Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 90 kayıt bulundu.

Homeopati Okulu 31 Mayıs'ta Başlıyor

Bedeni, bir makine gibi parçalara ayırıp tamir edilmesi gereken organları, önce hastalık isimleriyle etiketleyen, daha sonra da değiştiren ya da ilaçlarla baskılayan modern batı tıbbının aksine, her hastaya hak ettiği özeni ve saygıyı gösteren, onu “hastalık yolculuğu”ndan yaşama dair daha bilgili, daha bütüncül çıkarmayı hedefleyen homeopati, bu gün Dünya Sağlık Örgütü’nce de tanınan, dünyada batı tıbbından sonra en fazla sayıda hastaya ulaşan en yaygın alternatif sağlık sistemi. Buğday Derneği tarafından 31 Mayıs - 3 Haziran 2012 tarihleri arasında Çamtepe Ekolojik Yaşam Merkezi’nde yapılacak Homeopati Okulu dersleri, Uzman Dr. Günnur Başar tarafından verilecek. Katılımcılar dört gün boyunca homeopatinin kısa tarihini, ilkelerini ve işleyiş mekanizmasını öğrenecek. Homeopati, 300 yıl önce kurucusu Dr. Hahnemann’ın da belirttiği gibi “hastaya tanı ya da tedavi için hiçbir şekilde zarar vermeden, yalnızca hastanın sözel hikâyesine başvurularak” uygulanan, tümüyle doğal yöntemleri kullanan holistik (bütüncül) bir tedavi sistemi. Genellikle daha ileri bir tetkik ya da inceleme gerektirmiyor.  Her türlü fiziksel rahatsızlıkta kullanılabildiği gibi, ciddi kronik hastalıklarda, ruhsal bozukluklarda ve modern tıbbın hastalık kabul etmediği ya da çaresiz kaldığı akla gelebilecek her türlü sorunda başarıyla uygulanıyor ve bu başarısı bilimsel yöntemlerle de kanıtlanmış durumda. Belirtileri bastıran değil tedavi eden bir yöntem olan homeopati, homeos (benzer) ve pathos (hastalık) kelimelerinin birleşmesinden oluşuyor. Bu yöntemde hastalık belirtisi olarak gördüğümüz şeyler aslında hastalıkla savaşan bedenin yarattığı değişiklikler olarak kabul ediliyor. Geleneksel tıp bir hastalık tablosundaki bu belirtilerin tümüne bir hastalık adı koyarken (teşhisten tedaviye giderken), homeopati bu belirtileri olduğu gibi, herkesin kendine özgü bedeninin savunma belirtileri olarak değerlendiriyor. Homeopatik ilaçlar, akut hastalıktan doğal iyileşme biçimine benzeyen bir etkiyle iyileştiriyor. Bütün hastalık belirtilerine “iyileşme krizi” adı veriliyor. Zamana yayılan iyileşme süreci içinde hastanın her türlü hastalığı iyileşiyor ve yeterli doz alınmışsa hasta ömür boyu aynı biçimde hastalanmıyor. Bu tedavi edici, kalıcı etki, homeopatide çoğu zaman tek doz ilaç kullanımı ile sağlanıyor. Uzm. Dr. Günnur Başar hakkında:1987’de Ege Tıp fakültesinden mezun oldu. 1992’de Aile Hekimliği İhtisası’nı tamamlayıp Almanya’nın Köln şehrinde Genetik alanında doktora yaptı. Türkiye’de ve yurt dışında çeşitli hastanelerde doktor olarak çalıştı. İlaç sanayinde araştırmacı ve yönetici olarak çalıştı. 1997’den beri Psikodrama, sanat terapisi, aile terapisi, Holotropik Nefes ve Klasik Homeopati eğitimleri alarak bu konularda çalıştı. Şu anda kronik tıbbi hastalığı olanlarla gönüllü psikolojik destek grupları yürütüyor ve homeopati ve sağlık danışmanlığı ile uğraşıyor. Homeopati Derneği bünyesinde kurslar ve Kültür Üniversitesi Psikoloji bölümünde Sanat Terapisi dersleri veriyor. Konaklama:Katılımcılar Seçkin Motel’de konaklayacaklar. Çalışmanın yapılacağı Çamtepe’ye transfer sağlanacak. 31 Mayıs’ta başlayacak çalışma için 30 Mayıs Çarşamba günü 12.00′den sonra istenen saatte Seçkin Motel’e giriş yapılabilecek. Farklı bir yerde konaklamayı tercih edenlerin bunu bildirmeleri gerekiyor. Ulaşım:Katılımcılar, Küçükkuyu’ya kendi imkânlarıyla geliyorlar. Truva, Kamil Koç, Ulusoy, Varan ve Metro Turizm’in İstanbul, Ankara ve İzmir’den otobüs seferleri mevcut. Ücret:Eğitim, öğle yemekleri ve Seçkin Motel’den Çamtepe’ye ulaşım dahil katılım ücreti 700 TL. Buğday Derneği üyeleri için indirimli ücret 625 TL. (üye olmak için http://www.bugday.org/portal/uyeform.php)Seçkin Motel’de 4 gece konaklama oda-kahvaltı 200 TL, yarım pansiyon 300 TL. (çift kişilik odada kişi başı ücret). Ödeme:Yalnızca katılım ücreti içindir. Konaklama ücreti ayrı ödenir.Buğday Derneği İktisadi İşletmesiGaranti Bankası Karaköy ŞubesiHesap No: 6295822 Şube Kodu: 400IBAN: TR67 0006 2000 4000 0006 2958 22 Detaylı bilgi, program ve katılım için: Berkay Atik 0542 252 97 85berkay@bugday.orgwww.camtepe.org

http://www.biyologlar.com/homeopati-okulu-31-mayista-basliyor

Bakteriyofaj Nedir ?

Bakteri yiyen canlı bakterilerin büyümesine engel olan onları eriten ve ancak elektron mikroskopla görülebilen bir ültravirüs. Süzgeçlerden geçen ve kültürden kültüre nakledilmesi mümkün olan bu ultra- virüs bakteri kolonilerinde görülebilen değişiklikler yapabilmekte ve bakteri hücrelerini hiç bir artık bırakmadan eritebilmektedir. bakteriyofajlar ın bilhassa zararlı bakterilerden meydana gelen çeşitli salgınlarda bakterileri yok etmek suretiyle önemli rolleri vardır Synechococcus bakterisinin fajı S-PM2 elektron mikroskobu fotoğrafı Bakteriyofaj bakteri ve Yunanca phagein yemek fiilinden tÜretme bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları hayvan bitki ve mantarları enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitl ilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme dna veya RNA olabilir ama genelde 5 – 500 kilo baz çifti uzunluğunda çift sarmallı dnadan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda örneğin Toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği virion bulunmuştur ve deniz bakterilerinin %70i fajlar tarafından enfekte olmuş olabilirler Tarihçe 1913te Britan yalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla ta kip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix dHérelle 3 eylül 1917de dizanteri basilinin düşmanının görünmez bir mikrobunu keşfettiğini açıklayıp ona bakteryofaj adını verdi Çoğalması bakteriyofajların, litik veya lizogenik hayat döngüleri olabilir bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizo genik döngü buna tezat olarak konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar temperate phage denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür ama konağın şartları bozulursa örneğin besin kaynaklarının tükenmesi durumunda endojen fajlar profaj olarak adlandırılırlar etkinleşirler. Bir çoğalma süreci başlar sonucunda konak hücre parçalanır. ilginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar bu olguya lizogenik dönüşüm lysogenic conversion denir. Bunun iyi bilinen bir örneği Vibrio cholera nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve giriş T4 bakteriyofajının yapısı. 1. baş 2. Kuyruk 3. Nükleik asit 4. Kapsit 5. Yaka 6. Kın 7. Kuyruk lifleri 8. Ekserler 9. Taban plakası.Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki öz gül reseptörlere bağlanırlar bunlar arasında lipoPolisakkaritler teikoik asitler proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluş up bağlanırlar. Karmaşık bakteryofajlar örneğin T-çift fajları genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. iyice bağlandıktan sonra kuyruk büzülür bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. protein ve Nükleik asit sentezi Kısa süre bazen Dakikalar içinde bakteri ribozomları viral mrnanın Proteine çevirimine translasyonuna başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mrnayı tercihen çevirmesine neden olabilirler. Konağın kendi Protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur kuyruk onun üzerinde büyür. kafa kapsidi ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde dna kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması lizis veya salgılanma yoluyla salınırlar. T4 fajları durumunda hücre içine girmelerinden 20 Dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300ü bulabilen faj salınır. Bunun gerçekleşmesi hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimiKeşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batıda faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliğinde 1940lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar milyonlarca yıldır süregeldiği gibi bakterilerle beraber evrimleştikleri için sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca etkili bir faj özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir bakteri tipinin doğru tanımlandığından emin olmak gerekebilir bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak sıkça olduğu gibi birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler onun için açık bir yaraya uygulanmaları en iyi Sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006da ABD gıda ve ilaç idaresi Food and Drug Administration bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır.  

http://www.biyologlar.com/bakteriyofaj-nedir-

Gen Terapi

Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır. Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır.

http://www.biyologlar.com/gen-terapi-1

İlk Gen <b class=red>Terapisi</b>

İlk Gen Terapisi

İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi.

http://www.biyologlar.com/ilk-gen-terapisi

Gen <b class=red>Terapisi</b>nin Riskleri Nelerdir

Gen Terapisinin Riskleri Nelerdir

Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir.

http://www.biyologlar.com/gen-terapisinin-riskleri-nelerdir

Radyasyon Onkologları İspanya’da Buluştu

Radyasyon Onkologları İspanya’da Buluştu

Türkiye ve dünyada kanser konusunda çalışmalar yapan 500’den fazla radyasyon onkolojisi uzmanı, Truebeam Sistemi kullanarak gerçekleştirilen daha kısa kısa süreli tedavilerle elde edilen başarılı sonuçları paylaştılar. Avrupa Radyoterapi ve Onkoloji Derneği Kongresi sırasında bir araya gelen 500’ den fazla onkoloji uzmanı yüksek doz hızına sahip Varian TrueBeam sistemi ile RapidArc Radyocerrahi yöntemi kullanılarak tedavide kaydedilen önemli aşamalar hakkında bilgi alışverişinde bulundu.Yıllık ESTRO Konferansı kapsamında gerçekleştirilen Varian Yeni Teknolojiler Sempozyumu’nda konuşmacılar, prostat kanseri tedavisinde çok kısa süreli stereotaktik radyoterapi uygulamaları ve merkezi sinir sistemi hastalıklarında RapidArc Radyocerrahi kullanımıyla ilgili tecrübelerini dile getirdiler. Kanser uzmanları TrueBeam Sistemi kullanılarak gerçekleştirdikleri tedavilerde toplam tedavi süresinin kısaldığını, seans sayısının azaldığını ve normal dokuların daha iyi korunması sayesinde yan etkilerin çok azaldığını bildirdiler.Türkiye adına konferansa katılan Neolife Tıp Merkezi Radyasyon Onkolojisi Uzmanı Prof. Dr. Ufuk Abacıoğlu, kötü ve iyi huylu beyin tümörlerinin tedavisinde çerçevesiz, tek seanslı radyocerrahi uygulamaları konularına değindi. Sunumunda görüntü rehberliğinde çerçevesiz ve müdahalesiz bir şekilde hedefin lokalizasyonuyla, hastanın kafatasına çerçeve takılması gibi invazif bir prosedür olmadan daha büyük alanları, daha az seansta tedavi edebildiklerini belirten Abacıoğlu, sözlerine şu şekilde devam etti: “TrueBeam’de yüksek doz hızı sayesinde görüntü rehberliğinde radyocerrahi işlemi diğer radyocerrahi cihazlarına göre 2 ila 5 kat daha kısa sürede, çoğunlukla 15 dakika içinde tamamlanabiliyor. Klinik deneyimlerimiz, bu tedavi yönteminden hastalarımızın hem çok iyi sonuç aldığını, hem de tedavinin konforundan çok memnun olduğunu gösteriyor.” Ayrıca konferans süresince, Varian’ın düzenlediği brakiterapi sempozyumunda erken evre meme kanserinde meme koruyucu cerrahi sonrası parsiyel meme ışınlamasında kullanılan brakiterapi, intraoperatif radyoterapi ve harici ışın radyoterapisi gibi farklı uygulama teknikleri değerlendirildi. http://www.medical-tribune.com.tr

http://www.biyologlar.com/radyasyon-onkologlari-ispanyada-bulustu

İstatistiksel Model ile Hastalıkların Önceden Tahmini

Biyoinformatik biliminin en çok katkısı olacağı alanlardan biri de şüphesiz tıp olacaktır. Genleri ve proteinleri inceleyerek hastalık daha oluşmadan teşhisinin yapılması fikri çok etkileyici. Tabi teşhisi yanında gen terapisi gibi yöntemlerle sorunun kaynağına inilerek düzeltilmesi kesin çözüm olabilir. Açıkçası bu konudaki çalışmalar tam olarak nedir bilmiyorum. Bundan ziyade beni heyecanlandıran kısmı, gen ifade düzeylerinin istatistiksel modeller yardımıyla incelenerek hastalıklar daha oluşmadan teşhisi. Tabi ki hastalığın oluşmasının son kararı proteinlerden geçiyor. Bu sebeple proteinlerin yapılarının önceden kestirimleri de önemli çalışma konularındandır. Fakat gen ifadesi analizleri verisi kullanılarak kurulan modeller başlangıç açısından çok faydalıdır. Model kurmayı sadece istatistiksel yöntemlerle sınırlandırmak yanlış olur. Yapay öğrenme metodlarına da sıkça başvurulur. Yapılan bazı çalışmalarda gen ifade verileri kullanılarak kurulan modellerde neredeyse %100'e yakın doğru kestirimler yapıldığı görülmektedir. Hasta ve sağlıklı gibi iki sınıftan oluşan verilerde hasta ve sağlıklı bireyleri tahmin edebilmek için bazı sınıflandırma yöntemleri vardır. Bunlardan bazıları; lojistik regresyon analizi, diskriminant analizi ve bayescil yöntemlerdir. Bu sınıflandırma yöntemlerinin yani hastalığın önceden bilinebilmesi için kurulmaya çalışan istatistiksel modeli saptayabilmek için veriden öğrenme gerçekleştirilmelidir. Biraz daha açarsak, elimizde olan veride gerçekte hasta ve sağlıklı bireylerin bilgisi vardır. Bu sınıf bilgisi ve değişkenlerin bilgisi kullanılarak bir kestirim modeli kurulur. Bu sayede örneğin 5 tane genin hastalıkta ilişkisi olduğunu düşündüğünüz genleri kullanarak hasta veya sağlıklıdır diye kestirim yapılabilir. Sınıflandırma yöntemlerinin kullanılabilmesi için sınıf bilgisinin kesinlikle olması gerekir. Bu bilgiye sahip olmak çok değerlidir. Sınıf bilgisine sahip olmadığımız durumlarda ise kümeleme yöntemleri kullanılır. Kümeleme analizi, sınıflandırmaya göre istatistiksel açıdan biraz daha havada kalan bir yöntemdir. Sebebi de alt yapısında sağlam bir istatistiksel teoriye sahip olmamasından kaynaklanır. Kümeleme analizlerinde genellikle uzaklık ölçüm birimleri kullanılarak analizler yapılır. Benzer gözlemleri kümelemek için kullanılır. Özellikle mikrodizi gen ifadesi analizlerinde bundan önceki yazımda anlattığım öznitelik seçimi dahil, sınıflandırma ve kümeleme analizlerine sıkça başvurulur. Buna benzer yöntemleri kullanarak genetiksel hastalıklara yakalanma riskini hesaplayan ve hizmet veren şirketler var. 23andme bu hizmeti veren bir şirket bildiğim kadarıyla. Bu yazımda anlattığım yöntemlerin hangi durumda kullanıldığının anlaşılması açısından 10. İstatistik Öğrenci Kolokyumu'nda sunduğum "Biyoinformatik ve Mikrodizi Gen İfadesi Analizi" adlı bildirimden örnek vermek istiyorum. Elimde NCBI veri tabanından aldığım meme kanseri hastalarına ve sağlıklı bireylere ait mikrodizi gen ifadesi verisi vardı. Araştırmak istediğim; meme kanserine hangi genlerin sebep olduğunu bulabilmek ve veriyi iyi açıklayan genlerle çalışarak bir model kurmaktı. Bu model ile kestirim yaparak modelde kullandığım değişkenin ve sınıflandırma yönteminin başarısını ölçmekti. Verim bazı gürültüleri içerdiği için bu gürültülerden kurtulmak için RMA normalizasyon yöntemi kullandım. Gürültülerden büyük oranda kurtulduktan sonra binlerce değişkenle modeli kurmak hatayı arttıracağından, veriyi en iyi açıklayan yani meme kanseriyle ilişkisi olan genleri bulabilmek için öznitelik seçimi yöntemlerinden t-istatistiğini kullandım. Skorlama yapıp meme kanserine sebep olan en önemli genden daha az önemli gene doğru sıraladıktan sonra. 10, 50, ... , 2000 'er en iyi gen alt kümeleri oluşturarak lojistik regresyon ve naive bayes sınıflayıcısı ile model kurdum. Başarı %'lerini karşılaştırdım. Aşağıdaki tabloda orjinal sonuçlar vardır. Bu çalışmada naive bayes sınıflayıcısı lojistik regresyona göre daha başarılı bir sınıflandırma yapmıştır. Naive bayes sınıflandırıcısında en önemli 10 tane gen %86.3 oranında doğru sınıflandırma yaparken, lojistik regresyon en önemli 10 tane gen ile %76.8 oranında doğru kestirim yapmıştır. Aşağıda ise sınıflandırma yönteminin çalışma prensibini anlayabilmek için güzel bir grafik var. Mavi olanlar gerçekte hasta olanlar siyah olanlar ise gerçekte sağlıklı bireylerdir. Modelimiz yani hasta ve hasta değil şeklinde kestirim yapan modelimiz ise kırmızı çizgidir. Kırmızı çizginin solunda kalana hasta sağında kalana ise sağlıklı olarak atama yapıyor. Fakat modelimizde hatalar olduğu başarı tablomuzdan da bildiğimizi gibi gözükmektedir. Gerçek hasta olan bir kaç gözlem hasta değil olarak, gerçekte hasta olmayan bazı gözlemler ise hasta olarak kestirilmiştir.

http://www.biyologlar.com/istatistiksel-model-ile-hastaliklarin-onceden-tahmini

Malign Glial Tümörler

Malign Glial Tümörler

Türkiye Kanserle Savaş Vakfı’nın doktorlara yönelik güncel bilgilerin aktarıldığı Onkolojide Güncel Yaklaşım Toplantıları’nın 2013 yılındaki ilk toplantısı, Neolife Tıp Merkezi birlikteliğiyle 12 Ocak Cumartesi günü Point Hotel Barbaros’ta düzenlendi. Gelenekselleşen toplantının konusu “Malign Glial Tümörler” oldu ve yaklaşık 90 doktorun katılımıyla gerçekleşti. Malign Glial Tümörler başlığındaki toplantıda konu, farklı uzmanlık dallarındaki doktorlar tarafından tartışıldı. Hastalığın sürecindeki patolojik değerlendirmeler, cerrahi yaklaşımlar ile tıbbi ve radyasyon onkolojisi tedavilerine yönelik güncel yöntemler katılımcılara aktarıldı.Point Hotel Barbaros’ta düzenlenen toplantının açılışı, TKSV Yönetim Kurulu Üyesi Doç. Dr. Meriç Şengöz tarafından yapıldı. Nöroşirurji Uzmanı Prof. Dr. Talat Kırış’ın oturum başkanlığını gerçekleştirdiği toplantının ilk bölümünde beyin tümörlerinin patolojik değerlendirmeleri, cerrahi tedavi yöntemleri ve malign tümörlerin tedavisindeki yeni gelişmeler doktorlarla paylaşıldı. Patoloji Uzmanı Prof. Dr. Aydın Sav “Malign Glial Tümörlerin Patolojik Değerlendirmesinde Gelişmeler” konusu hakkındaki sunumunu aktarırken, Nöroşirurji Uzmanı Prof. Dr. İbrahim Ziyal, malign glial tümörlerin cerrahisindeki yeni gelişmeler ve yaklaşımlar hakkında bilgi verdi. Moleküler patolojideki gelişmeler ışığında özellikle MGMT metilasyonu, 1p19q ko-delesyonu ve IDH mutasyonunun malign glial tümörlerin gidişatı ve tedavi seçimi üzerindeki etkileri ile bu moleküler belirteçlerin değerlendirme tekniklerinin nasıl olması gerektiği üzerinde duruldu. Malign glial tümörlerde halen cerrahi olarak tam çıkartımın tedavi sonuçları üzerinde olumlu etkisi bulunuyor. Bu nedenle tam çıkartım olasılığını artırmaya yönelik cerrahi tekniklerden intraoperatif ultrason ve MR, 5-ALA ile floresan ışık altında rezeksiyon uygulamaları uzmanlarca tartışıldı. Radyasyon Onkolojisi Uzmanı Prof. Dr. Ömer Uzel’in oturum başkanlığı yaptığı toplantının ikinci bölümünde ise, Malign Glial Tümörlerin tedavisinde tıbbi ve radyasyon onkolojisi yöntemleri ve yeni gelişmeler tartışıldı. Bu bölümde Tıbbi Onkoloji Uzmanı Prof. Dr. Gökhan Demir “Anaplastik Gliomaların Tedavisinde Gelişmeler” konu başlığında katılımcılara bilgiler aktarırken,  Neolife Tıp Merkezi’nden Radyasyon Onkolojisi Uzmanı Prof. Dr. Ufuk Abacıoğlu, “Glioblastoma Tedavisindeki Yenilikler” konusunda sunumunu gerçekleştirdi. Yakın zamanda uzun dönem sonuçları açıklanan anaplastik oligodendroglial tümörlerde PCV kemoterapisinin radyoterapiye eklenmesini araştıran, RTOG ve EORTC çalışmalarının sonuçları değerlendirildi. Özellikle bu hasta grubunda kemoterapi eklenmesinin faydalı olduğu ve bunun özellikle 1p19q kodelesyonu bulunan tümörlerde etkili olduğu belirtildi. Yine glioblastoma hastalarında standart tedavi olan cerrahi sonrası eşzamanlı radyoterapi ve temozolomid tedavisine ilaveten bir anjiogenez inhibitörü olan bevasizumabın eklenmesini araştıran AvaGlio çalışmasının sonuçları tartışıldı. Yaşlı glioblastoma hastalarında kısa süreli radyoterapi ve temozolomid kullanımı, Alman NOA-8 ve Türkiye’den de hasta katılımının olduğu Nordic çalışmaları ışığında değerlendirildi. Son olarak da yeni tedavi yöntemleri ışığında güncellenen RANO yanıt takip kriterleri gözden geçirildi. Yaklaşık 90 hekimin katıldığı bilimsel toplantının sonunda doktorlar, aktarılan tüm konular üzerinden tartışmalarını gerçekleştirdi. Detaylı bilgi için: Protein İletişim 0212 603 62 32http://www.medical-tribune.com.tr

http://www.biyologlar.com/malign-glial-tumorler

24 milyar dolar 3 gram tuzun elinde

24 milyar dolar 3 gram tuzun elinde

Dünya’da Kronik Böbrek Hastalığı oranı; %10-13 ‘dür. Bu demektir ki; her 10 yetişkinin biri değişik derecelerde kronik böbrek hastalığı çekmektedir…Dünya’da 2 milyonun üzerinde diyaliz gören veya böbrek transplantasyonu yapılmış insan yaşamaktadır …Bu sayının gelecek 10 yılda ikiye katlanması tahmin edilmektedir.ERA-EDTA (Avrupa Böbrek Birliği ve Avrupa Diyaliz Transplantasyon Birliği) Kongresi nefroloji ve böbrek replasman terapisi üzerine Avrupa’da yapılan en büyük kongredir. Bu yılki kongre, ERA-EDTA’nın 50. yıldönümü kongresidir ve 18-21 Mayıs 2013 tarihleri arasında İstanbul Kongre Merkezi’nde düzenlenecektir. Bu uluslararası platformda tanınmış kongrenin başkanı; Prof. Gultekin Suleymanlar, kongre sekreteri Prof. Cengiz Utaş’tır. Bilgilerini ve güncel araştırma bulgularını paylaşmak üzere, İstanbul’da 10.000’in üzerinde katılımcı olması öngörülmektedir. Nefroloji konusundaki yeni ve öncü çalışmalar kamu oyuna açıklanacaktır.Siz değerli basın mensuplarımızı; İstanbul Kongre Merkezi Maçka salonu’nda 17 Mayıs Cuma günü saat 11.30-12.30 arasında düzenlenecek olan Açılış Basın Toplantısı’na davet ediyoruz. Hoş geldiniz konuşması, ERA-EDTA Başkanı Prof. Raymond Vanholder (Belçika) tarafından yapılacak olan basın toplantısında; Türkiye Kongre Başkanı; Prof. Gültekin Süleymanlar, Türkiye Kongre Sekreteri; Prof. Cengiz Utaş, Bilimsel Kurul Başkanı; Prof. Rosanna Coppo (İtalya) ve Prof. Oğuz Söylemezoğlu konuşmacı olarak katılacaklar ve sektördeki son yöntem, gelişme ve istatistikler paylaşılacaktır.Basın toplantısında, Avrupa ve Türkiye’deki böbrek sağlığı en önemli açıları ile ele alınacaktır. Nefroloji disiplininin önemi halen daha göz ardı edilmektedir. Fakat Kronik Böbrek Hastalığı (KBH) tanısı konan insanların sayısı giderek artmaktadır ve KBH’nın artan insidansı ve prevelansı, sağlık hizmetleri ekonomileri açısından Avrupa ülkeleri için büyük bir sorun teşkil etmektedir. Türkiye’de, 2010 yılında 15.509 hasta böbrek replasman terapisine (diyaliz ya da transplantasyon) kabul edilmiştir. Bu rakam son derece yüksektir ve Türkiye’de son evre böbrek yetmezliğinin insidansı, örneğin Fransa ve İtalya’daki oranların neredeyse iki katıdır. Öne çıkan başlıklardan örneklerTürkiye’de Böbrek işlevini yerine koyma tedavisi (Renal Replasman Terapileri) için 1.15 milyar Euro harcanmaktadır.Ne kadar tuz alıyoruz? Ne kadar almalıyız ? Türkler günlük ortalama ne kadar tuz tüketiyorlar?Ülkemizde 2010 yılında diyalize giren SDBH hastaları için sağlık bütçesinden yaklaşık 1.5 milyar USD harcandığı hesaplanmıştır.Günlük tuz tüketiminin günde 5-6 grama indirilmesi ile her yıl dünyada kalp krizi ve inmeye bağlı 2.5 milyon ölüm önlenebilir. Tuz alımının günde 3 gram azaltılması dünyadaki yıllık sağlık harcamasını 10-24 milyar dolar azaltabilir.Önleme stratejileri büyük önem taşımaktadır: böbrek hastalıklarındaki artış, yalnızca demografik eğilimlerin (insanlar yaşlanmaktadır) bir sonucu değildir, aynı zamanda kronik böbrek yetmezliğine yol açabilen diabetes mellitus ve yüksek tansiyonun artan insidansının da bir sonucudur. Önleme, sağlık giderleri ile yakından ilişkili olmasının yanı sıra hastaların diyalize olan ihtiyaçlarının giderilmesini de sağlayacağı için oldukça büyük önem arz etmektedir.Yüksek risk grubundaki bireyler; Diayabetik hastalar, Hipertansif hastalar, Obezler, Kalp damar hastalığı olanlar, Sigara içenler, Yaşlılar, DM, HT ve böbrek hastalığına ilişkin aile öyküsü olanlar,Diğer böbrek hastalığı bulunan bireyler….Böbrek hastalıkları çocuklarda da göz ardı edilemez seviyededir…Her ne kadar 28 Avrupa ülkesinde yapılan araştırmaya göre çocuklar yetişkinlere göre 20 kez daha az sıklıkta böbrek hastalığına maruz kalsalar da Tekrarlayan İdrar Yolu Enfeksiyonları kız çocuklarının % 3-5 inde, erkek çocukların % 1inde kendini göstermekte ve tekrarlayan üriner enfeksiyonların (TÜE) kalıcı renal hasar riskini arttırması nedeni ile altta yatan risk faktörlerinin tesbit edilerek enfeksiyonların önlenmesi ve tedavisi çok önemlidir. İlk enfeksiyondan sonra kızların %60-80 ’ında, erkeklerin %30’unda bir yıl içinde Üriner Enfeksiyonnun tekrarlama riski vardır .Açılış Basın Toplantısı ağırlıklı olarak KBH’nı önleme stratejilerine odaklanmaktadır.17 Mayıs 11:30 Basın Toplantı Programı • Hoşgeldiniz KonuşmasıProf. Raymond Vanholder, Belçika, ERA-EDTA Başkanı• Hipertansiyon, Diyabet ve KBH – sıkça görülen bir ittifak Prof. Gültekin Süleymanlar, Türkiye, Kongre Başkanı• Tuza odaklanmak: “Böbrek-dostu şekilde nasıl yemek yeriz? Prof. Cengiz Utas, Türkiye, Kongre Sekreteri• Pediatrik Nefroloji: Erken tanı çocukları diyalizden nasıl koruyabilir? Prof. Rosanna Coppo, İtalya, Bilimsel Kurul Başkanı• Reflü Nefropatisi: Çocuklarda son evre böbrek hastalığının ana sebeplerinden biri Prof. Oğuz Söylemezoğlu, TürkiyeBasın toplantısına katılımlarınızı ve akreditasyon için zeynotuzkan@figur.net adresine mail yoluyla ulaşmanızı arz ederiz.Her türlü sorularınız ve röportaj talepleriniz için Figür Kongre iletişim müdürü; Zeyno Tüzkan ile iletişime geçebilirsiniz:Tel : + 90 212 381 46 00 Direkt hat : + 90 212 381 46 53 Faks : + 90 212 258 60 78 Gsm : + 90 533 957 80 44 Saygılarımızla,Zeyno Tüzkanİletişim Müdürü Kurumsal Hizmetler19 Mayıs Cad.19 Mayıs Mah.Nova Baran Plaza No:4 Kat:6, 34360 Şişli-İstanbul Tel:+ 90 212 381 46 00 Direct :+ 90 212 381 46 53 Fax:+ 90 212 258 60 78 Gsm :+ 90 533 957 80 44 Email :zeynotuzkan@figur.nethttp://www.medical-tribune.com.tr

http://www.biyologlar.com/24-milyar-dolar-3-gram-tuzun-elinde

Bakteriyofaj Nedir

Bakteriyofaj (bakteri ve Yunanca phagein, ‘yemek’ fiilinden türetme), bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları (hayvan, bitki ve mantarları) enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitlilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme DNA veya RNA olabilir, ama genelde 5 - 500 kilo baz çifti uzunluğunda çift sarmallı DNA’dan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda, örneğin toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği (virion) bulunmuştur ve deniz bakterilerinin %70′i fajlar tarafından enfekte olmuş olabilirler. Tarihçe 1913′te Britanyalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla takip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix d’Hérelle 3 Eylül 1917′de “dizanteri basilinin düşmanının, görünmez bir mikrobunu” keşfettiğini açıklayıp ona bakteryofaj edını verdi. Çoğalması Bakteriyofajların litik veya lizogenik hayat döngüleri olabilir, bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizogenik döngü, buna tezat olarak, konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar (temperate phage) denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür, ama konağın şartları bozulursa, örneğin besin kaynaklarının tükenmesi durumunda, endojen fajlar (profaj olarak adlandırılırlar) etkinleşirler. Bir çoğalma süreci başlar, sonucunda konak hücre parçalanır. İlginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar, bu olguya lizogenik dönüşüm (lysogenic conversion) denir. Bunun iyi bilinen bir örneği Vibrio cholera ‘nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve Giriş Renklendirilmiş bir elektron mikrografında yanyana dizilmiş bakteriyofajlar Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki özgül reseptörlere bağlanırlar, bunlar arasında lipopolisakkaritler, teikoik asitler, proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluşup bağlanırlar. Karmaşık bakteryofajlar, örneğin T-çift fajları, genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. İyice bağlandıktan sonra, kuyruk büzülür, bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter, bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. Protein ve Nükleik Asit Sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA’nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA’yı tercihen çevirmesine neden olabilirler. Konağın kendi protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar, ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion Oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur, kuyruk onun üzerinde büyür. Kafa kapsidi, ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde DNA kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların Salınımı Fajlar ya hücre parçalanması (lizis) veya salgılanma yoluyla salınırlar. T4 fajları durumunda, hücre içine girmelerinden 20 dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300′ü bulabilen faj salınır. Bunun gerçekleşmesi, hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur. Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar, beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj Terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimi Keşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batı’da faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliği’nde 1940′lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar, milyonlarca yıldır süregeldiği gibi, bakterilerle beraber evrimleştikleri için, sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca, etkili bir faj, özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için, ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir, bakteri tipinin doğru tanımlandığından emin olmak gerekebilir, bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak, sıkça olduğu gibi, birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler, onun için açık bir yaraya uygulanmaları en iyi sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006′da ABD Gıda ve İlaç İdaresi (Food and Drug Admnistration) bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır. Model Bakteriyofajlar Aşağıda ayrıntılı olarak üzerinde çalışılmış olan bakteryofajların bir listesi bulunmaktadır: * λ faj * T4 fajı * T7 fajı * R17 fajı * M13 fajı * MS2 fajı * P1 fajı * P2 fajı * N4 fajı * Φ6 fajı * Ф29 fajı

http://www.biyologlar.com/bakteriyofaj-nedir

Takıntı Tedavisine Gün Hastanesi Modeli

Takıntı Tedavisine Gün Hastanesi Modeli

Halk arasında takıntı diye bilinen Obsesif Kompulsif Bozukluk, bulanık görmeden nefes darlığına kadar birçok soruna neden oluyor. Takıntıları nedeniyle işinde performansı düşen, eşiyle arası açılanlar bile var. OKB tedavisinde ilaç ve terapinin eş zamanlı bir arada uygulandığını vurgulayan Prof. Dr. Sedat Özkan, OKB hastalarının “Gün Hastanesi Modeli” kapsamında tedavi edildiğini vurgulayarak, “Bu uygulamada, klinikte uzman denetiminde yüzleştirme, duyarsızlaştırma yöntemleri ile korkuları ve takıntıları tedavi edilmektedir. Hastayı hastanede yatırmadan uygulanan bu yöntem, OKB hastalarında olumlu sonuçlar vermekte” dedi. Obsesyon dediğimiz dürtüsel olarak tekrarlanan düşünce ve davranışlara kompulsiyonlar yani bir takım acilen uygulanması gereken ritüeller veya davranışlar eşlik eder. Bir de bu durumun yaşam işlevselliğini bozacak düzeyde olması gerekir. En sık görülen obsesyon belirtilerine örnek verecek olursak; el yıkama, kapıları, prizleri kontrol etme, kendisine bir hastalık bulaşacağından korkma, yanlış yapmaktan korkma, birisine zarar vermekten korkma, düzen-simetri takıntıları, günah işleyecek olmaktan korkma diyebiliriz. Bunlara eşlik eden kompulsiyonlar ise ; saatlerce el yıkama, sürekli kontrol etme, kendini toplumdan izole etme, sevdiği insanlardan zarar verme takıntısı sebebiyle uzak durma, sürekli eşyaları düzeltmekten bir süre sonra bıkmak ve kimseyi evine davet etmemek, günah işlemekten korkmak sebebi ile insanlarla minimum ilişki kurmak sürekli tövbe etmek.. Hastalığın ortaya çıkışında kültürel faktörler etkilidir. İstanbul Üniversitesi İstanbul Tıp Fakültesi Psikiyatri Ana Bilim Dalı Öğretim Üyesi ve Humanite Psikiyatri Tıp Merkezi Direktörü Prof. Dr. Sedat Özkan, hastalığın ortaya çıkmasında kültürel faktörlerin etkili olduğuna dikkat çekti: “Özellikle çocukluk çağında aşırı kuralcı ve disiplinli eğitim veren toplumlarda OKB’nin daha sık görüldüğü düşünülmektedir. Son yıllarda yapılan araştırmalar, OKB’nin biyolojik faktörler, yaşam deneyimleri, stres,travmalar, inanç ve tavırlar gibi psikolojik faktörlerden kaynaklandığını ortaya koyuyor. Günümüzün getirdiği sosyal yaşamdaki değişimlere adapte olamayan kişilerde daha sık OKB’ye rastlanmaktadır. obsesyon tedavisi hakkında şöyle bilgi verdi: “Obsesif Kompulsif Bozukluk uzun süren ve zamanla iyileşme dönemleri gösterebilen bir hastalık. İlaç ve psikoterapiyle tedavi ediliyor. Prof. Özkan, OKB (Takıntı Hastalığı) tedavisinin ‘gün hastanesi modeli’ ile başarılı şekilde yapılabildiğini söyledi. OKB tedavisinin temel hedefi rahatsızlık yaratan düşüncelerin, sorumluluk artışı yaratmasını durdurmaktır.Hastalığın tekrarını önlemek de en az tedavi kadar önemlidir. Bu nedenle; hastaya stresle başa çıkma yöntemleri öğretmek ve tedavinin her aşamasında hastayı belirtiler ve durumla ilgili eğitmek ve ileride bunları kullanabilmesine olanak yaratmak büyük önem taşır. Hastalar kendi ev ortamlarında bunları yapmakta zorlanır. Bu nedenle hastaneye yatırmak gerekmez. Gün Hastanesi Modelinde terapötik ortamda uzmanın aktif yardımı ile bilişsel davranışçı terapi, maruz bırakma ve kompülsiyonu engelleme, sistematik duyarsızlaştırma ilaç tedavisi eş zamanlı ve eş güdümlü uygulanır. Prof.Özkan “OKB hastalarında karşılaştığımız belirgin zorluklardan birisi de klinik ortamda geliştirmeye çalışılan baş etme mekanizmalarının kendi günlük yaşamlarında uygulamakta zorlanmalarıdır. Bu nedenle “Gün Hastanesi Modeli” ile hastalarla maruz bırakma ve tepki önleme gibi tekniklerin uzman eşliğinde uygulanması, baş etme mekanizmalarının adım adım geliştirilmesi daha hem etkin olarak sağlanabilmekte hem de hastanın tedaviye olan inancı ve güveninin olumlu sonuçlar ile birlikte artması amaçlanmaktadır.” Gün hastanesi modeli; hastanın durumuna göre günübirlik yatış ile takip edilebileceği, bir yandan terapilerinin yapılabileceği, hastaların uzman eşliğinde takıntıları ile yüzleşirken sonrasında psikiyatri uzmanı ile ilaçları hakkında görüşebileceği,uğraş terapisi ile işlevselliğini arttırırken katıldığı bir grup terapisinde kendisi ile aynı durumda olan kişilerle baş etme yöntemleri geliştirebileceği tüm imkanları bir arada sunan modeldir.http://www.medical-tribune.com.tr/

http://www.biyologlar.com/takinti-tedavisine-gun-hastanesi-modeli

Gen Klonlanmasında Rekombinant DNA Teknolojisi

Gen Klonlanmasında Rekombinant DNA Teknolojisi

Daha önceki bölümlerde aşamalarını anlattığım ve oluşturulan rDNA 'ların hücrelere aktarılması sırasında çeşitli yöntemler kullanılır. Rekombinant DNA moleküllerin hücreye aktarılması sırasında(bu hücreler konak hücrelerdir) rekombinant molekülün aktarılacağı organizmaya bağlı olarak çeşitli aktarım (transfer) yöntemleri mevcut olup, aktarım işlemi, "transformasyon" adını alır. Bu yöntemler; 1)Kimyasal teknikler(kalsiyum-fosfat transfeksiyonu) 2)Fiziksel teknikler(mikroenjeksiyon, elektroporasyon ve kimyasal porasyon,biyolistik) 3)Füzyon teknikleri 4)Viral teknikler olarak dört gruba ayrılır. AMAÇ?? istenilen genin, yeni hücreye girip, anlatım yapması!!! Kimyasal Tekniklerden, kalsiyum-fosfat transfeksiyonu; bu yöntem, istenilern geni ve ekspresyon için gerekli elementleri, konak hücre üstüne çöktürme yöntemidir.Plazmit DNA, kalsiyum-fosfat ile çöktürülüp, hedef hücrrnin bu yapıyı endositoz/fagositoz ile içine alması sağlanır.Böylece bu çözeltiyi sindirerek hücre içine alan hücreler, istenilen genin anlatımını gerçekleştirmiş olurlar.Genellikle bu gücrelerdeki plazmit vektörler çoğalmazlar, kalıcı olarak hücre içinde yar alırlar.Genelde seçilen genler, antibiyotiğe karşı direnç genleridir.Bu işlemde plazmit vektör çoğalması söz konusu olmadığından transformasyon değil, transfeksiyon denir.Çünkü transformasyon, hücrenin kontrolsüz büyümesi anlamına gelir. Fiziksel tekniklerden, mikroenjeksiyon; zahmetli fakat verimli bir tekniktir.DNA molekülü, mikroskop altında, çok ince uçlu pipet yardımıyla hücrenin sitoplazmasına veya çekirdeğine doğrudan aktarılır.Memeli hücre ve embriyolarında, bitki protoplast ve dokularında başarıyla uygulanmaktadır.Memeli hayvanların döllenmiş yumurtalarına, bu yolla gen aktarımı yapılarak, transgenik haycan elde edilmiş olunur.Bu işlem sonucunda çok sayıda hücre elde etmek mimkün değildir.Çünkü az sayıda DNA injekte edilebilinir. Fiziksel tekniklerden, elektroporasyon; membrana elektrik akımı verilerek, membranda küçük delikler açılması sağlanır.Bu delikler, nükleik asitlerin geçişine olanak sağlarlar.Bu delikler, her hücrede, farklı elektrik akım gücü ve farklı sürelerde elektrik akımı verilmesiyle gerçekleşir.Bu teknik, insan, bakteri, maya hücrelerinde gen aktarımı için kullanılmakadır. Fiziksel tekniklerden, biyolistik; bu yöntemde, küçük çaptaki metal partiküllerine sarılmış DNA molekülleri bulunur.Bu metal partikğlleri, altın ya da tungsten elementleri olabilir.Bir mikroprojektil denen bir nevi silaha benzeyen alet ile, bu metal partikülleine sarılı DNA 'lar hücreye bombardıman edilir.Böylelikle hücrenin içine giren bu yapılardan bazıları bu metal partüküllerinden ayrılır ve hücre genomu ile birleşir.Mitokontri ve kloroplast organellerinde kullanılan yegane yöntemdir.Ayrıca bitki hücrelerine gen transferi için de kullanılır. Füzyon teknikleri; iki hücrenin, genetik içeriğinin birleştirirlmesi işlermi olup, amaç iki ebeveyinin farklı özellliklerini taşıyan bir hibrit oluşturmaktır.İstenilen iki ebeveyn genlerini, hedef hücreye aktarılmak için iki farklı füzyon tekniği mevcuttur. a)istenilen genleri bazı taşıyıcılar ile( lipozom, eritrosit) hücreye aktarma yöntemi; bu yöntemde örneğin lipozomlar, duvarsız hücre ile etkileşirler ve lipozom içeriği, hücrenin içine aktarılır.Bu gen aktarımında, memeli hücresinin metafaz evresindeki kromozomlar, lipozomlara bağlanır ve kromozomların hücre içine girmesi sağlanır.Böylece oluşan hibrit hücreler, seçici ortamda üretilerek aktarılan gen yönünden incelenirler.Bu transfekte hücre genleri, DNA' da geçici olarak anlatılabilirler. b)İki farklı hücrenin birleştirilmesi tekniğidir.Monoklonal antikor eldesi için( hibridoma tekniği) kullanılan bir yöntemdir. Viral teknilkler; genetik materyali hücrelere aktarmak için virüslerden yararlanılır.Bu virüsler DNA/RNA genetik materyali taşıyan virüslerdir.Bu yöntemde bakterinin enfekte edilip öldürülmesi söz konusu değildir.Bakterinin genomuna giren, onunla birlikte anlatım yapan ve stabilitesinin korunmasını sağlayan vektör olarak kullanılan virüslerden üretilmiş vektörler "baculovirus" ya da "vaccine" viral vektörleri olabilir.Lambda vektörleri ve çeşitleri en sık kullanılan vektörlerdir. Hayvan hücrelerinde transformasyon(hayvan hücrelerine gen aktarımı); *Mikroenjeksiyon *embriyonik kök hücre *gen terapisi(temelinde, hasta kişinin genlerini, iyileştirici proteinler üretecek şekilde değiştirmek yatıyor)-retroviral transformasyon mikroenjeksiyon; verimli yumurtalar ayrılır ve DNA 'lar(somatik hücredeki DNA'lar)yumurta hücresinin pronüklousunun içine enjekte edilir.(yumurta hücresindeki çekirdek içeriği daha önce çıkarılmıştır)Hücre bölünmesi süresince, DNA, kromozomlara yerleşmiş olur.Enjekte edilmiş genler, sonucu elde edilen emriyo, taşıyıca anneye yani dişi konak canlıya enjekte edilir.Hamilelik dönemi oluşur ve devam eder.Sonunda, soyların, aktarılmış DNA 'ları barındırıp barındırmadığı tespit edilir.En iyi şartlarda, %1-5 arasında bir başarı elde edilir. Embriyonik kök hücre; embriyonik kök hücreler, blostosist dönemindeki hücrenin iç membranından alınan yapılardır.ESC(embriyonik kök hücre), DNA ile mikroenjeksiyona tabi tutulur.ESC, erken embriyo safhasındaki embriyoya injekte edilmiştir.Bu olay "kimera" yani hibrit embriyo olarak adlandırırlır.Transforme edilmiş hücrelerin, germ hücresine gelişmesi beklenir.Bir sonraki kuşaklar "kimera" söz konusu olduğu için (hibrit embriyo) tamamen transgenik soyları oluşturacaktır. Retroviral transformasyon; virüslerden yararlanılır ve virüslerin doğal olarak barındırdığı avantajlardan yararlanılır örneğin, her virüs kendine özgü, infekte edebileceği bir konak hücreye sahiptir.Modifiye edilmiş viral vektörler ile ilgili DNA'lara karşı görevlendirilirler. Bitki hücrelerinde transformasyon ( bitkilere gen aktarımı); *Agrobacterium aracılığı ile; bir toprak bakterisidir.DNA'yı bitkilere yapışarak, doğal olarak aktarır. *Biyolistik *Elektroporasyon *Mikroenjeksiyon Agrobacterium tumefaciens bakterisinin, bitki hücrelerini enfekte edip gebnetik materyalini bitkiye aktaran ve tümor oluşumunu sağlayan yani bitki hücreini enfekte etmesini sağlayan, dairesel plazmit yapısı "Ti plazmit".Ti plazmit, RNA bulundurmaz, GC içeriği %56 oranında olup, içeriğindeki genetik materyalin %81'i gen kodlar.Bu plazmit, transgenik bitki eldesi için önemli olmakla birlikte, dikodiledon bitkilere uygulanan bir işlemdir.Ti plazmit genel olarak bitki genomuna entegre olan bir ya da daha fazla TDNA bölgesi, bir vir bölgesi, bir replikasyon merkezi, konjugatif transferin gerçekleşmesini sağlayan bir bölge ve opin katabolizması için gerekli olan genleri içerirler . İkili vektörler;Vir bölgesi ve gen AYRI vektörler üzerindenir.TDNA kısmı çıkarılmıştır. ko-entegratif vektörler;Vir bölgesi ve gen aynı vektör üzerindedir.TDNA kısmı vektörün üzerindedir. Ti plazmit vektöründe; SOL sınır'a yakın ;selektif genler sol sınıra yakın klonlanır. SAĞ sınır'a yakın;istenilen gen, sağ sınıra yakın klonlanır. Enfekte işlemi; *Enfektif Ti plazmidi hazırdır. *T-DNA bölgesi VirD2' ye bağlı olarak(hareketi sağlar) ayrılır. *TDNA, proteinlerle kaplanır.(VirE2 mevcudiyetinde) *Bakteri T-DNA'sı, kanaldan bitki hücresine geçer. *T-DNA-protein kompleksi bitki sitoplazmasında ilerler *Bitki nükleusuna girerek genoma entegre olur. *Oksin, sitokinin ve opin hormonları sentezi ile hücre sayısında artış görülür.(tümör oluşması kontrolsüz hücre bölünmesidir) *Taç tümörü oluşumu ile süreç sonlanır. kaynak; vikipedi, Gene Cloning and DNA Analysis T.Brown

http://www.biyologlar.com/gen-klonlanmasinda-rekombinant-dna-teknolojisi

Bakteriyofajlar Hakkınmda Bilgi

Bakteriyofaj (bakteri ve Yunanca phagein, ‘yemek’ fiilinden türetme), bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları (hayvan, bitki ve mantarları) enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitlilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme DNA veya RNA olabilir, ama genelde 5 - 500 kilo baz çifti uzunluğunda çift sarmallı DNA’dan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda, örneğin toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği (virion) bulunmuştur ve deniz bakterilerinin %70′i fajlar tarafından enfekte olmuş olabilirler. Tarihçe 1913′te Britanyalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla takip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix d’Hérelle 3 Eylül 1917′de “dizanteri basilinin düşmanının, görünmez bir mikrobunu” keşfettiğini açıklayıp ona bakteryofaj edını verdi. Çoğalması Bakteriyofajların litik veya lizogenik hayat döngüleri olabilir, bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizogenik döngü, buna tezat olarak, konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar (temperate phage) denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür, ama konağın şartları bozulursa, örneğin besin kaynaklarının tükenmesi durumunda, endojen fajlar (profaj olarak adlandırılırlar) etkinleşirler. Bir çoğalma süreci başlar, sonucunda konak hücre parçalanır. İlginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar, bu olguya lizogenik dönüşüm (lysogenic conversion) denir. Bunun iyi bilinen bir örneği Vibrio cholera ‘nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve Giriş Renklendirilmiş bir elektron mikrografında yanyana dizilmiş bakteriyofajlar Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki özgül reseptörlere bağlanırlar, bunlar arasında lipopolisakkaritler, teikoik asitler, proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluşup bağlanırlar. Karmaşık bakteryofajlar, örneğin T-çift fajları, genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. İyice bağlandıktan sonra, kuyruk büzülür, bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter, bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. Protein ve Nükleik Asit Sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA’nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA’yı tercihen çevirmesine neden olabilirler. Protein ve Nükleik asit sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA'nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA'yı tercihen çevirmesine neden olabilirler. Konağın kendi protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar, ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur, kuyruk onun üzerinde büyür. Kafa kapsidi, ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde DNA kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması (lizis) veya salgılanma yoluyla salınırlar. T4 fajları durumunda, hücre içine girmelerinden 20 dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300'ü bulabilen faj salınır. Bunun gerçekleşmesi, hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur. Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar, beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Keşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batı'da faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliği'nde 1940'lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar, milyonlarca yıldır süregeldiği gibi, bakterilerle beraber evrimleştikleri için, sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca, etkili bir faj, özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için, ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir, bakteri tipinin doğru tanımlandığından emin olmak gerekebilir, bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak, sıkça olduğu gibi, birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler, onun için açık bir yaraya uygulanmaları en iyi sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006'da ABD Gıda ve İlaç İdaresi (Food and Drug Admnistration) bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır

http://www.biyologlar.com/bakteriyofajlar-hakkinmda-bilgi

Faj terapisi nedir

Keşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batı'da faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliği'nde 1940'lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar, milyonlarca yıldır süregeldiği gibi, bakterilerle beraber evrimleştikleri için, sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca, etkili bir faj, özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için, ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir, bakteri tipinin doğru tanımlandığından emin olmak gerekebilir, bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak, sıkça olduğu gibi, birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler, onun için açık bir yaraya uygulanmaları en iyi sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006'da ABD Gıda ve İlaç İdaresi (Food and Drug Admnistration) bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır.

