. Filtre malzemesi taş dolgu yada plastik dolgu malzemesidir. Biodisk sistemleri seri olarak yerleştirilmiş dairesel disklerden oluşur. Disklerin malzemesi polystrene veya polyvinyl kloriddir. Diskler atık suya batmıştır ve yavaş olarak dönerler. Mikroorganizmalar disklerin yüzeyine tutunup tabaka oluştururlar. Disklerin dönmesi biyokütleyi atık sudaki organik maddelerle temas ettirilir. Diskler sonra da atmosferdeki oksijenle temas eder. Disklerin dönmesi ile aerobik şartlar sağlanır. Stabilizasyon Havuzları:Stabilizasyon havuzlarının işletilmesi basittir ve fazla mekanik ekipmana ihtiyaç göstermezler. Bu sistemler aerobik, anaerobik ve fakültatif stabilizasyon havuzları olarak sınıflandırılır. Havalandırmalı lagünler:Diğer Bu sistemler havalandırma için doğal alanları kullanır. Gerekli oksijen difüzör veya yüzeysel havalandırıcılar vasıtasıyla temin edilir.

http://www.biyologlar.com/biyolojik-aritma-sistemleri

Türkiye Zootekni Bölümlerinde Hayvan Davranışları Bilimi

Hayvan davranışları bilimi bakımından Türkiye’de son yıllarda sevindirici gelişmeler yaşanmaktadır. Lisans ve lisansüstü ders olarak hayvan davranışları, zootekni bölümü olan neredeyse tüm üniversitelerde okutulmaya başlanmıştır. Genellikle lisansta zorunlu ders olarak genel hayvan davranışları verilmekte, lisansüstünde ise seçmeli ders olarak türlere özgü davranış dersleri yer almaktadır. Ülkemizde davranış derslerinin türlere özgünleşmesi ilginçtir. Zira ülkemize kıyasla hayvan davranışları biliminin çok daha eski bir geçmişi olmasına rağmen batı ülkelerinde türlere ilişkin ayrı derslere neredeyse rastlanmamaktadır. Zootekni öğretiminin yapılanması ve bu konudaki ulusal alışkanlıklarımız ile ilişkilendirilebilecek bu oluşum aynı zamanda ülkemizde temel davranış çalışmalarına olan ilginin yetersizliğini de açıklamaktadır. Ülkemiz zootekni bölümlerinde hayvan davranışları konusunda yapılan ve Science Citation Index tarafından değerlendirmeye alınan dergilerde yayınlanan çalışmalara bakıldığında ilk yayının 1999 tarihli olduğu görülmektedir (Çam ve ark., 1999). Aynı yazarların daha sonraları davranış konularında yayınlarına rastlanmamaktadır. Bu çalışmayı, güncel değerlendirme makalesinin yazar(lar)ının da içerisinde bulunduğu 2001, 2002 ve 2003 tarihli üç araştırma makalesi izlemektedir (Savaş ve ark, 2001; Yurtman ve ark., 2002; Karaağaç ve ark., 2003). Kasım 2007 tarihi itibarıyla SCI tarafından taranan dergilerde hayvan davranışları konusunda yayınlanan Türkiye adresli toplam makale sayısı 21’dir. Makale sayıları bakımdan, Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Savaş ve ark., 2001; Yurtman ve ark., 2002; Uğur ve ark., 2004; Savaş ve ark., 2007; Tölü ve Savaş, 2007; Atasoglu ve ark., 2007), Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Keskin ve ark., 2004; Keskin ve ark., 2005; Tapkı ve Şahin, 2006, Tapkı ve ark., 2006) ve Atatürk Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nden (Yanar ve ark., 2006; Metin ve ark., 2006; Güler ve ark., 2006) araştırma gruplarının çalışmaları dikkat çekmektedir. Anılan çalışmaların yarıya yakın bir bölümü pür uygulamalı etolojik çalışmalar olarak değerlendirilebilirler. Diğer çalışmalarda ise davranış özellikleri daha ziyade ikincil, yada destekleyici biyolojik göstergeler olarak kullanılmışlardır. Söz konusu çalışmalar türler bazında incelendiğinde küçükbaş hayvanların ağırlıklı olduğu, bunları sığırların izlediği gözlenmektedir. Türkiye adresli ve SCI indeksli yayınlar içerisinde kanatlı türlerde, biri yumurtacı tavuk diğeri güvercin özdekli olan yalnızca iki çalışmaya rastlanmıştır (Karaağaç ve ark., 2003; Savaş ve ark., 2007). Bununla birlikte, ulusal dergilerde yayınlanmış olan bazı araştırma makaleleri ile (Savaş ve Şamlı, 2000) yine bu konuda yürütülen tez çalışmalarına (Köse, 2004) da ulaşmanın mümkün olabileceği düşünülmektedir. Her ne kadar TÜBİTAK ULAKBİM bu konuda önemli adımlar atmış olsa da, ne yazık ki, ulusal paylaşım ağımızın yetersizliği nedeni ile çalışmalara ulaşmak son derece güç olabilmektedir. Bu nedenlerle değerlendirmede sadece uluslararası paylaşım kolaylığına sahip süreli yayınlar dikkate alınmıştır. Bilim insanlarının çalışma alanlarının belirlenmesinde ulusal nitelikli bilimsel toplantılar iyi birer araçtır. Zira bilimsel projeler, proje başladıktan çok kısa sonrasında bu tip toplantılarda sunulurlar. Halbuki bu çalışmaların makaleye dönüşmesi çok daha uzun bir süre alabilir. Bu bağlamda hayvan davranışları bilim alanındaki çalışmaların gelişimini takip etmek açısından Ulusal Zootekni Bilim Kongrelerinde sunulan bildiriler iyi birer araç olabileceği düşünülmüş ve 2000 yılından sonra yapılan üç Ulusal Zootekni Bilim Kongresi (2002 Ankara, 2004 Isparta ve 2007 Van) incelenmiştir. Ankara Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nce organize edilen III. Ulusal Zootekni Kongresi’ne toplam 167 bildiri sunulmuş olup, Hayvansal Üretim bunlardan biri küçükbaş diğeri balarısı özdeğinde olmak üzere, yalnızca iki tanesinin hayvan davranışları konusunu içerdiği gözlenmiştir. Süleyman Demirel Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nün gerçekleştirdiği IV. Ulusal Zootekni Kongresi’nde ise toplam bildiri sayısı 174, hayvan davranışları konulu bildiri sayısı 13 e ulaşmıştır. Son yapılan Van Kongre’si değerlendirildiğinde, bir önceki kongreye göre %13,2’lik bir artışla (Ankara ile Isparta arasındaki toplam bildiri sayısı artışı %4,2) toplam bildiri sayısının 197, hayvan davranışlarını konu alan bildiri sayısının ise 17 olduğu görülmektedir. Kongrelere göre hayvan davranışlarını konu edinen bildiri sayısının toplam bildiri sayısına oranı sırasıyla %1,2, %7,5 ve %8,6’dır. Bu gelişme hayvan davranışları bilim dalı bakımından sevindiricidir. Zootekni, veteriner hekimlik ve biyoloji öğrencileri için önemli bir Türkçe kaynak durumunda olan ve Ege Üniversitesi Ziraat Fakültesi Zootekni Bölümü öğretim üyesi Prof. Dr. Erdinç Demirören tarafından kaleme alınan “Hayvan Davranışları” kitabı da, bu konuda bir ilk olması nedeniyle anılmadan geçilemez (Demirören, 2007). Ancak bir tek kitabın bilim dalı için yeterli olmadığı, hayvan davranışları alanında Türkçe kaynak sıkıntısı çekildiği de bir gerçektir. Sonuç Hayvan davranışları bilimi, hayvanların çevresel düzenlemelerinde yararlı bir araç olarak görülmektedir. Bu yararlanma, çevrenin hayvanın davranışlarına göre şekillendirilmesi yanında davranış bakımından mevcut çevre koşullarına uyum sağlayabilecek hayvanların ıslah edilmesi şeklinde iki yönlüdür. Sözkonusu bilim dalından yararlanmanın anılan her iki yönünün de birlikte ele alınması ön koşuldur. Zira hayvan bilimi içerisinde bu güne değin yapılan çalışmalar göstermiştir ki, ne tek başına çevreyi ne de tek başına hayvanın genetik yapısını “yetiştiricinin arzuları doğrultusunda” optimize etmek mümkün olmuştur. Dolayısıyla optimizasyon bütüncül bir yaklaşımı gerektirir. Bu bilim dalından üretilecek bilgi hayvanların yaşamlarını daha sağlıklı sürdürmelerini, üremelerini ve üretmelerini sağlayacaktır. Bunların ötesinde hayvanlarla ilgili hukuki düzenlemelerde de bu bilim dalının vazgeçilmez katkısı bulunmaktadır. Hayvan refahının gözetilmesi anlamında Hayvanları Koruma Kanunu’nda hayvan davranışları bilim dalına doğrudan atıfta bulunulmaktadır (Kanun No: 5199; Madde 3, 5, 8 ve10). Ancak çevresel düzenlemeleri insan kontrolünde olan hayvanların davranışlarının yalnızca uygulamaya dönük olarak ele alınması, hayvan davranışları bilim dalının gelişmesini olumsuz olarak etkiler. Bilim dalının sağlıklı olarak gelişmesi için, yetiştirme olgusu altında hayvanların davranışlarına yönelik temel çalışmalara da gereksinim vardır. İlgili davranışların ortaya çıkışında etkili mekanizmaların aydınlatılabilmesi için fizyolojiden genetiğe, gelişme biyolojisinden patolojiye kadar davranışa temel oluşturan alanların kapsamı içerisinde çalışmak kaçınılmaz gözükmektedir. Söz konusu yaklaşım tarzı aynı zamanda bu konuda yetişecek genç bilim insanlarının temel etolojiyi ve ilgili alt dallarını iyi öğrenmelerini de sağlayacak niteliktedir. Zootekni açısından hayvan davranışları bilim dalının Türkiye’de son yıllarda sergilediği gelişimin niteliği sevindirici ve umut vericidir. Ancak ve ne yazık ki, zootekni bilim camiası içerisinde yapılan sohbetlerden takip edilen bir şekilde, özellikle davranışın sayısallaştırılması ve akabinde istatistiksel değerlendirilmesi konusunda bilimcilerimizin sorunlar yaşadıkları, kimi zaman bu güçlüklerin araştırmacıları söz konusu alandan vazgeçmenin eşiğine getirdiği izlenimi, çalışmaların sürekliliği açısından endişe yaratmaktadır. Öncelikle belirtmek gerekir ki tüm Dünya’da bu konuda çalışmalar yetersizdir. Bu durum söz konusu alanda bilimsel çalışma yapmaktan vazgeçmeyi değil ilgili sorunların üzerine gitmeyi ve araştırma yapmayı gerektirir. Nitekim hayvan davranışları bilimi alanında yöntem konusunda da çalışmalara gereksinim vardır. Kaynaklar Ataşoğlu, C., Yurtman, İ. Y., Savaş, T., Gültepe, M., Özcan, O. 2008. Effect of weaning on behavior and serum parameters in dairy goat kids. Animal Science Journal 79(4): 435-442. Bessei, W. 1983. Die Bedeutung der Lorenzschen Instinktlehre in der Diskussion um eine verhaltensgerechte Unterbringung von Legehennen. Züchtungskunde 55: 222-232. Çam, M., Kuran, M., Selçuk, E. 1999. Effects of time spent near mothers postpartum on the behaviour of ewes and lambs and on the growth performance of lambs in Karayaka sheep. Turk. J. Vet. Anim. Sci. 23: 335-342. Darwin, C. 1990. Türlerin kökeni. (Çev. Öner Ünalan) Onur Yayınları, Şahin Matbaası, Ankara, ss 392. Dietl, G., Nürnberg, G., Reinsch, N. 2006. A note on a quantitative genetic approach for modeling of differentiation tasks. Appl. Anim. Behav. Sci. 100: 319–326. Demirören, E. 2007. Hayvan davranışları. II. Baskı. Ege Üniversitesi Ziraat Fakül. yayınları No:547, İzmir. Hayvansal Üretim 49(2), 2008 Hayvan Davranış Bilimi ve Zootekni: Tanım ve İzlem 41 Güler, O., Yanar, M., Bayram, B., Metin, J. 2006. Performance and health of dairy calves fed limited amounts of acidified milk replacer. S. African J. Anim. Sci. 36: 149-154 Immelmann, K., Ekkehard, P., Sossinka, R. 1996. Einführung in die Verhaltensforschung. Blackwell Wissenschafts-Verlag Berlin, Wien, pp 287. Karaağaç, F., Özcan, M., Savaş, T. 2003. Verlauf von aggressivem Picken und einigen Verhaltensmerkmalen in rangordnungsinstabilen Käfiggruppen bei Legehennen. Arch. Tierz. 46: 391-396 Keskin, M., Şahin, A., Biçer, O., Gül, S. 2004. Comparison of the behaviour of Awassi lambs in cafetaria feeding system with single diet feeding system. Appl. Anim. Behav. Sci. 85: 57-64. Keskin, M., Şahin, A., Biçer, O., Gül, S., Kaya, S., Sarı, A., Duru, M. 2005. Feeding behaviour of Awassi sheep and Shami (Damascus) goats. Tr. J. Vet. Anim. Sci. 29: 435-439. Köse, K.,2004. Devriye köpeği amaçlı kullanılan alman çoban köpeği ile Belçika çoban köpeği (Malinois) ırkı köpeklerin eğitim sürelerini etkileyen faktörler. Yüksek Lisans Tezi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Çanakkale, 56 s. Lorenz K. 1982 Vergleichende Verhaltensforschung. Grundlagen der Ethologie DTV Wissenschaft: München, pp 399. Lund, V., Coleman, G., Gunnarsson, S., Appleby, M. C., Karkinen, K. 2006. Animal welfare science—Working at the interface between the natural and social sciences. Appl. Anim. Behav. Sci. 97: 37-49. Metin, J., Yanar, M., Güler, O., Bayram, B., Tüzemen, N. 2006. Growth, health and behavioural traits of dairy calves fed acidified whole milk. Indian Vet. J. 83: 976-979 Millman, S.T., Duncan, I.J.H., Stauffacher, M., Stookey, J. M. 2004. The impact of applied ethologists and the international society for applied ethology in improving animal welfare. Appl. Anim. Behav. Sci. 86: 299-311. Mormede, P. 2005. Molecular genetics of behaviour: research strategies and perspectives for animal production. Livestock Production Science 93: 15–21 Sambraus, H.H. 1998. Applied ethology-it’s task and limits in veterinary practice. Appl. Anim. Behav. Sci. 59: 39-48. Sambraus, H.H. 2002. Aufgaben der Angewandten Ethologie bei Landwirtschaftlichen Nutztieren früher und heute. Gumpensteiner Tagung “Nutztierhaltung im Wandel der Zeit”, Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, A-8952 Irdning: 17-20. Sandilands, V. 2004. David Wood-Gush, the biography of an ethology mentor. Appl. Anim. Behav. Sci. 87: 173-176. Savaş, T., Şamlı, E. 2000. Tavuklarda agresyon ile sosyal hiyerarşinin yumurta verimi ve bazı davranış özelliklerine etkisi. Tarım Bilimleri Dergisi 6: 11-15. Savaş, T., Yurtman, I.Y., Karaağaç, F., Köycü, E. 2001. Einfluss der intensiven Gruppenhaltung und Geschlecht auf Oral-Stereotypien und einige Verhaltensmerkmale bei Mastlämmern. Arch. Tierz. 44: 313-322 Savaş, T., Konyalı, C., Daş, G., Yurtman, İ.Y. 2007. Effect of beak length on feed intake in pigeons (Columba livia f. domestica). Animal Welfare 16: 79-86. Smidt, D., Schlichting, M.C., Ladewig, J., Steinhardt, M. 1995. Ethologische und verhaltensphysiologische Forschung für tiergerechte Nutztierhaltung. Arch. Tierz. 38: 7-19. Steiger, A. 1993. Schlussbetrachtung zur 25. Freiburger Tagung und kritische Gedanken zur Stellung der angewandten Ethologie. Aktuelle Arbeiten zur artgemäßen Tierhaltung, Vorträge anlässlich der 25. Internationalen Arbeitstagung Angewandte Ethologie bei Nutztieren der Deutschen Veterinärmedizinischen Gesellschaft e.V. KTBL-Schriften-Vertrieb im Landwirtschaftsverlag GmbH, Münster-Hiltrup: 274-284 Tapkı, İ, Şahin, A. 2006. Comparison of the thermoregulatory behaviours of low and high producing dairy cows in hot environment. Appl. Anim. Behav. Sci. 99: 1-11. Tapkı, İ., Şahin, A., Önal, A.G. 2006. Effect of space allowance on behaviour of newborn milk-fed dairy calves. Appl. Anim. Behav. Sci. 99: 12-20. Tembrock, G. 1992. Verhaltensbiologie. 2. Auflage. Gustav Fischer Verlag, Jena, pp 386. Tinbergen, N. 1979. Tiere und ihr Verhalten. (Überstz. Hans-Heinrich Wellmann und Wolfgang Vilwock) Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, pp 191. Todes, D. 2003. İvan Pavlov: Hayvan makinesini araştırırken. (Çev. Ebru Kılıç), TÜBİTAK Popüler Bilim Kitapları, Ankara, ss. 118. Tölü, C., Savaş, T. 2007. A brief report on intra-species aggressive biting in a goat herd. Appl. Anim. Behav. Sci. 102: 124-129. Uğur, F., Savas, T., Dosay, M., Karabayır, A., Atasoglu, C. 2004. Growth and behavioral traits of Turkish Saanen kids weaned at 45 and 60 days. Small Ruminant Research 52: 179-184. Hayvansal Üretim

http://www.biyologlar.com/turkiye-zootekni-bolumlerinde-hayvan-davranislari-bilimi

GDO’ LARIN POTANSİYEL FAYDALARI

Genetiği değiştirilmiş organizmaları destekleyen özel endüstri üyeleri, gıda teknolojisi uzmanları, gıda işleyicileri, distribitörler, perakendeciler, gıda uzmanları, bilim insanları, bazı tüketiciler, Amerika’lı çiftçiler, düzenleme ajansları, dünyadaki fakir ve aç insanları savunanlar ile yeşil devrim taraftarları; genetik mühendisliği teknolojisinin son yıllarda çok kolaylaştırıldığını ve bu teknolojiyle, dünya populasyonunun giderek büyümesi sonucu gerekli olan gıda ve ilacın büyük boyutta üretilebileceğini düşünmektedirler. İlave olarak, bu teknolojinin, hızlı büyüyen, hastalık, hava ve böceklere dirençli, herbisitlere dayanıklı bitkisel ürünlerin yanı sıra daha lezzetli, daha güvenli, daha verimli, daha besleyici, uzun ömürlü ve sağlık açısından daha faydalı bitkisel ve hayvansal ürünlerin, endüstriyel ve farmakolojik üretime katkı sağlayacak organizmaların elde edilmesi gibi potansiyel faydalara sahip olacağını düşünmektedirler . Genetiği değiştirilmiş organizmaları destekleyenler, insanlığa faydalarının sınırsız olduğuna ve GDO’ların dünyanın önemli tarım, sağlık ve ekolojik problemlerini potansiyel olarak çözebileceğine inanmaktadırlar. Ayrıca GDO karşıtı düşüncelerin sağlık, çevre ve gelişmekte olan ülkelerdeki çiftçilerin geçimini sağlaması gibi gerçekçi olmayan korkulardan ziyade mantıksız korkular ve ticareti koruma siyasetinden kaynaklandığını düşünmektedirler. GDO teknolojisinin faydalarını şimdiden söylemenin çok erken olmasıyla birlikte potansiyel risklerinin varsayım olduğunu düşünen GDO destekleyicilerine göre genetiği değiştirilmiş organizmaların potansiyel faydaları aşağıda tartışılmıştır: 1. Besin Kalitesinin ve Sağlığa Yönelik Faydalarının Artırılması Gen aktarım teknolojisi ile protein kalitesi – örneğin proteinin metiyonin ve lisin içeriği- artırılarak ürünlerin esansiyel amino asit içeriklerinde artış sağlanabilmektedir . Böylece tavuklarda üremeyi olumsuz etkileyen lisin azlığı dolayısıyla genellikle tahıllarda çok az bulunan lisin miktarının artırılması, et, süt ve yün üretimi kükürt içeren amino asitlere (metiyonin ve sistein) bağlı olan çiflik hayvanlarının besinlerinin bu amino asitlerle zenginleştirilmesi mümkün olabilmektedir . Aynı zamanda çeşitli gıdalardaki protein kullanımının genişlemesiyle organoleptik kaliteyi de içeren fonksiyonel özelliklerin artırılması mümkündür. Örneğin; lipoksigenazların çıkarılması ile soyadaki fasulyemsi tadın uzaklaştırılması amaçlanmaktadır. Beslenmede iyi bir protein kaynağı olan balığın daha kısa periyotta daha iyi büyümesi sağlanarak ucuz olarak üretimi ve böylece su kültürü için uygun şartların gerçekleştirilebilmesi amaçlanmaktadır . GDO’ların karbonhidrat içerikleri artırılarak ketçap, domates sosu vb. yapmak için gıda işlemede kullanılacak domateslere yoğun içerik kazandırılabilmektedir. Monsanto Şirketi tarafından üretilen nişasta içeriği artırılmış Russert Burbank patatesleri ile kızartma işlemi sırasında daha az yağ çeken, pişirme süresi ve maliyeti azaltılmış patates üretimi sağlanmıştır . Ürünlerin besin kalitesi dışında sağlığa yönelik faydalarını artırmak için de GDO üretimi yapılmaktadır. Gen aktarım teknolojisi ile bazı kanserler, kalp hastalığı, körlük (vitamin A durumunda) gelişiminin sebebi ve zararlı bir kimyasal reaksiyon olan biyolojik oksidasyonu yavaşlatan veya engelleyen bileşikler olarak doğal olarak bulunan antioksidan vitaminlerin (karotenoidler, flavonoidler, vitamin A, C ve E) ve minerallerin ürünlerdeki düzeyi artırılmaktadır. Gıda ürünlerindeki antioksidan düzeyinin artırılması toplumda var olan belirli kanser ve diğer kronik hastalıkların oranının azalmasını sağlayabilir. Önemli bir antioksidan olan likopen, genetiği değiştirilmiş domates, domates ürünleri ve biberde bol miktarda bulunmaktadır . Doymuş yağ oranı yüksek olan yağlar, vücutta kolesterol üretiminden sorumludur. Doymuş yağ oranı düşük ve doymamış yağ oranı daha yüksek olan yağlar, sağlık açısından önemli olup kızartma ve diğer işlemlerde kullanılan yüksek sıcaklığa dayanıklıdır. Bu amaçla yaygın olarak kullanılan kanola, soya, ayçiçeği ve yer fıstığı gibi bitkisel sıvı yağlardaki doymamış yağ asidi düzeyini daha da artırmak için bu bitkilerin genetiği değiştirilebilmektedir. Besin değeri artırılmış ürünler yetersiz beslenmeyi azaltmaya yardım edecektir ve gelişmekte olan ülkelerin temel besin ihtiyaçlarını karşılamayı sağlayacaktır. Kassava, birçok üçüncü dünya ülkesinde 500 milyonun üzerinde insanın beslenmesinde önemli bir besin kaynağıdır. Son yıllarda Afrika kassava mozaik virüsüne ve genel mozaik virüslerine dirençli ve yüksek besin değerine sahip kassava üretmek için bu bitkilerin genetiği değiştirilmiştir . 2.Meyve ve Sebzelerin Raf Ömrü ve Organoleptik Kalitelerinin Artırılması Calgene Şirketi’nin ürettiği Flavr Savr domatesleri ABD Gıda ve İlaç İdaresi (US FDA) tarafından onaylanan ilk genetiği değiştirilmiş üründür. Bu domatesler olgunlaşma, yumuşama ve çürüme işlemleri geciktirilerek uzun bir raf ömrüne sahip olan bitkilerdir . Olgunlaşma ve yumuşama, büyük ölçüde, meyve hücreleri tarafından etilen üretimine bağlıdır . Etilen üretiminde rol oynayan genlerin kontrol edilmesi veya farklı bir strateji olarak hücre duvarını bozan bir enzim olan poligalakturonaz enziminin baskılanarak pektin yıkımının ertelenmesi ile meyve ve sebzelerdeki olgunlaşma geciktirilebilmektedir . Böylece koku, lezzet, yumuşaklık/sertlik derecesi gibi yüksek kalitede organoleptik özellikler ve daha uzun raf ömrü sağlanabilir. Olgunlaşmanın yavaşlatılması veya geciktirilmesi, aynı zamanda ahududu, çilek, ananas ve şeftali gibi ürünlerde de yapılabilir.Ürünlerin raf ömürlerinin uzatılması üretici ve satıcı için nakliyat, depolama ve işlenmeyi kolaylaştırmakla birlikte tüketici içinde ürünü uzun süre bozulmadan kullanma imkânı sağlayacaktır. Ürünlerin nakliye ve işlenmeye dayanıklı olması, soğutma sistemlerinin güvensiz, pahalı ve nakliye ağının yetersiz olduğu gelişmekte olan ülkelerdeki çiftçiler ve tüketiciler için de faydalı olacaktır. 3.Bitkisel Ürün Veriminin Artırılması 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun besin gereksiniminin karşılanması önemli bir sorun olarak düşünülmektedir. Ekilebilir alanları artırmak mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek tatlı su kaynakları da hızla azalmaktadır. Artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişletilmesi değil, birim alandan alınan ürün veriminin artırılması gerekmektedir. Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının daartık sınırlarına gelindiği düşünüldüğünde, bitki ve hayvan ıslah çalışmalarında gen aktarım teknolojisinin kullanılması kaçınılmaz görünmektedir .Genetiği değiştirilmiş bitkiler, ürün verimini artırmak için ve böcekler, yabani otlar, herbisitler, virüsler, tuzluluk, pH, sıcaklık, don, kuraklık ve hava gibi çeşitli çevresel faktörlere dayanıklı bitkiler üreterek ürün kaybını azaltmak için kullanılabilirler. Verimin artması ve ürün kaybının azalması ile global ürün üretiminin artışı sağlanabilir. Bir yıllık olan önemli tahıl ürünlerinin genetiği değiştirilerek çok yıllık ürünlere çevrilebilir. Böylece toprağın daha az işlem görmesi (çift sürme vb.) ile erozyonun azalması ve yıl boyunca ürün veriminin alınması sağlanabilir.Ayrıca genetiği değiştirilmiş bitkilerin kuraklığa direnci, tarımda su kullanımını azaltarak suyun yetersiz olduğu bazı tropikal ve kurak bölgelerde bu bitkilerin yetiştirilmesini uygun duruma getirebilir. Ürünlerin diğer çevresel streslere (örneğin; uç sınırdaki pH, tuz, böcekler, sıcaklık vb.) dayanıklılığını artırmak dünyada şu anda ürün üretimi için uygun olmayan ekim alanlarının yeniden kullanılmasına yardım eder. Böylece yağmur ormanları gibi telafi edilemeyecek doğal kaynaklar üzerindeki baskılar azalır .Çevresel streslere dayanıklılık özellikleri çok sayıda genin karmaşık etkileşimi sonucu ortaya çıkıyor olabilir. Bu nedenle bitkilere bu özelliklerin kazandırılması zaman alabilir. 4.Yenilebilir Aşı ve İlaç Üretimi GDO’lar hem gıda hem de ilaç olarak etki edecek ürünler halinde tüketilebilirler. Örneğin brokoli, antioksidan içeriğini zenginleştirmek için; çay, flavonoidlerle zenginleştirilmek için; patates, muz ve domates, aşı depolamak için genetik olarak değiştirilebilir. Özellikle olgunlaştığı zaman çiğ olarak tüketilen muz gibi bazı tropikal ürünler; hepatit, kuduz, dizanteri, kolera ve ishal ile gelişmekte olan ülkelerde yaygın olan diğer bağırsak enfeksiyonlarına karşı kullanılabilen proteinleri üretmek için genetik olarak değiştirilebilmektedir . Yenilebilir ürünlerdeki bu aşılar, bu ürünlerin yetiştirildiği, düşük maliyetle dağıldığı ve özellikle aşı üretimi için kaynağın ve tıbbi alt yapının yetersiz olduğu gelişmekte olan ülkelerde çocuklar için faydalı olacaktır. Bazı biyoteknoloji şirketleri tütün gibi bazı bitkileri ilaç sentezi için değiştirebilmektedir. Tütün, aynı zamanda insan ve çiftlik hayvanlarında kullanılan antikorları üretmek için değiştirilmiştir. İnsan antikoru içeren bitkiler, yaygın olan hastalıklara karşı aşı için pahalı olmayan ve genetik materyal sağlayacak tohumlarında da bu materyali taşıyacaklardır. Ayrıca bu bitkisel aşılar uzun bir raf ömrüne ve stabil bir depolama kapasitesine sahip olacaklardır. Bazı insan genleri, deneysel biyoilaçları büyük miktarlarda üretmek için bitki kromozomuna ilave edilmişlerdir. Tütün ve patates, insan serum albumini üretmek için; kolza tohum yağı ve Arabidopsis, insan nörotransmitteri, lö-enkefalin ve monoklonal antikorlar üretmek için değiştirilmektedir. Son zamanlarda diyabet hastalarının insülini iğne yoluyla alması yerine ağız yoluyla alabilmesi için bitkilerde insülin üretimi amaçlanmıştır. İnsan Hastalıklarının Tedavisinde ve Organ Naklinde Kullanılması Genetiği değiştirilmiş hayvanlar, meme bezindeki sütte fibrinojen gibi rekombinant proteinleri büyük miktarda üretmek için kullanılabilmektedir. Transgenik proteinler, HIV veya deli dana’nın potansiyel kaynağı olarak korkulan verici insan kanından elde edilen kan proteinlerine alternatif olarak kullanılabilirler. Klonlanmış hayvanlar çoğu insan hastalıkları için model olduğundan dolayı bilim insanları halen tedavisi olmayan kistik fibrozis gibi insan hastalıklarını etkili bir şekilde çalışabilmektedir. Genetiği değiştirilmiş hayvanlar, hemofili hastaları tarafından kullanılan pıhtılaşma faktörü veya diyabet hastaları tarafından kullanılan insülin gibi farmakolojik proteinleri üretmek için kullanılabilir . Keçi, koyun ve domuz gibi bazı çiftlik hayvanları klonlanabilir ve insana nakil için uygun olan kalp, karaciğer, böbrek ve fetal hücreler vb. geliştirmek için kullanılabilirler.Doku reddinin önemli bir nedeni insan hücrelerinde bulunmayan fakat domuz hücrelerinin yüzeyinde bulunan α-l,3-galaktoz karbonhidratının immün reaksiyonudur. α -1,3-galaktozil transferaz geninin “knock out” teknolojisi kullanılarak uzaklaştırılması hücre yüzeylerinde bu karbonhidratı taşımayan hayvanların üretilmesini sağlayabilir. Böylece hastalara organ nakli için uzun bekleme periyotları ortadan kaldırılabilir. 6. Bio-fabrikalar ve Endüstriyel Kullanım İçin Ürün Ham Materyali Olarak Kullanımı Genetiği değiştirilmiş organizmalar ilaç endüstrisinde kullanılan vitaminler, monoklonal antikorlar, aşılar, antikanser bileşikleri, antioksidanlar, plastikler, fiberler, polyesterler, afyonlu ilaçlar/uyku ilaçları, interferon, insan kan proteinleri ve karotenoid üretmek için kullanılmaktadır. GDO’lar aynı zamanda gıda endüstrisinde kullanılan protein, enzim, stabilizatör, kıvam artırıcı, emülgatör, tatlandırıcı, koruyucu, renklendirici ve tat verici gibi gıda karışımları üretmek için de kullanılabilirler. Gıda işleme ve patojen belirlemede kullanılan mikroorganizmalar gen aktarımı ile değiştirilebilir. Örneğin, peynir üretiminde kullanılan çimosin, rennin gibi gıda enzimleri mikroorganizmalara aktarılarak daha kolay ve daha ucuz olarak üretilebilmektedir. Gen aktarım teknolojisiile bu gıda, ilaç ve biyoteknoloji endüstrisinde kullanılan maddelerin üretimi geleneksel işlemlere göre çok daha avantajlıdır. Çünkü yeni teknoloji ile arzu edilen bir ürün, fazla miktarda, çok daha ucuz, nakil ve depolama işlemleri daha uygun olarak üretilebilir. 7. Çevresel Faydaları Tarımsal amaçlı bitkilerin çoğunun genetiği değiştirilerek virüsler, böcekler, yabani otlar, herbisitler, hastalık ve çeşitli çevresel etkenlere karşı direnç kazandırılabilirler. Örneğin, patates, soya ve mısır gibi bitkisel ürünlerin çoğuna Bacillus thuringiensis’in (Bt) insektisidal (böcek öldürücü) potansiyele sahip bir geni aktarılarak böceklere karşı dirençli Bt bitkiler elde edilmiştir. Bt proteini mısır kurdu, patates böceği gibi böceklere karşı toksik olmakla beraber insan için toksik değildir ve mide asidi ile parçalanmaktadır. Bitkilere bu protein üretme özelliğinin kazandırılması kimyasal insektisit ihtiyacını ortadan kaldırır ve böylece bu insektisitlerin hedefi olmayan arı, predatör gibi böceklerin zarar görmesi de engellenir. İnsektisidal Bt proteininin bitkinin dokularında üretilmesi ile bitkinin bütün kısımlarına ulaşmayan kimyasal insektisitlere göre daha etkili bir böcek kontrolü sağlanabilir.İnsektisit direncinin yanında bazı bitkiler herbisit uygulamalarına dayanıklı hale getirilmek için genetik olarak değiştirilmektedir. Herbisit dayanıklılığın artması bitkilerin büyüdüğü toprağın daha az işlem görmesini veya hiç işlem görmemesini sağlayarak toprak erozyonunun ve su kaybının azalmasına ve toprak mikrofauna ve mikrofloralarının korunmasına yardım edecektir. Domates, tütün, kabak ve mısır gibi ürünler virüs direnci kazandırılmak için genetik olarak değiştirilmektedir ya da başka bir ifadeyle bu ürünler virüs ve viral hastalıklara karşı aşılanmaktadır. Ayrıca insan gıda zinciri ve çevrede yer alan kanserojen fungusitlere gereksinimi azaltmak için fungus dirençli ürünlerin üretilmesi amaçlanmıştır [2]Günümüzde bitkilerin topraktan daha fazla azotu doğrudan kendilerinin alabilmesi için genetiği değiştirilmiş bitki üretimi artmıştır. Bu da, buharlaşarak veya nehir ağızlarına sürüklenip su kirliğine neden olarak çevreyi tehdit eden kimyasal gübre gereksinimini azaltacağından çevre için yararlı bir uygulama olacaktır.Genetiği değiştirilmiş bitkiler ya da mikroorganizmalar, çevredeki toksik atıkların uzaklaştırılmasını sağladıkları için bioremediasyon için de kullanılabilmektedirler. Bazı araştırmacılar endüstri, tarım ve petrol üretim atıklarının temizlenmesi için hardal yeşili, kaba yonca, nehir kamışları, kavak ağaçları ve özel yabani otların kullanımının ümit verici olduğunu rapor etmişlerdir. Bazı durumlarda bitkiler, çevreye bulaşan zehirleri parçalayıp zararsız hale getirebilmektedirler   

http://www.biyologlar.com/gdo-larin-potansiyel-faydalari

Toprak solucanları ve önemleri

Toprak solucanları, toprak içinde açtıkları galerilerde yaşıyor ve galerilerinin bulunduğu toprak katmanına göre Epijeik, Endojeik ve Anesik olmak üzere üç gruba ayrılıyorlar. "Epijeik" türler yüzeye yakın yaşıyor ve buradaki organik maddelerle besleniyor. Mineral toprak katmanında (üstten 20 cm.) yaşayan türlere ise "Endojeik" türler deniyor. Bu türler toprağa işlemiş organik madde ile besleniyor ve toprağın havalanmasında çok etkili olmuyorlar. "Anesik" türler ise derin galeri açan türler. Bunlar da gene yüzey organik maddeleriyle besleniyor. Genellikle büyük türler Anesik, küçük türler Endojeik ve Epijeik oluyor. Epijeik türler yaygın olarak, düşen yaprakların örtü oluşturduğu ormanlarda ve ağaçlık bölgelerde bulunuyor. Anesik ve Endojeik türler ise, ormanlık bölgelerden çok, tarımsal alanlarda ve çayırlarda daha yaygınlar. Belirli bir alandaki yoğunlukları iklime, toprak yapısına ve bitki örtüsüne bağlı olarak değişiyor. İlkbahar ve sonbahar aylarında yüzeye yakın yaşadıkları için sıkça görülürken, soğuk ve kurak havalarda derinlere inerek diyapoz’a (uyku hali) giriyorlar. Bu dönemlerde derinlerde kendi etraflarına sarılarak bir yumak haline geliyorlar. Bu derinlik bazı türlerde birkaç metreye kadar ulaşabiliyor. Nemli, yüksek kil ve düşük silt içeren topraklarda daha yüksek yoğunluğa sahipken, asidik, kumlu ya da kurak topraklarda az bulunuyorlar. İnsanların yoğun olduğu bölgelerde ve yoğun otlatma görülen meralarda toprağın ezilerek sıkıştırılması nedeniyle toprak solucanı yoğunluğu azalıyor. Tarım ve toprağın işlenmesi de toprak solucanı yoğunluğunu azaltıcı etki yapıyor. SOLUCANLARIN topraktaki azot çevriminde, erozyonun azaltılmasında da rolleri var. Araştırmalar, açtıkları galeriler nedeniyle eğimli çayırlarda yüzey suyu akışını yarı yarıya azalttıklarını, böylece suyun geçmesini önemli ölçüde engelleyerek erozyonu önlediklerini gösteriyor. Birçok ülkede, arazilere toprak solucanları aşılanmasının, bitki üremesini belirgin şekilde artırdığı gözleniyor. Kuzey Tazmanya’da yapılan böyle bir çalışmada çayır üremesinin yüzde 75 oranında arttığı görülmüş. Gene Yeni Zelanda’da yapılan benzer bir çalışmada, bitki verimi başlangıçta yüzde 72 artmış. Yüzey organik maddelerinde saklı besinlerin serbest kalmasından sonra görülen bu hızlı büyüme artışı daha sonra yüzde 25 oranında sabitlenmiş. Bu oran Hollanda’da deniz seviyesinden aşağıda bulunan ve denizden setlerle ayrılarak kurutulmuş olan alanlarda yüzde 10, İrlanda’da iyileştirilen turbalık üzerindeki çimenli alanda iki yıl sonra yüzde 25, üç yıl sonra da yüzde 49 olmuş. Bunun yanında, yapılan çalışmalar, toprak solucanlarının, tahıl bitkilerinin gelişimini yüzde 39, tohum rekoltesini yüzde 35, tohumun azot içeriğini yüzde 12 oranında artırdığını gösteriyor. Dünyada bugüne kadar 500’ün üzerinde toprak solucanı türü tespit edilmiş. Türkiye’de 65 kadar toprak solucanı türü yer alıyor. Bunlardan 22’si ise, dünya üzerinde sadece Anadolu’da yaşıyor. Günde 60 toprak solucanı yiyebilen köstebekler de toprak solucanının doğal düşmanları arasında yer alıyor. Ayrıca porsuk, su samuru, kirpi gibi memeliler ve ardıçkuşu, baykuş, karatavuk, kızıl gerdan, karga, martı gibi kuşlar ve olta balıkçılığı ile avlanan balıklar için de lezzetli bir besin kaynağı. Toprak solucanı popülasyonlarına en büyük zararı veren etkenlerse ormanların tahrip olması, toprağın işlenmesi, böcek öldürücü ilaçların kullanımı, doğal yaşam ortamlarının bozulması. Özellikle, kirletici maddelerin, kuşlara ve diğer kara omurgalılarına taşınmasındaki potansiyel rolleri nedeniyle dikkat çeken toprak solucanlarının en iyi bilinen örneklerinden olan Lumbricus terrestris türü son yıllarda önemli bir kirlilik göstergesi olarak kabul ediliyor. Kaynak (www.bugday.org) Bazı solucanlar kördür. Bazılarında ise, basit pigmentli bir göz yapısı bulunur. Bu yapı içerisinde de, ışığa duyarlı olan sadece birkaç pigment bulunur. Bu şekilde de, göz sadece önündeki ışığı algılayabilir. Bu tip gözlere "Ocelli = Nokta Göz" adı verilir. Etrafımızda görmeye alışık olduğumuz toprak solucanları, vücutları belirli bir noktadan itibaren ikiye ayrıldığında, yaşamlarını sürdürebilir. Toprak solucanlarının vücutlarına dikkatli bir şekilde bakarsanız, kuyruk kısmına doğru kalınca bir bant görünümündeki bir yapı dikkatinizi çekecektir. Toprak solucanları hermafrodittir (çift cinsiyetli). Yani bir bireyde hem erkek, hem de dişi üreme organları bulunur. Bu kalın bant görünümündeki yapı, üreme mevsiminde oluşan ve çiftleşmenin meydana getirildiği "klitellum" adını alan bölgedir. Çiftleşme sırasında iki toprak solucanı karşı karşıya gelir ve klitellumlarını birbirine yapıştırarak, sperm alışverişi yaparlar. Bu işlem sırasında klitellumlar birleşir ve daha sonra yumurtalar, "kokon" adı verilen bir kapsül üzerine boşaltılır. Solucan dediğimizde, sadece toprak solucanlarını değil, birçok solucanı kastetmiş oluruz. "Solucan" kelimesinin kapladığı aileler arasında halkalı solucanlar ve yassı solucanlar gibi çok farklı omurgasız grupları bulunabilir. Ancak sadece Annelidler (Annelidae) ailesine bakacak olursak, bunlar da toprak solucanlarını, poliketleri, oligoketleri ve sülükleri içermektedir. Bunların hepsinin özellikleri birbirlerinden farklıdır. Yukarıda verilen bilgiler ise, sadece toprak solucanları için geçerlidir. Kaynak (www.biltek.tubitak.gov.tr ) LUMBRICUS TERRESTRIS Lumbricus terrestris isimli bir solucan türü, toprak içinde 70 cm. kadar derinlere inerek çember veya elips kesitli yollar açar. Bir hektarlık alanda 25 ton'luk kütleyi yüzeye getirir; bu suretle toprağı 5 cm.'ye kadar kabartmış olur. Ağırlığı birkaç gram olan solucan, kendisinin "50 ila 60" katı ağırlıktaki kütleyi de harekete geçirebilir. Bu, 100 kg. ağırlığındaki bir sporcunun 5 ton'u hareket ettirebilmesi gibidir. Solucanın bu kadar güç bir işi başarması, vücudunu saran enine ve boyuna kaslar sayesinde gerçekleşir. Hayvan vücudunun ön kısmındaki kasları büzerek incelir ve yoklayarak bulduğu küçük bir deliğe başını sokar. Sonra boylamasına kaslarını çalıştırarak vücudunun ön bölümünü şişirir ve böylece deliği genişletir. Bunları yaparken de sürekli karnını doyurur ve sürekli olarak ilerler. Kaynak (www.hayvanlaralemi.net ) Toprak Solucanlari topragin vefakar çalisanlari.Birçok faydalari var.Ne yazikki yurdumuzda kiymetleri fazla bilinmiyor. Kimileri solucanlarin bitkilerin kokunu yediklerini zannediyor ve bu yuzden onlara zararli muamelesi yapiyor. Ben topragi kazarken bile solucanlara zarar vermemeye çalisyorum.Amerikada topraginiz veya kompostunuz icin solucan satin alabilirsiniz ayrica solucan diskisi (worm casting) ureten ciftlikler var.Solucanin sisteminden gecen bu degerli toprak gubre gibi kullaniliyor. www.localharvest.org) Bazı solucanlar kördür. Bazılarında ise, basit pigmentli bir göz yapısı bulunur. Bu yapı içerisinde de, ışığa duyarlı olan sadece birkaç pigment bulunur. Bu şekilde de, göz sadece önündeki ışığı algılayabilir. Bu tip gözlere "Ocelli = Nokta Göz" adı verilir. Etrafımızda görmeye alışık olduğumuz toprak solucanları, vücutları belirli bir noktadan itibaren ikiye ayrıldığında, yaşamlarını sürdürebilir. Toprak solucanlarının vücutlarına dikkatli bir şekilde bakarsanız, kuyruk kısmına doğru kalınca bir bant görünümündeki bir yapı dikkatinizi çekecektir. Toprak solucanları hermafrodittir (çift cinsiyetli). Yani bir bireyde hem erkek, hem de dişi üreme organları bulunur. Bu kalın bant görünümündeki yapı, üreme mevsiminde oluşan ve çiftleşmenin meydana getirildiği "klitellum" adını alan bölgedir. Çiftleşme sırasında iki toprak solucanı karşı karşıya gelir ve klitellumlarını birbirine yapıştırarak, sperm alışverişi yaparlar. Bu işlem sırasında klitellumlar birleşir ve daha sonra yumurtalar, "kokon" adı verilen bir kapsül üzerine boşaltılır. Solucan dediğimizde, sadece toprak solucanlarını değil, birçok solucanı kastetmiş oluruz. "Solucan" kelimesinin kapladığı aileler arasında halkalı solucanlar ve yassı solucanlar gibi çok farklı omurgasız grupları bulunabilir. Ancak sadece Annelidler (Annelidae) ailesine bakacak olursak, bunlar da toprak solucanlarını, poliketleri, oligoketleri ve sülükleri içermektedir. Bunların hepsinin özellikleri birbirlerinden farklıdır. Yukarıda verilen bilgiler ise, sadece toprak solucanları için geçerlidir. Lumbricus terrestris isimli bir solucan türü, toprak içinde 70 cm. kadar derinlere inerek çember veya elips kesitli yollar açar. Bir hektarlık alanda 25 ton'luk kütleyi yüzeye getirir; bu suretle toprağı 5 cm.'ye kadar kabartmış olur. Ağırlığı birkaç gram olan solucan, kendisinin "50 ila 60" katı ağırlıktaki kütleyi de harekete geçirebilir. Bu, 100 kg. ağırlığındaki bir sporcunun 5 ton'u hareket ettirebilmesi gibidir. Solucanın bu kadar güç bir işi başarması, vücudunu saran enine ve boyuna kaslar sayesinde gerçekleşir. Hayvan vücudunun ön kısmındaki kasları büzerek incelir ve yoklayarak bulduğu küçük bir deliğe başını sokar. Sonra boylamasına kaslarını çalıştırarak vücudunun ön bölümünü şişirir ve böylece deliği genişletir. Bunları yaparken de sürekli karnını doyurur ve sürekli olarak ilerler. Kısacası, solucanlar, toprakta 40 yılda oluşacak humusu 24 saatte çiftçiye kazandırırlar, lütfen daha dikkatli ilaçlama yapalım, solucan ölümlerine neden olmayalım. Kaynak (www.tarimdostu.com )

http://www.biyologlar.com/toprak-solucanlari-ve-onemleri

Halkalı Solucanlar

Halkalı Solucanlar

Denizlerde tatlı sularda ve karada yaşarlar. Trocophora larvası görülür. Genellikle vücut uzun ve segmentlidir. Segmentler iç kısmında enine bölmelere ayrılmıştır. Sölomları mezoderm orijinli ve şizosöl tiptedir.

