Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 469 kayıt bulundu.

Kongo Nehri Balıklarının Hızlı Evrimi

Kongo Nehri Balıklarının Hızlı Evrimi

Fotoğrafta bir çift akvaryum çiklet balığı türü olan Telegramma brichardi bulunmaktadır. Fotoğraf:Oliver Lucanus

http://www.biyologlar.com/kongo-nehri-baliklarinin-hizli-evrimi


Likenlerin Özellikleri

Likenlerin Özellikleri

Likenler başlıbaşına birer organizma değildirler. Mantarlar ile alglerin birleşerek morfolojik ve fizyolojik bir bütün halinde meydana getirdikleri simbiyotik birliklerdir (Güner 1986).

http://www.biyologlar.com/likenlerin-ozellikleri

Helmintlerin Sınıflandırılması

Sınıflaması PHYLUM (Anaç) PLATYHELMİNTHES Class (Sınıf) Trematoda (fluke) Order (Takım) Aspidogastreans (monogenetic trematodes) Genus (Tür) Gyrodactylus spp Genus Dactylogyrus spp Order Digenea (digenetic trematodes) Family (Aile) Fasciolidae Genus Fasciola spp (koyun karaciğer kelebeği) Fascioloides spp Family Paramphistomatidae Paramphistomum spp (rumen fluke) Family Troglotrematidae Paragonimus spp Nanophyetus spp Family Dicrocoeliidae Dicrocoelium spp Platynosomum spp (kedi karciğer) Eurytrema spp (pancreatic fluke) Family Diplostomatidae Alaria spp Family Schistomatidae Schistosoma spp (Kan) S. mansoni S. matthei Heterobilharzia spp (Kan) 2. Class Cestoda (Şeritler-tenyalar-tapeworms) Order Pseudophyllidea Diphyllobothrum spp (Balık tenyası) Spirometra spp Order Cyclophyllidea Family Taeniidae Taenia spp T. saginata T. solium T. pisiformis T. taeniaeformis T. ovis T. multiceps T. serialis Echinococcus spp (Hyatid -kisthydatid) E. granulosus E. multilocularis Family Anoplocephalidae Anoplocephala spp A. magna A. perfoliata Moniezia spp Thysanosoma spp Family Dilepididae Dipylidium spp Family Mesocestoididae Mesocestoides spp Family Hymenolepididae Hymenolepis spp Order Rhabitida Rhabditis(Pelodera) spp (serbest nematodlar) Halicephalobus (Micronema) spp Strongyloides spp Order Strongylida Family Trichostrongylidae Trichostrongylus spp Ostertagia spp Haemonchus spp Cooperia spp Nematodirus spp Hyostrongylus spp Dictyocaulus spp D. filaria D. viviparus D. arnfieldi Ollulanus spp Superfamily Strongyloidea Family Strongylidae Strongylus spp S. edentatus S. vulgaris Cyathostomum spp Oesophagostomum spp Family Syngamidae Stephanurus spp Syngamus spp Mammomonogamus spp Family Ancylostomatidae (Kancalı Kurtlar) Subfamily Ancylostominae Ancylostoma spp A. caninum A. tubaeforme A. braziliense A. duodenale Uncinaria spp Subfamily Bunostominae Necator spp Bunosomum spp Superfamily Metastrongylids (Akciğer kıl kurtları) Subfamily Dictyocaulinae Dictyocaulus spp (Akciğer kurtları) D. filaria D. viviparus D. arnfieldi Subfamily Metastrongylinae Metastrongylus spp (Akciğer kurtları) Subfamily Protostrongylinae Protostrongylus spp Muellerius spp Paralephostrongylus spp Subfamily Filaroididae Angiostrongylus spp Aleurostrongylus spp (Kedi akciğer kurtları) Filaroides spp (Trachea ve akciğer) F. hirthi F. osleri Order Ascaridida (Solucanlar) Family Ascarididae Ascaris spp Ascaridia spp. Family Parascaris Parascaris spp Family Toxocara Toxacara spp T. canis T. cati T. vitulorum Toxascaris spp Family Baylisascaris Baylisascaris spp Family Anisakidae Anisakis spp Order Oxyurata Family Oxyuridae Oxyuris spp (At) Passalurus spp (Tavşan) Enterobius spp (insan) Family Heterakidae Heterakis spp Superfamily Syphacioidea Syphacia spp Order Spirurida Suborder Spirurina Superfamily Gnathostomatoidea Gnathostoma spp Superfamily Physalopteroidea Physaloptera spp Superfamily Thelazioidea Thelazia spp (Göz kurtları) Gongylonema spp Ascarops spp Spirocerca spp (Oesophageus) Superfamily Spiruroidea Physocephalus spp Draschia spp (At mide kurtları) Habronema spp (At mide kurtları ) Superfamily Filaroidea (Filarya) Family Filariidae Dirofilaria spp (Kalp kurtları) Loa loa (Göz kurtları) Oncocerca spp (Ligamentum nuche kurdu) O. volvulis O. cervicalis Elaeophora spp (Arterial kurtlar) Wuchereria spp Brugia spp Family Setariidae Stephanofilaria spp Setaria spp (Abdominal kurtlar) Dipetalonema spp Suborder Camallanata Superfamily Dracunculidae Dracunculus spp Class Adenophorasida Order Dioctophymata Dioctophyma spp (Böbrek kurdu) Order Trichurata Trichinella spp Trichuris spp (Kamçılı kurtlar) Capillaria spp (Akciğer-idrar kesesi) C. bovis Capillaria spp. (Kedi, köpek, kanatlı) C. aerophila C. plica C. feliscati C. putorii PHYLUM ACANTHOCEPHALA Macracanthorhynchus hirudinaceus Onicola canis

http://www.biyologlar.com/helmintlerin-siniflandirilmasi

SİSTEMATİĞİN TARİHÇESİ

Bugün yaşayan en geri insan topluluklarında dahi çevrelerindeki canlılara isimler verildiği görülür. Hayvanların ve bitkilerin tanınmasıyla insanların ilk ilgisi tarih öncesi devirlerde başlar. Akdeniz çevresinde bulunan mağaralarda ilkçağ insanlarının çizdiği hayvan ve bitki resimleri bunun en belirgin kanıtıdır. İlk çağlarda insanlar bitkileri yenen, yenmeyen, zehirli, zehirsiz gibi kullandıkları biçime göre sınıflandırmışlardır. Daha sonra bu sınıflandırma dış görünüşlerine göre yapılmış olup bitkiler 1800’lü yıllara kadar otsu, çalımsı, ağaçsı gibi gruplara ayrılmışlardır. Darwin’in evrim teorisini ortaya atışı ile tüm canlı organizmalarda filogenetik (akrabalık ilişkisi) sınıflandırma yapılmaya başlamıştır. Yani Darwin’den sonraki dönemde aşağı yukarı tüm sınıflandırmalar bitkilerin ve hayvanların evrimsel gelişmişliklerine göre yapılmıştır. Yaşayan canlıları gruplar halinde düzenleme konusunda ilk girişimler Mezopotamya uygarlığının bilginleri tarafından yapılmıştır. Bu zamanda Asur uygarlığında yaşayan filozoflar köpek, aslan, çakal gibi canlıları köpekgiller, at, eşek, deve gibi canlıları da atgiller gruplarına sokmuşlardır. Bununla birlikte bazı hatalar da yapılmıştır. Örneğin çekirgeler, kuşların, kaplumbağalar ise balıkların grubuna sokulmuştur. Bitkilerde Son Sınıflandırma Sistemlerini Yapan Bilim Adamları: Bu bilim adamları biyoloji bilimindeki gelişmelerden yararlanmışlardır. Sistematikde kimyasal analiz yöntemleri ile elektron mikroskoplarının (SEM ve TEM) kullanılması ile Biyokimyasal sistematik ve paleobotanik gibi alanlar yeni isimlendirmelerin daha anlamlı yapılmasına yol açmıştır. Son döneme ait bazı Bitki sistematikçileri şunlardır: Robert Thorne, Takhtajan, Arthur Cronquıist ve Rolf Dahlgren gibi. www.sistematiginesaslari.8m.com Hippocrates (M.Ö. 460-377) ve Democritus (M. Ö. 460-370) gibi Yunanlı bilginler hayvanlar üzerinde ilk bilimsel çalışmaları yapmışlardır. Hippocrates hayvan isimlerini saymış, fakat sınıflandırmasıyla ilgili işaretler vermemiştir. Aristo (M.Ö. 384-322) sınıflandırmada ilk rol oynayanlar arasındadır. Yaşamının bir kısmını geçirdiği Midilli Adasında özellikle deniz hayvanlarını inceleyip zoolojik araştırmalar yapmıştır. Sadece kıyaslamalı anatomi değil, embriyoloji, davranış ve ekoloji alanın da incelemeler yapmıştır. Aristo ilk kez hayvanların yaşamlarına, hareketlerine ve vücut yapılarına göre ayrılabileceğini belirtmiş ve hayvanları Ennaima (=Kanlı Hayvanlar) ve Anaima (=Kansız Hayvanlar) olmak üzere başlıca iki gruba ayırmıştır. Bitkilerle ilgili olarak Theophrastos (M.Ö. 372-287) Aristo’nun öğrencisi olup botaniği öncüsü olarak anılır ve 480 bitkinin ayrımını yapmıştır. Plinius (M.Ö. 23-M.S. 79) “Naturalis Historia” (Tabiat Tarihi) eseriyle 1000 kadar faydalı bitkinin kültürü üzerinde bilgi vermiştir. Daha sonra 1500 yıl boyunca kayda değer bir gelişme yaşanmamıştır. 16. Yüzyıla kadar bitkiler tıbbi özellikleri ile ele alınmıştır. 16. yüzyılda Andrea Cesalpino (CAESALPINUS) (1519-1603) “De plantis” (Bitkiler hakkında) adlı eseri ile bitkileri morfolojik esaslar üzerine ilk ayırımını yapan botanikçidir. Daha sonra Kaspar Bauhin (1550-1624) 6000 bitki türünün tasnifini yapmıştır. Bauhin adlandırmada yeni yöntemler kullanan ilk botanikçi olup bugünkü familyalara benzer gruplar oluşturmuş ancak isimleri ve özellikleri belirtmemiştir. Ayrıca bitkilere ikili isimlendirmenin esaslarını ilk ortaya koyan botanikçidir. İngiliz John Ray (1627-1708) bir bitkinin tüm kısımlarının gözönünde tutulmasının gerekliliğini vurgulayan botanikçidir. Bitkilerde varyasyonun iç ve dış nedenlere, bugünkü ifade ile genotipik ve fenotipik nedenlere dayandığını ileri sürmüştür. 1693 yılında “Synopsis Methodica Animalium Quadrupedum Et Serpentini Generis” isimli eserini yayınladı. Böcekler ve kuşlar üzerindeki eseri ise ölümünden sonra yayınlandı. Bu araştırıcı da Aristo kurallarını esas aldı ve sınıflandırmada iç morfoloji de kullandı.Ray’ın 1703’de 2. cildi yayınlanan “Metodus Plantarum” adlı eseri 18000 kadar bitki türünü kapsamaktadır. Fransız Pitton de Tournefort (1656-1708) bitkiler alemini ağaç, ağaçcık ve otlar olarak sınıflandıran ve bitkileri 22 sınıfta toplayan son botanikçi olmuştur. Tournefort’un sistematiğe en büyük katkısı CİNS (genus) kategorisini kurmuş olmasıdır. 698 cinsin isimlendirmesini yapmıştır. Populus, Betula, Fagus, Lathyrus bunlardan birkaçıdır. İsveçli Carl von LINNAEUS (1707-1778) hem botanik hem de zooloji alanına katkıları olmuştur. 1735 yılında sadece 11 sayfadan oluşan SYSTEMA NATURAE isimli meşhur eserini yayınladı. 1737 yılında tüm bitki cinslerini “Genera Plantarum” (Bitki cinsleri), “Species Plantarum” (Bitki türleri) adlı eserinde de 1000 cinse ait yaklaşık 6000 bitki türünün deskripsyonunu işlemiştir. 1753 yılında yayınladığı bu eser ile ikili adlandırma sistemi (Binominal Nomenklatür), yani 2 sözcükten oluşan (Cins adı+epitet adı= TÜR adı) bir sistem geliştirdi. Sistematiğin temelini oluşturan bir çalışma olmuştur. Bu sistem hem hayvan hem de bitki sistematiğinde halen geçerliliğini korumaktadır. Daha sonraları bu araştırıcı doğayı 3 kısımda inceleyerek (hayvan, bitki ve mineral ) hayvan ve bitkileri bir sistem dahilinde göstermiştir. Bu eserde 4 bacaklılar yerine ilk kez Mammalia terimini kullandı. Bu nedenle bugün herkes Linné’yi taksonominin babası olarak tanır. • Linné, canlıları 5 taksonomik kategori içine yerleştirdi. Bunlar: • Sınıf • Takım • Cins • Tür Bu sistemiyle Linné, kendinden sonraki bilginleri öylesine etkilenmiştir ki Systema Naturae isimli kitabın 1758 yılında yayınlanan 10. baskısı Zoologıcal Nomenclature (=Hayvansal isimlendirme)’nin resmi başlangıcı olarak kabul edilmiştir. Böylece canlıların bilimsel isimleri (Latince ve Yunanca) dünyanın her yerinde kullanıla gelmiştir. Bu eserin 10. Baskısında 312 cinse bağlı 4370 hayvan ismi bulunmakta olup, bunlar 6 sınıfa ayrılmıştır: Dört bacaklılar, Kuşlar, Amphibia’lar, Balıklar, Böcekler, Solucanlar. LINNE’ nin öğrencisi olan Fabricius (1745-1808) 1775, 1782 ve 1804 yıllarında yayınladığı “Systema Entomologica” adlı eseriyle bütün böcek faunasını ortaya koymaya çalışmıştır. Bu şekil bir çalışma, bugün bir insanın çalışma gücünün çok üzerindedir ve hatta olanaksızdır. Bu nedenle bu bilginden sonra gelen toksonomistler çalışmalarını tek bir familya veya alt familyaya, hatta bunların da belirli bir coğrafi yayılış alanında bulunan türlerine yöneltmişlerdir. A.L. Jussieu (1748-1836) bitkiler aleminde ilk olarak doğal sınıflandırmayı kullanan kişi olmuştur. A. Pyramus de Candollea (1778-1841) sstematiğin anahatlarını ortaya koyan bir çalışma yapmıştır. 161 familyanın sınırları belirlemiştir. Linne'den sonraki yüzyılda canlıların sınıflandırılması çalışmaları daha da hızlanmıştır. Ancak biyolojik çeşitliliğin fazlalığı karşısında bilim adamları belli gruplar üzerinde ihtisaslaşmaya yönelmek zorunda kalmışlardır. Linnaeus eserlerinde bütün bitki ve hayvanların yanısıra bunlara ait fosilleri dahi tanımlarken,19. yüzyıl araştırıcıları sadece belli canlı grupları üzerinde araştırmalarını sürdürmüşlerdir. A.Braun (1805-1877) Braun sisteminde bitkiler ilkselden gelişmiş formlara doğru kademeli olarak sıralanmıştır. A. Wilhelm Eichler (1839-1930) Braun’un filogenetik sistemini geliştirmiştir. Bitkiler aleminin Cryptogamae ve Panerogamae olarak iki büyük gruba ayırmıştır. Adolf ENGLER (1844-1930) Eichler sistemine dayanarak yeni bir sistem oluşturmuş daha sonra Karl Prantl (1849-1893) ile birlikte 60 botanikçinin yardımı ile 23 ciltte toplanan Engler Sistemini kurulmuştur. Bu sistemde bitkiler alemi organizasyon kademeleri gözönünde tutularak sınıflandırılmış olup filogenilerinden kısmen ayrılmış doğal bir sistemdir. Monokotil bitkiler 1964’de Angiospermlerin sonuna alınmıştır. Bu sistemi birçok bilim adamı ele almış ve geliştirmiştir. R. von Wettstein (1863-1931) 1901 yılında Engler sistemin filogenetik esaslara göre kullanarak bitkiler alemini 9 Filum’a ayırmıştır. Charles E.Bessey (1845-1915), Hans Hallier (1868-1932), John Hutchinson (1884-1972) Angiospermlerin yeni bir dekripsiyonlarını yapmıştır. Dikotil bitkiler otsular ve odunsular olarak iki gruba ayırmıştır.

http://www.biyologlar.com/sistematigin-tarihcesi

12 Milimetre Boyunda Tam 60 Gözü Var

12 Milimetre Boyunda Tam 60 Gözü Var

Cambridge kenti yakınlarındaki bir doğa koruma alanında keşfedilen sadece 12 milimetre boyundaki bir solucanda tam 60 göz tespit edildi. Bedfordshire Doğal Yaşam Vakfı Direktörü Brian Eversham tarafından keşfedilen solucanın, Hollanda ve Kuzey İrlanda keşfedilen solucan türlerine benzemekle birlikte yepyeni bir tür olduğu düşünülüyor. Henüz bir isim verilmeyen solucanla ilgili, “Tamamen yeni, tanımlanmamış bir tür” olduğu belirtildi ve benzer bir türün daha önce sadece bir kez Hollanda’da görüldüğü kaydedildi.

http://www.biyologlar.com/12-milimetre-boyunda-tam-60-gozu-var

Türkiye kuşlar listesi

Türkiye kuşlar listesi

Türkiye'nin farklı iklimli bölgeleri birçok farklı kuş türünün yaşaması için elverişlidir. Yaklaşık 465 kuş türü Türkiye sınırları içinde gözlemlenebilmektedir

http://www.biyologlar.com/turkiye-kuslar-listesi

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

ScrippsAraştırma Enstitüsü Dr. SupriyaSrinivasan liderliğindeki bir araştırma ekibi, bağırsakta yağ yakmayı tetikleyen bir beyin hormonunu tespit etti.

http://www.biyologlar.com/bilim-adamlari-yag-yakmayi-tetikleyen-beyin-sinyalizasyon-molekulunu-buldu-

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi

Canlıların Ortak Özellikleri

Canlı ve cansızların aynı kimyasal ve fiziksel yasalara bağlı olduğuna inanan felsefeye Materyalizm ya da mekanik görüş, buna karşılık canlıların farklı yasalar altında hareket ettiğini ve canlılığın mistik bir güç ile meydana geldiğini benimseyen görüşe de Vitalizm ya da kadercilik denir. Her iki görüşün de temelinde belirli kimyasal ve fiziksel ilkelerin yattığı bir gerçektir. Canlılk ile cansızlığı virüslerde birbirinden ayırmak oldukça zordur (uygun koşullarda canlı özelliği, uygun olmayan koşullarda ise kristal hale geçerek cansız özelliği gösterir). Daha ileriki kademelerde canlılık özelliği belirgin hale geçerken, o zaman da canlının bitki mi yoksa hayvan mı olduğu konusunda bazı sorunlar ortaya çıkar. Nitekim birhücreli bazı hayvan grupları bugün hem botanikçiler hem de zoologlar tarafından incelenmektedir. (Örneğin; kamçılılardan öglenanın karanlıkta hayvansal, ışıkta bitkisel davranması, evrimsel gelişimde her iki grubun bu kademede ortak bir organizasyona ve ataya sahip olduğu fikrini güçlendirmektedir.) Bu aşamadaki ortaklık, daha sonraki kademelerde "bu bir canlıdır"yargısını açıkça verdirecek ortak özellikleri beraberinde vermiş; uyuma göre bu özellikler sonradan geliştirilmiştir. A. ÖZEL BİR KİMYASAL DİZİLİME SAHİP OLMALARI Cansızlar, kimyasal bağların izin verdiği ölçüler içerisinde bir bileşime sahiptirler. Canlılar ise bu kimyasal bağların dizilimini özel bir şekilde saptarlar. Tüm canlılar genleri oluşturan çekirdek asitlerini -genellikle DNA (bazı virüslerde RNA)- içerirler. Gensiz bir canlılık düşünemeyiz. Çünkü genler değişik yaşam formlarının sentez ve replikasyonundan (eşlenmesinden) sorumludur. Tüm genler aynı birimlerden; fakat değişik dizilimlerden oluşmuştur. Dolayısıyla tüm canlıların yapısına giren protein, bu genlerin yapısal değişikliğine uygun olarak, her hücrede farklı amino asit dizilimine sahip olurlar. İlave olarak karbonhidrat, yağ, ve su içerirler. Tüm bu maddelerin özel karışımı protoplazmayı meydana getirir. B. HÜCRESEL DİZİLİM Canlıların büyük bir kısmı (kural olarak çokhücreliler) hücre olarak bilinen birimlerden yapılmıştır. Her hücre çok ince zarla (plazma zarı) çevrilmiştir. Bu zar erimiş maddelerin ve suyun hücre içerisine girip çıkmasına izin verir. Her iki yönde de geçirim bakımından çok özelleşmiş seçici bir yeteneği vardır. Hücre bir çok kimyasal değişimin yapılabilmesi için değişik enzimleri ve en önemlisi yalnız başına kendinin aynını üretebilecek yeteneğe sahiptir. C. ORGANİZASYON Canlıların vücut kısımlarının görev bölümüne ve belirli kurallar içerisinde canlılık etkinliğini devam ettirmelerine organizasyon denir. Bütün hayvan ve bitkilerin vücudu, yapısal ve işlevsel olarak birim kabul edilen hücrelerden yapılmış olmasına karşın homojen değildir. Farklılaşmış vücut kısımları değişik görevleri üzerine almıştır. Hatta birhücreli canlılarda, ergin evrede, boy ve şekil sabit olmakla beraber, hücrenin farklı kısımları farklı görevleri üzerine almıştır. D. UYARILMA Bütün canlıların çevrelerindeki fiziksel ve kimyasal koşulların değişmesine karşı tepkileri kalıtsaldır. Basit organizmalarda uyarı, genel olarak bütün vücutla algılandığı halde, yüksek organizmalarda duyu organlarının yeri merkezileşmiştir. Örneğin; ışık gözle, koku burunla, tat dille, basınç ve sıcaklık deriyle vs. Uyarının alınması ve gerekli tepkinin gösterilmesi, canlının evren içerisinde en uygun yerde ve koşullarda yaşamasını sağlamayı yaratmaktadır. E. HAREKET Beslenme, korunma, üreme, yayılma, en rahat edebileceği bölgeyi bulma vs. gibi yaşamın temel işlevlerini yürütebilmek için, ilkel organizmalarda ya vücudun tamamıyla protoplazmik hareket ya bir kısmıyla sil ve kamçı hareketi ya da yüksek organizmalarda görülen, yürüme, yüzme, ve uçmanın sağlanması için belirli organ oluşumları görülür. Birçok canlı tüm yaşamı süresince belirli bir yere bağlı kalmasına karşın, vücudun değişik kısımlarının çevre koşullarına göre değişimi de hareket olarak kabul edilir. Örneğin; bitkilerde ışığa (fototropizm), yerçekimine (geotropizm), neme (higrotropizm), vs. ye yönelim bir hareket kavramı içerisinde değerlendirilir. F. ENERJİ KULLANIMI Canlılığın en önemli öğelerinden biri büyüme, üreme, yenilenme vs. için enerjiye olan gereksinimleridir. Hücre kendi başına enerji üretemez; dışarıdan kaynak sağlamak zorundadır. Hayvanlar enerji bağları içeren molekülleri yıkmak (katabolik tepkimeler) suretiyle gerekli enerjiyi sağlarlar. (karbonhidrat, yağ ve proteinden). Küçük molekülleri büyük moleküller halinde bağlayarak (anabolik tepkimeler) yapı taşlarını ve enerji depolanmasını da yapabilirler. Bu tepkimelerin tümüne birden biyoenerjitik denir. Bir moleküldeki enerjinin büyük bir kısmını kullanma oksijen kullanmakla olur; yani tamamıyla oksitlenmelidir (aerobik solunum=oksijenli solunum). İlkel canlıların bir kısmı (bazı mikroorganizmalar, özellikle mayalar) ve bazı endoparazitler (bağırsak solucanları gibi) bu kaynak maddeleri oksijensiz yıktığı için enerjinin pek az bir kısmından yararlanabilir (anaerobik solunum=oksijensiz solunum). Pek az bir organizma grubu da bazı inorganik maddeleri yıkmak suretiyle enerji elde eder; azot, demir ve kükürt bakterileri bunlara tipik örneklerdir. Dünyada serbest oksijenin olmadığı devirlerde, canlılar enerjilerini bu yollarla sağlıyorlardı. Bitkiler ise (saprofit ve parazit olanların bir kısmı hariç) enerji kaynağı olarak güneş ışınlarını kullanır. Güneş ışınlarının kuantlarındaki enerjiyi kimyasal bağlar halinde (nişasta) tutarlar ve bu kimyasal bağlar tüm adrıbeslek (heterotrof) canlıların enerji kaynağını ve yapı maddelerini oluşturur. İlk evrelerde (bitkiler oluşmadan önce) enerji kaynağı olarak UV ışınlarının katalizlediği bazı ilkin organik moleküller kullanılmıştır. Ozon perdesi oluştuktan sonra bu kaynak büyük ölçüde kurumuştur. G. ÇEVREYE UYUM Canlılar kural olarak yaşadığı ortamın koşullarına uyum yapabilecek yeteneğe sahiptir. Bu durum homeostatik tepki olarak bilinir. Değişik koşulların bulunduğu ortamda en uygun yeri seçmeye çalışır; şayet tam anlamıyla uygun ortam bulamazsa, yapısal değişikliklerle (mutasyonların yardımıyla) bu uyum sağlanmaya çalışılır. Günlük uyumlardan binlercesini farkında olmadan yaparız. Örneğin gözün karanlığa ve aydınlığa uyum yapması gibi. Çevre koşullarının değişmesi canlı bünyesine en az etki bırakacak şekilde iletilmeye çalışılır (özellikle sıcakkanlılarda); örneğin çölde ve kutuplarda insan kanı her zaman aynı sıcaklıktadır. Canlı, uyum yapabildiği oranda hayatta kalma şansına sahiptir. Bu oran ise kalıtsal yapı ile saptanmıştır. Bu sınırların dışındaki uyumlar ancak mutasyonlarla sağlanabilir. H. ÜREME Hiçbir canlı sonsuz olarak yaşamını devam ettiremez. Herhangi bir şekilde, üremeyle, kalıtsal materyal gelecek kuşaklara aktarılır. Birhücrelilerde bölünme aynı zamanda çoğalmayı sağlamasına karşın, çokhücrelilerde üreme belirli vücut kısımlarına özgü bir yetenek olarak ortaya çıkmıştır. Bazı canlı gruplarında gen değişimi olmaksızın (eşeysiz) üreme görülmesine karşın (birhücrelilerde mitoz bölünme; çokhücrelilerde tomurcuklanma, dallanma, partenogenez çoğalma, bitkilerde çeliklenme vs.) kural olarak eşeyli üreme çok daha sıktır. Bu şekilde değişik gen kombinasyonları ortaya çıkarak daha başarılı döllerin meydana gelmesini sağlar. Bu, evrim mekanizmasının en önemli ögelerinden biridir. İ. EVRİMSEL UYUM VE VARYASYONLARIN KALITIMI Tüm canlılar genlere sahiptir ve genlerin tümü de mutasyonla değişebilir. Bu, aynı türün farklı bireylerinin kalıtsal olarak değişmesini sağlar. Dolayısıyla o anda faydalı olan mutasyonları taşıyan bireyler seçilir, zararlı olanlar uyum yapamadığı için ortadan kaldırılır ve evrimsel bir yönlendirme ortaya çıkar. Bu, zamanla türün değişmesine neden olur; özellikle çevre koşulları değiştiği zaman. Kalıtsal uyumlar meydana gelmeseydi, hiçbir tür yaşamını sürdüremeyecekti; çünkü çevre koşulları devamlı olarak değişmektedir. I. BÜYÜME Çevresindeki anorganik (ham) maddeleri kendi protoplazma yapısına çevirme, büyüme olarak bilinir. Bitkilerde (çok yıllık) kural olarak sınırsız bir büyüme görülmekle beraber, hayvanlarda her türün kendine özgü şekil ve büyüklüğe ulaşmasına kadar devam eder. Çok hücreli hayvanlarda genellikle bir büyüme evresi vardır. Bu evrede büyüme hızlıdır. Daha sonraki evre olgunluk evresidir, büyüme yoktur; fakat protoplazmanın yenilenmesi için devamlı besin yadımlaması (asimilasyonu) vardır. Protoplazma, metabolik tepkimeler sonucu sürekli olarak yıkılır, eğer yaşam devam edecekse bu protoplazmanın yenilenmesi gerekir. Birhücrelilerde büyüme, çoğalma ile sonuçlanmasına karşın; çokhücrelilerde vücudun gelişmesini ve irileşmesini sağlar. Yaşlılık evresinde protoplazmanın yenilenmesi gittikçe azalır; hücre yavaş yavaş işlevini; ilerlemiş ve yaygınlaşmış durumlarda da yaşamını yitirir. Bu bozulma herhangi bir yaşta, yeterince besin alınmadığında veya nitelik bakımından doyurucu olmadığında da ortaya çıkabilir. Yenilenmenin kusursuz olması protoplazmanın içerdiği maddelerin eksiksiz olmasıyla sağlanabilir. Büyüme her türde kalıtsal yapıyla sınırlandırılmıştır. Bunun alt ve üst sınırları çevre koşullarıyla belirlenmistir.

http://www.biyologlar.com/canlilarin-ortak-ozellikleri-2

Çapak balığı (Abramis brama)

Çapak balığı (Abramis brama)

Çapak balığı (Abramis brama), sazangiller (Cyprinidae) familyasına ait bir tatlısu balığı türü.Çapak balığı ortalama 30 ila 50 santim boyunda yakalanır. Ara sıra 75 santim ve 7 kilo ağırlığına kadarlarına da rastlanır. Sırtı hafif yeşil, kahverengi, sarı ya da siyah gibi parlar.Göğüs yüzgeçlerinin haricinde tüm yüzgeçleri koyu gri renktedir. Göğüs yüzgeçleri açık gri renktedir ve neredeyse karın yüzgeçlerine yetişecek kadar büyüktür. Ve bu göğüs yüzgeçleri ile çapak balıklarını kendilerine çok benzeyen ve çok sık çapak balıkları ile karıştırılan Tahta balığı (Blicca bjoerkna)'dan ayırt etmek mümkündür. Bu iki balık türü de aynı zamanda çiftleşip yumurtlarlar. Bu arada bazen bir balık türünün dölü diğer balık türünün yumurtaına ulaşabilir, ve böylece "melez balıklar" meydana gelebilir. Bu melezlerin kursak dişlerini inceleyerek, karışmış olmalarına rağmen daha çok hangi türe ait oldukları tespit edilebilir. Çapak balıklari 16 yaşına kadar yaşayabilirler.Çapak balıkları Avrupa'da Alp dağlarının kuzeyinde, Balkanların Karadenize yakın kısmında, karadenize yakın tatlısularda, Aral gölü ve Hazar denizinin civarındaki tatlısularda bulmak mümkündür. Tuna nehrinde yaşayan bir türü Abramis brama danubii adını taşır. Aral gölü ve Hazar denizi civarında yaşıyanın adı Abramis brama orientalis'dir. Türkiye'de Batı Karadeniz, Marmara ve Ege bölgelerinin tatlısularında bulunur.Çapak balıkları genelde ırmakların çok yavaş akan kısımlarında ve göllerde bulunur. Suyun dibindeki besinli çamurun yakınında küçük sürüler oluşturarak yaşarlar.Çapak balığın dudaklarını dışarıya kıvırabilme kabiliyeti ona sivrisinek kurtçukları, çamur solucanları, midyeler ve sülükler gibi su hayvanlarını daha rahat ayıklıyabilmesi için faydalıdır. Bazen su bitkileri ve plankton'dan da beslenirler.Üreme zamanları Nisan ve Haziran arasındaki zamanda iki hafta sürer. Dişiler ürettikleri 1,6 ila 2 milim büyüklüğündeki 150.000 ila 300.000 adet yumurtayı su bitkilerinin üzerine yapıştırırlar.Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     Actinopterygii (Işınsal yüzgeçliler)Takım:     Cypriniformes (Sazansılar)Familya:     Cyprinidae (Sazangiller)Cins:     AbramisTür:     A. brama

http://www.biyologlar.com/capak-baligi-abramis-brama

Topraktan Mineral Madde Alımı

Bitki kökleri toprak çözeltisinden daha önce belirtilen mekanizmalarla su ve mineral madde alırlar, toprağın havasını kök solunumu için kullanırlar. İdeal olan tarla kapasitesindeki toprağın por hacminin su ve hava tarafından yarı yarıya paylaşılması ideal durumdur. Nemli ortamlarda toprak havalanmasına porozite artışı yolu ile solucanlar gibi hayanlar önemli katkıda bulunur. Toprağın yapısını bitkiler kökleri ile destekler, ölü kökler toprakta çeşitli çaplarda kanallar oluşturarak poroziteyi ve permeabiliteyi arttırdığı gibi organik madde oluşumuna katkı sağlar. Bu açıdan derin ve yaygın kök sistemleri ile yüzeysel kök sistemi olan türleri içeren ekosistemler sürdürülebilir özellik kazanır.Bu açıdan toprak sıcaklığı da önemlidir. Mikrobiyal aktivite yanında evaporasyon ve bunun serinletici etkisi gibi etkilerin karmaşık ilişkileri söz konusudur. Toprak mikrobiyolojisi özellikle bitkilerin azot beslenmesi ve organik madde içeriği açısından çok önemlidir. Toprak organik maddesinin yaklaşık yarısına kadar olan kısmını mikro canlılar oluşturur.Topraktan alınan su miktarı ile iyon miktarı paralellik göstermez, yani bitki iyon alımını denetimi altında tutar. Kökler katyonları özellikle protonla iyon değişimi yaparak alırlar, azot NH4 katyonu ve NO3 anyonu, P özellikle H2PO4 ve S de SO4 halinde alınır. Tuzları halinde bulunan iyonların alım oranları farklıdır, örneğin NaCl çözeltisinden aynı miktarda Na ve Cl alınmaz, bu oran da denetim altında tutulur. Fosforun toplam miktarı ile bitkilerin kullanabildiği fosfor miktarı paralellik göstermediğinden faydalı fosfor analizi ile sonuca gidilir.

http://www.biyologlar.com/topraktan-mineral-madde-alimi

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Epitel Doku

Epitel dokusu, sıkıca biraraya gelmiş polihedral hücreler ile çok az hücrelerarası maddeden oluşur. Bu hücreler arasındaki bağlantılar güçlüdür. Böylece, oluşan hücresel tabakalar vücudun yüzeyini örter ve boşluklarını döşer. Epitel dokusunun başlıca görevleri: Yüzeyleri örtmek ve döşemek (deri) Emilim (barsaklar) Salgılama (bezlerin epitelyal hücreleri) Duyu algılama (nöroepitel) Kasılma (miyoepitelyal hücreler) Kökeni: Her 3 germ yaprağından da gelişir. Deriyi, ağız, burun ve anüsü döşeyen epitel ektodermal; solunum, sindirim sistemi ve sindirim sisteminin bezleri (pankreas ve karaciğer) endodermal; kan damarlarının endotel örtüsü mezodermal orijinlidir. Hücre şekli: Yüksek prizmatikten, kübiğe ve alçak yassıya kadar değişirken , boyutları da değişiktir. Çekirdeğin şekli çoğunlukla ve kabaca hücre şekline uyar. Bütün epitel hücreleri, altlarında bulunan bağ dokusu ile temas halindedir. Bunların bazal yüzeyindeki tabaka bazal lamina olarak isimlendirilir. Yalnızca elektron mikroskopta görülen bu tabaka ince fibrillerin oluşturduğu narin bir ağdan meydana gelen 20-100 nm kalınlığında yoğun bir tabaka olarak belirir ve lamina densa olarak adlandırılır. Lamina densa’nın yanısıra bazal laminadaki yoğun tabakanın tek ya da her iki yanında elektron-geçirgen tabakalar bulunabilir, bunlar lamina rara ya da lamina lusida olarak isimlendirilir. Bazal laminanın ana bileşenleri 1-Tip IV kollajen 2-Laminin (glikoprotein) 3-Heparan sülfat (proteoglikan) dır. Bazal lamina, altındaki bağ dokusuna tip VII kollajenle ve yüzeysel dermisin elastik elementlerinden olan mikrofibril demetleri ile tutunur. Bazal lamina yalnızca epitelyal dokularda değil, aynı zamanda bağ dokusu ile temas eden diğer hücre tiplerinde de bulunur. Bazal lamina, bağ dokusu ile diğer dokular arasında makromoleküllerin değiş – tokuşunu sınırlayan yada düzenleyen bir bariyer oluşturur. Hücrelerarası etkileşim için gerekli bilgileri de içerir. Bir diğer fonksiyonu ise epitelyal hücrelerin yerini ve hareketlerini düzenler. Bazal laminanın bileşenleri epitel, kas, yağ ve Schwan hücreleri tarafından salgılanır. Bazen retiküler lifler, bazal lamina ile sıkı bir ilişki içinde olan ve retiküler lamina adı verilen bir tabaka oluştururlar. Bu retiküler lifler, bağ dokusu hücreleri tarafından üretilirler. Bazal membran, akciğer alveolleri ve böbrek glomerüllerinde her iki epitel hücre tabakasına ait bazal laminaların kaynaşması ile oluşan, bu nedenle bazal laminadan daha kalın olan ve ışık mikroskobu ile görülebilen yapılardır. PAS + dir. Genellikle 2 bazal laminanın kaynaşması ile oluşabildiği gibi bazen bir bir bazal bir retiküler laminanın birleşmesi ile oluşur. Epitel Dokusunun İnnervasyonu: Epitel dokularının çoğu lamina propriadaki sinir pleksuslarından zengin duyu sinir sonlanmaları alır. Epitel Hücrelerinin Yenilenmesi: Epitel dokuları dayanıksız yapıdadır, hücreler mitotik aktivite ile devamlı olarak yenilenir. Yenilenme hızı ince bağırsakta süratli (2-5 gün), pankreasta yavaştır (50 günde bir). Çok katlı ve yalancı çok katlı epitelde mitoz, germinal tabakada meydana gelir. Metaplazi: Bazı fizyolojik ve patolojik şartlar altında bir epitel tipi değişime uğrayarak başka bir epitel tipine dönüşür. Polarite: Epitel hücrelerinin önemli bir özelliğidir. Vücut dışını veya vücut boşluğunu sınırlayan apikal yüzü ve bazal laminaya oturan, iç vücut yapılarına dönük bazal yüzeyi vardır. Kan damarları epitele girmediğinden bütün besinlerin lamina proprianın altında bulunan kapillerlerden çıkarak epitele geçmesi gerekir. Besinler ve epitelyal hücre ürünlerinin öncülleri, bazal laminadan diffüzyonla geçerek bazo-lateral yüzeylerinden genellikle de enerji gerektiren bir işlemle hücre içine alınır. Epitel hücrelerinin aktivitelerini etkileyen hormonlar, nörotransmitterler gibi kimyasal ulakların reseptörleri de bazo-lateral membranda toplanır. Absorbtif hücrelerde, apikal hücre membranı yapısındaki membran, proteinlerin yanısıra disakkaritler ve peptidazlar gibi enzimleri de içerir. Bu enzimler, emilen moleküllerin sindirimini tamamlar. Sıkı bağlantıların, çeşitli hücre membran bölgelerindeki esas membran proteinlerinin birbirine karışmasını önlemeye yardımcı olduğu düşünülmektedir.   Vücudun iç ve dış yüzeyini örter.Bunun 4 görevi vardır;Bulundukları organı dış etkilerden korumak,Salgı yapmak,Emmek, Mukus ve benzeri maddeleri iletmek.Epitel doku işlevine göre 2 grupta incelenir; 1.Örtü epiteli:Asıl görevi korumaktır.Ancak bazen emilim görevide yaparlar.Hücrelerinin sıralanışına göre Tek katlı ve Çok katlı olmak üzere ayrılırlar. A.Tek katlı epitel:Yan yana dizilmiş hücrelerden oluşur.Hücreleri yassı,kübik veya silindiriktir., a.Tek katlı yassı epitel: Akciğer alveolleri,kan damarlarının iç yüzü ve kılcal damarlarda bulunur. b.Tek katlı kübik epitel:Omurgalı böbreklerinde,tiroit bezinde bulunur. c.Tek katlı silindirik epitel:Omurgalının solunum yollarında,incebağırsakta bulunan silindirik epitel emme görevi yapar. B.Çok katlı epitel:Üst üste sıralanmış hücrelerden oluşur.Omugalıların derisinde bu doku vardır.Bu epitel dokuyu incelediğimizde en altta silindirik,ortada kübik,üstte ise yassı epitelden oluşmuştur.En üstteki epitel genellikle ölüdür.Bu ölü hücre alttaki canlı hücreleri dış etkilerden korur.Kan damarı içermez. 2.Salgı(Bez) epiteli;Salgı yapma yeteneğindeki hücrelerdir.Tükürük bezi,mide bezleri,ter bezleri,hipofiz,tiroit gibi salgı yapan organlarda bulunur.Hücre sayısına göre; A.Tek hücreli bezler ; Silindirik hücrelerden oluşur.Bunlara “goblet” hücresi denir.Toprak solucanının derisinden,sindirim kanalından,solunum organlarından salgılanan mukus buna örnektir. B.Çok hücreli bezler; Salgı yapan hücrelerin bir araya gelmesi ile oluşurlar.Salgılarını bir kanala ve buradan vücut boşluğuna veren bezlere ekzokrin(dış salgı) bezi denir.Tükrük bezi,mide ve bağırsak bezleri ile gözyaşı bezleri dış salgı bezleridir.Salgılarını doğrudan kana veren bezlere endokrin(iç salgı) bezi denir.Bunlar kanalsız bezlerdir.Salgılarına hormon denir.Hipofiz,tiroit,paratiroit,böbreküstü bezleri birer iç salgı bezidir

http://www.biyologlar.com/epitel-doku

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Örümcek Türleri

Örümcek, eklembacaklıların örümceğimsiler (Arachnida) sınıfının örümcekler (Araneida) takımından türlerine verilen genel ad. Hemen hemen dünyanın her tarafında yaşarlar. 63.000 kadar türü vardır. Baş ve göğüs kaynaşmıştır. Karın, göğüse ince bir bel (pedisel) ile bağlanmıştır. Aynı büyüklükte başka bir canlının beli bu kadar ince değildir. İçinden sindirim borusu, kan damarları nefes boruları ve sinir sistemi geçer. Örümceklerin boyları, birkaç cm'den 35 cm'ye kadar değişir. Ağızlarının önünde iki zehir çengeli (keliser) ve iki his ayağı (pedipalp) yer alır. Göğüslerinde ise, gelişmiş dört çift yürüme bacağı vardır. Uçları, tarak gibi dişli iki çengelle sonlanır. Örümcek bunların sayesinde ağ üzerinde rahatça dolaşır. Bir kısmı ileriye, geriye ve yanlara doğru yürüyebilirler. Çoğunun başında 3 veya 4 çift osel (basit) göz bulunur. Gözlerin dizilişi, sınıflandırmada önemli bir özelliktir. Yuvarlak olan karın kısmı yumuşak ve esnek olup, alt kısmında solunum delikleri, ipek bezleri, anüs ve cinsiyet organları yer alır. GENEL ÖZELLİKLER Örümcekler, yırtıcı hayvanlardır. Birbirlerine saldırmaktan çekinmezler. Avları çok çeşitlidir. Çoğu, böceklerle beslendiklerinden faydalı sayılırlar. Bazı tropikal türler amfibyum, sürüngen, küçük kuş ve memeli gibi omurgalıları avlarlar. Örümceklerin hepsi avlarını yakalamak için tuzak ağları kurmaz. Bir kısmı avlarını kovalayarak veya üzerlerine sıçrayarak yakalar. Suda böcek, kurbağa ve balık avlayanlar da vardır. Yakaladığı avını, kıskaçlarına açılan zehir salgısı ile felce uğratır. Sonra ısırarak avının iç organlarına, eritici enzimler ihtiva eden tükrük salgısını akıtır. Kısa bir zaman zarfında, avın iç organları eriyerek sıvı haline gelir. Örümcek, emici midesini bir pompa gibi kullanarak bu sıvıyı emer. Av, kısa bir sürede içi boş kabuğa döner. Örümcek, bu boş kabuğu ya olduğu yere bırakır veya başka bir yere atar. Böcekler, küçük kuşlar bu avlar arasındadırlar. Güney Amerika'da yaşayan, bacakları hariç 10 cm boyunda olan, toprakaltı inlerinde barınan bazı türler, tavşan ve tavukların içini boşaltabilecek güçtedir. Örümceklerin özofagusları (yemek borusu) çok dar olduğundan böyle beslenmek zorundadırlar. Ayrıca, ağız parçaları da bir sineği bile parçalayacak güçte değildir. Zehir çengelleri, avı delmeye ve zehir akıtmaya yarar. Uçtaki iğneli kısımları, bir şırınga gibi birer yan delikle biter. Deliğin böyle enjektörvari oluşu, tıkanma tehlikesini önler. İğne ava girince, zehir bu delikten sızar. Örümcekler, iki keliseri de kullanırlar. Isırdıkları zaman yanyana iki delik olması bu yüzdendir. Keliser, aynı zamanda, delik açma ve küçük cisimleri taşıma işlerine de yarar. Örümceklerin böceklerden ayrılan birçok özelliği vardır. Böceklerin çoğu kanatlı olduğu halde, örümcekler kanatsızdır. Böceklerde 6 bacak olmasına karşılık örümceklerde 8 bacak vardır. Antenleri olmadığından, ağız önündeki pedipalpler bu görevi üstlenirler. Dış görünüşleri bacağa benzediğinden bunlara duyu bacakları da denir. Üzerleri duyu algılayıcı tüylerle kaplı olup, dokunma, tad alma ve çevreyi koklayıp araştırma gibi görevler yaparlar. Üreme dönemlerinde erkeklerde spermaları biriktirip dişiye aktaran bir kopulasyon (çiftleşme) organı olarak da iş görürler. ve her tehlikeye karşı sperleri vardır. Örümceklerde trakealar (solunum boruları), akreplerde olduğu gibi karın altında kitap akciğerleri tipindedir. Kitap yaprakları şeklindeki deri kıvrımlarından dolayı solunum organları bu adı alır. İki veya dört tane kitap akciğerleri vardır. Eğer örümcekte bunlar iki ise, eksikliği ek solunum boruları ile tamamlanır ÖRÜMCEK AĞI NASIL OLUŞUR Örümceklerde, diğer eklembacaklılar gibi açık bir dolaşım sistemi bulunur. Kılcal damarları yoktur. Hemen hemen her yerde rastlanan örümcek ağı, aslında bir sanat şaheseridir. Yapılış maksadı avlanmak olan ağ, bir nevi tuzaktır. Fakat her örümcek türü ağ yapmaz. Ancak bütün örümcekler ağ tellerinden yumurtalarının etrafını saran kozalar yaparlar. Bazıları da ağ bezlerini, yaprakları yapıştırmakta, yuvalarının içini döşemede, açtıkları çukurun çevresini kapatmakta vs. işlerde kullanırlar. Ağ kurmayan bu tür avcı örümcekler de, arkalarında ağdan bir iz bırakarak, rüzgarla sürüklenmekten korunurlar. Erkekler, dişileri bulmakta da bu izlerden faydalanırlar. Karın altlarının arka taraflarında üç çift ağ organları bulunur. Her birinin dışarıya ayrı bir çıkışı vardır. Bezlerden meydana gelen yapışkan ve sıvı iplik maddesi, havayla temas edince sertleşir. Her ağ memeciğinde 100 kadar ince ve küçük kanalcıklar bulunur. Bu ince kanalcıklardan sızan iplikçikler bir araya gelerek büküldükleri zaman tek iplik durumuna gelirler. Esnek ve yapışkandırlar. Bir sinek ne kadar sert çarpsa da kopmazlar. Ağ yapmak isteyen örümcek, ağ organlarını bacaklarının bir kısmı ile bastırarak ağ maddesinin akışını başlatır. Örümcekler, iplik deliklerinden çıkan tellerin hepsini toplayıp bir tek tel halinde kullandıkları gibi bunlardan ayrı ayrı incecik tel de yaparlar. Düşme esnasında bir yere taktığı ağ telini, kendisi yere varıncaya kadar uzatabilir. Genç örümcekler, ağ tellerinin sayesinde uzun mesafelere uçabilirler. Bunun için telin bir ucunu bir yere bağlayarak kendilerini hava akımlarına bırakırlar. Böylece yerlerinden havalanan örümcekler, karada 5 km, denizde ise yüzlerce km uzaklara savrulabilirler. Okyanuslardaki ıssız adalarda yaşayan örümcekler, hep böyle havadan gelmişlerdir. Sonbaharda bol bol rastlanan ağ telleri de uçan genç örümceklerden kalmıştır. Ağ yapacak olan bir örümcek, önce yüksekçe bir yere tırmanarak, ağın ucunu bulunduğu kısma yapıştırarak ipek iplik yardımıyla aşağı süzülür. Gözüne kestirdiği bir dala ulaşarak bağlantı kurar. Sonra o iplik üzerinde gidip gelerek ağı kalınlaştırır. Daha sonra vücudundan çıkmakta olan ipliğin bir ucunu ilk ipliğe tutturarak kendisini boşluğa bırakır. Ağa bağlı halde bir yere varınca, o ucu vardığı yere yapıştırır. Bu yolla birkaç gidiş gelişte ağın kaba iskeleti meydana gelir. Bundan sonra iskeletin merkezi çevresinde dairevi halkalar yaparak ağı tamamlar. Ağ örümü çoğunlukla gece olur. Örülmesi en fazla 60 dakika alır. Ağın ortasında spiral ve yapışkan bir yer vardır. Diğer iplikçikler kurudur. Bir sinek ağa konsa hemen yapışır. Kurtulmak için çırpındıkça daha da yapışır. İkaz iplikçiği ile avın yakalandığını anlayan örümcek gelerek avını zehirler. İkaz iplikçiğinin bir ucu ağa bağlı, diğer ucu ise daima kendisindedir. Ağlar, genellikle yere dik vaziyettedir. Maksat, uçan arı ve sinekleri yakalamaktır. Her örümcek türünün, kendisine has ağ örme stili vardır. Ancak dikkati çeken nokta, ağlarda geometrik inceliklerin her zaman varlığıdır. Ağ örme işi örümceklerin, doğuştan kazandıkları bir sanattır. Küçük bir örümcek, daha önce hiç ağı görmemiş ve örmemiş olmasına rağmen büyüklere benzer ağlar örer. ÖRÜMCEKLER NASIL KORUNUR ? Bazı örümcekler düşmanlarından korunmak için çeşitli hilelere başvururlar. Güneydoğu Asya'da bir örümcek türü yaptığı büyük ve dairevi ağının ortasında durur. Bu duruş örümcek yiyen kuşlar için kolay bir hedef teşkil eder. Örümcek, düşmanlarını yanıltmak için birkaç adet sahte ağ merkezi tesis eder. Yediği avlarının kalıntılarını da ağ merkezlerine takarak manken örümcekler kullanır. Başka bir örümcek çeşidi de diken ve ağaç kabuklarından manken örümcekler yapar. Örümcek ağlarının ipleri ipektir. Bu iplikler, aynı çaptaki çelik telden daha sağlamdır. Örümceğin ipeği, ipekböceğinin ipeğinden daha ince ve daha dayanıklıdır. Üstelik bildiğimiz ipekten daha güzeldir. Ancak yapılan araştırmalar göstermiştir ki, örümcek ipeği tellerinden ince ipek elde etmeye imkân yoktur. Daha doğrusu çok pahalıya mal olmaktadır. Bunun başlıca sebebi, örümcekleri bir arada tutmanın zorluğudur. Zira bir arada bulunan örümcekler birbirini yerler. ÖRÜMCEKLERDE ÜREME Örümcekler ayrı eşeyli canlılardır. Dişileri erkeklerden daha iridir. Bazı türlerde erkekler de ağ yapar. Örümceklerde bir arada yaşamak, toplum ve aile hayatı yoktur dense de bazı türlerin birkaç birey olarak yasadıkları litaratüre geçmiştir. Erkekten daha iri olan dişiler, çiftleşme sonrası diğer örümceği yiyebilirler. Örümceklerde en ilgi çekici hususlardan biri de erkeklerde duyu bacaklarının eşleşme organı vazifesi görmesidir. Erkek önce bir sperma ağı örerek üzerine bir damla spermatozoon sıvısı bırakır. Sonra ters dönerek bu sıvıyı şırıngaya çeker gibi pedipalplerin şişkin kısmına doldurur. Bundan sonra dişiyi aramaya çıkar. Örümceklerin çiftleşmesinde erkek örümcek, daima ölümle karşı karşıyadır. Çiftleşme zamanında erkek örümcekler dişilerin karşısında çeşitli hareketlerle, dişilere açlığını unutturmaya çalışırlar. Sıçramalarla yaptığı bu hareketlere örümceğin sevgi dansı denir. Dişi örümceğe açlığını unutturmak için dans yaparken ondan uzak durmaya da dikkat eder. Zira bir anda yakalanmak tehlikesi vardır. Bazıları, çiftleşme öncesi dişi örümceğe bir böcek ikram ederek açlığını giderir. Bir tehlike kalmadığını anlayınca dişiye yaklaşır. Açlığını hatırlayan dişi, erkeği yemeyi düşündüğü için, erkekler çiftleşmeden sonra hemen kaçarlar.Genelde erkek, dişi aramaktan, sevgi dansından ve çiftleşmekten yorulduğu için dişi için çiftleşme sonrası en yakın protein kaynağı olarak görülür ve birçok örümcek kaçmaya fırsat bulamadan dişi örümceğe yem olur. Fakat her çiftleşmeden sonra dişinin mutlaka erkek örümceği yediği söylenemez. Dişi örümcekler yumurtalarını, ağ ipiyle yaptıkları kokon adı verilen kozalara (torbalara) bırakırlar. Bir kozada bazan yüzlerce yumurta olabilir. Genellikle yazın sonlarında döllenen yumurtalar, ilkbaharda yavru verir. Yaz başlarında döllenen yumurtalardan 20-60 gün içinde yavru çıkar. Örümcek, sonbaharda sarımsı beyaz renkli kokon adı verilen ipek bir koza içine bıraktığı yumurtalarına karşı çok şefkatli olmasına rağmen dişilerin yumurtaları veya yavruları yediği de olur.Bu durum yumurtaların döllenmemiş olduğunu gösterebilir.Yumuşak ve çok küçük olan bu yumurtalarla dolu kozayı bir dala, taş altına duvar yarığına, ağaç kovuğuna veya çalılıklar arasına emin bir yere yapıştırır.Kokon anne örümcek tarafından çevrilerek alttaki yavrularında hava alması sağlanır. İlkbaharda doğan yavrular ana-babalarına benzerler. Doğduktan birkaç gün sonra iyi bir ağ kurup kendi kendilerine beslenirler. Çoğu türlerde, yavrular erişkinliğe erdiği zaman babaları çoktan ölmüş olacaktır. Zira erkek örümcekler erişkinlikten sonra birkaç yıl yaşarlar. SINIFLANDIRMA Trigonotarbida - tükenmiş Amblypygi Araneida - örümcekler Mesothelae Opisthothelae Araneomorphae Mygalomorphae - tarantula ve tarantula benzeri örümcekler Phalangiotarbida - tükenmiş Opiliones - phalangidler, uzun bacaklı örümcekler (6,300 tür) Palpigradi Pseudoscorpionida - yalancıakrepler Ricinulei Schizomida Scorpiones - akrepler (2,000 tür) Solifugae - böğler (900 tür) Haptopoda - tükenmiş Uropygi - (100 tür) Acarina - maytlar ve keneler (30,000 tür) Acariformes Sarcoptiformes Trombidiformes Opilioacariformes Parasitiformes

