Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 324 kayıt bulundu.

Aids

AİDS insan vücudunun immün sistemini yok eden ve bir dizi belirtilerle karakterize olan bır immün (bağışıklık) yetersizlik sendromudur. ""Normal olarak immün sistemi beyaz kan hücreleri ve vücuda mikroplar girdiğinde bunları etkisiz hale getirmek üzere oluşan antikorlar meydana getirir. Bu hücrelere T hücre lenfositleri adı verilir. Aids Belirtileri: Uzun süreli açıklanamayan yorgunluk. Lenf nodüllerinin açıklanamayan şişliği On günden daha uzun süren ateş Gece terlemesi Açıklanamayan kilo kaybı Derideki renk bozulumu ve iyileştirilemeyen mukoz membran iltihapları ilerleyen açıklanamayan öksürük ve boğaz ağrısı. Nefes darlığı ilerleyen üşüme Devamlı ishal. Ağızda mantar enfeksiyonu Kolay yaralanma ve açıklanamayan kanama Zihinde karışıklık ve sonunda koma. AIDS'Iİ kişilerde HIV-I denilen virüs tipi bu T hücrelerinin içine girer ve çoğalmaya başlar. Daha sonra da bu hücreleri öldürür. AİDS'ti kişilerde bt. imha immün sistemi zayıf bir hale getirir. Bu durumda ayrıca değişik enfeksiyonların ve tümörlerin ortaya çıkışı da kolaylaşır. HIV-I virüsüne ayn zamanda HTLV-III LAV ARV virüsleri de denilir Virüs değişik yollarla örneğin damardan kirli iğne-lerle yapılan iğneler cinsel ilişkiler veya anneder çocuğa olmak üzere vücuda girerler. Virüs T hücrelerinin içine girer ve çoğalır. Birkaç ay içinde vücut bu virüse karşı antikor üretir. Kan testleri bu yüzden pozitif bir sonuç verir. Semptomlar 1-2 haftada gelişir. Bunlar virüs vücuda girdikten birkaç ay sonra başlar. Bu sırada kanda antikor oluştuğu için ELİSA ve VVestern Blot gibi tahlillerle teşhis konulabilir. Semptomlar enfeksiyöz mononükleozu andırır ve lenf nodüllerinde şişme ağrılı boğaz ateş sıkıntı ve deri döküntüsü gibi durumları içerir. Semptomlar bir süre sonra azalabilir ve birkaç yıl hiç görülmeyebilir. Bu zaman zarfında vücuttaki virüs miktarı önceleri yavaş sonraları ise hızlı bir şekilde artar. Bu artışa paralel olarak T hücreleri azalır. Kişi bundan sonra AİDS'e sebep olan virüs enfeksiyonuna yakalanmış demektir. Fakat henüz AİDS tam meydana gelmez. Bununla birlikte kişi diğer insanlara bu virüsü bulaştırabilir. T hücreleri ortadan kalktığında immün sistem çöker ve vücutta çok kolay enfeksiyon ve tümörler meydana gelir. Lenf bezleri şişmesi düşük dereceli ateş gibi immün sistemin zayıflamasının işareti ola-rak bilinen semptomlar meydana geldiğinde hastalık AİDS Related Complex (ARC) adını alır. İmmün sistemin büyük çapta zayıflamasından sonra tüm belirtilerin tamamen belirmesi durumu ortaya çıkar ki bu da fırsatçı enfeksiyon durumunu içerir. (Fırsatçı enfeksiyon vücudun immün sistemi şiddetli bir şekilde bozulduğunda vücuda istila edebilen bakteri veya virüsler tarafından oluşturulur.) AİDS'in bütün etkileri virüs enfeksiyonunu takiben 5-10 yıl içinde gelişir. Ölüm ortalama 2-3 yıl içinde bu etkiler nedeniyle meydana gelebilir. Bu hastalık yeni tanımlanabilmiştir ve doğal yapısı konusundaki bilgilerimiz birkaç yıl içinde değişebilir. AİDS şu anda büyük bir salgındır. On yıl önce bu ülkede AİDS bilinmiyordu. Bugün halkın ilgi alanına giren büyük bir olaydır. Ocak 1981'den Ocak 1990'a kadar 140.00 Amerikalıya AİDS teşhisi konmuştur. Bu grubun yarısından fazlası semptomların ortaya çıkmasını takip eden 4 yıl içinde ölmüştür insanların bir çoğu da kanlarında AİDS virüsü taşımakta olup sonunda AİDS gelişecektir. Dünya Sağlık Organizasyonunun tahminlerine göre dünyadaki AlDS'li hasta sayısı 500.000 civarındadır. Diğer taraftan Amerika'da 1-1.5 milyon diğer ülkelerde 5-10 milyon AİDS virüsü taşıyan insan vardır. Muhtemelen bu insanların sayısı da gittikçe artmaktadır. AlDS'li hastalar ikiye ayrılır. Homoseksüel ve biseksüel erkekler ve iğne ile uyuşturucu kullanan erkekler ve kadınlar. Riskli olan diğerleri ise AlDS'liyle cinsel ilişkide bulunanlar AİDS virüsü taşıyan kadınların çocukları ve 1977-1985 Nisan'ı arasında çeşitli nedenlerle kan nakli yapılmış kişilerdir. Bu hastalığın kadından erkeğe erkekten kadına cinsel ilişkiyle geçebildiğini vurgulamak istiyoruz. Prezervatif kullanarak virüs geçişini azaltmak mümkün olabiliyorsa da tam korunma sağlanamaz.

http://www.biyologlar.com/aids

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili- 3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde 3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

Canlıların Biyokimyasal Özellikleri

Canlıların Biyokimyasal Özellikleri: http://www.mikrobik.net/datas/users/1-cantemel.pdf PARAOKSONAZ: BİYOKİMYASAL ÖZELLİKLERİ, FONKSİYONLARI VE KLİNİK ÖNEMİ ; http://www.erciyestipdergisi.org/pdf/pdf_EMJ_100.pdf Mikroalbuminüri ve Klinik Önemi; http://tipbilimleri.turkiyeklinikleri.com/download_pdf.php?id=6481 Arter Kan Gazları: http://www.ataturkhastanesi.gov.tr/ttdergisi/turktip1-1/11aysegulkaralezli.pdf ARTER KAN GAZLARI VE ASİD BAZ DENGESİ : http://www.solunum.org.tr/pdfs/dergi/1104850190.pdf Bilirübin Nörotoksisitesi : http://www.guncelpediatri.com/sayilar/17/112-113.pdf BİYOMARKÖRLERİN TOKSİKOLOJİDE KULLANIMI; http://www.gulhanemedicaljournal.org/pdf/pdf_GMJ_145.pdf Laboratuvar testleri ve klinik kullanımı http://www.performans.saglik.gov.tr/content/files/yayinlar/biyokimya_laboratuvar_testleri_ve_klinik_kullanimi.pdf

http://www.biyologlar.com/canlilarin-biyokimyasal-ozellikleri

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz. Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın. İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın. Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir.Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a.Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Not:Daha yoğun hazırlanan(% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur. Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri

Regresyon Analizi Nedir

Regresyon Analizi “Minority Report” filmini seyredenler hatırlarsa; kurguda işlenen konu üç insanın geleceği görebilme yetenekleriyle ilgiliydi. Bu yetenekler kullanılarak suçların daha işlenmeden öngörülebiliyor ve polisler tarafından daha olay gerçekleşmeden engellenebiliyordu. Daha günümüze yakın benzer bir örnek Amerikan yapımı bir dizi olan “Person of Interest”. Kurgu yine benzer olmakla birlikte doğa üstü yeteneklerden farklı olarak dayanağı olan “veri” kullanılıyor. Son teknoloji bir bilgisayar ve suçluları bulacak bir algoritma kullanılarak hukuk dışı müdahaleler bulunularak suçların daha işlenmeden engellenmesi kurgusu etrafında dönen bir dizi. Bu tarz bir geleceğin çok uzakta olmadığına eminim. Etik açısından da ayrıyetten çok tartışılacak bir konu. Günümüzde şuan bu teknolojiye sahip değiliz. Fakat farklı alanlarda buna benzer büyük boyutlu veriler toplanarak gerek pazar araştırmalarında gerek biyoloji, tıp alanında göreceli büyük boyutlu verilerdan yararlanılarak ve bir kaç regresyon tekniği uygulanarak hali hazırda bir azınlık raporu yazmak mümkün. Regresyon analizi, araştırmak istediğimiz bağımlı değişkenin yada değişkenlerin üzerinde bağımsız değişkenlerin etkisi olup olmadığını ve aralarındaki ilişkiyi araştıran bir yöntemdir. Veriden öğrenerek stokastik bir model kurulur. Verinin yapısına göre regresyon yöntemleride değişmektedir. Araştırılacak bağımlı değişken kategorikte olabilir, aralıklı sayılardanda oluşabilir. Kanser ve kanser değil (0=kanser ve 1=kanser değil) kategorik bir değişkendir. Mikrodizi çipinde üretilen aralıklı (154,5; 151,1;..) bir değişken gibi de olabilir. Regresyon analizi yapılmasının amacı iki önemli soruyu cevaplamak içindir. Birincisi değişkenlerim asıl araştırmak istediğim değişkenimi veya değişkenlerimi yada var olan durumu açıklayacak düzeyde bir model kurabiliyor muyum? Eğer kurabiliyorsam doğru araştırma üzerindeyim demektir. İkincisi ise, elimde ki yeterli bilgiyi(veriyi) kullanarak bir sonraki gözlemin ne durumda olacağını tahmin edebilir miyim sorusudur? Bu son sorunun cevabı zaman zaman çözülmesi imkansız hale gelebiliyor. Çözülememesinin bir kaç nedeni olabilir. Veriyi açıklayacak yeterli değişken elde edilememiş olabilir. Yanlış değişkenler seçilmiş olabilir. Veri elde edilirken yapılmış hatalar olabilir. Regresyon yöntemlerinin algoritmasına bağlı olarak bazı varsayımlarının sağlanamamasından kaynaklanıyor olabilir yada kontrol altında tutulamayan olağanüstü (dış faktörler) durumlar olabilir. Kur, hisse senedi gibi şeylerin tahminin büyük oranda sapmasının sebebi bu diyebiliriz. Regresyon problemlerinde kullanılan bir çok algoritma vardır. Regresyon yöntemlerini birbirinden ayıran noktalardan biriside burasıdır. Bunlardan en bilinir ve yaygın olanı en küçük kareler (EKK) olarak bilinen yöntemdir. Gerçek duruma en yakın fonksiyon eğrisi oluşturmamızı sağlar. Gözlemlerin rastgeleliğinden kaynaklanan hatayı küçülterek uygun denklem katsayılarını ve uygun eğriyi çizmemizi sağlar. Bu işleme optimizasyon da denebilir. Aşağıda ki grafik üzerinde 3 farklı model görebiliriz. Kırmızı olan doğrusal regresyon modeliyle çizilmiş bir grafiktir. Siyah olan polinomik ve mavi olan ise kübik bir regreson eğrisidir. Hangi modelin veriyi daha iyi açıkladığını anlamak için birkaç kritere bakılarak karar verilebilir. Model kurulmadan önce de mutlaka keşfedici veri analizi yaparak varsayım hatalarını giderildikten sonra model kurulması daha doğru bir adım olacaktır. İstatistiksel olarak anlamlı bir regresyon modeli kurulup kurulmadığı t-testi, anova gibi hipotez testleri ile hızlıca test edilebilir. Fakat anlamlı bir model kurulsa bile analizi bitiremeyiz. Çoklu bağlantı, artıkların(hataların) etkileri, tahmini değerlerin en düşük ve en yüksek aralıkları, modelde ki katsayıların etkileri incelenmesi kesinlikle gerekmektedir. Son analiz aşamasında ekstrem bir durum bulunursa bu etkilerin giderilmesi için farklı yöntemler kullanılması gerekmektedir. Gerekirse model değiştirilebilir yada parametrik olmayan yöntemler seçilerek tekrar regresyon modeli kurulmaya çalışılabilir. Çoğu çalışmalar maalesef model kurulduktan sonra bitiriliyor ve model sonrası analiz yapılmadan yorum yapılmaya çalışılıyor.

http://www.biyologlar.com/regresyon-analizi-nedir

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz.  Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın.  İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın.  Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir. Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a. Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Notaha yoğun hazırlanan (% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur.Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri-1

Mikobakteri Kültür Yöntemleri

Mikroskopik muayenede ARB araştırılması, TBC tanısı için oldukça değerli, basit ve ucuz bir yöntem olup ön tanı değeri taşır. Fakat tüberkülozun kesin tanısı için etken ajanın kültür ortamında tekrar gösterilmesi ve bazı in vitro testler ile doğrulanması gerekir. Kültür yöntemi; M.tuberculosis için “altın standart” olarak kabul edilmektedir. Mikobakterilerin üretilmesinde çalışılacak laboratuvar ortamının imkanları ölçüsünde standart besiyerlerinden MGIT, BACTEC gibi komplike sistemlere kadar farklı kültür yöntemleri uygulanabilir. Mikobakterilerin izolasyonu için ideal ortam;Az sayıdaki mikobakterilerin hızlı ve bol miktarda üremelerine izin vermeli, Ekonomik olmalı, içeriğinde bulunan maddelerin temininde ve hazırlanmasında zorluk yaşanmamalı, Pigment oluşumu ve koloni morfolojisine dayanarak izolatlar arasındaki farklılıkları saptamaya yardımcı olmalı, Mikobakteri dışındaki kontaminant mikroorganizmaların üremesini inhibe etmeli, İlaç duyarlılık testleri uygulamak için uygun olmalıdır. Tüberkülozda kullanılan standart besiyerleri değişik başlıklar altında toplanabilir:İçerikleri yönünden; Sentetik besiyerleri (Sauton, Long vb.) Yarı sentetik besiyerleri (Yumans, Dubos, Middlebrook vb.) Kompleks besiyerleri (Löwenstein Jensen, Ogawa, Trudeau) Görünüm yönündenKatı besiyerleri (Yumurtalı ve agarlı; Löwenstein Jensen, agarlı Middlebrook, Treduau vb.) Sıvı besiyerleri (Middlebrook, Youmans, Sula vb.) Karışık besiyerleri (Gliserinli, patatesli buyyon vb.) Kullanım amacına görePrimo kültür - ilk izolasyon (Löwenstein Jensen, agarlı Middlebrook, Trudeau, Ogawa vb.) Araştırma Üretim (Tüberkülin, BCG; Sauton, Proskauer, Long vb.) Antimikrobiyal madde içeriğine göreNonselektif: Antibiyotik içermezler. Selektif: Antibiyotik içerirler. Günümüzde mikobakterilerin ilk izolasyonunda en sık kullanılanlar yumurtalı besiyerleri ve/veya agarlı besiyerleridir. Agarlı besiyerlerine göre yumurtalı besiyerlerinin hazırlanması daha zahmetli fakat daha ucuzdur ve koloni görüntüsü daha tipiktir. Bu nedenle Türkiye dahil Tüberküloz hastalığının sık görüldüğü ülkelerde en sık yumurtalı besiyerleri, bunlardan da en sık Löwenstein Jensen besiyeri kullanılmaktadır. Yine yumurtalı ve katı olan Ogawa besiyeri de basit ve ucuz bir besiyeridir. Uzak Doğu’da özellikle Japonya’da kullanılır. Amerika’da yumurtalı besiyeri olarak Treduau ve ayrıca agarlı besiyeri olarak Middlebrook 7H10 ve 7H11 en sık kullanılan besiyerleridir. Petragnani besiyeri özellikle yoğun kontamine örneklerden mikobakteri izolasyonunda tercih edilir. American Thoracic Society Medium (ATSM), diğerlerine göre daha düşük oranda malaşit yeşili içerdiğinden özellikle BOS, plevra sıvısı, biyopsi gibi steril örneklerde tavsiye edilir. Löwenstein Jensen besiyerinin klinik örneklerden mikobakteri izolasyonundaki duyarlılığı; üreme zamanının daha uzun olması, koloni oluşumunun daha geç tespit edilmesi gibi nedenlerden dolayı, Middlebrook 7H10, 7H11 ve sıvı formu (broth) olan 7H9 besiyerleri ile karşılaştırıldığında daha düşüktür. Balgam kültürlerinde ilk seçenek yumurtalı besiyerleridir. Balgam dışı örneklerde ise en verimli yöntem sıvı besiyerlerini kullanmaktır. Ekonomik yeterliliği olan laboratuvarlarda özellikle BOS, vücut boşluk sıvıları ve biyopsi gibi tekrarlanamayan örneklerde sıvı besiyerlerinin kullanılması tavsiye edilmektedir.Yumurtalı BesiyerleriAvantajları 1. Hazırlanması kolaydır. 2. Mevcut en ucuz besiyeridir ve tüberküloz bakterisinin iyi üremesine müsaade eder. 3. Taze yumurtadan hazırlandığı, sıkı kapaklı tüplerde saklandığı ve buharlaştırarak sıvı artığının minumuma indirildiği durumlarda haftalarca buzdolabında saklanabilir. 4. Tüplere dağıtıldıktan sonra koagüle edildiğinden ve ayrıca eklenen malaşit yeşili mikobakteri dışındaki diğer bakterilerin üremesini engellediğinden kontaminasyon riski düşüktür.Dezavantajları1. Pozitifliğin saptanma süresi uzundur. Özellikle örnekte az sayıda bakteri bulunması ya da güçlü dekontaminasyon işlemi uygulanması durumunda belirgin kolonilerin izlenmesi 6-8 hafta gibi uzun bir süreyi alabilir.2. Kontaminasyon durumunda çoğu kez besiyerinin tüm yüzeyi etkilendiğinden sıklıkla besiyeri kaybedilir. Besiyeri Hazırlarken Dikkat Edilmesi Gereken Kurallar:İyi kalitede bir besiyeri elde etmek için kullanılan kimyasal maddelerin saf olması, cam malzemelerin ve distile suyun steril olması gerekir. Besiyeri hazırlama yönteminde yer alan kurallar aynen uygulanmalı, değişikliklerden kaçınılmalıdır. 1. Çalıştığınız ortamı mümkün olduğu kadar temiz tutunuz. Tezgahın üzerini uygun bir dezenfektan (1/10 ya da 1/20 oranında sulandırılmış çamaşır suyu gibi) ile siliniz. Yerleri toz oluşmasını engellemek için nemli bezlerle siliniz.2. Cam malzemeleri ve diğer aletleri steril ettikten sonra kullanınız.3. Kimyasal maddelerin tavsiye edilen saflıkta olmasına dikkat ediniz.4. Koagülatör ısısını önceden kontrol ediniz.5. Asepsi kurallarına özenle uyunuz (tüplerin ve şişelerin ağzını alevden geçirme vb.).6. Yumurtaların kabuklarını kırmadan önce mutlaka temizleyiniz.7. Koagülasyonda tavsiye edilen ısının ve sürenin üzerine çıkmayınız.8. Hazırlamış olduğunuz besiyerlerini ışıklı ortamda (özellikle UV altında) tutmayınız. Buzdolabında saklayınız (Buzdolabı ışığının kapak kapatıldıktan sonra söndüğünden emin olunuz). 9. Tüplere dağıtım aşamasında besiyeri hacmini kullandığınız tüplere göre ayarlayınız (6-8 ml küçük şişelere, 20 ml deney tüpüne). Gereksiz tasarruflardan kaçınınız. LOWENSTEIN - JENSEN BESİYERİ HAZIRLANMASITuz Solüsyonu Monopotasyum Fosfat 2400 mgMagnezyum Sülfat 240 mgMagnezyum Sitrat 600 mgL- Asparagine 3600 mg Gliserin 12 mlDistile Su 600 ml Yukarıdaki maddeler tartılıp büyük bir balona konularak eriyinceye kadar benmaride kaynatılır. Otoklavda 121oC’de 30 dakika sterilize edilir.Besiyeri İçin Gerekli Yumurtanın Hazırlanması1. Önce, 2 gr malaşit yeşili tartılır, 100 ml distile su içinde eritilir. Bu şekilde hazırlanmış % 2’lik malaşit yeşili stok çözeltisi koyu renkli bir aktarılır, güneş ışığından uzak bir yerde muhafaza edilir. 2. 25 adet sağlam, taze yumurta alınır, üzeri kirli olanlar sabunlu suyla iyice fırçalanır. Yumurtalar geniş bir kaba konulur. Steril bir kapta UV lambası altında 45 dakika bekletilerek sterilize edilir. UV lamba yoksa yumurtalar, %70’lik etil alkol ile doldurulmuş geniş ve derin bir kapta 15 dakika bekletilir. 3. Bu sterilize edilmiş yumurtalar, ağzı lastik tıpa ile kapatılabilen steril bir balona, steril huni vasıtasıyla kırılır. Balonun ağzı kapatılarak balonda toplanan yumurtalar homojen hale gelinceye kadar çalkalanır. Daha önce hazırlanıp steril edilmiş büyük balondaki tuz solüsyonuna steril bir tülbentten süzülerek ilave edilir. 4.Bunun üzerine % 2 lik malaşit yeşilinden 25 ml ilave edilir, hepsi birlikte çalkalanır. 5. Özel tevzi (dağıtım) cihazları ile 6-8 ml hacimlerde, 160x16 mm’lik tüplere steril şartlarda dağıtılır. 6. Aral Gürsel sulu tip koagülatörde 78-80oC’de 1 saat koagüle edilir. 7. Koagüle edilen besiyerleri, 37oC’lik etüvde 24 saat bekletilir. Ertesi gün kontamine olmuş besiyerleri ayrılır. Steril ve sağlam olan besiyerleri 2-8oC’de (buzdolabında) saklanır. İlaçlı Löwenstein-Jensen besiyerlerinin raf ömrü 2 ay; ilaçsız (normal) Löwenstein-Jensen besiyerinin (kurumasına mani olunduğu taktirde) raf ömrü ise 6 aydır. 8. Ticari olarak baz Lowenstein-Jensen besiyeri temin edilebilir. Bunlarda benzer şekilde hazırlanır. Ancak bu besiyerleri patates unu içerdiğinden ilaçlı besiyeri yapımında kullanılmaz. SIVI KÜLTÜR SİSTEMLERİSolid besiyerlerine göre mikobakterilerin, daha kısa sürede üremesine olanak sağlarlar. Bactec ve MGIT sistemleri bu amaçla kullanılmaktadır.BACTEC Bactec yöntemi sıvı besiyerinde üreyen mikobakterinin üremesinin radyometrik olarak izlenmesi esasına dayanır.Temel prensip 14C ile işaretli substrat içeren besiyerinde bu substratı kullanarak üreyen mikobakterilerin 14CO2 üretmesidir. Tespit edilen 14CO2 miktarı vial içindeki üremenin miktarı ve oranını yansıtır ve üreme indeksi olarak tanımlanır. İlaç duyarlılık testleri Bactec sistemi kullanılarak yapılabilir.MGITMGIT yöntemi mikobakterilerin klinik örneklerden (kan ve idrar hariç) hızlı izolasyonunu optimize etmek için geliştirilmiş in vitro bir sistemdir. Hastalardan alınan örnekler işlendikten sonra MGIT tüplerine inoküle edilir. MGIT tüplerinin dip kısımlarında fluorescent içeren silikon bulunur ve sıvı besiyerinde bulunan çözünmüş haldeki O2 varlığına duyarlıdır. Sıvı besiyerinde üreyen mikobakterilerin açığa çıkardığı çözünmüş haldeki oksijen floresan açığa çıkarır ve üremenin tespit edilmesini sağlar.

http://www.biyologlar.com/mikobakteri-kultur-yontemleri

Kene İle Bulaşan Hastalıklar

ÖZET Parazitlerin neden olduğu hastalıklar önemli sağlık problemidir. Endoparazit ve ektoparaziter hastalıklar mevcuttur. Kenelerle bulaşan hastalıklar en sık görülen vektör kaynaklı hastalıklardır. Keneler bakteri, virüs spiroket, protozoa, nematod ve toksinler gibi patojenleri yayabilir ve böylece ektoparaziter kaynaklı hastalıklara sebep olurlar. Ülkemizde keneler için iklim koşulları, bitki örtüsü ve yüzey şekli bakımından uygun koşullar vardır. Bu makalemizde kenelerle bulaşan hastalıkları özetlemeye çalıştık. SUMMARY Paraziter diseases are important medical problems.There are endoparasitic and ectoparasitic diseases. Tick-borne diseases are the most common vector-borne illnesses. Ticks can spread bacteria, viruses, spiroketia, protozoa, nemadot and toxins and by so they made ectoparasitic diseases. Our country has suitable conditions to continue biologic activity of ticks acording to seasons, plants and surface forms. In this article we have tried to summary tick-borne diseases. İrfan Nuhoğlu1, Murat Aydın1, Süleyman Türedi2, Abdülkadir Gündüz2, Murat Topbaş3 1KTÜ Tıp Fakültesi İç Hastalıkları Anabilim Dalı, 2Acil Tıp Anabilim Dalı, 3Halk Sağlığı AD, Trabzon. Anahtar Kelimeler: Kene, Kırım- Kongo Kanamalı Ateşi, Lyme Hastalığı. Key words: Tick, Crimean-Congo Haemorhagic Fever, Lyme disease. Sorumlu yazar/ Corresponding author: İrfan Nuhoğlu, KTÜ Tıp Fakültesi İç Hastalıkları AD, Trabzon irfannuhoglu@hotmail.com GİRİŞ Parazitlere bağlı hastalıklar günümüzde önemli sağlık problemlerindendir. Bu durum endoparazitlerden kaynaklanabileceği gibi; kene gibi ektoparazitlerden de kaynaklanır (1). Keneler tüm dünya üzerindeki memeli, kuş ve sürüngenlerden kan emen eksternal parazitlerdir (2). Keneler Araknidea sınıfına ait artropodlardan olup balıklar dışındaki tüm omurgalıların kanlarıyla beslenebilirler. Dünya üzerinde omurgalıları etkileyen 899 adet kene türü mevcuttur. Bunların 185’i Argasidae, 713’ü İxodidae, 1 tanesi ise Nuttalliellidae soyuna bağlıdır (5,6). Bakteri, spiroket, rickettsia, protozoa, virüs, nematod ve toksinler gibi birçok farklı patojeni taşıyabilir ve yayabilirler (3). Tıbbi ve ekonomik önemleri insanlara ve hayvanlara hastalık bulaştırabilme kabiliyetlerinin olduğunun fark edilmesiyle anlaşılmıştır. İnsanlar üzerinde oluşturdukları önemli sağlık sorunları yanında çiftlik hayvanları üzerinde büyük ekonomik kayıplara neden olabilirler. Türkiye; iklimi, yüzey şekli ve bitki örtüsü bakımından, kenelerin biyolojik aktivitelerini sürdürmeleri için uygun koşullara sahip bir ülkedir (7-9). Günümüze kadar kullanılan hiçbir mücadele yöntemi, tam bir kene eradikasyonu sağlayamamıştır. Bugünkü bilgiler ışığında kene eradikasyonunun neredeyse imkânsız olduğu kabul edilmektedir. KIRIM KONGO KANAMALI ATEŞİ (KKKA) KKKA Afrika’nın bazı bölgelerinde, Asya, Doğu Avrupa ve Orta Doğu’da görülen ölümcül bir viral enfeksiyondur (10,11). Bildirilmiş mortalite oranı % 3-30 olan bu hastalığa neden olan virüs Bünyavirüs ailesinden Nairo virüs genusuna bağlı olup; insanda ciddi hastalığa neden olur (11-12). Tıbbi olarak önemi kene ile taşınan virüsler arasında en yaygın coğrafi dağılıma sahip olmasıdır(13). Hastalık ilk kez 12.yy’da bugünkü Tacikistan topraklarında hemorajik bir sendrom olarak tanımlanmıştır (10). KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden 200 Sovyet askerinde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda gösterildi (10,11). Virüsün yaşam çevrimi ‘kene-omurgalı-kene’ şeklinde olup; hayvanlarda hastalık yaptığına dair bir delil yoktur (11). Virüsler Hyalomma genusu keneleri ile taşınır. TAF Preventive Medicine Bulletin, 2008: 7(5) 462 Resim 1. Türkiye’de Kırım Kongo Kanamalı Ateşi Vakalarının Dağılımı Enfekte anneden yumurtaya transovarial; larvanymph- erişkin şeklinde transstadial olarak geçiş gösterirler. Virüsün Avrupa’daki ana taşıyıcısı Akdeniz hyalomması olarak bilinen H.marginatum marginatum’dur (10,11). Komşu bazı ülkelerde 1970’lerden beri epidemiler bildirilmesine rağmen Türkiye’de virüsle enfekte vakalar ilk kez 2002 yılında bildirilmiştir. 2002-2005 yılları arasında Sağlık Bakanlığı’na 500 vaka bildirilmiş ve bunların 26’sı (% 5,2) ölmüştür (Resim 1) (13-16). Türkiye’de ki salgında vakaların % 90’ı çiftçilerdi (13,14). İnsan vücudu; enfekte kenelerin ısırması ile veya hasta olan bir kişiyle enfeksiyonun akut fazı sırasında temas ettikten sonra enfekte olabilir. Ayrıca içinde virüs bulunan kan ve dokularla temastan sonra geçiş olabilir. Hastalığın ortaya çıktığı insan vücudu virüsün bilinen tek konağıdır (17). Hastalığın seyrinde 4 faz vardır: 1. İnkübasyon fazı kene ısırığını takiben 3-7 gündür (18). Bu dönemde herhangi bulgu vermez. Türkiye’de 5,5 gün olan bu fazın süresi viral doz ve bulaşma yoluna bağlıdır (12). 2. Prehemorajik faz; ani yükselen ve 39-41 derece arasında seyreden ateşle karakterizedir. Ateş 4-5 gün sebat eder(10). Baş ve kas ağrısı, baş dönmesi, ishal, burun akıntısı ve kusma olabilir (19).Yüz boyun ve göğüste hiperemi, skleral konjesyon, konjuktivit görülebilir. 1-7 gün sürebilen bu fazın ortalama süresi 3 gündür(10). 3. Hemorajik faz; genellikle 2-3 gün gibi kısa sürer. Genellikle hastalığın 3-5. günlerinde başlar ve hızlı bir seyir gösterir. Bu dönemin ateşle herhangi bir ilişkisi yoktur (10). Hemoraji peteşiden başlayarak, müköz membran ve derideki büyük hematomlara kadar ilerleyebilir. Diğer bölgelerden kanamalar vajen, diş eti ve serebral kanamaları içerir(20). En sık kanayan bölgeler ise burun, GİS (hematemez, melena ve intraabdominal), genital (menometroraji), idrar (hematüri) ve solunum yollarıdır. Türkiye’de vakaların % 20-40’ında hepatomegali; % 14-23’ünde ise splenomegali bulunur (15). 4. Konvalesan faz hastalık başlamasıyla beraber 10-20 gün içinde başlar. Bu dönemde değişken nabız, taşikardi, komplet saç kaybı, polinörit, solunum zorluğu, kserostomi, görme azlığı, işitme kaybı, hafıza kaybı olabilir(10). Tanıda trombositopeni, lökopeni, AST-ALT-LDHCKP düzeylerinde artış, PT ve aPTT sürelerinde uzama, fibrinojen düzeyinde azalma ve fibrin yıkım ürünlerinde artma görülebilir. CBC ve Biyokimyasal testler 5-9 günde normal seviyelerine inerler (21). Virüs izolasyonu 2-5 günde sağlanabilir ama hücre kültürleri sensitiviteden yoksundur ve genellikle hastalığın ilk 5 gününde karşılaşılan yüksek viremi ilişkisini gösterir (22). KKKA virüs enfeksiyonunun hızlı laboratuar teşhisi için seçilecek metot Revers Transkriptaz PCR’dir. Bu yöntem hızlı, yüksek sensitif ve yüksek spesifiktir (23). Hastalık ortaya çıktıktan sonra ilk 7 gün içinde İg M ve İg G TAF Preventive Medicine Bulletin, 2008: 7(5) antikorları serolojik olarak ELİSA ve İmmünfloresan yöntemi ile tespit edilebilir(24). Tedavinin temeli; trombosit, TDP ve eritrosit ile yapılan destekleyici tedaviye dayanır. Hastada potansiyel kanama alanları tespit edilmeli ve bulaştırma riski için koruyucu önlemler alınmalıdır. Sıvı elektrolit dengesine dikkat edilmelidir. Etki mekanizması açık olmamakla beraber Ribavirin tavsiye edilen antiviral ajandır. Bu ilacın akut respiratuar sendrom tedavisinde kullanımına bağlı hemolitik anemi, hipokalsemi ve hipomagnezemi yan etkileri bildirilmiştir (25,26). ROCKY DAĞLARI BENEKLİ ATEŞİ (RDBA) Amerikan Köpek Kenesi (Dermecentor variabilis) ile taşınan bakteriyel (Ricketsia ricketsii) bir enfeksiyondur (27). Kan damarlarının endoteliyal ve düz kas hücrelerini etkileyen küçük, pleomorfik,zorunlu hücre içi parazitidir. Hastalık Amerika’nın kuzeybatısında ilk kez 19.yy ın sonlarında tanımlanmıştır. Hastalık etkeni ajan ise 1900’lü yılların başlarında Howard Ricketts tarafından tanımlanmıştır (28). İnsandan insana geçiş tanımlanmamıştır (29). Hastalık kuzey, orta ve güney Amerika da endemiktir. İsmine rağmen yıllık vakaların sadece % 2’si Rocky dağları bölgesinde görülür (27). 5-9 yaşlarındaki çocuklar ve 60 yaşın üstündeki erişkinler olmak üzere iki tepesi olan bimodal yaş dağılımına sahiptir. 1998 yılında 365 vaka bildirilmiştir (29). Çoğu vaka 1 Mayıs-31 Temmuz arasında bildirilir ki bu dönem köpek kenesi populasyonunun en yüksek seviyede olduğu dönemdir. Hastalık çoğunlukla vahşi hayvan ve kenelerin birlikte bulundukları alanlarda ortaya çıkar. İmmatür evrelerde keneler tarla faresi gibi küçük kemirgenler üzerinde; erişkin olanlar ise insan ve köpek gibi daha büyük canlılar üzerinde yaşarlar (27). Ricketsia ile enfekte olan hastalar genellikle ısırık sonrasındaki 5-10 günlük bir inkübasyon periyodunu takiben hastalık ortaya çıktıktan sonraki ilk hafta içinde doktora başvururlar (30). Hastalık; ateş, bulantı, kusma, iştahsızlık, baş ve kas ağrısını içeren başlangıç belirtileri verir (27,31). Ateşin 2-5’ inci gününde önkol, el ve ayak bileği üzerinde küçük, düz, pembe ve kaşıntısız noktalar şeklinde benekli bir döküntü gelişir (30,31). Bu benekler üzerlerine basınç uygulandığında solarlar. Hastalığa ait bu karakteristik döküntü genellikle 6. güne kadar ortaya çıkmaz ve hastaların % 35-65 inde görülür (31,32). Döküntü genç hastalarda yaşlılara göre daha erken gelişir (30). Döküntü daha sonra avuç içi ve ayakaltı dâhil vücudun geri kalan bölümlerine yayılır (27). Bu durum ise hastaların % 50-80’ inde ve ancak geç evrelerde görülebilir. Hastaların % 10-15’ inde ise hiçbir zaman döküntü gelişmez (30,31). Temel laboratuar testlerinde normal veya hafifçe baskılanmış WBC, trombositopeni, yükselmiş karaciğer transaminazları ve hiponatremi bulunur. BOS incelendiğinde monosit hâkimiyeti olan bir beyaz küre artışı tespit edilir (31,32). Hastalığın ensefalit, non kardiyojenik pulmoner ödem, ARDS, kardiyak aritmiler, koagülopati, GİS kanaması ve deri nekrozunu da içeren major komplikasyonları vardır. Eğer tedavi edilmezse 8-15 gün içerisinde ölüm gerçekleşebilir. Mortalite oranı tedavi edilmemiş vakalarda % 25; tedavi edilmiş vakalarda % 5 olarak rapor edilmiştir (28). Tanı öykü ve fizik muayeneye dayanır. Eğer döküntü mevcut ise rickettsial organizma deriden yapılan biyopsideki vasküler endotel içinde direk immünofloresan veya immünoperoksidaz boyama yöntemiyle tespit edilebilir (31,33). Ama bu yöntem çok sık kullanılmamaktadır (34). Seroloji tanıyı destekleyebilir ancak bu da hastalığın ortaya çıkışından 7-10 gün sonra pozitifleşir (31). Mümkün olan en kısa sürede antibiyotik tedavine başlamak önemlidir (27,35). Tetrasiklin ve kloramfenikol tedavide etkindir. Bazı hastalarda doksisiklin birinci tercihtir. Tedavi en az 5-7 gün devam etmeli veya hasta en az iki gün afebril olana kadar sürmelidir (31,36). Ölümlerin çoğu medikal tedavideki gecikme nedeniyledir. Hastalık erken fark edilip tedavi edilirse hızlı bir düzelme gösterir (27). LYME HASTALIĞI Kalp, eklem ve sinir sistemini de içeren; ciddi problemler oluşturabilen Lyme hastalığı siyah bacaklı olarak adlandırılan geyik kenesi (İxodes scapularis) ile taşınan bir bakteriyel hastalıktır (27). Sıcaklık 35 Fahrenheit üzerinde olduğu sürece tüm yıl boyunca aktif kalabilirler. Zirve aktivite ayları nymphler için Mayıs-Haziran; erişkinler için ise Ekim-Kasım aylarıdır. Borelia burgdorferi adlı spiroketin neden olduğu Lyme hastalığı hem ABD de hem de dünyada kene ile taşınan en yaygın hastalıktır (28,35,36). Birleşik devletlerde ilk kez 1975 yılında Connecticut’ta bulunan Lyme bölgesinde çok fazla sayıda çocukta görülen artrit vakaları sonucunda bildirildi (26). Borelia hastalığa neden olan ajan olarak 1980’li yılların başlarında izole edilebilmiştir (33). Hastalığın 15 yaş gençlerde ve 29 yaşlarda olan iki tepeli bimodal bir yaş dağılımı vardır ve birçok vaka Mayıs-Eylül döneminde meydana gelir. ABD’de TAF Preventive Medicine Bulletin, 2008: 7(5) 464 1999 yılında hastalık kontrol ve korunma merkezine (CDC) 16273 vaka rapor edilmiştir (37). ABD’de ki araştırmalar kenelerin Lyme hastalığını nymph evresinde beslenmenin 2 ya da daha sonraki günlerinde naklettiklerini göstermiştir (26). Bu evrede 2 mm den küçük olduklarından sıklıkla fark edilmezler; beslenmek ve enfeksiyonu yaymak için fazla zamanları vardır. Erişkin keneler ise daha büyük olduklarından fark edilmeleri ve vücuttan uzaklaştırılmaları daha kolaydır. Kene uygun teknikle erken dönemde çıkarılırsa enfeksiyonu yayma şansı çok azdır (26). Lyme hastalığının 3 evresi bunlunur: 1. Erken lokalize evrede; kene ısırığını takiben günler içinde (7-14 gün) hastaların % 60-80 inde Eritema Cronicum Migrans adı verilen kırmızı, yavaşça genişleyen boğa gözü şeklinde döküntü meydana gelir (34,30). Isırık etrafında küçük, kırmızı bir papül olarak başlar; günler içerisinde merkezden dışa doğru genişler. Lezyonun merkezinde hiperemik, deriden kabarık bir beneklenme kalabilir ve ortalama çapı 16 cm olan lezyonun çapı bazı vakalarda 70cm’ye kadar ulaşabilir. Döküntü ile beraber yorgunluk, kas ağrısı, eklem ve baş ağrısı, ateş ve üşümeyi içeren sistemik semptomlar olabilir. Fizik muayenede boyun sertliği, bölgesel adenopati ve ısırık bölgesinden bağımsız bölgelerde, primer lezyondan daha küçük sekonder deri lezyonları görülebilir. Eğer tedavi edilmezse genellikle birkaç haftadan daha uzun bir sürede kendiliğinden iyileşir (34,35). 2. Hastalığın erken dissemine formu kene ısırığını takiben günler-aylar içinde birçok sistemi de içeren semptomlarla ortaya çıkar. Birçok hasta kene tarafından ısırılıp ısırılmadığını hatırlamaz. Hastalarda eritema kronikum migrans olmayabilir. Lenfositik menenjit, sıklıkla Bell palsi gibi kraniyel sinir palsileri, azalmış duyu, güçsüzlük ve refleks yokluğunu da içeren nörolojik semptomlar olabilir (5- 2). Kardiyak semptomlar çoğunlukla erkeklerde olur, bitkinlik ve çarpıntı şeklinde ortaya çıkar. Çeşitli derecede atriyoventriküler bloklar ve orta derecede peri/miyokardit olabilir. Artrit genelde geç ortaya çıkar ama bu evrede de görülebilir. Bölgesel veya jeneralize adenopati, konjonktivit, iritis, hepatit ve mikroskopik hematüri veya proteinüri görülebilir (32,34,35) 3. Hastalığın geç evresi sıklıkla kronik artritle karakterizedir. Bu durum tedavi edilmemiş eritema migransı olan hastaların yaklaşık % 10 unda meydana gelir. Büyük eklemleri özellikle de diz eklemini içeren mono veya asimetrik oligoartriküler artrit olarak tanımlanmıştır. Nörolojik sistem subakut ensefalopati, aksonal polinöropati ve lökoensefalopati şeklinde etkilenebilir. Geç bulgular genelde birkaç yıl içinde spontan olarak iyileşir (30,32). Teşhis edilmesi zor bir hastalıktır (38).Tanı, öykü ve fizik muayeneye dayanır. Rutin laboratuar testleri tanıda rolü azdır. Seroloji testleri tanıyı doğrular ancak hastalığın ortaya çıkmasından 4-6 hafta sonrasına kadar tanı değerleri yoktur (30). ELİSA testi % 89 sensitif, % 72 spesifiktir. Pozitif test sonuçları Western Blot ile desteklenmelidir. PCR özellikle etkilenmiş eklemlerden alınan eklem sıvılarında yararlıdır (40). Eğer nörolojik bulgular varsa BOS’tan çalışma yapılabilir. Sinoviyal sıvı artritin ayırıcı tanısını yapmak için alınır. Organizmanın doku ve vücut sıvılarından izolasyonu çok zordur (31). Hastalığın sahip olduğu ciddi sekel potansiyeli nedeniyle erken tanı ve tedavi önem taşır. Ciddi vakalarda parenteral antibiyotikler gerekir. Erken dönemde yakalanırsa oral antibiyotiklerle tedavi edilebilir(26). Amoksisilin ve doksisiklin 2-3 hafta süre ile tedavide tercih edilir. Komplike olmayan vakalarda tedavi en az 14-21 gün; ciddi veya komplike vakalarda 30 gündür (41). Hastalık nadir görülür ama oldukça fatal seyreder (30). 1998 yılında Amerikan Gıda ve İlaç Dairesi hastalıktan korunma da kullanılmak üzere ilk kez bir aşıya onay verdi. Rekombinant OspA (LYMErix) aşısı üzerindeki iki çalışma aşının semptomatik enfeksiyondan korunmada % 76-92 arasında etkili olduğunu göstermiştir. Aşı keneye maruziyet açısından yüksek veya orta riskli kişilere önerilmiş, düşük riskli veya risksiz olan kişilere, 15 yaşından gençlere, 70 yaşını geçmiş yaşlılara ve yeterli çalışma olmamasından dolayı hamilelere önerilmemektedir (42). ERLİKİYOZ Hastalık küçük, gram-negatif, pleomorfik, zorunlu hücre içi bir organizma olan Ehrlichia tarafından oluşturulur. ABD’ de Ehrlichia chaffeensis ve Ehrlichia ewingii’ nin neden olduğu İnsan Monositik Erlikiyozu (İME) ve henüz isimlendirilmemiş bir ehrlichia türünün, muhtemel Ehrlichia phagocytophila/Ehrlichia equi’nin neden olduğu İnsan Granülositik Erlikiyozu (İGE) olmak üzere iki farklı formu vardır (43). Ehrlichia chaffeensis yıldız kenesi olan Amblyomma americanum tarafından taşınır. Beyaz kuyruklu geyik bu kenenin tek major konağıdır ve tek doğal rezervuardır (35). Hastalık ilk kez 1935 yılında bir grup araştırma köpeğinde tespit edildi. 1986 yılında insanda tanımlandı. Dünya çapında yaygın bir hastalık TAF Preventive Medicine Bulletin, 2008: 7(5) olmasına rağmen vakaların çoğu ABD’ de bildirilmektedir. Her iki türün de çoğu vakası Nisan- Eylül döneminde görülür. Vakaların % 75’ten fazlası erkeklerde görülür ve yaşlılar daha sık etkilenir. Klinik her iki türde de birbirine benzer. Hastalar kene ısırığı sonrası 7-10 günlük bir inkübasyon periyodunu takiben hastalanmanın ilk haftası içinde sağlık kuruluşuna başvururlar. Belirtiler ateş, baş ağrısı, kırgınlık ve kas ağrısıdır. Buna ek olarak bulantı, kusma, ishal, öksürük, eklem ağrısı, konfüzyon ve vucutta döküntü olabilir (35). Döküntü; İME olan erişkin hastaların yarısından biraz azında; İGE olan erişkin hastaların ise % 10’ undan biraz azında görülür. Bununla beraber enfekte çocuk hastaların % 60’ında döküntü görülmeyebilir. Döküntü gövdeyi içerir ama elleri ve ayakları tutmaz ve ısırık bölgesiyle ilişkili değildir. Maküler, papüler, retiküler, makülopapüler veya peteşiyel şekillerde olabilir. İGE de respiratuar veya renal yetersizlik, fırsatçı enfeksiyonlar veya hemoraji(DİC) gibi komplikasyonlar çok sık görülür (29). Laboratuar bulguları ise lökopeni, trombositopeni ve artmış karaciğer transaminazlarından oluşur. İGE de orta derecede bir anemi; hem İGE hem de İME de artmış ESR, BUN, kreatinin; İME de ise yükselmiş protein düzeyi ve lenfositik pleositozu olan BOS bulunabilir (44). Tanı öykü, fizik muayene ve laboratuar bulgularına dayanır. Seroloji tanıyı destekler ancak 1-2 haftada pozitifleşir. PCR da tanıyı destekler ancak akut safhada yapılmalıdır. Kültürler yararlı değildir. Tanıdaki temel metot konvelasan evredeki serokonversiyonun tespitidir. Tedavide tercih edilecek ilaç Doksisiklin’dir. Alternatif olarak kloramfenikol ve rifampin kullanılabilir. Tedavi süresi en az iki hafta olmalıdır. Tedavi edilmediği zaman tüm hasta grubunun % 50 sine varan bir oranda hospitalizasyon gerektiren ciddi bir hastalık oluşabilir. Uzamış ateş, böbrek yetersizliği, DİC, ARDS, meningoensefalit, nöbet veya koma şeklinde ciddi manifestasyonlar olabilir. Öngörülen mortalite oranı % 2-3 dür ve E.chaffeensis tarafından oluşturulan enfeksiyon diğer erlikiyoz türlerinden daha ciddidir (35). TULAREMİ Tularemi; küçük, gram negatif, hareketsiz bir kokobasil olan Francisella tularensis tarafından oluşturulan enfeksiyöz bir hastalıktır. Hastalık aynı zaman da Tavşan ateşi olarakta bilinir. İnsanlara sindirim, inokülasyon, inhalasyon ve kontaminasyon yollarıyla bulaşabilir. Amerika ‘da vakaların yarısından fazlasında kene ısırığı sorumludur (31). Her yıl bu ülkede 150-300 arasında vaka rapor edilir. Hastalık erkeklerde sık görülür. Özellikle kış aylarında avcılıkla uğraşanların derilerideki küçük lezyonların avlanan enfekte tavşanla teması ile bulaşır. Yaz ve sonbahar mevsimlerinde zirve yapar (45). İyi pişmemiş enfekte etler ve kontamine sular da bulaşma nedenidir. İnkübasyon periyodu ortalama 3-5 gündür. Birçok hastada ateş, üşüme, baş ağrısı, kırgınlık, anoreksi, yorgunluk, öksürük, kas ağrısı, göğüste rahatsızlık hissi, kusma, karın ağrısı ve ishali de içeren generalize semptomlar bulunur. Bunlara ek olarak hasta 6 farklı klasik modelden biriyle gelebilir: 1. Ülseroglandüler model: en sık görülen ve en kolay fark edilendir. Hastalar içerdiği lenf bezlerine drene olan bölgedeki ağrılı deri ülseriyle beraber olan, lokalize, hassas lenfadenopatilerden sikayetçidirler. En sık tutulan lenf bezleri çocuklarda servikal ve oksipital; erişkinlerde inguinal bölgede olanlardır. 2. Glandüler tip ise ülseroglandüler tip ile benzerdir ama bunda deri ülseri yoktur. 3. Oküloglandüler tipte organizmalar konjonktivaya yerleşmişlerdir. Vakaların % 90’ında tek taraflı tutulum olur. Fotofobi ve artmış lakrimasyonu içeren erken belirtiler vardır. Geç dönemde hastalarda göz kapağı ödemi, skleral enjeksiyonu olan ağrılı konjonktivit, kemozis ve küçük yeşil konjonktival ülser veya papül gelişir. Priaurikülar, submandibular ve servikal bezler sıklıkla tutulur. 4. Faringeal tipte ise organizmalar orofarinkse yerleşmişlerdir. Ciddi boğaz ağrısı bulunur. Fizik muayenede eksudatif farenjit veya tonsilit; servikal, preparotit veya retrofarengeal lanfadenopati bulunabilir. 5. Tifoid model ise herhangi bir lenfadenopati ile ilişkili değildir. Diğer tiplerde belirtilen genel semptomlara ek olarak burada sulu ishal vardır. 6. Pnömonik tip ise akut respiratuar bir hastalık olarak ortaya çıkar. Belirtiler ateş, minimal balgamlı veya balgamsız öksürük, substernal göğüs hassasiyeti ve plörotik göğüs ağrısından oluşur. Radyografilerde lobar, apikal veya miliyer infiltrasyonlar, hiler adenopati ve plevral efüzyon bulunabilir (45). Tanı; hikâye ve fizik muayeneye dayanır. Laboratuar testleri genellikle spesifik değildir. WBC ve ESR düzeyleri normal yâda hafif yüksektir. Organizma kültürde üretilebilir ama bu yöntem laboratuar çalışanlarına bulaşma riskinden dolayı sıklıkla kullanılan bir yöntem değildir. Göğüs radyografilerinde oval opasite, hiler adenopati ve plevral efüzyon triadından oluşan bulgular olabilir. Seroloji yaklaşık iki haftalık bir süre içinde tanıyı destekler (31). TAF Preventive Medicine Bulletin, 2008: 7(5) 466 www.korhek.org Hastada menenjit düşünülmüyorsa streptomisin ilk seçilecek ilaçtır. Alternatif olarak gentamisin, tetrasiklin, kloramfenikol ve florokinolonlar düşünülebilir. Tedavi 7-14 gün sürmelidir. Korunmada canlı aşı mevcuttur ve laboratuar çalışanları ve patojene tekrarlayan maruziyeti olan kişilere uygulanabilir. BABESİYOZ Hastalık etkeni eritrositleri enfekte eden ve hemolizlerine neden olan Babesia genusuna ait protozoal bir parazit olan Babesia divergens veya Babesia microti’ dir. Hastalık geçişi İxodes kenelerinin farklı türleri ile olur. Etken geyik kenesi ile taşınır (46). Hastaların % 5 kadarında fulminan seyrederek hospitalizasyon veya ölümle sonuçlanan bir tablo oluşturur. Özellikle splenektomi yapılmış hastalarda ciddi hastalık tablosu oluşturur. Tripanozoma’dan sonra memelilere kan yoluyla bulaşan en sık ikinci parazittir (47). Semptomlar diğer kene ile geçen hastalıklara benzer ve inokülasyondan bir hafta sonra başlayan influenza benzeri belirtiler verir. Ateş, terleme, kas ağrısı ve baş ağrısı görülür. Hemolitik anemi, hemoglobinüri, böbrek yetersizliği yapabilir. Enfeksiyon genç erişkinlerde yıllarca asemptomatik olarak kalabilir (46). Nadir de olsa oftalmik tutulum olabilir. Hastada ateş, hemolitik anemi ve uygun temas öyküsü varsa babesiyoz düşünülebilir. Tanı kan yaymalarda protozoanın tespitine dayanır. Karakteristik olarak Malta Haçı görünümü vardır. Serolojik testler ve PCR yardımcı yöntemleridir. Orta derecedeki vakalar semptomatik tedavi gerektirir. Persistan yüksek ateş, progresif anemi, yükselen parasitemi olan ciddi vakalarda Kinin+Klindamisin veya Atovaquon+Azitromisin en az 7-10 gün boyunca kullanılmalıdır. Yüksek parasitemisi olan ciddi hastalarda exchange transfüzyon yapılabilir (46). KOLORADO KENE ATEŞİ Hastalık bir ağaç kenesi olan D.andersoni tarafından nakledilen RNA orbivirus tarafından oluşturulur. Çoğunlukla Amrikadaki Rocky dağları bölgesinde her yıl 200-300 arasında vaka tespit edilir. İmmün yetmezliği olan ve splenektomi geçirmiş olan hastalar ciddi komplikasyonlar açısından risk altındadır (46). İnokülasyondan sonra bir hafta içinde influenza benzeri semptomlar başlar. Hastaların üçte birinde boğaz ağrısı bulunur. En önemli özelliği; menenjit, döküntü ve konjuktivit ile ilişkili olan bifazik ateştir. Hastalık genellikle 7-10 gün arasında sonlanır. Tanı genellikle immünfloresan boyama ile konur. Bununla beraber lökopeni ve trombositopeni bulunabilir. Spesifik bir tedavi yoktur. Destek tedavisi verilir. Belirtiler ortaya çıkmışsa diğer kene geçişli hastalıkları kapsayan ampirik olarak tetrasiklin, doksisiklin veya kloramfenikol kullanılabilir. DÖNEK ATEŞ Hastalığa Borrelia genusundan bir spiroket neden olur. Ornithodoros genus keneler esas vektördür. Tipik olarak hastalık sporadiktir (48). Ortalama inokülasyon periyodu bir haftadır. İnfluenza benzeri semptomlar, artralji, bulantı ve kusma olur. Genellikle 40 derecenin üzerinde, düzensiz ve bazen deliryumla ilişkili ateş olabilir. Hastaların çoğunda splenomegali bulunur. Meningeal bulgular olabilir. Epistaksis hemoptizi, iridosiklit, koma, kraniyel sinir palsi, pnomonit, miyokardit ve dalak rüptürünü içeren komplikasyonlar olabilir. Tanı; kan, kemik iliğinde ve ateş epizotu sırasında BOS’da spiroketin tespitiyle konulabilir. Lökosit sayısı normal veya orta derecede artmıştır. Trombositopeni tespit edilebilir. Tedavide 5-10 gün boyunca doksisiklin tercih edilir. Alternatif olarak eritromisin kullanılabilir. Eğer ilaçlar geç febril evrede verilirse Jarisch- Herxheimer reaksiyonu meydana gelebilir. Antibiyotik tedavisinin öncesi ve sonrasındaki 2 saatlik periyotlarda asetaminofen uygulanması reaksiyonun ciddiyetini azaltabilir. KOMBİNE ENFEKSİYONLAR Aynı kene birden fazla enfeksiyöz patojende taşıyabilir. Bundan dolayı bir ısırıkla birden fazla hastalığı bulaştırabilir. Örneğin İ.scapularis; erlikiyoz, lyme hastalığı ve babesiyozu bulaştırabilir. Lyme hastalığı bulunanların % 23’ünde babesiyoz; % 10-30 unda erlikiyoz bulunur. Kombine enfeksiyonların daha ciddi semptomlar oluşturacağı akılda bulundurulmalıdır. KAYNAKLAR 1. Rajput ZI, Hu S, Chen W, Arıjo AG, Xiao C. Importance of ticks and their chemical and immunological control livestock. Journal of Zhejiang University. 2006; 7(11): 912-921. TAF Preventive Medicine Bulletin, 2008: 7(5) www.korhek.org 467 2 Furman DP, Loomis EC. The ticks of California (Ascari: Ixodida). University of California Publications. Bulletin of the California Insect Survey. 1984; 25: 1-239. 3. Edlow JA, Danzl D, Halamka J, Pollack VC. Tick- Borne Diseases. www.eMedicine.com. 4. Snelson JT. Animal ectoparasites and disease vector causing major reduction in world food supplies. FAO Plant Prodection Bulleton. 1975; 13: 103-114. 5. Barker SC, Murrell A. Systematics and evolution of ticks with alist of valid genus and species names. Parasitology. 2004; 129(7):15-36. 6. Klompen JSH, Black WC, Keirans JE, Oliver JH. Evolition of tiks. Annu Rev Entomol. 1996; 41(1): 141-161. 7. Güler S, 198. Ankara ve civarındaki koyun ve keçilerde kış ixodidaeleri üzerine araştırmalar. U. Ü. Vet. Fak. Derg. 1 :54-55. 8. Güler S, Özer E, Erdoğmş SZ, Köroğlu E, Bektaş İ. Malatya ve bazı Güneydoğu Anadolu illerinde sığır, koyun ve keçilerde bulunan kene türleri. Doğa-Tr. J. Of Veterinary and animal Science. 1993; 17: 229-231. 9. Karaer Z, Yukarı BA, Aydın L. Türkiye keneleri ve vektörlükleri. Parazitolojide Andropod Hastalıkları ve Vektörler. İzmir, Türkiye. Parazitoloji Derneği Yayın No: 13, 1997, p. 363-434. 10. Hoogstraal H. The epidemiologymof tick borne Crimean-Congo hemorrhagic fever in Asia, europe and Africa. J Med Entomol 1979; 15: 307- 417. 11. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H. Crimean-Congo hemorrhagic fever. In:Monath TP, ed. The arboviruses: epidemiology and ecology, volume 2. Boca Raton, FL, USA:CRC Pres, 1988, p. 177-260. 12. Ergönül O, Celikbaş A, Dokuzoğuz B, Eren S, Baykam N, Esener H. The characteristicks of Crimean-Congo hemorhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin Infect Dis. 2004; 39: 285-89. 13. Ergönül Ö. Crimean-Congo haemorrhagic fever. The Lancet. 2006; 6: 203-214. 14. Kartı SS, Odabaşı S, Korten V, et al. Crimean- Congo hemorrhagic fever in Turkey. Emerg Infect Dis. 2004; 19: 1379-84. 15. Ozkurt Z, Kiki I, Erol S, et al. Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect. 2006; 52: 207-15. 16. Türkiye’de KKKA yayılım haritası. www.tvhb.org.tr 17. Whitehause CA. Crimean-Congo hemorrhagic fever. Antivir Res 2004; 64: 145-60. 18. Swanepoel R, Gill DE, Shepherd AJ, et al. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 794-800. 19. Smego RA, Sarwari AR, Siddiqui AR. Crimean- Congo hemorrhagic fever: Prevention and control limitations in a resource poor country. Clin Infect Dis. 2004; 38: 1731-35. 20. Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean- Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36: 120-32. 21. Ergönül O, Celikbaş A, Baykam N, Eren S, Esener H, Dokuzoğuz B. Analysis of the mortality among the patients with Crimean-Congo hemorrhagic fever virus infection. Clin Microbiol Infect (in press). 22. Burt FJ, Leman PA, Abott JC, Swanepoel R. Serodiagnosis of Crimean-Congo haemorhagic fever. Epidemiol Infect. 1994;113: 551-62. 23. Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean- Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996; 55: 190-96. 24. Ahephered AJ, Swanepoel R, Leman PA. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 801- 806. 25. Knowles SR, Phillips EJ, Dresser I, Matukas I. Common adverse events associated with the use of ribavirin for severe acte respiratory syndrome in Canada. Clin Infect Dis. 2003; 37: 1139-42. 26. Chiou HE, LiuCI, Buttrey MJ, et al. Advere effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest. 2005; 128: 263-72. 27. Ticks. www.co.franklin.oh 28. Walker DH, Raoult D. Rickettsia rickettsii and other spotted fever group rickettsiae (Rocky Mountain spotted fever and other spotted fevers). In: Mandel GL, Douglas RG, Bennett JE Dolin R, eds. Mandell, Douglas and Bennett’s Principles and practice of infectious diseases. 5th ed. Philadelphia. Churchill Livingstone, 2000, p. 2393-402. 29. Walker DH. Tick-transmitted infectious diseases in the United States. Annu Rev public Health 1998; 19: 237-69. 30. Tick information. www.cdc.gov. 31. Spach DH, Liles WC, Campbell GL, Quick RE, Anderson DE Jr, Fritsche TR: Tick-borne diseases in the United States. N Engl J Med. 1993; 329: 936-47. 32. Thorner AR, Walker DH, Petri WA Jr. Rocky mountain spotted fever. Clin Ifect Dis. 1998; 27: 1353-60. TAF Preventive Medicine Bulletin, 2008: 7(5) 468 www.korhek.org 33. Steeve AC. Lyme borreliosis. In: Kasper DL, Harrison TR: Harrison’s Manual of medicine.16th ed. New York: McGraw-Hill, 2005, p. 995-9. 34. Tick-borne diseases. www.aafp.org. 35. Centers for Disease Control and Prevention. Rocky Mountain spotted fever. Accessed online April 11 2005. at: www.cdc.gov. 36. Taege AJ. Tick trouble: overview of tick-borne diseases. Cleve Clin J Med. 2000; 67: 245-9. 37. Ticks. www.health.nsw.gov.au. 38. Centers for disease control and prevention. Lyme disease-United States, 1999. MMWR morb Mortal Wkly Rep. 2001; 50: 181-85. 39. Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, et al. The early clinical manifestation of Lyme disease. Ann Intern Med. 1983; 99: 76-82. 40. Beers MH, Berkow R. The Merck manual of diagnosis and therapy. 17th ed. Merck Research Laboratories. Whitehause Station, n.J, 1999. 41. Treatment of Lyme disease. Med Lett Drugs Ther. 2000; 42: 37-9. 42. Deborah SF. Prevent Tick bites: Prevent Lyme Disease. Rutgers Coperative extensions. 1992, FS637. 43. Belman AL. Tick-borne diseases. Semin Pediatr Neurol. 1999; 6: 249-66. 44. Fritz CL, Glaser CA. Erlichsis. Infect Dis Clin North Am. 1998; 12: 123-36. 45. Cox SK, Everett ED. Tularemia, an analysis of 25 cases. Mo Med 1981; 78: 70-4. 46. Bratton RL; Corey GR. Tick-Borne Diseases. www.aafp.org. 47. Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitology. 2000; 30: 1323-1337. Kaynak:TAF Preventive Medicine Bulletin, 2008: 7(5) Konu İle İlgili PDF formatını buradan indire bilirsiniz http://www.korhek.org/khb/khb_007_05-461.pdf

http://www.biyologlar.com/kene-ile-bulasan-hastaliklar

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:KANSER TEDAVİSİNDE BAKTERİLER VE NANO ROBOTLAR     Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:Her bir bakteri 4 pikoNewtonluk kuvvet uygulayabilecek kuyruk organellerine sahip. Tek başına küçük olmasına karşın 5000 tanesini birlikte çalıştırdığınız zaman bir piramit yaptırabiliyorsunuz.Hayvanlar üzerindeki ilk klinik deneyler2011 yılının başında Mantel ve ekibi, hazırladıkları tüm sistemi gerçek anlamda ilk kez bir canlıda denediler, tek bir farkla bu kez bakterileri es geçtiler. MRI kullanarak yönlendirdikleri bir mikro taşıyıcı sistemi karaciğerinde tümör olan bir tavşana doxorubicin adlı bir kemoterapi ilacı taşımak için kullandılar. Bu taşıyıcı sistem iddia edildiği gibi vücut içerisinde yok olacak cinste bir polimerden üretilmişti. Polimerin tasarımı, farklı hızlarda çözünecek şekilde yapılmıştı, böylece yeterli dozda ilaç iletimi sağlanıyordu. Her bir taşıyıcının yüzde otuzu manyetik nano taneciklerken kalan yüzde yetmişi ilaçtı. Mantel sadece kemoterapi değil, radyoterapi ilaçları olan radyoaktif maddelerin de iletiminin mümkün olduğunu belirtti [5].Bazı kan damarları “Y” şeklinde çatallandıklarından geleneksel ilaç iletim sistemlerinin yaklaşık yüzde 50 ihtimalle tümörlü dokunun olduğu yöne, yüzde 50 ihtimalle de karaciğerin alakasız bir bölgesine gidip yan etkiye sebebiyet veriyorlar. İşte Mantel’in bu sistemi manyetik kontrolü sayesinde hiçbir çatallanmadan etkilenmeyecek bir özelliğe sahip olduğu için fark yaratıyor. Ayrıca hiçbir kan damarına zarar vermiyor. Geleneksel kemoterapide kateter (sonda) ile yapılan bir ilaç sevkiyatı, kateterin tümöre çok yaklaşıncaya kadar karaciğerin dibine kadar sokulması ve bu sırada da tabii ki bir çok damara zarar verilmesi anlamına geliyor. Bu sebeple de hastalar günlerce, hatta haftalarca damarlarının iyileşmesini bekliyorlar ki, yeni bir doz daha alabilsinler. Ancak manyetik mikrotaşıyıcı robotlar kullanıldığında, sondanın damarlara bu kadar yakınlaşmasına gerek kalmıyor. Zarar görmeyen damarlar sayesinde de hasta arka arkaya günler içerisinde birçok dozu az az ancak hızlı bir şekilde alabiliyor. Bu şekilde de kimyasal zehirlenmelerin önüne geçiliyor.Ekip, 2011 yılının sonunda tekrar bakterili nanobot sisteminin testlerine yöneldi. Ancak Mantel’in görüşüne göre bu metodlar her ne kadar hayvanlar üzerinde etkili olsa da pratik hayatımızdaki uygulamalarından 4-7 yıl uzaktayız.Not: Konuyla ilgili daha fazla bilgi sahibi olmak isteyenlere Sylvian Mantel’in İngilizce altyazılı Fransızca bir TEDx sunumunu seyretmelerini öneriyorum.Kaynaklar:[1] http://apl.aip.org/resource/1/applab/v90/i11/p114105_s1?isAuthorized=no[2] http://www.technologyreview.com/computing/21619/?a=f[3] http://www.newscientist.com/article/dn17071-bacteria-take-fantastic-voyage-through-bloodstream.html[4] Sylvain Martel, Mahmood Mohammadi: A robotic micro-assembly process inspired by the construction of the ancient pyramids and relying on several thousand flagellated bacteria acting as micro-workers. Intelligent Robots and Systems, pp 426-427,  2009.[5] http://www.healthimaginghub.com/feature-articles/digital-radiography/2945 Yazar hakkında: Gökhan İncehttp://www.acikbilim.com/2012/07/dosyalar/kanser-tedavisinde-bakteriler-ve-nano-robotlar.html

http://www.biyologlar.com/kanser-tedavisine-bakteriler-ve-nano-robotlar

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili-3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit-1