http://www.biyologlar.com/halkali-solucanlar

Evrim ve Termodinamiğin İkinci Yasası

Evrim kuramına karşı çıkanlar, inançlarını daha bilimsel bir ambalajla sunmak için termodinamiğin ikinci yasasını çarpıtıyorlar.Termodinamiğin ikinci yasası, doğada hangi süreçlerin olup olamayacağını öngörür. Birinci yasanın (enerjinin korunumu yasası) izin verdiği tüm işlemlerde sadece bazı enerji dönüşüm türleri mümkün olabilmektedir. Aşağıdaki süreç örnekleri, termodinamiğin birinci yasası ile uyumludur; fakat ikinci yasayla kontrol edilen bir düzende olmalıdır: (1) Sıcaklığı farklı iki cisim termal olarak temas ettirilirse, sıcak cisimden soğuk cisme doğru ısı akışı olur, fakat soğuktan sıcağa doğru asla ısı akışı olmaz.. (2) Tuz, suda kendiliğinden çözülür, fakat tuzlu sudan tuzu elde etmek için bazı dış işlemler gerekir. (3) Bir lastik top yere düştüğü zaman bir dizi sıçramadan sonra sonuçta durur; olayı tersine çevirmek mümkün değildir. (4) Bir sarkacın salınım genliği, destek noktasındaki sürtünme ve hava molekülleri ile çarpışmadan dolayı zamanlan azalır ve sonuçta durur. Burada sarkacın başlangıç mekanik enerjisi ısı enerjisinie çevrilir. Burada enerjinin ters dönüşümü mümkün değildir. Bu örnekler, tek yönlü süreçlerdir yani tersinmez süreçlerdir. Bu olayların hiçbiri, kendiliğinden ters yönde oluşmaz. Eğer oluşsaydı termodinamiğin ikinci kanununa aykırı olurdu (Dip not:Daha kesin olarak, zaman tersinmezliği anlamında olaylar beklenmedik sırada oluşur. Bu görüşe göre, olayların bir yönde olma olasılığı diğer yönde olma olasılğından çok çok fazladır.)Termodinamik işlemlerin tek yönlü karakteri, zaman için bir yön oluşturur. Ters yönde gösterilen komik hareketlerle dolu bir filmde olaylar, zaman tersinirli bir dünyadan anlamsız bir sıralamada oluşur. Çok çeşitli şekilde ifade edilebilen termodinamiğin ikinci kanunun, pekçok önemli uygulamalara sahiptir. Mühendislik açısından, belki de en önemli uygulama, bir ısı makinasının veriminin sınırlı olmasıdır. Basit ifadeyle, ikinci kanın ısıyı tümüyle, sürekli olarak başka bir enerjiye çeviren bir makinanın yapılmasının mümkün olmadığını söyler. Entropi kavramının asıl yeri termodinamiktir. Fakat önemi istatistik mekanik alanında daha da artmıştır. Çünkü bu inceleme yöntemi, entropi kavramını başka bir yolla açıklar.İstatistiksel mekanikte bir maddenin davranışı, madde içerisindeki atom ve moleküllerin istatistiksel davranışları ile tanımlanır. Bu şekildek incelemenin ana sonuçlarından biri: Yalıtılmış sistemler düzensizliğe eğlimlidir ve entropileri bu düzensizliğin bir ölçüsüdür. Örneğin odanızdaki havadda bulunan gaz moleklüllerini düşününüz. Eğer bütün moleküller askerler gibi düzenli hareket etselerdi, bu çok düzenli bir hal olurdu. Bu pek olağan olmayan bir haldir. Eğer molekülleri görebilseydik onların rastgele, her doğrultuda hareket ettiklerini, birleri ile çarpıştıklarını, çarpışma sırasında hızlarının değiştiğini, bazılarının daha yavaş bazılarını daha hızlı gittiğini izleyecektik. Bu, hayli düzensiz ve hata en muhtemel olan haldir. Bütün fiziksel olaylar, en olası duruma ulaşma eğilimindedi ve böyle düzensiz bir durum, düzensizliğin daima arttığı bir durumdur. Entropi, düzensizlik ölçüsü olduğu için aşağıdaki gibi anlatılabilir: Bütün doğal olaylarda evrenin entropisi artar. Bu, termodinamiğin ikinci yasasının başka bir biçimde anlatımıdır. Peki bu yasayla evrimin ilişkisi nedir? İkinci yasa ısıyı yokuş yukarı itmeyi yani soğuk cisimden sıcak cisme ısı aktarma olayında olduğu gibi, olasılık dışı bırakmaz ya da düzesizlikten düzenli duruma geçeşe de izin vermektedir. Böyle bir işlem için dışardan enerji gerektiği, örneğin sürekli elektrik verilmesi gibi açıkça ifade etmektedir. Bunun kanıtı çok uzağımızda değildir. Örneğin, mutfaktaki buzdolabı elektrikle çalışarak, daha soğuk olan içerden dışarıya ısı atmaktadır.(Serway, Fizik, 22. Bölüm,587-588) Evrim ve Entropi Enerjinin korunumu yasasını ilk olarak bir fizikçi değil bir tıp adamı açıklığa kavuşturmuştu. Bunun için deneyinde o da fareleri kullanmıştır. “Besinler yandığında ne kadar enerji oluştuğunu saptayabilirsiniz. Bir miktar besini farelere yedirirseniz, tıpkı yanmada olduğu gibi, besin oksijen etkisiyle karbon dioksite dönüşür. Enerjiyi, her iki durumdaki enerjiyi ölçerseniz canlı varlıkların cansızlarla aynı şeyi yaptığını görürsünüz. Enerjinin korunumu yasası öbür olgular için geçerli olduğu kadar yaşam için de geçerlidir Şunu da eklemek isterim: “cansız” olan şeyler için doğru olduğunu bildiğimiz her yasanın yaşam denilen o büyük olgu için sınandığında da doğru çıkması çok ilginç bir şey. Fizik yasaları bağlamında, çok daha karmaşık olan canlı varlıklarda olup bitenlerin yaşamayan varlıklarda olup bitenlerden farklı olmasını gerektiren bir bulgu henüz yoktur...” (R. Feynman, FYÜ s: 80-81) “ Canlı varlıkların en küçük molekülleri proteinlerdir. Bunlarda tirbüşon özelliği vardır ve sağa doğru dönerler. Şu kadarını söyleyebiliriz ki, aynı şeyleri kimyasal olarak yapabilirsek ve de sağa değil sola doğru yaparsak, biyolojik olarak işlemezler; çünkü, başka proteinlerle karşılaştıklarında uyumu sağlayamazlar. Sol yönlü bir yiv sol yönlü bir yive uyar; fakat sol ve sağ birbirine uymaz. Kimyasal yapılarında sağ yönlü yivi olan bakteriler “sol ve sağ yönlü” şekeri ayırt edebilirler. Bunu nasıl başarıyorlar? Fizik vi kimya iki tür molekülü de üretebilir; ancak onları ayırt edemez. Ama biyoloji ayır edeilyor. Şöyle bir açıklama akla yakın görünüyor: Çok, çok eskiden, hayat daha yeni başladığında, raslantı sonucu bir molekül ortaya çıktı ve üreyerek yayıldı vs. Uzun yıllar boyunca bu tuhaf görünümlü, çatallı yumruları olan damlacıklar birbirleriyle gevezelik edip durdular İşte bizler de başlangıçtaki bu birkaç molekülün evlatlarından başka bir şey değiliz. Bu ilk moleküllerin öyle değil de böyle bir şekil almaları tesadüf sonucunda oldu. Ya bu ya diğeri ya sağ ya da sol olmak zorundaydı. Sonra kendilerini çoğalttılar ve hala da çoğalmaya devam ediyorlar.Bu, bir atölyedeki vidalara benzer. Sağ yönlü vidalar kullanarak sağ yönlü vidalar yaparsınız, vs. Bu gerçek, yani bütün canlı moleküllerde aynı tür yiv bulunması, moleküler düzeye kadar inen canlı soyunun hep aynı niteliği taşıma özelliğinin belki de en anlamlı ifadesidir.(R. Feynman, FYÜ, s: 113-114) Entropi İki şey aynı sıcaklıkta olduğu zaman bir denge oluştuğunu söyleriz, ancak bu onların enerjilerinin de aynı olduğu anlamına gelmez; sadece, birinden enerji çıkarmanın öbüründen çıkarmak kadar kolay olduğunu belirtir. Sıcaklık “enerji verme kolaylığı” gibi bir şeydir. Onları yanyana koyarsanız, görünürde hiçbir şey olmaz. Enerjiyi eşit olarak ileri geri birbirlerine geçirirler; ancak, net sonuç sıfındır. Öyleyse, nesnelerin hepsi aynı sıcaklığa ulaşınca, bir şey yapmak için kullanabileceğimiz enerji yoktur. Ters-çevrilmezlik ilkesi öyledir ki, eğer cisimlerin sıcaklıkları farklı ise ve kendi hallerine bırakılırsa zaman geçtikçe sıcaklıkları birbirine yaklaşır ve enerjinin kullanılabilirliği giderek azalır. Bu, entropinin durmadan arttığını söyleyen entropi yasasının değişik bir ifadesidir. Sözcükler üstünde durmayalım. Bir başka deyişle, kullanılabilir enerji durmadan azalıyor da diyebeliriz. Bu, düzensiz molekül hareketleri kaosunun yol açtığı bir dünya özelliğidir. Farklı sıcaklıktaki şeyler kendi hallerine bırakılırlarsa aynı sıcaklıkta olmaya yönelirler. Aynı sıcaklıktaki iki şeyiniz, örneğin yanmayan bir ocak üstüne konulmuş su varsa, ocak ısınıp su donmayacaktır. Ancak, yanan bir ocak ve buz varsa tersi olacaktır. Demek ki tek yönlülük, her zaman kullanılabilir enerjinin kaybedilmesine yol açar. Bu konuda söyleyeceklerim bu kadar. Ancak bazı temel özellikler hakında birkaç noktaya da değinmek isitiyorum. Burada ters-çevrilmezlik gibi bir sonucu apaçık olan, ancak yasaların aşikar bir sonucu olmayan, temel yasalardan farklı bir örneğimiz var. Bunun nedenini anlamak birçok analizi gerektirir. Bu sonuç, dünyanın ekonomisi ve aşikar görünen her konudaki gerçek davranışı bakımından çok önemlidir. Belleğim, özelliklerim, geçmiş ile gelecek arasındaki fark tamamen bununla içiçedir. Ancak yasaları bilmek bunu kolayca açıklamaya yetmiyor; birçok analiz de gerekiyor. Fizik yasalarıyla olgular arasında aşikar ve doğrudan bir uyum olmaması sık karışlaşılan bir durumdur. Yasalar, değişik ölçülerde, deneyimlerrden soyutlanmışlardır. Bu özel durumda, yasal ters-çevrilebilir oldukları halde olguların çerilememesi buna örnektir. Ayrıntılı yasalarla gerçek olguların temel özelllikleri arasında çoğu zaman büyük uzaklıklar vardır. Örneğin, bir buzula uzaktan bakıp denize düşen kayaları, buz hareteldreni vb, gördüğünüzde onun küçük altıgen buz kristallerinden oluştuğunu hatırlamanız gerekli değildir. Fakat, buzun yürümesinin gerçekten de altıgen buz kristallerinden kaynaklandığını biliyoruz. Buzulun rdavranışlarını anlamak için uzun zaman gerekir (gerçekte, kristalleri ne ölçüde incelemiş olursa olsun hiç kimse buz hakkkında yeterli bilgi sahibi değildir). Buna karşın, kristalleri gerçekten anlarsak sonunda buzulları da anlayacağımızı umuyoruz. Bu derslerde fizik yasalarının temel öğelerinden sözetmemize karşın, hemen ekleyelim ki temel fizik yasalarını bugün bilebildiğimiz kadar bilmek, herhangi bir şeyi hemen anlamamızı sağlamıyor. Bunun için zaman gerekiyor., yine de ancak kısmen anlayabiliyoruz. Sanki doğa, gerçek dünyadaki en önemli şeylerin, bir sürü yasanın karışık bir rastlantısal sonucuymuş gibi göründükleri bir şekilde düzenlenmiş. Bir örnek gerekirse, proton ve nötron gibi bazı nükleer parçacıkları içeren atom çekirdekleri çok karmaşıktırlar. Enerji düzeyi dediğimiz bir şeylere sahiptirler ve değişik enerji değerleri olan durum veya koyullarda bulunurlar. Farklı çekirdeklerin enerji düzeyleri de birbirinden farklıdır. Enerji düzeylerinin durumunu saptamak karmaşık bir matematiksel problemdir; bunu ancak kısmen çözebiliyoruz. Düzeylerin kesin durumu son derece karmaşık bir şeyin sonucudur. Bu nedenle, içinde 15 parçacık bulunan nitrojen 2.4 milyon voltluk bir düzeyi, bir başkasının da 7.1 düzeyi vb olmasında şaşılacak bir şey yoktur. Doğa hakkında çok ilginç olan bir şey vardır: Tüm evrenin kendine özgü yapısı belirli bir çekirdekteki özel bir enerji düzeyinin durumuna bağımlıdır. Karbon-12 çekirdeğinde 7.82 milyon voltluk bir düzey olduğu saptanmıştır. Bu da akla gelebilecek her şey için çok büyük önem taşımaktadır. Durum şöyledir: Hidrojenle başlayalım. Başlangıçta Dünya neredeyse tümüyle hidrojenmiş gibi görünüyor. Çekimin etkisiyle hidrojen sıkışıp ısınıyor ve nükleer reaksiyon gerçekleşiyor; helyum oluşuyor.. Sonra helyum hidrojenle kısmen birleşerek daha ağır birkaç element oluşturuyor. Ancak, daha ağır olan bu eylementler hemen dağılıp helyuma dönüşyorlar.Bu nedenle bir ara, dünyadaki bütün diğer elementlerin nasıl ortaya çıktıkları anlaşılamıyordu. Çünkü, yıldızlardaki üretim süreci, hidrojenle başlayarak helyum ve yarım düzineden az başka elementten fazlasını ortaya çıkaramazdı. Bu problem karşısında Fred Hoyle (İnrgiliz astoronum) ve Edwin Salpeter (Amerikalı fizikçi), bir çıkış yolu bulunduğunu öne sürdüler. Buna göre, üç helyum atomu bir leşip bir karbon atomu yapabiliyorsa, bir yıldızda bunun ne sıklıkta oluşabileceğini kolayca hesaplayabiliriz. Sonuç şunu ortaya çıkardı: karbon ancak tek bir rastlantısal olanakla oluşabelirdi. Eğer karbonda 7.82 düzeyi olmadığı zamankinden biraz daha uszun bir süre beraber kalabilirlerdi. Biraz daha uzun kaldıklarında, başka bir şeylerin oluşması ve yeni elementler yapılması için gerekli zaman sağlanacaktı. Eğer karbonda 7.82 milyon voltluk bir enerji düzeyi varsa, periyoduk tablodaki diğer elementelerin nereden geldiği anlaşılabilirdi. Böylece dolaylı ve tepetaklak bir irdeleme ile karbonda 7.82 milyon voltluk bir düzey varolduğu tahmin edildi; laboratuvar deneyleri de bunun gerçek olduğunu gösterdi. Bu nedenle dünyada, bütün öbür elementelerin varolaması, karbondaki bu özel düzeyin varlığı ile yakından ilişkilidir. Karbondaki bu üzel düzeyin varlığı ise fizik yasaların bilen bizlere, etkileşim içinde bulununan 12 karmaşık parçacığın çok karmaşık bir rastlanıtsal sonucu olduğu izlenimini veriyor. Bu örnek fizik yasalarını anlamanın dünyadaki önemli şeyleri doğrudan anlamayı gerektirmediğini çok güzel gösteren bir örnektir. Gerçek deneyimler çoğunlukla temel yasalardan çok uzaktırlar. Dünya hakkında tartışırken onu hiyerarşik bir düzen içinde ve muhtelif düzeylerde ele alırız.Bundan kastettiğim, dünyayı sınırları kesin ve belirli düzeylere ayırmak değil. Fikirlerin hiyerarşisinden ne anladığımı bir grup kavramı açıklayarak göstereceğim. Örneğin, bir uçta fiziğin temel yasaları bulunuyor. Kesin açıklamalarının temel yasalarla yapılacağını düşündüğümüz yaklaşık kavramlar için başka başka terimler icat ederiz; örneğin “sıcaklık”. Sıcaklığın titreşim olduğunu düşünüyoruz; sıcak bir şey için kullandığımız sözcük de titreşen atomlar kütlesi için kullandığımız sözcüktür. Fakat sıcaklık hakkında konuşurken titreşen atomları unuttuğumuz da olur. Tıpkı buzullar hakında konuşunrken altıgen buzları ve ilk başta yağan kar taneciklerini unuttuğumuz gibi. Aynı şeye başka bir örnek de tuz kristalleridir.Bunlar temelde bir sürü proton, nötron ve elktrondan oluşur. Ancak bütün temel etkileşim düzenini içeren bir “tuz kristali” kavramımız vardır. Basınç da aynı türden bir kavramdır. Buradan bir üst basamağa çıkarsak, bir başka düzeyde maddelerin özelliklerini buluruz. Örneğin, ışığın bir şey içinden geçerken ne kadar büküldüğünü gösteren “kırılma endeksi” veya suyun kendini biradrada tuttuğunu gösteren “yüzey gerilimi”. Bunların her ikisi de sayılarla ifade edilir. Bunun atolmların çekimlerinden vb. kaynaklandığını görmek için bir çok yasa taramak gerektiğini sizlere hatırlatırım. Ama yine de “yüzey gerilimi” terimini kullanırız ve bunu tartışırken içerilerde ne olup bittiğine her zaman pek aldırlmayız. Hiyerarşide bir basamak daha yukarı çıkalım.Su konusunu ele alırsak dalgalar, bir de fırtına diye bir şey çıkıyor karşımıza. “Fırtına” sözcüğü de çok büyük bir olaylar topluluğunu ifade eder. Sonra “güneş lekeleri”, birer nesneler topluluğu olan “yıldızlar” var. Her zaman fazla geriye giderek düşünmeye değmez. Gerçekten bunu yapamayız da. Çünkü yukarılara çıktıkça araya gittikçe zayıflayan yeni basamaklar girer. Hepsini birden ele alarak düşünmeyi henüz başaramadık. Bu karmaşıklık sıralamasında yukarılara çıktıkça, fiziksel dünhyada son derece karmaşık bir şey olan, maddeyi son derece incelikli bir karmaşıklıkla düzenlemeyi gerektiren, kas-seğirmesi veya sinir uyarısı gibi şeylerle karşılaşırız. Daha sonra da “kurbağa” gibi şeyler gelir. Çıkmaya devam ediyoruz; “insan”, “tarih”, “politika” vb. sözcük ve kavramlara, daha üst düzeydeki şeyleri anlamak için kullanığımız bir dizi kavrama geliyoruz; çıkmayı sürdürerek kötülük, güzellik, umut gibi şeylere ulaşıyoruz. Dinsel bir mecaz yaparsak, hangi uç Tanrı’ya daha yakındır? Güzellik ve umut mu, yoksa temel yasalar mı? Söylenmesi gerekinin şu olduğunu sanıyorum: Varlığın içiçe geçmiş bağlantılarının tümüne bakmamız gerekir. Bütün bilimler, yalnız bilimler değil bütün entellektüel kökenli çabalar, hiyererşik basamaklar arasında aşağıya ve yukarıya doğru olan bağlantıları bulmaya; güzellikle tarih, tarihle insan psikolojisi.insan psikolojisiyle beyinin işlevleri, beyihnsel isinrsel uyarılar, sinirsel uyarılarla kimya vb arasında bağlantı kurmaya yönelik çabalardır. Bugün bunu yapkmıyoruz. kendimiz kandırıp bu şeyin bir ucundan öbüüne uzanan birdoğru çizebileceğimiz sanmanın yararı yoktur; çünkü, böyle bir göreceli hiyerarşinin varolduğunu yeni yeni görmeye başladık. İki uçtan birinin Tanrı’ya daha yakın olduğunu da sanmıyorum. İki uçtan birinde durmak, iskelenin yalnızca o ucunda yürüyüp olan bitenleri tam olarak anlamanın o yönde ggerçekleşeceğine inanmak yanlıştır. Kötülük, güzellik ve umuttan yana veya temel yasalardan yana olmak; bütün dünyayı derinliğine kavramanın yalnız o yolla olacağını ummak doğru değildir. Bir uçta uzmanlaşanın öbür uçta uzmanlaşanı önemsememesi akla uygun değildir. Bu iki ucun arasında çalışan büyük kütle sürekli olarak, bir adımı diğeri ile birleştirerek, dünyayı gittikçe daha iyi anlamamızı sağlıyor. Bu yolla, hem iki uçta hem de ortada çalışarak yavaş yavaş bu içiçe hiyerarşinin olağanüstü büyük dünyasını anlamaya başlıyoruz. (R. Feynman, Fizik YasalarıÜzerine,TÜBİTAK y, s: 140-147) Krallıklar ve Karanlıklar “Demiştik ki, Australantrop ya da türdeşlerinden birinin, artık yalnızca somut ve gerçek deneyini değil de bir öznel deneyini bir kişisel “benzerleştirme” nin içeriğini iletmeyi başardığı gün yeni bir dünya doğmuştu:Düşünler dünyası. Yeni bir evrim, kültür evrimi olanak kazanıyordu.İnsanın fiziksel evrimi, artık dilin evrimiyle sıkı bir bilik içinde, onun ayıklanma koşullarını altüst eden etkisine derinden bağlı larak daha uzun süre devam edecektir. Modern insan bu ortak yaşarlığın ürünüdür. Onu başka yoldan anlamak ya da yorumlamak olanaksızdır. Her canlı varlık bir taşıldır da. İçinde proteinlerinin mikroskopik yapısına dek atalarının damgasını değilse ible, izleri taşır: Bu insanın kalıtçısı olduğu fiziksel ve “düşünsel” ikilikten dolaylı, bütün hayvan türlerinden çok onun için doğrudur. Yüzbinlerce yıl boyunca, düşünsel evrimin, ancak hayatın hemen korunmasına doğrudan bağlı olaylar için önlem almaya elverişli bir beyin kabuğunun yavaş gelişmesinin baskısı altında, fiziksel evrimin ancak çok az önünde yürüdüğü düşünülebilir:Benzerleştirme gücüyle işlemleri ortaya çıkaran dili gelişmeye itecek olan ayıklanmamnın yoğun baskısı burdan gelir. taşılların tanıklık ettiği bu evrdimin şaşırtıcı hızı da yine buradan gelir. Fakat bu birlikte evrim sürdükçe, doğrudan maddi sinir sitmenin gelişmesinin baskıları gtigide yok etmesiyle, düşünsel ibleşimin daha çok bağımsızlık kazanması kaçınılmazdı. Bu evrimin sonucunda insan, insan-altı evrene egemenliğini yayıyor ve orada gizlenen tehlikelerden daha az etkileniyordu. Evrimin birinci aşamasına son veren ayıklama baskısı da artık azalacak, hiç olmazsa başka bir niteliğe bürünecekti. Bir kez çevresine gemen olduktan sonra insanın artık kendinden başka önemli düşmanı kalmıyordu. Doğrudan tür içinde ölümüne kavga artık insan türünde ayıklanmanın başlıca etmeni oldu. Hayvanların evriminde son derece seyrek rastlanan bir olgu. Günümüzde hayvan türleri içinde, belirli ırk ve topluluklar arasında, tür içi savaş bilinmez. Büyük memelilerde erkekler arasında sık görülen çarpışmaların bile, yenilenin ölümüyle sonuçlandığı çok seyrektir. Bütün uzmanlar, doğrudan kavganın yani yani Spencer’ın “struggle for life” ının, türlerin gelişiminde pek küçük bir işlevi olduğunu kabul etme konusunda birleşirler. İnsanda durum böyle değil. türün, hiç olmazsa belli bir gelişme ve yayılma düzeyinden sonra, kabile ya da ırk kavgası, evrim etmeni olarak, kuşkusuz önemli bir iş görür. Neandertal adamının birden bire yok oluşunun, atamız Homo sapiens ‘in uyguladığı bir soy kırımının sonucu olması çok olasıdır. Bunun son olduğu da söylenemez: Bildiğimiçz tarihsel soy kırımlarının sayısı az değil. Bu ayıklanma baskısı insanı hangi yönde etkiler? Bunun daha çok zeka, imgelem, irade ve tutku taşıyan ırkların yayılmasını kolaylaştırması olabileceği açıktır. Fakat bu, bireysel gözüpeklik yerine çete bağlılığını ve takım saldırganlığını, girişkenlikten çok kabile yasalarının sayfın tutulmasını da geliştirmiş olmalı. Bu yalınlaştırıcı şemaya yapılacak bütün eleştirileri kabul ediyorum. İnsan evriminin iki ayrı evreye ayrıldığını da ileri sürmüyorum. Benim yaptığım, insanın yalnız kültürel değil, fizik evriminde de kuşkusuz önemli bir işlevi olan başlıca ayıklanma baskılarını sıralamaya çalışmaktır. Buradaki önemli nokta, yüz binlerce yıl boyunca, kültürel evrimin fiziksel evrimi etkilemekten geri kalamayacağıdır; her tür hayvandan çok insanda ve doğrudan onun sonsuz özerkliği nedeniyle, ayıklama baskısını yönlendiren şey davranıştır . Davranış, genellikle otomaik olmatan çıkıp da kültürel olduktan sonra, kültürel özelliklerin de genomun evrimi üzerine baskı yapması gerekir. Bu da, kültürel evrimin gittikçe artan hızının onu genomdan tümüyle koparmasına dek sürer.(s:145) *** Açıktır ki, modern toplumlarda bu kopma toptandır. Burada ayıklanma ortadan kalkmıştır. Hiç olmazsa Darwinci anlamıyla “doğal” bir yanı kalmamıştır. Bizim toplumlarımızda, ayıklanma, henüz bir işlev gördüğü ölçüde, “en yeterlinin varkalması”nı yani daha çağdaş terimlerle “en yeterli” olanın kalıtsal varkalaşını, soyun daha çok yaylılması yoluyla, kolaylaştırmaz.Zeka, tutku, gözüpeklik ve imgelem gerçi modrn toplumlarda da her zaman başarı öğeleridir. Fakat bu kalıtsal değil kişisel başarıdır. Oysa evrimde önemli olan yalnızca birincidir. tersine, herkesin bildiği gibi istatistikler, zeka bölümü (ya da kültür düzeyi) ile aile başına düşen çocuk sayısı arasında tersi bir ilişki bulunduğunu gösreriyor. Buna karşı aynı istatistikler, evli çiftiler arasındaki zeka bölümü için olumlu bir ilişki bulunduğunu gösteriyor. Bu, en yüksek kalıtsal gizilgücü, göreli sayıları gittikçe azalan bir azınlığa doğru toplama olasılığı gösteren tehlikeli bir durumdur. Dahası var: Yakın zamanlara dek görece “ileri” toplumlarda bile, hem fiziksel hem de düşünsel açıdan en az yeterli olanların elenmesi özdevinimli ve acımasızdı. Çoğu erginlik çağına uluşamazdı. Günümüzde bu kalıtsal sakatlardan birçoğu, döl vermeye yetecek kadar yaşıyor. Bilginin ve toplumsal törenin ilerlemesi sonucurnda, türü, doğal ayıklanmanın yok olmasıyla kaçınılmazlaşan alçalmaya karşı savunun mekanizma, artık eğer en ağır kusurlar dışında işlemez olmuştur. Sık sık sergilenen bu tehlikelere karşı moleküler kalıtımdaki son ilerlemelerden beklenen çareler öne sürülüyor. Kimi yarı-bilginelrden yayılan bu yanılgıyı dağıtmak gerek. belki de kalıtsal kusurlar iyileşirilebilir, fakatbu, kusurlu kişinin yalnızca kendisi içindir, soyundan gelenler için değil. . Çağdaş moleküler kalıtımbilim bize, bir “üstün insan”yaratmak üzere kalıtsal birikimi yeni niteliklerle zenginleştirmek, bir yol göstermek şöyle dursun, böyle bir umudun boşluğunu açıklıyor: Genomun mikroskopik oranları bugün için, kuşkusuz her zaman olduğu gibi, bu tür oyunlara elverişli değildir. Bilimkurgu kuruntuları bir yana, insan türünü “iyileştirme”nin tek yolu, bilinçli ve sıkı bir ayıklama uygulaması olabilir. Bunu kim ister, buna kim yürek bulur? tür için, iler toplumlardaki ayıklanmama ya da ters ayıklanma tehlikesinin sürdüğü bir gerçektir. Ancak tehlikenin önemli boyutlar kazanması uzun bir süreye bakar: Diyelim on ya da on beş kuşak, yan birçok yüzyıl. Oysa modern toplumlar, başka yönden de ivedi ve ağır tehditlerle karşıkarşıyadır.(s:146) *** Burada sözünü ettiğim şey, ne nüfus patlaması, ne doğanın yıkımı, hatta nede megatonlardır (1 milyon ton TNT’ninkine eşit patlama gücü) bu daha derin ve daha ağır bir hastalık ruhun hastalığıdır. Bu, o hastalyğı yaratıp gittikçe de ağırlaştıran düşünsel evrimin en büyük dönüm noktasıdır. Üç yüz yıldan beri bilimde ortaya çıkan olağanüstü gelişmeler, bugün insanı, gerek kendisi ve gerekse evrenle ilişkisi üzerine kurduğu ve on binlerce yıldır kök salmış olan anlayışı, çok acılı biçimde değiştirmeye zorlamaktadır. Oysa ruh hastalığı olsun megatonlar olsun, hepsi de yalın bir düşüncenin sonucudur: Doğa nesneldir, gerçek bilginin tek kaynağı mantıklı deneyin sistematik karşılaşmasıdır. nasıl olmuş da, düşünceler ülkesinde, böylesine yalın ve açık bir düşünce, Homo sapiens’in doğşundan ancak yüz bin yıl sonra gün ışığına çıkabilmiş; nasıl olmuş da Çin’deki gibi çok yüksek uygarlıklar, Batı’dan öğrenmedin önce bunu bilememişler; yine nasıl olmuş da, Batı’da da o düşüncenin, sonunda mekanik sanatların arı pratiği içindeki tutsaklığından krtulabilmesi için Thales ile Pythagoras’tan Galilei, Descartes ve Bacon’a dek 2500 yıla yakın zaman geçmesi gerekmiş, bütün bunları anlamak çok zor.(s:146) Bir biyolog için kavramların evrimiyle canlı katmanlarının (dirimyuvarını) evrimin karşılaştırılması çekici olabilir. çünkü soyutun evreni dirimyuvarını, bunun cansız evreni aştığından daha çok aşmış bile olsa, kavramlar, organizmaların özelliklerinden bir bölümünü saklamıştır. Düşünceler de organizmalar gibi yapılarını yineleyip çoğaltmaya yönelirler; onlar gibi içeriklerini kaynaştırır, yeniden birleştirir ve ayırırlar ve sonunda onlar gibi evrim gösterirler ve kuşkusuz bu evrimde ayıklanmanın payı büyüktür. düşüncelerin evrimi üzerine bir kuram önerme denemesine girişmeyeceğim Fakat hiç olmazsa orada işlev alan başlıca etmenleri tanımlama yoluna gidilebilir. Bu ayıklanmanın, zorunlu olarak, iki düzeyde işlemesi gerekir: Düşüncenin kendi düzeyi, edim (davranış) düzeyi. Bir düşüncenin edim değeri, onu kabul eden bireye ya da topluluğa getirdiği davranış değişikliğine bağlıdır. Kendisini benimseyen insan topluluğuna daha çok tutarlılık, tutku ve kendine güven veren düşünce, bunun sonucu olarak topluluğun yayılma gücünü de artıracaktır ve bu, düşüncenin kendisinin de yükselmesi demektir.Bu yükselme değerinin, düşüncenin içerdiği nesnel doğrunun niceliğiyle zorunlu bir ilişkisi yoktur. Bir dinsel ideolojinin bir toplum için oluşturduğu güçlü dayanak, gücünü kendi yapısından değil, bu yapının kabul edilişinden, kendini benimsetmesinden alır. Bunun için de böyle bir düşüncenin yayılma gücünü edim gücünden ayırmak zordur. Yayılma gücünün kendi içinde çözümlenmesi çok daha zordur.Bu gücün, zihinde daha önceden kurulmuş olan yapılara ve bunlar arasında, daha önce kültürün taşımış olduğu düşüncelere ve kuşkusuz, saptanması bizim için çok zor olan kimi doğuştan yapılara da bağlı olduğunu söylemekle yetinelim. Fakat görülüyor ki, en üstün yayılma gücü taşıyan düşünceler, insanı, içinde bunalımından kurtulabileceği içkin bir yazgıdaki yerini belirleyerek açıklayanlardır (s:147) *** Yüzbinlerce yıl boyunca bir insanın yazgısı, onun dışında hayatını sürdüremeyeceği kendi toplumunun, yani oymağının yazgısından ayrılamazdı. Oymağa gelince, o da yalnızca birliğine dayanarak kendini savunabilir, yaşayabilirdi. Bu birliği örgütleyen ve güvenceye alan yasaların büyük öznel gücü buradan gelir. Birisinin çıkıp bunlara aykırı davrandığı durumlar olabilir; fakat kuşkusuz hiç kimsenin onları yadsıması düşünülemez. Bu tür toplumsal yapıların zorunlu olarak ve öylesine uzun bir süre boyunca kazandığı çok (s:147) büyük açıklayıcı önem düşünüldüğünde, bunların insan beyninin doğuştan kategorilerinin kalıtsal evrimini etkilemediklerini kabul etmek kolay değildir. Bu evrim yalnızca oymak yasasının kabulünü kolaylaşttırmakla kalmayıp, ona üstünlük sağlayarak onu kuran mitik açıklama gereksinimini de yaratmış olmalı. Biz o insanların torunlarıyız. Bu açıklama dileği, varoluşun anlamını bulmaya bizi zorlayan bunalım, kuşkusuz bize onların kalıtıdır. Bütün mitlerin bütün dinlerin, bütün felsefelerin ve bilimin kendisinin yaratıcısı da bunalımdır. Bu buyurucu gereksinimin, doğuştan, kalıtsal yabsanın diliyle bir yerde yazılı olduğundan ve kendi kendine geliştiğinden, ben kandi payıma şüphe etmiyorum. İnsan türünün dışında, karıncalar, beyaz karıncalar ve arılar bir yana, hayvanbal alanın hiçbir yerinde böylesine yüksek düzeyde ayrımlaşmış toplumsal örgütlenmeler bulunmaz. Toplumsal böceklerde kuruluşların değişmezliğini sağlayan hiçbir şey kültürel kalıtımdan gelmez, hepsi kalıtsal aktarımdan gelir. Toplumsal davranış onlarda tümüyle doğuştan, özdevinimseldir. İnsanda toplumsal kuruluşlar, salt kültürel olarak, hiçbir zaman böyle bir dengeliliğe ulaşamayacaktır; ayrıca, bunu kim ister ki? Mitleri ve dinleri bulmak, geniş felsefe sistemleri kurmak, insanın, toplumsal hayvan olarak arı bir özdevinimliliğe boyun eğmeden hayatını sürdürebilmek için ödemek zorunda kaldığı bedeldir. Fakat salt kültrel kalıt, toplumsal yapılara destek vurmak için, kendi başına yeterince güçlü olamazdı. Bu kalıta, düşünce için gerekli besini sağlamak üzere, bu kalıtımsal destek gerekirdi. Eğer böyle olmasaydı, türümüzde, toplumsal yapının temelindeki din olayının evrenselliği nasıl açıklanabilirdi? Yine, mitlerin, dinlerin ve felsefi ideolojilerin tükenmez çeşitliliği içinde hep aynı “biçim” in bulunmasını nasıl açıklamalı? Kolayca görülebilir ki, bunalımı yatıştıracak yasayı kurmaya yönelik “açıklama” ların hepsi de “tarih”, daha doğrusu, bireyoluştur(Ontogenie). İlkel mitlerin hemen hepsi, davranışları, topluluğun kaynaklarınıaçıklayan ve onun toplumsal yapısını dokunulmaz geleneklere oturtan, az ya da çok tanrısal kahramanlarla ilgilidir: tarih yeniden yapılmaz. Büyük dinler de aynı biçimde, esinli bir peygamberin öyküsüne dayanır; peygamber kendisi her şeyin kurucusu değilse de, kurucuyu temsil eder, onun yerine konuşur ve insanların tarihini ve yazgılarını anlatır. Bütün büyük dinler içinde kuşkusuz Yahudi-Hıristiyan geleneği, bir tanrı (s:148) peygamberiyle zenginleşmeden önce bir çöl oymağının davranışlarına doğrudan bağlı olan tarihselci yapısıyla, en “ilkel” olanıdır. Budacılık ise, tersine, daha yüksek dereceden ayırmlaşmıyş olarak, özgün biçimi içinde yalnızca Karma’ya, bireysel yazgıyı yöneten aşkın yasaya bağlanır. Budacılık insanların değil, ruhların öyküsüdür. Platon’dan Hegel ve Marx ’a dek, büyük felsefe sistemlerinin hepsi, hem açıklayıcı hem kuralcı bireyoluşlar önerirler. Gerçi Platon’da bireyoluş terisne dönmüştür. Tarihin akışında; o, ideal biçimlerin gittikçe çözülüşünü görürü ve Devlet ’te özet olarak, bir zamanı geri çevirme makinesi işletmeye çalışır. Hegel gibi Marx için de tarih, içkin, zorunlu ve iyiye yönelik bir tasarıya göre açılır. Marksist ideolojinin ruhlar üzerindeki büyük gücü, yalnızca İnsanın kurtuluşu için verdiği sözden değil, aynı zamanda ve kuşkusuz hepsinden önce, bireyoluşsal yapısından, geçmiş şimdiki ve gelecekteki tarih için yaptığı tam ve ayrıntılı açıklamadan gelir. Bununla birlikte, insan tarihiyle sınırlanmış olarak, “bilim”in verileriyle bezenmiş de olsa, tarihsel maddecilik yine de eksik kalmıştı. Buna, düşüncenin gerekli gördüğü toptan yorumu getirecek diyalektik maddeciliği de eklemek gerekiyordu: Bunda, insanlığın ve evrenin tarihleri aynı öncesiz-sonrasız yasalar altında birleşmiştir. *** Eğer, yokluğu derin bir iç bunalımına neden olacak bir tam açıklama gereksiniminin doğuştan olduğu doğruysa; eğer iç daralmasını yatıştırabilecek tek açıklama biçimi, İnsanın anlamını, ona doğanın tasarı içinde zorunlu bir yer vererek anlatacak olan bir toptan tarih açıklama biçimiyse; eğer doğru, anlamlı ve yatıştırıcı görünmek için “açıklama”nın uzun canlıcı (animist) gelenek içinde erimesi gerekiyorsa; işte o zaman, düşünce dünyasında, tek bozulmamış doğru kaynağı olarak nesnel bilgi kaynağının görülebilmesi için neden binlerce yıl geçmesi gerektiği anlaşılır. Hiçbir açıklama önermeden, başka her türden düşünsel besin karşısında bir çileci vazgeçişe zorlayan bu düyşünce, doğuştan iç daralmasını yatıştıramazdı; tersine onu ağırlaştırırdı. Bu düşünce insan doğasının doğrudan özümsediği yüz bin yıllık bir geleneği bir çırpıda sileceğini öne sürüyordu; insanın doğayla olan eski canlıcı (s: 149) bağlaşmasının bozulduğuhnu bildiriyor; bu değerli bağlaşmanın yerine, yalnızlıktan donmuş bir evrende tasalı bir arayıştan başka bir şey getirmiyordu. Katı etik bir büyüklenme dışında hiçbir desteği görünmeyen böyle bir düşünce nasıl kabul edilebilirdi? kabul edilmedi, kabul edilmiyor da. Her şeye karşın yine de etkinlik gösteriyyorsa, bu yalnızca onun olağanüstü edimsel gücüne dayanıyor. Üç yüz yılda, nesnellik boyutuna göre kurulan bilim, ruhlarda olmasa bile pratikte, toplumdaki yerini buldu. Modern toplumlar bilim üzerine oturur. Bu toplumlar, zenginliklerini, güçlerini ve eğer istenirse insan için daha büyük zenginlik ve güçlülüklerin de olabileceği inancını bilimden alır. Fakat bunun yanında da, nasıl ki bir türün biyolojik evrimindeki ilk “seçim” bütün soy sopunun geleceğini bağlayabildiyse, başlangıçtaki bir bilimsel uygulamanın bilinçsiz seçimi de kültürün evrimini tek yönlü bir yola çevirdi; öyle bir yol ki,19. yy ilericiliği, bunun şaşmaz biçimde insanlığın olağanüstü gelişmesine götürdüğünü düşünüyordu; oysa bugün önümüzde bir cehennem çukuru açıldığını görüyoruz. Modern toplumlar, bilimin kendilerine sağladığı zenginlik ve güçleri aldılar, fakat yine bilimin en derin anlamlı bildirisini almadılar, belki işitmediler bile. Bildirinin istediği: Yeni ve tek bir bilgi kaynağı tanımı, törel temellerin toptan gözden geçirilmesi, canlıcı gelenekten tam bir kopma, “eski bağlaşım” ın kesinlikle bırakılıp yeni bir anlaşmaya gidilmesi zorunluluğunun kabulü. Bilimden aldıkları bütün güçlerle donanmış olarak bütün zenginliklerden yararlanan bu toplumlar, o bilimin temelden yıktığı değer sistemlerine göre yaşamak, çocuklarına onları öğretmek istiyorlar. Bizden önce hiçbir toplum böyle bir acı çekmedi. İlkel kültürlerde de, klasiklerde de, bilgilerle değerlerin kaynakları canlıcı gelenek içinde kaynaşmıştır. tarihte ilk kez uygarlık, bir yandan değerlerini korumak için canlıcı geleneğe umutsuzca bağlı kalıp, bir yandan da bir bilgi ve doğru kaynağı olarak ona sırt çevirmeye ve kendini biçimlendirmeye çalışıyor.Batı’nın “özgürlükçü” toplumlarının, kendi töre kaynakları olarak bugün de yarım ağızla öğrettikleri şeyler, Yahudi-Hıristiyan geleneğinin, bilimci ilericiliğin, insanın “doğal” haklarına inanmanın ve yaratıcı pragmacılığın tiksindirici bir karışımıdır. Marksist toplumlar da sürekli olarak, maddeci ve diyalektik bir tarih dini öğretiyorlar; görünüşte özgürlükçülerinkine göre daha sağlam bir çerçeve, fakat belki de bugüne dek ona gücünü vermiş olan esnemezlik yüzünden; ötekinden (s: 150) daha da çürük. Ne olursa olsun, canlıcılık içinde kök salmış bu sistemlerin hepsi nesnel bilginin dışında, doğrudan dışındadırlar; saygı duymadan ve hizmet etmeden kullanmak istedikleri bilime kesinlikle karşıdırlar .kopma öylesine büyük, yalan öylesine açıktır ki, bu durum, biraz kültürü olan, biraz düşünüebilen ve her türden yaratmanın kaynağındaki törel bunalımı duyabilen herkesin vicdanına saplanmakta ve acı vermektedir. Bu acıyı çekenler, insanlar arasında, toplumun ve kültürün, evrim için izleyecekleri yolun sorumluluğunu duyan ya da duyacak olanlardır. Modern ruhun hastalığı, törel ve toplumsal varlığın kökündeki bu yalandır. Bugün bilimsel kültür karşısında pek çok kimsede, kin değilse bile korku, daha doğrusu yabancılaşma duygusu uyandıran şey, az çok bulanık biçimde tanılanmış olan bu hastalıktır.Çokluk kızgınlık, bilimin teknolojik alt ürünlerine, bombalara; doğanın yıkımına, nüfustan gelen tendide yönelik görünür.Doğal olarak, teknolojinin bilim olmadığı, bir yandan da atom gücünün kullanılmasının insanlığın yaşaması için vazgeçilmez duruma geleceği türünden bir yanıt bulmak kolaydır; doğanın yıkımının, teknolojinin ileri gittiğini değil yetersiszliğini gösterdiği söylenebilir; nüfus patlaması her yıl milyonlarca çocuğun ölümden kurtarılmasının sonucu olduğuna göre, çocukları yeniden ölüme mi bırakmalı, diye sorulabilir. Bunlar, hastalığın belirtileriyle nedenlerini birbirine karıştıran yüzeysel söylevlerdir. karşı çıkma, gerçekte, bilimin esas iletisinedir. korku, günah korkusudur: Kutsal değerleri kirletme korkusu, haklı bir korku. Bilimin değerlere saldırdığı doğrudur. Bunu doğrudan yapmaz, çünkü yargoıç değildir ve onları görmemesi gerekir : Fakat Avusturalya yerlilerinden diyalektik maddecilere dek hepsinde, canlıcı geleneğin, değerleri, töreleri, ödevleri, hakları ve yasakları üzerine oturttuğu mitik ya da felsefi bireyoluşları yıkar. İnsan bu iletiyi bütün anlamıyla kabul ediyorsa, demek binlerce yıllık düşündün iuyanmış ve kendi mutlak yalnızlığı, kökten yabancılığıyla karşı karşıya gelimştir. Artık bir çingene gibi, içinde yaşadığı evrenin bir kıyısında bulunduğunu bilir: müziği karşısında sağır, umutlarına da, acılarına da, suçlarına da ilgisiz bir evren. O zaman da suçu kim tanımlayacak? İyiyi kötüden kim ayıracak? Bütün geleneksel sistemler töreye ve değerleri insanın erimi dışında tutmuşlardır. Değerler insanın değildi: Onlar vardılar ve insana egemendiler. Fakat insan, o değerlerin de, onlara egemen olanın da kendisi olduğunu öğrenince, şimdi de onları, evrenin (s:151) duygusuz boşluğu içinde eriyip dağılmış görüyor. İşte o zaman modern insan, yalnız cisimler değil ruhun kendisi üzerindeki korkunç yıkım gücünü de artık öğrenmiş olduğu bilime dönüyor, daha doğrusu ona karşı çıkıyor. *** Nereye başvurmalı? Nesnel doğru ile değerler kuramının birbirine yabancı, birinden ötekine geçilemeyen iki alan olduğunu bir kez ve kesin olarak kabul mü etmeli? Yazar olsun, filozof olsun, hatta bilim adamı olsun, modern düşünürlerin büyük bölümünün tutumu budur: Ben bu tutumun insanların büyük bölümündeki iç daralmasını besleyip artıracağına, bu yüzden deo onlar için kabul edilmmez olduğuna inanmakla kalmıyorum, aynı zamanda iki önemli açıdan bunu mutlak olarak yanlış buluyorum: -Öncelikle, değerler ile bilginin, gerek eylem, gerekse sylemde, her zaman ve mutlaka birbirine bağlı oluşu. - Sonra ve özellikle de, “doğru” bilginin tanımının, son çözümlemede, etik düzeyde bir koyuta dayanması yüzünden. Bu iki noktadan her biri birer kısa açıklama ister. Etik ile bilgi, eylemde ve eylem yoluyla, kaçınılmaz biçimde birbirine bağlıdır: Eylem, bilgi ile değerleri birlikte ortaya sürer ya da sorguya çeker. her eylem bir etiği anlatır, belli değerlere yarar ya da zarar verir, bir değerler seçimi yapar ya da öyle görünür. Öte yandan, her eylemde bir bilginin bulunması zorunlu görünür ve buna karşı eylem de bilginin iki kaynağından biridir. Bir canlıcı sistemde, etik ile bilginin birbirine karışması çatışma yaratmaz, çünkü canlıcılık bu iki kategori arasındaki her türlü kökten ayırımı ortadan kaldırır, onları aynı gerçeğin iki görünüşü sayar. İnsanın “doğal” sayılan “hak”ları üzerine kurulmuş bir toplumsal etik düşüncesi bu tutumu yansıtır ve bu tutum Marksizmin getirdiği moralin tanımlanması girişimlerinde, hem de çok daha sistemli ve vurgulanmış biçimde ortaya çıkar. Nesnellik koyutunun, bilginin doğruluğunun zorunlu koşulu olduğu bir kez kabul edildiğide, doğrunun kendisinin aranmasında vazgeçilmez olan kökten bir ayırımı, etik alanıyla bilgi alanı arasına yerleşmiş olur. Bilginin kendisi ("epistemolojik değer” dışında) her değer yargısının dışındadır, buna karşı etik, özünde öznel olduğuna göre, bilgi alanının her zaman dışında kalır.(s:152) Bilim son aşamada, bir belit (axiome) olarak konmuş olan bu kökten ayırım yaratmıştır. Burada belirtmekten kendimi alamıyorum, eğer kültür tarihinde biricik olan bu olay, başka bir uygarlıkta değil de Hıristiyan batıda ortaya çıkmışsa; bu belki de bir bölümüyle, kilisenin kutsal alan ile dindışı alan arasındaki ayırımı kabul etmiş olmasındandır. Bu ayırımı yalnızca bilime (dinsel alan sınırı dışında kalarak) kendi yolunu arama olanağı vermekle kalmıyor, düşünceyi, nesnellik ilkesinin ortaya koyduğu çokdaha kökten bir ayrılık için de haırlamış oluyordu. Batılılar kimi dinlerde dinsel ile dindışı arasında bir ayırımı bulunmayışını, bulunamayacağını anlamakta güçlük çekerler. Hinduizmde her şey dinsel alanda kalır; hatta “dindışı” kavramı anlaşılmaz bir şeydir. Bunları ayıraç içinde söylemiştik, konumuza dönelim. Nesnellik koyutu, “eski bağlaşım” ın yıkılışını belirterek, aynı zamanda bilgi yargılarıyla değer yargıları arasındaki her türlü karışıklığı da önlüyor.Fakat geride yine de bu iki kategorinin, söylem de içinde olmak üzere eylemdeki kaçınılmaz birliği kalıyor. İlkeden ayrılmamak için, her türlü söylemin (ya da eylemin) yalnızca, birleştirdiği iki kategorinin ayırımını koruyup açıklaması durumunda ya da ölçüde, anlamlı ya da gerçeğe uygun olduğunu kabul edeceğiz.Böyle tanımlandığında, gerçeğe uygunluk kavramı, etik ile bilginin örtüştükleri ortak alan oluyor; burada değerlerle gerçeklik, birlikte fakat kaynaşmamış olarak, bu sesi duyabilecek dikkatli insana bütün anlamlarını açıklar. Buna karşı, iki kategorinin karışıp kaynaştığı gerçeğe uymayan söylem, en zararlı anlamsızlıkla, bilinçsiz de olsa, en büyük yalandan başka bir yere ulaştırmaz. Görülüyor ki, bu tehlikeli karışımın en sürekli ve en sistemli uygulama alanı ("söylem”i Descartesçı anlamında alarak) “siyasal” söylemdir. Bu yalnız meslekten politikacıların durumu da değildir. Bilim adamaları da, kendi alanları dışında, değerler kategorisiyle bilgi kategorisi arasındaki ayırımı görmekte tehlikeli bir yetersizlik gösterirler. Fakat bu da başka bir ayraçtı. Bilginin kaynağına dönelim. Demiştik ki, canlıcılık, bilgi önermeleriyle değer yargıları arasında bir ayırma yapmak istemez, ayrıca yapamaz da; çünkü Evren’de ne denli özenle gizlenmiş olursa olsun bir amaç bulunduğu kabul edildiğinde böyle bir ayırmanın anlamı kalmaz. nesnel bir sistemdeyse tersine, bilgiyle değerler arasındaki her kaynaşma yasaklanmıştır.(s: 153)Fakat ( bu en önemli noktadır; bilgiyle değerlerin mantıksal olarak kökten bağlantılı olduğu sorunu) b u yasaklama, nesnel bilgiyi kuran bu “ilk buyruk”, kendisi nesnel değildir, olamaz da: Bu bir ahlak kuralı, bir disiplindir. Gerçek bilgi değerleri tanımaz; fakat gerçek bilgiyi kurmak için bir yargı, daha doğrusu, bir değer beliti(axiome) gerekir. Açıktır ki, nesnellik koyutunu doğru bilginin koşulu olarak almak, bir bilgi yargısı değil, bir etik seçimdir, çünkü koyutun kendisine göre bu yargıcılı (arbitral) seçimden önce doğru bilgi bulunamaz.. Nesnellik koyutu, bilginin yasasını belirlemek üzere, bir değer tanımlıyor ve bu değer nesnel bilginin kendisidir. demek nesnellik koyutunu kabul etmek, bir etiğin, yani bilgi etiğinin, temel önermesini ortaya koymak oluyor. Bilgi etiğinde, bilgiyi kuran, bir ilksel değerin etik seçimidir. Onun, hepsi de insanlarca kabul erdillmesi gereken, içkin, dinsel ya da “doğal” bilgi üzerinde kurulduğu savında olan canlıcı etikten kökten ayrıldığı nokta buradadır.Bilgi etiği insana kendini kabul ettirmez, tersine, onu her söylemin ya da her eylemin gerçeğe uygunluğunun belitsel koşulu yaparak kendine kabul ettiren insandır. Discous de la Methode bir kuralcı epistemoloji önerir, ancak herşeyden önce onu bir kez de bir moral düşünme ve meditasyon olarak okumak gerek. Gerçeğe uygun söylem ise bilginin temelidir, insanlara büyük güçler sağlar ve bu güçler günümüz insanını hem zenginleştirip hem de tehdit eder, ona özgürlük sağladığı kadar tutsaklık da getirebilir. Bilimle örülmüş olan ve onun ürünleriyle yaşayan modern toplumlar, aşşırı ilaçtan zehirlenen birisi gibi onun tutsağı olmuşlardır. Maddi güçleri, bilginin temelindeki bu etikten, ahlaki zayıflıkları ise yine de başvurmaktan çekinmedikleri, fakat bilginin bozmuş olduğu değer sistemlerinden gelir. Bu çatışma öldürücüdür. Ayaklarımızın dibinde açıldığını gördüğümüz uçurumun nedeni budur. Modern dünyanın yaratıcısı olan bilgi etiği, o dünya ile uyuşabilecek, kavranmış ve kabul edilmiş duruma geldiğinde de onun evrimine yön verebilecek tek etiktir. *** Kavranmış ve kabul edilmiş dedik. Buna olanak var mı? Eğer yalnızlık kaygısı ve zolayıcı bir toptan açıklmama gerekisnimi, benim sandığım gibi doğuştansa; çağların derinliklerinden gelen bu kalıt yalnız kültürel değil, doğal olarak kalıtımsalsa; bu çetin, soyut ve (Raslantı ve Zorunluluk, s: 154) gururlu etik, kaygıyı yok edebilir, istekleri karşılayabilir mi? Bilemem.Fakat herşeye karşın büsbütün de olanaksız olmadığı düşünülemez mi? İnsanda, bilgi etiğinin sağlayamadığı bir “açıklama”dan da öte, belki bir aşma, bir üstünlük gereksinimi de vardır. Ruhlarda her zaman yaşayan büyük toplumcu düşün gücü bunun tanığı gibi görünüyor. Hiçbir değer sistemi, gereektiğinde uğruna kendini vermesini doğru gösterecek biçimde bireyi aşan bir ülkü önermedikçe, gerçek bir etik oluşturduğunu öne süremez. Bilgi etiği, doğrudan tutkusunun yüksekliği nedeniyle, belki de bu aşma gereksinimini karşılayabilir. Aşkın bir değer olarak doğru bilgiyi tanımlar ve insana, artık onu kullanmayıp, özgür ve bilinçlmi bir seçimle ona hizmet etmeyi önerir. Nedir ki bu da bir insancılıktır(humanisme), çünkü insana, bu aşkınlığın yaratıcısı ve koruyucusu olarak saygı duyar. Bilgi etiği bir anlamda da “etiğin bilgisi” dir, yani tutkuların, dileklerin ve biyolojik varlığın sınırlarının bilgisi: İnsanın içinde, saçma olmasa da olağandışı ve salt bu olağadışılığından dolayı değeril olan hayvanı görür; öyle bir hayvan ki, dirimyuvarı ve düşünceler dünyası gibi iki alanda birden yaşadığı için, einsan sevgisiyle birlikte sanat ve şiirde kendini gösteren bu acılı ikiliğin hem işkencesi altında hem de zenginliği içindedir. Canlıcı sistemlerin hepsi de, tersine, biyolojik insanın görmezden gelinmesini, alçaltılması ya da bastırılmasını, onun hayvanal koşullarına bağlı kimi özelliklerinden tiksinme ve korku duyulmasını az çok yeğlemişlerdir.Buna karşı bilgi etiği, insanı, yerine göre ona egemen olmayı bilmek koşuluyla, bu kalıta saygı gösterip onu kabul etmeye özendirir: İnsanın en yüksek niteliklerine, özgeciliğe, yüce gönüllülüğe ve yaratıcı tutkuya gelince, bilgi etiği bunların hem toplumsal biyolojik kaynaklaranı bilir hem de kendi tanımladığı ülküye yararlı aşkın değerlerini kabul eder. **** Sonuç olarak bilgi etiği benim gözümde, gerçek bir toplumculuğun(sosyalizm) üzerine urulabileceği hem ussal hem de bilinçili olarak ülkücü tek tutumdur. 19. yy’ın bu büyük düşü genç ruhlarda, acı veren bir yoğunlukla yaşamaktadır. Acı vericiliği, bu ülkünün uğradığı ihanetler ve kendi adına işlenen cinayetler yüzündendir. Bu derin özlemin, felsefi öğretisini canlıcı bir (Raslantı ve Zorunluluk, s: 155) ideolojiiçinde bulması acıklı, ancak belki de kaçınılmazdır. Diyalektik maddecilik üzerine kurulan tarihsel kehanetçiliğin, daha doğşundan büyük tehditlerle dolu olduğunu görmek kolaydı, nitekim bunlar gerçekleşmiştir. Diyalektik maddecilik, bütün öteki canlıcıklarından da daha çok, değer ve bilgi kategorilerinin birbiriyle karıştırılmasına dayanmaktadır. Onun, temelden gerçekdışı bir söylem içinde, yokluğa düşmek istemeyen her insanın, önünde boyun eğmekten başka yapacak ya da başvuracak bir şeyinin bulunmadığı tarih yasalarını “bilimsel” olarak kurmuş olduğunu ileri sürebilmesinin nedeni bu karışıklıktır. öLdürücü olmadığı zaman çocukça olan bu yasalardan kesinlikle kurtulmak gerek. Gerçeğe uygun bur toplumculuğun, yandaşlarının ruhuna kök salmış olduğunu savunduğu, bilimin alay konusu ve özünde gerçekdışı olan bir ideoloji üzerine kurulması olanağı var mı? topluculuğun tek umudu, bir yüzyıldanberi kendine egemen olan ideolojinin “düzeltilmesinde” (revizyonunda) değil, bu ideolojinin toptan bırakılmasındadır. Bu durumda gerçekten “bilimsel” bir toplumcu hümanizma, doğrunun kaynağını ve ahlakını eğer bilginin kendisinin kaynaklarında, bilgiyi özgür bir seçimle bütün öteki değerlerin ölçüsü ve güvencesi olarak en büyük değer yapan etikte değilse nerede bulabilir? Bu etiğin ahlaksal sorumluluğu, doğrudan bu beltisel seçimin özgürlüğüne dayanır. toplumsal vi siyasal kurumların temeli ve bu nedenle de onların gerçeğe uygunluğunun ölçüsü olarak, yalnızca bilgi etiği gerçek bir toplumculuğa götürebilir. düşüncenin, bilginin ve yaratıcılığın aşkın cennetinin savunulmasına, genişletilmesine ve zenginleştirilmesine adanmış kurumları o kabul ettirir. İnsan bu cennette oturu. ve canlıcığını hem yalancı tutsaklıklarından hem de maddi baskılarından gitgide kurtularak, kendisine, o cennetin hem uyruğu hem de yaratıcısı diye en değerli ve en biricik özünde hizmet eden kurumların koruyuculuğunda, sonunda gerçeğe uygun olarak yaşayabilir. Bu belki de bir ütopyadır. Fakat tutarsız bir düşde değildir. Bu, bütün gücünü mantıksal tuturlığından alan bir düşüncedir. Bu, gerçeği araşyışın zorunlu olarak varacağı sonuçtur. Eski bağlaşma çözüldü; insan artık bir rastlantıyla içine düştüğü bu evrenin duygusuz enginliği içinde yalnız olduğunu biliyor. Yazgısı gibi görevi de bir yerde yazılı değildir. Bir yanda cennet (krallık), bir yanda cehennem (karanlıklar): Seçmek kendine kalmış.”(Kitap bu satırlarla bitiyor) (J.Monod,Raslantı ve Zorunluluk s:143-156)