http://www.biyologlar.com/orumcek-turleri


ÖLDÜRME KAPLARI

1) Siyanürlü Öldürme Şişeleri : Geniş ağızlı, kapağı lastik veya mantar olan bir şişe alınız. Tabanına 4 tane nohut büyüklüğünde potasyum siyanür (KCN) parçasını aralıklı olarak koyunuz. Potasyum siyanür parçalarını kendi şişesinden pens ile alınız. Potasyum siyanür taneleri üzerini 1 cm kalınlıkta, şişenin tabanını kaplayacak şekilde pamukla örtünüz. Bir başka kapta döküme hazırladığınız alçıyı , ağır ağır ve dikkatle pamuğun üzerine, şişenin tabanından itibaren 3 parmak yükseklik hasıl oluncaya kadar dökünüz. Hazırladığınız bu kuru zehir şişesini, pencerenin dış kenarına ağzı açık olarak bırakınız. 24 saat sonra ağzını kapatarak kullanınız. Aynı şişeden 3 tane hazırlayınız. Bunlardan birisi içine yalnız kelebekleri, ikincisine örümcekleri, üçüncüsüne de örümcek ve kelebek hariç, diğer bütün böcek çeşitlerini ve çok ayaklıları koymak için kullanınız. Bir etiketin üzerine iskelet kafatası çizdikten ve altına kırmızı kalemle “şiddetli zehir “ yazdıktan sonra bu şişelere kuvvetli bir yapıştırıcı ile yapıştırmayı unutmayınız. Bu zehir şişelerinden kırılan olursa bunları katiyen rasgele bir yere atmayınız. Ekilmeyen ve hiçbir zaman kazılması ihtimali olmayan bir yere bir metre derinlikte bir çukur kazınız ve şişenin parçalarını buraya her şeyi ile birlikte iyice gömünüz. Yeteri kadar derin gömmediğiniz takdirde, zehir, tabi toprak sıcaklığında buharlaşarak toprağın  üzerinde oturan, yatan bütün canlıları öldürebilir. 2. Asetik Eterli veya Kloroformlu Öldürme Şişeleri :Potasyum siyanür bulunamazsa eczaneden bir litre asetik eter alınız. Kavanozun tabanından itibaren 2 parmak yüksekliğine kadar, hızardan çıkmış toz tahta talaşı doldurunuz. Talaşı biraz sıkıştırınız. Öte yandan kavanozun tabanını örtecek büyüklük ve şekilde, kalınca bir mukavva kesiniz. Mukavva üzerinde, çivi ile 25 - 30 kadar delik açınız ve hemen kullanmak üzere yanınıza alınız. Asetik eteri veya kloroformu azar azar talaşa emdiriniz. Öyleki talaş tam ıslansın, fakat tabanda sıvı birikmesin. Mukavvayı, talaş üzerine sımsıkı oturtunuz. Kavanozu kendi kapağı ile örtünüz. Hayvanlar asetik eter içinde daha geç ölürler. Çünkü asetik eter siyanür gibi şiddetli bir zehir değildir. Bu şişelerin kullanılması da siyanür şişeleri gibidir. 3. Alkollü Öldürme Şişeleri :Geniş ağızlı şişeler alınız. Bu şişelere kendi boylarının ¼`üne kadar alkol veya adi ispirto koyunuz. Şişeler kullanmaya hazırdır. Alkollü öldürme şişelerine böcekleri, örümcekleri ( örümcekleri ayrı şişeye ), çok ayaklıları, tespih böceklerini, suda yakalanmış ufak hayvanları (ayrı şişeye), ufak salyangoz, midye, istiridye, solucan, tırtıl ve böcek larvalarını, deniz yıldızı, deniz kestanesi, deniz hıyarı ve deniz şakayıklarını koyabilirsiniz. Pul kanatlıları (kelebekler) asla alkollü şişelere koymayınız. Kelebeklerin, başlarının hemen gerisindeki göğüs kısımlarını üst-alt istikametinde iki parmak arasında, çıt sesini duyuncaya kadar sıkınız. Hayvanı bu şekilde öldürdükten sonra, önceden, boy boy ve çok sayıda hazırladığınız kelebek zarflarına, hayvanın kanatlarını üstten birleştirerek, yan bir şekilde koyunuz. Her zarfa yalnız bir kelebek koyarak kapatınız. Bu zarfları da katlanmadan muhafaza edilecek şekilde kutulara yerleştiriniz. 4. Formollü Öldürme Şişeleri :Formol, eczanelerde kiloluk şişeler halinde % 40 oranlı formaldehit olarak satılır. Bu % 40 oranlı formolden bir kaba 1 bardak formol konmuş ise, üzerine, aynı bardakla 9 bardak su katmak suretiyle sulandırılır. Böylece % 4 oranlı formollü su elde edilmiş olur. Bu sulandırılmış formolden öldürme şişelerine, şişenin ¼ `üne kadar doldurulur. Şişeniz kullanılmaya hazırdır. Formollü su içine de, kelebekler hariç bütün hayvanlar konulabilir. Ancak formol, adi ispirto, tuvalet ispirtosu gibi sıvılar, içlerinde uzun müddet bırakılan hayvanların renklerini soldurur ve bozar. Ayrıca, bu hayvanların doku sularını da çekerek, gevrek bir şekilde sertleştirir. Bu sebeple alkollü ve formollü öldürme şişelerine koyduğunuz hayvanları kuru olarak muhafaza edecekseniz bu şişeler içinde bir günden fazla tutmayınız.

http://www.biyologlar.com/oldurme-kaplari

Pembe Peri Armadillolar

Pembe Peri Armadillolar

Bu canlı tüm armadilloların en küçüğüdür (boyları sadece 12-15 cm kadardır.) ve garip bir renk anlayışına sahip bir canlıdır. Çok açık pembe renkli ve kabarık görünümlü beyaz bir kürkü bulunmaktadır. Bazen renkleri daha az pembe, biraz daha sarı veya kahverengimsi olabilmektedir.Sadece Arjantin'de kumlu ovalarında, kurak çayırlarda ve bozkır arazilerinde yaşıyorlar. Tercih edilen gıdalar çoğunlukla karınca larvaları ve karıncalardır, ancak solucanlar ve diğer ürpertici canlıların yanı sıra birkaç bitki ve bitki köklerini de yiyebilirler. Sağlam pençeleri,  yiyeceklerini bulmaya yardımcı olur, ayrıca yüzme tırmanma gibi özelliklerede sahiptirler. Çeviren ve Derlyen : Yavuz Aydın

http://www.biyologlar.com/pembe-peri-armadillolar

Artropodların Zararlı Etkileri

Artropodların konaklarına (Konak: Artropodları üzerinde veya içinde taşıyan omurgalı canlılar yani insan ve hayvanlara verilen isimdir.) zararlı etkileri 2 grupta toplanmaktadır. Bunlar; A) Artropodların direkt olarak neden olduğu zararlı etkiler: a-1) Konaklarını rahatsız etmeleri: Ektoparazit artropodlar genellikle konak üzerinde gezerken ya da yakınında uçarken onu rahatsız eder ve normal fonksiyonlarını görmesini engeller. Örneğin Mallophaga takımındaki bitler kanatlıların üzerinde gezerken onları huzursuz eder, yeterli besin almasını engeller, stres ve verim düşüklüğüne sebep olur. Meradaki ineklerin çevresinde uçuşan Hypoderma ve Tabanus cinsi sinekler onları huzursuz eder ve hayvanların sağa sola kaçışmasına neden olur ve dolayısı ile özellikle sığırların meradan yararlanmasına engel olduğu için verim kaybına ve hatta bu kaçışmalar esnasında abortlara neden olabilirler. a-2) Soyucu sömürücü etkileri: Artropodun konakçısından kan, lenf ve doku sıvılarını emmesi veya kan emme sırasında böcek tarafından çıkarılan antikoagülant madde etkisiyle kanamanın uzun süre devam etmesiyle olur. Artropod az sayıda olduğunda bu etki önemsenmeyebilirse de çok sayıda olduğunda (Ör: Kene, Tabanus cinsi sinekler gibi) kan emme sonucu anemi meydana gelmekte ve hatta hayvanların ölümüne neden olabilmektedir. Bütün hayatları boyunca kan emmek zorunda olan kenelerin, yumurtlamak için kan emmek zorunda olan dişi sivrisineklerin konaklarından kan emmeleri sömürücü bir etkidir. a-3) Dermatozlara neden olmaları: Artropodların konakçısını ısırma ya da sokması sonucu veya konak derisini istila etmesi neticesinde değişik derecede deri irritasyonlarına ve dolayısıyla dermatozlara neden olurlar. İrritasyonlar artropodların allerjik ve toksik etkileri sonucunda meydana gelebilir. Deri irritasyonu ya sivrisinek, pire, kan emici bitler gibi sokucu artropodlardan ya da uyuz etkeni olan ve deri içinde oyuk ve tüneller açan artropodlardan meydana gelir. Tabanus’ların hayvanlardan kan emerken deride oluşturdukları yaralar ve Hypoderma sineklerinin larvalarının sığırların vücudunda göçleri sırasında sırt derisi altına yerleşip deriyi delmeleri sonucu oluşan bozukluklar bir traumatik etkidir. a-4) Myiasis ve bununla ilgili bozukluklar: İnsecta sınıfı Diptera takımındaki bazı sinek larvalarının insan veya hayvanların organ veya dokularını istila etmelerine myiasis adı verilir. Zorunlu, fakültatif ve rastlansal myiasis olarak ya da larvaların yerleştiği anatomik bölgeye göre cuticol, gastricol, cavicol myiasis olarak sınıflandırılır. Bu larvalar direkt olarak kendileri doku ve organlarda zararlı olduğu gibi larvalar konakta biyolojik gelişmeleri esnasında da yan etkiler oluşturabilirler. Hypodermosisde parapleji, meteorismus görülmesi, tek tırnaklılarda gastricol myiasisde vakalarında stomatitis ve peritonitis görülmesi bunlara örnek verilebilir. Yine Hypoderma larlavarının özellikle sığırların sırt derisi altında açmış olduğu deliklerden dolayı dericilik sektöründe meydana gelen ekonomik kayıplar sinek larvalarının neden olduğu diğer zararlı etkilerdir. Ayrıca özellikle koyunlarda yaygın olarak görülen görülen cavicol myiasisde ise Oestrus ovis larvalarının sinüsler ve burun konhalarına yerleşerek tahribat yapması, hatta ethmoid kemiği de delerek beyine gitmesi ve sinirsel bozukluklara sebep olması önemli zararlı etkilerdir. a-5) Artropodların zehirli etkileri: Parazit olan ve olmayan artropodların toksik etkileri olmak üzere iki grupta incelenir. 1) Parazit olan artropodun beslenmek için konakçısını soktuğunda bıraktığı sekretlerden oluşan toksikozlar. Örneğin; bazı kene türlerinin kan emme esnasında salgıladıkları tükrük hayvanlarda sinir sistemini etkileyerek felçlere ve hatta ölümlere bile neden olabilmektedir. Ayrıca insecta sınıfındaki sivrisinek ve tahta kurularının kan emmeleri esnasında deride oluşturdukları zayıflık ve şiddetli kaşıntı da toksik etkidir. 2) Parazit olmayan arı, çıyan, örümcek ve akrep gibi artropodların özel zehir bezlerinde bulunan zehirlerle meydana gelen toksik etkidir. Bu zehir artropodun saldırı veya savunma araçlarından olup, özelliği ani etki yapması ve şiddetli acı vermesidir. a-6) Artropodların allerjik etkileri: Bazı artropodlar, konakları üzerinde gezinme ve kan emmeleri esnasında allerjik bozukluklara yol açarlar. İnsanlarda tahta kurularının deride gezinmeleri sonucu bütün vücutta şiddetli kaşıntı ve deride kırmızı kabarcıklar (ürtikerlere) oluşması allerjik bir etkidir. Allerjik reaksiyonların şiddeti kişinin dispozisyonuna bağlıdır. Aynı tür artropoda maruz kalan değişik fertlerde değişik şiddette ortaya çıkar. Ayrıca allerjik reaksiyonlarda allergenle daha önceki temas süresi ve allergene maruz kalma şeklide önemlidir. Artropodal alerjik etkiler eksternal veya parenteral yola göre de değişir. Artropodlardan ileri gelen allerjik reaksiyonlar 2 şekilde görülür. a) Parazit olmayan artropodlardan ileri gelen allerjik reaksiyonlar. Bunlar artropodun vücutları veya sekretleriyle ilgilir. Hamam böcekleri ve Dermatophagoutes cinsine bağlı ev tozu akarları örnek verilebilir. b) Parazit olan artropodlardan iler gelen allerjik reaksiyonlar. Örneğin; sivrisinek ve pire gibi insektlerin kan emmek için konakları soktuklarında bıraktıkları tükrük salgısından ileri gelir. Ayrıca tırtılların oluşturduğu etkiler toksik, mekanik veya allerjik bir nedenle oluşmaktadır. B) Artropodların hastalık etkenlerini taşımaları (vektör veya arakonakçı) ile ilgili olarak yaptığı zararlı etkiler: Hastalık etkenlerini aynı veya farklı konaklar arasında aktif olarak nakledip bulaştıran omurgasız canlılara yani artropodlara vektör adı verilir. Burada dikkat edilmesi gereken husus bütün artropodların vektör olmadığı ancak vektör tanımlaması içinde geçen türlerin artropod olduğudur. Arakonak ise hastalık etkenlerinin daha çok genç şekillerini veya larva formlarını vücudunda taşıyan ve omurgalı konaklara pasif olarak bulaşmasını sağlayan artropodlardır. Theileria sp. etkenlerinin vektörü keneler, Dipylidium caninum adlı cestodun arakonağı pirelerdir. Artropodlar hastalık etkenlerini bulaştırmaları yönünden 4 gruba ayrılır. 1) Mekanik taşıyıcı: Bu gruptaki artropodlar hastalık etkenlerini yoğun olarak bulunduğu yerlerden vücutlarına bulaştırmak süratiyle çevreye ve hatta gıdalara mekanik olarak yayarlar. Nakil olayı az çok tesadüfe bağlıdır. Mekanik taşıyıcılar patojen etkenlerin bulaşmasında tali bir rol oynarlar. Örn : Dışkı ile temasta bulunan hamam böcekleri ve kara sinekler amipli dizanteri etkeni olan Entamoeba histolytica kistlerini gıdalara naklederler. Bu tip bulaşık gıdaların insanlar tarafından yenilmesi ile de kistler sindirim kanalına girerek hastalığın oluşmasına yol açarlar. 2) Biyolojik vektör: Bu tip vektörlerde, patojen etkenler artropod vücudunda biyolojik gelişme geçirdikten sonra başka bir konağa aktif olarak nakledilir. Örn : Sivrisineklerin sıtma etkeni olan Plasmodium 'ları, bulaştırması ile lxodidae ailesindeki mera kenelerinin Babesia ve Theileria türlerini bulaştırması örnek olarak verilebilir. Sivrisinekler malaryalı insanlardan kan emerken sıtma etkenlerinin erkek ve dişi gamontlarını alırlar. Bunlar sivrisineğin midesinde bir gelişim devresi geçirdikten sonra oluşan sporozoitler tükrük bezlerine yerleşir. Sivrisineğin başka bir insandan kan emmesi ileverilen sporozoitler ile enfeksiyon oluşur. Bu tip biyolojik vektör olarak hastalık etkenini taşıma olayı; artropodun vücudunun ön tarafından olan biyolojik nakildir (salivarial). Chagas hastalığı etkeni olan Trypanosoma cruzi ise konik burunlu tahta kuruları olan Triatoma ve Rhodnius cinsi artropodlar tarafından ve bunların arka tarafından (dışkının deriye bırakılması ile) biyolojik olarak bulaştırılır (sterkorariyal). 3) Mekanik vektör: Patojen etken vektör de bir biyolojik gelişme geçirmeden diğer konaklara bulaşabiliyorsa bu tip vektörlere mekanik vektör adı verilir. Yani vektör hastalık etkenini aldıktan kısa bir süre sonra başka bir konağa bulaştırılır. Örn : Kan emen sineklerden Tabanus veya Stomoxys'lar sığırlardan kan emmeleri esnasında Trypanosoma evansi'yi alırlar. Kısa bir süre içinde bu insectler diğer bir sığırdan kan emerken hortumlarına bulaşık bulunan trypanosomaları ona naklederler. Hastalık etkenlerinin bu tip taşınması olayı kan emme süratiyle olan mekaniksel nakildir. Yukarıda Anlatılan biyolojik ve mekanik vektörler hastalık etkenlerini bulaştırma yönleri dikkate alındığında zorunlu vektörler olarak da tanımlanırlar. 4) Arakonakçı (Arakonak): Bir parazitin bir gelişme dönemini taşıyan ve sonkonağa ulaşmasında pasif olarak görev yapan artropodlardır. Örn: Köpek piresi olan Ctenocephalides canis'in köpek şeritlerinden Dipylidium caninum'a arakonaklık yapması. Arthropodolojide erişkin form omurgalıdaysa omurgalı sonkonak, erişkin form omurgasızdaysa omurgasız sonkonak olarak tanımlanır. Ancak bu tip adlandırmaya karşı görüşlerde vardır. Erişkin form omurgasızda ise daha yüksek yapılı olan canlı yani omurgalı insan veya hayvan sonkonak olarak adlandırılır. Artropodların taşıyıp bulaştırdıkları enfeksiyon etkenleri: Artropodlar; protozoonlar, bakteriler, helmintler, riketsiyalar ve viruslar olmak üzere bakteriyel ve paraziter hastalık etkenlerini arakonak, vektör veya mekanik taşıyıcı olarak taşırlar. Artropodların enfeksiyon etkenlerini konakçıya veriş biçimleri: a) Mide içeriğinde bulunan patojen etkenleri ağız organelleri ile kusma şeklinde konağa verme şekliyle olur. Örn: Fare piresi (Xenopsylla cheopis) veba hastalığı etkeni olan Pasteurella (Yersinia) pestis'i ve Phlebotomus'ların (tatarcık sineği) Leishmania'ları konaklarına veriş biçimi gibi. b) Tükrük bezleri salgısındaki etkenleri ağız organelleri yardımı ile sokmak süratiyle konağa verme. Örn : Sivrisinekler Plasmodium 'ları, keneler Babesia ve Theileria 'ları bu şekilde verirler. c) Patojen etkenlerin vücut duvarından özellikle de ağız organelleri kenarından dışarı sızması ile konağa bulaştırılması. Örn : Sivrisineklerin filariyal nematodları bulaştırması. d) Artropodların bulaşık vücut kısımlarıyla etkenlerin konaklara bulaştırması. Örn : Sivrisineklerin kanatlı çiçeğini, Chrysops türlerinin tularemiyi bulaştırması. e) Patojen etkenlerin artropodun ekskresyon sıvılarıyla konaklara bulaşması. Örn : Argasidae ailesindeki mesken keneleri virus ve spiroketaları coxal bezleriyle dışarı atarak konaklara bulaştırırlar. f) Enfekte dışkının konakçı derisi üzerindeki sıyrıklara veya konjuktivalara bırakılmasıyla bulaştırma. Örn : Triatoma cinsi uçan tahta kurularının Trypanosoma cruzi'yi bulaştırması. g) Patojen etkenle enfekte artropodun konak tarafından yenmesi veya artropodun konakçı üzerinde ezilmesiyle etkenlerin konaklara bulaşması. Örn : Farelerin pireleri yiyerek Trypanosoma lewisi ile enfekte olması, köpeklerin pireleri yiyerek Dipylidium caninum 'la enfekte olmaları gibi. Artropodların hastalık etkenlerini nakletme şekilleri: a) Transstadiyal nakil: Artropodun gelişme dönemlerinin herhangi bir safhasında iken aldığı enfeksiyon etkenlerini daha sonraki gelişme dönemlerine geçirmesi ve bu gelişme döneminde iken başka bir konaktan beslenirken etkenleri nakletmesine transstadiyal nakil ya da trasstadiyal bulaşma adı verilir. Örn : Ixodidae ailesindeki kenelerin theileriosis etkenlerini bulaştırması. b) Transovariyal nakil: Artropodun, bir jenerasyonda konaktan beslenirken aldığı etkenleri daha sonraki jenerasyonlarına aktarması ve bu jenerasyonda başka bir konaktan kan emerken etkenleri bulaştırmasına transovariyal nakil ya da transovariyal bulaşma denir. Bu bulaşma şekli bazen 8-10 jenerasyon devam edebilir. Örn : Kenelerin (Boophilus sp) babesiosis etkenlerini bulaştırması. Kene bir konaktan kan emerken etkenleri alır. Bu etkenler kene vücudunda gelişme dönemi geçirerek kenenin ovaryumlarına geçer. Kene enfekte yumurtalar bırakır. Yumurtalardan çıkan larvalar da enfektedir. Bu durum nesil boyu devam eder ve kan emerken etkenleri başka konağa nakleder. c) Monohomostadiyal nakil: Artropodun aynı gelişme dönemi içinde konaktan aldığı etkenleri başka bir konağa bulaştırması. Örn : Sivrisineklerin Plasmodium 'ları bulaştırması. d) Transsexuel nakil: Dişi artropod kan emerken aldığı etkenleri transovariyal olarak larvalarına geçirir ve bu larvalardan erişkin hale gelen erkekler etkenleri başka bir dişi artropoda bulaştırır. Bu dişi böcekde başka bir konaktan beslenirken etkenleri bulaştırır

http://www.biyologlar.com/artropodlarin-zararli-etkileri

Sazan (Cyprinus carpio)

Sazan (Cyprinus carpio)

Sazan (Cyprinus carpio), sazangiller (Cyprinidae) familyasına adını veren tatlı su balığı. Göl ve yavaş akan derelerde bulunur. Uzun gövdeli, solucan, böcek larvaları ve bitkilerle beslenen bir dip balığıdır. 1,5 metre boyunda, 35 kg ağırlıkta olanları vardır. Ömrü 40-50 yıla kadar varabilir. Türkiye'nin Akdeniz ve Güneydogu bölgesi haricinde her yerinde bulunur. Ancak, Akdeniz Bölgesinin en önemli akarsularından olan Göksu Irmağı'nda bol miktarda sazan yaşamakta ve ağırlıkları 10-12 kilograma ulaşabilmektedir. Suni balıkçılıkta önemli yer tutar. Her ısıdaki suya uyum sağlar. 3-30 °C arasındaki sularda rastlanır. Aşırı soğuklarda toplu halde çamura gömülerek kış uykusuna yatarlar. Kışın ölmeden donabilirler. Su akıntısına karşı yüzebilirler. Kuyruğunu çeneleri arasına sıkıştırır, bıraktığında zemberek gibi boşanarak 3-5 metre sıçrayarak çağlayanları aşabilirler. Pullu ve pulsuz birçok çeşidi vardır. Pullu türleri iri pulludur. Renk ve biçimleri yaşadıkları ortama göre değişir. Genellikle sırtı koyu yeşil, yanları ve karın altı çamur rengindedir. Küçük ağızlı kalın ve oynak dudaklıdır. Üst çenelerinden dört bıyık sarkar. Ağız dişleri yoktur. Yutak (farinks) dişleriyle besinlerini öğütürler. Bıyıkları dokunma organı olarak görev yapar. Dipleri karıştırır, suyu bulandırırlar. Çevik ve hareketli balıklardır. Sürüyle dolaşırlar. Eti fazla kılçıklıdır. İrileri iyi pişirildiğinde eti beğenilir. Nisan-Haziran arasında yumurtlarlar. Bazı bölgelerimizde yumurtlama dönemi Ağustos ayına kadar sürebilir.Yumurtaları bitkilere yapışır. Bir dişi, bir defada yarım milyon yumurta bırakabilir.Yumurtaların çoğu diğer ekolojik dengeyi bozan ve potansiyel sakıncalı balıklar tarafından tüketilir. Ortam ısısına bağlı olarak en geç bir hafta içinde yumurtalar açılır. Üç yılda erginleşirler. Sazanların 100 yıl kadar yaşadığı söylenirse de, ömürleri normal olarak 40-50 yıl kadardır. Balıkçılar bunları harekete geçirmek için gürültülü sesler çıkarırlar. Balık ağı ile bol miktarda avlanırlar. Türkiye'de birçok gölette 15 kg ve üzerinde birçok balık tutulmuştur.Modern balıkçılıkla ilgilenenler tutmuş oldukları balıkları tekrar ait oldukları yere bırakırlar.Tebliğde alıkonma adeti 5 taneyle sınırlandırılmıştır. Türkiye'de 40 cm altında sazan balığı avlamak yasaktır ve tutulan sazan balıkları derhal suya iade edilmelidir.Aksine hareket edenlere para cezası uygulanır. Bilindiği üzere iç sularımızda 3 iğneye serbestlik vardır.Sazan balığı avcılığı farklı materyallerle yapıldığından Ayçekirdegi ve mısır küspesinde iğne adeti 1 taneyle sınırlandırılmıştır.aksine hareket edenler para cezasıyla karşılaşırlar. Mısır,Solucan,Midye,Hamur,Canlı yem ve boili ile tutulmaktadır. Ekolojik dengeyi bozan İsrail Sazanında limit ve sayı zaman yasağı bulunmamaktadır. Bin yıldan beri insanlarca da yetiştirilen sazan balığından insanlar tarafından çesitli süs balıkları türetilmiştir. Bunların en tanınmışları bir akvaryum balığı olan Japon balığı ve Japonya'da yüzyıllardır rengarenk ceşitleri türetilen koi sazanıdır. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya: Cyprinidae (Sazangiller)Cins:     CyprinusTür:     C. carpio

http://www.biyologlar.com/sazan-cyprinus-carpio

Cestoda (YASSI SOLUCANLAR) Özellikleri

CESTODA (YASSI SOLUCANLAR) - Sestodlar; vücutları yassı, halkalara ayrılmış şerit şeklindeki PLATHYHELMINTH'lerdir. - Boyları 2-4 mmden 20-25 mye kadar varan değişik ölçülerde olabilir.(Diphylobotrium latum 20-25 m. , Taenia saginata 5-10m. ) - Halka sayısı ise 3'ten 8-10bine kadar çok farklı sayılarda olabilir. (D.latum 8-10 bin halka, E.granulosus 3 halka) Cestodlarda vücut, şekil ve fonksiyon yönünden 3'e ayrılır: SCOLEX:Ön uçta bulunur. Yuvarlak / badem biçimlidir. Yapışma görevi vardır. 3 Yapışma organeli vardır: Bothria: Pseudophyllidea'da görülür. 2- 4 adettir. Yanda bulunur. Acetabula: Cyclophyllidea'da görülen çekmenlerdir. Kadeh ya da kase biçiminde, kassal yapılı, 2-4 adet, karşılıklı yer almış oluşumlardır. Bazısında çekmenler bulunabilir Rostellum: Yine Cyclophylladea'da anteriorda bulunur. Uzayıp kısalabilen, üzerinde 1 ya da 2 sıralı çengel taşıyan bir yapıdır. PROLİFERASYON BÖLGESİ: Scolex'ten hemen sonra, halkalara ayrılmamış ve halkaların oluşturulduğu kısımdır. Bazı sestodlarda yoktur (Moniezia). STROBILA: Boyundan sonra gelir. Halkalar: genç (üreme organı henüz yok) olgun (üreme organı gelişmiş) gebe (yumurtalarla dolu) Psedophylleidea'da halkaların sadece genç ve olgun formları varken, Cyclophylleidea'da 3 form da görülür. Vücut tabakaları: En dışta kutikula, onun altında kas tabakası vardır. Bunun altında da Ca granüllerinden zengin paranşim bulunur. Sindirim sistemi: Yoktur. Tüm vücut yüzeyince osmotik absorbsiyonla besinlerini alırlar. Solunum sistemi: Yoktur. Dolaşım sistemi: Yoktur. Boşaltım sistemi: Osmo-regulator sistem de denir. Tüm halkalarda ortaktır. Halkaların yanlarınd aseyreden 2şer (dorsal, ventral) toplama kanalı ve bunların halka posterirorlarındaki bağlantılarında ibarettir. Boşaltım kesesi yoktur. Paranşime dağılmış kirpikli hücreler vasıtasıyla atık maddeler toplanır, bunlar ana boşaltım kanallarına bağlanırlar. Tıklar dışarıya boşaltım deliğinden atılırlar. Sinir sistemi: İyi gelişmemiştir. Tüm halkalar için ortak bir sistem vardır. 1) Merkezi sinir sistemi (scolex'teki ganglionlar topluluğudur) 2) Sinir lifleri (MSS'ten 2 büyük, çok sayıda küçük sinir çıkar) Dölerme sistemi: Her halka için müstakildir. (1/2 adet). Hermafroditizm görülür. Protandri vardır ( önce erkek genital organları gelişr daha sonra dişi genital organları gelişir; körelmede de aynı sıra izlenir). Bu sistem en gelişmiş ve de en önemli sistemdir. Bunun nedeni ise sestodların komplike olan biyolojileri sırasında hiç olmazsa milyonlarcası üretilen yumurtadan sadece birkaçının olgun şerit haline gelebilmesidir. Döllenme halka içi, halkalar arası ya da parazitler arası olabilir. Erkek dölerme organları 1. testis (çok sayıda, halkanın dorsalinde, sperm üretir) 2. vasa efferentis (ince kanallardır) 3. vas deferens (spiral şeklindedir) 4. vesicula seminalis (sperm depolanır) 5. prostat bezleri 6. canalis ejaculatorius 7. cirrus (penis) 8. genital atrium Dişi dölerme organları 1. ovarium (tek loblu, ventrale doğru, yumurta üretir) 2. oviduct 3. ootype (genişlemiş kısım, yumurta döllenir ve gelişir) 4. Mehlis bezleri (kabuk oluşmu için gerekli) 5. vitellojen bezler (yumurta sarısı için gerekli) 6. receptulum seminis (sperm depolanır) 7. uterus (ootype'den köken alır, yumurta kapsülü ve paruterin organ) 8. vagina 9. genital atrium Pseudophylleidea'da uterus deliği varken, Cyclophyllidea'da yoktur. Yumurtalar: Çeşitli tiplerde olabilir. Pseudophyllidea yumurtaları tramatod yumurtalarına benzer. Yumurta sarısı ile doludur. Cyclophyllidea yumurtalarının içinde 3 çift çengele sahip onkosfer bulunur. Gelişim: İndirektir. Cyclophylidea tek ara konak (mesocestoides hariç), Pseudophylidea iki ara konak kullanır. Larva şekilleri: Cyclophyllidea 1) Cysticercus 2) Coenurus 3) Hidatik kist 4) Strobilocercus 5) Cysticercoid 6) Tetrathyridum Pseudophyllidea 1) Coracidium 2) Procercoid 3) Plerocercoid Cyclophyllidea Cysticercus: İnce çeperli, suyla dolu küçük bir kese ve içinde invagine tek scolex'ten ibaret larva formudur (0,5-1 cm). Taenia cinsina bağlı türlerde görülür. Ör: Taenia saginata (insan-barsak) / Cysticercus bovis (sığır-kas) Coenurus: İnce çeperli, içi su ile dolu, büyücek kese (ceviz/tavuk yumurtası büyüklüğünde). İçinde çok sayıda invagine scolex vardır. Ör: Multiceps multiceps (köpek barsak) / coenurus cerebralis (sığır-beyin) Strobilocercus: İnvagine olmamış bir scolex ve henüz dölerme organları gelişmemiş halkalar (strobila) taşıyan larva formudur. Ör: Hydatigera taeniaformis (kedi-barsak) / Strobilocercus fasciolaris (kemirgen-karaciğer) Hidatik kist: (Echinococcus)En kompleks yapılı cestod larva formudur. Su ile dolu ve çapı 20-25 cm'ye ulaşabilen bir kesedir. Çeperi biri lamelli tabaka, diğeri ise çimlenme yeteneğinde doğurgan tabakalardan yapılmıştır. Bu tabakadan yüzbinlerce invagine scolex (protoscolex) meydana gelir. Ör: Echinococcus granulosus (köpek-barsak) / Hidatik kist (memeli- karaciğer, akciğer) Cysticercoid: Omurgasız arakonaklarda gelişir. Büyük, invagine scolex ve kuyruk taşıyan larva formudur. Cercocystis (kuyruklu) ve cryptocystis (kuyruksuz) formları vardır. Ör: Dipylidium caninum (köpek-barsak) / larvası pire ve bitlerde gelişir. Tetrathyridium (Dithyridium): Ön kısmı daha geniş, arkaya doğru incelmiş, basık, kırışık yapıda, tek parça ve ön tarafta invagine tek scolex taşıyan larva formudur. Ör: Mesocestoides lineatus (köpek-barsak) / larvası çeşitli canlılarda gelişir. Pseudophyllidea Coracidium: Trematodlardaki miracidium'a benzeyen, suda serbest yüzebilen , kirpikli, 3 çift çengelli larva formudur. Procercoid: Coracidium'dan sonraki larva formudur. Coracidium'un girdiği kabukluda aldığı formdur. Tek parça, uzunca bir larva formu olup, posteriorunda boğumla ayrılmış, 3 çift çengel taşıyan yuvarlak bir kısım taşır. Önde cephalic invaginasyon vardır. Plerocercoid: Uzun, tek parça, ön uzunda olgunlarınkine benzer 2 bothria taşır. Artık embriyonik çengellerin kaybolduğu larva formudur. Ör: Diphyllobothrium latum (köpek-barsak) Procercoid_kabuklunun vücut boşluğunda Plerocercoid_tatlı su balıklarının kan ve diğer organlarında SINIF: CESTOIDEA ALT SINIF: CESTODA (EUCESTODA) TAKIM: PSEUDOPHYLLIDEA Yumurta: kapaklı , 3 çift çengelli onkosfer sonradan gelişir Morfoloji: - Scolex badem biçiminde - Yapışma organeli; bothria - Halkalar genç, olgun - Genital delik halka ventralinde - Uterus deliği var Gelişme: 2 ara konak, 3 larva şekli var TAKIM: CYCLOPHYLLIDEA Yumurta: Kapaksız, üç çift çengelli onkosfer var. Morfoloji: - Scolex yuvarlak, oval - Yapışma organeli; rostellum, çekmen(acetabula), - Halkalar genç, olgun, gebe - Genital delik halka lateralinde - Uterus deliği yoktur. Gelişme: 1 ara konak, 6 larva şekli var. PSEUDOPHYLLIDEA AILE: DIPHYLLOBOTHRIAE Tür: Diphyllobothrium latum Son konak: İnsan ve balık iyen carnivora Yerleşim: İnce barsaklar Morfoloji: 20-25 m boya ulaşabilir. 2 tane bothria vardır, scolex badem biçimlidir, genital delik halkanın ventralinde, yumurtalar 52-70x32-45m boyutunda, sarımısı kahverenginde, kapalı. Biyoloji: Yumurta dışkı ile dışarı çıkarılır. Suda coracidium gelişir ve serbest kalır. 1.ara konak çeşitli Crustacae (Cyclops, Diaptomus gibi su pireleri)'de gelişen procercoid 2.ara konak olan tatlı su balıklarınca alınır ve bunlarda plerocercoid gelişir (kas ve diğer organlarda). Balıkların çiğ ya da az pişmiş olarak yenmesi sonucu etken son konaklarca alınır. Önemi: Etken, yaşam süresi olan 10 yıl boyunca 7 km'lik halka oluşturabilir. D.latum vit B12'yi absorbe eder ve bu durum sonucunda enfeste canlılarda pernisiyöz anemi şekillenir. Etkene bağlı vakalar Türkiye'de bildirilmiştir ama ülkemizde çiğ ya da az pişmiş balık tüketilmediğinden bu vakalar da kesin değildir. Diphylobotrium latum Tür: Ligula intestinalis Son konak: Olgunları su kuşlarının barsağında, larvaları (plerocercoidler) tatlı su balıklarında ligulose'a neden olur. Biyoloji: D.latum ile aynı biyolojiye sahiptir. Önemi: Balıklarda paraziter kastrasyon nedenidir. Bunu, organlara basınç yaparak, antigonadotropik hormonlar salgılayarak yapar. Hasta balıklarda karın şişer, hantallaşırlar, yüzemezler, karınları patlar ve ölürler. Hastalığa ülkemizde baraj göllerindeki balıklarda rastlanır. İnsan sağlığı açısından tehlikesi yoktur. Ayıklandıktan sonra balıklar yenebilir. İtalya'da plerocercoidler tüketilmektedir. Mücadele: 1.ara konakla mücadele olanaksızdır. 2.ara konak olan balıklarla mücadele edilir. Hasta olanlar, ölenler ve karınları patlayan balılardan serbest kalan plerocercoidler su yüzeyinden toplanır. Diagramma ve Schistocephalus gibi cinsler de vardır. Spirometra erinacei, köpek, kedi gibi hayvanların incebarsaklarında parazitlenirken, Spirometra mansoni 1.ara konak olarak Crustacae'yi, 2.ara konak olarak balık, kurbağa ve yılanları, bazen de 3.ara konak olarak herhangi bir omurgalıyı kullanır. Sparganose: Plerocercois=spargonum Bazen D.latum, Spirometra gibi parazitlerin plerocercoidleri 1) sudaki kabukludayken insanlarca kabuklunun yenmesi ile alınır, 2) kurbağa, fare, yılan, balık gibi canlıların etleri ampirik tedavi yöntemleriyle yara,göz vs. üzerine tatbik edilerek primitif olarak insanların yaralarına ya da gözlerine bulaşır. Plerocercoidlerin bulunduğu kısımda irritasyona bağlı olarak kızartı, kaşıntı, şişkinlik, iltihaplanma görülür. CYCLOPHYLLIDEA AILE: ANOPLOCEPHALIDAE Tür: Anoplocephala perfoliata Son konak: Tek tırnaklılar Yerleşim: İnce barsakların alt kısımları, colon ve caecum Morfoloji: 8x1-1,5 cm. Scolex küçük, rostellum yok. Çekmenler arkasında küpe benzeri yapılar var. Yumurtalar 80m boyutunda ve Moniezia yumurtasına benzer. Onkosferi çevreleyen embriyoforun ucundaki kollar uzun ve kavuşur. Tür: Anoplocephala magna Son konak: Tek tırnaklılar Yerleşim: İnce barsak, jejenum Morfoloji: Atların en büyük şerididir. 70-80x1,5-2 cm. Yumurtaların boyutu 50 m. Scolexte küpe benzeri çıkıntı yoktur. Tür: Paranoplocephala mamillana Son konak: Equide Morfoloji: 1-4x5 cm. yumurtalar 50m boyutunda. Küpe benzeri çıkıntılar yok. Çekmenler yarık biçiminde. Embriyoforun uçları kısa ve ayrık.Atların en küçük şerididir. Ara konak: Oribatidae fam. bağlı akarlardır. Biyoloji: Yumurtayı yiyen akarlarda 4 ayda cysticercoid gelişir. Cysticercoidleri alan atlarda 6-10 haftada şeritler gelişir. Patojenite: Meradan yazın alınan hastalık Eylül Ekim ayında ortaya çıkar. Taylar 100%, erginler 60% hastalığa duyarlı. Genellikle az sayıda parazit bulunur. En patojeni A.magna'dır. Kataral -hemorajik enterite sebep olurlar. A.perfoliata ve P.mamillana az patojendir. İliocecal lokalizasyon önemlidir. Sağaltım: Niclosamide Tür: Moniezia expansa Son konak: Ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 6m x 1,5-2 cm. her halkada 2 tane genital atrium vardır. Testisler halka ortasında dağılmış ya da iki yanda toplu halde bulunabilir. Interproglottidal bezler halka posterior boyunca seyreder. Yumurtalar 50-60 m boyutundadır. Tür: Moniezia benedeni Son konak: Özellikle büyük ruminantlar. Yerleşim: İnce barsaklar. Morfoloji: 0,5-4m x 2 cm. Interproglottidal bezler sadece ortada. Tür: Thysaniezia ovilla Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1,5-4,5m x 8-9 mm. Halkalarda 1 tane genital delik var. Testisler boşaltım kanallarının lateralinde. Yumurtaların 5-15'i birarada paruterin organ içinde bulunur. Tür: Stilesia globipunctata Son konak: Ruminantlar (koyun, keçi) Yerleşim: İnce barsaklar Morfoloji: Her halkada 1 tane genitel atrium vardır. 40-60cm x 2-2,5 mm. Testisler boşaltım kanallarının medialinde seyreder. Her halkada 2 tane paruterin organ bulunur. Tür: Avitellina contripunctata Son konak: Ruminantlar Yerleşim: İnce barsaklar Morfoloji: 1-3m x 2-2,5 mm. Her halkada 1 tane genital delik vardır. Testisler boşaltım kanallarının her iki yanında gruplar halinde bulunur. Her halkada 1 tane paruterin organ vardır. Tür: Thysanosoma actinoides Son konak: Ruminantlar Ara konak: Oribatida ailesine bağlı akarlar. Yerleşim: İnce barsaklar, seyrek olarak safra ve pankreas kanalları Morfoloji: 35-40 cm x 8 mm. Her halkada 2 tane genital atrium vardır. Testisler halka posterioru ve ortasında bulunur. Halka posteriorlarında saçaklı yapılar vardır. Yumurtalar paruterin organ içinde bulunur. Biyoloji: Akarlar 0,5-1 mm boyutundadır. Sert kabuklu, gözsüz, serbest olarak toprakta yaşayan, organik kalıntı ve dışkı ile beslenen, bitki kök ve sap kısımlarında yoğun olarak bulunan akarlardır. Akarlarda 3 ayda vücut boşluğunda cysticercoid gelişir. Akarların otlarla birlikte alınımı ile 1,5-2 ayda şeritler gelişir. * Thysaniezia, Stilezia, Avitellina ve Thysanosoma cinslerinde yumurtada onkosferi çevreleyen armut biçimli bir embriyofor yoktur. * Anoplocephalidae ailesindeki parazitlerin olgunları tedavi edilmezse 3-4 ay yaşarlar. Cysticercoidleri akarlarda 1-1,5 yıl boyunca yaşarlar. Akar ölünce onlar da ölürler. Bu akarlar için nemli, uzun, kaba otlu meralar uygundur. Anoplocephalose: 1) mera kontaminasyonu 2) kontaminasyonun devamı ile meydana gelir. Kronik form: En çok görülen formdur. Anemi, zafiyet, yapağı bozulması, ölüm, dehidrasyon, diyare, konstipasyon ve barsaklarda atoni görülür. Akut form: Seyrek görülür. Sinirsel belirtiler (dönme, çırpınma, titreme ve diş gıcırdatma) ile seyreder. Subklinik form: Bakımlı sürülerde görülür. Semptomsuz seyreder. Sindirim sistemi belirtileri (kötü kokulu ishal) görülebilir. Yayılış: 60%'a varabilir. Teşhis: Dışkıda şerit ya da halkaya rastlanabilir. Dışkı muayenesinde yumurta/yumurta kapsülü görülebilir. Otopside olgun şeritlere rastlanır. Sağaltım: Niclosamide, Praziquantel, Albendazol, Nebendazol AILE: DAVAINEIDAE Tür: Davainea proglottina Son konak: Tavuklarda (en yaygın şerit) Ara konak: Sümüklüböcekler (cysticercoid gelişir) Yerleşim: İnce barsaklar (duodenum) Morfoloji: 1,5-5 mm uzunlukta. Halka sayısı 4-9. Rostellumda 2 sıra çengel var. Çekmenlerinde de çengel vardır. Yumurtalar ince çeperli, 30-40 m çapında Tür: Railettina tetragona Son konak: Tavuk, hindi ve diğer kanatlılar Ara konak: Kara sinek ve karıncalar Yerleşim: İnce barsaklar (duodenum) Morfoloji: 6-25 cm x 1-4 mm. Rostellumda tek sıralı çengeller vardır. Çekmenlerinde de çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina echinobothrida Son konak: Kanatlılar Ara konak: Karıncalar Yerleşim: İnce barsaklar Morfoloji: 9-25 cm x 1-4 mm. Çekmenlerinde çengeller vardır. Yumurtaların 6-12 tanesi bir kapsül içinde bulunur. Tür: Railettina cesticillus Ara konak: Kaprofaj böcekler Morfoloji: 4-13 cm x 1-3 mm. Kokon içinde tek bir yumurta bulunur. Çekmenler çengelsizdir. AILE: HYMENOLEPIDIDAE Tür: Hymenolepis lanceolata Son konak: Ördek ve kazlar Ara konak: Tatlı sudaki crustacea Yerleşim: İnce barsak Tür: Hymenolepis cariocea Son konak: Tavuklar (sıklıkla görülür) Ara konak: Kaprofaj böcekler Tür: Hymenolepis contaniana Son konak: Tavuk ve hindiler Ara konak: Kaprofaj böcekler Morfoloji: 2-5 mm'den 7-8 cm'ye kadar değişen boylardadırlar rostellumda çengel olabilir ya da olmayabilir. Yumurta 3 katlı koruyucu içindedir. Tür: Hymenolepis diminuta Son konak: Fare, sıçan ve insanlar Ara konak: Çeşitli arthropoda (cysticercoid gelişir) Yerleşim: İnce barsaklar Morfoloji: 20-60 cm uzunluktadırlar. Scolexte 4 çekmen vardır. Rostellum çengelsizdir. Yumurtalar ovalimsi, gri-açık kahverengi, 2 kabuklu (dış ve iç) ve 3 çift çengelli onkosfere sahiptir. Tür: Hymenolepis nana Son konak: İnsan, fare ve sıçanlar Yerleşim: İnce barsaklar Morfoloji: "Cüce şerit" de denir. 2.5-4 cm uzunluktadır. Yumurtaları ovaldir. Açık renkli, grimsidir. 2 kabukludur ve içinde 3 çift çengelli onkosfer vardır. İç kabuğun kutuplarında filamentler vardır. Biyoloji: 1) Direkt 2) İndirekt (ara konak olarak arthropodları kullanır) AILE: DILEPIDIDAE Tür: Ametobotaenia cuneata Son konak: Tavuk, ördek Ara konak: Yer solucanları Yerleşim: İnce barsaklar Morfoloji: 2,2-4 mm x 1-1,5 mm. 12-24 adet halka vardır. Scolexte tek sırlaı çengel taşıyan rostellum vardır. Çekmenler çengelsizdir. Tür: Choanotaenia infundibulum Son konak: Tavuk, hindi vb. Ara konak: Karasinek, çekirge, kaprofaj böcekler Yerleşim: İnce barsaklar Morfoloji: 5-23 cm uzunluktadır. Tek sıra çengel taşıyan rostellum vardır. Çekmenleri silahsızdır. Yumurtaları 60-65 x 40-45 m boyutunda, filamentlidir. KANATLILARDA ŞERİT ENFEKSİYONLARI: En önemlisi Davaniea proglottina'dır. küçük olmasına rağmen 50%lere varan ölümler meydana getirir. Patojen kısmı scolextir. Çünkü hem çekmenlerde hem de rostellumda çengeller vardır. Davainea yumurtaları dirençsizdir. Rutubetli, sıcak ve gölgeli yerlerde 5 gün yaşayabilir. Cysticercoidleri sümüklüde en az 1 yıl canlı kalabilir. Ara konak olan sümüklüde 1000'den fazla cysticercoid bulunabilir. Ağır enfestasyonlarda duodenum mukozasında yangı, hemoraji ve ödem görülür. Klinik semptomlar ise zafiyet, anemi, ishal ve mukusta artıştır. Railettina türleri içinde en patojeni Railettina echinobothria'dır. Barsaktaki yangı şekli NODÜLER ENTERİTtir. Barsak içine gömülü scolex etrafında kazeöz nodüller şekillenmiştir. Sağaltım: Niclosamide (Mansonil, Şeridif, Tenyavet)...............................................50-200mg/kg 2-6 gün boyunca..................................................................................................................20 mg/kg Fenbendazol (Panacur) 5 gün boyunca...............................................................................20 mg/kg Mebendazol (Mebanvet)....................................................................................................10 mg/kg Praziquantel (Droncit)....................................................................................................................... Bithional (Actomer)...............................................................................................................0,2 g/kg AILE: TAENIADAE Tür: Echinococcus granulosus Son konak: Olgunları........................köpek, kurt, çakal vb.'nin incebarsakları (kedilerde seksüel olgunluğa erişemez) Larvaları.........................bütün evcil memelilerde (ruminant, sus, eq.,insan...) başta karaciğer ve akciğer olmak üzere, dalak, böbrek, pankreas, kalp, beyin, kemik iliği, bağlayıcı doku aralıkları ve dokularda. Morfoloji: Olgunlar..........................2-6 mm uzunlukta, vücut genellikle 3 halkadan oluşur. Son halkanın uzunluğu vücudun diğer bölümlerinin uzunluğundan daha fazladır. Genital atrium halka posteriorundadır. Ovarium böbrek biçimindedir. Yumurtalar......................Taenia yumurtası formundadır (yuvarlak/oval). Küçük ve kalın kabukludur. Kabuk enlemesine çizgilidir. 3 çift çengelli onkosfer taşır. KİST HYDATİK (EKİNOKOK KİSTİ): 2 tip kist vardır. 1. Uniloculer kist (kistler tek tektir,daha çok koyun ve insanda görülür) 2. Multicystic/Multivesicular kist (birbirine komşu kistlerdir. Her birni ayrı boşluğu ve sıvısı vardır. Özellikle sığırlarda görülür) Biçimleri yuvarlağımsı (yumuşak, hacimli dokularda) yada mevcut boşluk ya da aralıkları dolduran (ör:kemik iliği) gibidir. Büyüklükleri dokularda konakçı reaksiyonları ile sınırlandırılır (çocu başı ya da portakal büyüklüğünde olabilirler). Göğüs ya da karın boşluğunda iseler büyüklükleri sınırlandırılamaz (20 cm çapına varan kistler görülmüştür). Lokalizasyon; ruminantlarda 70% karaciğerde, 25% akciğerde, 5% de diğer dokularda olmaktadır. Gelişme hızları yavaştır. 6 ayda ancak birkaç mm çapında içi sıvı ile dolu kistik yapı şekillenebilir. Protoscolexler 12 ayda şekillenir. Protoscolex taşıyanlar fertil kist, taşımayanlar ise infertil kist adını alır. Sığırda 90%, domuzda 20%, koyunda ise 8% kistler infertildir. 2 şekilde gelişim tamamlanır: 1- PASTORAL SİKLUS: Evcil karnivorlarla evcil ruminantlar konaktır. Köpek, koyun, deve, Ren geyiği. 2- SILVATIC SİKLUS: Son konak yabani karnivor, ara konaklar ise yabani ruminantlardır. Avusturalya'da dingo-kanguru. Hindistan, Pakistan, Seylan'da çakal-geyik. Bu iki epidemiyolojik siklus bağımsıuz seyreder. Ancak avcılık yolu ile kırılabilir. Kanada'da Kariba(geyik)-köpek. Kırsaldan ormansala geçiş şu şekillerde olur: - Kistli evcil ruminantlar köpeklerce yenir § Enfekte av ve çoban köpeklerinin ormanda dolaşması ve buralara dışkısını bırakması ile yabani rum. enfeste olabilir. Ormandan kırsala geçiş ise şöyle olur: § Evcil ruminantlar ormanlık yörede otlarken yabani köpekgillerin bıraktıları dışkılardan yumurta alırlar. § Av veya çoban köpekleri enfekte yabani ruminantların kistlerini yer. Önemi: Hayvanlarda; - Kistler pek klinik belirtiye yol açmaz (normal doku kalmamasına rağmen) - Enfekte havanlarda karkas ağırlığı azalmaktadır - Enfekte organlar(karaciğer, akciğer, dalak) kısmen ya da tamamen imha edilir (ekonomik kayıp). İnsanlarda; Çoğunlukla klinik belirti göstermese de lokaliza olduğu organ ya da dokuya göre normal fonksiyonları bozar, ağrı yapabilir. Kistler kendiliğinden ya da ameliyat sırasında patlayabilir. Bu da anafaktik şok ya da sekonder hidatidose (echinococcose)'a neden olur. Teşhis: Hayvanlarda serolojik testler yetersizken, ancak kesim sırasında teşhis mümkündür. İnsanlarda klinik belirtiler (organların çalışmalarında aksamalar, şişlik, ağrı), röntgen, serolojik testler(KFT, FAT, ELISA, HA, presipitasyon) ve alerji testi (Casoni) ile teşhise gidilir. Sağaltım: Operasyon ile yapılır. Öncesinde Mebendazol-Albendazol kullanılır. Hastalığın prepatent süresi 4-5 haftadır.