http://www.biyologlar.com/faj-terapisi-nedir

Moloküler Tıpta Biyomühendislik ve İnovasyon

Moloküler Tıpta Biyomühendislik ve İnovasyon

Gaziantep’te 20-21 Mart 2015 tarihleri arasında, SANKO Üniversitesi Tıp Fakültesi tarafından ‘’Moleküler Tıpta Biyomühendislik ve İnovasyon Buluşmaları ’’ konulu sempozyum düzenlenecektir.Fikirlerimizi paylaşmak ve güçlü bir sinerji yaratmak adına sizi de aramızda görmekten onur ve mutluluk duyacağız.(Kayıtlar için 10 Mart 2015 Salı son tarihtir. Sempozyum ile ilgili ayrıntılı bilgiye www.sanko.edu.tr/saniva adresinden ulaşabilirsiniz.) Doç. Dr. E. İlker SAYGILIMoleküler Tıpta Biyomühendislik ve İnovasyonProgramı08:30 – 10:00   Kayıt, Açılış Töreni, Protokol Konuşmaları.10:00 – 10:30   Kahve MolasıOTURUM 1:Oturum Başkanları: Prof. Dr. Güner Dağlı, Prof. Dr. İsmet Yılmaz10:30 -10:50    Prof. Dr. Turgay İsbir                       “Kök Hücre Tedavisinde Güncel Yaklaşımlar”10:50 -11:00  Tartışma11:00 -11:20  Prof. Dr. Miral Dizdaroğlu                    "Kanserde Oxidatif DNA hasarı ve Onarımı’’ 11:20-11:30   Tartışma11:30-12:00   Kahve MolasıOTURUM 2:Oturum Başkanları: Prof.Dr. Lütfi Çakar, Yrd. Doç. Dr. Necla Benlier12:00-12:20       Prof. Dr. Alex Georgakilas                         “Tamir Mekanizması’’12:20-12:30       Tartışma12:30-12:50       Prof. Dr. Tomris Özben                          “Oksidatif Stres, Antioksidanlar ve Apoptosis: Kanser Terapisi Üzerine Etkisi”12:50-13:00       Tartışma      13:00-14:00        Öğle YemeğiOTURUM 3:   Oturum Başkanları: Prof. Dr. Can Polat Eyigün, Yrd. Doç. Dr. Nevhiz Gündoğdu   14:00-14:20     Doç. Dr. Nezih Hekim                       “Dönüşümsel Teknoloji ve İnovasyon’’14:20-14:30     Tartışma14:30- 14:50    Dr. Mustafa Diken                         “Immunoterapi”     14:50-15:00     Tartışma15:00-15:20     Kahve MolasıOTURUM 4: Oturum Başkanları: Prof. Dr. Ayşen Bayram, Yrd. Doç. Dr. Elif Pala15:20-15:50          Prof. Dr. Chris Chatgilialoglu                              “Biyomimetik Radikal Kimya”15:50-16:00          Tartışma16:00-16:20          Prof. Dr. Carla Ferreri                              “Nutrilipidomiks”16:20-16:30          Tartışma16:30-16:50           Kahve MolasıOTURUM 5:       Oturum Başkanları: Prof. Dr. Fatma Töre, Yrd. Doç. Dr. Esra Özkaplan16:50-17:10           Prof. Dr. Emir Baki Denkbaş                             “Teşhis ve Tedavide Nanoteknolojik Yaklaşımlar”17:10-17:20            Tartışma17:20-17:40           Prof. Dr. Haydar Bağış                            “Tıbbi Araştırmalarda Transgenik Hayvan Uygulamaları”17:40- 17:50           Tartışma20:00                      Gala Yemeğiİkinci Gün: 21 Mart 2015OTURUM 6: Oturum Başkanları: Prof. Dr. Salih Murat Akkın, Yrd. Doç. Dr. Serdar Türkmen09:00-09:20     Doç. Dr. M. Vural Özdemir                        “Ar-Ge Fonlamasında İnovatif Yaklaşımlar”09:20-09:30    Tartışma09:30-09:50     Doç.Dr. Z. Özlem Soran                       “Koroner Arter Hastalığı ve Kalp Yetmezliğinde Yeni Bir Tedavi Şekli (EECP)”09:50-10:00     Tartışma10:00-10:20     Yrd. Doç. Dr. Tuba Denkçeken                        “Prostat Tümör Dokusu Cerrahi Sınırlarının Spektroskopik Yöntem ile Tespiti” 10:20-10:30      Tartışma   10:30-10:50      Kahve MolasıOTURUM 7: Oturum Başkanları: Prof. Dr. Aysel Güven Bağla, Yrd. Doç. Dr. Ayşegül Çört.10:50-12:20      Uydu Sempozyumu (MERCK)   “Muse Hücre Analiz Sistemi”12:20- 13:00     Sertifika Töreni ve Kapanış13:00- 14:00     Öğle YemeğiWORKSHOP:08:30-10:00       Biyoinformatik ve CRISPR Cas/9 Sistemi                        Dr. Osman Doluca                        Dr. Oktay İ.KaplanNot: 21 Mart öğleden sonra ‘Gaziantep Kültür Turu’TIPTA İNOVASYON BULUŞMALARI 1Moleküler Tıpta Biyomühendislik ve İnovasyon SempozyumuBilimsel ve Düzenleme KuruluSempozyum Başkanı: Doç. Dr. İlker SaygılıSempozyum Bilimsel Sekreteri: Doç. Dr. Zafer ÇetinBilimsel Kurul    Prof. Dr. Ahmet Sınav , CMI    Prof. Dr. Can Polat Eyigün    Prof. Dr. Güner Dağlı    Prof. Dr. Salih Murat Akkın    Prof. Dr. Ayşen Bayram    Prof. Dr. Aysel Güven Bağla    Prof. Dr. Fatma Töre    Prof. Dr. Lütfi Çakar    Doç. Dr. Nezih Hekim    Doç. Dr. İlker Saygılı    Doç. Dr. Zafer Çetin    Yrd. Doç. Dr. Necla Benlier    Yrd. Doç. Dr. Tuba Denkçeken    Yrd. Doç. Dr. Elif Pala    Yrd. Doç. Dr. Ayşegül ÇörtDüzenleme Kurulu:    Genel Sekreter Dr. Yusuf Ziya Yıldırım    Basın ve Halkla İlişkiler Müdürü Ebru Yapan    Proje Koordinatörü Bircan Günbulut    Bilgi İşlem Sorumlusu Erkan Konukoğlu    Okutman Nuriye Hilaloğlu    Okutman Joy Anne Williams    Arş. Gör. Dr. İpek Koçer    Arş. Gör. Ayşe Nur Sarı    Arş. Gör. Zeynep Rümeysa Yoldaş    Arş. Gör. Selin Ursavaş    Lab. Sor. Deniz Mıhçıoğlu    R.Bilişim Danışmanı: İhsan Volkan TöreSekreterya & İletişim    Proje Koordinatörü Bircan Günbulut    Arş. Gör. Ayşe Nur Sarı    Arş. Gör. Dr. İpek KoçerSANKO Üniversitesi:İncilipınar Mah. Gazi Muhtar Paşa Bulv No:36 27090 Şehitkamil / GAZİANTEP0.342. 211 65 00http://www.sanko.edu.tr

http://www.biyologlar.com/molokuler-tipta-biyomuhendislik-ve-inovasyon

Apoptozis ve kaspazlar

Apoptozis, organizma tarafından düzenlenen enerji bağımlı hücre ölümüdür. Programlı hücre ölümü olarak da adlandırılan bu süreç, doku homeostazının korunmasında kritik bir role sahip olduğu gibi, fetal gelişim ve erişkin dokulardaki pekçok fizyolojik olayda da önemli rollere sahiptir. Apoptozis terimi ilk kez 1972 yılında Kerr ve arkadaşları tarafından kullanılmıştır (1). Kerr, fizyolojik olarak ölen hücrelerin çekirdeklerinde yoğunlaşmış kromatin parçalarını gözlemlemiş ve organellerin iyi korunduğunu fark ederek bu olayı büzüşme nekrozu olarak adlandırmıştır. Apoptosis terimi köken olarak "ayrı düşmek" anlamına gelmektedir (1). ve hücre kaybını belirtmek amacı ile kullanılmıştır. Apoptotik ölüm sinyali alan hücrenin kromatini yoğunlaşmaya başlar. Benzer şekilde sitoplazma da yoğunlaşmaya ve hücrenin boyutları küçülmeye başlamıştır. Bir süre sonra hücre apoptotik cisimcik denilen daha küçük parçalara bölünür. Bu parçacıkların en büyük özelliği, fragmente olmuş nükleusların ve parçalanan hücreye ait tüm yapıların plazma membranı ile kaplanarak immün sistemi enflamasyon yönünde uyarmamasıdır. Apoptotik cisimcikler, yüzeylerinde yeni sinyal yapıları ortaya çıkarır ve bu sinyalin uyarısı ile yandaki hücre tarafından fagosite edilerek ortadan kaldırılır (2,3). Apoptozis normal gelişimsel süreç içerisinde pek çok fizyolojik olayda görev alır. Embriyogenesis (4,6), normal menstruel siklusda endometrial hücrelerinin yıkımı (5), barsak kripta epitelleri gibi sürekli çoğalan hücre gruplarında hücre sayısının dengelenmesi (6), timusun gelişimi sırasında otoreaktif T hücrelerinin ortadan kaldırılması (6), bunlardan sadece birkaçıdır. Apoptotik hücre ölümü regülasyonundaki defektler hücre birikiminin olduğu kanser, restenoz gibi hastalıklara yol açabildiği gibi, hücre yıkımının arttığı otoimmün rahatsızlıklar, nörodejeneratif hastalıklar, Alzheimer gibi rahatsızlıklara da yol açabilmektedir (7,8 ). Son yıllarda yürütülen araştırmalar neticesinde, apoptosisten sorumlu moleküler mekanizmalar açıklığa kavuşmuştur. Bu çalışmalar sonucunda, kaspaz adı verilen, intrasellüler proteazların; apoptosisin gerek direkt, gerekse indirekt morfolojik ve biokimyasal değişikliklerinden sorumlu olduğu ortaya konulmuştur. Kaspazların apoptozla ilk ilişkisi bir nematod olan Caenorhabditis Elegans'ın genetik analizi sırasında ortaya çıkmıştır (9). Kaspazlar apoptotik hücre ölümü esnasında önemli rol oynayan multigen ailesinden oluşan sistein-proteaz grubu enzimlerdir. Kelime olarak "Cysteine Aspartate Specific ProteASEs- CASPASE" olarak türetilmiştir. Öncelikle inaktif proteinler olarak sentezlenen bu enzimler çeşitli yollarla aktive edilmelerinin ardından hücresel hedeflerdeki tetrapeptit motifleri tanır ve substratı, bir aspartat rezidüsünün karboksil tarafından ayırır. Hücre ölümü sırasında meydana gelen pek çok sellüler ve morfolojik değişimler, bu enzimlerin rol oynadığı birtakım süreçler neticesinde gelişir (10). Kaspaz-1, kaspaz ailesinin prototipidir ve önceleri prointerlökin-1-beta'nın biyolojik aktif formuna dönüşümünden sorumlu, ICE (interlökin-1-beta dönüştürücü enzim) olarak da adlandırılan, bir sistein proteaz olarak tanımlanmıştır (11,12). Daha sonraları ise ICE'nin diğer sistein-proteazlardan farklı olarak amid bağının N-terminalindeki p1 pozisyonu olarak bilinen ucunda aspartik asitin mutlak gerekliliğini gerektiren farklı bir sistein-proteaz olduğu keşfedilmiştir. ICE'nin inflamasyondaki rolü geniş bir şekilde aydınlatılırken bir taraftan da hücre ölümünden sorumlu genetik yoldaki rolü ortaya konmuştur (13). Bir nematod olan Caenorhabditis elegans'ın üzerinde yapılan bu çalışmada, hücre ölümü sırasında görev alan genetik yolda ced-3 isimli bir genin kodladığı proteinin hermafroditin gelişimi esnasındaki tüm programlı hücre ölümlerinden sorumlu olduğu görülmüştür. Daha sonraları ise ced-3'ün memelilerdeki ICE'nin bir homoloğu olduğu gözlenmiştir (14,15). Tüm bu bilgilerin ışığında apoptotik hücre ölümleri esnasında meydana gelen özellikli proteolizler ve bu yıkımlar sonucu oluşan biyokimyasal olaylar aydınlatılmaya çalışılmıştır. Memelilerde en az 14 kaspaz tanımlanmıştır (16). Filogenetik analiz sonucunda gen ailesinin ICE (kaspaz-1) ile ilişkili ve ced-3 benzeri olmak üzere iki subgrubu olduğu görülür. Proenzimlerin kısa (kaspaz 3,6,7) veya uzun prodomain barındırmalarına göre de kaspazları daha alt gruplara ayırmak mümkündür. Alternatif olarak bu proteazlar, substrat spesifitelerine göre de gruplandırılabilir (17,18). Günümüzdeki modern yaklaşım ise proteazları üç gruba ayırmaktadırlar (10). (şekil-1). Şekil 1: Proteolitik aktivitelerine göre kaspazlar Grup 1 : Sitokin matürasyonuna aracılık edenler (caspase-1, 4, 5, 13) - ICE ailesi, Grup 2 : Apoptotik hücre ölümü sürecinde efektör görevi üstlenenler (kaspaz-2, 3, 7) - ced 3 ailesi, Grup 3 : Apoptotik hücre ölümünde aktivatörler (kaspaz-6, 8, 9, 10) - ced 3 ailesi (14). Kaspazlar tetrapeptit motiflerini aminoasit spesifitelerine göre tanır ve p4 pozisyonundaki aminoasitlere göre üç spesifik gruba ayrılır. Grup 1 kaspazlar (kaspaz-1, 4, 5, 13) P4 pozisyonunda hidrofobik aminoasitleri tanırlar ve sitokinlerin maturasyonuna aracılık ederler. Grup 2 kaspazların yeğledikleri ayırma noktası hücre ölümü sırasındaki pek çok proteinlerde gözlenir ve bununla ilintili olarak da grup 2 kaspazlar (kaspaz-2, 3, 7) apoptosisin major efektörleri olarak bilinirler. Grup 3 kaspazlar (kaspaz-6, 8, 9, 10) ise P4 pozisyonunda alifatik aminoasitleri tanır ve grup 2 kaspazların aktivasyonunda görev alır (şekil 2). Kaspazlara ek olarak bir serin proteaz olan granzim-B gibi başka proteazlar da kaspaz aktivasyonunda görev alarak ve bazen de kaspazların yerine fonksiyon görerek apoptotik hücre ölümüne katkıda bulunur   Bu sıralanmanın istisnaları da mevcuttur. Örneğin kaspaz-2 kendiliğinden aktive olabilir. Kaspaz-6 efektör proteaz olarak görev alabilir (10).Kaspazlar inaktif üç parçalı proenzimler olarak sentez edilirler. Aktivasyonları sırasında aspartat (P1) - X (P2) bağının ayrılması ile proenzimden, küçük ve büyük subüniteleri içeren aktif enzim oluşur. Ayrılma noktasında aspartatın bulunması kaspazın oto-aktif ya da aktive edilebilir olmasıyla uyumludur. Ayrılma işleminden sonra 2 büyük ve 2 küçük alt üniteden oluşan tetramer yapısına sahip kaspaz yapısı izlenir   Şekil 3: Kaspaz X-ışını kristal yapılanması. Kaspazların tetramer yapısı 2 adet büyük (dışta) ve 2 adet küçük alt üniteden (içte) oluşmuştur. Bu şekilde kaspaz-3 ve onun inhibitörü Ac-DEVD-CHO (sarı) görülmektedir (24). Kaspaz aracılı apoptozisin aktivasyonunda üç ayrı yolun varlığı bilinmektedir; 1. Mitokondri/Sitokrom-C aracılı apoptozis 2. Hücre yüzey reseptörleri aracılığı ile tetiklenen apoptozis 3. Endoplazmik retikulum aracılı apoptozis 1. Mitokondri/Sitokrom-C aracılı Apoptozis: Hücresel stres durumunda mitokondriden, sitokrom c ve apoptotik proteaz aktive edici faktör (Apaf-1) salınarak dATP kofaktörlüğünde prokaspaz-9 molekülüne bağlanır (şekil 4). Bu yolla aktive olan kaspaz-9, prokaspaz-3'ü aktive eden kaskadı başlatır ve devamında sitoplazmada yapısal poteinlerin sindirimi, kromozomal DNA'nın degradasyonu ve hücrenin fagositozu sağlanır (19,20,21). Şekil 4: Sitokrom c ve Apaf-1 aracılı apoptozis Apaf-1 molekülündeki konformasyonel değişiklikler apoptozom oluşumuna ve apoptozisin aktivasyonuna neden olur. Apoptozomun oluşum ve fonksiyon görmesi ise mitokondrial ve sitozolik faktörler tarafından düzenlenir (22). 2. Hücre yüzey reseptörleri aracılığı ile tetiklenen apoptozis: Fas-ligand (Fas-L) ve Tumor necrosis factor (TNF) gibi moleküllerin, hücre yüzeyindeki Fas ve TNF reseptörlerine bağlanmasıyla sitoplazmaya Kaspaz-8'i aktive eden sinyaller yayılır. Kimyasal, fiziksel ya da viral enfeksiyonlarla hasar görmüş hücrelerde, interlökin-1 (IL-1) gibi pro-enflamatuar sitokinlerin etkisi ile hücre yüzey Fas ekspresyonu başlar. Bu süreç Fas antijeninin up-regülasyonu olarak adlandırılır. Bu süreç sırasında sitotoksik T hücreleri de Fas-L yapımı için uyarılırlar ve Fas- FasL bağlanması ile prokaspaz 8 ve 2'nin aktivasyonu sağlanır (23). Böylece hücrenin apoptozise gitmesi indüklenmiş olur (24). Fas-Fas-L etkileşimi FADD (Fas bağımlı ölüm domain proteini) aracılığıyla olur (25) (şekil 5). Bir yandan da, ilk kez granülositlerde keşfedildiği için Granülosit-enzim kelimelerini birleştirerek ifade edilen Granzim B (GrB ), sitotoksik T hücrelerinden salgılanarak GrB reseptörlerine bağlanır. GrB bir serin proteaz enzimidir. Sitoplazma içine alınan GrB, kaspas kaskadı üzerinden apoptozisi başlatır (26,27,28,29). 3. Endoplazmik retikulum aracılı apoptozis: Endoplazmik retikulum (ER), hücre içi kalsiyum dengesi, sentezi ve membran proteinlerinin katlanmasını içeren birçok süreçte kritik öneme sahiptir. Hücre içi kalsiyum seviyeleri yükseldiğinde ER membranında lokalize olan prokaspaz-12 aktifleşir ve sitoplazmaya yönelir. Kaspaz-9 ile karşılıklı olarak etkileşerek kaspaz kaskadını aktive eder (30,31). Kaspasların etkilediği hedef noktalar; DNA hasarının tamirinden sorumlu Poli ADP Riboz Polimeraz (PARP) (9,32), DNA-bağımlı protein kinaz (DNA-PK) (33,34), nükleus membranının integritesini sağlayan laminler (35) ve UlRNP (9), DNA'nın parçalanmasına yol açan nükleazları inhibe eden DNA fragmentasyon faktörü (DFF 45) adlı protein (36), hücre içi kolesterol homeostazisinden sorumlu bir integral protein olan Sterol Düzenleyici Element Bağlayıcı Protein (SREBP-1) (16-37), bir tümör supresör gen olan retinoblastom geni ve hücre iskelet proteinlerinden Fodrin (23) olarak özetlenebilir. Apoptozisi saptamak icin çok çeşitli yöntemler geliştirilmiştir. 1972 yılında, apoptozis terimi ilk kez kullanıldığında hücrenin morfolojik görünümüne göre karar verilmişti. Günümüzde ise morfolojik değerlendirmenin yanı sıra, apoptozise özgü olduğu bilinen bazı aktivasyonların (örn, aktif kaspaz-3 tayini) moleküler düzeyde belirlenmesiyle de apoptosiz saptanabilmektedir. Bu yöntemler şu şekilde sıralanabilir (38): I. Morfolojik görüntüleme yöntemleri 1. Işık Mikroskobu • Hematoksilen Boyama • Giemsa Boyama 2. Floresan Mikroskobu / Lazerli Konfokal Mikroskop 3. Elektron Mikroskobu 4. Faz Kontrast Mikroskobu II. İmmunohistokimyasal yöntemler 1. Anneksin V Yöntemi 2. Tunnel Yöntemi 3. M30 Yöntemi 4. Kaspaz 3 Yöntemi III. Biyokimyasal yöntemler 1. Agaroz Jel Elektroforezi 2. Western Blot 3. Flow Sitometri III. İmmunolojik yöntemler 1. Elisa 2. Flourimetrik Yöntem IV. Moleküler Biyoloji yöntemleri (DNA Microarrays) Günümüzde pekçok çalışmada bu yöntemlerden bir veya birkaçından birlikte faydalanıldığı ve gerek çeşitli çevresel toksinlerin gerekse birtakım hastalıkların dokulardaki etkisini göstermek amacıyla kullanıldığını görmekteyiz. KAYNAKLAR 1. Kerr J.F., Wyllie A.H, Currie A.R. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 1972; 26 (4): 239-245. 2. Lipponen P, Aaltomaa S, Kosma VM, Syrjänen K. Apoptosis in breast cancer as related to histopathological characteristics and prognosis. Eur J Cancer. 1994; 30A(14): 2068-73. 3. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306. 4. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3-15 5. Hopwood D, Levison DA. Atrophy and apoptosis in the cyclical human endometrium. Pathol. 1976 Jul;119(3):159-66. 6. Cohen JJ. Apoptosis: mechanisms of life and death in the immune system. J Allergy Clin Immunol. 1999 Apr;103(4):548-54. 7. Kiess W, Gallaher B. Hormonal control of programmed cell death/apoptosis. Eur J Endocrinol. 1998 May;138(5):482 - 91. 8. Hetts SW. To die or not to die: an overview of apoptosis and its role in disease. JAMA. 1998 Jan 28;279(4):300-7. 9. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug; 22(8):299-306. 10. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999; 6:1028-1042. 11. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768 - 774. 12. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, et al. Molecular cloning of the interleukin1 beta converting enzyme. Science 1992; 256: 97 - 100. 13. Ellis RE, Yuan JY and Horvitz HR. Mechanisms and functions of cell death. Annu. Rev. Cell. Biol. 1991; 7: 663 - 698 14. Xue D, Shaham S and Horvitz HR. The Caenorhabditis elegans celldeath protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes. Dev. 1996; 10: 1073 - 1083 15. Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75: 641 - 652 16. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA,Wong WWand et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87 (2): 171 17. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-CalvoM, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 1997; 272: 17907 - 17911. 18. Rano TA., Timkey T., Peterson EP., Rotonda J., Nicholson DW., Becker JW., et al. A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem. Biol. 1997; 4: 149 - 155. 19. Hu Y M, Benedict M A, Ding L Y. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-I-mediatcd caspase-9 activation and apoptosis. EMBO J. 18: 3586- 3595, 1999. 20. Krajewski S, Krajewska M, Ellerby L M, Welsh K, Xie Z, Deveraux Q L, Salvesen G S, Bredesen D E, Rosenthal R E, Fiskum G, Reed J C: Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci, USA 96: 5752-5757, 1999. 21. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479 - 489 22. Cozzolino M, Ferraro E, Ferri A, Rigamonti D, Quondamatteo F, Ding H, Xu ZS, Ferrari F, Angelini DF, Rotilio G, Cattaneo E, Carrì MT, Cecconi F. Apoptosome inactivation rescues proneural and neural cells from neurodegeneration. Cell Death Differ. 2004 Nov;11(11):1179-91. 23. Nagata S, Golstein P. The Fas death factor. Science. 1995; 267:1449-56. 24. Grell M, Krammer PH, Scheurich P. Segregation of APO- 1/Fas antigen- and tumor necrosis factor receptor-mediated apoptosis. Eur J Immunol. 1994 Oct; 24(10): 2563-6. 25. Bhojani MS., Chen G., Ross BD., Beer DG., Rehemtulla A. Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle. 2005 Nov;4(11): 1478-81. Epub 2005 Nov 20. 26. Srinivasula SM., Ahmad M., Fernandes-Alnemri T., Litwack G., Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA. 1996; 93:14486-91. 27. Darmon AJ., Nicholson DW. ,Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 1995; 377: 446 - 448. 28. Martin SJ., Amarante-Mendes GP., Shi L., Chuang TH., Casiano CA., O'Brien GA., et al. The cytotoxic cell protease granzyme B initiates apoptosis in a cell- free system by proteolytic processing and activation of the ICE/CED-3family protease, CPP32, via a novel two-step mechanism. EMBO J. 1996; 15: 2407-2416. 29. Andrade F., Roy S., Nicholson D., Thornberry N., Rosen A., Casciola-Rosen L. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 1998; 8: 451-460. 30. Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP., Lozyk M. et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 2000; 150: 731-740. 31. Rao RV., Hermel E., Castro-Obregon S., del Rio G., Ellerby LM. et al. Coupling endoplasmic reticulum stress to the cell death program: mechanism of caspase activation. J Biol Chem 2001; 276: 869-874. 32. Hirata H., Takahashi A., Kobayashi S., Yonehara S., Sawai H., Okazaki T. et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med. 1998;187:587-600. 33. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med. 1996 May 1;183(5):1957-64. 34. Song Q., Lees-Miller SP., Kumar S., Zhang Z., Chan DW., Smith GC. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 1996;15:3238-3246. 35. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996; 86:147-157. 36. Chen WJ, Huang YT, Wu ML, Huang TC, Ho CT, Pan MH. Induction of apoptosis by vitamin D2, ergocalciferol, via reactive oxygen species generation, glutathione depletion, and caspase activation in human leukemia Cells. J Agric Food Chem. 2008 May 14;56(9):2996-3005. Epub 2008 Apr 37. Zou H, Henzel WJ, Liu X, Lutscha A, Wang X. Apaf-1, a human protein hoınologous to C.elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Celi. 1997;90:405-13. 38. Ulukaya E. Apoptozis ders notları. Uludağ Üniversitesi Tıp Fakültesi, Biyokimya Anabilim Dalı 2003;15-26. Yazışma Adresi: Dr. K. Beril YÜKSEL Dr. Zekai Tahir Burak Kadın Sağlığı Eğitim ve Araştırma Hastanesi Hamamönü / ANKARA Tel: 0 312 310 31 00 e-mail: berilyu@hotmail.com Bu metin dergi.ztb.gov.tr adresinden alınmıştır.   Yüksek organizmalarda hücre ölümü iki farklı mekanizma ile gerçekleşir. Klasik hücre ölümü nekroz olarak adlandırılır.Şiddetli bir travma, zararlı bir uyarı ile meydana gelir. Genellikle gruplar halinde hücreleri etkiler.Morfolojik olarak ER, mitokondride dilatasyon, plazma membranının iyon transportunun bozulması,hücrelerin şişmesi ve lizisi tipiktir.Nükleer kromatin flokulasyonu, DNAnın nonspesifik klavajı, hücrelerin parçalanması ile hücre içeriği ve lizozomal enzimler eksrasellüler ortama dökülür.Bu enzimlerde komşu hücre ve dokuları zedeleyerek inflamatuar yanıta yol açar. Hücre ölümünün diğer şekli Apoptosis genellikle tek tek hücreleri etkiler.Birçok fizyolojik ve patolojik koşulda ortaya çıkar ve genellikle inflamatuar yanıt söz konusu değildir. Müllerian kanalın ve interdigital perdelerin regresyonu, B ve T hücrelerin negatif seleksiyonu, self antijenleri tanıyan immunkompetan hücrelerin delesyonu, hormon bağımlı dokuların, hormon yokluğunda involusyonu gibi birçok fizyolojik olayda rol alır. Apoptosis, hücrelerin öldürülmesinde fizyolojik bir süreçtir.Çok hücreli organizmaların gelişimi, işlevselliğinde çok önemlidir. Bu hücre ölümünün kontrolündeki anormallikler : --Kanser --Otoimmun Hastalıklar --Dejeneratif Hastalıklar oluşumuna neden olur Organizmanın bütünlüğü ve homeostazisi, hücre çoğalması ve farklılaşması yanısıra, hücre ölümü ile sağlanabilir. Apoptosis sinyallenmesi ya hücre içinden gelen tetikleyici olaylar yada ölüm reseptörlerinin ligasyonu gibi hücre dışındaki olaylarla olur.Tüm apoptosis sinyalleyici yollar, proteinleri aspartat rezidülerine bölen, sistein proteazlar (Kaspazlar) ile olan ortak hücre yıkımı işleminde birleşir.Doku transglutaminaz aktivitesi ise proteinlerin çapraz bağlanmasına yol açarak intrasellüler yapıların ekstraselüler alana dökülmesine engel olur. Ölü hücrelerin yıkımı ve uzaklaştırılması, komşu hücrelerin fagozitozu ile olur. Apoptosisdeki Morfolojik Değişiklikler: Elektron mikroskobunda apoptosis esnasında; -Kromatin kondansasyonu -Stoplazmik büzülme -Plazma membran kabarması Apoptosis erken safhasında ER, mitokondri, golgide gözlenebilir değişiklikler olmadığı gösterilmiş olmakla beraber son zamanlarda, mitokondri dış membranında şişme, mitokondrial membran aralıgında sitokrom c ve bir oksidoredüktaz ile ilişkili flavoprotein olan Apopitos İndükleyici Faktör salınımı olduğu bildirilmiştir. Apoptosis esnasındaki moleküler degişiklikler arasında ; -DNA ayrılması -İç ve dış plazma membran yaprakları arasında PS dağılımının randomizasyonu vardır. Bu değişiklikler; -DNA kırılmasında,nukleotitlerin terminal deoksinükleotidil transferaz yolu ile belirlenmesi, -PS in annexin ile boyanması , -Subdiploid DNA içeriği olan hücrenin, DNA ekleyen boyalar ile belirlenmesi ile gösterilebilir. Apoptosisdeki Major Oyuncular: 1-Kaspazlar 2-Kaspazların başlatıcı etkinliğini kontrol eden Adaptor Proteinler 3-TNF-R 4-Bcl-2 proteinleri KASPAZLAR: İnisiatör K. Efektör K. Cytokin Maturasyon Ced-3 C-3 C-1 C-13 C-2 C-6 C-4 C-14 C-9 C-7 C-5 C-10 C-11 C-8 C-12 Bir grup sistein proteaz enzimidir. Apoptosis için gereklidir. Kaynağına yada ölüm uyaranına bakılmaksızın apoptosise giden tüm hücrelerde sistein proteaz aktivitesi tespit edilir. Basulovirus protein P35, tüm kaspazların potent inhibitörüdür. Kaspazlar, apoptosisin son devresindeki hücresel substratların degradasyonundan sorumlu olduğu gibi apoptosisin başlatılmasında da kritik önemi vardır.Memelilerde en az 14 kaspaz vardır.Bunlar tetrapeptit motifleri tanır ve substratı, bir aspartat rezidüsünün karboksil tarafından ayırır. Kaspazlar, düşük intrensik etkinlik gösteren zimojenler olarak sentezlenir.Aktif enzim, 20kD luk subünite ilaveten 10kD luk subünit bulunan bir heterotetramerdir. Kaspaz 8 ve Kaspaz 9, baslatıcı kaspazlardır ve efektör kaspazların aktivasyonunu başlatır.Bazı kaspazlar ise self processingdir. Efektör kaspazlar;-DNA onarım enzimleri -Lamin -Gelsolin -MDM2(P53inhibitörü) -Protein Kinaz Cd , gibi yaşamsal proteinleri ayırmakta ve inaktive etmektedir.Kaspaz yollu proteoliz ile aktive olan enzimlerde vardır.Kaspaz yolu ile aktifleşen DNAase (CAD) normalde bir inhibitöre İCAD(DNA fragmantasyon faktör) a bağlanarak inaktive olmaktadır.Apoptosis esnasında İCAD kaspazlar tarafından ayrılmakta ve bu durum karekteristik internükleozomal DNA ayrılması oluşturur. Aktif endonükleazın salınmasına yol açar. - ADAPTÖR PROTEİNLER: Adaptor proteinler: Apaf-1 Ced-4 RAIDD FADD/MORT1 RIP FLIP1 -Hücre ölüm efektörleri, -Hücre ölüm regülatörleri, -Ölüm reseptörleri, -Bcl-2 gen ailesi , arasındaki bağlantıyı kurarlar. Kaspazlar, TNF-Rleri ve Adaptör Proteinler arasındaki bağlantılar, ölümsahası(DD), ölüm effektör sahası(DED) ve Kaspaz Toplama sahası(CARD) olarak bilinen alanlar arasındaki homotipik etkilesimler yolu ile sağlanmaktadır. DD içeren bir TNF-R üyesinin adaptör proteini çapraz bağlanmasından sonra TNF-R’nin DD ile adaptör proteinin DD i arasındaki homotipik etkileşimler, kaspaz agregasyonuna ve aktivasyonuna izin verir. Kaspaz toplanması ve birikimi adaptör proteinlerde bulunan başka bir alan olan DED yolu ile de olur. DEDler FADD ve Kaspas 8 de de vardır. Bu nedenle CD95in çapraz bağlanması prokaspaz 8, agregasyonu ve FADD yolu ile aktiflenmesi sonucunu doğurabilir. DR --FADD--Kaspas 8, sinyallenmesi , FLİP molekülleri ile bloke edilebilir. FLİP molekülleri prokaspaz 8 in toplanması ve aktiflenmesini önlemektedir. FLİP in, FLİPL ve FLİPS şekilleri vardır. FLİPL daha yaygındır ve prokaspaz 8 e çok benzer.FLİPS ise sadece iki DED içerir. Bütün kaspazlar TNF-R çapraz bağlanma yolu ile aktive olmadığı gibi bütün başlatıcı kaspazlar DED içermezler. Memeli prokaspaz 9 ve prokaspaz 2 ve C.elegans Ced-3 ü aynı zamanda kendi spesifik adaptörü olan Apaf-1 ve Ced-4 te bulunan CARD ler içerir. Kaspaz 8, CD95 yoluyla aktive olurken, Kaspaz 9 Apaf-1 ile aktive olur ve Bcl-2 proapopitotik üyeleri ile kontrol edilir. TNF-R AİLESİ: TNF-R1 CD95 DR3 CAR1 DR4 DR5 NGFRp75 TNF-R üyelerinin pleotropik etkisi vardır. Hücre tipine ve aldığı sinyallere göre proliferasyon ,canlı kalma, farklılaşma yada ölümü tetikleyebilir. Bu reseptörler, TNF ligant ailesine ait ligantlar tarafından aktive edilir. Bu bağlar memrana bağlanmış trimerler olarak sentezlenir, sinyalleme için çok miktarda çapraz bağlanma gerekir. TRAİL/APO-21(TNF ile ilgili apoptosis başlatıcı ligant), Apoptosisi transforme hücrelerde başlatır ve diğer ligantlara kıyasla dokularda daha yaygındır. TRAİL in 4 reseptörü tanımlanmıştır: DR4 , DR5 , DCR1 ,DCR2 . Fakat sadece DR4 ,DR5 apoptosisi başlatır. Diğerleri, intrasellüler ve transmemran bölgeleri yada DD bölgeleri içermediginden apoptosisi başlatamazlar. Bu reseptörler tuzak vazifesi görür. Akciğer ve kolon kanserinde Fasl (DCR3) ye karşı bir tuzak reseptörün çok fazla olduğu gösterilmiştir. Spesifik kaspaz inhibitörleri ve kaspaz eksikliği olan mice’ların fibroblastlarında yapılan deneylerde, kaspaz 8 in , DR4 , DR5 ve DR3 ile oluşan apoptosis için şart olduğunu göstermiştir. BcL-2 ÜYELERİ: Antiapoptotik Proapoptotik Bcl-2 Bax Bcl-xl Bod Boo Bcl-xs Bcl-w Bid A1 Bim Mcl-1 Blk Bak Antiapoptotik Bcl-2 üyeleri, a.a sıraları en az üç dört bölgede benzerlik gösterir. Bcl-2 ye benzerlik gösterirler. Proapoptotik Bcl-2 lerin hepsinde BH3 bölgesi vardır. Antiapoptotiklerde bu bölge yoktur. Bcl-2 proteinlerinin, transmembran bir C terminali vardır. Bu alan nükleer membran, mitekondri dış membranı, ER membrannın sitozolik tarafında yer alır. Bunlar etkileşim bölgeleridir. Bu bölgeler bazılarında sabit iken bazılarında degişebilir. Örneğin, Bax sitozolik bir proteindir, apoptosisde mitokondrial membrana redistribsiyonu olur. Antiapoptotik Bcl-2 üyeleri kaspaz aktivasyonunu önleyerek antiapoptotik etki gösterirler. Proapoptotik Bcl-2ler sinyalleri adaptör proteinlerde yoğunlaştırır, adaptör proteinler ölüm teşvik edici protein kompleksi Apoptosom un tam bileşimidir. Memelilerde,efektör kaspazlarin aktivasyonu iki farklı mekanizma ile olur; 1-Hücre içinde stresle ortaya çıkan sinyallerle başlar. -Timosit ve embriyonik fibroblastlarda, -DNA hasarında, -Steroid,Strausporin tedavisinde, -Büyüme faktörü yoksunluğunda, oluşan apoptosisler genelde böyledir. Burada Apaf-1 ve Kaspaz 9, Kaspaz 3, gereklidir. Bcl-2 antiapoptotik proteinleriyle bloke edilir. Bu ölümler ihmal ölümleri olarak bilinir. 2-Apoptotik sinyallerle, CD95 ve TNF-R yoluyla apoptosis. FADD ve Kaspaz 8 gereklidir. Bcl-2 apoptotik proteinlerle bloke edilemez. Özellikle lenfositlerdeki apoptosis bu yolla olur. Aynı hücrede TNF-R ve Bcl-2 tarafından kontrol edilen yolların aynı anda bulundugu gösterilmiştir ve muhtemelen aralarında bir bağlantı olduğu tespit edilmiştir. Hücre extraktları ile yapılan çalışmalar, Holocytochrom c, dATP, ATP nin Apaf-1 ile olan Kaspaz 9 aktivasyonunu ilerlettiğini göstrmiştir. Ek larak, Holocytochrom c nin, apoptos altındaki hücrelerde mitekondriden stoplazmaya göç ettiği gösterilmiştir. Apoptosis boyunca hücre ölümü bir çok dokuda, hücre diferansiasyonunun farklı aşamasında meydana gelebilir. Apoptosisdeki anormallikler hastalıkların oluşumunda rol alabilir. Antiapoptotik Bcl-2 ekspresyonu fazla olan miceların tümörogenezise eğilimli olduğu gösterilmiştir. Tek başına Bcl-2 daha az onkojendir fakat l-myc ve pim 1 ile sinerjik etki gösterir. Bcl-2 fazla ekspresyonu neoplastik transformasyonda hücrelerin yaşam süresini uzatmada rol alır ve onkojenik kazanılmış mutasyonları kolaylaştırır. Bcl-2 proapoptotik üyeleri tümör supressör gibi görev yapar. Kemoteropatikler ve radyasyon terapisi tm hücrelerinin apoptosisini teşvik eder. Çalışmalar Kaspaz 8 ve Kaspaz 1 dışındaki kaspazların ilaçla teşvik edilmiş apoptosis için esansiyel uyaranlar olduğunu göstermiştir. Kaspaz 8 i olmayan mice ların kemoterapiye ve radyoterapiye daha duyarlı olduğu Kaspaz 9 u olmayanların da yüksek derecede dirençli olduğu gösterilmiştir. Hücrelerin uygunsuz hayatta kalışları sadece tümörogenezis için geçerli değildir. Bağışıklık sistemi yanıtı hızlı hücre proliferasyonu ile karekterize edilir. Anormal şekilde uzatılmış aktive lenfosit yaşamı, etkin lenfokin üretimi ve bulundukları ortama korkunç zararları ile sonuçlanır. Transgenik mice’ların B lenfositlerinde Bcl-2 nin fazla ekspresyonu veya Bim in olmaması, uzamış humoral yanıt ve plazma hücrelerinin patolojik birikimine yol açar(SLE). Apoptosis viruslara ve intersellüler diğer patojenlere karşı savunma mekanizması olarak kullanılır. Bu patojenlerin bir çoğu yaşadıkları hücre ölümüne karşı engelleyici mekanizmalar geliştirmişlerdir. Örn:Adenovirus Protein E1B55 viral replikasyonu sağlarken, hücreninde apoptosisini aktive eder. Bu Apoptosis de iki Adenovirus proteini E1B55(P53homoloğu), E1B19 (Bcl homoloğu) ile bloke edilebilir. Bcl –2 homologlarına ilaveten virusler daha değişik inhibitörler kazanmıştır. Adenovirus---E3-14.7 Kaspaz 8 i inhibe eder. Compox V.---Crm-A Kaspaz 1 ve 8 inhibe eder. İL-1,İNFg,İNFb üretimini inhibe eder.CD95, TNF-R1 tarafından saglanan apoptosisi engeller. Pox V.---TNF-R homologlarını kodlar , TNF ve lenfotoksinlerin yaptığı olayları nötralize eder. Basulovirus ---P35 , bütün kaspazları inhibe eder. Herpes V.8---Bcl-2 homoloğu ORF-16 ve vFLİP ORF-71(prokaspaz 8 inhibisyonu). Bircok virus hem Bcl-2 hem de reseptör aracılı apoptosisi engelleyebilir.

http://www.biyologlar.com/apoptozis-ve-kaspazlar

İmmüno onkoloji ile kanser tedavisinde yeni bir çağın kapıları açılıyor!

İmmüno onkoloji ile kanser tedavisinde yeni bir çağın kapıları açılıyor!

Son bir kaç yılda immüno onkolojide çok önemli gelişmeler yaşandıİmmüno onkoloji alanında ilk önemli sonuçların 2012 yılında alınmaya başlandığını ama çalışmaların geçmişinin 30 yıl geriye kadar gittiğini söyleyen Hacettepe Üniversitesi Kanser Enstitüsü Medikal Onkoloji Bölümü öğretim üyesi Prof. Dr. İsmail Çelik, immüno onkoloji ile kanser tedavisinde yeni bir çağa girildiğini ve hızla kemoterapisiz bir döneme doğru gidildiğini belirtti. Kanser tedavisinde immüno onkolojinin giderek daha yaygın kullanılmaya başlayacağını dile getiren Prof. Dr. İsmail Çelik, ONCOLife Ankara Temsilcisi Hatice Pala Kaya’nın sorularını yanıtladı. Günümüzde immüno onkolojinin kanser tedavisindeki yeri nedir? Mekanizması hakkında bilgi verir misiniz?Prof. Dr. İsmail Çelik: İmmüno onkolojiyi kansere karşı kişinin kendi savunma hücreleri ile mücadele etmesi olarak özetleyebiliriz. Burada iki tane önemli verimiz var; birincisi, her gün vücudumuzda bir milyon kanser hücresi oluşuyor. İstisnasız olarak vücut savunma hücreleri bunları bularak yok ediyor. Demek ki savunma hücreleri işini baştan iyi yapsa, kanser olmama imkanı var. Peki kanser olduktan sonra savunma hücresi var olan kansere ne yapabiliyor?Bu güne kadar savunma hücrelerinin önemini biliyorduk ama T hücrelerinin görevini yapmadığı durumlarda işimize yarayamadılar. Savunma hücresi o hücreyi gözden kaçırırsa, o zaman kanser oluyor. İşte o zaman bizim T hücresine şunu deme hakkımız var; “Bak gözden kaçırdın, bu senin suçun. Git o zaman onu orada tedavi et”. Suçunu biliyorduk ama tedavide hiç kullanamamıştık. İmmüno onkolojiyi de, vücudun kendi savunma hücreleri ve özel ilaçlarla “acemi erlerden komando yapmak” gibi düşünebiliriz.Normal T hücresine diyorsunuz ki, “bak orada kanser hücresi var, sorumlusu sensin çünkü gözden kaçırdın. Gidip o kanser hücresini yok edeceksin.” Bu hikaye güzel, mantık da güzel ama bugüne kadar hiç yapılamamıştı. Yani hiçbir ilaçla T hücresini tümörün üzerine salıp bir başarı elde edememiştik. 2012 yılında yeni bir çığır açıldı. İmmüno onkoloji ilaç bazında o kadar yeni ki, sadece üç senelik mazisi var ama araştırma anlamında mazisi otuz seneye dayanıyor. Bu alanda kullanıma giren ilaçlarla kanser tedavisinde yeni bir çağa girdik. Kemoterapinin olmadığı, konuşulmayacağı bir çağa giriyoruz. Belki; bir hasta sadece başlangıçta bir iki kür kemoterapi alacak ama daha sonra kemoterapiden hiç söz etmeyeceğiz.yumruk-kanserİmmüno onkolojinin kanser tedavisine getirdiği yenilikler hakkında bilgi verebilir misiniz? Bu yaklaşımın ne tür üstünlükleri var?Prof. Dr. İsmail Çelik: Buna kemoterapinin bittiği çağ diyebiliriz; yani kemoterapisiz bir onkoloji çağı başlıyor. İmmüno onkolojinin şöyle bir üstünlüğü var; kemoterapi ile başarı sağladığımız pek çok kanser var ama kemoterapi altında nüks oluyorsa, elimizde seçenek kalmıyor. Kanser hücresi nüks durumunda kemoterapi ile nasıl başa çıkacağını çok iyi biliyor, dolayısıyla hastaya bir daha kemoterapi vermek neredeyse anlamsız. İşte immüno onkoloji tam burada işe yarıyor. Kanser hücresini hiç tanımadığı bir yerden vuruyorsunuz, hiç beklemediği bir yerden saldırıya uğruyor.Biz genelde ikinci sıra kemoterapide çok başarısız oluruz, hemen hemen hiçbir işe yaramaz. İmmüno onkolojinin en önemli üstünlüğü burada; öyle ki kemoterapi ile aldığımız cevaptan daha büyük bir cevap alabiliyoruz bu ilaçlarla. Kemoterapi tedavisi verip cevap aldığımız hastalarda nüks olduktan sonra silahımız yoktu, bu bizim için yeni bir silah. Ne üstünlüğü var derseniz; ikinci sıra kemoterapide çok başarısız olduğumuzda bu ilaçların daha başarılı sonuçları var. Hasta için de güzel tarafı, saçı dökülmüyor, bulantısı olmuyor, kusması olmuyor. Özellikle nüks sorununa maruz kalmış olan kanser hastası için hayata tutunmak için yeni bir umut. Sıra kemoterapi olmayan ilaca geldi, daha güçlü seçeneklerimizde var dediğimizde, hastalar yeniden hayata tutunuyor ve boş vermişlikten kurtuluyor.İmmüno onkolojinin yakın gelecekte daha da ilerleyeceğini düşünüyor musunuz? Kanser tedavisinde yaygın kullanılan bir yönteme dönüşebilir mi?Dr. İsmail Çelik: Yakın gelecekte bu alanda inanılmaz ölçülerde ilerlemeler olacağını düşünüyorum. Ülkemizde immüno onkoloji ve hedefe yönelik tedavide kullanılan ajanların sayısı her geçen gün hızla artıyor. Geçen yıl bu sayı 30’du, bu yıl 50 oldu. Önümüzdeki yıl muhtemelen 200 olacak. Çünkü herkes bu alana yatırım yapıyor. İlaç piyasasındaki bu rekabet fiyatlara da yansıyacaktır ve bu ilaçları Türkiye’de çok rahat kullanma imkanı oluşacak diye düşünüyorum. Bu da hastalar için muhteşem olacak.Ülkemizde immüno onkolojik tedavide kullanılan ürünler var mı? Bu alandaki ilaçların yaygın kullanımı başladı mı?Prof. Dr. İsmail Çelik: Ülkemizde immüno onkoloji, 2012’de gelen ipilimumab (CTLA 4 inhibitörü) ile başladı ve artık ipilimumab ile ilgili yaygın kullanım standart hale geldi diyebiliriz. Ipilimumab sadece cilt kanserinde, yani melanomda kullanılıyor. Bu alanda endikasyonu var ve orada çığır açan bir uygulama oldu. İmmüno Onkoloji alanında CTLA 4 inhibitörü dışında, iki farklı ürün grubu var. Bunlar birbirine çok benzeyen iki PD-1 ve ayrıca PDL-1 inhibitörleri dediğimiz programlı hücre ölümü ve bunun ligandı üzerine etki eden moleküller. O da şöyle; T hücresini eğittiniz ve hadi git kanseri öldür dediniz. Tümör hücresi bu durumda, T hücresi ile arasına bir engel koyuyor ve T hücresinin yaklaşmasına izin vermiyor. İşte anti PD-1’ler ve anti PD-L1’ler o engeli kaldıran moleküller. Dolayısıyla bu grup moleküller, tümöre yapışıp onu orada etkisiz hale getiriyor. Daha üst düzey bir teknoloji diyebiliriz. Anti PD-1’larla ilgili iki tane ürün var. Bir tanesi Nivolumab, diğeri de Pembrolizumab. Dünyada onayları geçen yıl çıktı. Eylül’de pembrolizumab onay aldı, Aralık’ta nivolumab aldı. Bu güne kadar hiçbir tedavisi olmayan cilt kanserinde immüno onkoloji ile arka arkaya gelişmeler oldu.Ben çok mutluyum çünkü yirmi senedir cilt kanseri uzmanı olarak çalışıyorum. Ancak hastalarımın durumu çok kötüydü. Son üç yıldır çok mutlu bir doktor oldum. İlk kez bu ilaçlarla birlikte hastalarımı istediğim düzeyde tedavi edebildim. Çünkü melanomda kemoterapi bile yok. İlerlemiş melanom tedavisinde her iki anti PD1 molekülünün de tedavi etkililiğine ilişkin önemli kanıtlar var. Hatta kombine kullanımla tedavide sağlanan gelişim çok daha ileri seviyelere erişecek gibi gözüküyor.Diğer yandan, Mart ayında FDA, nivolumab’ı akciğer kanseri tedavisinde onayladı. Bu çok önemli bir çalışma ve bizim için de çok önemli bir gelişme. Akciğer kanserinde yine kemoterapide bazı seçenekler vardı, hedefe yönelik tedaviler vardı. Melanomda hiçbir şey yoktu o yüzden bu ilaçlar melanomda bir çığır açtı diyebilirim.Kemoterapi altında nüks olduğunda elinizde seçenek kalmıyor. İşte nivolumab FDA onayını bunda aldı zaten. Platin tabanlı kemoterapi altında nüks eden hastalarda elimizde sınırlı seçenek kalıyordu. Şimdi nivolumab, platin bazlı ilaç alan akciğer kanserinde ikinci sırada kullanıldığında uzun süredir görmeye alışık olmadığımız bir başarı sağladı. Ulaştığım verilere göre şöyle sonuçlar var: Ölüm riskinde yüzde 41 azalma var. 1 yıllık sağkalımın %41 olarak gerçekleştiği ve bu sonucun bu alanda bugüne kadar sağlanan en yüksek sağkalım oranı olduğu bildirilmekte.Pembrolizumabın ve Anti-PDL1 moleküllerinin de akciğer kanseri dahil farklı tümör tiplerine yönelik çalışmaları devam etmekte; umarız immuno-onkoloji alanında çok daha fazla molekül onay alır ve hastalarımıza sunabileceğimiz alternatifler artar.Uzun bir geçmişe sahip olmamasına rağmen immuno onkoloji çalışmaları tüm dünyada büyük heyecan yarattı. Kısa tarihine rağmen tedavide elde edilen ilk veriler hakkında ne düşünüyorsunuz?Prof. Dr. İsmail Çelik: Aslında immüno onkolojide çalışmalar 30 yıldır devam ediyordu fakat ilaçlar işe yaramıyordu. Denemeler başarısız olmuyordu. 2012’de, ipilimumab molekülünden sonra ilk kez gol attık. Yani maçı hep kaybediyorduk, sürekli kaybettiğimiz maçlarda bu ilk goldü. Şimdi artık beraberlik ve kazanma sırası bize geliyor. Biz kemoterapi verdik, bekledik, nüks oldu, Anti-PD1 verdik.Biraz önce de belirtmiştim önce kemoterapi vermek durumundayız diye ama bunun sırası ileride ya değişirse? Biz ilk sırada iki immunoonkolojik molekülü birarada kombine olarak versek mesela. İki ayrı ajanla en başta müdahale etsek yani immüno onkolojik tedaviyi en başta versek, o zaman belki çok daha uzun bir sağkalım sağlayacağız. Bu alandaki çalışmalar devam ediyor, büyük bir ihtimalle bir yıl içinde sonuçları açıklanacak, o zaman başka bir şey konuşacağız. Akciğer kanseri en zor tümördü, en zorunu başardıktan sonra bence tüm diğer kanserlerin hemen hemen hepsinde immüno onkoloji kullanılır. En sık görülen, en tehlikeli ve ölümcül kanser türüne ilk kez gol attık.http://www.medikalakademi.com.tr

http://www.biyologlar.com/immuno-onkoloji-ile-kanser-tedavisinde-yeni-bir-cagin-kapilari-aciliyor