http://www.biyologlar.com/evrim-ve-termodinamigin-ikinci-yasasi

Gürültü Kirliliğine Adım Adım ( Ses Kirliliği )

Çevre sorunlarından önemli olan biri de sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan gürültü kirliliğidir. İstenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslertopluluğu... Zaman zamn tarlada bir tarktör, kimizaman inşaaat makineleri, Kimi zaman caddede ilarleyen araçların korna, ve motor sesi, çoğu zamanda yüksek volümde dinlenilen müzik parçaları... Peki gürültü kirliliğini oryata çıkran etmenler neleridir. Bu önemli etmenlerden birkaçını şöyle sıralayabiliriz. Plansız kentleşme, Sanayileşme, Ekonomik yetersizlikler, Hızlı nüfus artışı İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olması Bazı Gürültü Türlerinin Desibel cinsinden dereceleri ve Psikolojik Etkilerine bir bakacak olursak... Uyku gürültüsü 30 Psikolojik belirtiler (I.Basamak) İnsan sesi 60 Psikolojik belirtiler (I.Basamak) Telefon zili 70 Psikolojik belirtiler (II.Basamak) Çalar Saat 80 Psikolojik belirtiler (II.Basamak) Tehlikeli bölge 85 Psikolojik belirtiler (II.Basamak) Metro gürültüsü 90 Psikolojik belirtiler (II.Basamak) Kabare Müziği 100 Sinirsel ve psikolojik bozukluklar (III.Basamak) Motosiklet 110 Sinirsel ve psikolojik bozukluklar (III.Basamak) Makineli delici 120 Sinirsel ve psikolojik bozukluklar (III.Basamak) Canavar Düdükleri 150 Kulak ağrısı, sinir hücrelerinin bozulması Uzay Roketleri 170 Kulak ağrısı, sinir hücrelerinin bozulması Gürültünün insan üzerindeki etkileri: 1.Fizyolojik Etkileri: Kan basıncının artması, dolaşım bozuklukları, solunumda hızlanma, kalp atışlarında yavaşlama, ani refleks. 2.Fiziksel Etkileri: Geçici veya sürekli işitme bozuklukları. 3.Performans Etkileri: İş veriminin düşmesi, konsantrasyon bozukluğu, hareketlerin yavaşlaması. 4.Psikolojik Etkileri: Davranış bozuklukları, aşırı sinirlilik ve stres. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Gürültüyü İçin Alınabilecek Tedbirler: · Hava alanlarının, endüstri ve sanayi bölgelerinin yerleşim bölgelerinden uzak yerlerde kurulması, · Motorlu taşıtların gereksiz korna çalmalarının önlenmesi, · Kamuoyuna açık olan yerler ile yerleşim alanlarında elektronik olarak sesi yükseltilen müzik aletlerinin çevreyi rahatsız edecek seviyede çalınmaması, · İşyerlerinde çalışanların maruz kalacağı gürültü seviyesinin en aza indirilmesi, · Yerleşim yerlerinde ve binaların içinde gürültü rahatsızlığını önlemek için yeni inşa edilen yapılarda ses yalıtımının sağlanması, · Radyo, televizyon ve müzik aletlerinin evlerde rahatsızlık verecek seviyede yüksek sesle dinlenilmemesi, . Aşırı gürültü yapan kurum veya kuruluşların şehir dışına taşınması şeklinde sıralanabilir .

http://www.biyologlar.com/gurultu-kirliligine-adim-adim-ses-kirliligi-

Mikroorganizmalar

Mikroorganizmalar, çıplak gözle görülemeyecek kadar küçük ve tek hücreli canlılardır. Bakteriler, mayalar, küfler, algler ve protozoa temel mikroorganizmalardır. Şapkalı mantarlar, yosunlar, likenler de aslında mikroorganizmalardır, ancak bunlarda farklılaşmış hücreler ve/veya birleşmiş hücreler olduğu için normal bitkilere benzer görünümdedirler. Tek bir hücreden milyonlarcası çoğalarak koloni denilen ve çıplak gözle görülebilen yapılar oluşur. Ekmeğin, yoğurdun üzerindeki küfler, reçelin üzerindeki mayalar, sirkenin üzerinde toplanan sirke anası, vücutta çıkan iltihaplı sivilceler ve çıbanlar aslında koloni denilen yapılardır. Dünyada 500.000 - 6.000.000 arasında farklı türde mikroorganizma olduğu sanılmaktadır. Bugüne kadar bunların %5 'inden daha azı olduğu kabul edilen 3500 bakteri, 90.000 fungi (maya, küf, şapkalı mantar), 100.000 protist (alg ve protozoa) tanımlanabilmiştir. Mikroorganizmaların Yarar ve Zararları Mikroorganizmaların pek çok yararı vardır. 1-.Doğadaki organik maddeleri bozarak doğaya kazandırır. 2- Çeşitli gıdalar mikroorganizmalar ile elde edilir (yoğurt, kefir, kımız gibi süt ürünleri, tüm alkollü içecekler, sirke, boza, uzak doğu kökenli soy sos gibi çeşitli ürünler, ekmeğin mayalanması, tek hücre proteini). 3- Çeşitli endüstriyel ürünler mikroorganizmalar ile elde edilir (alkol, aseton, butanol vs). 4- Biyolojik atık su arıtımında mikroorganizmalar kullanılır, buradan çıkan çamur değerli bir organik kütledir. 5- Biyogaz reaktörlerinde mikroorganizmalardan yararlanılır. 6- Maden yatakları mikroorganizmalar ile ıslah edilir. 7- Biyolojik gübre, biyoinsektisid üretiminde mikroorganizmalar kullanılır. 8- Doğadaki C, N, P, S gibi çevrimlerde mikroorganizmalar önemlidir. 9- Genetik pek çok çalışmada mikroorganizmalardan yararlanılır. 10-Bağırsaklarda bulunan bazı mikroorganizmalar K vitamini sentezinde faydalıdır. 11-Vücudumuzun normal florasında bulunan m.o.lar zararlı m.o.ların vücudumuza yerleşmesini engellemeye çalışır. 12-Toprakta verimliliği artırır........vs….. Mikroorganizmaların zararlarıda vardır. 1- Mikroorganizmalar insanları, bitkileri ve hayvanları hastalandırırlar ve öldürürler. 2- İnsan ve hayvanlarda çeşitli zehirlenmelere neden olurlar. 3- Gıdaları bozarak kullanılamayacak hale getirirler. 4- Ekonomik zarar ve kayıplara neden olurlar. 5- Ürün kalitesini ve verimini düşürür. 6- İşgücü kayıplarına sebep olurlar……vs Mikroorganizmaları yararlı ve zararlı olarak sınıflandırmak mümkün değildir. İnsanların denetim altında olmak üzere yararlı olan bir mikroorganizma başka bir yerde zararlı olabilir. Örneğin sirke yapımında kullanılan bakteri şarap fabrikasına bulaşırsa işletmenin tüm şarabı sirke haline gelir ve büyük ekonomik kayıp yapar. Genetik çalışmalarda kullanılan mikroorganizmalardan bazıları hastalık yapma (patojen) özelliği taşırlar. Küflü peynir yapımında kullanılan küfler beyaz peynire bulaşırsa hiç bir sağlık sorunu olmaz ancak beyaz peynir küflenmiş görünümde olacağı için tüketici tarafından alınmaz, ayrıca yasal olarak bu peynirin satılması da mümkün değildir. Mikroorganizmaların Büyüklükleri Mikroorganizmalar, gözle görülemeyecek kadar küçük olmaları nedeniyle, ancak mikroskoplar altında görülebilir ve ölçülebilirler. Bakterilerin boyutları, üreme durumuna, besiyerinin bileşimine ve çevresel koşullara göre değişebilir. Hatta, saf kültürlerde bile değişik boyutlara sahip mikroplara rastlanabilmektedir. Ancak, üreme fazındaki kültürlerde, bakteriler, boyutları bakımından bir örneklilik (homojenite) gösterirler. Kültürler durma ve ölme dönemine girerse, normalinden çok daha büyük formlara rastlamak olasıdır. Bu nedenle doğruya yakın bilgiler, kültürler üreme fazında iken, yapılan ölçümlerden elde edilebilir. Mikroplarda, boyamak için, yapılan bazı işlemlerden dolayı olabilecek büzülmeler dikkate alınmazsa, boyalı preparatlar ölçümler için tercih edilirler. Gerektiğinde natif preparatlardan da yararlanılabilir. Mikroorganizmaların (bakteri, virus, mantar, protozoa, vs.) büyüklüklerini belirlemede internasyonal metrik sisteme ait ölçü birimlerinden yararlanılır.Ökaryotik organizmalar ve bakteriler mikrometre (µm =10-6 m), viruslar nanometre (nm =10-9 m), atom ve moleküller de Angstrom (A°, 10-10 m) olarak ölçülmektedirler.

http://www.biyologlar.com/mikroorganizmalar

Tavuklar sperm üretir mi

YUMURTANIN OLUŞUMU Tavuklarda üreme sistemi yumurtalık, yumurta kanalı ve kloaka’dan ibarettir. Yumurtalıklar çift olup; böbreklerin önü, akciğerlerin arkası ve vücut boşluğunun sırt tarafına yerleşmişlerdir. Embriyonun ilk gelişimi safhasında sağlı sollu iki yumurtalık ve yumurta kanalı gelişir. Ancak daha sonra sağ kısmı körelir ve civciv kuluçkadan çıktığında sadece sol yumurtalık ve sol yumurta kanalı fonksiyoneldir. Yumurta verimi başlamadan yumurtalık, içinde oosit ihtiva eden küçük foliküller yığınıdır. Bazıları görünebilecek büyüklükte olup, diğerleri mikroskobik yapıdadır. Tavuğun yumurta kanalı karın boşluğunun sol tarafında bulunur ve karın boşluğunun önemli bir kısmını kaplar. Yumurta kanalı, sarının geçtiği ve yumurtanın diğer kısımlarının salgılandığı kıvrımlı ve uzun bir kanal (boru) şeklindedir. Yumurta kanalı belirgin bir şekilde farklılaşmış beş ayrı bölgeye ayrılır. Bunlar İnfindibulum, magnum, isthmus, uterus ve vaginadır. 1. OVULASYON Her ovum, gelişmesi için kan yoluyla besin maddeleri sağlayan bir folikül sapı ile yumurtalığa tutunmuş ve foliküler membran denen bir zarla sarılmıştır. Yumurtalığa bağlı ovum olgunlaştığında yumurtalıktan salgılanan progesteron hormonu, LH hormonu salgılanmasına neden olan hipotalamusu uyarır. LH hormonu da yumurtalıktan ovumun serbest bırakılması için olgun folikülün stigma yerinden kopmasına veya folikülün yırtılmasına neden olur. Böylece ovum yumurtalıktan serbest bırakılır. Bu olay ovulasyon olarak bilinir.Yumurta sarısı daha sonra vitellin zarı ile sarılır. 2. İNFİNDİBULUMDAN GEÇİŞ Ovulasyondan sonra vücut boşluğuna düşen ovum, yumurta kanalının ilk kısmı olan huni şeklindeki infindibulum da yakalanır. Ovum burada 20 dakika kaldıktan sonra ardı ardına seri kontraksiyonlarla yumurta kanalından ilerlemeye zorlanır. Döllenmenin meydana geldiği yer infindibulumdur. Yumurta, infindubulumu geçtikten ve sarı üzerine ak tabakaları oluşmaya başladıktan sonra yumurtanın döllenmesi mümkün değildir. 3. MAGNUMDAN GEÇİŞ Magnum 33 cm ile yumurta kanalının en uzun kısmıdır. Yumurtanın magnumdan geçmesi yaklaşık 3 saat alır. Yumurta akının önemli bir kısmı magnumda oluşmaktadır. Bir yumurta akı 4 ayrı tabakadan oluşur. İçten dışa doğru bu tabakalar ve yüzdesi şöyledir: · Sarıyı saran (Çok ince koyu ak) şalaz tabakası % 2.7 · İç sulu ak %17.3 · Koyu ak %57 · Dış sulu ak %23 Albumenin önemli kısmı magnum da meydana getirilir ancak albumenin dış sulu ak kısmı uterusta salgılanan sıvı albumen veya sulu uterin sıvısı daha önce isthmusta oluşan kabuk altı zarlarında geçerek yumurta içine girer ve albumenin dış sulu ak kısmının oluşumu burada tamamlanmış olur. 4. KABUK ALTI ZARLARININ OLUŞUMU Kabuk altı zarları isthmusta yumurtaya eklenir. Zarlar ağ şeklinde örülmüş protein liftlerinden oluşur ve kağıt gibi ince yapılıdır. Önce kabuk iç zarı ve daha sonra kabuk dış zarı oluşur. Kabuk zarları hava ve suyu geçirme özelliğine sahiptirler. Ancak bakteri ve organizmaların geçişlerine engel olurlar. Ayrıca yumurta içeriğinin hızlı nem kaybını önlerler. 5. HAVA KESESİNİN OLUŞMASI Yumurta yumurtlamadan önce iç ve dış kabuk altı zarları birbirine yapışıktır. Yumurta yumurtlandığı anda vücut sıcaklığında yani 41 C° ‘dir. Çevre sıcaklığının daha düşük olması sebebiyle kısa zamanda soğur. Bu durum yumurta kabuğu içindeki kısımların büzülmesine yol açar. Bu sırada porların (bir yumurtada yaklaşık 7000-17000 adet por bulunur.) yoğun olduğu kısımdan, yani küt uçtan, içeri doğru hava girer ve iki zar tabakası arasında küçük bir hava kesesi oluşturur. Genellikle hava kesesi yaz aylarında kış aylarındakinden daha küçüktür. Yumurta soğudukça, su kaybı arttıkça veya yumurta bayatladıkça hava kesesi büyür. Hava kesesi lamba yardımıyla kontrol edilebilir. 6. UTERUSTAN GEÇİŞ VE YUMURTA KABUĞUNUN OLUŞMASI Uterus kabuk bezi olarak ta bilinir. Yumurta tavuklarında yaklaşık 10 -13 cm uzunluğundadır. Yumurta kabuğunun oluştuğu yerdir. Yumurta kanalında 18 – 20 saat ile en uzun süre burada kalır. Yumurta kabuğunun kalsifikasyonu yumurta uterusa girmeden önce başlar. Yumurta henüz isthmusu terk etmeden önce dış kabuk zarı üzerinde küçük kalsiyum zerrecikleri görülür. Kabuğa kalsiyum depolama hızı yumurtanı uterustaki ilk üç saatinde yavaştır, sonra süratle artar. Yumurta kabuğunun oluşturulması uterustaki kalsiyum iyonlarının ve kan metabolik karbondioksit konsantrasyonun yeterli düzeyde olmasına bağlıdır. 7. VAGİNADAN GEÇİŞ Yumurta kanalının uterustan sonraki bölümü vajinadır. Verim dönemindeki bir tavukta 12 cm uzunluktadır. Vajinanın yumurta oluşumunda herhangi bir fonksiyonu yoktur. Yumurta vajinada birkaç dakika kalabilir ve kabukta gözenekleri örten bloom veya kütikül olarak bilenen bir materyal ile kaplanır. 8. KLOAKADAN GEÇİŞ VE YUMURTLAMA Normal oluşmuş yumurta, yumurta kanalı boyunca sivri uç önde olacak şekilde ilerler ve yumurtlama öncesi yön değiştirerek küt uç öne geçer yumurtanın kolayca yumurtlanması gerçekleştirilir. Özet olarak; tavuklarda sadece sol yumurtalık faaliyettedir. Yumurta 25 saatte oluşur. 30 dakika sonra, yeniden ovulasyon şekillenebilir. Ovaryum: Yumurta sarısının folliküllerde gelişmesini sağlar, İnfindibulum: Ovulasyon sonucu olgunlaşmış, zarla kaplı sarıyı yakalar, peristaltik hareketlerle oviduktun diğer kısımlarına (Magnuma) gönderir. Ayrıca sperm deposu, döllenme burada olur. Magnum: Ovomucin sekresyonu ile yumurta akının oluşumuna yardım eder, şalazalar oluşur. İsthmus: Yumurtaya su ve mineral maddelerin ilavesiyle iki kabuk zarı oluşur. Uterus: Yumurta akı tamamlanıp, kireçli sıvı ile kabuktaki pigmentler oluşur. Vajina: Yumurta, kütikül ile örtülür. Kloaka: Olgunlaşmış yumurta vajinadan gelip kloakadan çıkar (1,5,15).   TAVUKLARDA EMBRİYO GELİŞİMİ VE KULUÇKA Embriyoloji canlı organizmaların oluşumu ve ilk gelişmelerini inceleyen bir bilimdir. Döllenmeden itibaren doğum veya kuluçka arasında meydana gelen biyolojik olayları ve gelişmeyi konu alır. Bir tek mikroskobik hücrenin (döllenmiş yumurta veya zigot) gelişimini ve tam olarak yaşayabilen bir canlı oluşumuna kadar geçen safhayı inceler. Kanatlılarda embriyoloji kapsamında döllenme, hücre bölünmesi, farklılaşma, gelişme ve kuluçka olayları yer alır. Döllenme ve Civciv Embriyosunun Gelişimi Tavuklarda normal kuluçka dönemi 21 gündür. Ancak bu sürede bazı farklılıklar görülebilir. Irk, cinsiyet, mevsim, yumurtanın bekleme süresi, büyüklüğü ve kabuk kalitesi ile kuluçkada uygulanan koşullara bağlı olarak kuluçka süresi değişebilmektedir. Örneğin Leghorn ve diğer hafif ırklarda, diğer ağır ırklara nazaran kuluçka süresi birkaç saat daha kısadır. Tablo 5. bazı kanatlılar için kuluçka süreleri verilmiştir. Döllenme Döllenme, normal olarak tabii bir işlemdir. Ancak, yapay yolla horozlardan ejekulat alınarak tavukların yapay döllenmesi de bugün uygulanan bir yöntemdir. Yapay tohumlamadan hemen sonra, sperm hücreleri tavuğun yumurta kanalının üst kısmında (infundibulum) bulunan uterovaginal bölgeye ve infundibular spermatozoa depo bezlerine inerler. Yumurta kanalında yumurta yok ise, bu ilerleme veya yolculuk 30 dakika sürer. Döllenme, sperm hücresinin (erkek gamet) ovuma (dişi gamet) girmesi ve bir tek hücre (zigot) içerisinde çekirdeklerin birleşmesi ve kromozomların çiftleşmesi işlemidir. Ovulasyondan sonra, ovum hücresi serbest bırakıldıktan sonra, 15 dakika içerisinde kendisine ulaşabilen yüzlerce sperm hücresinden birisiyle birleşir. Bu sperm hücresi vitellin zarından geçerek ovuma girer ve çekirdekler birleşir. Döllenen ovum, zigot olarak ifade edilir. Döllenme olayı infundibulumda gerçekleşir. Bir çiftleşmeden yaklaşık 23-26 saat sonra döllü yumurta alınabilir. Ancak sürüde maksimum döllülüğe ulaşılabilmesi veya bütün tavuklardan döllü yumurta alınabilmesi sürüye horoz katımından yaklaşık 3 gün sonra mümkün olabilecektir. Düşük kümes sıcaklığı horoz testislerinin aktivitesini azaltır. Bu bakımdan horoz ve tavuklar için optimum çevre sıcaklığı 19°C’ dir. Sürüde çiftleşme programının bitimiyle horozlar, tavuklar arasından alındıktan sonra yaklaşık 4 hafta süreyle döllü yumurta alınabilir. Ancak horozların sürüden ayrılmasını izleyen 4-5 günden sonra döllü yumurtaların yüzdesi süratle düşmektedir. Yumurta Yumurtlanmadan Önceki Embriyo Gelişimi Embriyonik gelişmenin ilk safhası 40.6-41.7°C arasında değişen vücut sıcaklığında, tavuk vücudunda olmaktadır. Bu safha ise döllenme ile başlar. Embriyonik gelişmenin toplam süresinin yaklaşık %4.5’i yumurta kanalında olmaktadır. Ortalama olarak kuluçka süresi 22 gün olup bunun bir günü tavuk vücudunda, 21 günü de tavuk dışında, genellikle kuluçka makinesinde geçmektedir. Ancak tavuklarda kuluçka süresi dendiğinde kuluçka makinesinde veya gurk tavuğun altında geçen 21 günlük süre anlaşılır. Yumurtlanmadan önceki embriyonik gelişim, ovulasyondan sonraki 15 dakika içerisinde zigotun oluşumu ile infundibulumda başlatılır. Döllenmeden yaklaşık 3 saat sonra, yumurta istmusa girdiğinde ilk hücre bölünmesi ile 2 hücre meydana gelir. Bunu izleyen 20 dakika içerisinde 2. hücre bölünmesi meydana gelir ve 4 hücre oluşur. Uterusa girişte 16 hücre oluşur ve uterustaki ilk 4 saat içerisinde gelişen embriyodaki hücre sayısı, aynı şekilde geometrik bölünmeler sonucu 256’yı bulur. Yumurta henüz yumurta kanalında iken disk şeklinde bir hücre tabakası oluşur. Biastodermin merkezinde bulunan hücreler blastocoele olarak adlandırılan bir boşluk oluşturmak üzere sarının yüzeyinden ayrılırlar. Embriyonik gelişmenin gerçekleştiği yer bunun merkezidir. Blastodermin bu merkez kısmı saydamdır. Sarı ile temas halinde kalan saydam olmayan dış kısma nazaran daha koyu renklidir. Bu satha döllenmeden sonraki yaklaşık 24 saat sonra ve yumurta yumurtlamadan hemen önce meydana gelir. İlk hücre farklılaşması uterusta yumurta yumurtlanmadan hemen önce meydana gelir. Yani blastoderm iki hücre tabakası halinde farklılaşır. İç tabaka endoderm, dış tabaka ise ektoderm olarak adlandırılır. Yumurta Yumurtlandıktan Sonraki Embriyo Gelişimi Yumurta kuluçka makinesine konuncaya kadar embriyo bir uyku devresindedir. Embriyonik gelişmenin kuluçka makinesinde ihtiyaç duyduğu optimum sıcaklık 37.5°C’ dir. Ancak 24°C üzerindeki sıcaklıklarda da embriyo gelişebilecektir. Yumurtlama sonrasında embriyonik gelişmeyi tam olarak durdurmak için 15-18°C’ler arasında bir çevre sıcaklığı sağlanmalıdır. Bu amaçla kuluçkalık yumurtaların kuluçka makinesine konmadan önce muhafaza edildikleri yerin sıcaklığının bu optimum sınırlar içerisinde olmasına dikkat edilmelidir. Kuluçkanın birinci gününde embriyonun uzun ekseni boyunca oluşan yapılardan endoderm, ektoderm ve mesoderm adı verilen hücre tabakaları farklılaşarak gelişmeye başlar. Vücudun bütün organ ve kısımları bu üç hücre tabakasından meydana gelir. Bu üç tabakanın herbirinden oluşan organ ve kısımlar şöyledir: Ektodermden deri, tüyler, gaga, tırnaklar, sinir sistemi, gözün mercek ve retina tabakası, ağız mukozası ve geri gibi vücudun dış kısımları; mesodermden iskelet, kaslar, dolaşım sistemi, üreme, boşaltım organları gibi vücudun orta dokuları; endodermden ise sindirim kanalının mukozası, solunum ve salgı sistemleri gibi vücudun iç kısımları meydana gelir. Embriyonik Zarlar Civciv embriyosunun ananın vücudu ile herhangi bir anatomik-organik bağlılığı olmadığından doğal olarak yumurtanın kapsadığı besin maddelerini kullanabilmek için bazı membranlara (zar kese) sahiptir. Embriyonun büyümesinde fonksiyonel olan 4 embriyonik zar veya kese vardır. •Amnion kesesi: Kuluçkanın ikinci gününde oluşmaya başlar. Ektoderm tabakasının altında, mezoderm tabakasından ibaret kan damarları olmayan, içi saydam bir sıvı ile dolu bir kesedir. Embriyonun gelişmesine yardım eder ve onu mekanik şoklardan korur. •Allantois Kesesi: Kuluçkanın ikinci gününde, ektoderm ve mesoderm tabakasından ibaret bir kıvrımdan chorion ile amnion oluşur. Kuluçkanın üçüncü gününde chorion ve amnion arasında kan damarları ile kaplı allantois kesesi gelişir. Allantoisin şu önemli fonksiyonları vardır. •Fonksiyonel akciğer gelişinceye kadar allantois geçici embriyonik solunum organıdır. Allantois, chorion vasıtasıyla oksijeni absorbe eder ve karbondioksiti vererek gaz değişimini sağlar. •Boşaltım görevini görür. Allantois böbreklerde oluşan metabolizma artıklarını alarak onları allantoik boşlukta depolar. •Allantoic membran, yumurta akınının sindirilmesini sağlayan enzimleri salgılar. Yumurta akından sindirilen besinler ve yumurta kabuğundan da kalsiyum, allantois tarafından absorbe edilir ve gelişen embriyoya transfer edilir. •Chorion: Bu membran veya kese, allantois ile birlikte kabuk altı zarları ile kaynaşır ve metabolik fonksiyonların tamamlanmasında rol oynar. •Yumurta Sarısı Kesesi: Endoderm tabakası üzerinde bir mesoderm tabakasından ibaret ve vitellin zarı ile temas ederek bütün sarıyı çevreleyen, kan damarlarıyla kaplanmış bir kesedir. Yumurta sarısı kesesi civciv kuluçkadan çıktıktan sonra besin kaynağı olarak kullanılmak üzere karın boşluğuna çekilir. Embriyonik Gelişme Döneminde Meydana Gelen Değişmeler Hava Boşluğu: Kuluçka döneminde kabuk yüzeyindeki gözenekler vasıtasıyla su kaybı olur. Bu su kaybı, yumurta içeriğinin büyüklüğünün azalmasına ve hava boşluğunun büyümesine neden olur. Kuluçkanın 19. gününden sonra hava boşluğu genellikle yumurtanın 1/3’ünü kaplamaktadır. Civcivin Yumurta İçindeki Konumu: Embriyo yaklaşık 17.günde yumurta içinde çıkış pozisyonunu alır. Bu durumda, boyun hava boşluğuna yönelir ve baş öne doğru, gaga sağ kanadın altında, ayaklar vücudun iki yanındadır ve çoğu kez ayaklar başa değerler. Embriyonun Ağırlığı: Kuluçka döneminde embriyonun ağırlığında değişme görülür. 60 g ağırlığındaki bir yumurtada kuluçka döneminde embriyo ağırlığında görülen değişim şöyledir: Civciv Embriyosunun Gelişme Dönemleri: Yumurta yumurtlandıktan sonra kuluçka devresinde embriyonik gelişme 4 dönemde tamamlanır. •Birinci Dönem: 1-5. günler (İç organların gelişmeye başlaması). •İkinci Dönem: 6-14. günler (Dış organların gelişmeye başlaması). •Üçüncü dönem: 15-20. günler (Embriyonun büyümesi) •Dördüncü dönem: 21. gün (Civcivin çıkışı). Bu dönemlerin dışında embriyo gelişiminde önemli dört safha ve kritik iki dönem vardır. •Kalp atışlarının başladığı ve kan dolaşım sisteminin yeterli düzeye ulaştığı 1. gün ile 3. günler arasındaki dönem. (1. kritik dönem). •16-18. günler: Amnion sıvısı ve amnion tamamen biter. •19. gün: Yumurta sarısı kesesi, göbekten vücut boşluğuna çekilir. •19-21. günler: Civciv, üst gagasında bulunan ve daha sonra düşen yumurta dişi denen sert bir oluşumla yumurta kabuğunu kırmaya başlar. Bu işlem bir saat sürer. Bu işlemin tamamlanmasıyla yaklaşık 20+1/2 günlük kuluçka dönemi sona erer. Ancak yarım gün de civcivin, kuluçkahane şartlarında kuruma ihtiyacı göz önüne alınırsa kuluçka süresi 21 gün olur. Gaganın yumurtayı ilk kırdığı dönemden civcivin tamamen yumurtadan çıkışına kadar yaklaşık 10-12 saatlik bir süre geçmektedir. Civciv kabuğu delmeden önce kabuk altı zarını delerek gagasını hava boşluğuna uzatır ve akciğer solunumu başlar (2. kritik dönem). Kuluçka sürelerinde yukarıda belirtilen faktörler nedeniyle farklılıklar olmasına rağmen, kuluçka makinesi içerisinde embriyolar arası ses yoluyla gerçekleşen haberleşme nedeniyle civcivler aynı sürelerde kuluçkadan çıkma eğilimi gösterirler. Sesin hızı embriyo gelişmesini yavaşlatmak veya hızlandırmak içindir. Sesin yavaş olması gelişmeyi hızlandırırken, hızlı olması gelişmeyi yavaşlatmaktadır.

http://www.biyologlar.com/tavuklar-sperm-uretir-mi

Bitki Doku Kültürü

Bitki doku kültürü; aseptik şartlarda, yapay bir besin ortamında, bütün bir bitki, hücre (meristematik hücreler, süspansiyon veya kallus hücreleri), doku (çeşitli bitki kısımları=eksplant) veya organ (apikal meristem, kök vb.) gibi bitki kısımlarından yeni doku, bitki veya bitkisel ürünlerin (metabolitler gibi) üretilmesidir.Yeni çeşit geliştirmek ve mevcut çeşitlerde genetik varyabilite oluşturmak doku kültürünün temel amaçları arasında sayılabilir. Bu nedenle bitki doku kültürleri genetiksel iyileştirme çalışmalarında önemli bir rol oynamaktadır. Ayrıca kaybolmakta olan türlerin korunmasında ve çoğaltılması zor olan türlerin üretiminde, çeşitli doku kültürü yöntemleri rutin olarak uygulanmaktadır (Babaoğlu ve ark., 2001-Bitki Biyoteknolojisi Cilt I-Doku Kültürü ve Uygulamaları- Bölüm 1. Temel Laboratuvar Teknikleri). Bitki doku kültürü işlemlerinde ve genetik iyileştirmelerde kullanılan temel sistem bitki rejenerasyonu yani bitkinin hücre, doku ve organlarından klonlanmasıdır. Bitki rejenerasyonu, kültürü yapılan hücrelerin özellikleri itibariyle üç kısımda incelenebilir; 1) organize olmuş meristematik hücreleri ihtiva eden somatik dokulardan rejenerasyon, 2) meristematik olmayan somatik hücrelerden rejenerasyon ve 3) mayoz bölünme geçirmiş gametik hücrelerden rejenerasyon. Birinci tip rejenerasyonda uç ve yan meristemlerden bitkiler çoğaltılır. Buna meristem kültürü yoluyla klonal çoğaltım denilir. Elde edilen hücreler tamamen donör (verici) bitkiye benzerler. İkinci tip rejenerasyon; doğrudan bir bitki parçasının (eksplant denilir) kesilmiş yüzeylerindeki belirli somatik hücrelerin bir kısmının genellikle besin ortamına ilave edilen bitki büyüme düzenleyicilerinin (özellikle oksin ve sitokininler) etkisiyle bölünerek ve organize olarak, organları ve daha sonra da bitkiyi (direkt organogenesis) veya bir somatik hücrenin sürekli bölünerek embriyo ve daha sonra da tam bir bitkiyi oluşturması (direkt somatik embriyogenesis) şeklinde olabilir. Ayrıca her iki durum, belirli bir kallus, proto-kallus veya hücre süspansiyonu oluşumu devresinden sonra da ortaya çıkabilir (indirekt rejenerasyon). Ortaya çıkan bitkilerde bazı kalıtsal veya geçici varyasyonlar oluşabilir. Son olarak normal kromozom sayısının yarısını ihtiva eden hücrelerden de direkt veya dolaylı yollarla bitki rejenerasyonu olabilir. Bu durumda donör bitkinin kromozom sayısının yarısına sahip, genellikle steril olan haploid bitkiler elde edilebilir. Bu bitkicik, doku veya hücrelerde kromozom katlaması yoluyla fertil (dihaploid veya katlanmış haploid) bitkiler elde edilir. Bitki doku kültürlerinin bitki ıslahındaki uygulama alanları Türler arası melezlemelerden sonra embriyo kültürü: Zigot oluşumundan sonra ortaya çıkan (post-zigotik) uyuşmazlıklar in vivo melezlemelerde embriyo oluşumunu veya oluşan embriyoların yaşamalarını engellemektedir. Bu embriyolar özel besin ortamlarında doku kültürü ile geliştirilmekte ve yeni melez bitkiler elde edilebilmektedir. Bu tekniğe embriyo kurtarma tekniği denilmektedir (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 10). Haploid bitki üretiminde anter (polen) ve yumurtalık (ovül) kültürü: Özellikle kendine döllenen bitkilerde yapılan klasik bitki ıslahı melezlemeleri sonrası, hatların saflaştırılması (homozigotlaşması) uzun zaman almaktadır. Mayoz bölünme geçirmiş haploid sayıda kromozoma sahip hücrelerde (polen/mikrospor veya megaspor) veya bu hücreleri ihtiva eden bitki kısımlarının (anter veya yumurtalık) doku kültürü yoluyla elde edilen hücrelerinde veya rejenerantlarında yapılan kromozom katlanması sonucu %100 homozigot bitkiler elde edilebilmektedir. Bu tekniğe in vitro haploidi tekniği denir (Maheswari ve ark., 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 5). Somaklonal varyasyon: Kallus oluşturan veya totipotent olup yeni bitkiler meydana getirebilen hücreler uzun süreli kültürlerde veya kısa süreli de olsa yüksek bitki büyüme düzenleyicileri içeren ortamlarda bu yeteneklerini (kompotens) yitirebilmektedirler. Bu hücrelerden oluşan yeni bitkilerde gen veya kromozom bozuklukları sonucu kalıtsal ve fenotipik varyasyonlar (somaklonal varyasyon) ortaya çıkmaktadır. Bu varyasyonlar, yeni çeşit geliştirme ve iyileştirmelerde ıslahçılar tarafından kullanılmaktadır (Chrispeels ve Sadava, 1994). Somaklonal varyasyon sonucu ortaya çıkan değişiklikler arasında, bazı pigmentlerin yapısındaki farklılaşmalar sonucu çiçek renginin, yaprak ve çiçek morfolojisinin, tohum veriminin, bitki canlılığı ve iriliğinin, uçucu yağ kompozisyonu ve hastalıklara tolerans veya dayanıklılığın değişmesi sayılabilir (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 11). İn vitro seleksiyon: Tek hücre seviyesinde; tuz, herbisitler, patojenler vb. faktörlere karşı dayanıklılığa göre yapılan seleksiyonlar sonucu, bu hücrelerden elde edilen bitkilerde ilgili faktörlere dayanıklı veya toleranslı bitkiler ortaya çıkabilir. Bu tekniğe in vitro seleksiyon denilmektedir. İn vitro döllenme: Bazı durumlarda (özellikle dış ortama alıştırılamayan bitkilerden tohum almak için) doku kültürü ile elde edilen bitkiler laboratuvar şartlarında tozlaştırılmaktadır. Fakat bu uygulama çok sınırlı kalmıştır. İn vitro germplazm muhafazası: Totipotent hücrelerin in vitro kültürü, kallus veya süspansiyon hücreleri şeklinde uzun süreli olarak veya belirli aralıklarla yeniden oluşturularak saklanabilir ve ihtiyaç duyulduğunda bu hücrelerden yeni bitkiler oluşturulabilir. Alternatif olarak ilgili hücreler, meristemler veya elde edilen minyatür bitkiler düşük sıcaklıkta (4 0C), çok az besin maddesine ve alana ihtiyaç göstererek aseptik şartlarda saklanabilir (1-4 yıl). Benzer şekilde çok düşük sıcaklıklarda –196 0C), sıvı azot içinde doku ve hücreler hızlı bir şekilde dondurulup saklanabilirler. Bu doku kültürü teknikleri in vitro germplazm muhafazasında önemlidir ve gen ve tohum bankalarına alternatif oluşturmaktadır (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 9). Somatik hücre melezlemesi (protoplast füzyonu): Protoplast füzyonu ve somatik melezleme, pre-zigotik eşeysel uyuşmazlıklar nedeniyle, klasik melezleme ile elde edilemeyen hibritlerin elde edilmesinde kimyasal ve fiziksel metotlar kullanılarak uygulanan bir tekniktir. Elde edilen somatik melez hücreden (heterokaryon), kallus oluşumu ve bitki rejenerasyonu yoluyla yeni bitkilerin elde edilmesi sistemin en önemli ve en gerekli parçasıdır. Bu işlem genel anlamda genetik kopyalamadır ve bitkilerde yaklaşık 30 yıldan beri uygulanmakta olup en başarılı örneği tütün bitkisinde görülmüştür (Ochatt ve Power, 1992) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 4). Gen transferi: Doku kültürlerinin bitkileri iyileştirmede en önemli ve yaygın olarak kullanılan uygulamalarından birisi de, gen veya genlerin bitkilere aktarılmasıdır. Bunun için mutlaka tekrarlanabilir bir hücre-bitki rejenerasyonu (organogenesis ve somatik embriyogenesis) sistemine ihtiyaç vardır (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 2, 3 ve 4). Bitki doku kültürünün ticari ve ıslah dışı uygulamaları Hastalıksız bitki elde edilmesinde meristem kültürü: Tüm apikal meristem veya buradan alınan küçük embriyonik parçalar kültüre alınarak uygulanan tekniğe meristem kültürü denir. Çok az miktarlarda bitki büyüme düzenleyicileri ilave edildiğinde uç ve yan meristemlerden birçok yeni bitkicikler elde edilebilmektedir. Bu metotla elde edilen bitkiler her bakımdan birbirinin benzeridirler (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 6). Mikroçoğaltım: Organize meristemlerden, henüz olgunlaşmamış veya olgunlaşmasını tamamlamış somatik hücrelerden direkt (organogenesis veya somatik embriyogenesis) veya indirekt (kallus, protoplast vb.) yollarla bitkilerin çoğaltılması ve köklendirilmesi işlemine genel olarak mikroçoğaltım denilmektedir. ABD'de doku kültürünün ticari uygulaması 1970' de başlamış (orkidelerde ve süs bitkilerinde) ve bu yolla elde edilen ürünlerin pazar değeri bu gün yılda 15 milyar dolara ulaşmıştır. Daha az sürgün elde edilmesine rağmen uç ve yan meristemlerden kitle çoğaltım ticari olarak diğerlerinden daha fazla kullanılan bir metottur (Brown ve Thorpe, 1995) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 8). Aşağıda bir videoda ticari doku kültürü üretim laboratuvarından görüntüler vardır. Benzer konularda diğer videolar da görülebilir. Tüm çalışmalar steril şartlarda laminar hava akışlı kabin içinde yapılmaktadır. Sentetik tohum üretimi (somatik embriyolar): Somatik embriyoların çeşitli metotlarla kaplanması sonucu sentetik (yapay) tohumlar elde edilmektedir. Sentetik tohumların, hibritlerin somatik çoğaltımında, erkısır ve ebeveyn hatların muhafazasında ve odunsu bitkilerin elit genotiplerinin elde tutulmasında kullanımı konusunda oldukça fazla çalışma yapılmaktadır. Sekonder metabolit üretimi (kallus-hücre süspansiyonları): İn vitro hücre kültürleri sekonder metabolit üretiminde de önemli bir kaynak olarak görülmektedir. Bitki sekonder metabolitleri, bitki büyüme ve gelişmesinde doğrudan kullanılmayan maddelerdir. Işık mikroskobu ile görülebilen sekonder metabolitlerin (tanenler, antosiyaninler, karetenoitler) yanında UV ışığı ile görülebilenleri (alkaloitler) de vardır. Son yıllarda sekonder metabolit üretimi için ot verimi yüksek, çok yıllık, geniş adaptasyon kabiliyetine sahip ve azotlu gübre kullanımı oldukça az olan yonca, alternatif bir bitki olarak gösterilmektedir. İlgili enzim alındıktan sonra yoncanın geriye kalan kısmı ot olarak kullanılabilir (Austin, 1997) (bkz. Bitki Biyoteknolojisi Cilt I, Bölüm 7). Kimeralar: Doku kültüründe, özellikle süs bitkilerinde üzerinde önemle durulan konulardan birisi de kimeralardır. Kimerik bitkiler; farklı türlerin protoplastlarının karışık kültürü ve bitki rejenerasyonu, mutasyon uygulamaları sonucu bitki rejenerasyonu çalışmaları, apikal meristemle ilgili yapılan mikro-cerrahi çalışmaları ve gen transferi yapılması sırasında, bir bitkiyi oluşturan bütün hücrelerin ilgili gen veya genleri taşımaması durumlarında (özellikle partikül bombardımanı metodu ve apikal meristemler kullanıldığında) elde edilebilmektedir. Bitki doku kültürlerinin temel araştırmalardaki uygulamaları Doku kültürü, protoplast izolasyonu ve füzyonu, hücre, doku ve bitki beslenmesi, sitogenetik çalışmalar, morfogenesis çalışmaları ve biyolojik azot fiksasyonu gibi temel araştırmalarda da kullanılmaktadır. Bu tür araştırmalar genellikle sistem geliştirmede faydalı olmaktadır. Doku Kültüründe Temel Teknikler Doku kültürü işlemleri bir çok aşamadan oluşmaktadır. Bunlar: 1) Uygun bir laboratuvar düzeninin kurulması, 2) Kullanılacak bitki parçalarının (eksplant) ve besin ortamlarının seçimi, hazırlanması ve sterilizasyonu, 3) Kallus ve hücre süspansiyonlarının oluşturulması, 4) Kallus veya hücre süspansiyonlarından veya doğrudan somatik veya gametik hücrelerden bitki rejenerasyonunun uyarılması (organogenesis, somatik embriyogenesis veya meristem çoğaltımı yoluyla), 5) Oluşan sürgünlerin çoğaltılması ve boylarının uzatılması, somatik embriyoların olgunlaştırılması, 6) Uzayan sürgünlerin köklendirilmesi, 7) Köklenen bitkilerin dış ortama alıştırılması (aklimatizasyon). Bunlar arasında en önemlisi, uygun laboratuvar imkanlarının sağlanmasıdır. Doku Kültüründe en önemli konu steril işlemleri yapabilecek bazı temel alet ve ekipmanlara veya iyi bir laboratuvara sahip olmak gerekmektedir. Doku kültüründe en temel konular bitki parçaları ve kullanılacak alet ekipmanların iyice temizlenmesi (sterilizasyon), besin ortamlarının hazırlanması ve kültüre alınacak yerin belirlenmesidir.