http://www.biyologlar.com/cestoda-yassi-solucanlar-ozellikleri

GÜVERCİN HASTALIKLARI

GÜVERCİN HASTALIKLARI

CİRCOVİRÜS Son yıllarda saptanan bu hastalık oldukça yenidir. Bu nedenle hastalık ve sonuçları hakkında bilinenler fazla değildir. Hastalığa Circovirus adı ile bilinen bir virüs türü neden olmaktadır. Bu virüs daha çok genç kuşları ve yeni yavruları etkilemektedir. Hastalık ilk başlarda solunum yolları sorunları şeklinde kendini gösterir. Ağırlık kaybı ve ishal vardır. Daha ileri aşamalarda tüylerin büyümesinde karakteristik anormallikler ve vücut dokularının özellikle de iç organların gelişiminde anormallikler gözlenebilir. Virüsün vücuttaki en önemli etkisi. Dalak, Bursa Fabrici ve Thymus üzerindedir. Thymus (timüs) göğüs kemiğinin arkasında bulunan bir iç salgı bezidir. Bursa Fabrici ise kloak’ın urodaeum adı verilen orta kısmında yer alan çıkıntı şeklinde bir organdır. Bunların işlevleri vücudun savunma mekanizması ve bağışıklık sisteminin gelişmesi ve işlemesini sağlamaktır. Virüs bu organlarda hücreleri tahrip ederek organlara zarar verir ve kuşun bağışıklık sistemini olumsuz etkiler. Böylelikle kuşlarımız hastalıklara karşı savunmasız hale gelirler. Kuşlarımızın bildiğimiz bütün güvercin hastalıklarına yakalanmaları çok daha kolay olur. Hastalığa yakalanan kuşlarımız ise daha zor tedavi edilebilir hale gelirler. Virüsün güvercinlerdeki etkisi AİDS’in insanlardaki etkisine benzetilebilir. Circovirus başlı başına bir hastalık gibi görünmemekte ve her zaman ikincil derece kliniksel belirtiler veren bir enfeksiyon olarak değerlendirilmektedir. Bunun nedeni bu virüsün kendi başına belirgin bir hastalık tablosu sunmaması ancak daha çok diğer hastalıklarla birlikte olduğunda fark edilebilmesidir. Circovirus’ün vücuda girmesinin ardından özellikle Chalamydia, Ornithosis, Pasteurella, PMV1, Trichomonas, Aspergillus gibi hastalıklar ortaya çıkma eğiliminde olurlar. Virüsün bulaşma şeklinin temas sonucu olduğu genel kabul görmektedir. Hijyenik koşullara dikkat edilmesi virüsün bulaşmasını engelleyici olacaktır. Bilinen bir tedavi şekli yoktur. İlaç tedavisi sadece bu hastalıkla birlikte görülen yan hastalıklar için uygulanabilir. Ancak güvercinimizin savunma sistemini güçlendirici vitamin ve mineral takviyeleri yararlı olacaktır. E-COLİ “Eshericia coli” adı verilen bir bakterinin neden olduğu hastalıktır. Kısaca E. Coli adı ile anılmaktadır. İnsanda ve hayvanlarda bağırsaklarda bulunan bu bakteri aslında bağırsak florasının bir parçasıdır. Ancak normalden fazla miktarda bulunması sonucu hastalık kendini gösterir. Güvercinlerde hastalığın en belirgin göstergesi ishaldir. Bu hastalığa yakalanan kuşlarımız süratli ve şiddetli bir şekilde su ve elektrolit kaybına uğrarlar. Özellikle genç kuşları çabuk etkiler. Genç kuşlarda şiddetli vakalar ani ölümle sonuçlanabilir. Yetişkin kuşlarda ölüm pek görülmez ancak, kuşlarımızın gücünü kaybetmesine bağlı olarak diğer hastalıkların ortaya çıkışı hızlanabilir. Çabuk bulaşan ve kolay yayılan bir hastalıktır. BELİRTİLERİ En belirgin belirtisi sulu ishal şeklinde dışkıdır. Dışkının rengi yeşil ve sarımsı bir tondadır. Hasta kuşlarda bağırsak iltihabı oluştuğu için dışkının kokusu normalden daha kötü kokuludur. Hasta kuşlarda performans tamamen düşer. Genel bir kayıtsızlık hali gelir. Yeme karşı isteksizlik vardır. Aşırı ve çabuk zayıflama saptanabilir. Hastalığa neden olan bakteri, kan dolaşımına girerek kuşun vücudunun herhangi bir organına yerleşebilir. Bu durum sonucu kuşta sistematik bozukluklar gözlenebilir. Mikrobun yerleştiği vücut bölgesine göre kuş değişik belirtiler verebilir. Örneğin mikrop kanatlara yerleşirse, kanatlarda tutulma olur ve buna bağlı olarak kuş kanadını taşıyamıyormuş gibi davranabilir. Kanat düşürür, kanatlarını yerde sürüklemeye başlar. Mikrop ayaklara yerleşirse topallama veya yürüyememe gibi sorunlarla karşılaşılabilir. Benzer belirtiler güvercinlerde Salmonella, Cocidiosis ve Hexamitiasis gibi hastalıklarda da vardır. Kuşun sorunlarının hangi hastalıktan kaynaklandığının doğru tespit edilmesi gerekmektedir. Hastalığın kesin tanısı dışkının mikroskobik analizi ile yapılabilir. BULAŞMA ŞEKLİ Hasta kuşların dışkılarında hastalık mikrobu bol miktarda bulunur. Kuşlarımızın yediği yem ve içtiği sulara bu dışkıların bulaşması yolu ile hastalık yayılır. Ayrıca coli mikrobu salmalarımızın içinde bulunan ve güvercin tozu dediğimiz beyaz toza, karışarak solunum yolu ile de alınabilir. Salma içi temizliğine dikkat edilmesi, hijyenik koşullara uyulması gibi önlemler alarak hastalığı engellemek mümkündür. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri kökenli bir hastalık olduğu için tedavisinde antibiyotikler kullanılmaktadır. İlaçla tedavi edilebilen bir hastalıktır. Amoxycilin, Trimetoprim ve Sulfadiazin, Furazolidon etken maddeli ilaçlar hastalığın tedavide kullanılmaktadır. Bu etken maddeleri taşıyan bazı ilaçlar şunlardır. ALFOXİL 20 GR TOZ Abfar firmasının üretimi olan ilaç, toz şeklindedir. Etken madde olarak 100 gr poşette 20 gr amoxycilin bulundurur. Güçlü bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde özellikle CRD ve E. Coli enfeksiyonlarında etkilidir. Ticari şekli 100 gramlık 10 aleminyum poşetten oluşan bir kutu şeklindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 10 mg ilaç vermektir. (bu yarım poşet ilacın binde biri kadardır) İlaç kuşların içme sularına her gün taze olarak karıştırılıp verilir. İlaç uygulamasına 3 gün devam edilir. ATAVETRİN ORAL SÜSPANSİYON Atabay ilaç firmasının üretimi olan ilaç, bir şurup şeklindedir. Etken madde olarak her ml’de, 80 mg Trimetoprim ve 400 mg sulfadiazin bulundurur. Geniş spektrumlu ve kesin tesirli bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Salmonella, E.Coli gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, kuş başına 7.5 mg etken maddedir. Bunu sağlayabilmek için 5 litre suya 0.5 ml ilaç karıştırmak gerekmektedir. Tedaviye 5 gün süre ile devam edilir. 4-5 gün ilaca ara verilip iyileşme sağlanmamışsa aynı doz tekrar edilebilir. Ticari şekli 50 ve 200 ml’lik şişeler halindedir. 1 Ölçek 40 cc’dir. Burada dikkat edilmesi gereken önemli bir nokta, sulfa grubu ilaçları kuşlarımızda kullandığımızda kuşlarımızın kalsiyum kaynaklarından uzak tutulması gerektiğidir. Kalsiyum içeren ilaçlar, gaga taşları, gritler, ahtapot kemikleri, kursak taşı gibi materyallerin salmadan uzaklaştırılması gerekmektedir. FURAVET TOZ Vilsan ilaç firmasının bir üretimidir. İlaç toz şeklinde olup her gramı 250 mg Neomcine ve 200 mg Furazolidon bulundurur. İlaç piyasada 20 ve 100 gramlık ambalajlar halinde satılmaktadır. Bu ilaç kombinasyonu geniş etkili bir anti - bakteriyeldir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Streptococcosis, Salmonella, E.Coli, Pasteurelosis (kolera) ve CRD gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, 2 litre içme suyuna yarım gram ilaç koyarak tedaviye her gün yenilenecek sularla 5 gün kadar devam etmektir. HAEMOPHILLUS Bu hastalığın nedeni Haemophillus adlı bir bakteridir. Bu bakteri güvercinlerimizin solunum yollarına yerleşerek burada çeşitli sorunlara yol açar. Hastalığın en önemli belirtisi kuşun her iki göz kapağında belirgin şişme ve göz sulanması ile birlikte gözlerde ve burunda akıntı gözlenmesidir. Bu hastalığı, diğer CRD hastalıklarına bağlı göz sorunlarından ayıran en önemli özellik hastalığın her iki gözde aynı anda görülmesidir. Ayrıca gözün iç dokusunda şişme vardır. Bunun yanı sıra solunum yollarında çeşitli problemler vardır. Nefes alma güçlüğü, aksırma vb. Hastalık doğrudan temas veya hastalık mikrobunu taşıyan göz ve burun akıntılarının salma tabanında biriken toz ve dışkılara bulaşarak, kuşlarımızın yedikleri yem ya da içtikleri sulara taşınması yolu ile yayılır. Hastalığın tedavisinde antibiyotikler olumlu sonuç vermektedir. Özellikle Tetracyline grubu antibiyotikler kullanılmaktadır. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. Haemoproteus adı verilen protozonun neden olduğu bir hastalıktır. Bu protozonun, Haemoproteus Columbae, Haemoproteus Sacharrovi, Haemoproteus Maccallumi adı ile bilinen üç türü güvercinleri etkilemektedir. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hastalığın yayılabilmesi için bu protozonun, güvercinin vücuduna girmeden önce ara konak görevi görecek bir canlının içinde gelişim göstermesi gerekmektedir. Bu canlı, bütün güvercin yetiştiricilerinin çok iyi tanıdığı atsineğidir. Hippobosca Equina veya Pseudolynchia Canariensis bilimsel adı ile tanılan atsineği, Haemoproteus hastalığının taşıyıcı ve bulaştırıcısıdır. Hastalık bu nedenle daha çok yaz aylarında karşımıza çıkar. Yabani güvercinlerin büyük bir yüzdesi bu mikrobu ( protozonu ) taşımaktadır. BELİRTİLERİ Hastalığın belirtileri Plasmodiosis ( sıtma ) hastalığına çok benzer. Hatta tamamen aynı belirtilere sahip olduklarını da söyleyebiliriz. Bu nedenle her iki hastalığı birbirinden ayırabilmek oldukça zordur. Bu konuda kesin tanı kan analizleri sonucu verilebilmektedir. Ateş yükselir 43 dereceye kadar çıkar ve nöbetler halinde tekrarlanır. Sarımtırak renkli ve beyaz posalı ishal şeklinde bir dışkı gözlenebilir. Hasta kuşlarda genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Alyuvarların oksijen taşıyıcı gücü azalır. Solunum sıklığı artar. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Haemoproteus’da ölüm pek görülmez ancak yan hastalıklara karşı uyanık olmak gerekmektedir. BULAŞMA ŞEKLİ Atsinekleri aracılığı ile bulaşan bir hastalıktır. Atsineği hastalığı taşıyan bir güvercinden kan emer ve bu işlem sonrası mikrobu alır. Mikrop sineğin vücudu içinde bir gelişim seyri izler ve son olarak sineğin tükürük bezlerine ulaşır. Yeni bir kan emme seansı sırasında ise buradan başka bir güvercine bulaştırılır. Güvercinin vücuduna giren mikrop 6 hafta kadar sürecek bir süreç sonucu olgunlaşır ve hastalığı bulaştırabilecek konuma gelir. Ancak güvercinde hastalık belirtileri mikrobun alınmasını takiben 15 – 30 gün sonra görülmeye başlar. Hastalıktan korunabilmek için özellikle yaz aylarında atsineklerine karşı önlemler alınmalıdır. Salmanın tel kafesle kapatılarak sineklerin girişi engellenebilir. Kuşlarınızın yabani güvercinlerle olan temasını tamamen kesmeniz gerekmektedir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bu hastalığın tedavisinde kullanılan ilaçlar, Plasmodiosis ( sıtma ) hastalığında kullanılan ilaçların aynısıdır. Bu ilaçlar, quinin ( kinin ) türevleri olan Clorquine, Primaquine ve Quinacrine etken maddesine sahip ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. TUBERCULOSIS (VEREM) GENEL BİLGİLER Güvercinlerde görülen verem hastalığıdır. Mycobakterium avium adlı bir bakterinin neden olduğu bu hastalık, yaygın ve bulaşıcı bir özellik taşır. Söz konusu bakterinin 20 kadar çeşidi bulunmakla birlikte yaygın olarak 3 tipi ile karşılaşırız. Bunlar insanda, sığırlarda ve kuşlarda hastalığa neden olan türlerdir. İnsanda ve sığırlarda görülen türü kuşlarda görülmez ancak bazı papağanlar bu durumun istisnasıdır. Kuşlarda görülen türü ise insanda ve sığırlarda da görülür. Bu nedenle kuşlardan insana ve diğer bazı memeli hayvanlara bulaşabilen bir hastalıktır. Hatta yabani güvercinlerin hastalığın ciddi birer taşıyıcısı olduğunu ve hastalığı hayvanlara bulaştırmada önemli bir rol oynadıklarını söyleyebiliriz. Yavaş gelişen sinsi bir hastalıktır. Kuşlarımız hastalığı bir süredir taşıyor olmakla birlikte belirtileri oldukça geç fark edilmeye başlar. Zamanla belirginleşen ağırlık kaybı, solgunluk hastalığın dikkat çekici özelliğidir. Tedavisi olmayan bir hastalık olup genellikle ölümle sonuçlanmaktadır. BELİRTİLERİ Ağırlık kaybı ve ciddi zayıflama ile birlikte, gözlerde, tüylerde solgunluk ve matlaşma, ağız içi mükozasında belirgin renk kaybı gözlenir. Kansızlık, ishal, baş tüylerinin kısmen dökülerek kelleşmesi, elle yoklandığında göğüs kemiğinin keskin kenarının kolayca hissedilmesi gibi belirtilerin yanı sıra, mikrop bölgesel lenf bezlerinde şişme ve yerel yaralara neden olabilir. Güvercinin iç organlarında özellikle karaciğer ve dalakta sarı – yeşil peynirimsi yumrular şeklinde doku yapısı değişiklikleri meydana gelir. Bunlar ölü kuşlar üzerinde yapılacak inceleme ile tespit edilebilirler. Ayrıca yaşayan kuşlarda yapılacak kan analizi hastalığın kesin teşhisini sağlar. BULAŞMA ŞEKLİ Hasta kuşların dışkıları hastalık mikrobunu taşır. Bunların sağlıklı kuşlarımızın tükettikleri yem ve içme sularına karışması hastalığın yayılmasını sağlar. Mikrobun salmalarımızdaki güvercin tozu dediğimiz beyaz toza bulaşarak solunum yolu ile de alınması mümkündür. Kuşlarımızın bu mikrobu toprak, mineral taşları ve grit gibi kaynaklarını yerken de alabilir. Kötü hijyenik koşullar, salmaların güneş ışığı görmemesi örneğin bodrum, depo gibi güneş görmeyen kapalı alanlarda kuş yetiştirilmesi gibi olaylar hastalık için uygun ortam yaratırlar. Salmanızın serçe, sığırcık, yabani güvercin gibi kuşlara açık olması kuşlarınıza hastalık bulaşma riskini artırır. TEDAVİSİ Ne yazık ki tedavisi olmayan bir hastalıktır. Hasta kuştan insana da mikrop geçme durumu olduğu için tedaviye çabalamak anlamsız ve zararlı olabilir. Eğer kuşunuzun hastalığının Tuberculosis ( verem ) olduğuna eminseniz bu kuşu hemen ayırmak ve söylemeye de dilim varmıyor ama imha etmek yapılacak en doğru yoldur. Çünkü hastalığı iyileştirme ihtimalimiz yoktur ve ölüm kaçınılmaz sondur. İmha yöntemi olarak öldürmek ve yakarak yok etmek önerilmektedir. HEXAMİTİASİS GENEL BİLGİLER Güvercinlerde Hexamit columbae adı verilen bir protozonun neden olduğu hastalıktır. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hexamitiasis hastalığına güvercinlerin yanı sıra tavuklar, hindiler, bıldırcınlar, keklikler, ördekler ve bazı kuş türlerinde de rastlanmaktadır. Ancak diğer türlerde hastalığa neden olan Hexamit protozonu daha farklıdır. Hastalığın karakteristik özelliği bağırsak iltihabına bağlı olarak gelişen ishal ve özellikle de kanlı ishaldir. Hastalık daha çok yaz aylarında yaygınlık kazanmakta ve özellikle genç kuşlarda daha fazla görülmektedir. Hastalığın yayılmasını önlemek için salma içi hijyenik koşullara dikkat edilmesi çok önemlidir. BELİRTİLERİ Hastalık ilk belirtisini kusma ile gösterir. Yenilen yemlerin kusulması hastalığın bir başlangıç belirtisi olmakla birlikte, mutlak değildir. Yani bu hastalığa yakalanan kuşlar mutlaka kusacak diye bir koşul yoktur. Ayrıca bu kusma başka nedenlerle olabilecek kusmalarla karıştırılabilir. Bu nedenle kusmayı takip eden günlerde yapılacak gözlemler önemlidir. Hasta kuşlarda ilk dikkati çeken özellik dışkılarının sulu ve köpüklü oluşudur. Daha sonraki aşamalarda gelişen bağırsak iltihabına bağlı olarak dışkıda kan gözlenebilir. Dışkının diğer bir özelliği de normalden daha fazla kötü bir kokuya sahip olmasıdır. Hasta kuşların ağız içi incelemesinde ağız içi mükozasında yara saptanabilir. Hastalığın gelişimine bağlı olarak, kuşlarda kayıtsızlık, bir kenara çekilip tüy kabartma ve düşünme hali ortaya çıkar. Kuşun yeme karşı ilgisi azalır ve hasta kuş daha az yem tüketmeye başlar. Buna karşın su tüketiminde bir artma vardır. Hastalığın tedavisine geç başlanması durumunda kuşlarımızda belirgin bir kilo kaybı gözlenir. Kilo kaybı özellikle genç kuşları fazlasıyla etkiler ve ölümler gelebilir. Ölüm öncesi kuşlarda titreme hali gibi bir durum saptanabilir. Aşırı kilo kaybına uğrayan kuşlarımızın tedavisini yapıp bu hastalığı ortadan kaldırsak bile kilo kaybından kaynaklanan gelişim noksanlığı bu kuşlarımızı kalan ömürleri boyunca etkiler. BULAŞMA ŞEKLİ Hastalık mikrobu, hasta kuşların dışkıları yolu ile yayılır. Dışkıda bol miktarda bulunan mikrop, bir şekilde kuşlarımızın yediği yemlere veya içtiği sulara bulaşabilir. Mikrop bulaşmış yiyeceği yiyen ya da içen kuş mikrobu alır. Mikrop vücuda girdikten sonra kuluçka süresi 4 – 5 gün kadardır. Yani mikrobun alınmasını takiben 5 gün kadar sonra hastalık belirtileri kendini göstermeye başlar. HASTALIĞIN TEŞHİSİ Hexamitiasis hastalığında hastalık belirtileri diğer güvercin hastalıklarından, Salmonella, E. Coli, Coccidiasis ve PMV1’e benzerlik gösterir. Bu nedenle kesin teşhis önemlidir. Hasta kuşların dışkılarında yapılacak mikroskobik inceleme sonucu hastalığın kesin tanısı yapılabilir. HASTALIĞIN TEDAVİSİ İlaçla tedavi edilebilen bir hastalıktır. Hexamitiasis tedavisinde, Ronidazole, Metranizadol, Dimetridazole etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeleri taşıyan güvercinler için özel üretilmiş ilaçlar yalnız yurt dışında bulunmaktadır. Yurdumuzda bunlardan sadece metronizadol etken maddeli olan bazı ilaçlar beşeri ilaç ( insanların tüketimi için hazırlanan ) olarak bulunmaktadır. Dozaj ve kullanım biçimi ayarlanarak bu ilaçlardan yararlanılabilir. Aşağıda ilk önce yurt dışında bulunan şekilleri tanıtıldıktan sonra ülkemizde bulabileceğimiz türleri hakkında da bilgi verilecektir. Bu iki ilaç Ronidazole etken maddesine sahiptir: RİDZOL-S : Toz şeklinde olan ilaç, Jeeds European firmasının bir üretimidir. %10’luk konsantreye sahip olan ilaç 4.5 litre suya bir çay kaşığı karıştırılarak 7 gün süre ile kullanılır. Yurtdışı fiyatı 20 –60 Dolar’dır. DACZAL TABLET : Dac Firmasının bir üretimi olan ilaç 5 mg’lık tabletler şeklindedir. Güvercin başına 1 tablet düşecek şekilde 7 gün süre ile verilir. Yurtdışı satış fiyatı 11.95 Dolar’dır. Bu iki ilaç Metranidazole etken maddesine sahiptir: FİSHZOLE TABLET : Thomas lab firmasının bir üretimi olan ilaç, tablet başına 250 mg ilaç bulundurmaktadır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Yurtdışı satış fiyatı 15.95 Dolardır. FLAGYL : Jeeds European firmasının bir üretimi olan ilaç, toz şeklindedir. 4.5 litre suya bir çay kaşığı kadar karıştırılarak 8 gün kadar kullanılır. Yurtdışı fiyatı 20 – 55 Dolardır. Bu ilaç, Dimetridazole etken maddesine sahiptir: HARKANKER SOLUB : Harkanker firmasının üretimi olan ilaç,toz şeklinde olup kuşların içme sularına karıştırılarak kullanılmaktadır. Bir poşet ilaç 4.5 litre suya karıştırılarak kuşlara 7 gün süresince verilir. Yurtdışı satış fiyatı 12.95 Dolar’dır. Ülkemizde bu etken maddelere karşılık gelen beşeri ilaçlar : Ülkemizde yukarda belirtilen 4 etken maddeden sadece Metranidazol içeren beşeri ilaç (insanların tüketimi için hazırlanmış) bulunmaktadır. Bu etken maddeyi taşıyan ilaçlar arasında Metrajil, Flagly ve Nidazol sayılabilir. METRAJİL : 250 mg’lık tablet şeklindedir. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. FLAGLY SÜSPANSİYON : 125 mg’lık toz halindedir. Su ile karıştırılıp şurup haline getirildikten sonra, kuşların içme sularına bir litre suya günlük olarak 5 ml karıştırılır. Tedaviye 3 gün süre ile devam edilir. NİDAZOL : 250 mg’lık tablet şeklinde olanı kullanılmalıdır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. PARAMYXOVİRÜS (SALLABAŞ) PMV-1 kısa ismiyle tanınan bu hastalık güvercin hastalıkları içinde en bulaşıcı ve ağır olanlarından birisidir ve Paratifo ile beraber en fazla güvercin ölümüne yol açan hastalıktır.. Ülkemizde genelde "sallabaş" adı ile bilinmesine rağmen, aslen sallabaş bir çok hastalıklardan dolayı güvercinlerimizde baş gösterebilen bir hastalık belirtisidir. Paratifo, zehirlenme, bakterisel enfeksiyonlar bu hastalıkların başında gelir ve hepsi kuşta sallabaş hareketinin görünmesine neden olur. Bu hastalıklardan bazıları ötekilerine göre daha kolay tedavi edilebilir ve bazılarının tedavisi yoktur. Fakat duymuş olabileceklerinizin aksine sahte sallabaş diye bir hastalık yoktur. Bu nedenle baş dönmesi dışında baska belirtilere bakılmadan her hangi bir tedavi yöntemine geçmek yanlış olabilir. PMV-1 kümes hayvanları hastalığı olan "Newcastle" hastalığı virüsünün yakın akrabasıdır. Fakat çeşitli kaynaklarda belirtildigi gibi "Newcastle" hastalığı değildir. PMV-1 tavuklara bulaşmıyacağı gibi "Newcastle" da güvercinlere bulaşmaz. Bu nedenle PMV işaretleri gösteren güvercinlere "Newcastle" hastalığı ilaçları kullanmak faydasızdır. (PMV 1 aşılarında Newcastle virüs kullanımı, bu virüsün paramyxovirosis ile yakın akrabalılığından istifade etmek amacıyla olup, tedavi amaçlı ilaçların bu ilişki kurularak kullanılmamasını belirtmek isterim. Not: Makaleye bu nokta veteriner arkadaşlardan gelen uyarılar sonucu eklemiştir) PMV-1'in bulaşma yolları doğrudan temas veya patojen taşıyan tozdur. Bu toz (salmalarımızda olan beyaz toz) hava yoluyla bulaşıma neden olabileceği gibi at sineği, sivri sinek, sinek, fare veya insanlar tarafındanda bir sonraki kuşa geşebilir. Bu nedenle salmaların havalandırma koşullarının ideal olması büyük derecede önemlidir. Salmalara sineklerin ve farelerin girmesini engelleyici önlemler alınması sadece bu hastalığa karşı değil bir çok hastalığa karşı etkin bir önlemdir. Bütün bu nedenlerin yanında bence en büyük tehlike insanlardan gelmektedir. Ziyaret ettiğimiz salmalarda dokunduğumuz kuşlardan veya elbiselerimize (özellikle ayakkabı tabanına) tutunan tozlardan en büyük zarar gelmektedir. Kuslarımızı görmeye gelen kuşçularda bu riske dahildir. Güvercin beslemenin sosyal bir hayat tarzı olduğunu düşünürsek bu riskleri ortadan kaldırmanın mümkün olmadığını fakat önlemler alınabileceğini görürüz. Bu önlemleri düşünürken aklımızda bulundurmamız gereken bir gerçek sadece gözle görünür belirtileri taşıyan kuşların bu tür hastalıklara sahip olmadığıdır. Başı dönmüş bir kuşun bu hastalığın son aşamalarında olduğu ve büyük bir olasılıkla aynı salmada daha bir çok kuşun bu hastalığı taşıdığı (hasta veya taşıyıcı durumunda) başka bir gerçektir. Bu tür riskleri olabildiğince azaltmak için bence yapılabilecek şeyler şunlardır: * Ziyaret eden kişilerin kuşlarınıza dokunmalarına izin vermeyin. Eğer ziyaretciniz usta bir kuşçuysa nedenlerini anlıyacaktır. * Salmalarınıza yürüyerek girilebiliyorsa, ziyaretcilerinizi ya dışarıda tutun yada kullanmaları için bir iki çift terlik bulundurun. * Ziyaret ettiğiniz bir kuşçudan geri geldiğinizde salmanıza gitmeden ellerinizi dezenfekte edici bir sabunla yıkayıp elbiselerinizi ve ayakkabınızı değiştirin. * Satın aldığınız kuşları kendi kuşlarınızın yanına almadan en az 30 gün ayrı bir salmada tutup gözleme alın. Çoğu virüs ve bakterilerin yaşam devri 30 gün olduğu için kendisini göstermemiş hastalıkların kuşlarınızı etkilemeden ortaya çıkmalarını sağlamış olursunuz. * Salmanızın havalandırmasına büyük önem verin. Bu kuşların dışında sizin sağlığınız içinde önemli. * Yemlik, suluk ve banyoluklarınızı salmanın dışında tutmayın. Vahşi hayvanların bunları kullanmasını engelleyin. * Serçe, kumru gibi vahşi kuşların salmanıza girmesini engelleyin. Kuşlarımızı etkileyecek bakteri, virüs ve parazitlerin vahşi hayvanlarda doğal olarak olabileceğini ve bu hayvanları sizin gözlemliyebileceğiniz şekilde etkilemiyebileceğini unutmayın. * Kuşlarınızı taşıdıkları parazitlerden arındırın. Bunların kuşlarınızın zayıf düşüp hastalıklara kolay hedef olmasına yol açacağını bilin. * Kuşlarınızı yerde yemlemeyin. Yemlik kullanmak çoğu hastalık risklerini elemine edecektir. * Kuslarınıza her gün taze su verin. * Suluk ve yemliklerinizi temiz tutup içlerine dışkı ve toz girmesini engelleyin. * Salmalarınızı temiz tutun. * Salmaların zemininin her zaman kuru olmasına dikkat edin (bakteri ve virüsler bu ortamda yaşamlarını sürdüremez ve çoğalamazlar). Dışkıları devamlı temizleyin. Çoğu hastalıkların ve kurtların bu yolla bulaştığını unutmayın. * Hastalık belirtileri gösteren kuşlarınızı hemen ötekilerinden ayırın. Bunlar benim yapmaya çalıştığım ve tavsiye ettiğim şeyler. Bunlardan her yapılan kuşlarınızın hastalanma olasılığını biraz daha azaltır. Kuşlara dokunmanın bu hastalıkla ilgisini ben kötü bir anı ile biliyorum: Yıllar önce Atlanta'dan ziyaretime gelen arkadaşım Eran'la beraber Afganistanlı bir arkadaşın kuşlarını seyretmeye gittik. Güzel bir gün geçirdik. Beraber kuşlarını uçurduk, yeni çıkan yavrularına baktık. Akşam üzeri bizim eve geldik. Eran daha ilk defa benim kuşları görüyordu. Ona ilk gösterdiğim kuş benim dumanlıların yavrusuydu. Övüne övüne gösterdim ve yavruyu anlata anlata bitiremedim. Kuş Eran'ında bayağı hoşuna gitti. Ondan sonra ergen kuşları uçurup seyrettik. Onlarda inmeden benim dumanlı yavruyu havaya attım. Daha ikinci uçuşu olduğu halde beni mahcup etmedi. Bir iki kere kuyruğunun üstünde kaydı ve ilk taklasını attı. Nasıl ama dedim. Kuş böyle olur. Daha sarı sarı tüyleri var. İki tur daha atabilse oyuna girecek. Benim gurur kaynağım. Kuşları içeri soktuk. Aksam yemeğini yiyip Eran'ı hava alanına götürdüm ve yolcu ettim. Ertesi gün akşam üzeri yine kuşlara gittigimde her zamanki gibi gözlerimin ilk aradığı kuş dumanlı yavruydu. Fakat bu sefer hafif bir halsizliği vardı. Pek uçmakta istemedi. Bende zorlamadım. Bundan sonra her gün dahada kötüye gitti ve bir süre sonra kafasıda dönmeye başladı. Ne kadar uğrastıysam nafile. Ben bunları yaparken bir gün Afganistanlı arkadaştan e-mail geldi. Halim kötü diyordu. Kuşlarım teker teker dökülüyor. Her gün bir iki tanesi ölüyor. Ne yapacağımı bilmiyorum. Birden ziyaret ettiğimiz gün aklıma geldi. Söylediğine göre ilk ölen kuş biz gittiğimizde ilk gösterdiği kuştu ve bende elime alıp incelemiştim. Eve geri geldigimde arkadaşıma kusları göstereceğim diye heyecanla ellerimi yıkamadığımıda hatırladım. İlk dokunduğum kuşumda gözüm gibi baktığım dumanlı yavrumdu. Bazen böyle hatalarımızla öğreniyoruz. Umarım benim öğrendiklerimde başkalarının hata yapmadan öğrenmesine katkıda bulunur. PMV-1'e geri dönelim: Bu hastalığın işaretleri ilk olarak kuşların fazla su içmeye başlaması ve sulu dışkularuyla başlar. Kısa zamanda kuşlarda sinir sistemi sorunları görülür. Felç, boyun titremesi, fazla ürkeklik ve klasik vücudun (özellikle boyun) dönmesi veya kıvrılması. Sinir sistemi bozukluklarının başlamasından önce bu hastalığı teşhis edebilmek için şüphelendiğiniz kuşu sırtının üzerinde yere bırakarak veya aniden yanında elinizi çırparak korkutup havalanmasını sağlıyabilirsiniz. Sinirsel bozukluk gözle görünmese dahi bu hastalığı taşıyan kuşda etkisi başlamışdır ve kuş sağlıklı olduğunda yapabileceği gibi korkutulduğunda normal bir kalkış yapamaz. Uçuşa kalkışında bir bozukluğa şahit olabilirsiniz. Sırt üstü pozisyondan ayağa kalkmasıda sorunlu olabilir. Şüphelendiğiniz kuşu gözlem altına aldığınızda yemini yerde verirseniz, yem yemekte güçlük çektiğini görebilirsiniz. Tam yeme gaga atarken başının kenara çekmeside klasik bir işaret. Hastalık ilerledikce bu hareket dahada ağırlaşacak ve kafasının tamamen dönmesine kadar gidecektir. Bu kuşları beslemek için kenarları alçak olan tabak şeklinde yemlikler ve suluklar kullanabilirsiniz. Fakat hastalık ilerledikce yem yemek ve su içmek kuş için imkansızlaşacaktır. Bu durumda elle beslemeye geçmeniz gerekebilir. Hastalıkları bu seviyeye gelen kuşların bazıları hemen ölürler ve bazılarıda yaşadıkları halde hayatlarının sonuna kadar hafif sinir sistemi bozuklukları gösterirler. Sonuçta bu hastalıktan kuşların kurtulması mümkün değildir. Yaşayanlarda taşıyıcı haline gelirler. Boyun dönmesinin ve öteki sinirsel bozuklukların bir çok hastalığa özellikle Paratifo'yada özgü olduğunu düşünürsek bu hastalığa kesin teşhis koymanın tek yolu alınacak kanın labaratuarda analize edilmesidir. PMV-1 taşıyan kuş iki üç hafta içinde antikor (kana dışarıdan giren maddelere karşı savunmaya geçen madde) üretmeye başlar ve bu antikorlar labaratuarda teşhis edilebilir. Çoğunlukla PMV-1'e yakalanan kuşlarda Paratifoda mevcuttur. Paratifo kendisini ilk iki üç gün içinde gösterdiği için test sırasında bu hastalığıda aramak yerindedir. İlk teşhisden sonra kuş paratifo için tedavi edilirse ve iyileşme gösterirse bu PMV-1 virüsüne karşı vücudun savunmasını kolaylaştırır. Dolayısıyla, anlıyacağınız gibi PMV-1'in antibiyotiklerle veya her hangi başka bir ilaçla tedavisi mümkün değildir. Yapılabilecek tek şey bu hastalığa karşı sağlıklı kuşları her yıl aşılamaktır. Konuıtuğum bazı kişiler bu aşının sadece 6 ay vücuda yararlı oldugunu ve 6 ay sonra tekrarlanması gerektiğini savunuyor. PMV-1 aslında tek başına kuşları öldürmez. Kuşların ölüm nedenlerinin başında yem ve su alamamaları gelir. Bunun yanında PMV-1 kuşun vücut savunma sistemini aşırı derecede yıprattığı için aynı zamanda kuşda baska hastalıklarda mevcuttur. Bunların başında daha önce dediğim gibi paratifo gelir. Pamuk ve Coccidiosis bunu takip eder. Hastalanan kuşlarınızın tedavi edilemiyeceği ve ölmiyenlerin bile taşıyıcı hale geleceği düşünülürse, istemesekde bir ilaç bulunana kadar tek çözüm bu kuşların imha edilmesidir. Ne olursa olsun, bu hastalığı taşıyan kusları satmak veya başkalarına vermek yapılmaması gereken bir şeydir. Bulaşıcılık özelliği çok fazla olduğu için PMV-1 salgınına yol açacak bir harekettir. Umarım kimse kendi kuşlarında yaşadığı duyguları başka bir kuşçunun veya kuşçuların yaşamasını istemez. Eğer hasta kuşlarınız sizin için çok değerliyse ve imha edemiyecekseniz, öteki kuşlarınızdan her zaman ayrı tutulmalı ve öteki kuşlarınızında devamlı aşılarının yapılması gerekmektedir. Bu hastalığı geçiren kuşların aşılanması mümkün değildir. Eğer kuşlarınız aşılanmamışsa ve bu hastalığın bir kuşunuzda mevcut olduğunu düşünüyorsanız, acil olarak geri kalan kuşlarınızı aşılıyabilirsiniz. Fakat aşıyı vurduktan sonra antikorun iki üç hafta içinde üretilmeye başlamasından dolayı bu süre içinde hastalığa yakalanan başka kuşlarınızda olabilir. Hasta kuşları imha ettikten veya salmadan çıkarttıktan sonra arta kalan yemlerin ve dışkıların her gün temizlenmesi ve salmanın bir ucundan öteki ucuna kadar dezenfekte edilmesi şarttır. Dezenfekte etmek için "SANICOOP" gibi hazır temizleyiciler kullanabileceğiniz gibi kloraklı çamaşır suyuda kullanabilirsiniz. Bundan bahsetmişken bu tür dezenfekte işlemlerini gelenek haline getirip en az haftada bir bütün yemlik ve sulukları dezenfekte etmenizi ve buna yapabildiğiniz kadar bütün salmayı eklemenizi tavsiye ederim. PMV-1 hastalığı süresince kuşlarınıza genel antibiyotik vererek yan hastalıklarla başa çıkmanız ve B vitamini takviyesiyle kuşunuza yardımcı olmanız, değerli kuşlarınızın kendilerini en kısa zamanda toparlamalarına yardımcı olur. PLASMODİOSİS (SITMA) GENEL BİLGİLER Bu hastalık, malaria ya da sıtma adı ile bildiğimiz hastalığın güvercinlerde görülen türüdür. “Güvercin Sıtması” olarak adlandırabileceğimiz bu hastalığa neden olan mikrop, plasmodiasis ( plasmodium ) adı verilen tek hücreli bir protozondur. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Güvercin sıtmasının bulaşma ve yayılmasına neden olan en önemli etken sivrisineklerdir. Bu hastalık yaz aylarında hızlı bir şekilde yayılır ve bir çok güvercini etkiler. Yabani güvercin türlerinde oldukça yaygındır. Yapılan bir araştırmaya göre yaz aylarında yabani güvercinlerin % 35’inde bu hastalığa rastlanmıştır. SİVRİSİNEKLER Sürekli güvercinlerin üzerinde yaşama eğiliminde olmadıklarından güvercinlerin bir dış paraziti olarak adlandırılmamakla birlikte sivrisinekler, zaman zaman güvercinlerden de kan emmektedirler. Özellikle bazı türleri kuşları ve güvercinleri tercih etme eğilimindedirler. Sivrisinekler, güvercin sıtmasına neden olan başlıca mikrop taşıyıcı canlılardır. Bataklık alanlar, su birikintileri, dere ve nehir kenarları, gibi sulak alanlar sivrisineklerin üreme ve gelişme alanlarını oluşturur. Dişi sinek buralara larvalarını bırakarak çoğalır. Sivrisinekler kan emerek yaşayan birer canlıdırlar. Ancak sadece dişi sivrisinekler kan emerler. Dişilerin yumurta geliştirebilmeleri için kana ihtiyaçları vardır. Erkek sivrisinekler ise su ya da bitki özsularıyla karınlarını doyururlar. Dişi sineğin kan emdikten sonra bu kanı sindirme işlemi ortalama üç – dört gün sürer. Bu süre içinde yumurtalar olgunlaşır. Daha sonra kan emme işlemi tekrarlanır. Yumurtalar 3 gün içersinde açılır ve 20 – 22 derece sıcaklıktaki bir su da 15 günlük bir sürenin sonunda erginleşirler. Dişi sivrisineklerin ömrü, yaz aylarında fazla aktiviteden dolayı 2 ay kadardır. Buna karşın kış aylarında 9 ay kadar yaşarlar. Erkek sivrisinekler ise çok daha az ömürlüdürler. Çoğu, çiftleşmeden hemen sonra ölürler. Sivrisinekler kan emmek için genellikle geceyi beklerler. Kanını emeceği canlıyı bulmasında kısa mesafelerde sıcaklık ve nem gibi uyarılar, gelişmiş duyu organları sayesinde kolayca algılanabilir. Sivrisinek kan emeceği canlının çıplak bir noktasına konar ve kan emmek için özelleşmiş hortumu sayesinde bu işi gerçekleştirir. Ağız parçaları deriyi delebilecek tarzda sokucu bir yapıdadır. Her sokuşta yaraya tükürük akıtılır böylelikle kan emilmese bile hastalık taşıyan mikroplar bulaştırılabilir. Sivrisinek türleri içersinde, Culidae familyasına dahil olan Anopheles, Culex ve Aedes türleri yaygın olarak gözlenen ve gerek insan ve gerekse hayvanlardan kan emen türlerdir. Bu türler kuşlar ve güvercinlerden de kan emerler. Özellikle Culex pipiens’i adı ile bilinen tür özellikle kuşları tercih etmektedir. Ancak bu türler içinde sadece Anopheles türü üyeleri sıtma mikrobunu taşırlar. Ülkemizde sıtma mikrobu taşıyan Anopheles türleri arasında Anopheles sacharovi ile Anopheles maculipenis en yaygın rastlananlardır. Anopheles türlerini diğer sivrisineklerden ayırt etmenin en kolay yolu bir yere konduğunda duruş şekline bakmaktır. Anopheles türleri kondukları zemine vücutları dar açı yapacak şekilde dururlar. Diğer türlerin vücutları zemine paralel konumdadır. Ayrıca Anopheles türlerinin uzun ayakları, yuvarlaklaşmış pulları ve hafif benekli kanatları bulunur. Bu özelliklere bakarak uzman olmayan birisi bile hastalık taşıyıcısı Anopneles’i diğerlerinden ayırt edebilir. HASTALIĞIN BELİRTİLERİ En dikkat çekici özellik nöbetler halinde tekrarlayan ateş yükselmesidir. Kuşu etkileyen plasmodium türüne göre ateş süreleri ve tekrarlanma sıklıkları değişebilir. Bu dönemlerde kuş birden durgunlaşır, bir kenara çekilip düşünmeye ve tüy kabartmaya başlar. Nöbet geçtiğinde kısmen düzelmiş gibi bir görüntü sunar ancak genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Böyle bir durumda ölümcül sonuçlar doğurabilir. Hastalığın kesin teşhisi kan analizi ile yapılabilir. Tedavi edilmemesi durumunda hastalık kronikleşme eğilimi gösterir ve zamanla böbrekleri tahrip ederek kuşun ölümüne neden olabilir. HASTALIĞIN TEDAVİSİ VE KULLANILAN İLAÇLAR İlaçla tedavi edilebilen bir hastalık olmakla birlikte hastalığın teşhisinde gecikilmesi ve tedaviye geç başlanması sonucu tedavisi zor hale gelebilir. Hastalıktan kaçınabilmek için özellikle salmalarınızın içine sivrisineklerin girmesini engellemek gerekmektedir. Uygun gözenekli bir kafes teli kullanılabilir. Kuşlarımızın diğer yabani güvercinlerle ve başka kuşlarla olan temasını engellemek yerinde olur. Quinie ( kinin ) etken maddeli ilaçlar hastalığın tedavisinde kullanılmaktadır. Bu ilaçlar, Clorquine, Primaquine ve Quinacrine etken maddelerine sahip olan çeşitli ticari isimlerdeki ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. Pox (Frengi - Çiçek) Frengi, halk arasında bazen çiçek olarakta geçer, "borreliota avium" virüsünün neden olduğu bir hastalıktır. Özellikle posta güvercinlerinde olmak üzere çoğunlukla sıcak havalı bölgelerde ortaya çıkar. Çoğu virüs nedenli hastalıkların aksine bulaşıcılığı dışkılardan değil, kan emici parazitlerden (sivri sinek, kene, sakırga, uyuz böceği etc.) dolayıdır. Parazitler taşıyıcı görevi yapıp hastalığı güvercinden güvercine bulaştırır. Bu virüs temasla bulaşabileceği gibi içme suyunda günlerce yaşayabilir. Virüs hasta kuşlar tarafından salya ve sümük ile vücuttan atılabilir. Bu sıvılar yerde kuruduktan sonra tozlaşarak hava yoluyla bulaşıma neden olabilir. Virüsün bu yolla vücuda girebilmesi için güvercinin vücudunda yaranın (kavga sırasında göz ve gaga kenarındaki yaralanmalar gibi) mevcut olması lazımdır. Virüs vücutta bulduğu yaralardan kan sistemine geçip burada çoğalır ve bu safhadan sonra yeniden deri yüzeyine gelip burada tomurcuklanır. Tomurcuklanma insanlarda görülen çiçek hastalığına benzer (hastalık isminide buradan almıştır). Tomurcuklanma çoğunlukla derinin tüylerle kaplı olmadığı kısımlarda baş gösterir. Göz çevresi, gaga başlangıcı ve bacaklar tomurcuklanmanın kabuklaşmış bir şekilde görülebileceği bölgelerdir. Hastalık hızla ilerler ve ve tamurcuklar irin üretmeye başlarlar. Hastalığı öldürücü yapanda bu özelliğidir. Virüs burun, ağız veya boğaza yerleşip irin üretmeye başladığında kuşların nefes alması ve yem yemesi büyük derecede zorlaşır. Hasta kuşun boğazına bakıldığında sarı ve sert irin parçaları görülebilir. Bu parçalar tomurcuk yaralarından çıkarak oluştuğundan sıyrılması veya deriden koparılması oldukca zordur. Bu safhada akılda bulundurulması gereken en önemli şey görülen belirtilerin pamuk (trichomoniasis) ile aynı olmasıdır. Pamuk tedavisi altında bulunan bir kuşun tedaviye cevap vermemesi halinde frengi tedavisine geçilmesinde fayda vardır. Bu iki hastalığın aynı zamanda bir kuşda mevcut olma olasılığıda yüksektir. Frengiyi pamuktan ayırmanın en kolay yolu tomurcuklanmanın bacaklarda veya pamuğun olmıyacağı bir şekilde göz çevresinde bulunmasıdır. Bunun yanında mikroskop altında teşhis konulabilir. Frengi daha çok genç kuşlarda ortaya çıkar. Yavruların derisinde kahverengimsi renklenmeler görülebilir. Frengili bir kuşun nefes alma ve yeme sorunlarının dışında yan hastalıklara karşı açık olması başka bir sorundur. Bu konuda yardımcı olabilmek için A vitamini takviyesi yaparak derinin dayanıklılığını arttırıp tomurcuk yaralarının hızla iyileşmesini sağlıyabilirsiniz. Frengi geçiren kuşlar hayatlarının sonuna kadar bu hastalığa bağımsızlık kazanır (Burada frenginin değişik varyasyonlarının var olduğu unutulmamalı. Bağımsızlık sadece kuşun atlattığı varyasyona karşı oluşur). Yıllık frengi aşısı (İğne yerine kuşun baldırından yolunan bir kaç tüyle derinin tüy deliklerinden kanamasını sağlayıp buraya sürülecek süngerimsi bez parçaları ile veriliyor) bu hastalığa karşı kuşlarınızın en sağlam savunması olur. Colombovac'ın frengi ve paratifo karışım aşısı kullanılarak iki hastalığa karşı birden aşılıyabilirsiniz. Bu aşı iğneyle her kusa 0.02cc ölçüsünde boyundan verilir. 6 haftalıktan küçük kuşlara aşı yapmamanız ve bir kere açılan aşı paketini bir daha kullanmak üzere elinizde tutmamanız önemlidir. Frengi tek başına kuşları zor öldüreceği için tek yapacağı şey kuşların çirkin bir görünüşte olmalarını saşlamasıdır. Asıl sorun yan hastalıklardan gelmektedir. Bunun dışında pamukla beraber baş göstermesi bir çok kuşunuzu kaybetmenize neden olabilir. Hastalık sırasında 1/4 Carnidazole tabletini kuşlara ağızdan 6 gün süresince verip bunu 7 gün süresiyle Albon vererek takip etmek bu yan hastalıkların etkisini ortadan kaldırır. Bunların dışında Pox Dry ilacını hem frengi hemde pamuk yaraları üzerine sürerek hızlı bir şekilde kurumalarını sağlıyabilirsiniz. Bu hastalığın bulaşmasının en büyük nedeni parazitler olduğu için salmanızda kuşlara değmiyecek yerlerde parazit (sinek?) kağıdı kullanabilirsiniz. Belli bir süre sonra bu kağıtların güvercin tozu nedeniyle etkisiz hale gelmesi doğal. Bu durumda kağıtları sıcak suda sabunla hafifce yıkayıp yeniden kullanabilirsiniz. Bunu yaparken pilastik eldiven takmanız iyi olur. Eğer bu kağıtları kullanmak zor geliyorsa (kuşlara sert bir şekilde yapışırlar) boş bir cam kavanoza beş altı tane kağıt şeridini koyup salmada geceleri ağzını açabilirsiniz. Böylece kuşlarınıza zarar vermesini ve tozlardan etkilenmesini engellemiş fakat sinek, sivri sineklerden kurtulmuş ve öteki parazitleride salmadan uzaklaştırmış olursunuz. Kronik Solunum Yolu Hastalıkları Chronic Respiratory Disease İngilizce adından kısaltılarak CRD adı ile anılan ve Türkçe’ye “kronik solunum yolları hastalıkları” olarak çevirebileceğimiz bu hastalık tek bir hastalığın adı değil, solunum yollarında görülen bütün hastalıkları kapsayan ortak bir adlandırmadır. Güvercinlerde görülen CRD hastalıkları 3 tanedir. Bu yazı kapsamında söz konusu 3 hastalık hakkında bilgi verilecektir. Bu hastalıklar şunlardır ; 1 ) Ornithosis 2 ) Coryza 3 ) Mycoplasmosis Solunum yollarında görülen bu hastalıklar güvercinlerde çok yaygındır. Kış aylarında havanın soğumasına paralel olarak bu hastalıklarda da artma gözlenir. Bu hastalıklar aslında pek çok faktörün karşılıklı etkileşimi sonucu gelişmektedir. Kuşlarımız için öldürücü bir hastalık görünümü sunmamakla birlikte bazı ağır vakalar ölüm riski taşımaktadırlar. Ancak asıl sorun CRD hastalıklarının, başka hastalıklarla birlikte görülme eğiliminde olmasıdır. Bu durum kuşlarımızda ciddi güç kaybı yaratmakta ve hayati risk tehlikesi artmaktadır. Kuşlarımızda görülen uçuş yeteneklerinin azalmasının en önemli nedenleri arasında CRD hastalıkları gelmektedir. Stres etmenleri, kötü hijyenik koşullar vb. hastalığın gelişmesinde çok önemli rol oynarlar. Bu etkenler yok edilmediğinde hastalık geçmiş gibi görünse bile her zaman tekrarlama eğilimindedir. Şimdi bu hastalıkları tek tek ele almak istiyoruz. ORNİTHOSİS GENEL BİLGİLER Chlamydia Psittaci adı verilen bir bakterinin neden olduğu hastalıktır. Psittacosis adı ile de bilinen bu hastalığa, bazen etken olduğu mikrop nedeni ile Chlamydia hastalığı da denilmektedir. Aslında bir solunum yolları hastalığıdır. Güvercinlerde dikkat çekici belirtisi gözlerde olduğu için bir göz hastalığı olarak algılanır. Güvercinler arasında yaygın olarak gözlenen hastalıklardan biridir. Bir çok kuş türünde gözlenen bu hastalık dünya çapında yayılmıştır. Diğer evcil olmayan kuş türleri hastalığı taşıyıcı rol oynamaktadırlar. Kuşların yanı sıra insan ve diğer memeli hayvanlarda da görülmektedir. Yaygın olarak papağanlar, güvercinler, hindiler ve ördeklerde rastlanır. Chlamydia Psittaci kendi içinde hem RNA hem de DNA bulunduran bir bakteri olmakla birlikte üreyebilmek için içinde bulunduğu vücuttan bu maddeleri almak durumundadır. Bunun sonucu olarak vücut hücrelerinde bozulmalara neden olur. BELİRTİLER Hastalık uzun süre belirgin bir belirti vermeyebilir. Bu nedenle gözden kaçar ve dikkat edilmez. Ancak kuşun güç kaybına bağlı olarak kendini birden ortaya koyabilir. İlk aşamalarda kuşlarımızdaki performans eksikliğinin yaygın sebebi olabilir. İyi uçan bir kuşumuzun belirgin başka bir neden olmaksızın uçuş gücünün düşmesi dikkatimizi çekmelidir. Yavru kuşlarda yavaş gelişme durumu dikkat çekicidir. Hastalık, sonraki aşamalarda iştahsızlık, tüy kabartma, kilo kaybı, karışık tüyler, titreme, gerginlik hali, yeşilimsi ishal ve solunum yolları sorunları ile kendini gösterir. Daha ağır vakalarda mikrop karaciğere yayılır ve burada iltihaba neden olur. Bu aşamada hastalık ölümcül olabilir. Hastalığı geçiren ve tedavi olan kuşlar kısmen bu mikroba karşı güç kazanırlar ve tekrar bu hastalığa yakalanma riskleri azalır. Mikrop vücuda girdikten bir süre sonra gözlerde ve özellikle de tek gözde yaşarma ve akıntı ile kendini belli eder. Aslında başka belirtileri olmakla birlikte bunlar genellikle dikkatten kaçmaktadır. Böyle olduğu için Ornithosis sanki bir göz hastalığı gibi algılanmakta ve bir çok kaynakta Ornithosis ( one eye cold ) olarak belirtilmektedir. ONE EYE COLD ( TEK GÖZ SOĞUK ALGINLIĞI ) Chlamydia Psittaci mikrobun gözlere yayılması durumunda ilk belirtiler gözde yaşarma ve akıntıdır. Daha sonra kuşun gözünün etrafı tam yuvarlak bir halka şeklinde hafif şişer ve kızarır. Su toplamış gibi bir görünümü vardır. Genellikle tek gözde ortaya çıkar. Bu nedenle hastalığa İngilizce “One Eye Cold” denilmektedir. Tedavi edilmediği taktire bu kızarıklık gözün etrafına doğru yayılır ve genişler. Gözdeki yaşarma ve akıntı mikropludur ve mikrobun etrafa bulaşmasına yol açar. Güvercinlerde gözlerde belirti veren diğer bir hastalık olan Coryza ile karıştırılmamalıdır. Bazı durumlarda gözdeki enfeksiyon körlük ile sonuçlanabilir. BULAŞMA ŞEKLİ Kuşların mikrop taşıyan göz akıntıları salmalarımızın içinde bulaşmaya neden olurlar. Mikrop salma içindeki güvercin tozu dediğimiz beyaz toza bulaşarak taşınır. Solunum yolu ile diğer kuşlara geçer. Hasta kuşlarla aynı banyo suyunda yıkanan diğer kuşlar hastalığı kapabilirler. Bu hastalığın önemli bir özelliği insana da bulaşmasıdır. Eğer güvercininizden mikrop kapmak istemiyorsanız dikkat etmeniz ve hasta kuşlarınızı süratle tedavi etmeniz gerekmektedir. Güvercin tozunun solunması yolu ile mikrop insana geçebilmektedir. Hastalık mikrobu güvercin tarafından bırakıldıktan sonra 48 saat kadar salma içinde aktif konumdadır. Bu süre içinde mikrop alınırsa mikrobu alan insanın hassaslığına bağlı olarak 5 – 14 gün arasında hastalığın ilk belirtileri görülmeye başlar. İnsandaki belirtiler gribe benzer. Ateş, baş ağrısı, göğüs ağrısı, yorgunluk, kuru öksürük ve bazı vakalarda mide bulantısı ve kusma görülür. HASTALIĞIN TEŞHİSİ Hastalığın kesin teşhisi kan tahlili ile yapılabilir. Ölü kuşlar üzerinde yapılacak otopside karaciğerde yapılacak inceleme ile belirlenebilir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri nedenli bir hastalık olduğundan antibiyotiklerle tedavi edilebilmektedir. Antibiyotik uygulaması oldukça olumlu sonuçlanmaktadır. Çeşitli antibiyotikler bu amaçla kullanılabilir. Yurt dışında bu hastalık için üretilmiş olan güvercin ilaçlarında yaygın olarak Chlortetracyline ve Doxycyline etken maddeli ilaçlar kullanılmaktadır. Ayrıca kuşların multivitamin takviyesine gereksinimleri vardır. Tedavi sırasında kuşların kalsiyum kaynaklarından ( grit taşları, gaga taşları vb) uzak tutulması gerekmektedir. Çünkü kalsiyum Chlortetracyline’nin ve Doxycyline’nin etkisini azaltmaktadır. Yumurtlama dönemlerinde olan kuşlarda bu ilaçlar kullanılmamalıdır. DEVAMİSİN OBLET Chlortetracyline Hydrochloride etken maddeli bir ilaçtır. Her oblette 500 mg etken madde bulunur. 12 Obletlik ambalajlar halinde piyasada satılmaktadır. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Vetaş ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur, Güvercinler için kullanılabilecek doz, kuş başına günde 15 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ¼ tablet karıştırmak uygun olabilir. DOXİVET –10 SOLÜSYON Doxycyline Hiklat etken maddeli bir ilaçtır. Farmavet ilaç firmasının bir üretimidir. 1 ml ilaçta 100 mg etken madde bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur. Ticari şekli 1 ve 5 litrelik ambalajlar halindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 25 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ½ ml karıştırmak uygun olabilir. TERRAMYCİN GÖZ MERHEMİ Beşeri ( insanlar için üretilmiş) bir ilaçtır. Pfizer firmasının bir üretimi olup, eczanelerde bulunur. Etken maddesi, Oxytetracyline ve B vitaminidir. Antibakteriyel etkili bu merhemin deri ve göz için olan iki tipi bulunmaktadır. Göz için olanı güvercinlerde One eye cold hastalığında haricen yani dışarıdan sürülmek sureti ile kullanılabilir. Günde 1 – 2 kez dıştan göze sürülür. Ticari şekli 3.5 gr’lık tüpler halindedir. BAVİTSOLE ORAL SOLÜSYON Bayer ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. A, D3, E ve C vitaminleri bulunduran kompleks bir ilaçtır. Güvercinlerde her türlü vitamin eksikliklerinde, çeşitli hastalıkların tedavisinde takviye olarak ve sulfa grubu ilaçlar ile antibiyotiklerin yanında destekleyici olarak kullanılabilir. Bu ilacı tercih etmemin önemli bir nedeni içinde kalsium bulundurmamasıdır. Böylece sulfa grubu ilaçlar ile bazı antibiyotiklerin yanında kullanılması gayet uygundur. Ticari şekli 1 litrelik solüsyon halindedir. Güvercinler için 1 litre içme suyana 10 kuş hesabıyla 1 cc ilaç katılarak kullanılabilir. İlaç kullanımına 5 gün devam edip bir süre ara verdikten sonra tekrar başlanabilir. CORYZA ( CATARRH ) GENEL BİLGİLER “Akut Nezle” adı ile Türkçeleştirebileceğimiz bu hastalığa Hemophilus İnfluenzae adlı bir bakteri neden olmaktadır. Kış aylarında daha çok görülen bir hastalıktır. Hastalığın mikrobu güvercinin üst solunum yollarına yerleşir ve çeşitli rahatsızlıklar yaratır. Çoğu zaman Ornithosis ve mycoplasmasis ile bağlantılı olarak gelişir. Hızlı bir gelişme gösterir. Hassas bazı kuşlarda mikrobun vücuda girişinden itibaren 3 gün içinde hastalığın belirtileri görülmeye başlar. BELİRTİLER Başlangıçta kuşun boğazda sümük salgısı vardır. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Kuşta solunum zorluğu, hırıltılı soluma, ses çıkartırken hırıltılı tonlar gözlenebilir. Sulu yeşilimsi bir ishal ile birlikte ağırlık kaybı, uçma isteksizliği ve yavru veriminde düşme vardır. En belirgin özellik, burun akıntısı ve her iki gözde de yaşarmaların olmasıdır. Burun akıntısı ve sümük kokuludur. Sinüslerde şişme gözlenir. Buna bağlı olarak kuşun yüzünde ve özellikle göz altlarından buruna doğru olan bölümlerde, alın kısmında hissedilir bir şişme oluşur. Öldürücü bir hastalık değildir. Bu hastalıktan ölüm oranı oldukça düşüktür. Ancak güvercinlerde ciddi strese neden olan bu durum diğer hastalıkların ortaya çıkma ihtimalini hızlandırır. BULAŞMA ŞEKLİ Diğer evcil olmayan kuşlarla her türlü temasın kesilmesi gerekir. Bu kuşlar mikrobu taşıyıcıdırlar. Hasta kuşların akıttıkları göz yaşı ve sümük gibi salgılar mikropludur. Bu salgıların kuruyup toz haline gelmesi ve bu tozun solunması yolu ile hastalık bulaşabilir. Ayrıca aynı salgıların içme suyuna bulaşması ile bu suları içen kuşlarda hastalanabilirler. Doğrudan temas ise başka bir bulaşma yoludur. Eğer salmanızda bir güvercin hastalandıysa mikrobun bütün salmaya yayıldığını düşünerek önlem almanız gerekmektedir. Temizlik, salma içinde havadar bir ortam yaratılması rutubetin önlenmesi ve hijyenik koşullara uyulması hastalık riskini azaltacaktır. HASTALIĞIN TEŞHİSİ Kesin olarak teşhis edebilmek için burun veya göz akıntısının laboratuvar analizi gereklidir. HASTALIĞIN TEDAVİSİ Bakterilerin neden olduğu bir hastalık olduğu için antibiyotiklerle tedavi edilebilmektedir. Antibiyotiklerin yanı sıra vitamin takviyesi de önemlidir. Ornithosis için kullanılan ilaçlar aynen Coryza için de kullanılabilir. Farklı olarak Tylosin ve Eritromycin etken maddeli antibiyotikler ilave edilebilir. Vitamin olarak yukarda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. TYLAN SOLUBE Tylosin etken maddeli bir antibiyotiktir. Lilly - Ellanco fimasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Kullanılacak doz 10 güvercin için 1 gram ilaç 2 litre içme suyuna karıştırılarak verilebilir. İlaç tedavisi 2 gün sonra kesilmelidir. Ağır durumlarda tedavi 5 güne kadar uzatılabilir. ERİTROM TOZ Eritromycin etken maddeli bir antibiyotiktir. 1 gram ilaç 55 mg etken madde içerir. Ticari şekli 50 ve 225 gr’lık cam kavanoz halindedir. Vetaş ilaç firmasının bir üretimi olup veteriner ilaçları satan eczane ve ecza depolarında bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. 1 litre içme suyuna 1 ölçek ilaç ( 2.5 gr ) karıştırılarak 5 gün süre ile kullanılır. kullanılır. MYCOPLASMOSİS ( MYCOPLASMA ) GENEL BİLGİLER “Kronik Nezle” olarak adlandırabileceğimiz bir hastalıktır. Hastalık genellikle diğer solunum yolları hastalıklarının ( Ornithosis ve Coryza ) bir devamı şeklinde kendini gösterir. Hastalığın etkeni mycoplasma denilen bakteri kökenli bir organizmadır. BELİRTİLERİ Hastalık belirti olarak diğer solunum yolları hastalıkları ile benzer bir görüntü sunduğu için ayırt edilmesi oldukça zordur. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Burunun dış deliklerinde sümük şeklinde oluşum vardır. Burun akıntısı gözlenebilir. Aksırma vardır. Sinüslerdeki şişmeye bağlı olarak yüzde ve özelliklede alın bölgesinde şişlik görülebilir. Kuşun ateşinde yükselme saptanabilir. Özellikle geceleri hırıltılı soluma, hırıltılı ses çıkarma ve nefes alıp verme zorlukları gözlenebilir. Kuş nefes alırken burnu tıkalı olduğu için gagasını açma ihtiyacı hisseder. Solunum yetersizliğine bağlı olarak kandaki oksijen miktarı azalır ve kuşun derisinin rengi mavimsi bir görünüm kazanabilir. Kuşun karın ya da göğüs bölgesindeki tüyler aralanıp deri rengi kontrol edilebilir. Güvercinlerimizin uçuş performansını ve yumurta üretimini olumsuz etkiler. Bu hastalıktan ölüm olayı görünmez ancak bu hastalığın en önemli özelliği diğer bazı hastalıklarla birlikte seyretmesidir. Böyle olduğunda kuşumuz için ölümcül risk yaratır. BULAŞMA ŞEKLİ Bu mikroorganizma sadece canlı vücutlarda yaşayabilir. Kuşun vücudunun dışında yaşam süresi 15 – 20 dakika ile sınırlıdır. Bu nedenle fazla bulaşıcı bir hastalık değildir. Bulaşma daha çok direk temas yolu ile olmaktadır. Evcil olmayan diğer kuş türleri mikrobu taşıyıcıdırlar. Hastalığın yayılmasını sağlayan en önemli etkenler arasında, olumsuz hijyenik koşullar, salma içinde rutubetli ve havasız ortam başta gelmektedir. HASTALIĞIN TEŞHİSİ Kesin tanı hasta kuşun kan analizi ile olabilir. Kuşun salgıladığı balgamın tahlili ise hastalığın aşamaları ve seyri konusunda bir fikir vermektedir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın tedavisinde antibiyotikler ve vitaminler kullanılmaktadır. Ancak genellikle başka hastalıklarla birlikte görüldüğü için ilaç seçimi buna göre değişebilir. Enrofloxacin, Oxytetracyline, Chlortetracyline ve Doxycyline, Tyolisin etken maddeli ilaçlar tercih edilmektedir. Vitamin olarak yukarıda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. BAYTRİL % 2.5 ORAL SOLÜSYON : Bayer ilaç firmasının bir üretimidir. Kuvvetli bir anti – bakteriyeldir. Etken maddesi Enrofloxacin’dir. 1 cc ilaç 25 mg etken madde içerir. Aynı ilacın % 10 konsantrasyona sahip olanı da vardır. Ancak %2.5’luk olan güvercinler için daha uygundur. Hem de fiyat olarak daha ucuzdur. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde kısa adı CRD olan kronik solunum yolları hastalıklarında ve Salmonella’da kullanılmaktadır. Kullanılacak doz, güvercin için, kuş başına 5 mg’dır. Bu dozu sağlayabilmek için, 2 litre suya 0.5 cc ilaç karıştırmak uygundur. Tedaviye 5 gün süre ile devam edilmelidir. Ticari şekli 20, 50, ve 100 ml’lik şişeler halindedir. Salmanızda yumurtlamak üzere olan kuşlarınız ya da bir aydan küçük yavrularınız varsa bu ilacı kullanmayınız. Yavrularda sakatlıklara neden olabilmektedir. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. CADİDİASİS(TERS KURSAK) GENEL BİLGİLER Sour crop İngilizce adından Türkçe’ye çevirerek “ters kursak” olarak adlandırabileceğimiz bu hastalığın bir diğer adı da Candida’dır. Ancak hastalık Mycosis, Muget, Yeast ve Trush adları ile de bilinmektedir. Fungal bir hastalıktır. Fungal ( mikotik ) hastalıklar, toplumda yaygın adı ile mantar hastalıkları olarak bilinirler. Cadidiasis de sindirim bölgesinde özelliklede üst sindirim bölgesinde görülen müzmin formlu bir mantar hastalığıdır. Mantar mikrobunun yerleşerek hastalığa neden olduğu bölge, proventriculus olarak da adlandırılan ve kursaktan sonra yemlerin geçtiği ilk durak olan bezlimidedir. Kümes hayvanları, serçeler, su kuşları ve güvercinler gibi bir çok kuş türünde yaygın olarak gözlenen bir hastalık türüdür. Hastalığa neden olan mikrop Candida abbicans adı verilen bir mantar organizmasıdır. Bu mikrop daha çok bozuk yem üzerinde bulunmaktadır. Güvercinlere bayat ve küflü yem verilmesi hastalık riskini çok artırmaktadır. Güvercinlere verdiğimiz yemlere mutlaka dikkat etmemiz gerekmektedir. Verilen yemlerin taze olduğunun göstergesi bu yemlerin çimlenme yeteneğini kaybetmemiş olmasıdır. Yem olarak “kısır tohum” kullanımı doğru değildir. HASTALIĞIN SEYRİ VE BELİRTİLERİ Mantar mikrobu, bezlimide de küçük yaralara neden olmaktadır. Bu yaralar ufak boğumlar oluşturarak zaman zaman bir aşağıda yer alan ve taşlık adı ile bilinen kaslımideye yemlerin geçişini engellemektedir. Bu durum bezlimide de yemlerin birikerek buranın şişmesine neden olur. Bu şişlik bezlimideyi çevreleyen kan damarlarına basınç yapar ve yer yer bu damarların patlayarak kanamasına neden olur. Bu kanama güvercinin ağzından kan gelmesi şeklinde kendini gösterir. Bazen yuva içinde yerde gördüğümüz ve anlam veremediğimiz kan birikintilerinin nedeni bu tür bir kanama olabilir. Bezlimidenin bu şekilde tıkanması aynı zamanda kursakta şişmeye de neden olur ve kuş ara sıra kusarak bu birikintiyi atmaya çalışır. Kusmuğun kokusu, normalden daha kötüdür. Özet olarak kursakta şişme ve zaman zaman tahıl içeriğinin kusulması ile birlikte ağızdan kan gelmesi gibi durumlar bize kuşumuzda Cadidiasis hastalığının bulunduğunu göstermektedir. Bunun yanı sıra ağız içinde veya damakta görülen küçük beyaz mantar oluşumları hastalığı belirlememizi sağlar. Daha net olan bu göstergelerin yanı sıra, kayıtsızlık, iştah kaybı, ağırlık kaybı, kuşun performansında düşme, genç kuşlarda yavaş büyüme, yetişkin kuşlarda telek çürümesi ve tüy yarılması gibi durumlar bu hastalığın diğer belirtileridir. Boğazdan alınacak örnekler üzerinde yapılacak kültür testi ile hastalığa kesin teşhis koyulabilir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın deri enfeksiyonu ve tüy çürümesi şeklinde seyretmesi durumunda, banyo sularına karıştırılacak Bakır sülfat sorunun çözümü için yararlıdır. Bakır sülfat için 1 / 2000 oranında sulandırma uygundur. Bunun için 4.5 litre banyo suyuna yarım çay kaşığı ilaç karıştırmak gerekir. Bakır sülfat, sülfürik asidin bakır II okside etkimesi ile oluşan bir tuzdur. Parlak mavi kristaller halindedir ve piyasada “göz taşı” adı ile satılmaktadır. Kimyasal madde satan yerlerde bulunabilir. Ankara’da Ulus’ta Modern Çarşı’nın üst katında var. Hastalığın bezlimide de görülmesi durumunda Nystatin etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeyi bulunduran güvercinler için üretilmiş özel bir ilaç ülkemizde yoktur. İçinde bu etken maddeyi bulunduran beşeri bir ilaç eczanelerde bulunabilir. Bu ilaç veteriner hekim kontrolünde gerekli doz ayarlaması yapılarak güvercinlere kullanılabilir. Bu ilaç hakkında kısa bilgiler aşağıda verilmiştir. MİKOSTATİN SÜSPANSİYON Her ml de 100.000 IU etken madde bulunmaktadır. Bristol-Myers squibb firmasının bir üretimidir. Anti fungal etkilidir. Canker (Pamuk) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Kaynak: veterinerhekimiz.com