ALANİN AMİNOTRANSFERAZ (ALT)

Normal Değer: Kord 10-90 U/L 0-7 gün 10-90 U/L 7 gün-1 yaş 10-80 U/L 1-60 yaş 10-60 U/L >61 yaş 10-70 U/L Kullanımı: Karaciğer fonksiyon testlerinden biridir. Karaciğer hastalıkları, safra yolları, obstürük siyonu, kas zedelenmeleri, müsküler distrofiler, akut pankreatit, konjetif kalp yetmezliği ve hepatotoksik ilaçlar ALT düzeyinde artışa neden olur. www.tahlil.com

http://www.biyologlar.com/alanin-aminotransferaz-alt

BİYOTEKNOLOJİK GELİŞMELER

Bu makale iki bölümden oluşmuştur. Birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ve söz konusu gelişmelerin eğitim bilimleri açısından öngörülen doğurgusu ele alınmıştır. İkinci bölümde biyoteknoloji alanında dünyada ve Türkiye’de durum genel çizgileriyle özetlenmiş ve gelişmelerin eğitim sistemine olası yansımaları tartışmaya açılmıştır. Giriş Biyolojide DNA’nın yapısının çözümlenmesi 20. yüz yıldaki en önemli bilimsel gelişmelerden biridir. Bu gelişme alanda yeni çalışmalara ivme kazandırmıştır. Yeni teknolojilerin kullanıldığı ve uygulandığı bu çalışmaların doğurguları fiziksel ve doğal dünyayı değiştirebilecek niteliktedir. Bu nedenle bilimsel platformlarda yeni yüzyıl biyoteknoloji yüzyılı olarak tanımlanmaktadır. Biyoteknoloji ve Gelişmeler Biyoteknoloji kavramı, ilk kez 1919 yılında Ereky tarafından kullanılmıştır. Biyoloji ve teknoloji alanındaki gelişmeler, hiç kuşkusuz kavramın kapsamını genişletmiş; anlamını zenginleştirmiştir. Söz konusu gelişmeler, tarihsel süreç içinde, üç başat döneme ayrılmaktadır. (1,2,3,4,5) Geleneksel biyoteknoloji dönemi .- 1919 ve 1939’lu yılları kapsamaktadır. Bu dönemde, biyoteknoloji Ereky ‘nin kavramı ilk kullandığı anlamda ‘’ biyolojik sistemlerin yardımıyla hammaddelerin yeni ürünlere dönüştürüldüğü işlemleri’’ ifade etmektedir. Bu dönemdeki bilgi birikimi ve teknolojiyle biyolojik sistemler, herhangi bir değişime tabi tutulmaksızın ekmek, peynir, yoğurt, alkol vb. maddelerin üretilmesinde kullanılmıştır. Ara dönem.- 1940 ve 1973’lü yılları kapmaktadır. Bu dönemde genomlarında köklü bir değişiklik yapılmaksızın biyolojik sistemlerin, endüstride kullanım alanları genişletilmiş sınırlı tekniklerle antibiyotik, enzim, protein vb. maddelerin üretimi geliştirilmiştir. Modern biyoteknoloji dönemi.- Gelişmiş ve modern tekniklerin biyolojik sistemlere Uygulanmasına ilişkin çalışmaları kapsamaktadır. Mutasyonlar ya da rekombinant DNA Teknolojisi yardımıyla oluşturulan yeni fenotipik karakter taşıyan mutantlar veya transgenetik organizmalar endüstride ve tüm alanlarda yoğun biçimde kullanılmaya başlanmış ve kullanılmaktadır. Biyoteknoloji giderek genetik mühendisliği uygulamalarının tıbbi, zirai ve endüstriyel biyolojik maddelerin üretilmesi amacıyla kullanılmasını kapsamaktadır. Bu nedenle 20. yüzyılın son yıllarında biyoteknoloji, uygulamalı ve disiplinlerarası bir alan, ‘’moleküler genetik’’ ve ‘’rekombinant DNA teknolojisi’’ olarak tanımlanmaktadır. Artık bu teknoloji bir organizmanın genomlarında bulunan tüm bilgileri ve şifreleri değiştirmeyi; aynı ya da farklı cinse ait organizmalara DNA sekansları veya genleri aktarmayı, istenilen DNA baz sıralarını veya genlerini çıkarmayı, başka organizmalara aktarmayı ya da birleştirmeyi; DNA ve RNA baz sıralarını belirlemeyi, gen haritaları çıkarmayı; transgenetik hayvanlar, bitkiler, mikroorganizmalar üretmeyi, genetik düzeyde embriyolarda düzenlemeler yapmayı, yeni fenotip ve genotipte canlılar oluşturmayı, proteinler, enzimler, antibiyotikler hormonlar gibi tanılama, tedavi, koruma ve araştırmalarda kullanılan maddeler, kimyasallar üretmeyi olanaklı kılmaktadır. Biyoteknolojide ulaşılan aşama ve sürdürülen çalışmalar 21. Yüzyılı şekillendirecek devrimsel gelişmeleri içermektedir. Rıfkın bu gelişmeleri 1. genlerin izole edilmesi ve birleştirilmesi, 2. patentlenen yaşam, 3. ikinci yaradılış, 4. öjenik bir uygarlık, 5. gen sosyolojisi, 6. bilgisayar işi DNA, 7. yeniden keşfedilen doğa olmak üzere yedi başlıkta ele almıştır. (6) Demirsoy, söz konusu gelişmeleri 1. yapıyla ilgili 2. eğitim-öğretimle ilgili 3. işlevsel, 4. özgürlükler, 5. idari ve yasal, 6. düşünce zeminin evrimleşmesi olarak altı boyutta irdelemiştir.,(7) Bu makalede, yazar 21. yüzyılı şekillendirecek olası devrimsel gelişmeleri birbirleriyle örtüşür nitelikte olmaları nedeniyle bütünleştirerek beş başlıkta ele almayı uygun görmüştür. 1. İkinci Yaratılış ve Yeni Bir Evrenbilim Anlayışı 1973’te Cohen ve Boyer, iki ilişkisiz organizmadan bir parça DNA izole edip bu iki genetik materyali yeniden birleştirmişlerdir. Bunun ardından çok hızlı ve yoğun gelişmelerle ‘’ tıpkı materyallerin ve plastik maddelerin ustaca işlenmesi gibi canlı materyallerin imal edilmesi ‘’ aşamasına gelinmiştir. (8) Nitekim, 1986’da ateş böceğinden alınan ışık yayan genlerin bir tütün bitkisinin genetik koduna yerleştirilmesi ve tütün yapraklarının ışıldaması, 1997’de klonlanmış bir memeli hayvan olarak Dolly’nin, ardından insan geni taşıyan klonlanmış ikinci bir koyun olarak Polly’nin doğumu, ilk yapay insan kromozomunun yapılması, 2020 yılına kadar insan bedeninin % 95’inin laboratuvarlarda yetiştirilme organlarla değiştirilebilme olasılığı, insan genomu projesiyle 2002 yılına kadar bütün insan genomonunun yaklaşık 100.000 genin, ayrıntıları ve dizilişi ile saptanması çalışmaları vb. gelinen aşamanın göstergeleridir. Bütün bunlar genlerin, ilişkisiz türler arasında,- bitki, hayvan ve insan- tüm biyolojik sınırları aşarak; sayısız yeni yaşam biçimleri, yeni yaratıklar yaratmak için nakledilmesi, klonlanarak, seri ve kütlesel üretimle yeni yaratıkların çoğaltılması; doğal dünyanın insan eliyle laboratuvarlarda yeniden düzenlenmesi anlamına gelmektedir. Yaşamın kendisinin hazırlanması, düzenlenmesi, ayarlanması söz konusudur. Doğal yapıların değiştirilmesi , dünyanın yeniden yapılanması, insanın yapısının değişmesi aslında ‘’ ikinci yaratılış‘’ süreci gerçekleşmektedir. İnsanoğlunun böylesine doğaya müdahele edebilme; doğal dünyayı yeniden düzenleyebilme gücü sağlaması, yararların yanısıra; belirsizlikleri, riskleri de beraberinde getirmektedir. Genetik kirlenme, ekolojik dengelerin bozulması ve bunların sonuçları belirsizliklerin, risklerin kaynağını oluşturmaktadır. Örneğin mikro enjeksiyonla fare embriyolarına AIDS virüslü insan genomu verilmiş ve 1990’da çalışmanın sonuçları rapor edilmiştir. Farenin taşıdığı AIDS virüsü diğer fare virüsleriyle birleşerek, eskisinden daha öldürücü, daha hızla üreyen ve yeni hücreleri etkileme yeteneğini de kapsayan biyolojik karakteristikler kazandığı anlaşılmıştır. Üstelik yeni virüs yeni yollarla yayılabilmektedir. Bu yeni virüsü taşıyan farenin kasıtlı ya da kasıtsız olarak çevreye yayıldığını düşünmek bile genetik kirlenme ve ekolojik dengelerin bozulması konusunda belirsizliklerin ve risklerin niteliğini, kapsamını ortaya koymaktadır. Çalışmalarda gelinen nokta, genotip yapıları belli hastalık kalıplarına , önceden hazırlanmış belirli ırksal ya da etnik grupları yok etmek için seçimli toksinlerin klonlanlanabilmesini olanaklı kılmaktadır. Bu nedenle, genlerin biyolojik bir savaş aracı, bir silah olarak, kullanılma olasılıkları, tüm denemelerde kullanılan organizmaların haklarının korunamaması konuları sorgulanmakta ve biyoteknolojideki gelişmelere koşut olarak doğal çevrenin korunması, gelişmelerin izlenmesi, denetlenmesi zorunluluğu ortaya çıkmaktadır. Aksi halde insanoğlunun laboratuvarlarda başlayıp gerçekleştirdiği ikinci yaradılış sürecinde; doğal dünyada kendi tükenişini de hazırlaması olasıdır. Bu süreç aynı zamanda Rıfkın’ının tanımladığı ve vurguladığı ‘’ simyadan algeniye’’ kayan yeni bir kavramsal metaforu da beraberinde getirmektedir. Simya, ‘’madde bilimi, doğanın gizlerini çözme girişimi, maden, boya, cam imalatında, ilaçların hazırlanmasında uygulanan işlemler dizisi, aynı zamanda bir tür yoga, bir değişim bilimi, bir felsefe’’ olarak değerlendirilmektedir. Algeni ise ‘’ doğayı algılamanın, etkilemenin bir yolu, doğal durumda varolandan daha yeterli olduğuna inanılan yeni yaratıklar programlayarak doğal süreci hızlandırma girişimi, doğayla teknolojik girişimlere fizikötesi anlam verme çabası, doğa hakkında yeniden ve yeni bir düşünme yöntemi ve bir felsefe ‘’ olarak tanımlanmaktadır. (9) Bu düşünme yöntemi ve felsefesinde, ‘’ doğa artık bir sınırlamalar dizisi olarak değil, yaratıcı bir ilerleme süreci’’ olarak algılanmaktadır. Yaratıcı ilerlemenin itici gücü ise bilgidir. Bu da yaşamın evrimini, bilginin evrimiyle koşut gören, bilgide değişimin değişmezliğini vurgulayan, farkında olma, kestirme, uygun uyumlar sağlama süreçlerini ön plana çıkaran, Darwin’i bu boyutlarda sorgulayan yeni bir evren bilim anlayışı sunmaktadır. (10) 2.Yaşamın Patentlenmesi, Biyoteknolojiye koşut, endüstrisi de hızla gelişmektedir.(11) Gelişen bu endüstride uluslararası rekabet ve işbirliği aynı anda gerçekleşmektedir. Çünkü biyoteknolojinin ürünleri Farmasötik, temel kimyasal ve biyokimyasal maddeler, gıda ve tarım sektörlerini, teknikleri ise sağlık, çevre, ziraat, hayvancılık ve ormancılık sektörlerini inanılmaz bir biçimde etkilemektedir. Buluşları, yatırımları ve üretimi yapanlar dünya ticaretinde paylarını artırmak için yoğun çaba harcamaktadırlar. (12,13,14) Bu da dünyanın gen havuzunu patentlemek için, uluslar arası bir yarışı da beraberinde getirmektedir. Tüm yasal, yönetsel ve etik tartışmalara rağmen, biyoteknoloji yüzyılında, genetik mirası kapsayan bütün genlerin değişik sektörlerdeki uluslararası şirketlerin patentlenmiş özel mülkiyeti gibi bir konuma gelmesi beklenmektedir. 3.Öjenik Bir Uygarlığa Doğru Genetik mühendisliği kullanılan teknolojilerin doğaları gereği ‘’ öjenik’’ araçlar olarak değerlendirilmektedir. Öjenik, kavram olarak ilk kez 1883 yılında Galton tarafından seçimli yetiştirmeyle bir ırkın ya da organizmanın geliştirilmesi anlamında kullanılmıştır. Bu geliştirme iki boyutta gerçekleştirilebilir. Birincisinde organizmanın istenmeyen özelliklerinin bilinçli olarak yok edilmesi ikincisinde ise, özelliklerin düzeltilmesi için seçimli olarak yetiştirilmesi söz konusudur. İlk kullanıldığı ve II. Dünya savaşı dönemlerinde kavram zaman zaman dünya tarihinde yeni öjenik bir ırk yaratma söylemlerine, insanlık tarihinin utanç sayfalarını dolduran soykırım eylemlerine dönüşmüştür. Özellikle 1990’lı yıllarda biyoteknoloji alanındaki gelişmeler gerçek anlamda ve genetik düzeyde hastalıkları ve bozuklukları eleme şansını artırmıştır. Bu şans kendiliğinden rekombinant DNA, hücre kaynaşması vb. tekniklerin organizmaların genetik ozalitlerini ‘’düzeltmek’’ için kullanıldığı her işlemde öjenik bir anlayış oluşturmuştur. Bu nedenle söz konusu teknolojiler öjenik araçlar olarak değerlendirilmektedir. (15,16,17) Artık bu yeni öjenik anlayış, her boyutta yaşam kalitesinin yükseltilmesi söylemlerini ve piyasada oluşan arz-talep eylemlerini içermektedir. İnsanların fiziksel görünümlerini, ruhsal durum ve davranışlarını düzeltmek için , plastik cerrahiye ve psikotropik ilaçlara harcadıkları zaman, emek ve para göz önüne alındığında, kendileri ve daha doğmamış, çocukları için genetik müdahalelere ve tedavilere yaşam kalitesini yükseltmek amacıyla artan talepler doğal görünmektedir . Bu taleplerin kapsamı doğum öncesinde yapılabilen testlerle saptanan genetik rahatsızlıkların tedavi edilmesinden, tedavi amaçlı olmayan örneğin şişmanlamaya yatkın genetik yapısı nedeniyle ceninin düşürülmesine kadar geniş ve çok boyutludur.(18,19,20,21) Bütün bu gelişmeler söylemleri ve eylemleri farklılaşan yeni bir öjenik uygarlığın oluşumunu ifade etmektedir. Bu noktada hangi ülkelerin, toplumların söz konusu öjenik uygarlığın bir parçası olabileceği, bunu başaramayanların ne olacağı sorunu önem kazanmaktadır. Biyoteknolojik gelişmeleri gerçekleştiren ve sürdüren toplumların sosyal, politik, ekonomik vb. alanlarda bunu başaramayan toplumlara karşı tartışmasız bir üstünlük sağlayacakları ve bu üstünlüğün nasıl kullanılacağı etik anlamda ciddi kaygılar içermektedir 4. Biyobilişim Watson ve Crick DNA’yı kimyasal bilgi ile programlanmış bir kod olarak betimleyerek çözümlemişlerdir. Bu çözümlemede kullanılan dil, aynı zamanda bilgisayar bilimlerinde de kullanılmakta; biyolojik sürecin işlevini açıklamayı kolaylaştırmaktadır. Örneğin bilgisayarda donanımı oluşturan bilgi süreci canlı hücre de protein; yazılımı ifade eden somutlaşmış bilgi nükleit asit olarak değerlendirilmektedir. Embriyo hücreleri parelel çalışan ve birbirleriyle bilgi alışverişi yapan bilgisayar dizisine benzetilmekte; bilgisayarlarda ve hücrelerde karmaşık programları belleğin olanaklı kıldığı, bir çok hücreyle birlikte her biri gelişmeye yönelik bir kontrol programı boyunca bir adım atarak yetişkin bir bedeni oluşturduğu vurgulanmaktadır. (22,23) İşte bu ortak dil, iki alanda da bilim insanlarının çalışmalarını bütünleştirdikleri ‘’ biyobilişim’’ olarak tanımlanan disiplinlerarası bir alan oluşturmuştur. Bu alanda yapılan çalışmalar insan genomu projesi kapsamındaki tüm araştırmaların merkezi bir veri tabanında toplayan ‘’ The Genome Notebook’’ ‘unun geliştirilmesini, bilgisayarlarda biyolojik sistemlerin simulasyonları aracılığıyla çok yönlü ve amaçlı deneylerin yapılmasını olanaklı kılmaktadır. Bu da labaratuvar ortamlarındaki deneylerin önemli ölçüde risklerini azaltmaktadır. 1996’da canlı organizmaların genomlarındaki genetik bilgileri okumak için tasarlanan ve bilgisayar çiplerinin benzeri olan DNA çipleri ile bireysel hastalıkların taranabilmesi ve izlenebilmesi , söz konusu olmaktadır. (24,25) Biyobilişim alanında sürdürülen çalışmaların biyoteknolojik gelişmeleri daha da hızlandıracağı anlaşılmaktadır. Bu çalışmaların özellikle tıp alanında tanılama teşhis ve tedavi de bireysel uygulamaları; aksiyoner bir hekimlik anlayışını, yaşam süresini ve kalitesini geliştirmesi beklenmektedir. (26,27,28) 5. Biyososyoloji ve Sosyobiyoloji Biyoteknolojik gelişmeler biyososyoloji ve sosyobiyoloji gibi disiplinlinlerarası alanları, ve bu alanlarda yapılan çalışmalarıda geliştirmekte; zenginleştirmektedir. Biyososyoloji biyoloji ve sosyal çevre arasında sürekli karşılıklı ve ayrılamaz bir etkileşimi kabullenerek, biyososyal bir bakış açısıyla bu etkileşimin nasıl gerçekleştiğini irdelemektedir. Sosyobiyoloji çok daha geniş bir kapsamda türlerin özellikleri açısından olguların temel nedenlerini irdelemektedir. Bu anlamda biyososyoloji ve sosyobiyoloji aynı alanda alternatif bakış açıları ve çalışmalarla yeni açılımlar sunmaktadır. (29,30,31,32) Örneğin, kalıtımın ayırt edici kişilik özelliklerini hangi düzeyde etkilediğini belirlemeye yönelik bir çalışmada, üzüntü eğilimi ve yaratıcılıkta % 55, saldırganlıkta % 48, dışadönüklükte % 61 oranında belirleyici rol oynadığı ileri sürülmektedir. (33) Bir başka çalışmada babanın X kromozomundan geçen genler demetinin çocuklara başkalarının duygularını anlama başkalarıyla daha etkili ilişkiler kurma gibi daha iyi toplumsal beceriler aynı zamanda evrimsel bir üstünlük sağladığı savını destekler nitelikte bulgulara ulaşılmıştır. (34) Diğer bir çalışmada hem anne ve babanın hem de çocukların aynı genetik eğilimlere sahip olması durumunda karşılıklı genetik pekişmenin söz konusu olduğu bunun da aile fertleri arasındaki ilişkileri olumlu ya da olumsuz etkilediğine ilişkin bulgulara ulaşılmıştır. Örneğin hem anne ve babanın hem de çocukların kendiliğinden algılanan toplumsal güven duyma ya da aksine üst düzeyde huzursuzluk ve stres için genetik eğilimlere sahip olması durumunda her bir aile üyesinin genetik pekiştirme nedeniyle ya çok daha güçlü bir güveni ya da aksine huzursuzluk ve stresi ilişkilerine yansıttıkları belirlenmiştir. (35) Bu ve benzeri çalışmalar giderek tüm toplumsal sorunların çözülmesini genetik düzeyde düzenlemelere bağlayan tezlerin ve antitezlerin güçlenmesine yol açmıştır. Bazı bilim insanları ulusal ve uluslar arası alanda bireysel ya da toplumsal yeteneklerdeki herhangi bir gelişmenin sosyal, politik, ekonomik, eğitsel vb. düzenlemelerle değil genetik düzenlemelerle gerçekleşebileceğini ileri sürerken; diğerleri insanın çevresinden gelen bilgilere duyarlı dirik bir sistem olarak farklı çevrelerde farklı yeterlikler ve yetenekler ortaya koyabilecekleri düşüncesini benimsemektedirler. (36,37) Bireysel ya da toplumsal yeteneklerdeki herhangi bir gelişmenin sosyal, politik, ekonomik, eğitsel vb. düzenlemelerle değil genetik düzenlemelerle gerçekleşebileceği tezi iki gerekçeyle eleştirilmektedir. Birincisi bu tezin, kalıtsal yapıyla, kalıtsal yapının dışa yansıması ve çevresel değişkenler arasında var olan çok boyutlu karmaşık ilişkiyi göz ardı ettiği ileri sürülmektedir. İkincisi ise bu tezin gelecekte genotipe dayalı bir ayrımcılığı geliştirmesi ve yaygınlaştırması olasılığı vurgulanmaktadır. Nitekim ABD gibi biyoteknolojik gelişmelerin belli bir aşamaya geldiği ülkelerde genetik ayrımcılığın bazı örgütler tarafından uygulandığı belirlenmiştir. Bu uygulamalarda örgütler, çalışanlarına ve aday elemanlara genetik tarama testleri uygulamakta; işe alım ve yükseltilme sürecinde sonuçları dikkate almaktadırlar. Örneğin orak hücre anemisine ilişkin özelliklerin belirlenmesi sonucu, resesif gen taşıyıcılarının önemli bir çoğunluğunu Afrika kökenli Amerika’lıların oluşturduğu bir grubun hava kuvvetlerine alınması engellenmiştir. Genetik yapıları nedeniyle yetiştirilmeleri için kendilerine yapılan eğitim öğretim yatırımlarını uzun bir süre çalışarak örgütlerine geri ödeme olasılığı zayıf kişilere zaman ve kaynak ayrılmamaktadır. Okullarda öğrenciler zekaları, dikkatleri, akademik başarıları vb konularda genetik yapılarıyla değerlendirilerek sınıflandırılmaktadır. Genetik düzensizlik tanısı konulmuş öğrencilere öğretmenlerin daha farklı davranarak daha az ilgi sevgi ve destek verdikleri bununda kişisel güven toplumsal saygı ve kabul konusunda ciddi sorunlar yarattığı saptanmıştır. (38,39,40,41,42) Bir anti tez olarak gelişen; insanın çevresinden gelen bilgilere duyarlı, dirik bir sistem olarak farklı çevrelerde, farklı yeterlikler ve yetenekler ortaya koyabileceğine ilişkin düşüncede, DNA bir ‘’yapı taşları listesi’’ olarak değerlendirilmekte; ve buna rahimde gelişmekte olan embriyo örnek olarak verilmektedir. Çünkü, ‘’genomun çevresi yalnızca ısı ve beslenme gibi içsel olarak denetlenebilen etkenlerin dışında, döllenme sırasında yumurta hücresinde bulunan, anne tarafından sağlanan sayısız proteini kapsamaktadır. Bu proteinler ise, gen etkinliği etkilemekte; miktarlarındaki seçenek çeşitliliği ve yumurtadaki mekana dağılımlarıyla genetik olarak ikiz embriyoların dahi tek tek farklı biçimde gelişmelerine neden olabilmektedir.’’ (43) Bunun dışında, kalıtsal yapı ve dışa yansıması ile sosyal, politik, ekonomik, eğitsel düzenlemeler gibi çevresel değişkenler arasında çok boyutlu karmaşık bir ilişkinin varolduğu, bunun görmezden gelinemeyeceği vurgulanmaktadır. Bu nedenle de her şeyi genetik neden -sonuç ilişkisine dayalı olarak açıklayan düşünce modeli ‘’ basit genetik indirgemecilik’’ olarak nitelendirilmektedir. (44) Bütün bunlar biyoteknolojik gelişmelerin ve uygulamaların biyososyoloji, sosyobiyoloji ve diğer disiplinlerarası alanlarda çok sayıda ve kapsamlı çalışmaların yapılması zorunluluğunu bilim insanlarının bu anlamdaki sorumluluklarını ortaya koymaktadır. Bu sorumluluk, disiplinlerarası bir alan olan eğitim bilimlerinde, bilim insanlarının biyoteknoloji alanındaki gelişmelere ve bunun eğitim alanına yansımalarına ilgisiz ve duyarsız kalmamalarını gerektirmektedir. Uluslararası platformlarda eğitime ilişkin çalışmaların biyososyoloji veya sosyobiyoloji kapsamında sürdürüldüğü anlaşılmaktadır. Türkiye’de ise biyoteknoloji ve eğitim, bu alanda çalışacak bilim insanlarının yetiştirilmesi kapsamında ve eğitimbilimcilerin dışında tartışılmaktadır. Oysa biyoteknolojik gelişmeler ve eğitimle ilgili olası yansımaları sadece bilim insanlarının yetiştirilmesi anlamında ve yalnızca biyososyoloji, sosyobiyoloji alanlarında tartışılamayacak ya da eğitimcilerin dışında irdelenemeyecek kadar kapsamlı görünmektedir. Üstelik bu durum son yıllarda önemle vurgulanan disiplinlerarası etkileşim, paylaşım anlayışına da ters düşmekte; uzmanlık boyutunda sağlanacak katkıları sınırlandırmaktadır. Öyleyse biyoteknoloji alanındaki gelişmelerin bir sonucu olarak; disiplinlerarası bir alan olan eğitim bilimlerinde ‘’ biyoeğitim, biyotekeğitim’’ gibi tanımlanabilecek yeni bir disiplin geliştirilmelidir. Önerilen bu disiplin, biyoteknolojik gelişmeler ve eğitimin sürekli, karşılıklı ve ayrılmaz etkileşimini kabullenerek; biyoeğitsel bir bakış açısıyla; bu etkileşimin eğitimin yönetimi, denetimi ekonomisi, planlaması programları, öğretimi vb. boyutlarında, yaygın ve örgün eğitim kapsamında nasıl gerçekleştiğini, gerçekleşebileceğini açıklamaya adaydır. Bu yeni disiplin biyoteknoloji alanına kendi kapsamında ve bir önce sayılan boyutlarda bilgi, bulgu desteği sağlamalıdır. Makalenin bu, birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ele alınmış ve söz konusu değişmelerin eğitim bilimleri açısından öngörülen bir doğurgusu olarak yeni bir disiplin önerilmiştir. İzleyecek ikinci bölümde, biyoteknoloji alanında dünyada ve Türkiye’de durum genel çizgileriyle özetlenecek ve gelişmelerin eğitim sistemine olası yansımaları tartışmaya açılacaktır. Yeni bir disiplinin önerildiği bu makalede, izlemeyi kolaylaştırmak amacıyla, sınırlı bir sözlük verilmiştir. Fenotip: Genelde bireyin genetik farklılığına ya da gen-çevre etkileşimini, klinik ya da Genome:genom: Bir ana babadan alınan kromozom seti Genotip. Bireyin genetik yapısı laboratuvar olarak gözlenebilen bir ya daha çok özelliğin esas olduğu bireyi belirleyen bir grup ya da kategori Mutasyon:Hücre kromozomlarında meydana gelen ve nesillere aktarılan DNA düzeyindeki değişiklikler Rekombinant DNA: Bir vektör DNA’sı ile yabancı gen sekansları birleştirerek oluşturulan molekül Resesif: Yavruya geçen ve onda kendini belli etmeden gizli bir şekilde kalan kalıtsal karakter Transgenetik organizma: Kendi kromozomlarında yabancı gen taşıyan organizma

http://www.biyologlar.com/biyoteknolojik-gelismeler

Lokosit Sayımı

1mm³ kanda bulunan lökosit sayısını hesaplamaktır.Gerekli Malzemeler:1.Mikroskop: Bu deneyde 10’luk ve 40’lık büyütmeler kullanılacak, immersiyon yağı ile kullanılan 100’lük büyütme ise kullanılmayacaktır.2. Turck Solüsyonu: Bu solüsyon içinde bulunan asetik asit sayesinde eritrositler ortadan kalkar ve sadece lökositler kalır. Yine bu solüsyon içinde bulunan metilen mavisi ile de lökositlerin çekirdekleri hafif boyanmış olarak görülürler. Böylece lökositleri saymak daha kolay hale gelir.Bu solüsyonun içinde bulunan maddeler aşağıda belirtilmiştir.Turck Solüsyonu       Lökosit Sayımı İçinAsetik asit (%1’lik)     3ccMetilen Mavisi           15-20 mgDistile Su                 300cc3. Lökosit sulandırma pipeti: Şekilde de görüldüğü gibi, bu pipet üzerinde; 0.5, 1 ve 11 çizgileri vardır Pipetin 1 ve 11 çizgileri arasında kalan kısmında bir balon vardır. Burada kan turck solüsyonu ile karıştırarak sulandırılır. Balon içinde bulunan beyaz boncuk, kanın solüsyon ile karışmasını kolaylaştırmak içindir.Deney sırasında 0.5 çizgisine kadar kan çekilip, turck solüsyonu ile 11 çizgisine tamamlanırsa, kan 20 kat sulandırılmış olur. Eğer 1 çizgisine kadar kan çekilip, turck solüsyonu ile 11 çizgisine tamamlanırsa, bu seferde 10 kat sulandırılmış olur. (biz daha çok 10 kat sulandırmayı kullanmaktayız.)4. Sayma Lamı (Thoma veya Neubauer):Thoma Lamı: Şeklini gördüğümüz Thoma lamı, özel olarak hazırlanmış, üzerinde mikroskobik olarak görülebilen enine ve boyuna çizgilerin sınırladığı alanlar bulunan bir lamdır.Şekilde görüldüğü gibi, Thoma lamına yandan bakılacak olursa, üzerine lamel kapatıldığında lam ile lamel arasında bir boşluk kaldığı görülür. Lam ile lamel arasındaki bu boşluğun kalınlığı 1/10 mm’dir.Bu lam üzerinde her biri 1mm² olan 2 tane sayma alanı vardır. Şekilde görülen en büyük karenin alanı 1mm²’dir. Bu alan, birbirine yakın çizilmiş enine ve boyuna üçlü çizgilerle 4x4=16 eşit kareye bölünmüştür. Bu 16 karenin her birine büyük kare adı verilir ve bu karelerin kenar uzunlukları, üçlü çizgilerden dışarıda bulunanlar esas alınarak hesaplanır.Dolayısıyla bu 16 kareden her birinin kenar uzunluğu ¼ değil 1/5 mm olur. Çünkü, üçlü çizgiler de bir yer kaplamaktadır ve üçlü çizgilerin her birinin kalınlığı da 1/20 mm’dir.Üçlü çizgilerle 16 eşit parçaya ayrılmış olan bu kareler, bu defa tekli çizgilerle tekrar 16 eşit kareye ayrılırlar ve her bir karenin kenar uzunluğu da 1/5x1/4=1/20 mm’dir. Görüldüğü üzere, bu karelerin kenar uzunluğu, üçlü çizgilerin kalınlığı ile aynıdır.5. Lamel: Sayım yapılabilmesi için Thoma lamının üzerine bir lamel kapatılmalıdır. Thoma lamının sayım alanlarının kenarlarında bulunan sütunlardan dolayı, lamel kapatıldığında lam ile lamel arasında 1/10 mm kalınlığında bir boşluk kalmaktadır.6.Alkol,pamuk: Delinecek bölgenin temizlenmesi amacıyla %70’lik etil alkol bir pamuğa emdirilir ve bölge temizlenir.7.Lanset: Lansetin steril olduğundan emin olunmalı, delme işleminden önce lansetin uç kısmına dokunulmamalıdır. Lanset bir defa kullanıldıktan sonra atılmalı, başka bir kimsede tekrar kullanılmamalıdır.Deneyin Yapılışı: İlk önce kan alacağımız kişi oturtulmalıdır. Delmek istediğimiz parmak ucunun iç yüzü alkollü pamukla temizlenmelidir. Delmek için kullanacağımız lansetin steril olduğuna emin olmalı, lanseti yalnızca tek bir kişide kullanıp atmalıdır.Parmağı deldikten sonra çıkan ilk damlayı, kuru bir pamukla siliyoruz. Çünkü ilk çıkan damla sonrakilere göre daha çabuk pıhtılaşır ve hücre bakımından da daha zengindir..Lökosit pipetini elimize alıp pipeti yatay tutarak kan damlasına daldırıyoruz. Pipetin emici kısmından emerek 0.5 veya 1 çizgisine kadar kan çekiyoruz. Pipetin dışındaki kanı pamukla silmeliyiz. Bunu yaparken de pipetteki kan sütununun çektiğimiz işaretten aşağı düşmemesine dikkat etmeliyiz.Pipette kan çekme işlemi tamamlandıktan sonra emici kısmı ağzımızdan çıkarabiliriz. Pipeti yatay tuttuğumuz zaman kan sütunu aşağıya kaymayacaktır. Pipeti yatay tutarak getirip hayem solüsyonuna daldırıyoruz ve çekerken balon kısmına gelince pipeti dik pozisyona getiriyoruz. 11 çizgisine kadar solüsyon çekiyoruz. Tam 11 çizgisine geldiğinde pipetin arka ucunu elimizle kapatıp, pipeti yatay pozisyona getirerek solüsyonun içinden çıkarıyoruz.Pipetin iki ucunu baş ve orta parmaklarımızla kapatarak bir iki dakika kadar çalkalayıp lökositlerin homojen olarak dağılmasını sağlıyoruzThoma lamının şekilde gösterildiği gibi sayım alanının her iki tarafında bulunan kısımlarını sulandırma solüsyonu veya başparmağımızın nemiyle hafifçe ıslattıktan sonra lameli bastırarak kapatıyoruz.Pipetteki eritrosit süspansiyonunun ilk birkaç damlasını dışarı akıtmalıyız. Çünkü, pipetin ucundan 1 çizgisine kadar olan kapiller kısmında kan ile solüsyonun karışması gerçekleşmez. Buradaki solüsyonun atılması gereklidir.Pipetin ucunu, sayım alanının bulunduğu bölmenin üzerindeki lamelin kenarına değdirerek, çok ufak bir damlayı lam ile lamel arasına bırakıyoruz. Bu sıvı, kapillerite nedeniyle lam ile lamel arasına yayılacaktır. Sıvı, set kısımlarına geçmemelidir. Aksi halde sayım alanı üzerindeki yükseklik artar ve hacim değişir. Sıvı lamelin üzerine de taşırılmamalıdır.Lamı mikroskoba yerleştiriyoruz ve eğer sıvı hareketi varsa bir iki dakika bekliyoruz. İlk önce 10’luk büyütme ile bakarak sayma alanını buluyoruz ve sayımı yapabilmek için 40’lık büyütmeye geçiyoruz.Lökosit sayımında 1mm²’lik sayma alanının tamamında bulunan lökositler 40’lık büyütme kullanılarak sayılır. 40’lık büyütmede bakıldığında 1mm²’lik alanın bütünü görülemeyeceği için, ilk önce sol üst büyük kareden başlayarak sağa doğru 4 büyük kare sayıldıktan sonra, kalınan noktadan alt satıra geçilir ve bu sefer de büyük kareler sağdan sola doğru ilerleyerek sayılır. Böylece devam edilerek 1mm²’lik alandaki lökositler sayılmış olur.Lökosit Sayısının Hesaplanması:1mm²’lik alandaki tüm lökositleri sayıyoruz.Daha sonra 1mm²’lik sayma alanı üzerinde bulunan hacmi hesaplıyoruz.(Hacim= En x Boy x Yükseklik)(1x1x1/10=1/10 mm²)1mm²’lik alan üzerindeki hacim hesaplandıktan sonra, basit bir orantı ile 1mm³ sulandırılmış kandaki lökosit sayısı hesaplanabilir.Bulduğumuz değer, sulandırılmış kandaki lökosit sayısını gösterdiğinden, normal kandaki lökosit sayısını bulmak için sulandırma oranımızla çarpıyoruz. Eğer 0.5 çizgisine kadar kan çekilip 11’e tamamladıysak 20 ile, eğer 1 çizgisine kadar kan çekip 11’e tamamladıysak 10 ile çarpıyoruz. Bulduğumuz bu değer, 1mm³ kandaki lökosit sayısını ifade etmektedir.1mm³ kandaki lökosit sayısının fizyolojik değerleri aşağıdaki tabloda gösterilmiştir.Lökosit sayısının fizyolojik değerleriYetişkinlerde    4000-10.000/mm³Yeni doğanda     12.000-18.000/mm³Lökositoz: 1mm³ kanda lökosit sayısının 10.000’in üzeride olmasıdır. Lökositoz durumunda kanda hangi lökosit sayısının arttığını bulmak için periferik yaymada lökosit formülü yapılarak lökosit tiplerinin oranlaması yapılır.Lökopeni: 1mm³ kanda lökosit sayısının 4000’den az olmasına denir.Lökositoz nedenleri:1-Sistemik enfeksiyonlar: Sepsis, Menengit, Pnömoni vs.2-Lokal enfeksiyonlar: Apse, Tonsilit, Sinüzit, Otitis media, Ampiyemi vb.3-Metabolik hastalıklar: Diabetik ketoasidoz, Üremi, Gut, Eklamsi vb.4-İlaç ve zehirler: Digitaller, Epinefrin, Civa, Co, Pb.5-Kan yapımı sistemik hastalıkları: LösemiLökopeni nedenleri:1-Bazı akut ve kronik enfeksiyonlar: Tifo, Pratifo, Brucelloz2-Bazı virüs ve riketsiya hastalıkları: Kızamık, Kızamıkcık, İnfeksiyoz hastalıklar.3-Bazı protozoal hastalıklar: Leshmaniazis, Sıtma.4-Hematopoetik hastalıklar: Aplastik anemi, Agranulositoz, Pernisiyoz anemi. Hemogram yani kan sayımı testleri sonrası,tahlil sonucunu incelerken hastaların merak ettiği test parametrelerinden biri de wbc yani lökosit testidir.Lökositler, halk arasında akyuvar olarak da bilinir.WBC yani lökosit testinin normal değerleri yenidoğan çocuktan,15 yaş sonrası kişilere kadar farklı değerler göstermektedir.6 aylık bir bebeğin normal olan wbc değeri yetişkin bir bireyde ise bir hastalık belirtisi olabilir. WBC(lökosit) testinin yaş gruplarına göre normal değerlerini Tahliller ve Normal Değerleri bölümümüzde bulabilirsiniz.Lökosit sayısında artış görülmesine lökositoz adı verilir.Hangi durumlarda lökosit değerleri normalin üstüne çıkmaktadır? Sistemik enfeksiyonlar(sistemleri tutan enfeksiyonlar)(sarkoidoz gibi)Lokal enfeksiyonlarMiyokart enfarktüsüLösemilerGebeliklerdeAşırı sigara tüketinde Lökosit sayısında azalmaya ise lökopeni adı verilir.Aşağıdaki durumlarda da lökosit değerleri normalin altına iner. Bazı Virüs Hastalıkları (Gripler,özellikle son domuz gribi vakalarında wbc düşüklüğü sık olarak görüldü)Riketsiya HastalıklarıAplastik anemiAlösemik lösemiTifo ve paratifoBrucella HastalığıMiliyer tüberküloz Kaynak: www.labderoda.org

http://www.biyologlar.com/lokosit-sayimi

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Hayır, bu bir fotoğraf hilesi değil. Bu gördüğünüz kedicik, aslında bir Kimer olmayan, ama bu yazıyı yazmak için bana esin kaynağı olan Venüs. (Kaynak: Facebook) Eğer benim gibi bir kedisever iseniz, son birkaç haftadır internette dolanan çok tuhaf bir kedi resmini görmüş olabilirsiniz. Ben, resmi ilk gördüğümde, bunun kesinlikle fotoğraf hilesi olduğunu düşünmüştüm. Ancak biraz araştırınca öğrendim ki, artık kendi facebook sayfası olan Venüs isimli bu kedi bir fotoşop hilesi değil, capcanlı bir kedi. İnanmıyorsanız kendi Youtube sayfasındaki videosunu görebilirsiniz. Venüs, bir internet fenomeni olduktan sonra yayınlanan pek çok blogda kendisinden ‘kimer‘ olarak bahsediliyor. Kimer, bu yazımızda bahsedeceğımız bir tür genetik fenomen aslında.  Venüs’ün  bir kimer olup olmadığını söylemek ise çok zor. Zira bir canlıya kimer tanısı koymak için oldukça detaylı genetik analizler yapmak gerekiyor. Kedilerdeki kürk renklerini belirleyen farklı mekanizmalar var. Venüs’ün desenlerinin çok daha sık görülen bu mekanizmalardan birine bağlı ortaya çıkmış olma olasığı, bir kimer olma ihtimalinden çok daha yüksek. Bu ihtimallerden yazımızın sonunda bahsedeceğiz, ama gelin önce bu genetik duruma ismini veren Kimera’dan bahsedelim. Homeros’tan Yanartaş’a Florence Arkeoloji Müzesi, 5. yy’dan bir Kimera keykeli. ( Kaynak: Britannica Ansiklopedisi) Kimera, mitolojide antik çağda bugünkü Güney Anadolu bölgesinde yaşamış olan Likya uygarlığına ait mitolojik bir figür. Ozan Homeros’un yazdıklarına göre,  bu yaratığın gövdesi pekçok hayvanın birleşmesinden oluşmuştu: başı bir aslana, arka ayakları bir keçiye, kuyruğu ise bir sürüngene aitti.  Ağzından bir ejder gibi alevler çıkaran bu canavarı,  epik kahraman Bellerophon üzerine bindiği kanaltı atı Pegasus yardımıyla öldürmüş.   Antalya’nın Çıralı beldesindeki sönmeyen volkanik  alevler, adlarını bu canavarın ağzından çıkan  alevlerden alıyor. Bu bölgeye Yanartaş ya da Kimera adı veriliyor. Biden fazla canlının kaynaşmasından oluşmuş bu ilginç mitolojik canlı, çok nadir görülen ve oldukça şaşırtıcı olan bir genetik duruma isim babalığı yapmış durumda: Kimerizm. Kimerizm 1998 yılında, 31 yaşındaki bir anne adayı ve 41 yaşındaki bir baba adayı, tüp bebek sahibi olmak için doktora başvururlar. Tüp bebek girişimi sırasında, annenin rahmine döllenmiş üç embriyo yerleştirilmesine rağmen, çoğu tüp bebekte denemesinde olduğu gibi embriyolardan sadece bir tanesi gelişimini tamamlar ve çift, gebelik süresinin sonunda, normal doğum ile 3.46 gramlık sağlıklı bir erkek bebek sahibi olur. Yeni doğan bebeğin, sağ testisi normal olup, sol testis torbasının içi boştur. Bu bebeklerde çok sık rastlanan bir durum olduğu için bir süre, sol testisin de yerine inmesi için beklenir. Bebek 15 aylıkken, bu durumun ameliyatla düzeltilmesine karar verilir. Ameliyat sırasında, bebeğin sol kasığnda bir fıtık olduğu ve fıtık içinde bozunmuş testis benzeri bir yapının olduğu fark edilir ve bu dokular ameliyat sırasında alınır. Daha sonra yapılan patolojik incelemede, bu dokuların aslında körelmiş bir rahim ve yumurtalık kanallarına ait dokular olduğu saptanır. İleri tetkiklerde, bebeğin kanındaki akyuvar hücrelerinde iki dizi hücre olduğu tespit edilir: kadınlara özgü 46, XX ile erkeklere özgü 46, XY. CSI dizisinin 4. sezon, 23. bölümünde, dedektiflerimiz bir tecavüz zanlısını dizinin başında kan ve sperm genetik analizi birbirini tutmadığı için salıverirler. Bir kimer olan suçluyu, kolundaki Kimera dövmesi ele verir. Gene aynı yıllarda, 26 yaşındayken çocuklarına bakamadığı gerekçesiyle devlet yardımına başvuran Lydia Fairchild, bu yardımı alması için çocukların biyolojik annesi olduğunu ispat edecek olan zorunlu olan genetik testleri yaptırır. Test sonuçlarını almak için başvurduğunda, Sosyal Yardım dairesi’ndeki görevliler onu bir odaya alırlar ve “Sen kimsin?”, ” Bu çocuklar kimin çocukları, onları nereden buldun?”, ” Bu çocukların gerçek annesi kim?” sorularıyla başlayan, uzun ve yıpratıcı bir süreçten geçer. Çocukların tamamının kendi çocuğu olduğunu iddia etmesine rağmen, ifadesine inanılmaz ve hakkında devleti dolandırmaya çalışmaktan işlem yapılmaya başlanır. Tekrarlanan testler aynı sonuçları vermektedir, bu testlere göre çocuklarının DNA’sı ile kendi DNA’sı uymamaktadır. Bu konuya anlam veremeyen ve çocuklarının hastanede başka bebeklerle karışmış olmasından şüphelenmeye başlayan Lydia, bu sırada dördüncü çocuğuna hamiledir. Avukatından, doğum sırasında şahitlik etmesini ve doğar doğmaz bebeğe tetkik yapılmasını ister. Bebek anne rahminden çıkar çıkmaz kan örnekleri alınır. Sonuç gene aynıdır, yapılan DNA testine göre Lydia çocuklarının genetik annesi değildir. Bu sırada, bir başka şehirde, Karen Keegan isimli bir hasta, son dönem böbrek yetmezliğinden muzdariptir ve böbrek nakli için sıra beklemektedir. Karen’in üç oğlu da, annelerine böbreklerini bağışlamak için gönüllü olurlar. Yapılan doku uygunluk tetkiklerinin sonucu tuhaftır. Testlere göre, Karen’in oğullarından sadece biri kendisine aittir. Diğer iki oğlunun genetik yapısı tamamen farklıdır. Bu tuhaf durumu çözmek isteyen doktorlar seferber olurlar, Karen’in hemen her dokusundan örnekler alınır, ama sonuç aynıdır. Daha sonra Karen, birkaç yıl önce ameliyatla çıkarılmış olan tiroid bezinin de test edilmesini ister. Yapılan incelemelerde, Karen’in iki oğlunun genetik yapısının kendisiyle olmasa bile, birkaç yıl önce aldırdığı tiroid  beziyle aynı olduğu saptanır. Bu birbirinden ilginç vakaların ortak özelliği, her birinin Tetragametik Kimerizm adı verilen nadir bir genetik fenomen olmaları. Tetragametik kimerizm, iki farklı yumurta hücresinin, iki farklı sperm tarafından döllenmesini takiben, oluşan blastosit evresindeki ikiz embryoların birbirileri ile kaynaşması sonucunda ortaya çıkan ilginç bir fenomen. Embriyo büyüdükçe, farklı embriyolardan gelen hücre grupları farklı organların oluşumunda yer almaya başlarlar. Bir kimerin karaciğerinin bir hücre grubundan, böbreğinin de diğer embroya ait hücre grubundan köken almış olması mümkündür. Bu durumda bu iki organın genetik yapıları birbirinden farklı olacaktır. Blaschko Çizgileri Çoğu kimer, bu örnekler kadar çarpıcı deneyimler yaşamaz. Eğer birbiriyle kaynaşan iki embriyonun cinsiyeti ve fiziksel özellikleri kodlayan genleri aynıysa, tetragametik bir kimer, hayat boyu bu özelliğinin farkına varmayabilir. Bazı kimselerde,  iki gözün renginin birbirinden farklı olması gibi küçük belirtiler olabilir. Nadir olarak buradaki örneklerdeki, farklı organların farklı genetik yapıya sahip olması gibi  kimerizm vakaları da olabilir. Çoğu kimerin cildinde, ancak UV ışık altında görülen Blaschko çizgileri mevcuttur. Bu çizgiler, iki ayrı ten rengi tonu kodlayan farklı  embriyo hücrelerinin rahim içindeki gelişimleri boyunca yaşadıkları hücre göçü nedeniyle ciltte farklı iki tonun girdap benzeri desenler oluşturmasından kaynaklanır. Blaschko çizgilerini çıplak gözle görmek zordur, genelde UV ışık altında belirgindirler. Kimerizm, ilginç bir konu olması nedeniyle popüler kültürde de sıklıkla yer buluyor. CSI dizisinin 4. sezoununun 23. bölümünde, kahramanlarımız bir tecavüz zanlısının peşindedirler. Zanlıdan alınan kan örnekleri, suç mahalindeki sperm örnekleri ile karşılaştırılır. Sonuç negatiftir, iki örneğin genetik yapısı farklıdır. Zanlı salıverilmesine rağmen, tüm şüpheler genetik tanı ile aklanan bu kişiyi göstermektedir. Kahramanlarımız, zanlının kolundaki mitolojik canavar Kimera dövmesini fark edince, bu dövmeden yola çıkarak olayı çözerler. Zanlının bu defa kan hücreleri değil, başka hücrelerinden örnekler alınır, sonuç sperm analiziyle uyumludur. Adalet bir kez daha yerini bulur. Stephen King’in aynı isimli romanında uyarlanan The Dark Half ( Hayatı Emen Karanlık) isimli film, kimer bir yazarın başından geçenleri anlatıyor. Bir başka kimera öyküsü ise ünlü korku yazarı Stephen King’den. Türkçeye Hayatı Emen karanlık diye çevrilen The Dark Half romanı ve aynı isimli filmde, bir yazarın beyninde ve bedenine yaşayan ikiz kardeşinin öyküsü anlatılmaktadır. Thad isimli kahramınımız, zaman zaman bilincini kaybetmekte, bu zamanlarda, masasının üzerinde Stark isimli gizemli birinden kendisine hitaben yazılmış notlar bulmaktadır. Kitabın ilerleyen bölümlerinde Stark’ın, anne karnındayken Thad ile bütünleşen kötücül ikizi olduğu anlaşılır. X Kromozom İnaktivasyonu Gelelim, yazımızın başında bahsettiğimiz, İnternet’te milyonlarca hayranı olan Venüs’e. Her ne kadar Venüs, internette “Kimer Kedi” olarak ünlü olmuş olsa da, gerçekte kimer olma ihtimali oldukça düşük. Kimerizm, çok nadir görülen bir durum. Oysa kedilerdeki bu tip renk örgülerine neden olan ve oldukça sık görülen bir başka nedeni var: X  Kromozom  İnaktivasyonu. Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Amnion sıvısından toplanan dişi hücrelerinin hücre çekirdekleri. Okla gösterilen leke, hücre çekirdeği içinde inaktif halde paketlenmiş Barr cismi. (Kaynak:  Journal of Cell Biology, Vol 135, 1427-1440. PMID:8978813)Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Genden fakir Y kromozomunun aksine, X kromozomunda her iki cinsiyetin de hücre gelişmesinde anahtar rol üstlenen binden fazla gen mevcuttur. Ancak iki set X kromozomu hücre fonksiyonları için  gerekli değildir. Bu nedenle, dişilerde X kromozomlarından biri inaktif hale getirilir ve paketli bir halde hücre çekirdeğinin bir köşesinde durur.  Bu paketlenmiş X kromozomuna Barr Cismi adı verilir. Keselilerde genelde babadan gelen X kromozomu inaktif hale getirilirken, memelilerde anne ve babadan gelen X kromozomları hücreden hücreye değişiklik gösterecek şekilde rastgele inaktive olurlar. Kediler de memeli hayvanlardır, bu nedenle aynı insanlardaki gibi dişi kedilerde de, hücreler içindeki X kromozomlarından biri rastgele inaktif hale gelir ve Barr cismi oluşturur. Kedilerde, tüy rengini belirleyen genlerden bir tanesi X kromozmunda yer alır. Bu genin iki varyasyonu vardır. Bir tanesi (XB), kedi tüylerinin sarı olmasını sağlarken, diğeri (Xb) siyah tüyleri kodlar. Sarı tüyleri kodlayan gen, siyah tüy genine göre daha baskındır. Normalde, bu durumda, ebeveynlerinden farklı genleri alan kedilerin (genotip XBXb) tüylerinin sarı olması beklenir. Ancak,  bu şekilde heterozigot genlere sahip olan dişi kediler (XBXb), gövdelerinin farklı yerlerinde hücrelerdeki X kromozomlarından birinin rastgele inaktif olması nedeniyle sarı ve siyah lekeli olarak doğarlar. Lekeleri yama şeklinde dağınık olan bu tip kedilere tortoiseshell kediler denir. Bu renk bir kedi gördüğünüzde, o kedinin çok yüksek ihtimalle dişi olduğunu söyleyebilirsiniz. Tortoiseshell kedilerin kürklerindeki renk örgülerinin nasıl oluştuğunu bu şemada görebilirsiniz. En üst satırda, kedilerin olası genetik kombinasyonu mevcut. Dişi kedilerde ( XX), hangi kromozomun Barr Cismi halinde geldiği, kedinin kürk renginin belirlenmesinde temel rolü oynuyor. Barr cismi halinde inaktif hale gelen kromozom, resimde U şeklinde gösterilmiş. ( Kaynak: Miami Univeersitesi Biyoloji Bölümü) Peki erkek tortoiseshell kediler yok mu?  Çok nadir olsa da var. Ancak bu desene sahip kedilerinin hepsinde genetik bir problem olduğunu, çoğunun XXY gibi bir kromozom anomalisine sahip olduklarını gönül rahatlığı ile söyleyebiliriz. (Bu tip erkek kediler, genetik problemleri nedeniyle genelde kısır oluyorlar.) Elbette, çok daha nadir olabilecek bir başka ihtimal daha var: o da bu erkek kedilerin kimer olması. Venüs kadar artistik olmasa da, bir başka dişi tortoiseshell kedi. Venüs’ e baktığımızda,  yüzündeki desen her ne kadar çok ilginç de olsa, dişi bir kedi olduğu için bu desenin büyük ihtimalle yukarıda X inaktivasyonu nedeniyle oluştuğunu söylemek daha olası bir iddia olacaktır. İnternette kısa bir araştırma yaparsanız, Venüs kadar artistik olmayan pekçok yamalı yüzlü tortoiseshell kedi bulmak olası. Kimer olsun veya olmasın, gene de çok şirinler ama değil mi?   Kaynaklar: Chimera. Theoi Greek Myhtology. A True Hermaphrodite Chimera Resulting from Embryo Amalgamation after in Vitro Fertilization. Strain L., Dean J., Hamilton M., Bonthron D.  New England Journal of Medicine. 1998. 166-169. Which half is Mommy?: Tetragametic Chimerism and Trans-Subjectivity . UC Davis, Project Muse. The Stranger Within. Kate Werk. New Scientists, vol 180, issue 2421 The Tech Museum: Chimeras, Mosaicism and other fun stuff. Silence of the Fathers. Early X İnactivation. Cheng M., Disteche C. Bioessays. 2004.  26:821-824 The Genetics of Calico Cats. University of Miami, Biology Department. Yazar hakkında: Işıl Arıcan http://www.acikbilim.com/2012/09/dosyalar/kimerler-kediler-tuhafliklar.html