Bakterilerin Biyoteknolojide Kullanım Alanları

Bakterilerin Biyoteknolojide Kullanım Alanları

Son on yılda biyokimya, moleküler biyoloji ve bakteriyolojideki ilerlemeler, bakterilerin antikanser ajan olarak kullanımının yanı sıra, antikanser ilaçların verilmesinde kemoterapiye duyarlı ajan ve gen tedavisi için vektör olarak kullanımına kadar kullanışlı bir çok yönlerini ortaya koymuştur.

http://www.biyologlar.com/bakterilerin-biyoteknolojide-kullanim-alanlari

Aminoglikozidler

Duyarlı organizmalara karşı konsantrasyona bağlı bakterisidal aktivite gösterirler.Bazısı P.aeriginosa ve diğer Gr(-) basillere,bazısı Mycobakterilere etkilidir.Paramomisin kolonun protozea enfeksiyonlarında,Spektinomisin N.gonorhae tedavisinde kullanılmıştır.Aerob Gr(-) basil ve Gr(+) koklara etkisi Penisilinler veya Sefalosporinlerle additif veya sinerjistik olabilir.Rezistans az düzeydedir ve tedavi sırasında ortaya çıkışı nadirdir. Nefrotoksisite,ototoksisite ve nöromuskuler blokaj potansiyelleri vardır.Alerjik reaksiyonlar nadirdir. İsimler ve kaynaklar:Kimyaya giriş Neomycin,Kanamycin,Gentamisin fermentasyon ürünüdür.Amikacin,Netilmicin,Dibekacin, İsepamisin doğal ürünün semisentetik deriveleridir. Yapı Aminosiklitol denen amino grubu taşıyan 6 üyeli halka vardır.Spektinomisin aminosiklitol halkasına karşın amino şeker veya glikozitik bağı olmamasıyla farklıdır. Neomycin,Paramomycin ve Kanamycin ailesi(Kanamycin,Tobramycin,Amikasin,Dibekacin) Streptomycesten,Gentamisin Microspora türünden elde edilmiştir. Amikacin kanamisin A nın,Netilmisin sisomicinin semisentetik türevleridir. Amino veya hidroksil gruplarının uzaklaştırılması antibakteriyel ve toksik potansiyellerinin kaybına yol açar. Kimyasal karakterleri Suda iyi çözünür,organik solventlerde çözünmezler.Bu lipit içeren hücre membranlarından sınırlı geçişlerini açıklar. Yapıları dondurma,4 saat 100°C ye kadar ısıtma veya çözücü pH sını birkaç saat 3 ten 12 ye kadar değişmesiyle bozulmaz.pH 7.4 te fazlaca (+) tirler veya katyoniktirler. (+) yük antimikrobial aktivite ve toksisiteye sebep olur.Antimikrobial aktivite alkalin pH lı ortamda artar,asidik pH da azalır;birçok enfekte dokunun asidik ortamı aminoglikozid monoterapisinin zayıf etkinliğinden sorumlu olabilir. b-laktam antibiyotiklerle kimyasal etkileşirler,antibakteriyal etkileri kaybolur.İnfüzyondan önce aynı solüsyonda karıştırılmamalıdır. Antimikrobial etki mekanizması Bakteri dış membrana bağlanmaları pasiftir ve enerji gerektirmez.Sonuçta hücre duvarında delikler açılır ve geçirgenliği değişir.Hücre duvarından uptakei ve penetrasyonu aerobik ve enerji bağımlı aktif transport mekanizmasıyla olmaktadır.Bu yüzden aktiviteleri anaerobik ortamda çok azalır. Membranı geçtikten sonra ilaçlar irreversible olarak bakteri stoplazmasına hapsolur. Enerji bağımlı faz İyonik bağlanmadan sonra uptake enerji bağımlı yavaş başlangıç fazı ve takip eden hızlı faz olarak ikiye ayrılabilir.İkiside enerji bağımlıdır.EDP-1;Ca ve Mg gibi divalan katyonlarla, hiperosmolarite ile,düşük pHta,anaerob ortamda inhibe olabilir.Apselerin anaerob ortamında, idrarın hiperozmolar asidik olması durumunda etkileri azalır. Birçok bakteri EDP-2nin %25ten fazlasının tamamlanmasıyla ölümcül yara alır.External aminoglikozid konsantrasyonu arttıkça ilacın içerde EDP-2yi tetikleyecek konsantrasyonu daha çabuklaşır. Aminoglikozid-Ribozom birleşimi Bakterial ribozomun 30sdeki 16s bölümüne irreversible bağlanarak protein sentezinin başlangıcını bloklayıp bakterisidal etki gösterir.Bu açıklama Makrolidler,Linkozamidler, Kloramfenikol,Tetrasiklin gibi diğer protein sentezi inhibitörlerinin bakteriostatik olmasından dolayı yetersiz olabileceğinden bakteri ölümü multifaktoriyaldir. Streptomycin 30s alt birimine bağlanırken diğer aminoglikozidler hem 30s hemde 50s alt birimlerine bağlanır. Rezistans Bakteriler Aminoglikozidlere karşı kendilerini uptake azaltımı,modifiye edici enzimlerin sentezi veya ribozomal bağlanma yerindeki değişiklik mekanizmalarıın kombinasyonuyla korur.En yaygın ve önemli olanı antibiyotiğin inaktivasyonudur. Enzimatik modifikasyon Bu direnç stafilokoklarda ve enterokoklarda görülmekle birlikte esas olarak Gr(-) aerob basillerde en fazladır.Hem Gr(+) hemde Gr(-)lerce 3 sınıf enzimle inaktive olurlar; 1-Fosfotransferaz;hidroksil grubunun ATP bağımlı fosforilasyonu, 2-Nükleotidiltransferaz(Adeniltransferaz);hidroksil grubunun ATP bağımlı adenilasyonu, 3-Asetil transferaz;bir amino grubunun AsCoA bağımlı asetilasyonu. Stafilokok ve enterokoklardaki bir enzim asetilleyici ve fosforilleyici enzimlerin bileşimidir ve bu kombinasyon Streptomycin ve Spektinomycin dışındaki bütün aminoglikozidleri inaktive eder. Modifiye edilen aminoglikozid ribozomlara zayıf bağlanır,EDP-2 uptake oluşamaz ve rezistans ortaya çıkar. Aminoglikozid rezistansını kodlayan genler genellikle ekstrakromozomal bakteri plasmidleri ve transposonlarda bulunmaktadır.Bu genler Gr(+) ten Gr(-) e aktarılabilir.Hem konjugatif hemde non-konjugatif plasmidlerde bulunmuştur.Plazmide bağımlı inaktivasyon enzimleri ile gelişen direnç kanamisinin ve son zamanlarda tobramisinin klinik uygulamadaki yerini kısıtlamıştır.Amikasin bu enzimlere en az duyarlı olan aminoglikoziddir. Aminoglikozdleri modifiye edici enzimler periplasmik aralıkta yerleşmiştir. Ribozom bağlanma yerlerinin değiştirilmesi 16s rRNA bağlanma yeri enzimatik aktivite veya mutasyonel modifikasyon sonucu değişebilir.Ribozomal direnç daha çok Streptomycine karşı gösterilmiştir. Azalmış aminoglikozid alımı Azalmış aminoglikozid alımlı mutant aerob Gr(-) basil ve stafilokok identifiye edilmiştir.P. aeroginosa da da bulunmuştur.Bütün aminoglikozidlere çapraz direnç görülür ama rezistansın derecesi enzimatik modifikasyonun sonucuyla olandan daha azdır. Aminoglikozidlerle monoterapi esnasında Staf. küçük koloni varyantları ortaya çıkabilir. Küçük koloniler genelde daha az virulandır,aminoglikozid tedavisi sırasında bakterial persistansın bir mekanizmasıdır,tedavi kesildikten sonra orijinal virulan fenotipe dönebilir ve klinik relapsa sebep olur.Eş zamanlı b-laktam tedavisi problemi önler. Hızlı,erken konsantrasyon bağımlı duyarlı bakteri öldürümünü takiben geçici aminoglikozid direnci gözlenmiştir.Refraktör period PAE periodu sonrasında sonuçlanıp yeniden gelişme zamanına geçebilir.Bu adaptif rezistans olarak adlandırılır.Aminoglikozid uptake inin enerji bağımlı fazının geçici bozulmasının sonucu olduğuna inanılmaktadır. Uptakein enerji bağımsız fazları azalmış permeabiliteye dayanan rezistansa yol açabilir.P. aeroginosa için hücre duvarı lipopolisakkaritlerinde değişiklik tanımlanmıştır. Aminoglikozid rezistan enterokoklar Enterokoklar aminoglikozidlerin düşük konsantrasyonlarına rezistandır.Aminoglikozid uptakeinin aerobik oksidatif metabolizma gerektirmesinden dolayı bu rezistansın zayıf aktif ilaç transportuyla sonuçlanan düşük derece hücre membran oksidatif metabolizmasını yansıttığına inanılmaktadır. Enterokokların aminoglikozid direnci belirtilen 3 mekanizmanın biri veya fazlasının sonucu olabilir.Hedef bölgede değişiklik ve ilaç permeabilitesine müdehale hücre kromozomunda mutasyonun sonucu iken enzimatik inaktivasyon plazmidler ve transpozonlar aracılığıyla olur. Hücre duvarı etkin b-laktam veya glikopeptid antibiyotikle aminoglikozid kombinasyonu sinerjistik bakterisidal aktivite ile sonuçlanır. Hücre duvarı etkin ilaç aminoglikozidin ribozomun 16s bölümüne ulaşmasını arttırır.Klinik rezistans ilacın uptakei ve ribozomal hedefe bağlanmasıyla aminoglikozidin enzimatik modifikasyonu arasındaki dengenin sonucuna bağlıdır. Enzim-Substrat spesifitesindeki farklılıktan dolayı yüksek düzey rezistansı için hem gentamisin hem de streptomisini test etmek önerlmektedir. Aminoglikozid rezistansının klinik epidemiyolojisi Aerobik Gr(-) basillere etkili penisilinlerden farklı olarak rezistans aminoglikozid tedavisi kürü esnasında nadiren çıkar.Aminoglikozid rezistansı incelendiğinde bunun ya uzun süre maruz kalmayı yada yanıklı ve kistik fibrozlu hastalardaki gibi organizmanın fazlaca inoküle olması gerektiği gözlenmektedir. İn-vitro antimikrobial aktivite Aminoglikozidler aerobik ve fakültatif Gr(-) basillerden oluşan geniş spektruma konsantrasyon bağımlı bakterisidal aktivite gösterir.Gr(+) bakterilere etkinlikleri kısıtlıdır. Spektrumundaki organizmalar Enterobakterlerden Pseudomonas ve Haemophilus türlerine kadar değişir.Metisilin duyarlı Staf. aureus inhibe edilir.Staf.lara genellikle etkiliyken piyojen Strep.lar nadiren duyarlıdır.Gr(+) koklara bağlı enfeksiyonlarda b-laktam ve vankomisin gibi antibiyotiklerle sinerjik etkilerinden yararlanmak amcıyla kombine tedavide kullanılırlar. Streptomycin M.tbc.e en etkili iken Amikasin M.avium intrasellulare ve atipik mikobakterilere daha etkilidir.Amikasin ve kanamisininde anti-Tbc. etkinliği vardır.Yersinia pestis için streptomycin seçilebilecek bir ilaçtır ve Francuella tularensis için hem streptomycin hem gentamisin başarılı bulunmuştur. Kanamisinin spektrumu P.aeroginosaya önemli etkisinin olmaması ve rezistan enterobakter gelişiminden dolayı sınırlanmıştır. Aminoglikozidlerin önemli etkisi oladığı diğer bakteriler: Strep. pnömonia, Strep.maltophila, Burkholderia (Pseudomonas) cepacia,Bacterioides, Clostridium ve diğer anaerobik organizmalardır.Richetsia,Mantarlar,Mikoplazma ve viruslarada klinik önemli etkisi yoktur. Listeria ve diğer Gr(+) basillerin çoğu aminoglikozidlere dirençlidir,Hemophilus ve Neisseria duyarlıdır.Duyarlı bakterilerde plasmide bağımlı inaktivasyon enzimlerine bağlı dirençte klinik kullanımı etkilemektedir.Gr(-) aerob basillerdeki aminoglikozid direnci en az amikasine karşı saptanmıştır. Haemophilus ve Leigonella ya in vitro etkisi olmakla birlikte klinikte bu enfeksiyonlar için kullanılmazlar.Leigonella intrasellülerdir ve aminoglikozidlerin intrasellüler penetrasyonu azdır.Buna karşın Brucella,Tbc.,Tularemi,Yersinyoz gibi başka intrasellüler hastalıkların tedavisinde kullanılmaktadır.Streptomycin,gentamisin ve daha az derecede netilmisin terapötik konsantrasyonlarda intrasellüler E.coli ye bakterisidal etki gösterir. Gonore enfeksiyonları için sadece Spektinomisin kullanılmıştır.Aminoglikozidler diğer ilaçlarla kombine olarak Staf.,Strep.,Enterokok,Listerya ve Mycobacteria enfeksiyonlarını tedavide kullanılmıştır. Paramomisin intestinal parazitlere karşı aktiftir.GIS ten emilmediği için Enteomoeba hystolitica tedavisinde alternatif kullanılabilir.AIDS lilerin Cryptosporidium parvum enfeksiyonlarında yararlı olabilir. Üre aminoglikozidlerin GÜS patojenlerine etkisini inhibe eder.Bu düşük pH ve yüksek osmolaliteye bağlıdır. Anaeroblar,Fakültetif anaeroblar,Funguslar,Listeria,Nocardia,Spiroketler İn vitro antimikrobial aktivitenin zaman içinde gidişatı Aminoglikozidler hızlı bakterisidaldir ve bakteri öldürmeleri antibiyotik konsantrasyonu arttıkça artar. Post antibiyotik etki Aminoglikozidler gibi bazı ilaçlar için PAE ile tüm doz arası boyunca serum konsantrasyonlarının MIC değerinin üstünde olması şart değildir.Aminoglikozid konsantrasyonu ve oksijen gerilimi arttıkça PAE uzar,test ortamının pH sı azaldıkça kısalır.İmipenemle aminoglikozid kullanımı hariç;ki bu aminoglikozidin tek başına olduğundan daha uzun süre PAE sağlar,herhangi bir b-laktamla kombinasyonda PAE aminoglikozidinkidir. Antimikrobial sinerji Aminoglikozidle hücre duvarı aktif antimikrobial (Penisilin,Sefalosporin,Monobaktam, Karbapenem,Glikopeptid) sinerjisi (+) bir etkileşimdir.Etki additiften fazladır. MRSA suşları için aminoglikozid + hücre duvarı aktif ilaç kombinasyonu endike değildir. Aminoglikozidlerin bakterisidal etkisi Kloramfenikol veya Tetrasiklin gibi bakteriostatik ajanlarca antagonize edilebilir.Burda aminoglikozidin enerji bağımlı uptake inin inhibisyonu ve ribozomun mRNA üzerinde hareketine müdehale postulatları vardır. Hayvan modellerindeki enfeksiyonlarda antibakterial etkinlik Doz rejiminin önemi Tahmin edileceği üzere aminoglikozid uptake ini kolaylaştırmak için hem penisilinin hemde aminoglikozidin aynı anda var olması gerekmektedir.Tersine penisilin duyarlı Strep. endokarditi için penisilin ve tobramisin kombinasyonlarının total günlük doz veya dozlama rejimlerinden bağımsız olarak eşit etkili olduğu bildirilmiştir. Aerob Gr(-) basiller için günlük tek doz aminoglikozidin aynı dozun bölünerek uygulanmasıyla aynı etkide olduğu bildirilmiştir.Sonuçlar aminoglikozidlerin konsantrasyon bağımlı öldürme ve PAE sinden ibarettir.Nötropenik hayvanlarda aminoglikozidlerin PAE leri daha kısadır.Ek olarak b-laktamın etkili kan seviyesi devamlı sağlanmalıdır. İlaç rezistansının önlenmesi Aminoglikozidin kombinasyonun parçası olarak kullanımı aminoglikozide veya birlikteki ilaca rezistan bakteri çıkışını önliyebilir veya geciktirebilir. Farmakoloji Uygulanım Aminoglikozidler 15-30 dakikalık iv. Periodda uygulanır.Yüksek tek doz kullanımda infüzyon süresi nöromuskuler blokaj yapabilecek hızlı serum konsantrasyonunu önlemek için 30-60 dakikaya uzatılabilir.İm. aminoglikozid hızla tamamen emilir.Emilim hipotansif ve yetersiz doku perfüzyonlu hastalarda gecikebilir. Çok az lipofilik olduklarından GIS ten minimal emilir.Terapötik indeksleri dardır.Hepatik ensefalopati ve bozuk renal fonksiyonlu hastalarda oral neomisin kullanımından sonra sağırlık oluşabilir.İnflame deriye topikal uygulanım minimum emilime neden olur.Buna karşın yaygın yanıklı veya başka ciddi deri yaralanmalı hastalarda ilaç emilimi olabilir ve toksisite riski vardır.Plevral boşluk veya peritoneal kaviteye damla damla verilebilir.Emilim hızlıdır. Aminoglikozidlerin hızlı emilim ve nöromusküler blokajı bildirildiğinden abdominal irrigasyon solusyonlarında kullanımı önerilmez.Buna karşın mesane temizleyici ve aerosol olarak kanda ölçülebilir konsantrasyonları olmadan kullanılmşlardır. Dağılım Streptomycin hariç plazma proteinlerine çok az bağlanırlar.Düşük derece proteine bağlanan ve suda yüksek derecede çözünen diğer ilaçlar gibi vasküler alana ve birçok dokunun interstisyel alanına serbestçe yayılırlar.Büyük ölçüde ekstrasellüler sıvıya yayılırlar.Asit,yanık ve bazı ağır enfeksiyonlardaki ödematöz durumlarda yayılım hacmi artar,şişmanlarda azalır. Transport mekanizmaları olan renal tübüler hücreler ve iç kulak hücreleri hariç biyolojik membranlardan az geçerler. Parenteral uygulama bronş sekresyonlarında düşük konsantrasyona yol açar.Daha yüksek konsantrasyonlar aerosol şekliyle sağlanabilir. Kan-BOS,Kan-Beyin bariyerini az geçerler.Penetrasyon yenidoğanda daha iyidir.İntratekal uygulamayla BOS ta yüksek düzey sağlanırken intraventriküler düzeyi düşüktür, intraventriküler uygulamada ise ikisindede yüksek konsantrasyon sağlanır.Yetişkinde Gr(-) basillere bağlı menenjitte intraventriküler yol önerilir.Yenidoğanda intraventriküler yol iv. yoldan fazla etkili değildir ve daha toksiktir. Renal tübüler hücre absorbsiyonu ve salınımından dolayı tek dozdan sonra idrar seviyeleri birkaç gün terapötik dozdan yüksek kalır. Sinovial sıvıya kolay geçerler.Streptomycin hariç safra içine giremezler,çeşitli salgı ve dokularda,hücre içinde düşük düzeyde bulunurlar.Kan-Göz engelinide çok az geçerler; endoftalmit tedavisinde direkt intravitreal enjeksiyon önerilir. İnflamasyon varsa peritoneal ve perikardial boşluklara penetrasyonları artar.Fötal dolaşıma az da olsa geçerler.Azitromisin,Klindamisin,İmipenem,Metranidazol,TMP,Vankomisin gibi hamilelikte sınırlı kullanılabilecek ilaçlardandırlar. Metabolizma Vücutta metabolize edilmezler. Atılım Parenteral dozun %99 u değişmeden böbrekten glomerüler filtrasyonla kalanda feçes ve tükrükle atılır. Farmakokinetik 3 fazlıdır;1.(a):İlacın vasküler alandan ekstravasküler alana yayılımının sonucudur. 2.(b):İlacın plazmadan ekstravasküler alana atılımının sonucudur.GFR ile ilişkilidir ve doz rejiminde en önemli fazdır.1 haftadan ufaklarda ve DDA lılarda yarı ömür uzar.Yarı ömür febril hastalıklarda kısalırken renal fonksiyonu azaltan durumlarda uzar.Yaşlılarda yarı ömür uzaması yaşa bağlı renal fonksiyon bozulmasındandır. 3.(g):Böbrekte biriken ilacın uzamış ve yavaş eliminasyonudur.Doz hesaplamalarında göz önüne alınmaz. Uygulanan dozla serum düzeyleri ararsında iyi bir korelasyon yoktur. Toksisite Spektinomisin dışında ranal prox. kıvrımlı tubul hasarı,kohlea veya vestibular apparata hasar ve nöromuskuler blokaj potansiyelleri vardır.En sık ve en önemli yan etkileri bunlardır. Hipersensitivite,iv. infüzyon yerinde flebit nadirdir.Plevral boşluğa,abdominal kaviteye, BOS a verilmeleri irritasyon yapmaz.Hepatotoksisite,fotosensitivite yapmazlar.Hematopoeze, koagülasyon kaskadına yan etkileri yoktur. Klinik nefrotoksisite Nefrotoksisite insidansı %0-50 arasında değişir.En fazla Gentamisinde gözlenir. GFR de azalmaya neden olan prox.tübülde hasarla peritübüler aralıkta aminoglikozid birikimine bağlıdır.Tübüler hasar reversible dır ve az sayıda hastada tedavinin devamına rağmen iyileşme bildirilmiştir. Sıklığını arttıran kofaktörler;yüksek yaş (çocuklarda sık değildir),furasemid gibi diüretiklerle (Volüm ve elektrolit konsantrasyonunu azaltarak indirekt etkili olurlar), sikloserin, amfoterisin B (Kendisinin nefrotoksisite potansiyeli vardır.),vankomisin(Çocuklarda değil), sefalotin,Foskarnet ve iv. radyokontrast ajanlar (Teorik olarak kendi toksisite potansiyelleri vardır.),Klindamisin (İstatistiki olarak risk faktörüdür.) gibi ilaçlarla birlikte kullanım, böbrek ve karaciğer yetmezliği, dehidratasyon, aminoglikozidin serum düzeylerinin yüksekliği ve tedavi süresinin 10 günü aşması şeklinde hastaya,birlikteki ilaca ve aminoglikozide bağlı olan faktörler olarak sınıflanabilir. Özellikle septik şok veya sepsiste olanlar olmak üzere hipotansif hastalarda renal yetmezlik riski artar.Bu durumda enfeksiyona bağlı düşük perfüzyon,koagülopati,sitokin aracılı endotel hasarı ve başka faktöler GFR azalımında etyolojik faktör olabileceğinden aminoglikozidlerin rolü belirsizdir. Nefrotoksisite tedavinin birkaç gününden sonra serum kreatininde artmayla belli olur.Tersine 1 günde veya daha kısa sürede kazara çok yüksek doz verimi ATN ile sonlanmamıştır. Streptomycin nadiren nefrotoksisiteye sebep olur.Tobramisinin gentamisinden daha az, Amikasin gentamisinle eşit,Netilmisin tobramisinden daha az nefrotoksisite riski taşır. Nefrotoksisite doz azaltımı veya tedavi kesimiyle reversable dır.Çalışmalarda günlük tek doz aminoglikozid güvenli ve etkili tedavi metodu olarak görünmektedir.Günlük tek doz ilaç toksisitesini önlemez ama riski azaltır. Birlikte kullanılan ilaçların GFR yi azaltmasının riski arttırdığı belirtilmektedir.Çift kör prospektif bir çalışmada Cephalotin + Aminoglikozidin bir Penisilin + aminoglikozidden daha nefrotoksik olduğu bildirilmiştir.Ceftazidimin gentamisinin enzimürisini arttırdığı görülmüştür. Febril nötropenik hastalarda Gentamisin veya Tobramisin + Karbenisilin veya Tikarsilinin aminoglikozidin başka b-laktamla kombinasyonundan daha az nefrotoksik olduğu görülmüştür.Eş zamanlı Piperasilin kullanımıylaysa risk artımı görülür.Piperasilinin daha az Na içeriğinin farkı açıklıyabileceği söylenmiştir. Deneysel olarak aminoglikozid nefrotoksisitesini arttıran Siklosporin ve Sisplatinin klinik olarak nefrotoksisiteyi arttırmadığı belirtilmelidir. Renal fonksiyonlarda bozulma olursa tedaviyi kesmek önerilir.Birkaç gün içinde başka nefrotoksinlerin,hipotansiyonun,başka etyolojiye bağlı renal kortikal nekrozun ve başka klinik faktörlerin yokluğunda spontan iyileşme olur.Anürik renal yetmezliğe ilerleyiş nadirdir. Pseudomonas endokarditi gibi tedaviyi kesmenin önerilmediği durumlarda aminoglikozid dozu ayarlanır ve tedaviye devam edilir.Aminoglikozid tedavisine devam ederken renal fonksiyonların düzeldiği bildirilmiştir. Doz ayarlaması; 1-Bir defada uygulanacak doz hastanın kreatinin değerine bölünerek bulunan miktar doz olarak uygulanır, 2-Doz azaltılmadan doz aralığı açılarak ayarlama yapılabilir. KLİNİK AMİNOGLİKOZİD NEFROTOKSİSİTESİ İÇİN RİSK FAKTÖRLERİ ARTTIRANLAR AZALTANLAR HASTAYA AİT Yaşlı Genç Önceden böbrek hastalığı olan Normal böbrek fonksiyonlu Hipovolemik,Hipotansif Normotensif Hepatik disfonksiyon Karaciğer fonksiyonları normal AMİNOGLİKOZİDE AİT Yakın zamanda aminoglikozid tedavisi Yakın zamanda aminoglikozid kullanmama Yüksek doz Düşük doz 3 gün veya daha uzun süre kullanma 3 günden az kullanma Gentamisin gibi ilaç seçimi Tobramisin gibi ilaç seçimi Sık doz arası Günlük tek doz EŞ ZAMANLI KULLANILAN İLAÇLARA AIT Vancomycin Geniş spektrumlu penisilin Amfoterisin B Furosemid Clindamycin Piperasilin Metoksifluoran İv. kontrast maddeler Serum düzeyleri ve nefrotoksisite Hayvan deneylerinde aminoglikozid dozu arttıkça serum düzeylerinin ve toksisite riskinin arttığı gözlenmiştir.Antibakterial etkinlik için yeterli düzeyin olduğundan emin olmak ve çok yüksek dozdan kaçınmak için serum zirve seviyesi ölçülmelidir.Serum kreatinini 3-5 günde bir izlenmelidir. Ototoksisite Aminoglikozidler irreversible vestibülotoksik ve kohleotoksiktir.Nadiren ikisi birlikte olabilir.Tedaviyi sonlandırdıktan sonra tekrarlayan karşılaşmalarla ortaya çıkabilir.En fazla Streptomycinde görülür. Streptomycine bağlı işitme kaybı ve baş dönmesi bildirilmiştir.İlginç olarak aynı hastada hem nefrotoksisite hem ototoksisite görülmesi alışılmış değildir. Kohlear toksisite İnsidans:Az sayıda aminoglikozid kullanıcısı işitme kaybından yakınır,asemptomatiklerde yüksek frekans audigramlar tekrarlandığında insidans %62 olarak bildirilmiştir. Kohleanın dış tüylü hücreleri aminoglikozidlere en duyarlı hücrelerdir,bunlar yüksek frekanslı seslerin duyulduğu yerdedir.Konuşma sesinde kaybın anlaşılması için 25-30 dB kayıp olması gerekir.Bu yüzden hasta anlamadan bile kohlear hasar oluşabilir. Patofizyoloji:Aminoglikozid toksisitesinin yeri iç kulaktaki corti organının dış tüylü hücreleridir.Toksinin intrasellüler hedefi bilinmemektedir.Bir postulata göre Gentamisin Fe’le birleşir ve toksik serbest radikaller üretir.2. hipoteze göre Aminoglikozidler kohlear sinapslardaki glutamat reseptörlerini aşırı aktive ederler. Tüylü hücre kaybı irreversibledır. Kalıtsal risk:En büyük risk genetik predispozisyon olabilir. Mutant rRNA aminoglikozidlere bağlanır.İlginçtir ki;daha toksik ilaçlara bağlanma (paramomisin,neomisin) diğerlerinden (gentamisin,tobramisin) daha sıkıdır. Diğer risk faktörleri:Risk uzun tedavi,özelllikle böbrek yetmezlikli hastalardaki gibi yüksek serum konsantrasyonları,hipovolemi,özellikle Etakrinik asit gibi ototoksinlerle eş zamanlı kullanım ile artar.Toksik potansiyelin sırası;Neomisin>Gentamisin>Tobramisin> Amikasin>Netilmisin. Eş zamanlı loop diüretikler ve Vankomisin kullanımındada risk artar. Klinik özellikler:Ototoksisite azalmış işitme ve vestibüler imbalansla belli olur. Kohlear hasar ilaç kullanımını bıraktıktan günler veya haftalar sonra olabilir.Kümülatif doz ve tedavi süresi serum konsantrasyonlarından daha önemlidir. Hem kohlear hem de vestibüler toksisite riski renal yetmezlikli hastalarda daha yüksektir. Asemptomatik yüksek ton işitme kaybı daha sık bildirilmiştir;ki öncelikle bu olur. Bazı hastalar erken hasarı gösterebilecek tinnitus veya kulakta dolgunluk hissinden yakınabilirler. Vestibüler toksisite İlaç toksisitesinin hedefi ampulla kristanın tip I tüylü hücreleridir.Bulantı,kusma,vertigo ile kuşkulanılır.Nistagmus olabilir.Tüylü hücre rejenarasyonu olasıdır. Korunma Tedaviyi uygun olduğu kadar kısa tutarak ve peryodik olarak renal fonksiyonları değerlendirerek ototoksisite riski minimalize edilebilir.Tedavi 4 günden fazla sürecekse hastanın odyometri ile yüksek frekans sesleri işitmesi kontrol edilebilir. Nöromuskuler blokaj Nadir ama ölümcül olabilen bir etkidir.Genellikle nöromuskuler iletimi etkileyen bir hastalık durumunda veya eş zamanlı ilaç kullanımında ortaya çıkar.Serum ilaç konsantrasyonunun hızlı artımıda risk faktörüdür. Klinik belirtileri;solunum kaslarında güçsüzlük,flask paralizi,dilate pupil olabilir.DTR ler (-), azalmış veya (+) olabilir.İlaçla karşılaşma intraperitoneal,İv.,İm.,intrapleural,oral,topikal veya retroperitoneal olabilir.Neomisin en potent olanıdır.Streptomisin kullanımında da sık bildirilmiştir. Risk D-tubakürarin,süksinilkolin veya benzer ilaç kullanımıyla artar.Hipomagnesemi, hipokalsemi,Ca kanal blokerleri riski arttırabilir.İnfant botulizmli hastalar risk altındadırDaha önceden var olan solunum depresyonuda risk yaratır.Myastenia gravis ve Parkinson hastalığı olan kişilerde,anestezi sonrası görülebilir. Blokaj presinaptik asetil kolin salınımının inhibisyonu ve post sinaptik asetilkolin reseptörlerinin blokajının sonucudur.Aminoglikozidler Ca un presinaptik bölgeye girişini engeller.Bu asetil kolin salınımından önce gereklidir.Neomisin presinaptik salınımı bozmada en etkili iken, Streptomisin ve Netilmisin post sinaptik en etkilidirler.Blokaj iv. Ca-glukonat uygulanımıyla hızla düzeltilebilir.İnfüzyonu 20-30 dakikada veya daha uzun sürede yapmayla önlenebilir Klinik indikasyonlar Ampirik tedavi Gentamisin,Tobramisin,Amikasin P.auroginosa yıda içerecek şekilde Gr(-),aerob basillere bağlı olduğu düşünülen enfeksiyonların ampirik tedavisinde etkilidir.Aminoglikozidler in vitro S.aureus a etkilidir ama eş zamanlı anti-stafilokoksik ß-laktam veya Vankomisin kullanılmaması halinde 24 saat içinde rezistan küçük koloniler oluşabilir.Enterokok türlerine etki eş zamanlı penisilin veya Vankomisin kullanımını gerektirir.Pnömokok veya anaeroblara etkileri yoktur.Additif veya sinerjistik etki için ß-laktam,Vankomisin veya anaeroblara etkili bir antibiyotikle kombine edilirler.Bazı mycobakteriel enfeksiyonlar hariç bir aminoglikozidi bir fluorokinolonla kombine etmeye gerek yoktur. Belirtilen enfeksiyonların ampirik tedavisinde başka antimikrobiklerde eşit etkiyi sağlıyabilir. Febril nötropenik hastalarda aminoglikozid monoterapisiyle yüksek oranda yetersizlik olduğundan aerob Gr(-) basillere etkili bir ß-laktamla kombine kullanılır. Klinik deneyler geniş spektrumlu penisilin ve sefalosporinlerin, ß-laktamazsız ß-laktam ve fluorokinolonların aminoglikozidlerin Gr(-) basillere etkisinin yerini alabileceğini göstermektedir. AMİNOGLİKOZİDLER İÇİN AMPİRİK İNDİKASYON ÖRNEKLERİ(Diğer antibiyotiklerle kombine başlangıç kullanımı) Enfeksiyon tipi Örnek Olası bakteriyemi Kaynak bulunamayan ateş Yanık yarası Yanık yarası enfeksiyonu Enfektif endokardit Strep.,Enterokok,Staf. Intra-abdominal Apendisit,Divertikülit,Kolesistit,Peritonit Menenjit Post-travmatik,Post-operatif Nötropeni ve ateş Kemoterapi sonrası Okuler Endoftalmit Osteomyelit/Septik artrit Post-op. Veya Post-travmatik Otit Diabetik hastada maligne external otit Pnömoni Respiratuara bağlı pnömoni Pyelonefrit Kronik Foley kateter enfeksiyonlu hastalar Seksüel geçişli hastalık PID Deri-Subkutanöz doku Enfekte diabetik ayak Spesifik tedavi Eğer P.auroginosa izole edilirse bir aminoglikozid bir antipseudomonal penisilin (Tikarsilin) veya sefalosporinle (Seftazidim) kombine edilir,Rifampisinde eklenebilir.Non-nötropenik orta ciddiyette GÜSE unda aminoglikozidle monoterapi yeterli olabilir. P.auroginosa için Tobramisin daha etkili olduğunda tercih edilebilir.Gentamisin Serratia ya daha etkilidir.Diğer aerob Gr(-) basiller için Amikasin,Gentamisin,Netilmisin ve Tobramisin eşit etkinlikte görünmektedir. Bruselloz tedavisinde Gentamisin + Doksisiklinin,Tularemide Streptomycin ve Gentamisinin etkinliği kanıtlanmıştır. Aminoglikozidler görüldüğü gibi genelde kombinasyon tedavilerinde kullanılır.Değişik sınıflardan aerob Gr(-) basillere etkili ilaçların artmasıyla aminoglikozid tedavisine 2-3 günden sonra devam etmemek hem olası hemde önerilendir.Böylece hem aminoglikozidlerin etkinliğinden yararlanılır hemde toksisite riskinden kaçınılır. AMİNOGLİKOZİDLER İÇİN SPESİFİK ENDİKASYONLAR PATOJEN AMİNOGLİKOZİD KOMBİNASYONDA KULLANILAN İLAÇLAR Aerob Gr(-) basil Klebsiella Amikasin,Gentamisin,Netilmisin,Tobramisin Antipseudomonal Pen.,Geniş spektrumlu Sef. Enterobakter aerogenes Amikasin,Gentamisin,Netilmisin,Tobramisin Antipseudomonal Pen.,Geniş spektrumlu Sef. Serratia marcescens Gentamisin Antipseudomonal Pen.,Geniş spektrumlu Sef. Francisella tularensis Streptomycin,Gentamisin Brucella abortus Gentamisin veya Streptomycin Doksisiklin Yersinia pestis Streptomycin,Gentamisin Vibrio vulnifikus Amikasin,Gentamisin,Netilmisin,Tobramisin Geniş spektrumlu Sef. Aerob Gr(+) kok Viridans strep. Gentamisin Pen. G Enterococcus faecalis Gentamisin Pen. G Staf. aureus Gentamisin Nafsilin Staf. epidermidis Gentamisin Vancomisin (Rifampin) N.gonorrhoeae Spektinomisin M.avium-intracellulare Amikasin Çoklu M.tbc. Streptomycin Çoklu Entamoeba histolytica Paromomycin Cryptosporidium parvum Paromomycin Profilaksi GIS,GÜS cerrahileri hastaya enterokok bakteriyemisi riski yaratır.Valvüler kalp hastalığı varsa Ampisilin + Gentamisin profilaksisi önerilir.Penisilin alerjik hastalarda ampisilin yerine Vankomisin kullanılabilir. Özetle; Streptomisin; 1-Tbc. tedavisinde genellikle INH ve Etambutolle birlikte, 2-Bakteriyel endokarditte penisilinle kombine, 3-Brusellozda tetrasiklinlerle birlikte, 4-Tularemi ve vebada ilk ilaç olarak kullanılır. Neomisin;topikal veya barsak sterilasyonu amacıyla oral kullanılır. Kanamisin;yedek bir antitüberkülostatiktir. Yalnızca İYE da tek başlarına kullanılırlar,bunun dışında genelde bir ß-laktamla kombine kullanılır. Başlıca indikasyonları; 1-Hastanede gelişen pnömonilerden genellikle Gr(-) basiller sorumlu olduğundan tedavide bir antipseudomonal penisilin veya sefalosporinle kombine bir aminoglikozid kullanılır. 2-Nasokomial bakteriyemilerin ampirik tedavisinde bir aminoglikozidle bir ß-laktam kombine kullanılır. 3-Hatanede yatan hastalarda ürolojik cerrahi bir işlem sonucu veya ürogenital anomolisi olanlarda çoklu dirençli bakterilerin etken olduğu ağır ürogenital enfeksiyonlarda genellikle bir 3. kuşak sefalosporinle kombine kullanılır. 4-Bakteriyel endokarditlerin ampirik tedavisinde sinerjik etkilerinden yararlanmak amacıyla genellikle penisilinle kombine kullanılır.Etken üretilebilirse antibiyograma göre bir ß-laktamla Streptomisin veya Gentamisin kombine edilir. 5-İntraabdominal infeksiyonların tedavisinde;bir aminoglikozid,Klindamisin,bir 5-nitroimidazol türeviyle veya Sefoksitinle kombine kullanılır. 6-Nötropenik hastada ateş durumunda bir anti-pseudomonal ß-laktamla bir aminoglikozid birlikte kullanılır. 7-Hastanede gelişen infeksiyöz artrit ve osteomiyelit tedavisinde kombine tedavide aminoglikozidler yer alır. 8-Pseudomonaslara bağlı maligne otit ekstarna tedavisinde aminoglikozidler, bir anti-pseudomonal penisilin veya anti- pseudomonal sefalosporinlerle birlikte kullanılır. 9-Pseudomonas ve enterobakter gibi dirençli Gr(-) basillere bağlı menenjitlerde,3. kuşak sefalosporinlerle kombine olarak kullanılırlar.Aminoglikozidler BOS a tedavi edici dozlarda geçemezlersede menenjit tedavisinde sinerjik etkilerinden yararlanmak amacıyla veya intratekal ya da intraventrüküler uygulanırlar. KLİNİK KULLANIMLARI:TEK BAŞLARINA;Gr(-) bakteriyal enfeksiyonlar Üriner sistem enfeksiyonları Nosokomial pnömoni Menenjit Bakteriyemi Diğer(Osteomyelit,Peritonit vb.) KOMBİNE TEDAVİDE:Pseudomonal enfeksiyonlar İnfektif endokardit Nötropenik konakçıda ciddi enf. Intraabdominal ve pelvik enf. Brusellozis Tbc. Aminoglikozidlerin doz ayarı Normal renal fonksiyonlu hastalar için aminoglikozidler multiple dozda uygulanabilir,bu Streptomycin ve Amikasin için 2×1,Gentamisin,Tobramisin;netilmisin için 3×1 dir. Multiple günlük doz Yükleme dozu:Bu doz renal fonksiyonlardan bağımsızdır. Ciddi yanıklı,asitli,ödematöz durumlarda dağılım hacmi artar.Tersine dehidratasyon veya kas yıkımı dağılım hacmini azaltır. İv. tedavi edilen hastalar için yükleme dozu 15-30 dakika içinde verilmelidir. İdame dozu:Hesaplanması böbrek fonksiyonlarının değerlendirilmesini gerektirir.GF yaşla ve bazı hastalıklarla azalır.GFR ını endojen keratinin klirensi yansıtır. Kas kitlesinde ciddi kayıplı hastalıklar düşük serum kreatinine yol açar. Normal böbrek fonksiyonu:Serum zirve ve daimi seviyelerinin idame dozunun 2.-3. dozlarından sonra ölçümü önerilir.3-5 günde bir serum kreatinine bakılır.Kreatinin değeri stabilse aminoglikozid ölçümü şart değildir.Böbrek fonksiyonları değişirse doz yeniden hesaplanır. Renal fonksiyon yetmezliği:Doz ayarlamasında 2 metod vardır; 1-Aynı dozda araları açmak, 2-Dozu azaltıp Gentamisin ve Tobramisin için 8,Amikasin için 12 saatte birle devam etmek. Dializ hastalarında dozlama:Hemodializ,peritoneal dailiz aminoglikozid klirensini arttırır. Hemodialize alınan hastalarda kabaca dolaşan aminoglikozidin 2/3 ü alınır.Aminoglikozid klirensi dializ membranın yapısına,dializ süresine,hastanın kan basıncına bağlı olarak değişir. Aminoglikozidin post dializ dozundan sonra serum zirve seviyesinin ölçümü önerilir. Günde tek doz uygulama Günde tek doz aminoglikozid tedavisi konsepti 3 farklı ama ilişkili gözlemden kaynaklanmıştır; 1-Hayvanlarda deneysel nefrotoksisite ve ototoksisitenin günlük tek doz uygulamayla aynı dozun 2-3 doza bölünerek uygulanmasından daha az ciddi olması;Günlük tek doz verilen hayvanlar renal kortexte daha az ilaç biriktirirler.Aynı sonuç elektif nefrektomiden önce aminoglikozid almayı kabul eden hastalarda da gözlenmiştir. 2-Aminoglikozidlerin in vivo ve in vitro aerob Gr(-) basillere PAE göstermesi;PAE nin süresi arttıkça aminoglikozid zirve konsantrasyonu artar.Normal hayvanlarda PAE nötropenik olanlardan uzundur. 3-Aminoglikozidlerin antibakteriyal etkinliğinin yüksek zirve konsantrasyonuyla artımı. Günlük tek doz uygulama enfekte hayvan modellerinde güvenli ve etkili bulunmuştur. Klinik çalışmalar:Özet olarak günlük tek aminoglikozid uygulaması; 1-Geleneksel multiple doz metodu kadar etkilidir. 2-İlaca bağlı nefrotoksisite ve ototoksisite riskini azaltır. 3-Daha ucuz ve kolaydır. 4-Enterokok endokarditli hastalarda kullanılmamalıdır. 5-Hamilelik,Kistik fibroz,aerob Gr(-) basil menenjitlerive osteomiyelitte kullanımı için daha ileri çalışmalar gerekmektedir. 6-Çok ağır,ventile edilen hastalarda bile nöromusküler fonksiyonu kötüleştirmemektedir.Buna karşın hızlı iv. infüzyondan sakınılmalıdır. Total günlük doz-Normal böbrek fonksiyonlu:Normal böbrek fonksiyonu CrCl 80 ml/dk olarak tanımlanır.Bu hesaplama serum kreatininin 0.5 mg/dl olduğu az kas kütlelilerde yetrsiz kalabilir. Bir yaklaşım FDA nın kanıtlanmış multi doz rejimleri için olanın toplamını kullanır; Gentamisin,Tobramisin için 3×1.7 mg/kg dan 5.1 mg/kg/g,Netilmisin için 6 mg/kg/g, Amikasin için 15 mg/kg/g.Bu metodun avantajı dozdan 12-18 saat sonra serum düzeyinin 1 µg/ml nin altına düşeceğinden ve nefrotoksisite riskini azaltacağından emin olmaktır. Disavantajı;ödematöz durumda (KKY,asit)artan volümden veya bakteriyeminin sonucu olarak kapillerlerden sızıntı yüzüden artmış ilaç dağılım hacmine bağlı olarak Gentamisin ve Tobramisin için hedflenen serum konsantrasyonu 16-24 µg/ml nin sağlanmasının yetersizliğidir. 2. bir metod ortalama serum konsantrasyonunu ve bakterisidal aktiviteyi arttırmak için Gentamisin veya Tobramisinin günlük dozunu 7 mg/kg/g e arttırmaktır.Yüksek doz artmış volümlü hastalarda avantajlıdır ve nöromusküler blokaj bildirilmemiştir.Multiple günlük dozda olduğu gibi obesite söz konusuysa ayarlama yapılmalıdır. Çok ağır hastalar için Gentamisin ve Tobramisin 7 mg/kg/g den başlanıp sonradan birkaç gün içinde 5.1 mg/kg/ge inilebilir. Total günlük doz-Bozuk böbrek fonksiyonlu:Bir metod günlük dozu CrCl indeki düşmeyle orantılı olarak azaltır. CrCl i 30-80 ml/dk olanlar için doz aralığı 24 saat,30 ml/dk dan azlar için 48 saate uzatılabilir. CrCl i 40 ml/dk dan az olanlar için günlük tek dozun teorik avantajı ortadan kalkar. 2. metod total günlük dozu azaltmadan dozların arasını açar. Günlük tek doz rejimlerinde serum düzeyinin izlenmesi:Kürün başında serum düzeylerine bakmak şarttır.Serum zirve seviyesi etkili olmalı ve devamlı düzey toksisite riskini azaltmalıdır. Stabil renal fonksiyonlu 3 günden fazla tedavi alan hastalarda ek serum düzeyleri gereksizdir. CrCl si haftada 1-2 kez ölçülmelidir,değişiklik dozu değiştirmeyi gerektirir. Özel durumlar Çocuklar Yenidoğan ve infantlarda Aminoglikozidlerin farmakokinetiği yetişkinlerden farklıdır;renal klirensleri azalmıştır;yarı ömürleri uzar,doz azaltılmalıdır.Normal doğum ağırlıklı infantlarda 7 günden sonra yarı ömür yetişkinlerinkine yaklaşır. Yenidoğanlarda yetişkinlere kıyasla aminoglikozid dağılım hacmi vücut ağırlığı yüzdesine göre daha fazladır. Günlük tek doz deneyimi sınırlıdır,ama etkili bulunmuştur. Kitik fibroz İlerlemiş KF lu hastalar P.aeroginosa nın hava yolu kolonizasyonuna mağdurdurlar.Hastalılk ilerledikçe trakeobronşit ve pnömoni episotlarının sıklığı artar ve bu anti-pseudomonal ß laktam ve aminoglikozid kombinasyon tedavisini kaçınılmaz kılar. KF lularda kronik tedavi ihtiyacından dolayı aminoglikozid tedavisi azalmış farmakokinetik (glomerüler filtrasyonda artma,kısa yarı ömür ve artmış dağılım hacmi nedeniyle), azalmış antibakteriyel etkinlik (mukusa gömülmüş organizmalara ulaşmada güçlük ve bakterinin olası azalmış replikasyonundan dolayı) ve ototoksisite riski (özellikle kohlear) yüzünden komplikedir.End-stage KF lu ve aylarca kontinüe aminoglikozid tedavisi ihtiyacı olan hastaların çoğu kohlear hasar vae sağırlıktan yakınır.Nefrotoksisite ve vestibüler toksisite nadirdir. Parenteral tedavi:İlacın dozu arttırılmalıdır.Genellikle P.aeroginosa ya karşı düşük MIC i olduğundan dolayı Tobramisin seçilir. Günlük tek doz tedavisi alternatif bir yaklaşımdır. Aerosol tedavi:Avantajları:Balgamda yüksek ilaç seviyesi sağlaması,daha az sistemik ilaca maruz kalma,hastanın evde kendi uygulıyabilmesi ve akciğer fonksiyonlarında artmadır. Yetişkinler ve 6 yaş üstü çocuklar için FDA nın onayladığı doz 28 gün nebülazatörle 2×1 300 mg.dır.Sonra 28 gün ara verilip tekrarlanır. Seruma emilim azdır.Ototoksisite bildirilmemiştir ama geçici tinnitus olabilir.Nefrotoksisite gözlenmemiştir.Pahalıdır. İnfektif endokardit Aminoglikozidlerin enterokoklara etkisi için hem bir hücre duvarı etkin bir antibiyotiğin (Ampisilin) hemde aminoglikozidin devamlı varlığı gerekmektedir.Viridans Sterp. ve enterokok endokarditi için Pen. G + Gentamisin (Normal böbrek fonksiyonlularda;3 mg/kg/g 3×1) önerilmektedir. Devamlı ambulatuar peritoneal dializ sırasında peritonit Aminoglikozidler duyarlı organizmaların yapacağı dialize bağlı peritoniti tedavi için peritoneal dializ sıvılarında kullanılırlar.Bu şekilde ilaç kullanımı sistemik hastalığı olanlar için önerilmez. Spektinomisin ve gonore Spektinomisin gonokok enfeksiyonlarının tedavisinde kullanılır.T.pallidium ve Cl.trachomatis te etkili değildir.Tükrükte terapötik konsantrasyona ulaşmadığından faringeal gonokoku elimine etmez.Nefrotoksik ototoksik değildir.Komplike olmayan üretral,servikal ve dissemine gonore tedavisinde kullanılır.Penisiline alerjik veya gonokokun penisilinaz üreten türleriyle hasta olanlarda alternetiftir.Cervix veya üretra enfeksiyonunda 2 gr. tek sefer im. uygulanır.Gonokoksemi için 3 gün 12 saatte bir 2 gr. im. önerilir.İv. formu yoktur. PREPARATLAR:Amikasin sulfat;Amikaver Netilmycin;Netromycine Amiklin Streptomycin sülfat;Enteristin Amikozit Guanamisin Mikasin Strep-Deva Gentamisin sülfat;Garamycin Otomygen Tobramycin sülfat;Nebcin Gensif Thilomaxine Genta Tobel Gentaderm Tobrased Gentagut Tobrex Gentamin Tobsin Gentasol Genthaver Gentreks Getamisin