http://www.biyologlar.com/guvercin-hastaliklari

Ak balık (Leuciscus cephalus)

Ak balık (Leuciscus cephalus)

Ak balık (Leuciscus cephalus), Tatlısu kefali, Ak kefal, Kepenez ya da Kasna olarak da bilinir, sazangiller (Cyprinidae) familyasına ait bir balık türü.40 ila 100 cm boyuna (en büyük tutulmuşları 80 cm ve 5,71 kilo) ulaşan ak balığın uzun ve yanları yassı bir füze şekilinde vücudu vardır. Kafası büyük ve ağzı geniştir. Dış görünüşü ile Leuciscus idus balığına çok benzer, ama bundan daha büyük ve kenarları koyu renk olan pulları vardır, anal yüzgeci dışarıya doğru dönüktür, karın ve göğüs yüzgeçleri kızıl renktir.Bir tatlısu balığı olan ak balık hızlı akan ırmaklarda suyun üst bölümlerinde yaşar. Ama bu ırmakların yavaş akan bölümlerinde, yani kayaların arkasında durmayı tercih eder. Böceklerden ve diğer küçük hayvanlarla beslenir, ama bazen su bitkilerini de yer. Belli bir büyüklüğe varmış olanları küçük balıklar ve kurbağalarıda yerler. Üreme zamanları Nisan ile Haziran arasındadır. Dişileri bu zamanda 100.000 yumurtayı çakıl taşlarının ve su bitkilerinin üzerine bırakır.Ak balık diğer sazangillerdeki gibi dişleri olmadığından dolayı yırtıcı balık olarak görülmez ama aslında her şeyi yiyen bir balıktır. Yedikleri şeylerin bazıları şunlardır; yosun ve diğer su bitkileri, su böcekleri ve bunların kurtları, sülükler, midyeler ve solucanlardır. Yaşlandıkca sık sık diğer küçük balıkları avlamaya başlar. Hatta bazen suda yüzen bir fareyi bile kaptığı izlenmiştir.Ak balık, iskoçya'nın, İrlanda'nın ve İskandinavya'nın kuzeyi haricinde Avrupa'nın her yerinde bulunur. Ak balığı Türkiye'nin her yerinde, hatta en ufak çaylarında bile bulmak mümkündür.Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya:Cyprinidae (Sazangiller)Cins:     LeuciscusTür:     L. cephalus

http://www.biyologlar.com/ak-balik-leuciscus-cephalus

Kıtaların Kayma Kuramının Zoocoğrafik Açıdan Önemi

Wegener, Kıtaların Kayma Kuramı’nı ortaya atınca ve bu kurama önemli destekler gelince ve özellikle 1960 ve 1995 yılları arasında belirli ölçülerle bilimsel olarak kanıtlanınca, geçmişteki fauna ve flora yayılışlarının, bundan önceki kuramlarda öne sürüldüğü gibi büyük ölçüde kara ve su köprüleri ile olmadığı sonucuna varılmıştır. Yayılışların, bugünkü kara parçalarının tümünün bir araya gelmesinden oluşmuş “pangea” dediğimiz tek ve bütün bir kara parçasının var olmasıyla gerçekleştiği anlaşılmıştır. Dünya tek kıta iken evrimleşen ve kalıtsal yapısı ya da evrimleşmeye dirençliliği nedeniyle yapısını değiştirememiş ya da çok az değiştirmiş canlıların her kıtada temsil edilmesi beklenilmelidir. 1950’lerdeki bazı ünlü biyocoğrafyacılar (MİCHAELSEN, İRMSCHER, RENSCH, EANNEL gibi) bu kuramda yer alan kıtaların arasındaki biyolojik ilişkileri açıklamalarıyla öne çıktılar. Nitekim, en yaygın toprak solucanı (Lumbricus terrestris) ve bazı yengeç türlerinin tüm kıtalarda (yalıtılmış bölgeler halinde olsa bile) bulunmaları (kozmopolit yayılış) (daha sonra taşınma olaylarıyla kozmopolit olanlar değil), bu devirdeki flora ve fauna birliğinin bir kanıtı olarak gösterilebilir. Doğal olarak faunanın bu eski sakinlerini ararken, özellikle, evrimsel değişime dayanıklı olan ya da mutasyon oluşturan etkilerden büyük ölçüde korunmuş olan canlı grupları göz önüne alınmalıdır. Bunlar genellikle toprak içinde, taşların altında (solucanlar, kırkayaklar, çıyanlar, galeri ve tünel kazarak toprak altında yaşayan böcekler ve omurgalılar vs), suların derinliklerinde yaşayan (bir çok kabuklu (Crustacea), yumuşakça (Mollusca)) ve sert ışınlara dirençli kabukları olan hayvanlardır (midyeler ve dış iskelete sahip eklembacaklılar). Bu kuram için öne sürülen en önemli zoolojik bulgu Unca adı verilen bir yengeç türünün dağılışı gösterilmektedir. 1968 yılında Amazonların ağzında bulunan çok küçük, vücut yapısı bakımından ilkel ve köken olarak çok eski (değişmeden ya da pek az değişerek günümüze ulaşmış) bu yengeç türü, dünyanın uygun birçok yerinde dağınık durumda, sanki her biri ayrı bir vahada yaşıyormuş gibi bulunmaktadır. Bu yengeçlerin pasif ya da aktif olarak yayılma olanakları olmadığı için, kıtalar birbirlerinden ayrılmadan önce oluştukları ve yayıldıkları kabul edilmektedir. Bu tarihten sonra yapılan zoolojik araştırmalar, özellikle kökeni eskiye dayalı yengeçler üzerinde yapılan çalışmalar, Batı Afrika ile Doğu Amerika nehirlerinde, özellikle, taban sularında ve sedimanlarında yaşayan bazı yengeçlerin yakın akraba olduğunu ortaya çıkarmıştır. Bu hayvanlar tamamen tatlı suya bağımlı olduklarından, deniz suyu bir çeşit zehir etkisi yapar. Dolayısıyla herhangi bir yola Atlantik’i aşmaları söz konunu olamaz. Kuram bazı eksik ve kuşkulu noktaları nedeniyle, özellikle jeologlar tarafından itiraza uğruyordu. Fakat daha sonra yapılan katkılarla derin denizlere yönelik paleontolojik, jeolojik, stratigrafik ve biyolojik (BRUNDİN) bulgular; uzaydan çekilen fotoğraflar, sismik incelemeler ve derin deniz araştırmaları, kurama önemli boyutlarda destek sağlamıştır. Atlantik’te kıtaların birbirinden ayrılma hattının uzaydan saptanması ve buradaki jeolojik olayların açıklanası, Kıtaların Kayma Kuramı üzerindeki kuşkuyu ortadan kaldırarak, araştırmaların ayrıntılara yönelmesini sağladı. Kıtaların kayma kuramı özellikle Kretase ve Jura’daki hayvansal yayılışlar için mantıklı açıklamalar getirilmesini sağlamıştır.      

http://www.biyologlar.com/kitalarin-kayma-kuraminin-zoocografik-acidan-onemi

Toprak Yapısı ve Su Verimliliği

Toprağın bitkilere su sağlayabilme potansiyelini belirlemek üzere kullanılan Tarla Kapasitesi, Daimi Solma Noktası veya Yüzdesi, Su Basıncı (P), Su Tansiyonu, Nem eşdeğeri, Su Potansiyeli veya Yayınım Basıncı Eksikliği, Toplam Toprak Suyu Stresi, Kılcallık Kapasitesi gibi birçok terimler vardır. Burada konu bunlar arasında en yaygın olarak kullanılan bazı terimlerle ele alınacaktır. Toplam toprak su stresi, (Total soil moisture stress) konuya enerjetik açıdan yaklaştığı için bu konudaki en bilimsel terimdir. Konuya toprakta bulunan suyun serbest enerjisini azaltan iki temel kuvvet grubunun etkinliği çerçevesinde yaklaşır ve toprak suyunun serbest enerjisini azaltan bu iki grubu : • • Toprak suyu tansiyonunun ögeleri olan hidrostatik kuvvetler, yerçekimi ve adsorpsiyon kuvvetleri, • • Toprak çözeltisinin osmotik kuvvetleri olarak tanımlar. Hidrostatikler bilindiği gibi su basıncı, yüzey gerilimi gibi kuvvetler, adsorpsiyon kuvvetleri de su ile toprak kolloidlerini oluşturan kil gibi mineraller ve organik maddelerle su arasında etkili olan, suyun yerçekimi etkisini yenebilmesini sağlayan kuvvetlerdir. Osmotik kuvvetler de topraktaki su çözeltisinin içerdiği iyonlarla ilişkilerinin sonucu olan kuvvetlerdir. Toprak çözeltisinde çözünmüş iyon derişimi suyun azalması ve çözünür iyon miktarı artışı ile artar. Yani toprak kurudukça su alımı zorlaşır, kuraklığın zorlayıcı etkisi otokatalitik bir artış gösterir. Toprak, kaynağı olan anakaya üzerinde bulunan ve dünya ortalamasına göre 50 - 60cm. kalınlığındaki tabakalı yapıdır. Değişik oranlardaki kaya ve çakıllar ile kumdan oluşan, su tutma kapasitesi düşük veya çok düşük olan, kil ve silt gibi ince taneli, su tutuculuğu olan mineral maddeler ile canlı artıkları ve bozunma ürünleri olan humusu içeren ve su tutan organik maddeler, sulu toprak çözeltisi ile hava ile memeliler ve sürüngenler ile solucanlardan funguslar, mikroalgler ve bakterilere kadar geniş bir açılım gösteren canlılardan oluşur. Bu karmaşık yapısı nedeniyle de çok dinamik bir yapıdır. Kaba kum adı verilen 0.2 - 2mm. çapındaki tanelerden daha büyük çaplı olan çakıl ve taş parçaları toprağın iskeletini oluşturur. Kaba kum ve 0.2 - 0.02 mm çaplı ince kum, 0.002 - 0.02 mm. çaplı silt ve bundan daha küçük taneli kil ise su tutma kapasitesine çapın küçüklüğü oranında katkıda bulunan kısımdır. Toprağın iskeletini de içeren yapısına toprağın strüktürü, iskelet dışında kalan kısmının özelliklerine toprağın tekstürü - dokusu denir. Bu katkıda bulunan kısımların oranı da toprak tekstürü adı verilen ve toprak sınıflandırılmasında kullanılan temel özellikleri oluşturur: Çakıllık, kumul, münbit - verimli, siltli, killi toprak ana tipleri kumlu, siltli ve killi münbit - organik maddece zengin - toprak gibi alt gruplara ayrılır. Ayrıca kahverengi orman toprağı, podzoller, çernozemler gibi yaygın ve belirgin genel özellikleri olan toprakları tanımlayan sınıflandırmalar da vardır. Bitkilerin beslenmesine uygun, yani verimli - münbit topraklar Uluslararası Toprak Bilimi Örgütü Sistemi tarafından Kumlu (%66.6 kum, %27.1 verimli fraksiyon ve %0.9 silt ve kil), İnce Kumlu ( %17.8 kum, %30.3 ver. ve %7.1k+s), Siltli (%5.6 k., % 20.2 v., %21.4 k+s ) ve Killi ( %8.5 k, %19.3 v, %65.8 kil) şeklinde sınıflandırmıştır. Toprak verimliliğinin yanısıra küçük taneli ve organik maddece zengin olması erozyona dayanıklılığının artışına neden olur. Doğal, bozulmamış toprakta toprak yapısı ve dokusu bu sınıflandırmada farklı konumlara sahip olan tabakaları, toprak tabakalarını içerir. Toprağın tabakalanması ve tabaka özellikleri toprak profili ile tanımlanır. Toprak profilinde yer alan tabakalar - horizonlar yüzeyden derine doğru, A1,... gibi alt tabakalara ayrılan A, ....D tabakaları halinde dizilirler. Bu tabakaların herbirinin özelliği bitki örtüsünün kök sistemi özelliklerine göre kompozisyonunu yağış rejimi ve iklimsel özellikler ile birlikte denetler. Kumlu toprak en az karmaşık olan kapiler sistemi geniş porlu olduğunda su geçirgenliği - permeabilitesi, yani drenajı yüksek olduğu için köklerin solunumu için yeterli havalandırma sağlayan düzenli ve sık yağışlı iklimler için en uygun toprak tiplerindendir. Kimyasal ve fiziksel olarak bozunma eğilimi düşük, kararlı yapısına karşın gevşektir. Öte yandan tanecikler arasında çimento görevi görevi yapabilecek organik madde ve kil ile silt az olduğundan gevşek ve erozyona açık olan toprak tipidir. Killi topraklar ise kolloidal ve kolloidimsi özellikteki kil ve siltin oluşturduğu, su çekerek şişen ve topaklaşabilen çimento fazı ile tam ters özelliklere sahiptir. Al-silikatlardan oluşan bazik karakterli levha biçimi olan kolloidal taneciklerin çok yüksek yüzey / hacim oranı ve kohezyon, adezyon kuvvetleri, zayıf hidrojen bağı yapma yetenekleri ile kumlu topraklardan 1000, siltli topraklardan 10 kat daha fazla su tutar ve su girişi arttıkça çok daha az hava bulundururlar. Erozyona ve kurak etkisinde kurumaya karşı dirençli fakat köklere hava sağlama açısından zayıf topraklardır. Verimli olanlar ise yaklaşık olarak eşit oranlarda kum, kil ve silt içeren, su tutma ve hava kapasitesi, drenajı, su geçirgenliği yeterli olan topraklardır. Bu verimlilik uygun iklimle birleşince sık bitki örtüsünü destekler ve organik maddece zenginleşir, madde çevrimi yüksek dengeli bir ekosistem oluşur. Verimli toprağın porozitesi, serbest su ve hava tarafından kaplanan hacmi ortalama olarak %50 oranındadır, killi topraktan bir kattan fazla, kumlu toprağın yarısından az oranda olan bu hacim hava kapasitesini belirler. Fakat su tutma kapasitesi ilişkisine katılan değişkenler daha çok ve sonuç tahmini zordur. Çünkü toplam porlar içinde kapilariteye sahip olanlar ile olmayanların oranı ve suyun tutulmasını sağlayan kuvvetlerin büyüklükleri, oranları etkili olur. İnce bitki kökleri ve solucanlar gibi hayvanlar killerin agregatlar, topaklar oluşturması ile kapiler poroziteyi, su tutma sığasını arttırarak toprağın verimliliğine katkıda bulunur ve sürdürülebilir bir denge oluşmasını sağlar. Bu açıdan saçak köklü otlar çok etkilidir. Toprağın kimyasal bileşimi de bitkilerin mineral beslenmesi yanında su tutma kapasitesini etkiler. Topakların sertliği, dağılma eğilimi, nem tutma sığası, kohezyon kuvveti iyon değişimi ile geçici olarak bağlanmış olan Na + + K+/ Ca++ + H+ iyonlarının oranına bağlıdır, oranın artışı ile sertleşme ve sığa büyür. Kurak bölgelerdeki yağışlar değişebilir iyonları yıkayarak uzaklaştıracak yoğunlukta olmadığı ve yüzeyde buharlaşma ile su kaybı hızlı olduğundan topaklar sertleşir, yüzey kabuklaşır. Şiddetli yağışlar da, sonraki sıcak dönemde hızlı buharlaşma derinlere inmiş suyun yayınım ve kılcallıkla yüzeye çıkışı ile iyon çökeltmesine neden olarak olayı hızlandırır. Özellikle suda çözünürlüğü yüksek olan Na+ birikmesi toprağın tuzlanması sonucu çoraklaşmasına neden olur. Bu durum damlama yöntemi gibi bitkilerin kullanabilecekleri kadar suyun kullandıkları oranda verilmesini sağlayacak şekilde yapılmadığı durumlarda da görülür. Toprağın global kimyasal bileşiminde çok önemli yer tutan ve toprak canlılarının tümünün yaşamını doğrudan etkileyen suyun toprakta bulunuş şekli de tüm bu olaylarda önemli rol oynar ve toprağın hem yapısal hem kimyasal özellikleri ile yakından ilişkilidir. Toprak suyunun sınıflandırılması temelde topraktaki fiziksel haline göre yapılır. Gravitasyonel, yerçekimi etkisinde süzülen, serbest akan su oranı porozitesi ve por çapı ortalaması yüksek ve organik maddesi az topraklarda fazladır. Bu su fazından bitkiler ancak süzülüp akarken kısa bir süre yararlanabilir. Toprağın profili burada önem kazanır, örneğin alt tabakalarda killi bir tabaka olması bu suyun birikmesine neden olur ve bu tabakaya kadar uzanan köklerin havasız kalıp, çürümesine neden olur. Kapiler su, gravitasyonel su süzüldükten sonra toprak taneciklerinin çevresinde ve birleşme noktalarında adezyon ve kohezyon kuvetleri ile tutularak film halinde kalan sudur. Bu kuvvetler bağıl olarak zayıf olduğunda bitkiler bu kalıcı su fazından kolaylıkla yararlanır. Ancak kolloidal materyalde kuvvetle adsorbe edilen su ile sıcak ve kurak iklim koşullarında şiddetli buharlaşma ile kaybedilen kapiler sudan bitkiler aynı kolaylıkla yararlanamaz. Rutin uygulamada kapiler su fazının tümünü değerlendiren Tarla Kapasitesi, diğer bir tanımı ile Nem Eşdeğeri toprakların bitkilere yarayışlı su tutma kapasitesi olarak kabul edilir. Suyla doymuş haldeki toprak ile yerçekimi etkisiyle süzülen su arasındaki fark poroziteyi, kalan su da yararlı kapiler su ile kullanılamayan higroskopik su fazlarının toplamı olarak alınır. Daimi Solma Yüzdesi ile karakterize edilen Higroskopik Su fazı ile tarla kapasitesi arasında kalan su miktarı bitkiler için yarayışlı fazını oluşturur. Daimi solma noktası, bitkilerin susuzluktan kalıcı şekilde etkilendikleri, yani yeniden su düzeyi yükseldiğinde bile toparlanamadıkları durumda toprakta bulunan higroskopik olarak bağlı su fazını tanımladığı düşünülür. Daimi solma olayı canlılık ile ilgili bir terim olmasına karşın bu değer toprak özelliklerinin bir karakteristiği olarak alınır. Gerçekte bitkiler üst yüzeyi parafinlenerek topraktan buharlaşmanın önlendiği belli hacimdeki topraktaki suyu tüketerek bir gecelik süre ile susuz kaldığında yaprakların dökülmesi esas alınmıştır. Bu durumdaki toprak 105 derecede kurutularak % nem oranı belirlenir. Aslında bu durum bitkilerin su alımının çok yavaşlayıp terlemeyi karşılayamadığı durumdur ve toprağın özelliğinden çok bitkinin osmotik karakteristiklerine ve su depolama, terleme özellilklerine bağlıdır. Mezofitik, yani ılıman ve kurak olmayan iklime adapte bitkilerde 20 atm. civarında olan yaprak osmotik basıncı kurak iklime ve tuzlu, osmotik basıncı yüksek topraklara adapte olmuş halofitik türlerde 200 atm.e kadar çıkabilmektedir. Toprağın laboratuar koşullarında serilerek kurutulmasından sonra toprakta kalan ve ancak suyun kaynama noktasına kadar ısıtılarak kurutulmasından sonraki ağırlığı ile hava kurusu denen ilk nemli örnek ağırlığı arasındaki fark higroskopik su fazının miktarını verir. Ancak kaynama noktasındaki termik hareketlilik ile topraktan ayırılabilecek kadar kuvvetli tutulmuş olan bu fazdan bitkiler kesinlikle yararlanamaz, yani gerçek desikkasyon - susuzluktan kuruma noktasıdır.. Killi verimli ve kumlu verimli topraklar bu açıdan karşılaştırıldığında suya doymuşluk düzeyinin killide toprak kuru ağırlığının %70i, kumluda ise %35i oranında olduğu, tarla kapasitesinin %45e karşılık %20, ve daimi solma noktasının da %17’ye karşı 9, son olarak da higroskopik bağlı su fazının %10a karşılık %7 gibi değerler verdiği görülür. Bitkilerin yağışla toprağa düşen sudan yararlanabilmeleri ile ilgili önemli bir toprak özelliği suyun infiltrasyonudur. İnfiltrasyonu düşük, killi ve organik maddece fakir toprakta yağışın hızı arttıkça yüzeyden toprağın içine yayınım yapamadığı için köklere ulaşamayan su oranı artar. Eğimli arazide akar gider, düz arazide taşkına yol açabilir veya buharlaşma ile kaybedilmiş olur. Kumlu toprakta ise bu oran en düşük düzeydedir. Alt tabakaları killi topraklarda sürme işlemi bu yönden zararlı etki yaparak erozyon riskini arttırır. Forum kodları ve simge butonları gösterilmemesine karşın, hala kullanılabilirler.

http://www.biyologlar.com/toprak-yapisi-ve-su-verimliligi

Omurgalılar ve Özellikleri

Omurgalılar, sırtları boyunca uzanan omurgalarıyla tüm öbür hayvanlardan ayrılır. Omurga, kıkırdaktan, kemikten ya da her ikisinden oluşan iskeletlerinin en önemli bölümü ve temel eksenidir. Omurgalılar genellikle omurgasızlardan daha iri ve daha karmaşık yapılıdır. İlk omurgalılar yaklaşık 510 milyon yıl önce ortaya çıkan ilkel balıklardır. Omurganın kaslarla hareket ettirilebilen esnek bir destek oluşturduğu, böylece bu hayvanların hızlı yüzmesine olanak sağladığı düşünülmektedir. Omurga ayrıca, içindeki kanalda yer alan ve sinir sisteminin en yaşamsal bölümlerinden olan omuriliği korur. Omurilik, gövde ve uzantıları ile beyin arasında bir sinir köprüsü kurar. Bu geniş hayvan grubu balıklar, amfibyumlar, sürüngenler, kuşlar ve memelilerden oluşur. MEMELİLER (MAMALİA) Yavrularını süt salgılayan göğüs bezleriyle beslediklerinden bu hayvanlara Mammalia adı verilmiştir. Bu hayvanlar Jura’da memeli benzeri sürüngenlerden (Synapsida alt sınıfının Therapsida takımından) ayrı bir dal şeklinde meydana gelmişlerdir. Bu gruptaki hayvanların temel özelliklerinden birisi de tümünün vücudunda az yada çok sayıda kılın bulunmasıdır. Memeliler üç ana gruba ayrılır. Bunların arasında tekdelikliler yada yumurtlayan memeliler olarak tanınan grup ornitorenk ve ekidnelerden oluşur. Bu ilginç hayvanların yavruları, kışlar gibi yumurtadan çıkar, ama sonra anne sütüyle beslenir. İkinci grupta keseliler yer alır. Keselilerin yavruları çok az gelişmiş olarak doğar. Yeni doğanların uzunluğu genellikle 6 santimetreyi aşmaz. Başlıca keseliler arasında opossum, tasmanyaşeytanı, bandikut, kuskus ve kangru sayılabilir. Eteneli memeliler en geniş memeliler grubunu oluşturur. Plasenta adıyla da tanınan etene, annenin içinde gelişen ve yavru ile anne arasında köprü kurarak doğana kadar yavruyu besleyen bir organdır. Eteneli memeliler başlıca 10 grup altına toplanabilir: Böcekçiller (Insectivora) en çok eski dünyada bulunmakla birlikte bir ölçüde Kuzey Amerika’ya da yayılmıştır. Köstebekler, kirpiler ve sivrifareler en bilinen üyeleridir. Yarasalar (Chiroptera), uçan memelileri kapsar. Hemen hemen bütün iri yarasalar meyveyle beslenirken, küçüklerinin çoğu böcekleri avlar. Primatlar (Primates) maymunlar ve insanlardan oluşur. Gelişmiş beyinleri ve el becerileriyle dikkat çekerler. Dişsizler (Edentata) ya dişten tümüyle yoksundurlar yada ağızlarında basit yapılı birkaç diş taşırlar. Armadillo, karıncayiyen ve tembelhayvan bu grubun üyeleridir. Kemiriciler (Rodentia) tür ve birey sayısı en çok olan memelilerdir. Tür sayısı 4000’i aşan memelilerin yarısından çoğunu kemiriciler oluşturur. Kobay, fare ve sıçanın yanı sıra oklukirpi, kunduz ve sincap da kemiriciler arasında yer alır. Etçiller (Carnivora) aslan, kaplan, pars, sırtlan, sansar, ayı, kedi, ve köpeği de içeren yırtıcı hayvanlardır. Denizde yaşamaya büyük bir uyum gösteren foklar ve morslar ise genellikle yüzgeçayaklılar (Pinnipedia) adıyla ayrı bir grupta toplanır. Balinalar (Cetaca) hemen hemen tümüyle kılsız, balık biçimdeki memelilerdir. Suyun dışında yaşayamazlar. Gerçek balinaların yanı sıra yunuslar ve musurlar da bu grupta yer alır. Mavi balina yaşayan en iri hayvandır. Filler (Proboscidea) günümüze yalnız iki türüyle ulaşabilmiş kara hayvanlardır. Tektoynaklılar (Perissodactyla) at, eşek, zebra, tapir ve gergedandan oluşurlar. Toynaklar, bu ve sonraki grubun ayak parmaklarını çevreleyen, kalınlaşarak başkalaşıma uğramış tırnaklarıdır. Çifttoynaklılar (Artiodactyla) deve, geyik, zürafa, sığır, antilop, keçi ve koyun gibi gevişgetirenlerin yanı sıra domuz, pekari ve suaygırı gibi gevişgetirme özelliği bulunmayan hayvanları da kapsar. KARAKTERİSTİK ÖZELLİKLERİ Vücutları genel olarak belirli zaman aralıklarında dökülen kıllarla kaplıdır. Derilerinde ter, yağ, koku ve süt bezleri gibi çeşitli salgı bezleri bulunur. Bazı memelilerin vücut ve kuyruk kısımlarında sürüngenlerinkine benzeyen pullar vardır. 2. Balinalar (Cetacea) ve Deniz inekleri (Sirenia) gibi deniz memelileri dışında kalanlarda dört üye vardır. Bu deniz memelilerinde arka üyeler kaybolmuştur. Her bir üyede 5 veya daha az sayıda parmak bulunur. Gerek üyeler ve gerekse parmaklar çeşitli yaşam biçimlerine göre, örneğin, yürümek, koşmak, tırmanmak, yüzmek, uçmak ve kaçmak gibi görevleri yerine getirecek şekiller kazanmışlardır. Parmak uçlarında boynuz yapısında tırnak ve toynaklar, parmak altlarında ise etli yastıklar mevcuttur. 3. İskelet iyi bir şekilde kemikleşmiştir. Kafataslarında 2 oksipital kondil, boyunlarında 7 tane omur bulunur. Kuyrukları uzun ve hareketlidir. 4. Her iki çenede de mevcut olan dişlerin kök kısımları çukurluklar içerisine gömülüdür. Dişler beslenme durumlarına göre çeşitli şekiller gösterir. Bazılarında dişler bulunmaz. Dilleri çoğunlukla hareketlidir. Gözlerinde hareketli göz kapakları, kulaklarında etli bir dış kulak kısmı bulunur. 5. Kalpleri 2 kulakçık ve 2 karıncık olmak üzere 4 odacıklıdır. Kuşların tersine bunlarda yalnız sol aort kökü bulunmaktadır. alyuvarları yuvarlak ve çekirdeksizdir. 6. Solunumları yalnız akciğerlerle olur. Larinkste ses çıkarmaya yarayan ses telleri bulunur. Kalp ve akciğerlerin yer aldığı göğüs boşluğunu karın boşluğundan ayıran ve diyafram adı verilen kaslı bir bölme vardır. Böyle bir yapı memeliler dışında hiç bir hayvan grubunda görülmez (kuşlardaki bölme kaslı değildir). 7. Vücut sıcaklığı sabittir ve çevre koşularına bağlı olarak değişiklik göstermez (Homoiothermus). Vücut sıcaklığı metabolizma sonucunda sağlanır (endeterm). Vücut üzerinde bir kıl örtüsünün varlığı, deri altında vücudu saran bir yağ tabakasının bulunması ve kirli kan ile temiz kan dolaşımının birbirlerinden tümüyle ayrılmış olması, vücut sıcaklığının değişmezliğini sağlayan özelliklerinden bazılarıdır. 8. Sidik keseleri vardır ve boşaltım maddesi sıvı haldedir. 9. Beyinleri gelişmiş, cerebrum ve cerebellum kısımları oldukça büyüktür. Beyinden 12 çift sinir çıkar. 10. Erkeklerinde bir kopulasyon organı (penis) mevcuttur. Testisleri genellikle karın boşluğu dışında yer alan ve scrotum adı verilen torbalar içerisinde bulunur. Yumurtaları küçük ve kabuksuzdur. Yumurtanın gelişmesi yumurta kanalı (ovidukt)’nın değişmesiyle meydana gelen döl yatağında (uterus) tamamlanır. Amnion, korion ve allantois gibi embriyonik zarlar mevcuttur. Genellikle embriyoyu uterusa bağlayarak onun beslenmesini ve solunumunu sağlayan bir plasenta bulunmaktadır. yavrular doğumdan sonra dişi hayvanın süt bezlerinden salgılanan süt ile beslenir. Memeliler sürüngenlerden meydana gelmiş olmalarına karşın onlardan bir çok yapısal farklılıklar gösterirler. Bu farklılıkların en önemlileri şunlardır: 11. Memelilerde vücut örtüsü olarak pullar yerine kıllar bulunur. Yalnız bazı memelilerin vücutlarında ve kuyruk bölgelerinde sürüngenlerden kalma bir özellik olarak hala pullar mevcuttur. 12. Memelilerin kafatasında iki oksipital kondil bulunur (sürüngenlerde bir tane) ve beyin kutusu daha büyüktür. 13. Memelilerde göğüs boşluğu ile karın boşluğunu birbirinden ayıran kaslı bir diyafram vardır 14. Memelilerde alt çene kemiği bir parça halindedir (sürüngenlerde çok sayıda). 15. Memelilerde alt çene kemiği doğrudan kafatası ile eklem yapmaktadır (sürüngenlerde quadratum ile eklem yapar). 16. Memelilerin orta kulağında incus, malleus ve stapes olmak üzere üçlü bir kemik zinciri vardır (sürüngenlerde yalnız stapes karşılığı olan Columella iç kulakta bulunur, diğer iki kemik çene ile birleşmiştir). 17. Memelilerde belirli zamanlarda dökülen dişler bulunur (sürüngenlerde dişler belirli zamanlarda değiştirilmez). 18. Memelilerde kalp dört odacıklıdır ve yalnız sol aort kökü mevcuttur. 19. Memelilerde ses kutusu çok iyi gelişmiştir (sürüngenlerde körelmiştir). 20. Memeliler yavrularını salgıladıkları süt ile beslerler. 21. Vücutlarında kılların bulunması, görme, işitme ve koku alma duyularının çok gelişmiş olması, beyinlerindeki cerebrum ve cerebellum kısımlarının gelişmişliğine bağlı olarak tüm faaliyetleri iyi bir şekilde koordine edebilmesi, öğrenme ve öğrenilen şeylerin hatırda tutulmasına yarayan bir bellek oluşumu ise memelilerin kuşlardan daha evrim geçirmiş olduklarını kanıtlayan özelliklerdir.