http://www.biyologlar.com/kimerler-kediler-ve-diger-genetik-tuhafliklar

Besiyeri Hazırlanmasında Kullanılan Maddeler

Besiyeri bileşimine giren maddeler gelişme açısından; a) Gelişme için gerekli olanlar, b) inhibitörler olarak 2 gruba ayrılabilir. Gelişme için gerekli olan maddeler doğrudan mikroorganizmaların beslenme şekilleri ile ilgilidir ve bu maddeler besiyeri içinde bir anlamda zorunlu olarak bulunurlar. İnhibitörler ise gelişmesi istenmeyen mikroorganizmalar için gerektiğinde selektif besiyerlerine ilave edilirler. Besiyerlerine giren kimyasal maddeler hakkında aşağıda kısaca bilgi verilmiştir.1. SuBesiyeri hazırlamada kullanılan suyun; distilasyon veya deiyonizasyon ile taze hazırlanmış olması, başta bakır olmak üzere toksik metallerden arı olması gerekir. İyon değiştirici reçineden geçirilerek elde edilen deiyonize (= demineralize) su kullanıldığında bu suyun içinde yüksek sayıda mikroorganizma bulunabileceği dikkate alınmalıdır. Destile (= Distile) su için en ideali cam sistemlerin kullanılmasıdır.Gerek deiyonize, gerek destile su eldesinde saf su sisteminin ve benzer şekilde saf suyun depolandığı kapların belirli aralıklarla temizlenmesi gerekir.Taze hazırlanmış saf suyun pH'sı 6,5-7,5 arasında olmalıdır. Depolanmış saf su atmosferik karbondioksitin absorbe edilmesi sonucu asit pH gösterir. Eğer saf suyun pH'sı 5,5'in altında ise bu su ısıtılarak CO2 uzaklaştırılır ve pH yeniden kontrol edilir. Eğer pH hala düşük ise NaOH ile saf su nötral pH 'ya getirilir ve saf su sistemi kontrol edilir. Besiyeri hazırlamada kullanılan su, asit özellik gösteriyor ise ve besiyeri bileşimde bikarbonat tamponlar varsa bunları etkileyerek hazırlanmış besiyerinde bir takım olumsuzluklara yol açabilir.2. Peptonlar"Pepton" deyimi ilk kez 1880 yılında Nageli tarafından kullanılmıştır. Nageli, kemoorganotrof mikroorganizmaların kısmen parçalanmış (hazmedilmiş = sindirilmiş = digested) protein içeren besiyerinde iyi geliştiklerini ilk açıklayan bakteriyologdur. Bugün pepton deyimi, proteinlerin hidrolizi ile elde edilen ürünlere verilen genel isimdir. Yaşayan tüm hücreler gibi mikroorganizmalar da azot, karbon, tuzlar ve diğer besin maddelerine gereksinirler. İstisnalar dışında mikroorganizmalar genel olarak proteini azot kaynağı olarak kullanamazlar ve azotlu bileşikleri daha kolay kullanabilecekleri protein hidrolizatlarına gerek duyarlar.Peptonlar sadece azot değil, aynı zamanda karbon kaynağı olarak da mikroorganizmalar tarafından kullanılırlar. Bunun yanında peptonların bileşiminde bulunan bazı aminoasitler ve vitaminler bazı mikroorganizmaları için gelişme faktörü olarak işlev görürler.Proteinler; kuvvetli asitler, kuvvetli alkaliler ile ya da enzimatik olarak temel bileşenleri olan peptit ve amino asitlere ayrışırlar. Bu amaçla en çok kullanılan proteolitik enzimler papain, pepsin ve pankreatin'dir.Peptonlar çeşitli ticari firmalar tarafından çeşitli hayvansal dokulardan, sütten ve soyadan farklı yöntemlerle elde edilirler ve farklı ticari isimler ile pazarlanır ve/veya dehidre besiyerleri içine ilave edilirler. Hammadde ve üretim yöntemi farklılığı doğal olarak peptonların bileşimlerinde farklılıklar oluşturur. Dolayısı ile farklı amaçlar için farklı peptonlar kullanılır.3. Ekstraktlar1. Maya EkstraktıMaya ekstraktı (maya özütü = yeast extract) otolize edilmiş (parçalanmış) bira mayasının (Saccharomyces cerevisiae) sulu ekstraksiyonu ile elde edilir. Özellikle yüksek B kompleksi vitamin konsantrasyonu nedeniyle çoğu mikroorganizmanın iyi bir şekilde gelişmesini sağlar. Bileşimindeki amino asitler, peptidler, vitaminler, karbohidratlar ve mineraller sayesinde pek çok mikrobiyolojik çalışmada kullanılır. Doğal karbohidratları nedeniyle fermentatif çalışmalarda kullanılmaz.2. Et EkstraktıEt ekstraktı (et özütü= meat extract = beef extract = lab lemco powder) genellikle yağı ve tendonları ayrılmış, ekstraksiyon öncesi hafifçe hidrolize edilmiş etten elde edilir. Karbohidrat içermez. Bu nedenle fermentasyon çalışmalarında kullanılabilir. Besiyerlerinde et peptonları yerini alabilir.3. Malt EkstraktıMalt ekstraktı (malt özütü = malt extract) biralık arpadan elde edilir. Başta maltoz olmak üzere çeşitli karbohidratların yüksek konsantrasyonuna bağlı olarak maya ve küflerin geliştirilmesi için kullanılır.4. Beyin ve Kalp EkstraktıBeyin ekstraktı (= brain extract) ve kalp ekstraktı (heart extract) zor gelişen (= fastidious) patojen bakterilerin (streptokoklar, pneumokoklar, meningokoklar, gonokoklar vs) geliştirilmesi için besiyeri bileşimine katılır (Brain Heart Broth, Brain Hearth Infusion).5. Pirinç EkstraktıPirinç ekstraktı (rice extract), başta Candida türleri olmak üzere mayaların ayrımında kullanılan Rice Extract Agar 'ın bileşimine girer. Bu besiyerinde besin maddesi olarak sadece pirinç ekstraktı bulunur.4. Jelleştiriciler1. AgarBesiyerlerinin katı hale getirilmesi için en çok kullanılan jelleştirici agar (= agar agar)'dır. Agar, bir poligalaktozid olup "agarophytes" olarak tanımlanan bazı kırmızı deniz yosunlarından (Gellidium, Eucheuma, Gracilaria, Acanthopeltis, Ahnfeltia, Pterocladia türleri) elde edilir. Bazı hidroksil grupları sülfürik asit ile esterifiye edilmiştir.Katılaştırma (= jelleştirme) özelliğini bileşimindeki D-galakton sağlar. Bileşiminde ayrıca inorganik tuzlar, çok az miktarda protein benzeri maddeler ve eser miktarda yağ vardır. Mikrobiyolojide kullanılan agarlar özel olarak saflaştırılırlar ve antimikrobiyel maddelerden arındırılırlar.Agarın bileşimindeki agaroz ve agaropektin adlı 2 polisakkarit agarın etkisini belirler. Agaroz, agarın yüksek jelleştirme özelliğinden sorumlu iken, agaropektin viskoz özellikler verir. Agardaki agaroz : agaropektin oranı hammaddelere göre değişmekle beraber agaroz oranı % 75'e kadar çıkabilir.Agar, besiyeri bileşimine sadece jelleştirici olarak katılır. Bir kaç istisna dışında mikroorganizmalar için agar, uzun ve dallanmış zincir yapısı nedeniyle mikroorganizmalar için besin maddesi değildir.Agar, 85 oC'da erir, 40 oC'da jelleşir. Gerek erime, gerek jelleşme sıcak-lığına ortamın pH'sı etkilidir. 5'in altındaki pH 'larda agar jelleşme özelliğini yitirir. Agarın jelleşme sıcaklığı literatürde 32-36 oC ve 32-39 oC olarak verilmektedir. Bununla beraber, petri kutularına döküm sırasında petri kutularının oda sıcaklığında (20 oC) olduğu ve dolayısıyla petri kutusu ile besiyeri arasında ısı değişimi olacağı dikkate alınarak döküm sıcaklığının 40 oC kadar olması gerekir.Agar, besiyerine amaca göre % 0,05-3 gibi geniş bir sınırda ilave edilebilir. Düşük agar konsantrasyonları (% 0,05-0,3) genellikle hareketliliğin belirlenmesi, mikroaerofillerin geliştirilmesi vb özel amaçlarla kullanılır. Standart kullanım konsantrasyonu %1-1,5'dur. Yüksek konsantrasyonlar ise yüksek asitli besiyerlerinde agarın jelleşme özelliğini göreceli olarak geri kazanması amacıyla kullanılır.2. JelatinMikrobiyolojinin gelişme yıllarında ilk kez Robert KOCH tarafından jelleştirici olarak kullanılan jelatin bu gün daha ziyade proteolitik aktivitenin belirlenmesi amacıyla kullanılmaktadır.Kollegen protein yapısında olup fermente olabilir karbohidratları içermez. Jelleştirici olarak besiyerine ilave edildiğinde jelatinin ısıya duyarlığı nedeni ile 115 oC 'da 10 dakika gibi düşük sterilizasyon normu kullanılmalıdır. Jelatin, 121 oC'da sterilizasyonda ise jelleşme özelliğini kayda değer ölçüde yitirir. Besiyeri bileşimine % 12-15 düzeyinde katılır. Yaklaşık 28 oC 'da eridiğinden jelatin kullanılan besiyerleri 28 oC 'ın altında inkübe edilmelidir.5. KarbohidratlarBazı besiyerlerinin bileşimine bakteriler için enerji ve karbon kaynağı olarak katılan karbohidratların bir başka kullanım şekli karbohidrat fermentasyonuna dayalı identifikasyon testleridir.Besiyeri bileşiminde karbon kaynağı olarak en çok kullanılan karbohidratlar glukoz, laktoz ve sakkarozdur. Bunlardan glukoz pek çok bakteri tarafından kullanılabildiği için daha çok genel besiyeri bileşimlerinde yer alır.Adonitol, arabinoz, sellobioz, sellüloz, dekstroz (= glukoz), dulsitol, galaktoz, inositol, inulin, laktoz, levuloz (= fruktoz), maltoz, mannitol, mannoz, melezitoz, mellibioz, nişasta, rafinoz, rhamnoz, sakkaroz (= sukroz), salisin, sorbitol, trehaloz, ksiloz çeşitli fermentasyon testlerinde kullanılmak üzere sıvı besiyerlerine katılabilmektedir.Glukoz, laktoz sakkaroz, mannitol gibi bazı karbohidratlar çeşitli katı besiyerlerine yine fermentasyonun izlenmesi ve buna göre koloninin ön identifikasyonunda yararlanmak amacı ile katılır.Koliform grup bakterilerin geliştirileceği besiyerlerinin hemen hepsinde C kaynağı olarak laktoz kullanılır. Koliform grubun geliştirilmesine yönelik olarak hazırlanmış besiyerlerinde laktozdan gaz oluşumu koliform grup için belirleyicidir.Nişasta, kullanımı (hidrolizi) bazı bakteriler için tipik olduğundan çeşitli özel besiyerlerinin bileşimine katılır.Karbohidratların genel olarak filitrasyon ile sterilize edilmesi önerilir. Bazı besiyerlerinin bileşimine katılan glukoz, laktoz, sakkaroz gibi bazı şekerler besiyeri ile birlikte otoklavda sterilize edilebilirler.6. TuzSodyum klorür, çoğu besiyerinin bileşimine izotonik bir ortam oluşturmak için katılır. Tuza dayanıklı bakterilerin selektif izolasyonu için yüksek konsantrasyonlarda özel besiyerlerinin bileşimine katılır.7. Tampon MaddelerMikroorganizmalar genel olarak nötr ve nötre yakın pH 'larda iyi gelişirler. Bazı mikroorganizmalar alkali pH 'ları yeğlerken (örneğin Rhizobium bakterileri) bazıları (örneğin mayalar, küfler, asidofilik bakteriler) asidik ortamları severler.Bir besiyerinde elden geldiğince çok sayıda mikroorganizma geliştirilmesi isteniyorsa pH nötre yakın değerde olmalı, tersine olarak geliştirilmesi istenen mikroorganizma yüksek asitliğe veya yüksek alkaliliğe dirençli (= rezistans) ise besiyeri pH'sı bu mikroorganizmanın gelişebileceği pH 'ya ayarlanmalıdır.Asitlik/alkalilik, besiyerlerinin selektivite kazandırılmasında çok kolay ve dolayısıyla çok yaygın olarak kullanılan bir faktördür. Örneğin maya ve küflerin, asidofilik bakterilerin geliştirileceği ortamlarda pH düşürülerek pek çok mikroorganizmanın gelişmesi kayda değer ölçüde önlenir/kısıtlanır.Metabolizmaya bağlı olarak besiyeri pH 'sında değişmeler meydana gelir. Bazı çalışmalarda inkübasyon sırasında pH 'nın değişmesi geliştirilmesi istenen mikroorganizmaya zarar vereceği için istenmez. pH değişmesinin minimumda tutulması amacıyla besiyerine çeşitli tampon (buffer) maddeler ilave edilir. Tampon olarak en çok kullanılan maddeler, fosfatlar (K2HPO4, KH2PO4, Na2HPO4, ß gliserofosfat), karbonatlar, asetatlar ve sitrat 'dır.8. İndikatörler1. pH İndikatörleriMikrobiyel metabolizma sonunda bazı besiyeri bileşenlerinden çeşitli asit veya alkali ürünler meydana gelir. PH 'daki değişme en kolay olarak pH indikatörleri ile belirlenir ve pH indikatörlerinin renk değişimine bağlı reaksiyonlar o besiyerinde gelişen mikroorganizmalar için önemli göstergelerdir.Aşağıda, besiyeri bileşiminde kullanılan çeşitli pH indikatörleri ve pH 'ya bağlı renkler verilmiştir.İndikatör Asit pH / renkAlkali pH / renkFenol blueFenol redBrom Cresol GreenBrom Cresol PurpleBrom Thymol BlueCresol RedLitmusMetil RedNeutral RedRosalic Asit 2. Redoks indikatörleriEn yaygın olarak kullanılan redoks indikatörü TTC (2,3,5 Triphenyl-tetrazolium chloride)'dir. Enterokokların selektif geliştirilmesinde yaygın olarak kullanılır. Enterokoklar TTC 'yi indirgeyerek kırmızı renkli bir bileşiğe (formazon) dönüştürürler. Özel besiyerinde oluşan kırmızı renkli kolonilerin enterokok kolonileri olduğu bu şekilde anlaşılır.Resazurin, yaygın olarak kullanılan bir diğer redoks indikatörüdür.3. Diğer İndikatörlerMikrobiyel metabolizmaya bağlı olarak bazı kimyasalların çeşitli reaksiyonlar sonucu oluşturdukları ürünlerin belirlenmesi bu besiyerlerinde gelişen mikroorganizmaların ön identifikasyonunda kullanılır. Aşağıda bu tip reaksiyonlarda kullanılan indikatörlere örnekler verilmiştir.- MUG (4-Methylumbelliferyl-ß-Glucuronide): E. coli tanımında son yıllarda en yaygın olarak kullanılan bir bileşiktir. E. coli 'deki MUGase enzimi MUG 'u UV ile fluoresans veren bir bileşiğe parçalar. MUG hakkında aşağıda 7.1.1. bölümünde ayrıntılı bilgi verilmiştir.- Kan: Defibrine kan (çoğunlukla koyun kanı) hemoliz reaksiyonunun belirlenmesi için besiyeri bünyesine katılır.- Lesitin: Yumurta sarısı ve soya fasulyesinde bulunan lesitin, çeşitli bakterilerdeki lesitinaz enzim aktivitesi sonunda parçalanır ve lesitin katılmış katı besiyerinde koloni etrafında berrak zonlar görülür.- Jelatin ve kazein: Jelatin ve kazein proteolitik bakterilerin belirlenmesi amacıyla besiyeri bünyesine katılır. Proteolitik bakteri kolonileri etrafında proteoliz sonunda berrak zonlar oluşur.- Tributirin: Lipolitik aktivitenin belirlenmesi için kullanılır. Lipolitik bakteri kolonileri etrafında lipoliz sonunda berrak zonlar oluşur.9. İnhibitörlerSelektif besiyeri bileşimlerinde istenmeyen mikroorganizmaların gelişmesini engelleyen/baskılayan çeşitli inhibitör maddeler kullanılır.İnhibitör maddelerin etki şekilleri çok farklıdır. Etkileri, öncelikle konsantrasyonlarına bağlıdır.Bir yaklaşıma göre her maddenin yüksek konsantrasyonlarda inhibisyon etkisi vardır. Örneğin çoğu besiyerine ozmotik basınç sağlamak için katılan NaCl, yüksek konsantrasyonlarda pek çok mikroorganizmanın gelişimini engeller. Çoğu mikroorganizma için C kaynağı olarak kullanılan glukoz, % 50 konsantrasyonda ozmofilik/ozmotolerant mayaların gelişimine izin verirken, diğer mikroorganizmaların gelişimini inhibe eden bir etki yapar.Besiyerlerinde inhibitör olarak kullanılan maddeler genel ve selektif inhibitörler olarak kabaca 2'ye ayrılabilir. Genel inhibitörler daha geniş bir spektrumda istenmeyen mikroorganizma gelişimini engellerken, selektif inhibitörler belirli mikroorganizmaların gelişimini etkiler.İnhibisyon etki, yukarıda belirtildiği gibi öncelikle konsantrasyona bağlıdır. Bunun dışında mikroorganizma cinsi ve hatta türü inhibisyonda önemlidir. Belirli bir madde (örneğin tellurit) bazı bakteriler için inhibitör etki yaparken bazı bakteriler telluriti metalik telluriuma indirgerler, sonuçta gri-siyah renkli koloni oluşumu tipik bir morfolojik göstergedir.İnhibitör olarak kullanılan maddenin görevi, istenmeyen mikroorganizmaların gelişmesini önlemek iken, kuşkusuz gelişmesi istenen mikroorganizma için inhibitör etki yapmamalıdır. Sadece belirli bir türün dışında tüm mikroorganizmaların gelişimini etkileyen inhibitör madde kullanımı oldukça nadirdir. Örneğin Malahit yeşili (Malachite Green) ve Cetrimide, Pseudomonas aeruginosa dışında, tüm refakatçi florayı inhibe eder.Besiyerinde tek bir inhibitör kullanımı yerine birden fazla inhibitör kullanmak ve/veya gelişmesi istenmeyen mikroorganizmayı kısıtlı besin maddesi bulundurmak, O/R potansiyelini değiştirmek, inkübasyon sıcaklığını ayarlamak vb yöntemlerle engellemek yaygın olarak uygulanan inhibisyon şekilleridir.İnhibitör olarak kullanılan tüm maddelerin hangi mikroorganizmalar için hangi konsantrasyonda ve hangi mekanizma ile inhibisyon etki sağladıklarını listelemek çok güçtür ve bu kitabın kapsamı dışındadır. Bununla beraber en çok kullanılan inhibitörler hakkında aşağıda kısaca bilgi verilmiştir.- Boyalar: Metakrom sarısı (Metachrome Yellow) Proteus kolonilerinin yayılmasını; Eosin Y, metilen mavisi (Methylen Blue) gram pozitif bakterilerin gelişimini; malahit yeşili (Malachite green) Pseudomonas aeruginosa dışındaki refakatçi floranın gelişimini engeller/baskılar.- Sodyum Azid: Gram negatif bakterilerin gelişimini engeller.- Safra Tuzları (Bile salts, Ox bile): Gram pozitiflerin gelişimi engeller. - Antibiyotikler: Genellikle bakterileri engellemek için geniş spektrumlu olarak küf geliştirme besiyerlerinde veya refakatçi bakteriyel florayı inhibe etmek için dar spektrumlu olarak kullanılırlar.- Deoksiçolat (Deoxycholate): Gram pozitif bakterileri, kısmen koliformları ve zayıf olarak Shigella 'yı engeller.Bunların dışında selenit, tetratiyonat, bizmut, lauryl sülfat, yüksek konsantrasyonda asetat vb maddeler çeşitli besiyerlerinde inhibitör madde olarak kullanılırlar.

http://www.biyologlar.com/besiyeri-hazirlanmasinda-kullanilan-maddeler

T-Testi ve Guinness Biraları

Hipotez testlerinde sıklıkla kullanılan t-testinin keşfinin aslında ilginç bir öyküsü var. 1900'lü yılların başında Guinness bira fabrikası kaliteli bira üretimini arttırarak diğer üreticilerden farklılaşmak istiyordu. Guinness bira fabrikasında kimyager olarak çalışan William Gosset de bu yüzden biranın tadını geliştirmeye çalışıyordu. Şimdiye kadar üretilen biralarla kendi geliştirdiği biralar arasındaki kaliteyi ölçmek için örnekler aldı. Kimyasal analizler yaptıktan sonra örnek aldığı biraların kıvamlarını karşılaştırdı. O zamanlar örneklemler üzerinden karşılaştıracak uygun bir istatistik testi bulunmadığı için kendisi küçük örneklemler için kullanılacak bir test geliştirdi. Gosset daha sonra bulduğu bu testi yayınlamak istedi fakat Guinness diğer bira üreticilerinde bu testin kullanılacağı düşüncesiyle karşı çıktı (O günün şartıyla düşünürsek Guinness adı altında geliştirdiği için telif hakkı Guinness’a aitti diyebiliriz). Sonunda Guinness ve Gosset, makalenin Gosset’in takma adı altında yayınlaması koşuluyla, anlaştılar ve “Student” takma adıyla test yayınladı (Böylece t-testinin bira üretiminin kalite kontrolünde kullanıldığı saklanmış oldu). Bu sebeple t-testi, Student’s t testi olarak da bilinir. T-testi adını “student” kelimesinin son harfinden almaktadır. T dağılımdan yararlanılarak hesaplanır. Anakütlenin normal dağılımdan geldiği şartı altında ve 30’dan küçük gözlemlerde kullanılır. Gosset’in makalesinde, eğer örnek aldığımız kütle normal dağılıyorsa t istatistiğinin örneklem dağılımının normal dağılıma benzeyeceği söylenilmektedir. T-testi tek örnekleme ilişkin ortalamanın testinde ya da iki grup arasında farkın olup olmadığı gibi durumlar incelenmek istendiğinde kullanılır. Biyoinformatikte ise genellikle ikinci dediğim durumla karşılaşılır. Örneğin bir hastalık için belirli bir genin, gen ifade düzeylerinin, hasta ile sağlıklı kişiler arasında ifade düzeylerinin anlamlı bir fark olup olmadığı incelenmek istendiğinde kullanılabilir. Başka amaçlarla, gen seçiminde ya da boyut azaltmak ( anlamsız değişkenleri elemek ) için de kullanılabilir. T ve z testleri (Gauss) birbirine çok benzer. Anakütleye ait parametrelerin bilindiği durumlarda kullanılır fakat gerçek hayatta anakütleye ait parametrelerin bilinmesi çok nadir olduğu için örneklemin 30’dan büyük olduğu durumlarda örnekleme ait istatistikler kullanılabilir. Uygulamalarda göstermektedir ki gözlem sayısı 30’u aştığında örneklem istatistikleri anakütle parametre değerlerine oldukça yaklaşmaktadır. T-testi bir düzeltme terimine sahip olduğu için de örneklemin az olduğu durumlarda kullanılır. Fakat değişkenliği z-testine göre daha geniş olduğu unutulmamalıdır. T-testinin bazı varsayımları sağlanmadığında alternatif testleri de mevcuttur. Onlardan da ilerideki yazılarımda bahsedeceğim.

http://www.biyologlar.com/t-testi-ve-guinness-biralari

Besiyeri Çeşitleri

Besiyerleri farklı mantıklar altında gruplandırılabilir. Örneğin, besiyerleri fiziksel özelliklerine göre sıvı ve katı olmak üzere 2 gruba ayrılırken bir başka bakış açısı ile orijinlerine göre bitkisel, hayvansal, sentetik, türev, karışık vb şekillerde sınıflandırılabilirler. Besiyerlerinin kullanım amacına (=fonksiyonlarına) göre sınıflandırılması ise bir anlamda besiyerlerinin formülasyonları ile doğrudan ilgilidir ve sınıflandırmada en çok kullanılan şekildir.Besiyerlerinin kullanım amaçlarına göre sınıflandırılmalarında da farklı yaklaşımlar vardır. Bir kısım araştırıcıya/kullanıcıya göre belirli bir grupta yer alan bir besiyeri bir diğer kısmına göre ise başka bir grupta sınıflandırılmaktadır. Aşağıda, besiyerleri kullanım amacına göre en çok kabul gören sınıflandırma şekli ile gruplandırılmıştır. Bu sınıflama şeklinde besiyerleri öncelikle "genel besiyerleri" ve "özel besiyerleri" olarak 2 gruba ayrılmakta, özel besiyerleri ise kendi içinde alt gruplara ayrılmaktadır.1. Genel BesiyerleriHerhangi bir inhibitör madde içermeyen, besin maddelerince yeterli veya zengin, herhangi bir mikroorganizma grubunun gelişmesini özel olarak desteklemeyen, bazı zor gelişen (fastidious) mikroorganizmaların da dahil olduğu çok sayıda bakterinin gelişmesini sağlayan besiyerleridir.Genel besiyerleri başlıca, çeşitli örneklerdeki toplam mezofil aerob bakteri sayımı, toplam psikrofil aerob bakteri sayımı, bozulma/hastalık etmeninin ön izolasyonu amaçları ile kullanılır.- Başta gıda maddeleri olmak üzere pek çok örnekte "toplam mezofil aerob bakteri sayısı" ile "toplam psikrofil aerob bakteri sayısı" tayinleri önemli kalite kriterleridir. Toplam mezofil aerob bakteri sayısından kasıt 37 oC'da gelişebilen aerob bakterilerin sayısıdır. Kuşkusuz 37 oC'da gelişebilen aerob bakterilerin tümü bu tip besiyerlerinde gelişemez. Ancak pratik uygulamada genel besiyerlerinde gelişebilenler dikkate alınır.- Nedeni hakkında bir ön fikir edinilemeyen bozulma/hastalık etmeninin izolasyonu için yine genel besiyeri kullanılır. Burada amaç, "bozulma/hastalık etmeninin her ne olursa olsun öncelikle izole edilmesidir" ve genel bir besiyeri kullanmak bir anlamda zorunludur. Bozulma/hastalık etmeninin zor gelişen bir mikroorganizma olabileceği varsayımı ile bu tip izolasyonlarda zor gelişen mikroorganizmaların da gelişebileceği besiyerleri kullanmak daha doğru olur.Tüm bakterilerin geliştirilebileceği nitelikte bir genel besiyeri yoktur. Genel besiyerleri, zor gelişen bakterilerin sadece bir bölümünün gelişmesini sağlayabilir. İnkübasyon koşullarının değiştirilmesi ile psikrofillerin, mikroaerofillerin, aerotolerantların ve özel inkübasyon koşullarının sağlanması ile kısmen anaerobların geliştirilmesinde kullanılır.2. Özel BesiyerleriBir tarife göre genel besiyerleri dışında kalan tüm besiyerleri "özel besiyerleri" grubuna girer.2.1. Selektif BesiyerleriSelektif besiyerleri, karışık bir mikrobiyel floradan gelişmesi istenmeyenleri baskılamak ve inhibe etmek, ancak gelişmesi istenenler için herhangi bir olumsuz etki yapmamak üzere formülüze edilirler. Bu amaçla çeşitli inhibitör maddeler kullanılır.İnhibitör maddelerin konsantrasyonu ile inhibe edilmesi hedeflenen mikroorganizma(lar)ın cins ve türlerine göre değişmek üzere, selektif besiyerleri istenmeyen mikroorganizmalar için zayıf, orta veya yüksek selektivite gösterirler. Selektif besiyerleri, belirli bir grup hatta yüksek selektivite gösterenlerde tek bir cins/tür mikroorganizmanın gelişmesine izin vereceğinden bu besiyerleri selektif izolasyon, selektif sayım ve hatta ön identifikasyon amaçları ile kullanılır.Bir besiyerine selektivite kazandırılması her zaman inhibitör madde ilavesi ile yapılmaz. Geliştirilmesi istenilen mikroorganizmanın kullanabileceği, ancak refakatçi mikroflora tarafından kullanılamayan besin maddeleri besiyerine karbon ve azot kaynağı olarak verilerek selektivite sağlanabilir. Örneğin GSP Agar (Merck) besiyerinde glutamat ve nişastadan başka besin maddeleri yoktur. Nişasta ve glutamat Pseudomonas ve Aeromonas türleri tarafından besin maddesi olarak kullanılırken gıda maddeleri, atık sular ve gıda endüstrisi ekipmanında bu bakteriler ile birlikte bulunan bakteriler (=refakatçi mikroflora) bu maddeleri metabolize edemez ve dolayısıyla gelişemez ya da bu maddeleri çok kısıtlı olarak kullanabilenler ihmal edilebilecek kadar küçük koloni oluştururlar.2.2. Diferansiyel BesiyerleriSelektif besiyeri hazırlamak ve kullanmak; inhibitörlerin gelişmesi istenen mikroorganizmaya az da olsa bir miktar zarar verebilmesi, inhibitör kullanımı ile istenmeyen mikroorganizmaların inhibisyonun her zaman mümkün olmaması, bazı inhibitörlerin insan sağlığı için de zararlı olması vb nedenlerle her zaman istenilen sonucu vermemektedir. Mikrobiyolojide besiyeri olarak selektif ortamlar yerine diferansiyel besiyerlerinin hazırlanması ve kullanılması ile çoğu kez tatmin edici sonuçlar alınmaktadır.Diferansiyel besiyerlerinde gelişmesi istenen mikroorganizma yanında diğer mikroorganizmalar da gelişebilir, ancak başta koloni morfolojisi olmak üzere çeşitli farklılıklar ile hedef mikroorganizma diğerlerinden ayrılır.Bu tarif altında diferansiyel besiyerleri zayıf ve orta güçte selektivite gösteren selektif besiyerlerinin modifikasyonu olarak nitelendirilebilir.Ayırt edici (fark ettirici) koloni özelliği, çeşitli pH indikatörleri, boya maddeleri, indirgeyiciler, diğer indikatörler vb maddelerin besiyerine ilavesi ile yapılır. En basit olarak besiyeri bünyesine, ayırt edilmek istenen mikroorganizmanın kullanabileceği, ancak ortamda bulunan diğer bakterilerin yararlanamayacağı bir karbohidrat ilave edilir ve mikroorganizmanın bu karbohidratı kullandığı çeşitli indikatörlerle belirlenir. Örneğin koliform grup bakteriler için laktozdan gaz oluşturulması tipik bir ayırt edici özelliktir ve gaz oluşumu durham tüpleri kullanılarak belirlenir. Pek çok mikroorganizma belirli bir karbohidratı kullanırken asit oluşturur ve bu asitlik pH indikatörü ile rahatlıkla belirlenebilir. Tersine olarak gelişmesi istenen mikroorganizma besiyerine katılan bir maddeden alkali ürünler oluşturabilir. Bu durum yine pH indikatörleri ile belirlenebilir. Ya da mikroorganizmanın jelatinaz, lipaz, lesitinaz vb enzim aktiviteleri besiyerinde oluşan çeşitli berrak zonlar ile belirlenebilir.Diferansiyel besiyerinde gelişen mikroorganizmaların ayrımı koloni morfolojisi, enzimatik aktivitelerin belirlenmesi, gaz oluşumunun izlenmesi vb çıplak gözle yapılabileceği gibi bunlara ilave olarak fluoresansa dayalı olarak da yapılabilmektedir. MUG ilave edilmiş besiyerleri E. coli için yaygın bir şekilde kullanılırken, setrimid (=cetrimide) katılmış besiyerlerinde Pseudomonas aeruginosa yine UV ile ayırt edilmektedir.Diferansiyel besiyerleri sadece selektif besiyerlerinin bir modifikasyonu değildir. Çeşitli genel besiyerlerine ilave edilen özel bazı katkılar bu besiyerlerine diferansiyel bir nitelik kazandırabilir. Hemoliz reaksiyonları için kullanılan kanlı agar besiyeri buna en tipik örnektir. CASO Agar (Merck) besiyerine MUG ilave edilerek yapılan besiyerinde toplam mezofil aerob bakteri sayımı yanında E. coli sayımı da fluoresans ile yapılabilmektedir.Diferansiyel besiyerleri, amaca göre selektif izolasyon, selektif sayım ve ön identifikasyon amaçları ile kullanılmaktadır.2.3. Zenginleştirme BesiyerleriKarışık bir mikroflora içinde hedeflenen bir mikroorganizmayı geliştirmek, sayısını artırmak vb amaçlarla kullanılan zenginleştirme besiyerleri, önzenginleştirme besiyerleri ve selektif zenginleştirme besiyerleri olarak 2 alt gruba ayrılırlar.Önzenginleştirme besiyerleri genel olarak hasar görmüş (= injured = yaralanmış) mikroorganizmaların aktivitelerini kazanmaları için kullanılan, bileşiminde inhibitör içermeyen ve dolayısı ile aktivite kazanması istenen mikroorganizma yanında refakatçi mikrofloranın da gelişmesini sağlayan sıvı besiyerleridir ve bu tarif altında "özel amaçla kullanılan genel besiyerleri" olarak nitelendirilebilir. Önzenginleştirmede kullanılan besiyerlerine en tipik örnek gıdalarda Salmonella aranmasına yönelik çalışmaların ilk aşaması olan "önzenginleştirme" amacıyla kullanılan Tamponlanmış Peptonlu Su besiyeridir. Bileşiminde litrede 10 g et peptonu, 5 g NaCl ve 10 g fosfat tampon olan bu besiyerinde Salmonella yanında ortamdaki diğer bakteriler de gelişebilmektedir.Selektif zenginleştirme besiyerleri ise özel amaçla kullanılan selektif sıvı besiyerleridir. Bunlara en tipik örnekler ise Listeria ve Salmonella aranmasında kullanılan besiyerleridir. Selektif zenginleştirme aşamasında karışık kültür olarak bulunan bakterilerden gelişmesi istenmeyenler çeşitli selektif inhibitörler ile engellenir. Selektif zenginleştirme aşamasını genellikle selektif bir katı besiyerine sürme yapılarak aranan bakterinin selektif izolasyonu aşaması izler. Bu çerçevede selektif zenginleştirmenin amacı, selektif izolasyonda başarı şansını artırmak için aranan mikroorganizmanın karışık kültür içindeki sayısını artırmaktır.Selektif zenginleştirme aşaması her zaman önzenginleştirme aşamasını izlemez. Gıda maddelerinde Salmonella aranırken yukarıda da belirtildiği gibi işlem sırası önzenginleştirme/selektif zenginleştirme/selektif katı besiyerine sürme şeklinde iken Salmonella 'dan şüphe edilen gayta (=dışkı) örnekleri doğrudan selektif zenginleştirme /selektif katı besiyerine sürme aşamalarını izler. 2 farklı örneğe farklı işlem uygulanmasının nedeni gayta örneğinde aktif ve yüksek sayıda Salmonella olmasıdır. Gıda maddesi ise önzenginleştirme aşamasından geçirilerek bir anlamda önzenginleştirme kültürü Salmonella sayısı ve aktivitesi açısından gayta örneğine benzer bir hale getirilir.2.4. İdentifikasyon BesiyerleriTam selektif ve diferansiyel besiyerlerinin ön identifikasyonda kullanılabileceğine yukarıda değinilmiş idi.Tam selektif bir besiyerinde gelişen bir mikroorganizmanın identifikasyonu cins ve hatta bazı durumlarda tür bazında tamamlanabilir. Diferansiyel besiyerlerinde de aynı durum geçerlidir.Bir mikroorganizma izolatının identifikasyonu için en çok kullanılan testler biyokimyasal nitelikli olanlardır. İdentifikasyon besiyerleri, mikroorganizmanın belirli bir besin maddesini (genellikle karbohidratlar) kullanıp/kullanmadığının saptanması, belirli bir besin maddesinden metabolizma sonunda tayin edilebilecek metabolitleri (örneğin triptofandan indol) oluşturup/oluşturmadığının belirlenmesi vb amaçlar ile kullanılır. Bakterinin hareketli olup olmadığının saptanması amacıyla kullanılan yarı katı (semi solid) besiyerleri de identifikasyon besiyerleri grubuna katılmaktadır.3. Diğer BesiyerleriAntimikrobiyel duyarlık testlerinde kullanılan agar disk difüzyon besiyerleri ile minimal inhibisyon konsantrasyonu testlerinde kullanılan sıvı ve katı besiyerleri, vitaminlerin ve amino asitlerin mikrobiyel yolla belirlenmesinde kullanılan besiyerleri, saf kültürlerin korunması (=kolleksiyonu) amacıyla kullanılan besiyerleri gibi özel amaçlara yönelik olarak kullanılan çeşitli besiyerleri de vardır.BESİ YERİ AYRINTILI BİLGİ İÇİN http://www.orlab.net/mikrobiyoloji/942300030.pdf TIKLAYIN

http://www.biyologlar.com/besiyeri-cesitleri

ANOVA (Analysis of Variance)

Bugün ki yazımda t-testinin genelleştirilmiş hali olan F-testi ANOVA’dan bahsetmek istiyorum. ANOVA ikiden fazla grup ortalamalarının karşılaştırılmasında kullanılan parametrik bir yöntemdir. T-testi F-testinin özel durumu olarak düşünebiliriz. T-testinde sadece iki grup karşılaştırılması yapılmaktadır. Parametrik yöntem olması gereği bazı varsayımlar gerektirmektedir. En önemli varsayımı grupların varyanslarının eşit olduğu varsayımıdır. Bu varsayım bozulduğunda sonuçların önemli derecede etkileneceği literatürde geçmektedir. Diğer varsayımlar ise, normal dağılım şartı ve gözlemlerin birbirinden bağımsız olmasıdır. Normallik şartı göz ardı edilebilmesine rağmen varyansların homojenliği varsayımı katı bir koşuldur. Aşağıdaki tabloda örnek bir veri yapısını görebiliriz. Araştırmacı 3 farklı hastalık grubundaki hastaların albümin değerlerini ölçmüş ve aşağıdaki gibi bulmuş. Albümin değerlerin hastalık gruplarına göre değişip değişmediğini öğrenmek istiyor. (Kaynak: Uygulamalı Çok Değişkenli İstatistiksel Yöntemler-Reha Alpar, Not: Örnek olması sebebiyle verinin sadece bir kısmını aldım.) Albümin değerini tek yönlü ANOVA ile gruplara göre değişiklik gösterip göstermediğini inceleyebiliyoruz. Bu tarz verip tipini t-testi ile karşılaştırıldığını şahit oldum. Maalesef hatalı bir analiz yöntemidir. Sebebi de I.tip hata dediğimiz hatayı büyütmesidir. ANOVA ile tek bir hipotez kurarak %5 yanılma payıyla(%95 güven düzeyinde çalıştığımızı düşünürsek) çalışırken. T-testi ile ikili grup karşılaştırması yaptığımız için ; Kronik Hepatit- Siroz Kronik Hepatit-Malignite Siroz-Malignite Olmak üzere 3 farklı hipotez kuruyoruz. Bu da güven düzeyini düşürmektedir. Kısa bir hesapla; (0,95)3 = 0,86 olur. Buradan yanılma payıda 1-0,86=0,14 olmuş olur. T-testi ile yaptığımız karşılaştırmada üç farklı hipotez kurduğumuz için ANOVA ile test ettiğimizde yanılma payı %5 iken t-testi ile %14’lere kadar çıkmaktadır. Daha fazla değişken olduğunu düşünürsek hata payı iyice artacaktır. Bu nedenle de bu sonuçlara göre yorum yapmak tabi ki yanlış olacaktır. Üç ve üçten fazla grup karşılaştırılması yapılacağı zaman ANOVA yapılması doğru olur. Bu kullandığımız veri tek yönlü-ANOVA’ya uygun örnektir. İki yönlü ANOVA da sıklıkla karşılaşılan bir analizdir. Hastalık gruplarına ait örneğimize bir de cinsiyet değişkeni eklendiğini düşünürsek; verimiz aşağıda ki hale gelmektedir. Hastalık ve Cinsiyet faktörleri aynı anda incelenmek istendiğinde ve ortak etkileşimlerinin sonuçlar üzerinde anlamlı istatistiksel farklılık yaratıp yaratmadığını incelememizi sağlar. 28 Haziran 2013 CumaANOVA (Analysis of Variance) Uzun bir aradan sonra tekrar merhaba. Bugün ki yazımda t-testinin genelleştirilmiş hali olan F-testi ANOVA’dan bahsetmek istiyorum. ANOVA ikiden fazla grup ortalamalarının karşılaştırılmasında kullanılan parametrik bir yöntemdir. T-testi F-testinin özel durumu olarak düşünebiliriz. T-testinde sadece iki grup karşılaştırılması yapılmaktadır. Parametrik yöntem olması gereği bazı varsayımlar gerektirmektedir. En önemli varsayımı grupların varyanslarının eşit olduğu varsayımıdır. Bu varsayım bozulduğunda sonuçların önemli derecede etkileneceği literatürde geçmektedir. Diğer varsayımlar ise, normal dağılım şartı ve gözlemlerin birbirinden bağımsız olmasıdır. Normallik şartı göz ardı edilebilmesine rağmen varyansların homojenliği varsayımı katı bir koşuldur. Aşağıdaki tabloda örnek bir veri yapısını görebiliriz. Araştırmacı 3 farklı hastalık grubundaki hastaların albümin değerlerini ölçmüş ve aşağıdaki gibi bulmuş. Albümin değerlerin hastalık gruplarına göre değişip değişmediğini öğrenmek istiyor. (Kaynak: Uygulamalı Çok Değişkenli İstatistiksel Yöntemler-Reha Alpar, Not: Örnek olması sebebiyle verinin sadece bir kısmını aldım.) Kronik Hepatit Siroz Malignite 5 3 0,8 5,1 4,3 1,3 4,5 3,4 2,2 4,7 1,8 2,7 2,8 2,2 1,9 5,3 2,7 1,4 4,7 2,5 2,6 4,5 3,1 1 3,6 2,8 1,5 3,8 1,5 0,7 Albümin değerini tek yönlü ANOVA ile gruplara göre değişiklik gösterip göstermediğini inceleyebiliyoruz. Bu tarz verip tipini t-testi ile karşılaştırıldığını şahit oldum. Maalesef hatalı bir analiz yöntemidir. Sebebi de I.tip hata dediğimiz hatayı büyütmesidir. ANOVA ile tek bir hipotez kurarak %5 yanılma payıyla(%95 güven düzeyinde çalıştığımızı düşünürsek) çalışırken. T-testi ile ikili grup karşılaştırması yaptığımız için ; Kronik Hepatit- Siroz Kronik Hepatit-Malignite Siroz-Malignite Olmak üzere 3 farklı hipotez kuruyoruz. Bu da güven düzeyini düşürmektedir. Kısa bir hesapla; (0,95)3 = 0,86 olur. Buradan yanılma payıda 1-0,86=0,14 olmuş olur. T-testi ile yaptığımız karşılaştırmada üç farklı hipotez kurduğumuz için ANOVA ile test ettiğimizde yanılma payı %5 iken t-testi ile %14’lere kadar çıkmaktadır. Daha fazla değişken olduğunu düşünürsek hata payı iyice artacaktır. Bu nedenle de bu sonuçlara göre yorum yapmak tabi ki yanlış olacaktır. Üç ve üçten fazla grup karşılaştırılması yapılacağı zaman ANOVA yapılması doğru olur. Bu kullandığımız veri tek yönlü-ANOVA’ya uygun örnektir. İki yönlü ANOVA da sıklıkla karşılaşılan bir analizdir. Hastalık gruplarına ait örneğimize bir de cinsiyet değişkeni eklendiğini düşünürsek; verimiz aşağıda ki hale gelmektedir. Hastalık ve Cinsiyet faktörleri aynı anda incelenmek istendiğinde ve ortak etkileşimlerinin sonuçlar üzerinde anlamlı istatistiksel farklılık yaratıp yaratmadığını incelememizi sağlar. Kronik Hepatit Siroz Malignite Cinsiyet 5 3 0,8 E 5,1 4,3 1,3 K 4,5 3,4 2,2 K 4,7 1,8 2,7 E 2,8 2,2 1,9 E 5,3 2,7 1,4 E 4,7 2,5 2,6 K 4,5 3,1 1 E 3,6 2,8 1,5 K 3,8 1,5 0,7 K ise şöyledir; Tek yönlü ANOVA: H0: Hastalık gruplarına göre Albümin değerleri farklılık göstermemektedir. H1: Hastalık gruplarına göre Albümin değerleri arasında en az biri farklıdır. Çift yönlü ANOVA: Üç farklı hipotez kurulur. H0: Hastalık gruplarına göre Albümin değerleri farklılık göstermemektedir. H1: Hastalık gruplarına göre Albümin değerleri arasında en az biri farklıdır. H0: Cinsiyete göre Albümin değerleri farklılık göstermemektedir. H1: Cinsiyete göre Albümin değerleri arasında en az biri farklıdır. H0: Hastalık grupları ve cinsiyetin ortak etkileşimine göre Albümin değerleri farklılık göstermemektedir. H1: Hastalık grupları ve cinsiyetin ortak etkileşimine göre Albümin değerleri arasında en az biri farklıdır. Çift yönlü ANOVA ile her bir gruptaki değişkenlerin kendi içinde anlamlılıklarını inceleyebildiğimiz gibi ortak etkileşimini de inceleyebiliyoruz. Eğer karar aşamasında, Tek yönlü ANOVA için düşünürsek, P-değeri red bölgesine düşerse hastalık grupları arasında en az birinin fark yarattığını söyleyebiliriz. Fakat farkı hangi grubun yarattığını öğrenmek istediğimizde ise post-hoc testlerine başvurmamız gerekir. Tukey HSD testi en çok bilinen ve kullanılan test olmasına rağmen verinin yapısına göre diğer post-hoc testlerine de başvurmak gerekebilir. Çünkü kendi aralarında avantajları ve dezavantajları vardır.

http://www.biyologlar.com/anova-analysis-of-variance

FIP Nedir ?

FIP kısaltması bu hastalığa neden olan “feline infectious peritonitis” virüsün isminden geliyor. Feline infectious peritonitis, aslında corona virus’ın mutasyona dönüşmesi sonucu ortaya çıkan bir virüs. FIP hastalığı kediler için öldürücü bir hastalık, ne yazık ki hala çaresi bulunmuş değil. Hastalığın kesin tanısı otopsi ile konulabiliyor ve hastalığın teşhisi otopsi haricinde çok zor. Sadece farklı testlerden gelen sonuçlardan hareketle teşhis oluşturuluyor. Bu sebeple kedinize yapılan testin FIP şüphesine işaret etmesi halinde başka testlerle de desteklenmesi gerekiyor. (Bu yazımız içinde bu testleri de anlatmaya çalışacağız.) FIP hastalığının teşhisinde kullanılan testlerde bazen yanılmalar olabiliyor. Kedinize FIP teşhisi konması halinde hemen ötenaziyi düşünmemek gerekir. Ötenazi gerçekten çok gerekli olduğunda ancak veteriner hekim onayı ile verilebilecek bir karar. Bu yazımız içinde bu testleri de anlatmaya çalışacağız. FIP hastalığı şu ana kadarki bulgular çerçevesinde insana ya da başka bir hayvana geçmiyor, ama kedilerden kedilere geçiyor, yani kedi ailesi içinde bulaşıçı bir hastalık.

http://www.biyologlar.com/fip-nedir-

Portör Testleri Nedir? Kimlere Portör Muayenesi Yapılır?

