Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 3 kayıt bulundu.

Biyoteknolojinin sürdürülebilir tarım üzerine olası olumsuz etkileri ve türler arası gen alışverişi

Biyoteknoloji alanında yapılan çalışmalar sonucu farklı kaynaklardan organizmalar arasında gen alışverişi mümkün hale gelmiştir. Bu gelişme sonucu hızla artan dünya nüfusunun gıda gereksinimini karşılamak amacıyla geliştirildiği ifade edilen genetik yapısı değiştirilmiş organizmaların (GDO), uzun dönemde biyolojik çeşitliliği olumsuz yönde etkilemek gibi tehlikeleri de vardır. Burada en büyük tehdit doğal evrimleşme sürecinin doğal olmayan yollardan kazanılan genler ile istenmeyen şekilde değişmesi olasılığıdır. Canlıların evrimleşmeleri milyonlarca yıldır devam doğal bir süreçtir. Evrimleşme süreci boyunca canlı türlerinde mikro mutasyonlar ve seyrek de olsa daha büyük doğal mutasyonlar ortaya çıkmaktadır. Bunların sonucu oluşan genotiplerden değişen çevre ve stres koşullarına adapte olabilenleri neslini devam ettirmektedir. Nesiller boyunca ortaya çıkan bu değişimler sonucu, çevre ve stres koşullarına daha iyi uyum sağlayacak fenotipik değişiklikler de oluşmaktadır. Örneğin aynı cinse ait farklı türlerin soğuk bölgelerde yetişenleri nispeten daha kısa boylu ve daha yatık olmaktadır. Benzer şekilde herhangi bir zararlının yoğun olduğu yöreler içinde meydana gelen doğal evrimleşme süreci boyunca bitkiler, hücre duvarını kalınlaştırmak, tüylenmek, sap kısmında mumsu tabaka oluşturmak gibi doğal savunma mekanizmaları geliştirmektedir. Bu arada hastalıklara karşı dayanıklı genotipler de ortaya çıkmaktadır. Buna karşılık zararlılar da doğal evrimleşme süreçleri içinde kendilerini yenilemekte ve bitkilerin geliştirdikleri doğal dayanıklılık mekanizmalarının üstesinden gelecek yönde gelişimlerini sürdürmektedir. Hastalık etmenleri de oluşan dayanıklılık genlerini aşacak yönde yeni ırklar geliştirmektedir. Bu nedenle belirli bir hastalığa karşı dayanıklılığı için tescil edilen bazı kültür çeşitleri, bazen birkaç yıl gibi kısa süre içinde, aynı hastalığın yeni gelişen ırkları tarafından kırılmaktadır. Genetik yapısı değiştirilmiş organizmalardan kültür çeşitlerine kazandırılan dayanıklılık genleri, alışılmış dayanıklılık mekanizmaları dışında bazı özelliklere sahiptir. Bunlardan özellikle toksin üreten bakteriyel kökenli dayanıklılık genlerinin aktarıldığı çeşitlerin kullanılması durumunda ekolojik dengeye, dolayısıyla da bitki genetik kaynaklarına olabilecek olumsuz etkileri dikkatle izlenmeli, bu tip çalışmalarda bitkisel kökenli genlere öncelik verilmelidir. Doğada türler arasında gen alışverişi olmaktadır. Gen alıp vermenin ötesinde bazı türlerin ortaya çıkması, türler arası genom alışverişi sonucu olmuştur. Canlıların evrim süreci bu gibi örneklerle doludur. Genetik yapısı değiştirilmiş kültür çeşitlerinden yabani akrabalarına gen akışı olanaklıdır. Milyonlarca yıldır süren evrimleşme işlemi, GDO’lardan doğal bitkilere istenmeyen genlerin bulaşması sonucu 40-50 yıl gibi biyoçeşitliliğin ayak uyduramayacağı ölçüde kısa bir zaman dilimi içinde yön değiştirebilir. Evrim süreci mutasyon, melezleme, adaptasyon, seleksiyon vb bir dizi işlemleri içermektedir. Evrimleşme olmadan hiçbir canlı türü değişen çevre koşullarına uyum sağlayamaz. Bunu başaramayanlar geçmiş dönemlerde yok olmuşlardır. GDO’lar evrimleşme sürecini istenmeyen yönde değiştirme riskini taşıdıklarından, biyolojik çeşitlilik ve