http://www.biyologlar.com/omurgalilar-ve-ozellikleri

Insecta (Hexapoda, Entoma, Böcekler) Sınıfı

Insecta (Hexapoda, Entoma, Böcekler) Sınıfı Bu sınıf böcekleri yani haşareleri içerir. Erişkinlerde vücut belirgin olarak 3 bölüme ayrılmıştır. Bunlar baş, göğüs ve abdomendir. Başta bir çift anten vardır ve göğüs 3 segmentden oluşmuştur. Bu halkaların her birinden birer çift ayak çıkar. Bazı türlerde ise thoraxdan bir veya iki çift kanat çıkar. Abdomen ise değişik sayıda segmentlerden oluşmuştur. Baş (Capot) : Oval veya küremsi yapıdadır. Genellikle iki adet küremsi (bileşik, compound) göz bulunur. Ayrıca üçgen şeklinde dizilmiş üç basit göz "ocellus" bulunur. İnsectlerdeki bu petek gözler çok büyük olup, başın sağlı sollu iki geniş alanını kaplarlar. Böceklerde çok iyi gelişmiş olan bu gözler çok iyi bir görme olanağı sağlarlar. Başta bir çift anten bulunur. Antenler duyu organları olup, başın önemli organlarıdırlar. Bu antenlerin üzerlerinde hava akımlarına karşı duyarlı tüyler bulunur. Ayrıca anten üzerinde çeşitli kokuları almaya yarayan bir çift anten vardır. Antenler çeşitli segmentlerden meydana gelir ve değişik türlerde farklıdır. Böceklerde ağız organelleri üç değişik tipte olabilir. Bunlar kesici-parçalayıcı, sokucu-emici ve yalayıcı-emici ağız tipleridir. Ancak nadiren bazı türlerde örneğin myiasis etkenlerinde ağız organelleri redüksiyona uğramıştır. Bu ağız organelleri tiplerinden sokucu-emici tip kan emicilerde iyi gelişmiş olup, ağız yapılışı bir hortum (rostellum) dan ibarettir. Bu hortum anten, palp, üst dudak (labrum), üst çene (mandibula), alt çene (1. maxilla), hypopharynx (tükrük yolu) ve alt dudak (labium, 2. maxilla) dan oluşmuştur. Göğüs (Thorax) :Thorax üç segmentden oluşmuştur. Bunlardan birincisine ve önde bulunana prothorax, ortadakine mesothorax arkadakine ise metathorax adı verilir. Bu halkalar belirgin ise de bazen ilk ikisi bazende üçü birden birbiriyle kaynaşmıştır. Ayak ve kanatlar bu halkalara yapışırlar. Kanat; böcekler için önemli bir organ olup, normal olarak her böcekte iki çift kanat vardır. Eğer kanat varsa bunlar mesothorax ve metathoraxdan çıkarlar. Bazı böcek türlerinde metathoraxdan çıkan kanat redüksiyona uğramış ve bir halter şeklini almıştır. Bu halter şeklindeki kanat denge organı görevi yapar. Bit ve pire gibi insectlerde kanat bulunmaz. Karıncalarda ise kanat bir süre bulunur ve sonra atılırlar. Önemli olan Diptera takımında ise iki çift kanat bulunur. Kanadın üzerindeki tüy ve lekeler ile kanadın şekli, rengi ve üzerindeki damarlar tür ayrımında önemlidir. Boru şeklinde olan damarların içinden sinir iplikleri ve kanadı besleyen sıvı geçer. Coleopteralarda ön kanatlar kitini ve mat olup, zar şeklinde olan arka kanatlan muhafazada kullanılır. Göğüsün her segmentinden bir çift ayak çıkar. Yani insectler üç çift bacaklıdırlar. Ayak sıra ile coxae, trochanter, femur, tibia, tarsus ve pulvillus denen kısımlardan oluşur. Tarsusun uç kısmında tutunmaya yarayan pulvillum denen yastıkçılar ve kancalar bulunabilir. Abdomen (karın) : Abdomendeki halkalar genel olarak belirgin olup, halka sayısı değişmekle beraber genellikle 11 halkadan oluşmuştur. Bu segmentlerin bazıları birbiriyle kaynaşmışlardır, Abdomenin arka tarafında türlere göre değişmek üzere anüs ve cinselorganlar bulunur. Erkeklerde çiftleşmeye yarayan genital organlar hypopygium adını alır ve bazenda kılıfıyla birlikte penis bulunur. Dişilerde ise yumurtlamaya hizmet eden ovipozitor bulunur. İnsectlerde sindirim sistemi ağızIa başlar ve birçok kör keselerden oluşan mide ve bağırsaklarla devam eder ve anüsle sona erer. Bağırsaklar ön, orta (mideye tekabül eder) ve son bağırsaktan ibarettir. Midenin bağırsağa geçtiği yerde birçok kanalcık yani malpighi kanalları vardır. Bu kanallar böceğin ekskresyon aygıtları olup, artık maddeleri toplar ve son bağırsağa dökerler. Böceklerde kaslar çeşitli halkalar içerisinde uzunlamasına ve enlilemesine şeritler meydana getirirler. Bunlar çizgili kaslardandır. Kaslar çeşitli organları özellikle de ayak ve kanatları hareket ettirirler. Örneğin uçan bir sineğin kanadı dakikada 300 kez çırpma yapar. İnsectlerde sinir sistemi merdiven şeklinde olup, vücudun dorsalinde arkaya doğru uzanır. Bu sinir ipcikleri birbirlerine sinir ipleriyle bağlıdır. Merkezi sinir sistemi, başta bulunan cervical ganglion (gelişmemiş ilksel bir beyin) ve bunların oesophagus etrafında birleşmeleri ile oluşur. Karın sinirleri ise başta beyin görevini yapan baş sinir ganglionundan çıkarlar. Böceklerde duyu organları,antenlerde, palplerde, başın çeşitli girinti ve çıkıntı yapan bölgelerinde, coxae ve trochanter üzerinde bulunurlar. Böceklerde solunum sistemleri karın halkalarının yan taraflarında bulunan ve stigma (solunum deliği) adını alan organellerde sonuçlanan, vücut içinde bir yumak halinde bulunan borucuklardan ibarettir. Solunum sistemi genel olarak trachea sistemiyle yapılır. Dallı ve budaklı borucuklar şeklinde olan bu trachealar stigmalarla dışarı açılır. Stigmalar abdomendeki segmentlerin yan taraflarından dışarı açılır. Her segmentde birer çift olabilir. Baş ve thoraxda genelde stigma olmaz. Stigmalar yalnız abdomen halkalarının iki yanında bulunurlar. Stigmaların etrafı kalın bir kitin tabakasıyla çevrilmiş ve kaslarla idare edilen bir kapağa sahitir.Böcek istediği zaman burayı kapatır. Solunum hareketleri kas kontraksiyonları ve vücut duvarının genişlemesiyle olur. Dolaşım sistemi yönünden böceklerde kapalı bir durum görülmemektedir. Böceklerde gerçek bir karın boşluğu yoktur. Bunların iç organlarının üzerini bir yağ tabakası örter ve aralarında boşluklar bulunur. Kalp dorsalde ve arkada yer alır ve genişlemiş bir damardan ibarettir. İnsectlerde kan dolaşımları açıktır ve vücudun dorsalinde üzerinde delikler bulunan, iç kısmında vücudun ön tarafına doğru açılıp arka tarafına doğru kapanan kapakcıkları taşıyan bir damardan ibarettir. Vücut boşluğunda serbest olarak dolaşan kan hemolenftir. Bu hemolenf kalp adı verilen damar içine girer ve bunun sıkışması ile de ön tarafa doğru hareket eder. Bunun sonucunda üzerindeki deliklerden vücut boşluğuna hemolenfi iter. İnsectlerde üreme sistemleri erkek ve dişi bireylerde farklıdır. Böceklerde erkek ve dişi ayrılmışlardır. Erkek üreme organları, genellikle ikiadet testis, ve sırası ile vasa defferens (boşaltı kanalı), vesicula seminalis (tohum kesesi), ductus ejaculatorius (boşaltım borusu) ve eklenti bezlerinden oluşur. Dişilerde ise iki tane yumurtalık vardır. Bu ovaryumların her biri bileşik borucuklardan yani ovarial tüplerden oluşmuştur. Her iki ovaryum oviducta (yumurta yolu) açılır. Oviduct vajinaya bağlıdır. Ayrıca çiftleşme esnasında spermatozoitleri toplayan receptaculum seminis (tohum torbası) yada spermatheca adı verilen bir torba bulunur. Bu torba vajinaya açılır. Dişilerde en son organ olarak da yumurtlamaya yardımcı olan ovipositor adını alan organ vardır. Böceklerin çoğunda yaşamları boyunca bir kez kopulasyon olur. Döllenmeden sonra erkek ölür, spermatozoitler dişinin yaşamı boyunca spermatekada canlı kalırlar ve gelişen yumurtayı döllerler. Dişi ve erkek böcek çiftleştikten sonra türlere göre değişrnek üzere yumurta, larva yada pupa bırakırlar. Bu duruma göre bazı insectler ovipar (Dişileri yumurta bırakır), bazıları vivipar (Dişileri canlı, hareketli larvaları bırakır, buna larvipar da denir.) ve hatta bazılarıda pupipar (Dişilerin doğrudan pupa bırakması) 'dır. İnsectlerin üzerleri kitin tabakasından oluşan bir kılıfla örtülüdür. Böceklerin biyolojik gelişmeleri sırasında erişkin hale yani olgun (matur) hale gelebilmesi için, böceğin büyüyüp gelişebilmesi için üzerindeki bu kılıfı atması olayına gömlek değiştirme adı verilir. Bu gömlek değiştirme olayı böceğin gelişmesi sırasında tüm dönemlerde meydana gelir. Böceklerde sırası ile erişkin -yumurta -larva -pupa ve erişkin dönemleri görülür. Ancak bazı türlerde bu biyolojik gelişme evrelerinde değişiklikler olur. Yani erşkin-yumurta-nymph-erişkin böcek dönemleri görülür. Böceklerin gelişmesi sırasında iki tip larva şekli görülür. Bunlar; Magot Larva: Başları küçük ve ayakları bulunmayan larvalara magot larva adı verilir. Dipteralarda ve pirelerde görülür. Oligopod Larva: Bu tip larvaların başları belirgindir ve thoraxda üç çift bacak bulunur. Coleopteralarda görülür. Pupa: Tam metamorfoz geçiren böceklerin biyolojilerini tamamlarken girmiş oldukları hareketsiz safhaya pupa adı verilir. Pupayı çevreleyen ve onu koruyan yapıya ise kokon adı verilir. İki çeşit pupa vardır. Bunlar, Obtek pupa: Pupa ince bir zarla örtülüdür ve pupa serbestçe hareket eder. Örn : Nematocera ve Brachycera 'larda, Koarktat pupa ise pupa içinde böcek görülmez ve pupa hareketsizdir. Örn : Cyclorrhapha 'larda görülen pupa şeklidir. İnsectlerde Gelişme (Metamorfosis-Metamorphosis-Metamorfoz -Başkalaşım) : İnsectlerin gelişmesinde yumurtadan çıkan genç artropod az çok erginlerine benzeyebileceği gibi bazı türlerde ise yumurtadan çıkan genç artropodlar erginlere hiç benzemezler. Yumurtadan çıkan ve erişkine hiç benzemeyen artropodun erişkine benzeyinceye kadar geçirdiği değişiklikler olayının tümüne metamorfosis adı verilir. Yani metamorfoz gelişme döneminde bir böcekte meydana gelen yapısal ve şekilsel değişikliklerdir. Metamorfoz yönünden insectler üç grupta toplanırlar. a) Metamorfosis göstermeyen yada ilkel bir metamorfosis gösteren insectler : Bu gruptaki insectler direk gelişirler. Yumurtadan çıkan genç formlar büyüklükleri dışında erişkinlere tamamen benzerler. Bu formlar kısa sürede gelişip erişkinlerin büyüklüklerine erişirler. Apterygota alt sınıfındaki insectler bu gruptandır. Bu gruptaki insectlerin bu tip gelişmelerine ametabola adı da verilir. b) Yarım metamorfosis veya basit metamorfosis (Bemimetabola) gösteren insectler : Bu gruptaki insectlerin gelişmesinde yumurta -nymph -erişkin (imago) dönemleri sırası ile görülür. Yani yumurtadan çıkan genç formlar erginlere bazı eksiklikler dışında (kanatlannın olmayışı gibi) tamamen benzerler. Bu döneme nymph dönemi adı verilir. Nymph'ler türlere göre değişrnek üzere birkaç kez gömlek değiştirdikten sonra erişkin yani imago haline geçerler. Bu tip gelişme Pterygota alt sınıfına bağlı Exopterygota bölümündeki insectlerde görülür. Bunlardan bazılan Orthoptera, Mallophaga, Anoplura ve Hemiptera 'lardır. c) Tam veya komplex metamorfosis (Bolometabola) gösteren insectler : Tam başkalaşım geçiren böceklerin biyolojilerinde sırası ile Yumurta -Larva -Pupa -Erişkin böcek dönemleri görülür. Yani yumurtadan çıkan genç formlar erişkinlere hiç benzemezler ve kurtcuk biçimindedirler. Bu döneme larva adı verilir. Larvalar birkaç gömlek değiştirdikten sonra hareketsiz ve sakin bir devreye girerler. Bu esnada artropodun etrafında koruyucu bir kılıf veya kabuk meydana gelir. Bu koruyucu kılıfa kokon ve kokon içerisindeki döneme ise pupa yada bazı insect türlerinde krizalit adı verilir. Daha sonra kokon açılarak erişkin böcekler dışarı çıkarlar.Yani bu tür insectlerin gelişmesinde görülen dönemler arasında hiç bir morfolojik fark yönünden benzerlik yoktur. Bunun içİn de bu gruptaki böceklerde tam metamorfosis görülür. Örneğin Pterygota alt sınıfındaki Endopterygota bölümünde bulunan insectlerde bu tip bir gelişme yani holometabola görülür. Örn: Lepidoptera, Siphonaptera ve Diptera takımlarında tam başkalaşım görülür. İnsecta Sınıfının Sınıflandırılması (Classificationu) İnsecta sınıfında iki alt sınıf vardır. 1- Subclasis (Alt sınıf) : Apterygota Bunlar kanatsız insectlerdir. Gelişmelerinde metamorfoz göstermezler. Bu alt sınıftaki türlerin Veteriner Hekimlik yönünden bir önemleri yoktur. Bu alt sınıfa bağlı; Thysanura Diplura Collembala Protura takımları bulunur. 2- Subclasis : Pterygota Bu alt sınıftakiler erişkin dönemlerinde kanatları olan veya kanatlı formlardan köken almış yada evoluasyon sonucu sonradan kanatsız olmuş insectlerdir. Pteryagota 'lar tam veya yarım metamorfoz geçirirler. Bunlar iki alt bölüme (division) aynlırlar. 2.a- Exopterygota bölümü (Hemimetabola bölümü) : Bu bölümdeki böceklerin kanatları dışa doğru bir sürgün veya tomurcuk gibi gelişir. Biyolojilerinde yarım metamorfosis gösterirler ve bunun içinde hernimetabola bölümü olarakta adlandınlırlar. Bu insectlerin erişkin olmayan yani genç dönemleri (immature) yapıları ve yaşadıkları yerler bakımından erginlerine benzerler. Exopterygota bölümünde bulunan önemli takımlar şunlardır: Takım (Order) : Orthoptera (Blattaria, Hamam böcekleri, Çekirge) Takım: Mallophaga (Isıran bitler) Takım: Anoplura (Siphunculata, Sokucu bitler) Takım: Herniptera (Tahta kurulan) Takım: Odonata (Kız böceği) Takım: Thysanoptera (Ekin -Fidan bitleri) Takım: Dermaptera (Kulağa kaçanlar) Takım: Plecoptera (Taş sinekleri) Takım: Isoptera (Termitler. beyaz kanncalar) Takım: Psocoptera (Kitap bitleri) 2.b- Endopterygota bölümü (Holometabola bölümü) : Bu bölümdeki insectlerin gelişmelerinde tam metamorfoz görülür. Kanatları internal olarak yani bir kokan içinde veya koza içinde gelişir. Bu bölümde bulunan önemli takımlar şunlardır. Takım: Coleoptera (Kın kanatlılar) Takım: Hymenoptera (Zar kanatlılar, bal arıları, normal karıncalar ve eşek arıları) Takım: Lepidoptera (Kelebek ve güveler) Takım: Neuroptera (Sinir kanatlılar) Takım: Siphonaptera (Aphaniptera, Pireler) Takım: Diptera (Gerçek sinekler, çift kanatlılar) Exopterygota Bölümü Bu bölüm içerisinde çok sayıda takım varsa da bunlar içerisinde Veteriner Hekimlik yönünden önemli olanlar üzerinde durulacaktır. Yani insan ve hayvan sağlığı yönünden önemli olan, hastalıklar oluşturan ve vektörlük yapan türlerden bahsedilecektir. OrthopteraTakım; (Syn: Blattaria) Bu takım; hamam böcekleri yanında, ağustos böcekleri ve çekirgeleri kapsar. Bunlar veteriner ve insan hekimliği yönünden parazitlik etkileri olmamalarına karşılık bazı hastalık etkenlerine arakonaklık yapmaları ve taşıyıcılık görevi yapmaları yönünden önemlidir. Bunlardan Melanoplus cinsine bağlı çekirgeler Tetrameres americana ve Cheilospirura amulosa'ya arakonaklık yaparlar. Hamam böcekleri değişik uzunlukta ve büyüklükte olup, vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden meydana gelmiştir. Başlarında bir çift anten, bir çift göz ve parçalamaya ve çiğnemeye elverişli ağız organelleri vardır. Göğüs halkalarının dorsalinden masothorax ve metathoraxdan iki çift kanat çıkar. Bunlardan birincisi sertleşmiş ve kitini yapıda olup, metathoraxdan çıkan ve ince bir zar gibi olanının üzerini örter. Göğüs halkalarının ventral kısmından uzun üç çift bacak çıkar. Hamam böcekleri kanatlı olmalarına rağmen uçamazlar. Sıcak ve rutubetli yerlerde yaşarlar. Mekaniksel olarak bazı protozoon kistlerini taşırlar ve bir kısım nematodlara arakonaklık yaparlar.Hamam böceklerinden üç tür yurdumuzda bulunmuştur. Bunlar; Blatta orientalis (Şark hamam böceği) Blatella germanica (Alman hamam böceği) Periplanata americana'dır. Hamam böcekleri spirurida takımındaki bazı nematodlara, Gongylonema 'ya bazı tavuk cestodlarına (Raillietina sp) ve oxyspirura cinsi nematodlara arakonaklık yaparlar. Bakterilerden salmanella 'lara vektörlük yapabilirler. Yine değişik bakteri, protozoon, mantar gibi değişik hastalık etkenlerini mekanik olarak bir yerden başka bir yere taşırlar ve özellikle yiyeceklere bulaştırırlar. Kolera, tifo ve verem basilleri ile Entamoeba coli, Entamoeba histolytica, Balantidium coli, Giardia intestinalis ve Trichomonas hominis kistlerinin yayılmasında aktif olarak rol oynarlar. Aynca helmintlerden Tetrameres, Acuaria, Hymenolepis ve Moniliformis cinslerine arakonaklık yaparlar. Hamam böcekleri sıcak yerlerde yaşar ve karanlıkta dolaşırlar. Duvarların çatlak ve oyuklarına, tahta kenarlarının arasına yada arkalarına, su ve kalorifer borularının arkasına ve dolaplara gizlenirler. Bu insectler nişastalı ve şekerli besinleri severler. Ancak diğer besinlerle de beslenebilirler. Bu nedenle mutfaklarda yiyecek konulan dolaplarda, kiler ve fırınlarda sıkça rastlanılır. Ayrıca hayvan barınaklarında da bunlara sıkça rastlanılır. Blatella germanica yani alman hamam böceği 15 mm uzunlukta olup, açık kahverengindedir. Thoraxın üst kısmında iki koyu çizgi görülür. Kanatlar her iki cinsiyette de mevcut olup, vücut uzunluğunu biraz geçer. Şark hamam böceği (Blatta orientalis) ise nisbeten daha büyük olup, 25 mm uzunluğunda ve koyu siyah renktedir. Kanatlar erkeklerde abdomenin ucuna kadar ulaşmaz ve dişilerde ise kanatlar daha da küçülmüştür. Hamam böceklerinin dişileri içlerinde yumurtaları bulunan ve yumurta paketleri adını alan silindir şeklindeki yumurta paketlerini uygun yerlere bırakırlar. Bu yumurta paketleri içerisinde çok sayıda yumurta bulunur. Uygun ısı ve besin bulunduğu ortamda çabucak gelişerek nymphler oluşur. Yumurtadan erişkinlerin oluşması normal şartlarda 30 -50 gün kadar sürer. Hamam böcekleri ile mücadelede insectisit yani insect öldürücü ilaçlar kullanılır. Toz şeklinde olanIarı hamam böceklerinin geçecekleri yerlere dökülür yada bir puar yardımı ile toz ilaçlar bunların saklandıkları yerlere serpilirler. Toz ilaçların kullanılması bu tip ilaçların kalıcı etkisinden dolayı daha faydalıdır. Bunun yanısıra solüsyon halindeki ilaçlarda bunların saklandıkları yerlere püskürtülürler. Ancak bu solüsyonların mutlak süratte hamam böceklerinin vücutlarına temas etmesi gerekir. Kontrolde dieldrin ve lindan gibi klorlu hidrokarbonlu insectisitler sprey şeklinde saklandıkları yerlere püskürtülerek uygulanır. Ancak yumurtadan çıkacak yeni nesilleri öldürmek için ilaç tekrarlanmalıdır. Bu amaçla sentetik pyretroidlerde kullanılabilir. Bunlann dışında 25 gr kaynamış patatese 75 gr borik asit karıştırılarak un haline getirilir. Etrafta yiyecek bulundurmamak şartıyla küçük tabaklar içinde hamam böceklerinin yemesine bırakılır. Hamam böcekleri ile mücadelede meskenlerin tümünde mücadele yapılır ve temizliğe dikkat edilir. Kullanılan ilaçlara karşı direnç gelişebileceği için farklı gruplardan insektisitlerin değiştirilerek kullanılmasında yarar vardır. Phthiraptera (Bitler) Gözle görülebilecek büyüklükte olan bitler 1 -2 mm büyüklüktedirler. Vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden oluşur. Erişkin formlarında daima üç çift bacak bulunur. Kanatları yoktur. .Gözleri rudimenterdir yada yoktur. Bitler bütün yaşam dönemlerini (yumurta -nymph -erişkin) konak üzerinde geçiren insectlerdir. Yani daimi ve tek konaklı parazitlerdir. Bitler kan emen hakiki bitler (Anoplura) ile tüy ve yapağı yiyen bitler (Mallophaga) olmak üzere iki takımda incelenirler. Mallophaga ve Anoplura takımındaki türler arasındaki farklar şunlardır: MalloRhaga Takımı AnoRlma Takımı- Baş ve Thorax Baş thoraxdan geniş Baş thoraxdan dar ve ve kalkan seklindedir. sivrilmis sekildedir. Ağız organelleri Kesmeye -parçalamaya Sokmaya -emmeye elverislidir. elverislidir. Gtdası Epidermis artıkları Konakçımn kam ve tüvler Konaklan Türlerin çoğunluğu Hepsi memelilerde bulunur kanatlılarda, çok azı ise memelilerde bulunur. Mallophaga Takımı: Bu takıma bağlı üç alt takım (suborder) vardır. Bunlardan Amblycera ve Ischnocera alt takımları daha önemlidir. Suborder : Amblycera Antenleri başın iki yanındaki çukurlarda olup, kolayca görülemez. Bunların mandibulaları önden ısırır. Çok hareketli, uzun yapılı ve sarı renklidirler. Mesothorax ve metathorax arasında genellikle görülebilen bir çizgi vardır. 1) Familya (Aile): Gyropidae Memeli hayvanlarda ve daha çok kemiricilerde (kobay) bulunurlar. Genus (Cins) : Gyropus Bu cinse bağlı en önemli tür Gyropus ovalis'dir. Kemirici hayvanlarda bulunurlar. Kobayların mallophagose'unu meydana getirir. Erkekleri 1 mm, dişileri ise 1.2 mm uzunluğundadır. 2) Familya: Menoponidae Kanatlılarda görülür. Bu ailedeki türlerin başları çok genişlemiş ve üç köşeli bir görünüm almıştır. Antenleri dört eklemlidir ve tarsuslarında bir çift tırnak bulunur. Bu ailede bulunan önemli türler: Species (Tür) : Menopon gallinae Species : Menopon phaeostomum Species : Holomenopon leucoxanthum Species : Menacanthus stramineus Species : Trinoton anserinum Bunlardan en yaygın olarak görülen cins menapon' dur. Daha ziyade konağının derisi üzerinde yaşadığından vücut biti adını alır. Süratli hareket eder. Özellikle genç hayvanlarda ölüme sebep olabilirler. Suborder : Ischnocera Bu alt takımdakilerin mandibulaları alttan ısırır ve antenleri kolay görülür. Hareketleri nisbeten yavaştır. Geniş yapılıdırlar ancak bazı türleri dar ve uzundurlar. Renkleri kırmızı esmer veya gri siyahtır. Mesothorax ve metathorax kaynaşmıştır. I) Familya: Philopteridae: Kanatlılarda, kuşlarda görülürler. Bu ailedeki önemli türler: Species : Lipeurus heterographus Lipeurus'lann vücutları dar ve uzundur. Vücut kenarları birbirine paraleldir. Species : Lipeurus caponis Species : Goniodes gigas Goniodes'ler tavuk tüylerinin sapı üzerinde bulunurlar ve renkleri kırmızımtrak esmerdir. Species : Goniocotes gallinae Species : Chelopistes meleagridis Species : Columbicola columbae Species: Anaticola crassicornis Philopteridae ailesindeki türlerin antenleri 5 eklemlidir. Ayak tarsuslarının uç kısmında bır çift tırnak bulunur. 2) Familya: Trichodectidae : Antenleri 3 eklemlidir. Tarsusların uç kısmında tek bir çengel bulunur. Bu ailedeki türler memelilerde görülür. Memelilerin tüyleri arasında yaşarlar. Bu ailede üç önemli cins bulunur, Cins: Trichodectes Species: Trichodectes canis: Köpeklerde bulunan mallophaga türüdür. Açık san renktedir. Başı dikdört.gen şeklinde olup, antenleri tüylüdür. Cins: Felicola Species : Felicola subrostrata: Kedilerde bulunur. Başlarının ön kısmı üçgen şeklindedir. Genus: Damalinia (Bovicola) : Ayaklan ve ayak uçlarındaki çengelleri uzundur. Species : Damalinia (Bovicola) bovis : Sığırlarda görülür. Species : Damalinia (Bovicola) ovis : Koyunlarda bulunur. Species : Damalinia (Bovicola) equi : Tektırnaklılar konaklarıdır. Species : Damalinia (Bovicola) caprae : Keçilerde Species : Damalinia (Bovicola) painei : Keçilerde Species : Damalinia (Bovicola) limbala : Keçilerde bulunan mallophaga türleridirler. Suborder : Rhynchophthirina : Bu alt takımda bulunan mallophaga türleri fazla önemli değidirler. Önemli cins ve türü ise; Cins: Haematomyzus Species : Haematomyzus elephantis'dir. Fil bitleri'dir. Anoplura (Siphunculata) Takımı Gerçek bitler olup, yalnız memelilerde bulunurlar ve konaklarından kan emerek beslenirler. Bu takıma bağlı 5 aile vardır. I) Familya: Haematopinidae : Hayvan bitleridir. Aile adından da anlaşıldığı gibi kan emenler anlamına gelir. Gözleri bazen hiç yoktur bazen de çok basittir. Baş ön tarafa doğru çıkıntılar yapmıştır. Bacaklar aynı büyüklüktedir. Bu ailedeki önemli cinsler; Genus: Haematopinus Species : Haematopinus asini : At bitidir. At, katır ve eşeklerin kuyruk ve yelelerindeki kıllarda bulunur. Species : Haematopinus bufali: Mandalarda bulunur. Species : Haematopinus suis: Domuzlarda bulunur. Species : Haematopinus eurysternus : Sığırlarda görülür. Özellikle kaşektik sığırların uzun kıllı kısımlarında bulunur. Species: Haematopinus tuberculatus: Mandalardabulunur. 2) Familya: Linognathidae: Gözleri olmayabilir. Ön bacaklar daha küçüktür, yani birinci çift bacaklar çok zayıftır. Bu ailedeki cins ve bağlı olan türler; Genus: Linognathus : Koyun, sığır, keçi, köpek ve tilkilerde görülür. Bulundukları hayvanlarda linognathose adı verilen belirtilere sebep olurlar. Bu cinse bağlı türler; Species : Linognathus ovillus : Koyunlarda vücut biti türüdür. Species : L. africanus: Koyunlarda bulunur. Species : L. pedalis : Koyunların bacaklarında bulunur ve bacak biti adını alır. Specıes: .stenopsıs: Keçi bitidir Species : L. vituli : Konakları sığırlardır. Species : L. setosus : Köpek ve tilkilerde görülür. Genus: Solenopotes Species : Solenopotes capillatus : Sığırlarda bulunur. Species : Microthoracius cameli: Deve biti. 3) Familya: Pediculidae : İnsan bitleri bu grupta bulunurlar. Maymunlarda ve insanlarda yaşarlar. Gözleri vardır. Tarsuslarının nihayetinde bir tek çengel bulunur. Bu ailedeki türler tarafından insanlarda meydana getirilen belirtilere yada enfestasyon olayına "pediculosis" adı verilir. Bu ailede bulunan türler; Species : Pediculus humanus: İnsanlarda parazitlenir. Bu türün iki varyetesi vardır. Bunlardan Pediculus humanus capitis baş biti adını alır ve kafa saçı, bazan sakal, kaş v,e bıyıkta yerleşir. Diğeri ise Pediculus humanus corporis olup, daha çok gövde kısımlarında ve çamaşırların katlanmış, kıvrım yerlerinde bulunurlar. Bu son türe İnsanlardaki vücut biti adı verilir. Species : Phthirus pubis: Oran olarak diğer türlere göre daha geniş yapılıdırlar. Ancak abdamenleri daha kısadır ve orta bacak ile arka bacakların tırnakları kuvvetlidir. İnsanlarda eşeysel organların ve anüsün civarındaki kılların arasında bulunurlar. Bunun içinde insanların kasık biti veya edep biti adını alırlar. Bu bölgelerden kan emerken tahrişlere ve ekzamalara yol açarlar. Bu belirtilere "Phthiriosis" adı verilir. Aynca pediculidae ailesine bağlı olarak Pedicinus cinsi bulunur. Pedicinus cinsi maymunlarda bulunan bit türüdür. 4) Familya: Hoplopleuridae: Bu ailedeki türler fare ve kemiricilerde parazitlenirler. Bulunan türler; Genus: Polyplax, Hoplopleura, Haemodipsus. Species : Polyplax spinulosa: Farelerde ve sıçanlarda yaşarlar. Bu tür protozoonlardan Haemobartonella türlerini bulaştırır. Ayrıca fare tifusü, bulaşıcı anemia ve fare trypanosomiosis hastalıklarıın insanlara bulaştırırlar. Species : Polyplax serrata' Kemiricilerde bulunur. Eperythrozoon ve Francisella türlerini bulaştırırlar. Bu türlerden başka bu aileye bağlı olarak kemiricilerdede Hoplopleura ve Haemodipsus cinsleri de vardır. 5) Familya: Echinophthiriidae: Foklarda ve deniz fıllerinde yaşarlar. Bu bitlerin kara yırtıcılarından denizde yaşayan memelilere geçtikleri tahmin edilmektedir. Vücutları kılların değişmesinden dolayı pullarla örtülüdür. Familya: Cimicidae (Gerçek tahtakuruları) Bu ailedeki tahtakurularının antenleri dört eklemlidir. Kanatları iyice küçülmüş ve atrofiye olmuştur. Vücutları oval ve dorso -ventral olarak basıktır. Bunlar hoşa gitmeyen bir koku yayarlar ve geceleri beslenirler. İnsan omurgalı hayvanlar ve kanatlılardan kan emerler. Bu aileye bağlı olarak bulunan önemli cins ve türler Familya: Formidae (Karmcalar) : Bu ailede karıncalar bulunur. Kanatlı veya kanatsız olabilirler. Ağız organelleri parçalayıcı ve çiğneyici tiptedir. Toplu halde yaşarlar. Yumurtayla çoğalırlar. Kopulasyondan sonra dişi ve erkekler kanatlarını kaybederler. İşçi karıncalar ise iyi gelişmemiş dişiler olup, kanatsızdır ve bunların zehir bezleri vardır. İnsan ve hayvanları ısırdıklarında şiddetli kaşıntıya sebep olabilirler. Bu aileye bağlı en önemli tür Formica fusca' dır. Bunların hekimlik yönünden önemleri kanatlı cestodlarından Raillietina türlerine ve trematodlardan Dicrocoelium dentriticuma arakonaklık görevi yapmalarıdır. Familya: Vespidae Yaban arıları adını alan, bu ailedeki türler tek tek yada toplu halde yaşarlar. Bunlar etcildirler. Ancak hem hayvansal hemde bitkisel besinlerle beslenirler. Karın bölgesi hareketli olduğundan ağılı iğnelerini her yönde kullanabilirler. Yaban arılan türlerinden özelikle Vespa crabro,Vespa germanica ve Vespa orientalis türlerinin sokması çok acı verir, ağır klinik belirtilere hatta ölümlere yol açabilirler. Çeşitli hastalık etkenlerini besinlere mekanik olarak bulaştırabilirler.Tesadüfen ağıza girdiklerinde insan ve hayvanların dil yada boğaz çevresini sokarak buraların şişmesine sebep olabilirler, ayrıca allerjik reaksiyonlara ve anfılaktik şoka sebep olarak ölümlere yol açabilirler. Familya: Apidae (Bal anları) Bu aile bal anlarını kapsar. Bunlar genellikle toplu halde yada tek tek yaşarlar. Zehirli iğneleri yönünden insan ve hayvanlar için çok zararlı olabilirler. Bu arı ağılaması olayına Hymenopterismus adı verilir. Arı sokmaları sonucu acı, allerjik bozukluklar ve hatta anafılaktik reaksiyonlar oluşur. Boğaz ve dil gibi hayati bölgeleri sokmaları sonucu ölümler görülebilir. Arı sokmalarında eğer arı iğnesi içeride kalmışsa çıkarılır. Bu yerlere gazyağı ve benzin damlatılır. Uzun süre arı sokması sonucu bazı kişilerde bağışıklık gelişir. Bazı fertlerde ise şiddetli bir duyarlılık görülmektedir. Yılan zehirine karşı hazırlanan serum arı zehirine karşı da kullanılmaktadır. An soktuğu zaman deride kaldığı sürece zehir bezesinden salgı yapar. Bunun için arı sokmalarında iğnenin en kısa sürede çıkarılması gerekir. İğnesi kopan arı kısa sürede ölmektedir. Bu ailede bulunan en önemli tür Apis mellifera (Apis mellifica) dır. Bu tür bal arısı olarak adlandırılır. Ekonomik olarak en önemli türdür. Normal bir arı topluluğu 40.000 -70.000 ergin bireyden oluşur. Bundan daha az birey içeren yuvalar zayıf olarak nitelendirilir ve kışı geçirmeleri zayıf ihtimaldir. Bir yuvada yani kovanda üreme yeteneği olan bir kraliçe (ana arı), dişi olan ve üreme yeteneği olmayan işçi arılar ve üreme dönemlerinde ortaya çıkan erkek arılar vardır. Ana arı 20 -25 mm boyunda, anteni 12 segmentli ve nokta gözler alında birbirine değmez. İşçi anlarda ana arı özelliklerini gösterirler. Ancak büyüklükleri 13 –15 mm kadardır. Erkek arılar da 15 -17 mm boyunda olup, işçilere ve ana arıya göre daha tıknaz yapılıdır. Arıların gelişmelerinde yumurta, larva, pupa ve erişkin dönemleri vardır yani tam metamorfoz geçirirler. Ana arının görevi Mart'ın başından Eylül'ün sonuna kadar yumurta bırakma ve salgıladığı feromonla yuvanın düzenini ve böylece bütünlüğünü sağlamaktır. Günde yaklaşık 3.000 yumurta bırakırlar. Yumurtadan ergin oluncaya kadar işçi anlar için 21 gün. Ana arılar için 16 ve erkek arıların gelişmesi içinde 24 gün geçmesi gerekir. İnsan ve hayvanları en çok sokan arı türleri ; Apis mel!ifica (Bal arısı), Vespa crabro, V. silvetris (Sarıca arılar), Polistes gallicus ve Bombus sp.'dir.Arılarda alkalen zehir bezi (küçük olan) ve asit zehir bezi (büyük ve çatal şeklinde olan) olmak üzere iki adet zehir keseleri bulunur. Bunların; alyuvarları eritici, sinir uçlarını ağılayıcı, yangı yapıcı, allerji oluşturucu ve bölgesel nekroz oluşturucu etkileri vardır. Hymenopterismus’un tedavisinde yapılacak işlemler. -Bir pens veya bıçak ucu ile dikkatlice iğne çıkarılır. -Sokulan bölgeye buz tatbik edilir. -Antihistaminikli solüsyon veya pomadlar lokal olarak uygulanır. -Antihistaminikler oral veya parenteral olarak verilebilir. Şayet anafilaktik reaksiyonlar oluşmuş ise; -Özel enjektörlerde bulunan adrenalin 0.3-0.5 ml (1:1000 sulandırılmış) deri altı veya damar içi yolla verilir. -Parenteral olarak antihistaminikler verilir. -Damar içi serum fizyolojik verilir. -Kortizon endikedir. -Solunum yolu açık tutulur. Eğer siyanoz varsa oksijen verilir. An sokmalarına karşı duyarlı kişilere koruyucu olarak arı antitoksini verilebilir. Neuroptera Takımı (planipennia -Sinirkanatlılar) Bu takımdaki böcekler küçük kelebeklere ve odonata takımındaki insectlere morfolojik olarak benzerler. Vücut caput, thorax ve abdomenden meydana gelmiştir. Çiğneyici ağız organelleri ve yarım küre şeklinde büyük bileşik gözlere sahiptirler. İki çift kanatları vardır. Çeşitli türlerde kanatlar renklenmeler ve desenler gösterirler. Cam gibi saydam olan kanatlar, çoğunlukla kahverengi benekler şeklindedir. Kanat üzerindeki damarlar kanat kenarlarına doğru çatallaşır ve birbirlerine birçok enine damarla bağlanırlar. Böceğin dinlenmesi sırasında kanatlar genellikle abdomenin üzerinde çatı şeklinde dururlar. Gelişmelerinde tam başkalaşım görülür ve çoğunlukla akşamları ve geceleri aktiftirler. Lepidoptera Takımı (Kelebek ve Güveler) Lepidoptera takımında kelebek ve güveler bulunur. Kelebeklerin ağız organelleri iyi gelişmemiştir. Besinlerini çiçeklerin nektar ve polenlerinden sağlarlar. Bazı türleri ise kısa süren yaşamlarında hiç besin almazlar. Kelebekler böcekler içerisinde kanadı, gövdesi ve bacakları pullarla tamamen örtülü olan insektlerdir. İki çift kanatlrın vardır. Kanat üzerindeki renkli ve kitini olan bu örtüler kelebeklere güzel bir görünüm verirler. Lepidoptera takımındaki .artropodların gelişmelerinde sırası ile yumurta, larva (tırtıl), krizalit (koza içinde) ve erişkin dönemleri vardır. Yani gelişmelerinde holometabol görülür. Ancak bunların larvalarına tırtıl, pupa dönem karşılıklarına da krizalit adı verilir. Larvaları çok ayaklı olup, polipod larva türüne örnektir. Kelebek tırtıllarının üzerindeki kılların zehir keseleri ile ilişkili olduğu ve bu nedenle tırtılların insanlarda allerjik dermatitislere neden olduğu belirtilmektedir. İşte kelebek türlerinden bazılarının canlı yada ölü tırtıllarının diplerinde zehirli salgı yapan bezeler bulunan vücut kıllarının insaınn derisi üzerine yada gözüne düşerek dokulara saplanması sonucu oluşan allerjik dermatitise tırtıl dermatitisi ya da Lepidopterizm (Lepidopterismus) adı verilir. İnsanlarda deride oluşan lezyonlara analjezik ve anti inflamatuar merhemler sürülür. Bulunan kıllar pensle çıkarılır. Bu tırtılları yiyen hayvanlarda ölümle sonuçlanabilen hastalıklar oluşabilir. Bu yüzden ördek ve tavuklarda zehirlenmeler görülmüştür. Aynca bu takımda bulunan ve arılarda büyük ekonomik kayıplara sebep olan türler vardır. Bunlar; Aile: Galleridae Species : Galleria mellonella (Büyük balmumugüvesi) Species : Achroia grisella (Küçük balmumugüvesi) Bu türlerden başka bu takımda evlerde görülen değişik güvelerde bulunmaktadır. Bunlar içerisinde en önemlisi olan ve arı güvesi olarak bilinen büyük balmumugüvesi hakkında bilgi verilecektir. Galleria mellonella Arıların büyük mum güvesi olarak bilinen bu parazit özellikle havalanması iyi olamayan karanlık ve zayıf kovanlarda etkili olur. Bu parazit küçük mum güvesi olan Achroia grisella'ya göre daha zararlıdır. Büyük mum güvesi karanlık, sıcak ve iyi havalandırılmayan yerlerde depolanmış peteklerde büyük zarar verirler. Genellikle alçak rakımlı yerlerde daha yaygındırlar. Yüksek rakımlı yerlerde yoğunluğu ve zararları daha azdır. Güve larvaları peteklerde tüneller açarak, peteklerdeki bal, polen ve balmumunu yiyerek koloniye büyük zarar verirler. Zararlı etkisi daha çok depolanmış sahipsiz peteklerde ve ağ örerek olmaktadır. Ayrıca güçsüz kolonilerdeki peteklerde de aynı zararı yapabilmektedirler. Güçsüz ve hastalıklı koloniler güve için uygun gelişme ortamıdırlar. Güve larvaları petek gözlerinde açtıkları tüneller sebebiyle, petek gözlerinin bozulmasına ve balın akmasına sebep olurlar. Dişi Galleria mellonella türleri yumurtalarını genellikle kovandaki yarık ve çatlaklara, ışıktan uzak loş yerlere kümeler halinde bırakırlar. Bir küme içinde 80 -100, hatta bazen daha fazla yumurta bırakabilmektedirler. Herbir dişinin bıraktığı yumurta sayısı 500 kadardır. Yumurtadan larvalar 24 -26 derece sıcaklıkta 5 -6 günde, 10 -l5 derece sıcaklıkta 34 günde çıkar. Larvalar hareketlidir, peteklerde yuva yapar ve gelişmesini sürdürürler. Larva dönemi 30 derece sıcaklıkta ortalama bir ay sürer. Ancak bu süre alınan gıdaya ve sıcaklığa göre değişir. Larva gelişmesi için en uygun sıcaklık 30 -35 derece sıcaklıktır. Gelişmesini tamamlayan larvalar sert, tüylü, beyaz renkli ipek bir koza örerler. Koza içerisinde larva pupaya (krizalit) dönüşür. Pupa dönemi 8 -14 gün sürer. Pupadan grimsi kahverengi ergin kelebekler çıkar. Dişi kelebekler kozadan çıktıktan 4 -10 gün sonra yumurtlamaya başlar. Erginler iklim şartlarına bağlı olarak değişmek üzere 2 -5 hafta yaşarlar. Ömürleri düşük sıcaklıkta daha da uzar. Pupadan çıkan ergin kelebekler çiftleşerek yumurtlamak üzere tekrar koloniye girmeye çalışırlar. Galleriosis'li kovanlarda larvalar gelişmesini tamamladıktan sonra kovan içinde sert tüylü ipekten ağ ve koza örerek kovandaki arıların faaliyetlerine engel olurlar. Böylece de büyük ekonomik kayıplara yol açarlar. Ayrıca bu zararlarının yanısıra larvalar peteklerdeki balın sır kısımlarını zedeleyerek, tüneller açarlar ve balın dışarı akmasına neden olurlar. Galleriosis'de kontrol ve korunma: Arıcılıkta Galleria enfestasyonlarının kontrolünde şu tedbirler alınır. l- Balmumu güvesinin en etkili düşmanı arıların kendisidir. Bunun için koloniler güçlü tutulmalıdır. Bu tip güçlü kolonilerde arılar güve larvalarını kovan dışına taşıyarak, zararlı etkilerinden kurtulurlar. 2- Kovanda yarık ve çatlaklar bırakılmamalı, kırıntı ve her türlü artıklar temizlenmelidir. 3- Arılı kovanlara verilecek ilaçlar anlar içinde zararlı olabileceği için, ilaçlı mücadele depolanmış arısız petek ve ancılık malzemelerinde uygulanmalıdır. 4- Boş petekler ve diğer malzemeler yeterli hava akımının bulunduğu bir odada 60 derecede 34 saat, -12 derece sıcaklıkta 3 saat tutulmalıdır. Düşük ısı ve yüksek sıcaklık balarısı zararlılarının bütün dönemlerindeki bireyleri öldürmektedir. 5- Petek güvesine karşı bakteriler, mantarlar ve peradatör böcekler kullanılarak biyolojik mücadele yapılmaktadır. Bunun için de arılara zararlı olmayan ancak kelebek larvalarına (tırtıl) etkili olan Bacillus thuringuensis toxinleri kullanılmaktadır. 6- Kontrolde diğer bir önlemde ilaçlamadır. Bunun için güve görülen kovanlardaki arılar başka temiz bir kovana boşaltılır. Güveli çerçeveler bir kovan yada sandık içinde, paradiklorbenzen (PDB ), ethylene dibromit, metyl bromid, karbondisülfid gibi ilaçlarla ilaçlanır. Çerçeveler tamamen asalaklardan temizlendikten sonra istenilen kovana konulabilir. Ayrıca depolarda da ilaçlamalar yapılır. ilaçlar ergin kelebekleri, larva ve pupaları öldürür. Ayrıca toz kükürt fumigasyon halinde kullanılabilir. Siphonaptera (= Aphaniptera) Takımı (Pireler) Pireler, sıcak kanlı memelilerden yani kanatlı ve memelilerden kan emen ve yalnız ergin devrelerinde geçici parazit olan insectlerdir. insecta sınıfının genel özelliklerini gösterirler. Vücut caput, thorax ve abdomene ayrılmıştır. Vücutları latero -lateral yani iki yanlı olarak (bilateral) basıktır. Vücut parlak sarı kahverenginde sağlam bir kitinle örtülüdür. Pirelerin erginleri 1.5 -5 mm büyüklüğünde olup, 3. çift bacakları çok uzun ve sıçramaya elverişlidir. Yani, pireler zıplayan böceklerdir. Kanatları redüksiyona uğramış olup, görülemez. Ağız organelleri sokmaya -emmeye elverişlidir. Pirelerde baş (capitilum) önden yuvarlağımsı ve ellipsoidal, iki yandan basık ve gövdeye yapışık görünümdedir. Başlarında bir çift antenleri ve bazı türlerinde ise bir çift gözleri vardır. Pire türlerinin bazılarında siyah iri dikenler şeklinde tarak (ctenidia) lar vardır. Bu taraklar başın alt kısmında ise genal tarak (yanak tarağı), boyun kısımlarında ise pronotal tarak (boyun tarağı, omuz tarağı) adını alır. Thorax üç kısımdan oluşmuştur. Thorax üstte notum, altta ise sternum olarak adlandırılır. Thorax pronotum, mesonotum ve metanotumdan meydana gelir. Thoraxın ventralinde uzunlukları önden arkaya doğru artan üç çift bacak çıkar. Bunlardan 3. çift bacaklar çok uzundur ve sıçramaya elverişlidir. Abdomen halkalardan oluşmuştur ve bu karın halkaları birbirine geçmelidir. Onun için pireler çok fazla kan emebilirler. Karın halkaları üstte tergum, altta ise sternum olarak adlandırılır. Sekiz karın halkası vardır. Her halkada spiracle (stigma) bulunur. Ayrıca son halkada pygidium (his organeli), antipygidial bristil (uzun diken) ve anal stylet adını alan değişik dikenler bulunur. Dişilerin arka taraftarında kitinsel bir kese biçiminde olan, türlere göre şekilleri değişen spermatheca (reseptaculum seminis, tohum kesesi) bulunur.Erkeklerde ise kitinsel, ince, uzun ve dinlenme sırasında spiral biçiminde kıvrılmış kopulasyon organı olan clasper bulunur. Pirelerin yumurtaları oval ve beyaz renkte olup, 0.5 mm büyüklüğündedir. Pirelerin gelişmesinde tam metamorfoz görülür. Larvaları kurtcuk biçiminde olup, beyaz renklidir. Olgunlaşan larvaları 6 mm kadar uzunlukta olabilir. Pireler pupa dönemini yaklaşık 4x2 mm ebatlarında olan bir kokon içerisinde geçirir. Kokonun çevresi toz ve toprak ile bulaşıktır. Pireler kozmopolit yani her yerde bulunabilen canlılardır. Her türlü konaktan kan emerler (euroxen parazit). Ancak bazı türleri özellikle kendi konaklarına daha çok gelirler. Dişileri çiftleşmeden sonra toplu iğnenin 1/4'i başı büyüklüğündeki, krem rengindeki yumurtalarını toz, toprak içerisine bırakırlar. Ancak konak üzerine bırakılan yumurtalarda yapışıcı özellikte olmadıklarından kayarak toprağa düşerler. Yumurtadan 1 -2 hafta içerisinde kurtcuk şeklinde ve üzerleri tüylü larvalar çıkar. Larvalar çok aktiftirler. Bunlar topraktaki organik maddelerle, hayvansal artıklarla, kan pıhtılarıyla, kokuşan bitkisel maddelerle yada konağın dışkılarıyla beslenirler. Bunun sonucunda büyüyerek gelişirler ve 11 halkalı kurtçuk şeklini alırlar. Larvalar ışıktan kaçarlar. Larva dönemi 9 -200 gün arasında değişir. Larvalar saldıkları bir salgıyla toz toprak arasında kendilerine bir kokon (koza) örerler. Bu pupa dönemi 10 gün ile bir kaç ay arasında değişir. Bu kokonun içerisinde pire gelişir ve kokonu açarak dışarı çıkar. Ancak Tungidae ailesindeki pirelerin biyolojileri biraz daha farklıdır. Bu ailedeki türlerde dişiler yumurtalarını konak derisinde meydana getirdikleri şişliklerin içerisine ya da yaralara bırakırlar. Larvalar yumurtayı konak üzerindeyken terkeder ve daha sonra yere düşerler. Bu larvalar daha sonra bir kokon içerisinde pupa dönemini geçirerek ergin erkek ve dişiler oluşur. Tungidae ailesindeki pirelerin bu özelliklerinden dolayı pireler geçici parazitizmden daimi parazitizme geçiş halinde olan artropodlar olarak kabul edilirler. Siphonaptera takımında bulunan aile ve türler: Familya: Tungidae Bu ailedeki pirelere oyuk, tünel açan pireler adı verilir. Çünkü dişileri döllendikten sonra konakçısının derisine girer, çok şiddetli olarak irrite eder ve etrafındaki doku şişerek pireyi içine hapseder. Dişi pireler yumurtalarını buralara bıraktıktan sonra dokunun sıkıştırması sonucu ölürler. Tungidae ailesindeki pireler küçük ve ayakları diğer türlere oranla kısa ve zayıftır. Genal ve pronotal taraklar bulunmaz. Bu ailede iki önemli tür vardır. Species : Tunga penetrans Bu türün büyüklüğü 1 mm kadardır. Başın ön kısmı sivrilmiştir. Thorax segmentleri çok dardır. Gözleri geniş ve piğmentlidir. Kırmızı esmer renktedirler. Dişilerde spermatheca konik şekildedir. Başlıca konakları kanatlılardır. Fakat domuz, evcil memeliler ve insanlardan da kan emebilirler. Konaklarına çok şiddetli ağrılar verirler ve hatta deri içerisinde ezilen pirenin dokuları gangrene yol açabilir. Bu tür Güney Amerika' da ve Afrika' da yaygındır. Species : Echidnophaga gallinacea Başlıca konakları tavuklar ve diğer kanatlılardır. Büyüklükleri 1.5 mm' dir. Baştaki alın kısmı köşelidir. Thorax'ın notumları dardır. Genal ve pronotal tarak yoktur. Spermatheca iyi kitinize olmuştur. Bu tür köpek, rat, insan ve diğer hayvanlardan da kan emebilir. Tropik ve subtropik bölgelerde görülmektedir. Familya: Pulicidae Bu ailedeki türlerde genellikle gözler mevcuttur. Bazı türlerinde genal ve pronotal taraklar bulunabilir. Bu ailede bulunan türler; Species : Pulex irritans İnsan piresi olarak bilinen ve insanlardan kan emen bu tür, karnivorlardan ve diğer hayvanlardan da kan emebilir. 1.5 -4 mm uzunluğundadır. Gözünün alt kısmında uzunca bir diken bulunur. Thorax segmentlerinde birer sıra, birinci karın halkasında 2 ve ikinci ile 7. abdominal tergumda ise birer sıra diken bulunur. Erkeklerde clasper geniştir ve biri uzun üç hareketli çıkıntısı vardır. Dişilerde spermathecanın başı yuvarlak ve kitinize olup, kuyruk kısmı kıvrılmış bir parmağa benzer. Genal ve pronotal taraklar yoktur. Pulex irritans doğal şartlarda olmasa bile deneysel koşullarda veba hastalığına vektörlük yapabilmektedir. Türkiyede bu pire türüne rastlanılmıştır. Bu tür ayrıca helmintlerden Hymenolepis nana, Hymenolepis dimunata ve Dipylidium caninum'a arakonaklık yapar. Species : Ctenocephalides canis Köpek piresi olan bu tür, 2 -3.5 mm uzunluktadır. Her kenarda sekiz adet diken ihtiva eden genal ve pronotal tarakları bulunur. Baş yuvarlağımsı şekildedir. Şeritlerden Dipylidium caninum'un arakonaklığını yapar. İnsan ve diğer karnivorlardan da kan emerler. Species : Ctenocephalides felis Kedi piresi olarak tanımlanır. Ancak köpek ve insanlardan da kan emebilir. 2 -3 mm büyüklüğündedir. Alın kısmı daha uzun, dar ve sivridir. Genal ve pronotal tarakları vardır. Genal tarağın ön dikeni hemen hemen 2. nin uzunluğu kadardır. Türkiye'de yaygındır. Species : Spilopsyllus cunuculi Tavşanlarda görülen pire türüdür. Genal tarak 5 -6, pronotal tarak ise 14 -17 koyu renkli büyük dikenden oluşur. Genal tarak subvertikal olarak yerleşmiştir. Dişilerde spermathecanın deliği terminaldir. Tavşanlarda görülmesinin yanında kedi, tilki ve ratlarda da saptanmıştır. Bu tür myxomatosis virusuna vektörlük yapar. Species : Xenopsylla cheopis Xenopsylla genusu içinde bulunan türlerin en yaygınıdır. Asya rat piresi olarak bilinir. Thoraxın mesonotumunda kitini vertikal bir çizgi bulunur. Antenlerinin 3. eklemi asimetriktir. Göz kılı gözün önündedir. Genal ve pronotal taraklar mevcut değildir. Afrika'da ve Güney Amerika'da yaygındır. Ancak dünyanın her kıtasına yayılmıştır. Bu tür veba hastalığı etkeni olan Pasleurella pestis'in vektörlüğünü yapar. Species : Leptopsylla segnis Farelerde görülen pire türüdür. Genal ve pronotal tarak vardır. Ayrıca alında küçük ve az sayıda dikenden ibaret bir alın tarağı bulunur. Familya: Ceratophyllidae Bu ailenin bazı türlerinde frontal çıkıntı vardır. Gözler genellikle mevcuttur. Küçük memelilerle, kuşlarda bulunurlar. Species : Ceratopyllus gallinae Erginleri 2 -3 mm uzunluğunda, vücutları uzunca ve genel olarak renkleri esmerdir. Baş yuvarlak olup, genal tarak yoktur. Pronotal tarak bulunur ve 12 diken taşırlar. Kanatlılarda ve özellikle de tavuklarda bulunurlar. Kuş piresi yada Avrupa kanatlı piresi olarak adlandırılırlar. Kanatlılarda şiddetli yaralanmalara neden olurlar. Species: Ceratopyllus columbae Güvercin piresi olarak adlandırılır. Özellikleri C. galhnae'ye benzer. Species : Nosopsyllus fasciatgs Fare ve sıçanlarda bulunur. Avrupa rat piresi olarak adlandırılır. Ancak diğer hayvanlardan da kan emebilirler. Genal tarak yoktur. Pronotal tarak vardır ve 8 dikenlidir. Gözleri iyi gelişmiştir. Pirelerin Yaptığı Zararlar: Erişkin pireler mutlak süratle kan emerler. Bunun ıçınde buldukları her konak üzerine giderler. Bunların her canlıdan kan emmeleri hastalık etkenlerini bu canlılar arasında nakletmelerine sebep olurlar. Pireler fare ve sıçanlarda bulunan veba etkenlerini kan emmeleri esnasında alırlar. Pire tarafından alınan bu etkenler pirenin midesinde çoğalırlar. Bu pirelerin insanlara gelip kan emmeleri esnasında bu etkenleri onlara aktarırlar. Aynca fare ve rat pireleri fare tifüsu etkeni olan Rickettsiya typhı’yı taşırlar. Tavşan piresi myxomatosis virusunu, köpek piresi Dipyhdium caninum'u, yine köpek ve kedi pireleri Dipetalonema reconditum,Dirofilaria immilis, insan pireleri Hymenolepis nana'yı naklederler. Pireler ayrıca Tularemi'yi mekanik olarak naklederler. Pirelerin zararlı etkilerini sıralayacak olursak; Yukarıda anlatıldığı gibi hastalık etkenlerine vektörlük veya arakonaklık yapmaları, Bazı pire türleri konaklarına traumatik (yaralayıcı) olarak etki yapmaları, Konaklarından kan emmeleri sonucu soyucu -sömürücü etki yapmaları, AIlerjik etkilerinin olması. Özellikle köpeklerde bu tip etkiler sıkça görülmektedir. Konaklarını huzursuz etmeleri, Deride irrtasyon sonucu kaşıntı, dermatitis ve ürtikerlere neden olmaları, Deride tünel açan pire türleri deri altına yerleşerek, kaşıntı, şiddetli ağrı ve bulunduğu yerde irinleşmelere sebep olmaları gibi etkileri vardır. Pirelere karşı mücadelede insektisitler bir hafta ara ile iki kez uygulanmalıdır. Mücadelede insan ve hayvan meskenlerinde pirenin yumurta ve larvaları toprakta bulunduğundan, eğer meskenler toprak zeminli ise buralara insectisitler püskürtülür, toz şeklinde olanlar ise serpilirler. Hayvanlar üzerinde bulunan pireler için insectisitler solüsyon halinde ise püskürtülür veya banyo edilir. Toz halinde ise hayvanların tüyleri arasına serpilirler. BHC'li ve organik fosforlu ilaçlar tercih edilir. Fenol bileşikleri ve BHC'li ilaçlar kedilerde kullanılmaz. Pire allerjisine karşı kortikosteroidler kullanılır. Organik fosforlulardan dichlorvos, sentetik pyretroidlerden permethrin, organik klorlulardan ise lindan kullanılabilir. Ancak lindan kediler için toksiktir. Pirelerde kontrol amacıyla kedi ve köpeklerde dichlorvos ve diazinon ihtiva eden tasmalar kullanılabilir. Fire enfestasyonlarının kontrolündeki başarı barınaklar ve meskenlerde özellikle yataklarda yapılacak ilaçlamaya ve temizlik işlemlerine bağlıdır. Son yıllarda bu amaçla methoprene aerosol kontrol amacıyla kullanılmaktadır. Bu ilaç pire larvalarının bulunabileceği yataklık, halı, kilim gibi yerlere uygulanır. Larvalar tarafından alınan ilaç etkisini pupa döneminde gösterir. İlaç pupalardan erişkin formların çıkışını önleyerek kontrolü sağlar.Kanatlılarda pire mücadelesinde ise malathion ve carbaryl kullanılabilir. Bu ilaçlar toz ve özellikle Echidnophaga enfestasyonlarında solüsyon şeklinde uygulanır. Korunma için kanatlı bannaklarında altlıklar uzaklaştırılır ve yakılır. Barınaklar (kümesIer) % 1 ronnel solüsyonu ile 14 gün aralıklarla iki defa ilaçlanmalıdır. Diptera Takımı (Sinekler = İkikanatlılar) İnsecta sınıfının en önemli takımlarındandır. Bu takımda bulunan artropodlar insecta sınıfının genel özelliklerini gösterir. Yani vücut caput, thorax ve abdomene ayrılmıştır. Diptera (di= iki, ptera= kanat) ların başlarında bir çift anten, bir çift petek göz, sokucu- emici, parçalayıcı veya yalayıcı -emici ağız organellerine sahiptir. Erginlerinin mesothoraxlarından çıkan bir çift fonksiyonel kanatları vardır. Arkadan çıkan kanatlar rudimenter olup, topuz şeklindedir ve denge organı görevini yaparlar. Sinek uçarken dengeyi sağlar. Bazı türlerinde ise ağız organelleri atrofiye olmuştur. Böylece bunların beslenmeleri söz konusu değildir. Topuz şeklinde olan ve dengeyi sağlayan kanatlara halter adı verilir. Dişiler yumurta, larva veya pupa meydana getirerek çoğalırlar. Yani dipteraların gelişmelerinde tam bir metamorfoz vardır. Sokucu -emici olanlarda hortum (probiscic) iyi gelişmiştir ve çoğunlukla insan ve hayvanlardan kan emerler. Kan emmeleri esnasında oluşturdukları anemi ve sokma yerlerindeki toksik etkiden dolayı kızarıklık ve kaşıntının yanısıra, bazı hastalık etkenlerini (bakteri, virus, protozoon, helminth gibi) canlılar arasında nakletmeleri ile önemlidirler. Bu takımdaki bazı sinekler larvalarından dolayı önem taşırlar. Çünkü bu sineklerin larvaları konaklarının iç ve dış paraziti olabilmektedirler yani myiasis oluşturmaktadırlar. Dipteraların bazı türlerinin larva şekillerinin insan ve hayvanlarda hastalık oluşturmaları olayına. myiasis adı verilir. Myiasise neden olan türlerin erişkin şekillerinin hiçbir paraziter etkisi yoktur ve ömürleri çok kısadır. Diptera takımında insan ve hayvan sağlığı yönünden önemli olan üç alt takım bulunur. Bunlar ; Suborder (Alttakım) : Nematocera Genellikle uzun vücutlu ve narin yapılı sivrisineklerdir. Küçük sinekler olup, erişkinlerin antenleri baş ve thoraxdan daha uzundur. Olgun sineklerin antenleri çok sayıda (8'den fazla) eklemden (segmentden) oluşmuştur. Antenlerin üzerinde "arista" adı verilen üzeri tüylü bir kıl yoktur. Kanatları pullu, kıllı yada parlaktır. Kanat venleri birbiri ile kesişmez. Ayakları çok uzun veya biraz uzuncadır. Dişileri kan emerler. Larvalarının baş kısmı iyi gelişmiştir. Larvaların mandibulaları yatay olarak (horizantal) ısırır. Larva ve pupaları obtektir ve suda yaşarlar. Ayın zamanda hareketlidirler. Su border: Brachycera Nematoceralara göre daha tıknaz yapılı ve kuvvetli yapılıdır. İri sineklerdir. Erişkinlerin antenleri thoraxdan kısa olup, 6'dan daha az segmentlidir. Antenleri birbirinden farklı şekilleri olan segmentlerin birleşmesinden meydana gelmiştir. Antenleri üzerinde (3. segment) bir. arista bulunabilir. Arista antenin ucuna doğru yer alır. Karekteristik damarlanma görülen kanatlarda, kanat venlerinde kesişme görülür. Dişileri kan emerler. Larvalarında baş kapsülü kısmen yada tamamen körelmiştir. Larvaları suda yaşar ve pupalarıda obtek olup, suda yaşarlar. Larvaların mandibulaları vertical (dikey olarak) olarak ısırır. Suborder : Cyclorrhapha Bu alttakımdaki türlerin erginleri tüylü ve çeşitli metalik renklere sahiptirler. Kan emen türlerin dişi ve erkekleri kan emer. Olgun sineklerin antenleri 3 segmentlidir ve aristalıdır. Arista 3. segmentin dorsalinde yer alır. Kurt benzeri olan larvalarında baş yoktur. Bu tip larvalar hareketli olup, magot adını alırlar. Pupa koarktat olup, hareketsizdir. Larva ve pupa dönemleri toprakta geçer. Suborder : Nematocera Bu alttakımda bulunan aileler şunlardır. Familya: Culicidae (Sivrisinekler) Familya: Ceratopogonidae (= Heleidae, Acısinekler) Familya: Simuliidae (= Melusinidae, Siyahsinekler, Körsinekler) Familya: Psychodidae (Tatarcıklar) Culicidae Ailesi (Sivrisinekler) Sivrisinekler yaz geceleri düşünülebilecek her yerde bulunan, özellikle ışıklar söndürüldükten sonra insanlardan kan emen ve vızıltısı ile insanları sürekli rahatsız eden insectlerdir. Sivrisinekler 2 -10 mm uzunluğundadır. Bu ailedeki artropodların vücutları; narin, başları küçük ve küreseldir. Bacakları uzundur. Vücutları genellikle silindirik yapıdadır. Antenleri 14 -15 segmentden meydana gelmiştir ve erkeklerde tüylüdür. Ağız organelleri uzun ve silindirik bir biçimde olup, sokmaya -emmeye elverişlidir. Abdomen uzun yapılı ve thorax karekteristik olarak kama şeklindedir. Kanatları uzun ve dar olup, kondukları zaman abdomen üzerinde düz katlanırlar. Culicidae ailesinde bulunan önemli sivrisinek cinsleri; Anopheles, Aedes, Culex, Mansonia ve Theobaldia' dır. Bunlardan özellikle ilk üç tür önemlidir. Sivrisinekler su kenarlarında çoğunlukla bulunurlar. Durgun sularda, durgun deniz sularında larvaları gelişir. Sivrisineklerin sadece dişileri insan ve hayvanlardan kan emerler. Erkek sivrisineklerde alt ve üst çene (maksilla ve mandibula) kısalmış olduklarından konağın derisini delememekte ve kan emememektedirler. Bunlar bitki artıklarından doku özsuyu emerek beslenirler. Sivrisineklerin biyolojisi Dişi sivrisinekler yumurtalarını su yüzeyine veya suda yüzen bitki üzerlerine bırakırlar. Yumurta bırakma şeklinde her türün kendine has özellikleri vardır. Anopheles ve Aedes cinsindekiler yumurtalarını tek tek bıraktıkları halde, Culex cİnsindekiler yumurtalarını paketler halinde bırakırlar. Bazı türler yumurtalarını temiz akarsulara, bir kısmı durgun su birikntilerine yada ağır akan su yollarına, hatta bazıları da deniz suyuna bırakırlar. Culex cinsindekiler yumurtalarını foseptik sularına da bırakmaktadırlar. Yumurtadan çıkan larvalar 10 -11 halkalı olup, kurtçuk şeklindedirler. Larvalar aktif ve hareketli olup, bükülüp açılma şeklinde bulundukları su içinde hareket ederler. Larvalar türlere göre değişmek üzere vücut halkalarında hava borusu taşırlar. Bu hava deliklerini su yüzeyine doğru uzatırlar. Anopheles'lerin larvaları vücutlarının son 3 -4 halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine parelel dururlar. Culex ve Aedes larvaları ise vücutlarının son halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine dikey dururlar. Larvalar 4 defa gömlek değiştirdikten sonra pupa safhasına girerler. Pupa evresinde baş ve thorax yuvarlak kokon benzeri bir yapının içinde bulunurken abdomen serbest vaziyettedir. Bu dönemde daha az aktiftirler. Pupalardan çıkan erişkin sinekler, beslenmek amacı ile çoğaldıkları yerden birkaç kilometre ve hatta rüzgar ve değişik vasıtalarla çok daha uzağa gidebilirler. Erişkin sivrisineklerin kondukları yüzeye duruş şekilleride farklıdır. Anopheles'ler kondukları yüzeye eğik durdukları halde, Aedes ve Culex'ler paralel dururlar. Yaşam süreleri sıcak bölgelerde 6 aydır. Türkiye'de ise bu süre 1 -2 ay kadardır. Culicidae'ler bitki özsularıyla ve şekerli suyla beslenebilirler. Fakat dişiler yumurtlayabilmek için mutlaka bir miktar kan emmek zorundadırlar. Dişi bireyler geceleyin ışığa doğru ve konakçısının vücut ısısına doğru yönelirler. Gündüzleri ise karanlık ve kuytu köşelerde saklanırlar. Sivrisineklerin (Culicidae) Önemi Konaklarını huzursuz ederler. Kan emilen yerde çok rahatsız edici kaşıntıların meydana gelmesine neden olurlar. Çok sayıda oldukları zaman kan emerek soyucu -sömürücü etkilerini gösterirler. Sivrisineklerin esas önemleri sıcak ülkelere doğru gittikçe sıklığı artan, birçok hastalığın bulaşmasına aracılık etmeleridir. İnsan, maymun ve kanatlılar arasında sıtma etkeni olan plasmodium'ların biyolojik vektörüdürler. Dişi Anopheles türleri insanlarda sıtmaya neden olan plasmodium türlerine, Anopheles, Culex ve Aedes türleri ise kanatlılarda sıtmaya neden olan plasmodium türlerine vektörlük yaparlar. Ayrıca sivrisineklerden bazı türler nematodlardan Wuchereria bancraıli (insanlarda fil hastalığı etkeni) ve köpeklerde Dirofilaria immitis larvalarını naklederek, bu helmintIere arakonaklık yaparlar. Bakterilerden Borrelia anserina (Kanatlı spiroketası) 'yı Aedes cinsindeki türler bulaştırır. Yine Mansonia türleri Brugia malayi'nin naklini sağlarlar. Sivrisinekler sarı humma virusuna, doğu ve batı at encephalitislerine ve Japon B encephalitisine vektörlük yapar. Ayrıca kanatlı çiçeğine mekanik taşıyıcılık yaparlar. Tavşan myxomatosis'ine de vektörlük yaparlar. Sivrisineklere karşı mücadele Sivrisineklere karşı mücadele larvalara ve erişkinlere karşı olmak üzere iki şekilde yapılır. Larvalara karşı mücadelenin başında bunların yaşadıkları yerlerin ortamını bozmak gelir. Bunun için taşkınları önlemek, kanalizasyon sistemlerini iyi yapmak ve bataklıkları kurutmak gerekir. Bataklıklar ve durgun sular drenajla kurutulmaya çalışılır. Bunun mümkün olmadığı durumlarda ise bu bölgelere insectisitler sürekli olarak yada planlı olarak belirli periyodlarla kullanılır. Bu amaçla en çok kullanılan ilaçlar organik klorlu ve organik fosforlu insectisitlerdir. Taşkınlara bu ilaçlar püskürtülerek uygulanır. Ayrıca larvalara karşı mücadelede biyolojik savaş metodları da kullanılmaktadır. Bunun için Gambusia cinsi balık türleri, yetiştirilmelidir. Bu balıklar sinek larvalarını yiyerek kontrolü sağlarlar. Bu amaçla ayrıca larvalar için patojen olan ve larvalarda salgınlar oluşturan çeşitli bakteri, protozoon ve helmintler de uygulanabilir.Sivrisineklerin erişkinlerine karşı ise insectisitler kullanılmalıdır. Bunun için en uygunları karbamatlı ve organik fosforlu insektisitlerdir. Ayrıca özellikle Anophellere karşı kalıcı etkili ilaçların kullanılması ile iyi bir kontrol sağlanmaktadır. Ancak çevreye etkilerinden dolayi bu tip ilaçlar pek tercih edilmemektedir. Ayrıca mekanik önlemler ve sinekleri uzaklaştırıcı tedbirlerde alınır. Familya: Ceratopogonidae (= Heleidae, Acısinekler) Bu ailedeki türler sivrisineklerden daha küçük olup, 1 -3 mm boyundadırlar. Antenleri 13 -15 segmentlidir. Dişilerde çok seyrek ve kısa kıllıdır. Erkeklerde ise çok kıllı ve uzundurlar. Ağız organelleri sokucu -emici tiptedir. Hortumları kısadır. Thoraxın her üç parçası kaynaşmıştır. Thorax başın üst tarafına doğru bir kamburlaşma yapar. Kanatları geniş, uçları yuvarlak ve üzerlerinde duman renginde benekler vardır. Kanatlarında pulların olmasıyla sivrisineklerden, daha uzun antenlere sahip olmaları ile de Simulium'lardan ayrılırlar. En tipik özellikleri benekli kanatlara sahip olmalarıdır. Ceratopogonidae ailesindeki türler konaklarını soktuklarında büyük acı verirler. Bunun içinde acısinekler adını alırlar. Dişileri kan emer, erkekleri ise bitki özsuyu ile beslenirler. Bu ailede bulunan ve hekimlik açısından önemli olan Cilicoides (acısinek)'dir. Culicoides'lerin kanatları tüylüdür. Bu cinse bağlı önemli tür ise Culicoides robertsi' dir. Bu türe kumsinekleri adı da verilir. Bu sinekler bataklık bölgelerde ürerler. Dişiler döllenmiş yumurtalarını sığ akarsuların kıyılarına, su içindeki bitkilerin ve taşların üzerine bırakırlar. Dişiler yaşamları boyunca birkaç kez yumurta bırakırlar. Yumurtadan çıkan kurtçuk benzeri larvalar hem karada hemde suda yaşayabilirler. Daha sonra pupa dönemini geçirerek erişkin sinekler meydana gelir. Erişkinler yumurtlamadan önce kan emerler. Sabah vakitleri ve ikindi vaktinde daha çok saldırgan olurlar. Ayrıca bulutlu ve kapalı havalarda çok aktiftirler. Erişkinleri yazın Mayıs ayından Eylül ayına kadar görülürler. Yaz aylarında gelişme süresi 1 -2 aydır. Kışı ise larva döneminde çamura gömülü olarak geçirirler. Veteriner Hekimlik yönünden önemli olan Culicoides'ler sivrisineklerden daha küçük yapılı oldukları için sivrisinekler için yapılan tellerden kolaylıkla geçebilirler. Culicoides 'ler toplu halde uçuşurlar. İnsanlardan ve hayvanlardan kan emerler. Çok sayıda olduklarında hayvanları ürkütüp kaçıştırırlar. Konaklarından kan emerek soyucu -sömürücü etki gösterirler ve fazla sayıda olduklarında anemiye yol açarlar. Ayrıca konaklarını sokmaları kuvvetli tepki oluşturur. Sokma yerinde kaşıntı, ödem ve şiddetli acıya neden olabilirler. Bazen 2 cm büyüklüğünde, seröz bir sıvı dolmuş kabarcıklar meydana gelir. Daha çok orman ve açık arazide çalışanlara saldırırlar. Culicoides türlerinin en önemli