Gıda sektörü çalışanları ile kreş ve yuvalarda görevli olanlarda portör testlerinin yapılması yasal bir zorunluluktur. Bu testler Sağlık Bakanlığınca yetkilendirilmiş merkezlerce yapılmaktadır.Testin cinsine göre belirli aralıklarla yapılması gerekmektedir. Bu testleri sırayla inceleyelim. GAİTA MİKROSKOPİSİ VE GAİTADA PARAZİT VE PARAZİT YUMURTASI İNCELENMESİ:Dışkıda barsak parazitlerinin mikroskopik incelemeyle araştırılmasıdır. Altı ayda bir yapılmalıdır. GAİTADA KÜLTÜRÜ VE ANTİBİYOGRAMI: Özellikle Salmonella ve Shigella cinsi bakterilerin,dışkıda araştırılması amacıyla yapılmaktadır..En az yılda bir kez yapılması gerekmektedir.BOĞAZ  KÜLTÜRÜ:Boğazda özellikle Beta Hemolitik Streptekok araştırılması yönünden yapılan bir tahlildir.Yılda bir kere yapılmalıdır. AKCİĞER GRAFİSİ Akciğer hastalıklarını tespit etmek için yapılan tarama yöntemidir.En az yılda bir gerçekleştirmesi gerekmektedir.http://tahlil.com

http://www.biyologlar.com/portor-testleri-nedir-kimlere-portor-muayenesi-yapilir

Meyve ve Sebze Tüketimi Çocuklarda Astım Atağını Önlüyor

Meyve ve Sebze Tüketimi Çocuklarda Astım Atağını Önlüyor

Çocuk Göğüs Hastalıkları Uzmanı Prof. Dr. Elif Dağlı, meyve ve sebze açısından zengin diyetin astım atağını önlediğini vurgulayarak şunları söyledi: “Avustralya’da yapılan bir araştırma, iki hafta boyunca yüksek antioksidan içeren sebze ve meyve ile beslenen astımlı hastaların nöbet geçirme olasılığının azaldığını, solunum testlerinin daha iyi olduğunu gösterdi. Antioksidan maddeler besinlerimizde yer alır. Vücut oksijen kullandığında oluşan yan ürünler doku hasarına, iltihaba veya yaşlanmaya neden olabilir. Kalp hastalıkları, diyabet, kanser, oksidatif hasarın katkı yaptığı hastalıklardır. Antioksidanlar oluşan yan ürünleri temizleyen tamirat sırasında oluşan zedelenmeyi engelleyen maddelerdir. A vitamini, karotenoidler, havuç, kabak, brokoli, domates, şeftali, kayısı, C vitamini içeren narenciye, yeşil salata, biber, Vitamin E içeren fındık, ceviz, bitkisel yağlar antioksidandır.” Prof. Dr. Elif Dağlı, 1960-2000 yılları arasında küresel astım ve alerjik hastalık artışından kısmen diyet değişikliğinin sorumlu tutulduğunu belirterek şu bilgileri verdi: “Meyve ve sebzelerin daha az tüketilir olması antioksidan düzeylerinde düşmeye neden oldu. Hamilelerin bu tip gıdaları kullanmasının bebeğin ilk yılda hırıltılı solunum hastalığı ve astım ihtimalini azalttığı saptandı. Karoten içeren gıdalardan az tüketen hamilelerin bebeklerinde de daha sık hırıltı görüldü. Yapılan çalışmalar antioksidan içeriğini tablet halinde almanın etkili olmadığını, tam besin tüketiminin astım ve alerjide oluşan mikrop içermeyen iltihabı koruduğunu gösterdi.” Çocuk Göğüs Hastalıkları Uzmanı Prof. Dr. Elif Dağlı, fast food yemek yerine bol miktarda sarı, turuncu, kırmızı renkli sebze ve meyve tüketimine ağırlık verilmesinin alerji riski taşıyanlarda özellikle önem taşıdığını söyledi. http://tahlil.com

http://www.biyologlar.com/meyve-ve-sebze-tuketimi-cocuklarda-astim-atagini-onluyor

Zeka geriliği

İnsan davranış genetiğinin en tartışmalı alanlarından birisi de, zeka ile ilgilidir. Fakat ortada birçok belirsizlik olması nedeniyle zekanın genetiğinden daha önce zekanın ne olduğu ve nasıl ölçüldüğü üzerinde durmamız gerekmektedir. Zeka nedir, nasıl ölçülür? Zeka, kesin bir anlaşma olmamasına rağmen "problemleri çözmek, yeni şeyler öğrenmek, iyi düşünebilme yeteneği geliştirmek için genel zihinsel kapasite" veya "yeni durumlara karşı uyum yeteneği" olarak tanımlanmaktadır. Zekanın tanımlanmasında bunca güçlükler olsa da, herkes zeka diye bir zihinsel bir işlev olduğuna inanmaktadır; psikoloji bilimiyle uğraşanlar ise, fazladan olarak bu işlevin ölçülebilece?i kanaatindedirler. XIX. Yüzyıl'ın sonlarında İngiltere'de Sir Francis Galton, evrim teorisinin de etkisiyle, insandaki kalıtımla geçen özellikleri, farklı zihinsel yetenekleri ve kişisel karakteristikleri ölçerek bulmaya girişti. Galton, öyle bir varsayımla hareket ediyordu ki, bireysel farklılıkları gösterebildiğinde, dolaylı olarak genetik etkeni de göstermiş olacağını sanıyordu. Gerçi Galton'un bugünkü anlamıyla zekayı ölçtüğü söylenemezdi ama insanların zekalarına göre farklı sınıflara ayrılabilecekleri ve zeka ölçümlerindeki bireysel farklılıkların ancak genetik yapıyla açıklanabileceği anlayışı, Galton'dan bu yana, bazı bilimcilerin kafalarında hemen hiç değişmeden kaldı. Üstün insanları diğerlerinden ayırt etme çabası, durmaksızın sürdü. Galton'un çağdaşı ve modern psikolojinin kurucusu Wund'un insan işlevlerinin laboratuarda ölçülebilece?ini ileri süren öncü çabalarıyla, aynı zamanda liberal siyaset felsefesinin kurucusu olarak kabul edilen Locke'un duyumculuğunun bütün bilginin duyumlardan geldiği şeklindeki önermesi birleşince zekayı ölçmeye çalışan psikologlar, daha çok bireyler arasındaki duyusal-motor farklılıklara yöneldiler. Zeka farklılıklarını görme keskinliğinden, acıya karşı duyarlılığa, hatta avuç içindeki çizgilere kadar birçok etkenle açıklamaya kalkıştılar. Ve nihayet 1900'lü yıllarda Fransız hükümeti, psikolog Alfred Binet'e zihinsel özürlü çocukları diğerlerinden ayırma görevi verdi. Binet, bu somut görev karşısında artık zekayı birçok bileşenden oluşan bir işlevler toplamı olarak almak yerine, tek başına ama karmaşık bir zihin işlevi olarak ele almak zorunda kaldı. Bugün birçok konuda uygulama alanına sahip olan zeka testlerinin ilk örnekleri bu mantıkla hazırlandı. Her iki dünya savaşı sırasında orduya acilen zeki insanlar kazandırma şeklinde yeni bir somut sorun çıkınca, zeka testlerinin uygulanması ve geliştirilmesi süreci belirgin bir ivme kazandı. Binet ölçeği birçok revizyondan geçerek günümüze kadar uzandı. Zekayı daha ziyade bir soyutlama yeteneği olarak düşünen ve bugün Stanford-Binet olarak bilinen bu testin en belirgin özelliği, zekayı yaşla değişen bir işlev olarak düşünmesi, zeka yaşını ve takvim yaşını birbirinden ayırmasıydı. Bu testten sonra da birçok zeka testi geliştirildi. Bunlardan en yaygın olarak uygulananı, Wechsler tarafından geliştirilen erişkinler ve çocuklar için farklı versiyonları bulunan zeka testleridir. Bu testlerin Stanford- Binet testinden en önemli farkları, zekanın sözel ve performans olmak üzere ikiye ayrılmasıdır. Zeka testleri, geniş bir uygulama alanı bulmuş, eğitimden sağlığa, askerlikten iş ve işçi seçimine kadar birçok alanda büyük faydalar sağlamı? olsalar da, henüz zekanın niteliği ve kökenleri sorunu aydınlatılabilmiş değildir. Ancak bütün bu süreç içerisinde kazanılan bilgi ve deneyimler, insan beyninin işlevleri hakkındaki bilgimizin gelişimiyle bir araya getirildiklerinde zeka hakkında daha ayrıntılı yaklaşımların ortaya çıkmasına neden olmuştur. Artık zekanın Binet'in sandığı gibi global bir işlev birimi olduğu düşünülmemekte, tam tersine birçok işlevin (hafıza, sözel akıl yürütme, matematik akıl yürütme, benzerlik ve farklılıkları algılama hızı, kelime bilgisi vb.) karşılıklı iç ilişkilerinin değişik görünümlerinin zekayı oluşturduğu sanılmaktadır. Dolayısıyla ortaya yeni zeka tanımları ve bu tanımlar uyarınca geliştirilmiş yeni zeka ve bilişsel testler çıkmaktadır. Örneğin bunlardan Thorndike'ın yapmış olduğu zeka tanımı oldukça ilginçtir. Thorndike, zekanın mekanik, toplumsal ve soyut olmak üzere üç türü bulunduğunu savunmaktadır. Mekanik zeka, insanın el ve alet kullanma becerisini; toplumsal zeka, diğer insanları anlama ve kişiler arası ilişkiler kurma, soyut zeka ise, semboller ve kavramlarla düşünebilme yeteneğini temsil etmektedir. Zeka testlerinin kesin bir biçimde zeki olanlarla olmayanları birbirlerinden ayırdığı şeklindeki eski katı anlayış da bu arada yumuşamıştır. Değerlendirmelerde kültürel farklılıklar, deneklerin testin gerekli gördüğü koşullarda yetişip yetişmedikleri gibi ara belirleyenler hesap edilmeye başlanmıştır. Daha önemlisi, zeka testlerinde ölçülenin insanın doğuştan getirdiği kapasite değil, bu kapasitenin davranışa dönüşmüş bölümü olduğu kabul edilmektedir. Bütün bunların sonucunda, artık zeka testi kavramından vazgeçilmekte, onun yerine "genel yetenek ölçümleri" gibi daha iddiasız ifadeler kullanılma yoluna gidilmektedir. Sürecin böyle bir yönelime girmesinde, kazanılan bilgi ve deneyimler kadar, şüphesiz bilimcileri etkileyen Jean Piaget gibi düşünür-bilimcilerin görüşleri etkili olmuştur. Piaget'in "genetik epistemoloji" adını verdiği yaklaşıma göre, bütün insanlarda belli gelişim evrelerine karşılık gelen bir global yapı olarak aynı zeka potansiyeli vardır. Ancak biyolojik uyum ile çevreye uyum arasındaki etkileşme; fiziksel, bilişsel ve duygusal kapasiteleriyle ilgili olarak organizmaların performanslarına göre zeka da farklılıklar göstermektedir. Piaget' e göre ayrıca zeka, psikolojik testlerle ölçülemez; ancak niteliksel bir yapı şeklinde analiz edilebilir. Sir Galton'dan bu yana zeka hakkında yapılan en ilgi çekici araştırma konularından biri de, zekanın kalıtımla, çevre ile, ırkla ve doğum düzeniyle bağlantılarının araştırılmasıdır. Araştırmaların doğru bir sonuç vermesi için gerekli olan ara belirleyenleri hesaba katma işlemleri, bu araştırmaların hiçbirisinde tam olarak yapıl(a)madığından bilimsel olarak genellikle ciddiye alınmamaktadırlar. Kaldı ki, zekanın tanımının böylesine belirsiz olduğu koşullarda, zeka adına neyin ölçüldüğü bile belli değildir. Yine de zekanın genetiği konusunda bugüne kadar yapılan, birçok eleştiri alamalarına rağmen çoğunlukla kabul gören ciddi araştırmalardan elde edilen en genel sonuçları şöyle özetlemek mümkündür: Zeka, bireyin kişilik özelliklerine göre daha kalıtımsal bir nitelik sergilemektedir ve hatta zeka üzerinde kalıtımın rolünün, çevrenin rolünden daha fazla olduğunu söylemek mümkündür. Bir başka deyişle, bilim çevrelerinde "doğa mı yoksa yetiştirilme tarzı mı, insan davranışında daha baskındır?" sorusuna cevap bulmaya çalışan ünlü 'nature-nurture' tartışmasında, zeka ile ilgili olarak, şimdilik doğa yanlılarının yani genetikçilerin raundu önde bitirdikleri söylenebilir... Araştırmaların ortaya çıkardığı bir başka sonuç da, beyin vebazı beyin alt-bölümleri ne kadar büyük olursa, zekanın da genellikle o kadar artmakta olduğudur ama burada önemli olan, büyümüş beyin dokusunun kalitesidir...Kadınlarda zekanın sözel denilen bölümünün, erkeklerde ise, performans zeka genellikle daha iyi gelişmiş olduğu da bugün bilimsel bir gerçek olarak kabul edilmektedir. Ama zekanın genetiği ile ilgili olarak ortaya konan bilimsel iddialardan ayrı olarak, öjenik bir bakış açısıyla yapılmış birçok sözde-bilimsel önyargılar da bulunmaktadır.  

http://www.biyologlar.com/zeka-geriligi

Bakteriyolojinin tarihçesi

Bakteriler ilk defa 1676'da Antonie van Leeuwenhoek tarafından, kendi tasarımı olan tek mercekli bir mikroskopla gözlemlenmiştir. Onlara "animalcules" (hayvancık) adını takmış, gözlemlerini Kraliyet Derneği'ne (Royal Society'ye) yazılmış bir dizi mektupla yayımlamıştır. Bacterium adı çok daha sonra, 1838'de Christian Gottfried Ehrenberg tarafından kullanıma sokulmuş, eski Yunanca "küçük asa" anlamına gelen βακτήριον -α (bacterion -a)'dan türetilmiştir. Latince kullanımıyla Bacteria, bakteri sözcüğünün çoğulu, bacterium ise tekilidir. Louis Pasteur 1859'da fermantasyonun mikroorganizmaların büyümesi sonucu meydana geldiğini ve bu büyümenin yoktan varoluş yoluyla olmadığını gösterdi. (Genelde fermantasyon kavramıyla ilişkilendirilen maya ve küfler, bakteri değil, mantardır.) Kendisiyle ayni dönemde yaşamış olan Robert Koch ile birlikte Pasteur, hastalık-mikrop teorisi'nin erken bir savunucusu olmuştur. Robert Koch tıbbi mikrobiyolojide bir öncü olmuş, kolera, şarbon ve verem üzerinde çalışmıştır. Verem üzerindeki araştırmalarında Koch mikrop (germ) teorisini kanıtlamış, bundan dolayı da kendisine Nobel Ödülü verilmiştir. Koch postülatları'nda bir canlının bir hastalığın nedeni olduğunu belirlemek için gereken testleri ortaya koymuştur; bu postülatlar günümüzde hâlâ kullanılmaktadır. On dokuzuncu yüzyılda bakterilerin çoğu hastalığın nedeni olduğu bilinmesine rağmen, antibakteriyel bir tedavi mevcut değildi. 1910'da Paul Ehrlich Treponema pallidum 'u (frengiye neden olan spiroket) seçici olarak boyamaya yarayan boyaları değiştirerek bu patojeni seçici olarak öldüren bileşikler elde etti, böylece ilk antibiyotiği geliştirmiş oldu. Ehrlich, bağışıklık üzerine yaptığı çalışmasından dolayı 1908 Nobel ödülünü kazanmış, ayrıca bakterilerin kimliğini tespit etmek için boyaların kullanılmasına öncülük etmiştir; çalışmaları Gram boyası ve Ziehl-Neelsen boyasının temelini oluşturmuştur. Bakterilerin araştırılmasında büyük bir aşama, Arkelerin bakterilerden farklı bir evrimsel soya ait olduklarının 1977'de Carl Woese tarafından anlaşılmasıdır. Bu yeni filogenetik taksonomi, 16S ribozomal RNA'nın dizilenmesine dayandırılmış ve üç alanlı sistem'in parçası olarak prokaryot alemini iki evrimsel alana (üst âleme) bölmüştür

http://www.biyologlar.com/bakteriyolojinin-tarihcesi

Biyodizelin Çevresel Etkileri

Biyodizel kullanımında CO emisyonu %50, partikül madde %30 azalmaktadır. Biyodizel kullanımıyla asit yağmurlarının ana nedeni olan egzoz emisyonundaki SO ve sülfatlar tamamen ortadan kalkmaktadır. Yine insan sağlığı üzerine önemli bir tehdit olan aldehit bileşikleri petrodizele göre %30, yerleşim alanları üzerinde duman oluşumuna neden olan hidrokarbon emisyonları %95 azalmaktadır. Yine aromatik bileşenlerin egzoz emisyonları (PAH, NPAH) azalmaktadır. Biyodizelin petrodizele göre gen mutasyonu üzerindeki etkisi önemli oranda azdır. Biyodizel biyolojik olarak bozunabilir. Biyodizeli oluşturan C16 – C18 metil esterleri doğada hızla parçalanıp bozunur. Biyodizelin suya karışması halinde 28 günde %95 tamamen bozunurken, petrodizelin yalnızca %40’ı bozunabilmekte kalan % 60 ı ise yıllarca bozunmamaktadır. Biyodizelin olumsuz bir toksik özelliği bulunmamaktadır. Ağızdan alındığında sofra tuzu Biyodizelden 10 kat daha yüksek öldürücü etkiye sahiptir. İnsanlar üzerinde yapılan elle temas testleri Biyodizelin ciltte %4’lük sabun çözeltisinden daha az toksik etkisi olduğunu göstermiştir. Biyodizelin sudaki canlılara karşıda herhangi bir toksik etkisi bulunmamaktadır. Buna karşılık 1 litre ham petrol 1 Milyon Litre suya toksik etkide bulunur.

http://www.biyologlar.com/biyodizelin-cevresel-etkileri


Grip Nedir? Grip Belirtileri , Grip Tanısı ve Aşısı

Grip Nedir? Grip Belirtileri , Grip Tanısı ve Aşısı

Grip, Influenza adı verilen bir virüs tarafından oluşturulan, ani olarak 39 derece üzerinde ateş, şiddetli kas ve eklem ağrıları, halsizlik, bitkinlik, titreme, baş ağrısı ve kuru öksürük gibi belirtiler ile başlayan bir infeksiyon hastalığıdır. Gribe neden olan influenza virüsü; hasta veya taşıyıcı kişilerin hapşırması ya da öksürmesi yoluyla kolaylıkla bulaşabilir. Grip virüsünün temas ettiği kişilerle temas etmek veya öpüşmek de grip virüslerinin bulaşmasına neden olur.Grip hasta veya taşıyıcı kişinin tuttuğu kapı kolu, telefon veya havlu gibi ortak kullanım eşyalarından da bulaşabilmektedir.. Hasta kişilerden çevreye saçılan virüs parçacıklarının adeta bir balon gibi havada asılı kalabilme yeteneği olması, bulaşıcılığı daha da arttırmaktadır.Grip enfeksiyonu ;ev, iş yeri, okul, kreş,kapalı alış veriş merkezi ve toplu ulaşım araçları gibi kapalı mekanlarda da kolaylıkla bulaşabilmektedir. Grip virusünün önemli bir bulaş yolu da, hastalığa yakalanmış ancak henüz belirgin yakınmaları olmayan taşıyıcı kişilerdir.Bu kişilerle aynı ortamda olmak da gribe yakalanma nedeni olabilir.Grip, bağışıklık sistemi güçlü olan insanlarda genellikle sağlığı ciddi olarak tehdit etmez. . Gribe yakalanan kişide yaşam kalitesinde bozulma, rahatsızlık ve kimi zaman iş gücü kaybı ortaya çıkmaktadır. Ateş,kas ağrısı,halsizlik sıkça görülür. Gribal enfeksiyonda yatak istirahatı yararlıdır.Ayrıca ateş düşürücü ilaçlar verilebilir, kas veya eklem ağrılarını gidermek amacıyla ağrı kesicilerden yararlanılabilir.Bol sıvı tüketimi ve C vitamini alınması da hastalığı kolay atlatmada yararlıdır. Grip virüslerin yol açtığı bir enfeksiyon olduğundan bakterilere etki eden antibiyotiklerin gripte kullanılması fayda sağlamaz.Grip, dikkat edilmediği takdirde larenjit, farenjit, sinüzit ve orta kulak iltihabına dönüşebilir. Sonbahar ve kış aylarında çocuklarda görülen orta kulak iltihaplarının yaklaşık yüzde 30-35‘inin nedeni geçirilmiş griptir. Ayrıca zatüree (pnömoni) menenjit, ansefalit gibi yaşamı tehdit eden veya ölümle sonuçlanan hastalıklar da gribe bağlı oluşabilir. Gripte tahlile gerek var mıdır? Genellikle Grip tanısı hekim tarafından hastanın belirtileri ve fizik muayene bulgularına göre konulur.Bu nedenle çoğu zaman tahlil yaptırmaya gerek yoktur.Ancak genel bir bilgi olması nedeniyle grip tanısında yapılan tahlilleri sizler için hazırladık. Grip Tanısı ve Tahliller Grip tanısında birçok tahlil ve tanı yöntemi vardır. Direkt virus antijen tayini, virus hücre kültürü ve serolojik yöntemlerdir.Genellikle pahalı olduklarından mecbur kalmadıkça yaptırılmaları tercih edilmez. İnfluenza(Grip) testleri için uygun örnekler boğaz sürüntüsü, burun yıkama suyu, burun veya bronş aspiratı ve balgamdır. Örnekler hastalığın ilk dört gününde alınmalıdır. Grip TahlilleriHücre Kültürü:Salgın dönemlerinde etken virüsün tayini için kültür gereklidir. Zaman veemek gerektiren bir yöntemdir.Viral antijenlerin tayini: Antijen tayini hızlı tanı testleriyle yapılabilmektedir. Bu testlerin duyarlılığı %70’in üzerindedir. Özellikle salgın dönemlerinde hızlı tanı amacıyla kullanılan testlerdir.Güvenilirliği tam değildir.Moleküler tanı:Son yıllarda önemi ve popülerliği giderek artmıştır.Güvenilirliği çok yüksektir.:Polimeraz zincir reaksiyonu (PCR) ile örneklerde viral RNA aranabilir. Grip Aşısı Nedir? Grip aşısı inaktive edilmiş(etkisizleştirilmiş) influenza virüslerinden veya antijenlerinden yapılıyor.Yani grip virüsüne karşı ı yine bizzat kendisinin aktif olmayan hali kullanılıyor. Aşı uygulandıktan sonra bağışıklık sistemi aşıdaki inaktif virüse karşı antikorlar oluşturuyor. Daha sonra,insan vücudu aktif virüsle karşılaşıldığında, önceden oluşmuş antikorlar enfeksiyon oluşumunu önlüyor veya ağır hastalık riskini azaltıyor. Grip Aşısı Ne Zaman Yapılmalıdır? Grip aşısının mutlaka salgın başlamadan önce yapılması gerekiyor. Aşının etkisinin ortaya çıkması için aşağı yukarı 2-3 haftalık bir süreye ihtiyaç duyuluyor. Dolayısıyla, grip aşısı için en uygun zaman sonbahar aylarıdır. Grip Aşısı Kimlere Yapılmalıdır? Grip aşısı, 6 aydan küçük bebekler, hamileliğin ilk 3 ayı içerisindeki anne adayları, yumurta ve tavuk proteinlerine alerjisi olan kişiler dışında herkese yapılabilir.. Ayrıca, 38 derece üstünde ateşi olan hasta kişilerde ve ağır enfeksiyon geçirenlerde, aşı uygulamasının ateş düştükten sonra ve genel durum düzeldikten sonra yapılması önerilmektedir.Grip aşısı, ülkemizde sosyal güvencesi olan 65 yaş ve üstü yaşlılara hekim reçetesi ile yazılabilmekte ve aşının önemli bir kısmı devlet tarafından karşılanmaktadır.Ancak özellikle ve öncelikle grip aşısı yaptırılması önerilen kişiler ise aşağıda belirtilmiştir.1) 65 yaşından büyükler, astım ve diğer kronik solunum sistemi hastalığı olanlar,2) Kronik metabolik hastalığı olanlar(Diabet gibi)3) Hemoglobinopatisi olanlar, uzun süreli aspirin tedavisi alan bebek ve çocuklar,4) İmmünosupresif tedavi alanlar(kanser tedavisi veya organ nakli gibi nedenlerle)5) HIV infeksiyonu (AİDS) olanların grip aşısı yaptırmaları önerilmektedir.6)6) Yüksek riskli kişilere grip hastalığını taşıyacak ya da bulaştıracaklara da aşı yapılması önerilmektedir, bunlar da sağlık personeli, kronik hastalık bakım üniteleri veya yaşlı bakım evlerinde çalışanlar ile evinde yüksek riskli kişi olanlar şeklinde sıralanabilir.7) Sıkça yurt dışı seyahatlerde bulunanlar,sporcular Grip Aşısı Dozu Grip aşısında tek doz yeterlidir. Daha önce hiç grip aşısı yaptırmamış olan 8 yaşından küçük çocuklarda ise aradan en az 4 hafta geçtikten sonra ikinci doz aşılama yapılması önerilmektedir. Grip aşısının her yıl tekrarlanması gerekiyor. Bunun nedeni ise, virüslerin her yıl kendilerini değiştirdikleri için, bir önceki yılın aşısının sonraki yıl koruyucu özelliğini yitirmesi. Genellikle 2 -3 hafta sonra etkili olmaya başlayan grip aşısının koruyuculuk süresi de 6 – 12 ay sürüyor. Aşının koruyuculuğu ise karşılaşılan virüsle aşının içerdiği antijenik yapının uyumuyla ilişkili. Aşıdaki antijenler virüsle ne kadar uyumluysa, korumanın da o kadar iyi sağlandığını belirtiyor. Grip Aşısının Koruyuculuğu Grip aşısı ile koruyuculuk, 65 yaş altındaki sağlıklı erişkinlerde yüzde 70-90 gibi yüksek oranlarda seyrediyor. İleri yaşlarda bu etki yüzde 30-40 oranında azalmakla birlikte, hastalığın hafif geçirilmesi sağlanıyor. Yapılan kısıtlı sayıdaki çalışmalara göre, grip aşısının çocuklar üzerindeki koruyuculuk oranı ise yüzde 22-91 arasında değişiyor. Ancak antijenik yapıda büyük değişiklikler meydana gelmişse koruma etkisi tüm yaş gruplarında azalıyor veya aşı tamamen etkisiz hale geliyor. Grip Aşısının Yan Etkileri Var mı?Grip aşısının damar yoluyla verilmemesi gerekiyor. Aşı sonrası nadiren hafif geçen nezle türü bir tablo oluşabiliyor. Aşı yapıldıktan sonra enjeksiyon bölgesinde ender görülse de; kızarıklık, şişlik, morarma, ateş, kırıklık, titreme, yorgunluk, baş ağrısı, terleme, kas ve eklem ağrıları gibi yan etkiler ortaya çıkabiliyor. Çok rahat tolere edilebilen bu yan etkiler de 1-2 gün içinde kendiliğinden geçiyor. http://tahlil.com

http://www.biyologlar.com/grip-nedir-grip-belirtileri-grip-tanisi-ve-asisi

Bilim, İnanç ve Eğitim

Bilim müfredatında herhangi bir tür yaratılışcılığın bulunmasına karşı çıkan biyologlar ve diğerleri ifade özgürlüğüne karşı değillerdir ve dinsel inancı ortadan kaldırmaya çalışmıyorlar.Onlar yaratılış öykülerinin sadece tarih ya da çağdaş toplum gibi derslerinde öğretilmesini kabul edilebilir bulsalar da bu inançların geçerli bilimsel hipotezler olmadığını bilim derslerinde yeri olmadığını savunmaktadır.Malesef,bilim dersleri almış olsalarda çoğu insanın bilimin ne olduğu ve nasıl işlediğine dair anlayışı çok sınırlıdır.Oysaki evrim yaratılış tartışmasında tam da bu anlayışın çok önemli bir yeri vardır.Popüler inancın aksine,bilim bir olgular toplamı değil doğal fenomenler hakkında bir anlayış edinim sürecidir.Bu süreç,hipotezlerin öne sürüldüğü ve gözlemsel ve deneysel kanıtlarla test edildiği bir süreçtir.Hipotezlerin kanıtlanması gibi konuşmaların aksine bilimcilerin çoğu hipotezlerin mutlak anlamda kanıtlanamayacağı konusunda bilim felsefecileriyle aynı görüştedir.Diğer bir deyişle,bilimciler matematikte olduğu gibi mutlak ve garantili bir kanıt elde edemez.Daha ziyade,var olan verileri o anda en iyi açıklayan hipotez geçici olarak kabul edilir çünkü bu hipotezin değişebileceği,genişleyebileceği ya da yeterli kanıt bulursa ya da henüz düşünülmemiş daha iyi bir hipotez kurgulanabilirse reddedilebileceği görüşü bilimciler arasında egemen görüştür.Bazen gerçekten de tamamen yeni bir paradigma eskisinin yerini alır;mesala 1950 lerde levha tektoniği kıtaların yerlerinin sabit olduğu inancının yerini alarak jeolojide devrim yapmıştır.Daha sık rastlanan ise eski hipotezlerin zaman içinde kademeli bir şekilde değişmesi ve genişlemesidir.Söz gelimi modern genetiğe yol açan Mendelin ayrışım ve bağımsız ayrılma yasaları,bağlantı ve indirgemeli bölünme itkisi (meiotic drive) gibi olaylar keşfedildiğinde değiştirilmiş ama parçacıklara(genler) bağlı kalıtımın altında yatan ilke bugün de geçerliliğini korumaktadır. Bu süreç bilimin en önemli ve değerli özelliklerinden birini yansıtmaktadır:eğer bireysel olarak bilimciler bir hipoteze inanıyor olsalar bile bir grup olarak bilim insanları değiştirilemez bir biçimde kendilerini hiçbir inanca adamayacak ve ikna edici aksine aksine kanıtlar olduğunda bu hipoteze olan inançlarını sürdürmeyeceklerdir.Eğer kanıtlar aksini gösterirse düşüncelerini değiştirmek zorundadırlar ve değiştirirler.Gerçekten de, bilim yerleşik düşüncelerdeki küçük zayıflıkların araştırılmasından oluşmaktadır ve bir bilim insanının şöhretine önemli bir hipotezin yetersiz ya da hatalı olduğunu göstermekten daha fazla katkıda bulunabilecek başarı türü sadece birkaç tanedir.Bu nedenle bilim sosyal bir süreç olarak bir denemedir;inanç ve otoriteyi sorgular ;öne sürülen görüşleri kanıtlar aracılığıyla sürekli bir şekilde test eder.Bilimsel iddialar gerçektende doğal bir seçilim sürecinin ürünleridir çünkü düşünceler (ve bilimciler) birbirleriyle yarış halindedir ve böylece bir bilim alanındaki düşüncelerin toplamı açıklama içeriği ve gücü bakımından sürekli büyür(Hull , 1988). Bilim bu açıdan iddialarını test etmek için kanıtlara başvurmayan,belli inançlara,deney ve gözleme dayanmayan bağlılıklarını sarsmak için kanıtlara izin vermeyen ve doğal dünyayı açıklama kapasitesi artmayan yaratılışçılıktan ayrılır. Bu nasıl olabilir ? Bir akıllı tasarım,yandaşının şöyle dediğini kabul edelim : çok hücreli canlılar tek hücreli canlılarla karşılaştırıldığında o kadar karmaşıktır ki bunlar mutlaka zeki bir tasarımcının müdahalesi sonucu ortaya çıkmıştır.Eğer bu akıllı tasarım yandaşı dünya dışı varlıkların bu işten sorumlu olduğunu iddia etmiyorsa,bu tasarımcı maddi bir varlık değil doğa üstü bir varlık olmak zorundadır. Bu durumda ,bu tasarımcı nedir,canlıları yeni özelliklerle nasıl donattı,bunu yapması ne kadar zaman aldı ve bunu neden yaptı ? Doğa bilimleri en azından bu tür sorulara yanıt vermeyi hayal edebilir (söz gelimi filogenetik aratürleri araştırabiliriz,ilinti özellik farklılıklarını şifreleyecek genlerdeki farklılıkları analiz edebilir,taşıl arayabilir,çok hücreliliğin seçim açısından yararı hakkında deney yapabiliriz).Fakat AT hipotezi bu tür araştırma fikirleri ortaya koyamaz. Bilimsel araştırma,deneysel ve gözlemsel verilere dayanarak hipotezleri sınamanın bir yolunu bildiğimizi şart koşar.Bilimsel hipotezlerin en önemli özelliği onların en azından ilkece-test edilebilir olmasıdır.Bazen bir hipotezi doğrudan gözlemle sınayabiliriz,fakat çoğu zaman bir süreci ya da nedeni doğrudan göremeyiz.(örneğin,elektronlar,atomlar,hidrojen bağları,moleküller ve genler doğrudan gözlemlenebilir değildir ve DNA kopyalaması sırasında bir mutasyonun oluşumunu seyredemeyiz).Bu tür süreçleri gözlem ya da deneylerin sonuçlarını çekişen hipotezlerce ortaya atılmış kestirimlerle (prediction) karşılaştırarak çıkarsarız.Bu tür çıkarımlar yapabilmek için,bu süreçlerin doğa yasalarına belli koşullar geçerliyken belli tür olayların daima meydana geleceğini belirten ifadeler uyduğunu kabul etmek zorundayız.Diğer bir deyişle bilim (fizik ve kimya yasalarında örneğini gördüğümüz gibi) doğal fenomenlerin tutarlılığına ya da (en azından istatiksel olarak) kestirebilirliğine dayanır.Doğa üstü olay ya da varlıkların kabulü , doğa yasalarının varlığını askıya aldığı ya da ihlal ettiği için bilim bunlar hakkında çıkarımda bulunamaz ve daha doğrusu bu tür varlık ve olayları kabul eden hipotezlerin geçerliliğini sınayamaz. Dinin doğal olaylar hakkında bilimsel,mekanistik bir açıklama sağlayamaması gibi,biliminde doğal fenomenler hakkında olmayan sorulara yanıt veremeyeceğini anlamak önemlidir.Bilimin bize neyi güzel ya da çirkin , iyi ya da kötü,ahlaka uygun ya da ahlak dışı olduğunu söyleyemez.Bilim bize yaşamın anlamının ne olduğunu ve doğa üstü bir varlık olup olmadığını da söyleyemez(bkz. Gould 1999;Pigluicci 2002). Bilim insanları dünya çapında bir tufanın varlığını ya da dünyanın tüm canlıların yaşının 10.000 yıldan daha az olduğu gibi bazı özel yaratılışçı savları sınayıp yanlışlayabilir ama bilimciler tanrının var olduğunu ya da tanrının herhangi bir şeyi yarattığı gibi hipotezleri sınayamazlar çünkü bu tür hipotezlerin ne gibi oluşumları kestirebileceğini bilemeyiz.(Bu doğaüstü olanıklılıkları kesin olarak yanlışlayabilecek bir gözlem düşünmeye çalışın).Bu nedenle bilim,doğal dünya hakkında açıklamayı arzu ettiğimiz her şeyden doğal nedenlerin sorumlu olduğunu kabul etmek zorundadır.Bu zorunlu olarak METAFİZİK DOĞACILIK her şeyin gerçekten doğa üstü değil doğal nedeni olduğu ön kabulü görüşünü kabul ettiğimiz anlamına gelmez ,sadece YÖNTEMSEL DOĞACILIK bilimsel açıklamalar aradığımızda sadece doğal nedenleri dikkate almamızı söyleyen işlevsel ilke görüşünü kabul etmeyi gerektirir.Yaratılışcılığın temel iddiası olan biyolojik çeşitlilik doğa üstü güçlerin bir sonucudur iddiası ise sınanamaz. Bu akıllı tasarım kuramı içinde aynı şekilde doğrudur.Bu kuram bilimin yöntemleri ile değerlendirilemez. Hipotez,kuram ve olgu gibi terimleri kullandığımız için bunların ne anlama geldiğini anlamamız zorunludur.Hipotez bir önerme,bir kabuldür.1944den önce,çok az kanıtın desteklediği genetik maddenin DNA olduğu düşüncesi makul bir hipotezdi.1944den bugüne,destekleyen kanıtlar arttıkça bu hipotez giderek daha da güçlendi.Bugün bu görüşü bir olgu olarak kabul ediyoruz.Basit bir şekilde söyleyecek olursak,olgu kanıtlarla çok fazla desteklenerek artık doğruymuş gibi kabul etmemizde hiçbir sakıncası olmayan bir hipotezdir.Diğer bir deyişle,neredeyse hiçbir kuşkuya yer vermeyecek şekilde doğru olduğu kanıtlanmıştır.Ama sadece neredeyse. Yoksa akla gelebilecek herhangi bir kuşkuya yer vermeyecek şekilde kanıtlanmış değildir. Bilimde kullanıldığı biçimde kuram(teori) ise , desteklenmeyen bir spekülasyon ya da (popüler kullanıldığı biçimde) bir hipotez değildir. Tersine,bir kuram diğer düşünceleri ve hipotezleri kapsayan ve onları bağdaşık bir doku şeklinde ören büyük bir düşüncedir.Kuram,olgun,akıl yürütme ve çok çeşitli gözlemleri açıklayan kanıtlara dayalı birbiriyle bağlantılı bir tümceler bütünüdür.Oxford English Dictionary tarafından verilen tanımlardan biri şudur : bir grup düşünce ya da olayın açıklamasını sağlayan düşünce ve ifadeler bütünü;bilinen ya da gözlenen bir şeyin genel yasaları,ilkeleri ya da nedenleri olarak bilinen bir anlatım. Böylece atom kuramı,kuantum kuramı ve levha tektoniği kuramı sadece spekülasyon ya da fikirler değil,çok çeşitli kuralları açıklayan ve kuvvetli bir şekilde desteklenen düşüncelerdir. Biyolojide birkaç kuram vardır ve kesinlikle evrim bunlardan en önemli olanıdır. Bu durumda evrim bir olgu mudur yoksa kuram mı ? Bu tanımların ışığı altında evrim bilimsel bir olgudur.Diğer bir deyişle,ortak atalardan değişim yoluyla tüm türlerin türeyişi 150 yılda çok sayıda kanıtla desteklenmiş ve tüm testleri başarıyla geçmiş bir hipotezdir,yani bir olgudur.Fakat evrimsel değişimin tarihçesi,canlıların geçirdiği(mutasyon,seçilim,genetik sürüklenme,gelişimsel sınırlamalar vb. hakkındaki) çeşitli değişimleri açıklayabilen bir ifadeler bütünü olan evrim kuramı tarafından açıklanır. Canlıların çeşitliliği ve özellikleri için sunulan yaratılışcı açıklamalar bilimin yöntemleri ile değerlendirilemeyeceğinden bu görüşe bilim sınıflarında eşit süre verilmemelidir.Ayrıca bilimsel olmayan ya da yanlışlığı gösterilmiş olan hipotezlere de eşit süre verilmemelidir.Kimya öğretmenleri simya kurşun gibi bir elementin büyü yoluyla altın gibi başka bir elemente dönüştürülebileceği hakkındaki eski bir düşünce öğretmez ve öğretmemelidir ; yerbilimleri sınıfları Yerkürenin düz olduğu hipotezinden bile söz etmemelidirler;tarih ve psikoloji öğretmenleri tarihsel olayları ya da kişilik özelliklerini açıklayan astrolojiyi dikkate almamalıdır her e kadar bu tür bilim dışı düşüncelere inanan insanlar varsa da.İdeal demokrasi bazen yanlış olan ve tamamen pratik nedenlerle bu şekilde anlamamızın zorunlu olduğu düşünceleri kapsayacak kadar genişletilemez.Günlük hayatta,doğa üstü değil doğal açıklamaları benimser onlara göre yaşarız.1962de Massachussets eyaletinin Salem kasabasında insanları cadılıktan mahkum etmiş Püritanlardan farklı olarak biz,artık bir kişinin cadının büyüsünden etkileneceği ya da şeytani güçlerce ele geçirebileceği düşüncelerini ciddiye almayız. Bir suçlu Şeytan benim bunları yapmama neden oldu diyerek serbest kalabilseydi bu bizi çileden çıkarırdı.Kaderinin tanrı tarafından belirlendiğine canı gönülden inanmış birisi bile uçağın motorları çalışmasaydı paniğe kapılırdı.Bilimsel açıklamalara bağlı yaşıyoruz ve bilimin kendisini kanıtlamış olduğunu biliyoruz-çükü bilim işe yarar. ALINTI KAYNAĞI : PALME YAYINCILIK 1.BASKI Evrim Douglas J.Futuyma Çeviri Editörleri : Prof.Dr.AYKUT KENCE Prof.Dr.A.NİHAT BOZCUK Bölüm : 22 Sayfa 525 526 - 527 Gönderi:Onur Doğan  

http://www.biyologlar.com/bilim-inanc-ve-egitim

York Testi ve Gıda İntoleransı Nedir ? York Testi Bilgileri

York Testi ve Gıda İntoleransı Nedir ? York Testi Bilgileri

York test, bir gıda intoleransı testidir .Günümüzde popüler testler olarak sıkça gündeme gelen gıda intolerans testleri, besin intolerans veya gıda duyarlılık testleri olarak da adlandırılmaktadır. Piyasada ve sağlık kuruluşlarında gıda (besin ) intoleransını saptayan bir çok test vardır. York Test de, bu testler arasında bilinirliği yüksek olan bir testdir. Hatta bazı kişiler, besin intolerans testlerini , genel bir ifadeyle York testi olarak adlandırmaktadır. York testin kullanılma amacı, işlevi ve etkinliğini daha iyi anlayabilmek için, kuşkusuz gıda ( besin) intoleransı kavramını da anlamak gerekmektedir. Gıda ( besin) İntoleransı Nedir? Gıda intoleransı, bir çok kişide ortaya çıkan bir sağlık sorunudur. Gıda intoleransı olan kişilerde, toleransın olduğu gıdaya karşı insan vücudu normal olmayan tepkiler verir.Sağlıklı ve normal olarak bilinen bir gıda, tüketildiğinde insan vücudunda istenmeyen reaksiyonlara yol açarak, çeşitli sağlık sorunlarına yol açar. Oluşan reaksiyonların ve rahatsızlıkların ana sebebi ise, sindirim sisteminizde tolerans yani duyarlılık oluşturan gıdaların tam olarak sindirilememesidir. Sindirimi tam olarak olmayan gıdalar ise insan vücudunca yabancı bir madde olarak algılanmaktadır. Yabancı madde olarak algılanan bu gıdalara karşı da vücudumuz tepki vermekte bu durum da sağlık sorunlarına yol açmaktadır. Günümüzde doktorlar, geçmeyen sindirim sistemi rahatsızlıkları olan hastalarına, gıda intolerans testlerini daha sık istemektedirler. Gıda ( besin) İntoleransı Belirtileri Nelerdir? Gıda intolernsı, bir çok gıdanın tetikleyebildiği bir sağlık sorunu olduğu için buna bağlı olarak ortaya çıkan sağlık sorunları ve belirtiler de geniş bir yelpaze içinde değerlendirilir. Gıda intoleransı belirtilerinin başlıcalarını birlikte inceleyelim. * Hazımsızlık, kabızlık,şişkinlik, gaz, ishal, mide krampları gibi sindirim sistemi şikayetleri * Yorgunluk ( sürekli hale gelen bir yorgunluk), vücütta farklı bölgelerde görülebilen ödem (şişkinlik) * Migren, uyku bozukluğu ve romatizmal hastalıklar * Sindirim sistemi şikayetleri ile birlikte çeşitli barsak hastalıkları * Çeşitli deri hastalıkları ( sivilce, döküntüler gibi) York Test Ne Amaçla Yapılmaktadır? York Test, test yapılan kişide, herhangi bir gıdaya karşı intolerans yani duyarlılık varsa bunu ortaya çıkarmaktadır. York Test Nedir? York Test, gıda intoleransı varlığında, vücudumuzun buna yol açan gıdalara karşı verdiği reaksiyonları ortaya çıkaran ve sorun yaratan gıdaları öğrenmemeizi sağlayan bir testdir. olan bir testdir.. York Test için parmaktan alınan kan örneği yeterlidir.Kan örneği bir sağlık merkezinde alınabileceği gibi, testi yaptıracak kişinin adresine gönderilen test kiti aracılığı ile, evde de alınabilmektedir. Alınan test numuneleri ise, uygun koşullarda yurt dışındaki York Test laboratuarlarına gönderilmekte ve sonuçlar bu merkezlerde analiz edilmektedir. Test sonuçlarına göre, eğer bir gıda intoleransı varsa, buna göre kişiye bir beslenme programı önerilmektedir.Uygun beslenme ve diyet programıyla hastaların gıda intoleransına bağlı şikayetleri önemli oranda iyileşmektedir. York test, ideal olarak hasta,hekim ve diyetisyen işbirliği ile en yararlı sonucu verecektir. York Test’in En Sık Kullanım Alanları Nelerdir? Gıda ( besin) intoleransı araştırılması Özellike gıda intoleransı kaynaklı obesite ( şişmanlık) sorunlarında diyetisyen ve hekim işbirliği ile obesite tedavisine destek sağlanması York Test Nerelerde Yapılmaktadır? York Test çeşitli sağlık merkezlerinde ve İstanbul Ortaköy’de bulunan York Test Türkiye merkez ofisinde yapılmaktadır. http://tahlil.com

http://www.biyologlar.com/york-testi-ve-gida-intoleransi-nedir-york-testi-bilgileri

Hipotez, Olgu ve Bilimin Doğası

Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına… Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için… Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder. www.evrimcalismagrubu.org  

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi

Prof. Dr. Elif Dağlı’dan izlenimler

Prof. Dr. Elif Dağlı’dan izlenimler

Eylül 2012’de  Viyana’da gerçekleştirilen Avrupa Solunum Derneği Yıllık Kongresi’ne katılan Çocuk Göğüs Hastalıkları Uzmanı Prof. Dr. Elif Dağlı, Kongre izlenimlerini Medical Tribune ile paylaştı. Prof. Dr. Elif Dağlı, Avrupa Solunum Derneği Kongresi’ne bu yıl Türkiye’den 589 hekimin katıldığını söyleyerek şu bilgileri verdi: “ Türk hekimler olarak 180 bildiri sunduk ve içimizden 8 hekim de oturum başkanlığı yaptı. Kongrede öne çıkan farklı bulgular arasında astım yer aldı. Yeni bulgulara göre artık tüm ülkelerde astım artışının durduğunu söylemek mümkün diyebiliriz. Türkiye’de 1940-2000 yılları arasında astım artışındaki olumsuzluklar 1997 yılında durmuştu. Birleşik Krallık’ta çocuklarda astımın son 10 yılda %38 azalmış olduğu bildirildi. Çocuklarda astımın azalıyor olması, ilerdeki nesillerde de çok görülmeyecek anlamını taşıyor. Epidemiyolojik çalışmalar sonucu, hafif astımın kalıcı bir hastalık olmadığı ve ilerdeki yaşlarda kaybolduğu ortaya konuyor. Tanınmış araştırmacılardan Erica Von Mutius, astım fenotiplerine çok odaklanarak işin biyolojisini unuttuğumuzu söyledi. Erişkin astımında 10 yılda %6’sının düzeldiği gözlenmiş, 7-19 yaş çocuklarda ise düzelme oranı çok farklı ve astımdan kurtulmak çok daha kolay. Astımın kalıcılığında sigara, alerjenlere göre daha önemli bir etken olarak bulunmuş. Diğer bir ünlü araştırmacı Fernando Martinez de, inatçı astımı olan çocuklarda ilaçlarını muntazam kullandıkları taktirde solunum testlerinin düzeldiğini söyledi.”Avusturya’da çok sigara tüketiliyor1990 yılından buyana her yıl yapılan kongrede, Türkiye’de sigara tüketimi sonuçları hakkında bir konuşma yapan Prof. Dr. Dağlı şunları anlattı: “Kongrede yaptığım konuşma, Türkiye’de sigarayla mücadeledeki olumlu sonuçlar nedeniyle ses getirdi ve Avusturya’lılar bunu nasıl başardığımızı merak ettiler. Türkiye’de 2008-2012 yılları arasında sigara tüketimi; erkeklerde %47.9’dan %41.4’e, kadınlarda %15.2’den %13.1’e düşmüş durumda ve sigara bırakmak isteyen kadınların oranında %40’lık bir artış gözleniyor. Avusturya, sigara mücadelesinde çok geride kalmış bir ülke, bu alanda kanunları da yeterli değil ve çok sigara içen kişi mevcut. Konuşmacılardan Avusturya’lı bir hekim gebelerde artık,  Fetal Tütün Sendromu olarak adlandırılan bir tabirin ortaya çıktığını vurguladı. Sigara içen gebelerde bir ağır metal olan kadmiyumun plasentada biriktiği ve erken doğum riskini artırdığı gözlendi. Tütünün  ayrıca, teratojenik etkisi olduğu ve buna bağlı olarak; kas, kalp, mide barsak anomalilerine (şekil bozukluğu) neden olduğu ortaya kondu.”Kongrede konuşulan konulardan biri olan kistik fibrozisin beyaz ırkın en çok görülen genetik hastalığı olduğunu vurgulayan Prof. Dr. Dağlı şöyle konuştu: “Resesif  mutant gen taşıyan anne ve babanın çocuklarında kistik fibrozis görülme riski %25’tir. Hücre zarında klorun geçişini sağlayan zarın bozukluğu ile ortaya çıkan bu hastalıkta, klorun atılamayıp içerde birikmesiyle bir kuruluk meydana geliyor. Balgam ve diğer sıvıların kuruması ile kuruyan balgam yapışarak korkunç bir akciğer harabiyetine neden oluyor. 1960’lı yıllarda bu hastalığın yaşam süresi 1-2 yıldı. Günümüzde ise yaşam süresi hızla uzamaktadır. Kistik fibrozisten sonra çocuk 3 yaşına geldiğinde bronşiektazi olma oranı da %63 olarak görülüyor.”“Hava hapsi” kavramıProf. Dr. Dağlı, kongrede önemli bir katkı olarak sunulan ‘Hava Hapsi’ terimini de şöyle anlattı: “Eskiden nefes borusunun hasarlanmış olması üzerinde çok duruyorduk (bakteri birikmesi v.b.). Kongrede ortaya konan yeni katkı da, akciğer içinde sıkışmış olan havanın (hava hapsi) çok önemli bir bileşken olduğu ve hastalığın şiddetini belirlemede önemli bir kriter olduğu söylendi. Hastalık terminale ulaştığında, akciğerlerin %80’inin hava hapsolmuş kısımdan ibaret olduğu ve hastanın %20’lik kısım ile soluk aldığı belirtildi. Buna göre ilerdeki yıllarda radyoloji ve diğer görüntüleme yöntemlerinde hava hapsinin klinik önem kazanarak daha fazla üzerinde durulacağı anlaşılıyor. Bizler hava hapsinin klinik önemi üzerinde çok durmazdık. Şimdi ise, hava hapsinin ölçülmesiyle yapılan çeşitli korelasyonlarda bunun bir prognoz göstergesi olduğu ortaya konmuş oldu.”Çocuk akciğer hastalıklarına güncel bakışProf. Dr. Dağlı, uzmanı olduğu çocuk akciğer hastalıkları hakkındaki yenilikleri de şöyle dile getirdi: “Bu alandaki yeniliklerin anlatıldığı ‘Alerjik Sensitizasyon ile Virüs Enfeksiyonları İlişkisi’ başlıklı oturumda, genler ve çevre faktörlerinin bebeğin bağışıklık sistemini etkilediği ortaya kondu. Eskiden viral enfeksiyon alan bebeklerde, nefes borusunun hassaslaşarak  alerjenlere karşı daha duyarlı olduğu düşünülürdü. Şimdi ise, önce alerjenle hassaslaşmış olan bebeklerin virüsle karşılaştığında farklı yanıt vererek bronşlarının dolduğu gibi bir sonuç belirtildi.”Obezite-Astım ilişkisiObezite-Astım ilişkisinin anlatıldığı oturumla ilgili olarak Prof. Dr. Dağlı şu bilgileri verdi: “Obezlerde,  Th2 hücre grubunun daha etkili olduğu, çocuklardaki ağır astım vakalarında ise Th2 etkisinin görülmediği belirtildi. Erişkinlerden farklı olarak hasta ağırlaştığında ortaya çıkan çok parçalı çekirdeği olan nötrofilin bulunmadığı ve bu anlamda aralarında hücre yapısı açısından fark bulunduğu bilgisi verildi. Bizim bildiğimiz etki mekanizması dışında, Th1 üzerinden etkilendiği hakkında bilgi verildi. Ayrıca, astım olmayan çocuklarda da gıda alerjisi olup anaflaktik şok yaratabileceği belirtildi.”http://www.medical-tribune.com.tr

http://www.biyologlar.com/prof-dr-elif-daglidan-izlenimler

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Kontrol Laboratuvarlarının Kuruluş ve Görevleri Hakkında Yönetmelik