http://www.biyologlar.com/aminoglikozidler

Gen Aktarım Teknikleri

Gen tedavisinde, etkin bir gen aktarimi en onemli bir kosuldur. Genleri istenilen hucrelere tasiyabilmek icin kullanilan yontemler genel olarak iki kategoride toplanmaktadir: Fiziksel yontemler ve biyolojik vektorler: Fiziksel yontemler, DNA'nin dogrudan dogruya enjeksiyonu, lipozom formulasyonlari ve balistik gen enjeksiyonu yontemlerini icerir. Dogrudan DNA enjeksiyonunda ilgili gen DNA'sini tasiyan plazmit, dogrudan dogruya, ornegin kas icine, enjekte edilir. Yontem basit olmasina karsin kisitli bir uygulama alani vardir. Lipozomlar, lipidlerden olusan molekullerdir. DNA'yi iclerine alma mekanizmalarina gore iki guruba ayrilirlar: Katyonik lipozomlar ve pH-duyarli lipozomlar. Birinci gurup lipozomlar arti yuklu olduklarindan, eksi yuklu olan DNA ile dayanikli bir kompleks olustururlar. Ikinci gurup lipozomlarsa negatif yuklu olduklarindan DNA ile bir kompleks olusturmaz, ama iclerinde tasirlar. Parca bombardimani ya da gen tabancasi olarak da adlandirilan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amaciyla gelistirilmistir. Bu ilk uygulamalarindan sonra, bazi degisiklikler yapilarak memeli hucrelerine gen nakli amaciyla kullanilmaya baslanmistir. Bu yontemde, genellikle altin ya da tungstenden olusan 1-3 mm boyutunda mikroparcaciklar, tedavi edici geni tasiyan plazmit DNA'si ile kaplanir, sonra da bu parcaciklara hiz kazandirilarak, hucre zarini delip, iceri girmeleri saglanir. Basit olmalarina karsin fiziksel yontemler verimsizdir; ayrica, yabanci genler, sadece belirli bir sure fonksiyonal kalabilmektedirler. Bu nedenle arastirmacilarin cogu, genellikle virus kokenli vektorlere yonelmislerdir. "Vektor" kelimesinin bir anlami da "tasiyici"dir. Benzer sekilde, gen terapisinde genleri hucrelere tasima amaciyla kullanilan ve genetik olarak zararsiz hale getirilmis viruslere de vektor denir. Gunumuzde yapilan arastirmalarda, viruslerin hastaliga yol acan gen parcalarinin yerine, hastalari iyilestirme amaciyla rekombinant genler yerlestirilmektedir. Bu amacla degistirilmis hucreler kullanilmaktadir. Bu hucrelere tedavi edici geni tasiyan bir genetik yapi sokuldugunda, tedavi edici geni icinde tasiyan virusler elde edilir. Bu sekilde degistirilmis virusler hucreye girmek icin kendi yontemlerini kullanirlar ve genomlarinin ekspresyonu sonucu, genin kodladigi protein uretilmeye baslanir. Ote yandan, virusun kendisini cogaltmak icin ihtiyac duydugu genler, tedavi edici genlerle degistirilmis oldugundan, virus cogalip hucreyi patlatamaz. Bunu yerine, hucrede virusun tasidigi hastaligi duzeltici genin ekspresyonu olur, genin kodladigi protein (yani ilac) uretilir ve genetik bozukluk nedeniyle uretilemeyen proteinin yerini alir. En cok kullanilan viral vektorler, retrovirusler, adenovirusler, herpesvirusler (ucuk virusu) ve adeno-iliskili viruslerdir. Ama her vektorun kendine ozgu dezavantajlari vardir: Bolunmeyen hucreleri enfekte edememek (retrovirus), olumsuz immunolojik etkiler (adenovirus), sitotoksik etkiler (herpesvirus) ve kisitli yabanci genetik materyal tasiyabilme kapasitesi (adeno-iliskili virus). Ideal bir vektorde aranan ozellikler yuksek titraj, kolay tasarlanabilme, integre olabilme yetenegi ve gen transkripsiyonunun kontrol edilebiliyor olmasinin yaninda, imunolojik etkilerin olmamasidir. Gen aktarim teknikleri Viral Vektorler 1. Retroviral vektorler 2. Adenoviral vektorler 3. Adeno-asociated virus 4. Herpes Simpleks Virus Tip-1 5. Polio Virus 6. Ordek Hepatit Virusu 7. Parvovirus 8. Sendaivirus 9. Sindbis virus Fiziksel ve Kimyasal Yontemler 1. Transferin-reseptoru araciligi ile 2. Asiaglikoprotein DNA konjugatlari 3. Lipofection 4. Direk aktarim 5. Kalsium fosfat cokturmesi ile 6. Diethilaminoetil dekstran 7. Elektroporasyon 8. Sonikasyon 9. Kazima yontemiyle 10 Polibrene/dimetilsulfoksid 11 Jet injeksiyon 12 Partikul bombardimani Genlerin vucuda yerlestirilmesi yontemleri Genleri vucuda yerlestirmenin cesitli yollari vardir. Genel olarak, gen tedavisi iki esas bolumde siniflandirilabilir. l. ex vivo yaklasim: Bu yaklasimda hucreler vucuttan alinir; in vitro kosullarda gen transferi yapilir. Tekrar vucuda geri verilir. Bu yaklasimin avantajlari sunlardir: a. Gen aktarimi genel olarak yuksektir. b. Eger vektor secilebilir marker gen tasiyorsa; gen aktarilan hucreler zenginlestirilebilir. c. Re-implantasyon oncesinde etkinlik kontrol edilebilir. 2. in vivo yaklasim: Vucuttaki hucrelere genlerin direk transferidir. Bu aktarim, in vitro kosullarda gerceklestirilir ve hucreler aliciya tekrar geri verilerek yapildigi gibi alicinin dokusuna in situ direk aktarim seklinde de yapilabilir. Ayrica henuz kullanilmamakta ise de bir vektor araciligi ile de kan yoluyla aktarim gerceklestirilebilir. Bu vektorler plasmidin konakci hucrede takibini saglayacak sekilde floresans ile isaretlenebilir. En onemli sorun spesifiklik ve duragan gen transferinin dusuk etkinligidir. Bu klinikde arka arkaya tedavi islemlerini gerektirmektedir. Gen tedavisinde antisens oligonukleotid kullanimi Antisens oligonukleotidler, kucuk sentetik nukleotid dizileri olup; bunlar spesifik DNA veya RNA dizilerine komplementerdirler. Eksojen oligonukleotidler nukleik asit baglayici reseptorler araciligi ile hucre icerisine alinirlar. Terapotik urun olarak hazirlanmalarinda baslica sorun hucre icerisine tasinabilmeleridir. Oligonukleotidlerin gen tedavisinde kullanilmasi ‘eger belirli bir gen bir hastaliktan sorumlu ise; bunun calistirilmamasi klinik anormalligin duzelmesini saglayabilir’ prensibinden yola cikarak tasarlanmaya baslanmistir. Antisens oligonukleotidler genin cevrilmesini durdurarak hastaliga neden olan genlerin ekspresyonunu engelleyen yapilardir. Bu yapilar onkogenleri kontrol altina alabilmekte ve virus DNA’sinin cevrilmesini engelleyebilmektedirler. Bir cok ilacda amac defektif veya istenmeyen proteinin sentez edildikten sonra fonksionuna engel olmaktir. Antisens teknolojide amac protein sentezinin spesifik kisa tek sarmal DNA veya RNA dizileri kullanilarak onlenmesidir. Bu onleme, protein sentezinin: 1) Genomik DNA'nin mRNA'ya transkripsiyonunda 2) mRNA'nin proteine translasyonu sirasinda mumkun olabilir. Sitoplazmik mRNA, DNA 'ya oranla daha kolay bir hedef gibi gorunmektedir. Bu yaklasimla, c-myc geni/lenfoma hucre dizileri bcr-abl/ Kronik Myelositer Losemide blast hucrelerinde denemeler yapilmistir. In vitro calismalarda, anormal mRNA olusturan Burkitt lenfoma hucre dizilerinin cogalmasi antisens oligonukleotidlerle durdurulmustur. Antisens oligonukleotidler, hucre dizilerinin kanserlesmesini veya metastatik potansiyellerini azaltir. Anti-sens olarak gelistirilen ve AIDS'li hastalarda olusan sitomegalovirus retinitini tedavi edecek olan ilac intra vitreal enjeksiyonla 1998 yilinda insanda kullanilmaya baslanmistir. Oligonukleotid ile gen modifikasyonu Amac DNA'da var olan hatanin, yapisal DNA hatasina donusturulerek, tamir mekanizmasinin taniyabilmesini saglamaktir. 20 bazlik bir oligonukleotide baglanan bir alkile edici ajan, ikili helikse yapisir. Tek iplikcikli oligonukleotid hedef DNA'da kendisine uyan bolgeye yapisir. Replikasyon sirasinda, hucre tamir mekanizmalari devreye girer ve duzeltmeyi yapar. Bu metod ile obesite, b-adrenerjik reseptor mutasyonu, Hb S ve kistik fibrozisin gen tedavisi calismalari yapilmaktadir. Genetik immunomodulasyon: Genetik immunomodulasyon, gen tedavisinde sitokinleri kodlayan genlerin vektorler araciligi ile aktarilmasini kapsamaktadir. Sitokinlerin, klinik olarak tumor buyumesi uzerine onemli etkisi vardir. Immun sistemde yapilacak modifikasyonla, konakcinin antitumor immun yaniti gelistirilebilir. Tumor infiltre eden lenfositlere TNF geni aktarilmasi modeli bunun bir ornegidir. Ilac hedeflemesi: Gen tedavisinde kullanilan vektorlerin spesifik olarak hastalikli hucrelerde eksprese olurken normal hucrelerde bunun olusmamasi temel amactir. Degisik doku ve hucrelerde gen tedavi yaklasimlari asagida ozetlenmistir. Kemik iligi: Kemik iligi transplantasyonu icin gerekli olan teknik islemlerin ve tedavinin gelistirilmesi ile hematopoetik sistem gen tedavisi icin uygun bir aday doku olmustur. Pluripotent hematopoetik kok hucre, kemik iligi hucrelerinin %0.01-0.1'i kadardir. Pluripotent olmasi ve kendiliginden yenilenmesi, ideal bir hedef doku halini almasini saglar. Ex vivo tedavinin en guzel ornegidir. Bir kac hucreye bir gen aktarimi olmasi halinde dahi, aktarilan genin surekli varligi mumkun olacaktir. Yuksek sinif hayvanlarda, bu hucrelerin enfekte edilmesi guctur. Kemik iligindeki bag dokusu hucrelerinin etkin transferde onemli rolu oldugu gosterilmistir. Kemik iliginin gen tedavisi icin ilk hedef doku olmasinin nedenleri soyle siralanabilir. 1- Kemik iligi hucreleri kolayca elde edilebilir. 2- In vitro olarak calisilabilirler. 3- Bireye tekrar reinfuze edilebilirler. 4- Infuzyon sonrasi organizmada cogalarak, farklilasmaya ugrarlar. Boylece organizmada yeni bir hucre populasyonu olusturulabilir. Kas: Cok sayida hedef hucreye gereksinim oldugundan; yuksek etkinlikte gen transferine ihtiyac vardir. Retrovirusla infekte edilen primer myoblastlarin hayvan kasi icine zerk edilmesi ile alti aylik bir surenin uzerinde gen ekspresyonu saglanmistir. En onemli dezavantaji, myoblastlarin zerk edildigi bolgede kalmasidir. Adenovirus vektorunun intravenoz olarak sicana verildikten sonra, etkin bir transduction hem kas fibrillerinde, hem de diger dokularda saglanmistir. Kas fibrillerinin in vivo direkt gen aktarim teknikleri icin de kullanilabildigi gosterilmistir. Plazmid DNA'nin iskelet ve kalp kaslarina direkt zerki ile duragan gen ekspresyonu saglanmistir. Bu zerk edilen plazmid DNA'si hucrede episomlar olarak bulunmaktadir. Bu prosedur, primatlarda cok etkin degildir.Insan buyume hormonu genlerinin transferi ile de hayvanlarda bu hormonun duzeyleri uc ay sonra belirlenebilmistir. Karaciger: Hepatositleri, kultur ortaminda manuple etmek oldukca guctur. Cunku bu hucreler kultur ortaminda cok az bolunmeye ugrarlar ve retroviral vektorlerle transduction etkinligi %20-25 gibi dusuk duzeylerdedir. Her ne kadar in vivo olarak, hepatositler normal kosullarda bolunmezken, kismi hepatektomi, hepatositlerin hucre bolunmesini aktive eder. Bunu takiben retrovirus vektorunun in vivo perfuzyonu ile cok sayida hepatosit infekte edilebilir. Ancak etkinlik %1-2 civarindadir. Alfa-1- antitrypsin geni intraportal yolla adenoviral vektorle karacigere aktarilmissa da, genin ekspresyonu kisa surmustur. Santral sinir sistemi: Yapisal ve fizyolojik kompleksligi nedeni ile SSS bozukluklarinda somatik gen tedavisi uygulanmasi beraberinde onemli sorunlari da getirmektedir. HSV-1 vektorleri hem in vivo, hem de ex vivo olarak sinir hucrelerinde aktarimda kullanilmistir. Trakea epiteli: Bu hucrelerin organizma disina alinip, kulture edilmesi ve sonra tekrar organizmaya implante edilmesindeki zorluklar nedeni ile in vivo aktarim kullanilmaktadir. Adenoviral vektorler ile trakea epiteline invivo gen aktarimi, sicanlarda basarilmistir. Lenfosit: Adenosine Deaminaz enzim eksikliginde kullanilmistir. T hucrelerinin yasam surelerinin sinirli olmasinin nedeni ile arka arkaya infuzyona ihtiyac bulunmaktadir. AIDS ve kanser tedavisinde en uygun hedef doku olarak ortaya cikmaktadir. Okuler hucreler: Vitroz icine adenovirus araciligi ile gen aktarimi yapilmistir. Periferik kan progenitor hucreler: Kemik iligi yerine, periferik kandan izole edilen progenitor hucrelere gen transfer edilmesi ile uzun sureli hematopoesis saglanmistir. Umbilikal ven epiteli: Umbilikal ven epiteline "Doku Faktor" transferi yapilmistir. Gen Terapisinin Cozum Bekleyen Sorunlari: Ilk sorun, genlerin insana verilmesini saglayacak daha kolay ve etkili yontemlerin bulunmasidir. Bir baska sorunsa, nakledilen genin hastanin genetik materyalinin hedeflenen bolgesine yerlesmesini saglamak ve boylece olasi bir kanser ya da baska bir duzensizlik riskini ortadan kaldirmaktir. Bu konudaki baska bir sorun da, yerlestirilen yeni genin vucudun normal fizyolojik sinyalleriyle etkin bir bicimde kontrolunun saglanmasidir. Ornegin insulin, dogru zamanda ve dogru miktarda uretilmedigi zaman, hastaya yarar yerine zarar getirecektir. Su ana kadar yapilan calismalar sonrasi iyi sonuclar alinabilmis fakat kalici tedavi cogu zaman basarili olamamistir. Bunun bir nedeni, vektorlerin tasidiklari genin uzun sureli ekspresyonuna izin vermeyisleri, digeriyse denemelerde etkinlikten cok guvenligin on plana cikmasidir. Su anki duruma gore, onumuzdeki yillarda gen tedavisindeki egilim, genleri istenilen hucrelere en etkin bicimde tasiyabilecek vektorlerin dizayn edilmesi yolunda olacak gibi gorunuyor. O zaman, gen tedavisinin daha basarili sonuclar verecegi soylenebilir.

http://www.biyologlar.com/gen-aktarim-teknikleri

Genler ve Gen Transferi

Çok hücreli bir organizmanın herbir hücresi genellikle aynı genetik maddeyi içerir.DNA molekülleri,hücredeki en büyük moleküllerdir ve çoğunlukla kromozom olarak adlandırılan yapılarda paketlenir.Ökaryotik hücreler genellikle birden fazla,çoğu bakteri ve viruslar ise bir tek kromozoma sahiptir.Bir tek kromozom binlerce gen taşıyabilir.Bir hücrenin tüm genleri ve genler arasındaki DNA'ları,birlikte,hücresel genomu oluşturur. Bir tek kromozomda kaç tane gen vardır ? Tüm dizilimi belirlenmiş prokaryotik genomlardan biri olan Escherichia coli'nin kromozomu 4 638 858 baz çifti uzunlukta dairesel bir DNA molekülüdür.Bu baz çiftleri,proteinler için 4 300 kadar,stabil RNA moleküller için 115 geni oluşturur.Ökaryotlar için bilgilerimiz henüz tamamlanmış değildir.İnsan genomu 3 milyar baz çiftinden oluşur ve 24 farklı kromozomda 32 000 geni kodladığı bilinmektedir. Genellikle her bir bakteri hücresinde sadece bir kromozom vardır.Hemen hemen tümünde,her bir kromozom,her bir genden bir kopya içerir.Ancak rRNA'larda olduğu gibi birkaç gen birçok kez tekrarlanmıştır.Prokaryotlarda,düzenleyici diziler ve genler hemen hemen DNA'nın tümünü kapsar.Bundan başka her bir gen,kodladığı RNA dizisi ya da amino asit dizilimiyle paralellik gösterir . Ökaryotik DNA'daki genlerin organizasyonu yapısal ve işlevsel olarak daha karmaşıktır,ve ökaryotik kromozom yapısının çalışılması sırasında pekçok sürpriz ortaya çıkabilmektedir.Çok kopyalı fare DNA 'sında yapılan testler beklenmeyen bir sonuç ortaya çıkarmıştır.Fare DNA'sının %10 kadarı,her bir hücrede milyonlarca kez tekrarlanmış ve 10 baz çiftinden daha az uzunlukta kısa dizilerden oluşur.Bunlara çok tekrarlanmış dizilimler ya da basit-dizilimli DNA denilir.Tekrarlanmış DNA'ların bir kısmı,evrimsel geçişlerin izi,basit " çöplük DNA" olabilmektedir.Bununla beraber,bunların bir bölümünün işlevsel önemi vardır.Fare DNA'sının kalan %70'i tek kopya ve sadece birkaç kez tekrarlanmış bölümlerden oluşur.Ökaryotik krozomlardaki genlerin çoğu tek kopyalı genlerdir.Basit dizilimli DNA'lara satellit (uydu) DNA da denilir.Çalışmalar, basit-dizilimli DNA'nın,protein ya da RNA şifrelemediğini göstermiştir.Bunların çoğu ökaryotik kromozomlardaki iki önemli yapı ile ilgilidir: sentromer ve telomerler. Ökaryotik kromozomun belirgin bir özelliği onun sentromeridir.Sentromer,hücre bölünmesi sırasında,kromozomu mitotik iğciğe bağlayan proteinler için bir bağlantı alanı olarak iş gören DNA dizisidir.Bu bağlantı,,kromozomların kardeş hücrelere eşit ve düzenli dağıtımı için gereklidir.Biramayası kromozomlarının sentromerleri izole edilmiş ve çalışılmıştır.Sentromer işlevinde gerekli diziler,yaklaşık 130 baz çifti uzunluğa sahiptir ve A=T çiftlerince zengindir.Daha yüksek ökaryotların sentromerik dizileri daha uzundur ve (bira- mayasınınkine benzemeksizin) genellikle basit-dizilimli DNA içerirler.Aynı yönde, 5-10 baz çiftlik bir ya da birkaç dizinin binlerce peşpeşe dizilmiş kopyasından oluşur.Sentromer işlevinde basit-dizilimli DNA'nın kesin rolü,henüz anlaşılamamıştır. 150-300 baz çiftlik, orta sıklıkta tekrarlanan DNA'lar yüksek yapılı ökaryotik genomun her tarafına serpilmiştir.Bu tekrarların bazıları karakterize edilmiştir.Bunların birkaçı,çok düşük sıklıkta genomda hareket eden diziler olan transpozonlara aittir ( ya da bağlantılı olabilir.İnsanlarda,bu tekrarların bir sınıfı (yaklaşık 300 baz çifti uzunluktaki),Alu ailesidir. AluI restriksiyon endonükleaz için bir kopya, tanıma dizisi içermesi nedeniyle bu şekilde adlandırılmıştır.Toplam genomun %1-3'ünü kapsayan yüzbinlerce Alu tekrar dizisi, genomun her tarafına serpilmiştir.Alu ve benzer saçılmış tekrarlar birlikte,insan DNA'sının %5-10 kadarını oluşturur.Bu DNA'ların işlevi henüz bilinmemektedir. Tümünün olmasa da ökaryotik genlerin çoğunun,diğerlerinden farklı ve şaşırtıcı bir yapısal özelliği vardır:nükleotit dizilimleri,polipeptidin amino asit dizilimini kodlamayan bir ya da daha fazla, dizilim arasına giren bölümler içermektedir.Translasyona uğramayan bu dizilimler,genin nükleotit dizilimi ile kodladığı polipeptitin amino asit dizilimi arasındaki bağlantıyı bozmaktadır.Genlerdeki bu tip translasyona uğramayan DNA kesimleri,aradaki dizilimler, ya da intron, ve kodlayan kesimler ise ekson olarak tanımlanırlar.Çok az prokaryotik gen,intron içerir.Bakteriler,DNA viruslarından daha fazla DNA içerirler.Bir tek E.coli hücresi, l bakteriyofaj partikülünün içerdiğinden hemen hemen 100 kat fazla DNA içermektedir.E.coli'nin kromozomu,bir çift- sarmal dairesel DNA molekülüdür. 4,639,221 baz çifti ve 1.7 mm'lik ve E.coli'den 850 kat daha büyük olan bir uzunluğa sahiptir. Ökaryotik Hücreler Prokaryotlardan Daha Fazla DNA İçerir En basit ökaryotlardan biri olan biramayası hücresi,E.coli hücresinden dört kat daha fazla DNA'ya sahiptir.Klasik genetik çalışmalarda kullanılan meyve sineği, Drosophila hücreleri E.coli 'den 25 kat fazla DNA içerir.İnsan ve diğer memeli hücreleri,E.coli'den 600 kez daha fazla DNA'ya sahiptir.Pek çok bitki ve amfibi hücreleri daha fazla DNA içermektedir.Ökaryotik hücreler bakteri hücrelerinden daha fazla DNA içermesine karşın,bir ökaryotik genomda daha büyük oranda kodlamayan DNA bulunur.Her bir milimetresinde 2,500'ün üzerinde gen bulunan E.coli DNA'sı ile karşılaştırıldığında, insan DNA'sının her bir milimetresinde yaklaşık 50 gen vardır. Bu kodlamayan DNA'nın çoğu,ökaryotik kromozom yapısının düzenlenmesinde önemli rol oynayabilmektedir. İnsanın bir tek hücresindeki tüm DNA'nın uzunluğu 2 m kadardır.E.coli'ninki 1.7 mm'dir. Süper kıvrımlaşmaya neden olmasını ve sarmal ayrılmasını biraz daha kolaylaştırmasının yanında,DNA'nın azalmış kıvrımlaşması moleküldeki yapısal değişiklik miktarını kolaylaştırmaktadır.Bunların fizyolojik önemi daha azdır fakat az kıvrılmanın etkilerinin gösterilmesine yardımcıdır.Genellikle birkaç eşleşmemiş baz içeren bir haç oluşumunu anımsarsanız, DNA az kıvrımı,gerekli sarmal ayrılmasının sürdürülmesine yardım eder. Ayrıca,soldan-sağa (sağ el dönüşlü) bir DNA heliksinin kıvrımlaşma azalması, baz diziliminin Z-DNA formuna uyumlu bölgelerinde, kısa gerginlikte sağdan-sola (sol el dönüşlü) Z-DNA'nın oluşmasını kolaylaştırmaktadır. Topoizomerazlar DNA Bağlantı Sayısındaki Değişiklikleri Katalizler DNA'da süper kıvrımlaşma,DNA metabolizmasının pek çok yönünü etkileyen ve tam düzenlenmiş bir işlemdir.Her bir hücre,özgün işlevi DNA'yı kısmen açmak ya da gevşetmek olan enzimlere sahiptir.DNA kısmi açılım uzantısını arttıran ya da azaltan enzimlere topoizomerazlar denilir.Değiştirdikleri DNA özelliği,bağlantı sayısıdır.Bu enzimler, özellikle replikasyon ve DNA paketlenmesi gibi işlemlerde önemli rol oynarlar.İki izomeraz sınıfı vardır.Tip I izomerazlar,iki sarmaldan birini kısa süreli olarak kırıp,kırık olmayan uçlardan birini döndürmek ve kırılan uçları yeniden birleştirmek şeklinde etki gösterirler.Tip II topoizomerazlar,her iki DNA sarmalını kırarlar . Ökaryotik hücreler de tip I ve tip II izomerazlara sahiptir.Topoizomeraz I ve III tip I grubunda yer alır.İki tip II topoizomeraz; topoizomeraz IIa ve IIb,hem pozitif hem de negatif süper kıvrımları gevşetebilmesine karşın, (negatif süper kıvrım nedeni) DNA'da kıvrım azalması yapamaz. Süper kıvrım olmuş DNA molekülleri,bazı yönleriyle benzerlik gösterir.Negatif süper kıvrımlı DNA moleküllerindeki süper kıvrımlar,sağ el konumludur (soldan-sağa) .Bunlar,uzama ve genellikle birden fazla dallanmayla,sıkılaşmadan çok daralma eğilimindedir Kromatin ve Nükleoit Yapı "Kromozom" adı,bir virus,bakteri,ökaryotik hücre ya da bir organel içindeki genetik bilgiyi depolayan nükleik asit molekülünü tanımlamaktadır.Bu,ışık mikroskobunda görüldüğü gibi,boyanmış ökaryotik hücrelerin çekirdeklerinde yoğunlaşmış renkli cisimcikleri de tanımlar.Ökaryotik kromozomlar,somatik hücrelerde çekirdeğin bölündüğü mitozun hemen öncesi ve mitoz sırasında çekirdekte keskin sınırlı cisimler olarak görünmektedir.Bölünmeyen ökaryotik hücrelerde kromatin denilen kromozom materyali,şekilsiz ve çekirdeğin her tarafına rastgele dağılmış olarak gözlenir.Hücreler bölünmeye hazırlanırken,kromatin yoğunlaşır ve türe özgü sayıda iyice belirginleşmiş kromozomlara dönüşür . Kromatin,çok az miktarda RNA ile birlikte,yaklaşık eşit ağırlıkta protein ve DNA içeren ipliklerden oluşur.Kromatindeki DNA, histon denilen proteinlerle çok sıkı bağlanarak, nükleozom denilen yapısal birimlere paketlenmiş ve dizilmiştir.Kromatinde,bazıları özgün genlerin ifadelenmesini düzenleyen,pekçok histon olmayan proteinler de bulunur.Nükleozomal oluşumla,ökaryotik kromozomal DNA,en sonunda ışık mikroskobunda görülen yoğunlaşmış kromozomu oluşturmak için daha ileri düzeyde dizilmiş yapılara paketlenir. Histonlar Küçük ,Bazik Proteinlerdir Histonlar bazik arjinin ve lizin amino asitlerince çok zengindirler (Her ikisi birden tüm amino asitlerin dörtte bir kadarını oluşturur).Ökaryotik hücrelerde molekül ağırlıkları farklı beş temel histon sınıfı bulunur .H3 ve H4 histonları tüm ökaryotlarda yakın benzerlikte amino asit dizilerinden oluşur.Bu,onların işlevlerinin tam anlamıyla korunduğunu gösterir.Örneğin,bezelye ve sığırın H4 histon molekülleri arasında sadece 102 amino asitten ikisi,insan ve bira mayasında sadece 8 amino asit farklıdır.H1,H2A ve H2B histonların dizilimleri ökaryotik türler arasında daha az benzerlik gösterir. Histonların her biri,bazı amino asitlerin yan zincirleri enzimatik yolla metillenerek,ADP-ribozilasyonu,fosforillenme ya da asetillenmeyle değişikliğe uğratıldığından,çeşitli yapıda olabilmektedir.Bu tip değişiklikler,kromatinin yapısal ve işlevsel özellikleri kadar,histonların diğer özelliklerini,şeklini ve net elektrik yükünü etkilemektedir. Nükleozomlar Kromatinin Asıl Düzenleyici Birimleridir Bir "ipliğe dizilmiş boncuk"düzenindeki boncuklar,histon ve DNA bileşiminden oluşur.Boncuk ve bir sonraki boncuğa uzanan bağlaç DNA,nükleozomu oluşturur.Nükleozom,üzerinde kromatinin daha yüksek paketlenme düzeni oluşmasını sağlayan temel birimlerdir.Her bir nükleozom boncuğu sekiz histon molekülü içerir: H2A,H2B,H3 ve H4'ün her biri iki kopyalıdır.Nükleozom boncuklarının aralık düzeni,146 baz çifti sekiz parçalı histon çekirdeğinin çevresine sıkıca sarılmış ve geriye kalanı nükleozom boncukları arasında bağlaç DNA olarak işlevi olan,genellikle toplam 200 baz çiftlik tekrarlayan birimler şeklindedir.H1 histonu,bağlaç DNA'ya bağlanır.DNA'yı parçalayan enzimlerin kromatine kısa süreli uygulanması,bağlaç DNA'nın tercihli olarak parçalanmasına ve parçalanmaktan kurtulmuş olan 146 baz çiftlik DNA içeren histon parçacıklarının serbest kalmasına neden olmaktadır. Bu yapının kapalı görünümü,ökaryotik hücrelerin DNA'da kıvrımı azaltan enzimlerden yoksun olduğu halde ökaryotik DNA’da kısmen açılma nedenini açıklamaktadır.Nükleozomlarda DNA'nın solenoidal sarılmasının,DNA’nın kısmen açılmasıyla (negatif süper kıvrımlaşma) başlatılan bir süper kıvrım biçimi olduğunu anımsayınız.Nükleozom yapısındaki bir histon çekirdeği çevresinde DNA'nın sıkıca sarılması için,DNA'daki yaklaşık bir heliks döngüsünün azalması gereklidir.İn vitro olarak,bir nükleozomun protein çekirdeği gevşemiş kapalı-dairesel DNA'ya bağlandığı zaman bağlanma, yeni bir negatif süper kıvrım oluşturmaktadır.Bununla beraber,bu bağlanma olayı DNA'yı koparmaz ya da bağlantı sayısı değişmez.Böylece negatif bir solenoidal süper kıvrım oluşumuna bağlı olmayan DNA bölgesinde dengeleyici bir pozitif süper kıvrım eşlik etmek zorunda olmaktadır.Daha önce değinildiği gibi ökaryotik topoizomerazlar,pozitif süper kıvrımları gevşetebilmektedir.Bağlı olmayan pozitif süper kıvrımın gevşemesi,sabit (nükleozom histon çekirdeğine bağlı olması nedeniyle) negatif süper kıvrımı bırakır ve bir uçtan diğerine bağlantı sayısının azalmasıyla sonuçlanır.Gerçekten,in vitro olarak saflaştırılmış histonlarda topoizomerazların gerekli olduğu kanıtlanmıştır. Nükleozom çekirdeklerinde DNA'nın histonlara bağlanmasını etkileyen bir başka faktör,bağlı DNA'nın dizilimidir.Histon çekirdekleri DNA'ya rastgele bağlanmazlar,tam tersine kendilerini belirli bölgelerde tutma eğilimindedirler.Bu durum çok iyi anlaşılamamıştır,fakat DNA heliksinde histonların dokunduğu küçük oluktaki A=T baz çiftlerinin bölgesel çokluğuna bağlı olduğu ortaya çıkmıştır.Nükleozomun histon çekirdeği çevresinde DNA'nın sıkıca sarılması için bu noktalarda küçük oluğun sıkışması gerekmekte ve iki veya üç A=T baz çiftinden oluşan bir küme bu sıkışmayı daha uygun duruma getirmektedir. DNA üzerindeki bazı nükleozomların yerleşmesinde başka proteinler de gereklidir.Bazı organizmalarda,özgün DNA dizilimine bağlanan ve böylece hemen bitişikteki nükleozom oluşumunu kolaylaştıran proteinler bulunmuştur.Nükleozom çekirdeklerinin belirgin yerleşimi,bazı ökaryotik genlerin ifadelenmesinde rol oynayabilmektedir . Nükleozomlar Daha Yüksek Düzeyde Birbirini İzleyen Yapılara Paketlenmektedir Bir nükleozom çekirdeğine DNA'nın sarılması DNA uzunluğunu yaklaşık yedi kat kısaltır.Baştan sona kromozomdaki tüm yoğunlaşma,daha ileri düzeydeki düzenlemelerle 10,000 kattan daha fazladır.Çok hassas yöntemlerle saflaştırılmış kromozomlarda,nükleozom çekirdeğinin 30 nm'lik fibril denilen bir yapıda düzenlendikleri ortaya çıkmıştır .Bu paketleme,her bir nükleozomda bir histon molekülüne gereksinim duyar.30 nm'lik fibril organizasyonu,tüm kromozomu kapsamına almaz fakat,diziye özgü (histon olmayan) DNA-bağlı proteinlerin bağlandığı bölgelerle sınırlanmaktadır.30 nm'lik yapının, DNA'nın özel bir bölgesinin transkripsiyonal aktivitesiyle de bağlantılı olduğu ve genlerin transkripsiyon bölgelerinde daha az düzenlendiği belirlenmiştir. 30 nm'lik fibril,ikinci bir kromatin düzenlenmesiyle DNA'da yaklaşık 100 kat sıkılaşma sağlar.Daha ileri katlanma düzeyleri henüz bilinmemektedir.Fakat DNA'nın belirli bölgelerinin bir nüklear (çekirdeksel) iskele ile bağlantıda olduğu belirlenmiştir.İskele bağlantılı bölgeler,20,000 ile 100,000 baz çifti uzunlukta DNA ilmekleriyle ayrılır.İlmekteki DNA, birbiriyle bağlantılı bir gen seti içerebilir.Örneğin,Drosophila'da histon kodlayan tüm gen takımlarının iskele bağlantı bölgeleriyle bağlanmış ilmeklerde kümelenmiş görünmektedir .İskelenin kendisi , özellikle (fibrilin içinde yerleşmiş) çok miktarda H1 ve topoizomeraz II gibi birkaç proteini içerir.Topoizomeraz II'nin varlığı ayrıca,DNA’nın kısmen açılması ile kromatin oluşumu arasındaki bağlantıyı gösterir.Topoizomeraz II,kromatin birleşmesi için önemlidir.Bu enzimin inhibitörleri,hızla bölünen hücreleri öldürebilmektedir.Kanser kemoterapisinde kullanılan bazı ilaçlar,enzimin DNA sarmalını kırmasını teşvik eden fakat kırıkların yeniden birleşmesine izin vermeyen topoizomeraz II inhibitörleridir. Ökaryotik kromozomlarda her birinin sıkılaşma düzeyini belirgin şekilde arttıran ek organizasyon katmanlarının varlığı kanıtlanmıştır.Daha yüksek yapısal düzeni,kromozomdan kromozoma, kromozomun bir bölgesinden diğer bölgesine,ve hücre yaşamının bir anından diğer bir anına göre değişebilir.Bu yapıları açıklamaya uygun bir tek model yoktur.Bununla birlikte,ilke açıktır: ökaryotik kromozomlarda DNA sıkılaşması,kıvrım üzerine kıvrımı gerektirir. Bakteri DNA'sı da Oldukça Organizedir Şimdi özetlenmiş şekilde bakteri kromozomlarının yapısına dönelim.Bakteri DNA'sı,hücre haciminin büyük bir kesimini dolduran ve, nükleoit olarak tanımlanan bir yapı içinde yoğunlaşmıştır .Bakteri hücrelerinin DNA'sı,plazma zarın iç yüzüne bir ya da daha çok noktadan bağlı durumdadır.Nükleoitin yapısı hakkında ökaryotik kromatininden daha az şey bilinmektedir.E.coli' de,yukarıda kromatinde açıklandığı gibi, dairesel kromozomun bir dizi ilmek yapılar olarak düzenlenmiş,iskele benzeri bir yapı görülür.Ökaryotlarda nükleozomlarla sağlanan bölgesel düzenlenmeyle kıyaslanabilecek ,bakteri DNA'sında herhangi bir yapı görülmemektedir.E.coli'de çok miktarda histon-benzeri proteinler bulunur.En iyi karakterize edilmiş örnek,HU olarak bilinen iki-alt birimden oluşan bir proteindir.Ancak bu proteinler dakikalar içinde bağlanır ve ayrılırlar, düzenli ve kararlı yapıda değillerdir.Bakteri kromozomu,bir olasılıkla genetik bilgisine daha kolay ulaşılma gereksiniminn yansıtan, nispeten dinamik bir yapı gösterir. DNA BAĞLANMA MOTİFLERİ Hidrofobik grupları gizleyecek tabaka yapısı oluşturma yetenekleri sınırlı DNA-bağlanma motifleri, ya çok sıkı kararlı bir yapı ya da bir kesimiyle protein yüzeyinden bir çıkıntı oluştururlar. Helix-Turn-Helix . Bu DNA- bağlanma motifi, pekçok prokaryotik düzenleyici proteinin DNA ile etkileşmesinde çok önemlidir.Benzer motifler bazı ökaryotik düzenleyici proteinlerde de oluşmaktadır. Helix-turn-helix motifi,herbiri yedi-sekiz amino asit uzunlukta ve bir b döngüsüyle ayrılmış iki kısa a-helikal segment içinde 20 kadar amino asiti kapsar.Bu yapının kendisi genellikle kararlı değildir; sadece daha büyük bir DNA-bağlanma bölgesinin etkin kısmıdır.İki a-helikal segmentin birisi,genellikle diziye-özgü şekilde DNA ile etkileşen pek çok amino asiti içermesi nedeniyle, tanıma heliksi olarak isimlendirilir.Bu a heliks protein yapısının diğer segmentleri üzerinde yığılarak, proteinin yüzeyinde çıkıntı oluşturur.DNA'ya bağlandığı zaman,tanıma heliksi,büyük oluğun içinde ya da hemen yanında pozisyon alır.Laktoz repressörü,bu DNA-bağlanma motifine sahiptir. Çinko Parmak. Çinko parmaklar,bir tek Zn+2 iyonu ile dördü (dört Cys, ya da iki Cys ve iki His olarak) bağlanmış, 30 kadar amino asit biriminden oluşur. Çinkonun kendisi DNA ile etkileşmez,tersine,çinko ile bağlanması bu küçük yapısal motife kararlılık kazandırır.Yapının iç kısmındaki birkaç hidrofobik yan zincir de kararlılığa yardımcı olur.Çinko parmaklar,pek çok ökaryotik DNA-bağlanma proteininde oluşmaktadır.Bir tek çinko parmağın DNA ile etkileşimi zayıftır.DNA-bağlanma proteini,DNA ile eş zamanda etkileştiğinde,bağlanma sağlamlığını arttıran çok miktarda çinko parmak içerir.Xenopus kurbağasının DNA-bağlı bir proteininde 37 çinko parmak vardır.Prokaryotik proteinlerde, çinko-parmak motifinin çok az örneği bilinmektedir. Proteinlerdeki çinko parmakların DNA'ya bağlanma biçimleri, proteinlere göre değişir.Bazı durumlarda çinko parmaklar,dizilimin ayırtedilmesinde önemli amino asit birimleri içerir.Ancak bazılarının DNA'ya özgün olmayan şekilde bağlandığı görülmüştür (özgünlüğün oluşumunda gerekli amino asitler proteinin herhangi bir bölgesindedir). Çinko parmakların,RNA'ya bağlanma motifleri olarak da işlevi vardır. Örneğin,ökaryotik mRNA'lara bağlanan ve translasyonal repressör olarak etki gösteren bazı proteinler vardır. Homeodomain.Özellikle ökaryotik organizmaların gelişimi sırasında,transkripsiyonal düzenleyiciler olarak işleve sahip bazı proteinlerde, bir DNA-bağlanma bölgesi tanımlanmıştır. 60 amino asitten oluşan bu bölgeye -vücut örüntü (patern) gelişimini düzenleyen homeotik genlerde keşfedilmesi nedeniyle homeodomain denilir - türlerde oldukça korunmuş ve insanı kapsayan çok geniş organizma grubununun proteinlerinde belirlenmiştir..Bölgenin DNA'ya bağlanan kısmı,helix-turn-helix motifiyle bağlantılıdır.Bu bölgeyi kodlayan DNA dizilimi homeobox olarak tanımlanır. Düzenleyici proteinler yalnız DNA'ya bağlanmak için değil,protein-protein etkileşimleri için - RNA polimeraz ile,diğer düzenleyici proteinlerle ya da aynı düzenleyici birimin diğer altbirimleriyle etkileşim için bölgeler de içerir.Örnekler çoğunlukla, çinko parmak motifiyle DNA-bağlanma bölgelerini kullanan ve dimerler şeklinde DNA'ya bağlanan, gen aktivatörleri olarak işleve sahip pekçok ökaryotik transkripsiyon faktörünü kapsamaktadır.Bazı yapısal bölgeler,genellikle DNA'ya bağlanma için bir zorunluluk olan,dimer oluşumunda gerekli etkileşimler için ayrılmıştır. Tıpkı DNA-bağlanma motifleri gibi,protein-protein etkileşimlerine aracılık eden yapısal motifler,birkaç ortak gruptan birine girme özelliğindedirler.İki önemli örnek, lösin fermuar ve bazik helix-loop-helix 'tir.Bu tip yapısal motifler, bazı düzenleyici proteinlerin yapısal aileler şeklinde sınıflandırılmasının temelidir. Lösin Fermuar Bu motif,bir tarafında bir dizi hidrofobik amino asit biriminin yoğunlaşmış olduğu amfipatik bir a helikstir.Hidrofobik yüzey,dimerin iki polipeptidi arasında dokunum alanı oluşturur.Bu a helikslerin çarpıcı özelliği,hidrofobik yüzey boyunca her yedinci pozisyonda, bir tane lösin amino asiti bulundurarak düz bir hat oluşturmasıdır.Araştırmacılar başlangıçta lösin birimlerinin iç içe geçmiş çıkıntılar oluşturduğu (bu nedenle “fermuar” adı verilmiştir) düşüncesinde olmasına karşın biz onların birbiri çevresinde kıvrılan a heliks etkileşimi olarak yan yana uzandıklarını biliyoruz .Lösin fermuarlı düzenleyici proteinler çoğunlukla,DNA omurgasının negatif yüklü fosfatlarıyla etkileşebilen bazik (lys ya da arg) amino asit birimlerinin çok yoğunlaştığı ayrı bir DNA-bağlanma domaini içermektedir.Lösin fermuar motifleri pekçok ökaryotik ve birkaç ökaryotik proteinde bulunmaktadır. Bazik Helix-Loop-Helix Çok hücreli organizmaların gelişimi sırasında,gen ifadelenmesinin denetiminde işe karışan bazı ökaryotik düzenleyici proteinlerde,yaygın başka bir yapısal motif bulunur.Bu proteinler,hem DNA bağlanması hem de protein dimerizasyonunda önemli,yaklaşık 50 amino asitlik korunmuş bir bölge bulundurur.Bu bölge değişken uzunlukta bir ilmek ile bağlanmış iki kısa amfipatik a heliks oluşturabilmektedir.Bu motif (DNA bağlanmasıyla ilgili helix-turn-helix motifinden ayrı),helix-loop-helix’tir.İki polipeptitten oluşan helix-loop-helix motifleri,dimer yapısı oluşturmak için etkileşirler.Bu proteinlerde DNA bağlanması,lösin fermuar motifi içeren proteinlerdeki DNA-bağlanma bölgesine benzer,bazik birimlerce zengin kısa bir amino asit dizilimi aracılığıyla olur. DNA bağlanmasına ve dimerizasyona (ya da oligomerizasyona) ayrılmış yapısal bölgelere ek olarak,pek çok düzenleyici protein,RNA polimeraz ve diğer bağlantısız düzenleyici proteinlerle ya da her ikisiyle de etkileşmek durumundadır.Ökaryotlarda,protein-protein etkileşimleri için en azından üç farklı tipte ek bölgeler karakterize edilmiştir:özellikle çok bulunan amino asitleri yansıtan; glutamince-zengin,prolince-zengin ve asidik bölgeler.Gen işlevinin karmaşık düzenleyici döngülerinin temeli,protein-DNA bağlanma etkileşimleridir.

http://www.biyologlar.com/genler-ve-gen-transferi

Gen Terapi

Gen terapisi hastalıklarla mücadele etmek için tıbbın üzerinde çalıştığı yeni bir yöntem. Temelinde, hasta kişinin genlerini, iyileştirici proteinler üretecek şekilde değiştirmek yatıyor. Gen terapisi denilince ilk akla gelen, ölümcül hastalıkları ve çeşitli bedensel sakatlıkları iyileştirmek olduğu halde hastalıklardan korunmak da, gen terapisi ile mümkün olacağı öngörülen hedeflerden biri. Gen terapisi henüz emekleme aşamasında. Halen bir kaç temel araştırma laboratuarında yürütülen bu çalışmalar ve insanlar üzerinde yapılan deneyler sonucunda, gen terapisinin insan yaşamını nasıl değiştirebileceğine dair kavramlar belirginleşiyor; ortaya bir vizyon çıkıyor. Gen terapisini geliştirmek için en önemli unsur, hastalıkların genetik temelini kavramak. Ebeveynlerimizden aldığımız genler bize aynı zamanda hastalıkları da taşıyorlar. İnsan vücudunda yaklaşık 150000 farklı gen bulunuyor. Bütün bu genleri tanımlamak için başlatılan İnsan Genome Projesi Haziran ayının son haftasında tamamlandı. Genlerimizdeki farklılıklar, bireysel farklılıklarımızı meydana getiriyor. Boyumuzun uzunluğu, gözümüzün rengi gibi tüm bireysel nitelikler genlerimizdeki farklılaşmalar neticesinde ortaya çıkıyor. Hastalıklar da aynı şekilde kalıtımsal olarak nesilden nesile aktarılıyor. Gen terapisi işte bu noktada devreye giriyor ve hastalıkları, genetik köklerinde durdurmayı hedefliyor. İki tür gen terapisi var: Birincisi somatik gen terapisi. Hücrelerdeki genetik ifadeyi değiştirerek hastalıkları tedavi edici özellikler yaratmayı amaçlıyor. İkincisi ise "Germline Gen Terapisi". Bu yöntem, kalıtımsal olarak nesilden nesile aktarılan hücre çekirdeklerinin değiştirilmesi temeline dayanıyor. Ancak bu alanda araştırmalar, teknik ve etik nedenlerle son derece az ve dar kapsamlı yürütülüyor. Gen terapisinde karşılaşılan temel güçlüklerden biri değiştirilmiş genetik materyali hastanın doğru hücrelerine doğru ve güvenli bir şekilde yerleştirebilmek. Genlerin bir "ilaç" olarak kullanıldığı durumlarda hücre içine en etkin şekilde genleri yerleştirmek gerçekten de son derece zor bir iş. Hedefi şaşırmamak gerekiyor. Hedefin tutturulması durumunda ilaç genler hücre içerisinde ömür boyu kalabiliyor ve hastalığın tedavi edilmesini sağlıyor. Genlerin vücuda verilmesinde özel taşıyıcılar kullanılıyor. Vektör adı verilen bu taşıyıcılar, ilaç genleri içerisinde barındıran bir çeşit kapsül olarak tanımlanabilir. Virüslerle Mücadele Milyarlarca yıllık evrim tarihinde virüsler, hücreleri en etkin nasıl tahrip edebilecekleri ve genleri nasıl bozabilecekleri konusunda uzmanlaştılar. Bilim, bugün virüslerin hastalıklara yol açan bileşenlerini ortadan kaldırmaya ve hastalara, iyileştirici etkisi olan modife (değiştirilmiş) edilmiş genlerin doğru ve etkin bir şekilde verilmesine çalışmakta. Yapısı değiştirilmiş virüslerin hastanın vücudunda üremesi imkansız hale geliyor. Ama genetik materyal taşıma özelliğini etkin bir şekilde korumayı da sürdürüyor. Araştırmalar 1990 lardan beri sürüyor... İnsanlar üzerinde gen terapisi deneyleri 1990 da başladı. İlk deneyler laboratuar ortamında yapıldı. Hastalarda alınan hastalıklı hücrelere, vücut dışında, vektörler yardımıyla iyileştirici etkiye sahip genler verildi. Daha sonra bu hücreler hasta kişinin vücuduna geri verildi. Bu deneyler sonucunda bazı hastalıkların tedavisinin gen terapisiyle mümkün olabileceği anlaşıldı. Canlı denekler üzerinde yapılan deneyler de gen terapisinin umut verici bir yöntem olduğunu kanıtladı ve o günden bu güne konu hakkında araştırmalar sabırla sürdürülüyor. Kaynak: Hekimce.com   Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır. Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuvar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar.Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir.Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney,beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir

http://www.biyologlar.com/gen-terapi

Gen Terapisinin Temel Sorunları

Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan Plazmid, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipitlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan Plazmid DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonel kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, immünolojik etkilerin olmamasıdır.