http://www.biyologlar.com/bitki-doku-kulturu-3

IŞIK SOLUNUMU (FOTORESPİRASYON)

Kloroplastlarda CO2 RuBP karboksilaz enzimi katalizörlüğünde RuBP tarafından yakalanarak PGA oluşturulup C3 yoluna katılır. Ancak O2 yokluğunun çok fazla olması durumunda aynı enzim RuBP ile O2’in birleşmesini sağlar. Bu durumda enzime RuBP oksijenaz denir. Esasen RuBP oksijenaz ve karboksilaz aynı enzim olup Rubisko olarak adlandırılır. Böylece 1 molekül fosfoglikolik asit (P-glikolat) ile 1 molekül PGA meydana gelir. Glikolik asit, peroksizomlarda taşınır. Burada glikolik asit ile O2, glikolat oksidaz enzimi katalizörlüğünde birleştirilerek glioksilik asit oluşturulur. Dolayısıyla fotorespirasyona glikolik asit yolu da denir. Bu esnada oluşan hidrojenperoksit (H2O2) zehirli bir madde olduğundan peroksizomlarda katalaz enzimiyle suya parçalanır. Daha sonra da glioksilattan glisin ve serin gibi amino asitler sentezlenir ve CO2’in bir kısmı serbest bırakılır. Bu olay ışıkta meydana geldiği ve olayda O2 kullanıldığı için ışık solunumu denilmiştir. Burda amaç ATP sentezlemek olmadığından, bu gerçek bir solunum değildir. Işıklandırılmış bir yaprakta fotosentezin aleyhine çalışan bir olaydır. Bu olayın fotosentezin verimini yarı yarıya azalttığı tesbit edilmiştir. Ancak bu sırada bazı aminoasitlerin sentezlenmeside bir avantajdır. Bütün bitkiler ışık solunumu yapmazlar. C3 bitkilerinin tümü ışık solunumu yaparken C4 bitkileri ya hiç yapmazlar veya çok az yaparlar. Çünkü C4 bitkilerinde glikolat oksidaz enzimi ya hiç yok veya çok azdır. Bu da C4 bitkilerinde fotosentez veriminin yüksek olmasının bir diğer sebebidir. Işık solunumu sırasıyla kloroplast, peroksizom ve mitokondride gerçekleşir. Serin amino asitten gliserat ve PGA oluşarak C3 yoluna entegrasyon oluyorsa fotosentezin aleyhine bir durum meydana gelmez. Ancak bitkinin amino asitlere ihtiyacı varsa amino asitler sentezlenecektir ve C3 yolu ile entegrasyon geçişi olarak kalkacaktır. KEMOSENTEZ Ototrof yaşayan sadece yeşil bitkiler değiller bazı bakterilerde ototrofturlar. Ancak bu bakteriler ışığı kullanarak değil kimyasal maddeleri okside ederek açığa çıkardıkları enerji kullanılarak CO2’di karbonhidratlara indirgerler. Bu olaya kemosentez adı verilir. Kemosentez bakterileri bu yaşam biçimleriyle doğada madde döngüsüne katkı sağlarlar. Bir çok toksik maddeyi etkisiz hale getirirler ve erimeyen bazı maddeleri eriterek kullanılır hale koyarlar. Başlıca kemosentez tipleri: Azot oksidasyonu : Toprakta bitki ve hayvan kalıntılarından oluşan NH (amonyak) Nitrosomans cinsi bakteriler tarafından nitrite (NO) çevrilir. Bu reaksiyonda açığa çıkan enerji nitrosomanslarca kemosentezde kullanılır. Ortaya çıkan HNO’lerde diğer bir bakteri grubu olan Nitrobakteriler tarafından nitrata dönüştürülürler ve bitkilere azot sağlamış olurlar. Kükürt oksidasyonu : Beggiatoa, Thiospirillum gibi kükürt bakterileri HS ve S okside ederek enerji sağlarlar ve kemosentez yaparlar. Demir oksidasyonu: Leptotrhrix, spirophyllum gibi bakterileri iki değerli demiri (Fe)üç değerli demire (Fe) demire okside ederek kemosentez yaparlar(PAS). Kemosentezde KH sentezinin nasıl seyrettiği pek bilinmemektedir. SOLUNUM Tüm canlı hücrelerin yapmak zorunda olduğu bir yıkım olayıdır. Amaç hücrenin kendine yetecek enerjiyi temin etme isteğidir. Bu enerji bilindiği gibi sentez ürünlerinde ki kimyasal bağlarda saklıdır. Karbonhidratlar, yağlar ve proteinler başlangıçta güneşten aldıkları enerjiyi solunum reaksiyonlarıyla ATP olarak dışarı vererek canlıların metabolik, büyüme, gelişme, vücut ısısı ayarlama ve eylemlerini gerçekleştirme gibi aktivitelerde kullanmalarında olanak sağlar . Temel organik maddelerin solunum reaksiyonları yolunda parçalanıp kimyasal bağ enerjilerini ATP’ ye dönüştürmeleri için öncelikle yapı taşlarına ayrışmaları gerekmektedir. Örneğin; Nişatanın → glikoza yağ moleküllerinin → yağ asitleri ve gliserol’a proteinlerin → amino asitler’e hidroliz olmaları ve hücrelere kadar taşınmaları şarttır. Solunum sistemli bir yanma olayıdır. Organik moleküller, başta şeker olmak üzere hücrelerde kademe kademe yıkılarak, karbon iskeletlerindeki bağlardan çıkan enerji mitokondri kristalarında yerleşmiş ETS (Elektron Taşıma Sistemi) vasıtasıyla ATP’ye dönüştürülür. Buna oksidatif fosforilasyon yada biyolojik yanma denir. Petrol, odun, kömür gibi fosil yolla organik yakacakların yanması durumunda ise C iskeletlerdeki bağlardan hızla salınan enerjide ısı, ışık olarak etrafa yayılır. Bu bir kimyasal yanmadır. Solunumdaki yanmadan farklıdır. Solunumda esas amaç enerji temini yani ATP üretimi olsada, bu sırada metabolizma için gerekli bir çok yan üründe meydana gelmektedir. Örneğin; çeşitli organik asitler, amino asitler, nükleotidler, pigmentler v.s. oluşmaktadır. Solunum için kullanılan öncelikli molekül glukoz’dur. Glukoz un bulunduğu hücrede daima yıkıma uğrayan bu 6 C’lu molekül olmaktadır. Solunum sitoplazmada başlayıp mitokondride devam eden bir çok biyokimyasal olayın ard arda seyrettiği bir döngüdür. Bütün yüksek bitkiler ve organizmalar solunum (aerobik solunum) yaparlar ama bazı mikroorganizmalar oksijen kullanmadan Enzimleri sayesinde oksijensiz olarak solunum(anaerobik solunum) yaparlar, buna fermentasyon denir. Oksijenli solunum glukoz kullanıldığında başlıca üç aşamada gerçekleşir. 1 - Glikoliz Safhası (sitoplazmada gerçekleşir) 2 - Krebs Döngüsü (mitokondri matriksinde gerçekleşir) 3 - Elektron Taşınım Sistemi (mitokondri kristalarında gerçekleşir) GLİKOLİZ Hücre sitoplazmasında glukozun oksijene gereksinim duyulmadan iki pirüvik asite (pirüvat) kadar parçalanması olayıdır. Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır. Bu ATP’ler ve enzimler sayesinde öncelikle iki 3C’lu aldehite dönüşen glikoz molekülü bir inorganik fosfat (Pi) girişi, 2 H+ ve 4 ATP çıkışı sağlayan bir dizi reaksiyondan sonra 2PA’ te dönüşür ve bu pirüvik asitler normal yolda mitokondrilere taşınırlar. Olağan dışı durumlarda ise Laktik Asit (LE)’e dönüşmek suretiyle 4ATP çıkışının devam etmesini sağlar (anaerobik solunum). KREBS ÇEMBERİ Mitokondri matriksinde PA (3C) ’ tin Asetil CoA (2C)’ya dönüşmesiyle başlayan bu reaksiyonlar döngüsünde 3C’lu molekülün tüm karbonları CO2’te dönüşür. Sonuçta 4 NADH2, bir FADH2 ve substrat reaksiyonu ile bir ATP ortaya çıkmaktadır. 1 glukoz molekülü için bu çıktılar ikiye katlanacaktır. Bu çemberde meydana gelen organik asitler üç karboksil grubu ihtiva ettiği için bu çembere Trikarboksilik Asit Çemberi (TCA)’de denir ELEKTRON TAŞINIM SİSTEMİ Bu sistem mitokondri kristalarında bulunur. ETS’de elektron ve hidrojen taşıyan özel maddeler vardır. Elektron taşınırken ATP sentaz (moleküler değirmen) enziminin aktivasyonuyla ATP sentezi olur. Buna oksidatif fosforilasyon adı verilir. Taşınan elektronlar en son akseptorden (sitokrom a3) ayrılınca matriksteki 2H+ ve O2 ile birleşerek H2O teşkil eder. Buna da terminal oksidasyon denir. Mitokondride cereyan eden bütün bu olaylar (TCA, oksidatif fosforilasyon ve terminal oksidasyon) için O2 gereklidir. O2 yokluğunda meydana gelmezler. ETS’de ATP sentezi, kemiozmotik teoriye göre , oksidatif fosforilasyon ile şöyle olmaktadır; ETS’de yeralan bazı akseptörler H+ ve elektron alarak indirgenir. Bunlar, flavinmononükleotid (FMN) ve ubikinon (UQ) dur. Bunlar hidrojenleri zarlar arası boşluğa pompalarken elektronları elektron akseptörlerine (sitokromlar ve Fe-S proteinleri) verirler. Elektronlar bu şekilde H2O’a kadar taşınırlar. Matriksdeki TCA’dan veya sitoplazmadaki glikolizden gelen hidrojenler bu şekilde zarlar arası boşluğa bırakıldıkça burası asitleşir ve zar potansiyeli oluşur. Bu durumda ATP sentaz enzimi aktive olarak hidrojenleri matrikse geçirir. Bu sırada enzimin katalizörlüğünde ATP sentezi olur. Hidrojen ve elektronlar krista zarındaki ETS’ye NADH2 veya FADH2 halinde getirilerek ETS’ye katılırlar. TCA’nın NADH2’leri ETS’nin başından itibaren zincire katıldığından ve üç yerde hidrojen pompalanması olduğundan NADH2 başına 3 ATP sentezlenir. Oysa TCA’nın FADH2’leri ve glikoliz NADH2’leri ETS’ye UQ’dan itibaren katıldıklarından iki yerde hidrojen pompalanması olur ve 2 ATP sentezlenir. Glikolizden gelen NADH2’ler başına 2ATP sentezlendiğinin sebebi şudur; sitoplazmadan mitokondriye geçişte mitokondri zarında bulunan ve gliserol fosfat mekiği denilen özel bir transport sistemiyle NADH2’lerin H+’leri mitokondri içine geçirilir ve bir flavoprotein (FAD) üzerinden UQ’a aktarılır. Yani sitoplazmadan gelen H+’ler ETS’ye ortadan katıldığı için iki yerde H+ pompalanmasına ve dolayısıyla 2ATP sentezine sebep olur. SOLUNUMDA ENERJİ BİLANÇOSU Glikoliz ve TCA’dan ayrılan Hidrojenleri NAD veya FAD yakalar ve NADH2 veya FADH2 halinde ETS’ ye getirirler. Yapılarındaki hidrojen ve elektronları ETS’ye verip tekrar iş başına dönerler. Şekil’de NADH2 ve FADH2’lerin hangi reaksiyonlardan kaynaklandığı ve her birisi için kaç ATP sentezlendiği belirtildi. Bunları toplarsak 16 ATP eder. Fakat bu reaksiyonlar iki defa meydana geldiğinden 16 x 2 = 32 ATP yapar. Şu halde oksidatif fosforilasyon yoluyla solunumda 32 ATP sentezlenir. Bir de 2 tane glikolizden 2 tane de TCA’dan fosforilatif yolla direkt ATP sentezi vardı. Bunları da eklersek 36 ATP eder. Yani glikoz molekülünün solunuma girip okside olmasıyla 36 ATP sentezlenir. Yapılan hesaplamalarda bir glikozun yıkımıyla esasında 686 Kkal’lik bir enerji çıkmaktadır. Oysa bir ATP’nin hidroliziyle 7,4 Kkal’lik bir enerji açığa çıkar ve 36 x 7,4 = 266,4 Kkal’lik bir enerji solunumda ATP halinde tutulmuş olur. Geriye kalan 420 Kkal2lil enerji ısı olarak yayılır. Yani glikozdan açığa çıkarılan enerjinin % 40 kadarı ATP halinde tutulabilmektedir. SOLUNUM SIRASINDA MEYDANA GELEN YAN ÜRÜNLER Solunumun esas amacı ATP sentezi yapmaktır. Fakat bu esnada değişik basmaklardan kaynaklanan çeşitli organik maddelerin sentezi de yapılır. Bu yüzden solunum bir taraftan yıkılma ve parçalanma iken diğer taraftan organiklerin sentezine sebep olan bir merkezdir. SOLUNUM KATSAYISI Solunumun ölçülmesi, bitkilerin solunumla tükettiği O2’nin ve dışarı verdiği CO2’nin ölçülmesine dayanır. Bu bakımdan solunumda oluşan CO2’in tüketilen O2’e oranı solunum katsayısı olarak adlandırılır ve RQ sembölü ile gösterilir. Solunumda KH’ların kullanılması durumunda bu katsayı 1’dir. Yani KH’ların solunumunda verilen CO2 alınan O2’e eşittir. Mesela; Solunumda yağlar gibi oksijence fakir organik maddeler okside edildiğinde oksidasyon için daha çok O2’e ihtiyaç olduğudan CO2 / O2 oranı düşük olacağından solunum katsayısıda 1’den azdır. Mesela; Yapısında bol oksijen ihtiva eden organik maddelerin oksidasyonu için az oksijen gerekli olduğundan bunların solunum katsayıları 1’den büyüktür. Mesala organik asitler bu şekilde oksijence zengindir. Oksijence fakir olan proteinlerinde solunum katsayıları 1’den azdır. Görüldüğü gibi, solunum yapan bir bitki dokusunda solunum katsayısını ölçerek o dokunun solunumda kullandığı organik madde grubunun ne olduğu hakkında genel bir bilgi sahibi olabiliriz. Normal koşullarda bitkiler ve hayvanlar solunumda öncelikle KH’ları kullanırlar. Ancak depo maddeleri tükenince diğer indirgenmiş maddeleri (yağlar, proteinler gibi) solunum substratı olarak kullanmaya başlarlar. Yağların ve proteinlerin solunuma katkısı KH’ın katkısından farklıdır. Bu maddelerin yıkımında glikoliz safhası yoktur. FERMANTASYON Oksijen olmaksızın besinler nasıl okside edilir? Oksidasyon, elektronların sadece oksijene değil, elektronların herhangi bir elektron alıcısına verilmesidir. Glikoliz, gulukozu iki molekül pirüvata oksitler. Glikolizin oksitleyici ajanı oksijen değil, NAD+’dır. Özet olarak, glikoliz ekzergonik olup, açığa çıkan enerjinin bir kısmı substrat – seviyesinde fosforilasyon ile net olarak 2 ATP üretmek için kullanılır. Eğer oksijen varsa, gulukozdan uzaklaştırılan elektronları taşıyan NADH bu elektronları elektron taşıma zincirine verdiğinde, oksidatif fosforilasyon ile ek ATPler üretilir. Ancak oksijen olsa da olmasa da, yani koşullar aerobik de anaerobik de olsa glikoliz 2 ATP üretir. (aer hava ve bios canlılık demektir; “an” olumsuzluk belirtir) Organik besinlerin anaerobik yıkımı, fermantasyon ile gerçekleşir. Fermantasyon glikolizin uzantısı olup, glikolizin oksidasyon basamağında ortaya çıkan elektronları kabul edecek yeterli NAD+ sağlandığı sürece, substrat seviyesinde ATP üretebilir. NADH dan NAD+ oluşturacak bir mekanizma olmaksızın, hücrenin NAD+ havuzu glikoliz sırasında tükenir ve oksitleyici bir ajan olmadığı için glikoliz durur. Aerobik koşullarda elektronların elektron taşıma zincirine aktarılmasıyla, NADH dan NAD+ oluşturulması sürer. Bu işlemin anaerobik alternatifi, NADH dan glikolizin son ürünü olan pirüvata elektron aktarımıdır. Fermantasyon, glikoliz ile elektronların NADH’dan pirüvata ya da pirüvat türevlerine aktarılmasıyla yeniden NAD+ üreten tepkimeleri kapsar. Bu NAD+ glikoliz ile şekerin okside edilmesi için tekrar kullanılır ve substrat seviyesinde fosforilasyon aracılığı ile net olarak 2 ATP üretilir. Pirüvattan oluşturulan son ürünlere göre bir çok fermantasyon tipi vardır. Alkolik Fermantasyonda pirüvat 2 basamakta etanole dönüştürülür. İlk basamakta pirüvattan CO2 uzaklaştırılır ve 2 karbonlu bir bileşik olan asetaldehit oluşur. İkinci basmakta ise, asetaldehit NADH ile etanole redüklenir. Böylece glikoliz için gerekli olan NAD+ yenilenmiş olur. Laktik Asit Fermantasyonu sırasında pirüvat NADH tarafından doğrudan doğruya redüklenir. Bu sırada CO2 salınmaz. Genelde mikroorganizmalar fermantasyon yapar. Ancak oksijen yetersizliğinde, su stresinde (fizyolojik kuraklık) yüksek bitkilerde biraz yapar. Fazlası bitkiler için toksiktir. Bazı tohumlarda tohum çimlenmesinin ilk basamaklarında da olabilir. Fermantasyon yapan bakterilerin bazısı oksijensiz ortamda yaşar (obligat anaeroblar). Mesela, Basillus botilinus. Bazı mikroorganizmalar ise hem oksijenli hem de oksijensiz ortamda yaşayabilirler (fakültatif anaeroblar). Mesela, Saccharomyces cerevisia mantarı. PENTOZ FOSFAT YOLU Yaşlı ve hasta bitkilerde görülen bu yolda genellikle 5C’lu şekerler sentezlendiği için bu yola pentoz fosfat yolu adı verilir. Pentoz fosfat yolu sitoplazmada cereyan eder ancak karanlıkta kloroplastlarda da meydana gelir. Bu yol glikolizden ayrılıp tekrar ona bağlanan bir yan yoldur. Glikoz-6-Fosfat tan itibaren başlar ve riboz gibi 5 C’lu şekerler sentezlenir. İki önemli ürün nükleik asitlerin yapısında bulunan 5C’lu şekerler ve indirgenme reaksiyonlarının vazgeçilmezi olan NADPH2 sentezlenir. Bu yol bitki hücrelerinde glikoliz ve TCA reaksiyonları ile birlikte yürür. Dışarı verilen CO2’in ¼ nin bu yolla sentezlendiği hesaplanmıştır. GLİOKSİLAT YOLU: Bitkilerde yağlar şekerlere dönüştürülemez. Ancak endospermlerinde yağ depolayan tohumlarda (ay çiçeği, hint yağı, soya gibi) çimlenme sırasında yağlar şekere dönüştürülebilmektedir. Çimlenme sonucu meydana gelen plumula, radikula gibi organalara besin gerektiğinde, endospermadan yağ taşınımı mümkün olmadığı için bu sırada yağlar şekere çevrilerek bu organlara taşınmaktadır. Bu yola glioksilat yolu denir. Reaksiyonlar endosperm hücrelerinde buluna glioksizom adı veilen organellerde gerçekleşmektedir. Bu reaksiyonların yürümesini sağlayan malat sentataz ve izositraz enzimleri sadece glioksizomlarda bulunur. Glioksizomlarda sadece yağ depolayan endosperm hücrelerinde bulunduğu için bu olay başka dokularda görülmez. Glioksilat yolu hem mitokondrideki TCA çemberiyle hem de sitoplazmadaki glikoneogenaz youluyla irtibatlı olarak çalışır. ALTERNATİF SOLUNUM YOLU Siyanür (CN-), azid (N3-) ve karbon monoksit (CO) gibi inhibitörler şekilde gösterilen solunumun ETS safhasını inhibe ederek solunumu engeller. Bu inhibisyon, ETS’nin son basamağında görev yapan sitokrom oksidaz enziminin bloke olmasıyla meydana gelir. Bitkilerde siyanüre dirençli bir alternatif solunum yolu bulunduğu anlaşılmış ancak henüz detaylı bilgi elde edilememiştir. Mevcut bilgilere göre, normal solunumda elektron taşınımı elektronlar 1. ubikinon ’dan sitokrom b ’ye değil kısa yoldan henüz mahiyeti tam bilinmeyen ve terminal oksidaz adı verilen siyanüre dirençli bir enzim üzerinden oksijene taşınır. Dolayısıyla alternatif solunum yolunda ATP sentezi ya hiç olmaz ya da çok az olur. Çünkü ETS’de elektron akışı sağlanamadığı için yeterli bir H+ pompalanması ve zar potansiyeli oluşmaz. Dolayısıyla solunumda açığa çıkan enerji ortama ısı enerjisi olarak dağılır.

http://www.biyologlar.com/isik-solunumu-fotorespirasyon

Böcekler İçin Çevre Dostu Öneriler

Canlılar içinde en büyük grubu oluşturan böceklerin birkaç yüz türü tarım ve insan sağlığı açısından ekonomik zarar oluşturmaktadır. Özellikle 1950’lerden bu yana sentetik kimyasal zehirlerin yaygın olarak kullanılması çok önemli çevre ve sağlık sorunlarına yol açmıştır. Son yıllarda bu açmazdan kurtulmanın yolları üzerinde önemle durulmaktadır. Bahçe ve evlerimizde zararlı olan başlıca böceklerin ana grupları şunlardır: Yaprakbitleri Yaprakpireleri Beyazsinekler Kabuklubitler ve Koşniller Yeşilkurt Danaburnu Bozkurtlar Manas Teke böcekleri Hamamböcekleri Çoğunlukla gruplar halinde bulunan Yaprakbitleri, Yaprakpireleri, Beyazsinekler, Kabuklubitler ve Koşniller bitkileri sokup emerek; Yeşilkurt, Danaburnu, Bozkurtlar, Manaslar ve Teke böcekleri ise bitkilerin çeşitli kısımlarını ısırıp çiğneyerek önemli zarar oluşturur. Hamamböcekleri de çoğunlukla yaşam alanlarımızda karşımıza çıkar. Böceklerle savaş yerine bütüncül bir yaklaşım amaçlanmalıdır. Uygulanabilecek çevre dostu yöntemler zararlı etmene göre değişmekle birlikte genel olarak kuvvetli ve sağlam bitki yetiştirmek, ekim-dikim ve hasat zamanını ayarlamak, nöbetleşe bitki yetiştirmek, yetiştirme ortamını bitki artıklarından ve yabancı otlardan arındırmak gibi kültürel önlemler ilk sırada yeralır. Bazı böceklerin renk, ışık, besin ve eşeysel kokulara yönelimlerinden yararlanılarak geliştirilen çeşitli tuzak sistemleri de izleme ya da kitlesel yakalama amacıyla kullanılmaktadır. Kültür bitkilerindeki zararlıların üzerinde yaşayan ve onlarla beslenme ilişkisi olan yararlı canlılar, predatörler (avcılar), parazitoitler (asalaklar) ve patojenler (hastalık etmenleri) olarak gruplandırılmaktadır. Başlıcaları arasında Yedinoktalı gelinböceği, Küçük gelinböcekleri, Parlak siyah gelinböcekleri, Minik korsan tahtakuruları, Zürafagörünüşlü tahtakuruları, Avcı tahtakuruları, Altıbenekli avcı trips, Altıngözlü böcek, Arıbenzeri avcı sinekler, Avcı akarlar, örümcekler, birçok asalak arı ve sinek türü böceklerle, böcekleri hastalandıran bakteri, virüs ve fungus gibi etmenler sayılabilir. Öncelikle bu yararlı canlıların korunması, etkinliklerinin ve yoğunluklarının arttırılması amaçlanır. Yararlı böceklerin erginleri genellikle polen, nektar, balözü veya tatlımsı maddelerle beslenir. Bunun için bahçelerde ayçiçeği, papatya, kadife çiçeği gibi çiçekli bitkilerin bulundurulması önerilir. Çiçeklerin azaldığı dönemde yararlı böceklerin beslenmesi için bitkilere şekerli su püskürtülebilir. Yararlı böcekler aşırı sıcak ve soğuklardan korunmak için bitkilerin yarık ve çatlaklarını, kabuk altlarını ve korunaklı yerleri seçer. Bunun için bahçelerin etrafında rüzgar kıran bitkiler ve çit bitkileri yetiştirilmesi gerekir. Yararlıların kış soğuklarından korunması için sonbaharda ağaç ve çalıların gövdesine kenevir çuval veya oluklu mukavva sarılmalı ve kışı geçirmeleri sağlanmalıdır. Bitkilerin üzerinde veya çevresinde bulunan karıncalar yararlı böcekleri uzaklaştırır. Bu nedenle ev yapımı ilaçlar kullanılarak etkisiz duruma getirilmeleri önerilir. Tozlu yol kenarlarındaki bitkiler üzerine yapışan tozların yıkanarak arındırılması etkili olur. Zararlıların yönetiminde ilaç uygulamasına karar verildiyse, öncelikle yararlılara olumsuz etkisi olmayan ev yapımı ilaçlar seçilmelidir. Kaplama ilaçlama yapmak yerine, sadece zararlının bulunduğu yer seçilmeli, nokta ilaçlama veya şerit ilaçlama yapılmalıdır. Uygun durumlarda mısır, susam, yonca, ayçiçeği gibi çekici bitkilerin bahçelerde bulundurulması önerilir. Çiçekli bitkilerin tozlaşmasında çok etkili olan balarıları, Bombus arıları gibi tozlayıcı böcekler korunmalıdır. Özellikle meyve ve sebze bahçelerinde verimi arttırmak için balarısı kovanlarının bulundurulması önerilir. Bu önlemlerin yanısıra, ekonomik ve ekolojik bir çözüm olan sarımsak-acı biber karışımı, soğan-sarımsak-acı biber karışımı, soğan-acı biber karışımı, nane-soğan-acı biber karışımı, acı kırmızı biber, ısırgan otu, arap sabunu-alkol karışımı gibi ev yapımı ilaçlardan da yararlanılabilir. Çeşitli bitkilerdeki deneme sonuçları ve yan etkiler hakkında yeterli veri olmaması nedeniyle, doğal yollarla elde edilse de, ev yapımı ilaçların kullanımında dikkat edilmesi gereken noktalar olduğu unutulmamalıdır. Ev yapımı ilaçlar bitkinin küçük bir kısmına uygulanır. 24 saat beklendikten sonra herhangi bir yan etki görülmüyorsa diğer bitkiler de ilaçlanır. Organik ilaçların doğada çabuk ayrışması dolayısıyla uygulamaların tekrarlanması gerekebilir. Bitkilerde birden fazla zararlı varsa, öncelikle zararlıların hepsine veya birkaçına etkili olan ortak kullanılabilecek ilaçlar seçilmelidir. İlaçların çoğu değme etkili olduğu için zararlılara değmesi gerekir. Zararlıların çoğu yaprak altında bulunduğu için yaprak altının iyi ilaçlanması gerekir. İlacı hedefine ulaştırabilecek en uygun ilaçlama aleti kullanılmalıdır. Bazı zararlı böcek ve akarlar yetiştirme alanının bir bölgesinde görülür. Bu durumda sadece o bölge ilaçlanmalıdır. Yağmurlu ve rüzgarlı havalarda uygulama yapılmamalıdır. Doğayı daha fazla kirletmemek ve canlılar arasındaki dengeleri daha fazla bozmamak için, çevre dostu önerileri dikkate almak ve uygulamak büyük önem taşımaktadır. Kaynak Tezcan F. 2012. Börtü Böcek İçin Doğa Dostu Öneriler ve Ev Yapımı İlaçlar. 3. Baskı, İzmir, 160 s. Ziraat Y. Müh. Füsun Tezcan Bornova Zirai Mücadele Araştırma Enstitüsü (Emekli)

http://www.biyologlar.com/bocekler-icin-cevre-dostu-oneriler

MİKROBİYAL LİÇİNG

Mikroorganizmalar mineral kaynaklarının oluşması ve çözülmesinde önemli rol oynar. Mineral aranması ve zenginleştirilmesinde biyoteknolojik yöntemlerin kullanılması popüler hale gelmiştir. Mikrobiyal liçing; mikroorganizmalar yaratımıyla maden cevherlerinden metallerin kazanılması işlemidir. Düşük kaliteli cevherlerden metallerin geri kazanımın da kullanılan kimyasal metodlar ekonomik olmamaktadır. Dünya genelinde yüksek oranlarda bulunan düşük kaliteli, bakır cevherlerinin göreneksel kimyasal metodlarla elde edilmesi zor ve pahalı olduğundan, bunların eldesinde mikrobiyal liçing kullanılır. Son yıllarda geliştirilen mikrobiyal liçing yöntemleri metalik hammaddeler için çok önemlidir. Klasik yöntemler ile çözünürleştirilmeyen veya parçalanamayan fakir cevherler ve endüstri atıkları mikoorganizmalar ile ekonomik biçimde geri kazanılmaktadır. Bakterilerin yaptığı iş suda çözünmeyen filizleri suda çözünür hale getirmektir. Bakteriyal liçing daha çok uranyum ve bakır kazanımın da kullanılır. Dünya yüzeyinde kayda değer ölçülerde bulunan Ni, Zn, Cd, ve Co eldeleri içinde bir dizi liçing yöntemleri geliştirilmiştir. Bu yöntem bir asidik su içiren bir maden yatağına boru hattı döşeme sırasında meydana gelen bir patlama sonucu ortaya çıkmış ve geliştirmeler sonucunda düşük dereceli maden cevherlerinin geri kazanımı sağlanmıştır. LİÇİNGDE KULLANILAN ORGANİZMALAR Mikrobiyal liçingde kullanılan en yaygın 2 tane bakteri Thiobacillus thiooxidans ve Thiobacillus ferrooxidans’tır. Ayrıca Thiobacillus concretivoru, Thiobacillus concretivorus, Pseudomonas fluorescens, P. putida, Achromobacter, Bacillus licheniformis, B. Cereus, B. luteus, B. polymyxa, B. megaterium ve birçok termofilik bakterilerden Thiobacillus thermophilica, Thermothrix thioparus, Thiobacillus TH1, ve Sulfolobus acidocaldarius kullanılmaktadır. Heterotrafik mikroorganizmaların kullanımı gelişmektedir. Termofilik bakterilerin liçing uygulamalarını hızlandırmasının en büyük etmeni hızlı gelişim oranının varolmasıdır. MİKROBİYAL LİÇİNG KİMYASI Thiobacillus ferrooxidans çok pahalı çalışmayı gerektiren bir bakteridir. Bu bakteri mezofil, spor oluşturmaz, hareketli Gr(-), çubuk şeklinde olup C,5-C,8 m X 1,0-2,0 m boyutlarındadır. Ototrofik aerap olup C ihtiyacını havadaki CO2’in fixasyonundan sağlar. Enerji kaynağı olarak ise Fe2+  Fe3+’ya oksidasyonunudan veya elementel kükürt veya indirgenmiş kükürt bileşiklerinden sağlar. En yaygın kullanılan mikrobiyal liçing proseslerinin amacı az çözünen veya çözünmeyen metal bileşiklerini metal sülfatlar haline getirip çözünürleştirmektir. Bunun için 2 şekilde uygulama çeşidi varadır: Direkt ve indirekt mikrobiyal liçing. 1. Direkt Mikrobiyal Liçing: 4 FeSO4 + 2H2 SO4 + O2  2Fe2(SO4)3 + 2H2O [1] 2S0 + 3O2 + 2H2O  2H2SO4 [2] 2FeS2 + 7O2 + 2H2O  2FeSO4 + 2H2SO4 [3] Çözünmez haldeki sülfürün sülfirik aside aksidasyonu, sülfürle direkt kontak halindeki T.ferroxidans sayesinde gerçekleştirilir. T. ferooxidans tarafından gerçekleştirilen [3] nolu reaksiyon direkt mikrobiyal liçing: göstermektedir. Demir cevherinin yanında bakır, kurşun, nikel, kobalt, molibden ve çinko cevherleride T.ferroxidans sayesinde oksitlenebilirler. MeS + 2O2  Me SO4 2. İndirekt Mikrobiyal Liçing İndirekt liçingde, mikoorganizmalar liçing reaktifini üretir veya rejenere ederler. Örneğin metal sülfür cevherleri mikrobiyal bir etki olmaksızın Fe3+ iyonları tarafından oksitlenip liçing gerçekleştirilebilir. MeS + Fe2 (SO4) MeSO4+S0 Reaksiyonda indirgenen demirin tekrar Fe3+ haline dönüştürülmesi T.ferroxydans tarafından sağlanır. Bakteri bu prosese doğrudan karışmayıp bir katolitik fonksiyon görür. Bakteriyel oksidasyon kimyasal oksidasyondan yaklaşık 1 milyon kat hızlıdır. [2] nolu reaksiyonun oksitlenmesi T.thiooydans tarafından çok daha hızlı oksitlenirler. Bu tepkimeden de anlaşılacağı üzere sülfirik asit oluşumu katalizlediğinden, liçing için asidik koşulların sağlanması önemlidir. Bakteri Aktivitesine Etki Eden Etmenler 1. Besi Ortamı Besi ortamının kimyasal ve minerolojik bileşimi çok önemlidir. Liçing koşulları ve bakteriyel büyüme koşulları çakışıyorsa maksimum metal verimine ulaşır. Enerji veren demir ve kükürt bileşiklerinden başka magnezyum ve amonyum tuzları, fosfatlar ve sülfatlar esansiyel mineral bileşenleridir. Anorganik bileşiklerin bazıları liçing çözeltisinde bulunur. Eğer ortamda yeterli değillerse bir miktar katılırlar. Pirit(FeS2) ilave edilirse indirekt liçing hızlanır. Çok yüksek konsantrasyonda Fe3+ varlığı kompetitif bir inhibisyona neden olur. Tiyobasiller besi ortamı için problemlidir. Mikrobiyal liçingden maksimum verim elde etmek için liçing sırasında O2 transportu yeterli hızla sağlanmalı ve bu transportu etkileyen faktörlere dikkat edilmelidir. 2. pH ve Redoks Potansiyeli Optimum büyüme koşullarındaki pH’nın liçing çalışma koşullarına uyması idealdir. En uygun pH 2-2.5 arasıdır, kükürt ve Fe2+ oksidasyonu da bu pH lara uygundur Eğer pH 2’nin altına inerse T. ferroxydans aktivitesi düşer. Aerobik bir bakteri olduğu için T.ferroxydans pozitif bir redoks potansiyeline ihtiyaç duyar. Redoks potansiyeli logaritmik büyüme fazı sonuna doğru 600 mV a ulaşır. 3. Sıcaklık Fe+2 ve kükürdün mikrobiyal oksidasyonu için optimum sıcaklık 28-35oC arasıdır. T.ferrooxydans’ın büyümesi için de bu sıcaklık aralığı uygundur. Daha düşük sıcaklıkta büyüme yavaşlar, daha yüksek sıcaklıklarda ise termofil bakteriler kullanılır. 4. Liçing Materyalinin Kimyasal ve Mineralojisi Materyal yüksek oranda karbonat içerirse pH artar ve dolayısı ile liçing aktivitesi düşer ve giderek durur. Bunu engellemek için ortama asit ilavesi gereklidir. Mineral bileşimi büyüme ortamının ihtiyacını tam olarak karşılayamaz bazı mineraller dışarıdan ilave edilir. 5. Substrat Konsantrasyonu ve Partikül Büyüklüğü Liçing hızı liçing edilecek substratın yüzey büyüklüğü ile orantılıdır. Partikül boyutu ne kadar küçük ise toplam partikül yüzey o derece yüksektir, spesifik partikül yüzeyi artar, böylece liçing verimi de artar. Bu bilgiler kükürtlü cevherler için geçerli olup düşük tenörlü cevherleri kapsamaz. Substrat konsantrasyonunu artırarak da partikül toplam yüzeyi büyütülebilir. Bu durumda paktikül kütlesi de artar. Fakat substrat konsantrasyonunun artırılması belirli bileşiklerin konsantrasyonlarının artmasına neden olur ki bunların bazılar tiyobasillerin üremesi için toksik etki veya inhibisyon gösterebilir. Pratikte her liçing denemesi için partikül büyüklüğünün ve substrat konsantrasyonunun optimize edilmesi gerekir. 6. Yüzey Aktif Maddeler ve Ekstrasksiyon Maddeleri Eskiden bu maddelerin ilavesinin liçingi hızlandırdığına yani tiyobasillerin üremesini artırdığına inanılırdı. Fakat 1975 ten sonra yapılan çalışmalarda bunun tamamen yanlış olduğu tesbit edilmiştir. Yüzey gerilimi çok düşeceği için O2 kütle transferi çok yavaşlar. Bunun sonucunda bakteriyel gelişme sürekli olarak inhibe olur. Benzer bir etki ekstraksiyonda kullanılan organik çözgenler için de geçerlidir. Organik fazdan metal iyonunun geri alınması yeniden sulu faza çekme şeklinde olur. Eğer bakteriyel liçing ve çözgen ekstaksiyonu birlikte uygulanır ise problem çıkabilir. En önemli problem organik çözgen fazının tam olarak ortamdan ayrılmamasıdır. Sulu fazdan kalan organik çözgen bakterinin büyümesini inhibe eder. 7. Ağır Metaller Birçok ağır metal iyonu çok düşük konsantrasonlardan bile toksik etki gösterebilir. Tiyobasiller ağır metallere çok toleranslıdır. Bununla birlikte bu etkilerin daha önceden bilinmesi gerekir. 8. Işık Tiyobasiller ışığa çok duyarlıdır. Özellikle UV ve görünür ışığın ultraviyoleye yakın bölgesi tiyobasillere çok etkilidir. Mikrobiyal Liçing Prosesleri Optimumu liçing koşulları sadece laboratuar koşulları için tespit edilmiştir. Liçing koşullarının optimizasyonu pilot tesislerde tespit edilir ve daha sonra endüstriyel boyutta uygulanır. Optimizasyon da kullanılan parametreler; - O2 ve CO2 temini - Materyalin nem oranı - pH gradienti - Sıcaklık gradienti - Fe3+ tuzu çöktürmeleri - Partikül büyüklüğü - Partikül parçalanması ve partikül göçü - Geçirgen olmayan tabakaların oluşup, oluşmadığı. Mikrobiyal liçingin teknik uygulamalarının esas işlem sırası şöyle gerçekleşir; 1- Cevherlerin öğütülmesi 2- Cevherlerin bakteri süspansiyonu ile uygun şekilde sulandırılması 3- Sıvının biriktirilmesi 4- Çözünmüş metalin extraksiyonu NOT: Mikrobiyal liçing sonucu oluşan atık sular boş arazilere boşaltılmamalıdır. Mikrobiyal liçing uygulandığı yüze şekillerine göre 3’e ayrılır a) Meyilli yüzeyde liçing b. Kümesel yüzeyde liçing c. İn-situ liçing Mikrobiyal Liçingin Teknik Uygulamaları 1. Bakır Cevherinin Biyoliçingi Günümüzde dünya bakır üretiminin yaklaşık %10’u bakteriyel düşük kalite cevherlerin bakteriyel liçingi ile gerçekleştirilir. Bütün bakır işleticileri bir entegre yığma-boşaltma veya onların maden çıkarma veya porsesleme aktivitesini artıran in-situ liçing porseslerini uygular. En önemli bakır cevherlerinden biri olan kalkosit aşağıdaki denkleme göre bakteri tarafından çözünürleştirilir. Cu2S + 5/2 O2 +H2SO4 Bakteri 2CuSO4 + H2O Bu denklem iki basamakta gerçekleşir. a) Cu2S + ½ O2 + H2SO4 bakteri CuS + CuSO4 + H2O b) CuS + 2O2 bakteri CuSO4 Diğer bakır sülfür cevherleri bornit (Cu5FeS4), kubanit (CuFe2S3) ve kalkopirit (CuFeS2), enargit (Cu3AsS4) ve kovellittir (CuS). 2.Uranyum Cevherlerinin Biyoliçingi Mikrobiyal uranyum liçingi daha çok terk edilmiş uranyum ocaklarında uygulanır. Endüstriyel olarak bakteriyel liçing prosesleri ile cevherlerden uranyum ekstrakte edilir. Ekstraksiyonun kimyası çözünmeyen dört değerlilikli uranyum oksitlenerek çözünen altı değerlikli durumuna değişimi ile ifade edilir. UO2 + Fe2 (SO4)3+2H2SO4 U4[UO2(SO4)3] + 2 FeSO4 FeSO4 daha önce belirtildiği gibi bakteriyel oksidasyon ile Fe2(SO4)3 a dönüştürülür. SONUÇ Mikrobiyal liçing düşük kalitedeki cevherlerden metal kazanımın da kullanılan ve klasik yöntemlere göre ekonomik olan bir uygulama çeşididir. Bu yöntemle özellikle altın, gümüş gibi pahalı ve uranyum gibi stratejik elementlerin eldesinde büyük önem taşımaktadır. Bakır ve uranyum eldesinde özellikle in-situ liçing yöntemi uygulanmaktadır. Endüstriyel olarak Çinko, Nikel Cobalt ve Molibden üretimi için mikrobiyal liçing uygulamalarının yaygınlaştırılacağı kesin gibi gözükmektedir. Ayrıca mikrobiyal liçingle atıklardan metallerin geri kazanımı için alternatifsiz bir yöntemdir. Mikrobiyal liçing tesisleri maden yataklarının yanına kurulmalıdır. Böylece transport masrafları indirgenmiş olur. Mikrobiyal yöntem klasik yöntemlerden daha ekonomiktir. Detaylı teknik bilgi gerektirmez, ayrıca yüksek teknolojiye gerek yoktur. Bu nedenlerden dolayı yer altı kaynakları bakımından zengin ve gelişmekte olan ülkeler için çok iyi bir yöntemdir.

http://www.biyologlar.com/mikrobiyal-licing

MADDE DÖNGÜLERİ HAKKINDA BİLGİ

Bir yaşama birliğinin sürekliliği, bu birlik içindeki madde devrine bağlıdır. Canlılar çevrelerinden aldıkları maddeleri kullandıktan sonra çeşitli şekillerde çevrelerine geri verirler. Maddelerin canlı ve cansız çevre arasındaki bu hareketine madde döngüsü veya ekolojik döngü denir. Doğada başlıca su, karbon, oksijen,fosfor gibi madde ve elementler devirli olarak kullanılır. A.Su Döngüsü Yer yüzünün 3/4’ü sularla kaplıdır.Bu suyun büyük bir kısmı okyanus ve denizlerde depolanmıştır.Su güneş enerjisi ve yer çekiminin etkisiyle doğada düzenli olarak hareket eder. B.Karbon döngüsü Canlılardaki organik maddelerin temel yapısını karbon oluşturur.Karbonsuz yaşam düşünülemez.Canlı ölünce, çürümeye başlar ve ayrıştırıcı bakterilerin etkisi ile karbondioksit oluşur. C.Oksijen döngüsü Solunum için gerekli olup organik maddelerin oksidasyonunda,kömür,gaz, odun gibi maddelerin yanmasında yoğun şekilde tüketilir.Atmosferde % 21 oranında oksijen bulunur.Denizlerdeki fitoplanktonlar ve karadaki bitkiler, atmosfere oksijen verir. Oksijenin çok az bir kısmı da su moleküllerinin ultra viyole ışınları tarafından ayrıştırılması (fotoliz) sonucu ortaya çıkmaktadır. D.Azot Döngüsü Azot, canlıların yaşamı için kaçınılmaz elementlerdendir.Canlıların yapıtaşını oluşturan aminoasit ve proteinlerin yapısında bulunur; ayrıca nükleik asitlerin,hormonların ve vitaminlerin de yapısına girer.Doğada başlıca azot kaynağını atmosfer ve canlılar oluşturur.Atmosferde % 78 azot gazı(N2) vardır; ancak bu gazlardan bazı mikro organizmalar yararlanabilir.Bitkiler tarafından kullanılan azot ise nitrat (NO3) ve amonyum (NH4) tuzları şeklindeki depodur. Hayvanlar azotu amino asit olarak almak zorundadırlar. Atmosferdeki azot, şimşek, yıldırım gibi olaylar sonucunda yer yüzüne yağmurlarla nitirk asit şeklinde döner.Nitrik asitte toprak da ki nitratlara dönüştürülür. Topraktaki bulunan bazı bakterilerle bezelye veya fasulye gibi baklagillerin köklerinde bulunan bakteriler (Rhizobium,Azotobacter), havadan alınan azot gazını amonyağa dönüştürürler. Hayvan ve bitki ölülerindeki proteinler saprofitik bakteriler tarafından ayrıştırılarak amonyağa dönüştürülür. Ayrıca, hayvanların azot kapsayan metabolizma artıkları da (üre,ürikasit,kreatin) aynı yolla amonyağa çevrilir. Amonyak nitrit bakterileri tarafından nitrite,nitrit de nitrat bakterileri tarafından nitrata dönüştürülür.Bu olaya nitrifikasyon denir. Bitkiler tarafından kullanılmayan nitrit ve nitratlar bakterilerin etkisi ile parçalanır.Bu parçalanmadan açığa çıkan serbest azot tekrar havaya karışır.Bu olaya denitrifikasyon denir.Bu olay oksijensiz solunum yapan bakterilerin gerçekleştirdiği bir olaydır.Denitrifikasyon sonucu toprağın verimi düşer. Azotun bu şekilde havadan toprağa , topraktan bitkilere , bitkilerden havaya karışmasına azot devri denir. E.Fosfor döngüsü Hayvan ve bitkilerin yaşamsal işlevleri için fosfor önemlidir.Omurgalılarda en çok diş ve kemiğin yapısında bulunur.Ayrıca fosfor nükleik asitlerin yapısına katılır.ATP’nin yapısına katılır vb. Fosfor atmosferde bulunmaz. Fosforun doğadaki kaynağı fosfatlı kayalar ve sudur.Fosfatların karalardan denizlere dönüşü hızlı,denizlerden karalara dönüşü ise yavaştır.