23.6.2005 tarih ve 25854 sayılı Yönetmelik Tarım ve Köyişleri Bakanlığından: Kontrol Laboratuvarlarının Kuruluş ve Görevleri Hakkında Yönetmelik BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1 — Bu Yönetmeliğin amacı; gıda, gıda ile temas eden madde ve malzemelerin gıda güvenliği, hijyen ve kalite analizlerini yapmak üzere kurulacak gerçek ve tüzel kişilere ait özel laboratuvarlar ile bu hizmetlerin yanı sıra yem ve yem maddeleri, hayvan hastalıkları teşhis, tohumluk kontrol hizmetlerinin yürütüldüğü kamu laboratuvarlarının kuruluş ve çalışma izni ile denetimlerine dair usul ve esasları düzenlemektir. Kapsam Madde 2 — Bu Yönetmelik, kontrol laboratuvarlarının kuruluş ve çalışma izni ile denetimlerine dair usul ve esasları kapsar. 5179 sayılı Gıdaların Üretimi, Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanunun 5 inci maddesine göre; Sağlık Bakanlığı ile Türk Silahlı Kuvvetleri yetkileri çerçevesinde bulunan laboratuvarlar bu Yönetmelik kapsamı dışındadır. Dayanak Madde 3 — Bu Yönetmelik: 7/8/1991 tarihli ve 441 sayılı Tarım ve Köyişleri Bakanlığının Teşkilat ve Görevlerine Dair Kanun Hükmünde Kararname, 27/5/2004 tarihli ve 5179 sayılı Gıdaların Üretimi, Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanun, 29/5/1973 tarihli ve 1734 sayılı Yem Kanunu, 22/3/1971 tarihli ve 1380 sayılı Su Ürünleri Kanunu, 8/5/1986 tarihli ve 3285 sayılı Hayvan Sağlığı ve Zabıtası Kanunu, 21/8/1963 tarihli ve 308 sayılı Tohumlukların Tescil, Kontrol ve Sertifikasyonu Kanununa dayanılarak hazırlanmıştır. Tanımlar Madde 4 — Bu Yönetmelikte geçen; Bakanlık : Tarım ve Köyişleri Bakanlığını, Genel Müdürlük : Koruma ve Kontrol Genel Müdürlüğünü, Ulusal referans laboratuvar : Kontrol laboratuvarlarında yapılan hizmetlerin teknik yönden koordinasyonunu yapan, kollaboratif çalışma düzenleyen, analiz yöntemlerinin geliştirilmesi ve standardizasyonunun sağlanması için yurtiçi ve yurtdışı bilimsel kuruluşlarla işbirliği ve ortak çalışma yürüten, eğitim ve araştırma yapan, analiz sonuçlarına itiraz durumunda şahit numune çalışan ve AB referans laboratuvarlarının faaliyetlerine ülke adına ulusal düzeyde katılım sağlayan ve Türk Akreditasyon Kurumu veya Avrupa Akreditasyon Kurumlarına üye kuruluşlarca akredite edilmiş laboratuvarı, Referans laboratuvar : Bakanlıkça yetkilendirildiği konularda şahit numunelerde analiz yapan, eğitim veren, araştırma yapan, yeterli bilgi ve donanıma sahip, Türk Akreditasyon Kurumu veya Avrupa Akreditasyon Kurumlarına üye kuruluşlarca akredite edilmiş olan laboratuvarı, Kontrol laboratuvarı : Faaliyet konularına göre Bakanlıkça yetkilendirilmiş özel veya kamu laboratuvarı, Sorumlu yönetici/müdür : Laboratuvarın mevzuata uygun olarak yönetilmesinden sorumlu olan ve gıda bilimi konusunda en az lisans düzeyinde eğitim almış; ziraat mühendisi, gıda mühendisi, kimya mühendisi, su ürünleri mühendisi, kimyager, veteriner hekim, biyolog, veya gıda konusunda lisans üstü eğitim almış olan personeli, Müdür yardımcısı : Kamu kontrol laboratuvarlarının hizmetlerinin yürütülmesinde müdüre teknik ve idari yönden yardımcı olan laboratuvar personeli, Teknik müdür yardımcısı : Kamu kontrol laboratuvarının ana hizmet bölümleri ile kalite yönetim biriminin yönetim ve koordinasyonunda müdüre teknik yönden yardımcı olan laboratuvar personeli, İdari müdür yardımcısı : Kamu kontrol laboratuvarının hizmetlerinin yürütülmesinde idari yönden müdüre yardımcı olan laboratuvar personeli, Bölüm sorumlusu/laboratuvar şefi : Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizlerin yapılmasından sorumlu olan laboratuvar personeli, Laboratuvar personeli: Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizleri yapan, bölüm sorumlusu/laboratuvar şefi ve idareye karşı sorumlu olan en az lisans düzeyinde eğitim almış ziraat mühendisi, gıda mühendisi, kimya mühendisi, su ürünleri mühendisi, kimyager, veteriner hekim, biyolog ve diyetisyeni, Laboratuvar yardımcı personeli: Laboratuvar bölümlerinin faaliyet ve görev alanına giren konularda analizlerin yapılmasında yardımcı olan, bölüm sorumlusu/laboratuvar şefi ve idareye karşı sorumlu ve en az lise düzeyinde eğitim almış, laborant, teknisyen ile ön lisans eğitimi almış teknikeri, Kuruluş izni : Kontrol laboratuvarının bu Yönetmelik esaslarına göre Genel Müdürlükçe ürün/ürün gurupları ve analiz bazında faaliyette bulunmak üzere belirlenmiş adreste uygun bina ve ortamın yeterliliğini belirten izni, Çalışma izni : Kontrol laboratuvarının bu Yönetmelik esaslarına göre Genel Müdürlük tarafından incelenerek onaylanan ürün/ürün gurupları ve analiz bazında belirlenmiş faaliyet konularını kapsayan izni, Metot validasyonu/metodun geçerliliği: Bir metodun veya ölçüm prosedürünün performansını belirlemek için yapılan test ve ölçme işlemlerini, Kalite yönetim birimi : "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardına göre laboratuvarlarda oluşturulması gereken birimi, ifade eder. İKİNCİ BÖLÜM Görev, Yetki, Kuruluş ve Çalışma Esasları, İstihdam, Hizmet Bölümleri Sorumlu yönetici/müdürün görev ve yetkileri Madde 5 — Sorumlu yönetici/müdür, Laboratuvarın mevzuata uygun olarak yönetiminden sorumludur ve bu Yönetmelikte belirtilen hizmetleri, mevzuata göre yürütmekle yükümlü olup, görev ve yetkileri şunlardır: a) Laboratuvar bölümlerinin işlevine uygun olarak çalışmasını sağlamak ve kontrol etmek. b) Alet ve ekipmanların bakım, onarım ve kalibrasyon ve performans testlerini yaptırmak. c) Laboratuvarda metot validasyonu yapılmasını, standart çalışma prosedürlerinin hazırlanmasını ve bunların dokümante edilmesini sağlamak. d) Numune ve analiz kayıt defterlerinin düzenli tutulmasını ve numunelerin laboratuvarlara dağılımını sağlamak. e) Laboratuvara giren numunenin tüm analizlerinin onaylanmış metotlara uygun yapılmasını sağlamak. f) Analiz raporlarını onaylamak. g) Kontrol laboratuvarlarında denetim tutanağı ile belirtilen hususların yerine getirilmesini sağlamak, denetim tutanaklarının muhafazası için gerekli tedbirleri almak. h) Personelin eğitimi ile ilgili programlar düzenlemek. ı) Laboratuvarın ulusal ve uluslararası yeterlilik testlerine katılımını sağlamak. i) Kayıtların düzenli tutulmasını ve arşivlenmesini sağlamak. j) Aylık faaliyet raporlarının Genel Müdürlüğe bildirimini sağlamak. k) Kayıt ve raporlarda gizlilik esasına uyulmasını sağlamak. Müdür yardımcıları ve görevleri Madde 6 — Kamu kontrol laboratuvarlarında teknik ve idari olmak üzere iki müdür yardımcısı istihdam edilebilir. a) Teknik müdür yardımcısının görevleri: Laboratuvarın ana hizmet bölümleri ile kalite yönetim biriminin yönetim ve koordinasyonunda müdüre teknik konularda yardımcı olmak. b) İdari müdür yardımcısının görevleri: Laboratuvar hizmetlerinin idari yönden yönetimi, yürütülmesi ve denetimi ile ilgili konularda müdüre yardımcı olmak, laboratuvarın tahakkuk memurluğu görevini yürütmek. Kalite yönetim birimi Madde 7 — Kontrol laboratuvarlarında, kalite yönetim birimi "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardına göre kalite ile ilgili çalışmaların organizasyon ve takibinden sorumludur. Kalite yönetim birimi, kalite sistem politikalarını ve hedeflerini ve "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardı şartlarını karşılayan kalite el kitabı ile sisteme ait prosedür ve talimatları hazırlar veya hazırlatır ve diğer dokümanların hazırlanmasını koordine ve sisteme uygunluğunu kontrol eder. Kalite yönetim birimi en az bir kişiden oluşur. Bu kişilerin kontrol laboratuvarlarında en az bir yıl çalışmış ve "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardının gerektirdiği eğitimleri almış olmaları gerekir. Kalite yönetim birimi, "TS EN ISO/IEC 17025 Deney ve Kalibrasyon Laboratuvarlarının Yeterliliği için Genel Şartlar" standardı kapsamında kalite yöneticisi olarak görev yapar. Laboratuvar politikası ve kaynaklar hakkında kararların alındığı en yüksek yönetim kademesine doğrudan ulaşır. İstihdam Madde 8 — Kontrol laboratuvarlarında bir sorumlu yönetici/müdür ve her laboratuvar hizmet bölümünde bir bölüm sorumlusu/laboratuvar şefi, yeterli sayıda personel ve yardımcı personel istihdamı zorunludur. Kontrol laboratuvarlarında faaliyet ve görev alanına giren konulara göre gıda, süt, su ürünleri, zootekni, toprak, bitki koruma, tarla ve bahçe bitkileri bölümü mezunu ziraat mühendisi, gıda mühendisi, kimya mühendisi, kimyager, su ürünleri mühendisi, veteriner hekim, biyolog, polimer mühendisi, diyetisyen, tekniker, teknisyen, laborant, veteriner sağlık teknisyeni teknik ve sağlık hizmetleri sınıfı personeli istihdam edilir. Hayvan hastalıkları teşhis bölümü oluşturulan kamu kontrol laboratuvarlarında bölüm sorumlusu olarak mikrobiyoloji, patoloji ya da viroloji konusunda uzman veya doktor veteriner hekimler istihdam edilir. Tohumluk kontrol bölümü oluşturulan kamu kontrol laboratuvarlarında tarla bitkileri ve bahçe bitkileri bölümü mezunu ziraat mühendisi istihdam edilir. Ayrıca, gerektiğinde elektrik, elektronik, bilgisayar mühendisi veya tekniker, teknisyeni istihdam edilebilir. Kamu kontrol laboratuvarlarına ilk defa atanacak teknik ve sağlık hizmetleri sınıfı personelin hizmet süresi beş yıldan az olmalıdır. Müdür ve müdür yardımcıları ile hizmet süresi beş yıldan fazla olan teknik ve sağlık hizmetleri sınıfı personelin laboratuvarlara atanabilmesi için daha önce laboratuvarda en az bir yıl çalışmış olması gerekir. Laboratuvar hizmet bölümleri Madde 9 — Laboratuvar, faaliyet konularına göre uygun hizmet bölümlerini içerir. Bu bölümler; numune kabul, fiziksel, kimyasal, mikrobiyoloji, katkı, kalıntı, mikotoksin, gıda ile temas eden madde ve malzemeler, mineral, biyogüvenlik analiz laboratuvarı ve benzeri şeklinde planlanabilir. Kamu kontrol laboratuvarlarında ayrıca, yem, tohumluk analizlerinin ve hayvan hastalıkları teşhisinin yapıldığı bölümler kurulabilir. ÜÇÜNCÜ BÖLÜM Laboratuvar Binası, Bölümleri ve Genel Özellikleri Laboratuvar binası ve yeri Madde 10 — Laboratuvarlar insanların ikametgahına mahsus binalarda olmamak üzere, imar mevzuatına uygun yerlerde kurulur. Laboratuvar binasının bölümleri Madde 11 — Kontrol laboratuvarları aşağıdaki bölümlerden oluşur; a) İdari Bölüm: 1) Yönetici ve diğer personel için ayrı oda. 2) Duş, tuvalet, giyinme odası. b) Laboratuvar hizmet bölümleri: 1) Numunelerin teslim alındığı numune kabul bölümü. 2) Tartım işleminin yapıldığı çevre şartlarından olumsuz şekilde etkilenmeyecek ayrı veya tek bir bölüm halinde düzenlenen tartım bölümü. 3) Laboratuvarda kullanılacak olan ve yapısına, risk grupları ile saklama koşullarına göre ayrı muhafaza edilmek üzere kimyasal maddeler ve yedek yardımcı malzemeler için depo veya uygun düzenlenmiş dolaplar. 4) Laboratuvarın çalışma konularına göre hizmet bölümleri bulunur. Bu bölümler; fiziksel, kimyasal, mikrobiyoloji, katkı, kalıntı, biyogüvenlik, gıda ile temas eden ambalaj materyali analiz laboratuvarı ve benzeri şeklinde planlanabilir. Laboratuvarların genel özellikleri Madde 12 — Laboratuvarların genel özellikleri ile ilgili hususlar şunlardır: a) İdari ve analiz yapılan bölümler ayrı olacak şekilde planlanmalıdır. b) Enstrümantal cihazlarla yapılan analizlerde numune hazırlama ile cihazın bulunduğu alan ayrı planlanmalıdır. c) Mikrobiyoloji laboratuvarı kontaminasyonu önlemek amacıyla iş akış sırasına göre besiyeri hazırlama, sterilize etme, ekim, inkübasyon işlemleri, kullanılmış malzemelerin temizliği ve sterilizasyonu için ayrı bölümler içeren alanlardan oluşmalıdır. d) Her hizmet bölümü için en az on beş metrekarelik alan olmalıdır. e) Laboratuvarlar özel ortam gerektiren analizlerde bu şartları sağlayan alet ve ekipmanlarla donatılmalı ve ayrı bölümler halinde planlanmalıdır. f) Laboratuvar çalışmalarında analiz sonuçlarının olumsuz etkilenmemesi için ortamın; toz, nem, buhar, titreşim, elektromanyetik etkenler ve zararlı canlılar gibi olumsuz şartlardan korunması sağlanmalıdır. Laboratuvar çalışmalarında analizlerin gerektirdiği ideal ortam sıcaklığının sağlanması için gerekli önlemler alınmalıdır. g) Çalışan personelin iş güvenliği için uygun giysi ve donanım kullanması sağlanmalıdır. h) Gerekli durumlarda bu maddenin (e) bendinde belirtilen özel ortam veya alet ve ekipmanlarla çalışılmalıdır. i) Laboratuvarların her bölümünde temizlik, sanitasyon ve dezenfeksiyon işlemleri yazılı talimatlara göre düzenli olarak yapılmalıdır. j) Boru sistemleri, radyatörler, aydınlatma sistem ve bağlantıları ile diğer servis noktalarının temizlenmesi kolay olacak şekilde tasarlanmalıdır. Duvar, tavan ve tabanlar kolayca temizlenebilir ve gerektiğinde dezenfekte edilebilir özellikte malzemelerle kaplanmalıdır. k) Aydınlatma, ısıtma ve havalandırma sistemleri yapılacak analizlere uygun olarak planlanmalıdır. l) Laboratuvarın analiz yapılan bölümlerine çalışan personel haricindeki kişilerin girişleri önlenmelidir. m) Yedek yardımcı malzemeler ve kimyasal maddeler yapısına, risk guruplarına ve saklama koşullarına göre havalandırma sistemli kilitlenebilir ayrı oda, dolap veya depolarda bulundurulmalıdır. n) Laboratuvarda ilk yardım için gerekli ilaç ve malzemelerin bulunduğu ilk yardım dolabı ve talimatı yer almalıdır. o) Tuvaletlerin laboratuvarın analiz yapılan bölümleri ile doğrudan bağlantısı önlenmelidir. p) Laboratuvarın boya, badana ve diğer bakımları düzenli olarak hazırlanacak yazılı talimatlara göre yapılmalıdır. r) Laboratuvarın kapasitesine uygun hacimde olmak üzere, numunelerin analize alınıncaya kadar ve analiz sonrasında kalan örneklerin uygun şekilde muhafaza edileceği depo veya soğutucu cihaz bulundurulmalıdır. s) Laboratuvarlarda ortaya çıkan atıklar doğrudan alıcı ortama verilmez, gerekli önlemler alındıktan sonra tekniğine ve mevzuatına uygun bir şekilde laboratuvardan uzaklaştırılmalıdır. t) Laboratuvarda kullanılan patlayıcı, parlayıcı ve boğucu gaz içeren gaz tüpleri bina dışında tekniğine uygun şekilde muhafaza edilmelidir. u) Laboratuvarlarda analizin yapıldığı birimde atık da dahil olmak üzere ilgili tüm prosedürler ve talimatlar bulundurulmalıdır. DÖRDÜNCÜ BÖLÜM Kontrol Laboratuvarlarının Kuruluş ve Çalışma İzni, Yetkilendirme ve Bildirimler Kuruluş izni Madde 13 — Laboratuvar kurmak isteyen kamu, gerçek ve/veya tüzel kişiler aşağıdaki bilgi ve belgeleri içeren başvuru dosyası ile Bakanlığa başvurur: a) Dilekçe. b) Laboratuvarın adı, sahibinin adı soyadı veya kurumun adı, açık adresi, telefon, faks numarası ve elektronik posta adresi. c) Kuruluş ve değişiklikleri içeren Türkiye Ticaret Sicili Gazetesi, vergi levhası fotokopisi ve ticaret odasından alınan faaliyet belgesi. d) Sorumlu yönetici/müdür noter onaylı sözleşmesi, diploma sureti, nüfus cüzdanı fotokopisi ve kayıtlı olduğu meslek odasından alınacak belge. e) Laboratuvarın analiz ve ürün / ürün gurupları bazında belirlenmiş genel faaliyet konularını belirten belge. f) Laboratuvar yerinin tapusu veya kira sözleşmesi ile yapı kullanma izin belgesinin noter onaylı fotokopisi. g) Laboratuvar cihaz yerleşim planı. h) Laboratuvarda yangına karşı gerekli önlemlerin alındığına dair itfaiyeden alınacak belge. Bakanlıkça, gönderilen bilgi ve belgeleri içeren başvuru dosyasına istinaden en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği ve konusunda uzman en az üç kişiden oluşan bir komisyon tarafından laboratuvar yerinde incelenir ve bu Yönetmeliğe uygun olması halinde laboratuvara kuruluş izin belgesi verilir. Yerinde yapılan incelemede laboratuvarın bu Yönetmeliğe uygun bulunmaması halinde denetim raporunda belirtilen eksikliklerin giderilmesi için laboratuvara süre verilir. Eksikliklerin giderildiğine dair müracaatla yeniden yerinde inceleme yapılır ve bu Yönetmeliğe uygun olması halinde laboratuvara kuruluş izin belgesi verilir. Kuruluş izni verilen kontrol laboratuvarının yeni bir bölüm açması durumunda yeni açılacak bölüm/bölümlere ait belgeler istenir, yukarıda belirtilen işlemler yapılır ve kuruluş izni yenilenir. Kuruluş izni amacıyla başvuruda bulunan kamu kontrol laboratuvarlarından bu maddenin (c), (d) ve (f) bendlerinde belirtilen belgeler istenmez. Çalışma izni Madde 14 — Bakanlıktan kuruluş izni belgesi alan laboratuvar, çalışma izni almak için, aşağıdaki bilgi ve belgelerle yeniden Bakanlığa başvurur: a) Dilekçe. b) Laboratuvarın analiz ve ürün ve/veya ürün gurupları bazında belirlenmiş faaliyet konularını belirten belge. c) Laboratuvar organizasyon şeması. d) Her bölüm sorumlusu/laboratuvar şefi, laboratuvar personeli ve yardımcı personelinin noter onaylı sözleşmesi, diploma sureti, nüfus cüzdanı fotokopisi varsa meslek odasına kayıt belgesi. e) Bakanlıkça onaylanmış numune kabul ve analiz defteri. f) Laboratuvarın çalışma izin başvurusunda belirtilen analizlerin listesi, orijinal analiz metotları ile bu yöntemlerin standart çalışma planı formatındaki metot talimatları. g) Orijinal metot olarak ulusal/uluslararası kabul görmüş bir metot kullanılmaması durumunda metot validasyon raporu. h) Laboratuvarda kullanılacak cihaz, alet ve ekipmanların marka, model, üretim yılına ait bilgiler ve kullanım talimatları ve kalibrasyon belgeleri. ı) Laboratuvar atıklarının bertaraf edilmesi için ilgili kuruluş ile yapılan sözleşme. Bakanlık, gönderilen başvuru dosyasını teknik yönden inceler ve/veya referans laboratuvara incelettirir. İnceleme sonucu uygun bulunan kontrol laboratuvarı, en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği konusunda uzman en az üç kişiden oluşan bir komisyon tarafından yerinde incelenir ve bu Yönetmeliğe uygun olan kontrol laboratuvarına çalışma izin belgesi verilir. Yerinde yapılan incelemede laboratuvarın bu Yönetmeliğe uygun bulunmaması halinde denetim raporunda belirtilen eksikliklerin giderilmesi için laboratuvara süre verilir. Eksikliklerin giderildiğine dair müracaatla yeniden yerinde inceleme yapılır ve bu Yönetmeliğe uygun olması halinde laboratuvara çalışma izin belgesi verilir. Çalışma izni verilen kontrol laboratuvarının faaliyet konularını genişletmek istemeleri halinde faaliyet genişletmeye esas belgeler istenerek yukarıda belirtilen işlemler yapılır ve çalışma izni yenilenir. Yetkilendirme Madde 15 — Bakanlıktan kuruluş ve çalışma izin belgesi alan kontrol laboratuvarı, ürün/ürün gurubu ve analiz bazında belirtilen faaliyet konularında Bakanlık il müdürlüklerince gönderilecek yurt içi denetim, ithalat ve ihracat numuneleri ile özel istek amaçlı numunelerde analiz yapmaya yetkilidir. Laboratuvarlar izin verilen faaliyet konusu dışında analiz raporu düzenleyemezler. Faaliyet konusu dışında analiz raporu düzenleyen laboratuvarlar için bu Yönetmeliğin 18 inci maddesine göre işlem yapılır. Bildirimler Madde 16 — Kuruluş ve çalışma izni alan kontrol laboratuvarının kapatılması, sahibi, sorumlu yönetici, adresi ve adının değişmesi, çalışma izninde belirtilen faaliyet konularının değiştirilmesi, genişletilmesi, laboratuvarda yeni bir bölüm açılması veya laboratuvarın yapısını temelden değiştirecek tadilatların yapılması halinde, on beş gün içinde değişiklikleri içeren bilgi, belgeler, kuruluş ve çalışma izin belgelerinin asılları ile birlikte Bakanlığa başvurulur. Laboratuvarın başvuru dosyası incelendikten sonra gerekli görüldüğünde Bakanlıkça, en az bir kişi Genel Müdürlükten olmak üzere Genel Müdürlüğün belirleyeceği konusunda uzman en az üç kişiden oluşan bir komisyon tarafından laboratuvar yerinde incelenir ve bu Yönetmeliğe uygun olması halinde laboratuvarın kuruluş ve/veya çalışma izin belgesi yenilenir. BEŞİNCİ BÖLÜM Kontrol Laboratuvarlarının Denetlenmesi, Kuruluş ve Çalışma İzni İptali, Cezai Hükümler, Belge ve Kayıtların Tutulması Denetim Madde 17 — Kontrol laboratuvarı, Genel Müdürlüğün belirleyeceği komisyon tarafından bu Yönetmelik esasları dahilinde şikayet dışında yılda en az bir defa denetlenir. Denetimlerde gizlilik esastır. Sorumlu yönetici, denetlemeye gelen görevlilere her türlü bilgi ve belgeyi göstermek zorundadır. Denetim tutanağı iki nüsha halinde düzenlenerek bir nüshası sorumlu yöneticiye verilir. Denetim tutanağı daha sonraki denetimlerde sorumlu yönetici tarafından istenildiğinde denetim görevlilerine gösterilir. Denetimden sonra, kontrol laboratuvarında eksiklik veya uygunsuzluk bulunduğu takdirde, ilgili laboratuvar denetim tutanağında belirtilen süre içerisinde eksikliklerini tamamlayarak Bakanlığa bildirir. Belirlenen eksikliklerin; kontrol laboratuvarının eksikliği görülen konuda analiz yapmasına engel teşkil etmesi durumunda, Genel Müdürlük kontrol laboratuvarının o bölümü ya da analizi konusundaki analiz yapma yetkisini eksiklik veya uygunsuzluğun giderilmesine kadar durdurabilir. Laboratuvar bu süre sonunda yeniden Genel Müdürlüğün belirleyeceği komisyon tarafından gerektiğinde yeniden denetlenir. Genel Müdürlükçe analiz sonuçlarının kabul edilebilir hata sınırları içerisinde olup olmadığının kontrolü amacıyla, gerektiğinde belirlenen bir referans laboratuvar tarafından hazırlanarak gönderilen test numunesi kontrol laboratuvarına analiz ettirilir ve analiz sonuçları referans laboratuvar tarafından değerlendirilir. Referans laboratuvar tarafından değerlendirme ve analiz sonuçları ile ilgili olarak Genel Müdürlüğe bilgi verilir. Analiz sonuçlarının hata sınırları dışında olması halinde, Genel Müdürlük kontrol laboratuvarının hata sınırları dışında olduğu belirlenen analizlerle ilgili analiz yapma yetkisini, ulusal veya uluslar arası yeterlilik testleri düzenleyen kuruluşlarca analiz sonuçlarının yeterliliği onaylanana kadar durdurabilir. Ayrıca, gerektiğinde Genel Müdürlük, laboratuvarda analiz edilen numunelerden birine ait şahit numuneyi analiz sonuçlarının kabul edilebilir hata sınırları içinde olup olmadığının kontrolü amacıyla referans bir laboratuvara analiz ettirir. Kontrol laboratuvarları her yıl Genel Müdürlüğün belirleyeceği konularda ulusal veya uluslar arası yeterlik testlerine katılarak test sonuçlarını Genel Müdürlüğe bildirirler. Yapılan denetimler sırasında belirlenen eksikliklerin bildirilen süre içerisinde tamamlanmaması durumunda bu Yönetmeliğin 18 inci maddesine göre işlem yapılır. Kuruluş ve çalışma izni iptali ile cezai hükümler Madde 18 — Kontrol laboratuvarının, Bakanlıktan kuruluş ve/veya çalışma izni almadan faaliyette bulunduğunun tespitinde; 5179 sayılı Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Kanun Hükmünde Kararnamenin Değiştirilerek Kabulü Hakkında Kanunun 29 uncu maddesinin (b) fıkrasında belirtilen hükme göre laboratuvar faaliyetten men edilir ve on bin YTL idari para cezası verilir. Kontrol laboratuvarının; a) Çalışma izin belgesinde belirtilen ve Bakanlıkça onaylanan faaliyet konusu dışında çalışması, b) Bu Yönetmeliğin 16 ncı maddesinde yer alan konularla ilgili olarak belirlenen süre içerisinde bildirimlerde bulunmaması, c) Bu Yönetmeliğin 17 nci maddesine göre yapılan denetim sırasında denetim elemanlarınca tespit edilen eksikliklerin belirlenen süre içerisinde tamamlanmaması, Hallerinde laboratuvar faaliyetten men edilir ve on bin YTL idari para cezası verilir. Faaliyetten men edilen laboratuvarın tekrar faaliyete geçebilmesi için yeniden kuruluş ve/veya çalışma izni alması zorunludur. Bu madde hükümleri Kamu kontrol laboratuvarları için uygulanmaz. Belge ve kayıtlar Madde 19 — Laboratuvarın işleyişiyle ilgili olarak aşağıdaki doküman ve kayıtlar tutulur: a) Genel numune kayıt defteri (Ek-1). b) Bölümlere ait numune kayıt defteri (Ek-2). c) Bölümlere ait analiz ile ilgili çalışma detaylarını gösteren analiz defteri (Ek-3). d) Muayene ve analiz defteri (Ek-4). d) Yurtiçi denetim muayene ve analiz raporu (Ek-5). e) Özel istek muayene ve analiz raporu (Ek-6). f) İhracat muayene ve analiz raporu (Ek-7). g) İthalat muayene ve analiz raporu (Ek-8). h) Yem muayene ve analiz raporu (Ek-9). ı) Hayvan hastalıkları teşhis raporu (Ek-10). i) Ulusal ve/veya Uluslar arası yeterlilik test sonuçlarına ait kayıtlar. j) Alet, ekipman bakım, onarım ve kalibrasyon çizelgesi (Ek-11). k) Alet ve ekipman listesi (Ek-12). l) Alet, ekipmanların kullanım talimatları. m) Enstrümental analizlerde elektronik yedekleri veya kromotogram çıktıları. n) Analiz metotlarına ve cihazlara ait validasyon raporları. o) Personel bilgi kayıtları. ö) Eğitim kayıtları. p) Kimyasal madde kayıtları. r) İlk yardım talimatı. s) Aylık faaliyet raporu (Ek-13). ş) Standart çalışma planı (Ek-14). t) Kimyasal madde kayıt defteri (Ek-15). u) Kimyasal madde kullanım kayıt defteri (Ek-16). Yukarıda belirtilen doküman ve kayıtlar en az beş yıl muhafaza edilir. ALTINCI BÖLÜM Analiz Metotları, Analiz Raporları ve Ücretleri Analiz metotları Madde 20 — Kontrol laboratuvarlarında öncelikle Türk Gıda Kodeksi Yönetmeliğinde belirtilen analiz metotları kullanılır. Analiz metotları Türk Gıda Kodeksi Yönetmeliğinde mevcut değilse, Bakanlık tarafından izin verilecek, ulusal/uluslararası kabul edilmiş bir analiz metodu kullanılır. Ulusal/uluslararası kabul edilmiş bir analiz metodu kullanıldığında, laboratuvar tarafından ilgili metodun laboratuvarda uygulanabilirliğinin verifikasyon çalışması ile teyit edilmesi yeterlidir. Ulusal/uluslararası kabul edilmiş bir analiz metodu kullanılmadığında, laboratuvar tarafından ilgili metodun validasyon çalışmaları yapılarak dokümante edilir. Yapılan validasyon metotta tanımlanmış olan ürün/ürünler için geçerlidir. Metotta belirtilenin dışında farklı özelliklere sahip bir matriksteki ürün çalışıldığında metot yeniden valide edilir. Elde edilen validasyon sonuçlarına göre metodun optimum şartlarda ve en yüksek performansta kullanılması için gerekli olan uyarıların, dikkat edilecek noktaların, kritik nokta ve kritik işlemlerin tanımlandığı rutin uygulamalara yönelik metot talimatları standart operasyon prosedürü olarak hazırlanır. Yem ile ilgili analizlerde 1734 sayılı Yem Kanununda belirtilen yöntemler uygulanır. Tohumlukların tescil ve sertifikasyonu ile ilgili muayene ve analizler ise 308 sayılı Tohumlukların Tescil, Kontrol ve Sertifikasyonu Kanunu ile ilgili 1/2/1964 tarihli ve 11622 sayılı Resmî Gazete’de yayımlanan Tohumlukların Tescil, Kontrol ve Sertifikasyonu Hakkındaki Kanunun Uygulanmasına İlişkin Yönetmeliğe göre yapılır. Özel istek numuneleri müşteri talep ettiği metoda göre analiz yapılabilir ve analiz raporunda "Yukarıda belirtilen analizler numune sahibinin talep ettiği analiz metoduna göre yapılmıştır" ifadesi yer alır. Bu rapor adli-idari işlemlerde ve reklam amacıyla kullanılamaz. Analiz raporları Madde 21 — Kontrol laboratuvarlarında düzenlenen analiz raporları; denetim (Ek-5), ihracat (Ek-7), ithalat (Ek-8)’e göre en az üç nüsha halinde ve özel istek numuneleri için ise (Ek-6)’ya göre en az iki nüsha düzenlenir. Laboratuvarların düzenleyecekleri raporlar reklam amacıyla kullanılamaz. Laboratuvar tarafından analiz raporlarının gizliliği esastır. Analiz raporlarının hazırlanmasında aşağıdaki hususlara dikkat edilir: a) Enstrümantal cihazlarla yapılan analizlerde kullanılan cihaz, metot adı ve miktar olarak verilebilen en düşük limit ölçüm limiti olarak analiz raporuna yazılır. b) İthalat, ihracat ve denetim amaçlı numunelerde analiz sonuçları ile ilgili herhangi bir değerlendirme yapılmaz. c) Numunede yapılan bütün analizler aynı raporda belirtilir. d) Analiz raporunda raporun kısmen kullanılamayacağına dair uyarıcı ifade ve "Analiz Sonuçları Yukarıda Belirtilen Numune İçin Geçerlidir" ifadesi yer almalıdır. e) Bakanlığın yetki verdiği hususlarda ilgili mevzuata göre analiz raporlarında değerlendirme yapılır. Analiz ücretleri Madde 22 — Kamu kontrol laboratuvarlarında uygulanacak numune analiz ücretleri, her yıl Genel Müdürlüğün belirleyeceği esaslara göre oluşturulacak bir komisyon tarafından, analiz maliyetleri dikkate alınarak analiz bazında belirlenir. YEDİNCİ BÖLÜM Çeşitli ve Son Hükümler Yürürlükten kaldırılan yönetmelik Madde 23 — 4/9/2000 tarihli ve 24160 Sayılı Resmî Gazete’ de yayımlanan Özel Gıda Kontrol Laboratuvarlarının Kuruluş ve Faaliyetleri Hakkında Yönetmelik yürürlükten kaldırılmıştır. Geçici Madde 1 – Halen faaliyet gösteren kontrol laboratuvarları bu Yönetmeliğin yayımından itibaren bir yıl içinde bu Yönetmelik hükümlerine uymak zorundadır. Yürürlük Madde 24 — Bu Yönetmelik yayımı tarihinde yürürlüğe girer. Yürütme Madde 25 — Bu Yönetmelik hükümlerini Tarım ve Köyişleri Bakanı yürütür.

http://www.biyologlar.com/kontrol-laboratuvarlarinin-kurulus-ve-gorevleri-hakkinda-yonetmelik

Mikrobiyal Biyoteknoloji Bölüm 4

MİKROBİYAL FİTAZLAR Tahıl ve baklagil tohumlarının olgunlaşması sırasında fitik asitin (myo-inositol-1,2,3,4,5,6-hexakis dihidrojen fosfat) önemli bir miktarı birikmekte olup (Honke ve ark. 1998) bu tohumların çoğunda ve yan ürünlerinde %1-2 fitik asit bulunmaktadır (Reddy ve ark. 1982). Fitik asit; tahıl, baklagil ve yağlı tohumlarda fosforun ana depo formudur. Kimyasal olarak tam tarifi myo-inositol 1,2,3,4,5,6-hekza-dihidrojen fosfat’tır (IUPAC-IUB 1977). Moleküler formülü ise C6H18O24P6’dır. Fitik asitin tuzları fitat olarak tanımlanır. Fitat, fitik asitin potasyum-magnezyum ve kalsiyum tuzlarının karışımıdır (Vohra ve Satyanarayana 2003) Fitaz (myo-inositol hexakisphosphate phosphohydrolase), fitik asiti (myo-inositol hekzafosfat), inorganik monofosfat, myo-inositol fosfat ve serbest myo-inositol’e hidrolize eden enzimdir (Kerovuo 2000). Bitkilerde, hayvansal dokularda ve çeşitli mikroorganizmalarda fitaz aktivitesinin olduğu bildirilmiştir (Miksch ve ark. 2002). Fitatı parçalayan enzimler IUPAC-IUB (International Union of Pure and Applied Chemistry and the International Union of Biochemistry) tarafından iki sınıfa ayrılmıştır: Fitatın D3 pozisyonundaki ortofosfatı uzaklaştıran 3-fitaz (myo-inositol-hekzakisfosfat 3-fosfohidrolaz, EC 3.1.3.8) ve myo-inositol halkasındaki L-6 (D-4) pozisyonundaki defosforilasyonu sağlayan 6-fitaz (myo-inositol-hekzakisfosfat 6-fosfohidrolaz, EC 3.1.3.26). Mikrobiyal fitazlar genellikle 3-fitaz sınıfında yer alırken bitkisel kökenli fitazlar 6-fitaz sınıfında yer almaktadır (Konietzny ve Greiner 2002). Fitaz parçalayan enzimlerle yem hammaddelerinde ve insanlar için hazırlanan gıdalardaki fitat içeriğini azaltmak amacıyla özellikle son yıllarda birçok çalışma yürütülmektedir. Fitatı parçalayan enzimler bitkisel materyalin besleyici değerini artırmak amacı ile tavsiye edilmektedir. Son yıllarda fitaz enzimlerinin özellikle entansif hayvan yetiştiriciliği yapılan alanlarda hayvan gübresiyle ortaya çıkan fosfor kirliliğini azaltmak amacıyla kullanımını da gündeme getirmiştir. Yapılan bir çok çalışmada fitatı parçalayan enzimlerin fitatdan fosfor kullanımını artırmakta olduğu ve çevrede ortofosfat birikimini önemli derecede azalttığı bildirilmiştir (Cromwell ve ark. 1995, Simons ve ark. 1990). Ayrıca bunların yanı sıra myo-inositol fosfatların hazırlanması, kağıt endüstrisi ve toprak iyileştirme alanlarında da fitaz enzimi kullanılmaktadır. Ayrıca son yıllarda biyoteknoloji alanındaki gelişmeler sonucunda heterolog mikrobiyal ekspresyon sistemleriyle büyük miktarlarda ve düşük maliyetli fitaz üretimi de mümkün olabilmektedir. Fitaz enzimi bitkilerde, mikroorganizmalarda ve bazı hayvansal dokularda bulunmasına rağmen yapılan son araştırmalar mikrobiyal fitazların biyoteknolojik uygulamalar için en ümit verici olduğunu göstermiştir (Pandey ve ark. 2001, Vohra ve Satyanarayana 2003). Bakteri, maya ve funguslardan fitaz enzimleri karakterize edilmiş olup, günümüzde ticari olarak üretimde toprak fungusu olan Aspergillus üzerinde durulmaktadır. Ancak substrat spesifitesi, proteolisise karşı direnç göstermesi ve katalitik aktivitesi gibi özelliklerinden dolayı bakteriyel fitazlar, fungal enzimlere alternatif oluşturabilmektedir (Konietzyn ve Greiner 2004). Bakteriyel fitazların ortalama olarak moleküler ağırlığı (40-55 kDa) glukolizasyon farkı olduğu için fungal fitazlardan (80-120 kDa) daha küçüktür (Choi ve ark. 2001, Golovan ve ark. 2000, Han ve Lei 1999, Kerovuo ve ark. 1998, Rodriguez ve ark. 2000a, Van Hartingveldt ve ark.1993). İzole edilen fitazların çoğunun pH optimumu 4.5-6.0 arasında yer almaktadır. Ancak Bacillus sp.’ye ait nötral veya alkali fitazlar da bulunmaktadır (Choi ve ark. 2001, Kim ve ark. 1998). A. niger fitazının (phyA) pH optimumu ise asidik sınırlarda olup 2.5 ve 5.5’dir. Bu iki sınır arasında aktivitede azalma meydana gelmektedir. Mikrobiyal fitazların çoğunun sıcaklık optimumu ise 45-60°C arasında yer almaktadır. Ancak Pasamontes ve ark. (1997a,b) A. fumigatus’a ait sıcaklığa dirençli fitazın 100°C’ye kadar olan sıcaklıklarda 20 dakikalık inkübasyonlarda sadece %10’luk kayıpla aktivitesini koruduğunu bildirmişlerdir. E. coli ve Citrobacter braakii fitazı, ticari olarak kullanılan Aspergillus niger fitazına kıyasla pepsin ve pankreatine daha dirençlidir (Kim ve ark. 2003; Rodriquez ve ark. 1999). Ayrıca C. braakii fitazı tripsine de dirençlidir (Rodriquez ve ark. 1999). E. coli fitazı, Bacillus fitazı ile karşılaştırıldığında, pankreatine benzer hassasiyetlik gösterirken pepsine karşı daha hassastır (Simon ve Igbasan 2002). E. coli ve C. braakii fitazları yem katkısı olarak uygun özelliklere sahiptirler. E. coli fitazı asidik koşullar altında yüksek bir pH stabilitesine sahip olup pH 2.0’de birkaç saat sonunda bile önemli bir aktivite kaybı göstermemektedir (Greiner ve ark. 1993). Fitaz Enziminin Uygulama Alanları 1-) Yem katkısı: Fitat, tohumların çimlenmesi sırasında enerji ve fosfor kaynağı olarak görev alsa da bağlı fosfor tek mideli hayvanlarca çok az miktarda kullanılabilmektedir. Bu nedenle inorganik fosfor yenilenemez ve pahalı bir mineral olup kanatlı, domuz ve balık rasyonlarında fosfor kaynağı olarak ilave edilmektedir (Lei ve Porres 2003). Fitat ve fitata bağlı fosfor tüm kanatlı rasyonlarında bulunmakta ve fitat fosforunun da kısmen kullanıldığı bilinmekteydi (Lowe ve ark. 1939). İlk olarak Warden ve Schaible (1962), broylerde, ekzogen olarak verilen fitazın, fitat fosforunun kullanımını ve kemikteki mineralizasyonu artırdığını bildirmişlerdir. Ancak bundan yaklaşık 30 yıl sonra, yem katkısı olarak, fitata bağlı fosforu serbest bırakacak ve fosfor atığını azaltacak Aspergillus niger fitazının ticari olarak kullanımı başlamıştır. Günümüzde tek mideli hayvanlarda yem katkısı olarak fitaz kullanımı oldukça yaygınlaşmış olup hatta nişasta tabiatında olmayan polisakkaritleri parçalayan enzimlerden daha fazla kullanılmaktadır (Bedford 2003). Geçtiğimiz 10 yıl içerisinde kanatlı ve domuz rasyonlarında mikrobiyal fitaz kullanımı ile bu konudaki bilimsel çalışmalar ve deneyimler artmakta ve yem katkısı yeni fitaz enzimleri araştırılmakta ve kullanılmaktadır. Bazı kanatlı yem maddelerindeki toplam fosfor, fitat fosforu ve toplam fosfordaki fitat fosfor oranları Çizelge 2’de verilmiştir. Ruminantlar ise, rumendeki mikrobiyal flora tarafından üretilen fitaz enzimi ile fitatı parçalayabilmektedirler (Yanke ve ark. 1998). Fitatın parçalanması ile açığa çıkan fosfor hem mikrobiyal flora hem de konakçı ruminant tarafından kullanılmaktadır. Birçok farklı kaynaktan elde edilen mikrobiyal fitaz ürünleri günümüzde ticari olarak kullanılmaktadır. Bunlar arasında yem katkısı olarak en yaygın olarak kullanılanları A. niger (3-fitaz), Peniophora lycii (6-fitaz) ve Escherichia coli (6-fitaz) fitazlarıdır. Kanatlı rasyonlarına fitaz, granül veya sıvı formda veya yüksek peletleme sıcaklığındaki (>80ºC) enzim denatürasyonu probleminden kaçınmak için peletleme sonrasında uygulanabilmektedir (Selle ve Ravindran 2006). Bitkisel fosfor kaynaklarındaki kullanılmayan fitat fosforu zaman içerisinde birikmekte ve entansif olarak hayvan yetiştirciliği yapılan alanlarda çevre kirliliğine neden olmaktadır. Topraktaki aşırı fosfor deniz ve göllere akmakta ve burada yaşayan canlılarda birikerek insanlarda da nerotoksik etki oluşturmaktadır (Lei ve Porres 2003). Su ürünleri üretiminde, soya küspesi ve diğer bitki kökenli küspeler kullanılarak birçok çalışma yürütülmüştür (Mwachireya ve ark. 1999). Pahalı protein kaynakları yerine daha düşük fiyatlı bitkisel protein kaynakları kullanıldığında masraflarda önemli derecelerde azalmaların olabildiği bildirilmektedir. Balık üretim masraflarının %70’ini yem giderleri oluşturmaktadır (Rumsey 1993). Kanatlı ve domuzlarda olduğu gibi balıklarda yem maddeleri içerisindeki fitin fosforundan yararlanacak sindirim enzimine sahip olmadığından suda fosfor birikimi meydana gelmektedir. Bu nedenle fitaz su ürünleri üretmede, hem düşük fiyatlı bitkisel kökenli maddelerin kullanımını artırmak hem de suda fosforu kabul edilebilir seviyede tutabilmek amaçları ile kullanılmaktadır. Balık beslemesinde, yüksek seviyelerde bitkisel kökenli maddeler içeren yemlerde fitaz enziminin kullanılması ile ilgili birçok çalışma yürütülmektedir (Robinson ve ark. 1996, Mwachireya ve ark. 1999). 2-) Gıda sanayi: Fitik asit tuzları olarak tanımlanan fitatlar, bitki tohumları ve danelerde fosfat ve inositolün başlıca depo formudur. Fitat bitki tohumlarının olgunlaşması sırasında oluşur ve olgun tohumlarda toplam fosfatın %60-90’nını oluşturur (Loewus 2002). Fitat bu nedenle bitkisel kökenli gıdaların başlıca bileşenidir. Bazı bitkisel kökenli gıdalardaki kuru maddedeki fitat miktarı Çizelge 3’de verilmiştir. Diyetlerdeki bitki kökenli gıdaların miktarına ve gıdaların işlenme derecelerine bağlı olarak günlük fitat tüketimi en fazla 4500 mg’a kadar yükselmelidir. Ortalama olarak vejetaryen diyetlerinde ve gelişmekte olan ülkelerde kırsal kesimlerde günlük fitat tüketimi yaklaşık 2000-2600 mg olup bu değer karışık diyetlerde 150-1400 mg’dır (Reddy 2002). Diyetlerde fitatın varlığı ile ilgilenilmesinin nedeni mineral alımındaki negatif etkisidir. Bu mineraller çinko, demir, kalsiyum, magnezyum, manganez ve bakırdır (Konietzny ve Greiner 2003, Lopez ve ark. 2002). Fizyolojik pH değerlerinde çözünmez mineral-fitat komplekslerinin oluşumu düşük mineral emiliminin temel nedeni olarak bildirilmektedir. Çünkü bu kompleksler aslında insan sindirim sisteminde absorbe olmamaktadır. Ayrıca sindirim sisteminin üst kısmında sınırlı miktarda mikrobiyal popülasyonun olması ve içsel fitatı hidrolize edici enzimlerin olmaması nedenleri ile ince bağırsakta, fitat çok sınırlı miktarda hidroliz olabilmektedir (Iqbal ve ark. 1994). Fitat, asidik ve alkali pH’da proteinlerle kompleks oluşturmaktadır (Cheryan 1980). Bu interaksiyon proteinin yapısında değişiklikler meydana getirmekte ve bunun sonucunda enzimatik aktivitede, proteinin çözünürlüğünde ve proteolitik parçalanmada azalmalar meydana gelebilmektedir. Fitaz enzimi yem katkısı olarak kullanılmasının yanı sıra gıda sanayinde de büyük bir potansiyele sahiptir. Ancak şimdiye kadar marketlerde fitaz enzimi kullanılmış gıdalar bulunmamaktaydı. Bu alandaki çalışmalar, gıda işlemede teknik geliştirmenin yanı sıra bitki kökenli gıdaların besleyici değerlerinin artırılması üzerine yoğunlaşmıştır. Fitat içeriği yüksek diyetler mineral maddelerin absorbsiyonunu oldukça azaltmakta (Konietzny ve Greiner 2003, Lopez ve ark. 2002) ve gıdaların işlenmeleri sırasında fitatın defosforilasyonu, sadece kısmen fosforile olmuş myo-inositol fosfat esterlerinin oluşmasına neden olmaktadır (Sandberg ve ark. 1999, Sandström ve Sandberg 1992, Han ve ark. 1994). Myo-inositol fosfat esterleri insanlar için önemli fizyolojik özelliklere sahiptir (Shears 1998). Bu nedenle fitaz enziminin gıda üretimi sırasında kullanılması ile fonksiyonel gıdaların üretilmesi mümkün olacak (Greiner ve ark. 2002) ve böylelikle fitaz enzimi ile biyokimyasal olarak aktif myo-inositol fosfat esterleri oluşacak ve insanlarda mineral maddelerin emilmesi de sağlanmış olacaktır. Gıda sanayinde gıdaların işlenmesi sırasında fitaz ilavesi ekmek yapımı (Haros ve ark. 2001), bitkisel protein izolatlarının üretimi (Fredrikson ve ark. 2001, Wang ve ark. 1999) ve tahıl kepeklerini parçalamada kullanılmaktadır (Kvist ve ark. 2005). Gıda işleme ve hazırlama sırasında, fitat genel olarak, bitkilerde ve mikroorganizmalarda doğal olarak bulunan fitazlarla tamamen hidrolize olmamaktadır. Özellikle demir olmak üzere minerallerin yararlanımını artırmak için fitat çok düşük düzeylere indirilmelidir (Hurrell 2003). Myo-İnositol fosfatların hazırlanması: Günümüzde, transmembran sinyalizasyonunda ve intraselülar kaynaklardan kalsiyumun hareketini sağlamada görev alan inositol fosfat ve fosfolipidlere olan ilginin artması, çeşitli inositol fosfatların hazırlanmasını gündeme getirmiştir (Billington 1993). S.cerevisiae fitazı kullanılarak fitik asitin enzimatik hidrolizi ile D-myo-inositol 1,2,6-trifosfat, D-myo-inositol 1,2,5-trifosfat, L-myo-inositol 1,3,4-trifosfat ve myo-inositol 1,2,3-trifosfatların hazırlandığı bildirilmiştir (Siren 1986a). Ayrıca E. coli fitazı kullanılarak inositol 1,2,3,4,5-pentakisfosfat, inositol 2,4,5-trifosfat ve inositol 2,5-bifosfat da hazırlanmaktadır (Greiner ve Konietzny 1996). İnositol fosfat türevleri enzim stabilizatörü (Siren 1986b), enzim inhibitörü, biyokimyasal ve metabolik araştırmalarda enzim substratı ve ilaç olarak da kullanılmaktadır (Laumen ve Ghisalba 1994). İnositol fosfat karışımları eklem iltihabı ve astım gibi solunum hastalıklarına karşı kullanıldığı ve spesifik inositol trifosfatların ağrı kesici olarak önerildiği de bildirilmiştir (Siren 1998). İnositol veya inositol fosfatların endüstriyel üretiminde, fitik asitten myo-inositol fosfat türevleri, serbest myo-inositoller ve inorganik fosfat eldesinde fitaz enzimi kullanımı önerilmektedir (Brocades 1991). Bu enzimatik hidrolizin avantajı fitaz enziminin spesifitesi ve reaksiyon koşullarına uygun olmasıdır. 3-) Kağıt endüstrisi: Kağıt endüstrisinde bitki fitik asitinin uzaklaştırılması oldukça önemlidir. Günümüzde termostabil fitazlar, kağıt hamuru ve kağıt yapma aşamalarında fitik asiti parçalamak amacıyla kullanılan biyolojik maddelerdir. Fitik asitin enzimatik olarak parçalanması sonucunda kanserojen veya toksik maddeler içeren ürünler oluşmaz. Bu nedenle kağıt endüstrisinde fitaz enzimlerinin kullanımı, daha temiz bir teknolojinin kullanılmış olması ve dolayısıyla çevreyi koruma açısından önem taşımaktadır (Liu ve ark. 1998). 4-) Toprak iyileştirme: Bazı alanlarda toprakta, fitik asit ve türevleri toplam organik fosforun %50’sini oluşturabilmektedir (Dalal 1978). Findenegg ve Nelemans (1993), mısır bitkisi için topraktaki fitik asitten fosforun kullanılabilmesinde fitazın etkisini araştırmışlardır. Toprağa fitaz ilave edildiğinde fitinin parçalanma oranının artmasına bağlı olarak büyümeyi uyardığını bildirmişlerdir. Bu çalışma bitkilerin köklerinde fitaz geninin ekspresyonu ile transgenik bitkilerle topraktaki fosforun kullanılabileceği düşüncesini ortaya çıkarmıştır (Day 1996). 5-) Biyoteknoloji : Geçtiğimiz 20 yıl içerisinde fitaz enzimi, besleme, çevre koruma ve biyoteknoloji alanlarındaki bilim adamlarının dikkatini çekmektedir. Fitazlar özellikle biyoteknolojik uygulamalarda (özellikle yem ve gıdalardaki fitat içeriğini azaltmada) büyük bir önem taşımaktadır (Lei ve Stahl 2001, Vohra ve Satyanarayana 2003). ANTİBİYOTİKLER Ticari olarak üretilen mikrobiyal ürünlerin içerisinde en önemlisi antibiyotiklerdir. Antibiyotikler mikroorganizmalar tarafından üretilen, diğer mikroorganizmaları öldüren veya büyümesini inhibe eden kimyasal maddelerdir. Antibiyotikler tipik sekonder metabolitlerdir. Ticari olarak faydalı antibiyotiklerin birçoğu filamentöz funguslar ile Bacteria’nın aktinomiset grubu tarafından üretilmektedir. Endüstriyel fermentasyonla büyük ölçekte üretilen en önemli antibiyotikler Çizelge1’de gösterilmiştir. Çizelge 1. Ticari olarak üretilen bazı antibiyotikler. Antibiyotik Üreten mikroorganizma* Basitrasin Sefalosporin Kloramfenikol Siklohekzimid Sikloserin Eritromisin Griseofulvin Kanamisin Linkomisin Neomisin Nistatin Penisilin Polimikzin B Streptomisin Tetrasiklin Bacillus licheniformis (EOB) Cephalosporium sp.(F) Kimyasal sentez (daha önce Streptomyces venezuela’ (A)dan mikrobiyal yolla üretilmekteydi) Streptomyces griseus (A) Streptomyces orchidaeus (A) Streptomyces erythreus (A) Penicillium griseofulvin (F) Streptomyces kanamyceticus (A) Streptomyces lincolnensis (A) Streptomyces fradiae (A) Streptomyces noursei (A) Penicillium chrysogenum (F) Bacillus polymyxa (EOB) Streptomyces griseus (A) Streptomyces rimosus (A) *EOB, endospor oluşturan bakteri; F, fungus; A, aktinomiset Günümüzde 8000’in üzerinde antibiyotik maddesi bilinmektedir ve her yıl yüzlercesi keşfedilmektedir. Daha fazla antibiyotik keşfedilmesi beklenmektedir mi, buna gerek var mıdır diye bazı sorular akla geldiğinde bunun cevabı evettir. Bu nedenle Streptomyces, Bacillus, Penicillium gibi birkaç genusa ait mikroorganizmaların çoğu antibiyotik üretip üretmedikleri açısından sürekli olarak incelenmektedir. Antibiyotikler konusunda araştırma yapan birçok araştırıcı, diğer mikroorganizma gruplarının da incelenmesi sonucunda birçok yeni antibiyotiğin keşfedileceğine inandıklarını belirtmektedir. Son yıllarda büyük ilerleme gösteren genetik mühendisliği tekniklerinin yeni antibiyotiklerin yapılmasına izin vereceği ve yeni ilaçlar için kompüter modellemesinin klasik eleme (screening) metotlarının er geç yerini alacağı düşünülmektedir. Fakat günümüzde bunlar henüz çok yaygın bir kullanıma sahip olmadığı için yeni antibiyotikler klasik yol olan “screening” yoluyla keşfedilmektedir. Screening yaklaşımında, çok sayıda muhtemelen antibiyotik üreticisi olan mikroorganizma izolatı doğadan saf kültürler halinde izole edilmektedir (Şekil 1-a) daha sonra bu izolatlar Staphylococcus aureus gibi bir test bakterisinin büyümesini inhibe eden diffüzlenebilen maddeler üretip üretmedikleri açısından test edilmektedir. Şekil 1-a’daki fotoğrafta görülen kolonilerin çoğu Streptomyces türlerine aittir ve antibiyotik üreten bazı kolonilerin etrafında indikatör organizmanın (Staphylococcus aureus) büyüyemediği inhibisyon zonları görülmektedir. Bu amaçla kullanılan test bakterileri çok çeşitli ve genellikle bakteriyal patojenlere yakın veya onları temsil eden türler olup çeşitli literatürlerde tip kültür numaralarıyla belirtilmektedir. Antibiyotik üretimi için yeni mikrobiyal izolatların test edilmesinde, “karşıt-çizgi metodu” (Şekil 1-b) yaygın olarak kullanılan bir yöntemdir. Bu yöntemde Streptomyces gibi potansiyel üretici olduğu bilinen bir tür petrinin üçte birlik kısmını kaplayacak şekilde bir köşesine ekilir ve petri uygun sıcaklıkta inkübe edilir. İyi bir büyüme elde edildikten sonra sıvı besi yerinde geliştirilmiş olan test bakterileri Streptomyces hücre kütlesine dikey olacak şekilde çizilerek inkübasyona bırakılır. Şekil 1-b’deki fotoğrafta da görüldüğü gibi bazı test bakterilerinin Streptomyces hücre kütlesine yakın kısımlarda büyüyemediği görülmektedir. Bu Streptomyces’in test bakterilerinin büyümesini inhibe eden bir antibiyotik ürettiğini göstermektedir. Fotoğrafta (Şekil 1-b) görülen test organizmaları (soldan sağa): Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Mycobacterium smegmatis’tir. Bu şekilde ekim yapılan izolatlardan antibiyotik üretimi belirlenenler daha sonra daha ileri denemelere alınarak antibiyotiğin yeni olup olmadığı bakımından test edilirler. Çoğu screening (eleme) programlarında elde edilen izolatların çoğu bilinen antibiyotikleri üretmektedir. Bu nedenle endüstriyel mikrobiyologların bilinen antibiyotik üreticilerini çok hızlı belirlemesi gerekmektedir böylece çalışmalarında hem zamanın hem de kaynakların boşa gitmesi önlenecektir. Bir organizmanın yeni bir antibiyotik ürettiği keşfedildiğinde bu antibiyotik yapısal analizler için yeterli miktarlarda üretilmelidir ve daha sonra enfekte olmuş hayvanlarda terapötik aktivite ve toksisite için test edilmelidir. Burada yeni antibiyotiğin selektif toksisiteye sahip olup olmadığı ortaya çıkmaktadır. Maalesef yeni bulunan antibiyotiklerin bir çoğu hayvan testlerini geçemezken sadece birkaç tanesi geçebilmektedir. Bu nedenle her yıl yüzlerce yeni antibiyotik bulunmasına karşılık bunların sadece birkaç tanesinin medikal kullanım için yararlı olduğu kanıtlanabilmekte ve ticari olarak üretilmektedir. VİTAMİNLER VE İLİŞKİLİ BİYOFAKTÖRLER Dengesiz beslenme ve besin işleme alışkanlıkları, gıda kıtlığı, açlıktan dolayı hayvan ve bitki orijinli vitaminlerden başka ekstra vitaminlere ihtiyaç duyulmaktadır. Vitaminlerin kullanım alanları gıda/yem sektörü, sağlık ve tıbbi alanlardır. Ekstra vitaminler günümüzde kimyasal veya biyoteknolojik olarak fermentasyon ya da biyodönüşüm prosesleriyle hazırlanmaktadır. Vitaminler ve diğer biyofaktörlerin çoğu kimyasal olarak veya ekstraksiyon işlemi ile üretilirken bazıları da hem kimyasal hem de mikrobiyal proseslerle üretilmektedir. Bunun yanı sıra vitamin B12 ve B13 gibi vitaminler ise sadece mikrobiyolojik yolla üretilmektedir. Aşırı miktarlarda vitamin üreten mikrobiyal suşların doğadan taranması ve bulunması veya bunların genetik mühendisliği yoluyla yapımı zordur, bunun yerine geliştirilmiş fermentasyon prosesleri ve immobilize biyokatalist biyodönüşümleri önem kazanmıştır. ENZİMLER Bütün organizmalar hücresel faaliyetlerini sürdürebilmek için küçük miktarlarda çok çeşitli enzimleri üretmektedir. Günümüze kadar tanımlanmış olan 3000’den fazla enzimin büyük bir çoğunluğu mezofilik organizmalardan izole edilmektedir. Buna karşılık bazı enzimler bazı organizmalar tarafından çok yüksek miktarlarda üretilmekte ve hücre içinde tutulmayarak hücre dışına salgılanmaktadır. Ekstraselüler enzimler olarak isimlendirilen bu enzimler selüloz, protein, nişasta, vb. gibi suda çözünmeyen polimerleri parçalama yeteneğindedir. Bu ekstraselüler enzimlerin bazıları gıda, tekstil ve ilaç endüstrilerinde kullanılmaktadır ve mikrobiyal sentez yoluyla büyük miktarlarda üretilmektedir. Son yıllarda enzim terminolojisinde ortaya çıkan yeni bir terim olan “ekstremozimler” ise ekstrem çevrelerde yaşayan prokaryotlardan elde edilen enzimleri ifade etmektedir. Ekstremozimler, ekstrem olarak yüksek sıcaklık, düşük sıcaklık, çok yüksek tuz, çok yüksek asit veya alkalin pH’larda yaşayan ve “ekstremofiller” olarak isimlendirilen mikroorganizmalar tarafından üretilmektedir. Bu enzimleri yüksek miktarlarda üreten mikrobiyal kaynakları doğadan izole etmek için çeşitli yöntemler kullanılmaktadır ve yeni mikrobiyal kaynakların araştırılması sürekli olarak devam eden bir iştir. Burada biyoçeşitlilik önemli bir konu olup farklı ve yabancı çevrelerden (ekstrem çevreler) izole edilen mikroorganizmalar önemli enzim kaynakları olarak düşünülmektedir. Ülkemiz en önemli ekstrem çevreler olan sıcak su kaynakları (kaplıcalar) açısından çok zengindir. Ayrıca soda gölleri, tuz gölleri, vb. ekstrem çevrelere de sahip olduğumuz göz önüne alınırsa, buralardaki biyoçeşitliliğin bir an önce belirlenerek ortaya konması ülkemiz açısından çok önemli bir konudur. Lipazlar bakteri, maya ve küfleri içeren mikrobiyal flora tarafından bol miktarda üretilmektedir. Lipazlar gıda endüstrisinde, biyomedikal uygulamalarda, biyosensörler ve pestisidlerin yapımında, deterjan ve deri sanayiinde, çevre yönetiminde, kozmetik ve parfüm sanayiinde uygulama alanları bulmaktadır. Endüstriyel olarak en yaygın kullanılan lipaz üreticisi mikroorganizmalar Candida spp., Pseudomonas spp., Rhizopus spp.’dir. Son yıllarda biyoteknoloji alanında lipazların kullanımında eksponansiyel bir artış gözlenmektedir. Bu nedenle lipazların aşırı üretimini sağlamak amacıyla yönlü mutasyonlar yardımıyla suş geliştirme çalışmalarına ağırlık verilmiştir. Endüstriyel olarak en fazla üretilen enzimlerden biri olan proteazlar ise ekmekçilikte, deterjan ve temizleme sanayiinde, biyomedikal uygulamalarda, gıda sanayiinde etlerin olgunlaştırılmasında, tabaklama sanayiinde, atık arıtımı ve kimyasal endüstride kullanılmaktadır. Son yıllarda alkalofilik mikroorganizmaların ürettiği ve aşırı alkali ortamlarda aktivite gösteren alkalin proteazlar endüstriyel olarak çok önem kazanmıştır.Şu anda alkalin proteazların ticari üretimi Bacillus licheniformis ve diğer alkalofilik Bacillus spp.’den yapılmaktadır. Bu enzimlerin üretimi için öncelikle ümit verici organizmaların seçilmesine olanak sağlayan farklı izolasyon yöntemlerinin belirlenmesi daha sonra endüstriyel suş geliştirilmesi için mutasyon ve/veya rekombinant DNA teknolojisinin kullanımı üzerinde yoğun çalışmalar sürdürülmektedir. α-amilaz, β-amilaz ve glukoamilaz gibi mikrobiyal amilazlar, enzimler arasında en önemlileri olup günümüzde biyoteknolojide oldukça büyük önem kazanmışlardır. Mikrobiyal amilazlar uygun preparasyonlarda hazırlandıktan sonra ilaç sanayiinde analitik kimya alanında, nişastanın sakkarofikasyonu, tekstil ve gıda sanayiinde, bira sanayii ve damıtma endüstrilerinde geniş bir uygulama alanına sahiptir. Hayvanlar ve bitkilerde de bulunmasına karşılık amilazlar en yaygın olarak mikroorganizmalarda bulunmaktadır. Amilazların ticari üretiminde birçok bakteri ve fungus türleri kullanılmaktadır. α-amilazın ticari üretiminde Bacillus türleri çok önemlidir. Ticari amilaz üreticisi suşların geliştirilmesinde gen klonlama yöntemleri kullanılmaktadır. Gen klonlmanın en temel amaçları; termostabil enzimlerin ifade edilmesi, yüksek enzim verimliliği ve iki enzimin aynı organizmada ifade edilmesinin sağlanmasıdır. AMİNOASİTLER Organizmaların primer metabolitleri arasında en önemlileri amino asitlerdir. 1950’lerin sonlarına doğru Corynebacterium glutamicum’un bazı suşlarının doğal olarak önemli miktarlarda L- glutamat sentezlediğinin bulunmasının ardından amino asit üreticisi mikroorganizmaların taranması ve ıslah edilmesi çalışmaları büyük hız kazanmıştır. O zamandan beri amino asit salgılama yeteneğinde olan bir çok organizma belirlenmiş ve bu konu endüstriyel mikrobiyolojinin önemli bir konusu olmuştur. Dünya çapında 1.5x106 ton amino asit üretimi gerçekleşmektedir. Amino asitler tıpta, gıda endüstrisinde katkı maddesi olarak, kimya endüstrisinde başlatıcı maddeler olarak kullanılmaktadır. En önemli ticari amino asit lezzet arttırıcı olarak monosodyum glutamat (MSG) formunda kullanılan Glutamik asittir. Diğer iki önemli amino asit diyet içecekler ve yiyeceklerde tatlandırıcı olarak kullanılan Aspartam’ın bileşenleri olan Aspartik asit ve Fenil alanindir. Bundan başka lisin, glutamin , arjinin, triptofan, treonin, izolösin ve histidin amino asitleri de ticari olarak mikrobiyolojik yolla üretilmektedir.Mikrobiyolojik üretim için Corynebacterium ve Brevibacterium türleri ile Escherichia coli en bilinen ticari türlerdir. Corynebacterium ve Brevibacterium türlerinde metabolizma nispeten basit olduğu için regülasyon sistemlerinin kolaylıkla değiştirilmesiyle, Enterobacteriaceae üyelerinde ise karmaşık rekombinant DNA tekniklerinin kullanımıyla verimli amino asit üreticileri elde edilebilmektedir. Kaynak: Doç. Dr. Rengin ELTEM /Ege Üniversitesi /Mühendislik Fakültesi Biyomühendislik Bölümü POLİMER ÜRETİMİ Modern biyoteknolojiyi komodite amaçlı ürünlerin üretiminde de kullanmak mümkündür. En çarpıcı örneklerden biri, mikroorganizmaları uygun ortamlarda besleyip polimer ürettirmektir. Birçok mikroorganizma besin kısıtlaması koşullarında, tepkisel olarak hücre içinde polimer biriktirir. (Şekil 3’de hücre içindeki beyaz dairesel şekilli olanlar). Bunlar bilimsel adıyla “polialkalonatlar”, “mikrobiyal poliesterler” dir. Polibuturat ve poli(buturat-valarat) teknolojik olarak üretilen mikrobiyal poliesterlerdir. Bunların işlenmesi biraz zor, komodite plastiklere göre biraz pahalı, ancak doğada parçalanabilen türden, dolayısıyla çevre dostu polimerlerdir. Bunlardan üretilen şampuan, parfüm, vb. şişeleri piyasaya sunulmuş durumdadır. Buradaki ilginç gelişme yine genetik modifiye mikroorganizmaların kullanımıdır. Bunlarda hücre içinde polimer birikimi kuru ağırlıkta %99’lara kadar çıkarılmıştır, dolayısıyla verim çok yüksektir. Bu yöntemle üretilen polimerlerin molekül ağırlıkları sentetik yollarla çıkılması çok yüksek değerlerdedir (20 milyon hatta daha fazla). Mikroorganizmalar ile polimer üretimi teknolojisini bitkilere de uygulamak mümkündür. Özellikle mısır’ın çok da değerli olmayan koçanında ve kabuğunda polimerler biriktirilebilir. Faj Yerdeğiştirme “phage display” Teknolojisi Alternatif yöntemlerden biri de genetik modifiye mikroorganizmaları kullanmaktır. Yaygın olarak E.Coli’nin kullanıldığı “faj yerdeğiştirme” (“phage display”) tekniği böyle bir yaklaşımdır. Burada, istenilen üretim bilgisini taşıyan DNA, B lenfositlerinden izole edilir ve bakteriye yerleştirilir. Daha sonra bakteri, filament fajlar (bir çeşit virüs) ile enfekte edilir. Fajlar, bakteri içinde, genellikle çok sayıda antibadi fragmanını da taşıyacak şekilde çoğalır. İstenilen fragmanı taşıyan fajlar, bir biyoafinite sistemi ile ayrılır ve bunlarla yine bakteriyi enfekte edilerek üretimi gerçekleştirilir. Elde edilen monoklonal antibadi fragmanları saflaştırılıp ya doğrudan yada bir antibadi gövdesine takılarak kullanılabilir. Bu teknikte kullanılan reaktörler, hibridoma teknolojisinde kullanılanlardan çok daha düşük fiyatlı ve iyi tanımlanmış klasik fermentörlerdir, dolayısıyla üretim ucuz ve kolaydır. Kaynak: www.biyomedtek.com/bmt-konular-no3.htm Hazırlayanlar: Enver Ersoy ANDEDEN&Ahmet TEZER

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-4

Tiroid Hastalıklarının Tanısında Kullanılan <b class=red>Testleri</b>n Yorumlanması

Tiroid Hastalıklarının Tanısında Kullanılan Testlerin Yorumlanması

Tiroid bezi hastalıklarının tanısında kullanılan testler serbest T3, serbest T4 ve TSH testleridir.TSH testinin normalden düşük olması tiroid bezinin aşırı çalıştığını ( hipertitoidi) gösterir.TSH testinin normalden yüksek çıkması ise tiroid bezinin az çalıştığını ( hipotiroidi) gösterir.T4 ve T3 hormonlarının normal sınırın altında veya üstünde olması ise tiroid bezinin fonksiyonlarının normal olmadığını gösterir.Doktorlar, tiroid testi sonuçlarını yorumlarken hipertiroidi tanısı için kanda tiroid hormonlarının(ST4 ve ST3) ve TSH değerlerini incelerler.Kanda ST4 ve ST3 düzeyleri yüksek, TSH ise düşük bulunursa hipertiroidi tansı akla gelir.TSH düzeyinin normalin üstünde çkması halinde ise bu sefer hipotiroidi tanısı düşünülür. Bu durumda ST4 düzeyi ise düşük bulunur.ST4 düzeyi düşük, TSH düzeyi yüksek bir hastada ise belirgin hipotiroidi vardır.Sadece TSH testinin yüksek fakat ST4 ve ST3 değerlerinin normal olduğu klinik tablo ise subklinik hipotiroididir. Bu durumda hasta tedavi edilmelidir.TSH Testi Değerleri Tiroid Bezi Hastalıkları Tanısında Çok Önemlidir.Hipertiroidi ve hipotiroidide, ilk bozulan ve tedavi sonrası son düzelen kan testi TSH’dır. Bu nedenle,tiroid bezi hastalıklarında tanı koymada en değerli test TSH testidir.Anti-TPO ve anti-Tiroglobulin testleri de tiroid bezi hastalıklarının tanısında önemli testlerdir. Bu testlerin pozitif olması tiroid bezi hastalığının otoimmün kökenli hastalık olduğunu gösterir.Otoimmün hastalıklarda, insan vücudu kendi dokusunu yabancı bir doku olarak algılayıp ona karşı reaksiyon göstermektedir.Hashimoto tiroiditi olarak da bilinen, tiroid bezinin otoimmün hastalığında tiroid bezinde tiroid hormonlarının yapımındaki kullanılan protein yapısındaki tiroglobulin (TG) ve enzim yapısındaki Tiroid peroksidaz (TPO) yabancı bir doku olarak algılanmaktadır. Bağışıklık sistemi yabancı bir doku olarak tanıdığı bu yapılara savaş açar ve onları yoketmek için antikor salgılar. Bu hastaların kanlarında anti-TPO ve anti-Tiroglobulin antikorları normalden yüksek olarak bulunur.Bu hastalarda hipotiroidi hastalığının klinik belirtileri bulunmaktadır.Tiroid bezinin diğer otoimmün hastalıkları ise hipertiroidiye neden olan Graves Hastalığı ve geçici tiroidite sebep olabilen sessiz tiroidittir.Hashimato, Graves ve Sessiz Tiroidit yıllar içinde birbirine dönüşebilirler. Yani daha önce hipertiroidi olan birisinde yıllar sonra hipotiroidi gelişebilir.Bu nedenle klinik takipleri de büyük önem taşımaktadır. http://tahlil.com

http://www.biyologlar.com/tiroid-hastaliklarinin-tanisinda-kullanilan-testlerin-yorumlanmasi