http://www.biyologlar.com/gen-terapisinin-temel-sorunlari

Genlerin Vücuda Sokulma Yöntemleri ve İlk Gen Terapisi

Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanı sıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin de*****z enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir. Gen Terapisinin Riskleri Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığa yol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır. Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir. Gen Terapisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Yukarıda açıklanan yöntemler bugüne değin 300 klinik deneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inanabiliriz.

http://www.biyologlar.com/genlerin-vucuda-sokulma-yontemleri-ve-ilk-gen-terapisi

GENETİK İSTATİSTİK

Canlılarda kalıtım ve değişim olgusunu inceleyen genetik bilimi çeşitli bilimsel inceleme yaklaşımları içinde olmuştur. Bu yaklaşımları; soy çözümlemesi (pedigree) içeren taransmisyon genetiği, kromozom incelemeleri içeren sitogenetik, genomik, proteomiks ve biyoinformatik alanlarını da kapsayan moleküler genetik çözümleme, ve populasyon genetiği olarak sıralayabiliriz. Moleküler genetik, gen fonksiyonlarının moleküler ve biyokimyasal çözümlemeleri yoluyla gen terapisine olanak sağlayarak tıp, tarım ve biyoetik alanlarında bilgiye ve yaşam süreçlerine çok geniş açılımlı önemli katkılarda bulunmuştur.             Bir molekülün genetik malzeme olarak kullanılabilmesi için kopyalama, genetik bilgi depolama, bilgi ifade etme ve mutasyon yoluyla değişim karakteristiklerine sahip olması gerekmektedir. Genden proteine bilgi akışı:DNA (depolanmış bilgi), mRNA-tRNA-rRNA-Ribosom (kopyalanmış ve tertip edilmiş bilgi) ve Protein(aktif ürün) sıra düzeni içinde gerçekleşmektedir. Genetik verilerin bilgiye dönüştürülmesi gayretinde bu sıra düzeninin dikkate alınması gereklidir.             Bu anlayış içerisinde, gen ve protein düzeyinden, yaşam olguları ve süreçleri düzeyine geçişin betimsel ve sebeb-sonuç etkileşimi dahil tüm yönleri ile anlaşılması genetik istatistik yöntemleri ile olanaklı hale gelmiştir. 2.Genetik Çözümleme ve İstatistik             Genetik bilimi ondokuzuncu yüzyılda fenotiplerin sürekli ve dereceli değişimi ile kendini gösteren canlı özelliklerinin (traits) incelenmesi ile ilgilenmiş, yirminci yüzyılda toplamsal alellerin sürekli değişimin temelini oluşturduğunu göstererek çeşitli polijenic özelliklerin bulunması için büyük sayılarda organizma populasyonlarının araştırılmasını önermiştir. Kalıtımsallığın fenotipik değişkenliğe (VP) genetik katkının ölçüsünü oluşturduğu bulunarak, genetik değişkenlik (VG), çevresel değişkenlik (VE), etkileşimli değişkenlik (VGE) bileşenlerinin tayini ve ölçümü ortaya konulmuş, gözlenmesi zor olan genotipleri ve genotipik değişimi fenotipler ve fenotipik değişim ile açıklama önem kazanmıştır. Sonuç olarak, yirmibirinci yüzyıla gelindiğinde genetik yapılardaki antijenlerin (alellerin) insan ve diğer canlı toplumlarında kronik hastalıklar dahil olmak üzere pek çok olguyla ilişkisinin karakterize edilmesi başarılmıştır. Niceliksel özellikler loci'si (QTL) olarak adlandırılan genlerin genom boyunca haritalandırılması ve DNA dizinlemesi bu karakterizasyonun temelini oluşturmaktadır.             Populasyon ve alt-populasyonlar düzeyinde yapılan genetik çalışmalarda alel çokluklarının hesaplanması ve Hardy-Weinberg Kanunu uzantısında homozigot ve heterozigot çokluklarının, doğal seçim, mutasyon, göç, genetik sürüklenme ve rasgele olmayan çiftleşme durumları altında incelenmesi, ilişki (association), bağlantı (linkage), ayrım(segregation), haplotip çözümlemesi gibi konular olasılık ve istatistik modellerinin yardımıyla gerçekleştirilmektedir. 2.1.İstatistik Model             İstatistik çözümlemenin ana hatları olasılık modeli, nedensellik ve yapısal model, ve istatistik sonuç çıkarımından oluşur. Genetik çalışmalarda olduğu gibi, bütün bilimsel çalışmalarda hedef (ilgilenilen) populasyondaki bir özellik X değişkeni veya özellikler X=(X1, ......, Xm) vektör değişkeni ile ifade edilir ki bunların gözlenen değerleri x ve x ile gösterilir. Bu değişkenlerin gözlenen değerlerinin Aj veya Ajk, j= 1,....j, k=1,.....m, gibi değer alt kümelerinden birine veya bunların kesişim/bileşim kümesine düşmesi durumu (rasgele) olay veya olgu gerçekleşmesi olarak ifade edilir. Söz konusu olayların/olguların olasılıkları X'in olasılık dağılım fonksiyonu F(x,θ) veya X'in çok değişkenli olasılık dağılımı F(x,θ) kullanılarak açıklanır. Burada   θ ve θ dağılımların parametreleridir.             İstatistik çözümlemede F(.), θ, θ 'nin kestirimi modelleme ve sonuç çıkarımına ait tüm yaklaşımların esasını oluşturur. Örneğin, allel çokluklarının bulunması ve çokluklara ait olasılıksal hesaplar F(.), ondan türetilen olasılık fonksiyonları f(.) ve θ, θ parametrelerinin tayinine yöneliktir. İlişki ve korelasyon ölçümleri, nedensellik yapısını irdeleyen genelleştirilmiş doğrusal modeller ve bunun içinde yer alan logit, probit gibi diğer modeller, zaman dinamiğini çözümlemeye içselleştiren stokastik modeller tümüyle dağılım fonksiyonları ve onların parametrelerine ait bilgileri kullanmak durumundadır (Silvey (1975), Steel ve Torrie (1980)).             Parametre kestirimi güven aralığı kestirimi ve hipotez testlerinde, doğru ve geçerli deney tasarımı veya örnekleme planları yoluyla gözlenen x ve x değerlerinin fonksiyonu olan yeterli istatistiklerin kullanılması gereklidir. Hipotez testi oluşturmada, boş ve alternatif hipotez kurgusu, test istatistiği tayini ve onun olasılık dağılımı, testin önem derecesi, ve hata payları toleransı konularında kuram ve yöntem bilgisi eksiklikleri mutlaka yanlış ve yanlı sonuçlara yol açar.             Bir diğer önemli husus x, x değişkenlerinin tipleridir. Değişkenler aldıkları değerlerin ara, oran, sıra veya nitelik değerleri olmasına bağlı olarak sınıflara ayrılır. Kullanılacak istatistik yöntemi ve yaklaşımlar, pek çok uygulayıcının bilinci dışında, değişken tiplerine göre farklılıklar gösterir.   2.2.Genetik Çözümleme             Genetik çalışmalarda veriye erişme, veri analizi ve doğru, güvenilir, geçerli sonuç çıkarım bilgisine ulaşma istatistik kuram ve yöntemlerine dayalı olarak gelişim göstermektedir (Elston, Olson ve Palmer (2002), Klug ve Cummings (2003)). Tam bir liste halinde olmamakla birlikte, genetik çözümleme konuları ile istatistik yöntemler ilintisi aşağıda gösterilmiştir:       Genetik Çözümleme                                                             İstatistik Yöntem               Bağlantı, Seçim, Mutasyon ve                                              Kombinatorik, Olasılık Dağılımı Seçim Dengesi, Hardy-Weinberg                                         Kestirimi, Uyum İyiliği Testleri Eşitliği Gen Sayımı, Alel Çokluğu,                                                   Sayma Teknikleri, En Çok Ayrım Çözümlemesi, Skorlama                                             Olabilirlik (ML), LR ve EM Kestirim Yöntemleri, Bayesci Çözümleme, Odds Oranı Genotip Çoklukları, Durum-Kontrol                                     Hipotez Testleri, LR, İlişki Testleri, Geçis/Eşitsizlik                                              Sınıflandırılmış Veri Analizi, Çok Testleri                                                                                   Boyutlu ve Değişkenli Olasılık                                                                                                Dağılım Modelleri, Lojistik Regresyon Akrabalık ve Hüviyet Katsayıları,                                        Rasgele Cisimler ve Haritalar Genotip Tahminleri, Nicelik                                                  Varyans-Kovaryans Çözümlemesi Özellikleri, Risk Oranları                               Bağlantı Çözümlemesi Düzenleme (Array) ve Faktörleme,                                       ML, Çok Değişkenli Analiz Polijenik Modelleme, QTL Haritalama                                  Faktör Analizi Hastalık ve Marker Loci Haritalaması,                                 Grafik Kuramı, MCMC, Markov İlişki Çözümlemesi                                                                       Süreçleri, Hastings-Metropolis Yöntemi,Ardışık Olasılık Oran Testleri Moleküler Filojeni, Radyasyon                                             Stokastik Süreç Modelleri, ML, Hibrid Haritalama                                                                 Bayesci Kestirim Rekombinasyon Modellemesi,                                              Yenileme Süreçleri, Poisson Chiasma Sıra (Sequence) Çözümlemesi                                                                       Süreçleri, Dinamik Programlama, Paralel Süreçleme, Yayılma ve Dallanma Süreçleri 3.HLA Sistemi             İnsanda beyaz kan hücrelerindeki antijenik sistemlerin pek çok türünün saptanmasıyla İnsan Lökosit Antijen (HLA) sistemi geliştirilmiştir. HLA ve hastalıklar arasındaki ilişkilerin anlaşılması için genetik seçim, göç ve bağlantı ile insan evrimi etkileşimi arasındaki bağıntı HLA verileri kullanılarak saptanmaya çalışılmıştır (Thomson (1981), Cavalli-Sforza, Menozzi ve Piazza (1994)).             Aile ve somatik hücre hibrid incelemeleri bileşiminde HLA sistemi insanda kromozom 6'nın kısa kolu üzerinde haritalanmıştır. HLA bölgesinde bulunan antijenler 3 loci'de çoklu aleller ile kontrol edilmektedir. Bu aleller HLA-A, HLA-B, HLA-C olarak tanımlanmıştır. Diğer bir locus HLA-D olup bunun karışık limfosit kültürü (MLC) tepkisini kontrol ettiği saptanmıştır (Thomson, 1981). Bağışıklıkla ilişkili DR antijeni de HLA bölgesinde yer almaktadır. HLA sisteminin incelenmesi, doku transplantasyonlarında verici ve alıcıların antijenlerinin uyum saptaması için büyük önem taşımaktadır.             HLA ve hastalıklar arasındaki ilişkinin ölçümünde göreli risk ve delta istatistikleri kullanılmaktadır. Ayrıca bağlantı (linkage) incelemeleri hastalıkların haplotip ilişkilerini tespit etmek için uygulanmaktadır (Zachary (1995), Thomson (1981)).             Hastalıklar ve HLA ilintisine ilişkin çalışmalar populasyon ve aile çalışmaları olmak üzere iki yaklaşım içinde yapılmaktadır. Aile çalışmaları, HLA çok polimorfik bir sistem olduğundan, ancak ailesel toplulaşma olan durumlarda bilgi içeriği yüksek sonuçlar vermektedir. Populasyon çalışmalarında HLA fenotipleri birbiriyle bağlantısız kontrol bireyleri üzerinde gözlenerek kullanılmaktadır. Her iki durumda da istatistiki anlamda populasyon heterojenliği, kontrol yeterliliği, bağlantı eşitsizliği gibi unsurlara özel önem verilmesi gerekmektedir.   Yararlanılan Kaynaklar Cavalli-Sforza, L.L., P. Menozzi, A.Piazza (1994). The History and Geography of Human Genes, Princeton University Press Elston, R., J. Olson, L. Palmer (2002). Biostatistical Genetics and Genetic Epidemiology. Wiley Klug, W.S., M.R. Cummings (2003). Genetics; A Molecular Perspective. Prentice Hall, Pearson Education Inc. Silvey, S.D. (1975). Statistical Inference. Halsted Press Steel, R.G.D., J.H.Torrie (1985). Principles and Procedures of Statistics; A Biometrical Approach. Mc Graw Hill Thomson, G.(1981). A review of theoretical aspects of HLA and disease association. Theoretical Population Biology, 20, 168-208 Zachary, A.A. (1995). Statistical analysis of genetic data, ASHI Quarterly, 4-7    

http://www.biyologlar.com/genetik-istatistik

Gen Nedir? Görevleri nelerdir ? Gen <b class=red>terapisi</b> Nedir?

Gen Nedir? Görevleri nelerdir ? Gen terapisi Nedir?

Gen DNA zincirindeki belli bir uzunluktaki birimdir. Kromozom DNA'nın özel bir şekilde paketlenmesi sonucu ortaya çıktığına göre her kromozomda çok sayıda gen var demektir. Her bir gen diğerinden farklı bir şifre içerir ve farklı bir proteini kodlar. Eğer vücutta bir genin kodladığı proteine gereksinim varsa o gen aktif hale geçerek üzerindeki şifre, haberci RNA adı verilen bir yapı şeklinde kopyalanır. Bu yapı hücrenin sitoplazmasındaki ilgili birimlere gelerek kalıp vazifesi görür ve o proteinin yapımı sağlanır. a) Vücutta bulunan hücrelerin hepsinde aynı genler var mıdır? Her gen her hücrede vardır. Ancak hücrenin özelliğine göre bazı genler bazı hücrelerde çalışmaz yanı atıl durumdadır. Örneğin tiroit hücresinde hormon yapımını kontrol eden gen, mide hücresinde de vardır ancak işlev görmemektedir. Zaten aynı genleri çalışan hücreler bir araya gelerek dokuları oluştururlar. Diğer yandan bazı genler ortak gendir ve her hücrede aynı işlevlere sahiptir. b) Genlerin görevi nedir? Genler içerdikleri şifreler dolayısıyla vücuttaki her türlü olayı uzaktan kumanda sistemi sayılabilecek bir duyarlılıkla kontrol ederler. Bazı genler vücuda gerekli kimyasal yapıların ortaya çıkmasını sağlarken bazı genler diğer genler üzerinde düzenleyici olarak şifrelenmiştir. Bu genlerin çalışabilmesi için bir uyarana gereksinimleri vardır. Vücudun tiroit hormonuna olan gereksinimi artar yada herhangi bir nedenle kanda tiroit hormonlarının miktarı azalırsa önce beyinde bulunan hipofizdeki ilgili gen, TSH hormonunun yapımını sağlar bu hormon kan yoluyla tiroit hücresine ulaşır ve hücrenin zarına yapışarak çekirdekteki hormon yapımını sağlayacak olan genlere mesaj iletir. Bu mesajı iletecek olan kimyasal yapılar da başka bir gen tarafından yaptırılmakta ve hücre içindeki miktarı düzenlenmektedir. Çekirdekte bu mesajı alan gen tiroit hormonlarını yaptırmak üzere gerekli şifreyi RNA adı verilen bir haberci ile hücrenin sitoplazmasına gönderir ve hormon yapımı başlar. c) Genlerin işlevinde ne gibi değişiklikler olabilir? Herhangi bir nedenle yapısı değişen gen, ya fonksiyon göremez yani devre dışı kalır,ya da aşırı fonksiyon görmeye başlar. Her iki halde de genin kontrol ettiği işlevlerde bozulma ortaya çıkar. Örneğin kan şekerini kontrol eden insülinin yapımını sağlayan gende fonksiyon kaybettirici bir değişiklik olursa insülin yapımı azalır ve bireyde şeker hastalığı ortaya çıkar. d) Hücre bölünmesi nedir ? Ana hücreden yavru hücreye genetik şifre nasıl taşınmaktadır? Canlılar türlerini devam ettirebilmek veya hasara uğramış bölümlerini tamir edebilmek için hücresel seviyede bölünmeye gereksinim duyarlar. Bunun için genetik şifrenin aynısının yavru hücrelere aktarılması gerekir. Örneğin hormon yapımını da artırmak için bir tiroit hücresinin bölünmesi gereksin. Bu gereksinim ortaya çıkınca büyüme faktörlerinden bir kısmı ve TSH hormonu tiroit hücre zarına yapışır ve çekirdeğe çeşitli proteinler aracılığıyla bölünme işleminin başlatılması için sinyal gönderir. Bu sinyali alan özel bir gen aktive olarak protein üretir ve bu protein başka bir geni uyararak bölünme işlemini başlatır. Bunun için önce çekirdekteki şifreleri taşıyan DNA'nın bir eşinin yapılması gerekir. Enzim adı verilen özel proteinler daha önce DNA'nın yapısında olduğu belirtilen şeker,baz ve fosfat birimlerini kopyalama adı verilen bir işlemle orijinal DNA'daki sıraya göre dizmeye başlar ve işlem bittikten sonra birbirinin tamamen benzeri iki ayrı DNA ortaya çıkar. Eğer kopyalama sırasında yanlış bir dizilim olursa başka bir gen devreye girerek bunu düzeltmeye çalışır, düzeltmezse başka bir gen devreye girerek bölünme işlemini durdurur böylece yanlış genetik şifrenin yeni oluşacak hücrelere geçmesi önlenir. Şimdi kopyalama işleminin doğru yapıldığını varsayalım ve gelişmeleri izleyelim. Artık çekirdekte birbirinin tamamen benzeri olan iki DNA vardır ve bölünme işlemini durduracak bir emir gelmemişse DNA' lar daha öncede değinildiği gibi paketlenerek 46 çift kromozom haline döner. Diğer bir deyişle birbirinin aynısı olan 23 çift iki takım kromozom ortaya çıkar. Bu devreden itibaren 23 çift kromozom hücrenin bir ucuna doğru giderken diğer 23 çift kromozom diğer ucu gitmeye başlar ve hücre ortadan boğumlanıp her birini çevreleyen yeni zarla birlikte özellikleri tamamen aynı olan iki ayrı hücre ortaya çıkar. e) Gen Terapisi Nedir? Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. 1- Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikro parçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. 2- Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. 3- Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. 4- İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir. 5-Gen Terapisinin Riskleri Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığa yol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır. Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir. 6-Gen Terapisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Yukarıda açıklanan yöntemler bugüne değin 300 klinik deneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inebiliriz. f) Genomun Getirdikleri Teknoloji insan bedenine girdi. Bunu normal kabul edip direnç göstermemekte yarar var. Belki ileride bambaşka şeyler gelişecek. Ama bugünlerde önemli bir buluşun heyecanı içinde yaşıyoruz. Dünyanın en gelişmiş altı ülkesinde bulunan 16 laboratuarda çalışan 1190 uzmanın 13 yıldır peşinde koştuğu genom projesinin tamamlandığı bildirilmekte ve bu projenin sonuçlanması ile gizli kalan insan genlerinin tümünün deşifre olduğu açıklanmaktadır. Basit anlamda bir tohum düşünün ektiğiniz zaman nasıl bir fidana sahip olursunuz bunun bilincindesinizdir. Yalnız bu kez genetik özelliklerin deşifre edilmesiyle tüm ayrıntılarla fidanın enini ,boyunu ,yapraklarının adedini ,kıvrımlarının biçimini, kaç dalı olacağını, her bir dalındaki yaprak sayısını bilmek mümkün. Ayrıca, o tohumda beğenmediğiniz yönlerin tespiti ile gerekli mutasyonla istediğiniz, arzu ettiğiniz şekilde yeşermesini de sağlayabilme imkanınız mevcut olacak. Anlatılan şartları günlük yaşamda bireyler üzerinde uygulamak şansını elde edebilsek, bir anlamda fakirle - zengini , güzellik ile çirkinlik kavramlarını dengeleyebilecek ve eşitlik ilkesine dayanan genetik adaletin ortaya çıkmasını sağlayabileceğiz. Derin bakış açısı ile astrolojik etkilerin insan üzerindeki yansımaları bir anlamda kısmen de olsa düzenlenebilecektir. İnsan için gerekli olan zekanın, aklın, güzelliğin, teminini bir bakıma belirli bir seviyeye getirildiğini düşünelim, acaba zenginlik vasfı nasıl elde edilebilecekti? Bu çok önemli bir sorun karşısında rızkı oluşturan genlerin –yani rızk genlerinin- de mutasyona uğraması gerekiyor. İlahi bir nizam ve düzeni deşifre edebilmek zoru başarmak demektir. Ancak makul olmak gerekirse istenileni elde etmek, açıkları, zaafları kapamak dengeli, stabil bir hale getirmek imkansız gibi görünüyor. Bilim tümüyle sorunlara ulaşabilme kapasitesini gösterse bile gerek zaman açısından gerekse ekonomik koşullar bakımından istenileni uygulamak kolay değil. Hatta imkansıza yakın gibi. Bugün bir kalp ameliyatı için vatandaşların altı ay gibi bir süreye yakın sıra bekledikleri herhalde hepimiz tarafından bilinen bir olgudur. Bu şartlarda gen haritası çıkarılan bir insanın istenilen niteliklere ne kadar zamanda ulaşabileceğini, arz/talebin karşılanıp karşılanamayacağını iyi bir düşünmek gerekiyor. Her şeye karşın genomun geliştirilmesi sadece,insana ait özellikleri değil onun varlığını oluşturan enerji alanlarının ve mutlak enerjinin de geninin deşifre edilmesini temin edebilir. Bu edilimin nihai noktası, bütün vasıf ve manaların ve hiçliğe giden yolun bulunmasıdır. Genom gelişmelerini sadece insan üzerinde değerlendirmek, sadece “bilinebilirliğe” kavuşmasını temin etmek popüler bilimin zaferi olarak kabul edilse bile bu aşamada duraksamak doğru olamaz. Genomun hakkı bu değildir. Amacı da bu şekilde olmamalıdır. Şayet bilimsel nedenlerin üzerinde durulmaz, evrensellik esas alınırsa bilim bütün gücünü evrensel geni deşifre edebilmek için harcaması gerekecektir. Varlığı tümüyle algılamak için bilim adamlarının gözlerini gökyüzüne yıldız kümelerinin manyetik alanlarına dikmesi mantıklı olur. Bilim insanının görevlerinden biri de bütün yeniliklere açık olması onları uygulama hevesi ve gayreti içinde olmalıdır. Sonsuzluğa ulaşabilmek belirsizlikten kurtulma anlamına geliyor. Resmi olarak Ekim 1990’da başlamış olan insan genom projesi (İGP), uluslararası niteliğe sahip olup insan kromozomlarının fiziksel haritasının çıkarılmasını, sayısı yaklaşık 100.000 adet olarak tahmin edilen insan genlerinin keşfedilmesini ve bu sayede bu genlerin daha ileri biyolojik çalışmalar için ulaşılır kılınmasını amaçlamaktadır. Günümüzde, tedavisi henüz olanaksız 3000’den fazla genetik hastalık milyonlarca insanın yaşamını etkilemektedir. Bu tip hastalıklardan sorumlu genlerin yapısının aydınlatılması ile “işlevi bozuk” genler için “düzeltmelerin” yapılabileceği, hastalıkların önceden teşhisi ve tedavisinin mümkün hale geleceği tartışmaları, bu projenin başlatılmasındaki en önemli etken olmuştur. Genetik bilimi, 1860’larda, Gregor Mendel’in kendi yetiştirdiği bezelyeler üzerine yaptığı çalışmalarla başladı. Mendel bezelyelerin çeşitli karakterlerinin (renk, büyüklük, vb. tohum ve çiçek özellikleri) daha sonraları “gen” olarak isimlendirilecek ünitelerle belirlendiğini, bu ünitelerin kalıtım faktörleri olduğunu gösterdi. Bunu, genetik bilgilerin kromozom adı verilen yapılar üzerinde taşındığının bulunması izledi. Watson ve Crick isimli iki araştırıcının deoksiribonükleik asitin (DNA’nın) yapısını keşfetmesi, insan genom projesinin geçtiğimiz günlerde popüler hale gelmesinden sadece yarım yüzyıl önce gerçekleşti ve bu dev buluş bugünkü gen teknolojilerine olanak veren bir dönüm noktası oluşturdu. 1970’lerde DNA üzerindeki belirli genlerin izole edilebildiği, bu genlerin kesilip biçildiği ve yeniden yapılandırıldığı “genetik mühendisliği” uygulamaları başladı. organizmayı oluşturmak için gerekli bilgilerin toplamına genom diyoruz. Bir diğer tarifle, bir hücredeki genetik materyalin tamamı o organizmanın genomunu oluşturur. Yine diğer bir tanımla genom, bir organizmanın DNA’sının tamamı olup o organizmanın yaşamı boyunca tüm yapı ve aktivitelerini belirleyecektir. Tüm bu tanımlar, genomun DNA materyalinden ibaret olduğunu, her iki terimin de genetik materyali ifade ettiğini göstermektedir. Bu materyal, sıkı bir yumak halinde biçimlenerek kromozom adını verdiğimiz silindirik yapıları oluşturur. Prokaryot adı verilen tek hücreli basit canlılarda (bakteriler) tek bir kromozom oluşturan bu materyal hücre içerisinde serbest iken, ökaryot adını verdiğimiz daha ileri canlılarda (algler, mantarlar, bitkiler, hayvanlar, insanlar) her hücrede birden fazla kromozom şeklinde bulunur ve bu kromozomlar özel bir kompartman olan hücre çekirdeği içinde yer alırlar. Serbestçe açılması halinde 2 metreye yaklaşan DNA molekülü, sıkı bir yumak oluşturması sayesinde mikroskobik büyüklükteki hücreye sığmaktadır. İnsan genom projesinin temel hedefi, insan genomunun detaylı bir fiziksel haritasını elde etmektir. Baz çifti sayısı temelinde genlerin dizilimi ve aralarındaki mesafeyi gösterecek bu haritanın elde edilmesi, ancak DNA üzerindeki nükleotidlerin dizilim analizi (sekanslama) ile mümkündür. Elde edilen insan genomu referans dizisi, yeryüzünde yaşayan her bireyin genom dizisine birebir uymayacaktır Örnekler çok sayıda gönüllüden özel bir protokolla alınmış olup bu örneklerden çok azı projede kullanılmaktadır. Örnekleri veren kişilerin ismi saklıdır; dolayısı ile hem örneklerin sahipleri, hem de bilim adamları bu projede kullanılan DNA’ların kimlere ait olduğunu bilmemektedirler. Kadınlardan kan örnekleri, erkeklerden ise sperm örnekleri alınmıştır, kadınlarda Y kromozomu bulunmadığından sperm örnekleri özellikle önemlidir. İlk referans genom dizisinin oluşturulmasının 10-20 birey bazında olacağı tahmin edilmektedir. Fiziksel haritanın elde edilmesi için öncelikle seçilen kromozomun çok küçük parçacıklara ayrılması, bu parçacıkların ayrı ayrı dizi analizlerinin yapılması ve elde edilen verilerin birleştirilmesi gerekir. Bu amaçla, restriksiyon enzimleri adı verilen ve DNA’nın belirli dizilerini tanıyıp molekülü o dizilerden kesen enzimler kullanılır.Daha sonra, elde edilen parçacıkların daha ileriki çalışmalarda kullanılabilmesi için klonlanması (çok sayıda kopyasının elde edilmesi) işlemine geçilir. Farklı DNA parçacıklarında birbiri ile örtüşen diziler belirlenmek suretiyle kromozom boyunca uzun bir segmenti, hatta tüm kromozomu temsil eden sıralı bir klonlar koleksiyonu (kontig) elde edilir. Bu yolla elde edilen harita “kontig harita” olarak isimlendirilir. Günümüzde nükleotid dizilimi analizi için DNA çiplerinin kullanıldığı yeni yöntemler de mevcuttur, ancak en yaygın olarak kullanılan yöntemde temel adımlar şunlardır: Öncelikle her bir kromozom (50-250 milyon baz çifti) enzimlerle çok daha küçük parçacıklara (yaklaşık 500 baz çifti; Celera Genomics’te geliştirilen yeni ve hızlı yöntemde 2000-10.000 baz çiftlik parçalarla başlandığı bildirilmektedir) bölünür. Makinelerle yapılacak olan dizi analizi için her bir parçacığın milyarlarca kopyası gerekir. Bu nedenle parçacıklar bakteri hücrelerinde klonlanırlar ve çok hızlı çoğalan bakteriler kopya makineleri gibi bu parçacıkları çoğaltırlar. Bu şekilde çoğaltılan DNA materyali, özel boyalarla muamele edilerek her bir baz çeşidinin (A, T, G, ya da C) lazer ışık altında farklı bir renk vereceği biçimde boyanır, daha sonra parçacıkların elektroforezleri yapılarak büyüklüklerine göre ayrılırlar ve bu süreçte lazer ışını ve kamera bazların boyanma rengini kaydederek 4 renkli kromatogram oluşturulur. Tüm bu işlemler insan eliyle değil, otomatik dizi analiz cihazı kullanılarak yapılmaktadır. Bazlar “okunduktan” sonra bilgisayarlar aracılığıyla dizilim analiz edilir. Katrilyonlarca hesaplama sonucu parçacıkların dizilim bakımından birbirleri ile örtüşen uçları yan yana getirilmek suretiyle dizilim yeniden düzenlenir. Analiz hataları, gen bölgeleri (insan genomunda bilinen fonksiyonel proteinleri kodlayan genler, toplam genomun sadece yaklaşık %5’ini oluşturmaktadır, geriye kalan kısım ise gen aktivitesini kontrol eden ya da henüz fonksiyonu bilinmeyen bölgelerdir), daha önce bilinen genlere ne oranda benzerlik gösterdiği, vb. belirlenir. Her bir DNA parçası 5 kez dizilim analizinden geçmişse, elde edilen bulgular “taslak” dizilimi oluşturur. Analiz 10 kez yapıldığında ise “final” dizilim (hata oranı 1/10.000) elde edilir. Bugünkü analiz sonuçları %90-95 doğrulukta bir müsvedde analiz sonuçlarıdır. Hatalar ve bazı boşluklar halen mevcuttur, yüksek kaliteli referans diziliminin 2003 yılında elde edileceği bildirilmektedir. Ancak, final dizilimin elde edilmesi projenin nihai amacı değildir; bulunan genlerin fonksiyonlarının ve birbirleriyle etkileşiminin anlaşılması çalışmaları sürecek, buna paralel olarak çeşitli hastalıkların tedavisi için geni ya da kodladığı proteini hedef alan yeni ve etkin ilaçların tasarım ve denenmesine devam edilecektir (sorumlu genin aydınlatılmış olduğu bir çok hastalık için halen bu yönde çalışmalar sürmektedir). Proje bünyesinde robotiklerin ve bilişim teknolojisinin önemi özellikle not edilmelidir. Sadece insan gücü kullanılarak projenin gerçekleştirilebilmesi neredeyse olanaksızdır. Robot kolları olan yüzlerce makine, aynı anda, DNA parçacıklarını dizilim analizi için ince cam tüplere pompalamaktadır. Bunun yanı sıra, veritabanı ve yazılım geliştirme alanlarındaki ilerlemeler de bu projeye hız kazandırmıştır. Teknoloji ilerledikçe ve dizilim bulguları çok büyük bir hacim tutacak şekilde biriktikçe, eldeki bilgilere sahip çıkmak, organize etmek ve bunları yorumlayabilmek için daha sofistike bilgi işlem kaynaklarına gereksinim olacaktır. Proje ile ilgili tüm araştırıcıların dünyanın her yerinden dizilim bulgularına ulaşıp onları kullanabilmeleri, projenin başarısının doğrudan ölçütüdür. Perkin Elmer, Celera Genomics için 1 milyar dolar harcamış, en hızlı analitik cihazları (300 adet) ve yüksek performanslı süper bilgisayar teknolojisini temin etmiştir. Özel bir yazılım ile 80 terabayttan fazla veri işlenebilmiştir. Bu nedenlerle, Celera Genomics’in gen dizilimi analizi yapan diğer tüm laboratuarlara göre en az 3 kat daha hızlı çalışabildiği ifade edilmektedir. Bunun vurgulanması için, Celera laboratuarlarının aylık elektrik faturasının 60.000 dolar olduğu belirtilmektedir. Şirket yöneticileri, 9 ay gibi kısa bir süre içinde etnik kökenleri farklı toplam 5 birey için (3 kadın, 2 erkek) 15 milyara yakın baz çiftinin diziliminin tamamlandığını açıklamaktadır.

http://www.biyologlar.com/gen-nedir-gorevleri-nelerdir-gen-terapisi-nedir

KÖK HÜCREARAŞTIRMALARI VE ETİK BOYUTU

1. KÖK HÜCREARAŞTIRMALARI VE ETİK BOYUTU AYSEL KARAGÖZ DOKU MÜHENDİSLİĞİ BIOTECHNOLOGY 2. İÇERİK• Kök hücre (KH) ve kullanım alanlarına ait genel bilgiler - Kök hücre nedir? - KH çeşitleri ve kaynakları (elde edilme şekilleri) - Kullanım alanları • Kök hücre araştırmalarına dair Etik sorular • Kök hücre araştırmalarının yasal boyutu • Kök hücre ve Doku mühendisliği • Görüş, öneri ve tartışmalar 3. KÖK HÜCRE (KH) Kök hücreler vücudumuzda bütün doku ve organları oluşturacak şekilde farklılaşabilme ve sınırsız bölünebilme potansiyeline sahip, kendi kendini yenileyebilen ana hücrelerdir. 4. Herhangi bir organa ait olan hücreler yaşamlarını o doku ya da organa aithücre olarak geçirirken ve çoğalırken, KH aldıkları sinyallere göre istenilen hücreyi oluşturabilirler. 1. Sınırsız bölünebilme ve çoğalma 2. Herhangi bir işlev için özelleşmemiş olma 3. Özelleşmiş hücrelere dönüşebilme 5. KH ÇEŞİTLERİ KH Elde Farklılaşma edildikleri potansiyeli doku 6. • Elde edildikleri dokuya göre KH; Embriyonik kök hücreler; 4-5 günlük embriyohücrelerinden, blastosist denilen iç hücre kitlesinden, Fetal KH; gebeliğin istemli ya da istemsiz olaraksonlanmasıyla elde edilen fetal dokudan, Kordon kanı KH; doğumun hemen ardındangöbek kordonunun bebeğe yakın kısmındaki kandan, Yetişkin KH; kemik iliği, yağ doku, karaciğer, dalak gibi yetişkin doku ve organlarından, 7. • Farklılaşma potansiyellerine göre KH; 1. Totipotent KH 2. Pluripotent KH 3.Multipotent KH Tüm doku ve Birçok doku ve Özelleşmiş hücrelere organlara organa dönüşebilen dönüşebilen KH. dönüşebilirler. KH. Fetal, kordon kanı, (1-4 günlük embriyo) Döllenmeden yetişkin KH. sonraki 5. günden itibaren oluşan embriyonik kök hücreler. 8. EMBRİYONİK KÖK HÜCRELER• Embriyonik KH‟ler, in vitro fertilizasyon merkezlerinde, döllenmeden 4-5 gün sonra oluşan embriyoların, blastosist adlı yapılarındaki iç hücre kütlesinden elde edilir. 9. • EKH „ler genellikle in vitro fertilizasyon (tüp bebek) ünitelerinden elde ediliyor.• Başarı oranını arttırmak adına hazırlanan ve dondurularak saklanan embriyolardan kullanılmayacak olanlar ailenin izni alınarak KH kaynağı olarak kullanılıyor. 10. EMBRİYONİK KÖK HÜCRELER• Hızlı çoğalma yetenekleri diğer KH tiplerine göre daha fazladır.• Çoğalma çeşitliliği çok fazladır, yani farklılaşma potansiyelleri oldukça yüksektir.• Telomerleri çok uzun olduğundan daha uzun yaşayabiliyorlar (laboratuvar ortamında 2 yıl kadar). 11. FETAL KÖK HÜCRELER • Embriyo döllenmeden sonra yaklaşık 7-8 haftalık iken fetüs adını alır. • Fetüs dokularında bulunan KH fetal kök hücrelerdir. • İstemli ya da istemsiz olarak sonlanan gebeliklerden elde edilir. • Fetüs KH farklılaşarak kromozom sayısını yarıya indirip yumurta ya da sperm hücresine dönüşebilir, ancak tek başına bir organizmayı oluşturabilme yeteneğine sahip değildir. 12. Fetüsten elde edilen kök hücreler gelişimin daha geç safhasında elde edildiği için çoğalma potansiyeli embriyonik kök hücreye göre daha azdır. Hasarlı fare beyinine insan fetal kök hücre nakli sonrası makroskopik görünüm (sağda) 13. KORDON KANI KH • 1980li yılların başında, kordon kanında kök hücrelerin bulunduğu ve bu hücrelerin tedavide kullanılabileceği fikri ortaya atılmıştır. • Kordon kanından elde edilen kök hücrelerin avantajı, hücreleri etkileyen dış etmenlerle henüz karşılaşmamış olmalarıdır. • Kordon kanı alınan bebeğin, doku grubu uyduğu takdirde anne, baba ve diğer kardeşleri için kullanılabilir.• Kordon kanı KH ile kanser, bağışıklık sistemi hastalıkları, bazı kan hastalıkları gibi hastalıkların tedavisinde kullanılabileceği düşünülmektedir. 14. • Kordon kanı doğumdan sonraki ilk 3 dk lık periyotta alınabilirse uzunyıllar dondurularak saklanabilir.• İlk kez 1992 kordon kanı laboratuvarda dondurularak saklanmış, 1994dünyadaki ilk kordon kanı bankası ABD‟ de oluşturuldu. 15. ERİŞKİN KH• Farklılaşmış dokularda bulunan ancak farklılaşmamış hücrelerdir. • Her yaştaki insanda bulunur. • İhtiyaç duyulduğunda bulundukları dokudaki değişik hücre türlerine dönüşüyorlar.• Doku ve organ hasarının giderilmesi ve devamlığını sağlar. 16. • Erişkin KH, organizma yaşadığı sürece kendi kopyalarını üreterek çoğalıyorlar.• Bulundukları dokulardaki görevini tamamlayan, hastalanan veya ölen hücrelerin yerine yenilerini üreten yedek parça kaynakları olarak görev yapıyorlar.• Erişkin KH tüm hücreler elde edilemiyor.• Ayrıca erişkin kök hücrelerinin kültür ortamında yetiştirilmesi embriyonik kök hücrelerinin yetiştirilmesinden oldukça zor, çünkü erişkin kök hücrelerinin büyümeleri ve çoğalmaları daha uzun zaman gerektiriyor. 17. • Erişkin kök hücre kaynakları: periferik kan, beyin, diş, çizgili kas, derinin epitel tabakası, göz, karaciğer, dalak ve pankreas. •En iyi bilinen erişkin KH kaynağı kemik iliğidir İki tip KH bulunur. Mezenkimal kök hücreler Hematopoietik kök hücreler 18. KH KULLANIM ALANLARI• Hücre ve gen terapisi Kalp-damar ve akciğer hastalıkları Sinir sistemi hastalıkları Kas - iskelet sistemi hastalıkları Endokrin sistem hastalıkları• Doku mühendisliği• İlaç endüstrisi 19. KH ve Doku Mühendisliği• DM kaybedilmiş ya da hastalıklı doku veya organların geri kazanılması/rejenerasyonu amacıyla yeni biyolojik eşdeğerinin getirilmesini sağlayan multidisipliner bir çalışma alanıdır.• Bu işlem hastanın kendine ait doku veya organlarla yapılabildiği gibi (otogreft), gönüllü donörlerden alınan biyolojik materyallerle (allogreft) de uygulanabilir.• Otogreft örn;kemik greftleme başarıyla uygulanabilse bile dokunun alındığı bölgede hasar oluşmakta ve hastaya acı vermektedir.• Allogreftlemede ise kaynak yetersizliğine bağlı olarak yaygın bir uygulama değildir.• Bu noktada hücresel tedavi ve indüklenmiş rejenerasyon yaklaşımı önemlidir.• İzole edilmiş kök hücrelerin (ex vivo) şartlarda 3 boyutlu hücre dışı matrix molekülleriyle benzerlik gösteren yapı iskeleleri üzerinde farklılaştırılarak organoid denilen yapıların oluşturulması esasına dayanır. 20. KH ARAŞTIRMALARI VE ETİK SORUNLAR• Kök Hücre Kaynağı Olarak Embriyoların Kullanımına İlişkin Etik Sorunlar• Fetal KH kullanımı• Kordon kanı KH kullanımı• Erişkinlerden Elde Edilen Kök Hücreler ve Araştırma Etiği• Kök Hücre Araştırmaları ve Bilim İnsanlarının Sorumlulukları 21. • Kök Hücre Kaynağı Olarak Embriyoların Kullanımına İlişkin Etik Sorunlar• Farklılaşma potansiyeli yüksek olması nedeniyle tercih edilen embriyonik KH alındıktan sonra embriyonun hayatına son verilmektedir. Bu nedenle verimli oluşunun yanında pek çok tartışmayı da beraberinde getirmiştir.• Bu tartışmanın temel nedeni embriyoya yüklenen anlamlardır. 22. • ‘Embriyo ne zaman insan olur, Yaşam ne zaman başlar?‟ soruları kafa kurcalamış ve gerek dini gerek sosyal ayrılıklar sebebiyle farklı görüşleri ortaya çıkarmıştır.• Embriyo hiçbir anlam ifade etmeyen bir hücre kitlesi midir yoksa insan olmanın bütün haklarına sahip mi olmalıdır? 23. • Zigot, eşey hücrelerinin birleşmesi ile yaşam hakkını elde etmiştir ve erişkin bir insan gibi saygı görmesi gerektiğini düşünenler için embriyo üzerinde kök hücre çalışması kabul edilemez bir durumdur.• Diğer taraftan ana rahminde olmayan bir embriyonun artık büyüme ve gelişme gibi bir şansı olmayışı bu çalışmalara en azından kuramsal boyutta etiklik kazandırmaktadır.• Embriyonik kök hücrelerle çalışıldığında, kök hücrelerin çoğalmaları kontrol altına alınamazsa kanser oluşturma riski oluşabilir. 24. • Bu durumda çözüme ulaşmak adına yapılan yorumlar; İsrafın önlenmesi yaklaşımı, Üçüncü şahısların yararı söz konusu olduğunda, gelişimin belli bir aşamasındaki embriyonun ahlaki statüsüne, bu yarar durumu ile muhakeme edilerek karar verilir. Başkalarının bundan yarar görebilmesi koşuluyla, etik yönden kabul görmektedir. Ama 14. günden sonra (14. günden sonra bölünme gerçekleşmez ve sistemler oluşmaya başlar) bir “insan” kimliği taşıyan embriyonun ahlaki statüsü başkalarının göreceği yarardan daha ağır basar. 25. • Fetal KH kullanımı• KH kaynağı olarak fetüsün kullanımı düşük/kürtaj gibi suistimallere neden olabileceğinden sıkıntılıdır.• Ayrıca uygun doku gruplarına ait fetüs kaynakların oluşturulması gibi sıradışı olaylara yol açabilir. 26. • Kordon kanı KH kullanımı• Göbek kordonunun doğumdan sonra atılması yerine saklanması ve kullanılmasının önünde doğrudan bir engel bulunmamakla beraber, kullanım amaçlarına yönelik etik problemler ortaya çıkabilir; Hasta kardeşi tedavi için kordon kanı elde etmek amacıyla yeni bir çocuk dünyaya getirilmesi. • bu amaç için dünyaya gelmiş bebeğin sosyal pozisyonu, • bir insanın, başka bir insan için araç haline getirilmesi 27.  Hasta kardeşin dokusuna uygun doku grubunu taşıyan yeni bebeğindünyaya gelmesi için kullanılan IVF işleminde embriyolar arasından seçimyapılması; • diğer embriyoların yok edilmesi yada araştırma amaçlı kullanımı, • özel nitelikte bebek seçimi (cinsiyetine göre) 28.  Kordon kanının ileride ortaya çıkabilecek hastalıklara karşı uygun koşullarda saklanması; • Kordon kanının bir “yaşam sigortası” olduğu şeklinde propaganda yapılması ve insanlara umut verilmesi ile istismar haline getirilmesi. 29. • Erişkinlerden Elde Edilen Kök Hücreler ve Araştırma Etiği• Erişkinlerden kök hücre elde edilmesinde herhangi bir etik problemle karşılaşılmamaktadır.• En önemli nokta KH elde edilecek bireyin gönüllü olması, mahremiyetine saygı gösterilmesi, bilgilerinin saklı tutulması ve kullanılma amacı kişinin izni doğrultusunda olmalıdır. 30. KH ÇALIŞMALARINDA YASAL DURUM KH araştırmalarının felsefi ve etik açıdan tartışıldığı biyoetik gibi pek çok alanda embriyonik KH araştırmaları ile erişkin KH araştırmaları ayrımı önem taşımaktadır.• Erişkin kök hücre araştırmalarında herhangi bir engel bulunmamaktadır.• Embriyonik kök hücrelerinin kullanımında ülkelere bağlı olarak görüşler değişmektedir. 31. • EKH ile çalışmalar konusunda yasal düzenlemeler düşünülürken klonlama da göz önünde bulundurulmalıdır.• Tüm dünyada insanlarda klonlamanın yasaklanması hususunda ortak bir görüş bulunurken, araştırma ama amaçlı EKH eldesi konusunda görüşler farklıdır.• Önemi nedeniyle Avrupa, ABD, Japonya, Avustralya gibi ülkelerde konu cumhurbaşkanları tarafından oluşturulan komiteler tarafından ele alınmaktadır.• Ülkemizde de Türkiye Bilimler Akademisi ve Sağlık Bakanlığı konuyla ilgili çalışma grupları oluşturmuştur. 32. • Bu bilgilerin ışığında EKH kullanımı için yasal düzenlemeler;1. Etik kurul izni ile embriyolojik gelişimin 14. gününe dek blastosistlerden EKH eldesinin serbest olması,2. IVF sonucu kullanılmayan embriyoların etik kurul izni ile kullanılması,3. „‟Fetus çiftliği‟‟ olarak bilinen ticarileşmenin sakıncaları nedeniyle belirlenecek belli bir tarih öncesinde IVF ile elde edilmiş ve hala dondurulmuş halde bekletilen embriyoların etik kurul ve ebeveyn izni ile kullanılması,4. Yurt dışından ithal edilen EKH üzerinde araştırma yapılmasına izin verilmesi,5. EKH eldesinin yasak olması,6. Kamu finansmanı ile çalışmaların desteklenmesi. 33. • Avrupa Birliği Komisyonu‟nda embriyo üzerindeki araştırmaların sınırının nerede olduğu ve koşullarının neler olması gerektiği konusunda henüz bir görüş birliği yoktur.• AB‟ye üye ülkeler arasında embriyoyu laboratuvar ürünü olarak gören yoktur.• KH eldesi için insan embriyosu oluşturulmasına izin veren ülke İngiltere!!! 34. TÜRKİYE‟DE YASAL DURUM;• Türkiye‟de erişkin KH çalışmaları ile embriyonik KH çalışmaları konusunda açık hükümler içeren yasal düzenlemeler bulunmamaktadır.• Bakanlığın 2005 yılında yayınladığı genelge ile 2006 yılında yayınladığı kılavuz bir arada değerlendirildiğinde, erişkin KH araştırmaları konusunda yeterli olmasa da belirginleşmiş bir yaklaşımın olduğu söylenebilir. 35. • Ancak embriyonik KH çalışmaları konusunda, araştırmaların durdurulması dışında herhangi bir kural yer almamaktadır.• Bunların dışında, üremeye yardımcı merkezlerde üretilen embriyoların her ne şekilde olursa olsun taraflar razı bile olsa KH kaynağı olarak kullanılamayacağı ve belli bir prosedüre göre imha edilmesi gerektiği belirtilmektedir. 36. • Dünyadaki gelişmelere paralel olarak Türkiye‟ de de EKH eldesi ve/veya bu hücre hatlarının kullanımı ile yürütülecek bilimsel araştırmaları düzenleyen bir yasaya ülkemizin acil gereksinimi bulunmaktadır. 37. Kök hücre ve Doku Mühendisliği• Teorik açıdan değerlendirilecek olursa antropolojik ve sosyoekonomik açıdan etik konular ortaya çıkmaktadır. DM çok pahalı bir işlem, DM ilerlemesi bazı temellere dayanmaktadır; kullanılan KH çeşidi, özel dokular (hayvan kalp kapakçıkları), pediatrik uygulamalar, İnsan vücudunun değeri, Yaşam uzunluğu (hasarlı ve yaşlanan doku veya organların yenileri ile değiştirilmesi, nüfus artışı) 38. Bilim insanına düşen sorumluluklar;• KH çalışmalarının kötüye kullanımı mümkündür, bilim insanının bu noktada çeşitli medya kuruluşlarının da desteğiyle, KH mucize tedavi şeklinde öne sürüp insanların umutlarının sömürmemesi, kesinliği tartışılan sonuçlar hakkında net bilgilendirme yapmaması gerekir.• Özellikle bazı ticari kuruluşlar kordon kanı KH saklanmasının hayati olduğunu savunup bundan rant sağlamaya çalışmaktadır. 39. Referanslar• TÜBA Raporlar, „Kök hücre biyolojisi ve klinik uygulamalar‟, 2009,• Türkiye Biyoetik Derneği, Kök Hücre Araştırmalarının Etik ve Hukuk Boyutuna İlişkin Rapor, Mart 2009,• Andrews and Nelkin, 1998.• Youngner, 2004; Bovenberg, 2005)• www.tuba.gov.tr• stemcells.nih.gov/info/ethics.asp• www.eurostemcell.org/factseet/embyronic-stem-cell-research-ethical- dilemma• Alex Faulknera, Julie Kentb, Ingrid Geesinkc, David FitzPatrick „‟Purity and the dangers of regenerative medicine: Regulatory innovation of human tissue-engineered technology „‟, Social Science & Medicine 63 (2006) 2277–2288