http://www.biyologlar.com/madde-donguleri-hakkinda-bilgi

Antosiyaninlerin çiçeklerin renklendirilmelerindeki rolleri

Antosiyanin ismi, Yunanca iki kelimeden, anthos (çiçek) ve kyanos (mavi) kelimelerinden oluşmuştur. E163 kodu ile bilinen antosiyaninler, suda iyi çözünebilen ve birçok meyveye, sebzeye ve çiçeğe etkileyici mavi, kırmızı ve mor renklerini veren pigmentlerdir. Bugün dünyada 200'ün üzerinde farklı antosiyanin kaynağı bulunmuştur. Antosiyaninler, pH değişimine karşı duyarlıdırlar. Çoğu antosiyanin, yüksek asitli koşulda kırmızıya, düşük asitli koşulda ise maviye döner. Antosiyanin pigmentleri, antosiyanidin ve glikozittir. Bu pigmentler suda çözünür ve gıdalarda kullanıma uygundur. Genel olarak ısıya ve ışığa karşı stabiliteleri yüksektir. Pastörizasyon ve UHT uygulamalarındaki yüksek sıcaklıklarda dahi stabildir. Özellikle üzüm kabuğundan elde edilmiş, yüksek polimerik yapıya sahip antosiyaninler, çok daha dayanıklıdır. Renklendirici olarak kullanılmasının yanı sıra, ürün bir polifenol olduğundan, son yıllarda, sağlığa yararları konusunda geniş çalışmalar yapılmıştır. Kırmızı şarabın her gün bir kadeh alınması şeklindeki tavsiyeler de, içerdiği antosiyaninlerden dolayıdır. Pigmentin bu özelliği, gelecekte fonksiyonel gıdalarda ve sağlıklı gıdalarda çok daha fazla kullanılacağını göstermektedir.   Gıda sektörü: İçecekler, dondurma çeşitleri, yenilebilir buzlar, jöleler, reçeller, şekerlemeler, süsleme ve kaplama malzemeleri, unlu mamuller, baık yumurtası, tüm çerezler, diyet ürünler, ek gıdalar, sıvı ve katı gıda katkıları, aromalandırılmış şaraplar, distile alkollü içkiler, kokteyller, meyve şarapları, elma şarabı, soslar, hardal, çeşni maddeleri, turşular ve şalgam suyu. Kozmetik sektörü: Cilt bakım ürünleri, saç bakım ürünleri. Antosiyaninlerin kullanımları için pH’nın düşük olması, bulanıklığın olmaması gerekir Alkolsüz İçecekler: Antosiyanin renk maddelerinin temel kullanım alanları alkolsüz içkilerdir. Koruyucu olarak SO2 içermeyen pH 3,4’ün altındaki berrak içecekler ideal uygulamalardır. Doğal renkleri ve antosiyanini hesaplarken, renk katkısı yapılacak gıdanın rengini belirlemeden önce, rengin sabitlenmesi için 24 saat beklemek akıllıca bir önlem olur. Antosiyaninlerin sülfit türevlerinden serbest bırakılmaları peryodu boyunca renkteki artışı görmek mümkündür. İçime hazır içeceklerde koyu kırmızı rengi vermek için 30 ile 40 ppm antosiyanin dozu yeterlidir. Antosiyaninlerin her zaman bulanık içeceklerde kullanımları uygun değildir. Ticari uygulamaları sınırlı olmasına rağmen, teknik olarak alkollü içecek ve sirke içeren ürünlerin antosiyaninlerle renklendirilmesi mümkündür. Meyveler: Antosiyaninler, meyve preparatlarında, marmelatlarda kullanılır. Meyvenin kalitesi ve özelliği önemlidir. Taze veya donmuş meyve, sülfitlenmiş ya da konserve meyveler tercih edilir. Konserve meyveler daha kahverengi olabilir. Antosiyaninler kahverengi alanda absorbe ettiklerinden (420-440nm) kahverengiliğin antosiyanin kullanarak maskelenmesi zordur. Şekerlemeler: Asit kullanılarak yüksek sıcaklıklarda kaynatılan şekerlemeler ve pektin jelleri, kırmızı rengin gözlendiği antosiyaninler için ideal uygulamalardır. Bazı antosiyanin ekstraktları, özellikle üzüm türevliler jelatinle birbirine uymazlar bu nedenle son üründe istenen rengi elde etmek için doğru uygulama biçimi seçimine dikkat edilmelidir. Üzümden elde edilen konsantre antosiyaninler, jelatin çözeltisine eklendiğinde bulanıklık veya çökelti oluşabilir. Konsantrasyon derecesinin artması daha fazla problem demektir. Rengi kullanmadan önce seyreltmek ve üretim denemelerini başarmadan önce jelatin uygunluğunu kontrol etmek gerekir. Kuru Karışımlar: Asidik tatlı karışım çeşitlerinde ve püskürtmeli kurutucuyla kurutulmuş toz içeceklerin renklendirilmesinde antosiyaninler kullanılır. (Küçük ve Ballıkaya, 2003)   Antosiyaninlerin Ekstraksiyonu Antosiyaninlerin çeşitli bitkisel kaynaklardan ekstraksiyonunda kullanılacak yöntemler, çoğunlukla ekstraksiyonun amacına ve antosiyaninlerin yapısına bağlı olmaktadır. Ekstraksiyon işlemleri için antosiyaninlerin yapısını ve stabilitesini etkileyen faktörlerin bilinmesi gerekmektedir. Ekstrakte edilen pigmentler kalitatif veya kantitatif olarak hemen analiz edilecekse yöntem pigmentleri mümkün olduğunca doğal durumlarına yakın tutacak şekilde seçilmelidir. Ekstrakte edilen pigmentlerin renklendirici veya gıda bileşeni olarak kullanılması durumunda maksimum pigment verimi, boyama kuvveti ve stabilite gibi faktörler de önem kazanmaktadır. Ayrıca ekstraksiyon ve temizleme işlemlerinin çok kompleks olmaması, zaman alıcı ve pahalı olmaması gerekmektedir . Antosiyaninler nötral veya alkali çözeltilerde stabil olmadığından ekstraksiyon işlemlerinde genellikle asidik çözeltilerin kullanılması önerilmektedir. Antosiyaninlerin ekstraksiyonunda geleneksel ve en yaygın yöntem bitkisel materyalin az miktarda mineral asit içeren ve düşük kaynama noktasına sahip olan alkol ile ekstraksiyonudur. Alkol olarak çoğunlukla metanol kullanılmakla birlikte metanolün toksik etkisinden dolayı, ekstrakte etme gücü metanole göre daha düşük olmasına ve yüksek kaynama noktasından dolayı daha zor konsantre edilmesine rağmen asitlendirilmiş etanol de gıda esaslı preparatların hazırlanmasında tercih edilmektedir. HCI ile asitlendirme düşük pH’yı korumaya yardımcı olmakla birlikte, bu gibi mineral asitlerin kullanımı, kompleks yapıdaki pigmentlerin doğal formunu değiştirebilmekte ve daha sonraki konsantrasyon aşamasında dayanıklı olmayan acil ve şeker kalıntılarında kayıplara neden olabilmektedir. Bu nedenle pek çok araştırmacı açillenmiş pigmentlerin bozunmasını en aza indirmek için çok düşük konsantrasyonlarda asit kullanımını önermişler, güçlü asit çözeltilerinin bazı bileşiklere zarar verdiğini bildirmişlerdir. Bu nedenle antosiyaninleri doğal formlarına yakın elde etmek için pek çok araştırmacı tarafindan başlangıç pigment ekstraksiyonunda nötral çözgenlerin kullanımı (% 60 metanol, aseton/metanol/su karışımları, n- butanol, soğuk aseton veya kaynamış su ) önerilmiştir. Ayrıca zayıf organik asitlerin de (çoğunlukla formik asit, asetik asit, sitrik asit ve tartarik asit) ekstraksiyon çözgenlerinde kullanıldığı bildirilmektedir. Rengin bitkisel materyalden yeterli ekstraksiyonu sağlandığında, alkol içeren çözelti düşük sıcaklıklarda konsantre edilmekte ve daha sonra gerekirse konsantratın kolon veya kağıt kromatografisi gibi tekniklerle saflaştırılması yoluna gidilmektedir. Antosiyaninlerin çeşitli bitkisel materyalllerden ekstraksiyonu üzerine günümüze kadar pek çok çalışma yapılmıştır. Bu konuyla ilgili literatür özetleri aşağıda verilmektedir. Bir çeşit erik meyvesinin (Prunus cerasifera) kabuğu ve yapraklarının antosiyanin kaynağı olarak kullanılabilme durumunun araştırıldığı Baker ve ark., 1974,nın çalışmasında siyanidin ve peonidin 3- glikozit ve 3-rutinozitleri içeren erik antosiyaninleri, asitlendirilmiş etanol kullanılarak ekstrakte edilmiş ve elde edilen ekstraktın organoleptik açıdan kabul edilebilir özelliklere sahip olduğu ifade edilmiştir. Antosiyaninler için en iyi kaynaklardan biri olan üzüm küspesinin kullanıldığı Tiinberlake ve Bridle, 1980, in çalışmalarında, ekstrakte edici çözgen olarak %0.1-1.0 oranında tartarik asit içeren metanol sonra tartarik asidin fazlası %40’lık KOH çözeltisi kullanılarak çöktürülmüştür . Metivier ve ark.(1980), antosiyaninlerin üzüm posasından ekstraksiyonunda kullanılan çözgen ve asidin ekstraksiyon derecesi ve oranı üzerine etkisini incelemişlerdir. Çalışmada çözgen olarak etanol, metanol ve su; asit olarak hidroklorik asit, sitrik asit, tartarik asit, formik asit ve propiyonik asit kullanılmış ve kullanılan ekstraksiyon çözgenleri arasında en iyi ekstraktantın metanol olduğu bildirilmiştir. %10 HCI içeren metanolün , etanolden %20 ve sudan %73 oranında daha etkili olduğu saptanmıştır. Metanol ekstraktındaki en yüksek pigment konsantrasyonuna 48 saat sonunda ulaşıldığı bildirilmiştir. HCI’nın oldukça korozif bir etkiye sahip olmasından dolayı çalışmada ekstraksiyon çözgeninde asit olarak organik asitler de denenmiştir. Organik asitle yapılan denemelerden elde edilen bulgulara göre sitrik asidin metanol ile ve asetik asidin su ile birlikte kullanıldığında daha etkili olduğu rapor edilmiştir. Pigment analizi Fuleki ve Francis (1968)’in uyguladığı yönteme göre pH 1 ve 4.5’da pH differential yöntem ile yapılmıştır. Bu çalışmada 100 g üzüm posasında 85 mg antosiyanin içeriği saptanmıştır. Kocabıyık ve Yurdagel (1987) de kırmızı üzüm cibresinden boyar bileşiklerin eldesi ve bunların gıdalarda kullanılabilirliği üzerinde çalışmışlardır. Araştırmada Carignane Grenache çeşidi üzümlerin artığı karışık cibre kullanılmış, cibredeki renk maddeleri sitrik asit içeren metanol ile ekstrakte edilmiştir. Ekstrakt süzüldükten sonra vakum altında konsantre edilmiş ve buzdolabı koşullannda depolanmıştır. Elde edilen doğal renk maddeleri gül reçeli, gül likörü, akide şekeri ve oksidasyona uğramış beyaz şaraplann roze formunun renklendirilmesinde kullanılmış ve 60 gün boyunca belirli zaman aralıklarında absorbans değerlerine bakılarak renk kayıpları incelenmiştir. Elde edilen sonuçlara göre renklendirilen gıdalarda renk açılmalarının kullanılan gıdanın pH’sına bağlı olarak değiştiği ve gül reçelinde alıkonan renk şiddetinin oldukça yüksek olduğu bulunmuş, bu nedenle renk maddelerinin pH 4 altındaki gıdalarda kullanılabileceği ifade edilmiştir. Palmidis ve Markakis (1975) de fermente üzüm kabuklarındaki antosiyaninleri sıcak su ve farklı konsantrasyonlarda (500, 1000 ve 2000 ppm) SO2 çözeltisi ile ekstrakte ederek alkolsüz karbonatlı içeceklerdeki stabilitelerini incelemişlerdir. Sıcak su ve 500 ppm SO2 çözeltisinin diğerlerinden daha iyi sonuç verdiği rapor edilmiştir. Ekstraktlar konsantre edilip kurutulduktan sonra hazırlanan karbonatlı içecek karışımına katılmış, içecekler farklı sıcaklık ve ışık koşullarında depolanarak belirli aralıklarla antosiyanin içerikleri saptanmıştır. Ekstrakt ve içeceklerin antosiyanin içeriği pH differential yöntem ile saptanmıştır. pH’ları 1 ve 4.5 olan iki tampon kullanılarak örneklerin absorbansları 520 nm’ de okunmuş ve pigment içeriği enosiyanin eşdeğeri olarak ifade edilmiştir. Sıcak su ekstraksiyonu ile elde edilen antosiyaninlerle hazırlanan içeceğin 581 mg enosiyanin /100 mg ve 500 ppm SO2 çözeltisi ile hazırlanan içeceğin ise 640 mg enosiyanin/100 mg içerdiği saptanmıştır. Sıcaklık ve ışığın karbonatlı içeceğe eklenen antosiyaninin stabilitesini etkilediği, depolama sıcaklığı ve ışık şiddetindeki artışın pigment degradasyonunu hızlandırdığı bulunmuştur. Aynca 500 ppm SO2 çözeltisi ile ekstrakte edilen pigmentlerin sıcak su ile ekstrakte edilenlere göre %30-60 oranında daha stabil olduğu saptanmıştır. Mok ve Hettiarachchy (1991), ayçiçeği kabuğundaki antosiyaninlerin 65-95 °C arasında değişen sıcaklıklarda ve pH 1-5 aralığında termal stabiliteleri üzerinde çalışmış ve ekstraksiyon çözgeninde SO2 kullanımının elde edilen pigmentlerin termal stabilitesi üzerine etkilerini incelemişlerdir. Ekstraksiyon çözgeni olarak 500, 1000 ve 2000 ppm SO2 içeren sulu çözeltilerin kullanıldığı çalışmada 1000 ppm SO2 içeren çözeltinin en yüksek termal stabiliteye ve antosiyanin içeriğine sahip olduğu saptanmıştır. 1000 ppm’in üzerindeki konsantrasyonlarda SO2 çözeltisinin daha düşük antosiyanin içeriği vermesinin sebebi SO2 nin yüksek konsantrasyonlarda geri dönüşümsüz ağartma etkisi ile açıklanmıştır. Isıl işlem görmüş ekstraktlardaki toplam antosiyanin içeriği pH differential yöntem ile saptamış ve mg siyanidin 3-glikozit/L olarak ifade edilmiştir. Antosiyaninlerin degradasyon indeksi (DI) değerleri Fuleki ve Francis (l968)’in yöntemine göre saptanmıştır. Degradasyon indeksi, örnekteki degrade olmuş antosiyanin kısmını belirten bir ifadedir. Bu değerin sıcaklık ve süre arttıkça arttığı, 95 °C’deki DI değerinin 65 ve 80°C dekine göre daha yüksek olduğu ve 65 ve 80 °C’de elde edilen DI değerleri arasında önemli bir fark olmadığı bildirilmiştir. En yüksek DI değerinin pH 5’de elde edildiği, bu değeri sırasıyla pH 1 ve pH 3’ de elde edilen değerlerin izlediği rapor edilmiştir.   Antosiyaninlerin Antioksidan Aktivitesi documents/240934301.pdf

http://www.biyologlar.com/antosiyaninlerin-ciceklerin-renklendirilmelerindeki-rolleri

EKOLOJİ

Canlıların çevreyle ve birbiriyle olan ilişkilerini inceleyen bilim dalıdır.Çevre ise bir canlının yaşaması ve neslini sürdürebilmesi için uygun ortamdır.Yandaki şekle baktığımız zaman canlının metabolizma iklimden ağır gelirse canlı adapte olmuş anlamına gelir.Eğer tam tersi gerçekleşirse bu sefer seleksiyon olur.Bireysel baktığımız zaman canlı yaşlandığı için daima iklim galip gelecektir.Tüm canlılar ortamın müşterek etkisi altında belli bir yaşam düzeyi kurarlar.Ancak bu düzenin sürekliliği canlıların ortam arasındaki enerji alış verişindeki dengeye bağlıdır. Yeryüzünün biyosfer kısmı,enlem dereceleri,topografya ve komşu ekosistemlerin etkisiyle sayısız farklı koşullara sahip ortamlar içermektedir: • Yeryüzünün biyosfer kısmı demek yer yüzünün üst katlara doğru olan atmosfer katlarında bulunan kısmıdır(Hava Canlıların solunumuna uygun gaz karışımı ihtiva eder.). • Enlem dereceleri,ekvatordan uzaklaştıkça iklimde hareketlenme ve biyosfer sınırında azalma olur. Böylece enlem dereceleri uzun mesafelerde daha belirgin iklim değişikliklerine neden olur. • Topografya,arazini morfolojik yapısı olarak tanımlanır. • Komşu ekosistemler:Örneğin Antakya Samandağ’ından gelen nemli hava ile Suriye’den gelen çöl havasının etkisi altındadır. NOT1 Ekolojik dengeyi en çok etkileyen pasif yayılmadır.Çünkü gittikleri yerde başarısız olsalar bile oradaki toprak için organik madde kaynağı olurlar. NOT2 Canlılar besin ve iklim faktörlerinden en çok iklim ağır basar NOT3 Canlılar bir ortama giderek konut (eukos) edinir.En iyi ortam ise ekosistemdir. Yaşam ortamlarının kurulabilmesi için: 1) Ortamın mevcut koşulları ve canlıların etkinlikleri a) Canlıların yayılma yeteneği (Yanardağ örneğinde olduğu gibi yanardağ tüm adayı yok eder.Buna rağmen bir süre sonra bitkiler tekrar büyür.Kuşlar göç eder ve yerleşip ortam yaparlar.Yani tüm canlılar bir yolunu bulup yayılmayı başarırlar.) b) Canlıların ekolojik istekleri (Yıl 12 ay ve de 4 mevsim var.İlk anda yerleştiği zaman iklim uygun olabilir.Fakat canlı için olumsuz koşullarda yaşanabilir.Yani her canlının kendine göre bir ekolojik isteği vardır.Kutup ayısı kutuplarda yaşar.Ekvatora getirdiğimizde ise ölür.Ekvatorda yaşayan bir canlıda kutuplarda ölür.) c) Ortamın ekolojik koşulları (Canlı ani değişimlere karşı dayanıklı olmalı.d maddesiyle alakalı) d) Canlıların töleransı (Doğanın bir kanunudur ki o ekolojik tölerası yüksek olan canlı nesiller boyu canlılığını sürdürür.) e) Canlıların rekabet güçlülüğü (Canlılar yaşadıkları habitatta diğer canlılarla daima rekabet halindedir.Yani güçlü olan daima yaşar.Rekabet yoksa orada daima bir denge vardır.) 2) Canlıların coğrafik ya da lokal dağılışları: Not Çevre,canlıların yaşayabildiği ortamdır.Çevre müsaade ederse yaşam oluşur. Ekolojik benzerlikleri aynı olan canlılar makroklimatik bölgelere yerleşir.Sıcaklık değişimine toleransı az olan canlılar makroklimatik bölgenin mikroklimatik yerlerinde lokal dağılış yaparlar.Bu mikroklimalar makroklimaların olumsuz etkilerini en aza indirir. 3) Canlıların yayıldığı ortamdaki varlığı,miktarı ve dinanizminde görülen değişimler:Canlıların yayılışı aktif ve pasif olmak üzere iki çeşittir.Dinanizmde daima değişme gözlenir.Dinanizm değiştikçe canlının töleransına göre yani metabolizmasından taviz vererek canlılığına devam eder.(Töleransı çok olan canlı rekabete az girer.Oysa töleransı az olan hayatta kalabilmek için rekabete girer. 4) Biyosferdeki cemiyetler arasındaki spesifik ilişkiler:Biyosfer ekosistemler topluluğudur.Çünkü canlıların ekolojik istekleri farklıdır.Ekolojik istek ise önce sıcaklığa sonrada besine bağlıdır.Sıcaklık olmayınca besin yakılamıyor ve de fizyolojik açlık yaşanıyor. 5) Canlıların ortamlarına olan adaptasyonu:Bu iki şekilde yapılmakatadır.canlı önce kendi morfolojisini değiştirir sonra da fizyolojik değişiklik yapar.Morfolojik olarak ilk yaptığı iş kutikulanın kalınlığını değiştirmek;sonra ise mum tabakası,stoma sayısı,tüy,su varsa suyu depolama ve en son olarak da en büyük töleransını kullanarak boyda kısaltma yapar.Buraya kadar olanları otsu bitkiler içindir.Odunsu bitkiler boy kısalması yerine hücre öz suyunu soğuksa katılaştırır,sıcaksa iyi akışkan hale getirir. 6) Ortamın doğal koşullarına göre canlıların davranışı,uyumsal sorunlar ve yetenekleri:Bu konu için atmosfer olayları çok önem taşımaktadır.Hava olaylarına karşı canlılar kendilerini nasıl ayarlayacağını bilmektedir.Bunu nedeni ise havdaki manyetik dalgalanmalardır. 7) Ekosistemlerdeki populasyonların dinamiği:ileriye doğru gelişimler daima dinanizmdir.Populasyonlar ise ekosistemlerin parçalarıdır. 8) Biyosferdeki ekosistemler ve genel biyosönoz(Flora + Fauna):Biyosferi insan olarak kabul edersek ekosistemler insanın hücreleri olarak tanımlayabiliriz.Bir bölgede yaşan bitki türlerinin sayısına flora,bu türlerden birinde yaşayan hayvan türlerinin sayısına ise fauna ismi verilmektedir. 9) Doğanın genel madde ve enerji alış verişinin durumu: Doğanın her zaman aynı enerjiyi verebilmesi için canlılarla iyi beslenmelidir.İklimdeki olumsuzluklar canlıları öldürmekte ve de bunlar doğanın beslenmesi için gerekli kimyasalları içermektedir. 10) Doğada ortaya çıkan çevre sorunları ve nedenleri: Sorunu insan yaratır. Gibi önemli konular ekolojinin araştırma alnına dahildir.Çünkü ekoloji mevcudiyet koşullarını bilimi olup,olayları nedenleriyle ortaya koyar. Yukarıdaki biyosfer basamaklarını diğer bilim dalarlıda araştırır.Çünkü her basamakta birden çok bilim dalını ilgilendiren konular vardır.Ancak her bilim bu faktörleri kendi yönünden ele alır.Örneğin yaşam ortamında en önemli etken güneş ve ışıktır.Çünkü genel bir etkiye sahiptir.Böylece her şeyden önce ortamın ısınmasına bağlıdır.Oysa aynı ışık bitki fizyolojisi için ayrı,fizik için ayrı,hayvanlar için ayrı bir anlama gelmektedir. Ekolojide temel birim ekosistemdir.Ekosistemler dünyada tüm canlıları ve cansızları içerdiğine göre ekoloji diğer bilimleri de kapsar.Ama önce onlara yön verir sonrada faydalanır(canlıların rejenere olmasının doğadaki karşılığı tampondur).Böylece başta biyoloji olmak üzere tüm bilimlerin felsefesi olan ekoloji tam bir ahlak bilimidir.Çünkü ekonomiyle aynı kökten gelen eko- kelimesi canlılar arasındaki olumlu ilişkilerin sınırlarını da çizmektedir.Ekolojiyi ilk tanımlayan Alman Biyolog Ernst Haeckel ekolojiyi doğanın ekonomisini inceleyen bilim dalı olarak tanımlamıştır.Çünkü ekosistem dengesi hiç bozulmayan bir dengedir.Ancak tüm ortamlarda dengenin bozulmaması için ekonomik kullanılması zorunludur.Yani doğru davranış için gerekli icraat olan yaşadığı ortamda ürettiği kadar tüketmek ve ürettiğinden fazla ürememek şeklindeki ahlakî davranışa riayet etmelidir.Böyle olduğunda populasyonun sosyobiyolojik kavramınada ters düşmez. Görülüyor ki ekolojik araştırmaların ağırlığını biyolojik veriler oluşturuyor.Çünkü ekosistemler canlılar tarafından kurulmuş denge ortamıdır.Buradaki canlı-çevre ilişkilerine ekonomi en önemli faktör durumundadır.Ekonomi üretimin düşmesi ve mevcudu kullanmasındaki hızın aynı paralelliği göstermemesi üzerine gündeme gelmiştir.Bir ekolog ekolojiyi “toplumlar bilimi veya yaşam birlikleri bilimi,, şeklinde tanımlarken bir başkası “hayvanların ekonomisi ve sosyolojisi ile uğraşan bilimsel doğa tarihi,, şeklinde tanımlar.Aslında ekolojide ekonominin ilk defa gündeme gelmesine neden olan insan değildir.Bazen diğer canlılarında ekosistemi israf ettikleri dönemlerde vardır.Özellikle birkaç yıl optimum süren iklim koşulları,bilhassa yağışlar birden bire kuraklığa geçince optimum dönemde olan nüfusa yeterli besini sağlayamadığı zaman sıkıntı görülür.Ancak bu durum hayvanların yanlış düşünmelerinden değil düşünememelerinden kaynaklanır.Asıl sıkıntı insan faktöründen kaynaklanan kıtlık döneminden kaynaklanır.Çünkü insanın ekosistemi tahribi hem sürekli hem de besin-birey ilişkisini doğanın düzenlemesine izin vermemektedir.Bu da doğanın tampon gücünün çalışmasına asla müsaade etmemektedir. Ekosistemlerin boyutları verimine(prodüktivite),verimine önce içerdiği canlı türüne,dolayısıyla sayısına göre değişirken;bunlarda ortamın ekolojik koşullarına göre değişir.Çünkü ekosistemdeki madde akışı ve enerji döngüsünü sağlayan bunlardır.Görülüyor ki kaynaklardaki artış ve fiziksel çevreye endekslidir.Ancak insan hariç diğer canlılardaki kontrolsüz nüfus artışı uzun dönemde ekosisteme daima yararlıdır.Çünkü talep-arz dengesi bozulunca sitemdeki enerji döngüsü yeterli olmaz.Bu kez zayıflar selekte olarak organik madde şeklinde fiziksel ortama tekrar iade edilir.Böylece ekosistemde besin kadar birey dengesinin yeniden kurulmasına olanak sağladığı için en önemli katkıyı yapmış sayılır.Bu döngü habitatın daha da zenginleşerek ileride barınacak nüfusun artmasına neden olacaktır.İşte habitatların kazanç ve kaybının(girdi-çıktı) oranına göre ortamlara yerleşen canlılar bu ortamların genel faktörlerinin müşterek etkisi altında yaşam düzeni kurarlar.Ancak yaşam düzeninin kurulması ve devamlılığı;ortam koşullarının her hangi bir canlının isteğine uygun olmasına,değişen koşullara karşı değişebilmesine ve diğer canlılarla uyumlu ilişkisine bağlıdır.Bir ekosistemin ya da her hangi bir ortamın bitki ve hayvanlar arasındaki tüm ilişkile habitat,niş ve besin zinciri paylaşımı olup belli bir sürede mutlaka dengeye ulaşacaktır.Denge ve dengeyi kuran tek etken rekabettir.Habitat,ekolojik koşulları ve canlı sistemi Tüm faktörleri ile kendine özel olan sınırları belli ekosistemlerdir(Habitat geneldir).Her ekosistemin bir büyüklüğü vardır.Büyüklüğün sınırlarını tayin eden önce fiziksel ortamın ekolojik koşulları sonrada canlıların ekolojik istekleridir.Böylece besin zincirinin ilk halkaları olan bitkiler ortama yerleşir.Buradaki tüm yerleşmiş canlılar buranın tüm ekolojik koşullarını kaybetmiş ve her biri kendine bir yer edinmiştir. İşte beslenme,üreme ve barınma gibi biyolojik ihtiyaçların karşılandığı,bu sınırları belli olan ortamdaki özel yerine niş denir.Buna göre aynı ekolojik koşulları taşıyan sınırları belli olan bu ekosisteme habitat bitkilerin kökleriyle bağlandığı habitat kısmı ve hayvanların yapmış olduğu yuvalar niştir.Niş edinme tüm canlılarda öncelikle habitattın iklim koşulları sonrada bitkilerde kök ve ışık rekabetiyle,hayvanlarda da av sayısına göre belirlenir.Eğer bu düzen kurulmazsa ortam ekosistem olmaz.Ama yinede bir çevredir.Çünkü çevrenin enerjiye ihtiyacı olmayabilir.Fakat ekosistem çarkı enerji ile dönen bir sistem çarkıdır.O halde her ekosistem bir çevre,her çevre bir ekosistem değildir. Ekosistemlerle çevre daima etkileşim halinde olmasına rağmen,genelde ekosistemler çevrenin etkisi altındadır(Çevreyi iklim etkiler-Dünya’nın %20’si ekosistemdir).Ayrıca gezegenler arasındaki çekim kuvvetleri de önemli derecede manyetik enerji oluşturarak çeşitli tıbbî ekolojik olaylara yol açmaktadır.Çünkü bu olaylar hava yoluyla meydana geldiği için bazen ekosistemleri de etkisi altına alan belli ölçülerde insan dahil bütün canlılar üzerinde fizyolojik,anatomik,morfolojik ve patolojik gibi önemli derecede biyolojik baskılar yaratmaktadır.Örneğin,muhtelif özellikteki hava kütlelerinin etkisiyle zihni durgunluk(manyetik dalgalanma),atalet(yorgunluk) hissi,migren,el ve ayak şişmeleri,kapillar rezistans değişimi,sıkıntı ve sinirlilik halleri,yara yeri sızlaması,infaktüs vakalarının frekansı,romatizmal hastalıkların şiddeti,astım,aşırı güneşe ve neme doymuş havanın etkisi,fön karakterindeki rüzgarların yol açtığı ruhi bunalım,belli meteorolojik koşullara göre oluşan sisin etkisi oldukça büyüktür.Yine hızla yükselmenin ve alçalmanın önemli fizyolojik sonuçları vardır. Büyük bölümü iklimsel olmak üzere atmosferin bu değişken olaylarına karşı canlılarda da uyum yönünde çeşitli değişmeler olur.Uyumsal değişiklerin tümü metabolizma yoluyla gerçekleşir. Örneğin,bitkilerde hücre öz suyu yoğunluğu tamamen başta sıcaklık olmak üzere iklime bağlıdır(Soğuk bölgelerde hücre öz suyu yoğun korteks ince,sıcak bitkilerde tam tersi)İletim borularının faaliyeti yapraklanma ve çiçeklenme döneminin gecikmelerinin ve dökülme zamanındaki değişiklikler(İklimdeki dalgalanmalar),renk maddesindeki düzensizlik ve parazitlere karşı dirençsizlik gibi önemli biyolojik yetersizlikler olmaktadır.Çünkü bunlar tamamen ekolojik tölerans sınırları içerisinde meydana geldiği için metabolik taviz bu olaylara karşı dezavantajdır(Ama bu tavizi verecek metabolizma var ya da yoktur.Tepki türe göre değişir).Bitkiler düşük metabolizma ile uyumlu olacak şekilde uzun süreli ekstrem koşullarda yaprakların azalması(odunsu bitkilerde tomurcuk var otsularda yok), küçülmesi (Uzun dönemde tomurcuklardaki besinlerin azalması),üzerilerinin kütinleşmesi ve tüylenmesi,köklerin mantarla kaplanması gibi olaylar morfolojik düzenlemeye gidebilirler.Hayvanlar ise yuva yapma,yuvalarının yerini değiştirme,beslenme ritmini değiştirme değişik davranışlar olarak gösterilebilir.Ancak hava olaylarını durumuna göre bazı kuşlarda, özellikle yağmur ve doludan önce telaşlı uçma veya yuvalarına zamansız gelme gibi iç güdüsel davranışlar gözlemlenir. NOT Ekosistemler çevrenin ve iklim olaylarını baskısı altındadır.İklim ve su canlıları direkt olarak etkilemektedir.—Bitki yapraklarını oluşturduğu zaman kısa zamanlı adaptasyonu kloroplastları çoğaltır ya da azaltır. Bilhassa belli meteorolojik olaylardan bitkilerin etkilemesi daha belirgindir.Bitkilerin habitat ve nişi sabittir.Dünyada bütün canlılar ekolojik tolerans kullanır.Toleransın amacı aynı olmasına rağmen yeri,zamanı ve biyolojik yönü farklı olabilir.Fakat her durumda metabolik taviz olduğuna göre her canlının da bu doğrultuda habitat ve niş seçme zorunluluğu vardır.Örneğin toleransı en düşük olan endemikler (rekabeti yüksek) olup belli mikroklimaların dışarısına çıkamazlar.Bu durum belki de bitki ve hayvanlardan çok mikrobiyal canlılarda görülür.Örneğin Vibrio cholerae virüsü sadece Hindistan’da 500 m rakımın altıdaki sıcak ve yağışlı bataklıklarda bulunur.Yine kuduz virüsü ve burusellanın Kuzeydoğu Anadolu Bölgesinde bulunmayışı gibi ekolojik koşulların değişimini tolare edemeyecek ortamlarda yayılamazlar.