Mikrobiyal Biyoteknoloji Bölüm 1

Biyoteknoloji Nedir ? - Biyolojik araç, sistem ve süreçlerin üretim ve hizmet endüstrilerine uygulanması - Endüstriyel uygulamalarda başarılı olabilmek için Biyokimya, Mikrobiyoloji ve Mühendislik bilimlerinin ortak kullanımı ile mikroorganizmaların, doku ve hücre kültürlerinin kapasitelerinin artırılması - Çeşitli yararlı maddelerin üretilmesi için biyolojik özellikleri kullanan bir teknoloji olması - Biyolojik araçlar tarafından üretilen materyallerin daha iyi ürün ve hizmet vermek üzere bilim ve mühendislik ilkelerinin uygulanması - Biyoteknoloji sadece teknik ve süreçlerin toplamına verilen bir addır. - Biyoteknoloji canlı organizmaları ve onların yapıtaşlarını tarım, gıda ve diğer endüstrilerde kullanan bir tekniktir. - Biyoteknoloji konu olarak “multidisipliner” yani bağımsız pek çok bilim dalını birarada barındırır. Eğer biyoteknoloji çalışması yapanları bir liste altında toplamak gerekirse Biyokimyacılar, Mikrobiyologlar,Genetikçiler, Moleküler biyologlar, Hücre biyologları, Botanikçiler, Ziraat mühendisleri, Virologlar, Analitik kimyacılar, Biyokimya mühendisleri, Kimya mühendisleri, Kontrol mühendisleri, Elektronik mühendisleri ve Bilgisayar mühendisleri bu liste içerisinde sayılabilir. BİYOTEKNOLOJİDE MİKROBİYAL SİSTEMLER 1-)Bakteriler ve Cyanobacteria (mavi-yeşil bakteriler) A-) Bakteriler: Toprak, hava, su, hayvan ve bitki yüzeylerinde bulunurlar. Bazıları hastalık etkeni olmakla beraber çoğu zararsız ve organik atıkların geri dönüşümü sırasındaki yararlı etkileri ve birçok faydalı ürünü üretmeleri nedeniyle biyoteknolojide oldukça önemli bir yere sahiptirler. Aynı genusa ait bazı türler endüstriyel açıdan faydalı özelliklere sahipken bazıları insanlar için zararlıdır. Örneğin Bacillus türleri toprakta yaşarlar ve aerop veya fakültatif anaerop metabolizmaya sahiptirler. § B. subtilis endüstride kullanılan amilaz enziminin kaynağıdır. § B. thruringiensis ise birçok bitki zararlısı böceğin patojenidir. Ve bu nedenle böceklere dirençli bitkilerin oluşturulmasında genetik mühendisliğinin önemli çalışma konularından birini oluşturur. § B.athracis ise insanlara patojen etkiye sahiptir ve şarbon hastalığının nedenidir. Prokaryotik biyolojik sistemler: § E.coli dışındaki diğer prokaryotlar § Acremonium chrysogenum § Bacillus brevis § Basillus subtilis, Basillus thuringiensis § Corynebacterium glutamicum § Erwinia herbicola § Peudomonas spp § Rhizobium spp § Streptomyces spp § Trichoderma resei § Xanthomonas campestris § Zymomonas mobilis Bu organizmalar iki grup altında toplanabilir. 1-) Özel bir fonksiyona sahip bir gen için konak olma. Ör: termofillerden izole edilen ve PCR teknolojisinde kullanılan ısıya dirençli DNA polimeraz enziminin E.coli’de klonlanması ve üretimin gerçekleşmesi. 2-)Belirli işleri çok daha etkin yapabilmek için genetik mühendisliği ile geliştirilme. Ör: Endüstriyel açıdan önemli amino asitlerin çok fazla üretilmesi için Corynebacterium glutamicum’un çeşitli türlerinin geliştirilmesi. 2-) Cyanobacteria (mavi-yeşil bakteriler): Mavi-yeşil bakteriler prokaryotlar sınıfına dahil olup fotosentez özelliğine sahiptir. Örnek olarak Anabaena cylindris, Nostok muskorum, Spirulina platensis türleri verilebilir. İlk kez varlıkları fosillerde saptanmıştır. Dünya oluşumunda belki de ilk canlı organizmalardır. Tatlı ve tuzlu suların yüzeylerinde bulunurlar. Karada ise ışığın ve nemin olduğu çamur ve kaya, tahta veya bazı canlı organizmaların yüzeylerinde bulunabilirler. Koyu yeşilimsi-mavi pigmentlerinden dolayı bu isimle adlandırılırlar. Sadece birkaç organizma atmosferik azotu amonyağa redüklemek yoluyla a.a. ve proteinleri üretmek üzere organik asitlere dönüştürülebilir. Azot fikse edebilen bakteriler gibi mavi-yeşil bakterilerde böyle bir yeteneğe sahiptir. Hücreler nitrogenaz enzimi ile bu reaksiyonu gerçekleştirirler. Bu enzim oksijen ile inaktive olur. Bu nedenle azot fikse eden hücrelerin içindeki koşullar anaerobik olmalıdır. Anabaena gibi bazı mavi-yeşil bakterler azot fiksasyonundan sorumlu heterosit adı verilen özel kalın duvarlı hücrelere sahiptirler Mavi-yeşil bakterilerin biyoteknolojik önemi: Mavi-yeşil bakteriler fotosentez yetenekleri, yüksek protein içerikleri ve basit besiyerlerinde hızlı çoğalmaları nedeniyle besin kaynağı olarak kullanım alanına sahiptir. Tek hücre proteini (THP) elde edilmesinde en çok denenen günümüzde insan ve hayvanların beslenmesinde geniş uygulama alanı olan mavi-yeşil bakteriler, diğer mikroorganizmalardan farklı olarak yeterli miktarda karbondioksit, belirli derecede aydınlatma, geniş üretim ortamı gibi özel koşullara gereksinim gösterirler. Sprilulina platensis Afrika ve güney Amerika’da ki sığ göllerde doğal olarak bulunur. Binlerce yıldan beri yöredeki insanlar tarafından toplanan bu algler kurutulduktan sonra besin kaynağı olarak çoğunlukla sos şeklinde veya çorba içinde kullanılmaktadır. Nostoc ise Peru ve Güney doğu Asya ‘da besin maddesi olarak kullanılan bir diğer siyanobakteridir. Gübre olarak kullanılmaları: Mavi-yeşil bakterilerin azot fiksasyon özelliği saptandıktan sonra kurutulmuş Tolypthrix tenuis pirinç tarlasına serpildiğinde azot fiksasyonunda ve verimde artış gözlenmiştir. M-Y bakterilerin Hindistan da pirinç tarlalarında gübre olarak kullanımıyla toprağın havalandırılması sonucunda su geçişi ve toprağın sıcaklığının daha homojen olması sağlanmaktadır. Azot fiksasyonu için M-Y bakterilerin Rhizobium’ların yerini almasının bazı avantajları vardır. Mavi-Yeşil bakteriler havadaki azotu amonyuma redüklerken fotosentez metabolik yolunu kullanırlar. Yani bir bitki ile simbiyotik bir yaşam ve enerji kaynağı olarak herhangi bir organik molekül ilavesi gerekmez. Tarımda azot fikse eden mavi-yeşil bakteriler organik gübre olarak kullanılabilir. Çin, Hindistan, Filipinler gibi pirinç tüketimi fazla olan bölgelerde büyük oranlarda ürerler. Pirincin büyüme sezonunun başında eğer suya siyanobakterlerin başlangıç kültürleri ekilirse pirinç veriminde %15-20 oranında artış olduğu bildirilmektedir. Mavi-Yeşil bakteriler antibiyotiklerin ve diğer biyolojik olarak aktif moleküllerin ticari boyutlardaki üretimi için büyük bir potansiyel oluştururlar. Çünkü Mavi-Yeşil bakteriler heterotrofturlar. Bu özellikleri de onların fermentasyon koşullarında üretilmelerine olanak sağlar. Henüz araştırma aşamasında olan Anacystis nidulans ile yapılan rekombinant DNA teknolojisi çalışmalarıyla nadir bileşiklerin üretiminde kullanımları amaçlanmaktadır. Araştırmalar Mavi-Yeşil bakterilerin güneş enerjisi dönüşüm sisteminde yer alması için devam etmektedir. Anabaena cylindrica heterocystleri vejatatif hücrelerde fotosentez yoluyla oluşturdukları oksijeni dışarı verirler. Azot yokluğunda ise heterositlerde nitrogenaz enzimi katalizörlüğünde elektronlar H+ iyonuna transfer edilerek Hidrojen gazı açığa çıkarırlar. Oksijen ve Hidrojen her ikisi de endüstride ihtiyaç duyulan gazlardır. Sonuç olarak; Fermentör koşullarında üreyebilirler, uzun süreli fizyolojik stabiliteye, basit besin gereksinimine, köpük oluşturmama özelliğine sahiptirler. Diğer alglerden farklı olarak azot fiksasyonu yapabilme farklılığına sahiptirler. Optimum sıcaklık 35oC dir. Karanlıkta veya gün ışığında heterotrofik olarak ürerler. 2-) MAYALAR: Tek hücreli tomurcuklanma veya bölünerek eşeysiz çoğalan ökaryotik mikroorganizmalardır. Mayaların tanımlanması maya biyoteknolojisi için oldukça önemlidir. Örneğin endüstriyel süreçlerde yabani ve kültüre edilmiş mayalar arasındaki farkı gösterebilmek esastır. Bira üretiminde üründe istenmeyen aroma oluşumuna neden olan yabani ırkın karışması veya ekmek mayası üretiminde şeker transport yeteneği daha fazla olan Candida utilis mayasının karışması ekmek mayası üretiminde kullanılan Saccharomyces cerevisiae mayasının üremesini engelleyecektir. Maya genuslarının ayrımında fizyolojik testlerle birlikte morfolojik testler de kullanılır. Günümüzde 700 civarında maya türü tanımlanmıştır. Fakat bu sayı maya çeşitliliğinde sadece çok küçük bir bölümü temsil etmektedir. Tanımlanmamış maya genus ve tür sayısı çok daha fazladır. Maya biyologları için maya çeşitliliğini tanımlamak kadar diğer önemli bir nokta özellikle biyoteknolojik öneme sahip türleri belirleyip saklamak ve koruyabilmektir. Moleküler biyoloji tekniklerinin yaklaşımıyla türler daha hızlı ve kolay bir şekilde karakterize edilebilmektedir. Günümüzde 6 mayanın genom projesi tamamlanmış ve işlevsel genomik çalışmaları ile genlerin işlevlerinin belirlenmesine devam edilmektedir. Maya hücreleri klorofil içermez ve zorunlu olarak kemoorganotrofiktirler. Üremek için organik karbona gerek duyarlar. Karbon metabolizmaları çok çeşitlidir. Örneğin basit şekerleri, polioller, organik ve yağ asitleri alifatik alkoller, hidrokarbonlar ve çeşitli heterosiklik ve polimerik bileşikleri karbon kaynağı olarak kullanabilirler. Bu özellikleri nedeniyle farklı habitatlar için özelleşmiş türler kolaylıkla saptanabilir. Mayalar toprak, hava ve sudan izole edilebilirler. Bazı mayalar ekstrem ortamlarda örneğin ozmofilik mayalar şeker bakımından zengin ortamlarda yaşayabilirler. Bu tür mayalar genellikle gıda bozucu olarak bilinir. Bunun dışında fırsatçı patojen olarak bazı maya türleride örneğin Candida albicans pek çok infeksiyondan sorumludur. Mayalar insanlar için; ekonomik, sosyal ve sağlık açısından oldukça önemli en eski evcilleştirilmiş organizmalardır. Alkollü içeçeklerin üretiminde, ekmek yapımında hamurun kabarması için binlerce yıl öncesinden beri kullanılmaktadırlar. Gerçekte bira yapımı belkide dünyanın ilk biyoteknolojisini temsil etmektedir. Günümüzde mayalar geleneksel gıda fermentasyonunun dışında çok çeşitli alanlarda da kullanılmaktadır. Özellikle genetik mühendisliğiyle geliştirilmiş mayalar hastalıkların önlenmesinde ve tedavisinde kullanılan pek çok farmasötik ajanın üretilmesinde yaygın bir şekilde kullanılmaktadır. Biyoteknolojik Öneme Sahip Bazı Mayalar - Axula adeninivorans: Nitrat ve aminleri asimile eder, 45 C üzerinde üreyebilir, pek çok hidrolaz salgılayabilir. - Candida türleri: C.albicans hidrokarbonlardan aminopenisillanik asit ve B6 vitamin üretimi, C.boidinii NAD, FAD metil ketonlar ve sitrik asit üretimi, C.famata riboflavin, C.maltosa biyokütle proteini için yağ asiti ve alkan kullanımı, C.tropicalis triptofan, C.pelliculosa selülozik materyalden biyokütle proteini, C.utilis, pek çok ürün eldesi, ksilozda üreyebilme, klonlama teknolojisinde kullanım, C.shehatae ksiloz fermentasyonu - Hansenula polymorpha: Heterolog gen anlatımı için kullanılabilen metilotrofik maya. - Kluyveromyces marxianus ve K.lactis: Laktoz ve polyfruktosanı fermente eder. Doğal kakao fermentayonu. Pek çok enzim için kaynak olabilir, klonlama teknolojisinde kullanılabilir. - Pachysolen tannophilus: Bitki lignoselülozik hidrolizatlarından kaynaklı pentoz şekerlerinin fermentasyonu. - Phaffia rhodozyma ve Pichia türleri: Gıda boyası olan astaksantin pigment üretimi. P.guilliermondii riboflavin sentezi ve hidrokarbonlardan biomas protein eldesi. P.methanolica etanol biosensörü olarak kullanılan alkol oksidaz üretimi.P.pastoris metanolden biomas protein eldesi, heterolog gen anlatımı ve insan terapötik proteinlerini üretebilen metilotrofik maya. - Rhodosporidium toruloides: Fenilketanüri tedavisinde kullanılan PAL enzim kaynağı. - Saccharomyces türleri: S.cerevisiae klasik gıda fermentasyonu. Bira, şarap, ekmek, rom, cin yapımı. Yakıt, alkol, gliserol, invertaz ve hayvan besini kaynağı.Rekombinant DNA teknolojisiyle sayısız protein üretimi. - Saccharomycopsis türleri: S.fibuligera amilolitik maya - Schizosaccharomyce pombe: Geleneksel Afrika alkollü bira yapımı. Şarapların deasidifikasyonu. Yüksek etanol ozmotik tolerans, biyokütle protein eldesi, heterolog gen anlatımı ve mutagenez testlerinde kullanım - Schwanniomyces türleri: S.castellii ve S.occidentalis amilolitik mayalar. Nişastanın ve inülinin etanole çevrimi ve heterolog gen anlatımında kullanılabilirler. - Trichosporon cutaneum: Fenol varlığına ilişkin bisensor olarak kullanılır. - Yarrowia lipolytica: Lipid ve hidrokarbonlardan biomas protein eldesi. Sitrik asit ve hücredışı enzim üretimi. Ø Zygosaccharomyces rouxii: Japon soya sosu karakteristik aromasını vermede kullanılan halofilik ve ozmotolerant maya türü. Alkollü içeçeklerin üretiminde mayalar Endüstriyel mayaların çoğu, özellikle de fermente içeçeklerin üretiminde kullanılanlar, genetik bakımından karmaşıktırlar ve stabil bir haploidi göstermezler. Örneğin bira yapımında kullanılan Sacchoromyces türleri poliploid veya anöpliod (diploid-heptaploid) ırklardır. Bu nedenle geliştirilmelerinde eşeyli üreme özelliklerinden yararlanılamaz. Bunun yerine klasik bira tadını veren organoleptik özellikleri iyi olan karakteristik fermentasyon yapan ırklardan doğal seçimle en iyi olan şeçilir. Bunun dışında endüstriyel mayaların geliştirilmesinde şüphesiz genetik mühendisliğinin önemi oldukça fazladır. Rekombinant DNA teknolojisi ile geliştirilen rekombinant mayalar tarafından üretilen biyolojik olarak aktif rekombinant proteinlerin veriminin arttırılmasında iki önemli yaklaşım vardır. Bunlar; moleküler genetik tekniklerin kullanımı ve fermentasyon teknolojisidir. Gıda tüzüğüne uygun olarak ekmek mayasının (glikoz baskısından kaçınmak ve hamurlaşmayı önlemek için) maltoz kullanım genleri değiştirilmiştir. Bira mayasında ise Maltodekstrinleri kısmi olarak parçalayan STA2 genini içeren plazmid bulunmaktadır. Genetik mühendisliği ile geliştirilmiş mayaların lignoselülozik (odunsu) atıkları substrat olarak kullanarak etanol üretmeleri yönünde yoğun çalışmalar yapılmaktadır. Etanol dışında mayaların ürettiği diğer biyoalkoller; gliserol ( alkollü içecekler için aroma katıcı, nitrogliserin türevli patlatıcılar yapımında), ksilitol (şeker yerine diyabetik ürünlerin yapımında), sorbitol, arabinitol (düşük şeker içerikli gıdaların yapımında; ilaçların kaplanmasında yenilebilir kaplama maddesi olarak) Etanolün yenilenebilir kaynaklardan mayalar kullanarak üretilmesi tüm dünyanın ilgisini çeken konulardan biridir. İlk üretim 1930’larda başlamıştır fakat petrol fiyatları düşürülünce teknoloji bırakılmıştır. 1970’deki petrol krizi ile birlikte yeniden gündeme gelmiştir. Brezilya, şeker kamışını ve melası substrat olarak kullanarak ürettiği petrolü yakıt amaçlı kullanmaktadır. Brezilya’da otomobillerin çoğu alkol veya alkol+benzin karışımı (gasohol) ile çalışmaktadır. KÜFLER Küfler hifli mantarlardır. Birçok organizma ve gıda maddesi ( ekmek, meyve, sebze.. vb) üzerinde oluşturdukları pamuk görüntüsündeki doku nedeniyle mayalardan çok daha önce keşfedilmişlerdir. Küfler, endüstride birçok ürünün eldesinde, atıklardan değerli ürünlerin oluşturulmasında kullanılan farklılaşma göstermeyen ve klorofil içermeyen mikroorganizmalardır. Doğada ve toprakta yaygın olarak bulunan küflerden endüstriyel mikrobiyoloji alanında önem taşıyanlar mikroskobik olanlardır. Küflerin üredikleri ortama proteaz, lipaz, karbonanhidrazlar gibi litik enzimleri salgılamaları ve küflerin ürettikleri çeşitli metabolitlerin birçok alanda kullanılabilir olması bu organizmaların endüstrideki önemini oldukça artırmaktadır. Ayrıca insan, hayvan ve bitkiler için patojen olan türleride bulunmaktadır. Küflerin Biyolojisi: Bir küf, protoplazma iplikleri veya uzantıları olan hiflerden ve sporlardan oluşur. Hiflerin yaptığı yumağı misel adı verilir. Hifler, bölmeli hifler ve bölmesiz hifler olarak ikiye ayrılır. Bölmeli hifler bölmeler ile hücrelere ayrılırlar ve her hücrede bir veya iki hücre çekirdeği bulunur. • Bölmesiz hiflere sönositik hif adı da verilir. • Bölme içermezler ve çok çekirdeklidirler. • Üreme hifleri genellikle koloninin yüzeyinde bulunan ve üreyen hücreleri veya sporları taşıyan hiflerdir. • Hifsel üreme ortamın besin koşulları ile yakından ilgilidir. • Beslenme hifleri ise koloniye besin sağlayan hiflerdir. Beslenme hifleri sayesinde hücrenin bulunduğu noktadan uzakta olan substratlara ulaşmaları sağlanır. • Küflerin hücre duvarı glukan, kitosan ve kitin gibi farklı glukoz polimerlerinden yapılabilir.

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-1

Alerjik Rhinit Nedir?

Alerjik Rhinit Nedir?

Rhinit burun iltihabı anlamına gelmektedir.Burun mukozasının alerjik nedenli iltihabına ise alerjik rinit denir. Alerjenlerin hava yolu mukozasına yapışarak iltihabi reaksiyonları başlatması ile meydana gelir..Özellikle alerjik yatkınlığı olan, atopik kişilerde görülür. Çoğunlukla ömür boyu devam etmekle birlikte, ileri yaşlarda şiddeti azalabilir. Alerjik rinit rüzgarın havada uçurduğu polenlere bağlı olarak gelişir.Herhangi bir alerjen tarafından da meydana gelebilir. Kendiliğinden geçme olasılığı ise oldukça düşüktür.Alerjik rinit ortalama her 6 kişiden birinde görülmektedir. En sık olarak havada uçuşan polenler ve çevremizde bulunan ağaçlar alerjik rinite yol açar. Ayıca küf, hayvan tüyü, ev tozu ve akarları gibi alerjenler de alerjik rinite yol açabilir. Rüzgarla havada uçuşan küçük polenlerin hava yolları mukozasına yapışarak alerjik olayı başlatması ile de alerjik rinit meydana gelebilir. Özellikle kuru ve rüzgarlı havalarda havadaki polen miktarı fazladır ve alerjik rinit görülme sıklığı artar. Alerjik Rinit Belirtileri Alerjen ile karşılaşıldığında özellikle ağız, burun, gözler,boğaz ve deride kaşıntı ortaya çıkar. Burun akıntısı ve gözlerin sulanması tipiktir. Burun tıkanıklığı ve koku almada güçlük ortaya çıkabilir. Bazen bu belirtilere hırıltılı solunum eşlik edebilir. Öksürük ve başağrısı da görülebilir. ALLERJİK RİNİTİ OLAN HASTALARDA DİĞER ALLERJİK HASTALIKLAR DA ARTMIŞ MIDIR? Alerjik rinit genellikle alerji yatkınlığı olan, atopik olarak adlandırılan kişilerde bulunur. Bu kişilerde diğer alerjik hastalıkların (egzema, ürtiker veya astım gibi) görülme sıklığı normal kişilere göre daha fazladır. Ayrıca ailesinde alerjik hastalık öyküsü olan kişilerde de alerjik rinit ve diğer alerjik hastalıkların görülme sıklığı daha fazladır. ALLERJİK RİNİT HANGİ YAŞLARDA GÖRÜLÜR? Hastalık semptomları genellikle 40 yaşından önce ortaya çıkar ve yaş ilerledikçe şikayetler azalır. Fakat hastalığın kendiliğinden tamamen geçmesi nadirdir. ALLERJİK RİNİTTE TANI NASIL KONULUR? Alerjik rinit tanısındaki en önemli şey hastanın öyküsüdür. Belirtilerin hangi mevsimde, ne ile karşılaşıldığında, nasıl ortaya çıktığının bilinmesi tanıya ulaşmada önemlidir. Bazen yapılan testlerin sonuçları negatif olduğu halde, hastanın tipik öyküsünden tanı koymak mümkün olmaktadır. Muayene sırasında hastaların burun mukozaları soluk, fakat burun delikleri kırmızıdır. Bu hastalarda burun mukozasının sürekli iltihabına bağlı polipler gelişmiştir, bu polipler özellikle tüm yıl boyunca devam eden tipte sıktır. Bu polipler de burun tıkanıklığına neden olabilir. Tanı testleri arasında alerjiye neden olan antikor IgE’nin total kan düzeyinin ölçülmesi ve özel alerjene karşı uygulanan alerji testleri en sık kullanılan tanı yöntemleridir. Özellikle deriye uygulanan alerji testleri en sık kullanılan metoddur. Kanda eosinofil denilen ve alerjik reaksiyonlarda sayıları artan hücrelerin sayılması veya bu hücrelerin burundan alınan sürüntüde incelenmesi tanıyı destekler. Bazen de olası alerjenlerden uzak durma veya karşılaşma sonrasındaki yanıta bakılarak alerjenin tanısına gidilebilir. ALLERJİK RİNİTİ OLAN HASTALARIN DİKKAT ETMESİ GEREKENLER NELERDİR? Tozlu ve polenli ortamlarda bulunmamalı, eğer bulunmak durumunda kalınırsa da maske kullanılmalıdır. Polenlerin uçuştuğu mevsimlerde kapı ve pencereler kapalı tutulmalıdır. Özellikle kaloriferli evlerde kuru ev havası alerjik rinitin kötüleşmesine neden olabileceğinden, evde hava nemlendiricisi kullanılmalıdır. Oda havasının temizliğine dikkat edilmeli, havalandırma sistemlerinin iyi çalıştığından emin olunmalıdır. Evde hayvan ve bitki beslemekten kaçınılmalıdır. Tüylü ve yünlü battaniyeler yerine pamuklu ve sentetik olanları tercih edilmelidir. Toz barındırabilecek tarzda kilim, halı gibi ev eşyaları kullanılmamalıdır. ALLERJİK RİNİTTE TEDAVİ NASILDIR? Alerjik hastalıklarda en önemli şey alerjen ile karşılaşmaktan kaçınmaktır. Bu konuda alınması gerekli önlemler ‘Alerjik riniti olan hastaların dikkat etmesi gerekenler nelerdir?’ bölümünde anlatılmıştır. Alerjik rinitin tedavisi şikayetlerin giderilmesine yöneliktir, hastalık bu tedaviyle ortadan kaldırılamaz. Alerjik rinitin tedavisinde hekim tarafından, antihistaminik denilen ve alerjenle karşılaşıldığında olaya neden olan madde salınımını engelleyen ilaçlar, burun iç yüzeyindeki şişliği azaltan ilaçlar, kortizon içeren burun spreyleri gibi ilaçlar verilebilir. Ancak tüm bu ilaçlar muhakkak hekim tarafından hastalığın şiddeti ve hastanın durumu değerlendirilerek düzenlenmelidir. ALLERJİK RİNİTİN SONUÇLARI NASILDIR? Alerjik rinit ömür boyu devam eden fakat yaşla beraber şiddeti azalan bir hastalıktır. Alerjik rinit hastaya sıkıntı vermesi, yaşam kalitesini bozması ve iş gücü kayıplarına neden olması dışında çok önemli sağlık sorunlarına neden olmaz. Eğer gerekli tedbirler alınır ve uygun tedavi verilirse bu hastalığın atak sayısını oldukça azaltmak mümkündür. ÖNEMLİ UYARILAR Alerji vücudun yabancı bir madde ile karşılaştığında buna karşı geliştirdiği bir yanıttır. Alerjiye neden olan maddelere alerjen de denilmektedir. Alerjenler, alerjik rinit, alerjik konjüktivit, alerjik astım, kontakt dermatit, ürtiker gibi birçok alerjik hastalığa neden olabilir. Alerjik rinit alerji kaynaklı burun iltihabıdır. Alerjenlerin hava yolu mukozasına yapışarak iltihabi reaksiyonları başlatması ile meydana gelir En sık olarak havada uçuşan polenler ve çevremizde bulunan ağaçlar alerjik rinite yol açar. Alerjen ile karşılaşıldığında özellikle ağız, burun, gözler, boğaz ve deride kaşıntı ortaya çıkar. Burun akıntısı ve gözlerin sulanması tipiktir Alerjik rinit genellikle alerji yatkınlığı olan, atopik olarak adlandırılan kişilerde bulunur Alerjik rinit tanısındaki en önemli şey hastanın öyküsüdür. Tanı testleri arasında alerjiye neden olan antikor IgE’nin total kan düzeyinin ölçülmesi ve özel alerjene karşı uygulanan alerji testleri en sık kullanılan tanı yöntemleridir. Alerjik hastalıklarda en önemli şey alerjen ile karşılaşmaktan kaçınmaktır. Alerjik rinitin tedavisinde hekimin önerisiyle, antihistaminik denilen ve alerjenle karşılaşıldığında olaya neden olan madde salınımını engelleyen ilaçlar, burun iç yüzeyindeki şişliği azaltan spreyler ve kortizon içeren burun spreyleri gibi ilaçlar kullanılır.http://tahlil.com

http://www.biyologlar.com/alerjik-rhinit-nedir

Her Yıl 36 Erkekten Biri Prostat Kanserine Yakalanıyor

Her Yıl 36 Erkekten Biri Prostat Kanserine Yakalanıyor

Türk Radyoloji Derneği Genel Sekreteri ve Avrupa Ürogenital Radyoloji Derneği Prostat Kanseri Çalışma Grubu Üyesi Doç. Dr. Ahmet Tuncay Turgut, MR görüntüleme ve multiparametrik MR teknolojisindeki gelişmeler sayesinde prostat kanserinin kolaylıkla saptandığını belirtti. MT- Prostat kanseri görülme sıklığı nedir ve toplum sağlığı açısından taşıdığı önemden söz eder misiniz? Yapılan araştırmalarda, gelişen hayat standartları sayesinde yaşam beklentisinin artmasına paralel olarak özellikle 65 yaş üzerinde olmak üzere kanser vakalarında önümüzdeki otuz yıl içinde üç kat artış meydana geleceği hesaplanmıştır. Bu durum ağırlıklı olarak bir ileri yaş hastalığı olan prostat kanseri için de geçerlidir. Prostat kanseri genel olarak orta yaşı geçmiş erkeklerde en sık tanı konan kanser olup tüm kanser vakalarının %11'inden ve kanserden ölümlerin % 9'undan sorumludur. Çok çarpıcı bir veriyle devam etmek gerekirse, yapılan araştırmalar her 6 erkekten birinin yaşamı boyunca prostat kanserine yakalanacağını göstermiştir. Prostat kanseri tüm dünyada erkeklerde kansere bağlı ölüm nedenleri arasında akciğer kanserinden sonra ikinci en sık sorumlu tutulan neden durumundadır. Bu durumda her 36 erkekten birinin prostat kanseri nedeniyle hayatını kaybettiği düşünülmektedir. Tüm dünyada yılda yaklaşık 900 bin hasta prostat kanseri tanısı alırken, her yıl 258 bin hasta prostat kanseri nedeniyle hayatını kaybetmektedir. Benzer şekilde ABD’de 2012 için öngörülen yeni olgu sayısı 241 740, ölüm sayısı ile 28 170’dir. Mevcut artışın devam etmesi durumunda 2030 yılında dünyada her yıl 1,7 milyon yeni olgu ve 500.000 ölüm görüleceği düşünülmektedir. MT - Prostat kanseri için kimler risk altındadır? Prostat kanseri için bilinen en kuvvetli risk faktörü genetik faktörlerdir. Bu nedenle ailesinde prostat kanseri öyküsü olanlar prostat kanseri için risk altındadır. Ayrıca diğer bazı kanser türleri için olduğu gibi prostat kanserinin de batı tipi yaşam tarzı, hazır gıdaların fazla tüketimi gibi alışkanlıklarla artış gösterdiği düşünülmektedir. MT - Prostat kanserinin belirtileri nelerdir? Genellikle 40 yaşın üstündeki erkeklerde görülen prostat kanseri erken dönemde belirti vermeyip tanı ancak rutin kontroller sırasında yapılan tetkiklerle konulabilmektedir. Hastalık sıklıkla sinsi şekilde ilerledikten sonra geç dönemde kendini göstermektedir. Bu nedenle birçok hastada prostat kanseri genellikle ileri evrede yakalanmaktadır. Bu dönemde hastalık önce prostata komşu organlara ardından kan ve lenf yolu ile lenf düğümleri, kemik ve akciğerlere sıçrayabilmektedir. Başlıca belirtiler arasında yer alan idrardan kan gelmesi, meniye kan karışması gibi bulguların varlığı hastalığın ilerlediğini akla getirirken metastaz halinde ise kemiklerde ağrı görülebilmektedir. MT - Prostat kanseri için erken tanının önemi hakkında bilgi verebilir misiniz? Geçmişte, erken tanı araçları henüz yaygın değilken birçok erkek ilerlemiş kanser tanısı almaktaydı ve hastalar teşhisten bir kaç sene sonra ölmekteydiler. Bu nedenle 1970’lerde hastalığın tanısı sonrasında 5 yıllık yaşam süresi %70’lerin altındaydı. Oysa günümüzde prostat kanseri erken evrede yakalandığında ve doğru tedavi uygulandığında başarı oranı % 90’lara yükselmektedir. Yapılan araştırmalarda tarama yoluyla prostat kanserinden ölüm oranlarının %30 oranında azaldığı hesaplanmıştır. Beklendiği üzere hastalığın erken teşhis edilmesi halinde tedavi başarısı artacaktır. Tanı anında kanser sadece prostata sınırlı ise hastanın tamamen iyileşme şansı çok yüksektir. Bu nedenle prostat kanseri tanısıyla ilgili yaklaşımın esasını, hastalığın prostatın içinde sınırlıyken yani hiçbir klinik belirtisinin olmadığı dönemde tespit edilmesi oluşturmaktadır.  Hiçbir yakınması olmasa bile erkeklerin 50 yaşından itibaren yılda bir kez prostat kanseri taraması için başvurması önerilmektedir. Bir diğer önemli nokta ise hastalığın tedavisinin tamamen evreye göre planlanıyor olması nedeniyle evrenin doğru olarak saptanması gerekliliğidir MT - Türkiye’de durum nedir? Türkiye’deki durum da aslında dünya ile paralellik göstermekte olup, prostat kanseri görülme sıklığı   % 20 civarındadır. Yapılan çalışmalarda ülkemizde de prostat kanserinde belirgin artış olduğu, prostat kanserinin erkeklerde akciğer kanserinden sonra ikinci sıraya yerleştiği anlaşılmıştır. Bu artış tüm dünyada olduğu gibi ülkemizde de kişilerin doktora görünme sıklıkları, yapılan kan testlerinin artışı, tanı koymada kaydedilen gelişmeler gibi faktörlerle yakından ilişkilidir. Bununla birlikte Batı ülkelerinden kısmen farklı olarak erken tanı oranının hala önemli ölçüde düşük olduğu söylenebilir. Bu durum hastalığa yönelik farkındalığın görece düşük olması ve özellikle kültürel faktörlerle ilişkili olmak üzere hekime başvurma oranının istenen düzeyde olmaması ile açıklanabilir.  Maalesef toplumun geneli herhangi bir yakınması olmaması nedeniyle kontrol amacıyla doktora başvurmamaktadır. MT - Prostat kanseri tanısı nasıl konmaktadır? Prostat kanseri taraması için iki temel yöntem parmakla prostat muayenesi ve kanda PSA denilen bir maddenin ölçümüdür.  Kan PSA düzeyinin artışı tipik olarak prostat kanserinin potansiyel varlığına dair ilk belirtidir.  Bunu takiben gerçekleştirilen uygulama ultrason rehberliğinde prostat bezinin özel iğnelerle genellikle 12 örnek alımını içerecek şekilde örneklenmesi işlemidir. MT - Prostat kanseri tanısı için neden yeni tekniklere gereksinim duymaktayız? Her şeyden önce iğneyle parça alınması işleminin kanseri saptamaya yönelik duyarlılığı %40-50 oranındadır.  Ayrıca PSA düzeyinde artışın prostat kanseri dışındaki bazı sebeplere de bağlı olabilmesi sebebiyle rutin PSA taraması pek çok gereksiz biyopsiye yol açmaktadır. Önemli bir problem de biyopsi ile kanser tanısı elde edilmemesine rağmen anormal olarak yüksek kalan veya yükselmeye devam eden PSA değerleri nedeniyle prostat kanseri şüphesinin devam ettiği çok sayıda hastaya biyopsi tekrarları uygulanma zorunluluğunun bulunmasıdır. Bu da sosyal güvenlik sistemine ciddi bir ek maliyet getirmekte, tanısal bakımdan belirsizliklere neden olmaktadır.  Diğer önemli bir dezavantaj ise iğne biyopsilerinin tümörün sınırlarını tam olarak ortaya koymada yeterli oranda başarılı olmaması, bir başka deyişle hastalığa yaklaşımda çok önemli bir parametre olan kanser evresinin biyopsi ile doğru olarak belirlenemiyor olmasıdır. Prostat kanseri tanısını doğrulamaya yönelik olarak gerçekleştirilen biyopsi uygulaması invazif bir işlemdir. Hastaların bir kısmı bu işlemi inanılmaz derecede ağrılı olarak nitelendirmektedir; bir çalışmada hastaların %20’si yeni bir biyopsi işlemi gerektiği takdirde işlemi yaptırmayı kabul etmeyeceklerini belirmişlerdir. Ayrıca işlem bazı hastalarda işlem sonrasında kanama ve enfeksiyon gelişmesi gibi komplikasyonlara yol açabilmektedir. Söz konusu yan etkiler beklendiği üzere işlem sırasında alınan parça sayısı ile doğru orantılıdır. MT - Peki çözüm nedir? Giderek artan sayıda hastaya biyopsi uygulanması gerekliliğinin ortaya çıkması ve örneklem hatası riskinin olmasına bağlı olarak negatif bir biyopsi sonucunun otomatik olarak kanserin olmadığı anlamına gelmemesi gerçeğinden hareketle MR incelemesi elde edilen bulguların rehberliğinde yapılan biyopsi uygulamasının önemli yararlar sağladığı görülmektedir. Multiparametrik MRG ile sağlanan yararların başında tümörün davranış paterninin belirlenmesi gelmektedir. Prostat kanserinin hasta açısından hangi düzeyde (düşük, orta ve yüksek) risk oluşturduğunun öngörülmesinde/belirlenmesinde ultrason rehberliğinde biyopsi işleminin doğruluk oranları %50’ler düzeyinde iken bu oran multiparametrik MRG ile %95’lere yükselmektedir. Ayrıca yüksek PSA nedeniyle gerçekleştirilen biyopsi işleminde kanser saptanmamasına rağmen PSA’daki yükselmenin devam etmesi gibi kuvvetli kanser şüphesinin varlığı söz konusu olduğunda, multiparametrik MRG sonrasında gerçekleştirilen biyopsi ile % 40’lar düzeyinde prostat kanseri saptanmakta olup bunların yaklaşık %90’ı klinik olarak önemli kabul edilen tiptedir. Tümörün yerini tam olarak belirleyebilen yöntem sayesinde ultrason eşliğinde alınan 12 örnek yerine 1-2 örnek alınması bile yeterli olabilmektedir. Ayrıca MR ile kanserin görüntülenmesinde sağlanan başarı MR incelemesi ile prostatında anormal bulgu saptanmayan hastalarda biyopsi yapılması gerekliliğini azaltmaktadır.  Tabi burada önemli olan gerçekleştirilen MR incelemesinin uygun teknikle yapılması ve bulgulara yönelik değerlendirmenin tekrarlanabilir olma özelliğini taşıması, bir başka deyişle standart hale getirilmesidir. Bununla ilgili Avrupa Ürogenital Radyoloji Derneği  tarafından bu yılın başında yayınlanan kılavuz ve PI-RADS (Prostat Görüntüleme Raporlama ve Data Sistemi) adı verilen yapılandırılmış raporlama sistemi Amerikan Radyoloji  Koleji  tarafından da kullanılmaya başlanmıştır. MT - Bu yöntem Türkiye’de kullanılmaya başlandı mı? Ülkemizde de henüz çok yaygın olmamakla birlikte multiparametrik prostat MR incelemeleri gerçekleştirilmektedir. Türk Radyoloji Derneği adı geçen uygulamayı yaygınlaştırmaya sağlamaya yönelik çalışmalarını sürdürmektedir. Kadınlarda meme kanseri taramasına yönelik olarak mamografinin kullanılmasına benzer şekilde yakın gelecekte erkeklerde de prostat kanseri tanısına yönelik olarak manyetik rezonans görüntülemenin kullanılmasının gündeme geleceğini düşünüyoruz. http://www.medical-tribune.com.tr

http://www.biyologlar.com/her-yil-36-erkekten-biri-prostat-kanserine-yakalaniyor

CA 19-9 (Kanser antijeni 19-9; Karbohidrat antijen 19-9)

Normal Değer: 0-37 U/ml Kullanımı: Tüm gastrointestinal sistem kanserleri (pankreatik kanserler, kolanjiokarsinomlar, kolon kanserleri vb) ve diğer adenokarsinomlarda CA 19-9 düzeyi artar. Pankreatik kanserlerde sensivitesi %70-80’dir. CA 19-9 düzeyi ile tümör kitlesi arasında ilişki yoktur. CEA ile beraber kullanıldığında mide kanseri rekürrensinin tespitinde sensitivitesi %94’e kadar yükselir. Ayrıca kronik pankreatit, kolanjit ve siroz gibi bazı benign durumlarda da CA 19-9 seviyelerinde yükseklik görülebilir. Tarama testi olarak kullanılmamalıdır. Gastrointestinal sistem ( mide barsak) kanserleri ve adenokarsinomlarda değeri yüksek çıkan bir kanser antijenidir.Tümör markırı olarak da bilinir.Özellikle ppankreas kanserlerinde duyarlılığı yüksek olup % 70-80 arasındadır.CA 19-9 testi değerinin yüksekliği ile varsa tümörün büyüklüğü arasında ise doğru orantı yoktur.Yani yüksek bir CA 19-9 değerinde tümörün de büyük olacağı diye bir kural yoktur.Tahlil.com olarak ziyaretçilerimize, CA 19-9 hakkında bir uyarıda bulunmak istiyoruz.CA 19-9 testide diğer kanser antijen testlerinde olduğu gibi tarama amaçlı,yani kanser tanısı veya taramasında kullanılan bir test olarak değerlendirilmemelidir.Bir çok Tahlil.com ziyaretçisi Ca 19-9 yüksekliği durumlarında hemen paniğe kapılmakta ve kanser oldum korkusu yaşamaktadır.Şurası unutulmamalıdır ki, C a 19-9 testi kronik pankreatit,kolanjit gibi kanser olmayan bazı hastalıklarda da yüksek çıkabilmektedir.Ayrıca siroz hastalarında da 19-9 yüksek çıkabilmektedir. Ca 19-9 testi normal değerleri çalışılan laboratuvar ve kullanılan laboratuvar malzemesine bağlı olarak küçük farklılıklar gösterse de genel olarak 40′ın altındaki değerler normal olarak kabul edilmektedir. www.tahlil.com

http://www.biyologlar.com/ca-19-9-kanser-antijeni-19-9-karbohidrat-antijen-19-9

Hayvan Davranışları Bilimini Nasıl Ele Almalıyız?

Hayvanların davranış gereksinimlerinin karşılanamaması durumunda bazı davranış sorunlarının ortaya çıktığı bilinmektedir (Savaş ve ark., 2001; Yurtman ve ark., 2002). Bu bakımdan etolojide türlere ilişkin davranış envanterinin ortaya konması sonrasında ele alınması gereken önemli konular aşağıdaki gibi sıralanabilir. 1. Hayvanların nitel ve nicel davranış gereksinimlerinin her koşulda etkin biçimde araştırılması, 2. Bu gereksinimlerin (davranışların) ortaya çıkmasına neden olan mekanizmaların belirlenmesi, 3. Özellikle temel etolojide ortaya konmuş teorilerin yetiştiricilik koşullarında test edilmesi, 4. Davranış gereksinimlerinin “doyurulmasına” yönelik çalışmalar da özellikle çevresel düzenlemeler bağlamında uygulamaya dönük önemli araştırma alanlarından bir diğerini oluşturmaktadır. Hayvan davranışları, daha önce de belirtildiği gibi hayvan refahı göstergesi olarak yaygın biçimde kullanılmaktadır. Ancak bu güne değin yapılmış çalışmalar yeterli değildir. Türe özgü davranış normlarından sapan davranış özellikleri konusunda tartışmalar yoğunlukla devam etmektedir. Bunun yanı sıra davranış gereksinimlerinin karşılanması anlamında yapılan çalışmaların birçoğu aynı zamanda hayvan refahı alanına bilgi sağlamaktadır. Hayvan davranışları konusunda özellikle gelişmiş ülkelerde yapılan çalışmalar izlenecek olursa, türler bazında davranışlara ilişkin genel bilgi birikiminin artırılmaya çalışıldığı görülecektir. Çalışmaların çok büyük bir kısmının merkezinde hayvan refahı endişesi yer almaktadır. Öğrenme ve kavrama, davranış konusunda ihmal edilmiş bir alan olarak ifade edilmektedir (Dietl ve ark., 2006; Wechsler ve Lea, 2007). Bu konunun yanı sıra, ilgi çekici olmakla birlikte üzerinde az sayıda araştırma yapılmış bir diğer alan ise davranış genetiğidir (Mormede, 2005). Farklı yetiştirme koşullarına uyum açısından önemli bir yere sahip olan öğrenme ve kavrama çalışmalarının azlığı özel test düzenekleri gerektirmelerine bağlanabilir. Davranış genetiğinde ise sorun ele alınan davranışa ilişkin fenotipin tanımlanmasında yatmaktadır. Kantitatif genetik çalışmalarda bulguların niteliği, hayvan sayısının ve generasyon sayısının büyüklüğüne bağlıdır. Çok sayıda hayvanı ilgili davranış özellikleri bakımından izleyebilmek için ele alınacak özelliğin kaydının pratik ve kolay olması gerekir. Davranış testleri bu anlamda koşulları sağlamakla birlikte ele alınacak olan özelliklerin birçoğunu “test” şekline getirmek olası değildir. Moleküler düzeydeki genetik çalışmalar için de benzer olumsuzluklar söz konusudur. Üstelik moleküler genetik çalışmalar bu alanda önemli bilgi birikimi ve altyapı gerektirirler.

http://www.biyologlar.com/hayvan-davranislari-bilimini-nasil-ele-almaliyiz

Harvard'da geliştirdiği yöntemlerle sağlığın geniş kitlelere ulaşmasını sağlıyor

Harvard'da geliştirdiği yöntemlerle sağlığın geniş kitlelere ulaşmasını sağlıyor

Prof. Utkan Demirci;Harvard'da geliştirdiği yöntemlerle sağlığın geniş kitlelere ulaşmasını sağlıyorHarvard Tıp Fakültesi'ne bağlı MIT Sağlık Bilimleri ve Teknoloji bölümünde profesör olan Utkan Demirci, dünyayı değiştirecek 35 bilim adamı arasında gösteriliyor. Alanındaki cep telefonu ile ELISA yapabilen ilk yumurtalık kanseri idrar testini geliştiren Prof. Utkan Demirci, Medical Tribune Türkiye Yayın Koordinatörü Zuhal Demirarslan’ın sorularını yanıtladı.MT: Dünyayı değiştirecek ilk 35 bilim adamından biri olarak gösteriliyorsunuz. Siz kendinizi nasıl tanımlarsınız?Harvard Tıp Fakültesine bağlı Harvard-MIT sağlık bilimleri ve Teknoloji bölümünde profesörüm. Mikroteknolojilerin sağlık üzerine uygulamaları üzerine çalışan 30 kisilik dinamik bir araştırma grubunu yönetiyorum. Teknoloji Review Magazin MIT bazlı bir dergi. Her sene dünyadaki başarılı bilim adamları arasından 35 yaşın altındaki 35 kişiyi bilime katkılarına bakarak seçer. Geçmişte TR35'a seçilmiş bir çok kişinin başarılı işler yapmaya devam ettiğini, kilit noktalarda hem bilimde hem yönetim seviyesinde hatta bazılarının politikada devam eden pozitif etkilerini görüyoruz. Ben de onların izinden gitmeyi hedefliyorum.MT: Nano teknolojiden ve bunun sağlıkta nasıl uygulandığından bahsedebilir misiniz?Bir mikrometre, bir saç telinin yüzde biri kalınlığına karşılık geliyor. Vücudumuzdaki hücreler de mikrometre boyutundalar. Hücrelerin içinde gerçekleşen molekül seviyesindeki reaksiyonlar ise nanometre boyutunda gerçekleşiyor. Bizim hücrelerde neler olduğunu daha kolay anlayabilmemiz için hücrelerin boyutuna inmemiz gerekiyor.Kısaca özetlemek gerekirse, çuvaldızla dantel oya işlenmez. Küçük boyuttaki olayları öncelikle anlayabilmek ve kontrol edebilmek için o boyutlarda teknolojileriniz olması gerekiyor. Nanoteknoloji bu bağlamda ince dantel iğnesidir. Bu iğne ile hücrelerin fonksiyonlarını irdelemek imkanını buluyoruz. Buradan öğrendiğimiz kazanımlar, bizim sağlıkta bu bilgileri nasıl kullanabileceğimiz konusunda bize ipuçları sunuyor.MT: Yumurtalık kanserinin erken teşhisi için geliştirdiğiniz idrar testini anlatabilir misiniz? Bu çalışmaya nereden yola çıkarak başladınız?Yapmaya çalıştığımız işler, kolay, pahalı olmayan yöntemleri kullanarak, yatağın başucunda ya da Afrika'da bir dağın başında çalışabilecek testleri daha büyük bir çoğunluğun hizmetine daha kolay bir şekilde sunabilmek. Bunun için araştırma labaratuvarlarında binlerce lira değerindeki cihazlarla yapılan testleri, biz cep telefonuyla,ucuz ve tek kullanımlı atılabilir testler haline getirmeye çalışıyoruz. Yumurtalık kanseri idrar testi bu çalışmalarımızdan biridir ve alanındaki cep telefonu ile ELISA yapabilen ilk örnektir. Amacımız herkesin ucuz ve kolay erişimini sağlamak, bu sayede geniş kitlelere sağlığın ulaşmasına katkıda bulunmak.MT: Sizce bu test yumurtalık kanserinden ölümleri engelleyecek mi? Maliyeti ile ilgili bilgi verebilir misiniz?Ölümleri engelleyecek demek yanlış olur. Zira diagnostic testler, hastalığın tesbitine yöneliktir. Tabi ki kanserde erken teşhisin tedavi üzerindeki etkileri biliniyor. Bu açıdan bakarsak mutlaka pozitif katkıları olacaktır. Evde kolayca uygulanabilirlik esas amaç burada. Fiyatının on lirayı geçmemesini esas almak gerekir.MT: Tıp dünyasından bu testle ilgili size geri dönüşler nasıl?Bu testi değişik hastalıklar için de uygulamak mümkün. Özellikle ELISA testlerinin kullanıldığı birçok hastalıkta etkili olabilecek bir test. Bu testin birçok başka alandaki uygulamalarına ilgi de var.MT: Yalnızca erken teşhiste mi kullanılacak yoksa yumurtalık kanseri olan hastalarda da faydası olacak mı?Özellikle yumurtalık kanserinde erken teşhisten çok hastalığın geri gelmesini monitör etmede kullanılan bazı biyolojik işaretlerin izlenmesinde etkili olabilir. Baktığımız moleküller buna işaret eden moleküller. Özellikle yumurtalık kanserinde yeni ve daha net sonuçlar veren moleküllerin keşfedilmesi için dünyanın birçok yerinde araştırmalar devam ediyor.MT: Nano teknoloji ile geliştirdiğiniz çiplerin başka hangi sağlık uygulamaları var?Özellikle bulaşıcı hastalık alanlarında etkili uygumaları olduğunu görüyoruz. Örneğin ameliyat geçirmiş hastalarda, hastaneden gelebilecek enfeksiyonların tesbitinde, bunun yanı sıra idrar yolu enfeksiyonlarında da etkili olabileceğini görüyoruz.MT: Bu uygulamaların (yumurtalık kanseri idrar testi de dahil) ne zaman kullanıma sunulacağını düşünüyorsunuz?Bu konuda çalışmalarımız devam ediyor. Türkiye'de Koek Bioteknoloji bu testlerin geliştirilmesi için çalışmalarda bulunuyor.MT: Sizce gelecekte nano teknoloji ile ilgili neler bekliyor bizleri?Biyoteknoloji ve bunun nano-boyutta uygulamaları çok geniş ve çok yeni bir alan. İleride biyoloji biliminin bizim anladığımız kısmının genişlemesinde ve daha kesin ve daha net temel kurallara oturmasında bu tarz yeni teknolojilerin rolü büyük olacak.MT: Kendi labaratuvarınızda çalışıyorsunuz, ekibinizde Türk hekimler ya da Türk çalışanlar var mı?Türkiye'den çok sayıda lisans ve üstü seviyede öğrencim oldu. Sayıları 100'e yaklaşmıştır. Doktorasının bir kısmını benimle yapan Türkiye'den derecesini alacak yaklaşık 5 öğrencim oldu. Ayrıca, Türkiye'den lisans eğitimini almış, şu anda doktora üstü çalışmalarını benim labaratuvarımda sürdüren 10'a yakın öğrencim var. Bunun yanı sıra Türkiye'den TUBITAK ya da Fullbright Türkiye desteğiyle labaratuvarımıza gelen profesörler de oldu. Beni en çok sevindiren ise Türkiye'de lisans eğitimleri esnasında labaratuvarıma yazları gelip araştırmamıza katkıda bulunan öğrencilerimin şu anda dünyanın her yerindeki değerli üniversitelerde doktora çalışmalarına devam etmesidir. En önemlisi ise doktora üstü çalışmalarını benimle sürdüren öğrencilerimin bazılarının, labaratuvarlarını kurarak araştırmalarına devam etmesi. Sizin aracılığınızla öğrencilerime araştırmama olan katkılarından dolayı teşekkür etmek isterim. Başarılarıyla bizi gururlandırıyorlar. Onların başarıları ülkemizin başarısıdır, gelecekte bizi en iyi şekilde temsil edeceklerine hiç şüphem yok.MT: Türkiye'de ortak çalıştığınız kurumlar var mı? Varsa ortak hangi projelerde çalışıyorsunuz?Türkiye'de bir çok üniversite ile beraber çalıştığımız hocalarımız oldu. En son yaptığımız çalışmalar ise Dr. Selçuk Kılınç ile beraber ince bağırsak transplantasyonundaki kök hücre çalışmalarıydı. Biz daha çok bu hocamızın yaptığı bu çalışmaların sonuçlarının incelenmesi konusunda fikir alışverişinde bulunduk. Bu konuda özellikle sayın milletvekilimiz Prof. Dr. Cevdet Erdol hocamızın desteklerini de burada belirtmek isterim. Türkiye'de bir kök hücre merkezi kurulmamış olsaydı, bu çalışmalar mümkün olmayacaktı. Buradaki sonuçları da önümüzdeki yıl içerisinde bilimsel bir makale olarak paylaşacağız.MT: Şu anda labaratuvarınızda üzerinde çalıştığınız projelerden bahsedebilir misiniz?Labaratuvarımızda 30'a yakın araştırmacı çok farklı projelerde çalışıyor. Temel olarak üzerinde çalıştığımız konular hücreleri ve onların mikro-çevresini kontrol eden teknolojiler üretmek üzerine kurulu. Amacımız bu teknolojileri kullanarak daha hızlı, daha ucuz ve etkili sistemler geliştirerek, hastalıkları zamanında ve inceden yakalayıp, zamanında tedavilerine imkan sunmak.MT: 2012 EMBS başarı ödülü aldınız.Bu ödülden bahsedebilir misiniz. Hangi çalışmanızla bu ödüle layık bulundunuz?Tibbi içerikli mikro ve nano teknolojilerin gelişimine yaptığım bilimsel katkılardan dolayı verilmiş bir ödül. Bu pozitif değerlendirmelere nail olmuş olmak sevindirici. İnşallah devamı gelir ve yaptığımız işlerin insanlara hizmeti olur.MT: Bundan sonraki hedefleriniz neler?Hayatta hep kısa ve uzun vadeli hedeflerim oldu. Kısa vadede akademik çalışmalarıma devam etmek istiyorum. İnsan sağlığı için önemli problemlere mühendislik bakış açısını uygulayarak ucuz, basit çözümler getirmeye devam etmek istiyorum. Bunun için labaratuvarımızda her zaman yetenekli öğrencilere ihtiyacımız var. Türkiye'den labaratuvarımıza katılıp araştırmamıza katkıda bulunmak isteyenlere her zaman kapımız açık. Son zamanlarda gördüğüm bir gerçeklik de labaratuvarda üretilen teknolojilerin insanların kullanımına sunulması için iş yine bize düşüyor. Bunun için Türkiye'de Koek Bioteknoloji ile çalışmalara başladık. ABD'de de benzer şirketleşme çalışmalarına destek veriyoruz. Teknolojiler ürün haline gelmediği sürece insanların yararına ve hizmete dönüşmeleri mümkün olmuyor.Uzun vadede amacım ise yıllar boyunca kazandığım pozitif birikimlerimi Türkiye'de bilimin ve sanayinin gelişimine katkılar yapabilmek için kullanabilmek. Bunun yanı sıra ülkemizde bilim ve eğitimle ilgili politikalara ihtiyaç var. Özellikle ülkemizde herkese, özellikle genç kızlara, eşit eğitim fırsatları sağlayabilecek projelere ihtiyaç olduğunu düşünüyorum. Bu alandaki sosyal sorumluluk içeren projelere katkıda bulunabilmek isterim. Bu konularda katkıda bulunabileceğim imkanlar doğarsa ülkemde görev yapabilmek en büyük dileğim. Eğer bunu başarabilirsem kendimi birşeyler başarmış atfedeceğim.http://www.medical-tribune.com.tr

http://www.biyologlar.com/harvardda-gelistirdigi-yontemlerle-sagligin-genis-kitlelere-ulasmasini-sagliyor