http://www.biyologlar.com/kok-hucrearastirmalari-ve-etik-boyutu

Biyoteknoloji Nedir

Biyoteknoloji “Özel bir kullanıma yönelik olarak ürün veya işlemleri dönüştürmek veya meydana getirmek için biyolojik sistem ve canlı organizmaları veya türevlerini kullanan teknolojik uygulamalar” olarak tanımlanmaktadır. Biyoteknoloji tıbbi ve tarımsal konularda yeni bir çığır açmıştır. Özellikle tıbbi biyoteknolojide yaşanan gelişmeler neticesinde hastalıkların teşhis ve tedavisinde büyük mesafeler kat edilmiştir. Tarımsal biyoteknolojideki gelişmeler sayesinde üretim ve çevre korunmasında faydalı olabilecek gelişmeler de olmuştur. Modern biyoteknoloji ise “rekombinant DNA, nükleik asitlerin hücre veya organellere doğrudan enjeksiyonu, farklı taksonomik gruplar arasında uygulanan hücre füzyonu gibi tabii fizyolojik çoğalma ve rekombinasyon engellerini ortadan kaldıran ve klasik ıslah ve seleksiyon yöntemlerince kullanılmayan İn vitro nükleik asit tekniklerinin tamamı” olarak tanımlanmaktadır. Modern biyoteknoloji araştırmaları genellikle, üniversiteler, özel sektör ve kısmen de kamu kuruluşları tarafından yürütülmektedir. Elde edilen sonuçların kullanılır hale getirilmesi ve çok büyük bir pazarının olması, bu alanda dev özel sektör kuruluşlarının yatırım yapmasına neden olmuştur. 1970’lerin başından itibaren geliştirilen modern biyoteknoloji teknikleri ile, canlıların genetik yapısında geleneksel ıslah metotlarıyla ve doğal üreme-çoğalma süreçleriyle elde edilemeyen değişiklikler yapılmasını da mümkün kılmıştır. Bir canlı türüne başka bir canlı türünden gen aktarılması veya mevcut genetik yapıya müdahale edilmesi yoluyla yeni genetik özellikler kazandırılmasını sağlayan bu modern biyoteknoloji tekniklerine gen teknolojisi, Gen teknolojisi kullanılarak doğal süreçler ile edinilmesi mümkün olmayan yeni özellikler kazandırılmış organizmalara da “Genetik Yapıları Değiştirilmiş Organizma (GDO)= Genetically Modified Organisms (GMO)” veya uluslararası kullanımı ile “Living Modified Organism (LMO)= Değiştirilmiş Canlı Organizmalar" adı verilmektedir. Ülkemizde ise genetik yapısı değiştirilmiş tarımsal ürünleri ayırmak için genel bir isim olarak “Trasgenik ürün” tabiri kullanılmaktadır. Modern Biyoteknolojik çalışmaların basamakları sırasıyla, istenen genlerin bulunması, karakterize edilmesi, izolasyonu ve hedef türe aktarılmasıdır. Modern Biyoteknolojinin tarifine giren teknolojilerin tamamı günümüzde canlı organizmalarla ilgili çalışmalarda rutin olarak kullanılabilir hale gelmiştir. Bu kullanıma, biyoteknolojinin son safhası olan doğrudan gen transferi, insan ve hayvan kopyalama da dahildir. Modern Biyoteknoloji en geniş kullanım alanını tarım ve hayvancılıkta bulmuştur. Yüksek miktarda ve kalitede ürün almak amacıyla geleneksel kültür çeşitlerinin veya bunların yabani akrabalarının genetik yapıları değiştirilmektedir. En çok üzerinde çalışılan özellikler, hastalıklara ve zararlılara karşı dayanıklılık, yabancı ot ilaçlarına dayanıklılık, meyve olgunlaşma sürecinin değiştirilmesi, raf ve depolama ömrünün uzatılması ve aromanın artırılmasıdır. Gen transferinde en başarılı olunan bitkiler Domates, patates, mısır, soya fasulyesi, pamuk, tütün ve kolza'dır ...Modern Biyoteknoloji çeşitli hastalıkların teşhisi ve tedavisinde alternatif kit ve ilaçlar sağlayarak tıp dünyasına girmiştir. Biyoteknoloji uygulamaları insan hastalıklarının tedavisinde özellikle kanser ve genetik hastalıkların tedavisinde, bu hastalıkların kaynaklarının belirlenmesinde kullanılmaktadır. En yoğun kullanım alanı ise aşı üretimidir. Modern Biyoteknoloji insanların genetik yapısının belirlenmesine olanak sağlamaktadır. Böylece ileri teşhis yöntemleri geliştirilebilmekte ve hastalık sebepleri daha kolay belirlenebilmektedir. Genetik işaretleyicilerin kullanımı ile en uygun tedavi yöntemi seçilmektedir. Yeni ilaçların test edilmesi ve geliştirilmesinde kolaylık sağlamaktadır. Yaklaşık 4000 genetik bozukluk tek bir gende olan eksiklikten kaynaklanmaktadır. 1980’lerin başında modern biyoteknoloji gen terapisi uygulamaları ile tıp dünyasına girdi. Gen terapisi öncelikle kan bozuklukları gibi tek gene bağlı hastalıkların tedavisinde kullanıldı. 2005 yılı itibariyle bu tür bozuklukların teşhisinde büyük mesafeler kaydedilmiş olacaktır. 1990’ların başından itibaren gen terapisi sonradan edinilen hastalıkların tedavisine kadar genişledi. Günümüzde gen terapisi çevresel faktörlerin de dahil olduğu çok faktörlü ve birden çok gene bağlı hastalıkların tedavisinde de uygulanma potansiyeline sahiptir. Gen terapisi amaca göre somatik hücrelerde uygulanarak kalıtsal özellik taşımaz veya üreme hücrelerinde uygulanarak kalıtsal olması sağlanır. İlaç sektörü laboratuarlarda üretilmiş organizmalara gen aktarımı yoluyla gen terapisini biyo-ilaçlar haline getirdiler. Böylece biyoteknoloji insulin ve büyüme hormonu başta gelmek üzere çeşitli proteinden olma ilaçların geliştirilmesinde ve üretiminde kullanılmaya başlandı. Şeker hastalığı, hemofili, kan bozuklukları, büyüme bozuklukları ve sistik fibrosis tedavileri biyoteknoloji ile kolaylaştırıldı. Modern biyoteknoloji metotları aşı üretiminde de kolaylık sağladı ve aşı üretiminde yaşanan miktar sorununu ortadan kaldırdı. Özellikle hepatit B aşılarının rekombinant DNA teknolojisi kullanılarak üretimine başlandı. Günümüzde, az gelişmiş ülkelerde ciddi halk sağlığı problemlerine yol açan tifo, sarılık gibi bulaşıcı hastalıklar için de biyoteknoloji kullanılarak aşılar üretilmektedir. Ayrıca enfeksiyon yapan hastalık etmenleri önceden belirlenebilmektedir. Bu gelişmeler viral bulaşma riskinin azaltılmasını da beraberinde getirdi. Biyoteknoloji mevcut teknolojilerle üretilemeyen aşıların üretimine olanak sağlamıştır. Günümüzde biyoteknolojik yollarla üretilen ilaçlar halihazırda dünya ilaç üretiminin %5’ini oluşturmaktadır. 2005 yılında bu oranın %15’e çıkması beklenmektedir. Piyasaya çıkan her 50 ilaçtan 10-15’i biyoteknolojik yöntemlerle geliştirilmiş ve üretilmiştir. 1990’ların başından itibaren 100 adet biyoteknolojik yollarla geliştirilmiş ilacın klinik deneylerine başlanmıştır. Mevcut ilaçlarla tedavisi mümkün olmayan bazı ilaçlar için biyoteknolojik yollarla geliştirilmiş 200-300 bileşim tedavide kullanılmaktadır. İlaçlarla ilgili alınan patentlerin %63’ü ABD ve Kanada, %25’i Avrupa, %7’si Japonya’da ve kalan %5’i diğer ülkelerde geliştirilmiş ilaçlara aittir. Modern biyoteknoloji teknikleri mikroorganizmaların dizinsel ve işlevsel özelliklerinin araştırılmasında kolaylıklar sağlamıştır. Böylece mikroorganizmalara gen transferi yapılarak yeni özellikler taşıyan mikroorganzimaların genetik inşası özellikle çevre sektöründe biyolojik temizleme (bioremediation) ve koruma çalışmalarında uygulama alanı bulmuştur. Dünya ticaretinde biyoteknolojik ürünlerin pazar payı hızla artmaktadır. Bu yöntemle büyük ölçekli üretim yapılabilmesi ve ayrıca, biyoteknolojik ürünlerin üretilmesi için gerekli teknolojik gelişmenin patent haklarının saklı tutulabilmesi nedenleriyle ticari kazancın boyutları da hızla artmaktadır. Modern biyoteknoloji yöntemleriyle elde edilen ürünlerin yaklaşık %74'ü ABD'de, geriye kalanı ise Arjantin (%15); Kanada (%10); Avustralya, Meksika, İspanya, Fransa Güney Afrika ve Çin Halk Cumhuriyeti'nde (%1) üretilmektedir. Bugün için, modern biyoteknoloji yöntemleriyle üretilen yaklaşık 80 adet genetik ürünün uluslararası ticarete konu olduğu bilinmektedir. Yapılan araştırmalar, 1998 yılında biyoteknolojik yöntemlerle üretilen bitkilerin tüm satışlarının 1,5 milyar dolar civarında olduğunu, bu ürünlerin 1995-1998 dönemindeki satış gelirlerinin % 20 oranında arttığını göstermektedir. Bu trendin devam etmesi halinde, sözkonusu bitkilerin tüm satışlarının bu yıl 3 milyar dolara, 2005 yılında 8 milyar dolara, 2010 yılında ise 25 milyar dolara ulaşabileceği tahminleri yapılmaktadır. Biyoteknolojik ürünlerin tamamında, orta ve uzun dönemde, 100-150 milyar dolarlık potansiyel bir ticaret hacminden söz edilmektedir. Kaynak: Devlet Planlama Teşkilatı VIII. Beş Yıllık Kalkınma Planı (2001-2005) Biyoteknolji Sunumu, DPT, (1999).

http://www.biyologlar.com/biyoteknoloji-nedir

Genetik hastalık

Bilinen tüm genetik hastalıklar üç tipten birine sınıflandırılabilir: tek gen bozuklukları, kromozom anormalileri ve poligenik hastalıklar. Tek gen bozuklukları bir otozom, bir seks kromozomu ve mitokondriyel DNA’daki tek bir gendeki mutasyon sebebi ile açığa çıkarlar. Mutasyonlar, dominant veya resesif ne olursa olsun, belirgin ve karakteristik pedigree paternleri gösterirler. Herhangi bir belirli tek gen bozukluğu tüm populasyonda nadir olabilir ama toplu halde populasyonun %2’sini, yaşamlarının herhangi bir evresinde etkiler. Ciddi tek gen bozukluklarının çocuklardaki insidansı % 0.36 iken hastaneye yatırılmış çocuklarda %6’ya çıkmaktadır. Kromozom anomalileri çeşitli formlarda olabilirler. Bunlar kromozomun bir kısmının veya tümünün fazlalığı veya eksikliği veya kromozomun bir kısmının yeni bir bölgeye translokasyonunu içermektedir. Bu çeşit anomaliler canlı doğumların %0.7’sinde meydana gelir fakat hamileliğin ilk üç ayında meydana gelen düşüklerde frekans %50’ye çıkmaktadır. Kromozom anomalileri kanserli hücrelerde yaygındır fakat bunlar somatik hücre mutasyonlarının klonal çoğalmasından kaynaklanır. Kalıtılan anomaliler değildirler fakat oluşabilme yatkınlığı kalıtılabilir. Günümüze kadar poligenik bozukluklar genetik hastalık olarak kabul edilmezlerdi çünkü karakteristik pedigree paternleri göstermezler ve hastalığın şiddeti yaşam tarzı ile ilişkili olarak değişiklik gösterir. Genetik bir bileşen içerdikleri tanımlandığında bile tam olarak anlaşılamamıştır. Poligenik bozukluklar bir gendeki tek bir mutasyon sebebi ile oluşmazlar. Daha çok birkaç gendeki küçük varyasyonların sonucudur ve birlikte bir bireye önemli etkileri olabilir. Poligenik hastalıkların frekansını belirlemek zordur fakat güncel tahminler çocuklarda %5’den en büyük etki yetişkinlerde olmak üzere tüm populasyonda % 60’a kadar değişir. Bugün kromozom anomalileri yüzünden sıkıntı çeken bireyler için çok az şey yapılabilmektedir. Fakat, biyoteknoloji ve genomikteki yeni gelişmeler tek gen bozukluğuna sahip hastalar için bir takım heyecan verici tedaviler sağlamaktadır. Bu gelişmeler terapötik proteinlerin sağlanması, antisense teknolojisi, gen terapisi ve gen tamirini içermektedir. Yeni moleküler tanı yöntemlerinin geliştirilmesi gelişmiş prenatal tanıya izin vermektedir fakat bunlar güç etik kararlara yol açabilir. Son beş yılda poligenik bozukluklar hakkındaki bilgimizde olağanüstü artış olmuştur. Bu bilgilerin kliniksel uygulamalara etkili olması için henüz erkendir ancak elde edilebilecek bir sonuç kişiselleştirilmiş ilaç olarak bilinir olmuş, hastalık fenotipine daha uygun ilaçların kullanılmasıdır. Aynı zamanda yeni ilaçların test edildiği klinik denemelerin şeklini değiştirebilir. Genetik hastalıkların tedavisindeki gelişmelerin anahtar yönlendiricisi insan genomunun tamamlanmış dizisinden ve fare gibi ilgili türlerin genomlarından elde edilen bilgilerin süre gelen analizi olacaktır. Bu bilgi pek çok hastalığa yeni bakış açıları getirecektir ve daha iyi diagnostik araçların, koruyucu önlemlerin ve terapötik metotların geliştirilmesine yardımcı olacaktır.  

http://www.biyologlar.com/genetik-hastalik

Tek gen bozukluklarının tedavisi

Bugün, monogenik bozuklukların tedavisi genellikle defektif proteinin değiştirilmesine, fonksiyonunu iyileştirmeye veya eksikliğinin sonuçlarını minimize etmeye dayanmaktadır. Ne yazık ki, bozuklukların %80’ninden fazlasının tam etkin terapisi mümkün değildir. Bu tatmin edici olmayan durumun birkaç sebebi vardır. İlki, araştırmalar göstermiştir ki, eğer temel biyokimyasal defekt biliniyorsa ve patogenezi tam olarak anlaşılmışsa, tedavinin başarıya ulaşma şansı çok daha yüksektir. Günümüzde, çoğu tek gen bozukluklarında hastalığın patofizyolojisi kadar gen defekti de bilinmemektedir, fakat bu durum insan genomu sekanslandığı için artık oldukça gelişme göstermelidir. İkincisi, bazı mutasyonlar etkilerini fetüste gösterirler ve çocuğun doğumu ile tedaviye başlamak için çok geç olmuş olur. Tedaviye in utero başlanması mümkün olabileceğinden, bu, prenatal tanının yararının altını çizmektedir. Örneğin, biotinidaz veya metilmalonik asidüri sırasıyla biotin ve kobalaminin hamilelik süresince verilmesi ile giderilebilir. Genetik hastalıkları tedavi etmede kullanılabilecek farklı stratejiler Fig. 4.6’da gösterilmiştir. Şekilden de görülebileceği gibi, terapilerin bir kısmı biyoteknolojiden köken almıştır. Bunlardan en iyi bilineni protein yenilemedir ve rekombinant terapötik proteinlerin genetik bozuklukları tedavi etmede kullanımının örnekleri Tablo 4.2’de verilmiştir. Bu proteinlerin üretimi Ünite 6’da anlatılmıştır. Terapötik proteinlerin ana dezavantajının enjeksiyonla verilmesi olduğu göz önünde bulundurulmalıdır ve bu kullanılabilirliklerini kısıtlamaktadır. Rekombinant DNA teknolojisini kullanmanın alternatif bir yolu, düzeltici genlerin somatik dokulara verilmesi ile tek gen bozukluklarının düzeltilmesini üstlenmektir. Bu, gen terapi olarak bilinmektedir. Tekniğin üç varyantı mevcuttur ve tümü gelişimin erken evrelerindedir. Bu tekniklerin en gelişmiş olanı bir dokuya tam olarak fonksiyon gösteren geni vererek, fonksiyon-kaybı mutasyonuna sahip mutant hücresel bir geni telafi etmektir. Bu gen terapinin genel olarak onaylanan konseptidir ve az sayıda hemofili B (faktör IX eksikliği) , adenozin deaminaz eksikliği ve şiddetli birleşik immüneksiklik hastalığı (SCID, defektif sitokin reseptörü) bulunan hastalarda işe yaradığı gösterilmiştir. Gen terapiyi gerçekleştirmek için kullanılan metotlar ayrıntılı olarak Ünite 8’de tanımlanmıştır. Yukarıda tanımlanan gen terapi protokolünde, tedavi edilen hücreler defektif gen(lere) ek olarak yeni fonksiyonel genleri de taşırlar. Bu yaklaşımda iki dezavantaj vardır. İlki, bir çok genin ekspiresyonu kompleks düzenleyici kontrol altındadır ve etkili gen terapi yeni genin gerekli olan regülatör sekansları taşımasını gerektirebilir. İkincisi, pek çok memeli geni oldukça büyüktür. Bunun bir örneği Duchenne müsküler distrofi’de distrofin geninin 11kb olması ve yeni nesil gen terapi vektörlerinin içine sığamayacak kadar büyük olmasıdır. Bu durumlarda, daha iyi bir alternatif defektif geni düzeltmek yerine yeni, fonksiyonel bir geni eklemek olabilir. Bu bazen gen tamiri olarak bilinmektedir. Aslında, uygun dokunun hücrelerine işlevsel bir gen verilir ve tamir, homolog rekombinasyonu stimüle ederek gerçekleşir. Gen tamirinin mutasyonun regülatör bir bölgede olduğu ve gen ürününün ekspiresyonunda azalmaya yol açan genetik hastalıkları düzeltmek için uygun olduğuna dikkat ediniz. Bazı vakalarda, bir genetik hastalık bir yada fazla genin regülatör bir proteindeki mutasyonun sonucu olarak fazla ekspiresyonuna bağlıdır. Örneğin, pek çok kanser hücresi bir tümör baskılayıcı olarak işlev gören bir DNA-bağlayıcı transkripsiyon faktörü olan p53 proteinini kodlayan gende mutasyonlara sahiptir. Geleneksel gen terapi regülatör proteinin fonksiyonel kopyalarının sentezini arttırmak için kullanılabilir. Alternatif olarak, gen terapi fazla ekspiresyona uğramış proteinleri downregüle etmek için kullanılabilir. Bu doku kültüründe iki yolla sağlanabilir. Bu yöntemlerin ilkinde, vektörler antisense RNA’ya transkribe olan bir geni ortama verirler. İkincisinde, ortama verilen gen bir ribozim yani mRNA moleküllerini oldukça spesifik şekilde kesebilen bir RNA molekülünü kodlar (Kutu 4.1)

http://www.biyologlar.com/tek-gen-bozukluklarinin-tedavisi

Genom Projelerinin Faydaları

Alzheimer ve bazı kanser türlerinin tedavisinde, şimdiden bazı ilerlemeler sağlandığı biliniyor. Önümüzdeki birkaç yıl içinde yeni tedavi yöntemleri ve ilaçların, dünyanın çeşitli yerlerindeki araştırmacılar tarafından ortaya çıkarılması söz konusu olabilecek. Ancak kalp hastalığı gibi, hem genetik hem de çevresel nedenleri bulunan hastalıklar için daha uzun yıllar (20, 30, 40 yıl) beklenmesi gerekecek. İnsan genom Projesinin temel amacı, insan DNA’sında bulunan 3 milyar kadar baz çiftinin dizilimini ve bunların % 2-5 ‘ini oluşturan genlerin yerini bulmak. Bu aslında zor bir iş; çünkü insan genomunda kesin sayısı şimdilik bilinmiyor olsa da 40 bin ile 80 bin arasında gen olduğu sanılıyor. Dış görünüşümüzdeki onca farklılığa rağmen, aslında biz insanların kalıtsal yapısı büyük ölçüde birbirine benzer. İnsanların DNA yapılarının %99, 9’u ortaktır. İnsan Genom Projesi de bu ortak genleri bulmayı hedefliyor. Yaklaşık 15-20 yıldır bu projeyle uğraşılmasına rağmen henüz genom projesi tam olarak çözülebilmiş değildir. Ortaya çıkacak veri bankası, insanı insan yapan genlerin yanında bir insanı başkalarından ayıran genleri de gösteren eşsiz bir kaynak olacak. İnsan Genom Projesi (İGP); insanın tüm kalıtsal materyalinin şifresinin çözümlenmesini ifade etmektedir. Bu kalıtsal materyalin yani DNA’nın (Deoksiribonükleik asit) şifresi dört bazın (A= Adenin, T= Timin, C= Sitozin, G= Guanin) rastgele bir araya gelmesiyle oluşmaktadır. Yan yana gelen bu bazlar aynı zamanda karşılıklı eşleşerek DNA’nın ikili sarmal yapısını oluşturur. Vücudun tüm fonksiyonları DNA sarmalındaki anlamlı baz dizilerinden (gen) köken alan proteinlerle yapılır. İGP, 1989 yılında Amerika’da bir grup bilim adamının insan genomunda yer alan proteini kodlayan (ekzon) ve kodlanmayan (intron) bölgelerin baz dizilerinin bulunması amacıyla başlattıkları bir projedir. Bu amaçla oluşturdukları organizasyon (HUGO- Human Genom Organization), Amerikan Enerji Ajansı (DOE) ve Ulusal Sağlık Enstitüsünün (NIH) desteğiyle kurulmuş ve 1990 yılında projeye resmi bir nitelik kazandırılmıştır. Tüm insan genomunun baz dizisinin ortaya konmasını amaçlayan projeye kısa zamanda, İngiltere, Fransa, Almanya, Japonya, Rusya, Çin, Kanada’nın da içinde yer aldığı 18 ülke, birçok gönüllü kuruluş ve özel firmalar destek vermiş ve günümüzde binlerce bilim adamının çalıştığı uluslar arası bir proje halini almıştır. Bu proje Celera, IBM, Compag, Dupond, Sanger gibi dünyanın büyük şirketlerinin de katılımıyla her yıl 200 milyon dolar bütçeyle desteklenmiştir. Haziran 2000 itibariyle biten insan genom dizisi taslağı, Şubat 2001 yılında kamuoyuna duyuruldu ve Nisan 2003’te tamamlandı. İnsan genomunun dizisinin elde edilmesi önemli bir kilometre taşı olmakla birlikte, bunun işlevinin tam olarak anlaşılabilmesi daha uzun zaman alacaktır. Çünkü ortaya çıkacak bilgiler, işlenmesi gereken “ham” bilgiler olacaktır. Bunların işlenmesi, yani hangi genlerin hangi kalıtsal özelliklerle ya da hastalıklarla ilişkili olduğunu bulma işi genin ifadesinin (protein sentezi) anlaşılmasıyla mümkün olacaktır. Buda daha uzun ve komplike çalışmaları içeren bir süreci kapsamaktadır. Bununla birlikte şimdi elde edilen veri tabanıyla bile birçok hastalığın (Nörofibromatozis Tip1 ve Marfan Sendromu2) kromozomlar üzerindeki yerleşimi ve dizisi saptanmıştır. Yani genomik tıp birçok hastalığın tanı ve tedavisine umut getirecektir. İGP kapsamında birçok mikroorganizma, hayvan ve bitkinin (özellikle tarımsal bitkiler) genomlarının haritalanması ve dizi analizleri yapılmaktadır. Örneğin mikroorganizmaların genomunun dizilenmesi infeksiyon hastalıklarının tanı ve tedavisinde yeni olanaklar sağlarken diğer yandan tarımsal bitkilerin dizi analizi de gen aktarımlı, doğal olmayan ürünlerin geliştirilmesini gündeme getirmiştir.Moleküler mekanizmalar açıklandıkça ilaç teknolojisi değişecek ve metabolizmanın işlevini etkileyecek moleküller hücreye sentezlettirilerek veya özel taşıyıcı moleküller aracılığıyla spesifik olarak hücreye verilerek tedavi protokoller uygulanabilecektir. Bu proje ile elde edilen bilgilerin 21. y.y ’da tıp dünyasında çok büyük yenilikler ve keşifler getireceği beklenmektedir. Bu bilgiler aynı zamanda, bir çok genetik hastalığın tedavisini de mümkün kılabilecektir. İnsan Genom Projesi’nde ilk beş yıllık hedeflerin arasında aşağıdaki amaçlar bulunmaktadır: İnsan genomunun haritasını çıkarmak Model olarak kullanılabilecek diğer bazı canlıların da gen haritalarını çıkarmak Veri toplanması ve dağılımı Etik, kanuni ve sosyal düşünceler Araştırma eğitimi Teknoloji gelişimi Teknoloji transferi Bunlar da Olacak mı? Gen haritası talebi! 21. yüzyılın genetik mucizesine yetişenler gün gelecek yalnız eş seçerken değil, sağlık sigortası yaptırırken, birilerini işe alırken ya da birilerine ev kiralarken; muhataplarından birer adet “gen haritası” talep edebilecekler. Genom Projesi kaça mal oldu? Tüm deneyin maliyetinin 200 milyon dolar civarında olduğu hesaplanıyor. Türkiye de bu projenin içinde mi? Maalesef. Dünyada gelişmiş bir çok ülke bu çalışmanın içerisine girmişken, Türkiye’de henüz bu konuda parmakla gösterilecek örnek bir çalışma, ya da araştırma kurumları bulunmamaktadır. Üniversiteler bünyesinde kısmen yapılmaktadır. Çünkü henüz yetişmiş elemanlarımız yoktur. Ama geçtiğimiz 7-8 yıl içinde gerek okulumuzdan, gerekse ülkemizin diğer güzide okullarından yetişmiş, Genetik Mühendisliğinde okuyan, doktorasını yapmakta olan bir çok öğrencimiz bulunmaktadır. Bunların bir kısmı ülkemizde bir kısmı ise yurt dışında lisans ya da doktora seviyesinde eğitim almaktadırlar. İnancımız şudur ki; geleceğin Genetik Mühendisleri yetişmektedir ve yetiştiklerine inandıkları ve imkân sağladığımız gün ise ülkemize bu teknolojiyi taşıyacaklardır. Genom Projesi Tüm Hastalıklara çare olacak mı? Büyük bir ihtimalle. Bütün hastalıklar, insan genlerindeki arızalar ve yanlış diziliş nedeniyle oluştuğundan, genetik yapının tam olarak anlaşılması ve bunları “düzeltmenin” yolunun bulunması, hastalıkların da önlenmesi anlamına gelebilecek. Sadece genetik değil, çevresel faktörlerin neden olduğu hastalıklara da, daha ileri tedavi yöntemlerinin geliştirilebileceği sanılmaktadır. Genom Projesinin Faydalarını ne zaman görebileceğiz ? Alzheimer ve bazı kanser türlerinin tedavisinde, şimdiden bazı ilerlemeler sağlandığı biliniyor. Önümüzdeki birkaç yıl içinde yeni tedavi yöntemleri ve ilaçların, dünyanın çeşitli yerlerindeki araştırmacılar tarafından ortaya çıkarılması söz konusu olabilecek. Ancak kalp hastalığı gibi, hem genetik hem de çevresel nedenleri bulunan hastalıklar için daha uzun yıllar (20, 30, 40 yıl) beklenmesi gerekecek. Genom Projesinin Sakıncaları da olacak mı ? Elbette. Belirli hastalıklara neden olan belirli genler saptandığında, bu genlere sahip insanların kayıtları, işyerlerinin ve sigorta şirketlerini eline geçebilecek. Bu da, işe alınma ve sigortalama anında “tercih edilmeme” nedeni olabilecek. Doğumdan önce bebeğin genetik ‘arıza’sının ortaya çıkması, anne ve babalara “doğumdan vazgeçme” opsiyonu tanıyacak. Zengin ve yoksul ülkeler, bir ülkenin zengin ve yoksul bölgeleri ve vatandaşları arasında, genetik teknolojisinin kullanımı açısından farklılıklar, kaçınılmaz olarak yaşanacak. Bu da, sağlık ve yaş ortalaması açısından farkın açılmasına yol açacak. Genom Projesinin Deneyleri kimin genleriyle yapıldı? Tesadüfi olarak, her ırk ve cinsten önce 12, sonra da 24 insanın sperm ve kanları kullanılarak yapıldı. Her ne kadar her insanın genetik yapısı, bir diğerinden farklılık gösterse de genel farklılık oranı (varyasyon) binde 2 oranında yaşanıyor. Bu yüzden, elde edilen bulguların tüm insanlığa uygulanabileceği ve herkesin derdine çare olabileceği düşünülüyor. Genom projesinin Geldiği Son Nokta Genom projesi, ne basında abartıldığı gibi hastalıkları tamamen bitirip ölümsüzlüğü getiren ne de faydasız bir çalışma değildir. Elbetteki insan sağlığına faydaları olmuştur, olacaktır da. Ama bunlar hiçbir zaman için sanıldığı gibi ölümsüzlüğü getirmeyecektir. Yalnızca, yaşarken daha sağlıklı bir hayat sürülebilecek ya da birçok hastalık belki tarihe karışacaktır. Ama hiçbir zaman için bu proje sayesinde insanlık, sanıldığı gibi bütün hastalıklarına çare bulamayacaktır. Şu an itibariyle bu çalışmayı yürüten bilim adamları, genom projesine ek olarak yeni bir projeye daha imza attılar; “Proteom Projesi”. Bu projeyle vücuttaki bütün proteinlerin incelenmesi amaçlanmaktadır. En çok merak edilen sorular ve cevapları.. İnsan Genom Projesi nedir? 18 ülkenin destek verdiği proje, 1990 yılının ekim ayında başladı. Projenin amacı insanın gen haritasının, yani genetik şifresinin çözülmesi. Genom Projesine kimler katıldı? ABD’nin liderliğinde yürütülen araştırmaya 18 ülke katıldı. Avustralya, Brezilya, Kanada, Çin, Danimarka, Fransa, Almanya, İsrail, İtalya, Japonya, Kore, Meksika, Hollanda, Rusya, İsveç, İngiltere ve AB’ye bağlı enstitüler destek verdi. Gen haritası nedir? Her insanda trilyonlarca hücre var. Hücre çekirdeğinde ise insanın fiziksel ve sağlık durumunu belirleyen kromozomlar, kromozomlarda da DNA’lar var. Buna bilimde ‘‘genetik şifre’’ deniyor. DNA ne işe yarıyor? Kendi ekseninde dönen ve iplerle bağlanan bir asma merdiveni andıran DNA sarmalında anne ve babadan alınan 23′er kromozom bulunuyor. Kromozomların taşıdığı yaklaşık 100 bin gen, DNA sarmalının üzerinde yer alıyor. Genler DNA’nın küçük bir bölümünü oluşturuyor. Genler ne işe yarıyor? Genler insanın saç renginden, boyuna, ayak numarasından yakalanacağı hastalıklara kadar kişinin hayatını belirleyen kimyasal madde olan proteinlerin salgılanmasını sağlıyor. Gen haritası ne zaman tamamlandı? DNA 2003 yılında tam anlamıyla deşifre edildi ve proje tamamlandı. Genom Projesi nasıl işimize yarayacak? Hastalıkların teşhis ve tedavisi kolaylaşacak. Şeker, kalp, kanser gibi her yıl milyonlarca insanın ölümüne neden olan hastalıklar çok önceden teşhis edilip önlenebilecek. Gen terapisi nedir? Hastalığa neden olan değişime uğramış gen onarılarak hastalık önlenmeye çalışılıyor. Hatalı genin yerine sağlıklısı enjekte ediliyor. Human Genome Projesi sayesinde araştırmacılar, şimdiye kadar Alzheimer, ırsi bağırsak ve meme kanseri gibi birçok hastalık konusunda önemli genetik bilgi sahibi oldular. Hayvanların genetik haritaları niye çıkarılıyor? Fare ve meyve sineklerinin genetik işleyişiyle insanınki arasında büyük benzerlikler bulunuyor. Onların genetik yapısının deşifre edilmesi, insanın anlaşılmasını kolaylaştıracak. Sağlık dışında gen haritası ne işe yarayacak? Gen haritası, biyoarkeoloji, antropoloji, evrim süreci ve tarihi göçlerin anlaşılmasını kolaylaştıracak. Bu sayede insanların ne zaman, nereden göç ettiğini, kimlerle akraba olduğumuzu öğrenebileceğiz.

http://www.biyologlar.com/genom-projelerinin-faydalari

Mikroorganizmalar ve Biyoteknoloji

Mikroorganizmalar, hayvan ve bitki hücrelerinden çok farklıdırlar. Sağlam bir hücre duvarları vardır. En olumsuz koşullarda dahi sağ kalabilmekte ve bu koşullara kolaylıkla uyum sağlayabilmektedirler. Fermentör dediğimiz, genellikle iyi bir şekilde karıştırılan büyük kaplarda (reaktörlerde), süspansiyon halinde, yüksek streslerde dahi kolaylıkla üretilmeleri mümkündür. Örneğin bugün gen terapisinde, aslında son derece tehlikeli olan mikroorganizmalar genetik olarak modifiye edilip, istenilen genin hastaya aktarılmasında kullanılmaktadır. Modern biyoteknolojik süreçlerde de yine genetik modifiye mikroorganizmalara birçok önemli bileşik sentezlettirilebilir. Şeker hastalarının kan glikoz düzeyinin kontrolu amacıyla gereksinim duydukları insulin, çeşitli hastalıkların tedavisinde kullanılan büyüme faktörleri, aşılar, gen tedavisi için gerekli plazmid DNA, birçok enzim (medikal ve diğer uygulamalar için) mikroorganizmalar ve bunların genetik modifiye formlarının kullanıldığı süreçlerde üretilenler örnek olarak verilebilir.

http://www.biyologlar.com/mikroorganizmalar-ve-biyoteknoloji

Frajil X Sendromu Nedir? Belirtileri Nelerdir? Teşhis Ve Tedavi Yöntemi Nedir?

Frajil X Sendromu Nedir? Belirtileri Nelerdir? Teşhis Ve Tedavi Yöntemi Nedir?

Nörogelişimsel bir bozukluk olan Frajil X Sendromu, zeka geriliğinin bilinen en önemli nedenlerinden biridir. X kromozomuyla ilişkili olan bu sendrom, X kromozomunun uzun kolundaki FMR1 geninde C-G-G tekrarı ve DNA polimeraz enziminin kaymasından kaynaklanmaktadır.6-50 CGG CCG GCC tekrarları taşıyan bireyler normaldir ancak 200-1000 tekrar taşıyan bireylerde Frajil X sendromu gözlenir. Bu sendroma bağlı olarak gelişen zeka geriliği, erkeklerde 3600 de 1, kadınlarda 6000 de 1 görülmektedir. 2000 kişide 1 ise daha hafif problemler görülür. (Bu oranlar yaklaşık olarak hesaplanmıştır.)Her iki cinsiyette de görülmektedir. Frajil X sendromu yaklaşık olarak erkeklerde 1/4000, kızlarda ortalama 1/7000 görülür. Farkında olmadan birçok insan bu geni taşıyor.Hastalık ancak ortaya çıktıktan sonra anlaşılabilmektedir. FMR1 genindeki bozukluklar nedeniyle oluşan bu hastalık babada herhangi bir sorun yapmazken çocukta bu sendrom görülebilmektedir. Erkeklerde ortalama 3 yaşında, kızlarda ise 8 yaş civarında hissedilmektedir. Frajil X Sendromlu kişilerde zihinsel davranışsal ve fiziksel farklılıklar gözlenmektedir. Frajil X Sendromlu Kişilerde (Özellikle Erkeklerde) Fiziksel Farklılıklar :Erkek çocuklarda büyük testisler (macroorchidism), kaslarda hipotoni (anormal derecede düşük kas direnci) ve otizm görülmektedir. Yüz şekilleri farklı olan bu bireylerde büyük kulaklar, uzun yüz yapısı,geniş alın, yüksek kemerli damak gözlenebilir. Ayrıca lordosis (Omurganın konveksliği öne bacak şekilde arkaya bükülmesi, kamburluk, bel kemiğinin eğriliği ) kalp defektleri (mitral prolapsus, kalpte üfürme) düz tabanlılık, el kemiklerinin kısalığı ve şaşılık gözlenebilir. Erkekler bilişsel olarak geniş bir yelpazede etkilenirler. Zeka geriliği orta düzeydedir. Bu özellikler erkeklere oranla daha hafif olarak kadınlarda da görülebilmektedir.Frajil X sendromu olan erkeklerde psikiyatrik etkilenme gözlerini kaçırma ve sosyal anksiyete şeklinde olabilmektedir.Frajil X Sendromlu Kişilerde Mental Ve Bilişsel (Kognitif) Farklılıklar:Kognitif (Bilişsel): IQ seviyesinde önemli ölçüde düşüklüğe sebep olan sendrom, öğrenme güçlüğü,ağır bilişsel bozukluk ve otizme sebep olmaktadır. Daha çok yürüme, konuşma,tuvalet eğitimi gibi temel işlevlerde bozukluk görülebildiği gibi bu çocuklarda dikkat eksikliği,matematiksel konularda zorlanma ve hiperaktivite görülmektedir. Ayrıca konuşmada gecikme,hızlı konuşma, kelimeleri tekrarlama ve heceleyerek söyleme gibi dilsel problemler de görülmektedir. Frajil sendromlu kişiler duygusal bilgileri algılamakta ve uygun yanıt vermekte zorluk çekerler. Kendilerine dokunulmasına tepki verirler. Göz teması kurmakta zorlanırlar. Sinirli ve hırçın oldukları gözlenirken el sallama,el ısırma gibi davranışlar gösterirler. Frajil Sendromlu kişilerde otistik davranış bulguları hakimdir.Kız Çocukları Ve Yetişkin Kadınlarda Frajil X Sendromu Özelikleri :Kızlarda 8’li yaşlarda farklılıklarını hissettiren Frajil X sendromu, kız çocuklarının hemen hemen yarısında (tam mutasyon taşıyanlarda) zeka geriliği ve entelektüel bozulmaya sebep oluyor. Kalan yarısında ise normal zeka ya da öğrenme problemi olmaktadır. Özellikle matematik ile ilgili ders ve konularda düşük başar performansı gözlenmektedir. Erkeklerdeki görülme oranından daha az olmakla birlikte motor öğrenme ve konuşma bozuklukları görülmektedir.Frajil X Sendromlu kızların bazıları otistiktir bazılarında ise normal IQ ile birlikte sosyal anksiyete, depresif duygu durumu, sosyal çekilme, dikkat sorunları, kronik depresyona eğilim yaratan duygu durum bozuklukları görülebilmektedir.Frajil X Sendromu Kimlerde Görülebilir? Nasıl Tanı Konur?– Nedeni açıklanamayan zeka geriliği veya otizmi olan kişiler– Hiperaktivite, öğrenme güçlüğü, hafif bilişsel geriliği olan kişiler– Yukarıda bahsetmiş olduğumuz Frajil X sendromuna ait fiziksel yada davranışsal özellikleri taşıyan herkes– Ailesinde Frajil X tanısı konmuş ya da ailesinde zeka geriliği öyküsü olan herkesEğer yukarıda bahsettiğimiz belirtilere siz ya da çocuğunuz sahipse Frajil X sendromu için kan testi yaptırmanız gerekmektedir. Bu test Hacettepe Üniversitesi Çocuk Sağlığı ve Hastalıkları Anabilim Dalı’nda Genetik Bölümünde yapılabilmektedir. Alınan kandan DNA analizi PCR ve Southern Blot metotlarıyla tespit edilmektedir. Bu yöntemle ailesinde Frajil X Sendromu olan kişilere doğum öncesinde erken tanı olanağı sağlanabilmektedir.Frajil X Sendromu Tedavi Yöntemi Nasıldır?Frajil X Sendromunun etkin ve rahatsızlığı tamamen ortadan kaldıracak bir tedavisi maalesef bulunmamaktadır. Ama tedaviye yönelik özel eğitim, konuşma ve dil terapisi, fizik tedavi ve farklı beceriler kazandırma amaçlı terapiler uygulanabilmektedir. İlaç tedavisi sendromun belirtileri olan hiperaktivite ve dikkat dağınıklığı üzerinde ayrıca anksiyete bozukluğu ve depresyon tedavisinde kullanılmaktadır.Farajil X Sendromlu çocuklar belli konularda potansiyel sahibi,sevilen,birlikte zaman geçirmekten hoşlanabileceğiniz, hassas ve zarif kişilikleri olması gibi yönleriyle dikkat çekerler.Sevimli,duyarlı,cana yakın, sosyal ilişkilerinde pozitif, taklit yetenekleri çok kuvvetli ve esprili kişiliğe sahiptirler. Hayal güçleri çok zengindir. Sözel ve okumaya dayalı çalışmaları severler. Müzik, sanat ve spordan çok hoşlanırlar. Bu aktiviteler gelişimlerini hızlandırır ve potansiyellerini en üst düzeyde kullanmalarına yardımcı olur.En iyi tedavi iyi bir terapi ve Frajil X Sendromunda gelişim gösteren fiziksel,davranışsal ve bilişsel durumların yakın takibi ile mümkün olabilmektedir. Bu tür rahatsızlıklarda ailenin çok iyi bilgilendirilmesi ve aile bireylerinin de araştırıcı, bilinçli, donanımlı olması çocuğun hayatını kolaylaştıracak faktörlerden en önemlisidir.Unutmamak gerekir ki, çocuğunuzun hayatını kolaylaştırmanız, onu nasıl mutlu edeceğinizi ve mutsuz olduğu anlarda ona nasıl destek olacağınızı bilmeniz sizi de endişelerinizden uzaklaştıracak ve yüzünüzün gülmesini sağlayacaktır.Sağlıklı,mutlu,umut dolu yarınlar için bilinçli bir birey olabilmek adına yapacağımız ilk şey; hastalıklar konusunda bilinçlenmeyi o hastalık başımıza gelmeden önce gerçekleştirmemiz diye düşünüyorum.Kaynakça:www.rehabilitasyon.com/ct/Frajil_X_Sendromutr.wikipedia.orgwww.turkpsikiyatri.org/blog/2012/03/…/frajil-x-sendromuYazar: Eda Şahanhttp://www.bilgiustam.com

http://www.biyologlar.com/frajil-x-sendromu-nedir-belirtileri-nelerdir-teshis-ve-tedavi-yontemi-nedir

Gen <b class=red>Terapisi</b> Nedir ?

Gen Terapisi Nedir ?

Kalıtsal olarak nesilden nesile aktarılan birçok özellik vardır. göz rengi, kan grubu, boy uzunluğu, saç rengi gibi. fakat bunların yanında istenmeyen bazı kalıtsal özelliklerde vardır. kalıtsal hastalık dediğimiz birçok hastalıkta anne ve babalardan çocuklarına taşınmakta, onlardan birçok yeni bireylere istenmese de taşınmaktadır.Bu tür kalıtsal özellikleri taşıyan yapıya gen adını veririz. Gen hücrede kromozomlarda bulunur ve canlının özelliklerinin aktarılmasını sağlayan birimdir. Kalıtsal hastalıkların diğer nesile aktarılmasını önlemek için genlerde bazı değişiklikler yapılması için deney çalışmaları başlatılmıştır. Bu çalışmalara GEN TERAPİSİ denilmektedir. Gen terapisinde amaç öncelikli olarak insan yapısındaki genlerin tanınması, hangisinin hangi hastalığı şifrelediği gibi bilgilerin ve detayların bilinmesi gerektiğidir. Gen çeşidi bir insanda yaklaşıl 150000’dir. Tüm bu genlerin bilinmesi içinde çalışmalar yapılmış ve sonuçlandırılmıştır. Yapılan gen tanıma ve araştırma çalışması olan projenin ismi İNSAN GENOME’dir. Yapılmakta olan ve yapılmış olan basit iki çalışma vardır. Bunlardan biri parkinson hastası olan birine, diğeri ise hemofili hastası olan bir başka kişiye.Sonuç olarak hızlı ve sağlıklı bir yöntem olduğuna kanaat getirilmiş, önemli bir aşama olarak kaydedilmiştir. Gen terapisi bu araştırmayı temel edinerek, insan yapısındaki genleri inceleyip, istenmeyen genleri örneğin kısa boyluluk, renk körlüğü, göz bozukluğu eğer varsa kalıtsal hastalıklar gibi genleri bulup kontrol altına alabilecek, istenilenleri ekleyip istenilmeyen genleri pasif hale getirebilecektir. Şu ana kadar bu araştırmaların gen aktarımıyla ilgili kesin bir neticesi yok, ama çalışmaların gün geçtikçe iyi sonuç verdiği ve karmaşıklığın daha da azaldığı bilinmektedir.Gen terapisinde her şeyin olumlu gitmesi ve tüm araştırmaların sonuç vermesinden hariç zor olan kısmı aslında şu ana kadar olanlar değildir. Bahsi geçen yapılar çok hassas ve çok küçük yapılardır. Gen değiştirme işlemi öyle basit bir işlem değildir. Hedef olarak seçilen hücreye istenilen genlerin titizlikle yerleştirilmesi ve bu hücre içinde kalıcı olması sağlanmak zorundadır.Gen terapisi iki çeşittir bunlar Somatik gen terapisi ve Germline gen terapisidir. Somatik gen terapisi kalıtımsal özelliklerin genler ile ele alınması için yapılan yöntem, Germline ise hücrede direk çekirdeğin değiştirilmesi esasına dayanarak yapılan bir yöntemdir.Yazar: Sinan UZAhttp://www.bilgiustam.com

http://www.biyologlar.com/gen-terapisi-nedir-

Genetik bozuklukların tedavisinde yeni bir seçenek: Gen optimizasyonu

Genetik bozuklukların tedavisinde yeni bir seçenek: Gen optimizasyonu

Spesifik yüzey belirteçleri aracılığıyla farklı hedef hücrelere kontrollü gen transferi mevcut diğer yöntemlere göre daha etkili bulundu. Yeni yöntemle hedef hücrelere gen transferi, ilave toksisite olmaksızın yapılabiliyor. Genetik bilginin lentiviral transfer kullanılarak gerçekleştirilen gen terapileri böylece optimize edilebilir. Biomaterials Dergisi’nde yayımlanan çalışmaya göre, Retrovirüs ailesine ait Lentivirüsler, hücrelerdeki genetik materyali değiştirmek için vektör olarak kullanılabiliyor ve gen terapisi tarafından belirlenen kusurlu bir genin değiştirilmesi için ciddi bir yöntem haline gelebilir. Bu tip bir tedavinin etkililiğini artırmak, majör bir tıbbi güçlük ortaya çıkarmaktadır: Virüs spesifik olarak hedef hücreyi izlemelidir ve kullanılan virüs sayısı mümkün olduğu kadar düşük olmalıdır. ines-hofigFraunhofer Enstitüsü ve Münih’teki Radyasyon Biyolojisi Enstitüsü’nden Dr. Ines Höfig tarafından yönetilen bir araştırma ekibi, virüs transdüksiyonunun etkisini artıran bir adjuvan geliştirdi. Böylece hedef hücrelere transfer, ilave toksisite olmaksızın optimize edilmiş oldu. Çalışmadan elde edilen bulguların gen transferi ve hasarlı genlerden kaynaklanan hastalıkların tedavisinde önemli bir gelişme sağlayacağı belirtiliyor.Yüzey molekülleri virüsleri hedef hücrelerle birleştirir Bilim insanları virüsleri, virüslerin hedef hücrelerine tutunmasını kolaylaştıran ilave yüzey molekülleriyle donattı. Yüzey molekülleri, bir antikor fragmanıyla birleşen glikoproteinlerden oluşmaktadır. Bu antikor fragmanı, EGFR+ veya CD30+ gibi, spesifik hedef hücrelerin yüzey reseptörlerini tespit eder ve bunlara bağlanır.Yüksek transdüksiyon oranı – daha az virüs kullanımıAraştırma grubu lideri Dr. Ines Höfig, yürüttükleri çalışma ile ilgili şu bilgileri veriyor: “Hedef hücrelere bu spesifik bağlanmayla, transdüksiyon oranını (virüslerin hedef hücrelere transferini) üç kat artırabiliriz. Böylece, trasndüksiyon etkililiği artırılır ve aynı zamanda daha az transfer virüsüne ihtiyaç duyulur.”Daha ileri çalışmalarda, yerleşik sisteme benzer, uygun antikor fragmanları çeşitli hedef hücrelerin, örn. kemik iliği kök hücreleri ve immün hücrelerin, spesifik yüzey belirteçleri için değerlendirilmelidir. Gen terapisi böylece spesifik genetik bozuklukların (örn. metakromatik lökodistrofi, Wiskott-Aldrich sendromu) tedavisi olarak kullanılabilir.Kaynak: Systematic improvement of lentivirus transduction protocols by antibody fragments fused to VSV-G as envelope glycoprotein. Höfig, I. et al. Biomaterials, March 2014 DOI: 10.1016/ j.biomaterials.2014.01.051Makalenin tam metnine aşağıdaki linkten ulaşılabilir:http://www.ncbi.nlm.nih.gov/pubmed/24529898Abstractgen-transferi-dnaLentiviral vectors (LV) are widely used to successfully transduce cells for research and clinical applications. Lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G) can be produced to high titers and mediate high transduction efficiencies in vitro. For clinical applications the need for optimized transduction protocols and the limited activity of retronectin as LV enhancer, results in the application of a high multiplicity of infection (MOI) to achieve effective transduction efficiencies for a number of therapeutically relevant cells, e.g. CD34(+) hematopoietic stem cells, T- and B-cells. Our study describes an optimized LV infection protocol including a non-toxic poloxamer-based adjuvant combined with antibody-retargeted lentiviral particles, improving transduction efficiency at low MOI. Cell specificity of lentiviral vectors was increased by displaying different ratios of scFv-fused VSV-G glycoproteins on the viral envelope. The system was validated with difficult to transduce human CD30(+) lymphoma cells, and EGFR(+) tumor cells. Highly efficient transduction of lymphoma cells was achieved, >50% of cells were transduced when MOI 1 was used. The scFv displaying lentiviral particles gained relative specificity for transduction of target cells. Preferential gene delivery to CD30(+) or EGFR(+) cells was increased 4-fold in mixed cell cultures by presenting scFv antibody fragments binding to respective surface markers. A combination of spinoculation, poloxamer-based chemical adjuvant, and LV displaying scFv fragments increases transduction efficiencies of hard-to-transduce suspension lymphoma cells, and promises new chances for the future development of improved clinical protocols.http://www.medikalakademi.com.tr

http://www.biyologlar.com/genetik-bozukluklarin-tedavisinde-yeni-bir-secenek-gen-optimizasyonu

Gen <b class=red>terapisi</b> ile hasar görmüş kalp kasları başarı ile tedavi edildi