http://www.biyologlar.com/ekoloji-1

Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

GİBERELLİNLER : Bitki Boyu Düzenleyicileri

Giberellinler Japonya’da 2. Dünya Savaşı yıllarında keşfedilmiştir, fakat bu sırada batı ile ilişkiler kopuk olduğundan batı bu keşfi 1950’lerde öğrenmiştir. Yüzyıl önce, Asya‟daki çiftçiler çeltik tarlalarındaki pirinç fidelerinin aşırı ölçüde boylandıklarını ve ince kaldıklarını gözlediler. Bu durumda, fideler olgunlaşmadan ve çiçek oluşturmadan önce, ince ve cılız oluyor ve bu sebepten dik duramayıp erkenden ölüyordu veya verim düşüyordu. Japon bitki pataloğu Kurusowa, 1926‟da, sersem fide hastalığı denen bu hastalığa Ascomycetes türü olan Gibberella fujikuroi isimli mantarın sebep olduğunu buldu. 1930‟lu yıllara kadar, fungusun giberellin adı verilen (Gibberella fujikuroi türüne itafen) bir kimyasal salgılayarak pirinç gövdelerinin aşırı uzamasına neden olduğunu buldular. Araştırmacılar, 1950‟lerde bitkilerinde giberellinleri sentezlediklerini keşfettiler. Her ne kadar sayıları her bir bitki türünde çok daha az ise de, bilim adamları son 40 yılda bitkilerde doğal olarak sentezlenen 100‟den fazla giberellin bulmuşlardır. Bunlar GA1,GA2,GA3…. şeklinde isimlendirlirler. En yaygın olanı ise GA3 yani giberellik asit (giberellan çekirdek)‟tir. Diğer giberellinler bu temel yapıya bağlı çeşitli yan gruplara sahiptir. Giberellin Biyosentezi ve Metabolizması Giberellin sentezi, bitkide asetil-KoA‟nın asetil biriminden başlar. Solunumdan kaynaklanan mevalonik asit yoluyla birkaç reaksiyondan sonra giberellin sentezlenir. Giberellinler diterpenler grubundadır. Giberellin sentezinin kaurenik aside kadar sitopolazmada, ancak giberellinlerin birbirine dönüşümünün kloroplastlarda olduğu bilinmektedir. 20 karbonlu kauren tüm gibberellinlerin çıkış noktasıdır. Piyasada giberellin antagonisti (büyüme engelleyici) olarak satılan Fosfon-D, Amo-1618, CCC gibi sentetik engelleyiciler giberellin sentezinin belirli reaksiyonlarını inhibe ederler. Bitkide genç yapraklarda ve daha çok tohum embriyosunda sentezlenirler. Buralardan bitkinin diğer kısımlarına taşınırlar. Çimlenen tohumlarda floem vasıtasıyla fideye taşınan giberellinlerin, genç yapraklardan diğer kısımlara hangi yolla taşındığı çelişkilidr. Daha çok floem dışıyollarla korteks ve öz parankimasından difüzyonla taşındığı düşünülmektedir. Dolayısıyla giberellinlerin taşınımı oksin taşınımı gibi polar olmayıp, olasılıkla, her yönde aynı hızdadır. Giberellinler sentezlendikten sonra çok yavaş parçalanırlar. Giberellinleri parçalayan enzimler bilinmemektedir. Giberellinler şekerlerle veya proteinlerle birleşerek inaktive olurlar. Ayrıca aktif olan giberllinler daha az aktif giberellinlere kolayca dönüşebilmektedir. Örneğin, GA4‟ün daha az aktif GA34‟e dönüşümü çok sık gerçekleşir. Giberellinlerin Fizyolojik Etkileri ve Pratik Değeri Gövde Uzaması Giberellinler esas olarak kökler ve genç yapraklarda üretilir. Giberellinler hem yapraklarda hem de gövdelerde büyümeyi teşvik etmekle birlikte, kök büyümesi üzerinde çok az etkiye sahiptir. Giberellinler, gövdelerde hücre uzamasını ve hücre bölünmesini uyarır. Oksinler gibi giberellinler de hücre gevşemesine neden olurlar. Ancak bunu çeperi asitleştirerek yapmazlar. Bir varsayıma göre, giberellinler hücre çeperi gevşetici enzimleri uyarmaktadır. Bu enzimler hücre çeperine ekspansinlerin girişini kolaylaştırmaktadır. Böylece, büyüyen bir gövdede uzamayı artırmak için oksin ve sitokininle birlikte hareket etmektedir. Bu süreçte, oksin hücre çeperini asitleştirmekte ve ekspansinleri aktifleştirmekte; giberellinler ise ekspansinlerin girişini kolaylaştırmaktadır. Cüce bitkilere (mutantlar) giberellin uygulanarak, giberellinlerin gövde uzamasına artırıcı etkisi ortaya konmuştur. Örneğin, bazı cüce bezelye bitkilerine (Mendel‟in çalıştığı türler dahil) giberellin uygulanırsa, çoğunlukla yanıt alınmaz. Çünkü, bu bitkiler önceden optimum dozda hormon üretmişlerdir. Çiçek sapının hızla büyümesi giberellinin teşvik ettiği gövde uzaması ile ilgili en dikkat çekici durumdur. Lahana benzeri bitkiler vejetatif evrede rozet formundadırlar: yani çok kısa internodyumlu oluşları nedeniyle toprağa çok yakındırlar. Bitki üreme evresine geçince; giberellinlerin artması internodyum uzamasını hızla artırır. Bunun sonucunda gövde uçlarındaki çiçek tomurcuklarının boyu uzar. Meyve Büyümesi Pek çok bitkide, meyve bağlanması için hem oksin hem de giberellinlerin bulunması gerekir. Giberellinlerin en önemli ticari uygulaması, Thompson isimli çekirdeksiz isimlere püskürtülmesidir. Hormon, tüketicilerin istediği biçimde, üzüm tanelerinin büyümesini ve salkımların internodyumlarının uzamasını sağlar. Taneler arasında hava dolaşımını artırdığından, diğer meyvelerin ve diğer mikroorganizmaların hastalık bulaştırıcı etkisi de azalır. Çimlenme Tohum embriyoları, zengin bir giberellin kaynağıdır. Suya batırıldıktan sonra, embriyodan serbest bırakılan giberellinler dormansinin kırılması ve çimlenmenin başlaması için tohuma sinyal gönderir. Çimlenme için ışık yada düşük sıcaklık gibi özel ortam koşullarına gereksinim duyan bazı tohumlara giberellin uygulanması durumunda dormansi kırılır. Giberellinler depo besin elementlerini mobilize eden α – amilaz gibi sindirici enzimlerin sentezini teşvik ederek tahıl fidelerinin büyümesini destekler. Ayrıca giberellinler çiçeklenme hormonu olarak bilinir. Bir çok bitkide çiçeklenmeyi teşvik eder. Gerek fotoperyodizmle gerekse vernalizasyonla çiçek açmada giberellinler rol alırlar. ABSİSİK ASİT : Stres Hormonu Absisik asit (ABA) kimyasal grup olarak seskuiterpenler grubundan bir maddedir. ABA‟nın giberellinlerle ortak noktası her ikisinin de ana grup olarak terpenlerden olmalarıdır. ABA bitkiler tarafından sentezlenen en önemli engelleyici hormondur. Tomurcuk dormansisinden önce ortaya çıkan kimyasal değişiklikleri çalışan bir araştırma grubu ve yaprak absisyonundan (son baharda yaprak dökülmesi) önce ortaya çıkan kimyasal değişiklikleri çalışan bir diğer ekip, 1960‟da, aynı bileşiği yani absisik asiti (ABA) izole etmiştir. Aynı yıllarda başka araştırma grupları akça ağaç ve baklada da ABA‟yı izole ettiler. Daha sonrayapılan çalışmalarda ABA‟nın ciğer otları, algler, bakteriler ve mantarlar dışında genel olarak bitki aleminde mevcut olduğu tespit edildi. ABA bulunmayan bitkilerde başka engelleyicilerin bulunduğu düşünülmektedir. Diğer açıdan işin garip tarafı ise, şu anda, ABA‟nın ne tomurcuk dormansisinde ne de yaprak absisyonunda önemli bir rol oynamadığı düşünülmektedir; fakat ABA bir çok etkiye sahip önemli bir bitki hormonudur. Şu ana değin incelediğimiz oksin, sitokinin ve giberellinlerin aksine, ABA büyümeyi yavaşlatıcı etki gösterir. Genel olarak büyüme hormonlarının etkilerine zıt etki yapar. Bir yada daha fazla büyüme hormonuna ABA oranı, fizyolojik etki gösterecek sonucu belirler. ABA Biyosentezi ve Metabolizması ABA 15 karbonlu bir seskuiperten olup kloroplastlarda ve diğer plastidlerde mevalonik asit yoluyla sentezlenir. Kaynaklandığı öncül maddenin bir ksantofil karotenoidi olan vialoksantin‟in fotokimyasal veya enzimatik yıkımıyla başladığı belirtilmektedir. (bu yol izopentil difosfat (IPP) la başlar ve C40 ksantofili olan vialoksantinle devam eder). Bu yıkımın ilk ürünü ksantoksin‟dir ki bununda bir engelleyici madde olduğu ve fototropizmada rol oynadığı ileri sürülmektedir. ABA‟nın inaktivasyonu ya karboksil grubuna bir glukoz bağlanmasıyla yada faseik asit ve dihidro fasetik asit‟e oksitlenmesiyle olmaktadır. ABA‟nın bitkide başlıca sentez yerleri yaşlı yapraklar, gövde ve yeşil meyvalardır. Tohumlarda da sentezlendiği bazı bitkilerde ise tohumlara başka yerlerden taşındığı düşünülmektedir. ABA’nın taşınımı giberellin taşınımına benzer. Hem ksilemden hem floemden taşındığı gibi parankima hücrelerinden difüzyonla da her yönde taşınabilir. Kuraklıkta, tuzlulukta, mineral eksikliği gibi çeşitli stres şartlarında yaprakta ABA sentezi artar. ABA‟nın bu ekstrem koşullarda bitkiye dayanıklılık sağladığı düşünülmektedir. Kuraklık stresinde ABA‟nın stomaların kapanmasına yol açtığı ve böylece transpirasyonla su kaybınıo azalttığı bilinmektedir. ABA’nın Fizyolojik Etkileri ve Pratik Değeri Tohum Dormansisi Tohum dormansisi, yaşamın sürmesinde büyük önem taşır; çünkü dormansi tohumun optimum ışık, sıcaklık ve nemlilik koşullarında çimlenmesini sağlar. Sonbaharda çevreye yayılan bir tohumun, kış koşullarında ölmesini engelleyecek şekilde, hızla çimlenmesini önleyen nedir? Bu tür tohumların ilkbaharda çimlenmesini hangi mekanizmalar sağlar? Hatta, meyvenin nemli iç ortamında, karanlıkta, tohumların çimlenmesini engelleyen nedir? Bu soruların yanıtı ABA‟dır. Tohum olgunlaşması sırasında ABA düzeyi, 100 kat artabilir. Olgunlaşan tohumlardaki yüksek ABA düzeyi, çimlenmeyi engeller ve özel proteinlerin üretimini teşvik eder. Bu proteinler, olgunlaşmayla birlikte oluşan aşırı su kaybına karşı tohumun ayakta kalmasına yardım eder. ABA, bazı yollarla yok edilir yada etkisizleştirilirse, tohumlar çimlenir. Bazı çöl bitkilerinin tohumlarında dormansi, sadece şiddetli yağmurların ABA‟yı tohumdan yıkayarak uzaklaştırmasıyla kırılır. Diğer tohumlar ise ABA‟nın etkisizleştirilmesi için ışığa yada uzun süren düşük sıcaklığa gereksinim duyar. Çoğunlukla ABA‟nın giberelline oranı, tohumun uyku halinde kalıp kalmayacağını yada çimlenip çimlenmeyeceğini belirler; çimlenme için suya daldırılmış tohumlara ABA ilave edilirse, tohumlar yeniden dormansi koşullarına döner. Tohumlar henüz koçan içindeyken çimlenen bir mısır mutantı, işlevsel bir transkripsiyon faktöründen yoksundur; bu transkripsiyon faktörü belirli genlerin ifade edilmesini sağlamak için ABA‟ya gereksinim duyar. Kuraklık Stresi ABA, bitkilerin kuraklığa karşı koymasını sağlayan asıl iç sinyaldir. Bir bitki solmaya başlayınca yapraklarda ABA birikerek stomaların hızla kapanmasını sağlar. Bunun sonucu transpirasyon (buharlaşmayla su kaybedilmesi) azalır ve su kaybı önlenir. ABA bekçi hücrelerinin (stomalarda bekçi ve arkadaş hücreleri ile birlikte bir por bulunur) plazma zarındaki dışa doğru yönelmiş potasyum (K+) kanallarının açılmasını artırır. Bunu, kalsiyum gibi sekonder mesajcıları etkileyerek yapar. Potasyum kanallarının açılmasıyla, bekçi hücrelerinden büyük miktarda potasyum çıkışı olur. Suyun ozmotik olarak kaybı, bekçi hücrelerinin turgorunun azalmasına ve stoma porunun küçülmesine neden olur. Bazı durumlarda su kıtlığı kök sistemini gövde sisteminden daha önce baskı latına alır. Köklerden yapraklara taşınan ABA, erken uyarı sistemi olarak iş görür. Solgunluğa özellikle duyarlı mutantlar genelde ABA üretemezler. Ayrıca, ABA‟nın hücrede RNA ve protein sentezini engelleyici etkisininde olabileceğine dair deneysel veriler vardır. ABA‟nın pratik kullanımı çok nadirdir. Tahıllarda dane verimini artırmak ve yatmaya karşı mukavemet kazandırmak için, bazı durumlarda da sormansi süresini uzatmak ve çeşitli stres şartlarına karşı bitkiye dayanıklılık sağlamak için kullanılır. ABA pahalı ve kolayca katabolize olduğu için bunun yerine fosfon-D kullanılmaktadır. ETİLEN : Gaz Hormon Kömür gazının bahçe ışıklandırılmasında kullanıldığı 19. yüzyılda, gaz lambalarından çıkan aydınlatma gazı sızıntısı çevredeki ağaçların yapraklarını erkenden dökmelerine neden olmuştur. Dimitri Neljubow isimli bir Rus bilim adamı, 1901‟de aydınlatma gazındaki aktif faktörün etilen gazı (C2H4) olduğunu göstermiştir. Ayrıca etilenin bitkiler tarafından sentezlenen (üretilen) bir hormon olduğu, ve bununla birlikte, etilen miktarının ölçümünü basitleştiren gaz kromatografisi tekniği geliştirilince yaptığı iş önemli ölçüde kabul görmüştür. Bitkiler, kuraklık, su baskını, mekanik basınç, zarar ve enfeksiyon gibi streslere yanıt olarak etilen üretir. Aynı zamanda meyve olgunlaşması ve programlanmış hücre ölümü sırasında etilen üretilir. Ayrıca dıştan yüksek konsantrasyonlarda oksin uygulanmasından sonrada etilen üretilmektedir. Dikkat çekici olan bir diğer noktada; daha önce kök uzamasının engellenmesi gibi, oksinle ilişkilendirlen bir çok biyolojik etkinin, şu an oksinin uyardığı etilen üretimine bağlı olduğudur. Etilen Biyosentezi ve Metabolizması 1970‟li yıllarda etilen sentezinin bitkide metionin amino asitinden kaynaklandığı belirlendi. Metionin‟den amino siklopropan karboksilik asit (ACC), ondanda dekarboksilasyon ve deaminasyonla etilen oluşmaktadır. Etilen sentezinin ACC üzerinden olduğunu, avokado meyvesinin hasatından sonra olgunlaşmasında meyvede ACC ve etilen konsantrasyonlarının pozitif korelasyonlu değişim göstermeleri doğrulamıştır. Amino etoksivinil glisin (AVG) ve aminooksi asetik asit (AOA) bileşiklerinin etilen sentezini inhibe ettikleri bilinmektedir. CO2 gazıda yüksek konsantrasyonlarda etilen üzerinde inhibisyon gösterir. Depolanırken olgunlaşması istenmeyen meyvelere CO2 gazının inhibisyon etkisi uygulanır. Gümüş iyonları ve bazı maddelere etilenin bağlanmasıyla, etilen sentezi inhibe edilir. Etilenin Fizyolojik Etkileri ve Pratik Değeri Mekanik Strese verilen Üçlü Yanıt: Bir Sinyal İletim Yolunun İncelenmesinde Mutantların Kullanılması Kaya gibi hareketsiz bir nesnenin altında kalmış ve topraktan yukarıya doğru yükselmeye çalışan bir bezelye fidesini düşünelim. Gövde üstündeki engeli ittikçe, narin yapılı uç bölge mekanik strese maruz kalır,. Bu, fideyi etilen üretmeye teşvik eder. Etilen ise fideyi üçlü yanıt olarak adlandırılan bir büyüme manevrası yapmaya teşvik eder. Bu manevra fidenin engeli aşmasını sağlar. Şekil 19‟da görebileceğiniz bu yanıt gövde uzamasının yavaşlaması, gövdenin kalınlaşması (dayanıklılığı artırır) ve gövdenin yatay olarak büyümesine neden olan bir eğrilme olmak üzere üç kısımdan oluşur. Gövde büyümeye devam ettikçe ucu nazikçe yukarıya dokunur. Eğer bu yoklama sonucu yukarda katı bir cisim olduğunu saptarsa yeniden etilen üretir ve gövde yatay olarak büyümeye devam eder. Bununla birlikte, eğer fidenin uç kısmı katı bir cisim algılamazsa etilen üretimi azalır ve normal olarak yukarı doğru büyümesini sürdürür. Gövdenin yatay olarak büyümesini fiziksel engelden ziyade etilen teşvik eder; ayrıca, fiziksel bir engelle karşılaşmaksızın serbestçe büyüyen fidelere dıştan etilen uygulanması, üçlü yanıttın oluşmasına neden olmaktadır (Şekil 19). Araştırmacılar bu yanıtta yer alan sinyal iletim yollarını araştırmak için anormal üçlü yanıt veren Arabidopsis mutantları üzerinde çalışmışlardır. Etilene duyarsız (ein) mutantlara etilen uygulanınca bu bitkiler üçlü yanıt verememişlerdir. İşlevsel bir etilen reseptörüne sahip olmadıklarından bazı ein mutant tipleri, etilene duyarsızdırlar. Diğer mutantlar ise, toprak dışında, fiziksel bir engelin bulunmadığı hava ortamında bile üçlü yanıt vermişlerdir. Bu tip mutantların bazılarında düzenleyici bir bozukluk bulunur. Bu bozukluk böyle mutantların 20 kat daha fazla etilen üretmelerine neden olur. Bu tür aşırı etilen üreten (eto) mutantlarda fenotip, fidelere etilen sentezi inhibitörleri uygulanmasıyla iyileştirilebilir. Üçüncü tip mutantlar hava ortamında bile üçlü yanıt verirler; ancak, üçlü yanıt (ctr) mutantları olarak adlandırılan bu mutantlar etilen sentezi inhibitörlerine yanıt vermezler. Bu durumda, etilen mevcut olmasa bile etilen sinyal yolu işlevini sürdürür. ctr mutantlarından etkilenen bir gen, bir protein kinazı kodlamak için açılır. Bu mutasyonun etilene verilen yanıtı aktifleştirmesi, yabani-tip allelin normal kinaz ürününün, etilen sinyal iletim işleminin negatif bir düzenleyicisi olduğunu düşündürmektedir. Yabani tip bitkilerde bu yolun nasıl çalıştığına ilişkin bir varsayım aşağıda verilmiştir: Etilenin etilen reseptörüne bağlanması kinazı aktif hale getirir. Bu negatif düzenleyicinin inaktif hale gelmesi üçlü yanıt için gerekli proteinlerin sentezlenmesini sağlar. Şekilde verildiği gibi; bu yolda iki membran proteini, bir engelleyici protein (CTR1), bir de transkripsiyon faktörü olan protein (EIN3) vardır: (eğer etilen varsa) ilki etilen reseptörü (ETR1) ve ikincisi bir kanal proteini olan (EIN2) dir. EIN2 bir sekonder mesajcıya etki eder ve buda bir transkripsiyon faktörü olan EIN3‟ü aktive eder. EIN3 etilen etkisini üretmek üzere ifade olacak genleri harekete geçirir. Eğer etilen yoksa; etilen reseptörü olan ETR1 inaktif kalır ve CTR1‟i inaktif edemez. Aktif kalan CTR1, membran proteini olan EIN2‟yi inaktif tutar. EIN2 nin aktivitesi olmayınca transkripsiyon faktörü olan EIN3 inaktif kalır ve nukleusta herhangi bir etki gösteremez. Apoptosis: Programlanmış Hücre Ölümü Bir yaprağın sonbaharda döküldüğünü yada tek yıllık bir bitkinin çiçek verdikten sonra öldüğünü düşünün. Yada içerdiği canlı maddenin parçalanması sonucu, içi boşalan bir trakenin farklılaşmasındaki son basamağı düşünün. Bu olayların tümü, belirli hücrelerin veya organların yada tüm bitkinin programlanmış ölümünü kapsar. Belirli bir zamanda ölmek için kalıtsal olarak programlanmış hücreler, organlar ve bitkiler, basitçe hücresel mekanizmayı kapatıp ölümü beklemez. Bunun yerine apoptosis olarak adlandırılan programlanmış hücre ölümünü yaparlar. Bu, bir hücrenin yaşamında en yoğun olduğu süreçlerden biridir. Apoptosis esnasında yeni genlerin ifade olmasına gerek duyulur. Bu sırada oluşan yeni enzimler, klorofil, DNA, RNA, proteinler ve zar lipitleri dahil pek çok kimyasal bileşeni parçalar. Bitki parçalanma ürünlerini kurtarabilir. Hücrelerin, organların yada tüm bitkinin apoptosisi sırasında etilen patlaması yaşanır. Yaprak Absisyonu Her sonbaharda yaprakların dökülmesi bir adaptasyondur. Kökten kışın topraktan su absorblayamadığından, bu adaptasyon kış aylarında yaprak döken ağaçların kurumasını önler. Yapraklar dökülmeden önce, ölmekte olan yapraklardan pek çok önemli element geri kazanılarak gövdenin parankima hücrelerinde birikir. Bu besin elementleri, bir sonraki bahar ayında gelişmekte olan yapraklar tarafından yeniden kullanılır. Sonbaharda tekrar üretilen kırmızı pigmentler ve yaprakta önceden bulunan, ancak sonbaharda koyu yeşil klorofilin parçalanmasıyla görünür hale gelen sarı ve turuncu karoteneyidler, yapraklara sonbahar rengini verir. Bir sonbahar yaprağı dökülünce, petiyolün kaidesinin yakınında bir absisyon tabakası oluşur. Daha sonra yaprak buradan koparak yere düşer. Absisyon tabakasındaki küçük parankima hücreleri çok ince çeperli olup, iletim demetlerinin çevresinde lifler bulunmaz. Hücre çeperlerindeki polisakkaritler daha da zayıflar. Sonuçta, rüzgarın da etkisi ile yapraktaki ağırlık absisyon tabakasının kopmasına neden olur. Hatta yaprak dökülmeden önce, absisyon tabakasının dala bakan tarafında mantar tabakası bir iz oluşturur. Bu iz bitkiyi patojenlere karşı korur Absisyonu, etilen ve oksin dengesindeki değişiklik kontrol eder. Yaşlanan bir yaprak, giderek daha az oksin üretir. Bu, absisyon tabakasındaki hücrelerin etilene karşı duyarlılıklarını artırmaktadır. Etilenin absisyon tabakası üzerindeki etkisi arttıkça, selülozu ve hücre çeperlerinin diğer bileşenlerini parçalayan enzimler üretilmektedir. Meyve Olgunlaşması Meyveler, çiçekli bitkilerde tohumların yayılmasına yardım eder. Ekşi, sert ve yeşil olan olgunlaşmamış meyveler, tohum olgunlaşması esnasında yenilebilir hale gelir. Meyvede etilen üretiminin patlaması, enzimatik olarak bu olgunlaşmayı tetikler. Hücre çeperi bileşenlerinin enzimatik olarak parçalanması ve nişastaların ile asitlerin şekerlere dönüşümü meyveyi tatlandırır. Yeni kokuların ve renklerin üretilmesi, olgunlaşan meyvenin, bu tohumları yiyen ve dağıtan hayvanları cezp etmesine yardım eder. Olgunlaşma sırasında bir zincir reaksiyonu ortaya çıkar; etilen olgunlaşmayı tetikler, olgunlaşmada etilen üretiminin artmasına neden olur. Bu, fizyolojide pozitif geri beslenmenin nadir örneklerinden biridir. Sonuçta etilen üretiminde dev bir patlama meydana gelir. Hatta etilen bir gaz olduğundan, olgunlaşma sinyali bir meyveden diğerine geçer; geçerken de çürük bir elma bir kasa elmayı çürütebilir. Eğer yeşil bir meyve satın alırsanız, meyveleri plastik bir torbada tutarak olgunlaşmayı hızlandırabilirsiniz. Çünkü plastik torba içinde etilen gazı birikir. Ticari amaçlı olarak, meyvelerin çoğu etilen gazı düzeyleri artırılmış dev depolarda olgunlaştırılır. Diğer durumlarda ise doğal etilenin sebep olduğu olgunlaşmayı geciktirmek için önlem alınır. Örneğin, elmalar karbondioksit içeren depolarda tutulur. Hava sirkülasyonu etilen birikimini önler ve yeni etilen sentezi engellenir. Sonbaharda toplanmış ve bu şekilde depolanmış elmalar, yaz aylarında bile satışa sunulabilir. Etilenin, meyvelerin hasat sonrası fizyolojilerindeki önemi düşünüldüğünde, etilen sinyal iletim yolları ile ilgili genetik mühendisliğin potansiyel olarak ticari önemi büyüktür. Örneğin, moleküler biyologlar isteğe bağlı olarak olgunlaşan domates meyveleri üretmiştir. Bunu, etilen sentezinde gerekli genlerden birinin transkripsiyonunu durduran bir antisens RNA yerleştirerek yapmışlardır. Yeşil haldeyken toplanan bu tür meyveler, etilen gazı verilmediği taktirde olgunlaşmayacaktır. Bu tür yöntemlerin geliştirilmesi meyve ve sebzelerin çürümesini önleyecektir. Bu sorun, şu an birleşik devletlerde ve bazı ülkelerde hasat edilen ürünün yarısına yakın kısmını yok etmektedir. BRASSİNOSTEROİDLER Brasinosteroidler büyümeyi teşvik edici karakteristik aktiviteleri ile, bitki hormonlarının yeni bir grubudur. 1979‟da kolza bitkisi (Brassica napus L.) poleninden izole ve karakterize edilmişlerdir. Sonradan 44 bitkide bundukları rapor edilmiş ve bitki aleminde muhtemelen her yeder bulundukları kabul edilmiştir. Brassinosteroidler, 37 Angiosperm (9 monokotil ve 28 dikotil), 5 Gimniosperm, 1 pteridofit ve 1 alg olmak üzere 44 bitki türünde izole edilmişlerdir. Brassinosteroidler, çok düşük konsantrasyonlarda etki gösterirler. Brassinosteroidler, büyüme gibi çeşitli gelişimsel etkileri , tohumların germinasyonu, rizogenez, çiçeklenme ve senesens gibi pleotropik etkileriyle dikkate alınmıştır. Ayrıca, çeşitli abiyotik stres durumlarına karşı da bitkiye dayanıklılık sağlamaktadırlar. Brassinosteroidlerin Biyosentezi ve Metabolizması 1974‟te ilk brassinosteroid olan brassinolid keşfedildi. Biyolojik olarak aktif olan bu bitki büyüme düzenleyicisi bir steroid lakton olarak C28H48O6 (MA: 480) formülü ile desteklendi. 1982‟de büyümeyi destekleyici, diğer bir steroid madde, kestane (Castenea crenata) üzerinde böcekler tarafından tahrip edilen kısımlardan izole edildi ve kastesteron (castesteron) olarak adlandırıldı. Brassinolid ve castesteronun keşfi, bitki aleminde büyümeyi destekleyici steroid hormonlarının varlığı düşüncesini desteklemiştir. Brassinosteroidler, doğal polihidroksi steroidlerin yeni bir grubudur. Şimdiye kadar tanımlanan doğal brassinosteroidler genel bir 5α-kolestan yapısına sahiptirler ve bunların varyasyonları yapı üzerindeki işlevlerinin çeşit ve oryantasyonundan oluşmaktadır. Fitosterol ailesine ait bileşikler C27, C28, C29 brassinosteroidler olarak sınıflandırılır. Şu ana kadar 42 brassinosteroid ve 4 brasinosteroid bileşiği karakterize edilmiştir. Brassinosteroidler BR1, BR2, …BRn şeklinde isimlendirilirler. Bitki steroidleri asetil Ko-A, mevalonat, izopentenil pirofosfat, geranil pirofasfat ve farnesil pirofosfattan, isoprenoid yolla sentezlenirler. Mevalonatla başlayan bu yol sonunda sikloartenol sentezlenir. Bu doğal yolun dışında, sentetik olaraktan kampesterol‟den brasinoid‟e kadar sentetik bir yolla sentezlenebilirler. Bitkide gelişmekte olan dokular, olgun dokulşara göre daha fazla konsantrasyonlarda brassinosteroidleri içerirler. Polen ve genç tohum zengin brassinosteroid kaynağıdır. Yapraklar ve sürgünler düşük konsantrasyonlarda brassinosteroid içerirler. Brassinosteroidlerin Fizyolojik Etkileri ve Pratik Değeri Brassinosteroidlerin analizinde göze çarpan iki test vardır; birincisi, fasulyede ikinci internod oluşumu testi ve diğeri pirinç laminasında eğilme testidir. Fasulyede ikinci intenod oluşumu testi, brassinolidin kolza bitkisinden izolasyonunda geliştirilmiştir. Fasulye fidesindeki ikinci internod kesilip, lanolin macunuyla brassinolid uygulanmasıyla uzama, eğilme, şişme ve iki ayrı parçaya ayrılma (splitleşme) göstermiştir. Uzama, eğilme ve şişme düşük konsantrasyonda, iki ayrı parçaya ayrılma ise yüksek konsantrasyonda gerçekleşmiştir. Bu, brasinosteroidlerin büyümeye etkilerinden biridir. Brassinosteroidler genç vejetatif dokuların gelişimine etki ederler. Soya fasulyesi ve bezelye epikotillerinde, Arabidopsis pedinkullarında, yulaf koleoptillerinde uzamayı ve büyümeyi teşvik ederler. Kök gelişimini engellerler fakat gövde gelişimini teşvik ederler. Hücre bölünmesini ve uzamasını, polen tübü uzamasını teşvik ederler. Yaprak absisyonunu geciktirler (Citrus) ve ksilemde farklılaşmayı artırırlar. İletim demetlerinin farklılaşmasında rol alırlar. Tohum germinasyonunu teşvik eder, aynı zamanda absisik asitin inhibe edici etkisini yok ederler. Brassinosteroidler üzüm meyvelerine spreyle muamele edildiğinde; sonbaharda çiçek sayısını artıran, kışın (aynı muamele yapıldığında) çiçek sayılarını azaltan etki göstererek çiçeklenmede rol oynarlar. Brassinosteroidler, Xanthium gibi bazı cinslerde senesensi hızlandırırlar. Ayrıca bitkilerin abiyotik stres şartlarına karşı dayanıklığını artırırlar; düşük sıcaklığa maruz kalan pirinç ve domates bitkilerinde brassinosteroid uygulamasıyla büyümenin daha iyi olduğu gözlenmiştir; mısır ve lahana fidelerinde de düşük sıcaklık stresine karşı toleransı artıran etki gösterirler. Bu etkilerin oksin etkilerine çok benzemesinden dolayı brassinosteroidlerin, oksinden farklı bir hormon olarak kabul edilmesi yıllar sürmüştür. Ek olarak brasinosteroidler kimyasal yapı olarak hayvanlarda bulunan steroid hormonlarına en benzer gruptur; bitki ve hayvan steroid hormonlarının benzer kimyasal yapıları, belirli genlerin ifade olmasında benzer etkiler göstermektedir. Şöyle ki; bitki steroidleri insanlardaki eşey hormonları gibi, aynı olan pek çok şeyi yaparlar. Bir bitkide steroid fazla olduğunda, o bitki daha büyük, daha dayanıklı ve daha kuvvetli olmaktadır. Örneğin; mutasyon nedeniyle bitkiler steroid üretmediklerinde cüceleşirler. Steroidler aynı zamanda bitkide eşeyli üremeyi düzenlemektedirler (burada; belirli bir molekül grubunun farklı organizmalarda sinyal molekülleri olarak iş görmesi ilginçtir). Bir bitkinin steroid sentezlemek için kullandığı enzimlerin çoğu, kendi steroid çeşitlerini üreten hayvanlarda da bulunmaktadır. Dolayısıyla bu enzimlerle ilgili bazı genlerin, bitkiler ve hayvanların bir milyar yıldan daha uzun bir süre önce ortak bir atadan dallanmaları sebebiyle korunmuş olma olasılığı vardır. Buna karşın, steroidlere yanıtlarla ilgili sinyal yolundaki moleküller, bitki ve hayvanlarda çok büyük bir farklılık göstermektedir. KAYNAKLAR Purves, Sadava ve arkadaşları, Life – The Science of Biology, 7inci baskı. Campbell ve Reece, Biology, 6ncı baskı. Salisbury ve arkadaşları, Plant Physiology. Taiz ve Zeiger, Plant Physiology, 3üncü baskı. Ram Rao S. ve ark., Brassinosteroids – A new class of phytohormones, Current Science, Vol. 82, No. 10, 2002. Haydarabad, Hindistan. Kocaçalışkan İ., Bitki Fizyolojisi, Dumlupınar Üniversitesi www.pubmedcentral.nih.gov 4e.plantphysiol.org www.whfreeman.com www.hhmi.org

http://www.biyologlar.com/giberellinler-bitki-boyu-duzenleyicileri

Orman, Çevre ve Ekosistem

Tüm dünyada olduğu gibi ülkemizde de binlerce yıldır ormanların değeri; genellikle ormanların kereste üretim kapasitesi ile ya da ormanlardan elde edilen yakacak miktarıyla ölçülmüştür. Binlerce yıldır hakim olan bu düşünce sonucu önce ağaçlar kesilmiş veya yakılmış, daha sonra toprak çoraklaşıncaya veya tamamen verimsiz hale gelinceye kadar otlatılmış ya da ektansif tarla tarımı yapılmıştır. Bunun en acı örneğini iç Anadolu ve Doğu Anadolu'da göz alabildiğine uzanan bozkırlarda görmekteyiz. Bilimsel verilere göre bundan 10.000 yıl öncesine kadar % 70'i ormanlarla kaplı olan Anadolu, yıllarca o kadar insafsızca tahrip edilmiştir ki; bugün birçok insana "Çölleşmeye yüz tutmuş bu alanlar neden yurt tutulmuştur?" sorusunu sorduracak bozkırlar haline getirilmiştir. 20. Yüzyıla kadar, usulsüz faydalanmalar, doğal nedenler, savaşlar ve yangınlarla tahrip edilen orman alanları, günümüzde hızlı nüfus artışı sonucunda ortaya çıkan yeni tarım alanları kazanma arzusu, daha fazla yapacak ve yakacak ihtiyacı ve sanayileşme sonucu ortaya çıkan asit yağmurları gibi yeni sorunlarla karşı karşıya kalmıştır. Çeşitli kaynaklara göre bugün dünyamızda her otuz saniyede, bir hektar orman yok edilmekte olup, insanlığın geleceğini tehdit eder boyutlara ulaşmıştır. Ormanların yapacak ve yakacak değeri; bulunduğu ekosistemin, sonuçta ülkenin ve tüm yeryüzünün ekolojik dengesinin sağlanmasındaki işlevleri ve önemi yanında oldukça az öneme sahiptir. Bu nedenlerle ormanlarla ilgili yönetim planları hazırlanırken; tüm çevre koruma, sosyal ve ekonomik konular bir arada düşünülmeli, program ve stratejiler geliştirilirken ekolojik bütünlük ve sürdürülen üretkenliğin devamı göz önünde bulundurulmalıdır.Ormanların yapacak ve yakacak dışındaki sayısız değerlerinin başlıcalarını şöyle sıralayabiliriz: •Ormanlar, çeşitli ağaç türlerinin yanında, çok zengin orman altı bitki türleri, yaban hayvanları, mikro organizmalar, böcekler, kuşlar, balıklar ve memeliler için en önemli tabiatlardan biridir. Bu özelliklerinden dolayı doğal dengenin korunması, işlenmesi ve genetik kaynakların devamının sağlanması açısından son derece değerli ekosistemlerdir. Özellikle tropikal yağış ormanları, biyolojik üretkenlik açısından yeryüzünün en zengin parçalarıdır. •Ormanlar, çevrenin iklimini önemli ölçüde etkiler. Yıllık sıcaklık değişmelerin! azaltarak, yörenin iklimini yumuşatır. Havanın nemini ve yağışları artırır ve düzenli yağmasını sağlar. Rüzgarların şiddetini azaltır. Bunların yanında, sera etkisi yapan gazları toplama kapasitesiyle, global ölçekte tüm yeryüzünü tehdit eden iklim değişikliğini yavaşlatıcı etki yapar. Yeşil bitkiler, özümleme ile her yıl atmosferdeki toplam karbonun % 14'ü olan,100 milyon ton karbonu alır. Yaklaşık aynı miktardaki karbon da bitki solunumu ve organik maddelerin çürümesiyle atmosfere verilir.Milyonlarca yıldır bitkiler özümleme ile atmosferdeki CO2 gazını kullanarak dengede tutmuştur. Fakat son yıllarda organik kökenli yakıtların tüketimindeki artış, atmosferdeki CO 2 dengesini tehdit eder boyutlara ulaşmıştır. Bunun sonucu ısının 1 derece artması bile yeryüzünde büyük değişmelere neden olacak ve çok tehlikeli sonuçlar yaratacaktır. Aynı zamanda ormanlar, denizlerden sonra en fazla O2 üreten doğal kaynaktır. Bir araştırmaya göre 25 metre boyunda ve 15 metre tepe çapındaki bir kayın ağacı saatte 1,7 Kg. O2 üretmektedir. Bu miktar 72 kişinin bir saatte tükettiği O2 miktarına eşdeğerdir. Yine aynı kayın ağacı bir saatlik özümleme sırasında 2.350 Kg.CO 2 gazını kullanmakta olup, bu değerde 40 kişinin bir saatte çıkardığı CO 2 miktarına eşittir. İnsan sağlığı açısından ormanların diğer bir özelliği de, atmosferdeki gaz, duman, buhar ve toz şeklindeki maddeleri tutarak zararlı etkilerini önler ya da zarar derecelerini önemli ölçüde azaltır. •Ormanlar dünya su çevriminde ve rejiminde düzenleyici rol oynadığı gibi, bulundukları bölgenin su kaynaklarının verimliliğini arttıran, devamlılığını, düzenliliğini ve su kalitesini sağlayan en önemli doğal regülatörlerdir. Özellikle su rejimi üzerinde olumlu etkisi Türkiye gibi dağlık arazilerde daha büyük önem taşımaktadır. Bu tür arazilerde yağışla gelen suların arazide uzun süre tutulmasını, bütün canlıların bu sudan azami derecede faydalanmasını sağlamakta, sel ve taşkınları engelleyerek büyük zararları önlemektedir. •Ormanların bir başka özelliği de toprak oluşumunu ve verimini arttırıcı etki yapması, erozyonu engelleyerek toprak kaymasını önlemesidir. Ülkemiz topraklarının, topogratik yapısı nedeniyle % 90'ından fazlasının çeşitli derecelerde erozyona uğramakta, her yıl akarsularla, 10 cm kalınlığında ve Kıbrıs Adası büyüklüğündeki, 500 milyon ton ağırlığında toprak kitlesi denizlere taşınmaktadır. Bu kadar şiddetli bir erozyonun olduğu bir ülkede, tarımın geleceği için tehlike çanları çalmaya başlamış demektir. Bugün sulama ve enerji üretimi amacıyla, iç ve dış kaynaklı çok büyük paralar karşılığında kurulan barajlarımızın pek çoğu, havzada ağaçlandırma çalışmalarına önem verilmediği için şiddetli erozyon sonucu hızla dolma tehlikesi ile karşı karşıya kalmıştır. Nitekim Keban Barajı Fırat ve Murat nehirleri, Munzur Çayı, Peri ve Çatlı suları ile yılda toplam 31.5 milyon ton sediment taşınmaktadır. Böylece barajın faaliyete geçtiği 1974 yılından bu yana, baraj tabanında 550 milyon tonun üzerinde sediment toplandığı tahmin edilmektedir. Maalesef, genellikle ormanlardan uzak ve tamamen çıplak olan baraj havzalarımızın hemen hepsinde aynı durum söz konusudur. Bu nedenle bir an önce baraj havzalarında arazi kullanım planları yapılarak, tarım yapılan sahalarda koruyucu tedbirlerin alınması, süratle ağaçlandırma çalışmalarının yapılması gerekmektedir. •Ormanlar yerel halk için sosyo kültürel bir çevre oluşturmaktadır. Çevresini süsler, güzelleştirir ve doğal peyzajı tamamlayarak estetik etkisini artırır. İnsanların piknik yapma, eğlenme, dinlenme, gezip dolaşma ile dağ sporları, kayak yapma ve avcılık gibi sportif faaliyetlerin yapılmasına, her türlü kamp alanlarının kurulmasına uygun koşullar yaratır. Orman içinde ateş yakmak da çok tehlikelidir. Çeşitli ve zorunlu nedenlerle ateş yakarsak, isimiz bittikten sonra ateşin üzerine toprak atıp iyice ve tam olarak söndürmeliyiz. Söndürülmeyen ateşi rüzgar sağa sola götürür, yangın çıkmasına neden olur.Biz yakmamış olsak bile ormanda iyice sönmemiş ateş görürsek hemen söndürmeleyiz. Kendimiz söndüremiyorsak çevreden yardım istemeliyiz; karakola, muhtara, resmî kuruluşlara haber vermeliyiz. Bu, bir vatandaşlık görevidir. Kaçak ağaç kesimini önlemek: Kaçak ağaç kesmek de ormanları yok eden başka bir sebeptir. Ormandan izinsiz ağaç kesmek, bindiğimiz dalı kesmek demektir. Çünkü usulsüz ağaç kesmek, ormanların büyüyüp gelişmesini engeller.Ormandan ağaç kesmenin bir yolu vardır. Orman mühendisleri, ormanda her yıl hangi ağaçların kesileceğin! belirtirler. Belirtilen bu ağaçlar kesilmelidir. Buna "düzenli kesim" denir. Düzenli kesimle hem ihtiyaçlar karşılanır, hem de ormanların büyümesi, gelişmesi sağlanır. Keçilerden korumak: Keçiler de ormanların baş düşmanıdır. Çünkü keçiler, genç fidanların uç dallarını yemesini pek severler. Ormana girince küçük demez, büyük demez, yetişebildikleri her şeyi yerler. Bu yüzden uç dalları koparılmış fidanlar da büyüyemez, ölür. Körpe fidanlar böyle yok ola ola, orman da köyümüzden, kentimizden uzaklaşır.Yapılacak iş ormana zararlı olan keçi yerine, koyun, inek gibi hayvanları beslemek ya da keçileri ormandan uzak tutmaktır. Tarla açmayı önlemek: Ormanın değerini bilmeyenler, bazan bir karış toprak için binlerce ağaca kıyarak tarla açarlar. Bu şekilde tarla açmak, bize hiçbir şey kazandırmaz. Gerçekte orman toprağı çok verimli değildir. Bu yüzden ormandan açılan tarlalar pek verimli olmaz. Birkaç yıl ekildikten sonra verim iyice düşer. Emeğimizin karşılığını alamayız. Alamayınca da üç beş yıla bir yeni tarla açmak isteriz. Sonunda memleketimizde orman kalmaz.Tarla yoksa, orman işlerinde çalışılmalıdır. Hayvan beslenmelidir. Arıcılık, tavukçuluk yapılmalıdır. Ormanların Yararları Faydaları Nelerdir? ORMANLARIN YARARLARI A) Doğal Dengeyi Sağlar : Eğimli sahalarda ormanlar toprağı örgü şeklinde sararak toprakların aşınmasını önler. Toprak tabakasına saldığı kökleri ile suyun derinlere sızması için, küçük kanalcıklar oluşturur.Böylece ormanlık sahalara düşen yağışlar toprağa sızar ve oradan yer altı suyuna, derelere ve kaynaklara kavuşur. Ormanların diğer önemli tarafı,doğadaki besin maddelerinin dolaşımını sağlamasıdır. Toprağa düşen dal ve yapraklar; bakteriler tarafından organik maddeye dönüşür.Organik madde, topraktaki bitki besin maddesini artırarak bitki örtüsünün daha iyi gelişmesini sağlar. Diğer taraftan toprağa karışan organik madde toprakta gözenekli bir yapı oluşturur.Bu da yağışların toprağa sızmasını sağlar.  B) Ormanlar Dinlendirici Etki Yapar : Orman içi mesire yerleri ve milli park alanları, önemli dinlenme yerleridir. Ülkemizde son yıllarda önemli milli parklar kurulmuştur.Bunlar;Yozgat çamlığı, Kaçkar Adana(soğuksu),Kızılcahamam, Kuş Cenneti, Uludağ,Yedigöller,Dilek yarımadası(Aydın). Spil dağı, Kızıldağ(Yalvaç), Termosos, Köprülü Kanyon, Olimpos, Beydağları, Altınbeşik mağarası (Antalya)Kovada (Isparta), Mercan vadisi, Maçka, Altındere, Hatilla vadisi, Beyşehir,Karagöl, Nemrut Dağı (Adıyaman), Başkomutanlık (Afyon), Honaz Dağı (Denizli) C) Odun, Kereste Ve Bazı Sanayi Kollarına Ham Madde Sağlar: Ormanlardan yakacak odun ve kereste üretilir.Yılda ortalama 6-8 milyon m3 tomruk elde edilir. Bunlar inşaatta, kağıt üretiminde,ambalaj sanayisinde, maden ocaklarında destek ,PTT ve enerji hatlarında taşınma direği olarak kullanılır. Ayrıca çamdan elde edilen reçine, kimya sanayiinde, boya yapımında kullanılır. Ormanlarımızdan odun ve kereste üretimi orman işletmelerine yapılır.Odunu büyük bir bölümü yakacak olarak evlerin ısıtılmasında kullanılınır.Evlerin ısıtılmasında enerjinin beşte biri odundan sağlanır. Ormanlarımızı., korunan ormanlar ve verimli parklar hariç işletmemiz gereklidir. Ormanlarımız, orman içinde ve orman kenarında yaşayan köylülerimizin önemli gelir kaynağıdır. Köylerimizin üçte ikisi orman içinde ve kenarında kurulmuştur.Nüfusumuzun onda biri ormanlardan yararlanmaktadır.Bu yönü ile de ormanlarımız vatandaşlarımıza iş temin eden doğal kaynaktır. Kısaca Ormanların Faydaları 1-Odun ve kereste ihtiyacımızı sağlar. 2-Eğimli yamaçlarda erozyonu önler 3-Her türlü dinlenme ihtiyacımıza cevap verir. 4-Yurt savunmasında, çeşitli yönlerden kolaylık sağlar. 5-Yabani ve özellikle av hayvanlarını barındırır. 6-Yağış sularını yer altına toplar,bunlarında kaynaklar halinde çıkmasını sağlar. 7-Havadaki oksijen ve karbondioksit dengesini sağlar. Not: Ormanlardan sürekli faydalanmak için ormancılığın üç temel ilkesi vardır. a-Ormanların genişletilmesi b-Devamlı korunması c-İşletilmesi Ormanların Faydaları Ormanlar; ağaçlarla birlikte diğer bitkiler, hayvanlar, mikroorganizmalar gibi canlı varlıklarla toprak hava, su , ışık ve sıcaklık gibi fiziksel çevre faktörlerinin birlikte oluşturdukları karşılıklı ilişkiler dokusunu simgeleyen ekosistemler olup, dünya yaşamı için vazgeçilmezdirler... - Ormanlar yaşantımızın her safhasında ihtiyaç duyduğumuz yapacak ve yakacak hammadde kaynağıdır. Bunun yanı sıra bitkisel nitelikli tohum, çiçek, kozalak vb. ile mineral nitelikli çakıl, kum vb.hammadde kaynaklarının bir kısmı da ormanlardan elde edilmektedir. - Ormanlar, bitkiler ve hayvanlar için doğal bir su kaynağıdır. Kar ve yağmur biçimindeki yağışı yapraklı, dalları, gövdesi ve kökleri ve tutarak sellerin ve taşkınların oluşmasını önler. Ayrıca yer altı sularının oluşmasına yardım eder. - Ormanlar erozyonu önler. Ormanlar rüzgarın hızını azaltır, toprağı kökleri ile tutarak yağışların ve akarsuların toprağı taşımasını önler. - Ormanlar, yaban hayatı ve av kaynaklarını koruru. Nesli tükenmekte olan hayvanların üretimi, korunması ve barınmasında koruma alanları oluşturur. Bu sahalar milyonlarca canlının yuvasıdır. - Ormanlar bitki örtüsü ve toprak içerisinde büyük miktarda karbon depoladıklarından, ikim üzerinde olumlu etkiler yapar. Aşırı sıcaklıkları düzenler, bir ısı tamponu gibi görev yapar. Sıcağı soğuğu dengeler, yaz sıcaklığını azaltırken, kış sıcaklığını artırır, radyasyonu önler. - Su buharını yoğunlaştırarak yağmur haline gelmesini sağlar. Rüzgar hızını azaltarak toprak ve kar savurmalarını ve rüzgarın kurutucu etkisini yok eder. Bu nedenle açık alanlara oranla ormanlarda gündüzler serin geceler ise sıcaktır. - Ormanlar, eğelenme, dinlenme ve boş zamanları değerlendirme imkanı sağlar. Havası, suyu, doğal görünümleri ve sakin ortamı ile özellikle şehirlerde yaşayan insanları kendisine çeker. Bu yönüyle insanların beden ve ruh sağlığı üzerinde olumlu rol oynar. - Yerleşim alanları çevresindeki hava kirliliğini ve gürültüyü önlemesi ile insan sağlığı bakımından büyük önem taşır. Ormanların insan sağlığı üzerindeki bütün bu olumlu yararları nedeniyle büyük kentlerin çevresinde ormanlar yetiştirilmekte, dinlenme yerleri kurulmaktadır. - Ormanlar, orman içinde ve dışında yaşayan insanlara çeşitli iş alanları sağlar, işsizliği önlemede etkin rol oynar, böylece köyden kente göçü azaltır. - Ormanlar, ulusal savunma ve güvenlik bakımından da çok önemlidir. Askeri birliklerin savaş tesisleri ile araç ve gereçlerinin gizlenmesinde, savaş ekonomisi bakımından değer taşıyan reçine, katran ve tanenli maddelerin elde edilmesini sağlar, - Ayrıca ormanlar barajların ekonomik ömrünü uzatır, doğal afetleri önler, ülke turizmine katkıda bulunur, - Ormanlar, doğal güzellikleri ve sayılmayacak kadar çok faydalarıyla iyi baktığımız takdirde tükenmez bir doğal kaynaktır. Dünyada ve Ülkemizde Orman Varlığı Dünya kara alanlarının %30’nu kaplayan ormanlar 3.8 milyar hektardır. Tropikal ve yarı tropikal ormanlar bu alanın % 56’sını teşkil etmektedir. Dünya ormanlarının % 95’i doğal orman, % 5’ ise ağaçlandırma ile tesis edilen suni ormanlardır. Ülkemizin ormanlık alanı ise 20.7 milyon hektar olup yurdumuzun genel alanının % 26.8’sini oluşturmaktadır. Ormanlarımızda yetişen asli ağaç türlerimiz; kestane, kayın, meşe, kızılağaç, kavak, huş, ıhlamur, dişbudak, akçağaç, karağaç, çınar, söğüt, ceviz ve sığla gibi yapraklı ağaçlar ile çam, göknar, ladin, sedir, ardıç, servi ve porsuk gibi iğne yapraklı ağaçlardır... Ormanların Ülkemiz Ekonomisindeki Yeri Ormancılık sektörünün ülke ekonomisine olan katkılarını para ile ölçülebilen ve para ile ölçülemeyen katkılar olarak ikiye ayrılmak gerekir. Odun kökenli orman ürünleri üretimi, orman tali ürünleri üretimi, işlendirmeye katkısı, bölgeler arası gelişmişlik farkını azaltıcı etkisi, ödemeler dengesini olumlu yönde etkilemesi, mineral nitelikli katkıları, tarım, hayvancılık ve turizme olan katkıları para ile ölçülebilen katkılardır. İlkim, toprak su gibi doğal kaynakların korunması ve dengede tutulması, rüzgar ve kumul hareketlerine karşı önleyici perde görevi görmesi, su akışını düzenlemesi, yer altı ve yer üstü su kaynaklarının sürekliliğini sağlayarak çoraklaşmayı önlemesi, erozyonu önlemesi dolayısıyla tarım alanları ile barajların ekonomik ömrünü uzatması, çığ ve sel baskınlarını önlemesi halkın rekreasyon ihtiyaçlarını karşılaması, insan sağlığını olumlu yönde etkilemesi ve iş verimliliğini artırması ise para ile ölçülemeyen katkılardır. Ülkemizde çok önemli bir sektör olan ormancılık ülke kalkınmasında "itici ve teşvik edici" stratejik bir rol oynar.

http://www.biyologlar.com/orman-cevre-ve-ekosistem

Toprak Ekolojisi

Fiziksel Değişim: Sıcaklık ve ışıma kayadaki kristallerin titreşimine yol açar ve bu moleküler hareket mikro çatlaklara yol açar. Geceleri ise soğuyarak büzüşen kayalarda bu çatlaklar gelişir, gaz ve su hareketlerininde etkisiyle çözünen tuzlar kayadan uzaklaşır. Nem kayaya yapışır ve kristalleri çözer. Liken asitleri ise kayaya biyolojik olarak zarar verir ve bu çatlaklar binlerce yıl sonra bölünür ve bu aşınmalarla toprak oluşur. Organik maddelerin ayrışması ve moleküllerle birleşmesiyle oluşan toprakta önce toprak faunası oluşuyor. Bu canlılar zamklı bir ürün oluşturuyor ve bu zamklı toprak kümesi oksijen alışverişi ve bio-kimyasal değişimler sonucunda bitkilerin oluşumu gerçekleşiyor. Ağaçlar ayakta kalabilmek için odunsu bir yapı geliştiriyorlar. Lignin denen bu yapı çok sıkı bir dokudur. Diğer otlar ise selülit gibi mikroorganizmalar tarafından kolayca ayrıştırılabilen bir doku geliştiriyor. Ayrıştırılan selülit humusu meydana getiriyor. Ligninin mikroorganizmalar tarafından ayrıştırılıp humus haline gelmesi çok zordur. Yosun ağacı ayrıştıran başlıca maddedir. Gövdeyi kaplayan yosun ağacın dokularının toprağa karışmasını sağlıyor. Bir sistemde asitler çözüm olayını arttırır. Yağışın ve ana materyalin uygun olduğu yerlerde hızlı ayrışma vardır. Suyun altındaki toprağın ayrışması ise çok yavaştır. Çünkü oksijen serbest olmadığından oksidasyon yavaştır ve yavaş geliştiği için organik madde çoktur. Yüksek yağış alan bölgelerde yaprağını döken ormanlar ve kahverengi orman toprağı vardır. Bu toprak daha çabuk ayrışır ve organik madde bakımından çok zengindir. Orta yağış alan bölgelerde iğne yapraklı ağaçlar ve Podzol topraklar vardır. Daha zor ayrışır ve sistemde birikir. Tropik yağış alan bölgelerin toprağı ise laterittir ve organik maddeler sayesinde ayrışma çok hızlıdır. Step çayırlarının altında ise çernozyom topraklar vardır ve yüksek humus barındıran bu topraklarda erken kış bastırınca reaksiyon tamamlanmadan duruyor ve organik madde kalıyor. Bu yüzden humus bakımından zengin. Toprak oluşumunda 5 aşama vardır: Topografya-İklim-Vejetasyon-Biyolojik oluşum-Zaman. İklimin yönettiği su birçok reaksiyonu hızlandırır. Kaba bir hesaplama yapacak olursak1cm toprak için 150-350 yıl gereklidir. Tarım için en az 60 cm toprak gereklidir. En uygun şartlar altında tarım toprağı 20.000 yılda oluşur. Toprak oluşumundaki bu 5 aşama sırasında kayaçlar değişime uğruyor, bunların ufalanması, taşınması sırasında köksüz bitkilerin (bireyofit) yaşayarak veya ölerek organik madde oluşumunu hızlandırmasıyla hayat başlıyor. Toprağı oluşturan mineraller birbirine bağlanırken bir boşluklar sistemi oluşturur. Toprağın %25'i boşluktur. Bu boşluklara Por denir. Bu porlar toprakta yaşayan canlı türlerini ve onların büyüklüklerini kontrol eder. Toprak çözeltisi besin elementlerini taşıyan yarayışlı su çözeltisidir. Su toprağa girdikten sonra toprak çözeltisi olur ve 4 tür su düzeyi vardır. -0.3 atm Gravitasyonal su: Yerçekimine karşı koyamayan, toprağı hemen terkeden fakat faydalı bir sudur. -15 atm Kapillar Su: Toprağın boşluklar sisteminde tutulan organizmalar için yaşamsal olan yarayışlı sudur. -150 atm Ozmotik su: Kil ve humus partiküllerinin etrafını saran az yarayışlı ve yarayışsızdır. -150 atm Higroskopik su: Moleküler düzeydedir. Bu suyu ayrıştırmak için 150 atm'den fazla basınç uygulanmalıdır. Bu da Venüs'tekinden fazladır.Bitkiler sulak alanda olmasına rağmen bu basınçla suyu çekemezler ve kururlar. Toprak Havası: Toprakta %20'si oksijen, %0.25'i karbondioksit vardır. Topraktaki karbondioksitin 1/3 'ünü bitki kökleri, 2/3 'ünü mikroorganizmalar oluşturur. Oksijenin ve suyun artmasıyla karbondioksit artar, mikroorganizmalar azalı ve böylece oksijensiz ortamlar oluşur, bataklıklar gibi. Bataklıklarda karbondioksit yerine metan, sulfat yerine sülfürik asit vardır. Oksijensiz koşullar bitki ve mikroorganizmalar tarafından faydalı değildir. Mikroorganizmalar: Bakteri, aktinomisit, mantar, saçak kök, ana kök.. Anorganik bileşenler: Kum, Silt, Kil.. Mikrobiyal Aktiviteyi Yönlendiren olaylar Fiziksel: Sıcaklık- Ozmotik basınç- Yüzey tansiyonu- Viskovizite- Radyasyon- Absorbsiyon Kimyasal: Su aktivitesi- PH- Organik Madde- Toprak Havası- Gelişimi yönlendiren maddeler- Redoks potansiyeli. Toprak Ekosistemi: Farklı unsurlardaki organizmaların ve onları taşıyan sistemin meydana getirdiği unsura ekosistem denir. Ekosistemin ögeleri: Canlı (Biyotik): Üreticiler- Tüketiciler- Ayrıştırıcılar. Cansız (Abiyotik): Anorganik madde- Organik madde. Ekosistemlerin görevi populasyonun kontroludur. Eger türler ekosistemde bütünlük gösteriyorsa populasyon değişmez. Ekosistem madde döngüsünü sağlar enerji akışını sağlar. İnsanlar ekosisteme en az bağlı canlılardır. Ekosistemin gücü tür çeşitliliğine bağlıdır. Sağlıklı bir ekosistem tür çeşitliliği sayesinde ayakta kalır. tekdüze bir ekosistem, buğday tarlası gibi tek bir zararlıyla ölebilir. Mikroorganizmalar işe yaramayan maddeleri ayrıştırarak işe yarar hale getirir. Lignini ancak mantarlar ayrıştırabilir. Atmosferdeki azotu az gelişmiş canlılar kullanamaz. Mikroorganizmalar bu görevi yapar. Bu bitkiler azotu kullanabilmek için mikroorganizmaların bünyesinde yaşamasına izin verir. Toprağın fiziksel çevre koşullarını; toprağın suyu, havası, mineral madde, organik madde, ısı, ışık, yağış, nem, hava/su hareketi belirler. Ekosistemin populasyonu kontrol etme, enerji döngüsünü sağlama ve madde döngüsünü sağlama gibi 3 ana görevine en uymayan canlı insandır. Populasyon denetimine işşizlik, açlik, göç, salgın hastalık unsurlarıyla; enerji döngüsüne suyu, toprağı ve havayı sorumsuzca kullanarak; Madde döngüsünede sürekli kimyasal ve suni atıklar üreterek uymuyor. Ekosistemin yapısı ve toprak organizmaları: Mikrobiata: Alg, Protozoa, Mantar, Bakteri Mezobiota: Daha büyük canlılar Makrobiota: Solucan, yumuşakçalar Magafauna: Omurgalılar. Solucanlar, kimyasal ve fosfor yönünden, biyolojik yönden bitki ve toprağın verimiiçin son derece faydalıdır. Solucanlar suni olarak verilen fosfattan daha çok fosfat üretir. Toprak canlıları ayrışmamış üst yüzeydeki ortamda ve alttaki gözenekli katmanda bulunur. Solucanlar protein salgılar ve dışkıları çok besleyicidir. Açtığı yolda bitki kökleri ilerliyebilir. Midesinde de zararlıları steril eder. Mikroorganizmaların 2 görevi vardır. İlki her türlü maddeyi ayrıştırarak (mineralizasyon) doğa döngüsünü sağlamak diğeri ise nitrifikasyon ve iyonizasyon vb. işlemleri yapmak. Azot güçlü bir bileşiktir ve kolay kolay kimyasal reaksiyona girmez. Bunlar mikroorganizmalar tarafından yarayışlı bileşiklere döndürüyor. Torprağın dengesi bozulduğunda bundan ilk mikroorganizmalar etkilenir. Toprak Sınıfları 1.sınıf: Kullanımı sınırlayan 1-2 faktöre sahip çok kaliteli tarım topraklarıdır. Türkiye'nin % 5.6'sı 1. sınıf topraklardır. 2.sınıf: Bitki yetiştirme seçimini azaltan ve orta derecede koruma gerektiren kıymetli tarım topraklarıdır. 3.sınıf: Bitki tercihlerinin iyi seçilmesi ve koruma tedbirlerinin alınması gereken tarım topraklarıdır. 4.sınıf: Erozyon tehlikesi altındaki, incelmiş ve özel bitkilerin özel yöntemlerle tarım yapılan topraklardır. Türkiye'deki tarım topraklarının çoğu bu topraklardır. 5.sınıf: Erozyon tehlikesi olmayan, orman ve otlak olarak kullanılması uygun olan topraklardır. 6.sınıf: Otlak ve ormana uygun fakat tarıma uygun olmayan orman ve mera olarak kullanılması şart olan topraklardır. 7.sınıf: Orman ve otlak olması bile zor , tepeler, sarp alanlar, ve genelde erozyona meyilli topraklardır. 8.sınıf: Dağ sistemleridir. Alpin zone, çayır veya orman değildir. Doğal yaşam ve reaksiyon alanlarıdır. Türkiye'de orman ve otlak olması gereken 6 milyon hektar alanda tarım yapılıyor. Yani 1/5'inde. 3.8 milyar yıl önce, aşılım kayaları güneş tarafından parçalandı. Bu hızlı aşınım hareketleri sonucu parçalar ve tozlar sular yoluyla denizlere aktı. Bu akan parçalar tuz ve sedimintlerle birleşip denizin dibine çöktü. Yer haraketleri sonucunda denizlerin çekilip dağların oluşmasıyla bu sedmentler yeryüzüne çıktı böylece ilk toprak oluşumu başladı. İşte yüksek dağlarda deniz kabuklarına rastlanmasının sebebide budur. Toprak ana materyali birçok değişik materyalin milyonlarca yıl içinde birleşmesiyle oluşuyor. Toprağın temel bileşenlerini incelediğimizde %45'ini Mineraller, %5'ini organik (Humus) maddeler, %25'ini toprak atmosferi, %25'ini toprak çözeltisi oluşturmaktadır. Organik maddelerin %10'unu bitkiler, %85'ini ölü organik maddeler. %5'ini ise edafon oluşturmaktadır. Edafon toprağı toprak yapan çok önemli bir maddedir. Edafonun %40'ı mantarlar, %40'ı bakteri ve aktinomisitler, %5'ini yer solucanları, %5'ini makro fauna, %3'ünü mezo fauna oluşturmaktadır. Erozyon Sınıflandırması 1.Erozyona uğramamış en fazla %2'lik meyile sahip topraklar 2. Orta derecede erozyona uğramış en fazla %6 eğime sahip topraklar 3. Şiddetli erozyona uğramış en fazla %12 Eğime sahip topraklar 4. Sel oyuntuları oluşmuş en fazla %25 eğime sahip topraklar 5. Ziraat olmayacak şekilde tahrip olmuş en fazla % 45 eğime sahip topraklar 6. Tahripkar birikmeler oluşmuş %40 ve üzeri eğime sahip topraklar. Türkiye'deki toprakların % 20'si orta derecede erozyona uğramış, %36 'sı şiddetli erozyona uğramış, % 17 'si çok şiddetli erozyona uğramış. Türkiye fazlasıyla ekilebilir tarım alanlarını tüketmiş durumdadır. Dünyada ise bu ekilebilir alanların sadece % 46'sı kullanılıyor. Türkiye'nin çayır ve mera alanları 44m/h dan 21 m/h alana düşmüştür.Dünyadaki tatlı su rezervleri toplam suyun % 1'idir ve bu tatlı suyun % 75'i tarımda kullanılıyor. Sulamayla birlikte gübre kullanımıda % 350 artmıştır. Erozyon ve zararları: Dünyadaki erozyonun % 55'i sudan, %28'i rüzgardan, %12'si kimyasal nedenlerden ve %5'i fiziksel nedenlerden olmaktadır. Erozyon doğanın gereğidir ancakyanlış arazi kullanımı, uygun olmayan tarım ve otlatma metodları, yasal boşluklar, sosyo-ekonomik boşluklar erozyonu hızlandırmaktadır. Kaybedilen toprak örtüsünün kazanılması için binlerce yıl geçmelidir. Bitki örtüsünün yok olması erozyonun yanısıra toprak kayması. taşkın ve çığ olaylarını arttırır. Erozyona uğrayan toprak nüfusu doyurmaz göç yaşanır. Toprakla yok olan besinlerin değeri heryıl harcanan yüzlerce trilyonluk gübre değerinden çok daha fazladır. Meraların yok olmasıyla hayvancılık geriler. Doğal su kaynakları düzenli olarak beslenemez. Erozyon baraj rezervlerini doldurur. Yeşil örtü ve toprağın elden gitmesiyle ortaya çıkan iklim değişikliği ve bozulan jeolojik denge sonunda doğal varlıklar yokolur. Hergün 150.000 kamyon dolusu her yıl 500 milyon tonbaşka bir deyişle Kocaeli ve bursanın 10cm kalınlıkta kaplayacak toprağı erozyon sonucu kaybediyoruz. Türkiye'deki erozyon Avrupa'dakinin 17 katı.