Tıbbi Laboratuvarlar Yönetmeliği Resmi Gazetede Yayınlandı

Uzun zamandır çıkacağı konusunda beklentiler olan Tıbbi Laboratuvarlar Yönetmeliği 25 Ağustos 2011 tarihli ve 28036 sayılı Resmi Gazete’de yayınlandı.Yönetmelik, kamu ve özel sağlık kurum/kuruluşlarındaki tıbbi laboratuvarların planlanması, ruhsatlandırılması, açılması, faaliyetlerinin düzenlenmesi, sınıflandırılması, izlenmesi, denetlenmesi ve kapatılmasına ilişkin usul ve esasları düzenliyor, kaliteli ve verimli hizmet sunmalarını sağlamayı amaçlıyor.Yönetmeliğin yürürlüğe girdiği tarihten önce ilgili mevzuata uygun olarak açılan laboratuvarlar, iki yıl süre ile mevcut durumları ile faaliyete devam edebilecekler. Bu süre içinde bu Yönetmelikte belirlenen ölçütlere uygun olarak ruhsat alacaklar. Belirtilen süre içinde ruhsat almayan laboratuvarın faaliyetine son verilecek. Tıbbi Laboratuvarlar Yönetmeliği’ni Tümünü Aşağıda Bulabilirsiniz: TIBBİ LABORATUVARLAR YÖNETMELİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Tanımlar ve Kısaltmalar Amaç MADDE 1 – (1) Bu Yönetmeliğin amacı; kamu ve özel sağlık kurum/kuruluşlarındaki tıbbi laboratuvarların planlanması, ruhsatlandırılması, açılması, faaliyetlerinin düzenlenmesi, sınıflandırılması, izlenmesi, denetlenmesi ve kapatılmasına ilişkin usul ve esasları düzenlemek, kaliteli ve verimli hizmet sunmalarını sağlamaktır. Kapsam MADDE 2 – (1) Bu Yönetmelik; doping, adli tıp, veteriner hekimlik, doku tipleme, genetik ve araştırma amaçlı kurulmuş laboratuvarlar dışındaki, Devlet ve vakıf üniversiteleri, kamu kurum/kuruluşları ile özel hukuk tüzel kişilerine ve gerçek kişilere ait tıbbi laboratuvarları kapsar. Dayanak MADDE 3 – (1) Bu Yönetmelik; 19/3/1927 tarihli ve 992 sayılı Seriri Taharriyat ve Tahlilat Yapılan ve Masli Teamüller Aranılan Umuma Mahsus Bakteriyoloji ve Kimya Laboratuvarları Kanununun 7 nci maddesi, 7/5/1987 tarihli ve 3359 sayılı Sağlık Hizmetleri Temel Kanununun 3 üncü maddesi ile 9 uncu maddesinin birinci fıkrasının (c) bendi ve 13/12/1983 tarihli ve 181 sayılı Sağlık Bakanlığının Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararnamenin 43 üncü maddesine dayanılarak hazırlanmıştır. Tanımlar ve kısaltmalar MADDE 4 – (1) Bu Yönetmelikte geçen; a) Ana dal: Tıpta uzmanlık mevzuatında yer alan, bu Yönetmelik kapsamındaki tıbbi laboratuvar dallarını, b) Bakan: Sağlık Bakanını, c) Bakanlık: Sağlık Bakanlığını, ç) Başkan: Tıbbi Laboratuvar Bilimsel Danışma Komisyonu Başkanını, d) Başkanlık: Refik Saydam Hıfzıssıhha Merkezi Başkanlığını, e) Dış kalite değerlendirme: Laboratuvarların test sonuçlarının güvenilirliğini sağlamak veya yükseltmek amacıyla laboratuvarın dışındaki bir sistem/kurum/kuruluş tarafından düzenlenen içeriği veya konsantrasyonu bilinen ya da bilinmeyen örneklerle yapılan izleme ve değerlendirme çalışmasını, f) Genel Müdür: Tedavi Hizmetleri Genel Müdürünü, g) Genel Müdürlük: Tedavi Hizmetleri Genel Müdürlüğünü, ğ) Hizmet alımı: Laboratuvarın kendisi dışındaki ruhsatlı bir laboratuvar/laboratuvarlardan test kapsamında hizmet alımını, h) Hizmet Kalite Standartları (HKS): Bakanlıkça sağlık kuruluşları ve laboratuvarların hizmet birimleri ve iş süreçlerini değerlendirmek, iyileştirmek üzere yayımlanan standartları, ı) İç kalite kontrol: Analitik sürecin kalitesini değerlendirmek ve sonuçların güvenirliğini yükseltmek amacıyla laboratuvar tarafından yapılan kalite kontrol çalışmasını, i) Komisyon: Tıbbi Laboratuvar Bilimsel Danışma Komisyonunu, j) Laboratuvar: İnsanlarda; sağlığın değerlendirilmesi, hastalıkların önlenmesi, tanısı, takibi, tedavinin izlenmesi ve prognoz öngörüsü amacı ile insana ait biyolojik örneklerin veya dolaylı olarak ilişkili olduğu örneklerin incelendiği, sonuçların raporlandığı, gerektiğinde yorumlandığı ve ileri incelemeler için önerileri de içeren hizmetlerin sunulduğu tıbbi laboratuvarları, k) Laboratuvar dışı testler: Muayenehane testleri (basit ve mikroskopik testler), hasta başı testler ile klinik veya servisde yapılan testleri, l) Laboratuvar merkezi: Birden fazla uzmanlık dalında kurulan laboratuvarı, m) Müdürlük: İl sağlık müdürlüğünü, n) SKYS: Sağlık Kuruluşları Yönetim Bilgi Sistemini, o) Test: Laboratuvara gelen veya laboratuvarda alınan bir örnekte bir veya daha fazla parametrenin aynı anda çalışılabilmesine olanak sağlayan ve pre-analitik, analitik, post-analitik tüm evreleri kapsayan süreci/çalışmaları, ö) Tıbbi atık: 22/7/2005 tarihli ve 25883 sayılı Resmî Gazete’de yayımlanan Tıbbi Atıkların Kontrolü Yönetmeliğinde yer alan tıbbi atık tanımını, p) Uzman: Tıpta uzmanlık mevzuatına göre bir laboratuvar ana dalı veya yan dallarından birinde uzmanlık eğitimini tamamlayarak o alanda sanatını uygulama hakkı ve uzman unvanını kullanma yetkisi kazanmış ve uzmanlık alanında müstakilen bir laboratuvarı yönetmeye yetkili olan kişiyi, r) Uzmanlık Derneği: Tıpta uzmanlık mevzuatında yer alan, bu Yönetmeliğin kapsamındaki laboratuvarlarla ilgili tıpta uzmanlık ana dal ve yan dallarını temsilen kurulan meslek örgütlerini, s) Yan dal: Tıpta uzmanlık mevzuatında yer alan, laboratuvar alanına ait tıpta uzmanlık yan dallarını, ifade eder. İKİNCİ BÖLÜM Tıbbi Laboratuvarlar Bilimsel Danışma Komisyonunun Teşkili, Görevleri, Çalışma Usul ve Esasları Komisyonun teşkili MADDE 5 – (1) Komisyon, laboratuvar hizmetlerinin geliştirilmesi ve kalitesinin artırılmasında Bakanlığa bilimsel destek verilmesini sağlamak üzere, ilgili uzmanlık dallarından seçilen yirmi beş üyeden oluşur. (2) Komisyon, Refik Saydam Hıfzıssıhha Merkezi Başkanı veya Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Salgın Hastalıklar Araştırma Müdürlüğünün bağlı olduğu Başkan Yardımcısı Başkanlığında toplanır. (3) Komisyonun sekretarya görevini Başkanlık yürütür. (4) Komisyon üyeleri aşağıda belirtilen temsilcilerden, Başkanın teklifi ile Bakan tarafından görevlendirilir. a) Başkanlığı temsilen iki uzman ve Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Salgın Hastalıklar Araştırma Müdürlüğünün bağlı olduğu Başkan Yardımcısı, b) Genel Müdür veya görevlendireceği bir temsilci, c) Genel Müdürlüğün performans yönetimi ve kalite geliştirme daire başkanlığı ile laboratuvar hizmetleri daire başkanlığından birer temsilci, ç) Üniversite hastane laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından anabilim dalı/bilim dalı başkanları veya en az doçent olmak üzere akademisyenleri arasından birer temsilci olmak üzere dört uzman, d) Eğitim ve araştırma hastane laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından klinik şefi veya şef yardımcıları arasından birer temsilci olmak üzere dört uzman, e) Özel kurum/kuruluş laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından birer temsilci olmak üzere dört uzman, f) Uzmanlık derneklerinden enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji, hematoloji, temel immünoloji ana dal veya yan dallarında uzman olan birer temsilci olmak üzere altı uzman. (5) Bir uzmanlık alanında birden fazla derneğin olması halinde, komisyon üyeliği, bu dernekler arasında iki yılda bir üye sayısı fazla olan dernekten başlamak üzere dönüşümlü olarak sağlanır. (6) Komisyon üyelerinin görev süresi iki yıldır. Süresi dolan üyeler tekrar görevlendirilebilir. Herhangi bir sebeple boşalan üyelik için kalan süreyi tamamlamak üzere dördüncü fıkraya uygun aynı niteliklere sahip yeni üye seçilir. (7) Komisyon toplantılarına mazeret belirtmeksizin iki defa üst üste katılmayan üyenin üyeliği sona erer. Bu üye sonraki dönemlerde tekrar komisyon üyesi olamaz. Komisyonun görevleri MADDE 6 – (1) Komisyonun görevleri aşağıda belirtilmiştir: a) Laboratuvarların sınıflandırılması, 25/3/2010 tarihli ve 27532 mükerrer sayılı Resmî Gazete’de yayımlanan Sosyal Güvenlik Kurumu Sağlık Uygulama Tebliğine yönelik test listelerinin hazırlanması ve güncellenmesi konularında Bakanlığa görüş bildirmek, b) Laboratuvarların sınıflarına uygun olarak sağlamaları gereken asgari standartların tespiti, güncellenmesi, HKS’nin oluşturulması ve hazırlanmasında Bakanlığa destek olmak, gerektiğinde bu konularla ilgili görüş bildirmek, ilgili mevzuatta değişiklik önerilerini Bakanlığa sunmak, c) Bilimsel ve mesleki kuruluşların laboratuvarlar ile ilgili olarak Bakanlığa önermiş olduğu standart, kılavuz ve benzeri dokümanları değerlendirmek ve görüş bildirmek, ç) Dış kalite değerlendirme programlarıyla ilgili Bakanlığa görüş ve öneriler sunmak, d) Laboratuvar test listelerinde yer alan testlerin en son bilimsel terminolojiye göre adlandırılmalarına ve maliyet analizlerine yönelik Bakanlığa önerilerde bulunmak, e) Referans hizmet laboratuvarı başvurusunun değerlendirilmesinde Bakanlığa görüş bildirmek, f) Bakanlıkça talep edilmesi halinde bu Yönetmelik çerçevesinde düzenlenen eğitici toplantılara bilimsel katkı sağlamak, g) Bakanlık tarafından toplanan dış kalite kontrol değerlendirme verilerinin değerlendirilmesi ve gerektiğinde rapor haline getirilmesine katkı sağlamak, ğ) Gerektiğinde laboratuvarlar tarafından kullanılan yöntemlere ilişkin görüş vermek. Komisyonun çalışma usul ve esasları MADDE 7 – (1) Komisyon, Başkanın daveti üzerine, yılda en az bir kez üye tam sayısının üçte ikisinin katılımı ile toplanır. Bakanlık gerekli hallerde, Komisyonu olağan toplantıları dışında da toplantıya davet edebilir. (2) Toplantı tarihi, yeri ve gündem taslağı sekretarya aracılığı ile toplantı tarihinden bir ay önce, olağan dışı toplantılarda ise en geç on gün öncesinde yazılı olarak veya elektronik posta ile üyelere duyurulur. Üyeler tarafından ayrıca gündeme alınması talep edilen konular değerlendirilmek üzere, toplantıdan en geç onbeş gün önce sekretaryaya bildirilir. (3) Kararlar toplantıya katılan üyelerin oy çokluğu ile alınır. Oyların eşitliği halinde Başkanın oy verdiği taraf çoğunluğu sağlamış kabul edilir. Komisyon kararları, karar defterine yazılır ve toplantıya katılan üyelerce imzalanır. Karara muhalif olanlar, şerh koymak suretiyle kararları imza ederler. Muhalif görüş gerekçesi, karar altında veya ekinde belirtilir. (4) Başkan tarafından gerek görülmesi halinde yurt içinden veya yurt dışından uzman veya uzmanlar toplantıya davet edilir ve yazılı ya da sözlü görüşleri alınır. Toplantıya davet edilen katılımcılar Komisyon çalışmaları ile ilgili oylamaya katılamazlar. (5) Komisyon, ilk toplantısını görevlendirmeler yapıldıktan sonraki bir ay içinde yapar. Gerekli durumlarda komisyon, görev alanlarıyla ilgili konularda çalışmalar yapmak ve görüş hazırlamak üzere, görev süresinin ve üye sayısının komisyon tarafından belirlendiği alt komisyonlar veya çalışma grupları oluşturulabilir. (6) Toplantı karar ve tutanaklarını yazmak, tüm yazışmaları yapmak ve bunları muhafaza etmek sekretaryanın görevidir. ÜÇÜNCÜ BÖLÜM Laboratuvarların Kuruluşu, Dalları, Sınıflandırılması, Görev Tanımları, Referans Hizmet Laboratuvarı Ölçütleri, Laboratuvar Dışında Uygulanan Testlere İlişkin Hususlar ve Laboratuvarların Çalışma Esasları ile Fiziki Şartları Laboratuvarların kuruluşu MADDE 8 – (1) Laboratuvarlar kurum/kuruluş bünyesinde veya bağımsız olarak kurulabilir ve işletilebilirler. Laboratuvarların dalları MADDE 9 – (1) Bu Yönetmelik kapsamında kurulacak laboratuvarlarda ruhsata esas alınan dallar; tıbbi mikrobiyoloji, tıbbi biyokimya veya tıbbi patolojidir. Laboratuvarların sınıflandırılması MADDE 10 – (1) Laboratuvarlar aşağıdaki şekilde beş sınıfa ayrılır: a) Basit Hizmet Laboratuvarı, b) Kapsamlı Hizmet Laboratuvarı, c) İleri Düzey Hizmet Laboratuvarı, ç) Referans Hizmet Laboratuvarı, d) Ulusal Referans Laboratuvarı. Laboratuvarların görev tanımları MADDE 11 – (1) Yataklı ve/veya ayakta teşhis ve tedavi yapılan kurum veya kuruluş bünyesinde olmak şartıyla Basit Hizmet Laboratuvarında aşağıdaki basit testler çalışılabilir. a) Şerit veya tablet halinde reajenler ile otomatize olmayan idrar analizi, b) Dışkıda gizli kan, c) Kan glikozu – spesifik olarak ev kullanımı için onaylanmış glikoz izleme cihazlarıyla, ç) Hemoglobin – otomatik olmayan tekniklerle veya doğrudan sonuç veren basit cihazlarla, d) Eritrosit sedimantasyon hızı (otomatize olmayan), e) Mikrohematokrit (otomatize olmayan), f) İdrarda hCG (gebelik testleri), g) Doğrudan ARB Mikroskobi (Aside Dirençli Boyama, tüberküloz tanısına yönelik). Ancak, hasta örneği teksif yöntemiyle boyama ve kültür yapılmak üzere tüberküloz tanısı yapan laboratuvara gönderilir. (2) Kapsamlı Hizmet Laboratuvarı; her bir anadal için en az bir sorumlu uzmanın bulunduğu ve uzmanlık alanı ile ilgili laboratuvar testlerini uygulayabilen laboratuvardır. (3) İleri Düzey Hizmet Laboratuvarı; her bir anadal için en az iki uzmanın bulunduğu ve uzmanlık alanı ile ilgili kapsamlı laboratuvar testleri ile birlikte gerektiğinde ileri teknikleri uygulayabilen ve alanıyla ilgili uzmanlık, ön lisans, lisans veya lisansüstü eğitimleri veren laboratuvardır. (4) Referans Hizmet Laboratuvarı; referans olunan testin doğrulamasını yapan, gerektiğinde yeni yöntemlerin geçerli kılınmasını sağlayan, Bakanlık tarafından oluşturulan laboratuvar ağı içinde yer alan ve ulusal referans laboratuvarına karşı sorumlu olan laboratuvardır. (5) Ulusal Referans Laboratuvarı; referans olduğu tanı testi ile ilgili olarak kalite kontrol, laboratuvarlar arası karşılaştırma testleri, eğitim, denetim yapan ve laboratuvar ağı içinde yer alan diğer laboratuvarların verilerini değerlendiren, ulusal düzeyde strateji oluşturan ve uluslararası düzeyde ülkeyi temsil eden laboratuvardır. Referans hizmet laboratuvarı ölçütleri MADDE 12 – (1) Referans Hizmet Laboratuvarı, aşağıdaki her bir bent için en az bir ölçütün karşılanması durumunda belirlenebilir: a) Teknoloji kullanımı ölçütü: 1) Tanımlayıcı ve/veya referans yöntem kullanıyor olmak, 2) Henüz rutine girmemiş öncü/ileri teknolojiyi kullanıyor olmak. b) Eğitim ve araştırma-geliştirme-yenilik kapasitesi ölçütü: 1) Lisans, lisansüstü veya tıpta uzmanlık eğitimi verme kapasitesine sahip olmak, 2) Araştırma, geliştirme kapasitesine sahip olmak; bunun için özel birim oluşturmak ve/veya araştırma personeli bulundurmak. c) Kalite ölçütü: 1) Referans olunmak istenen test kapsamında ISO 15189 standardı gereklerini sağlayarak akreditasyon belgesine sahibi olmak, 2) Referans olunmak istenen test kapsamında dış kalite kontrol/yeterlilik testlerine en az iki yıl süre ile katılmak ve başarılı olmak, 3) Ulusal Referans Laboratuvarı tarafından düzenlenen laboratuvarlar arası karşılaştırma testlerine son bir yıl içinde katılmak ve başarılı olmak. ç) Tıbbi bir önem veya öncelik arz eden bir durumla ilgili olma ölçütü: 1) Durumun halk sağlığı açısından önem taşıması veya bulaşıcı hastalıklar bildirim sistemi içinde yer alması, 2) Durumun fiziksel, kimyasal veya biyolojik olarak yüksek risk grubunda olması, 3) Durumun nadir ancak yüksek mortalite ve morbidite hızına sahip olması. d) Spesifik tıbbi bir uygulama gereksinimi olması ölçütü: 1) Duruma ilişkin olarak henüz standardize bir bilimsel yöntemin geliştirilmemiş olması ve konuyla ilgili araştırma, geliştirme veya yenilik gereksiniminin oluşması, 2) Yöntem hiyerarşisine göre ilgili uygulama ve tarama yöntemlerine ilave olarak tanımlayıcı veya referans yöntem niteliğinde olan bir veya birden fazla yöntemin kurulum ya da kullanım gerekliliğinin olması. e) Referans laboratuvar ölçütü: 1) Laboratuvarlar arası karşılaştırma ve/veya dış kalite kontrol testleri düzenlemek, 2) Alanıyla ilgili yeni yöntemlerin geçerli kılınması veya yeni metot geliştirmesi için çalışmalar yapmak. Laboratuvar dışında uygulanan testlere ilişkin hususlar MADDE 13 – (1) Laboratuvar dışında yapılabilecek klinik/servis testleri, hastabaşında ve muayenehanede yapılabilecek tıbbi testler ile ilgili hususlar aşağıda belirtilmiştir. a) Hastabaşı testleri; 1) Kalıcı ve özel bir alan gerektirmeksizin, hastanın bulunduğu yerin yanında veya hemen yakınında, hemşire, hekim veya Ek-1’de belirtilen teknik personel tarafından gerçekleştirilen, elde taşınabilen veya hastabaşına geçici olarak getirilebilen kit, cihaz veya aygıtlar ile yapılabilen testlerdir. 2) İlgili HKS kurallarına uygun olarak yapılır ve kayıt altına alınır. 3) Ek-2’de yer alan Hastabaşı Testlerinden oluşur. b) Muayenehane Testleri; 1) Hekimin yalnızca muayene ettiği hastaya yönelik tanıyı güçlendirmek amacıyla yapmış olduğu testlerdir. 2) Muayenehane mikroskopisi sınıfında yer alan testler; bu testlerin eğitimini almış hekim veya test ile ilgili alanda uzman olan hekim ya da bu testlerin eğitimini almış Ek-1’de belirtilen personel tarafından hekim gözetiminde yapılır. 3) Muayenehanede yapılabilecek tıbbi testler 11 inci maddenin birinci fıkrasında verilen basit testler ile Ek-2’de yer alan Muayenehane Mikroskopisi testlerinden oluşur. c) Klinik/Servis Testleri; 1) Yataklı tedavi kurumlarında, ilgili klinik uzmanı tarafından yapılan mikroskopla incelenen boyalı veya boyasız örnekler ile bu Yönetmelikte tanımlanan laboratuvar uzmanlık ana dallarında yapılan testler dışındaki testlerdir. 2) Bu testlerin yapılabilmesi için ilgili klinik/servis sorumlusunun talebi ve başhekimin onayı gereklidir. Laboratuvarların çalışma esasları MADDE 14 – (1) Laboratuvarlar valilik tarafından belirlenen mesai saatlerine uygun olarak hizmet sunarlar. Ancak kurum/kuruluş bünyesindeki laboratuvarlar mesai saatleri dışında hizmet bütünlüğünü bozmayacak şekilde gerekli tedbirleri alırlar. (2) Laboratuvarlar, bu Yönetmeliğe ve Bakanlık tarafından yayımlanan HKS’de belirlenen ölçütleri sağlayacak ve gereklerini yerine getirecek şekilde hizmet sunarlar. (3) Laboratuvarda analiz raporlarının klinisyen/kullanıcıya sunulması, donanım, bilgisayar veya otomatize sistemlerin kullanımı, izlenmesi, verilerin toplanması, kayıt ve muhafaza edilmesi ve verilere tekrar erişimi sağlamak üzere yazılı düzenlemeler oluşturulur ve laboratuvar buna uygun olarak çalıştırılır. (4) Laboratuvarda testlerin ulusal ve/veya uluslararası standartlara uygun, geçerliliği kabul edilmiş yöntemler kullanılarak yapılması esastır. Ulusal veya uluslararası yöntem bulunmadığında bilimsel geçerliliği komisyon tarafından uygun bulunan yöntemler kullanılır. (5) Laboratuvarda test sonuçlarının güvenilir ve doğru olarak zamanında verilmesi amacıyla etkili ve verimli hizmet sunumunu sağlamak için gereken şartlar ve donanım sağlanır. (6) Laboratuvar, 30/5/2007 tarihli ve 26537 sayılı Resmî Gazete’de yayımlanan Bulaşıcı Hastalıklar Sürveyans ve Kontrol Esasları Yönetmeliğinde yer alan bildirimleri, laboratuvar verilerini ve gerektiğinde Bakanlığın istediği diğer verileri belirlenen formata uygun şekilde Bakanlığa gönderir. (7) Laboratuvarda raporlar ve kayıtlar en az yirmi yıl, elektronik kayıtlar yedekleme ile birlikte süresiz, örnekler ve lamlar bozulmayacak şekilde uygun şartlarda sonuç raporlanıncaya kadar muhafaza edilir. Ancak tıbbi patoloji laboratuvarlarında örnekleme yapılan dokular rapor çıktıktan sonra en az bir ay, lamlar en az on yıl, bloklar ise en az yirmi yıl muhafaza edilir. (8) Uzmanlık eğitimi verilen kurumlarda uzmanlık eğitimi ile ilgili tüm laboratuvar alanları rutin çalışmalar yanında eğitim ve araştırma amacı ile de kullanılır ve kullandırılır. (9) Laborutavarda tutulan kayıt defterleri yedekleme ve tekrar erişime açık olmak şartıyla bilgisayar ortamında da tutulabilir. Laboratuvarların fiziki şartları MADDE 15 – (1) Laboratuvarın yerleşim planı; laboratuvar teknik alanı, destek alanları ve ofis alanları olmak üzere üç temel kısımdan oluşur. Bu alanlar aşağıda tanımlanmıştır. a) Laboratuvar teknik alanı; laboratuvar hizmetlerinin gerçekleştirilmesinde gerekli bütün donanım ve uygun şartların sağlandığı ve çalışma aşamalarının yürütüldüğü yerdir. b) Destek laboratuvar alanları; en az bir örnek kabul birimi, örnek alma odası ve malzeme depolanması için uygun alandan oluşur. Bu alanlar, laboratuvar teknik alanı ile fonksiyonel bir bütün oluşturacak şekilde düzenlenir. Laboratuvar yerleşim planında aynı anadal laboratuvar alanları bitişik komşuluk düzeninde olacak şekilde yerleştirilir. Kurum/kuruluş bünyesinde olan laboratuvarlarda örnek alma odası poliklinik katında da bulunur. c) Ofis alanları; hasta kabul, bekleme yeri, sekretarya, tuvaletler, uzman odası ve personel dinlenme bölümleri gibi bölümleri içerir. Ofis alanlarındaki bölümler bir bölgede toplanabilir ve ortak kullanılabilirler ancak bu bölümler laboratuvar teknik alanının içinde yer alamazlar. (2) Laboratuvarlar sınıflarına uygun aşağıdaki fiziki şartları yerine getirecek şekilde yapılandırılır: a) Basit hizmet laboratuvarında, teknik alan en az 10 metrekare olmalıdır. Destek laboratuvar alanları ve ofis alanları toplamı en az 10 metrekareden oluşur. b) Referans, ileri düzey ve kapsamlı hizmet laboratuvarında, laboratuvar teknik alanı tıbbi patoloji laboratuvarları hariç olmak üzere; her bir laboratuvar dalının ayrı konumlanması durumunda her biri için en az 30 metrekare, ofis ve destek laboratuvar alanları toplamı ise en az 20 metrekare olmalıdır. Laboratuvar merkezlerinde laboratuvar teknik alanı en az 40 metrekare, ofis ve destek laboratuvar alanları toplamı ise 30 metrekare olmalıdır. Tıbbi patoloji laboratuvarları için ise, laboratuvar teknik alanı en az 50 metrekare, ofis ve destek alanları en az 30 metrekare olmalıdır. Tıbbi patoloji dahil referans, ileri düzey veya kapsamlı hizmet laboratuvarların teknik alanlarının toplamı 100 metrekareyi aşması durumunda, bu alanın en az % 30’u kadar ofis ve destek laboratuvar alanları tahsis edilir. 1) Tıbbi mikrobiyoloji laboratuvarları besiyerini kendisi yapması durumunda ayrıca besiyeri hazırlama odası bulundurur. 2) Tıbbi biyokimya laboratuvarlarında; idrar ve gaita testleri için havalandırması olan en az 7.5 metrekare ayrı bir oda/alanda veya çeker ocak içersinde çalışılır. 3) Tıbbi patoloji laboratuvar teknik alanı; boyama/özel işlem odası, doktor mikroskopi inceleme odası/alanı, arşivlenme odası ve kimyasal buhar veya gazlar için özel olarak havalandırma sistemi bulunan makroskopi odasından oluşur. 4) Laboratuvarda özel ve ileri teknik gerektiren testler için gerekmesi durumunda uygun alan ayrılır. (3) Laboratuvar ayrıca aşağıdaki şartlara sahiptir; a) Laboratuvarın, lavabo ve tuvaletleri engelli kullanımına uygun olarak düzenlenir. b) Laboratuvar, hizmetin sürekliliğini sağlamak üzere gerekli enerji, güç kaynağı, su, iletişim, bilişim gibi ortam destek sistemlerini içerecek şekilde yapılandırılır. c) Laboratuvar teknik alanların kapıları, giriş ve acil durumda çıkışa engel olmayacak şekilde otomatik kayar kapı veya dışarı doğru açılabilen ve şifreli veya yetkisiz girişlere engel olacak şekilde düzenlenir. (4) Laboratuvarda uygun bir aydınlatma sağlanır ve çalışan sağlığını olumsuz etkileyen gürültü düzeyini aşmayacak önlemler alınır. (5) Tüberküloz tanısı yapan laboratuvarlar aşağıdaki şartları taşır; a) Doğrudan mikroskopi yöntemiyle Aside Dirençli Boyama yapan basit hizmet laboratuvarı için sadece bu amaca yönelik olmak üzere en az 10 metrekarelik ayrı teknik bir alan, b) Tıbbi mikrobiyoloji laboratuvarında, örnek işleme, mikroskopi, kültür, tür tanımlama ve ilaç duyarlılık testleri çalışan tüberküloz tanısı yapan laboratuvarlar için bu amaca yönelik en az 20 metrekarelik negatif basınçlı ayrı bir alan, c) Sadece örnek işleme, mikroskopi, kültür, tür tanımlama ve ilaç duyarlılık testleri çalışan tüberküloz tanısı yapan laboratuvarlarda en az 20 metrekare negatif basınçlı ayrı bir teknik alan ile en az 20 metrekare ofis ve/veya destek laboratuvar alanlar. (6) Tüberküloz tanısı yapan laboratuvarlara ilişkin bu Yönetmelikte tanımlanmayan diğer şartlar Bakanlıkça belirlenir. DÖRDÜNCÜ BÖLÜM Laboratuvar Uzman Kadrosu ve Çalışma Şekli, Laboratuvar Personeli, Personelin Görevlendirilmesi ile Görev ve Sorumlulukları, Eğitimi ve Değerlendirilmesi Laboratuvar uzman kadrosu ve çalışma şekli MADDE 16 – (1) Laboratuvarın uzman kadroları aşağıdaki hususlar dikkate alınarak belirlenir ve planlamaya uygun olarak ilan edilir: a) Laboratuvarın hizmet sunmasına izin verilen her uzmanlık dalı için en az bir uzman kadrosu bulunur. b) Laboratuvarın kadrosunda çalışan uzmanlar, laboratuvarın bulunduğu il içinde ve 11/4/1928 tarihli ve 1219 sayılı Tababet ve Şuabatı Sanatlarının Tarzı İcrasına Dair Kanunun 12 nci maddesine uygun olması ve hizmetin nitelikli sürdürülmesi kaydıyla en fazla iki laboratuvarda çalışabilirler. c) Bakanlığın Eğitim ve Araştırma Hastanelerinde her bir ana dal için asgari olmak üzere dört laboratuvar uzman kadrosu bulunur. ç) Bakanlığa bağlı diğer hastanelerde standart kadro ve personel dağılım cetvelinde belirtilen kapasiteye göre kadrolar belirlenir. d) Diğer kamu kurum veya kuruluş hastanelerine ise her dal için en az birer uzman kadrosu verilir. Laboratuvar personeli MADDE 17 – (1) Laboratuvarda, en az aşağıdaki sayı ve özelliklere sahip personel bulundurulur. a) Basit hizmet laboratuvarında Ek-1’de belirtilen en az bir teknik personel bulundurulur. b) Kapsamlı hizmet laboratuvarında her bir laboratuvar dalı için, ilgili uzmanın yanında Ek-1’de belirtilen en az bir teknik personel ile bir yardımcı personel ve/veya sekreter bulundurulur. Tıbbi patoloji laboratuvarında otopsi yapılması durumunda ayrıca bir teknisyen veya tekniker bulundurulur. Laboratuvar merkezinde yardımcı personel ve/veya sekreter ortak çalışabilir. c) İleri düzey hizmet laboratuvarında her bir laboratuvar dalı için en az iki uzman yanında Ek-1’de belirtilen en az üç teknik personel ile bir yardımcı personel ve sekreter bulundurulur. ç) Referans hizmet laboratuvarında son iki yıl laboratuvarda fiilen çalışan en az bir uzman ve Ek-1’de belirtilen en az iki teknik personel bulundurulur. Laboratuvar personelinin görevlendirilmesi ile görev ve sorumlulukları MADDE 18 – (1) Tıbbi mikrobiyoloji laboratuvarlarında enfeksiyon hastalıkları ve klinik mikrobiyoloji uzmanları ve/veya tıbbi mikrobiyoloji uzmanları, tıbbi biyokimya laboratuvarlarında tıbbi biyokimya uzmanları ve tıbbi patoloji laboratuvarlarında tıbbi patoloji uzmanları çalışmaya yetkilidir. (2) Laboratuvarda, ruhsatta belirtilen uzmanlık alanına uygun olarak aşağıda belirtilen nitelikte personel görevlendirilir: a) Laboratuvar sorumlu uzmanı; laboratuvar merkezlerinde birim sorumluları arasından laboratuvarlar arası koordinasyonu sağlamak ve aşağıda belirtilen hususları yerine getirmek üzere Başhekim tarafından görevlendirilir. Ancak üniversitelerin laboratuvar merkezlerinde laboratuvar sorumlu uzmanı başhekimin teklifi ile rektör tarafından görevlendirilir. Yalnızca bir birim sorumlusunun bulunduğu laboratuvarlarda birim sorumlusu aynı zamanda laboratuvar sorumlusu olarak görev yapar. 1) Kurum veya kuruluştaki laboratuvar birim sorumlularından oluşturulan bir komisyon marifetiyle laboratuvarların ihtiyaçlarının tespitini, laboratuvar testlerinin maliyet etkin yürütülmesini ve HKS’ye uygun çalışılmasını sağlamak, 2) İlgili uzmanlık eğitim içeriğini dikkate alarak, kurum veya kuruluş bünyesindeki laboratuvarlarda farklı ana bilim dalı/yan dallarında hangi testlerin yapılacağını belirlemek, 3) Laboratuvarda çalışan uzmanların değişmesi, ayrılması veya işe başlaması durumunda bu değişikliği beş iş günü içinde Müdürlüğe bildirmek. b) Laboratuvar birim sorumlusu; birden fazla uzmanının bulunduğu dallarda, bu uzmanlardan birisi başhekim tarafından birim sorumlusu olarak görevlendirilir. Eğitim araştırma hastaneleri ve üniversitelerde ise, laboratuvar birim sorumlu uzmanlığı görevi ilgili anabilim dalı başkanı veya klinik şefi tarafından veya görevlendireceği uzman tarafından yürütülür. Birim sorumlu uzmanı aşağıdaki görevleri yerine getirir: 1) Laboratuvar güvenliği de dâhil, laboratuvarın yönetimi ve tüm faaliyetleri ile bu Yönetmeliğe, ilgili mevzuata ve kalite yönetim sistemine göre yürütülmesini ve bu iş ve işlemlerin yürütülmesi için uygun kişilerin görevlendirilmesini yapar. 2) Laboratuvarın ihtiyaçlarının tespitini, sonuçlarının güvenilirliği ve izlenebilirliği ile laboratuvarda HKS’nin yerine getirilmesini sağlar. 3) İç kalite kontrol ve dış kalite değerlendirme sonuçlarının uygun periyotlarda yapılması ve değerlendirilmesi ile gerekli düzeltici ve önleyici faaliyetlerinin yapılması veya yaptırılmasından sorumludur. 4) Testlerin zamanında yapılması ve sonuçlarının kayıt altına alınmasını ve hizmet talebinde bulunan kişi/kurum/kuruluşa zamanında rapor edilmesini sağlar. 5) Laboratuvar personelinin tüm faaliyetlerini izler, eğitim almalarını sağlar ve yeterliliklerini değerlendirir. 6) Teknik personele iç kalite kontrol, dış kalite kontrol değerlendirme ve HKS konusunda eğitim verir. 7) Uzmanlık eğitimi veren kurum/kuruluşlarda eğitimle ilgili sorumluluklarını varsa eğitim sorumlusu ile birlikte yerine getirir. c) Eğitim ve araştırma hastanelerinde başhekimlik/dekanlık tarafından eğitim faaliyetlerini yürütmek üzere bir eğitim sorumlusu atanabilir. ç) Laboratuvar, ihtiyacına uygun ve kadrosunda olmak kaydıyla diğer uzman/uzmanlar bulundurabilir. Bu uzmanlar birim sorumlu uzmanının koordinasyonunda personel eğitimi/uzmanlık eğitimi de dâhil olmak üzere laboratuvardaki tüm faaliyetlerin yürütülmesinden sorumludurlar. Gerektiğinde testi isteyen hekime test süreci, sonuçları, yorumlanması ve ileri tetkik yapılması ile ilgili bilgi ve danışmanlık hizmeti verirler. d) Laboratuvar ihtiyacına uygun olarak aşağıda belirtilen görevleri yerine getirmek üzere Ek-1’de belirtilen teknik personel çalıştırabilir: 1) Gerektiğinde laboratuvara başvuran kişilerden usulüne uygun olarak klinik örnekleri almak, teste uygun hale getirmek üzere hazırlamak, 2) Laboratuvar ortamını ve cihazları, analizin preanalitik ve analitik evrelerine hazır hale getirmek, 3) Laboratuvarın görev kapsamındaki işleri ve testleri yazılı düzenlemelere göre yapmak ve değerlendirilmek üzere uzmana sunmak, 4) Dekontaminasyon işlemlerini ve atıkların güvenli şekilde bertaraf edilmesini sağlamak, 5) Uzman tarafından verilen diğer görevleri yerine getirmek. e) Destek hizmetler ve/veya idari işler personeli; laboratuvarda genel temizlik, örneklerin taşınması ve diğer ofis işlerinin yerine getirilmesinden sorumludurlar. Ayrıca uzman tarafından verilen benzeri diğer görevleri yerine getirmekle yükümlüdürler. (3) Hastalık, ölüm ve doğal felaket gibi mücbir sebepler dışında bir yılda iki aydan az olmak şartıyla sorumlu uzmanın veya birim sorumlusunun görevinden ayrılması durumunda, aynı nitelikleri taşıyan bir uzman, kurum/kuruluş yetkilisi tarafından vekâleten görevlendirilir. Bu durum beş iş günü içinde Müdürlüğe bildirilir. İki aydan uzun süre sorumlu uzmanın/birim sorumlusunun mücbir sebeplerle görevine dönmemesi halinde bu süre altı aya kadar uzatılabilir. Personelin eğitimi ve değerlendirilmesi MADDE 19 – (1) Laboratuvar sorumlu uzmanı laboratuvar personelinin mesleki becerilerini geliştirmek, teknolojik gelişmelerden haberdar olmaları ve laboratuvar hizmet standartlarını yerine getirmelerini sağlamak üzere, yılda en az bir hizmet içi eğitim düzenler veya laboratuvar personelinin düzenlenen en az bir hizmet içi eğitime katılımını sağlar. (2) Laboratuvar personelinin aldığı eğitimin değerlendirilmesi; personelin kendi görev ve sorumluluk alanı ile ilgili konularda, laboratuvarın HKS’de belirlenen ölçütleri sağlamasına olan katkısı ve laboratuvardaki sorumluluklarını yerine getirmesine göre yapılır ve kayıt altına alınır. BEŞİNCİ BÖLÜM Laboratuvarların Planlaması ve Yatırım İzni Laboratuvarların planlanması ve yatırım izni MADDE 20 – (1) Özel laboratuvar açmak isteyenler ruhsat başvurusunda bulunmadan önce Bakanlıkça belirlenen planlamaya ve aşağıdaki şartlara uygun olarak yatırım izni alırlar. a) Bakanlıkça yeni açılmasına izin verilecek laboratuvarlara ilişkin yatırım listesi, her yıl Ekim ayında Bakanlık internet sitesinde ilan edilir. İlanda, istenecek belgeler, laboratuvarda bulundurulması gereken uzmanlık dalları ve sınıfı belirtilir. Laboratuvar açmak isteyenler, Kasım ayı sonuna kadar Bakanlığa başvurur. Kasım ayına kadar başvuru olmaması halinde, takip eden yılın Ağustos ayına kadar başvuruda bulunulabilir. b) Başvurular ilgili yılın Kasım ayının sonuna kadar ya da başvuru olmaması halinde izleyen yılın Ağustos ayının sonuna kadar toplanır ve takip eden ayın ilk haftasında birden fazla istekli olması halinde aralarında noter huzurunda kura çekilerek hak sahibi belirlenir; tek istekli bulunması halinde o kişiye hak sahibi olduğu bildirilir. c)Yatırım izni için başvurularda aşağıdaki belgelerin aslı veya müdürlük tarafından onaylanmış sureti istenir: 1) Laboratuvar açmak için ekonomik ve mali yeterliliğinin olduğunu gösteren belgeler, 2) Hak sahipliğinin iki yıl başkasına devredilmeyeceğine dair taahhütname, 3) Laboratuvar açtıktan sonra işletme hakkının bir yıl süreyle başkasına devredilmeyeceğine dair taahhütname, 4) (a) bendi gereği yapılacak ilanda belirtilen diğer belgeler. ç) Yatırım izni verilen yatırımcı, bir yıl içinde laboratuvar ruhsatnamesini alarak faaliyetine başlar. Bu süre içinde yatırıma başlamış ancak ruhsatname alamamış yatırımcıya müracaat etmesi halinde altı ay ek süre verilebilir. Bu sürede de ruhsat alarak faaliyete başlayamayan yatırımcının yatırım izni iptal edilir. d) Yeni açılan hastanelerin ruhsatlandırılmasına esas olan laboratuvara hastane planlaması ile birlikte Bakanlıkça izin verilir. (2) Gerekli hallerde yapısı ve işlevi Bakanlık tarafından belirlenen ulusal laboratuvar ağları oluşturulabilir. ALTINCI BÖLÜM Başvuru ve Başvurunun İncelenmesi, Ruhsatlandırma, Referans Hizmet Laboratuvarı Başvurusu ve Belgelendirilmesi, Ruhsat Yenileme, Faaliyetin Geçici Olarak Kısmen Durdurulması, Ruhsatın Askıya Alınması ve İptali ile Çalışan Uzman Değişikliğinin İşlenmesi Başvuru ve başvurunun incelenmesi MADDE 21 – (1) Yeni laboratuvar açacaklar veya taşınma/birleşme gibi nedenlerle yeni bir fiziki alanda yeniden ruhsatlandırma gerektiren durumlarda yatırım izni verilen yatırımcı ile kamu sağlık kurum/kuruluş yöneticisi, aşağıda belirtilen belgelerin olduğu dosya ile Müdürlüğe başvurur. Dosya, dizi pusulası ile kabul edilir. Dosyada; a) Ek-3’e uygun olarak doldurulan ruhsat başvuru dilekçesi, b) Bu Yönetmelikte belirtilen şartlara uygunluğunun yazılı beyanı ve laboratuvarın faaliyette bulunacağı yerin adresi, yerleşim planı ve mimar onaylı ölçekli krokisi, c) Laboratuvardaki kimyasal maddelerin, araç, gereç, donanımın ve uzmanlık alanına uygun olarak yapılan test listesi, ç) Her yıl Maliye Bakanlığı tarafından tespit edilen miktarlar üzerinden yatırılacak ruhsat harç makbuzunun aslı veya Müdürlükçe onaylı örneği, bulunur. (2) Başvuru; Müdürlüğe hazırlanan bir dosya ile ve/veya SKYS’ye kaydedilerek yapılır. Başvuru SKYS üzerinden de yapılmış ise geçici kurum kodu ve ruhsat işlemlerinin aşamalarını izleyebilmek ve yazışmaya gerek olmaksızın eksiklik ve uygunsuzlukları bildirmek için müracaat sahibine geçici şifre düzenlenir ve imza karşılığı verilir. Başvuru, Müdürlük tarafından bu Yönetmelik hükümlerine uygun olup olmadığı Ek-4 ile Ek-5’e göre değerlendirilir ve başvuru tarihinden itibaren yedi iş günü içinde incelenir. Dosyada eksiklik ve/veya uygunsuzluk tespit edilir ise, başvuru sahibine eksiklikler on iş günü içinde bildirilir. (3) Dosyada eksiklik ve/veya uygunsuzluk olmaması halinde denetim ekibi tarafından onbeş iş günü içinde laboratuvar yerinde denetlenir. Eksiklik olmayan dosya Bakanlığa gönderilir. (4) Eksiklik ve/veya uygunsuzluk bulunması halinde, bunlar beş iş günü içinde ilgilisine geri bildirilir ve eksikliklerin giderildiğine dair müracaat üzerine ilgili inceleme ekibi tarafından onbeş iş günü içinde tekrar yerinde denetim yapılır. Eksikliklerin giderilmiş olduğunun tespit edilmesi halinde dosya Bakanlığa iletilir. Ruhsatlandırma MADDE 22 – (1) Bakanlığa intikal ettirilen başvuru, Genel Müdürlükçe dosya ve/veya SKYS kaydı üzerinden incelenir. Dosyada eksiklik ve/veya uygunsuzluk varsa eksiklikler SKYS üzerinden onbeş gün içinde veya yazışmayla onbeş iş günü içinde giderilir. Bu süre sonunda eksikliği giderilmeyen dosya Müdürlüğe iade edilir. (2) Genel Müdürlük başvuruyu Ek-5’te belirtilen ruhsat denetimi hizmet kalite ölçütleri ile bu Yönetmeliğin ilgili hükümlerine uygunluğu açısından değerlendirir. (3) Genel Müdürlük eksiklik ve/veya uygunsuzluğu bulunmayan laboratuvara en fazla otuz gün içersinde Ek-6’ya göre ruhsatname düzenler ve Müdürlüğe gönderir. (4) Bakanlık, laboratuvarlara ruhsatname düzenleme yetkisini gerekli görmesi halinde valiliklere devredebilir. (5) Başvuru dosyası ve düzenlenen belgelerin bir örneği Müdürlükte muhafaza edilir. Düzenlenen ruhsatın aslı sorumlu uzmana imza karşılığında verilir. (6) Ruhsatname alan laboratuvar altı ay içerisinde faaliyete geçmek zorundadır. Bu süre içerisinde faaliyete geçmeyen laboratuvarın ruhsatı Bakanlıkça iptal edilir ve planlama hükümleri uygulanır. Referans hizmet laboratuvarı başvurusu ve belgelendirilmesi MADDE 23 – (1) Referans hizmet laboratuvarı olarak hizmet sunabilmek için 12 nci maddede verilen ölçütleri karşıladığını belirten bir dosya ile Genel Müdürlüğe başvurulur. Başvuru, Genel Müdürlük tarafından dosya üzerinden on iş günü içinde incelenir. İncelenen dosya belgelerinde eksiklik varsa Referans hizmet laboratuvarı olma talebinde bulunan ilgililere bildirilir. Başvuru dosyasında eksiklik yoksa, başvuru Başkanlığa gönderilir. Başkanlık dosyayı üç ay içinde komisyonda görüşerek raporunu Genel Müdürlüğe bildirir. (2) Genel Müdürlükçe uygun bulunanlara Ek-7’ye göre bir ay içerisinde Referans hizmet laboratuvarı belgesi düzenlenir. (3) İhtiyaç durumunda aynı test için birden fazla referans hizmet laboratuvarı belirlenebilir. Başkanlık bünyesinde yer almayan testlerle ilgili olarak Bakanlık, kamu kurum veya kuruluş bünyesindeki referans hizmet laboratuvarından birisini Ulusal Referans Laboratuvarı olarak belirler. Referans hizmet laboratuvarı/laboratuvarları veri gönderme, ilgili ulusal ağlara ve kalite kontrol çalışmalarına katılma konusunda Ulusal Referans Laboratuvarına karşı sorumludur. Ruhsat yenileme MADDE 24 – (1) Aşağıdaki hususlardan herhangi birindeki değişiklik durumunda ruhsat yenilenir: a) Sorumlu uzman, b) Ruhsata esas kadrolu uzman, c) Laboratuvarın faaliyette bulunduğu uzmanlık dalı, ç) Adres/fiziki mekan değişikliği, d) Kurum/kuruluş veya laboratuvar adı. (2) Uzmanlık dalı, adres/fiziki mekân, kurum/kuruluş veya laboratuvar adı değişikliği yapacak laboratuvar, değişikliklerle ilgili dosya hazırlayarak en az onbeş gün öncesinde Müdürlüğe başvurur. (3) Laboratuvar sorumluluğunu yürüten uzmanın ayrılması ve yerine başka bir uzmanın başlaması durumunu en az onbeş gün öncesinde Ek-3’e uygun ruhsat başvuru dilekçesi ile birlikte Bakanlığa bildirilir. (4) Laboratuvar ruhsatının herhangi bir nedenle askıya alınması halinde, buna neden olan durum altı ay içerisinde düzeltilmemişse ruhsatın yenilenmesi gerekir. Faaliyetin geçici olarak kısmen durdurulması MADDE 25 – (1) Laboratuvarda uygulanan testlerle ilgili olarak, iç kalite kontrol veya dış kalite değerlendirilmesi sonucunda, varsa Bakanlık tarafından belirlenen uygunsuzlukların giderilmediğinin veya bu testin/testlerin hizmet alımıyla karşılanmadığının tespit edilmesi durumunda, bu test veya testlere yönelik faaliyetler geçici olarak kısmen durdurulur. Bu süre altı ayı geçemez. Ancak laboratuvar kendi isteği ile; kapsamı değişmemek ve Müdürlüğe bildirmek şartıyla bu test/testleri yapmaktan tamamen vazgeçebilir. Ruhsatın askıya alınması ve iptali MADDE 26 – (1) Laboratuvarın ruhsatının askıya alındığı veya iptal edildiği durumlar aşağıda belirtilmiştir: a) Faaliyeti geçici olarak kısmen durdurulan ve 25 inci maddede belirtilen süre sonunda eksiklikleri hâlâ devam eden laboratuvarın ruhsatı en fazla altı ay süreyle askıya alınır. Bu süre sonunda da eksiklikleri tamamlamayan laboratuvarın ruhsatı iptal edilir. b) Laboratuvar faaliyetlerine ara vermek istediğinde en fazla altı ay süre ile ruhsat askıya alınır. Bu süre içinde laboratuvar, faaliyete başlamak istediğini belirten bir dilekçe ile Müdürlüğe başvurmamış ise ruhsat iptal edilir. c) Faaliyeti geçici olarak kısmen durdurulduğu halde faaliyeti durdurulan testin çalışmasına devam eden veya ruhsatın askıya alındığı halde faaliyetine devam eden laboratuvarın ruhsatı iptal edilir. ç) Laboratuvarın faaliyetine son verilmek istendiğinde, Müdürlüğe ekinde ruhsatın yer aldığı bir dilekçe ile başvurulur ve Müdürlükçe ruhsat iptal edilir. d) Bakanlık tarafından belirlenen verileri düzenli olarak Bakanlığa göndermeyen laboratuvarlar üçer ay ara ile iki kez uyarılır. Altı aylık süre sonunda veri göndermeyen laboratuvarın ruhsatı iptal edilir. e) Ruhsatın tanzim edilmesinden itibaren altı ay içinde faaliyete geçmeyen laboratuvarın ruhsatnamesi iptal edilir. f) Değerlendirmelerde, laboratuvarda bulunduracağını belirttiği, kimyasal maddeler, araç, gereç, donanımında eksikliği tespit edilen laboratuvara, bunları tamamlaması için en fazla üç ay süre verilir ve bu süre içinde eksikliklerini tamamlayamayan laboratuvarın ruhsatnamesi askıya alınır. Bu durumun üç ay daha devamı halinde ruhsat iptal edilir. g) Ek-8’e göre yıllık değerlendirme sonunda %50 -%70 arasında HKS puanı alan laboratuvarlardan tekrar değerlendirilenlerin %70 puana ulaşamayanlarının ruhsatları altı ay süre ile askıya alınır. Bu süre sonunda %70’e ulaşamayanların ruhsatı iptal edilir. ğ)Yıllık değerlendirmelerde laboratuvarın fiziki şartlarının ruhsat için belirtilen asgari ölçütleri karşılamayacak şekilde değişiklik yapıldığının tespiti halinde ruhsatı askıya alınarak, uygunluk sağlanmasına yönelik en fazla altı ay süre tanınır. Bu süre sonunda uygunsuzluğun devamı durumunda ruhsatı iptal edilir. h) Ek-8’e göre değerlendirilen laboratuvarlardan %50 HKS puanına ulaşamayanların ruhsatları altı ay süreyle askıya alınır. Bu süre sonunda yapılan değerlendirme sonucuna göre %50 veya üzerinde puan alamayan laboratuvarın ruhsatı iptal edilir. Çalışan uzman değişikliğinin işlenmesi MADDE 27 – (1) Çalışan uzman değişikliği durumunda laboratuvar SKYS kaydının yapılması için müdürlüğe başvurur. Müdürlük SKYS kaydını yapar ve bir çıktısını ilgilisine verir. Çalışan uzmanların diploma aslı veya onaylı suretleri laboratuvarda görülebilecek yerde asılır. YEDİNCİ BÖLÜM Denetim ve Değerlendirme Ekibi, Laboratuvarın Değerlendirilmesi ve Yaptırımlar Denetim ve değerlendirme ekibi MADDE 28 – (1) Ruhsata esas denetimlerde denetim ekibi, ilin sağlık müdürünün görevlendireceği ilgili müdür yardımcısı veya şube müdürü, denetlenen laboratuvar dallarında en az birer uzman ile HKS eğitimi almış olan bir üye olmak üzere en az üç kişiden oluşur. Tüm HKS değerlendirmelerinde il performans ve kalite koordinatörlüklerinin sorumluluğunda laboratuvar dallarından en az birer uzman ile HKS eğitimi almış olan iki üye olmak üzere en az üç kişiden oluşan değerlendirme ekibi görev alır. Genel Müdürlük lüzumu halinde benzer niteliklere sahip il dışı denetim veya değerlendirme ekibi görevlendirebilir. Denetim ve değerlendirme ekibindeki üyeler kendi çalıştığı laboratuvarın denetim ve değerlendirmesinde yer alamazlar. Laboratuvarın değerlendirilmesi MADDE 29 – (1) Laboratuvar, Ek-8’e ve bu Yönetmeliğin diğer hükümlerine göre en az yılda bir kez değerlendirilir. Bakanlık HKS puan durumlarına uygun olarak aşağıdaki sürelerde laboratuvarı ayrıca değerlendirir veya değerlendirilmesini sağlar: a) %70-%90 arasında puan alanlar altı ay sonunda, b) %50 -%70 arasında puan alanlar üç ay sonunda, tekrar değerlendirilir. (2) Değerlendirme ekibi tarafından düzenlenen rapor en fazla beş iş günü içinde Müdürlük aracılığı ile Genel Müdürlüğe iletilir. Müdürlük, değerlendirme raporunda yer alan hususlara veya işlemlere yönelik beş iş günü içinde ilgili laboratuvarı yazılı olarak bilgilendirir. Yaptırımlar MADDE 30 – (1) Laboratuvarlar bu Yönetmelik hükümlerine aykırı olarak açılamaz ve işletilemez. (2) Laboratuvar, ruhsat başvurusunda bulunduğu sorumlu uzman ve yer/adres değişikliklerini Müdürlüğün bilgisi ve Bakanlığın onayı olmaksızın yapamaz. (3) Laboratuvar, tıbbi üretim, pazarlama firmalarıyla ortaklıklar kuramaz, çıkar birlikteliği oluşturamaz. (4) Laboratuvar açma yetkisine sahip olmayıp da, laboratuvar açanlar veya izinle açmış oldukları laboratuvarları yetkisi olmayanlara terk edenler ile laboratuvarın usulüne uygun olmayan yöntemlerle çalıştığı ve bu Yönetmelik hükümlerine uymadığı tespit edilenler hakkında 992 sayılı Kanunun 9 uncu ve 10 uncu maddelerindeki hükümler uygulanır. (5) Bu Yönetmeliğin ilgili hükümlerine uygun çalışmayan referans hizmet laboratuvarları Bakanlık tarafından eksikleri hususunda yazılı olarak uyarılır ve üç ay süre tanınır. Bu süre içerisinde eksikliklerini gidermeyen referans hizmet laboratuvarının belgesi iptal edilir. (6) Faaliyetleri geçici olarak kısmen durdurulan testi çalışmaya devam edenler ile ruhsatsız veya ruhsatı askıda iken faaliyet gösteren laboratuvarlar iki yıl süresince yeniden ruhsat başvurusunda bulunamaz. (7) Bakanlığa veri göndermediği için ruhsatı iptal edilen laboratuvarlar iptal tarihi itibariyle altı ay süresince yeniden ruhsatlandırılmaz. (8) Sadece araştırma amaçlı üretilmiş test ve kitler laboratuvarda tanı amacıyla kullanılamaz. SEKİZİNCİ BÖLÜM Laboratuvarın Kalite Kontrol ve Değerlendirme Sistemi, Güvenliği, Atık Yönetimi, Bilgi Sistemiyle Verilerin Korunması ve Etik İlkeler Laboratuvarın kalite kontrol ve değerlendirme sistemi MADDE 31 – (1) Laboratuvarlarda Bakanlık tarafından hazırlanan hizmet kalite standartları gereklerini sağlamak üzere bir kalite yönetim sistemi kurulur. (2) Laboratuvarda rapor edilen testler için uygun bir iç kalite kontrol, test doğrulama ve/veya geçerli kılma programı uygulanır ve kayıt altına alınır. (3) Laboratuvar Bakanlık tarafından belirlenen testler için dış kalite değerlendirme programlarına katılır ve bu katılım belgelenerek sonuçları kayıt altına alınır. (4) Hizmet alımı ile diğer bir laboratuvara hizmet sunan laboratuvarlar, Bakanlık tarafından belirlenen testlerle ilgili katıldıkları dış kalite değerlendirme programına katılımlarına ait belge ve sonuçlarını hizmeti alan laboratuvara bildirirler. (5) Laboratuvar; test sonuçlarının güvenilirliğini sağlamak amacıyla kalite kontrol ve değerlendirme sistemi kapsamında yöntemlerini ve faaliyetlerini gözden geçirmek ve gerekli önemleri almak zorundadır. (6) İç kalite kontrol ile dış kalite değerlendirme sonuçları laboratuvarda en az beş yıl muhafaza edilir. Laboratuvar güvenliği MADDE 32 – (1) Laboratuvarın biyogüvenlik düzeyi TS EN 12128 standardında belirtilen en az “fiziksel korunma düzeyi 2” şartlarına uygun olmalıdır. Ancak, Ek-9’da yer alan mikroorganizmalardan risk grubu 3 olanlarıyla çalışan tıbbi mikrobiyoloji laboratuvarları “fiziksel korunma düzeyi 3” , risk grubu 4 olanlarıyla çalışan tıbbi mikrobiyoloji laboratuvarları ise “fiziksel korunma düzeyi 4” şartlarına uygun olmalıdır. (2) Korunmaya yönelik alınan tedbirler; laboratuvar personelinin ve yakın çevresinin kimyasal radyolojik veya enfeksiyöz ajana maruz kalma olasılığını azaltıcı veya önleyici olmalıdır. (3) Laboratuvarda ilk yardım kiti ve mevcut tehlikelere uygun yangın söndürücü ile alev söndürme örtüsü güvenlik donanımı bulundurulur. (4) Laboratuvarda risklere uygun dekontaminasyon ve/veya nötralizasyon kiti bulundurulur ve etkin kullanımı için önlemler alınır. (5) Laboratuvarda kimyasal, radyoaktif ve/veya potansiyel enfeksiyöz riskten korunmak için personele yeterli kişisel koruyucu donanım ve diğer gerekli güvenlik donanımları temin edilir ve kullanılması sağlanır. (6) Personele, işindeki potansiyel tehlikeler bildirilir, güvenli laboratuvar teknikleri eğitimi verilir ve aldığı eğitimler kayıt altına alınır. Personelin, çalıştığı örnekler veya testlerden dolayı aşı ile önlenebilir hastalıklara neden olan enfeksiyöz etkenlere maruziyet riski ile karşı karşıya ise bu personelin aşılanması sağlanır. (7) Laboratuvar teknik alanında el yıkama için lavabo ile acil duş ve göz yıkama işlevi görecek ünite bulunur. (8) Laboratuvarda kendine özgü ve personelinin kolayca erişebileceği bir güvenlik dokümanı oluşturulur. Kullanılan kimyasalların ürün güvenlik bilgi formları temin edilir. (9) Laboratuvar içerisinde bulunan tehlike ve risklere ilişkin olarak, giriş kapısı ile gerekli olduğu durumlarda cihaz, donanım veya aygıt üzerine ilgili işaretleme veya etiketleme yapılır. (10) Laboratuvarda uygun sıklıkta hava değişimi sağlanır. Bu değişim kimyasal veya toksik dumanların veya enfeksiyöz ajanların yayılmasını engelleyecek şekildedir. (11) Laboratuvara giriş sınırlaması uygulanır. Laboratuvarda biyolojik ajanların, örneklerin, ilaçların, kimyasalların ve hastalara ait bilgilerin yanlış kullanılması, tahrip edilmesi ve çalınma tehlikesine karşı gerekli önlemler alınır. (12) Laboratuvarda korunma amacıyla kurulu cihazların ve donanımların ait oldukları standartlara uygun olarak düzenli bakım ve kontrolleri yapılır. (13) Laboratuvarda giriş ve çıkış noktaları ile varsa yangın çıkışları uygun şekilde işaretlenir. Laboratuvar güvenliği ile ilgili tüm işaretlemeler ulusal veya uluslararası kabul gören simgeler kullanılarak yapılır. (14) Tıbbı atıklar laboratuvarın biyogüvenlik düzeyine uygun olarak dekontamine edilir. Laboratuvar atık yönetimi MADDE 33 – (1) Laboratuvara ait tıbbi atıklar ile ilgili işlemler, 22/7/2005 tarihli ve 25883 sayılı Resmî Gazete’de yayımlanan Tıbbî Atıkların Kontrolü Yönetmeliğine uygun olarak yürütülür. Laboratuvar bilgi sistemiyle verilerin korunması MADDE 34 – (1) Laboratuvarda test sonuçları ve kişisel verilerin mevzuata uygun bir şekilde gizliliğini ve güvenliğini sağlayacak bilgi sistemi kurulur ve işletilir. Etik ilkeler MADDE 35 – (1) Laboratuvar hizmetleri etik kurallara ve kanıta dayalı laboratuvar tıbbı ilkelerine uygun olarak, güncel bilimsel ve teknolojik gerekleri yerine getirecek şekilde yürütülür. (2) Laboratuvarda, toplum sağlığını tehdit eden salgın durumları veya hayatı tehdit eden acil durumlar hariç olmak üzere 1219 sayılı Kanunun 70 inci maddesine göre seçme ve ayırt etme kabiliyeti bulunan hastalarda kendisinin, kısıtlılarda ve çocuk hastalarda ise kanuni temsilcisinin başvurusu/rızası olmaksızın hastadan test için örnek alınamaz ve test yapılamaz. (3) Test için alınan örneklerin araştırmalarda kullanılmasında klinik araştırmalarla ilgili mevzuat hükümleri uygulanır. Ancak toplum sağlığını korumaya yönelik Bakanlıkça yapılacak çalışmalar ile laboratuvarların kalite kontrol analizlerinde bu örnekler kör numune olarak kullanılabilir. DOKUZUNCU BÖLÜM Çeşitli ve Son Hükümler Hizmet alımı MADDE 36 – (1) Kamuya ait laboratuvarlar 7/2/2009 tarihli ve 27134 sayılı Resmî Gazete’de yayımlanan Sağlık Hizmeti Sunan 4734 sayılı Kamu İhale Kanunu Kapsamındaki İdarelerin Teşhis ve Tedaviye Yönelik Olarak Birbirlerinden Yapacakları Mal ve Hizmet Alımlarına İlişkin Yönetmelik uyarınca birbirlerinden veya 4/1/2002 tarihli ve 4734 sayılı Kamu İhale Kanunu uyarınca özel laboratuvarlardan hizmet alabilir. Hizmet alımı kararını kurum/kuruluş yönetimi ile birlikte laboratuvar sorumlusu verir. (2) Hizmetin satın alma yoluyla gördürülmesi halinde, hizmeti alan sağlık kurum/kuruluşu ile hizmeti veren sağlık kurum/kuruluşu, bu uygulamadan ve sonuçlarından müştereken sorumludur. Örneklerin taşınması MADDE 37 – (1) Örnekler 25/9/2010 tarihli ve 27710 sayılı Resmî Gazete’de yayımlanan Enfeksiyöz Madde ile Enfeksiyöz Tanı ve Klinik Örneği Taşıma Yönetmeliğine uygun olarak taşınır. Mevcut ruhsatlı laboratuvarlar GEÇİCİ MADDE 1 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce ilgili mevzuata uygun olarak açılan laboratuvarlar, iki yıl süre ile mevcut durumları ile faaliyete devam edebilirler. Bu süre içinde bu Yönetmelikte belirlenen ölçütlere uygun olarak ruhsat alırlar. Belirtilen süre içinde ruhsat almayan laboratuvarın faaliyetine son verilir. Ruhsat için başvuru yapmış olan laboratuvarlar GEÇİCİ MADDE 2 – (1) Bu Yönetmelik yürürlüğe girmeden önce 15/2/2008 tarihli ve 26788 sayılı Resmî Gazete’de yayımlanan Ayakta Teşhis ve Tedavi Yapılan Özel Sağlık Kuruluşları Hakkında Yönetmeliğe göre ruhsat almak üzere başvuruda bulunmuş olan laboratuvarların ruhsat başvuruları anılan Yönetmelik kapsamında değerlendirilerek sonuçlandırılır. Ancak bu laboratuvarlar da bu Yönetmeliğin yürürlük tarihinden itibaren iki yıl içinde ruhsatlarını yenilemek zorundadır. Mevcut referans laboratuvarları GEÇİCİ MADDE 3 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce Bakanlık tarafından belirlenmiş Referans Hizmet Laboratuvarları bu Yönetmeliğin yürürlüğe girdiği tarihten itibaren iki yıl içinde durumunu bu Yönetmeliğe uygun hale getirmekle yükümlüdürler. Aksi halde referans olma durumları herhangi bir işleme gerek olmaksızın iptal olunur. Laboratuvar uzman kadroları GEÇİCİ MADDE 4 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce, faaliyette bulunan laboratuvarlara bir uzman kadrosu verilir. Birden fazla uzman çalışan laboratuvarlarda 1219 sayılı Kanunun 12 nci maddesine uygun olmak kaydıyla, çalışan diğer uzmanları belgelemeleri halinde bu uzmanlar kadrolara eklenerek laboratuvar kadrosu olarak belirlenir. Yürürlük MADDE 38 – (1) Bu Yönetmelik yayımı tarihinde yürürlüğe girer. Yürütme MADDE 39 – (1) Bu Yönetmelik hükümlerini Refik Saydam Hıfzıssıhha Merkezi Başkanlığının bağlı olduğu Bakan yürütür. TEKNİK PERSONEL a) Tekniker; meslek yüksekokullarının tıbbi laboratuvar veya patoloji laboratuvar teknikleri programlarından mezun olan sağlık teknikeridir. b)Teknisyen; sağlık meslek liselerinin tıbbi laboratuvar programından mezun olan sağlık teknisyenidir. c) Laboratuvarlar hizmet çeşitliliği ve kapasitesine göre; laborant ve astsubay teknikerleri ile veteriner sağlık yüksek okulu (ön lisans), meslek liselerinin kimya, gıda analizi ve su ürünleri analizi bölümü mezunları toplam en az bir yıl süreyle, sorumlu uzmanı bulunan laboratuvar veya laboratuvarlarda staj yaptığını ya da çalıştığını belgelemek kaydıyla laboratuvarda görev alabilirler. Üniversitelerin biyoloji, kimya, gıda, su ürünleri, veteriner hekimlik bölüm veya fakültelerinin mezunları toplam en az üç ay süreyle, sorumlu uzmanı bulunan laboratuvarda staj yaptığını ya da çalıştığını belgelemek kaydıyla tıbbi laboratuvarlarda görev alabilirler. ç) Aside Dirençli Boyama Mikroskopisi yapacak teknik personelin uzmanı bulunan tüberküloz laboratuvarında en az beş gün eğitim aldığını ve başarılı olduğunu belgelendirmesi zorunludur. LABORATUVAR DIŞINDA UYGULANAN TESTLER 1. Muayenehane Mikroskopisi (MM): Hekimin muayenehanesinde tanı koyabilmek için hastadan aldığı örneklere hemen uygulayabildiği mikroskopik işlemler olup aşağıda listelenmiştir; - Lam-lamel arası (ıslak) preparatlar - vajinal, servikal sürüntü veya deri örnekleri dahil - Bütün potasyum hidroksit (KOH) ile hazırlanan preparatlar - Fern test - Vajinal veya servikal mukusun post-coital direkt, kalitatif incelemeleri - Semen analizi; Huhner hariç - sperm motilitesinin varlığı veya yokluğunun tespiti düzeyinde - İdrar analizi: yalnız mikroskopik - Fekal lökosit incelemesi - Eozinofillerin tespiti için nazal smear incelemesi - ARB (Aside Dirençli Boyama, Tüberküloz tanısına yönelik) - Kalın damla ve ince yayma (Sıtma tanısına yönelik) 2. Hasta-Başı Testleri (HBT): Kalıcı ve özel bir alan gerektirmeksizin hastanın bulunduğu yerin yanında veya hemen yakınında yapılabilen testler olup aşağıda listelenmiştir; - Kan glukozu – spesifik olarak ev kullanımı için onaylanmış glukoz izleme cihazlarıyla - Hemoglobin – otomatik olmayan tekniklerle veya doğrudan sonuç veren basit cihazlarla - Protrombin zamanı, aPTT (yarı otomatik) - İdrarda hCG (gebelik testleri) - Alkol tayini–kanda veya tükürükte - Kan gazları

http://www.biyologlar.com/tibbi-laboratuvarlar-yonetmeligi-resmi-gazetede-yayinlandi