http://www.biyologlar.com/insecta-hexapoda-entoma-bocekler-sinifi

Kızılkanat (Scardinius erythrophthalmus)

Kızılkanat (Scardinius erythrophthalmus)

Kızılkanat (Scardinius erythrophthalmus), sazangiller (Cyprinidae) familyasına ait bir tatlısu balığı türü. Avrupa'da Ural Dağları'ndan İspanya'nın doğusuna kadar ve Finlandiya'dan İtalya'nın kuzeyine kadar yaygındır. Türkiye'nin sadece kuzeyinde bulunur.Kızılkanat ortalama 20-30 cm (en büyükleri 50 cm) uzunluğunda, ortalama 250-300 gram (en büyükleri 2-3 kilo) agırlığında olur. Yanları yassı olur ve yüksek bir sırtları vardır. Sırtları ve kafalarının üst kısımı ela veya kahverengi-yeşilimsi parlar. Yanları çinko rengi parlar ve karın kısımları gümüşümsü beyaz parlar. Yüzgeçleri kan kırmızısı rengindedir, ama bazen kavun içi renkli yüzgeçleri olanlarınada rastlanır. Kızılkanatlar sık sık kızılgöz balığı ile karıştırılırlar. Bu ikisi aynı familyaya aitlerdir ama aynı balık türü değildirler.Kızılkanatlar bir sürünün içinde yaşarlar, ve duran ya da yavaş akan suların, bol su bitkilerinin bulunduğu alçak su seviyesinde yaşamayı tercih ederler. Yetişkin kızılkanatlar neredeyse sadece su bitkilerinden beslenirler. Beslenmelerinin çok az bir bölümü kurtlardan ve solucanlardan oluşur.Üreme zamanları Mayıs ile Haziran aylarındadır. Bu zamanda dişileri 100.000 ila 200.000 adet 1,5 milimetre büyüklüğünde yumurtalarını su bitkilerinin üzerine yapışık halde bırakır. Kızılkanatlar birçok diğer sazangiller türleri ile birlikte aynı zamanda yumurtladıkları için, sık sık bu yumurtalar diğer türlerinkiler ile karışır ve melez balık türleri maydana gelir. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya: Cyprinidae (Sazangiller)Cins:     ScardiniusTür:     S. erythrophthalmus

http://www.biyologlar.com/kizilkanat-scardinius-erythrophthalmus

Nematoda

Vücutları silindirik yapıda ve segmentsizdir. Bir kısmı serbest, bir kısmı ile simbiyotik olarak yaşar. MORFOLOJİK VE FİZYOLOJİK ÖZELLİKLERİErişkinlerde; dişiler genellikle erkeklerden daha büyük ve her iki uçları sivridir. Erkeklerin ise ön ucu sivridir. Arka tarafta kutikulanın şemsiye şeklinde genişlemesinden oluşan yapı bursa copulatrix tir. Bazı erkeklerde ise kuyruk kanatları denilen kutikula genişlemeleri yer alır. Vücutları renksiz ve saydam olan "kutikula" ile örtülmüştür. Kutikulanın altında hipodermis tabakası bulunur. Kutikula hipoderimisin salgılarıyla oluşmuştur. Hipodermis vücut boşluğuna doğru 4 tane çıkıntı yapar. Çıkıntıların biri dorsalde, diğeri ventralde, kalan ikisi de lateral kenarlarda yer almaktadır. Üst ve alttaki kordonlardan sinr kordonları, yandaki çıkıntılardan ise boşaltım kanalları geçer. Hipodermisin altında kas tabakası bulunur. Kas tabakasının altında coelom (vücut boşluğu) bulunur. Vücut boşluğunda yüksek basınçlı bir sıvı vardır. Bu sıvının görevi vücudun sertliğini ve şeklini korumaktır. Kütikula değişiklikleri: 1.Taç yaprakları: Ağız kapsülünü içten ya da dıştan kuşatan ardışık olarak dizilmiş parmak şeklindeki çıkıntılardır. Strongyloidea üstailesindeki bir kısım nematodda rastlanır. 2.Boyun ve kuyruk papilleri: Boyun papillleri oesophagus bölgesinin ön kısmında, kuyruk papilleri kuyruk kısmında görülür. Parmak veya diken benzeri çıkıntılardır. Dokunma duyusu organelleridirler. 3.Boyun ve kuyruk kanatları: Kutikulanın kananrt biçimind egenişlemesinden oluşmuşlardır. Boyun kantalrı oesophagus bölgesinde, kuyruk kanatları kuyurk bölgesinde yer alır. 4.Baş ve boyun vezikülleri: Baş vezikülü ağız deliğinin çevresini, boyun veziküü oesophagus bölgesinin etrafını kuşatan kesemsi, şeffaf şişkinliklerdir. 5.Bursa copulatrix: Erkek nematodlarda görülür. Kuyruk kanadının daha fazla genişlemesinden oluşmuştur. Kesenin içinde parmak biçiminde, destekleyici görevi olan kaburga (costa) denen yapılar mevcuttur. Çiftleşme kesesi iki büyük lateral ve bir küçük dorsal lobdan ibarettir. Bu organın görevi çiftleşmede dişiyi yakalamaktır. 6.Plak ve kordon Sindirim sistemi: Vücudun ön kısmı ağız ile başlar. Bir çok nematodda ağız sadece bir delikten ibarettir. Bazı nematodlarda ise ağız dudakla çevrilidir. Her iki tipte de ağız doğrudan yemek borusuna açılır. Buna karşın Strongyloidea üstailesinde ağız büyük olup, ağız boşluğuna açılır. Bu boşluğa ağız kapsülü denir. Yemek borusu kaslıdır. Bursa copulatrix'e sahip nematodlarda yemek borusunun arka tarafı hafif bir şişkinlik gösterir. Buna filariform tip oesophagus denir. Ascarioidea üstailesinde yemek borusunun arkasında görülen bu şişlik çok büyüktür. Buna bulbuslu oesophagus tipi adı verilir. tipi adı verilir. Oxyuridea üstailesindeki nematodlarda oesophagus'un ön ve arka tarafında şişkinlikler bulunur. Bu tip oesophagus'a ise çift bulbuslu tip denir. Spirurioidea ve Filaroidea üstailesindekilerde yemek borusunun üst kısmı kaslı arka kısmı ise bezli bir yapıdadır. Bu tipe kaslı-bezli tip oesophagus denir. Trichuroidea'larda yemek borusu tek sayıda çok sayıda hücrenin arka arkaya dizilmesinden oluşmuştur ve çok ince bir yapı gösterir. Buna stikosom tip oesophagus adı verilir. Rhabditiform oesophagus'un ise ön ve arka kısmı hafif şişkin ve ortası dardır. Barsak boru şeklindedir. Lumene bakan hücreler mikrovillusludur. Dişi nematodlarda barsak anus ile sonlanır. Erkek nematodlarda ise barsak sonu deferens kanalı ile birleşir ve bir kloaka oluşturur. Ağız kapsülü büyük olan nematodlar beslenirken bir parça mukozayı negatif basınç ile kapsül içine çekerler. Çekilen mukoza parçası ağız kapsülünde sindirilir. Sindirim enzimleri oesophagus bezlerinden salgılanır. Sindirilen gıda oesophagus yoluyla barsaklara pompalanır. Emilim barsaklarda olur. Ağız kapsülleri küçük ya da ağızları sadece bir delikten ibaret olanlar mukoza sıvısı ya da ölü hücre artıklarıyla beslenirler. Oxyuridea üstailesindekiler kalın barsak içeriği, kanda ya da dokularda yaşayan nematodlar (Filarioidea) sadece doku sıvıları ya da plasma ile beslenirler. Boşaltım sistemi: Boşaltım kanalları nematodun her iki yanında seyereder. Yemek borusu bölgesinde birleşerek boşaltım deliğine açılırlar. Sinir sistemi: Sinir sistemi oesophagusu çevreleyen bir sinir halkası ve buradan çıkıp öne ve arkaya uzanan sinir iplikçiklerinden ibarettir. Duyu organelleri: Bunlar kimyasal reseptörler ve dokunma duyusu reseptörlerinden ibarettir. Kimyasal reseptörler amfid ve fasmidlerdir. Genital organlar: Dişi üreme organları ovarium, oviduct, recepteculum seminis, uterus, vagina ve vulvadan ibarettir. Uterus vaginaya açılır. Vagina vulva ile sonuçlanır. Bazı türlerde vulva kapaklıdır. Bazı türlerde de yumurtanın atılmasına yardımcı olan ovojektör adı verilen organ bulunur. Erkek üreme organları tek bir testis, bundan çıkan deferens kanalı, vesicula seminalis ve kaslı ejakülatör kanaldan oluşur. Spikulum, gubernakulum ve telemon çiftleşmede yer alır. Görevleri dişiye tutunmak ve vulvayı açmaktır. Bursa copulatrix ve kuyruk kantları da çiftleşmeye yardımcı olur. Döllenme recepteculum seministe meydana gelir. Zigot oluştuktan sonra etrafını hemen döllenme zarı sarar. Bu zar daha sonra kalınlaşarak kitinli kabuğu oluşturur. Vitellin membran denen ikinci bir zar da kitinli kabuğun iç kısmında şekillenir. Döllenen yumurtalar ovojektörle vulvadan dışarı atılır. Eğer yumurta atıldığında içinde gelişme az ise ve içinde sadece bir veya birkaç blastomer bulunuyorsa bu tip nematodlara ovipar nematodlar denir. Yumurta atıldığında içinde larva bulunuyorsa bunlara ovovivipar nematodlar denir. Bazı nematodlarda uterus içinde bulunan yumurta içinde iyice gelişir ve larva yumurtayı uterusta terk eder. Bunlar vivipar nematodlardır. Dolaşım ve solunum sistemi: Nematodlarda dolaşım ve solunum sistemi yoktur. Yumurtaları: Çoğunda tabaka sayısı 3'tür. 1) Strongil tip yumurta: İnce kabuklu, ovaldir . İçinde çok sayıda blastomer bulunur. 2) Askaridoid tip yumurta: Kalın kabukludur. İçinde tek bir blastomer bulunur. 3) Oksiroid tip yumurta: Oval, asimetrik ve bir kutbunda tıkaç bulunan yumurtalardır. 4) Spiruroid tip yumurta: İçinde L1 bulunur. Kabuk ince/kalındır. 5) Trichurioid tip yumurta: Limon biçimindedir. Kalın kabukludur. İki ucunda tıkaç vardır. Larvaları: Yaşamlarında 5 devre vardır. İlk dördü larva dönemidir. Genital organlar L4 evresinde gelişmeye başlar. Her larva döneminin sonunda larvalar gömlek değiştirir. Gömlek değiştirme sırasında larva beslenmez ve dış uyarımlara tepki göstermez, letarjiktir. 1) Mikrofiler: Bir çeşit L-1 dönemi larvadır. Sindirim kanalı gelişmemiştir. Filaroidea takımında görülür. 2) Rhabtidiform larva: Sindirim kanalı gelişmiştir. Oesophagus'u rhabtidiform niteliktedir. 3) Filariform larva: Sindirim kanalı gelişmiştir. Oesophagus filariform niteliktedir. Son konak için enfektif larvalar çoğu nematodda bu tiptedir. Yasam çemberleri: Çiftleşmeden sonra dişiler yumurta ya da larva çıkarırlar. Homoxene gelişenler: Konağı terketmeyerek larva olarak kalanlarda konaktan onağa bulaşma kanibalizm ya da karnivorizm ile olur. konağı terkedenlerde ise dışarı çıkan yumurta veya larvalar çoğu türde dış ortamda gelişerek enfektif forma ulaşır ve konağa girer. Heteroxene gelişenler: Son konağı terketmeyip larva olarak kalanlarda son konaktan son konağa bulaşma bir vektör aracılığıyla olur. son konağı terkedenlerde ise dışarı çıkan yumurta veya larvalr çoğu türde dış ortamda gelişerek ara konak için enfektif forma ulaşır ve arakonağa girer. Bazı türlerde ise son konağı terkeden larvalar dış ortamda gelişme göstermeden ara konağı enfekte eder. Son konak paraziti ara konak aracılığıyla alır. Konağı terk ediş yolları: Türlere göre değişmek üzere bu yollar dışkı, idrar, balgam ve kusmuktur. Vivipar nematodların L1'lerinin ise konağı terk edişleri ancak ya bir vektör aracılığı ile ya da konağın başka bir konak tarafından yenmesi ile gerçekleşir. Dış ortamdaki gelişme: Yumurta ve larvalar için optimal sıcaklık 18°-27°C ve optimal nisbi nem de %80-100'dür. Larva çevreden aldığı sıcaklık ve rutubet uyarımlarıyla lipaz enzimi salgılar. Yumurtanın en içindeki lipid yapısındaki tabakayı eritir. Böylece yumurta içine dışarıdan su girmeye başlar. Larva bu suyu bünyesinde toplayarak büyür, yumurta içine sığmaz ve kabuğun geri kalan tabakalarını parçalar. Son konak enfeksiyonu ve son konakta gelişme: Son konak enfeksiyonu yumurta, larva, ara konak ya da vektör enfeksiyonu ile olur. yumurta ve ara konak enfeksiyonu pasif, larva enfeksiyonları ise aktif/pasif olarak gerçekleşir. Vektörle parazitin bulaşması ise pasif bir bulaşma şeklidir. Konağa giren larvalar gömlek değiştirmelerini tamamlar ve erişkin nematodlar oluşur. Bunlar çiftleşir ve dişiler yeni jenerasyonları üretir. ***Bazı nematodlar yaşadıkları organa yerleşmeden önce vücut içinde bir göç geçirirler. Bu esnada değişik organ ve dokularda gömlek değiştirirler. Bazı nematodlarda ise konağın parazite karşı bağışık olduğu durumlarda ya da enfektif larvaların konağa girmeden önce dış ortamdakötü koşullar (kuraklık, don) geçirmesi durumunda konakta doku ve organlarda latent halde beklerler. Bu olaya hipobiyoz denir. Hipobiyotik larvalar konağın bağışıklığının ortadan kalktığı ve/veya hava şartlarının iyileştiği durumlarda tekrar gelişmelerine devam ederler. Eğer bu bağışıklığı kırıcı faktör gebelik, kortikosteroid tedavisi vs. ise bazı nematodların inhibe larvalar tekrar aktivite kazanarak transpalsental ve galaktojen yolla yavruya geçer ve gelişmelerini yavruda tamamlar. ***Belli bir dönemde (doğum öncesi/sonrası) hayvanlardan çıkarılan nematod yumurtalarının sayıca fazla olmasına periparturient rise denir. 3 temel nedeni vardır: 1) İnhibe larvaların olgunlaşıp yumurta üretmesi 2) Meradan yoğun etken alınması 3) İlkbaharda parazitlerin yumurta üretim kapasitelerinin artması Self cure ise konağın ağır enfestasyonlara verdiği cevaptır. Larva konağa girdikten sonra IgE'ler mast hücreleri ile bir kompleks oluştururlar. Bu kompleks antijen ile bir araya geldiğinde vazoaktif aminleri içeren mast hücresi degranüle olur. konakta vazodilatasyon, ödem, mukozada kalınlaşma, barsakta peristaltiğin artması gibi reaksiyonlardan sonra larva vücuttan atılır. 2 sonucu vardır: 1) Konak geçici olarak paraziter enfestasyondan korunmuş olur. 2) Parazitin yeni nesillerine yer açılmış olur. TAKIM: STRONGYLIDA ÜST AİLE : STRONGYLOIDEA (ayrıntı için tıklayın!) ÜST AİLE : TRICHOSTRONGYLOIDEA (ayrıntı için tıklayın!) ÜST AİLE : METASTRONGYLOIDEA (ayrıntı için tıklayın!) ÜST AİLE: ANCYLOSTOMATOIDEA (ayrıntı için tıklayınız!) TAKIM: ASCARIDIDA ÜST AİLE: ASCARIDOIDEA (ayrıntı için tıklayınız!) TAKIM: OXYURIDA ÜST AİLE: OXYUROIDEA (ayrıntı için tıklayınız!) TAKIM: RHABDITIDA ÜST AİLE: RHABDITOIDEA (ayrıntı için tıklayınız!) TAKIM: SPIRURIDA ÜST AİLE: SPIRUROIDEA (ayrıntı için tıklayınız!) ÜST AİLE: THELAZIOIDEA (ayrıntı için tıklayınız!) ÜST AİLE: FILARIOIDEA (ayrıntı için tıklayınız!) ÜST AİLE: HABRONEMATOIDEA (ayrıntı için tıklayınız!) TAKIM: ENOPLIDA Cins: Trichuris Türler: Trichuris vulpis -köpek T.globulosa - sığır T.discolor - sığır T.ovis - koyun T.skrjabini - koyun T.trichura - insan Yerleşim: Caecum, colon Morfoloji: Ön kısmı ince, arka kısmı kalındır. Yumurtaları koyu sarı renklidir, limona benzer, iki kutbunda da tıkaç bulunur. Biyoloji: İçinde L1 bulunan yumurtalar enfektiftir. Patogenez: En patojenleri olan T.vulpis erişkin dönemde mukoza hücreleri ve kanla beslenir. Tanı: Dışkıda tipik yumurtalar görülür. Sağaltım: Avermectine ve Benzimidazole kullanılır. Cins: Capillaria Türler: Capillaria obsignata , C.caundiflata Morfoloji: 1-5 cm uzunluktadırlar. Yumurtaları Trichuris yumurtalarına benzer ancak yanlardan daha basık olmalarıyla ayrılırlar. Tanı: Dışkı bakısında tipik yumurtalar görülür. Sağaltım: Levamisole 30mg/kg içme suyuna katılır Moxidectin 0.2mg/kg i.m. (güvercinlerde) Fenbendazole 20mg/kg yeme katılır Tür: Capillaria hepatica Erişkinleri fare ve ratların karaciğerinde bulunur. Yumurtalar buraya bırakılır. Yumurtalar konak reaksiyonu sonucu etrafı çevrilerek dışarı çıkamazlar. Karnivorlar bu canlıları yerse karaciğerin sindirilmesi sonucu dışkıyla bu parazitin yumurtalarını atarlar. Yumurtalar dış oratamda gelişir ve içlerinde enfektif larvalar oluşur. Gıdayla bu yumurtaları alan canlılar enfeste olur. Cins: Trichinella Türler: T.spiralis T.nelsoni T.nativa T.pseudospiralis Trichinella spiralis için: Son konak: İnsan, domuz, fare, rat, ayı, nadiren diğer memeliler ve kanatlılar Yerleşim: Erginleri ince barsakların mukozasındaki larvaları ise çizgili kaslarda kistler içinde bulunur. Morfoloji: Erkekler 1.4-1.6 mm uzunluktadır. Dişiler ise 3-4 mm uzunluktadır. Biyoloji: Aynı konak üzerinde hem erginleri hem de larvaları bulunan tek nematoddur. Çiftleşmeden sonra erkekler ölür. Dişiler Lieberkühn bezlerine ve Peyer plaklarına girer. Çiftleşmeden 3 gün sonra dişiler L1 çıkarmaya başlarlar. Larvalar lenf yolu ile dolaşıma girer ve büyük dolaşımla tüm organ ve dokulara yayılırlar. Sadece çizgili kaslara giden larvalar canlı kalır. Kaslardaki bu larvalar kanibalizm, karnivorizm veye leş yeme ile başka bir konak tarafından alındığında gelişme bu konaktea devam eder. Konakta parazite karşı aşırı bir duyarlılık şekillenmişse veya konak ishalli ise ince barsaklara gelen larvalar dışkı ile atılır. Nadiren pranatal enfestasyon görülür. Leş yiyen kuşlar paratenik konaklık yapabilir. Patogenez: Erişkin parazitler enteritis ve kusmaya neden olurlar. Kaslara giden larvalar ise akut myositis, ateş ve eosinofiliye yol açarlar. Ek oalrak göz bölgesinde ödem, fotofobi görülür. Beyinde dolaşan larvalar encephalitise yol açar. Epizootiyoloji: Bulaşma başlıca domuz olmak üzere diğer hayvaların etinin iyi pişmemiş olarak yenmesiyle olur. domuzlar için enfestasyonun kaynağı fareler ve birbirlerini yemeleridir. Tanı: Mezbahalarda et kontrolü sırasında larvalar tesbit edilebilir. Sağaltım: Mebendazole, Ivermectin Tür: Dioctophyma renale Son konak: Vizon, karnivorlar, domuz, bazen insan Ara konak: Tatlı suda yaşayan bazı halkalı solucanlar. Bazı talı su balu-ıkları ve kurbağalar da paratenik konaktır. Yerleşim: Böbrek parankimi Morfoloji: Evcil hayvanların en büyük nematodudur. Dişilerin uzunluğu 100-120cm, eni 1 cm kadardır. Patogenez: Parazit böbrek parankimini tamamen tahrip eder. Sağaltım: Cerrahi sağaltım yapılır.