sürdürülebilir tarım için potansiyel bir tehdit durumundadır. Özellikle gen ve çeşitlilik merkezi durumunda olduğumuz türler için bu durum daha da önemlidir. Doğa, türler arasında meydana gelen gen alışverişi sonucu oluşan melez bitkiler ve hatta yeni türler ile doludur. Evrimleşme sürecine doğal dayanıklılık mekanizmaları dışında kazanılmış dayanıklılık genlerinin, katılması aşamasında bu konu büyük bir önem kazanmaktadır. Doğal flora (ve fauna) elemanlarının dışarıdan alacakları transgenler ile sürdürecekleri evrimin nereye varacağı büyük bir soru işaretidir. Sonuçta doğada baş edilmesi şimdikinden daha güç sorunların ve organizmaların ortaya çıkması olasıdır. Türler arası melezleme bakımından ülkemiz açısından bazı familya ve bitki grupları öne çıkmaktadır. Bunlardan buğdaygiller (Gramineae) familyasına dahil olan buğdayın evrim süreci türler arası gen alışverişine örnekler ile doludur. Bilindiği gibi günümüzde kültürü yapılan tetraploid buğday grubunun; yabani akrabalarından Aegilops speltoides ile Triticum boeoticum türlerinin melezlenmesi sonucu ortaya çıkan Triticum dicoccoides türünün doğal mutasyona uğraması ile önce Triticum dicoccum türüne, daha sonra da kültürü yapılan Triticum durum türüne dönüşmesiyle oluşmuştur. Benzer şekilde hekzaploid olan ekmeklik buğday (Triticum aestivum) da, Triticum dicoccoides türü ile Aegliops tauschii türlerinin doğal melezidir. Buğdayın evriminde diploid yabani akrabaları dışında kalan tüm tetraploid ve hekzaploid kültür çeşitleri ve yabani akrabaları, türler arası doğal melezlemeler sonucu ortaya çıkmış yapay türlerdir. Türler arası melezlemeler sonucu oluşan yeni türler, gen alışverişinden daha fazlası olan genom alışverişine örnektir. Doğanın dikkatlice incelenmesi sonucu buğdayın ana vatanı olduğunu söyleyebileceğimiz Anadolu’nun muhtelif yörelerinde Aegilops columnaris, Ae. biuncialis, Ae. triuncialis ve Ae. cylindrica türlerinin steril melezlerine sıkça rastlanmaktadır. Burada sıralanan buğday yabani akrabalarından Ae. columnaris türü Ae. umbellulata X Ae. comosa türlerinin; Ae. biuncialis türü Ae. umbellulata X Ae. comosa türlerinin; Ae. triuncialis türü Ae. umbellulata X Ae. caudata türlerinin; Ae. cylindrica türü de Ae. caudata X Ae. tauschii türlerinin doğal melezidir. Geçmişte türler arası genom alışverişinin sonucu ortaya çıkan bu türlerin, başka türlerden toz alarak oluşturdukları melezlerin varlığı, doğal evrimleşme sürecinin bir parçası olarak kabul edilebilir. Bu da sözü edilen türlerin, transgenik bitkilerden gen almalarının mümkün olduğunun göstergesidir. Ekmeklik buğday ile yabani akrabası Aegilops cylindrica arasında gen akışı olduğuna ilişkin birçok bildirişler vardır (Morrison, 2002; Wang, 2002; Zemetra ve ark., 2002; Stewart ve ark., 2003). Buğdaygiller familyası içinde türler arası melezlemeye başka cinslere ait örnekler de verilebilir. Türkiye’de doğal olarak bulunan Agropyron, Elymus, Festuca, Lolium, Hordeum, Triticum ve birçok buğdaygil cinslerinin genomlarında 7 kromozom olduğu bilinmektedir. Ayrıca bu türlerin kendi aralarında doğal ve yapay melezlerinin olduğunu ortaya koyan çok sayıda literatür vardır. Bunlardan Fedak (1984) arpa (Hordeum vulgare) ile mavi ayrık (Agropyron intermedium) arasında % 3.9’a varan oranlarda melez bitkiler oluşturulabildiğini; Belanger ve ark. (2003) tavuz kuyruğu (Agrostis) türleri arasında melezlenmenin olduğunu; Ellstrand (2003) Kuşyemi (Seteria) türleri