Hasta ve sağlık çalışanlarını koruma sempozyumu düzenlendi

Hasta ve sağlık çalışanlarını koruma sempozyumu düzenlendi

Türkiye’deki 450 bin sağlık çalışanını yakından ilgilendiren ‘Hasta ve Çalışan Güvenliği Sempozyumu’ 16 Şubat 2013 Cumartesi günü İstanbul Conrad Oteli’nde gerçekleşti. Avrupa’dan ve Türkiye’den sağlık çalışanlarının güvenliği ile ilgili önemli çalışmalar imza atmış uzmanların katıldığı sempozyumda, her yıl sağlık sektörüne büyük ekonomik zarar veren ve çalışanların yaralanmasına ve hatta ölümle sonuçlanabilecek virüs bulaşmalarına yol açan kazalar ile bu kazaların sebeplerinin nasıl önlenebileceği konuları tartışıldı Sağlık çalışanlarının delici ve kesici aletlerle yaralanmasının ekonomik bedeli de oldukça ağır. Yaralanan sağlık çalışanının enfeksiyon kapıp kapmadığını anlamak için yapılan testlerin masrafı her yıl sağlık sektörüne ciddi ekonomik zarar veriyor. Uzmanlar, bu tür kazaların çalışanların eğitimi ve güvenlikli araç ve cihaz kullanımı ile %80 oranında azaltılabileceği belirtiyor. Sağlık çalışanları için hastanelerdeki en büyük tehditlerden biri iğne batmaları olarak görülüyorken, AB üye ülkelerde 13 Mayıs 2013’de yürürlüğe girecek yasa (2000/54/EC) sağlık kuruluşlarında bu tür yaralanmaları önlemek amacı ile çıkarılacak. ‘Hasta ve Çalışan Güvenliği Sempozyumu’ açılışında sağlık çalışanları için güvenlikli ürün kullanımını düzenleyen AB yasasının uyum sürecini, konunun İtalyan uzmanı Avrupa Biogüvenlik Ağı’nın da bir üyesi Doktor Gabriella de Carli anlattı. Dr. Carli, hastaların ve sağlık çalışanlarının güvenliği ve sağlığının birbiri ile yakından bağlantılı olduğu,ve güvenli çalışma ortamları yaratmak için iğne ve kesici alet yaralanmalarına karşı entegre bir koruma yaklaşımı gerçekleştirilmesi gerektiğine değindi. Bütün sağlık çalışanlarının, doktordan, hasta bakıcıya, labaratuar teknisyeninden, tıp öğrencilerine bu konuda eğitilmelerinin, bilinçlendirilmelerinin ve güvenlikli alet kullanımı konusunda bilgilendirilmelerinin önemini vurguladı. HIV/AIDS, Hepatit B gibi ciddi hastalıkların sağlık personeline bulaşmasını önlemek için sadece eğitim ve bilinçlendirmenin de yeterli olmayacağı, pek çok Avrupa ülkesinde olduğu gibi çalışanların aşılanmasının zorunlu hale getirilmesi ve yeni teknoloji güvenli kapaklı iğne kullanımının yaygınlaştırılması gibi uygulamalar da öneriler arasında. Türk Biyokimya Derneği ve Becton Dickionson firmasının beraber düzenlediği ‘Hasta ve Çalışan Güvenliği Sempozyumu’nda Türkiye’deki Sağlık Kuruluşlarında Güvenlik Kültürü konulu sunumu Selçuk Üniversitesi’nden Emel Filiz yaptı. Sağlık hizmetlerinin güvenliği, tıbbi hatayla karşılaşma oranlarını ve tıbbi hataların sonuçları konularına değinen Emel Filiz, sunduğu istatiksel verilerle konunun önemini belirtti. Ankara Üniversitesi Tıp Fakültesinden Alpay Azap’ın İğne Batma Yaralanmalarına Yaklaşım konulu sunumunuyla sempozyum devam etti. Alpay Azap yaralanmalarda ne yapılması gerektiğini vurgularken, yaralanmaların önlenebilirliğini, iğne ve keskin alet kullanımını azaltarak ya da daha güvenli aletler kullanarak tehlikenin azaltılabileceğini dile getirdi. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesinden Dilara Konukoğlu’nun Laboratuar Güvenliği ve Laboratuar Kazaları konulu sunumuyla sempozyum sona erdi. Laboratuvarlardaki tehlike kaynaklarının üzerinde duran Konukoğlu, riskler ve etkileri üzerinde durarak konunun önemini belirtti. Gülçin İncirci Güneş/ Atayman PR 0212 293 58 81/83 incircigulcin@gmail.comgulcin@ataymanpr.comhttp://www.medical-tribune.com.tr

http://www.biyologlar.com/hasta-ve-saglik-calisanlarini-koruma-sempozyumu-duzenlendi

HIV Virüsü ( Human Immunodeficiency Virus )

HIV Virüsü ( Human Immunodeficiency Virus )

HIV (İngilizce: Human Immunodeficiency Virus / İnsan Bağışıklık Yetmezlik Virüsü), AIDS'e yol açan virüs. HIV virüsü, bağışıklık sistemine zarar vererek hastalığa neden olur. Vücudu mikroplardan koruyan bağışıklık sistemi çalışmadığında, mikroplar daha kolay hastalığa neden olabilir. Kanında HIV virüsü bulunmayan kişiler HIV negatif kişilerdir. Kanında HIV virüsü bulunan kişilere "HIV pozitif" veya "HIV enfeksiyonlu" denir. Bu kişiler aynı zamanda kanında antikor bulunan anlamında sero (anti-HIV, veya bilinen ismiyle ELISA testi) pozitif kişilerdir. Ancak ilk bulaşma döneminde seronegatif kişiler aynı zamanda enfeksiyon taşıyan kişiler olabilirler. AIDS AIDS (Acquired Immune Deficiency Syndrome, Sonradan Edinilen Bağışıklık Sistemi Bozukluğu) anlamına gelir. Sonradan Edinilen ifadesi hastalığın irsi olmadığını anlamına gelmektedir. Bağışıklık Sistemi Yetersizliği ifadesi ise vücudun bağışıklık sisteminin çökmesi anlamına gelmektedir. Sendrom kelimesi ise bir başka hastalıkla bağlantısı olabilecek çeşitli hastalıklar anlamına gelmektedir. Bir HIV taşıyıcısı hastaymış gibi görünmeyebilir veya taşıyıcı kişi kendini hasta hissetmeyebilir, HIV virüsü taşıdığını bile bilmeyebilir. Çünkü, HIV taşıyıcılarında semptomların ortaya çıkmasına ve ölüme yol açan şey HIV virüsünün kendisi değil, vücudun bağışıklık sisteminin çökmesiyle tamamen savunmasız kaldığı diğer enfeksiyonlardır. Virüsün yapısı Virüs tek sarmallı RNA yı çevreleyen p24 proteinlerinden oluşan kapsit, bunun dışında küçük bir matriksi çevreleyen kılıftan oluşur. Kılıfta virüsün antijenik yapısını belirleyen glikoproteinler bulunur. HIV virüsünün üç glikoproteini vardır. Bunlar: gp160: Proteaz enzimi ile alt üniteleri olan gp120 ve gp41'e bölünerek iki ayrı glikoprotein oluşur. Bu proteinler virüsün membranında bulunurlar. gp41: HIV'in yaşamasını sağlar. gp120: HIV'in DNA'ya girmesini sağlar. LEDGF: HIV'in DNA'ya nasıl gireceğini belirler. Kronoloji İlk defa Leopoldville, Belçika Kongo'sunda yaşamış bir kişiden 1959 alınan kanda tespit edildi. O tarihten beri dolapta saklanan kanın, 1998'de geliştirilen HIV testi ile hastalığı taşıdığı onaylandı. Dünyayı dolaşmış, 1961'de Batı Afrika'da uzun yolculuk yapmis Norveçli bir gemici bağışıklık yetersizligi ile 1966 öldü. Karısı ve kızı da ertesi yıl aynı sebeple öldü. Danimarkalı bir cerrah olan Dr. Grethe Rath, Zaire'de bir seri enfeksiyon ve ender görülen Pneumocystis carinii pnömonisi ile öldü. 1979-1981 arası, normalde çok ender görülen, 12 Kaposi Sarkomu'dan vakası tespit edildi. 1981'de Kaliforniya Üniversitesi'nde Pneumocystis carinii tanısı tedavi edilen bir eşcinsel hastada CD4 T hücrelerinin (yardımcı T hücreleri) eksikliği tespit edildi. 1982'de CDC hastalığa AIDS ismini verdi. 1983'te daha sonra HIV ismi verilecek olan retrovirüsten kaynakladığı bulundu. 1984'te HIV için ELISA testi geliştirildi. Bulaşma yolları ve önlemler HIV virüsü bulaşabilmesi için, virüsün dış ortam koşullarında bozulmayacağı kadar kısa bir süre içinde bir kişiden diğerine nakledilmesi gerekir. Bu da virüsün diğer vücut sıvılarının içinde bir kişiden diğerine iletilmesi ile gerçekleşebilir. HIV virüsü cinsel ilişki, direk kan teması, organ nakilleri ve anneden bebeğine olmak üzere dört yolla bulaşır. Cinsel ilişki HIV vücuda HIV virüsü taşıyan birisinin kanı, spermi, vajinal akıntıları veya diğer vücut sıvıları transferi yoluyla bulaşır. Bu durum; vajinal, anal veya oral seks sırasında gerçekleşebildiği transferi ile de bulaşıcılık olacağı anlamına gelir (parenteral yol). Lateksten yapılmış bir prezervatif kullanarak HIV virüsünden korunulabilir. Doğum kontrol hapları ve lateks olmayan prezervatifler, HIV virüsünden koruma sağlayamaz. HIV virüsü hem bir erkekten hem de bir kadından bulaşabilir. Herhangi bir cinsel hastalık, HIV virüsünün bulaşma ihtimalini daha yükseltir. HIV virüsünün iki tipi mevcuttur. Tip II de kadından erkeğe bulaşma ihtimali, Tip I de ise erkekden kadına bulaşma ihtimali daha yüksektir. Afrikada 2 nci tip Avrupa ve Amerika'da ise 1 nci tip daha sık görülür. Damardan uyuşturucu madde kullanımı HIV virüsü taşıyan birisiyle kontamine bir iğne paylaşılırsa, virüs bulaşabilir. (Bu intravenöz (damardan) uyuşturucu bağımlıları arasında HIV'in en önemli bulaşma yoludur.) Dövme ve vücuda piercing yaptırma işlemlerinde kullanılan iğneler, kontamine ise HIV bulaşabilir... Organ, kan ve kan ürünleri nakli Gerekli araştırma testleri yapılmamış organ, kan ve kan ürünleri nakli yoluyla da HIV virüsü bulaşabilir. Bu durumun engellenmesi için her türlü organ, doku, kan ve kan ürünleri nakli öncesi nakle engel hastalıklar yönünden alınan materyaller kabul eden merkezler tarafından dikkatle kontrol edilir. Araştırma testlerinin pencere döneminde bulunan hastalarda yalancı negatif sonuç vermesi halinde, bulaşma gerçekleşebilir. HIV testleri HIV vücuda girdiğinden itibaren, vücutta bununla savaşmak için özel antikorlar oluşur. Kandaki bu antikorların ELISA testi (indirekt tanı methodu) veya direkt virüsün proteinlerini tespit eden PCR testi (Direkt Tanı Metodu) gibi tarama yöntemleriyle saptanma çalışmalarıdır. Anti-HIV antikorların ELISA yöntemiyle ölçülebilecek düzeye ulaşması için en az 3 aylık bir süreye (pencere dönemi) ihtiyaç vardır. Bu nedenle test, bulaşma olduktan 3 ay sonra yapılmalıdır. PCR yönteminde ise bu süre 3 haftaya kadar düşmüştür. Anti-HIV testinin pozitif olması, kanda HIV virüsüne karşı antikorların olduğunu gösterir. Ancak anti-HIV testinin yalancı pozitif çıkma ihtimali de vardır. Bu nedenle, kişinin HIV pozitif olduğunun söylenebilmesi için, Western blot testi denen doğrulama testinin de yapılıp sonucunun pozitif olması gerekmektedir. Anti-HIV testi, üniversite hastanelerinin mikrobiyoloji laboratuvarlarında, sigorta ve devlet hastanelerinin laboratuvarlarında ve özel laboratuvarlarda yaptırabilir. Son zamanlarda HIV virüsünün kandaki varlığının direkt kantlanması PCR (polymerase chain reaction = polimeraz zincir reaksiyonu) yöntemi ile de yapılabilmektedir. Pencere dönemi Pencere dönemi ile ilgili belirsizlikleri gidermek için bazı açıklamalar yapılmalıdır; zira "Üç Ay" ifadesi, HIV virüsüne maruz kalmış her bünyenin 'üçüncü ayda' antikor üreteceği gibi yaygın bir yanılgıya yol açmaktadır. Halbuki pencere döneminin kişiden kişiye değişiklik gösterdiğini vurgulamak gerekir. "Üç Aylık" süre, uluslararası sağlık kuruluşlarının tüm bünyesel farklılıkları da kapsayacak şekilde belirlediği 'maksimum' süredir. Yani bu, HIV ile enfekte olmuş yüz kişiden varsayalım ki %45'inin, 35. günde; %25'inin 50. günde; %15'inin 65. günde; %10'unun 75. günde; %5'inin de 90. günde yeterli antikor seviyesine ulaşacağı anlamına gelir (Oranlar tamamen kurgusaldır). O halde belirlenmiş olan "üç ay" sınırı, 'en geç antikor üreten bünyeyi' de hesaba katarak düşünülmüş 'maksimum' sınırdır. CDC (Center of Disease Control -USA) gibi bazı büyük sağlık örgütleri, testin altıncı ayda tekrarlanması gerektiğini savunmaktadır. Antikor oluşturma (serokonversiyon) süreci üç ayı geçen çok nadir bazı vakalar rapor edilmişse de bunlar o kadar nadirdir ki, tıp makalelerine konu olur. Birçok sağlık örgütü eğer çok kesin bir risk yoksa, 'altıncı ay' testini gereksiz bulmakta ve CDC'yi tutucu olmakla eleştirmektedir. Bazı kuruluşların 'pencere dönemi' ile ilgili olarak verdikleri süreler, "Üçüncü Ay"ın maksimum sınır olarak düşünülmesi gerektiğini kanıtlamaktadır: New York Sağlık Müdürlüğü’nün hazırladığı broşüre göre "New York’ta kullanılan HIV antikor testlerinde, enfekte olmuş insanların neredeyse tümü bir ayda pozitif çıkmaktadır. Hatta bunların çoğunluğu, daha bile kısa surede pozitif sonuc vermektedir." Kaliforniya AIDS Merkezi'nin 1998'de yayınladığı rehber %96'dan daha fazla sayıda insanın, 2 ile 12 hafta arasında pozitif sonucu eline alacağını söylüyor. Çok nadir bazı durumlarda, bunun altı aya uzayabileceği belirtiliyor. AIDS Sağlık Projesi (ABD) danışmanları, ortalama süreyi 25 gün olarak veriyorlar. AIDS Update 98 adlı broşür, "Çoğu örnekte, HIV antikorları 6 ile 8. haftada görünür hale gelirler" demektedir. Bu konuda son derece zengin bir arşivi olan HIVinsite web sitesi, süreyi 6-12 hafta olarak belirliyor. Amerikan Seattle & King County Kamu Sağlığı Sitesi, şöyle diyor: “Çoğu insan, saptanabilir antikor düzeyine 4-6 hafta içinde gelir. Bazı insanların daha uzun sürebilir; ama neredeyse %99'u üç ay içinde antikor üretmiş olur. Üç ayı gecen serokonversiyon olayları çok çok nadirdir.” AIDS servislerinde ve laboratuvarlarında calışan doktor ve virologlarin (Dr. Sindy Paul, Evan M Cadoff, Eugene Martin) yazdığı, "Rapid Diagnostic Testing for HIV – Clinical Implications" (Business Briefing: Clinical Virology & Infectious Disease, 2004) adli makalede, pencere dönemi 30-60 gün olarak veriliyor. San Fransisko AIDS Derneği, şöyle demektedir: "Üç aylık pencere dönemi, insanların tümü için normal süredir. Bu insanların çoğu, üç ile dört hafta içinde saptanabilir düzeyde antikor üretir. çok, çok nadir durumlarda, bir insanin antikor üretmesi altı ayı bulabilir." Kızılay, antikorların tespit edilme suresini 2-6 hafta olarak veriyor. Kızılhac, antikorlarin tespit edilme süresini en geç 70 gün olarak veriyor. Amerikan Kamu Sağlığı Kurumu'nun Test Kılavuzunda, 1985-90 yılları arasında kullanılan antikor testinin pencere döneminin ortalama 45 gün olduğu söyleniyor. Fakat günümüzdeki testlerin, bunu 20 gün daha düşürerek, 25 güne indirdiği belirtiliyor. BERNARD WEBER, EL HADJI MBARGANE FALL; ANNEMARIE BERGER ve HANS WILHELM DOERR'in birlikte yazdıkları makalede, pencere dönemi ortalama 10.2 ile 27.4 güne kadardır şeklinde belirtiliyor. Tedavi HIV/AIDS'in tedavisinde olumlu gelişmeler vardır. Günümüze kadar bulunan ilaçlardan farklı etki mekanizmalarında olanların ikisinin ya da üçünün birlikte kullanımıyla HIV pozitif kişilerin kaliteli ve uzun bir yaşam sürebilmeleri sağlanmaktadır. Tedavi doktor kontrolünde ve kesintisiz olarak yaşam boyu sürdürülmelidir. Bu ilaçlar çok pahalıdır. Ancak, şu anda Türkiye'de saptanmış Aids hasta sayısının az olması da önemli faktör olmalı ki; Bağkur, SSK, Emekli sandığı, Yeşil Kart gibi Sigortalar aylık masrafın 1000-1500 USD olduğu ilaç maliyetlerini karşılamaktadır. Aids şüphesi olanlar derhal ELISA testi yapmalıdırlar ki uzun süreli hayat sürme imkânını yakalayabilsinler, her hastalıkta olduğu gibi bu hastalıkta da erken tanının faydası çok büyüktür. HIV virüsünü kapmak her şeyin sonu değildir, isteyen hastalar Aids Savaş Derneğinden psikolojik destek de alabilirler. Korunma Spermdeki ve vajina salgısındaki HIV, dış ortamda birkaç saatte, kuru ortamda ise yarım saatte ölür. HIV kurumuş kanda da kısa zamanda ölür. Hastanın ya da seropozitif kan, sperm veya vajina salgısının bulaştığı eşyadaki HIV'in öldürülmesi: Eşyayı birkaç dakika kaynatarak ya da 60 C°'de 30 dakika ısıtarak virus öldürülür.Sulandırılmış çamaşır suyu temas ettiği HIV'i 10 dakika içinde öldürür. Sodyumhipoklorid, çamaşır suyunda bulunan etkili maddedir, içinde klor vardır. Çamaşır suyu şişesinin üzerindeki tarifeye göre (genellikle 10 kez) sulandırılarak kullanılır. Sulandırılan çamaşır suyunda klor kokusu bulunmalıdır. Çamaşır suyu kullanılacağı zaman sulandırılmalıdır, durmakla bozulur. Çamaşır suyu madensel eşyaya zarar verir. Ultraviyole ile ışınlama (mavi ışık) HIV'in yok edilmesi için önerilmeyen bir yöntemdir. Ultraviyole ışını doğrudan temas ettiği yüzeydeki mikropları öldürür. Cismin altında kalan mikropları öldürmez. Deri HIV'den nasıl arındırılır? Su ve sabunla iyice yıkama ile (en az 15 saniye) bütün mikroplar gibi HIV de deriden uzaklaştırılabilir. Yıkandıktan sonra derinin alkol ile temizlenmesi uygun olabilir. Yaralanma durumunda yara yeri, önce sabun ve su ile iyice yıkanmalı, ardından tentürdiyot veya betadin gibi bir antiseptik ile temizlenmelidir. Ortaya Çıkışı AIDS hastalığının Afrika’da maymunlardan insanlara geçtiği düşünülüyor. Bu virüsün orta Afrika’da şempanze avlayan insanlara bu esnada aldıkları yaralar vasıtasıyla veya sonrasında şempanze etiyle temas ettiklerinde geçmiş olabileceği iddia edilmekte.

http://www.biyologlar.com/hiv-virusu-human-immunodeficiency-virus-

HIV testleri

HIV vücuda girdiğinden itibaren, vücutta bununla savaşmak için özel antikorlar oluşur. Kandaki bu antikorların ELISA testi (indirekt tanı methodu) veya direkt virüsün proteinlerini tespit eden PCR testi (Direkt Tanı Metodu) gibi tarama yöntemleriyle saptanma çalışmalarıdır. Anti-HIV antikorların ELISA yöntemiyle ölçülebilecek düzeye ulaşması için en az 3 aylık bir süreye (pencere dönemi) ihtiyaç vardır. Bu nedenle test, bulaşma olduktan 3 ay sonra yapılmalıdır. PCR yönteminde ise bu süre 3 haftaya kadar düşmüştür. Anti-HIV testinin pozitif olması, kanda HIV virüsüne karşı antikorların olduğunu gösterir. Ancak anti-HIV testinin yalancı pozitif çıkma ihtimali de vardır. Bu nedenle, kişinin HIV pozitif olduğunun söylenebilmesi için, Western blot testi denen doğrulama testinin de yapılıp sonucunun pozitif olması gerekmektedir. Anti-HIV testi, üniversite hastanelerinin mikrobiyoloji laboratuvarlarında, sigorta ve devlet hastanelerinin laboratuvarlarında ve özel laboratuvarlarda yaptırabilir. Son zamanlarda HIV virüsünün kandaki varlığının direkt kantlanması PCR (polymerase chain reaction = polimeraz zincir reaksiyonu) yöntemi ile de yapılabilmektedir.

http://www.biyologlar.com/hiv-testleri

HIV testi nasıl yapılır

HIV testi, 'Edinilmiş Bağışıklık Eksikliği Sendromu'na (AIDS) yol açan 'İnsan Bağışıklık Yetmezlik Virüsü'nün (HIV) kan, tükürük ya da idrarda tespit edilmesinde kullanılır. Bu testler antikor, antijen veya RNA temelli yapılır. Terminoloji Pencere dönemi, HIV'in bulaşmasından yukarıdaki testlerden birinin herhangi bir değişikliği tespit edebileceği ana kadarki dönemi kapsamaktadır. HIV-1 antikor testinin (B tipi alt tür için) yaklaşık pencere dönemi 25 gündür. Antijen testleri ise pencere dönemini 16 güne kadar düşürebilir. RNA temelli NAT (Nükleik Asit Testi) ise bu süreyi yaklaşık 12 güne kadar indirebilir. Bu medikal testlerin etkenliği genelde aşağıdaki terimlerle tanımlanır: Duyarlılık: HIV var ise, sonuçların yüzdesi pozitiftir. Özgüllük: HIV yok ise, sonuçların yüzdesi negatiftir. Tanı koymak için kullanılan tüm testlerin kısıtlı olduğu yerler bulunmaktadır ve bazen bu testler, yanlış veya kuşku uyandıran sonuçlar sunabilir. Yanlış pozitif: Testin yanlış biçimde enfeksiyon kapmamış bir kimsede HIV olduğunu göstermesi. Yanlış negatif: Testin yanlış biçimde enfeksiyon kapmış bir kimseyi HIV negatif göstermesi. Bu tip yanlış tanı koyan testlere güncel bir örnek olarak, Türkiye Yozgat-Çandır'da Ali Orhan Bulucu'nun 7 Ocak 2004'te Çandır Devlet Hastanesi'nde yaptırdığı HIV testinin pozitif çıkması üzerine 9 Ocak 2004'te intihar etmesi ve ardından yapılan doğrulama testlerinde HIV negatif çıkması verilebilir. Belirgin olmayan tepkimeler, hipergamaglobulinemi, ya da HIV'e benzer diğer enfeksiyon unsurlarına karşı üretilen antikorlar yanlış bir sonuç elde edilmesine yol açabilir. Otoimmun (Kendi dokularındaki antijenlere karşı antikor oluşması) rahatsızlıkları da, sistemik lupus eritematozis gibi, nadiren de olsa yanlış pozitif sonuçlara neden olabilir. Çoğu yanlış negatif sonucun ise pencere döneminden ötürü olduğu düşünülmektedir. Çalışma Esasları Donörün kanının ve selüler ürünlerin taranması Donörün kanı ve dokusunu tarayan testlerden HIV var ise, yüksek bir itimatla HIV'i tespit etmesi beklenmektedir (diğer bir deyişle, yüksek duyarlılık hedeflenmektedir). Antikor, antijen ve nükleik asit testlerinin bir kombinasyonu olan bu yöntem gelişmiş Batılı ülkelere kan bankalarında kullanılmaktadır. Örnek olarak, 2001 senesi verileriyle, ABD'de HIV'in kan nakli ile transferi riski her bir kan şişesi için 2.5 milyonda bir olduğu iddia edilmektedir. Yanı sıra, 1985 yılında bütün dünyada kan veya kan ürünlerinin transferi öncesi HIV bakımından test edilmesi zorunlu kılınmıştır. Türkiye'de de, 1987 yılından günümüze, bütün kan ve kan ürünleri ELISA yöntemiyle teste tabi tutulmaktadır. Türkiye'de HIV'in kan nakli ile transferi riskinin her bir kan şişesi için 1/36,000 ila 1/225,000 oranları arasında değiştiği düşünülmektedir. 2012 yılında İstanbul-Kızılay’dan transfer edilen HIV-pozitif kan dolayısıyla ölen iki kişi bu riskin örneği olarak verilebilir.

http://www.biyologlar.com/hiv-testi-nasil-yapilir

TALASEMİ: Ülkemizde bir buçuk milyon taşıyıcı var

TALASEMİ: Ülkemizde bir buçuk milyon taşıyıcı var

Talasemi (Akdeniz anemisi) kalıtsal bir kan hastalığı ve ülkemizin de içinde bulunduğu Akdeniz ülkelerinde önemli bir halk sağlığı sorunu. Anne-babadan çocuklarına geçen farklılaşmış bir gen nedeniyle, hasta çocuklar ömür boyu kan almak zorunda. Talasemi genini çocuklarına geçiren anne-babalarda (talasemi taşıyıcıları) ise hafif kansızlık dışında hiçbir hastalık belirtisi olmaz. Hastalık oluşması için iki hastalık geninin yanyana gelmesi gerekir. Talasemi genini taşıyan iki kişinin evlenmesi durumunda her gebelikte %25 oranında bu olasılık vardır, yani taşıyıcılar saptanmazsa sağlıklı görünen iki kişinin evlenmesi sonucu hasta çocuk doğabilir. Taşıyıcıların belirlenmesi hastalığın ortaya çıkmasını önlemenin ilk adımıdır. Bunun için;toplumun bilgilendirilmesi, evlilik öncesi tarama ve iki taşıyıcının evlendiği durumlarda doğum öncesi tanı testleri yapılması gerekiyor.Talasemi genetik bir hastalık olduğundan akraba evliliğinde ortaya çıkma olasılığı artar.Kan, vücudumuza oksijen taşır. Oksijen kırmızı kan hücrelerinin yüzde doksanını oluşturan hemoglobine bağlanarak hücrelere taşınır. Hemoglobin yetersizse hücrelerimize yeterli oksijen gidemez. Hemoglobin demir ve globinden oluşur. Globin alfa ve beta olarak adlandırlan protein zincirleridir. Demir ve globinin yetersiz olduğu durumlarda küçük kan hücrelerinden oluşan (mikrositer) bir kansızlık (anemi) gelişir. Globin zinciri yapımı genlerimizle kontrol edilir ve genlerimizdeki herhangi bir değişiklik (buna mutasyon diyoruz) globinin az veya hiç yapılamamasına neden olur. Globin yapılamayınca da hemoglobin oluşamaz. Kansızlık (anemi) hemoglobin miktarında düşüklük olmasıdır. İnsanlarda globin yapımını sağlayan gen iki tanedir, biri anneden, diğeri babadan gelir. Eğer kişide bir sağlam, bir hastalık geni varsa sağlam gen globin yapımını sağlayacağından vücut bu duruma uyum sağlar, hafif kansızlık dışında bir sorun oluşmaz. Bir sağlam, bir hastalık geni taşıyan bu kişilere ‘taşıyıcı’ diyoruz. Talasemi taşıyıcıları kendileri bir sorun yaşamasa da hastalık genini çocuklarına geçirebilir. Başka bir taşıyıcıyla evlendiğinde de yüzde yirmibeş olasılıkla iki hastalık geni yanyana gelir ve hasta çocuk doğar.Majör ve minor talasemi nasıl tedavi edilir.Talasemi hastalarında globin zinciri ya çok az, ya da hiç yapılamaz. Az yapılanlarda Talasemi İntermedia denilen ara hastalık şekli oluşur. Bu kişilerde talasemi taşıyıcılarından (Talasemi Minör de denir) daha ağır, Talasemi Major’dan (ağır hastalık) daha hafif bir kansızlık vardır. Kan ihtiyaçlarının arttığı durumlarda (enfeksiyon, gebelik, büyüme çağı, ağır iş) dışardan kan almalarına ihtiyaç olabilir. Globin zincirini hiç yapamayan kişilerin (Talasemi Major) ise hayat boyu dışarıdan kan almaları gerekir, yoksa yaşayamazlar. Dışarıdan alınan kanla vücuda giren fazladan demir karaciğer, endokrin ve kalpte birikerek organlara zarar verir. Bunu önlemek için şelatör dediğimiz demir atıcı ilaçlar kullanılır. Takip ve tedavisi zor ve pahalı olsa da Talasemi hastaları uygun tedavi ve izlem ile normal bir hayat sürebilir, çalışabilir, evlenebilir, çocuğu olabilir. Uygun vericisi olan hastalarda kemik iliği nakli de ağır talasemi hastalarında bir tedavi seçeneğidir ve ülkemizde de başarıyla kullanılmaktadır. Ancak hastalıkları önlemek tedavi etmekten daha kolay ve ucuzdur.Türkiye’de durumÜlke genelinde her yüz kişinin ikisinde talasemi taşıyıcılığı var. Özellikle Trakya, Marmara, Ege, Akdeniz ve Güneydoğu Anadolu'da görülme sıklığı ülke ortalamasının üzerinde. Ülkemizde toplamda yaklaşık birbuçuk milyon taşıyıcı ve beşbin civarında hasta vardır. Her yıl üçyüz-dörtyüz talasemili hasta çocuk doğuyor. 30 Aralık 1993 tarihinde, 3960 sayılı Kalıtsal Kan Hastalıkları ile Mücadele Kanunu çıktı. Kanunun yayınlanmasından sonra Sağlık Bakanlığı tarafından Antalya, Antakya, Mersin ve Muğla’da talasemi merkezleri kuruldu. Bu merkezlerde hastaların tedavileri yanısıra tarama çalışmalarına da hız verildi. 23 Haziran 2000 tarihinde Ulusal Hemoglobinopati Konseyi kuruldu. Sağık Bakanlığı ve Ulusal Hemogloninopati Konseyi Çalışmaları sonucu, 24 Ekim 2002 tarihinde “Kalıtsal Kan Hastalıklarından Hemoglobinopati Kontrol Programı ile Tanı ve Tedavi Merkezleri” Yönetmeliği’ yayınlanarak yürürlüğe girdi.Hemoglobinopati Önleme Programı ile riskli otuz üç ilimizde evlilik öncesi talasemi testleri yapılıyor.8 Mayıs 2003 tarihinde, Sağlık Bakanlığının belirlediği 33 ilde Hemoglobinopati Önleme Programı başlatıldı. Bu programda riskli otuzüç ilde evlilik öncesi talasemi testleri yapılması planlandı. 2003 yılında evlenen çiftlerin yüzde otuzu taranır iken, 2008 yılında bu oran yüzde seksenbirlere çıkmıştır. Sağlık Bakanlığı talasemili doğan hasta çocuk sayısın yüzde seksen azalma bildirmektedir. Ancak hala hasta çocuk doğumu olmaktadır. Ülkemizdeki hastaların kayıtlarını tutmak ve sağlıklı hasta sayılarına ulaşmak üzere Türk Pediatrik Hematoloji Derneği bünyesinde web tabanlı bir kayıt sistemi oluşturulmuştur.Dünyada TalasemiDünya Sağlık Örgütü (DSÖ tarafından Talasemi sıklığı tüm dünyada %5 olarak bildirilmiştir. DSÖ 300 milyondan fazla taşıyıcının olduğu dünyamızda yeni hasta çocuk doğumunun önlenmesi için taşıyıcıların taranması, genetik danışmanlık hizmetlerinin verilmesi, doğum öncesi tanı yöntemleri kullanılarak hastalığın önlenmesi ve hastaların ideal bir şekilde izlenmesini önermektedir. Dünya Talasemi Federasyonu (Thalassemia International Federation: TIF), 1987 yılında talasemiye dikkati çekmek ve bu konuda çalışmalar yapmak üzere ulusal talasemi derneklerinin birleşmesi ile kurulmuş bir sivil toplum örgütüdür. Türkiye Talasemi Federasyonu da 2005 yılında kurulduktan 6 ay sonra, 2006 yılında TIF üyesi olmuş, 2008 yılında seçici üyelik konumuna gelmiştir. 8 Mayıs Dünya Talasemi günü bu hastalığa dikkat çekmek, farkındalığı arttırmak amacıyla 1993’den beri tüm dünyada kutlanmaktadır.http://www.medical-tribune.com.tr

http://www.biyologlar.com/talasemi-ulkemizde-bir-bucuk-milyon-tasiyici-var

Kısırlık ve Genetik

İnfertilite (Kısırlık) konusunda genetik sebepler nelerdir ve ne gibi tedavilersöz konusudur; bu konuda sıkça sorulan soruları ve yanıtlarını bir kez de burada vermek istedim. Erkek kısırlığında genetik incelemenin önemi Son yıllarda genetik alanında ilerlemeler erkek kısırlığının nedenleri hakkında çok önemli bilgiler elde etmemizi sağlamıştır. Seks kromozomlarından Y kromozomu üzerindeki genlerdeki silinmeler vücut yapısı ve fonksiyonları normal olmasına rağmen testiste sperm yapımının azalması veya hiç sperm yapılmaması gibi duruma yol açmaktadır. Aynı şekilde yine seks kromozomlarındaki sayı anomalileri örneğin en sık görülen 47 XXY Klinefelter sendromugibi genetik hastalıkta da testis gelişimi yetersiz kalmış ve sperm yapımı azalmış olabilir. Ayrıca testislerden sperm taşıyan kanalların doğuştan olmaması halinde testiste normal sperm üretimi olmasına rağmen çıkış imkanı olmadığı için menide sperm görülmez. Bu da genetik olarak Konjenital Bilateral Vas Deferens Agenezisi (CBAVD) denilen bir hastalığa bağlıdır. Preimplantasyon genetik tanı nedir, hangi çiftlerde uygulanmaktadır ve avantajları nelerdir? Günümüzde genetik hastalıklar gebelik sırasında veya doğumdan sonra tanımlanabilmektedir. Ancak bebekteki muhtemel genetik hastalıklar ultrasonografi, amniosentez gibi yöntemler ile gebeliğin ancak dördüncü ayında belirlenebilmekte ve ciddi bir anormallik saptanması durumunda gebelik 5. ay civarında sonlandırılmaktadır. Bu durum anne ve baba adayını psikolojik ve fiziksel olarak travmaya uğramaktadır. Son yıllarda genetik bilimindeki gelişmeler henüz gebelik oluşmadan, tüp bebek yöntemleriyle laboratuar ortamında geliştirilen embriyolar üzerinde genetik inceleme yapılmasına ve seçilmiş olan sağlıklı embriyoların anne adayının rahmine yerleştirilmesine imkan tanımaktadır. Bu yönteme gebelik öncesi genetik tanı (Preimplantasyon Genetik Tanı - PGT) adı verilmektedir. Gebelik öncesi genetik tanı, anne ve baba adayından elde edilen yumurta ve sperm hücrelerinin laboratuvar ortamında döllendirilmesi sonucu gelişen embriyolardan bir adet hücre alınması ile gerçekleştirilmektedir. Genetik tanı için Floresence İn Situ Hibridizasyon (FISH) veya Polimeraz Zincir Reaksiyonu (PCR) adı verilen özel yöntemler kullanılmaktadır. Doğacak bebekte monozomi veya trizomi (Down sendromu ve diğer trizomiler) gibi sayısal kromozom bozukluklarının ve tek gen hastalıklarının (Hemofili, Akdeniz anemisi, kistik fibrozis, muskuler distrofiler gibi) tanısı PGT ile mümkündür. Böylece hastalık taşımayan, sağlıklı embriyoların anne adayına transferi ile sağlıklı bebeklerin doğması sağlanmaktadır. Gebelik öncesi tanı Genetik veya kalıtsal bir hastalık taşıyıcılığı bulunan çiftlerde, daha önce genetik hastalığı olan çocuk veya çocuklara sahip çiftlerde,HLA genotyping (doku tiplemesi) yapılması amacı ile, genetik predispozisyon gösteren hastalıkların tanımlamasında, yardımcı üreme teknikleri için kabul edilmiş ileri yaş grubundaki kadınlarda (37 yaş ve üzeri), tekrarlayan erken gebelik düşükleri olan çiftlerde, çok sayıda uygulanmasına rağmen yardımcı üreme teknikleri ile gebelik elde edilememiş veya düşüklerle gebeliklerini kaybetmiş olan çiftlerde, şiddetli erkek kısırlığı ile birlikte görülen kromozom bozuklukları veya genetik hastalıklarda uygulanmaktadır. Talasemi, hemofili vb. hastalıklarda PGT'nin önemi nedir, embriyolarda doku tiplemesi yapılması mümkün müdür? Bireyler, taşıdıkları kalıtsal hastalığı değişik oranlarda çocuklarına aktarırlar. Bu nedenle genetik hastalıkların çiftlerde ve embriyolarda belirlenmesi çiftlerin sağlıklı çocuk sahibi olabilmesi için önemlidir. Günümüzde DNA analizi yöntemi ile çok sayıda kalıtsal hastalığın henüz embriyo düzeyinde iken tanımlanması mümkün hale gelmiştir. Kalıtsal bir hastalığa neden olan genetik bozukluğun tanımlanması için hastalığa neden olan genin yapısının belirlenmiş olması gerekmektedir. Yapılan araştırmalar sonucu B-talasemi, Hemofili, Kistik Fibrosis, Orak Hücre Anemisi, Muskuler Distrofiler, Frajil X gibi hastalıklara sebep olan bir çok genin yapısı belirlenmiş ve bunların genetik tanısına yönelik yöntemler geliştirilmiştir. Bu yöntemle, öncelikle anne baba ve varsa hasta çocuklara ait kan örneklerinde genetik bozukluğun gösterilmesi için genetik analizler yapılır. Sonrasında kalıtsal hastalık taşıyıcısı olan çiftlerin tüp bebek yöntemi ile elde edilen embriyolarından alınan hücrelerde hastalığa neden olan genetik yapı özel yöntemlerle çoğaltılmakta ve taranan hastalığa ait gen bölgesi DNA analizi yöntemi ile tanımlanabilmektedir. Sonuçta, kalıtsal hastalığı taşıyan embriyolar elenirken sağlıklı embriyoların transferi ile genetik hastalık taşımayan çocukların dünyaya gelmesi sağlanabilmektedir. Yapılan araştırmalar sonucu B-talasemi, Kistik Fibrosis, Orak Hücre Anemisi, Hemofili, Muskuler Distrofiler, Frajil X gibi hastalıklara sebeb olan bir çok genin yapısı belirlenmiş ve bunların genetik tanısına yönelik yöntemler geliştirilmiştir. Ayrıca; B-talasemi, Fanconi anemisi ve lösemi gibi hastalıklarda, DNA dizi analizi yöntemi ile sağlıklı embriyoların saptanmasının yanısıra HLA genotyping (doku tiplemesi) işlemi de aynı anda uygulanabilmekte ve embriyoların doku tipi belirlenebilmektedir. HLA genotyping yöntemiyle talasemi veya lösemi hastalığı saptanmış çocuklara sahip ailelerde, anne ve baba ile çocuğa ait doku tiplerinin belirlenmesinden sonra, hastalığı taşımayan embriyolar içerisinden doku tipi hasta çocuk ile uygun olan embriyolar seçilebilmektedir. Bu şekilde elde edilen sağlıklı gebelikler, sağlıklı doğan çocukların kordon kanı ve kemik iliğinin kullanılması ile hasta çocuklar için tedavi sağlayıcı olmaktadır. Bu yöntemle aile prenatal tanı işlemi sonrasında uygulanan gebelik sonlandırılmasına bağlı tıbbi ve psikolojik travmalardan da korunmaktadır. Ayrıca; gebelik öncesi tanı, hasta kişilerin yaşam boyu karşılaştıkları sağlık problemleri, hastalıkların tedavisindeki güçlükler ve yüksek tedavi maliyetleri nedeniyle ailelerin sağlıklı çocuk sahibi olmalarını sağlaması ve hasta kişiler için tedavi olanağı sunması nedeniyle çok önemli bir tekniktir. Günümüzde yapılmakta olan çalışmalar sonucunda hastalıkların genetik yapısının belirlenmesiyle birlikte çok daha fazla sayıda hastalığın embriyolarda tanımlanması mümkün olacaktır. Talasemi, hemofili vb. hastalıklarda PGT'nin önemi nedir, embriyolarda doku tiplemesi yapılması mümkün müdür? Preimplantasyon genetik tanı uygulanarak kromozom bozukluğu taşıyan embriyolar seçilip sadece sağlam olanlar transfer edilebilmektedir. Gebelik oluşmadan önce genetik problemler konusunda alınabilecek önlemler var mı? Preimplantasyon Genetik Tanı yöntemi bu amaçla uygulanmaktadır. Bu yöntemle kalıtsal hastalıklar yönünden riskli ailelerde tüp bebek işlemi uygulanarak elde edilen embriyolar incelenip hastalık taşımadığı saptanan sağlıklı embriyolar transfer edilmektedir. Kadın yaşının ileri olması ile (35–45 ) başarı oranı azalmakta, gebelik elde edildiğinde ise düşükle sonlanabilmektedir. Yaşla birlikte yumurtalarda kromozom bozukluklarının artması sebebiyle tüp bebek tedavisi yapılacak olan çiftlerden elde edilen embriyolar üçüncü güne ulaştıklarında biyopsi yapılmaktadır. Elde edilen bir veya iki adet hücrenin moleküler tanı yöntemleri kullanılarak birkaç saat içinde değerlendirilmesini takiben sağlıklı embriyolar ayrılmakta ve transfer edilmektedir. Yaşla birlikte en çok artış gösteren ve yaşamla bağdaşabilen kromozom bozuklukları (Trizomi 13, 16, 18, 21, 22, 15, 17 ve X,Y ) hakkında bilgi vermektedir. Bu yöntemle yeterli embriyo elde edilen ileri yaş kadınlarda gebelik oranı arttırılabilmekte ve düşük riski azaltılmaktadır. More Sharing ServicesBu Sayfayı Paylaşın|Share on facebookShare on emailShare on favoritesShare on print Embriyolarda genetik inceleme kimlere önerilmekte? Tüp bebek programına alınan her çiftte embriyoların genetik olarak incelenmesine gerek duyulmamakta, buna karşın belirli özelliklere ve risklere sahip olan çiftlerde bu inceleme önerilmektedir. Bu özellikler şu şekilde sıralanabilir: Genetik veya kalıtsal bir hastalık taşıyıcılığı bulunan çiftlerde Daha önce genetik hastalığı olan çocuk veya çocuklara sahip çiftlerde Yardımcı üreme teknikleri(tüp bebek için kabul edilmiş ileri yaş grubundaki kadınlarda (37 yaş ve üzeri) Tekrarlayan erken gebelik kayıpları-düşükleri olan çiftlerde Birçok kez yardımcı üreme teknikleri uygulanmasına rağmen gebelik elde edilememiş veya düşüklerle gebeliklerini kaybetmiş olan çiftlerde Şiddetli erkek kısırlığı ile birlikte görülen kromozom bozuklukları veya genetik hastalıklarda HLA genotyping (doku tiplemesi) yapılması amaca ile Genetik predispozisyon gösteren hastalıkların tanımlanması Preimplantasyon Genetik Tanı'nın avantajları nelerdir? Gebelik şansını artırmakta, düşük şansını azaltmaktadır Ailelerin sağlıklı çocuk sahibi olmaları sağlanmaktadır Aile, gebelik sonlandırılmasına bağlı tıbbi ve psikolojik travmalardan korunmaktadır Talasemi gibi hastalıklarda doku tiplemesi ile doğacak olan bebek ailenin hasta çocukları için tedavi imkanı sağlamaktadır Gebelik öncesi tanı; hasta kişilerin yaşam boyu karşılaştıkları sağlık problemleri, hastalıkların tedavisindeki güçlükler ve yüksek tedavi maliyetleri ile karşılaştırıldığında çok daha faydalı ve ucuz bir tanı yöntemidir Kromozom analizi normal olan çiftlerin embryolarında da genetik hastalıklar görülebilir mi? Çiftlerden alınan kan hücrelerinden yapılan genetik testlerde kromozom yapısı normal bulunabilir. Ancak embriyo genetik yapısının yarısını anneye ait yumurta hücresinden alırken diğer yarısını da babaya ait sperm hücresinden alır. Bu nedenle vücut hücrelerinin genetik yapısı normal olmasına rağmen bazı çiftlerde sadece üreme (yumurta veya sperm) hücrelerinde görülebilen kromozom bozuklukları bulunabilir ve bu bozukluk embriyolara aktarılabilir. Gebelik öncesi genetik tanı ile embriyolarda oluşan bu tür genetik bozukluklar saptanabilmektedir. Akraba evliliğinin genetik hastalıkların ortaya çıkmasındaki etkisi nedir? Akraba evlilikleri, aralarında kan yakınlığı olan kişiler arasında yapılan evliliklerdir. Akrabalık derecelerine göre en yakını 1. derece akraba evliliği dediğimiz kuzen evlilikleri olup teyze, hala, amca ve dayı çocuklarının arasında yapılan evliliklerdir. Yurdumuzda akraba evliliği oranı % 21- 40 oranında olup bölgelere göre değişmektedir. Genel olarak toplumda doğan her 100 çocuğun 2–3 ünde çeşitli sebeplerden kaynaklanan anomaliler saptanır. Bu risk akraba evliliği yapmış olan çiftlerde % 4–5 oranına kadar yükselebilmektedir. Genetik açıdan risk taşıyan kişiler kimlerdir? Genetik veya kalıtsal bir hastalık taşıyıcılığı bulunan çiftler ,daha önce genetik hastalığı olan çocuk veya çocuklara sahip çiftler, yapısal olarak vücudunda anomaliler saptanan, mental retardasyonlu çocuk öyküsü, cinsiyet gelişimi anomalileri, gelişme geriliği ve boy kısalığı, yakın akrabalarında (1. kuzen gibi) genetik bir hastalık öyküsü çiftler, tekrarlayan düşükleri ve ölü doğumları olan çiftlerde, 37 yaş üzerindeki kadınlar ve birçok kez yardımcı üreme teknikleri uygulanmasına rağmen gebelik elde edilemeyen çiftler. Bu çiftlerde, öncelikle bir genetik uzmanı tarafından ayrıntılı aile öyküsü alınmalı ve aile ağacı çıkartılmalıdır. Ailede düşünülen hastalık için ve varsa önceki gebelikler için ayrıntılı bilgilerin alınması gereklidir. Hasta çocuklar ve aile bireyleri muayene edilmeli ve gerekli testler istenmelidir. Tüm bu işlemlerden sonra hastalığın tanısı konmuş veya genetik neden saptanmış ise çiftlere saptanan problemler ile ilgili ayrıntılı bilgi verilir. Genetik hastalığın neden olabileceği problemler, sonuçları, yeni gebeliklerdeki riskler, gebelik öncesi ve sonrasında yapılması gerekenler konusunda aile aydınlatılır. Bu işlemler sonrasında çiftlerin yeni gebeliklerindeki riskler tekrarlama riskinin olmamasından %100 e kadar değişebilmektedir. Çiftlerin bir kısmında preimplantasyon genetik tanı önerilebileceği gibi bazı hastalarda da prenatal dönemde genetik tanı uygulanması önerilir. İnfertilitenin (kısırlık) oluşmasında genetik faktörlerin rolü nedir? Günümüzde çiftlerin yaklaşık %15 inde azalmış fertilite saptanmaktadır. Bu olguların büyük bir kısmında neden erkek infertilitesidir. Erkek infertilisinde özellikle sperm bulunmayan kişilerde patojenik sebep Y kromozomu mikrodelesyonlarına bağlı sperm üretiminin azalması veya kistik fibrozis transmembran regülatör (CFTR) gen mutasyonlarına bağlı oluşan konjenital vaz deferens yokluğu ile karakterize obstrüktif azospermidir. Bunların yanı sıra cinsiyet kromozomlarındaki sayısal anomaliler ve yapısal kromozom bozuklukları da spermatogenezde, dolayısıyla da fertilizasyonda problemlere neden olur. Ayrıca hipogonadotropik hipogonadizme neden olan KAL (X e bağlı kalıtılan Kalman sendromu), DAX1 (X e bağlı kalıtılan Konjenital Adrenal Hipoplazisi), GNRHR (GnRH sekresyonunda bozukluk) ve PC1 (prohormon convertase 1 ) gen mutasyonları ile Androjen Reseptör gen mutasyonları spermatogenezis yetmezliği ile birlikte gözlenebilir. Ayrıca sekonder infertil olarak adlandırılan tekrarlayan gebelik kayıpları veya ölü doğum öyküsü olan çiftlerde bazı genetik bozukluk taşıyıcılığı gözlenebilir. Gebelik oluştuktan sonra genetik problemler tanılanabilir mi? Gebelikte uygulanması gereken bazı tarama testler mevcuttur. (11–14 tarama testi - ikili test - üçlü test ...) Bu tarama testleri gebelikteki genetik risk hakkında bize bilgi verir. Böyle bir risk belirlendiğinde 11–14. haftada fetusun eşinden biyopsi yapılarak veya 16–18 haftada bebeğin içinde bulunduğu sıvıdan örnek alınarak bebeğin kromozom analizinin yapılması mümkündür. Ayrıca ultrasonografi de bu konuda bize yardımcı olmaktadır.

http://www.biyologlar.com/kisirlik-ve-genetik

 
3WTURK CMS v6.03WTURK CMS v6.0