http://www.biyologlar.com/nematoda

Canlıların Sınıflandırılması nedir,nasıl yapılır

CANLILARIN SINIFLANDIRILMASI Dünyamızda yaşamakta olan canlılar incelenirse özelliklerinin çok farklı olduğu gözlenir.Bu farklara rağmen bu canlıları derece derece ve birbirlerine benzeyenleri bir araya toplayarak gruplandırmak mümkündür.Canlıların benzerliklerine göre gruplandırılmasına sınıflandırma (sistematik) denir.Hayvanlar ve bitkiler belirli bir düzen içerisinde sınıflandırılır. SINIFLANDIRMA SİSTEMİNİN GELİŞİMİ Canlılar; monera, protista, fungi, bitki ve hayvan olmak üzere gözle görülmeyen çok küçük organizmalardan dev ağaçlara ve binalara kadar bir dağılım gösterirler.Bu büyük hayat çeşitliliğini tanıyabilmek için, büyük grupları daha küçük gruplara ayırmak gerekir.Biyologlar dünyadaki canlıları sınıflandırmamış olsalardı, bu kadar çeşitli olan canlılara ulaşmak mümkün olmayacaktı. Sınıflandırmanın amacı, canlıları bir sistematiğe oturtmak ve tabiatı daha kolay anlaşılabilir hale getirmektir. İlk sınıflandırmayı Yunan Filozofu Aristoteles (m.ö.383-322) yapmıştır.Aristoteles bitkileri otlar, çalılar, ağaçlar; hayvanları ise yaşadıkları yere göre karada, suda ve havada yaşayanlar şeklinde gruplandırmıştır.Aristoteles’in sınıflandırması canlıların görülebilen ve morfolojik özelliklerine göre yapılmıştır. Günümüzdeki sınıflandırılmada, canlıların bütün özellikleri göz önünde bulundurulur. Örneğin yarasanın kanatlarına bakarak onu kuşlar sınıfında incelemek mümkün değildir.Yarasa bütün özellikleri ile bir memeli hayvandır. Sınıflandırma, canlıların görülen bir veya birkaç özelliğine göre yapılırsa ‘suni sınıflandırma’ (yapay sınıflandırma) adını alır. Aristo’nun yapmış olduğu sınıflandırma yapay sınıflandırmadır. Buna ampirik sınıflandırma da denir. Günümüzde sınıflandırma, canlıların akrabalık ilişkilerine göre yapılır. Sınıflandırılmada canlıların tüm özellikleri göz önünde bulundurulur.Bu çeşit sınıflandırmaya ‘tabii sınıflandırma’ (doğal sınıflandırma) denir. Doğal sınıflandırma bilimsel olan sınıflandırılmadır.Buna filogenetik sistematik da denir. Bir canlıyı türün evrim sistematiğine geçirdiği gelişmelere filogeni (soy oluş), embriyo döneminde geçirdiği değişmelere ontogeni (birey oluş) denir. SINIFLANDIRMA BİRİMLERİ Sınıflandırmanın en küçük birimi tür dür.Sınıflandırmada tür kavramını ilk kuran kişi John Ray dır. Tür ortak bir atadan gelem,yapı görev bakımından ortak özelliklere sahip olan, kendi aralarında çiftleşerek verimli döller meydana getirebilen bireylerin oluşturduğu topluluktur. Sistematikte her tür iki isimle adlandırılır.Bu iki isimden 1. si canlının cinsini 2. si tanımlayıcı özelliğini belirtir.Her türün iki isimle adlandırılması ilk kez Carolus Linnaeus tarafından kullanılmıştır. Türlerden daha büyük topluluklar da vardır.Bunlar sırasıyla cins, familya, takım, sınıf, şube ve alem dir. Birbirlerine çok benzeyen yakın türlerin gruplaşmasıyla cinsler ortaya çıkar.Örneğin kedi, aslan ve kaplan türleri ‘felis’ cins adı altında toplanır. Felis domesticus :Kedi Felis leo :Aslan Felis tigris :Kaplan Her tür kendi cinsiyle belirtilir.Bu kural bütün dünyada kullanılır. Böylece karışıklık önlenir.Cinslerin ortak karakterlerine göre gruplaşmasına familyalar meydana gelir.Benzer familyalar takımları oluşturur.Benzer takımların gruplaşmasıyla sınıflar ortaya çıkar. Sınıfların bir araya gelmesiyle şubeler, şubelerin bir arya gelmesiyle alem meydana gelir. Sınıflandırmada birimler büyükten küçüğe doğru gidildikçe, birimin kapsadığı birey sayısı artar, aralarındaki benzerlik azalır.Büyük biriden küçük birime doğru gidildikçe birey sayısı azalır, benzerlik artar. BİLİMSEL SINIFLANDIRMANIN DAYANDIGI TEMELLER Günümüzde geçerli olan sınıflandırma filogenetik sınıflandırmadır. Bu sınıflandırmaya göre bütün canlıların ortak bir atası vardır.Bu sınıflandırmanın açıklanabilmesi için akrabalık derecelerinin açıklanması gerekir.Akrabalık derecelerinin belirlenmesinde bazı temel kurallar göz önüne alınır. 1) Homolog Organlar: Yapıları ve gelişimleri birbirlerine benzeyen fakat farklı görevleri olan organlara homolog organlar denir.Örneğin fok balığının ön yüzgeci, yarasanın kanadı, kedinin pençesi, atın ön bacağı, insanın eli homolog organlardır.bunları her biri yaklaşık olarak aynı sayıda kemik, kas, sinir ve kan damarlarına sahiptir.Aynı plana göre düzenlenmiş ve aynı gelişme biçimine sahiptir.homolog organlar canlıların ortak bir atadan geldiğinin kanıtlarından biri olarak ileri sürülmektedir. Bazı organlar aynı kökten gelmedikleri halde, yaptıkları görev aynıdır. Bu organlara anolog organlar denir.Kuş ve böcek kanatları analog organlardır. 2) Embriyolojik Benzerlik: Canlıların embriyo dönemlerinde geçirdikleri evreler ve farklılaşmalar birbirine çok benziyorsa bu canlılar yakın akrabadır.Omurgalı hayvanlarının embriyolarının ilk evreleri çok belirgin bir benzerlik gösterir.İlk evrede balık ve domuz embriyosunu ayırmak çok zordur. 3)Biyokimyasal Benzerlik: Çeşitli hayvanların plazma proteinleri arasındaki benzerlik derecelerinin antijen-antikor tekniği ile denenir. Her hayvan türünün kan içeriği kendine özgün bir protein bileşimine sahiptir.yakın akraba olan canlıların plazma proteinlerinin benzerliği daha fazadır. Bütün hayvanlarda hücrenin çalışması ve kalıtım faktörlerinin dölden döle geçmesi kromozomlar tarafından kontrol edilir.Bütün canlılarda kromozomların kimyasal yapısını DNA (deoksiribonükleik asit) meydana getirir.Akrabalık derecesi yakın olan canlıların DNA’larının baz dizilimlerinin benzerliği de artmaktadır. Hayvanlar, protein metabolizması sonucu oluşan azotlu artıkları üre, ürik asit ve amonyak şeklinde idrarla vicuttan uzaklaştırılabilir. Sınıflandırılmada canlıların idrarlarının bileşimi de dikkate alınır. Memeli canlılarının çoğunda sindirim için aynı veya benzer enzimler kullanılır.Bu olaylar canlıların ortak bir kökten geldiğinin kanıtlarından biri olarak gösterilmektedir. Bunlar başka yumurta tiplerinin benzerliği, organizmaların simetri şekilleri anatomik yapılarındaki benzerlikler gibi özellikler de doğal sınıflandırma yapılırken dikkate alınır. Bazı organizmalar mevcut bir sınıflandırma sistemine koymak oldukça zordur.Çünkü canlıların taşıdıkları özelliklerin bazısı bir gruba, bazısı da diğer bir gruba ait olabilir.Örneğin tek hücreli olan euglena; hareketli , kloroplast taşıyan ve kendi besinini yapabilen canlıdır. Euglena, hareketinden dolayı hayvan, kloroplast taşıdıgı ve kendi besinini kendisi yaptığından dolayı da bitki olarak kabul edilmiştir. Bakteriler: Heteretroflardır. Parazit yada saprofit beslenirler. Fotosentez ya da kemosentez yapan ototrof olanları vardır. Mavi-Yeşil algler:Fotosentez yaparlar.Kloroplastları yoktur. Fotosentez olayı stoplazma içine dağılmış klorofiller aracılığı ile olur. PROTİSTA a) Kamçılılar: Tek hücreli yapıya sahiptirler. Suda hareket ederler. Heterotrof ve otorotrof olanları vardır.Örnek:Euglena. b) Kök ayaklılar: Tek hücreli olan bu protozoalar besinlerini yalancı ayakları ile alır ve hareket eder.Örnek:Amip c) Sporlular: Sporla ürerler. parazityaşarlar. Örnek: Plazmadizmmalaria d) Silliler: Hücrenin çevresi hareket ve besin almayı saglayan sillerle çevrilidir. Örnek: Şapkalı mantar. FUNGİ Çok çekirdekli hücrelere sahip olup, sporlarla ürerler. Örnek: Şapkalı mantar. BİTKİLER Algler, çiçeksiz bitkiler ve çiçekli bitkiler olmak üzere üç grupta incelenir. Algler: İletim demetleri yoktur.İletim demetleri olmadığından su ve suda erimiş madensel tuzları tüm bitki tüzeyi ile alırlar.Doku farklılaşması yoktur. Çiçeksiz Bitkiler: Kendi arasında ikiye ayrılır. 1) Kara yosunları: İletim demetleri yoktur.Eşeyli ve eşeysiz üreme, döl değişimi şeklinde birbirini takip eder. Gametleri gametongium denen keselerde oluşturur.döllenme sonucu oluşan zigot bir süre ebeveyne bağlı kalır. 2) Eğrelti otları: İletim demetleri vardır.Gerçek kökleri yoktur. Eşeyli ve eşeysiz üreme döl değişimi şeklinde birbirini takip eder. Çiçekli Bitkiler:İyi gelişmiş iletim sistemleri vardır.Üreme organları çiçek şeklinde özelleşmiştir.Açık ve kapalı tohum olak üzere iki grupta incelenir. 1) Açık tohumlular: Her zaman yeşildirler.Soymuk demetlerinde kalburlu hücreler vardır, arkadaş hücreleri yoktur.Çiçekleri daima tek eşeylidir.Tohumları daima çok çeneklidir.Tohum taslakları yumurtalık dışına gelişir. 2) Kapalı tohumlular: En gelişmiş bitki sınıfıdır.Her zaman yeşil değildirler.Çiçekleri genelde erseliktir.Çiçeklerinde çanak ve taç yaprak farklılaşması vardır.Kapalı tohumların iki önemli sınıfı vardır. 1)Monokotiledonlar (bir çenekliler): Embriyolarında tek çenek yaprağı taşırlar.Otsu bitkilerdir.Tek yada çok yıllık olabilirler.İletim demetleri dağınık ve düzensiz sıralanmıştır.Korteksi incedir.Meristem kambiyumu yoktur.Yaprakları paralel damarlıdır. Saçak kök sistemi bulunur. 2) Dikotiledonlar(iki çenekliler): Embriyolarında iki çenek yaprağı taşırlar.Otsu ve odunsu bitkilerdir.Tek yada çok yıllık olabilirler. İletim demetleri dairesel çizilmiştir. Korteksi incedir.Enine kalınlaşmasını sağlayan kambiyum (meristem) bulunur.Yaprakları ağsı damarlıdır.Ana kök ve buna bağlı yarı kökler gelişmiştir. HAYVANLAR Çok hücreli heterotrof canlılarıdır.Aktif hareket ederler. Omurgalılar ve omurgasızlar olmak üzere iki gruba ayrılırlar. Omurgalılar(kordalılar) Omurgalılar ve ilkel kordalılar olmak üzere iki gruba ayrılırlar. A) Omurgalılar:Vücutlarının sırt tarafında bir sinir kordonu bulunur.İç iskelet eklemlidir. İskelete bağlı kaslar hareketi sağlar.Hepsinde beyin ve beyini koruyan kafatası vardır.Dolaşım sistemleri kapalıdır.Holozoik olarak beslenirler.Çoğu ayrı eşeylidir.Balıklar, kuşlar, kurbağalar, sürüngenler ve memeliler olmak üzere beş sınıfa ayrılırlar. 1) Balıklar: Vicutları pullarla örtülüdür.İç iskelet kemikten ya da kıkırdaktan oluşmuştur.Solungaç solunumu yaparlar.Kalpleri iki odacıklıdır.Kalplerinde sürekli kirli kan bulunur.Vücutlarında temiz kan dolaşır.Soğuk kanlı hayvanlardır.Boşaltım organları mezonefros tipi böbreklerdir.Boşaltım maddelerinin, üreme hücrelerinin ve sindirim artıklarının toplandığı kloak denilen yapıya sahiptirler.Örnek:köpek balığı, alabalık, sazan. 2) Kuşlar: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sağa kıvrılarak dallanır.Sıcakkanlıdırlar.Boşaltım organı metanefroz tipi böbreklerdir, vücut tüylerle kaplıdır.Tüysüz olan bölgeler pullarla örtülüdür.Kloaklıdırlar. Dişleri yoktur.Örnek:martı, bülbül, tavuk, ördek, deve kuşu. 3) Kurbağalar: Lavralar solungaç solunumu, erginleri akciğer ve deri solunumu yaparlar.Kalpleri üç odacıklıdır.Vücutlarında karışık kan dolaşır.Soğukkanlıdırlar.Azotlu dolaşım maddesi amonyaktır.Boşaltım organı mezonefroz tipi böceklerdir.Kloak lıdır.Derilerinin mukus salgısı olan mukus, deriyi kaygan tutar.Örnek:semender, kuyruklu kurbağa, su kurbağası. 4) Sürüngenler: Akciğer solunumu yaparlar.Kalpleri üç odacıklıdır (timsah hariç).Soğukkanlıdırlar.Erginlerinin boşaltım organları metanefroz tipi böbreklerdir.kloak lıdırlar.Dişilerde yumurta kanalının bir bölümü yumurta akı, diğer bölümü yumurta kabuğu yapacak şekilde özelleşmiştir.Vücut keratinle kaplı olduğundan kurudur. Örnek:yılan, timsah, kaplumbağa, kertenkele. 5) Memeliler: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sola kıvrılarak dallanır. Sıcakkanlı hayvanlardır.Kloak yoktur.Ürogenital sistem sindirim sisteminden ayrı olarakdışarıya açılır.Boşaltım organı metanesaz tipi böbreklerdir.Sinir sistemleri çok gelişmiştir.Örnek:fare, yarasa, kirpi, insan,balina.  B) İlkel kordalılar: İskeletleri kıkırdaktır.Yutak bölgesinde solungaç yarıkları, sırt tarafında da sırt ipliği bulunur.Bu grubun tek örneğiAmfiyoksüs tür. OMURGASIZLAR Süngerler, sölentereler, solucanlar, yumuşakçalar, eklembacaklılar ve derisi dikenliler olmak üzere gruplandırılmışlardır. a) Süngerler: Yapısını oluşturan hücreler arasında iş bölümü vardır.Hücresel farklılaşma görülmesine karşın hücrelerde doku oluşturmak için iş bölümü yoktur. b) Sölenterler: Bu şube üyeleri oyu bir kese gibi düzenlenmiş tek açıklı sindirim boşluklarına sahiptirler.Örnek:deniz anası, hidra, mercanlar. c) Yassı solucanlar: Sinir ve üreme sistemlerine sahiptirler.Örnek: tenya, planoria. d) Yuvarlak solucanlar: Bitki ve hayvanlarda parazit yaşarlar.Örnek: bağırsak solucanı. e) Böcekler: Vücutlarının tamamı epidermisin salgıladığı kitin ile kaplıdır.Trache solunumu yaparlar. CANLILARDA BESLENME İLİŞKİLERİ Besleme sistemine göre canlılar üreticiler(ototroflar) ve tüketiciler(heterotroflar) olmak üzere iki grupta incelenir.Üretici canlılar(ototroflar) kendi besinlerini yapar.Tüketiciler(heterotroflar) besinlerini kendileri yapamaz.Doğrudan veya dolaylı olarak ototrof canlılardan sağlar. OTOTROF BESLENME Kendi besinini kendisi sentezleyebilen organizmalara ototrof (üretici) canlı denir.Enerji sayesinde inorganik maddelerden organik madde sentezleyebilirler.Bitkiler, algler ve bazı bakteriler ototrof canlılardır.Kullanılan enerji kaynağına göre, ototrof organizmalar fotosentez yapanlar ve kemosentez yapanlar olmak üzere iki bölümde incelenir.fotosentez yapan canlıların klorofili vardır.bunlar klorofilleri sayesinde güneş ışınlarını soğurarak organik besinlerde kimyasal bağ enerjisine çevirirler. Kemosentez yapan organizmalar genellikle bakterilerdir.Bunlar gerekli enerjiyi amonyak, hidrojen, sülfür gibi belirli inorganik maddeleri oksitleyerek sağlar. Nitrit bakterileri amonyağı nitrite, nitrat bakterileri nitriti, nitrata dönüştürür.bu sırada açığa çıkan enerji bakteriler tarafından ATP sentezinde kullanılır.Bu şekilde gerçekleşen ATP sentezine kemosentetik fosforilasyon denir.Bu ATP inorganik maddelerden organik maddelerin sentezi sırasında kullanılır. Nitrit ve nitrat bakterileri azot döngüsünde rol oynar.Amonyağı, yeşil bitkilerin kolayca alıp kullanabileceği nitrat bileşiklerine dönüştürür.Amonyağın nitrata dönüştürülmesine nitrifikasyon denir. HETEROTROF BESLENME İnorganik maddelerden organik besin yapamayan, organik besinleri hazır olarak alan canlıların beslenme biçimine heterotrof beslenme denir.Böyle beslenen canlılara dış beslek veya tüketiciler adı verilir. Heterotrof canlıların beslenme ve yaşama şekilleri holozoik, simbiyoz, saprofit olmak üzere üç grupta incelenir. a) Holozoik Beslenme:Bu şekilde beslene canlılar besinlerini katı parçalar halinde alarak sindirirler.bunların sindirim sistemleri, avlarını yakalayabilmek için duyu organları, sinir sistemleri ve kas yapıları gelişmiştir.Otçul hayvanlar, etçil hayvanlar ve hem otçul hem etçil hayvanlar bu grupta incelenir. b) Birlikte Yaşama:İki veya daha fazla türün bir arada kurdukları yaşam şekline simbiyosim denir.Bu canlılardan biri konak diğeri konuk adını alır.Birlikte yaşama yararlı ve zararlı birliktelikten oluşur.Yararlı birliklerin beslenme biçimi kommensalizm ve mutualizm dir.Zararlı birlikteliklerin ise parazitizmdir. 1) Mutualizm:Bir arada yaşayan canlıların karşılıklı olarak yarar sağlaması şeklindeki beslenme biçimidir.Bu beslenme biçimine en tipik örnek likenlerdir.Liken, mantar ve yeşil algler in birlikte oluşturdugu bir yaşama birliğidir. 2) Kommensalizm:Bir canlı üzerinde yaşadığı canlıya zarar vermeden bu canlıdan yararlanıyorsa bu yaşama şekline kommensalizm denir.Örnek olarak yengeçlerin solungaçlarına tutunarak yaşayan bazı yassı kurtlar. 3) Parazitizm:Bir arada yaşayan iki canlıdan birinin digerini sömürerek ona zarar vermesi şeklinde olan beslenme ilişkisidir.Bazı bakterilerin sindirim enzimleri yoktur.Önemli monomerleri diğer canlı organizmalardan sağlarlar.Böyle bakterilere parazit bakteriler denir. Hastalık yapan parazit bakterilere de patojen bakteriler denir. Bir canlı diğer bir canlının deri ve solungaçlarına yapışarak yaşıyorsa bu canlılara ektoparazit (dış parazit) denir.Koku ve diğer duyu organları iyi gelişmiştir.Bit, pire, tahtakurusu, uyuz böceği, sivrisinek bir ekoparazittir. Bir canlı diğer bir canlının iç kısmında yaşıyorsa endoparazit denir. Bu parazitler hücre içerisinde yaşıyorsa bunlara hücre parazitleri denir.Örneğin sıtmaya neden olan parazit plazmadium al yuvar hücresinde yaşar.Endoparazitler çok sayıda gamet oluştururlar. Bundan dolayı üreme sistemleri çok gelişmiştir Bitki üzerinde yaşayan ve konak organizmanın odun borularından su ve madensel tuzlar alarak fotosentez yapabilen parazitlere yarı parazit denir.Üzerinde yaşadığı konak bitkinin soymuk borularından hazır organik maddeler alarak yaşayan parazit bitkilere tam parazit denir. c) Saprofit (çürükçül) beslenme:Biramayası, küf mantarı ve bakterilerin çoğu besinlerini katı olarak alamazlar.Bunlar gerekli olan organik besin maddelerini kokuşmaya yüz tutmuş bitki ve hayvan ölüleri üzerinden canlı artık ve salgılarından sağlarlar.Saprofitler öncelikle dışarı salgıladıkları enzimle besinlerini sindirir.Daha sonra küçük molekülleri emerler.Bu şekilde heterotrof beslenmeye saprofit beslenme denir.Saprofit bakterilerinin bir kısmı çürümede, bir kısmı ise mayalanmada rol oynar. HEM OTOTROF HEM HETEROTROF BESLENME Sinek kapan ve ibrik otu gibi böcek yiyen bitkiler fotosentezle organik madde yapar.Ayrıca yakaladıkları böcekleri salgıladıkları enzimlerle hücre dışında sindirirler.Daha sonra bu besinleri emerler. DOGADA MADDE DEVRİ Organik artıklar ve cesetler ayrıştırılarak inorganik maddelere dönüştürülür.Bu yollarla serbest kalan inorganik maddeler yeniden fotosentez ve kemosentez de kullanılır hale getirilir.Fotosentez ve kemosentez olaylarıyla inorganik maddeler yeniden organik bileşiklere dönüştürülür. Bu dönüşümlere doğada madde döngüsü denir. Karbon devri: Bir dönümlük şeker kamışı her yıl atmosfer tabakasından 20 ton kadar karbondioksit kullanır.Bitki ve hayvan enerji elde etmek için organik maddeleri yıkar.Karbondioksit ve su ya kadar parçalanır.Hücre solunumu denen bu olay sonucunda oluşan karbondioksit tekrar atmosfer tabakasına verilir. Azot devri: Bitkiler aminoasit ve protein sentezi yapabilmek için gerekli olan azotu, nitrat tuzları olarak topraktan alırlar.Bitkiler tarafından alınan nitratlar bitki hücreleri tarafından aminoasit ve protein sentezinde kullanılır. Ölmüş bitki ve hayvanla, canlıların artıkları ve salgılarındaki proteinli maddeler saprofitler tarafından amonyağa dönüştürülür.Bu olaya pütrüfikasyon (kokuşma) denir. Amonyak nitrit bakterileri tarafından nitrite; nitritte nitrat bakterileri tarafından nitrata dönüştürülür.Bu olaya nitrifikasyon denir. Bitki tarafından kullanılmayan nitratlar azot bozan bakteriler ile parçalanır.Bu parçalanmadan açığa çıkan azot tekrar havaya karışır.Bu olaya denitrifikasyon denir. Havanın azotu toprağa iki şekilde geçer: 1)Yıldırım çakması sonucu azot oksijenle birleşir.Daha sonra su ile etkileşince nitrik asit meydana gelir.Yağmurla toprağa inen nitrik asit toprakta bulunan sodyum ve potasyum bileşikleri ile etkileşerek nitrat tuzlarını oluşturur. 2)Toprakta, havanın serbest azotunu bağlayabilen ve kullanabilen azot bakterileri vardır.baklagillerin köklerindeki urlarda yaşayan ribozom da havanın serbest azotunu bağlayabilir ve azotlu madde yapar.Bu bakterilerin ölüleri topraktaki azotlu organik artıkları oluşturur.

http://www.biyologlar.com/canlilarin-siniflandirilmasi-nedirnasil-yapilir

Leishmania'nın yaşam döngüsü

Diğer bir parazit türü olan Leishmania köpekler aracılığı ile bulaşabilir. Bu grubun alt türü olan Leishmania donovani kalaazar (visseral leishmaniazis) hastalığının etkenidir. Diğer bir alt türü olana Leishmania tropica ise şark çıbanı etkenidir. Bu parazitler için köpekler rezervuar görevi yapar. Flebotomlar (kene ve pire) ise vektör yani taşıyıcılardır. Leishmania donovani insan vücuduna girişinden 2 yada 8 ay sonra etkisini gösterebilir. Dalağın büyümesine neden olur. Leishmania tropica flebotomların ısırdığı yerden deri üzerine lokalize olarak kalır. Cilt hastalığı şeklinde belirti verir. Derinin retiküloendotelial hücrelerinde ve lenfoit dokularında yerleşerek hastalık nedeni oluşturur. Parazitlerin ikinci grubu olan çok hücreliler yassı solucanları içine alır. Kaynak:bilkent.edu.tr

http://www.biyologlar.com/leishmanianin-yasam-dongusu

HAYVANLARI TOPLAMA VE SAKLAMA TEKNİKLERİ

Her hayvan grubu için farklı yöntemler kullanılarak hayvanlar doğal ortamlarından toplanırlar. Salyangozları, midyeleri, zar kanatlılar dışında kalan diğer bütün böcekleri, keneleri, kırkayakları, kurbağaları, tespih böceklerini, toprak solucanlarını, deniz şakayıklarını el ile tutabiliriz. Çıyan, örümcek, kelebek tırtılları ters yüzen   sokucu ve zehirli hayvanları pens ile tutabiliriz.Su böcekleri, kurbağa ve kurbağa yavruları ile çekirge gibi hayvanları fileli kepçe ile, gündüz kelebeklerini, kelebek ağı ile yakalayabiliriz. Elle tutulamayacak kadar ufak olan, suda yaşayan plankton hayvanlarını plankton ağı ile ;suyu biraz derince olan tatlı su veya göllerdeki balıkları serpme veya olta ile, suyu çok azalmış dere, su arkı, çeşme ve ufak pınar ayaklarındaki çeşitli su hayvanlarını  (balık, su böcekleri, böcek larvaları, gammarus vs. gibi) su yolunu keserek yakalayabiliriz. Sığır, at, eşek, köpek, kedi gibi hayvanların vücutlarındaki dış parazitleri sık dişli tarakla taramak suretiyle; yürüyen böcekleri, böcek düşürme kapanları ile: gece uçan böcekleri, ışıklı böcek düşürme kapanları ile yakalayabiliriz. HAYVANLARIN SAKLANMASIAynı şekilde toplanan  her hayvan grubu farklı şekillerde saklanırlar.Tek hücreliler için en uygun saklama ortamı % 4 lük formoldür. Kabuklu ve iskeletli olanları alkolde saklanabilir. Coelenterata, sünger, polip, deniz şakayığı ve deniz anaları bu gruptandır. Bunlarda % 4 lük formolde saklanır. Solucanlar: Yassı solucanlar büzülmelerini önlemek için önce % 1-1,5 lük formolde yada az ısıtılmış % 5-10 luk alkolde öldürülüp sonra % 4 lük formole konulur. Yuvarlak solucanlarda Sıcak alkolde öldürüldükten sonra % 4 lük formole konur. Halkalı solucanlar ise önce su içerisinde öldürülür sonra % 4 lük formole konulur. Yumuşakçalar: Salyangozların büzülmelerini önlemek için önce suyu bir kapta 10-15 dk. kaynatınız, soğudunuz. Silme olarak bir kaba doldurunuz. Kabuklu ve kabuksuz hayvanları içine atınız. Üzerini camla hava kalmayacak şekilde kapatınız. 24 saat içinde hayvanlar ölür (Ayak ve tutkaçları uzamış şekilde).  Hayvanların üzerine bol sofra tuzu serpilir ve 1 dk sonra tazyikli suyla yıkanır. Bu olay 3 defa tekrar edilir. Böylece sümüksü sıvılar  temizlenmiş olur. Sonra % 4’lük formole koyulur.Eklem bacaklılar:  Formol ve alkolde saklanacak eklem bacaklıları önce 24 saat kadar 3 kısım % 70 lik alkol ve 1 kısım gliserin karışımında bekletiriz. Sonra % 5 gliserinli  % 70 lik alkole alınır.  Yada % 4 lük formole alınır. Balıklar, Kurbağalar ve Yılanlar:  Bu gruptaki hayvanlar uygun şekilde öldürülürler. (Sıcak su içene bırakmak, sulandırılmış eter içine koymak, anüsten vücut içine eter enjekte etmek, kapalı kap içinde eterle öldürmek yada sulandırılmış sodyum pental enjekte ederek öldürmek). Öldürülen hayvanların gövde ve bacaklarına uygun bir şekil verilir. Üzerlerini örtecek kadar formol- alkol konur. Bu şekilde 1-4 gün beklenir. Sonra çeşme suyunda yıkanan hayvanlar % 70 lik alkol içerisine alınır.  Yarasalar: Yarasalar hem kuru (post halinde) hem de sulu ortamlarda koleksiyon edilebilirler Yarasalar sadece % 70 lik alkolde saklanırlar Memelilerin ve kuşların tamamı post çıkarma yöntemi ile koleksiyona uygun hale getirilirler (25).

http://www.biyologlar.com/hayvanlari-toplama-ve-saklama-teknikleri

Kist Hidatik (Echinococcus granulosus) yaşam döngüsü

Yassı solucan (Plathelminthes) grubundaki sestodların (şeritler) bir türü olan Echinococcus granulosus köpeklerde bulunur. Köpek dışkısı ile atılan yumurtaların ağızdan alınması ile insana bulaşabilir. Yumurtalar barsaklarda açılarak larvalar açığa çıkar. Kan dolaşımı ile çeşitli organlara geçerek hastalık yapar. Bu parazit türü kist hidatik denilen hastalığa neden olur. En sık karaciğer, ikinci sıklıkta akciğer olmak üzere beyine de yerleşebilir. Tedavide ilaç uygulaması yapılır. En etkin yöntem ise cerrahi müdahale ile kistin parçalanmadan çıkartılmasıdır. Kaynak: www.bilkent.edu.tr

http://www.biyologlar.com/kist-hidatik-echinococcus-granulosus-yasam-dongusu

Hayvanlar Alemi ve Hayvanların Sınıflandırılması

İnsanoğlunun isim kullanmaya başlaması sistematiğin başlangıç noktası olarak kabul edilir. MÖ 383- 322 yıllarında Aristo "hayvanlar yaşam şekillerine, hareketlerine, vücut yapılarına, alışkanlıklarına göre sınıflandırılabilir" diyerek bu bilimin temelini oluşturur. Bu düdşünce 2000 yıl sürmüştür. 1627- 1705 yıllarında John Ray sınıflandırmada doğal sistemi ileri sürmüştür. Linne yazdığı Systema Natura adlı kitabıyla zoolojik nomenklatürün başlangıcını oluşturmuştur. Linnenin çalışmaları birçok sistematikçiyi etkilemiş, hatta bir sonraki yüzyıla da damgasını vurmuştur. Bu nedenle Linne taksonominin babası olarak kabul edilmiştir. 100 yıl sonra Charles Darwin evrim teorisi ile tüm çalışmaları etkilemiştir. 1866da Haeckelin filogenetik ağaç sistemi sistematikçilere yararlı oluştur. Bu dönem taksonominin en önemli periyodu olmuştur. Hergün yeni cinsler, takımlar ortaya çıkmıştır. Daha sonraki yıllarda sadece türler düzeyinde alışmalar yapılmıştır. Mendel kanunlarının bulunmasıyla önce genetiğin, sonra populasyon genetiğinin gelişimi gerçekleşmiş, günümüzde sistematik çalışmalarda moleküler düzeye inilmiştir. Günümüzde tanımlanmış ve sınıflandırılmış 1.350.000 tür olduğu bilinmektedir. Bunların 1.300.000ini omurgasızlar oluşturmaktadır. Geri kalan fosilllerle birlikte 65.000 tür Chordata şubesinde incelenmektedir. Günümüzde yaşayan yaklaşık 43.000 kordalı bulunmaktadır. Bunun 42.000i Vertebrataya, 1000 kadarı da ilkel kordalılara aittir. Hayvanlar aleminin Sınıflandırılması İlim adamları bir milyona yakın hayvan çeşidi keşfetmişler ve daha da yenileri keşfedilmektedir. Hayvanların sayıları da türden türe değişir. Hayvanlar hemen hemen dünyanın her yerine yayılmışlardır. Kutuplardaki buzullardan ekvator bölgelerine, basıncın insanın dayanamayacağı kadar yüksek olduğu okyanus diplerinden atmosfer yoğunluğunun çok az olduğu yüksek dağların zirvelerine kadar her yerde yaşarlar. Hayvanların büyüklükleri de oldukça değişiktir. İnsan akyuvarlarının içinde yaşayan hayvanlar ve 30 metreden büyük balinalar vardır. Sistemli bir metodla hayvanların sınıflandırılması, onların incelenmesinde büyük kolaylıklar sağlar. Böylece yeni keşfedilen türler, bilinenlerle olan münasebetine göre uygun bir sınıfa konur. Hayvanların ve bitkilerin hususiyetlerine sahib olan bazı canlılar vardır ki, bunların sınıflandırılması zordur. Bunlardan bir tanesi bir tatlı su canlısı olan öğlenadır. Kamçısı ile suda hareket edebilir. Fakat bu canlı klorofil maddesi ihtiva eder. Bundan dolayı öğlenayı botanikçiler bitki, zoologlar hayvan olarak kabul eder. Kış uykusuna yatan, göç eden, geviş getiren, elektrik ve ışık üreten çeşitli hayvan grupları vardır. Mevsimlere bağlı olarak renk değiştirenler, kilerlerinde kışlık yiyecek depo edenler, köle kullananlar da mevcuttur. Ayı gerçek manada kış uykusuna yatmaz. Kırlangıç ve leylekler soğuklar yaklaşınca sıcak ülkelere göç eder. Koyun, keçi, deve gibi hayvanların mideleri birkaç bölmeli olduğundan geviş getirerek besinlerini ikinci bir öğütmeye tabi tutarlar. At geviş getirmez. Gelincik, avlarını felçleştirerek canlı olarak kilerlerinde depolar. Bugün halen keşfedilememiş yüzlerce hayvan türü vardır. Hayvanlar Alemi 1. Omurgalılar a. Memeliler b. Kuşlar c. Sürüngenler d. Amfibyumlar e. Balıklar 2. Eklembacaklılar a. Böcekler b. Örümcekler c. Çok ayaklılar d. Kabuklular 3. Yumuşakçalar a. Kafadanbacaklılar b. Karındanbacaklılar c. Yassı solungaçlılar 4. Derisidikenliler a. Denizkestaneleri b. Denizyıldızları c. Yılanyıldızları d. Denizhıyarları e. Denizlaleleri 5. Solucanlar 6. Selentereler (Sölentereler) 7. Süngerler 8. Bir Hücreliler a. Kökbacaklılar b. Kamçılılar c. Haşlamlılar d. Sporlular

http://www.biyologlar.com/hayvanlar-alemi-ve-hayvanlarin-siniflandirilmasi

DİNOZORLAR (Dinosauria)

Çoğunlukla İkinci jeolojik zamanda (Mezozoik dönem) havada, suda ve karada yaşamış ve soyu tükenmiş sürüngenlerin bir takımına verilen ad. Dinosaurus, yâni dinozor “Korkunç kertenkele” demektir. Et yiyeni, ot yiyeni, cücesi, devi, hantalı, atiği vardı. Paleontologların dinozor fosilleri üzerinde yaptıkları zaman incelemeleri, bunların I. jeolojik zamanın Permiyen devrinde, yâni bundan 270 ilâ 225 milyon yıl kadar önceki bir zaman diliminde, dünyâ sahnesine çıkmış olabileceklerini ortaya çıkarmıştır. Bunlar arasında 30 m uzunluk ve 80 ton ağırlığa ulaşanları mevcuttu. Uçan bâzı türlerinde kanat uçları arası 16 metreyi buluyordu. Serçe kadar olanları da vardı. Dinozorların muazzam cüsselerine rağmen, ayaklarının diğer sürüngenlerde olduğu gibi vücutlarının yanında değil de gövdelerinin altında oluşu hareket kabiliyetlerini kolaylaştırmıştır. Tyrannasaurus Rex (korkunç kertenkelelerin kralı) adındaki çeşidinin, saatte 70 km’lik bir hızla koşabildiği, Robert Bakker tarafından ispat edilmiştir. 250 milyon yıl kadar önce yaşadıkları sanılan dinozorlar, 65-70 milyon yıl önce, II. jeolojik zamanın son devri olan Kretase (veya tebeşir) devrinde birdenbire tükendiler. Dinozorlar, yıllardır soğukkanlı, aşırı büyümüş kertenkeleler olarak tanınmıştır. Son yıllarda yapılan incelemeler, davranışları hakkında kıymetli bilgiler ortaya çıkarmıştır. Bu bilgiler, 1978 yılında jeolog Jack Horner ile Bob Makela’nın ABD’de Montana’da 80 milyon yıl kadar önce fosilleşmiş 15 dinozor yavrusunu barındıran taşlaşmış bir yuvayı keşfetmesiyle elde edildi. Bu keşiften sonra iki jeolog her yıl bu bölgede kazılarına devam ederek, çeşitli devrelerinde iken fosilleşmiş birçok dinozor fosili ihtivâ eden on kadar yuva ve yüz kadar da dinozor yumurtası buldular. Yuvalarda farklı büyüklükte yavruların varlığı, dinozorların yumurtadan çıkan yavrularını belli bir gelişme devresine kadar besleyip koruduklarını ve yüksek bir analık şefkatine sâhib olduklarını ortaya koydu. Jeolog Horner, dinozorların soğukkanlı hayvanlar olmalarının da desteklediği hızlı bir bazal metabolizmaya sâhib olduklarını ve bu sebepten hızlı bir büyüme sergiledikleri iddia edilmektedir. Birçok araştırmalar ise, dinozorların gerçekte sıcakkanlı, yüksek vücut metabolizmaları olan hayvanlar oldukları eğilimine ağırlık kazandırmıştır. Bu yeni teoriye göre dinozorların tıpkı memeli hayvanlar gibi karmaşık fizyolojileri ile yeryüzünün değişik çevrelerinde yaşadıkları ileri sürülmektedir. Dinozorlar arasındaki teorilerin birbirinden farklı olmasında bu yaratıkların fizyoloji ve hayat tarzlarını incelemek için elde bulunan tek imkânın müzelerdeki dinozor kalıntılarından ibâret olmasının büyük payı vardı. Kalıntılara dayanarak ilmî sonuçlar bulmak imkânı yok gibidir. O yüzden dinozorlar hakkındaki bilgiler bir spekülasyondan ileri gidemiyordu. Günümüzde ise yapılan çalışmalar sonucunda dinozorlar hakkındaki bilgilerimiz artmış bulunmaktadır. Yavrularına karşı olan şefkatleri, sosyal alışkanlıkları, avlanma stratejileri, zekâ seviyeleri, beslenme rejimleri gibi çeşitli konularda net bilgiler elde edilmiş bulunmaktadır. Dinozorların nesli niçin tükendi? Bu konuda çeşitli hipotezler ileri sürüldü: İklimin soğuması, besin kaynaklarının değişmesi, oksijen azlığı, kozmik ışınların artması, memeli hayvanların saldırısı vs. Bugüne kadar bu hipotezlerin hiç biri herkesçe kabul edilmedi. California Üniversitesi Jeoloji Profesörü Walter Alvarez’e göre, 65 milyon yıl önce dünyâya birkaç yıldız çarptı. Meydana gelen toz bulutları güneşi sakladı. Dünyâda yaşanan uzun meteor kışının soğuğuna dayanamayan çeşitli canlılarla berâber dinozorlar da kayboldu. Alverez, teorisini yıldızlarda bulunan iridyum madeninin dinozor kalıntılarında bol miktarda görülmesine dayandırmıştı. Sovyet jeologu Vasili Yeliseyev ise, dinozorların raşitizm denen kemik yumuşaması hastalığından öldüklerini ileri sürmektedir. Dinozorlar yeryüzünde 180 milyon yıl kadar yaşadılar. Bu süre içinde dünyâ iklimi çok değişti ve ilkel Gondvana kıtası parçalanarak bugünkü kıtalar meydana geldi. Dinozorlar bu büyük değişmelere rağmen kendilerini yeni ortamlara uydurdu ve çoğalmaya devâm etti. Kretase devri sonlarına doğru (bundan 65 milyon yıl kadar önce) dinozorlar birden bire tükendi. Vasili Yeliseyev, Kongo Halk Cumhûriyetinin balta girmemiş ormanlarında incelemeler yaparken orman hayvanlarının savan hayvanlarından çok daha küçük olduğunu fark etti; gri gazel, tavşan büyüklüğündedir. Büyük kirpilerin ılık kuşaklarda yaşayanları çok iri olduğu hâlde orman kirpileri küçük bir aslan yavrusu kadardır. Orman zürafası (okapi) 1.5-2 m, savan zürafası ise 6 m yüksekliktedir. Cengel (balta girmemiş orman) su aygırları 1.5, savan su aygırları ise 4 m uzunluktadır. Fil avcıları, cengel fillerinin dişlerinin savan fillerine göre daha küçük ve kalitesiz olduğunu söylemektedir. Kongo köylerinde erişkin keçiler oğlak kadardır. Bütün bunların sebebi ne? Cengellerde yağmur suyu CO2 ve organik asitlerle yüklü olduğundan çok aşındırıcıdır, kayaları şiddetle aşındırır ve toprağın derinliklerine sızar, bu sırada topraktaki Na, K ve Ca gibi eriyen elemanları yıkayıp götürür. İskeletin gelişmesi içinse, kalsiyum tuzları gereklidir. Nemli ormanlarda yaşayan hayvanların küçük oluşu bununla ilgilidir. Buna karşı savanlara çok daha az yağmur düşer. Bu yağmur derinlere sızamadan buharlaşır, böylece savanlarda kalsiyum tuzları toprakta kalır; savan bitki ve hayvanları bu kalsiyumu kullandıklarından büyük olur. Peki bunların dinozorlarla ilgisi nedir? Kretase sonlarına doğru geniş kurak alanları su bastı. Dünyânın iklimi sıcak ve nemli bir hâl aldı, öyle ki kuzey kutbunda palmiyeler büyüdü. Denizlerin çok yayılması sonucu nemlilik çok arttı ve dinmeyen yağmurlar başladı. Bu büyük yağmurlar topraktaki Ca tuzlarını yıkayıp denizlere ve göllere götürdüler. Toprak kalsiyumca fakirleşince dinozorların kemikleri yumuşadı ve tonlarca ağırlığın altında eğrildi. Bu dev hayvanlar bundan öldü. Kazılarda eğrilmiş dinozor kemiklerine çok rastlanmaktadır. Dinozor yumurtalarının kabuklarının inceldiği ve kusurlu olduğu da anlaşılmıştır. Raşitizm önce ot yiyici dinozorları çökertti, bunlar et yiyici dinozorların kurbanı oldular. Et yiyici dinozorlar ot yiyici dinozorlar ölünce öldü, çünkü yiyecek bir şey kalmamıştı. Kalsiyumsuz kalmak kedi kadar küçük dinozorları etkilemedi, kaplumbağa ve kertenkeleler de kalsiyum eksikliğinden etkilenmedi. Küçük dinozorlarla memeliler arasında bir ölüm- kalım savaşı başladı ve memeliler bütün cüce dinozorları yiyip bitirdiler. Dinozorlarla ilgili bir diğer esrar da bâzı yerlerde üstüste yığılmış dinozor iskelet ve kemiklerine rastlanmasıdır. Âdetâ dinozorlar ölmek için belli bir noktaya toplanmışlardır. Böyle bir “dinozor mezarlığı” Büyük Sahra’da Agades civârında bulunmuştur. Bugün bunun açıklaması şöyle yapılmaktadır: Dinozorlar çok ağır oldukları için karada kolay yürüyemiyorlardı, ömürlerinin büyük bir kısmını herhalde suda geçirdiler. Ot yiyen dinozorların dişleri çok zayıf bulunmuştur ve bunların yalnız yumuşak su bitkileri yiyebildikleri düşünülmektedir. Büyük ihtimâlle dinozorlar sularda, özellikle ırmaklarda öldü; akıntıyla sürüklenen cesetler deniz ve göllerde birikti. Sâkin denizlerin dibinde kalan ve üstleri hızla örtülen iskeletler bütün halde bugüne kadar kaldı. Buna karşı dalgalı bir kıyıya erişen iskeletler parçalandı, kemikler aşındı ve birbirine karıştı. Kretase sonlarında denizler karaları istilâ etmeseydi bugün belki dinozorlar görülebilecekti. Milyonlarca yıldır devâm eden dünyâ ve onun üzerinde zamanla değişen hâdiseler insanlar için büyük bir ibrettir. Bir yaratıcının bulunduğuna işârettir.