Gen terapisi ile hasar görmüş kalp kasları başarı ile tedavi edildi

Gen terapisi kardiyak rejenerasyon için umut olabilir mi? Bir kalp krizinden sonra, kalbin bir bölümünde genellikle kalıcı hasar oluşur. Çünkü kardiyak kalp kasları ölümcül şekilde farklılaşır ve kalbe kan akışı bloke olduktan sonra çoğalamaz. Bu kısmi iyileşme ölümün önde gelen nedenlerinden biri olarak kalp hastalığına atfedilebilir. Hücreler bölünmek için uyarılabilseydi ve kalp kendini tamir etmek için uyarılabilseydi ne olurdu? Science Translational Medicine dergisinde yayımlanan araştırmaya göre, gen tedavisi kalpte rejeneratif bir yanıta neden olabilir ve potansiyel olarak kalbi tamir edebilir.Kardiyak rejenerasyonun gen tedavisiyle mümkün olabileceğini ileri süren George Washington Üniversitesi araştırmacılarından Prof. Dr. Scott Shapiro ve arkadaşları tarafından yürütülen çalışmada gen terapisinin domuz kalplerinde rejeneratif yanıta neden olduğu saptandı. Çalışmayı yürüten araştırmacılar, ilk önce bir kalp krizinden sonra kalp dokusunu rejenere edebilen zebra balığı gibi küçük hayvanları incelediler. Bu hayvan, oyundaki temel protein olan Siklin A2’ye (Ccna2) sahipti.scott-scrubsElde ettikleri bulgularla ilgili bilgi veren Prof. Dr. Shapiro, “Ccna2’nin küçük hayvanlardaki etkisini gördükten sonra, domuzlar gibi, daha büyük hayvanlarda genin etkisini araştırmaya başladık. Ccna2’yi direkt olarak kalbe ulaştırdık ve domuzlarda sadece kardiyak fonksiyonda iyileşme değil aynı zamanda hücresel rejenerasyonun kanıtlarınıda bulduk” diyor.Ccna2, insanlarda doğumdan sonra normalde kapanan prenatal bir gen. Prof. Dr. Shapiro, kardiyak rejenerasyon için bir araç olarak gen tedavisini kullanmanın, miyokard infarktüsü veya kalp krizinden muzdarip hastalar için uygulanabilir bir tedavi seçeneğine öncülük edebileceğine inanıyor.Kaynak: Cyclin A2 Induces Cardiac Regeneration After Myocardial Infarction Through Cytokinesis of Adult Cardiomyocytes. S. D. Shapiro, A. Ranjan, Y. Kawase, R. Cheng, R. Kara, R. Bhattacharya, G. Martinez, J. Sanz, M. Garcia, H. Chaudhry. Science Translational Medicine, 2014; 6 (224): 224ra27 DOI: 10.1126/scitranslmed.3007668Abstract Cyclin A2 (Ccna2), normally silenced after birth in the mammalian heart, can induce cardiac repair in small-animal models of myocardial infarction. We report that delivery of the Ccna2 gene to infarcted porcine hearts invokes a regenerative response. We used a catheter-based approach to occlude the left anterior descending artery in swine, which resulted in substantial myocardial infarction. A week later, we performed left lateral thoracotomy and injected adenovirus carrying complementary DNA encoding CCNA2 or null adenovirus into peri-infarct myocardium. Six weeks after treatment, we assessed cardiac contractile function using multimodality imaging including magnetic resonance imaging, which demonstrated ~18% increase in ejection fraction of Ccna2-treated pigs and ~4% decrease in control pigs. Histologic studies demonstrate in vivo evidence of increased cardiomyocyte mitoses, increased cardiomyocyte number, and decreased fibrosis in the experimental pigs. Using time-lapse microscopic imaging of cultured adult porcine cardiomyocytes, we also show that Ccna2 elicits cytokinesis of adult porcine cardiomyocytes with preservation of sarcomeric structure. These data provide a compelling framework for the design and development of cardiac regenerative therapies based on cardiomyocyte cell cycle regulation. http://www.medikalakademi.com.tr

http://www.biyologlar.com/gen-terapisi-ile-hasar-gormus-kalp-kaslari-basari-ile-tedavi-edildi

Gen Terapisi

Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır. Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuvar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir. Gen Terapisinin Riskleri Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığayol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır. Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir. Gen Terapisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Yukarıda açıklanan yöntemler bugüne değin 300 klinik daneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inabiliriz.

http://www.biyologlar.com/gen-terapisi

Genetiğin Dünya da ve Türkiye de Tarihsel Gelişimi

Dünyada hayatın başladığı kabul edilen 4.6 milyar yıl önce, DNA(deoksiribonükleikasit) yaşamın hücresel metabolik aktivasyonlarını ortaya koyan genetik yapı olarak hizmet etmiştir. "Gen" terimi 1900. yıllara kadar kullanılmamasına rağmen genin fonksiyonu ile olan araştırma 1800 lü yıllarda başlamıştır. Gregor Mendel, Avusturyalı din adamı, manastırının bahçesinde yıllarca çalıştı, farklı bezelye varyetelerini melezlemiştir. Dikkatli kayıtlar tutarak, melezlerin döllerini saymış, bezelye şekli, çiçek rengi, bitki yüksekliği gibi özelliklere bakarak genlerin fenotipik ekspressiyonunu incelemiştir. Dikkatli gözlem, doğru kayıt tutarak verileri dikkatlice analiz yapmış ve her bir bitkinin erkek ve dişi ebeveynlerinin döllerine kalıtım üniteleri veya faktörlerin varlığı teorisini ortaya koymuştur. 1884 yılında Mendel öldüğü zaman çalışmasının değerini kimse bilmiyordu. Mendel'in bulduğu faktör veya kalıtım ünitelerini gen olduğu 1900 yıllara kadar anlaşılamadı. Aynı dönem içerisinde, 1809-1882, İngiliz Charles Darwin, fizikçi ve biyoloji uzmanı Erasmuz Darwin'in torunu, biyolojik bilimlerde önemli ilerlemelere neden olan bilgileri topluyordu. Darwin tıp ve din konusunu çalıştı. Cambridge'den mezun olduktan sonra kariyerini geliştirmek istiyordu. Darwin bitki ve hayvanlar üzerinde çalıştı, örnekler topladı ve yaşayan canlıların özelliklerine göre çizdi. Bu çalışmayla güney amerika kıyılarında Galapagos Adaları üzerindeki çalışmayla ünlü oldu. Darwin bu arada birçok fosil topladı ve bugünkü türlerin varlığını ortaya koyan hayvanların fosillerini buldu. Her adayı ziyaret edip türlerin karakterler yönünden varyasyon ortaya koyduğunu tespit etmiştir. İspinozlarda örneğin gaga şekli ve gaga uzunluğu güney amerika kıyılarında yaşayan türlerle adalarda yaşayan türlerin ayrılmasında yardımcı olmuştur. Darwin, çalışmalarında ortaya çıkan son türlerin öncekilerden meydana gelmesi hakkındaki teorilerini belirtti. Darwin aynı zamanda doğada oluşan seçici işlemi savundu. Buna göre güçlü özelliklere sahip türler canlı kalmaya daha çok meyilli idi. Darwin'in çalışmalarına başlangıçta cevaplar negatif idi özellikle dini liderler özellikle dünya üzerinde yaşamın ortaya çıkması yorumu hakkındaki bu fikirlerden büyük üzüntü duydular. Bununla beraber bu iki çalışma genetik ve evolusyon hakkındaki biyolojik teorilerine öncülük etmişlerdir. Dünyada Genetiğin Gelişimi 1900 yıllarda Mendelin çalışmalarının yeniden keşfinden sonra genin doğası hakkında büyük bir bilgi patlama olmuştur. Biyoloji alanında çalışan bilim adamları, hücredeki çekirdek ve kromozomun önemi üzerinde durdular. Çünkü gözlemlerde, kromozomlar yumurta ve polen/spermi oluşturmak üzere mayoz esnasında sayısını yarıya indiriyor ve sadece bölünme sırasında görülüyordu. Bu sebeple DNA moleküllerinin nasıl faaliyete geçerek organizmaları ürettiklerini anlamak için birçok çaba sarf edildi. Amerikalı James Watson ve İngiliz Francis Crick birkaç biyolog araştırmacıyla 1953 yılında DNA nın çift heliks yapısını incelediler. DNA kavramı yaşamın geleneksel dili olduğu bakterilerde, mantarlarda, bitki ve hayvanlarda yapılan çalışmalarla ortaya konuldu. Yaşayan organizmalar arasında yer alan bu ilişki biyoteknoloji ve genetik mühendislik biliminin gelişimine neden olmuştur. Mühendislik teknolojisi, bitki ve hayvanları geliştirmek için yaşayan diğer organizmaları ve canlıların kısımlarını kullanmıştır. 1970 yıllarında, araştırmacılar DNA'nın bir canlıdan kesilerek diğer canlıya yerleştirebileceklerini böylece rekombinant DNA teknolojisini buldular. Bu şekilde insülin, hormon, interferon ve TPA (doku plasminogen aktifleştirici) gibi ilaçları tıp dünyasına sundular. İnsan gen terapisi yöntemiyle genleri hasarlı olan veya eksik olan fertlere gen nakli gerçekleştirilmiştir. Üreme teknolojisinin gelişimiyle üremenin artırılmasına çalışılmıştır. İnsan üreme teknolojiyle uğraşan araştırmacılar insan embriyosunu in vitro koşullarda elde etti ve daha sonra kullanılmak üzere dondurdular. Anne ebeveynler kendilerine ait olmayan genetik döller vermişlerdir. 1993 de, l, George Üniversitesinde çalışmakta olan Dr Robert Stillman ve Jerry Hall insan embiryosunu klonladı ve 6 gün bunları yaşatmayı başardı. Klonlama ya da genetik olarak benzer organizmanın üretimi ilk kez havuç bitkisinde başarılmıştır. Klonlama işleminde havuç kök hücreleri yeni bitki oluşturmak üzere kullanılmıştır. Bitki klonlama teknolojisindeki bu başarılar 1952 de kurbağalardaki klonlamaya kadar devam etmiştir. 1970 lerde fare, 1973 de sığır ve 1979 da koyun klonlaması olmuştur. Bu çalışmalar, hızlı çoğalan iyi bir sürü daha iyi süt üretimi amacıyla insanlık yararına gerçekleştirilmiştir. Gen teknolojisiyle biyoteknolojideki ilerlemeler zararlılara ve soğuğa dayanıklı bitki türleri, daha çok üreyebilen ve gelişkin çiftlik hayvanları üretimine başarılı olmuştur. Genetik olarak farklı domates türleri, rafta kalma süresi uzun olan varyetelerin gelişmesini sağlamıştır.1990 yıllarında Amerikada daha da ileri gidilerek İnsan Genom Projesi gündeme getirilmiş ve insan genlerinin tüm haritasının yapılması planlanmıştır. Bu projenin yaklaşık değeri yılda 200 milyon dolar olup 2005 yılında bitirilmesi planlanmaktadır. Cystic fibrosis, orak şekilli hücre anemisi ve Huntingon's chorea gibi birçok hastalık için DNA kodları kromozomlarda yer alan özel bölgelerde kodlanmış olduğu bu sayede bulunmuştur. Bununla beraber biyoteknolojinin hızlı gelişimi beraberinde birçok problemide ortaya koymuştur. Bilimsel tartışmalar ahlaki ve geleneksel sorular yeni gelişmelerle ortaya çıkmıştır. Bu nedenle genetik bilimi konusunda herkesin bilgiye ihtiyacı bulunmaktadır. Dünyada Genetiğin Tarihi; 1858 yılında Charles Darwin - Alfred Russel Wallace doğal seleksiyon teorisini ortaya koydular ve çevreye iyi uyum gösteren populasyonların yaşadığını ve özelliklerini nesillerine aktardıklarını belirttiler. 1856 Charles Darwin, Türlerin Orijin adlı eserini yayınladı. 1866 Gregor Mendel bezelye bitkilerinde faktörlerin aklıtımı üzerine araştırmlarını yayınladı. 1900 de Carl Correns Hugo de Vries Erich von Tschermak Mendelin prensiblerini bağımsız olarak keşfetti ve doğruladı. Modern genetiğin başlangıcını yaptı. 1902 Walter Sutton Mndel ve citoloji arasındaki ilişkileri ortaya koydu, kalıtım ve hücre morfolojisi arasındaki boşluğu kapattı. 1905 Nettie Stevens Edmund Wilson bağımsız olarak Cinsiyet kromozomlarını buldu XX'i dişi XY'i erkek olarak değerlendirdi. 1908 Archibald Garrod, insanda enzim eksikliğinden meydana gelen doğum hastalıklarının metabolizmasını çalıştı. 1910 Thomas Hunt Morgan, ilk kez meyve sineği Drosophila melanogaster'de cinsiyete bağlı kalıtım olan beyaz göz rengini araştırdı. Bu araştırma linkage (bağlantı) olayını içeren gen teorisini geliştirdi. 1927 Hermann J. Muller, X-ışınlarını kullanarak Drosophila da suni mutasyonların oluştuğunu buldu. 1928 Fred Griffith Diplococcus'larda R ve S nesillerine bilinmeyen yapıların olduğu keşfetti. 1931 Harriet B. Creighton Barbara McClintock mısırda krossing overın sitolojik aknıtlarını gösterdi. 1941 George Beadle Edward Tatum, ışınlanmış ekmek küfünde, Neurospora, bir enzim tarafından kontrol edilen genin faaliyetini ifade etti. 1944 Oswald Avery, Colin Macleod ve Maclyn McCarty, Griffith'in denemelerinde transfer olan yapının DNA olduğunu ortaya koydu. 1945 Max Delbruck, 26 yıl ard arda Cold Spring Hardour'da fajlar üzerinde kurs verdi. Bu kurd moleküler biyolojide iki generasyonu içeren ilk kursdu. 1948'lerde Barbara McClintock mısırda renk varyasyonunu açıklayan ilk transposable elementleri keşfetti. 1950'de Erwin Chargaff Canlılardan elde edilen DNA örneklerinde Adenin-Timin ve Guanin-Sitozin arasındaki 1:1 oranını keşfetti. 1951 yılında Rosalin Franklin DNA nın X ışınlı ilk fotoğrafını çekti. 1952 'de Martha Chase Alfred Hershey 35S fajlarını işaretledi ve DNA yı 32P ile işaretliyerek kalıtım molekülünü buldu. 1953 Francis Crick, James Watson DNA molekülünün üç boyutlu yapısını çözdü. 1958 yılında Matthew Meselson, Frank Stahl azot izotoplarını kullanarak semi konservatid replikasyonu kanıtladı. 1958 Arthur Kornberg, E. coli'de DNA polimerazı saflaştırdı ve test tüpünde ilk enzimi elde etti. 1966 Marshall Nirenberg, H. Gobind KhoranaLed, Genetik kodu deşifre etti ve 20 amino asit için RNA kodonlarını buldu. 1970 Hamilton Smith & Kent Wilcox, ilk restriksiyon enzimini izole etti, Hind II Bu DNA bölgesini özel bir bölgeden kesmektedir. 1972 Paul Berg & Herb Boyer, ilk rekombinant molekülleri üretti. 1973 Joseph Sambrook Led, Agarose jel elektroforesisde DNA yı ethidium Bromid ile boyayarak gösterdi. 1973 Annie Chang Stanley Cohen, rekombinant DNA molekülünü oluşturdu ve E. Colide replike etti. 1975 Rekombinant DNA deneylerinin düzenlenmesi hakkında rehberin sunulması. California, Asimolar Uluslar arası Toplantı. 1977 Fred Sanger, DNA dizilişi için zincir terminasyon metodunu (dideoxy) geliştirdi. 1977 Tıp alanında önemli ilaçların üretildiği ilk rekombinant DNA metodlarının kullanıldığı genetik mühendisliği şirketi kuruldu (Genentech). 1978 Rekombinant DNA teknolojisi ile üretilen ilk insan hormonu somatostatin elde edildi. 1981 Üç farklı bağımsız araştırma ekibi insan ongene lerini keşfetti (kanser genleri). 1983 James Gusella kan örneklerini topladı Huntington's hastalığını kontrol eden genin kromozom 4 üzerinde olduğunu keşfetti 1985 Kary B. Mullis, Polimeraz zinzir reaksiyonunu tanımlayan araştırmasını yayınladı (PCR). 1988 İnsan Genom projesi başladı. İnsan kromzomlarının DNA dizilişinin tanımlanması hedef alındı. 1989 Alec Jeffreys, DNA parmak izi terimini tanıttı ve DNA polimorfizm, ile ailesel, göç ve cinayet vakalarında kullandı. 1989 Francis Collins & Lap Chee Tsui Cystiz Fibrosis hastalığına neden olan ckromosom 7 üzerindeki CFTR regulatör proteinin genetik kodunu tanımladı. 1990 İlk gen yer değiştirme gerçekleşti. Normal ADA geninin RNA kopyası retrovirüs vasıtasıyla 4 yaşındaki bir kıs çoçuğunun T hücrelerine nakledildi. Bu uygulamada bağışıklık sistemi çalışmaya başladı. 1993 Flavr Savr, domatestleri raf ömrünü uzatmak için genetik olarak modifiye etti. 1996 Iwan Wilmut, çekirdek transferi ilk genetik kopyalama gerçekleştirildi. Genetiğin Tarihinde Klasik Araştırmalar: Gregor Mendel'in Deneyleri Gregor Mendel (1866), "Experiments on Plant Hybrids," Trans. by Eva Sherwood, in The Origin of Genetics, Curt Stern and Eva Sherwood, eds. (W. H. Freeman and Co., 1966), pp. 1-48. Keşifler Hugo De Vries (1900), "The Law of Segregation of Hybrids," Trans. by Eva Sherwood, in The Origin of Genetics, Curt Stern and Eva Sherwood, eds. (W. H. Freeman and Co., 1966), pp. 107-118. Mendel Araştırmaları William Bateson (1901), "Problems of Heredity as a Subject for Horticultural Investigation," Journal of the Royal Horticultural Society 25: 54-61. Biyometri W. F. R. Weldon (1895) "Remarks on Variation in Animals and Plants," Proceedings of the Royal Society 57: . G. Udny Yule (1905), Mendel's Laws and Their Probable Relations to Intra-Racial Heredity," New Phytologist 1: 226-7. Genotip & Fenotip W. Johannsen (1911), "The Genotype Conception of Heredity," The American Naturalist 95: 129-159. Eugenler Charles Davenport (1912), "The Inheretance of Physical and Mental Traits of Man and Their Application to Eugenics" in Heredity and Eugenics. W. Castle, ed. University of Chicago Press. William Castle (1930) "Race Mixture and Physical Disharmonies," Science, n.s. 71: 603-606. Kalıtımın Kromozom Teorisi T. H. Morgan (1910) "Sex Limited Inheritance in Drosophila," Science 32: 120-122. A. H. Sturtevant (1917) "Genetic Factors Affecting the Strength of Linkage in Drosophila," Proceedings of the National Academy of Science 3: 555-558. Sitogenetik Harriet B. Creighton and Barbara McClintock (1931), "A Correlation of Cytological and Genetical Crossing-Over in Zea mays," Proceedings of the National Academy of Sciences 17: 492-497. T. S. Painter (1934), "A New Method for the Study of Chromosome Aberrations and the Plotting o Chromosome Maps in Drosophila melanogaster," Genetics 19: 175-188. Mutasyon H. J. Muller (1927) "Artificial Transmutation of the Gene," Science 66: 84-87. Evolasyon Genetiği Theodosius Dobzhansky (1937), Genetics and the Origins of Species, excerpts. Columbia University Press. G. Turesson, (1922) "The Genotypical Response of Plant Species to the Habitat," Hereditas 3: 211-350. Bitki ve Hayvan Islahı George Shull (1909) "A Pure Line Method of Corn Breeding," Report of the American Breeders Association 5: 51-59. İnsan Genetiği J. Neel (1949) "The Inheritance of Sickle Cell Anemia," Science 110: 64-66. L. Hogben (1932) "The Genetic Analysis of Familial Traits," Journal of Genetics 25: 97-112. Populasyon Genetiği Sewall Wright (1931) "Evolution in Mendelian Populations," Genetics 16: 97-159. J. B. S. Haldane (1954) "The Cost of Natural Selection," Journal of Genetics 55: 511-524. Gelişim Genetiği S. Gluecksohn-Schoenheimer (1940) "The effect of an early lethal (t*) in the house mouse," Genetics 25: 391-400. C. Waddington (1975) "Genetic Assimilation," reprinted in The Evolution of an Evolutionist. Cornell University Press. Biyokimyasal Genetik G. W. Beadle and E. L. Tatum (1941), "Genetic Control of Biochemical Reactions in Neurospora," Proceedings of the National Academy of Sciences 27: 499-506. Arthur Pardee, Francois Jacob, and Jacques Monod (1959) "The Genetic Control and Ctyoplasmic Expression of "Inducibility" in the Synthesis of beta-galactosidase by E. coli," Journal of Molecular Biology 1: 165-178. Genetik İnce Yapı Raffel, D. and H. J. Muller. 1940. "Position Effect and Gene Divisibility Considered in Connection with Three Strikingly Similar Scute Mutations," Genetics 25: 541-583. Seymour Benzer (1955) "Fine Structure of a Region of Bacteriophage," Proceedings of the National Academy of Sciences 41: 344-354. Barbara McClintock (1956) "Controlling Elements and the Gene," Cold Spring Harbor Symposia on Quantitative Biology 21: 197-216. Moleküler Genetik O. Avery, C. MacLeod, and M. McCarty (1944), "Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types I.," Journal of Experimental Medicine 79: 137-158. James Watson and Francis Crick (1953), "A Structure for Deoxyribonucleic Acid," Nature 737-738. M. Meselsohn and F. Stahl (1958) "The Replication of DNA," Cold Spring Harbor Symposia for Quantitative Biology 23: 9-12. M. Nirenberg and Philip Leder (1964) "RNA Codewords and Protein Synthesis," Science 145: 1399-1407. Türkiye'de Genetiğin Gelişimi; Genetik bilimi, Türkiye'de gelişimi oldukça yenidir. Çalışmalar, 1950 yıllarında sonra sitogenetik, biyometri, populasyon genetiği, mutasyon genetiği alanında başlamıştır. !978 yıllarında gentik sahasında çalışanlar biraraya gelmek için faaliyetlerde bulunmuşlar ancak faaliyet devam etmemiştir. Çalışmalar TÜBİTAK desteğiyle sürmekte olup, Üniversitelerde dış ülkelere görevlendirilen elemanların 1985 yıllarından sonra dönerek yeni teknikleri uygulamalarıyla sitegenetik & moleküler genetik sahasında ilerlemeler olmuştur. Bu arada Üniversiteler kendi bünyelerinde merkez laboratuvarları kurma yoluna gitmişlerdir. İstanbul Üniversitesinde BİYOGEM ve Atatürk Üniversitesindeki Biyoteknoloji Merkezi buna örnektir. Son zamanlarda RFLP, RAPD, PCR, in-situ melezleme, ısozyme, PAGE gibi metodlar DNA ve proteinler üzerinde uygulanmaktadır. Çalışmalarda yeni tekniklerin bulunmasından ziyade metodların pratiğe uygulanması ağırlık kazanmıştır. Çeşitli alanlarda yapılan çalışmalar eldeki bilgilere göre aşağıda tarih, isim ve konu sırasına göre sınıflandırılmıştır. Genetik Sahasında Yapılan araştırmalar; Sitogenetik 1965 Şehabettin Elçi, Agropyron türlerinde karyotip analizleri. 1966 Şehabettin Elçi, Mitoz kromozom analizlerinde yeni bir metod. 1974 Sevim Sağsöz, Tetraploid bitkilerin elde edilmeleri. 1974 Emiroğlu, Ü. Tütünlerde haploidlerin eldesi, mayoz bölünme ve karyotip analizleri. 1977 Emine Bilge, M. Topaktaş, N. Gözükırmızı, M. Kocaoğlu. Arapa' da Deneysel mutasyonların eldesi. 1977 H.R. Ekingen, Triticumda 3D kromozomların eşlenme üzerine etkileri 1982 Sevim Sağsöz, İngiliz çiminde ploidi derecesi, tohum tutma ve stoma uzunluğu ilişkileri 1983 Sevim Sağsöz, tetraploid ingiliz çimlerinde mayoz bölünme ve seleksiyon kriterleri 1995 Gülşen Ökten, insan kromozomlarında karyotip analizi 1995 Neriman Gözükırmızı, Bitkilerde karyotip analizleri 1996 Nurten Kara, tıbbi bitki olan yabani soğan kromozomlarının karyotipi. 1996 A. Okumuş, mayozda eşlenmesnin genetik kontrolü ve karyotip analizleri. Moleküler Genetik 1996 Sebahattin Özcan, Tütünde Gen transferi 1996 Gürel, F., Arı, Ş & Gözükırmızı, N. Arpada varyasyonun RAPD ve moleküler marker kullanılarak tanımı. 1998 A. Altınalan & Numan Özcan, Rekombinat DNA tekniğiyle ±-amilaz geni aktarılan suşların probiotik geliştirilmesi 1998 A. Okumuş & M. Akif Çam, Koyunlarda DNA ekstraksiyonu 1998 A. Okumuş, M. Olfaz & M. Akif Çam, Koyun melezlerinde hemoglobin lokusunun genetik kontrolü 1998 T. Oğraş, E. Arıcan & N. Gözükırmızı, Transgenik tütünde intron dizilerinin değerlendirilmesi Gelişim Genetiği 1996 Sebahattin Özcan, Tütünde doku kültürü 1998 Serhat Papuççuoğlu, Sema Birler, Serhat Alkan, Mithat Evecen, Kamuran İleri; Hayvanlarda İn vitro fertilizasyon 1998 Betül Bürün, Tütünde somatik embriyogenesis ve ploidi düzeyleri. Biyokimyasal Genetik 1993 Asal, S., Kocabaş, Elmacı, C. Tavul ve bıldırcınlarda yumurta akı proteinlerinde genetik polimorfizm. 1994 Dayıoğlu, H. Tüzemen, N., Yanar, M. Atatürk Üniversitesi Ziraat İşletmesinde yetiştirilen çeşitli sığır ırklarında transferrin polimorfizmi üzerine araştırmalar 1994 Gürkan, M. ve Soysal, M.İ. Edirne ili ve yöresinde yetiştirilen boz step, siyah alaca ve siyah-alaca x boz step melez sığırların kalıtsal polimorfik Hb ve Tf tipleri bakımından genetik değeri 1996 Abdülkerim Bedir, İnsan genomunda AP-PCR uygulamaları 1996 Sekin, S, İbrahim Demir, Biyokimyasal markerların genotip tayininde kullanılması 1996 Baş, S., Ülker, H., Vanlı, Y. ve Karaca, O. Van yöresi karakaş kuzularında transferrin polimorfizmi 1996 Çelik, A. ve Pekel, E. Türkiye koyun populasyonunun hemoglobin (Hb) ve transferrin (Tf) poliformizmi bakımından genetik yapısı 1998 Sevinç Asal & Meltem İ. Erdinç, Süt proteinlerinde genetik polimorfizm 1998 Ramazan Yılmaz, E. Yüksel & K. Erdoğan, Erinaceus populasyonlarında enzimatik karşılaştırmalar Populasyon Genetiği 1953 Hüseyin Gökçora, Melez Mısır populasyonunda genetik çalışmalar 1960 Hüseyin Gökçora, Kendilenmiş döllerin kıymetlendirilmesi. 1973 F. İncekara, M.B. Yıldırım & M.E. Tuğay, Buğday populasyonunda karakterlerin kalıtımı 1973 Doğrul, F. Memleketimizde yetiştirilen yerli ve yabancı saf ve melez sığır ırkı kanlarında beta-globulin ve hemoglobin varyasyonları 1977 H. Bostancıoğlu, Arpa üzerine genetik çalışmalar 1977 Emiroğlu, Ş.H., G. Yazıcıoğlu, Z.M. Turan. Gossypolsuz pamuk ıslahı 1979 Emin Ekiz, Ayçiçeğinde kendileme depresyonu 1985 Doğrul, F. Koyunlarda hem ve tf proteinlerinin dağılımı 1989 Asal, S. Koyunlarda tf polimofizmi tespiti 1992 İhsan Soysal & Haskırış, H. Türkgeldi koyun populasyonlarında kan proteinleri yönünden genetik yapısı 1998 İhsan Soysal & Alparslan A. Ülkü, Keçi populasyonunda kan proteinleri ve Na,K seviyelerinin genetik yapısı 1998 Gamze Umulu, Japon bıldırcınlarında beyaz renk kalıtımı Kantitatif Genetik 1961 Erdoğan Pekel, Akkaraman Koyun Islahında kantitatif genetik çalışmaları 1993 Soysal, M.I. ve Kaman, N. Acıpayam koyun populasyonunun bazı kalıtsal polimorfik kan proteinleri tarafından genetik yapısı ve bu karakterler ile çeşitli verim özellikleri arasındaki ilişkiler 1994 Vanlı, Y. ve Baş, S. Atatürk Üniversitesi koyun sürülerinde beta-globulin (Transferrin) polimosfizminin genetiği ve kantitatif karakterlerle bağlantısı 2. fenotipik analizler. 1995 Şekerden, Ö., Doğrul, F. Erdem, H. ve Altuntaş, Simental sığırlarda serum transferrin ve hemoglobin tipleriyle gelişim özelliği arasındaki ilişkiler Mutasyon Genetiği 1969 Didar Eser, Avena sativa'da röntgen ışınları ve anöploid değerler 1980 Metin B. Yıldırım. Buğday mutant populasyonunda seleksion çalışmaları 1998 Haydar Karayaka, gen mutasyonlarının tespiti Biyometri 1967 Şaban Karataş, Genetik ve Fenotipik Korelasyonların tahmin metodları 1996 H. Okut, Y. Akbaş & A. Taşdelen. Blue ve Blup tahminlarinde outliner seçimi 1998 Oya Akın & Tahsin Kesici, Tribolium populasyonunda genetik parametreler 1998 Sinan Aydoğan & Tahsin Kesici, Kalıtım derecesi tahmininde eklemeli olmayan etkiler 1998 Zahide Kocabaş, Tahsin Kesici & Ayhan Eliçin, Kanonik korelasyonun hayvan ıslahınd uygulaması Yayınlanan Kitaplar 1963 Orhan Düzgüneş. Bilimsel araştırmalarda istatistik prensipleri 1970 Fethi İncekara. Genetik 1973 İsmet Baysal, Sitogenetik 1978. Şehabettin Elçi, Sitolojide hızlı araştırma yöntemleri 1982 Şehabettin Elçi, Sitogenetikte gözlemler ve araştırma yöntemleri. 1982 Sevim Sağsöz. Sitogenetik 1983 Muvaffak Akman, Bakteri Genetiği 1983 Emin Arıtürk, Evcil Hayvanların genetiği 1983 Neriman Alemdar, Sitoloji 1986 Bekir Sıtkı Şaylı, Medikal Sitogenetik 1988 Sezen Şehirali & Murat Özgen, Bitki Islahı 1994 Müzeyyen Seçer, Moleküler Biyoloji 1996 Düzgüneş, O. A. Eliçin & Numan Akman, Hayvan ıslahı 1996 İhsan Soysal, Hayvan ıslahının genetik prensibleri Kaynak: Elmer-Dewitt, Philip. "Cloning: Where Do We Draw the Line?" Time Vol. 142, No.19, Nov. 8, 1993. Lewis, Ricki. 1994. Human Genetics. William C. Brown Publishers. Micklos, David A. 1990. DNA Science. Carolina Biological Supply Co., Cold Spring Harbor Press. Sattelle, David. 1988. Biotechnology in Perspective. Industrial Biotechnology Association, Hobsons Publishing.

http://www.biyologlar.com/genetigin-dunya-da-ve-turkiye-de-tarihsel-gelisimi

CRISPR Genetik Aracı Musküler Distrofili Farelerin İyileştirilmesine Yardımcı Oldu

CRISPR Genetik Aracı Musküler Distrofili Farelerin İyileştirilmesine Yardımcı Oldu

CRISPR olarak bilinen yeni genetik düzenleme yöntemi bir ilke daha imza attı: bilim insanları bu yöntemi kullanarak fareler üzerinde ciddi bir kas hastalığını iyileştirmeyi başardılar. Science dergisinde yayınlanan üç farklı makaleye göre, bilim insanları CRISPR yöntemini kullanarak farelerde Duchenne musküler distrofi (DMD) hastalığına neden olan genin hatalı bölümünü kesip çıkarmayı başardılar ve böylece farelerin vazgeçilmez bir kas proteinini üretmesini sağladılar. Bu deneylerle CRISPR ilk defa tüm vücuda ulaştırılmış ve genetik bir hastalığı olan yetişkin bir canlı tedavi edilmiştir.DMD özellikle erkek çocukları etkileyen ve distrofin proteinini kodlayan gendeki bir hatadan dolayı ortaya çıkan bir hastalıktır. Distrofin kas liflerini koruyan ve güçlendiren vazgeçilmez bir proteindir. Distrofin eksikliğinde iskelet ve kalp kasları zamanla zarar görür ve ölür. DMD hastaları, hastalık ilerledikçe önce tekerlekli sandalyeye, hastalığın ileri aşamalarında ise solunum cihazına ihtiyaç duyar ve 25 yaş civarında da hayatını kaybeder. Bu nadir hastalık genellikle distrofin genini oluşturan 79 eksonda (DNA’nın protein kodlayan bölümü) meydana gelen eksiklikler veya başka kusurlar sonucu ortaya çıkar.Bilim insanları bu hastalık için henüz bir tedavi yöntemi bulamamıştır. Hastalığın ilerlemesini durdurmak amacıyla yeteri miktarda kas yapıcı kök hücrenin doğru dokuya aktarılmasının zannedilenden daha zor olduğu ortaya çıkmıştır. Bozuk bir genin doğru bir örneğini hücrelerin içine aktarmak için virüslerin kullanıldığı alışılagelmiş gen terapisi yöntemi, çok büyük olmasından dolayı bütün distrofin genini yerine koymak için kullanılamaz. Bazı gen terapistleri DMD hastalarına küçük bir distrofin geni aktarmayı umuyorlar. Bu küçük gen (veya mikro gen) daha kısa olmasına rağmen yine de işlevsel bir distrofin proteini üretecek ve hastalığın şiddetini azaltacaktır. Bazı ilaç firmaları, hücrelerin DNA okuma mekanizmalarının distrofin genindeki hatalı eksonları atlamasını, ve bu vazgeçilmez proteinin daha kısa bir versiyonunu üretmesini sağlayan bileşimler üretmişlerdir. Ancak ekson-atlayıcı adındaki bu ilaçlar yan etkileri yüzünden ve klinik çalışmalarda kas performansını yalnızca az miktarda iyileştirdiklerinden sağlık bakanlıklarının desteğini henüz alamamıştır.Şimdi ise CRISPR genetik aleti sahneye çıkmıştır. Science dergisinin “2015 yılının buluşu” olarak adlandırdığı teknoloji RNA dizisi’nin cas9 adındaki bir enzimi genomun belirli bir yerine yönlendirmesine dayanır. Cas9 enzimi gittiği yerde DNA’yı makas gibi keser. Hücreler kesilmiş DNA’yı, ya kesilmiş uçları tekrar birleştirerek ya da şablon olarak verilen yeni bir DNA parçasını kullanarak ve yeni bir dizi oluşturarak onarır. Bilim insanları CRISPR tekniğini daha önce hayvanlardan ve insanlardan alınan hücrelerdeki bazı genetik bozuklukları onarmak için ve yetişkin bir farede karaciğer hastalığını tedavi etmek için kullanmışlardır. Ve gecen yıl, bilim insanları, CRISPR’ın hatalı distrofin genini, fare embriyolarında onarabileceğini ispatlamışlardır.Ancak CRISPR’ı DMD hastalığı olan insanları tedavi etmek için kullanmak pek de mantıklı görünmemektedir çünkü yetişkin kas hücreleri genellikle bölünmez ve dolayısıyla gen ekleme veya onarımı için gerekli olan DNA onarım mekanizmaları da çalışmamaktadır. Ancak CRISPR hatalı bir eksonu kesip çıkarmak için kullanılabilir. Böylece hücrenin gen okuma mekanizması kısaltılmış bir distrofin proteini üretir ki bu da ekson atlama veya mikro gen yöntemlerine benzer.Bu üç araştırma ekibi de tam olarak DMD’li genç farelerde bunu yapmışlardır. Dallas’taki Teksas Üniversitesi Southwestern Tıp Merkezinden Eric Olson’un ekibinde çalışan doktora öğrencisi Chengzu Long ve çalışma arkadaşları, zararsız adeno ilintili virüs’ü kullanarak CRISPR’ın rehber RNA’sını ve Cas9 enzimini kodlayan DNA’yı farelerin kas hücrelerine aktarmış ve hatalı eksonu kesip çikarmalarını sağlamışlardır. Kaslarına veya dolaşım sistemlerine CRISPR taşıyan virüs enjekte edilmiş olan farelerin kalp ve iskelet kas hücreleri kısa da olsa distrofin proteini üretmiştir. Ayrıca işlem görmüş fareler, işlem görmemiş farelere göre kas gücünü ölçen testlerde de daha yüksek performans göstermiştir. Her ikisi de Harvard ve Cambridge, Massachusetts Broad Enstitüsü’nden CRISPR öncüsü Feng Zhang ile birlikte çalışan Kuzey Karolayna’daki Duke Üniversitesi’nde Biyomedikal Mühendis Charles Gersbach’ın öncülüğündeki ekip ve Harvard kök hücre araştırmacısı Amy Wagers de buna benzer bulgular elde etmişlerdir. CRISPR’ın doğru bir şekilde çalışıyor olması da güven vericidir; araştırmacılardan hiç biri fazla miktarda hedef dışı etkiye, yani genomun istenmeyen yerlerinde meydana gelebilecek ve zararlı olabilecek kesiklere rastlamamışlardır.Wagers ekibi ayrıca distrofin geninin yetişkin kas dokusunu yenileyen kas kök hücrelerinde de distrofin geninin onarılabildiğini göstermişlerdir. Wagers’e göre “Bu çok önemli bir olgudur çünkü yetişkin kas hücreleri zamanla aşındığı için CRISPR’ın tedavi edici etkisi ortadan kalkabilir”Bu işlem kesin bir tedavi değildir: CRISPR’ın enjekte edildiği fareler kas testlerinde normal fareler kadar iyi sonuç vermemişlerdir. Ancak Gersbach’a göre “bu daha ilk adım ve bu tekniğin iyileştirilmesi için yapılabilecek sayısız düzenleme var”. Olson’a göre de DMD hastalarının %80’i hatalı bir eksonun genlerinden çıkarılmasından yarar görebilir. Fakat klinik çalışmalar ancak yıllar sonra başlayabilecek gibi görünüyor. Olson’un ekibinin şimdiki planı CRIPSR’ın insanlarda görülen distrofin genindeki farklı mutasyonları tamir etmede aynı performansı gösterip göstermeyeceğini sorgulamak. Bir sonraki adım ise bu yaklaşımın fareden daha büyük hayvanlarda da güvenli ve etkili olup olmadığını araştırmak.Elde edilen bu sonuçlar, diğer kas hastalıkları üzerine çalışan bilim insanlarını da cesaretlendirmiş gibi görünüyor. Kolumbus’taki Nationwide Çocuk Hastanesi’nden Jerry Mendell “Bu üç ekibin yaptığı çalışmalar toplu olarak bu yaklaşımın klinik çalışmalara aktarılması açısından çok umut verici görünüyor” diyor. Kanada’daki Toronto Hasta Çocuklar Hastanesi’nden Ronald Cohn da ekliyor: “Hepimizin kafasındaki soru CRISPR genetik düzenleme yönteminin yaşayan bir canlının iskelet kaslarında çalışıp çalışmayacağıydı. Bu yeni çalışmalar ileriye yönelik son derece heyecan verici birer adım teşkil ediyor.”Kaynak :Sciencemaghttp://www.gercekbilim.com

http://www.biyologlar.com/crispr-genetik-araci-muskuler-distrofili-farelerin-iyilestirilmesine-yardimci-oldu

Apoptozis hakkında bilgiler

APOPTOZİS Yüksek organizmalarda hücre ölümü iki farklı mekanizma ile gerçekleşir. Klasik hücre ölümü nekroz olarak adlandırılır.Şiddetli bir travma, zararlı bir uyarı ile meydana gelir. Genellikle gruplar halinde hücreleri etkiler.Morfolojik olarak ER, mitokondride dilatasyon, plazma membranının iyon transportunun bozulması,hücrelerin şişmesi ve lizisi tipiktir.Nükleer kromatin flokulasyonu, DNAnın nonspesifik klavajı, hücrelerin parçalanması ile hücre içeriği ve lizozomal enzimler eksrasellüler ortama dökülür.Bu enzimlerde komşu hücre ve dokuları zedeleyerek inflamatuar yanıta yol açar. Hücre ölümünün diğer şekli Apoptosis genellikle tek tek hücreleri etkiler.Birçok fizyolojik ve patolojik koşulda ortaya çıkar ve genellikle inflamatuar yanıt söz konusu değildir. Müllerian kanalın ve interdigital perdelerin regresyonu, B ve T hücrelerin negatif seleksiyonu, self antijenleri tanıyan immunkompetan hücrelerin delesyonu, hormon bağımlı dokuların, hormon yokluğunda involusyonu gibi birçok fizyolojik olayda rol alır. Apoptosis, hücrelerin öldürülmesinde fizyolojik bir süreçtir.Çok hücreli organizmaların gelişimi, işlevselliğinde çok önemlidir. Bu hücre ölümünün kontrolündeki anormallikler : --Kanser --Otoimmun Hastalıklar --Dejeneratif Hastalıklar oluşumuna neden olur Organizmanın bütünlüğü ve homeostazisi, hücre çoğalması ve farklılaşması yanısıra, hücre ölümü ile sağlanabilir. Apoptosis sinyallenmesi ya hücre içinden gelen tetikleyici olaylar yada ölüm reseptörlerinin ligasyonu gibi hücre dışındaki olaylarla olur.Tüm apoptosis sinyalleyici yollar, proteinleri aspartat rezidülerine bölen, sistein proteazlar (Kaspazlar) ile olan ortak hücre yıkımı işleminde birleşir.Doku transglutaminaz aktivitesi ise proteinlerin çapraz bağlanmasına yol açarak intrasellüler yapıların ekstraselüler alana dökülmesine engel olur. Ölü hücrelerin yıkımı ve uzaklaştırılması, komşu hücrelerin fagozitozu ile olur. Apoptosisdeki Morfolojik Değişiklikler: Elektron mikroskobunda apoptosis esnasında; -Kromatin kondansasyonu -Stoplazmik büzülme -Plazma membran kabarması Apoptosis erken safhasında ER, mitokondri, golgide gözlenebilir değişiklikler olmadığı gösterilmiş olmakla beraber son zamanlarda, mitokondri dış membranında şişme, mitokondrial membran aralıgında sitokrom c ve bir oksidoredüktaz ile ilişkili flavoprotein olan Apopitos İndükleyici Faktör salınımı olduğu bildirilmiştir. Apoptosis esnasındaki moleküler degişiklikler arasında ; -DNA ayrılması -İç ve dış plazma membran yaprakları arasında PS dağılımının randomizasyonu vardır. Bu değişiklikler; -DNA kırılmasında,nukleotitlerin terminal deoksinükleotidil transferaz yolu ile belirlenmesi, -PS in annexin ile boyanması , -Subdiploid DNA içeriği olan hücrenin, DNA ekleyen boyalar ile belirlenmesi ile gösterilebilir. Apoptosisdeki Major Oyuncular: 1-Kaspazlar 2-Kaspazların başlatıcı etkinliğini kontrol eden Adaptor Proteinler 3-TNF-R 4-Bcl-2 proteinleri KASPAZLAR: İnisiatör K. Efektör K. Cytokin Maturasyon Ced-3 C-3 C-1 C-13 C-2 C-6 C-4 C-14 C-9 C-7 C-5 C-10 C-11 C-8 C-12 Bir grup sistein proteaz enzimidir. Apoptosis için gereklidir. Kaynağına yada ölüm uyaranına bakılmaksızın apoptosise giden tüm hücrelerde sistein proteaz aktivitesi tespit edilir. Basulovirus protein P35, tüm kaspazların potent inhibitörüdür. Kaspazlar, apoptosisin son devresindeki hücresel substratların degradasyonundan sorumlu olduğu gibi apoptosisin başlatılmasında da kritik önemi vardır.Memelilerde en az 14 kaspaz vardır.Bunlar tetrapeptit motifleri tanır ve substratı, bir aspartat rezidüsünün karboksil tarafından ayırır. Kaspazlar, düşük intrensik etkinlik gösteren zimojenler olarak sentezlenir.Aktif enzim, 20kD luk subünite ilaveten 10kD luk subünit bulunan bir heterotetramerdir. Kaspaz 8 ve Kaspaz 9, baslatıcı kaspazlardır ve efektör kaspazların aktivasyonunu başlatır.Bazı kaspazlar ise self processingdir. Efektör kaspazlar;-DNA onarım enzimleri -Lamin -Gelsolin -MDM2(P53inhibitörü) -Protein Kinaz Cd , gibi yaşamsal proteinleri ayırmakta ve inaktive etmektedir.Kaspaz yollu proteoliz ile aktive olan enzimlerde vardır.Kaspaz yolu ile aktifleşen DNAase (CAD) normalde bir inhibitöre İCAD(DNA fragmantasyon faktör) a bağlanarak inaktive olmaktadır.Apoptosis esnasında İCAD kaspazlar tarafından ayrılmakta ve bu durum karekteristik internükleozomal DNA ayrılması oluşturur. Aktif endonükleazın salınmasına yol açar. ADAPTÖR PROTEİNLER: Adaptor proteinler: Apaf-1 Ced-4 RAIDD FADD/MORT1 RIP FLIP1 -Hücre ölüm efektörleri, -Hücre ölüm regülatörleri, -Ölüm reseptörleri, -Bcl-2 gen ailesi , arasındaki bağlantıyı kurarlar. Kaspazlar, TNF-Rleri ve Adaptör Proteinler arasındaki bağlantılar, ölümsahası(DD), ölüm effektör sahası(DED) ve Kaspaz Toplama sahası(CARD) olarak bilinen alanlar arasındaki homotipik etkilesimler yolu ile sağlanmaktadır. DD içeren bir TNF-R üyesinin adaptör proteini çapraz bağlanmasından sonra TNF-R’nin DD ile adaptör proteinin DD i arasındaki homotipik etkileşimler, kaspaz agregasyonuna ve aktivasyonuna izin verir. Kaspaz toplanması ve birikimi adaptör proteinlerde bulunan başka bir alan olan DED yolu ile de olur. DEDler FADD ve Kaspas 8 de de vardır. Bu nedenle CD95in çapraz bağlanması prokaspaz 8, agregasyonu ve FADD yolu ile aktiflenmesi sonucunu doğurabilir. DR ®FADD®Kaspas 8, sinyallenmesi , FLİP molekülleri ile bloke edilebilir. FLİP molekülleri prokaspaz 8 in toplanması ve aktiflenmesini önlemektedir. FLİP in, FLİPL ve FLİPS şekilleri vardır. FLİPL daha yaygındır ve prokaspaz 8 e çok benzer.FLİPS ise sadece iki DED içerir. Bütün kaspazlar TNF-R çapraz bağlanma yolu ile aktive olmadığı gibi bütün başlatıcı kaspazlar DED içermezler. Memeli prokaspaz 9 ve prokaspaz 2 ve C.elegans Ced-3 ü aynı zamanda kendi spesifik adaptörü olan Apaf-1 ve Ced-4 te bulunan CARD ler içerir. Kaspaz 8, CD95 yoluyla aktive olurken, Kaspaz 9 Apaf-1 ile aktive olur ve Bcl-2 proapopitotik üyeleri ile kontrol edilir. TNF-R AİLESİ: TNF-R1 CD95 DR3 CAR1 DR4 DR5 NGFRp75 TNF-R üyelerinin pleotropik etkisi vardır. Hücre tipine ve aldığı sinyallere göre proliferasyon ,canlı kalma, farklılaşma yada ölümü tetikleyebilir. Bu reseptörler, TNF ligant ailesine ait ligantlar tarafından aktive edilir. Bu bağlar memrana bağlanmış trimerler olarak sentezlenir, sinyalleme için çok miktarda çapraz bağlanma gerekir. TRAİL/APO-21(TNF ile ilgili apoptosis başlatıcı ligant), Apoptosisi transforme hücrelerde başlatır ve diğer ligantlara kıyasla dokularda daha yaygındır. TRAİL in 4 reseptörü tanımlanmıştır: DR4 , DR5 , DCR1 ,DCR2 . Fakat sadece DR4 ,DR5 apoptosisi başlatır. Diğerleri, intrasellüler ve transmemran bölgeleri yada DD bölgeleri içermediginden apoptosisi başlatamazlar. Bu reseptörler tuzak vazifesi görür. Akciğer ve kolon kanserinde Fasl (DCR3) ye karşı bir tuzak reseptörün çok fazla olduğu gösterilmiştir. Spesifik kaspaz inhibitörleri ve kaspaz eksikliği olan mice’ların fibroblastlarında yapılan deneylerde, kaspaz 8 in , DR4 , DR5 ve DR3 ile oluşan apoptosis için şart olduğunu göstermiştir. BcL-2 ÜYELERİ: Antiapoptotik Proapoptotik Bcl-2 Bax Bcl-xl Bod Boo Bcl-xs Bcl-w Bid A1 Bim Mcl-1 Blk Bak Antiapoptotik Bcl-2 üyeleri, a.a sıraları en az üç dört bölgede benzerlik gösterir. Bcl-2 ye benzerlik gösterirler. Proapoptotik Bcl-2 lerin hepsinde BH3 bölgesi vardır. Antiapoptotiklerde bu bölge yoktur. Bcl-2 proteinlerinin, transmembran bir C terminali vardır. Bu alan nükleer membran, mitekondri dış membranı, ER membrannın sitozolik tarafında yer alır. Bunlar etkileşim bölgeleridir. Bu bölgeler bazılarında sabit iken bazılarında degişebilir. Örneğin, Bax sitozolik bir proteindir, apoptosisde mitokondrial membrana redistribsiyonu olur. Antiapoptotik Bcl-2 üyeleri kaspaz aktivasyonunu önleyerek antiapoptotik etki gösterirler. Proapoptotik Bcl-2ler sinyalleri adaptör proteinlerde yoğunlaştırır, adaptör proteinler ölüm teşvik edici protein kompleksi Apoptosom un tam bileşimidir. Memelilerde,efektör kaspazlarin aktivasyonu iki farklı mekanizma ile olur; 1-Hücre içinde stresle ortaya çıkan sinyallerle başlar. -Timosit ve embriyonik fibroblastlarda, -DNA hasarında, -Steroid,Strausporin tedavisinde, -Büyüme faktörü yoksunluğunda, oluşan apoptosisler genelde böyledir. Burada Apaf-1 ve Kaspaz 9, Kaspaz 3, gereklidir. Bcl-2 antiapoptotik proteinleriyle bloke edilir. Bu ölümler ihmal ölümleri olarak bilinir. 2-Apoptotik sinyallerle, CD95 ve TNF-R yoluyla apoptosis. FADD ve Kaspaz 8 gereklidir. Bcl-2 apoptotik proteinlerle bloke edilemez. Özellikle lenfositlerdeki apoptosis bu yolla olur. Aynı hücrede TNF-R ve Bcl-2 tarafından kontrol edilen yolların aynı anda bulundugu gösterilmiştir ve muhtemelen aralarında bir bağlantı olduğu tespit edilmiştir. Hücre extraktları ile yapılan çalışmalar, Holocytochrom c, dATP, ATP nin Apaf-1 ile olan Kaspaz 9 aktivasyonunu ilerlettiğini göstrmiştir. Ek larak, Holocytochrom c nin, apoptos altındaki hücrelerde mitekondriden stoplazmaya göç ettiği gösterilmiştir. Apoptosis boyunca hücre ölümü bir çok dokuda, hücre diferansiasyonunun farklı aşamasında meydana gelebilir. Apoptosisdeki anormallikler hastalıkların oluşumunda rol alabilir. Antiapoptotik Bcl-2 ekspresyonu fazla olan miceların tümörogenezise eğilimli olduğu gösterilmiştir. Tek başına Bcl-2 daha az onkojendir fakat l-myc ve pim 1 ile sinerjik etki gösterir. Bcl-2 fazla ekspresyonu neoplastik transformasyonda hücrelerin yaşam süresini uzatmada rol alır ve onkojenik kazanılmış mutasyonları kolaylaştırır. Bcl-2 proapoptotik üyeleri tümör supressör gibi görev yapar. Kemoteropatikler ve radyasyon terapisi tm hücrelerinin apoptosisini teşvik eder. Çalışmalar Kaspaz 8 ve Kaspaz 1 dışındaki kaspazların ilaçla teşvik edilmiş apoptosis için esansiyel uyaranlar olduğunu göstermiştir. Kaspaz 8 i olmayan mice ların kemoterapiye ve radyoterapiye daha duyarlı olduğu Kaspaz 9 u olmayanların da yüksek derecede dirençli olduğu gösterilmiştir. Hücrelerin uygunsuz hayatta kalışları sadece tümörogenezis için geçerli değildir. Bağışıklık sistemi yanıtı hızlı hücre proliferasyonu ile karekterize edilir. Anormal şekilde uzatılmış aktive lenfosit yaşamı, etkin lenfokin üretimi ve bulundukları ortama korkunç zararları ile sonuçlanır. Transgenik mice’ların B lenfositlerinde Bcl-2 nin fazla ekspresyonu veya Bim in olmaması, uzamış humoral yanıt ve plazma hücrelerinin patolojik birikimine yol açar(SLE). Apoptosis viruslara ve intersellüler diğer patojenlere karşı savunma mekanizması olarak kullanılır. Bu patojenlerin bir çoğu yaşadıkları hücre ölümüne karşı engelleyici mekanizmalar geliştirmişlerdir. Örn:Adenovirus Protein E1B55 viral replikasyonu sağlarken, hücreninde apoptosisini aktive eder. Bu Apoptosis de iki Adenovirus proteini E1B55(P53homoloğu), E1B19 (Bcl homoloğu) ile bloke edilebilir. Bcl –2 homologlarına ilaveten virusler daha değişik inhibitörler kazanmıştır. Adenovirus®E3-14.7 Kaspaz 8 i inhibe eder. Compox V.®Crm-A Kaspaz 1 ve 8 inhibe eder. İL-1,İNFg,İNFb üretimini inhibe eder.CD95, TNF-R1 tarafından saglanan apoptosisi engeller. Pox V.®TNF-R homologlarını kodlar , TNF ve lenfotoksinlerin yaptığı olayları nötralize eder. Basulovirus ®P35 , bütün kaspazları inhibe eder. Herpes V.8®Bcl-2 homoloğu ORF-16 ve vFLİP ORF-71(prokaspaz 8 inhibisyonu). Bircok virus hem Bcl-2 hem de reseptör aracılı apoptosisi engelleyebilir. Hazırlayan: Dr.Birşen Bilgici