arasında % 0.50 oranında, gökdarı (Pennisetum) türleri arasında % 39’a varan oranlarda melezlemenin olduğunu; bu oranın Sorghum bicolor ve Sorghum halepense türleri arasında % 100’e kadar ulaştığını bildirmektedir. Quist ve Chapela (2001) mısır bitkisinin ana vatanı olduğu bilinen Meksika’da transgenik kültür çeşitlerinden geleneksel çiftçi çeşitlerine transgenik DNA geçtiği bildirilmiştir. Bu bilgi üzerine Meksika Hükümeti konunun araştırılması için bir ekip görevlendirmiş ve yapılan çalışma sonucu “cry1A” transgenin Oaxaca Eyaletinde yetiştirilmekte olan mısır çiftçi çeşitlerinde yaygın olarak bulunduğu, ancak incelenen örneklerde “cry9C” transgenine henüz rastlanmadığı rapor edilmiştir (Morales, 2002). Buğdaygil familyası dışında ülkemiz açısında risk oluşturan bir başka familya da lahanagiller (Brassicaceae) olmaktadır. Bilindiği gibi bu familyaya ait birçok türün yumrusu, sapı, yaprakları, çiçekleri ve tohumları insan gıdası olarak veya başka amaçlarla kullanılmaktadır. Ayrıca doğal bitki örtüsünde bulunan birçok Brassicaceae türleri süs ve örtü bitkisi olarak (Alyssum saxatile, Brassica oleracea, Cardaria draba, Crambe orientalis, Iberis saxatilis, Isatis glauca, Lobularia maritima, Matthiola incana) (Yücel, 2002), tıbbi amaçlarla (Capsella bursa-pastoris) veya boya bitkisi olarak boya bitkisi olarak (Isatis tinctoria) da kullanılmaktadır. Brassicaceae türleri arasında gen alışverişinin çok yaygın olduğuna ilişkin çok sayıda literatür bildirişleri vardır. Burada üzerinde durulması gereken konu, 2004 yılı itibarıyla dünyada 4.3 milyon hektar ekim alanı ile soya, mısır ve pamuk ardından dördüncü sırayı alan transgenik kanoladan, yabani akrabalarına olası bir gen akışıdır. Elsstrand (2003), Raphanus sativus bitkisinden aynı adı taşıyan yabani akrabasına % 100 oranında gen akışı olabileceğini bildirmektedir. Dünya’da son zamanlarda “biyoyakıt” olarak adlandırılan enerji kaynaklarına yöneliş olmaktadır. Biyoyakıtlar bitki orijinli yağlar, kızartma yağları, ürün artıkları veya odun gibi maddelerden üretilebilmektedir. Avrupa Birliği (AB) ülkelerinde geleceğe dönük biyoyakıt kullanım hedefleri şimdiden belirlenmeye başlamıştır. AB, kullandığı akaryakıtın 2005 yılı sonuna kadar % 2’sinin, 2010 yılı sonuna kadar % 6’sının ve 2020 yılı sonuna kadar da % 20’sinin biyoyakıt olmasını hedeflemiştir. Bu arada çiftçilerine biyoyakıt üretim amacıyla yaptıkları ekimlerde 45 €/ha destek vermektedir. Konuyu İngiltere açısından ele alan Monbiot (2004), % 20 hedefine ulaşabilmek için İngiltere’de ekilebilir alanların tamamının kanola ekimine ayrılması gerektiğini bildirmektedir. Konu diğer AB ülkeleri açısından da düşünüldüğünde, ileride AB ülkeleri ve buna bağlı olarak kanola ekiminin yaygın olduğu ülkelerde, biyoyakıt üretimini amaçlayan kanola ekim alanlarının artması nedeniyle gıda üretim amaçlı ekilişlerin daralması, hem de genişleyen kanola ekim alanlarından dolayı muhtemelen artacak olan transgenik çeşit ekim alanları dolayısıyla doğal bitki örtüsündeki yabani akrabalarına ve kültürü yapılan diğer Brassicaceae türlerine gen akışı gibi olası tehditleri de göz önünde bulundurmak gerekir. İki durumda da tarımsal sürdürülebilirliğin zarar göreceği açıktır. Türkiye açısından önemli olan bir başka familya da sirkengiller (Chenopodiaceae) olmaktadır. Bilindiği gibi ülkemizin temel tarımsal ürünlerinden olan şekerpancarı yanında ıspanak, hayvan pancarı, pazı gibi