http://www.biyologlar.com/dinozorlar-dinosauria

BİYOKRİMİNAL ENTOMOLOJİ

Böcekler çeşitli özellikleri nedeniyle cinayetlerin çözümüne katkıda bulunabilmektedirler; Cinayetlerin çözümüne nasıl yardım ettiklerinden önce böcekler dünyasına kısaca bir bakalım. Böcekler Dünya üzerinde yaşayan en kalabalık canlı grubunu oluşturmaktadır. Yaklaşık 1.5 milyon böcek türü Dünya’yı bizimle birlikte paylaşmaktadır. Kutuplar ve derin denizler hariç heryerde böcekleri görmek mümkündür. Dünya üzerinde insanlardan sonra en baskın canlı grubu olarak yeralmaktadırlar. Yeryüzündeki en başarılı canlı grubu böceklerdir çünkü: Çok küçük vücuda sahip olmaları Kanatlarının bulunması Larva veya ninfleri ile erginlerinin farklı besin maddeleri üzerinde beslenmeleri Çok sayıda yavru oluşturabilmeleri Kütikülaya sahip olmaları Hacimlerine göre yüzey alanlarının az oluşu Böcekler hemen heryerde yaşayabildiği gibi her türlü besinlede beslenebilmektedirler. Canlı bir bitkinin kök, gövde, dal, yaprak, meyva, tohum, ölü bir bitkinin tüm kısımları, depolanmış besinler, kıl ve ölmüş tüm hayvanlar ve insan üzerinde beslenebilmektedirler. Vücut üç bölümden oluşmaktadır. Baş, toraks ve abdomen. Vücudun her tarafını çok sert yapıda olan kütikula yada diğer ismiyle dış deri örtmektedir. Bu deri yani kutikula böcek erginliğe ulaşırken belirli aralıklarla atılmak zorundadır (Derinin atılması ve konu ile ilgisini anlat). Baş üzerinde göz, ağız ve antenler yeralmaktadır. Toraksta ise yürüme ve uçma görevini üstlenen bacaklar ve kanatlar yeralmaktadır. Abdomende çeşitli sistemler bulunmaktadır. Böceklerin gelişme ve değişme yani metamorfoz tiplerine baktığımızda ise birbirinden farklı metamorfoz tipleri olduğunu görüyoruz. Bunlar Ametabola, Neometabola, Hemimetabola (yarım metamorfoz),Holometabola (tam metamorfoz) Holometabola yani tam metamorfoz cinayetlerin saatinin veya gününün belirlenmesinde kullanılan temel unsurdur. Holometabola bir böceğin gelişmesi yumurta, larva, pupa ve ergin olmak üzere dört bölüme ayrılmaktadır. Böcek canlı üzerine yumurtalarını bırakır, bu yumurtalar türe özgü olarak birkaç saatten birkaçgüne uzanan bir sürede geliştikten sonra açılmaktadır. Açılan yumurtalardan genç larvalar çıkar. Bu larvalar çıkar çıkmaz hızlı bir şekilde beslenmeye başlarlar. Yine türe özgü olarak değişen günde gömlek değiştirerek ikinci larva çıkar. Larvanın beslenmesi ve gömlek değiştirmesi ardı ardına devam eder. Her gömlek değiştirmede larvanın boyu büyürken şeklide nispeten değişiklik göstermektedir. Son deri değiştirildikten sonra larva pupa dönemine girmektedir. Pupa döneminde larvaya ait organlar yıkılarak yerine ergin böceğe özgü yenileri yapılmaktadır. İşte bu döngünün tamamlanması bir jenerasyon veya kuşak veya döl olarak adlandırılmaktadır. Bu döngünün tamamlandığı süre her tür için değişiklik göstermektedir. İşte bu sürelerin bilinmesi cinayetin nezaman işlendiği hakkında ipuçu vermektedir. ENTOMOLOJİYİ KULLANARAK ÖLÜM NEDENİNİN BULUNMASI * Bir suç araştırmasında, kurbanın ne zaman öldüğünü bilmenin yanısıra, nasıl öldüğünü bilmekte çok önemlidir. Bu bilgi katilin bulunmasında kullanılabilir. * Zehire, kanda, idrarda, mide içeriğinde, saçta ve tırnakta rastlanabilir. Başka bir önemli kaynakta ceset üstünde oluşan larvalardır. Bir süre sonra mide içeriğinden, kandan veya idrardan tahlil yapmak olanaksızlaşırken larvalardan, boş pupalardan ve larvasal deri parçalarından örnek almak hala mümkündür. Bu kimyasalların çoğu larvaların hayat döngüsünü de etkiler. Örneğin yüksek dozlarda kokain bazı Sarcophagidlerin gelişimi hızlandırır. • Bir insectisid olan malathion, çoğunlukla intiharlarda kullanılır ve ağız yoluyla alınır. Ağızda malathion olması, olası kolonileşmeyi geciktirir. • Bir antideprezan olan amitriptyline, Sarcophagidae türlerinin en az bir tanesinin oluşumunu 77 saate kadar uzatabilir. • Kurbanın uyuşturucu yada ilaç kullanıp kullanmadığının bilinmesi, sadece ölüm sebebi değil, ölüm zamanı tahmininde de yardımcı olur. * Ceset üzerinde leşsineklerinin sardığı yerlerde ölüm sebenin bilinmesi veya ölümden önceki olayların yeniden göz önünde canlandırılabilmesi için çok önemlidir. Örneğin kurban ölmeden önce bir yaralanma veya bozulma geçirmişse, geçirmemişe göre daha değişik yerlerinde istila olabilir. Bıçak saldırısında, korunma amaçlı olarak olarak kollar, boğazın ön kısmını ve kafayı kapatır. Bu durumda kolun alt kısımları yaralanır ve ölüm sonrasında leş sinekleri buraya yerleşebilir. * Böceklerin insanlar üzerinde genel yerleşme yerleri doğal açıklardır. Bu yerler tercih edilir. Leş sinekleri çoğunlukla yüz bölgelerinde, nadirende genital bölgelere yumurtalarını bırakırlar. Eğer ölüm cinsel saldırı sonrası olduysa, genital bölgelerdeki kanama sonucu, leş sinekleri buralara yerleşmeyi tercih ederler. Bu şekilde, genital bölgelerde sinek oluşumu varsa, cinsel saldırı düşünülür. Tabii ayrıca bu düşünce diğer kanıtlara da uymalıdır. Doğal bozunmanın sonucu olarak, yumurtaların genital bölgelere yerleşmesiyle, bölgeler birkaç gün (4-5) içinde larvalarla dolar. ENTOMOLOG OLAY MAHALLİNDE HANGİ BİLGİLERİ EDİNEBİLİR Entomologlar genelde cinayetlerin üzerinden ne kadar zaman geçtiğinin belirlenmesi için çağrılırlar. Entomologlar toplanmış derecelendirilmiş zaman tekniği olarak bilinen, tür süksesyonu, larval uzunluk ve daha birçok değişik tekniği de içeren yöntemle, gerekli veriler elde olduğunda çok değerli işler yapabilirler. Nitelikli bir adli entomolog olası postmortem zamanı için tahminlerde de bulunabilir. Bazı sinekler değişik habitatları seçerler. Mesela yumurtalarını koymak için kapalı veya açık alan tercih eden böcek türleri vardır. Açık alanlarda gölge veya güneşte duran leşleri tercih edebilirler. Bu durumda üzerinde kapalı alanda büyüyen sinek larvaları bulunan leşin açık alanda bulunması, ölümden hatta böcek yayılmasından sonraki zamanlarda cesedin taşınıp, yerinin değiştiğinin göstergesidir. Benzer olarak cesedin dondurulması veya sarılma, üzerinde oluşması muhtemel böcek süksesyonunun değişmesine neden olur. Böceklerin normal yumurta bırakma sürelerini engelleyen herhangi bir olay, türlerin sırasını ve tipik kolonileşme zamanlarının değişmesine neden olur. Bu normal böcek süksesyonundaki veya faunasındaki değişiklik, eğer normal ortamda veya coğrafik koşullarda ne olması gerektiği biliniyorsa, adli entomologlar için farkedilmemesi imkansız bir olay olur. Böceklerin hiç olmaması ise cesedin postmortem aralıkta, dondurulduğu, sıkıca kapatılmış bir konteynerde olduğu yada çok derine gömüldüğü sonucu ortaya çıkarabilir. Entomolojik kanıtlar, saldırı yada tecavüz gibi durumların da ortaya çıkarılmasında yardımcı olabilir. Kurbanlar eğer kötü kıyafetler içinde yada dışkı ve idrarlı (sidikli) kıyafetler içinde bulunurlarsa bağlandıkları yada uyuşturuldukları yani muhakeme kabiliyetinde olmadıkları anlaşılır. Bu tip maddeler, herhangi başka bir durumda bulunamayacak bazı bazı böcek türlerini çekerler. * Bozunan insan kalıntılarından toplanan böcekler toksik analizler için de değerli kanıtlar olurlar. Böceklerin doymak bilmez iştahı cesedi kısa bir sürede iskelet yığınına çevirebilir. Çok kısa sürede toksik analiz için gereken kan ve sidik gibi vücut akışkanları ve yumuşak doku yok olabilir. Ama böcek larvaları toplamak ve bunları insan dokusuymuş gibi standart toksik analizlere sokmak mümkündür. Böcekler üzerinde toksik analiz yapmak başarılı olabilir çünkü ölümden sonra insan dokuları üzerinde bulunan ilaç ve toksinler böcek larvalarında da benzer sonuçlar doğurur. ÖLÜM ZAMANININ TAHMİNİ * İlk çürümeden sonra, ceset kokmaya başlar, çeşitli böcek türleri cesede gelmeye başlar. Genellikle ilk gelen böcekler Dipterler yani sinekler. Özellikle leş sinekleri blow flies yani Calliphoridae ve et sinekleri Sarcophagidae’ ler. * Dişi böcekler ceset üzerine yumurtalarını özellikle burun, göz, kulak, anüs, penis ve vajina gibi doğal boşluklar civarına bırakırlar. Eğer ceset üzerinde yaralar varsa yumurtalar böyle kısımlara da bırakılır. Et sinekleri (flesh flies) yumurta yumurtlamazlar bunun yerine larva bırakırlar. * Kısa bir süre sonra, türlere bağlı olarak, yumurtalardan küçük larvalar çıkar. Bu larvalar ölmüş doku üzerinde beslenirler ve hızla büyürler. Kısa bir zaman sonra larva deri değiştirir ve ikinci larval döneme ulaşır. * Sonra çok fazla beslenir ve deri değiştirerek üçüncü larval döneme geçer. Larva tam olarak büyüdüğünde hareketsiz kalamamaya başlar ve cesedin içinde dolaşmaya başlar. Bu dönem prepupal safha olarak adlandırılır. Prepupa deri değiştirerek pupal safhaya geçer fakat üçüncü larval dönemdeki deri, daha sonra puparyuma dönüşen, korunur. Tipik olarak yumurtadan pupal safhaya 1-2 hafta arasında bir zaman geçer. Tam zaman türlere ve çevre sıcaklığına bağlıdır. Leş sinekleri (Blow flies) ve et sineklerinin bazı türlerinin yaşam döngüsünün tablosu burada sağlanabilir ve leş sineklerinin yaşam döngüsü buradan sağlanabilir. Böceklerin yardımıyla ölümün zaman tayininin arkasındaki teori yada tercihen ölüm sonrası zaman aralığı (kısaca PMI) işlemi çok basittir: ölümden hemen sonra vücuda böcekler geldiği zaman böceğin yaş tahmini ölümün zamanının tahmini yolaçacaktır. Leş sineğinin yumurta, larva, pupa ve ergininden nasıl yaş tayin edilir. Yumurta: Leş sineği yumurtladığı zaman, yumurtaları embiryonik gelişmesi çok kısa sürede olmaktadır. Yumurtalar yaklaşık 2 mm uzunluğundadır. İlk sekiz saat süresince yada daha fazla gelişmeyle ilgili çok az işaret vardır (dıştan gözlenen herhangi bir gelişme olmaz bununla birlikte ilk 8 saatte segmentasyon vardır. Daha sonra organ taslakları oluşmaya başlar Protrpod- Oligopod, asetat göster). Bu değişikliklerden sonra yumurta safhasının sonunda yumurtanın koriyonu boyunca larvayı görebiliriz. Yumurta safhası tipik olarak bir gün yada biraz daha fazla sürede sonlanır. Larva: Leş sineği üç larval deri değiştirmeye sahiptir. İlk deri değiştirmede 1.8 gün sonra yaklaşık 5 mm. boyundadır, ikinci deri değiştirmede 2.5 gün sonra yaklaşık 10 mm. uzunluğundadır, üçüncü deri değiştirmede 4-5 gün sonra yaklaşık 17 mm. uzunluğundadır. Tam larval dönemi teşhis etme en kolayıdır ve larvanın büyüklüğü, larvanın ağız parçaları ve vücudun posteriöründeki stigmaların yapısı temel alınarak yapılır. Farklı larval dönemler arasındaki farklılığın nedeni mikroklimaya, örneğin sıcaklık ve neme bağlıdır. Biraz sıcaklık nem ilişkisini anlat. Prepupa: Larva üçüncü deri değiştirmenin sonunda hareketlenmeye başlar ve vücuttan uzaklaşmak için harekete geçer (bu leş sinekleri için karakteristik bir davranıştır). Cesedin kanı kademeli biçimde boşaltılacak, ve yağ doku (fat body) kademeli olarak larvanın iç yapısına katılacak. Biz larvanın bir prepupa ya dönüştüğünü söyleriz. Prepupa yaklaşık 12 mm. boyunda ve yumurtlamadan sonra 8-12 gün arasında görünür. Pupa: Prepupa kademeli olarak zamanla koyulaşan pupa ya dönüşür. Yaklaşık 9 mm. boyunda olan pupa yumurtlamadan sonra 18-24 gün arasında görünür. Boş pupariumun bulunmasıyla adli entomolog söz konusu kişinin yaklaşık 20 günden fazla bir süre önce ölmüş olduğunu söylemelidir. Teşhis, üçüncü larval derinin geride kalan ağız parçalarından yapılabilir. Önemli bir biyolojik olayda vücudun değişik kısımlarında başarılı olan (beslenen) organizmaların bir süksesyon yani bir silsile oluşturmalarıdır. Örneğin, Kemik üzerinde özelleşmiş olan Coleopterler kemik ortaya çıkıncaya kadar bekleyeceklerdir. İlk olarak cesede ulaşan leş sinekleridir (Blow flies), kısa süre sonra Coleoptera’dan Staphylinidler izler. Bozulmanın (çürümenin) ilerlemesiyle, bir çok grup olay mahalline ulaşır, birçok grup, vücuttaki sıvıların sızması sebebiyle kurumasından hemen önce olay mahallinde yeralır. Vücut kuruduktan sonra, Dermestidler, Tineidler ve belirli akarlar ceset üzerinde baskın grup olacaklardır ve leş sinekleri kademeli olarak gözden kaybolacaklardır. Topraktaki faunanın nasıl değiştiğinede dikkat et. Bu da ölümden sonraki zamanının tahmininde kullanılabilir. Böceklerin ardı ardına gelme bilgisi (silsile:süksesyon) bir database içine dahil edilebilir ve bir entomolog bir olayı araştırmaya başladığı zaman ceset üzerinde bulunan taksonu bilgi olarak kullanabilir ve ölüm zamanının tahmininde veri olarak kullanılır. Birçok böcek, çürümekte olan ceset üzerinde yaşamada özelleşmişlerdir. Bir örnek, ölümden sonra 3-6 ay arasında larvası oluşan peynir sineği, Piophila casei, dir. Bu tür bütün dünyada peynir ve salam zararlısı olarak iyi bilinir ve bütün dünyaya yayılmıştır. Ergin peynir sineği ölümden sonra ilk (erken) safhalarda bulunabilir fakat larva daha sonra oluşur. İnsan cesedinin kalıtılarında en erken gözlem (tespit) ceset iki aylık olduğu zamandır ve bu durum en iyi yaz koşullarındadır. OLAY YERİNİN ENTOMOLOJİK KANITLAR İÇİN İNCELENMESİ Olay yerinde izlenmesi gereken prosedür habitata göre değişmektedir fakat biyokriminal entomologların görevlerini genel olarak beşe ayırabiliriz. 1- Olay yerinde görsel gözlem ve not alma. 2- İklimsel verilerin olay yerinde toplanmaya başlaması. 3- Ceset yerinden oynatılmadan önce vücut üzerinden örnekler alınması. 4- Ceset yerinden oynatılmadan önce 6 metreye kadar yakın çevresinden örnekler alınması. 5- Ceset alındıktan sonra, tam altından ve 1 metreye kadar yakın çevresinden örnekler alınması. Olay yerindeki böcek aktivitesinin gözlenmesi çok yararlı olabilir çünkü, entomologlar bu konuda olay yerini inceleyen araştırıcılardan daha değişik şekilde eğitim alırlar. Entomolog, araştırıcıların göremeyeceği yada önemsemeyeceği bir şeyi farkedebilir. Yada tam tersi olabilir. Olay Yerinde Nelere Bakılmalıdır? * Olay yeri hangi habitat içindedir: şehir, şehir içi mi, kırsal bir alan mı, yoksa sulu bir bölge mi? Ormanlık mı, yol kenarı mı, kapalı bir bina mı, açık bir bina mı, havuz mu, göl mü, nehir mi yoksa tamamen farklı bir habitat mı? Habitat, cesedin üzerinde hangi tip böcek olması gerektiği belirleyecektir. Ceset üzerinden toplanan entomolojik kanıtlar eğer bulunduğu yerin habitatına uymuyorsa , bu, bedenin başka bir yerden getirilip atıldığına işaret olabilir. * Uçucu ve sürüngen böceklerin çeşitlerinin ve sayılarının değerlendirilmesi. • Ceset üzerinde ve çevresinde gelişen böcek oluşumunun en fazla olduğu yerlerin not edilmesi. Bu istilanın yumurta, larva, pupa veya ergin gibi hangi evrede olduğu. Tek bir tanesi yada herhangi birilerinin beraber olması gibi. • Yetişkin bir tür böceğin yetişkin olmadan önceki evrelerinin incelenmesi. Bu evreler yumurta, larva, pupa(lık), boş pupa(lık), larva derilerinin bırakılması, tortu maddesi, çıkış delikleri ve beslenme izleri gibi olabilir. • Arı, karınca veya yabanarıları ve başka farkılı böceğin verdiği zararların not edilmesi. • Cesedin tam olarak yerinin el ve ayak gibi parçalarının yerinin belirlenmesi. Yüzün ve kafanın durumu. Hangi vücut parçalarının yerle temas ettiğinin belirlenmesi. Gün ışığında, gölge ve ışığın nereye geldiğinin not edilmesi. • Cesedin 3-6 m. yakınındaki böcek aktivitesinin kontrol edilmesi. Cesedin civarındaki, uçan, dinlenen ve sürünen, yetişkin, larva veya pupa dönemi böceklerin not edilmesi. • Yaralanma, yanma, gömülme, parçalanma gibi doğal olmayan, çöpçü ve bunun gibi insanların sonradan verdiği değişikliklerin not alınması. Bu görüntülerin hepsinin fotografı çekilmeli. Böceklerin toplanmadan önce hangi evrelerde oldukları da fotograflanmalı. Olay Yerinde İklimsel Verinin Toplanması PMI nin hesaplanmasında iklimsel verilerin olay yerinde toplanması çok önemlidir. Böceğin hayat çemberinin uzunluğu genelde olay yerindeki sıcaklık, bağıl nem gibi hava olaylarına bağlı olarak belirlenir. Aşağıdaki iklimsel veriler olay yerinde toplanmalıdır: 1- Cesedin 0.3-1.3 m. civarındaki yerel sıcaklık. 2- Yerin ve üstünde varsa eğer herhangi bir örtünün sıcaklığını termometre yerleştirilerek ölçülmesi. 3- Vücudun sıcaklığının da termometro yerleştirilerek ölçülmesi. 4- Vücut altı sıcaklığının yer ile ceset arasına konulan bir termometro ile ölçülmesi 5- Larva yoğunluğunun, merkeze konulan bir termometre ile ölçülmesi. 6- Toprağın vücut kaldırıldıktan sonraki sıcaklığın ölçülmesi. Ayrıca bedenin 1-2 m. uzağındaki sıcaklık ölçülmelidir. Bu üç aşamalıdır: Tam altından (çim ve yapraklar), 4 cm. Derinden ve 20 cm derinden Hava durumu, olay yerine en yakın meteoroloji istasyonundan öğrenilebilir. Minimum gereksinimler, maksimum ve minimum sıcaklık ve kalıntının miktarıdır. Öteki bilgilerin de toplanması güzel olur ve olayların yeniden yaratilmasında yardımcı olur. İklimsel veriler, kurbanın son görüldüğü ana kadar uzatılıp incelenmelidir. Cesedin Kaldırılmasından Önce Örneklerin Toplanması Olay Yerinde Böceklerin Bedenden Toplanması: İlk önce toplanması gereken böcekler yetişkin sinekler ve böceklerdir. Bu böcekler hızla hareket ederler ve suç mahallini hızla terkedebilirler. Yetişkin sinekler biyolojik merkezlerden tedarik edilebilecek böcek ağlarıyla yakalanabilir. Etil asetat yada alelade tırnak cilası ile böcekler hareketsizleştirilir. Daha sonra % 75 lik etil alkol bulunan şişeye aktarılır. Toplanan örneklerin etiketlendirilmesi çok önemlidir. Etiketler siyak kurşun kalemle yapılmalıdır, kesinlikle tükenmez veya dolma kalem kullanılmamalıdır. Etiket örnekle birlikte alkol içine atılmalıdır. Toplama etiketi aşağıdaki bilgileri içerir. 1- Coğrafik konum 2- Toplama saati ve günü 3- Olay numarası 4- Beden üzerinde toplama yapılan bölge 5- Toplayanın ismi Etiket iki adet olarak hazırlanmalı ve biri şişenin dışına diğeri içine konmalıdır. Ergin örnekler toplandıktan sonra, ceset üzerinden larval örneklerin toplanmasına başlanabilir. Önce araştırmacı kolay görülemeyecek yumurtaları araştırmalı. Bu adımdan sonra, larva beden üstünde kolayca görünür Verilerin Analiz Edilmesi Ölümden Sonra Ceset Hareket Ettirildi mi? Ölümden sonra, cesedin üzerinde mantarlar, bakteriler ve hayvanlar kolonileşmeye başlarlar. Cesedin, üzerinde yattığı yerde zamanla değişebilir. Cesetten sıvıların sızıp gitmesiyle bazı böcekler yok olurken, bazılarının da sayısı zamanla artar. Biyokriminal entomolog ceset üzerindeki faunaya bakarak ne kadardır orada olduğunu ve cesedin altındaki topraktaki böcekleri inceleyerek de yaklaşık ölüm zamanını tahmin edebilir. Eğer ikisi arasında bir farklılık varsa, yani toprak analizi kısa PMI’I, vücut faunası da uzun bir PMI’I gösteriyorsa, bu cesedin hareket ettirildiğine bir işaret olabilir. Bazı Calliphoridler güneş severdir, yumurtalarını sıcak yüzeye koymayı tercih ederler, yani güneşli yerlerde bulunan cesetler üzerinde oluşurlar. Diğer leş sinekleri gölgeleri tercih ederler. Örneğin Lucilia güneşi tercih ederken Calliphora gölgeyi tercih eder. Bazı türler sinantropiktir yani şehirsel bölgelerde yaşarlar. Bazıları da sinantropik değildir, onlar kırsal alanlarda görülürler. Calliphora vicina sinantropik bir sinektir, çoğunlukla şehirlerde rastlanır. Calliphora vomitoria ise kırsal alanlarda bulunan bir türdür. Ölüm Yeri İşlemleri (Cinayet mahalindeki İşlemler) Yer incelemeleri ve hava verileri; olay yerinde bedenden böceklerin toplanması; bedenin yerinin değiştirilmesinden sonra böceklerin toplanması; toplanan böceklerin biyokriminal entomologlara gönderilmesi Böceklerin ve diğer arthropodların ölüm yerinden toplanması sırasında cesete verilebilecek zararlara dikkat etmek önemlidir. Bu yüzden entomologlar (yada olay yerinde görevli toplama yapan kimse) öncelikli araştırıcıyla temasa geçilmeli ve entomolojik delilleri toplamak için bir plan yapılmalı. Olay yeri gözlemi ve hava verileri: Ölüm yerinin entomolojik araştırması belli adımları izleyerek analiz edilebilir. 1- Olay yerinin gözleminde bitki örtüsü için habitata ve bedenin yerine ve eğer bir bina içindeyse açık pencere yada kapıya yakınlığına dikkat edilmelidir. Beden üstündeki böcek istilalarının yeri en az böceklerin hangi evrede olduğunun (yumurta, larva, pupa, ergin) belirlenmesindeki kadar dikkat edilerek belirlenmeli. Omurgalı hayvanlar, yumurta ve larvanın ve diğer böceklerden ötürü –ateş karıncaları gibi- işe yarayacak kanıtların belirlenmesi yararlı olur. Ölüm yerinin şekli üzerindeki gözlemlerde de en az bunlarda olduğu kadar dikkat edilmelidir. 2- Olay yerinde klimatolojik verilerin toplanması. Bu veri şunları içermeli: a) Olay yerindeki hava sıcaklığı gölgede, bir termometre ile, göğüs yüksekliğinde, yaklaşık olarak belirlenebilir. TERMOMETREYİ DİREKT GÜNEŞ IŞIĞINA MARUZ BIRAKMAYIN. b) Larva kütlesinin ısı derecesi (larval yığından direkt termometre ile almak) c) Yer yüzeyinin sıcaklığı. d) Bedenle yer arasında kalan yerin sıcaklığı (tamamen iki yüzey arasında kalan kısımda bırakılan termometre ile). e) Toprak sıcaklığı doğrudan vücudun altından alınır (vücut kaldırılınca derhal sıcaklık alınır). f) Hava verileri maksimum ve minumum günlük ısı derecesini ve sağnak yağışı, kurban kaybolmadan 1-2 hafta öncesinden bedenin bulunmasından 3-5 gün sonrasına kadar ki periyodu içerir. Bu bilgiler ulusal hava durumu ofislerinden yada devlete bağlı klimatoloji ofislerinden elde edilebilir. Biyolog Yalçın DEDEOĞLU

http://www.biyologlar.com/biyokriminal-entomoloji

TAİGA

İğneyapraklı tundra ormanlarının güneyinde yer alır. İklimi, sürekli don olan topraklardaki gibi değildir. Fakat sürekli düşük sıcaklık tipiktir. Taiga faunası içinde soğuğa dayanıklı orman sakinleri artmıştır. Tüm tundra hayvanlarını bulundurmasının ötesinde, ilave olarak belirli bir zenginlikte orman faunasını da barındırır. Böyle bir ortamda, rengeyiklerinin ekosistemdeki en önemli diğer hayvan türlerinden, parazitlerden, düşmanlardan ve besin rekabetçilerinden nasıl etkilendiği aşağıdaki şekilde gösterilmiştir. Kızılgeyik (Cervus) gibi diğer büyük memeliler arasındaki ilişkiler de aynı rengeyiğindeki gibi ortaya çıkar. İğneyapraklı orman topraklarında hem ince hem de çok verimli olmayan bir humus tabakası oluşur. Bu tabaka, akarları, sıçrarkuyrukluları, ipliğimsisolucanları ve çok sayıda da böcek larvalarını barındırır. Her ne kadar taiga alanlarında buzul dönemlerinden sonra bir gerileme olduysa da, yine de taiga bugün yeryüzünün orta düzlükte olan büyük bir biyolojik bölgesini ve aynı zamanda Kanada-Sibirya kara hattının medeniyet tarafından en az tahrip edilmiş bölgesini oluşturmaktadır. Bununla birlikte, burada da aşırı ağaç kesimi ile kürk hayvanı avcılığı önemli tahribatlara neden olmaktadır. Taiganın en azından birkaç merkezi bölgesinin milli parklar biçiminde düzenlenerek tamamen yok edilmekten kurtarılması gerekmektedir.

http://www.biyologlar.com/taiga

Ancylostoma caninum'un yaşam döngüsü

Yuvarlak solucan (Nemahelminthes) grubunda incelenen Ancylostoma caninum türü köpek veya kedi barsak parazitidir. Hayvan dışkısı ile kirlenmiş toprakta bulunur. Özellikle de çocukların toprağa çıplak ayakla basması durumunda parazit larvalarının deri yolu ile alınması mümkündür. Bu duruma kutanöz larva migrans denir. Larvalar deri altında dolaşır ve şişliklere neden olur. Vücuda giriş yerinde şiddetli kaşıntı ve değişik derecelerde anemi olabilir.

http://www.biyologlar.com/ancylostoma-caninumun-yasam-dongusu

Toxocara canis'in yaşam döngüsü

Yuvarlak solucanların bir diğer türü olan Toxocara canis köpek ve daha az sıklıkla kedilerde askariazis etkenidir.Bu hayvanların dışkısı ile toprağa bulaşan yumurtalar insanlar tarafından ağız yolu ile alınır. Bu durum özelliklede çocukların kirli toprakla temas ettikten sonra ya da insanların hayvanların dışkısını temizledikten sonra ellerini yıkamayı ihmal etmesi sonucunda bulaşabilir. Sindirim sistemimizde yumurtalardan çıkan larvalar erişkin hale geçemezler. İnsanda viseral larva migrans ya da toxocariasis adı verilen hastalığı yapar. Karaciğer, akciğer, beyin ve göz gibi organ tutulumları görülür Kaynaklar Hacettepe Mikrobiyoloji Ders Notları: Uzm. Dr. Alper TÜNGER-Uzm. Dr. Ahmet BASKAN Tusem Mikrobiyoloji: Uzm. Dr. Bahri TEKER Enfeksiyon Hastalıkları: Dr. Behiç ONUL Tıbbi Mikrobiyoloji: Ernest JAWETZ, Joseph L. MENICK, Edward A. ADELBERG www.evcilcanlilar.com.tr/parazit.htm Web sayfasının dizaynı ve resimlendirilmesi Aytuna Devrim Canbul tarafından yapılmıştır.      

http://www.biyologlar.com/toxocara-canisin-yasam-dongusu

HYLEA

Havası çok nemli, sürekli yeşil kalan ve bütün yıl boyunca büyüme gösteren bitki örtüsü olan ve içinde çok sayıda hayvan türünü barındıran subtropik ve tropik ormanları içine alan kuşaktır. Bu yüzden balta girmemiş tropik ormanlarda hemen bütün hayvan grupları çok sayıda türle temsil edilir. Hayvanlarda çok değişik vücut şekilleri ve parlak renkler bulunur. Buralarda kuşlar ve böcekler (özellikle kelebekler) tür çeşitliliği ve renk zenginliği ile göze çarpar. Uygun iklim koşulları, öncelikle çok nemli hava ve don olayının görülmemesi bazı arkaik (eski) hayvan gruplarının barınmasına da olanak verir. Öteki bölgelerde ortadan kalkan ya da çok azalan hayvan türleri, burada zengin bir çeşitlenmeye ve yayılışa sahiptir. Bunlara, amfibiler (Gymnophion = körsemenderler), sürüngenler (büyük yılanlar, kaplumbağalar), çıplaksalyangozlar, karagirdapı solucanları, kütükayaklılar (Onychophora), çok güzel yapılı Buprestidae türleri örnek olarak verilebilir. Böcekler için genelde bütün takımların ve ilave olarak da yaşlı familyaların hyleada temsil edilmekte oldukları söylenebilir. Parazit derisinekleri (Chalcididae) ve kısa kınkanatlıların (Staphylinidae) tropik türleri, bilinen tür sayısının %50'den fazlasını oluşturur. Hyleadaki türler çoğunlukla az sayıda bireyle temsil edilir. Madde döngüsünün hızlı olması hylea için tipiktir. Organik maddelerin hemen hemen tümü ve keza gerekli olan minerallerin çoğu canlı vücudunda bulunduklarından, toprak hem organik madde hem de mineral bakımından çok fakirdir. Ölü ve atık organik maddelerin hemen parçalanması ve keza elektrolitlerle birlikte tekrar canlı vücuduna alınması nedeniyle, balta girmemiş ormanlardaki sular elektrolit bakımından son derece fakirdir ve ayrıca humus oluşumu da zor olmaktadır. Hızlı madde dönüşümünün bir sonucu besin maddesi birikimi de başlayamadığından, hyleadaki hayvan türleri (memeliler, kuşlar ve böcekler) birey bakımından az sayılarda bulunur. Yani onlara seyrek olarak (ya da tek tek) rastlanır; aynı besin üzerinden beslendiklerinden aynı türün sürü hali genellikle görülmez. Hayvanların kitle ya da sürü halindeki büyük topluluklarına, hyleanın ormanlaşmamış karasal ekosisteminde rastlanır. Tropik ormanlarda yaşayan ilkel kabilelerin nüfus yoğunluğu çok azdır. Çünkü toplayıcı ve avcı olarak geçimini sağlayan bu kabilelerin, büyük miktarlarda hayvansal besin bulmaları zordur. Son zamanlarda özellikle gelişmiş ülkelerin tüccarları, yangın çıkarmak suretiyle, hyleada belirli alanları ve aynı zamanda mineral yataklarını tahrip ederek, bu bölgeleri, ekonomik tropik bitkilerin (muz, kahve, hindistancevizi, mısır vs.) üretimine yönlendirmeye çalışmışlardır. Bu şekilde kazanılan topraklar, mineral bakımından fakir olduğu için, genellikle kısa zamanda verimsizleşmiştir. Birkaç yıl sonra yeni alanlar açılmak ve yeni yangınlar çıkarılmak suretiyle tahribatın boyutları gittikçe genişlemektedir. Bütün uyarılara karşın, bu tahribatlar, dünyanın geleceğini tehdit edecek şekilde sürüp gitmektedir. Bu yerlerde döküntü tipi yeni ikincil ormanları oluşmaktadır. Hyleanın asıl toplulukları hiçbir şekilde geri gelmemektedir. Tropik ülkelerdeki mali yetersizlikler ve politik karışıklıklar, bilimsel bir ağaçlandırmayı ve büyük bir titizlik gerektiren bir programın uygulamaya konmasını güçleştirmektedir. Böylece, sadece memeli ve kuşlar değil, bu bölgelerde yaşayan her çeşit canlı yok olma tehlikesiyle karşı karşıya gelmiş bulunmaktadır.

http://www.biyologlar.com/hylea

Solucanlar

*Az gelişmiş omurgasız hayvanlardır. *Çoğu tatlı sularda, denizlerde ya da dip çamurlarda yaşarlar. *Hareketlerini uzunlamasına kasların uzayıp kısalmasıyla sağlarlar. *Hermafrodittirler. Her solucan hem sperm hem yumurta hücresi üretir. *Boyları birkaç mm’den 4 metreye kadar uzanır. *Parazit olan türlerin tutunma organları gelişmiştir. *Sürekli karanlıkta yaşadıklarından gözleri gelişmemiştir. *Gelişmişlik düzeylerine göre yassı solucanlar, yuvarlak solucanlar, halkalı solucanlar şeklinde sıralanır. Yassı Solucanlar *Parazit yaşarlar. *Vücutları baş, boyun ve gövdeden oluşur. *Sindirim sistemleri gelişmemiştir. *İnsan ve omurgalıların barsaklarında yaşarlar ve bu canlılara zarar verirler. *Örnekler: Karaciğer kelebeği, planarya, tenya Yuvarlak Solucanlar *Nemli toprakta, sulak alanlarda,yosunlar arasında yaşarlar. *Büyük bir bölümü parazittir. *Sıcak ülkelerde yaşayan türleri insanın bağırsağına girerek kan emerler, zayıflamaya sebep olurlar ve tehlikelidirler. *Örnekler: Kancalı kurt, medine kurdu,bağırsak kurdu Halkalı Solucanlar *9000 türü vardır. Ama en önemlisi Toprak solucanıdır. *Kapalı dolaşım, deri solunumu, kendini yenileme görülür. *100 gün suda kalsalar bile yaşarlar. *% 70 su kaybına kadar dayanabilirler. *Yağmur yağınca toprak yüzeyine çıkarlar, bunun nedeni toprakta hava boşlularının suyla dolmasıdır. *Örnekler: Toprak solucanı ,Sülük

http://www.biyologlar.com/solucanlar

MEMELİ HAYVANLAR

Memeliler ya da Mammalia, hayvanlar aleminin insanların da dahil olduğu, omurgalıların en evrimleşmiş grubudur. Dünya üzerinde yaklaşık 4500 memeli türü bulunur. Bunların 200 kadarı Avrupa’da görülebilir, Türkiye ise tek başına yaklaşık 170 memeli türü barındırmaktadır. Çift ve karmaşık dolaşım sistemine sahip, sabit vücut sıcaklıklı hayvanlardır. Vücutları genellikle kıllarla örtülüdür. Genç bireyler anne sütü ile beslenirler. Genellikle bacak şeklinde oluşmuş dört üyeleri vardır. Solunumda diyafram kullanırlar. Alt çeneleri bir çift kemikten oluşmuştur; orta kulaktaki kemikler üç parçalı olup kulak zarı ve iç kulakla bağıntılıdır. Hemen hepsinde yedi boyun omuru vardır. Memeliler, sıcak kanlı yaratıklardır. Yani vücut sıcaklıkları genel olarak çevre koşullarından bağımsızdır. Vücutları tüylerle kaplıdır ki, bu doku bazı türlerde dikenli bir hal alabilir (örneğin kirpi) ya da azalıp neredeyse pürüzsüz hale gelebilir; insan, yunus ve balinalarda olduğu gibi. Doğurarak çoğalırlar. Yavru memeliler, genel olarak belirli bir gelişim evresini tamamlayıncaya kadar annelerinin karnında taşınır. Doğum sırasında yavrunun gelişmişliği memeli türüne göre değişkenlik gösterir. Kör (ve genelde çıplak) doğan ve bazen yıllarca annesi tarafından yetiştirilen memeli türleri olduğu gibi, doğumun ardından kısa süre içinde koşmaya ya da yüzmeye başlayan memeli türleri de vardır. Ancak genel olarak memelilerde, yavruların belirli bir süre anne tarafından bakımı zorunludur. Dişi memeli, yavrusunu bebeğin gelişimi için gerekli bileşenleri içeren zengin içerikli sütü ile besler. Memelilerin vücut büyüklükleri değişkendir. En küçük memeli, bir böcekçil olan Cüce fare (Suncus etruscus - ortalama 6 cm, 2 gr); en büyük memeli ise Mavi balina'dır (Balaenoptera musculus - ortalama 35 m, 120 ton). Memeli vücudu, sıcak veya soğuk iklim koşulları ile mücadele için de farklı özelliklere sahiptir. Karasal memeliler için kalın bir kış kürkü, deniz memelileri için deri altında kalın bir yağ tabakası veya yağlanmış bir kürk bu mücadelenin silahlarıdır. Bazı memeliler de kış uykusuna yatarak, bu dönemi enerjiden tasarruf ederek geçirir. Yiyeceğin bol olduğu dönemde vücudunda depoladığı fazladan kalorileri, yiyeceğin kıt olduğu bu dönemde ‘uyku’ durumunda iken yakar. (Sincaplar, ayılar ve porsuklarda olduğu gibi.) Bu durum gerçek bir kış uykusu halini de alabilir (yediuyurlar ya da yarasalarda olduğu gibi) yani bu süre içinde canlılar, yaşamsal faaliyetlerini ve vücut sıcaklıklarını minimuma indirirler. Bazı memeli türleri insanlar tarafından evcilleştirilmiştir ve yabani türleri ortadan kalkmış ya da çok az kalmıştır. (İnek, at, koyun gibi.) Bilimsel sınıflandırma Alem: Animalia Hayvanlar Şube: Chordata Kordalılar Alt şube: Vertebrata (Omurgalılar) İnfa şube: Gnathostomata (Gerçekçeneliler) Üst sınıf: Tetrapoda Sınıf: Mammalia (Memeliler) Linnaeus, 1758 Yavrularını süt salgılayan göğüs bezleriyle beslediklerinden bu hayvanlara Mammalia adı verilmiştir. Bu hayvanlar Jura'da memeli benzeri sürüngenlerden (Synapsida alt sınıfının Therapsida takımından) ayrı bir dal şeklinde meydana gelmişlerdir. Bu gruptaki hayvanların temel özelliklerinden birisi de tümünün vücudunda az yada çok sayıda kılın bulunmasıdır. Memeliler üç ana gruba ayrılır. Bunların arasında tekdelikliler yada yumurtlayan memeliler olarak tanınan grup ornitorenk ve ekidnelerden oluşur. Bu ilginç hayvanların yavruları, kışlar gibi yumurtadan çıkar, ama sonra anne sütüyle beslenir. İkinci grupta keseliler yer alır. Keselilerin yavruları çok az gelişmiş olarak doğar. Yeni doğanların uzunluğu genellikle 6 santimetreyi aşmaz. Başlıca keseliler arasında opossum, tasmanyaşeytanı, bandikut, kuskus ve kangru sayılabilir. Eteneli memeliler en geniş memeliler grubunu oluşturur. Plasenta adıyla da tanınan etene, annenin içinde gelişen ve yavru ile anne arasında köprü kurarak doğana kadar yavruyu besleyen bir organdır. Eteneli memeliler başlıca 10 grup altına toplanabilir: Böcekçiller (Insectivora) en çok eski dünyada bulunmakla birlikte bir ölçüde Kuzey Amerika’ya da yayılmıştır. Köstebekler, kirpiler ve sivrifareler en bilinen üyeleridir. Yarasalar (Chiroptera), uçan memelileri kapsar. Hemen hemen bütün iri yarasalar meyveyle beslenirken, küçüklerinin çoğu böcekleri avlar. Primatlar (Primates) maymunlar ve insanlardan oluşur. Gelişmiş beyinleri ve el becerileriyle dikkat çekerler. Dişsizler (Edentata) ya dişten tümüyle yoksundurlar yada ağızlarında basit yapılı birkaç diş taşırlar. Armadillo, karıncayiyen ve tembelhayvan bu grubun üyeleridir. Kemiriciler (Rodentia) tür ve birey sayısı en çok olan memelilerdir. Tür sayısı 4000’i aşan memelilerin yarısından çoğunu kemiriciler oluşturur. Kobay, fare ve sıçanın yanı sıra oklukirpi, kunduz ve sincap da kemiriciler arasında yer alır. Etçiller (Carnivora) aslan, kaplan, pars, sırtlan, sansar, ayı, kedi, ve köpeği de içeren yırtıcı hayvanlardır. Denizde yaşamaya büyük bir uyum gösteren foklar ve morslar ise genellikle yüzgeçayaklılar (Pinnipedia) adıyla ayrı bir grupta toplanır. Balinalar (Cetaca) hemen hemen tümüyle kılsız, balık biçimdeki memelilerdir. Suyun dışında yaşayamazlar. Gerçek balinaların yanı sıra yunuslar ve musurlar da bu grupta yer alır. Mavi balina yaşayan en iri hayvandır. Filler (Proboscidea) günümüze yalnız iki türüyle ulaşabilmiş kara hayvanlardır. Tektoynaklılar (Perissodactyla) at, eşek, zebra, tapir ve gergedandan oluşurlar. Toynaklar, bu ve sonraki grubun ayak parmaklarını çevreleyen, kalınlaşarak başkalaşıma uğramış tırnaklarıdır. Çifttoynaklılar (Artiodactyla) deve, geyik, zürafa, sığır, antilop, keçi ve koyun gibi gevişgetirenlerin yanı sıra domuz, pekari ve suaygırı gibi gevişgetirme özelliği bulunmayan hayvanları da kapsar. KARAKTERİSTİK ÖZELLİKLERİ 1. Vücutları genel olarak belirli zaman aralıklarında dökülen kıllarla kaplıdır. Derilerinde ter, yağ, koku ve süt bezleri gibi çeşitli salgı bezleri bulunur. Bazı memelilerin vücut ve kuyruk kısımlarında sürüngenlerinkine benzeyen pullar vardır. 2. Balinalar (Cetacea) ve Deniz inekleri (Sirenia) gibi deniz memelileri dışında kalanlarda dört üye vardır. Bu deniz memelilerinde arka üyeler kaybolmuştur. Her bir üyede 5 veya daha az sayıda parmak bulunur. Gerek üyeler ve gerekse parmaklar çeşitli yaşam biçimlerine göre, örneğin, yürümek, koşmak, tırmanmak, yüzmek, uçmak ve kaçmak gibi görevleri yerine getirecek şekiller kazanmışlardır. Parmak uçlarında boynuz yapısında tırnak ve toynaklar, parmak altlarında ise etli yastıklar mevcuttur. 3. İskelet iyi bir şekilde kemikleşmiştir. Kafataslarında 2 oksipital kondil, boyunlarında 7 tane omur bulunur. Kuyrukları uzun ve hareketlidir. 4. Her iki çenede de mevcut olan dişlerin kök kısımları çukurluklar içerisine gömülüdür. Dişler beslenme durumlarına göre çeşitli şekiller gösterir. Bazılarında dişler bulunmaz. Dilleri çoğunlukla hareketlidir. Gözlerinde hareketli göz kapakları, kulaklarında etli bir dış kulak kısmı bulunur. 5. Kalpleri 2 kulakçık ve 2 karıncık olmak üzere 4 odacıklıdır. Kuşların tersine bunlarda yalnız sol aort kökü bulunmaktadır. alyuvarları yuvarlak ve çekirdeksizdir. 6. Solunumları yalnız akciğerlerle olur. Larinkste ses çıkarmaya yarayan ses telleri bulunur. Kalp ve akciğerlerin yer aldığı göğüs boşluğunu karın boşluğundan ayıran ve diyafram adı verilen kaslı bir bölme vardır. Böyle bir yapı memeliler dışında hiç bir hayvan grubunda görülmez (kuşlardaki bölme kaslı değildir). 7. Vücut sıcaklığı sabittir ve çevre koşularına bağlı olarak değişiklik göstermez (Homoiothermus). Vücut sıcaklığı metabolizma sonucunda sağlanır (endeterm). Vücut üzerinde bir kıl örtüsünün varlığı, deri altında vücudu saran bir yağ tabakasının bulunması ve kirli kan ile temiz kan dolaşımının birbirlerinden tümüyle ayrılmış olması, vücut sıcaklığının değişmezliğini sağlayan özelliklerinden bazılarıdır. 8. Sidik keseleri vardır ve boşaltım maddesi sıvı haldedir. 9. Beyinleri gelişmiş, cerebrum ve cerebellum kısımları oldukça büyüktür. Beyinden 12 çift sinir çıkar. 10. Erkeklerinde bir kopulasyon organı (penis) mevcuttur. Testisleri genellikle karın boşluğu dışında yer alan ve scrotum adı verilen torbalar içerisinde bulunur. Yumurtaları küçük ve kabuksuzdur. Yumurtanın gelişmesi yumurta kanalı (ovidukt)'nın değişmesiyle meydana gelen döl yatağında (uterus) tamamlanır. Amnion, korion ve allantois gibi embriyonik zarlar mevcuttur. Genellikle embriyoyu uterusa bağlayarak onun beslenmesini ve solunumunu sağlayan bir plasenta bulunmaktadır. yavrular doğumdan sonra dişi hayvanın süt bezlerinden salgılanan süt ile beslenir. - Memeliler sürüngenlerden meydana gelmiş olmalarına karşın onlardan bir çok yapısal farklılıklar gösterirler. Bu farklılıkların en önemlileri şunlardır: 11. Memelilerde vücut örtüsü olarak pullar yerine kıllar bulunur. Yalnız bazı memelilerin vücutlarında ve kuyruk bölgelerinde sürüngenlerden kalma bir özellik olarak hala pullar mevcuttur. 12. Memelilerin kafatasında iki oksipital kondil bulunur (sürüngenlerde bir tane) ve beyin kutusu daha büyüktür. 13. Memelilerde göğüs boşluğu ile karın boşluğunu birbirinden ayıran kaslı bir diyafram vardır 14. Memelilerde alt çene kemiği bir parça halindedir (sürüngenlerde çok sayıda). 15. Memelilerde alt çene kemiği doğrudan kafatası ile eklem yapmaktadır (sürüngenlerde quadratum ile eklem yapar). 16. Memelilerin orta kulağında incus, malleus ve stapes olmak üzere üçlü bir kemik zinciri vardır (sürüngenlerde yalnız stapes karşılığı olan Columella iç kulakta bulunur, diğer iki kemik çene ile birleşmiştir). 17. Memelilerde belirli zamanlarda dökülen dişler bulunur (sürüngenlerde dişler belirli zamanlarda değiştirilmez). 18. Memelilerde kalp dört odacıklıdır ve yalnız sol aort kökü mevcuttur. 19. Memelilerde ses kutusu çok iyi gelişmiştir (sürüngenlerde körelmiştir). 20. Memeliler yavrularını salgıladıkları süt ile beslerler. 21. Vücutlarında kılların bulunması, görme, işitme ve koku alma duyularının çok gelişmiş olması, beyinlerindeki cerebrum ve cerebellum kısımlarının gelişmişliğine bağlı olarak tüm faaliyetleri iyi bir şekilde koordine edebilmesi, öğrenme ve öğrenilen şeylerin hatırda tutulmasına yarayan bir bellek oluşumu ise memelilerin kuşlardan daha evrim geçirmiş olduklarını kanıtlayan özelliklerdir.

http://www.biyologlar.com/memeli-hayvanlar

Solucan Diseksiyonu

Lumbricus terrestris, Annelida (halkalı solucanlar) filumunun Oligochaeta klasisindendir. Bunlarda sölom arka arkaya sıralanmış birçok sölom keselerinden meydana gelmiştir. Bu keselerin meydana gelmesi vücutlarının dış taraftan da bölmelere (segment, metamer) ayrılmasına neden olmuştur. Toprak solucanlan nemli topraklarda yaşarlar. Yuvarlak ve ince silindiri andıran vücutlarının dorsal kısmı koyu, ventral kısmı ise nisbeten açık renklidir. Segment sayıları 100 den fazladır. Her segmentte karın tarafta önden arkaya dönük iki çift ve lateral de iki çift olmak üzere dört çift kıl bulunur. Toprak solucanlarının vücutları dıştan ince bir kütikula ile örtülüdür. Kütikula tek katlı epidermisin bir salgısıdır. Epidermis hücreleri arasında derinin nemli ve kaygan olmasını sağlayan birçok tek hücreli bez bulunur. Epidermisin altında kontraksiyon hareketi ile solucanın uzayıp kısalmasını sağlayan halka ve enine kaslar bulunur. Epiderrmsle birlikte bunlar kas deri kılıfını oluştururlar. Vücudun ön tarafında ve biraz ventralinde ağız, son segmentte de anüs bulunur. Baştan itibaren ventralde 14. segmentte dişi, 15. segmentte de erkek üreme organı açıklıkları vardır. Ancak bu açıklıklar gözle farkedilmezler. Bundan başka ergin solucanlarda şubat ve ağustos aylarında 32. ve 37. segmentler arasında kalan deri kısmı halka biçiminde kalınlaşır ve buradaki mukus bezleri gelişir. Bu yapıya klitellum denir. Klitellum kopulasyon (çiftleşme) sırasında çıkarılan salgı ile solucanların sıkıca sarılmalarını sağlayarak kopulasyonu kolaylaştırır. Aynca klitellum, yumurtaların çevresine jelatinimsi bir salgı çıkarır. Solucanlar karanlığı severler. Görme organları olmadığı halde ışığa karşı çok duyarlıdırlar. Bu duyarlılıkları epidermis hücreleri arasında bulunan pigmentsiz ve ışıktan etkilenen hücrelerden kaynaklanır. Toprak solucanının sırt tarafında ve her segmentinde ufacık delikler vardır. Eğer solucan kuruma tehlikesiyle karşılaşacak olursa vücut sıvısı bu deliklerden dışarı çıkarak hayvanı ölüm tehlikesinden korur. Vücut sıvısı ile vücut dışına çıkan lenf hücreleri solucan üzerindeki bakterileri yerler. Sindirim kanalı boru şeklindedir. Ağızdan sonra gelen kaslı bir farinks ile ince bir özefagus vardır. Özefagusu kısa bir kursak takip eder. Bundan sonra gelen katı ve orta bağırsaktır. Bağırsağın dorsal kısmı bağırsak yüzeyinin genişlemesine yarayan ve tiflosolis adı verilen bir çöküntü meydana getirir. Bağırsak, dorsal ve ventral mezenterlerle vücut boşluğuna asılı bir durumda bulunur. Bağırsağın üzeri chlorogogen denilen yeşilimsi- kahverengi hücrelerle örtülüdür. Bu hücreler içinde metabolizma sonucunda oluşan maddeler birikir. Bu hücreler daha sonra vücut boşluğuna düşerek boşaltım organları vasıtasıyla dışarı atılırlar. Sinir sistemi her segmentte sinir hücrelerinin bir araya gelmesiyle teşekkül etmiş olan bir çift gangliondan ibarettir. Bu ganglionlar sinir şeritleri aracılığı ile birleşmişlerdir. Ayrıca segmentteki ganglionları birbirine bağlayan sinir şeridine komissur, diğer segmentlerdeki ganglionları birleştiren sinir şeritlerine de konnektif denir. Ganglionlar bağırsağın altında, yani vücudun ventralindedir. Yalnız baş taraftaki serabral ganglionlar farinks üzerinde, yani dorsalde yer alırlar. İlk kez halkalı solucanlarda görülen bu sinir sistemine ip merdiven sinir sistemi denir. Annelidierin dolaşım sistemleri kapalıdır. Bu özellikleriyle omurgasız hayvanlar içinde istisna teşkil ederler. Solucanlarda esas olarak bağırsağın üst ve alt tarafında uzanan sırt ve karın damarları vardır. Bu damarlar her segment arasında bir çift lateral damar vasıtasıyla birbirleriyle birleşirler. Bu lateral damarlarda 7. ile ıı. segmentler arasında bulunan beş çift, kontraktil olduklarından kalp görevi yaparlar. Kanın akışı dorsalde arkadan öne, ventralde ise önden arkayadır. Kanın rengi kırmızıdır. Solunum deri ile yapılır. Boşaltım organları nefridiumlardır. Her segmentte bir çift nefridium bulunur. Her nefridiumun bir ucu nefrostom denilen kirpikli bir huni ile başlar. Kirpikli huninin uzantısı segmentler arasındaki dissepimentleri delerek kendinden sonraki segmentte boşaltım kanalını meydana getirir ve dışarı açılır. Toprak solucanları hermafrodittir. 10. ve 11. segmentlerde birer çift ufak testis vardır. Bunlar sperm kapsülleri içinde bulunduklarından görülmezler. Testislerin biraz gerisindeki kirpikli hunilerin kanalları vasdeferensi teşkil etmek üzere birleştikten sonra 15. segmentin ventralinden dışarı açılırlar. 13. segmentte bulunan ovaryumlar da çok küçük ve bir çifttirler. Kısa olan ovidukt (yumurta kanalı) 13. segmentte başlar ve 14. segmentten dışarı açılır. Toprak solucanlarında gelişme doğrudandır. Yani bir larva safhaları yoktur. Regenerasyon yetenekleri fazladır. Toprağa kanşmış organik maddelerle beslenirler. Toprak sindirilmeden dışarı atılır. Toprak solucanları protein bakımından zengin hayvanlardır. Bu nedenle hayvan yemlerine katılacak protein kaynağı olarak düşünülebilirler. Ayrıca deri salgılarından antibakteriyel maddeler elde edilmiştir. Araç ve Gereçler İri ve canlı toprak solucanları, % 10 luk alkol, ince uçlu makas, jilet, bistüri, toplu iğne, parafınli diseksiyon küveti, ince uçlu diseksiyon iğneleri, büyüteç ya da binoküler mikroskop. İzlenecek Yol Laboratuar çalışmasına gelmeden organik madde bakımından zengin, yumuşak ve nemli topraklardan kazarak solucan toplayınız. Diseksiyonun kolay olması bakımından iri olanlarını seçiniz. Nemli toprak içinde laboratuara getiriniz. Küvet üzerine aldığınız canlı bir solucanın hareketini, uzayıp kısalmasını gözleyiniz. Klitellum bölgesini ayırt ediniz.Solucanın ön ve arka ucunu tayin ediniz. Bu incelemeyi bitirdikten sonra solucanı % LO luk alkol içine atarak öldürünüz. Öldürdüğünüz solucanı tekrar küvet üzerine alarak, iç organları incelemek için diseksiyonunu yapmak üzere iki ucundan küvete toplu iğneler ile hafifçe gerdirerek tespit ediniz. Jilet ile solucanın ağız kısmından başlayarak sırttan arkaya doğru kesiniz. Bu işlem sırasında özen göstererek alttaki bağırsağı kesmemeye çalışınız. Bunun için kullandığınız kesici aracı fazla derine batırmayınız. Kesilen deriyi her iki yan tarafa doğru açarak iğneleyiniz. Bu durumda dissepimentleri biraz kestikten sonra iç organlar iyice ortaya çıkarlar. Bu açma işlemini solucanın yansına kadar devam ettiriniz. Açma işlemi tamamlanınca iç organlarını bir büyüteç altında inceleyiniz. . Başta, yutağın hemen üzerinde beyaz renkli ve iki parçalı görünen bir serabral ganglion vardır. Bu organı bulunuz. Sindirim sistemi ağızda başlayıp, yutak (ağıza bağlı şişkince bir kısım olarak görülür), yemek borusu (yutağın devalı olup üzerinde kalp görevi yapan damarlar ve bayaz renkli sperm keseleri vardır), kursak (hafif şişkin), katı (üzerindeki enine çizgilerden farkedilir) ve orta bağırsak olarak devam eder. Sırt ve karın damarlan bağırsağın yanına kaymış olabilirler. Yemek borusu üzerinde kalınlaşmış ve kalp görevi yapan lateral damarları görünüz. Bunlann kontraksiyonu devam ediyor olabilir. Kann ve sırt damarlarım birbirine bağlayan ince lateral damarlan da inceleyiniz. Yemek borusu üzerinde beyaz renkli sperm keseleri ve bunların iki yanındaki reseptekulum seminisleri görebilirsiniz. Bağırsağın yanlarında dissepimentler, nefridiumlar (bunları ancak binoküler ile inceleyerek görebilirsiniz) bulunur. Solucanın bu durumda açılmış şeklini, organların yerlerini de göstererek çiziniz. Çizim işleminiz bitince bağırsağı yana çekip, altında bulunan ip merdiven sinir sistemini açığa çıkararak inceleyiniz. [img size=500][/img]Şekil.1. Lumbricus terrestris'in anatomisi 1. serabral ganglion 2. farinks 3.kalp görevi yapan damarlar 4. özefagus 5. reseptekulum seminis 6. sperm keseleri 7. kursak 8. katı 9. sırt damarı 10. bagırsak 11. lateral damar 12. dissepimentler 13. nefrostom 14. nefridium kanalı 15. nefridium 16. segment 17. karın damarı 18. sinir

http://www.biyologlar.com/solucan-diseksiyonu

BOZKIRLAR (Step + Savan)

Stepler ya da savanlar, sert ve dayanıklı yeşil otlardan oluşan çayırlıklarla kaplanmış bölgelerdir. Diğer bir deyişle, Bozkırlar yani step ve savanlar otsu formlardan oluşmuştur. Bunlardan stepler özellikle kuraklığa uyum göstermiş buğdaygillerden, savanlar ise küçük çalımsı formlardan oluşur. Step ve savanlara birlikte bozkır adı verilir. Bu bölgelerde tek tük yüksek ağaçların ve geniş yeşil çayırlık alanların birlikte bulunması tipiktir. Bitki örtüsü için uygun sıcaklık, yeterli yağış miktarı ve derin tabansuyunun bir araya geldiği her yerde bu yapı oluşur. Bu da özellikle ekvatorun her iki yanındaki ılıman ve kurak subtropik bölgeleri oluşturur. Bu tip bozkır yapısındaki bölgelerde koşucu hayvanlar baskın olarak görülür. Gerçek step hayvanları olarak: toynaklılar (sığır, at, antilop, zürafa, deve), kemirgenler (tavşan, kobay, sıçan), yırtıcılar (aslan, leopar, kurt, sırtlan, çakal), sıçrayıcılar (sıçrayanfare, sıçrayantavşan, kanguru), kuşlardan: emu, devekuşu ve toykuşu gibi koşucu tipler örnek verilebilir. Leş yiyen akbabalar ve yüksekten uçan yakalayıcı kuşlar (kartal ve şahin) da yaygın hayvanlardır. Doğu Afrika'da zebra, devekuşları ve antilop gibi çok sayıda farklı tür bir araya gelerek karışık sürüler oluşturur. Böceklerden termitler yuvalarını çoğunlukla araziye uygun bir şekilde yaparlar. Hyleadakinin aksine, buralarda, ikinci biyosonötik kuraldan yani yaşama bölgesinin sınırlı koşullarından dolayı tür sayısı az, fakat aynı türe ait birey sayısının çok olduğu sürüler yaygındır. Başka hiçbir karasal ekosistemde bir tek türün milyonlarca bireyden oluşan sürüsü aynı alanda görülmez. Kuzey Amerika'nın bizonları ve göçmen güvercinleri, Afrika antilopları ile Yakın Doğu ve Afrika'daki çekirge sürüleri bu duruma örnek gösterilebilir. Bozkırlar, yangınlar ve tarımsal amaçlı sulamalarla yapılan tahribat bir tarafa bırakılırsa, iklim ve vejetasyon bölgesi olarak, insan müdahalesinden en az zarar gören bölgelerdir. Bozkırlardaki bozulmalara, kuru ormanlardaki yangınlar, şehirleşme, aşırı otlatma, anız yakma, tarım arazisi olarak yapısını bozma, yeşil alanların tahribi, spor alanı olarak kullanılması vs. neden olmaktadır. Diğer taraftan bozkırların asıl hayvanları birçok bölgede tamamen imha edilmiştir. Bu tahribatlarla ve avcılığın eklenmesiyle, özellikle bizonlar, yaban sığırları, kurtlar, yırtıcılar gibi birçok memeli hayvan ve keza birçok bozkır kuşu ortadan kalkmıştır. Bu yok olmayı önleyebilmek için, birçok yerde, doğal büyük alanların milli parklar biçiminde düzenlenmesi yönünde eğilimler artmaktadır. Böyle bir kurtarma girişimi Afrika Serengetin'de gerçekleştirilmiştir. Fakat Asya ve Avrupa'da yabanatları ve bizonlar (Bison bonasus) için şu anda çok geç kalınmıştır.

http://www.biyologlar.com/bozkirlar-step-savan

 
3WTURK CMS v6.03WTURK CMS v6.0