http://www.biyologlar.com/toprak-ekolojisi

Kuru Distilasyon Yöntemi

Bitki kısımlarında mevcut maddeler çeşitli yöntemlerle belirlenirler.Çünkü;her elelment belirli deneysel etkilerle kendisini ortaya çıkartır.Bir tüpe buğday ve bezelye taneleri konulur.Tüp üç yıkama şişesine bağlanır. 1.I.şişede,CoCl’ye batırılmış mavi renkli süzgeç kağıdı ile Pb(CH3CO)2 eriyiğine batırılmış veyaz renkli süzgeç kağıdı vardır. 2.II.şişede,Nessler ayıracı bulunur. 3.III.şişede ise,Ba(OH)2 eriyiği mevcuttur. Buğday ve bezelye tanelerinin bulunduğu tüp ısırtıldığında çıkan dumanın yıkama şişelerini dondurmasından sonra şu değişiklikler gözlenir: 1.Molekül rengi mavi olan CoCl su ile tepkimeye girdiğinde iyonlarına ayrılır ve pembe renk verir. 2.Beyaz renkli Pb(CH3CO)2’li kağıt,kükürtün etkisiyle siyahlaşır. 3.Azot(N),Nessler ayracında turuncu bir renk tepkimesi verir. 4.Ortamda karbon varlığında,CO2 çıkışından ve CO2 + Ba(OH)2 BaCO3 + H2O reaksiyonu sonucu beyaz renkli BaCO3 çökeleğinin oluşmasından anlaşılır.Tepkime İlk Renk Son RenkCoCl + H2O Mavi PembePb(CH3Co)2 Beyaz SiyahK2HgI4x2H2O + N Beyaz TuruncuBa(OH)2 + CO2 Saydam Beyaz(Çökelek) Kuru distilasyon yöntemiyle böylece C,H,O,N ve S’nin varlığı ispatlanmış olur.Ancak bitkilerdeki bütün elementler bunlar değildir.Deney tüpünün tabanında belirli derecede yanmadan kaynaklanan siyah kısım kalmıştır.Bunun nedeni ortamdaki karbonun bir kısmının serbest halde bulunmasından ileri gelir.Eğer 1000 oC’lik bir fırında ısıtılırsa ve ortamda yeteri kadar oksijen varsa,bu kez siyahlık yerini gri renge bırakır. Çeşitli derecelerce yanma sonucu elde edilen grimsi artık madde kül olarak kabul edilir. Gerçek anlamda kül,kuru bitki materyalinin 700 oC’ye kadar belirli bir süre fırında bırakılmasıyla elde edilen artık maddedir.Kül miktarını etkileyen çeşitli faktörler vardır.Bunlardan en önemlileri;bitkinin türü, gelişme durumu,yaşı,organları ve gelişme ortamının şartları gibi etkenlerdir.Genel olarak;a. Fazla su kullanan bitkilerin yapraklarında % 15-30 kadar kül bulunur. Örneğin;Eucalyptus,çınar ve söğüt.b. Az su kullananlarda ise bu miktar yaklaşık %25’dir.Örneğin;Coniferae.c. Aşırı su kullanan bitkilerde kül oranı daima %30’un üzerindedir.Örneğin;Beta vulgari (Şeker Pancarı)d. Ayrıca aynı bitkinin farklı organlarındaki kül miktarı da farklıdır.Örneğin;kültür bitkilerinin gövdeleri %5-10,yaprakları %10-20,Yabani bitkilerde gövdede %1-2,Kök %3-6 arasında küle sahiptir. Halofitlerde genel olarak %10-20’dir.Genel duruma normal olarak,kül en fazla yaprakta bulunur.Bu durumun çeşitli nedenleri vardır.En önemlisi köklerden yapraklara kadar taşınan madensel maddeler isteğe bağlı olmaksızın su ile birlikte alınır. Yapraklar-da metabolizma sonucu su transprasyon ile buharlaşınca bu maddeler birikirler.Yine yapraklarda madde değişimi,bitkinin diğer organlarına göre en fazladır.O yüzden yapraklarda zaten madensel madde bulunuyor demektir. Bitki külünün hemen hemen tamamı bitkilerin geliştikleri ortamdan aldıkları mineral maddelerden oluşmuştur.C,H,O ve N en düşük dereceli bir yanmada kaybolduğu için hiçbir külde bulunmaz.Mineral maddeler,külde element halinde değil,çoğunlukla oksitleri halinde bulunur.Gerek külün gerekse içerdiği mineral maddelerin gerçek miktarı külün eldesi anında uygulanan sıcaklık derecesiyle yakından ilgilidir. Yanma için gerekli sıcaklık daha da artırılırsa C,H,O ve N’nin tamamı,Cl ve S’nin büyük bölümü,Ca,K ve P vb. elementlerin de bir kısmı uçup gider.Ekolojik şartlara bağlı olarak,bitki külünde çok değişik maddeler bulunur.Günümüze kadar yapılan değişik şartlarda birçok farklı bitkinin külündeki analizler 60 kadar mineral maddenin varlığı ispatlanmıştır.Deneyler sonucu bitki gelişimi için,bunların tamamına tam bağımlı değildir. Ancak C,H,O,N,Ca,K,P,Mg,Fe,S,Mn,Mo,B,Cu,Zn,Cl ve Na elementleri mutlaka gerekli elementler olarak kabul edilmişlerdir. Bitki külünün gerek miktar gerekse içerdiği mineral madde miktarı üzerine etki eden ortam şartlarının en önemlisi su,sonrada ışıktır.Ayrıca zirai ortamları da dikkate aldığımızda gübrelemeyi üçüncü faktör olarak düşünebiliriz.Bunlardan suyun habitattaki miktarı kül ve külde bulunan elementleri miktarı üzerine önemli etki yapar.Su kapsamı yüksek topraklarda yetiştirilen patates yumrularında Cl,Ca ve S’nin önemli miktarda arttığı görülmüştür.Ancak ilginç bir durum yapraklarında Cu ve Cl’nin azaldığı yönündedir.Yulafta fazla su K ve P’nin artmasına,Ca’nin azalmasına neden olmuştur.Toprağa verilen su miktarının da artması buğday toprağında yapılan bir deneyde kül miktarını artırdığı gözlenmiştir.Toprağın 12,5-87,5 cm arasında su muhteviyatı kül miktarını kademeli olarak artırdığı ancak 87,5 cm’den daha fazla verilen sulama suyun kül üzerine etkisi zıt yönde olmuştur. Bilindiği gibi ışıksız ortamda yetiştirilen bitki her ne kadar kökleriyle topraktan mineral madde alarak kül miktarını artırır ise de bu maddelerin çok az bir kısmı organik madde yapımında kullanılır.Büyük bölümü ise yani ihtiyaç fazlası elementler,bitki bünyesinde doğrudan sekonder olarak birikir.Böylece bünyelerindeki kül miktarı artar.Oysa bol ışık karşısında yetişen bitkiler fotosentez yoluyla mineral maddeleri organik madde yapımında kullandığı için doğrudan sekonder birikim söz konusu değildir. Böylece ışık ortamındaki bitkilerin biriktirdiği anlamda yüksek oranda kül oluşturmazlar. Yapılan deneyler gübrelemenin bitki külü üzerine en fazla etkisi bilhassa baklagiller ve çapa bitkileri üzerinde görülmüştür.Arpa ve buğdayda az,çavdar da ise en az etkilidir.Toprağa verilecek gübre miktarı belirli bir düzeye kadar bitkilerde külün artmasına neden olurken bu miktardan sonrası kül miktarını etkilemez (Minimum Yasası). Külde bulunan mineral maddeler arasında da dikkate değer ilişkiler görülmüştür.Genellikle küldeki K ve Na arasında orantı değişiktir.Fakat bitkiler arasında belirli bir ayırım görülmemekle beraber Ca ile K arasında belli bir ilişki vardır.Bunlardan birisi arttığında diğeri azalır.Kimi bitki külünde Na ve Cl arasında da bir ilişki belirlenmiştir.Bu ilişki daha çok Na’nın artması durumunda Cl miktarında azalma şeklindedir. Bitkilerin küllerinde yapılan çok çeşitli analizlerle,doğada bulunan elementlerin hemen hemen tümünün bitkilerde mevcut olacağı ihtimali uyanmıştır.Burada deneye tabi tutulan her farklı bitki türünün bir öncekinden farklı elementleri kapsadığı görülmüştür.Analizlerin en önemli dayanağı bazı elementlerin her bitki türünde mutlaka mevcut olduğu,bazılarının ise genelde çok az bulundukları yine bir kısmının da tamamen iz durumda olduğu belirlenmiştir.Buna göre bitki bünyelerindeki elementleri makro elementler ve mikro elementler olmak üzere 2 grupta toplamak mümkündür: 1)Makro(Esas) Elementler:Yapılan deneysel araştırmalara göre,bitkilerin normal büyüme ve gelişmeleri için hangi miktarda alınmaları gerektiğine ve buradaki etkinliklerine göre elementler hassas bir şekilde belirlenmiştir.Buna göre makro elementler; a)Bitkideki miktarı 30.000-60.000µ/gr kuru ağırlığı ya da % 0,1-6,0 kuru ağırlık oranında bulunmalıdır. b)Bitkilerde büyüme ve çoğalma için temel olmalıdır.Mevcut olmaması halinde bitkide büyüme ve çoğalma meydana gelmemelidir. c)Bitkilerdeki etkisi spesifik ve kesin olmalıdır.Kendine öz etkisi başka bir element tarafından telafi edilmemelidir. d)Bitkilerdeki etkisi doğrudan olmalıdır.Dolaylı yollardan sağlanmamalıdır. Birçok araştırmacı tarafından bu dört kritere uygunluk gösteren C,H,O,N,P,K,Fe,Mg,Ca ve S diye ifade edilen on element,bitki için esas element olarak kabul edilmiştir. 2)Mikro(İz) Elementler:Bu elementler bitkiler için mutlaka gerekiyor ise de yukarıdaki kriterlere tam olarak uymadığı için makro elementler sınıfına girmezler.Çünkü bu grup elementlerin diğer bir özelliği de eksiklikleri kadar fazlalıkları da zararlıdır.Üstelik fazla miktarda bulunmaları toksik etki yapar.En önemlileri; Cu,Mn,Zn,B ve Mo’dur.Ayrıca I,Li,Arsenik,Sl,Ba,Br,Se,Cr,Cl,Co,Ni,Si,St,Sn,Ti ve Va elementleri de diğer grup elementleridir.Günümüzde yapılan hassas deneyler bu elementlerin varlığı ve miktarının bitki türüne göre değiştiğinin,her yeşil bitki için özellikle son grubun gerekli olmadığını göstermiştir.Ancak;B,Mn,Cu,Zn ve Mo gibi 5 elementin genellikle bütün yeşil bitkiler için gerekli olan iz element oldukları kabul edilmiştir. Sonuç olarak;ister mikro isterse de makro elementler olsun bitkilerdeki rollerin esas oluşun tespiti için su kültürleri denilen deneyin yapılması gerekmektedir. Su kültürleri deneyinde bitkiler doğrudan farklı minerallerin eriyiklerinde yetiştirilir.Böylece deney bitkilerinde hangi mineralin daha önemli,hangisinin daha az önemli ya da önemsiz olduğu belirlenmiş olur. Su kültürleri deneyi sonucunda on tane makro elementin bitkilere kesin olarak verilmesi kararlaştırılmıştır.Su kültürlerinde bir veya birkaç elementin eksik olması bitkinin yetişmesine imkan vermez.Su kültürlerinde eksik olan elementlerin etkilerini göstermek için yulaf bitkisindeki deney şu sonuçları vermiştir:Çözelti Kuru Ağırlığın ArtışıTam Çözelti 138 defaMg Eksik 5 defaK Eksik 9 defaCa Eksik 1 defaFe Eksik 7 defaP Eksik 6 defaS Eksik 5 defaTütünde yapılan çalışmalarda; N noksanlığında üst yaprakların açık sarı,orta yaprakların sarı ve alt yaprakların ise kuru olduğu gözlenmiştir. P eksikliğinde de yapraklar koyu yeşil bir renk almaktadır. K eksikliğinde ise;yaprak uç ve kenarlarında klorozis(sararma),yer yer kuruma ve tamamen kuruyup dökülme görülür. Ca eksikliğinde yapraklarda normal yeşil renk olmasına rağmen yapraklar biçimsiz ve kırıntılı bir yapı gösterir. Mg eksikliğinde;bitkinin alt yaprakları tamamen sararır.sadece yaprak damarı yeşil kalır. Fe yeterli olmadığı topraklarda yetişen bitkilerin genç yaprakları tamamen sarı-beyaz bir renk alır. Fakat damarlar yeşildir.Su kültürleri,gübreleme tekniğinin ilk ve temel ilkelerini vermesi bakımından çok önemlidir.Çünkü bu teknikte gübrelerin tarımsal değeri,hangi bileşimdeki gübrelerin verilmesi gerektiğini ortaya koyuyor.Her bitki yaşadığı ortamdan bazı mineral maddeler alarak azaltır.Bu maddelerin hangi oranda azaldığının bilinmesi ve habitata o oranda verilmesi gerektiğini ortaya koyar.Aksi taktirde ürün miktarı gittikçe azalır. Zira bir bitkinin iyi bir büyüme-gelişme göstermesi ve bol ürün vermesi gerekli elementlerin tamlık (yeterlilik) derecesine bağlıdır.Liebig’in Minimum YasasıBir bitkinin büyüme,gelişme ve ürün verimi habitatın mevcut elementlerinin en az olanına bağlıdır. Buradaki az deyimi,bitkinin isteğine göre anlaşılan bir deyimdir.Yani genel olarak canlıların yaşayabilmesi için hücresel metabolizma gereği alınması zorunlu besin maddelerinin en azından minimum miktarda karşılaması gerekir.Buna göre habitattaki makro elementlerin hangisi en az ise,o az olan madde sınırlayıcıdır. Diğer maddeler yeterli olsa bile en az olan kadar diğer besin maddelerinden de faydalanırlar.Örneğin bitki için zorunlu makro elementlerden Ca,Fe,Mg ve N’den Ca bitkinin isteğine karşılık vermezse diğerlerinden de az yararlanır.Bitkilerin gelişmeleri buna göre düzenlenir.Yapılan araştırmalara göre;özellikle ekolojik toleransları yüksek olan bitkiler iz elementlerden eksik olanın yerine ona yakın özellik gösteren diğer elementi kullanarak eksik olan elementin sakıncalarını gidermektedir.Fakat bu durumun makro elementlerde yapılması mümkün değildir.Minimum yasasında iz elementlerin durumları daha farklıdır.Çünkü;ilk grup iz elementleri olan B,Mn,Mo,Cu ve Zn bitkilerin hatta aynı tür bitkinin farklı habitatlarda yetişenlerini farklı şekilde etkilemektedir.Örneğin aynı bitkinin (Dactylis glomerata) gölgede yetişeni güneşte yetişenlerine nazaran daha az Zn’ye ihtiyaç duyar.Aynı cinsin türlerinde de durum böyledir.O halde Zn elementi aynı bitkinin gölgede yetişen fertlerine güneşte yetişen fertlere nazaran daha az sınırlayıcı etki yapar. İzah:Bitkinin nişinde bulunan Ca,N,P ve K elementlerinin miktarına göre,bitkinin boyu;1. durumda 8 birim, 2.durumda 7 birim,3. durumda 5 birim ve 4.durumda 10 birimdir(birim oranı elementin önemini göstermektedir).Bitkinin boyu ile elementin önemi paralellik gösterir.BİTKİLERDE AZOT KAPSAMAYAN ORGANİK BİLEŞİKLER1)Karbonhidratlar 2)Lipitler Bunlar da karbonhidratlar,bitkide kuru maddenin yaklaşık %50-80’ini oluşturur.Kimi karbonhidratlar yaygın bulunmalarına rağmen,kimileri daha özeldir(Zarda olanlar).Yani türe özel,zar ve sitoplazmaya özel veya serbest ve depo maddesi şeklinde faaliyet göstermekte olan özel karbonhidratlar vardır.Karbonhidratların en ilginç yönü moleküllerin hızlı ve sürekli olarak birinin diğerine dönüşmesidir.Fizyolojik olarak aktif hücrelerde görülen bu dönüşüm ve parçalanma sonucu açığa çıkan enerji bitki hücrelerinde çeşitli sentez olaylarında kullanılır.Bitkilerde karbonhidrat dönüşümünü çok sayıda faktör etkiler:a) Sıcaklık:Düşük sıcaklık bitki hücrelerinde nişastanın şekere dönüşmesi için uygun bir ortamdır. Örneğin tüm yıl yeşil kalan bitkilerin yapraklarında soğuk aylarda çözünebilir karbonhidratlar birikirken,sıcak aylarda ise nişasta biriktirmektedir.Çok düşük sıcaklıklarda (donma noktasının biraz üstünde -2oC) saklanan patates yumrularında nişasta miktarı azalırken şeker miktarı (asal olarak sakaroz) artmaktadır.İşte kışın pazarlanan patateste görülen tatlı lezzetin nedeni bu açıklamadır.Yapılan araştırmaya göre patates yumrularında nişastanın şekere dönüşümü esasen fosforilizasyon sonucu ortaya çıkar.Düşük sıcaklıklarda saklanan patates yumrularında glikoz-1-fosfat yüksek iken normal şartlarda saklananlarda yok denecek kadar azdır.Bunlarda ise glikoz-6-fosfat fruktoz-6-fosfat bulunmaktadır.Nişastanın sentezi ve hidrolizi üzerine sıcaklığın etkisi bitki türüne göre önemli değişiklik gösterir.Olgunlaşan muz meyvelerinde nişastanın hidrolizi 21-26 oC’de hızlanırken 10 oC’de pratik olarak durmaktadır.b) Su:Solma noktasında su kapsayan bitki yapraklarında hemen hemen nişastanın tamamı şekere dönüşür. Genellikle bitkilerde suyun yeterli düzeyde bulunması ise nişasta sentezini olumlu yönde etkiler.O nedenle büyüme ve gelişme için bütün bitkilerde su muhteviyatı daima solma nokatsının üzerinde olmalıdır.c) Hidrojen iyonu konsantrasyonu (pH):Ortamın pH’sı enzimlerin faaliyetleri üzerine etkili olmak suretiyle karbonhidratların dönüşümlerini dolaylı olarak etkiler.Kuşkusuz ortamın pH’sı sadece enzimatik tepkimeler üzerinde değil,aynı zamanda da tepkimenin yönü üzerinde de etkili olmaktadır.Geri dönüşü olan karbonhidrat dönüşüm reaksiyonları daha çok stoma hücrelerinde görülmektedir.d) Şeker konsantrasyonu:Bitki hücrelerinde şeker konsantrasyonunun yüksek olması kural olarak nişasta sentezinin fazla olmasını,az olmasını da nişasta sentezinin yavaş olması sağlar.Fotosentezin yüksek düzeyde olduğu ve dolayısıyla bitkide fazla miktarda şekerin oluştuğu şartlarda artmaktadır.karşıt durumda azalmaktadır.Karanlık ortamda bırakılan bitkilerde nişasta miktarı süratle azalır.Çünkü fotosentez yapamadığı için su alıp nişastayı glikoza çevirip harcar.     Günümüzden 4000 yıl önce Mısırlılar sedir ağacının kuru distilasyonu ile sedir katranı elde etmişlerdir. Benzer üretim tekniği antik çağlarda Çinliler, Hintliler, Persler, Yunanlı ve Romalılar tarafından da kullanılmıştır. Orta çağda ilk olarak İbni Sina tarafından uygulanan su buharı distilasyonu tekniği ile uçucu yağ üretimi daha da geliştirilmiş ve ürün çeşitliliğinde de büyük artmalar gözlenmiştir. Özellikle 19. yüzyıldan başlayarak içerdikleri kimyasal bileşiklerin aydınlanması ve önemli ekonomik değerleri nedeniyle uçucu yağ üretiminde çok hızlı bir artış gerçekleşmiştir. Günümüzde 3000'den fazla uçucu yağın bileşimi bilinmekte ve 150'den fazla uçucu yağ ticari amaçla üretilmektedir. Bir deney tüpüne Triticum sp. meyveleri ve azot miktarını çoğaltmak için birkaç tane bezelye tanesi konur. Ayrıca tepkimeyi hızlandırmak için bıçak ucu kadar Ca(OH) 2 ilave edilir. Bu deney tüpü içinde mavi renkli kobalt klorürlü (CoCl2) ve beyaz renkli kurşun asetatlı (PbC4O4H6) filtre kağıdı bulunan I. yıkama şişesine bağlanır. Birbirine bağlı olan II. yıkama şişesine Nessler belirteci (K2HgI4) ve III. yıkama şişesine de baryum hidroksit konur. Nessler Reaktifi: Birinci Çözelti: 100 g civa iyodür (HgI2) ve 70 g potasyum iyodür (Kl) az miktarda amonyaksız saf suda çözülür. İkinci çözelti: 100 g sodyum hidroksit (NaOH) 500 ml amonyaksız saf suda çözülür. Birinci ve ikinci çözeltiler karıştırılıp 1000 ml’ye seyreltilir. Filtre edilir. Koyu şişede saklanır. Tüp bir ispirto ocağı ya da başka bir ısı kaynağı ile ısıtılır. Çıkan duman bu tüpe seri halde bağlı olan yıkama şişelerinden geçerken şişeler ya da belirteçlerde şu değişikler gözlenebilir. Sonuç: I. Yıkama şişesinde: a) Molekül rengi mavi olan CoCl2'lü kâğıdı dumanda bulunan su buharı etkisiyle iyon rengi olan ....................................... renge dönüştürür. Böylece H ve O varlığı kanıtlanmış olur. b) Beyaz renkli kurşun asetatlı kağıdın S'den dolayı PbS oluşmasıyla ................................ renk gözlenir. II. yıkama şişesinde: Bu kaptaki Nessler belirtecinin rengi gaz karışımı geldiğinde ........................ olur. Bu da bize N'un varlığını gösterir. III. yıkama şişesinde: Bu kapta bulunan Ba(OH) 2'de gazın gelmesi ile reaksiyona girer ve ..............................renkli BaCO3 oluşur. Bu sonuç ta C varlığını kanıtlamış olur.      

http://www.biyologlar.com/kuru-distilasyon-yontemi

Dünyamızın Esrarengiz İşçileri

Mikroorganizmalar sularda ve fabrikaların sıvı artıklarında bulunarak besin maddelerinin pislenmesine yol açarlar. Ama aynı zamanda, katı veya sularda erimiş halde bulunan organik artık maddelerin ortadan kalkmasını da sağlarlar. Mikropların tesiriyle artıkların parçalanmaya uğraması, sanayi mikrobiyolojisinin dünya üzerinde gerçekleştirdiği en mühim işlerden biri olacaktır. Kullanılmış suların arıtılması, sadece sağlık bakımından değil, su tasarrufu bakımından da büyük ehemmiyet arzeder. Biyolojik arıtmanın birinci devresinde elde edilen artıklar, sindirici bir makineye konularak mayalanmaya bırakılır ve neticede de metan gazı elde edilir. Bu gaz, şehir hava gazına karıştırılarak yüksek bir yanma gücü elde edilmiş olur. Sindirilmiş artıklarda birçok besleyici madde vardır. Bugün kullanılmış sularda tek hücreli çeşitli yosunların yetiştirilmesi konusunda, birçok ülkede mühim çalışmalar yapılmaktadır. Meselâ, Japonya'daki bir fabrikada yosunlar, kullanılmış suların karbon gazını almakta ve böylece temiz su istihsali sağlanmaktadır. İlk denemelerin yapıldığı bu fabrikada, günde 27 kilo yosun ve 908.781 kilo arıtılmış su üretilmektedir. Bu yosunlar yoğunlaştırılarak hayvan yemine katılmaktadır. Ayrıca Prag Mikrobiyoloji Enstitüsüne bağlı bir araştırma merkezinde de, buna benzer denemeler yapılmaktadır. Kullanılmış suların arıtılması yoluyla elde edilen katı artıklar ve ev çöpleri, hususi bu iş için kurulmuş fabrikalarda mayalandırılabilir ve böylece organik maddeler bakımından zengin gübre mayaları elde edilebilir. Avrupa ülkelerinde, ev çöplerinin miktarı, adam başına ve günlük olarak 650 ila 1000 gram arasında değişir. Brezilya'da tropikal bölgede, şehir kesimlerinde, adam başına ve günlük olarak 600 gram; Fas'ta, Rabat'ta ise, 500 gram olarak tesbit edilmiştir. Tropikaltı ve tropik bölgelerinde, kasaba ve köylerde ise, küçümsenmeyecek ölçüde azalma görülür. Buralarda adam başına, günlük ortalama 250 gramdır. Taze çöplerin bir gramında milyonlarca tek hücreli canlı bulunur. Bunların ameliyelerden geçirilmesi çeşitli zamanlarda olur. Sonunda, hastalık yapan mikroplar ve parazitler ölür; elde edilen gübre mayası da, antibiyotik maddeler ve toprak mikroplarının düşmanı olmayan tek hücreli organizmalar kalır. Çöplerin bu ameliyeden geçirilmesinde, 40 kg. maya elde etmek için 100 kg. çöp kullanmak gerekir. Gübre mayası kullanımının dozları değişiktir. Hektar başına 20 ila 40 ton arasında. Şerbet, toprağın fizik özellikleri üzerinde ödemli bir tesir yapar. Kumlu topraklara döküldüğü zaman, bu toprakların suyu ve gübreyi tutabilme kabiliyetini güçlendirir ve böylece verimi artırır. (Meselâ narenciye söz konusu olduğu zaman, % 15 ile % 20 arasında bir artış sağlanır) Hatta, yoğun toprakların su geçirebilirliliğini sağlar ve yağmur mevsiminde çamura dönüşmesine mani olur. Bayırlarda ise, önemli ölçüde erozyonların önüne geçer. 100.000 ile 150.000 kişilik şehirden, günde 50 ile 100 ton arasında çöp çıkar. Bu, günde 17 ile 25 ton arasında gübre mayası demektir. 200 ile 300 hektar arasında bir toprak için bu miktar gübre mayası yeterlidir. Bu gün, bakır, nikel, krom, kalay ve molibden bakımından zengin maden filizlerinin pek güç bulunduğu bilinmektedir. Zengin olmayan filizleri, yoğunluk bakamından zengin veya orta derecedeki filizlerle tatbik edilen madencilik işlerinde arıtmak, pahalıya mal olmaktadır. Ama, suda veya sülfirik asitte erimiş bu madenleri çıkarmak için mikropları kullanma imkânı da vardır. On - onbeş yıl önce, Rio Tinto'da Thiobacillus ferroxidans'a benzeyen bir bakteri elde edildi. Bu bakteri nevi, daha önce, Pensilvanya kömür ocaklarında yapılan araştırmalar sırasında bulunmuştu. Bakteri, kömürdeki pritin yıkanması için kullanılan sulardan elde edilmiştir. Artık suların yüksek asitli olması, çevredeki bitkilerin kurumasına sebep olmuş ve bu alâka çekici hadise yıkanma olayının keyfiyeti üzerinde araştırmalar yapılmasına yol açmıştı. Daha sonra, Birleşik Devletlerde Bingham'da, bakır yüklü sulardan, buna benzer başka bir mikrop elde edildi. Laboratuvarlarda yapılan çalışmalar, en az sekiz madeni içine alan kükürtlü suların bu mikropların tesirinde kaldığını gösterdi. Bu mikrobiyolojik yıkamanın ehemmiyeti mevzuunda fikir vermek için Birleşik Devletler'de, 1965'de bakır madenlerinde 370 milyon ton cüruf elde edildiğini ve mikroorganizmaların faaliyeti neticesinde bu cüruftan elde edilen bakırın A.B.D.'nin 1966’daki bakır üretiminin % 10'unu sağladığını söylemek kâfidir. Bu yolla elde edilen bakırın tonunun 1000 dolara mal olduğu da bilinmektedir. Oysa, dünya piyasasında bu rakam 14.000 dolar kadardır. Demek ki, 1 milyon ton cürufta, % 0,3 oranında bulunan bakırın % 50 si elde edilebilirse, 600.000 dolarlık bir kazanç sağlanacaktır. Şimdilik mikrobiyolojik yıkama, ekonomik bakımdan verimli görünmektedir. Meksika, SSCB ve Birleşik Devletler gibi on ülke bu usulü kullanmaktadır. ''Tkioba siller" ve ''Ferrobakteriler'' brannit gibi bazı maden filizlerinden uranyum çıkarılmasında da kullanılabilir. Uranyum, uranil sülfat olarak çözülmüş durumuna geçer ve çeşitli şekillerde bu çözülmüş şeyden uranyum elde edilir. 1985'te uranyum ihtiyacının iki katına çıkacağı ve bundan dolayı biyolojik yıkama ile maden çıkarma yolunun çok faydalı olacağı tahmin edilmektedir. Kanada'da "Stanrock" ocaklarından bu yolla, ayda 7500 kilo uranyum elde edilmektedir. Madenciler mikropların tesirli olduğu ocak duvarlarını ıslatmakta, elde edilen çözülmüş şeyler toprak yüzüne aktarılmakta ve bundan uranyum çıkarılmaktadır. Böylece, pek değerli olmayan tonlarca maden filizinin taşınması gereği de ortadan kalkmaktadır. İsveç'te, içinde pek az uranyum bulunan geniş şist yatakları vardır. Bakterilerin dolaylı tesiri sayesinde, bu uranyum yoğun hale getirilebilmektedir. (Uranyum tonunun 30.000 dolar olduğu göz önüne alınacak olursa, masrafların pek yüksek sayılamayacağı kolaylıkla anlaşılır.) Batı Afrika'daki yataklardan altın çıkarılması konusunda da, dış beslenen bakterilerden faydalanılmaktadır. Butonolda eriyen ve bu bakteri tarafından oluşturulan organik bileşimde büyük ölçüde altın bulunmaktadır. İrkutsk'da, Değerli Madenler Enstitüsünde çalışan Rus araştırmacıları, altının erimesi ve çökmesiyle alâkalı biometalürjik usulleri incelemektedirler. Bu araştırmacılar, filizdeki altının % 30'unun yirmi saat içinde çıkarıldığını ve çözülmüş hale getirildiğini açıklamışlardır. Manganez çıkarılmasında kullanılan filizler, umumiyetle, manganit ve pirolüzit gibi oksitlerdir. İkinci durumda oksitlenme, Ferrobakteriler olarak bilinen Leptothriks ve Godionella çeşitleri tarafından gerçekleştirilir. Bazı madenlerin çıkarılması için mikroorganizmaların kullanılmasının çeşitli avantajları da vardır. Enerjiye hemen hiç, ya da pek az gerek duyulması, az yatırım, kullanılan âletlerin ucuz olması. Ama, bu, hayli zaman isteyen bir iştir. Bu yeni metodun verimli olabilmesi için, eskiden beri kullanılan, usûllerle birlikte veya onların ardından kullanılması şarttır. Ayrıca Mikrobiyolojinin bu tatbîkî yönünden, jeoloji, maden kimyası, biyokimya, mikrobiyoloji ve maden sanayi gibi dallarda ortaklaşa çalışmayı gerekli kıldığını da belirtmeliyiz. İlim ve teknik gelişmelerin varabileceği oldukça üst seviyeye yaklaştığı günümüzde, her yeni keşif; bize kâinatda yer alan madde ve canlı her şeyin yaratılmasında, insanı hedef alan bir gâyenin gözetildiğini, gözle görülmeyen en küçük bir canlının dahi -benzetecek olursak- insanın idare ettiği bir orkestrada, yerinin ve vazifesinin çok mühim olduğunu ve herşeyin önceden hazırlanmış bir program ve plânın düblörleri bulunduklarını bize göstermektedir.

http://www.biyologlar.com/dunyamizin-esrarengiz-iscileri

Miller-Urey Deneyi

Belkide günümüzde en çok yalanlanmaya çalışılan deney bu deneydir. Çünkü, ezici bir üstünlükle dört evre hipotezinin ilk maddesini açıklamaktadır. 1920 lerde Rusya’dan Oparin, ve İngiltere’den Haldane birbirlerinden bağımsız olarak, ilkin dünya koşullarının, ilkin atmosfer ve denizlerde bulunan inorganik öncül moleküllerden, organik bileşiklerin sentezlenmesini sağlayan kimyasal reaksiyonlar için elverişli olduğunu açıkladılar. 1953′te Stanley Miller ve Harold Urey, ilkin dünya için bilim adamlarının önermiş olduğu koşullarla karşılaştırılabilecek koşulları laboratuvarda yaratarak, Oparin-Haldane hipotezini test ettiler. Yapılan deneyde atmosfer olarak H2O, H2, CH4 ve NH3 kullanılmıştı. Sonuç olarak deney düzeneğinde, çeşitli aminoasitler ve günümüzde yaşayan organizmalarda bulunan diğer organik bileşikler elde edildi. Bir çok laboratuvar bu deneyi değişik atmosfer koşullarını taklit ederek tekrarladı. Bu değiştirilmiş maddelerde de, verimin düşük olmasına karşın, organik bileşiklerin abiyotik sentezi gerçekleşti. KAYNAK: www.bilimfelsefedin.org

http://www.biyologlar.com/miller-urey-deneyi

Kelebekteki 30 milyon yıllık ışık teknolojisi

LED olarak isimlendirilen ışık yayan diyotlar (tek yöne elektrik akımını ileten bir devre eleman), genellikle elektronik aygıtların göstergelerinde ve arabaların stop lambalarında aydınlatma amacıyla kullanılmaktadır. Ancak normal LED’lerden çıkan ışık ile düzgün bir şekilde aydınlatma yapılamaz. Bilim adamları bunun nedenini ışığın düşük verimle yayılması olarak açıklamaktadırlar. Çatalkuyruklular, doğu ve orta Afrika’da yaşayan bir kelebek türüdür. Bu kelebekler ışığı yeni LED teknolojisindeki gibi kullanmaktadırlar. Afrika çatalkuyruklu kelebeklerin bu teknolojiyi 30 milyon yıldır kullandıklarını ilk duyuranlar İngiltere’deki Exeter Üniversitesi’nden Peter Vukusic ve Ian Hooper’dır. Bu kelebeklerin kanatları koyu renklidir ve üzerlerinde parlak mavi veya mavi-yeşil noktalar bulunur. Bilim adamlarını şaşırtan nokta, kelebeklerin kanatlarındaki pulların pigmentlerle aşılanmış iki boyutlu fotonik kristaller gibi davranması ve yoğun flüoresan ışık üretecek şekilde dizilmiş olmalarıdır. Kelebeklerin kanatlarına renk veren pigmentler, ultraviyole ışığını emerek renkli flüoresan lambalar gibi parlak mavi-yeşil ışık olarak geri yayarlar. Pigmentler kanat yüzeyi boyunca eşit dağılmış mikro deliklerden oluşan bir bölgede bulunur. Kanadın üzerindeki pulların içinde bulunan silindirik şekilli delikler, tam olarak yeni LED’lerde bulunan fotonik kristallere karşılık gelir. Eğer böyle olmasaydı kelebek kanatlarından yayılan ışığın çoğu kaybolacaktı. Kuvvetli LED’lerdeki teknoloji ile kelebeğin kanadındaki ışık yayma sistemi arasındaki benzerlik bu kadarla sınırlı değildir. Yansıtıcılar, üzerlerine düşen ışığı geri yansıtmak amacıyla kullanılan yönlendirme araçlarıdır. Bir yansıtıcı üzerine düşen ışığı ne kadar çok geri yansıtıyorsa o kadar kalitelidir. Kaliteli yansıtıcılar, özel malzeme ve optik bilgisi gerektirir. Çatalkuyruk kelebeğinin kanadı da bu tip yansıtıcılar ile kaplıdır. Kuşkusuz çatalkuyruklu kelebek, yansıtıcılar ile fotonik kristalleri bir arada kullanması gerektiğini düşünebilecek bir bilgi birikimi ve zekâdan yoksundur. Kelebeğin kanadındaki pulların altında, flüoresan ışığını yukarı doğru yansıtmaya yarayan bir çeşit ayna da bulunur. Bunlar kuvvetli LED’lerdeki “Bragg reflektörü” ile aynı işi görmektedir. Üstelik kelebeğin ışık sisteminde LED’lerdeki gibi kendi radyasyon enerjisini üreten bir yarı-iletken bulunmaz. Dr. Vukusic, BBC’nin internet sitesinde yer alan röportajında kelebekteki bu özelliğin, alınan verimi iki kat daha artırdığını söylüyor. Kaynak: news.bbc.co.uk/1/hi/sci/tech/4443854.stm Kelebek kanatları, ışığı yansıtan oldukça özel bir tasarıma sahiptir. Bu sayede, her zaman renkli, canlı ve parlak görünürler. QUALCOMM’S isimli bir firma, bu tasarımdan yola çıkarak; sürekli parlak ve canlı görüntü sunabilen cep telefonları ve navigasyon aletleri geliştirdiler. IMOD ismi verilen bu teknoloji sayesinde, güneşin en parlak olduğu saatlerde bile cep telefonu ekranlarını görebilmek, navigasyon aletlerinden “gölgeye ihtiyaç olmadan” yer tespit edebilmek mümkün oldu.