kültür bitkileri ile yabani florada çok sayıda türleri yanı sıra şeker pancarının yabani akrabaları (Beta spp.) da vardır. Sirkengiller de gen akışının yoğun olarak yaşandığı familyalardan biri olarak bilinmektedir. Desplanque ve ark. (2002) şeker pancarından yabani sirkengil türlerine gen akışının muhtemel ve mümkün olduğunu, bu nedenle herbisite dayanıklı şekerpancarından doğaya kaçacak transgenlerin ortaya çıkarabileceği olumsuzluklara işaret etmektedir. Stewart ve ark. (2003) kültürü yapılan pancardan yabani akrabalarına gen akışının olduğunu bildirmekte; Ellstrand (2003) gen akış oranının türlere bağlı olarak % 1 düzeyine kadar çıkabileceğini ifade etmektedir. Genetik yapısı değiştirilmiş organizmaların günümüzde en fazla tepkiye yol açan şekli Genetik Kullanımı Sınırlayıcı Teknolojileridir (Genetic Use Restriction Technologies = GURTs). Genetik materyalin izinsiz kullanımını engellemek amacıyla geliştirilen çeşitler henüz dünya üzerinde kullanım alanı bulmamakla beraber, tarımsal sürdürülebilirliği tehdit eder nitelikte olmaları bakımından önemlidirleri. GDO olmayan bir materyale uygulanmış olsa bile, GURT kullanımı sonucu ortaya çıkan ürün, bir GDO kabul edilmektedir. İki tür GURT vardır. 1. VGURT (Variety Use Restriction Technology); bir sonraki generasyonu steril hale getiren teknolojidir. “Terminatör Teknolojisi” olarak da bilinir 2. TGURT (Trait Use Restriction Technology); bir sonraki generasyonun herhangi bir karakterinin ortaya çıkmasını engeller, bu karakterin çıkması için özel tetikleyiciye gerek duyulur. Yukarıda sıralananlardan VGURT’lerin geliştirilmesinde üç farklı strateji uygulanmaktadır. Birinci stratejide bitkiye embriyo oluşumunu engellemeye şifrelenmiş bir gen verilerek materyalin canlı tohumlar üretmemesi sağlanır. Bu gen de, normal embriyo oluşumunu sağlayabilmek üzere başka gen tarafından engellemektedir. Tohumlar üretici firma tarafından satılırken genleri harekete geçiren bir kimyasalla muamele edilerek ikinci nesil tohumlarda embriyo oluşumunu engelleyen genler harekete geçirilir ve ikinci nesil ürünün cansız (canlanamayan) olması sağlanır. İkinci VGURT oluşturma stratejisi birincisine benzemekle beraber işlemi satış aşaması hariç her aşamasında kimyasal madde uygulanır. Materyal tüm nesiller boyunca kendiliğinden steril tohum verecek şekilde geliştirilmiştir. Kısırlığı ifade eden gen, canlılığı sağlayacak restorer protein veren bir kimyasalla engellenerek üretim sağlanır. VGURT uygulamalarındaki üçüncü strateji de süs bitkilerinin birçoğunda olduğu gibi vegetatif yolla çoğalan, yumrulu bitkilerin depolama veya raf ömrünü uzatmak amacıyla gelişmelerinin bir süre durdurulmasıdır. Burada gelişmeyi engelleyici gen, kimyasal bir madde yardımıyla etkisiz hale getirilir. Her üç stratejide de istenmeyen genlerin doğaya salınması sonucu kısır bitkilerin üretilmesinden, gelişmenin durmasına kadar birçok olumsuzlukların yaşanması olasıdır. Hibrit bitki ıslahında da fertil bitkiler elde edilse bile meydana gelen açılma sonucu, istenen bazı özellikler TGURT’lerde olduğu gibi döllere taşınmaz. Klasik veya moleküler genetik yöntemlerle geliştirilmiş olmalarına bakılmaksızın çiftçiler her iki durumda da her yeni ürün için üretici firmalardan hibrit – TGURT materyal almak zorundadır. Klasik genetik kuralları kapsamı içinde de VGURT’lere benzeyen ürünler elde etmek mümkündür. Örneğin triploid balık, çekirdeksiz karpuz, partenokarp meyveler de kısırdır. Ancak klasik genetik kuralları içinde geliştirilen ürünler getirdikleri katma değer ile üretici ve tüketici tarafından neredeyse hiçbir uyuşmazlığa meydan vermeyecek şekilde geniş kabul görmekle beraber, GURT ürünleri özellikle de VGURT’lar tarımsal üretimi sınırlayıcı materyal olarak algılanmakta; bunların biyoçeşitlilik, tarımsal uygulamalar, tohum güvenliği ve kırsal ekonomi üzerindeki olası olumsuz etkileri nedeniyle de her geçen gün küresel boyutta artan bir reaksiyon görmektedirler. Genetik kullanımı sınırlayıcı teknolojiler konusunda dünya çapında oluşan duyarlılık sonucu Birleşmiş Milletler Çevre Programı (UNEP) tarafından bir rapor hazırlanarak 2002 yılında düzenlenen Biyolojik Çeşitlilik Sözleşmesi’nin 6. Taraflar Konferansına sunulmuştur (UNEP/CBD/COP/6/INF/1, 2002). Bu belgede GURT uygulamalarının detayları yanı sıra bunların (a) tarımsal biyolojik çeşitlilik üzerine etkileri, (b) biyogüvenlik üzerindeki etkileri, (c) çiftlik sistemleri içinde yaratacağı sosyo-ekonomik etkileri, (d) çevresel etkileri ve (e) ekonomik etkileri olacağı ifade edilmiştir. Genetik kullanımı sınırlayıcı teknolojilerin, konunun etik yanı dışında tarımsal sürdürülebilirlik üzerinde olumsuzluklar yaratacağı kesindir. GURT konusu Biyolojik Çeşitlilik Sözleşmesi’nin 7. Taraflar Konferansında da tartışılmaya devam edecektir. Biyoteknoloji tarihsel gelişimi içinde tarımsal sürdürülebilirliğin temeli olan biyolojik çeşitliliğin korunmasında ve artmasında önemli roller oynamıştır. Klasik yöntemlerle muhafazası zor veya olanaksız olan bitkilere ait genetik kaynakların korunmasında biyoteknolojiden yararlanılmış ve yararlanılmaya devam edilmektedir. Bu şekliyle biyoteknoloji, sürdürülebilir tarımın sigortası durumunda olan bitki genetik çeşitliliğinin devamlılığının sağlanması ve yeni çeşitlilik kaynakları oluşturması bakımından vazgeçilmez bir araçdır. Biyoteknolojinin, bitkilere dayanıklılık genlerinin aktarılmasında kullanılan bakteriyel kökenli toksin üreten çeşitlerin geliştirilmesi amacıyla kullanılması durumunda, istenmeyen genlerin doğaya bulaşması sonucu ekolojik dengenin bozulması olasıdır. Doğada türler arası gen alışverişinin olduğuna dair birçok örnekler vardır. Doğa dikkatli bir şekilde gözlendiğinde türler arası gen akışının devam eden bir süreç olduğu, dolayısıyla da GDO’dan da yabani akrabalarına gen akışının mümkün olduğunu söyleyebiliriz. Gen alış verişinin sonuçlarının görülmesi kısa zaman içinde gerçekleşmemektedir. İnsan ömrü bu sonuçları görecek ölçüde uzun değildir. Unutulmamalıdır ki insan ömrü evrim süreci içinde önemsenmeyecek kadar kısadır. Sonuç olarak biyoteknoloji, bazı uygulamalarıyla tarımsal sürdürülebilirlik için vazgeçilmez bir araç, bazı uygulamalarıyla da ciddi bir potansiyel bir tehlike durumundadır. Alptekin KARAGÖZ

http://www.biyologlar.com/biyoteknolojinin-surdurulebilir-tarim-uzerine-olasi-olumsuz-etkileri-ve-turler-arasi-gen-alisverisi

Kar leoparlarının nesli artık tehlike altında değil. Nesilleri çoğalıyor.

Kar leoparlarının nesli artık tehlike altında değil. Nesilleri çoğalıyor.

Kar leoparları için iyi haber. Uluslararası Doğayı Koruma Birliği (IUCN), yaban hayatının koruma statüsünü değerlendirdi ve bu kediyi nesli tükenmekte olan hayvanlar listesinden çıkardı. Photo: Eric Kilby/flickr

http://www.biyologlar.com/kar-leoparlarinin-nesli-tehlike-altinda-degil-artik-nesilleri-cogaliyor


 
3WTURK CMS v6.03WTURK CMS v6.0