http://www.biyologlar.com/kelebekteki-30-milyon-yillik-isik-teknolojisi

Çevre Sorunlarının Oluşumu ve Yayılması

Çevre Sorunlarının Oluşumu ve Yayılması

Çevre sorunlarının gelişimine girmeden önce, dünyamızı ve ülkemizi tehdit eden bazı temel çevre sorunlarının üzerinde durmak gerekmektedir. Böylece, hem bu sorunların niteliği hem de bunlarla ilgili mevzuat ve bilincin gelişim tarihleri daha iyi izlenebilecektir. Aslında bu ayırımın kendisi dahi çevre sorunları gibi yenidir. Zira çevre sorunları ilk kez II. Dünya savaşı sonrası ortaya çıktığında, bunların son tahlilde sanayileşmenin bir sonucu olduğu ve sadece bulundukları bölgeleri ilgilendirdiği sanılıyordu. Böylece, bunlarla ilgili çözüm ve bilinç de bölgesel ve mahallî olarak düşünülüyordu. Çevre sorunlarının ortaya çıktığı bölge/ bölgelerde yaşamayan insanlar bu sorunlara ilgi duymadıkları gibi, çözümü konusunda da bir endişe hissetmiyorlardı. Ancak, çevre sorunlarının sebep olduğu bazı sonuçlarının evrenselliği anlaşıldıktan sonra global anlamda bir çevre bilinci uyanmaya başladı. İnsanlar ancak o zaman anlayabildiler ki: Tek bir dünyamız var. Hepimiz aynı gezegenin üzerindeyiz. Bir çevre düşünürünün kullandığı simge ile, aynı gemideyiz, Bu geminin batması ile hepimiz batacağız. Her ne kadar üst güvertede yaşayanlar daha çok sorumlu olsa da. Belirtildiği gibi, “çevre sorunlarının” insanlık üzerindeki etkilerinin tam olarak anlaşılması son yirmi yılda meydana geldi. Daha önceleri su ve hava kirlenmesi olarak görülen ve daha çok sanayi bölgelerinde rastlanan çevre sorunlarının, toksik atıklardan, ozon tabakasının incelmesine, tabiattaki biyolojik zenginliğin yok olmasına, yani bazı canlı türlerinin bir daha dönmemecesine yok olmasına, iklim değişikliklerine, deniz ve okyanusların kirlenmesine kadar uzandığı görüldü. Ayrıca çevre kirliliğinin sadece insanın maddî ve ruh sağlığını tehdit etmediği; medenîyet ve kültürel varlıkları da tehdit ettiği ortaya çıktı. Dahası bu sorunlar sadece zengin ve gelişmiş ülkeleri değil, gelişmemiş veya gelişmekte olan ülkeleri de aynı derecede etkilemektedir. Şimdi bu sorunların temel niteliğine dikkat çekmek istiyoruz. Zira bu sorunların bazıları global iken, bir kısmı bölgesel ve diğer bir kısmı ise mahallî sorunlar olarak karşımıza çıkmaktadır. Tüm insanlığı tehdit eden global çevre sorunlarının başlıcaları: İklim değişmesi, sera etkisi, ozon tabakasının incelmesi ve hızlı nüfus artışıdır. Dünyamız âdeta bir canlı gibi hassas eko sistemlerden meydana geldiğinden, global çevre sorunlarının sonuçlarından tüm canlılarla beraber insanlar da etkilenmektedirler. Bu nedenle, bu sorunlar sadece meydana çıktıkları yerlerdeki insanları ve çevreyi tehdit etmiyorlar. Tüm insanların sağlığını ve geleceğini tehdit ediyorlar. Bölgesel Çevre Sorunları ise, daha çok ortaya çıktıkları bölgedeki eko sistemleri ve dolayısıyla insanları tehdit eden sorunlardır. En önemlileri ise, Eko sistemlerin tahribi ve Biyolojik zenginliğin kaybolmasıdır. Mahallî Çevre Sorunlarına gelince, bunlar daha çok ortaya çıktıkları yerleri tehdit eden sorunlar olup başlıcaları: Atık Maddeler (Çöpler), Sanayi ve Kimyasal Atıklar ve Zehirli Atıklardır. Birkaç yıl öncesine kadar çevre sorunları konusunda bazılarını aydınlatmak bazen zor olabiliyordu. Yerel yönetimleri ve yetkilileri uyarmak için bilimsel raporlara ihtiyaç duyuluyordu. Bir çok insan ise çevre sorunlarını ciddîye almıyordu. Ancak, günümüzde herkes bir şeylerin ters gittiğini bizzat kendi beş duyusuyla tecrübe edebiliyor: Kirlenen hava, su ve denizin yanında; yok olan ormanlar ve buralarda yaşayan canlılar. Bunların bir sonucu olarak değişen iklim. Bir yandan kavurucu sıcaklar, bir yandan sel felâketleri. Son birkaç yıldır âdeta Hz. Nuh’tan bu yana yaşanan en büyük sel felâketlerine şahit olunmaktadır. Çevrenin tahribine seyirci kalan, başka bir ifadeyle çevreyi bilinçsizce tahrip eden; ondaki ilahi denge ve ahengi göz ardı eden modern insan, bunun bedelini çok pahalıya ödemektedir. Bunun en tipik örneği, ülkemizin bazı bölgelerinde aşırı ağaç ve orman kesimlerinin neden olduğu felâketlerdir. Ağaçların ve ormandaki ekolojik yapıların suyu tutucu ve erozyonu önleyici rolünün gözardı edilerek, bu ağaçlar kesilmiş; böylece yağan yağmurlar sellere ve çamur deryalarına dönüşmüştür. Bunun tipik örnekleri ülkemizin bir çok yerinde özellikle de Senirkent, Zonguldak ve Trabzon’da meydana gelmiş; trilyonlarca maddî zararın yanında, tamir edilemez çevresel zararlara sebebiyet vermiştir. Artık herkes, çevrenin ve ekolojik dengenin bozulmasının sebep olduğu ve olabileceği sorunlarla ilgili olarak ilk elden tecrübe ve deneylere sahiptir. Burada Rum suresinin 41. Âyeti gerçekten anlamlıdır: İnsanların bizzat kendi işledikleri yüzünden karada ve denizde düzen bozuldu. Allah, belki pişmanlık duyup dönerler diye, yaptıklarının bir kısmının cezasını onlara dünyada tattıracak. Şimdi global, bölgesel ve mahallî olarak dünyayı ve ülkemizi tehdit eden bazı önemli çevre sorunlarına kısaca değinmekte yarar bulunmaktadır. Hava Kirliliği ve Asit Yağmurları İnsanların faaliyetleri sonucu meydana gelen üretim ve tüketim faaliyetleri sırasında ortaya çıkan atıklarla hava tabakası kirlenerek, yeryüzündeki canlı hayatını tehdit eder bir konuma gelir. Yeryüzündeki canlı hayatın sürmesi için vazgeçilmez bir yere ve öneme sahip olan hava tüm hayatı etkileyecek biçimde endüstriyel artıklarla değişik yollardan kirlenmektedir. Bu kirlenme ilk kez 1940-1950’li yıllarda gelişen sanayileşmenin bir sonucu olarak dünyanın çeşitli şehirlerinde havanın aşırı kirlenmesiyle görülmeye başlandı. İşte bundan dolayı “insanlar tarafından atmosfere karıştırılan yabancı maddelerle hava bileşiminin bozulmasına” hava kirliliği denildi. Dünya Sağlık Örgütü’ne göre: “Hava kirliliği, canlıların sağlığını olumsuz yönden etkileyen veya maddî zararlar meydana getiren havadaki yabancı maddelerin, normalin üzerindeki yoğunluğudur.” Hava kirliliğine yol açan unsurlar ya doğrudan fabrika bacalarından, egzoz gazlarından havaya karışıyor yada havadaki diğer gazlarla birleşerek, havanın kirlenmesine yol açıyor. Ayrıca sanayi işletmelerinin çıkardığı baca gazları havadaki oksijen ve su buharı ile birleşerek, bir dizi kimyasal reaksiyonlar sonucu asit yağmurlarına dönüşür. Asit yağmurları toprağın yavaş yavaş asitlenmesine yol açarak, ağaçların ve bitkilerin topraktan beslenmesine engel olur. Asit yağmurları ayrıca çeşitli yollardan sulara karışarak, sulardaki canlıların hayatını da etkiler. Havadaki karbon tozları, katı parçacıklar, karbonmonoksit, kükürt dioksit, doymamış hidrokarbonlar, aldehitler ve diğer kanserojen maddeler insanlarda solunum yolları hastalıkları, nefes darlığı ve akciğer kanseri gibi değişik hastalıklara yol açarlar. Sanayileşme ile büyük hız kazanan hava kirlenmesi özellikle büyük kentlerin çevresinde yoğunlaşmaktadır. Çünkü büyük kentler ve onların çevresinde yoğunlaşan üretim ve tüketim faaliyetleriyle artıklar hızla çoğalıyor. Ayrıca egzoz gazları, trafik tıkanıklıkları ve gürültü de hayatın kalitesini hızla düşürmektedir. Havanın gaz halinde ve sürekli hareket içinde olması rüzgarlarla kirlenmeyi yeryüzü ölçüsünde yaygınlaştırıyor. Bu bağlamda en çok zararı ise ormanlara veriyor. Büyük kentlerde alt yapı yatırımlarının hazır olması, deniz, hava ve kara yolu ulaşımının kolaylığı yatırımların büyük kentlerin çevresinde yoğunlaşmasına yol açıyor. İşgücü ve pazar açısından çok uygun olan büyük kentler, üretim ve tüketim faaliyetlerinin en yoğun olduğu yörelerdir. Bu yoğunluk, hava kirlenmesinin büyük kentlerde ileri boyutlara ulaşmasına neden olmaktadır. Bütün bunların en önemli sebeplerinden birisi sanayi ve teknolojilerimizin bir sonucu olan asit yağmurları. Uzmanların bildirdiklerine göre bunun kaynağı sanayi kuruluşlarıdır. Özellikle termik santrallerin bacalarından çıkan dumanların içinde bol miktarda kükürtdioksit ve azot oksit gibi gazlar bulunmaktadır. Bunlar atmosferdeki nem ile birleşince yakıcı asitlere (sülfirik asit, nitrik asit vb.) dönüşmekte kar, yağmur, sis yağışlarıyla da yeryüzüne ulaşmaktadır. İşte bunlara asit yağmuru deniliyor. Asit yağmurları, göller ve nehirler gibi sular dünyasına düştüğünde bunların asitlik derecesini arttırır. Balıklar sudaki asitlik değişimine çok duyarlı oldukları için böyle sularda yaşayamazlar. Gerçekten de, Baltık ülkelerindeki göller İngiltere’deki ağır sanayi bölgelerinden kaynaklanan asit yağmurları ile asitleşmiş ve bu göllerde birçok balık türü ortadan kalkmıştır. Asit yağmurları hayvanlar ve bitkiler gibi canlı varlıklara zarar vermekle kalmaz, taşınmaz kültür varlıklarını da olumsuz yönde etkiler. Örneğin, kent içi ya da kent dışındaki tarihî binalar, açık hava müzeleri, binlerce yıllık antik kentlere ait yapılar veya Nemrut dağında olduğu gibi taş anıtlar asit yağmurlarıyla yıpranmakta ve dağılmaktadır. Asit yağmurları bitki toplumlarının, örneğin geniş ormanların toprak üstü kısımlarında yakıcı zararlar oluşturduğu gibi, toprakların yapısını da bozmakta, toprak içindeki bitki köklerinin hastalanmasına ve toprağa can veren mikroorganizmaların ölmesine neden olmaktadırlar. Suların Kirlenmesi Hava gibi su da hayat için vazgeçilmez bir yer ve öneme sahiptir. Dünyanın yaklaşık olarak, dörtte üçü sularla kaplıdır. Dünyadaki suların yalnızca %3’ü tatlı su, geri kalanı ise tuzludur. Tatlı suların büyük bir kısmı da dağ doruklarında kar ya da kutuplarda buz halindedir. Suların kullanılmaz hale gelmesi, hayatın kaynağının kuruması, canlı hayatın yok olmasıdır. Su kaynaklarının kullanılmasını bozacak veya zarar verecek derecede niteliğini düşürecek biçimde suyun içerisinde organik, inorganik, radyoaktif ve biyolojik herhangi bir maddenin bulunmasına su kaynaklarının kirlenmesi denilmektedir. Başka bir ifade ile, sanayi artıklarının ve kanalizasyon sularının deniz, göl ve nehirlere karışması suların özelliklerini, kalitesini büyük ölçüde yok etmektedir. Suyun kalitesi, rengi ve kokusunun değişiminin ise sulardaki canlı hayatı etkilediği görülmektedir. Bunun sonucu olarak da sularda yaşayan canlıların türü ve sayısı her gün giderek azalmaktadır. Eskiden kaynak veya nehir suları her birkaç kilometrede kendi kendini temizleyerek kirlilik sorununu tabiî bir şekilde çözüyordu. Bugün ise nehirler kaynağından denize döküldüğü koylara gidinceye kadar sürekli kirlenmekte ve kendi kendine doğal olarak temizlenmesi mümkün olamamaktadır. Su kirlenmesinde sanayi kuruluşlarının etkisi büyüktür. Sanayi işletmeleri üretim teknolojisinin bir gereği olduğu kadar, üretimdeki maliyetleri de minimuma indirebilmek için, su kaynaklarına ve kentlere yakın yerlerde kuruluyor. Fabrikaların kuruluş yeri seçimine etki eden çok sayıda unsur varsa da en önemli olanlar hammadde kaynakları ile pazara olan yakınlıktır. Öte yandan, kağıt ve kimyasal madde üretimi de petrol gibi sanayilerin göl ya da deniz kenarlarında kurulması, üretim maliyetlerini büyük ölçüde düşürmektedir. Ancak sanayi işletmelerinin denizlerin ve göllerin yakınında kurulmasının bir sonucu olarak denizler ve göller hızla kirlenmekte, ayrıca bu sularda yaşayan canlı sayısı da hızla azalmaktadır. İzmir, İzmit ve Gemlik körfezleri artık canlıların yaşaması için elverişli değil. Bursa, İstanbul ve İzmit çevresinde ise tarımsal üretimin durma noktasına geldiği görülmektedir. Bunlar ülkemizdeki çevre kirlenmesinin boyutlarını gösterme açısından önemli örneklerdir. Dünyadaki mevcut su miktarı yaklaşık 1400 km3’tür. Bu ne azalır, ne de çoğalır. Ayrıca teorik olarak, dünya tatlı su kaynakları bugünkü nüfusunun çok daha fazlasının ihtiyaçlarını karşılayacak güçtedir. Ancak birbirinden farklı olarak suların dağılımı, yağışlar, nüfus yoğunluğu, arazi seviyesi ve son olarak su kirlenmeleri sonucu birçok ülkede su kıtlığına neden olmaktadır. Toprak Kirlenmesi ve Erozyon Gezegenimizdeki hayatın bir diğer kaynağı ise topraktır. Toprak kirliliğiyle, “çevrenin bir bileşeni olan toprağın, insanlar tarafından özümleme kapasitesinin üzerindeki miktarlarda, çeşitli bileşikler ve toksik maddeler ile yüklenmesi sonucunda anormal fonksiyonlar göstermesini” anlıyoruz. Toprak bitki örtüsünün beslendiği kaynakların ana deposudur. Toprağın üst tabakası insanlarla birlikte diğer canlıların da beslenmesinde temel kaynaktır. “Dünyanın üst derisi” olarak da anılan, “toprağın üst tabakası”nın önemi sanıldığından büyüktür. Toprak kayması ve erozyonla yok olan üç santim toprağın yeniden oluşması yüzyıllar sürebilir. Özellikle erozyon sonucu ülkemizin çok verimli toprakları yok olmaktadır. Ülkemizin topraklarını tehdit eden erozyon felâketi, içinde bulunduğumuz son yüzyılda artarak devam ediyor. Erozyon sonucu her yıl yaklaşık 500 milyon ton verimli toprağımız akarsularla ve rüzgârlarla denizlere veya başka ülke sınırlarına taşınıyor. Bu rakamın büyüklüğünü kamuoyuna daha çarpıcı bir şekilde ifade edebilmek için bilim adamları, her yıl erozyonla yitirilen toprağın, Kıbrıs adası büyüklüğünde ve 20 cm. kalınlığında bir kitle oluşturduğunu vurguluyorlar. Üstelik erozyonun, toprağın verimliliğini sağlayan, mikroorganizmalarını barındıran, besin maddesi sağlayan çok değerli hayatî kısmını taşıdığını düşünürsek, önümüzdeki yıllarda ülkemizi ne kadar ciddî bir beslenme sorununun beklediğini tahmin etmek zor olmasa gerek. Yok olan toprağın geri kazanımı ise -şimdilik- mümkün görülmemektedir. Özellikle erozyonun neden olduğu toprak kaybını vurgulamak gerekmektedir. Erozyon, toprağın suyu tutabilme yeteneğini azaltır, besleyiciliğini tüketir, köklerin tutunabileceği derinliği de kısaltır. Toprak verimi düşer. Erozyona uğramış üst toprak nehirlere, göllere, rezervuarlara taşınır; limanlara su yollarına çamur yığar, su depolama kapasitesini azaltır, sel olaylarını sıklaştırır. Bitkiler ve hayvanlar birbirini toprağın üst tabakasına dayanarak besler. Bitkiler hayvanların yaşaması için gerekli oksijen ve su buharını sağlar. Ayrıca bitkiler, insanlarla birlikte tüm canlıların ihtiyacı olan güneş enerjisini toplar. Dahası toprağa aşırı miktarda verilen kimyasal gübreler ve diğer endüstriyel atıklar, toprak ile birlikte suların doğal yapısını bozmaktadır. Diğer yandan ise, sanayi kuruluşlarının çok geniş alanlara yayılması yüzünden tarıma elverişli toprakların hızla azaldığı görülmektedir. Yeryüzündeki her canlı hayatını sürdürebilmek için, başka canlılara dayanır. İnsanlar da varlıklarını sürdürebilmek için diğer canlılara muhtaçtır. Bu yüzden, insanlığın varlığının devam edebilmesi için, önce havaya ve suya, sonrada toprağa ihtiyaç vardır. Ormanlar İnsanlar, üç- dört bin yıl kadar önce tarıma başladıklarında yeryüzünde yaklaşık 6 milyar hektar ormanlık arazi vardı. Bugünse, 1.5 milyarı balta girmemiş orman olmak üzere geriye sadece dört milyar hektar kalmıştır. Ormanların yok oluşu sürüyor. Ormanların gitgide azalmasından, sadece kereste ve kağıtlık odun üretiminin düşeceği gibi bir sonuç çıkarmak yanlış. Ormanlar ticarî ölçütlere vurulamayacak kadar değerli kaynaklardır. Ormanların başlıca fonksiyonları: Toprak oluşturur, İklim dengesizliklerini yumuşatır, Yağışlı fırtınalara set çekerek su taşkınlarını ve selleri önler, kuraklık tehlikesine engel olur. Şiddetli yağmurların toprağı aşındırmasını, toprağın sıkılaşmasını, kumsalların çamurlaşmamasını sağlamakla kalmazlar, bütün canlıların yaklaşık yarısını bünyelerinde barındırırlar. Ormanlar dev boyutlarda bir karbonmonoksit kütlesi oluşturarak atmosferdeki karbonmonoksitle dengeyi sağlar ve sera etkisini önlerler. Ormanlar, kısa vadeli kazançlar uğruna yok ediliyor. Ancak çok büyük para ve çabayla tekrar yerine konulabiliyor. Ozon Tabakasının İncelmesi Sanayileşmiş ülkelerde yeryüzü kaynaklarının kontrolsüz harcanması sonucu ozon tabakasının tahribi, asit yağmurları, sera tesiri, hava, kara ve denizlerin kirlenmesine, ormanların ve tarım alanlarının azalması hayat alanını giderek daraltmaktadır. Ozon tabakasının incelmesinin başlıca tehlikesi cilt kanserlerinin artmasıdır. Sera etkisinin temel nedeni ise petrol ve kömür gibi fosil yakıtların kullanımıdır. Bu durumunun zamanla oluşturabileceği muhtemel neticeler arasında atmosfer ısısının artması, buzulların erimesiyle deniz seviyelerinin yükselmesi, karaların azalması, kuraklık ve dolayısıyla gıda kıtlığı tehlikesi sayılabilir. Ayrıca, inşaat materyali, sentetik malzemeler içeren mefruşat ve çeşitli tüketim ürünlerinin (boya kâlemleri, inceltiler, cila, vernik...) içerdikleri bileşikler ev içi havasını kirleterek sağlık açısından zararlar oluşturabilmektedir. Asbest ve kurşun içeren boyalar bilhassa sağlık açısından tehlikeli olmaktadır. Kimyasal Atıklar Günlük hayatımızda çokça karşılaştığımız çevre sorunlarının birçoğu kullandığımız bazı kimyasal ürünlerden kaynaklanmaktadır. Zira bilim ve teknolojinin sadece faydacılık anlayışı ile gelişmesi ekolojik sistemi tahrib etmekte, çevreye de sürekli şekilde yeni kimyasal maddeler sağlamaktadır. Kimyasal maddelerin aşırı üretimi ve tüketimi sonucu bugün artık kimyasal bir kaos yaşanmaktadır. Üretimi yapılan kimyasal bileşik sayısının 65 milyonu bulduğunu biliyoruz. Pek çok kimyasal madde, tehlikesinden habersiz olarak evlerimize; iş yerimize, gıdalarımıza ve vücudumuza girmekte; çevreye ve canlılara etkileri araştırılmaksızın kötü etkilerini sürdürmektedir. Endüstri ve kozmetik sanayiinde geniş çapta kullanılan florokarbon gazı, atmosferin koruyucu ozon tabakasını zayıflatmaktadır. Asbest liflerin uzun süre kullanımı çalışanlarda kanser oluşumuna neden olmuştur. Zararsız zannedilmiş olan analjezik ilaçların fazla kullanımı sonucu bu ilaçların böbrek yetmezliğine yol açtıkları görülmüştür. Geçmişte thalidomide adlı ilacın kullanılması kolsuz, bacaksız bebeklerin doğmasına neden olmuştur. Tarımda çok fazla tabiî ve sun’î gübre kullanımı zemin sularının kimyasal kirlenmesine neden olmaktadır. Kısacası, çevremizde ne kadar çok kimyasal madde varsa sağlığımız o ölçüde tehlikeye girmektedir. Özellikle atık suların nehirlere, göllere ve denizlere boşaltılması çok dramatik çevre sorunlarına neden olmaktadır. İzmit ve İzmir Körfezleri ile, yakın zamanlarda Sakarya nehrinde yaşanan kirlenmeler bunun en canlı örnekleri olarak zikredilebilir. Endüstriyel atık suların içerisinde bulundurdukları toksit maddeler, sudaki canlı yaşamının kısa sürede tükenmesine yol açmakta ve ekosistemi felç etmektedir. Ayrıca içme sularına karışmalarıyla önemli sağlık sorunlarına yol açtığını yukarıda belirtmiştik. Nüfus Artışı Çevre sorunları söz konusu olduğunda çokça tartışılan konulardan bir tanesi de nüfustur. Sorunun temel esprisi şudur: Dünyamızın kaynakları sınırlıdır. Dünya nüfusunun hızla çoğalması bu kaynakları tehdit etmektedir. Hele hele söz konusu nüfus dengesiz bir şekilde büyüyorsa, bunun dünyanın sınırlı kaynakları için büyük bir baskı ve tehlike oluşturacağı bilinmektedir. Gerçekten de nüfusun gelişimine bakıldığında, nüfus artışını bir “bombaya” benzetenlerin endişeleri daha iyi anlaşılabilir. 1991 yılı verilerine göre 135.963.100 kilometrekare olan dünyamız, halen 5.391.257.000 kişi barındırmakta ve beslemektedir. Tarihe bakıldığında nüfusun sınırlı kaynaklara göre ters orantılı olarak, yani geometrik olarak büyüdüğü görülmektedir. Zira, dünya nüfusu 16. Yüzyılda 500-600 milyon olarak tahmin edilirken, 20.yüzyılın başlarında bu rakam 1.7 milyara ulaştı. Yüzyılımızın sonlarına doğru ise (1985) 4.8 miyar oldu. Bu eğilim aynı şekilde devam ederse, dünya nüfusu 2000 yılında 6.1 milyara ulaşacak. Bu artan nüfusun dünyamızın sınırlı kaynakları için ciddî bir tehdit olduğu ileri sürülmektedir. Özellikle az gelişmiş ve gelişmekte olan ülkelerde nüfusun çevreye verdiği baskı ve tehdidin daha çok olduğu söylenmektedir. Genç nüfusa iş ve istihdam sağlamak için daha çok doğal kaynak kullanılmakta veya tüketilmektedir. Ancak bunun tam tersini söyleyenler de azımsanacak gibi değil. Yani, gelişmiş ülkelerin doğal kaynakları daha çok kullandığı ve tükettiği ileri sürülmektedir. Gerçekten de, az gelişmiş ve gelişmekte olan ülkelerde yaşayan insanların aylık/yıllık olarak tüketimleri, gelişmiş ülkelerdeki insanlarla karşılaştırıldığında, gelişmiş ülkelerde yaşayan insanların daha çok kaynak kullandığı veya tükettiği görülür. Bu da doğal kaynakları tüketme ve çevre sorunu/sorunları olarak karşımıza gelmektedir. Ayrıca artan nüfusun göçlere neden olduğu da bilinen bir gerçektir. İş ve daha iyi bir gelecek için, gelişmiş ülkelere, (Amerika ve Avrupa’ya) veya aynı ülke içerisinde, ancak sanayi kuruluşların bulunduğu şehirlere doğru bir göçün olduğu bilinmektedir. Bu göçün meydana getirdiği kültürel ve sosyal sorunların yanında, diğer önemli bir sorun ise, özellikle şehirlerin alt yapılarının yetersiz kalmasıdır. Bu yetersizliğin bir sonucu olarak da şehirlerde başta gecekondu olmak üzere birçok sorunların ortaya çıktığı görülmektedir. Burada unutulmaması gereken husus, dünyamızın kaynaklarının ve imkânlarının sınırlı olduğunun anlaşılmasıdır. Bilindiği gibi, sadece bu noktanın anlaşılması bile yenidir. Daha önceleri sınırsız ve liner büyüme ekonomilerini savunanlar, bugün dünyanın kaynaklarının sınırlı olduğunun iyice anlaşılmasıyla bunu savunamamaktadırlar. Yine, Sürdürülebilir kalkınma tartışmaları da bu noktada gündeme girmektedir. Yapılması gereken, gerek yöneticilerin ve gerekse insanların, hem ekonomi anlayışlarını, hem tüketim ve yaşayış biçimlerini yeniden sorgulamaları ve düzenlemeleri gerektiğidir. Dünyamızın ekolojik dengelerin tehdit etmeyen sürdürülebilir bir ekonomi anlayışını geliştirmek zorundayız. Çarpık Şehirleşme Sanayileşme ve şehirleşme, çevre sorunlarının ortaya çıkışında iki temel etken olarak ortaya çıkmaktadır. Zira, “endüstri kenti, barındırdığı nüfus açısından tarihin en kalabalık kenti olmuş, aşırı nüfus yığılmaları çevreyi bozucu etkiler doğurmuştur.” Bugün dünya nüfusunun %50’den fazlası şehirlerde yaşamaktadır. Bu nüfusun büyük bir kısmı genel olarak alt yapı hizmetlerinin olmadığı kalabalık ve sağlıksız kenar gecekondu semtlerinde yaşamaktadır. Tabiî çevrenin ortadan kalktığı; aşırı kalabalık ve gürültülü şehir hayatı beden ve ruh sağlığını büyük ölçüde etkilemektedir. Kompleks ve sağlıksız hayat şartlarına bağlı olarak alkolizm, ilâç tutsaklığı, uyuşturucu alışkanlığı, psikolojik bozukluklar, intiharlar, cinâyetler, kazalar, enfeksiyon hastalıkları artmaktadır. Yoğun araç trafiği; gürültü, hava kirliliği, stres, yorgunluk... gibi etkileriyle başlı başına şehirleşmenin önde gelen bir sorununu oluşturmaktadır. Prof. Dr. Rasim Adasal modern hayat durumlarına ve koşullarına bağlı bu bozuklukları toplum hastalıkları ve çağdaş medenîyet hastalıkları olarak isimlendirmektedir. Dahası trafik kazalarıyla her yıl milyonlarca kişi yaralanıp, sakatlanmakta ve, 300 bin kadar kişi de bu kazalarda ölmektedir. Çevre sorunları ve kirliliğinin bu sayılanlardan ibaret olmadığı açıktır. Bu nedenle her gün yeni kirlilik kavramları literatüre girmektedir: Siyasî kirlenme, dilin kirlenmesi, Ahlâkî kirlenme vs. İnsanlar sadece temiz bir çevreyi özlemiyorlar. Temiz bir çevreyle beraber, temiz bir ahlâk, temiz bir dil ve temiz bir siyaseti de özlüyorlar. Başka bir ifadeyle hem insanlarla ve hem de doğayla olan ilişkilerimizde temizin ve temizliğin nitelendirdiği yeni bir ilişkiler ağını talep ediyorlar. Tüm bunlardan ötürü yeni bir çevre ahlâkının geliştirilmesi ve sorumluluk şuurunun yerleştirilmesi bir ihtiyaç olarak karşımıza çıkmaktadır. Bu yeni anlayışa göre, insanın yalnız kendine karşı değil; aynı zamanda diğer canlılara, cansız varlıklara ve hatta gelecek nesillere karşı da sorumlulukları ve görevleri yeniden belirlenmeli ve vurgulanmalıdır. İnsan kendini tabiatın yağmacısı değil onu muhafaza ve geliştirmekle görevli bir emanetçi kabul etmelidir. Ünlü Rus yazar ve düşünürü A. Soljenistin’in dediği gibi: İhtiyaçlarımızı sınırlandırmanın zamanı geldi. Fedakârlık ve feragat göstermekte güçlük çekiyoruz; çünkü siyasal, kamusal ve özel hayatlarımızda kendimizi tutma, gemleme denilen altın anahtarı çoktan okyanusun dibine düşürdük. Ne var ki, özgürlüğüne kavuşan kişinin atacağı en birinci ve en akıllı adım budur. Özgürlüğü kazanmanın en emin yolu da budur. Dış olayların bizi buna mecbur etmesini, hatta bizi alt etmesini bekleyemeyiz. Bununla beraber unutulmaması gereken önemli bir nokta ise, toplumun ve çevrenin sağlıklı olması için insanların gıda, su, mesken, ulaşım ve iş gibi temel ihtiyaçlarının ekonomik şekilde halledilmesi gerekir. Ne yazık ki günümüz dünyası çok zengin küçük bir grupla (Kuzey), fakir olan büyük bir kitleye (Güney) ayrılmış haldedir. Yaşama ve ayakta kalma mücadelesi veren insanlardan çevre bilinci beklemek aşırı bir iyimserlik olur. KAYNAK: Yalnız gezegen, Yard. Doç Dr. İbrahim ÖZDEMİR, İstanbul:Kaynak Yayınları, 2001.

http://www.biyologlar.com/cevre-sorunlarinin-olusumu-ve-yayilmasi

Dogal Çevreyi Etkileyen Sorunlar

1. Hava Kirliligi 2. Su Kirliligi 3. Gürültü Kirliligi 4. Görüntü Kirliligi 5. Toprak Kirliligi 6. Hızlı Nüfus Artışı “Tanrı affeder, bazen insanlar da, fakat doga hiçbir şeyi affetmez.” William JAMES 1.Hava Kirliligi: Atmosferdeki toz, gaz, duman, is ve kokunun canlılara zarar verecek boyuta ulaşmasına hava kirliligi denir. Atmosfer; yerden rüzgârla kalkan tozlar, yanan kömür petrol ve odundan çıkan duman, araba egzozlarından çıkan kurşun ve karbon monoksit ve yanan kömürden çıkan kükürt dioksit ile kirlenmektedir. Özellikle fosil yakıtlardan çıkan karbondioksit gazı atmosferde sera etkisi yapmaktadır. Atmosferdeki karbondioksit gazı dünyadan geriye yansıyan uzun dalga ışınlarının hapsedilmesine ve troposferin ısınmasına yol açmaktadır.”Sera etkisi”diye nitelendirilen bu durum atmosferde farklılıklara neden olmaktadır. Deodorantlar, saç spreyleri, parfümler gibi tüplerdeki gazlara itici gücü veren CFC ( Kloroflorokarbon ) gazları ise atmosferde serbest kaldıklarında ozon atomlarını çözerek “ozon tabakasının incelmesine” neden olmaktadır. Bu durumun bir sonucu olarak cilt kanseri riski ve gözlerde katarakt oluşma olaylarında artış gözlenmektedir. Yine atmosfere bırakılan bazı gazlar, bitkilerde fotosentezi yavaşlatıp agaç yapraklarında bozulmalara, tarımsal üretimde azalmalara neden olmaktadır. Özellikle kömürle çalışan termik santrallerin bacalarından hiçbir arıtmaya tabii tutulmadan atmosfere verilen sülfürik asit yagışlarla asit yagmurlarına dönüşmekte; bitkilere ve ormanlara büyük zararlar vermektedir. Yüksek binaların bacalarından çevreye yayılan kükürt dioksit gazı akciger kanserine neden olmaktadır. Hava taşıtları da kirlilige neden olmaktadır. Örnegin Boeing 727 modeli uçak 265.000 kilogram kirli su, 80 kilogram zehirli atık, 5.000 kilogram zehirli hava üretmektedir. Bir jet uçagı 6.000 Volkswagen otomobiline eşit derecede duman çıkararak havayı kirletmektedir. Dünya çevresinde 2000 kilometre uzaklıga kadar olan mesafede 3 milyon kilogram çöp dönmekte ve bu miktar her gün biraz daha artmaktadır. Şehirlerin yer seçiminde yapılan yanlışlıklar ile yüksek katlı binaların rüzgârların önünü kesmesi de hava kirliligine neden olmaktadır. Türkiye’de havayı kirleten tesislerin başında linyit ile çalışan termik santraller gelmektedir. Bu santrallerin kükürt oranı yüksek linyit kömürü kullanmaları temel etkendir. 2000 yılında bu santrallerden atmosfere verilen kükürt dioksit miktarı 2.000.000 ton civarındadır. Yatagan, Soma, Tunçbilek, Afşin-Elbistan gibi şehirlerde termik santraller nedeniyle hava kirliligi üst boyutlardadır. Erzurum, Kayseri, Sivas, Ankara gibi şehirlerde ise evsel ısınma ve daglar arasındaki konum özellikleri nedeniyle hava kirliliginde özellikle kış mevsiminde artış gözlenmektedir. Demir-çelik endüstrisi, Gübre endüstrisi, Çimento fabrikaları, Petrokimya fabrikaları, Deri fabrikaları, Kâgıt ve selüloz fabrikaları, Şeker fabrikaları, Tekstil endüstrisi, Tarımsal mücadele ilacı üreten fabrikalar, Boya fabrikaları ile Termik enerji santralleri hava kirliliginde büyük paya sahiptir. Bursa, İzmit, İzmir, Kırıkkale, İstanbul, İskenderun, Karabük ve Adana şehirlerindeki hava kirliliginde sanayi tesislerinin payı büyüktür. İstanbul, Bursa, Sivas, Çanakkale, Kütahya, Eskişehir ve Diyarbakır Türkiye’nin en kirli kentleri arasındadır. 1952’de Londra’da 3000 insan solunum yetmezligi sonucu olmuştur. 1981’de İspanya’nın Madrid şehrinde yemek yagına karışan zehirli maddeler 340 kişinin ölmesine, 3000 insanın da zehirlenmesine yol açmıştır.1985 yılında Hindistan’ın Bhopal şehrinde kimyasal ilaç üreten bir fabrikadan çevreye yayılan metilizosiyanat gazı 3.000 insanın ölümüne 300.000 insanın zehirlenmesine yol açmıştır. Meksiko şehrindeki Paseo de la Reforma bulvarındaki çiçekler kirli hava nedeniyle çok çabuk öldüklerinden çiçek dikim işi iki ayda bir yenileniyor. Los Angeles’teki bir bulvarda gerçek bitkiler yetişmediginden plastik agaç ve çitler konulmuştur. “Su çetin bir hasımdır. Bütün hataları keşfetmesini bilir ve en küçük yanlışı pahalı ödetir.” J. CHAİLLEY 2.Su Kirliligi: Su kirliliginde; gübrelerin bünyesindeki kimyasallar, tarım ilaçları, petrol ürünleri, radyoaktif atıklar, deterjanlar, rüzgâr ve akarsu erozyonu, kanalizasyon atıkları, çöpler ile is ve duman etkili olmaktadır. Bu kirleticilerin çogu akarsu, göl ve denizlere dökülmektedir. Örnegin denizlere her yıl yaklaşık 200.000 ton petrol, 320.000 ton fosfor, 800.000 ton azot, 60.000 ton deterjan, 21.000 ton çinko, 3900 ton kurşun, 240 ton krom ve 100 ton cıva bırakılmaktadır. ABD’de her yıl denize atılan çöp miktarı 7 milyon tondur. Akdeniz’e yılda 4–5 milyar ton sanayi atıgı dökülmektedir. Bu nedenle pek çok deniz canlısı ölmekte, yaşama ve üreme alanları yok olmaktadır. Dünyanın en büyük tatlı su gölü olan Baykal, kıyılarındaki kâgıt fabrikalarının zehirli atıkları ile kirlenmektedir. Petrokimya sanayi Azerbaycan’ın Sumgayıt şehrini yaşanmaz hale getirmiştir. Hazar Denizine dökülen Volga Nehri, Rusya Federasyonundaki sanayii atıklarının % 40’ını taşımaktadır. Oysa denizler dünya için termostat işlevi görüp, her yıl 3 milyar ton karbondioksiti emerek atmosferi yaşanır kılmaktadır. Yine dünya protein ihtiyacının % 14’ü denizlerdeki balıklardan saglanmaktadır. Denizlerdeki bitki ve hayvan türlerinin 500’ü ilaç hammaddesi olarak kullanılmaktadır. Türkiye’de de su kirliligi üst boyutlardadır. Özellikle hızlı şehirleşmeye baglı olarak evsel ve endüstriyel atıkların su ortamlarına arıtılmadan verilmesi kirliligi artırmıştır. Ayrıca su havzalarındaki yapılaşma ile yapay kimyasalların su ortamlarına karışması da kirliligi artırmaktadır. Porsuk, Ergene, Susurluk, Gediz, Küçük Menderes, Bakırçay, Sakarya nehirleri ile Nilüfer Çayındaki kirlilik had safhadadır. Çevresindeki sanayi tesisleri nedeniyle, Manyas, İznik, Van, Sapanca, Burdur ve Akşehir gölleri de kirlilik tehdidi altındadır. Küçük yerleşim merkezlerinde kanalizasyonun biriktirildigi fosseptik çukurlarından sızan sular, yeraltı sularına karışmaktadır. Sanayii tesislerinin ulaşım kolaylıgı ve su bollugu nedeniyle ova tabanlarını tercih etmesi de ( Bursa, Adapazarı, Balıkesir, Ergene, Gediz ve Çukurova gibi...) yeraltı sularının hızla kirlenmesine yol açmaktadır. Endüstri tesisleri, yazlık konutlar ile turizm tesislerinin belli bir planlama olmadan, kurallara uyulmadan kıyılara kurulması da başta körfezler olmak üzere kıyıların hızla kirlenmesine neden olmaktadır. Bu nedenlerle Haliç, İzmit, Gemlik, İzmir ve İskenderun körfezleri hızla kirlenmektedir.21 Ülkenin atıkları Karadeniz’e taşınmaktadır. Havzasındaki 300 nehirle yılda 500 milyon metreküp endüstriyel ve evsel atık bu denize boşalmaktadır. Aşırı avlanma ve kirlenme nedeniyle Karadeniz’deki balık üretimi 500.000 tondan 100.000 tona düşmüştür. 23 ticari balık türü ise beşe inmiş durumdadır. Türkiye’de 3215 belediyenin yalnızca 141’inde kanalizasyon sistemi vardır. Türkiye’deki atık suların yaklaşık % 78’i arıtılmadan ırmak, göl ve denizlere oldugu gibi bırakılmaktadır. Sulardaki insan saglıgına zararlı maddeler, salgın ve bulaşıcı hastalıklara neden olmaktadır.( kolera, tifo, dizanteri gibi ) Zehirli atıklar oksijen dengesini bozarak göl ve nehirleri yaşanabilir olmaktan çıkarır. Dünyada 1.300.000.000 kişi saglıklı sudan yoksundur. Her yıl 5.000.000 kişi saglıksız sulardan bulaşan hastalıklarla ölmektedir. 10.000.000 kişi kilometrelerce uzaktan su taşımaktadır. Irmak ve göl sularındaki kullanım son 40 yılda iki katına çıkmıştır. Dünyadaki temiz suyun %50’si yalnızca insanlar tarafından kullanılıyor. “Eski haliyle karşılaştırıldıgı zaman topragımız, hastalıktan çürümüş birinin iskeletine benzemektedir. Tombul ve yumuşak tarafları kaybolmuş, geriye çıplak bir ceset / leş kalmıştır.” PLATON 3.Toprak Kirliligi: Nüfus artışına baglı yanlış arazi kullanımının neden oldugu toprak erozyonu toprak kirliliginde ilk sırayı almaktadır. Yanlış ve aşırı ilaç kullanımı, bilinçsiz gübre kullanımı ile endüstriyel atıklar da toprak kirliliginde önemli bir yere sahiptir. Ev ve tesislerin bacalarından çıkan emisyonların asit yagmurları ile topraga inmesi, çöp toplama havzalarındaki atıkların yüzey suları ile derinlere taşınması topragın yapısını tamamen degiştirmektedir. Çogu yerde maden ocaklarının işletilmesi sırasında yüzeye çıkarılan agır metaller de topraga zarar vermektedir. Nükleer atıklar genelde topraga gömülmektedir. Bunlar yeraltı suları ile topraga yayılarak ortamı kirletmekte, canlı yaşamını olumsuz etkilemektedir. Hayvan dışkısı da toprak kirliligine yol açmaktadır. Zira günümüzde kullanılan teknolojiler nedeniyle geçmişte gübre olarak kullanılan bu dışkılar belli alanlarda toplanmaktadır. Anız yakılması da topraga büyük zarar vermektedir. Anız yakılması yangına yol açtıgı gibi, toprak verimini azaltmakta erozyona davetiye çıkartmaktadır. Türkiye’nin en verimli toprakları erozyonla deniz, göl ve çukurlara taşınmaktadır. Normal koşullarda 1 santimlik bir toprak tabakasının oluşması için gerekli süre yaklaşık 250–1000 arasındadır. Görüldügü gibi binlerce yılda oluşan toprak tabakası, erozyonla 15–20 yıl gibi kısa bir süre içerisinde kaybolmaktadır. Sadece Fırat Nehrinin yılda taşıdıgı toprak miktarı 108 milyon ton civarındadır. Türkiye’de erozyona baglı yıllık toprak kaybının 1milyar ton civarında oldugu tahmin edilmektedir. Türkiye akarsu havzalarında çok şiddetli erozyon %36, orta şiddette erozyon %31, hafif erozyon ise %28 civarındadır. Dünyada ise yılda 75 milyar ton toprak erozyonla taşınmaktadır. Erozyon dogal dengeyi bozmakta; canlı ve bitki türlerinin azalmasına neden olmaktadır. Taşınan bu topraklardan dolayı; tarımsal üretim potansiyeli azalmakta, baraj ve sulama sistemleri zarar görmekte, suyolları ve limanlar zarar görmektedir. Bu nedenle erozyon topragın kaybedilmesi, dogal kaynakların tükenmesi demektir. Bundan dolayı tarımsal ve hayvansal ürünlerde büyük açıklar oluşmakta, milyarlarca dolar ödenerek bugday, pirinç, yaglı tohum, et, şeker v.s ithal edilmektedir. Örnegin 1988’de kişi başına düşen bugday üretimi 387 kg iken, 1995’de bu rakam 280 kg’a düşmüştür. Bugdaydaki gerileme % 25’tir.Aynı dönemde pirinç ve susamda yaşanan üretim azlıgı % 34, ayçiçeginde % 43, soyada % 75’tir.Aynı şekilde hayvan sayısı 1987–1995 arasında sıgırda % 21, koyunda % 32, keçide ise % 33 azalma göstermiştir. Erozyon, barajların çok kısa sürede devre dışı kalması demektir. İnsanların aşsız ve işsiz kalması demektir. Oysa bilinmelidir ki toprak üretilemeyen, satın alınamayan çok degerli bir kaynaktır. Şu unutulmamalıdır ki Aşagı Mezopotamya’da Sümer, Akad ve Babil uygarlıkları ile Sarı Irmak boylarındaki Çin uygarlıklarının yıkılmasında susuzluk ve toprak erozyonu çok önemli rol oynamıştır. “Ya bizler kentlerimizin kirlenmesini ortadan kaldıracagız; ya da kentlerimizin kirlenmesi bizleri...” Robert F. KENNEDY 4.Gürültü Kirliligi: Gürültü; istenmeyen ve insanı rahatsız eden ses olarak tanımlanabilir. Teknolojik gelişmenin sonucu olan gürültü gelişmiş ülkelerde tüm çevre sorunları arasında ilk sırayı almaktadır. İnşaatlardaki tadilat ve onarımlar, ulaşım araçları ( uçak, tren, helikopter, motorlu taşıtlar v.s ) elektrikli aletler ( kompresörler, matkap, elektrik süpürgesi, mutfak robotu, hidrofor, havalandırma v.s ) yazlık eglence yerleri, bar ve diskotekler, su ve tüp satıcıları, müzik aletleri gürültüye neden olmaktadır. Trafigin sıkışık oldugu arterler ile trafik ışıklarının geçiş alanlarında minibüs, taksi ve otobüslerin çaldıgı gereksiz kornalar insanları fazlasıyla rahatsız etmektedir. Bu durum başta çocuk, hasta ve yaşlılar olmak üzere tüm insanların ruh saglıgını olumsuz etkilemektedir. Her türlü gürültü işitme saglıgını bozmakta, algılamayı olumsuz etkilemektedir. Son yıllarda kalp ve damar rahatsızlıklarında büyük artış gözlenmektedir. Çogu kez iş performansının azalmasına da neden olmaktadır. Büyük şehirlerde yanlış yapılaşma ve yeşil alan azlıgı da gürültünün rahatsızlık katsayısını artırmaktadır. Yüksek ses ve gürültüden dogal ortamda ki diger canlılar da rahatsız olmaktadır. “Çevresel tehlikeler artık yalnızca kuş meraklılarını ilgilendirmiyor; bu tehlikenin çanları hepimiz için çalıyor.” Frank M. POTTER 5.Görüntü Kirliligi: Teknolojinin gelişmesiyle birlikte görüntü kirliliginde büyük artış olmuştur. Hızlı ve denetimsiz yapılaşma mimari estetikten yoksun binaların artmasına neden olmuştur. İskân izni olmadan yapılan, yapılırken iyi denetlenmeyen binaların kat sayısında, mimari tarzında, dogal çevreyle uyumunda belli bir standart yoktur. Cadde ve sokaklar gelişigüzeldir. Araç giriş ve çıkışına, araç park etmeye çogu kez uygun degildir. Cadde ve sokaklarda araçların çift taraflı park edilmesi, trafik akışını zorlaştırmaktadır. Araçların kaldırımlara çıkması yaya yolunu kapamakta, sokakta araçların çift yönlü park etmesi yaşlı, hasta, çocuk ve özürlülerin geçişlerini güçleştirmektedir. Sıvanmamış, boyanmamış, çatısı olmadıgından inşaat demirleri açıkta kalmış binalar, çatı, balkon ve duvarları istila eden anten ve vericiler; balkonlara asılan çamaşırlar, yıgılan eşyalar... telefon, elektrik ve reklam direkleri, panolar çevre ahengini fazlasıyla bozmaktadır. Yabancı bir ülkedeymiş izlenimi veren alışveriş merkezi, magaza ve dükkân isimleri ile günlük konuşmalarda kullanılan gereksiz yabancı sözcükler fazlasıyla rahatsız edicidir... Carousel, Capitol, Town Center, Galerıa, Fly Inn ( Alışveriş merkezleri ) Show, Flash, Star, Cine 5, Number One, Prima, Discovery Channel ( Televizyon ) Best, Capitol, Energy, Joy, Kiss, Power, Classic, City ( Radyo ) Cınemax, Movıeplex, Pyramıd, Prestıge, Cınepol, Prıncess, Cınemass, Holıdayplex, Rexx, Grandhouse ( sinema ) Fitness Center, Cafe Bar, Fast Food, Shopping Center, Show Room, Travel Agency, Jeans Sportwear, Garden Flower, Catering Service ( şirket ) Academic Hospital, İnternational Hospital, Central Hospital, ( Hastahane ) Square Hotel, The Plaza Hotel, Ritz Carlton, Hotel Princes, ( Otel ) Hey Gırl, Cosmopolıtıan, Amıca, Marıe Claire, Esquire, Formsante,Home Art, Bazaar, Voyager, Capital, Gezi Travel, Country Homes, House Beautiful ( Dergi )...gibi “Dünya üç grup insandan oluşur; sonuçları ortaya çıkaran ve olayları yaratan küçük seçkin bir grup, olup bitenleri seyreden oldukça büyük diger bir grup ve nelerin olup bittigini bilmeyen muazzam bir kalabalık.” M. BUTLER 6.Hızlı Nüfus Artışı: Dünya nüfusu son yüzyılda 1,5 milyardan 6 milyara çıkmıştır. Hızlı nüfus artışı dogal kaynaklar ve çevre üzerinde büyük baskı yaratmaktadır. Özellikle gelişmekte olan ülkelerde kalkınma hızının, nüfus artış hızının gerisinde kalması pek çok soruna neden olmaktadır. Gelecekte besin kaynakları, enerji ve su kaynakları, toprak, orman ve diger dogal kaynaklar hızla artmaya devam eden dünya nüfusuna yeterli gelecek mi? Mevcut dogal kaynakların böylesine bir tüketime yetmeyecegi çok açıktır. “Dünya, aç oldukları için uyuyamayanlarla, açlardan korktukları için uyuyamayanlar arasında bölünmüş durumdadır.” Paulo FREİRE Zira milyarlarca insan kaynakları giderek tükenen, çevre dengesi bozulan bir dünyada ayakta kalabilme mücadelesi vermektedir. * Yetersiz beslenme, * Saglıksız barınma, * Çocuk ölümleri, * İşsizlik, * Dogal çevrenin kirlenip bozulması, * Egitim hizmetlerinden mahrum kalma * Dogal kaynakların hızla tükenmesi hızlı nüfus artışının neden oldugu sonuçlardan bazılarıdır. “Bir ulusun büyüklügü, nüfusun çoklugu ile degil, akıllı ve erdemli kişilerin sayısıyla ölçülür.” Victor HUGO Günümüzde 500 milyona yakın insan aç ya da kötü beslenmektedir. 200 milyona yakın çocuk temel egitimden yoksundur. 8000 yıl önce 6.000.000.000 hektar olan dünya orman varlıgı % 50 azalarak günümüzde 3.000.000.000 hektara düşmüştür. Dünya ormanlarının % 75’i yüksek risk altındadır. Dünyada her yıl 16.000.000 hektar orman alanı yok edilmektedir. Akdeniz’e kıyısı olan Avrupa Birligi ülkelerinde her yıl 110.000 hektar orman yanmaktadır. Afrika’da her yıl 4,8 milyon hektar, Asya’da ise 4,7 milyon hektar orman yok edilmektedir. Denizlerdeki balıkların dörtte biri aşırı avlanma nedeniyle tükenmiştir. Dünyanın akcigerleri yok oluyor. Doganın 3 milyar yılda biriktirdigi oksijen tükeniyor, besin zincirinin alt halkaları birer birer devreden çıkıyor. Kolera ve sıtma gibi hastalıklar suların kirlendigi fakir bölgelerde hızla yayılıyor. “Önce gelincikleri yolduk, Nar agaçlarını tuttuk kurşuna, Ardından andızları devirdik, Aptallık, bilinçsizlik, bir hiç ugruna Sonra sıra ormanlara geldi, Yüz binlerce dönüm ateş yaktık, Sivas’a kadar gidip bulduk, Dikili tek agaç bırakmadık Şimdi damlarda yanıp söner, İsli lambalar gibi insan gözleri, Daha çok atılacak, it gibi sokaklara, Delik deşik insan ölüleri.” Cahit KÜLEBİ Sonuç olarak çevre sorunlarını en aza indirerek yaşanabilir bir dünya yaratmak elimizdedir. Bunun için: Silahlanma ve savaşa harcanan paralar azaltılmalı, onun yerine yenilenebilir enerji, toplu taşımacılık, dogal dokusu bozulmamış yaşanabilir kentler kurulmalıdır. Tarım alanlarının konut ve sanayi tesisleriyle yok edilmesine izin verilmemelidir. Sulak alanlar, bataklıklar, göller, akarsular, nadir ekosistemler koruma altına alınmalıdır. Sanayii ve santral gazları filtre edilmeden atmosfere bırakılmamalıdır. Denizlere ve okyanuslara milyarlarca kilo çöp ve atık madde atılmasından vazgeçilmelidir. Sular arıtılmadan deniz ve göllere verilmemeli, arıtılan suların bir kısmı yeniden kullanılmalıdır. Enerji üretimi için linyit, fuel-oil, radyoaktif elementler ile çalışan santraller yerine su gücü, rüzgâr ve jeotermal enerji ile çalışan santraller tercih edilmelidir. Çimento fabrikaları, linyitle çalışan termik santraller ve agır sanayi tesislerinin bacalarına katı parçacık ile kirleticileri süzecek filtreler takılmalıdır. Yakıt tasarrufu saglama, bilinçli ısınma ile hava ve çevre kirliliginin zararları konusunda insanlar bilinçlendirilmelidir. Mevcut ormanlar korunmalı, azalan orman varlıgını artırmak için agaçlandırma seferberligi başlatılmalıdır. Araziden ve topraktan yararlanma konusunda insanlar egitilmelidir. Mera hayvancılıgı yerine ahır hayvancılıgı teşvik edilmeli, aşırı otlatılmanın önüne geçilmelidir. Çöpler yerleşim yeri ve su kaynaklarına uzak bölgelerde depolanmalıdır. Çöpler sınıflandırılarak toplanmalı; geri dönüşümü olanlar ( kâgıt, cam, demir v.s ) yeniden kullanılmalıdır. Çöplerden enerji ve gübre üretiminde yararlanılmalıdır. Zehirli, tarımla mücadele ilaçları çok az kullanılmalı, biyolojik mücadeleye önem verilmelidir. Yanlış sulama ve gübreleme yöntemlerinden kaçınılmalı, tarım uzmanlarının bu konudaki öneri ve uyarıları dikkate alınmalıdır. Maden ocakları, çöp toplama alanları toprakla kapatılarak yeşil alanlara dönüştürülmelidir. Orman köylüleri ekonomik ve sosyal yönden desteklenmeli, yeni geçim kaynakları yaratılmalıdır. Motorlu taşıtların egzoz borusuna susturucu takılmalı, toplu taşımacılık metro ile yeraltına indirilmeli, bisiklet kullanımı yaygınlaştırılmalıdır. Kaynak: kursunkalem.com

http://www.biyologlar.com/dogal-cevreyi-etkileyen-sorunlar

Çevre Kirliliği

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür. İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. SU KİRLİLİĞİ Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. HAVA KİRLİLİĞİ Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. TOPRAK KİRLİLİĞİ Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. SES KİRLİLİĞİ Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. RADYASYON Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır.

http://www.biyologlar.com/cevre-kirliligi-1

 
3WTURK CMS v6.03WTURK CMS v6.0