http://www.biyologlar.com/apoptozis-hakkinda-bilgiler

Genetiğin Dünyada ve Türkiyedeki Tarihi

Dünyada hayatın başladığı kabul edilen 4.6 milyar yıl önce, DNA(deoksiribonükleikasit) yaşamın hücresel metabolik aktivasyonlarını ortaya koyan genetik yapı olarak hizmet etmiştir. “Gen” terimi 1900. yıllara kadar kullanılmamasına rağmen genin fonksiyonu ile olan araştırma 1800 lü yıllarda başlamıştır. Gregor Mendel, Avusturyalı din adamı, manastırının bahçesinde yıllarca çalıştı, farklı bezelye varyetelerini melezlemiştir. Dikkatli kayıtlar tutarak, melezlerin döllerini saymış, bezelye şekli, çiçek rengi, bitki yüksekliği gibi özelliklere bakarak genlerin fenotipik ekspressiyonunu incelemiştir. Dikkatli gözlem, doğru kayıt tutarak verileri dikkatlice analiz yapmış ve her bir bitkinin erkek ve dişi ebeveynlerinin döllerine kalıtım üniteleri veya faktörlerin varlığı teorisini ortaya koymuştur. 1884 yılında Mendel öldüğü zaman çalışmasının değerini kimse bilmiyordu. Mendel’in bulduğu faktör veya kalıtım ünitelerini gen olduğu 1900 yıllara kadar anlaşılamadı. Aynı dönem içerisinde, 1809-1882, İngiliz Charles Darwin, fizikçi ve biyoloji uzmanı Erasmuz Darwin’in torunu, biyolojik bilimlerde önemli ilerlemelere neden olan bilgileri topluyordu. Darwin tıp ve din konusunu çalıştı. Cambridge’den mezun olduktan sonra kariyerini geliştirmek istiyordu. Darwin bitki ve hayvanlar üzerinde çalıştı, örnekler topladı ve yaşayan canlıların özelliklerine göre çizdi. Bu çalışmayla güney amerika kıyılarında Galapagos Adaları üzerindeki çalışmayla ünlü oldu. Darwin bu arada birçok fosil topladı ve bugünkü türlerin varlığını ortaya koyan hayvanların fosillerini buldu. Her adayı ziyaret edip türlerin karakterler yönünden varyasyon ortaya koyduğunu tespit etmiştir. İspinozlarda örneğin gaga şekli ve gaga uzunluğu güney amerika kıyılarında yaşayan türlerle adalarda yaşayan türlerin ayrılmasında yardımcı olmuştur. Darwin, çalışmalarında ortaya çıkan son türlerin öncekilerden meydana gelmesi hakkındaki teorilerini belirtti. Darwin aynı zamanda doğada oluşan seçici işlemi savundu. Buna göre güçlü özelliklere sahip türler canlı kalmaya daha çok meyilli idi. Darwin’in çalışmalarına başlangıçta cevaplar negatif idi özellikle dini liderler özellikle dünya üzerinde yaşamın ortaya çıkması yorumu hakkındaki bu fikirlerden büyük üzüntü duydular. Bununla beraber bu iki çalışma genetik ve evolusyon hakkındaki biyolojik teorilerine öncülük etmişlerdir. Dünyada Genetiğin Gelişimi 1900 yıllarda Mendelin çalışmalarının yeniden keşfinden sonra genin doğası hakkında büyük bir bilgi patlama olmuştur. Biyoloji alanında çalışan bilim adamları, hücredeki çekirdek ve kromozomun önemi üzerinde durdular. Çünkü gözlemlerde, kromozomlar yumurta ve polen/spermi oluşturmak üzere mayoz esnasında sayısını yarıya indiriyor ve sadece bölünme sırasında görülüyordu. Bu sebeple DNA moleküllerinin nasıl faaliyete geçerek organizmaları ürettiklerini anlamak için birçok çaba sarf edildi. Amerikalı James Watson ve İngiliz Francis Crick birkaç biyolog araştırmacıyla 1953 yılında DNA nın çift heliks yapısını incelediler. DNA kavramı yaşamın geleneksel dili olduğu bakterilerde, mantarlarda, bitki ve hayvanlarda yapılan çalışmalarla ortaya konuldu. Yaşayan organizmalar arasında yer alan bu ilişki biyoteknoloji ve genetik mühendislik biliminin gelişimine neden olmuştur. Mühendislik teknolojisi, bitki ve hayvanları geliştirmek için yaşayan diğer organizmaları ve canlıların kısımlarını kullanmıştır. 1970 yıllarında, araştırmacılar DNA’nın bir canlıdan kesilerek diğer canlıya yerleştirebileceklerini böylece rekombinant DNA teknolojisini buldular. Bu şekilde insülin, hormon, interferon ve TPA (doku plasminogen aktifleştirici) gibi ilaçları tıp dünyasına sundular. İnsan gen terapisi yöntemiyle genleri hasarlı olan veya eksik olan fertlere gen nakli gerçekleştirilmiştir. Üreme teknolojisinin gelişimiyle üremenin artırılmasına çalışılmıştır. İnsan üreme teknolojiyle uğraşan araştırmacılar insan embriyosunu in vitro koşullarda elde etti ve daha sonra kullanılmak üzere dondurdular. Anne ebeveynler kendilerine ait olmayan genetik döller vermişlerdir. 1993 de, l, George Üniversitesinde çalışmakta olan Dr Robert Stillman ve Jerry Hall insan embiryosunu klonladı ve 6 gün bunları yaşatmayı başardı. Klonlama ya da genetik olarak benzer organizmanın üretimi ilk kez havuç bitkisinde başarılmıştır. Klonlama işleminde havuç kök hücreleri yeni bitki oluşturmak üzere kullanılmıştır. Bitki klonlama teknolojisindeki bu başarılar 1952 de kurbağalardaki klonlamaya kadar devam etmiştir. 1970 lerde fare, 1973 de sığır ve 1979 da koyun klonlaması olmuştur. Bu çalışmalar, hızlı çoğalan iyi bir sürü daha iyi süt üretimi amacıyla insanlık yararına gerçekleştirilmiştir. Gen teknolojisiyle biyoteknolojideki ilerlemeler zararlılara ve soğuğa dayanıklı bitki türleri, daha çok üreyebilen ve gelişkin çiftlik hayvanları üretimine başarılı olmuştur. Genetik olarak farklı domates türleri, rafta kalma süresi uzun olan varyetelerin gelişmesini sağlamıştır.1990 yıllarında Amerikada daha da ileri gidilerek İnsan Genom Projesi gündeme getirilmiş ve insan genlerinin tüm haritasının yapılması planlanmıştır. Bu projenin yaklaşık değeri yılda 200 milyon dolar olup 2005 yılında bitirilmesi planlanmaktadır. Cystic fibrosis, orak şekilli hücre anemisi ve Huntingon’s chorea gibi birçok hastalık için DNA kodları kromozomlarda yer alan özel bölgelerde kodlanmış olduğu bu sayede bulunmuştur. Bununla beraber biyoteknolojinin hızlı gelişimi beraberinde birçok problemide ortaya koymuştur. Bilimsel tartışmalar ahlaki ve geleneksel sorular yeni gelişmelerle ortaya çıkmıştır. Bu nedenle genetik bilimi konusunda herkesin bilgiye ihtiyacı bulunmaktadır. Dünyada Genetiğin Tarihi; 1858 yılında Charles Darwin - Alfred Russel Wallace doğal seleksiyon teorisini ortaya koydular ve çevreye iyi uyum gösteren populasyonların yaşadığını ve özelliklerini nesillerine aktardıklarını belirttiler. 1856 Charles Darwin, Türlerin Orijin adlı eserini yayınladı. 1866 Gregor Mendel bezelye bitkilerinde faktörlerin aklıtımı üzerine araştırmlarını yayınladı. 1900 de Carl Correns Hugo de Vries Erich von Tschermak Mendelin prensiblerini bağımsız olarak keşfetti ve doğruladı. Modern genetiğin başlangıcını yaptı. 1902 Walter Sutton Mndel ve citoloji arasındaki ilişkileri ortaya koydu, kalıtım ve hücre morfolojisi arasındaki boşluğu kapattı. 1905 Nettie Stevens Edmund Wilson bağımsız olarak Cinsiyet kromozomlarını buldu XX’i dişi XY’i erkek olarak değerlendirdi. 1908 Archibald Garrod, insanda enzim eksikliğinden meydana gelen doğum hastalıklarının metabolizmasını çalıştı. 1910 Thomas Hunt Morgan, ilk kez meyve sineği Drosophila melanogaster’de cinsiyete bağlı kalıtım olan beyaz göz rengini araştırdı. Bu araştırma linkage (bağlantı) olayını içeren gen teorisini geliştirdi. 1927 Hermann J. Muller, X-ışınlarını kullanarak Drosophila da suni mutasyonların oluştuğunu buldu. 1928 Fred Griffith Diplococcus’larda R ve S nesillerine bilinmeyen yapıların olduğu keşfetti. 1931 Harriet B. Creighton Barbara McClintock mısırda krossing overın sitolojik aknıtlarını gösterdi. 1941 George Beadle Edward Tatum, ışınlanmış ekmek küfünde, Neurospora, bir enzim tarafından kontrol edilen genin faaliyetini ifade etti. 1944 Oswald Avery, Colin Macleod ve Maclyn McCarty, Griffith’in denemelerinde transfer olan yapının DNA olduğunu ortaya koydu. 1945 Max Delbruck, 26 yıl ard arda Cold Spring Hardour’da fajlar üzerinde kurs verdi. Bu kurd moleküler biyolojide iki generasyonu içeren ilk kursdu. 1948′lerde Barbara McClintock mısırda renk varyasyonunu açıklayan ilk transposable elementleri keşfetti. 1950′de Erwin Chargaff Canlılardan elde edilen DNA örneklerinde Adenin-Timin ve Guanin-Sitozin arasındaki 1:1 oranını keşfetti. 1951 yılında Rosalin Franklin DNA nın X ışınlı ilk fotoğrafını çekti. 1952 ‘de Martha Chase Alfred Hershey 35S fajlarını işaretledi ve DNA yı 32P ile işaretliyerek kalıtım molekülünü buldu. 1953 Francis Crick, James Watson DNA molekülünün üç boyutlu yapısını çözdü. 1958 yılında Matthew Meselson, Frank Stahl azot izotoplarını kullanarak semi konservatid replikasyonu kanıtladı. 1958 Arthur Kornberg, E. coli’de DNA polimerazı saflaştırdı ve test tüpünde ilk enzimi elde etti. 1966 Marshall Nirenberg, H. Gobind KhoranaLed, Genetik kodu deşifre etti ve 20 amino asit için RNA kodonlarını buldu. 1970 Hamilton Smith & Kent Wilcox, ilk restriksiyon enzimini izole etti, Hind II Bu DNA bölgesini özel bir bölgeden kesmektedir. 1972 Paul Berg & Herb Boyer, ilk rekombinant molekülleri üretti. 1973 Joseph Sambrook Led, Agarose jel elektroforesisde DNA yı ethidium Bromid ile boyayarak gösterdi. 1973 Annie Chang Stanley Cohen, rekombinant DNA molekülünü oluşturdu ve E. Colide replike etti. 1975 Rekombinant DNA deneylerinin düzenlenmesi hakkında rehberin sunulması. California, Asimolar Uluslar arası Toplantı. 1977 Fred Sanger, DNA dizilişi için zincir terminasyon metodunu (dideoxy) geliştirdi. 1977 Tıp alanında önemli ilaçların üretildiği ilk rekombinant DNA metodlarının kullanıldığı genetik mühendisliği şirketi kuruldu (Genentech). 1978 Rekombinant DNA teknolojisi ile üretilen ilk insan hormonu somatostatin elde edildi. 1981 Üç farklı bağımsız araştırma ekibi insan ongene lerini keşfetti (kanser genleri). 1983 James Gusella kan örneklerini topladı Huntington’s hastalığını kontrol eden genin kromozom 4 üzerinde olduğunu keşfetti 1985 Kary B. Mullis, Polimeraz zinzir reaksiyonunu tanımlayan araştırmasını yayınladı (PCR). 1988 İnsan Genom projesi başladı. İnsan kromzomlarının DNA dizilişinin tanımlanması hedef alındı. 1989 Alec Jeffreys, DNA parmak izi terimini tanıttı ve DNA polimorfizm, ile ailesel, göç ve cinayet vakalarında kullandı. 1989 Francis Collins & Lap Chee Tsui Cystiz Fibrosis hastalığına neden olan ckromosom 7 üzerindeki CFTR regulatör proteinin genetik kodunu tanımladı. 1990 İlk gen yer değiştirme gerçekleşti. Normal ADA geninin RNA kopyası retrovirüs vasıtasıyla 4 yaşındaki bir kıs çoçuğunun T hücrelerine nakledildi. Bu uygulamada bağışıklık sistemi çalışmaya başladı. 1993 Flavr Savr, domatestleri raf ömrünü uzatmak için genetik olarak modifiye etti. 1996 Iwan Wilmut, çekirdek transferi ilk genetik kopyalama gerçekleştirildi. Genetiğin Tarihinde Klasik Araştırmalar: Gregor Mendel’in Deneyleri Gregor Mendel (1866), “Experiments on Plant Hybrids,” Trans. by Eva Sherwood, in The Origin of Genetics, Curt Stern and Eva Sherwood, eds. (W. H. Freeman and Co., 1966), pp. 1-48. Keşifler Hugo De Vries (1900), “The Law of Segregation of Hybrids,” Trans. by Eva Sherwood, in The Origin of Genetics, Curt Stern and Eva Sherwood, eds. (W. H. Freeman and Co., 1966), pp. 107-118. Mendel Araştırmaları William Bateson (1901), “Problems of Heredity as a Subject for Horticultural Investigation,” Journal of the Royal Horticultural Society 25: 54-61. Biyometri W. F. R. Weldon (1895) “Remarks on Variation in Animals and Plants,” Proceedings of the Royal Society 57: . G. Udny Yule (1905), Mendel’s Laws and Their Probable Relations to Intra-Racial Heredity,” New Phytologist 1: 226-7. Genotip & Fenotip W. Johannsen (1911), “The Genotype Conception of Heredity,” The American Naturalist 95: 129-159. Eugenler Charles Davenport (1912), “The Inheretance of Physical and Mental Traits of Man and Their Application to Eugenics” in Heredity and Eugenics. W. Castle, ed. University of Chicago Press. William Castle (1930) “Race Mixture and Physical Disharmonies,” Science, n.s. 71: 603-606. Kalıtımın Kromozom Teorisi T. H. Morgan (1910) “Sex Limited Inheritance in Drosophila,” Science 32: 120-122. A. H. Sturtevant (1917) “Genetic Factors Affecting the Strength of Linkage in Drosophila,” Proceedings of the National Academy of Science 3: 555-558. Sitogenetik Harriet B. Creighton and Barbara McClintock (1931), “A Correlation of Cytological and Genetical Crossing-Over in Zea mays,” Proceedings of the National Academy of Sciences 17: 492-497. T. S. Painter (1934), “A New Method for the Study of Chromosome Aberrations and the Plotting o Chromosome Maps in Drosophila melanogaster,” Genetics 19: 175-188. Mutasyon H. J. Muller (1927) “Artificial Transmutation of the Gene,” Science 66: 84-87. Evolasyon Genetiği Theodosius Dobzhansky (1937), Genetics and the Origins of Species, excerpts. Columbia University Press. G. Turesson, (1922) “The Genotypical Response of Plant Species to the Habitat,” Hereditas 3: 211-350. Bitki ve Hayvan Islahı George Shull (1909) “A Pure Line Method of Corn Breeding,” Report of the American Breeders Association 5: 51-59. İnsan Genetiği J. Neel (1949) “The Inheritance of Sickle Cell Anemia,” Science 110: 64-66. L. Hogben (1932) “The Genetic Analysis of Familial Traits,” Journal of Genetics 25: 97-112. Populasyon Genetiği Sewall Wright (1931) “Evolution in Mendelian Populations,” Genetics 16: 97-159. J. B. S. Haldane (1954) “The Cost of Natural Selection,” Journal of Genetics 55: 511-524. Gelişim Genetiği S. Gluecksohn-Schoenheimer (1940) “The effect of an early lethal (t*) in the house mouse,” Genetics 25: 391-400. C. Waddington (1975) “Genetic Assimilation,” reprinted in The Evolution of an Evolutionist. Cornell University Press. Biyokimyasal Genetik G. W. Beadle and E. L. Tatum (1941), “Genetic Control of Biochemical Reactions in Neurospora,” Proceedings of the National Academy of Sciences 27: 499-506. Arthur Pardee, Francois Jacob, and Jacques Monod (1959) “The Genetic Control and Ctyoplasmic Expression of “Inducibility” in the Synthesis of beta-galactosidase by E. coli,” Journal of Molecular Biology 1: 165-178. Genetik İnce Yapı Raffel, D. and H. J. Muller. 1940. “Position Effect and Gene Divisibility Considered in Connection with Three Strikingly Similar Scute Mutations,” Genetics 25: 541-583. Seymour Benzer (1955) “Fine Structure of a Region of Bacteriophage,” Proceedings of the National Academy of Sciences 41: 344-354. Barbara McClintock (1956) “Controlling Elements and the Gene,” Cold Spring Harbor Symposia on Quantitative Biology 21: 197-216. Moleküler Genetik O. Avery, C. MacLeod, and M. McCarty (1944), “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types I.,” Journal of Experimental Medicine 79: 137-158. James Watson and Francis Crick (1953), “A Structure for Deoxyribonucleic Acid,” Nature 737-738. M. Meselsohn and F. Stahl (1958) “The Replication of DNA,” Cold Spring Harbor Symposia for Quantitative Biology 23: 9-12. M. Nirenberg and Philip Leder (1964) “RNA Codewords and Protein Synthesis,” Science 145: 1399-1407. Türkiye’de Genetiğin Gelişimi; Genetik bilimi, Türkiye’de gelişimi oldukça yenidir. Çalışmalar, 1950 yıllarında sonra sitogenetik, biyometri, populasyon genetiği, mutasyon genetiği alanında başlamıştır. !978 yıllarında gentik sahasında çalışanlar biraraya gelmek için faaliyetlerde bulunmuşlar ancak faaliyet devam etmemiştir. Çalışmalar TÜBİTAK desteğiyle sürmekte olup, Üniversitelerde dış ülkelere görevlendirilen elemanların 1985 yıllarından sonra dönerek yeni teknikleri uygulamalarıyla sitegenetik & moleküler genetik sahasında ilerlemeler olmuştur. Bu arada Üniversiteler kendi bünyelerinde merkez laboratuvarları kurma yoluna gitmişlerdir. İstanbul Üniversitesinde BİYOGEM ve Atatürk Üniversitesindeki Biyoteknoloji Merkezi buna örnektir. Son zamanlarda RFLP, RAPD, PCR, in-situ melezleme, ısozyme, PAGE gibi metodlar DNA ve proteinler üzerinde uygulanmaktadır. Çalışmalarda yeni tekniklerin bulunmasından ziyade metodların pratiğe uygulanması ağırlık kazanmıştır. Çeşitli alanlarda yapılan çalışmalar eldeki bilgilere göre aşağıda tarih, isim ve konu sırasına göre sınıflandırılmıştır. Genetik Sahasında Yapılan araştırmalar; Sitogenetik 1965 Şehabettin Elçi, Agropyron türlerinde karyotip analizleri. 1966 Şehabettin Elçi, Mitoz kromozom analizlerinde yeni bir metod. 1974 Sevim Sağsöz, Tetraploid bitkilerin elde edilmeleri. 1974 Emiroğlu, Ü. Tütünlerde haploidlerin eldesi, mayoz bölünme ve karyotip analizleri. 1977 Emine Bilge, M. Topaktaş, N. Gözükırmızı, M. Kocaoğlu. Arapa’ da Deneysel mutasyonların eldesi. 1977 H.R. Ekingen, Triticumda 3D kromozomların eşlenme üzerine etkileri 1982 Sevim Sağsöz, İngiliz çiminde ploidi derecesi, tohum tutma ve stoma uzunluğu ilişkileri 1983 Sevim Sağsöz, tetraploid ingiliz çimlerinde mayoz bölünme ve seleksiyon kriterleri 1995 Gülşen Ökten, insan kromozomlarında karyotip analizi 1995 Neriman Gözükırmızı, Bitkilerde karyotip analizleri 1996 Nurten Kara, tıbbi bitki olan yabani soğan kromozomlarının karyotipi. 1996 A. Okumuş, mayozda eşlenmesnin genetik kontrolü ve karyotip analizleri. Moleküler Genetik 1996 Sebahattin Özcan, Tütünde Gen transferi 1996 Gürel, F., Arı, Ş & Gözükırmızı, N. Arpada varyasyonun RAPD ve moleküler marker kullanılarak tanımı. 1998 A. Altınalan & Numan Özcan, Rekombinat DNA tekniğiyle ±-amilaz geni aktarılan suşların probiotik geliştirilmesi 1998 A. Okumuş & M. Akif Çam, Koyunlarda DNA ekstraksiyonu 1998 A. Okumuş, M. Olfaz & M. Akif Çam, Koyun melezlerinde hemoglobin lokusunun genetik kontrolü 1998 T. Oğraş, E. Arıcan & N. Gözükırmızı, Transgenik tütünde intron dizilerinin değerlendirilmesi Gelişim Genetiği 1996 Sebahattin Özcan, Tütünde doku kültürü 1998 Serhat Papuççuoğlu, Sema Birler, Serhat Alkan, Mithat Evecen, Kamuran İleri; Hayvanlarda İn vitro fertilizasyon 1998 Betül Bürün, Tütünde somatik embriyogenesis ve ploidi düzeyleri. Biyokimyasal Genetik 1993 Asal, S., Kocabaş, Elmacı, C. Tavul ve bıldırcınlarda yumurta akı proteinlerinde genetik polimorfizm. 1994 Dayıoğlu, H. Tüzemen, N., Yanar, M. Atatürk Üniversitesi Ziraat İşletmesinde yetiştirilen çeşitli sığır ırklarında transferrin polimorfizmi üzerine araştırmalar 1994 Gürkan, M. ve Soysal, M.İ. Edirne ili ve yöresinde yetiştirilen boz step, siyah alaca ve siyah-alaca x boz step melez sığırların kalıtsal polimorfik Hb ve Tf tipleri bakımından genetik değeri 1996 Abdülkerim Bedir, İnsan genomunda AP-PCR uygulamaları 1996 Sekin, S, İbrahim Demir, Biyokimyasal markerların genotip tayininde kullanılması 1996 Baş, S., Ülker, H., Vanlı, Y. ve Karaca, O. Van yöresi karakaş kuzularında transferrin polimorfizmi 1996 Çelik, A. ve Pekel, E. Türkiye koyun populasyonunun hemoglobin (Hb) ve transferrin (Tf) poliformizmi bakımından genetik yapısı 1998 Sevinç Asal & Meltem İ. Erdinç, Süt proteinlerinde genetik polimorfizm 1998 Ramazan Yılmaz, E. Yüksel & K. Erdoğan, Erinaceus populasyonlarında enzimatik karşılaştırmalar Populasyon Genetiği 1953 Hüseyin Gökçora, Melez Mısır populasyonunda genetik çalışmalar 1960 Hüseyin Gökçora, Kendilenmiş döllerin kıymetlendirilmesi. 1973 F. İncekara, M.B. Yıldırım & M.E. Tuğay, Buğday populasyonunda karakterlerin kalıtımı 1973 Doğrul, F. Memleketimizde yetiştirilen yerli ve yabancı saf ve melez sığır ırkı kanlarında beta-globulin ve hemoglobin varyasyonları 1977 H. Bostancıoğlu, Arpa üzerine genetik çalışmalar 1977 Emiroğlu, Ş.H., G. Yazıcıoğlu, Z.M. Turan. Gossypolsuz pamuk ıslahı 1979 Emin Ekiz, Ayçiçeğinde kendileme depresyonu 1985 Doğrul, F. Koyunlarda hem ve tf proteinlerinin dağılımı 1989 Asal, S. Koyunlarda tf polimofizmi tespiti 1992 İhsan Soysal & Haskırış, H. Türkgeldi koyun populasyonlarında kan proteinleri yönünden genetik yapısı 1998 İhsan Soysal & Alparslan A. Ülkü, Keçi populasyonunda kan proteinleri ve Na,K seviyelerinin genetik yapısı 1998 Gamze Umulu, Japon bıldırcınlarında beyaz renk kalıtımı Kantitatif Genetik 1961 Erdoğan Pekel, Akkaraman Koyun Islahında kantitatif genetik çalışmaları 1993 Soysal, M.I. ve Kaman, N. Acıpayam koyun populasyonunun bazı kalıtsal polimorfik kan proteinleri tarafından genetik yapısı ve bu karakterler ile çeşitli verim özellikleri arasındaki ilişkiler 1994 Vanlı, Y. ve Baş, S. Atatürk Üniversitesi koyun sürülerinde beta-globulin (Transferrin) polimosfizminin genetiği ve kantitatif karakterlerle bağlantısı 2. fenotipik analizler. 1995 Şekerden, Ö., Doğrul, F. Erdem, H. ve Altuntaş, Simental sığırlarda serum transferrin ve hemoglobin tipleriyle gelişim özelliği arasındaki ilişkiler Mutasyon Genetiği 1969 Didar Eser, Avena sativa’da röntgen ışınları ve anöploid değerler 1980 Metin B. Yıldırım. Buğday mutant populasyonunda seleksion çalışmaları 1998 Haydar Karayaka, gen mutasyonlarının tespiti Biyometri 1967 Şaban Karataş, Genetik ve Fenotipik Korelasyonların tahmin metodları 1996 H. Okut, Y. Akbaş & A. Taşdelen. Blue ve Blup tahminlarinde outliner seçimi 1998 Oya Akın & Tahsin Kesici, Tribolium populasyonunda genetik parametreler 1998 Sinan Aydoğan & Tahsin Kesici, Kalıtım derecesi tahmininde eklemeli olmayan etkiler 1998 Zahide Kocabaş, Tahsin Kesici & Ayhan Eliçin, Kanonik korelasyonun hayvan ıslahınd uygulaması Yayınlanan Kitaplar 1963 Orhan Düzgüneş. Bilimsel araştırmalarda istatistik prensipleri 1970 Fethi İncekara. Genetik 1973 İsmet Baysal, Sitogenetik 1978. Şehabettin Elçi, Sitolojide hızlı araştırma yöntemleri 1982 Şehabettin Elçi, Sitogenetikte gözlemler ve araştırma yöntemleri. 1982 Sevim Sağsöz. Sitogenetik 1983 Muvaffak Akman, Bakteri Genetiği 1983 Emin Arıtürk, Evcil Hayvanların genetiği 1983 Neriman Alemdar, Sitoloji 1986 Bekir Sıtkı Şaylı, Medikal Sitogenetik 1988 Sezen Şehirali & Murat Özgen, Bitki Islahı 1994 Müzeyyen Seçer, Moleküler Biyoloji 1996 Düzgüneş, O. A. Eliçin & Numan Akman, Hayvan ıslahı 1996 İhsan Soysal, Hayvan ıslahının genetik prensipleri

http://www.biyologlar.com/genetigin-dunyada-ve-turkiyedeki-tarihi

Zona

Zona olarak da bilinen Herpes Zoster su çiçeği virüsünün yaptığı bir enfeksiyondur. Su çiçeği geçiren herkes Zonaya yakalanabilir. Virüs sinir köklerinde aktif olmayan bir şekilde yaşamını sürdürür ve yeniden aktifleştiğinde Zona gelişir. Suçiçeği geçiren kimselerin % 20 si Zona geçirir. Virüsü uyandırıp aktifleştiren neden bilinmemektedir. Vücudun enfeksiyonlarla baş etmesini sağlayan bağışıklık sistemindeki bir güçsüzlük virüsün çoğalmasına ve sinir boyunca deride yayılmasına neden olur. Çocuklar bile Zona geliştirebilmesine rağmen, genellikle 50 yaşın üzerinde rastlanır. Hastalık, travma, stres gibi faktörler zona geçirilmesine neden olabilir. Herhangi bir nedenle bağışıklık sistemi zayıflayan kişi zona geçirebilir. Bu kişilerde hastalık ciddi seyretmeye eğilimlidir. Bağışıklık sisteminin zayıfladığı lösemi, lenf oma gibi kanserler ve de AIDS de zona sık görülür. Kanser kemoterapisi ve radyoterapi, organ naklinde kullanılan ilaçlar, uzun süreli kortizon kullanımı bağışıklık sistemini baskılayabilir. Zonanın bulguları nelerdir? Zonanın ilk bulgusu derinin belirli bir bölgesinde yanma batma tarzında ağrı ve duyarlılık artışıdır. Bu ağrı döküntünün gelişmesinden 2-3 gün önce döküntü alanında başlar. Bu arada baş ağrısı ve ateş olabilir. Bu alanda daha sonra kızarıklık ve şeffaf su kabarcıkları gruplar halinde oluşur. Bu kabarcıklar 2-3 hafta kadar sürer. Bu kabarcıklar koyu renkli kan ile dolar, sonra kabuklanır ve iyileşmeye başlar. Ağrı daha uzun süre sürebilir. Nadir olarak döküntü hiç görülmemeksizin de ağrı olabilir. Ağrının şiddeti nasıldır? Ağrı sıklıkla ağrı kesici ilaçlar kullanmayı gerektirecek kadar şiddetlidir Zona genellikle vücudun hangi bölgesinde görülür? Zona genellikle gövdede ve kalçalarda görülür. Fakat yüz, kol ve bacaklarda da görülebilir. Gözde kalıcı hasar bırakabildiği için göz de hastalık görüldüğünde dikkatli bir bakım gerekir. Burun ucunda su kabarcığı oluşmuşsa bu göz tutulumunun olduğunu gösterir. Bu durumda muhakkak Göz Hastalıkları uzmanı tarafından muayene yapılmalıdır. Zonanın komplikasyonları nelerdir? Deri döküntüleri geriledikten sonra Zonaya ait ağrı kalabilir. Özellikle yaşlı hastalarda ağrı aylar ve yıllar boyu kalır. Zonanın erken evrelerinde tedaviye başlamak ağrı gelişimini engelleyebilir. Su kabarcıklarında bakteri enfeksiyonu gelişebilir ve bu yaraların iyileşmesini engeller. Döküntüde ağrı ve kızarıklık artarsa muhakkak doktorunuza başvurun. Bu durumda antibiyotik tedavisi gerekebilir. Diğer bir durum Zonanın tüm vücuda ve diğer organlara yayılmasıdır. Nadir olarak görülen bu durumda bağışıklık sistemi baskılanmıştır. Zona nasıl tanınır? Tanı su kabarcıklarının tipik görüntüsü ve döküntü başlamadan önce vücudun tek tarafında ağrı olması ile konulur. Gerekirse incelenmek üzere su kabarcıklarından örnek alınabilir. Zona geçiren bir kişi de önemli bir hastalık veya bağışıklık sisteminde bir yetersizlik olabilir mi? Zona geçiren hastaların çoğu sağlıklıdır. Bununla beraber başka hastalıklar veya AIDS var ise bu doktora bildirilmelidir. Çünkü bu durum tedaviyi etkileyebilir. Doktorunuz bu durumla ilgili olarak tıbbi hikayenizi sorgulayabilir ve bir takım testler (röntgen ve kan tahlilleri) isteyebilir. Zona bulaştırıcı mı dır? Zona daha evvelden suçiçeği geçirmemiş kişilere bulaşabilir, fakat bu kişilerde zona değil, suçiçeği gelişir. Zona, su çiçeğine göre daha az bulaştırıcıdır. Zona su kabarcıkları patladığında bulaştırıcı hale gelir.Yeni doğanlar ve bağışıklık sisteminde yetmezlik olanlar zonalı kişilerden virüsü alarak suçiçeği geliştirmeye eğilimlidir. Zonalı hastalar nadiren hastaneye yatırılarak tedavi edilme ihtiyacı gösterir. Hastalık deride iz bırakır mı? Hastalık bağışıklık sistemi bozuk olan kişilerde yaşlılarda ve ikincil olarak bakteri enfeksiyonu gelişenlerde iz kalır. Tedavisi nasıldır? Zona genellikle birkaç haftada iyileşir, nadiren tekrar eder. Ağrı kesici ve soğuk pansumanlar faydalı olur. Eğer erken tanı konulup, ilaçlar erken dönemde başlanırsa, virüsün yayılımı azalır, bulgular daha çabuk iyileşir. Bu ilaçlar baş ağrısı, mide rahatsızlığı yapabilirler. Tedavinin erken başlanması önemlidir. Bu ilaçların kullanımı zona sonrasında ağrı gelişimini engellemez, fakat ağrılı dönemin kısalmasını sağlarlar. Şiddetli enfeksiyonlarda, göz tutulumunda ve şiddetli ağrı olan hastalarda antiviral ilaçlarla birlikte kortizon verilebilir. Zona sonrasında görülen ağrı kesici tabletlerin gündüz ve gece alımı ile azaltılabilir. Bazen tedavide depresyon ilaçları ağrıyı azaltmak amaçlı kullanılabilir. Günde 3-4 kez kurutucu pansumanların uygulanılması ağrıyı azaltır.

http://www.biyologlar.com/zona

FIRSATÇI ENFEKSİYONLAR

Fırsatçı bir enfeksiyon enfeksiyon patojen haline gelmiştir normalde benign mikroorganizma neden olmaktadır. Fırsatçı enfeksiyonlar gibi organizmaların devralmaya ve yaygın bir enfeksiyona neden izin başkaları bağışıklık sistemi olan kişilerde görülür. Bağışıklık sistemini defne onları tutmak çünkü sağlıklı bir bağışıklık sistemi olan bireylerin, bu organizmaların enfeksiyon neden noktasına yaymak için, izin vermem. insanların bir dizi fırsatçı enfeksiyon riski de OI olarak bilinir. Klasik örnek, HIV / AIDS hastalarında, aslında bağışıklık sistemi kapatıldığında bir retrovirüstür bulaşmıştır. kanser İnsanlar geçiyor kemoterapi de risk olarak bireylerin ilaç organ nakli, yetersiz beslenme kurbanı hazırlık olarak bağışıklık sistemini baskılayan sürüyor, ve mevcut enfeksiyonu olan kişiler, özellikle yaşlılar vardır. Bazı fırsatçı enfeksiyonlar aslında zaten vücutta mevcut neden mikroorganizmaların. Organizmalar mevcut nüfusun% iyi 50 üzerinde, örneğin sitomegalovirus gibi. başkaları bağışıklık sistemi olan kişiler, mantar, bakteri gibi fırsatçı bir enfeksiyon deneyim ve kendi bedenlerinde protozoa coşmuş, koşmak ya da organizma kişi veya hayvanlar tarafından taşınan maruz kalmanın bir sonucudur. Fırsatçı bir enfeksiyon da bir normalde hafif şiddetli mikroorganizma neden ateş, öksürük olanlar ve soğuk algınlığı uzak başkaları bağışıklık sistemi ile insanların kalmak istenir vücut girer, oluşabilir. Tek yönlü fırsatçı enfeksiyon mücadele vücudun zararlı işgalciler düşman yapmak için tasarlanmış koruyucu ilaç almaktır. Ancak, enfeksiyonun tüm potansiyel kaynaklarının karşı korumak için imkansız, ve bazı bölgelerde, insanlar profilaktik tedavi için ödemek mümkün olmayabilir. Bu nedenle, başkaları bağışıklık sistemi olan insanlar için önemli düzenli tıbbi kontrolleri almak, böylece enfeksiyonun erken belirtileri tespit edilebilir durum ciddi hale geçecek. Bir kez bir fırsatçı enfeksiyon saptanırsa, o kadar yayıldı edemez ve daha fazla hasara neden olduğu tedavi edilmelidir. Ancak, tedavi hastanın mevcut sağlık durumu karmaşık hale geliyor. Örneğin, bir kanser Kaposi sarkomu adı verilen bazı AIDS hastalarında gelişir. Normal şartlar altında, kanser iyi huylu, ancak bu kemoterapi ile tedavi edilebilir. Kemoterapi Ancak, bu nedenle diğer tedavi yaklaşımları kullanılmalıdır hastanın bağışıklık sistemini yok edeceğini. Bazen hiçbir etkili tedavi mevcut, bu yüzden fırsatçı enfeksiyonlar çok tehlikeli olmasıdır. Fırsatçı fungal enfeksiyonların etkenleri Candida albicans Candida albicans, eşeyli çoğalan, diploit, maya tipi bir mantar türü ve insanlarda oral ve vajinal fırsatçı enfeksiyonların etmenidir. Candida cinsine ait 200 tür olmasına karşın Candida enfeksiyonlarının %75'inin sorumlusu C. albicans'tır. Türkçe okunuşu kandida albikanstır. Bağışıklığı baskılanmış hastalarda (AIDS, kanser kemoterapisi, organ veya kemik iliği transferi durumlarında) sistemik mantarsal (fungal) enfeksiyonlar (fungemi), hastalık ve ölümün başlıca nedenleri arasındadırlar. Ayrıca bu yönde riski olmayan hastaların hastanede edindikleri enfeksiyonlar ciddi bir sağlık sorunu haline gelmiştir. C. albicans insan ağzı ve sindirim sistemi içinde yaşayan pek çok organizmadan biridir. Sağlıklı yetişkinlerin %40'ının ağzında, sağlıklı kadınların %20-25'inin vajinasında varlığı gösterilebilir. C. albicans sindirim sistemindeki varlığıyla başka patojen bakterilerin çoğalmasını engeller. Vücudun bağışıklık sistemi ve diğer zararsız bakteriler normal şartlarda Candida'yı kontrol altında tutarlar. Ancak, diğer bakterilerin sayısı C. albicans'a oranla azalırsa (örneğin antibiyotik kullanımından dolayı), bağışıklık sistemi zayıflamışsa veya mayanın çoğalmasına sağlayan başka şartlar mevcutsa (yüksek şeker, yüksek pH) C. albicans zararsız olan tek hücreli biçiminden, çok hücreli, istilacı (invasif), küf gibi ipliksi biçimine dönüşür (şekil [1]) ve vücudu istilaya başlar. C. albicansın iplikçi biçimi hem psödohif hem de gerçek hiflerden oluşabilir (şekil [2]). C. albicans iplikçi bir biçime dönüşmesine ilaveten, konak dokulara bağlanmasını sağlayan adhesinler, dokulara hem imha etmeye hem de onlara daha iyi yapışmayı sağlayan proteazlar, ve vücudun bağışıklık sisteminin tepkisini azaltan faktörler üretir. Cryptococcus neoforman Cryptococcus neoformans, hem bitki hem hayvanlarda yaşayabilen, kapsüllü, maya tipli bir mantar (fungus) türüdür. Teleomorf adı olan Filobasidiella neoformans ile de bilinen bu tür, mantarların beş ana tipinden biri olan Basidiomycota sınıfına aittir. C. neoformans genelde (tek hücreli) mayalar gibi tomurcuklanarak çoğalır. Bazı şartlarda ise, hem laboratuvarda hem doğada, C. neoformans burada görüldüğü gibi [1] ipliksi mantar gibi büyür. Maya gibi büyürken C. neoformans polisakkaritlerden oluşmuş bir kapsüle sahiptir. Kapsülün mikroskop altında kolay görünmesi için çini mürekkebi kullanılır. Mürekkepteki pigment tanecikleri küresel maya hücresi çevreleyen kapsülün içine giremedikleri için hücrelerin etrafında siyah bir halo oluşur. C. neoformans türü üç varyant (v.), yani çeşitten oluşur: C. neoformans v. gattii, v. grubii, ve v. neoformans. C. neoformans v. gattii başlıca tropiklerde bulunur, ama Kanada'nın güneybatı kıyısında Vancouver Adasında da varlığı tespit edilmiştir. Cryptococcus gattiinin ayrı bir tür sayılabilecek kadar diğer varyantlardan farklı olduğu yakın zamanda gösterilmiştir. C. neoformans v. grubii ve v. neoformans dünyanın her tarafında bulunurlar, genelde kuş dışkısıyla pislenmiş toprakta bulunurlar. C. neoformans v. neoformans'ın genom dizini 2005 yılında yayımlanmıştır..[1] C. neoformans enfeksiyonuna kriptokokoz denir. FIRSATÇI MANTARLAR Kandidoz (Kandidiyazis ) Candida türleri gerçek veya yalancı hifa oluşturma yetenekleri olan maya türünden mantarlardır. Her yerde; toprak ve gıdalarda, insan derisinde, gastrointestinal, genitoüriner ve solunum yollarındaki mukozalarda bulunur. Belirli durumlarda klinik olarak önem taşıyan Candida türleri C. albicans, C. guilliermondii, C. krusei, C. parapsilosis, C. tropicalis, C. kefyr, C. lusitaniae, C. rugosa, C. dubliniensis ve C. glabrata (Torulopsis glabrata)'dır. Genellikle tek hücreli şekilde bulunur ve hem seksüel hem de aseksüel şekilleri vardır. Küçük (4-6 µm), ince duvarlı, oval şekilli (blastospor) olup, tomurcuklanma ile çoğalır. Rutin aerop kan kültürlerinde ve agarda iyi ürer ve özel besiyeri gerektirmez. Candida mikroorganizmaları stafilokok kolonilerini andıran düz, krem rengi-beyaz, parlak koloniler yapar. Mikroskobik incelemede maya, hifa, yalancı hifa şekilleri bulunabilir ve hifa ve yalancı hifa görülmesini kolaylaştırmak amacıyla %10'luk potasyum hidroksit kullanılabilir. Hızlı bir ön tanı için mikroorganizma serum içine konarak 90 dakika içinde hücre yüzeyinden küçük çıkıntılar meydana gelip gelmediği araştırılabilir ki, bu yöntem germ tüp testi adıyla bilinir. 1940'lı yıllarda antibiyotiklerin kullanıma girmesinden sonra kandida infeksiyonlarının insidansında keskin bir artma gözlendi. 1980-1990 yılları arasında 180 hastanede yapılan bir takip araştırmasında Candida türleri hastane infeksiyonu etkenleri arasında altıncı sırada yer alırken, idrardan en fazla soyutlanan (%46) etken idi. Candida türleri dolaşım infeksiyonlarının da en önemli dördüncü etkeni (%8) olup, mortalitesi %29 olarak bulunmuştur (mantar dışındaki dolaşım etkenlerinin mortalitesi %17). Diğer taraftan, kandidemilerde non-albicans türlere doğru giderek artan bir kayma söz konusudur. 1997-1999 yılları arasında Amerika Birleşik Devletleri (ABD), Kanada, Güney Amerika ülkeleri ve Avrupa'da yürütülen bir takip programında 71 merkezde 1184 kandidemi tespit edilmiştir. Bütün kan dolaşımı infeksiyonu etkeni olan mayaların %55'i C. albicans'a bağlı olup, bunu C. glabrata (%20), C. parapsilosis (%15), C. tropicalis (%9) ve diğer Candida türleri (%6) izlemekteydi. İnvaziv kandidozun sıklığındaki değişiklikler en fazla şu hasta gruplarında dikkat çekmektedir: Yoğun bakım ünitelerinde yatırılan hastalar, hematolojik malignansisi olanlar, hematopoietik kök hücre ve organ transplant alıcıları. Yayınlanmış 74 araştırmanın derlendiği bir yazıda Candida türleri ile kolonizasyon ve infeksiyon için en önemli risk faktörlerinin şunlar olduğu gösterilmiştir: Altta yatan hastalık varlığı [hematolojik kanser (OR 1.7-45), böbrek yetmezliği (OR 1.4-22), karaciğer yetmezliği (OR 7-42)], invaziv girişimler veya cihazlar [santral venöz kateter veya arteryel kateter (OR 5.8-26), üriner kateter (OR 1.3), bir hastanın hastaneler arasında transferi (OR 21) ve uzun süreli antibiyotik (OR 1.7-25) özellikle de vankomisin (OR 275) kullanımı]. Gerçekten de, farelerde ve insanlarda vankomisin kullanımının gastrointestinal sistem (GİS)'de C. albicans ile kolonizasyonu arttırdığı gösterilmiştir. Hematopoietik kök hücre transplant alıcılarında kandida infeksiyonlarının sıklığında genel bir azalma ile birlikte non-albicans Candida türlerinde artış gözlenmekte, bu gelişmelerden yoğun olarak uygulanan flukonazol profilaksisinin sorumlu olduğu düşünülmektedir. Nötropeni ve Graft Versus Host hastalığı sırasında flukonazol ile antifungal profilaksi (transplantasyon sonrası 75. güne kadar) yapılması invaziv kandidoz insidansında azalma, hayatta kalma oranında artmayla sonuçlanmaktadır. Bununla birlikte, transplant öncesinde en fazla kolonizasyon yapan tür C. albicans olduğu halde, transplant sonrasında ve flukonazol kullanımından sonra C. krusei ve C. glabrata sık gözlenmektedir. Bir başka çalışmada, görece C. krusei (OR 27.07) ve C. glabrata (OR 5) artışında en önemli belirleyicinin flukonazol profilaksisi olduğu gösterilmiştir. Bununla birlikte, randomize kontrollü 16 çalışmanın meta-analizinde kemik iliği transplantasyonu yapılmayan nötropenik hastalarda flukonazol profilaksisinin sistemik mantar infeksiyonlarını ve buna bağlı mortaliteyi azaltmadığı belirlenmiştir. Organ transplant alıcıları arasında invaziv kandida infeksiyonları en fazla karaciğer ve pankreas transplant alıcılarında gözlenmektedir. Karaciğer transplant alıcılarında, invaziv kandidal infeksiyonların insidansında, sistemik antifungal profilaksi yapılmasa bile genel bir azalma dikkati çekmekte, birçok merkez insidansı %10'un altında bildirmektedir. Moleküler tiplendirme sonucunda, olguların büyük çoğunluğunda önce kolonizasyon, daha sonra, bu endojen kaynaktan kandidemi geliştiği görülmüştür. Bu, C. albicans ve C. parapsilosis hariç non-albicans Candida türlerinin hepsi için doğru görünmektedir. C. parapsilosis'in infeksiyon oluşturmasında infekte biyolojik materyaller, intravenöz sıvılar, hastane çevresi ve sağlık görevlilerinin elleri ile insandan insana bulaşma önemli rol oynamaktadır. Aynı zamanda, hastadan hastaya, hemşireden hastaya ve cinsel eşler arasında insandan insana geçiş de giderek önem kazanmaktadır. AIDS'li hastalarda orofarengeal kandidoz rekürrensinin yeni bir suşla infeksiyon gelişimi de mümkün olmakla birlikte, çoğunlukla aynı türe (relaps) bağlı olduğu da gösterilmiştir. Candida infeksiyonlarının sıklığı giderek artarken, daha önce tanımlanmamış tablolar da giderek artan sayıda bildirilmektedir. Pamukçuk, özefajit, özefagus dışı gastrointestinal kandidoz, vajinit, kütanöz sendromlar (follikülit, balanit, intertrigo, dissemine kütanöz kandidoz, paronişi, kronik mukokütanöz kandidoz vb.), santral sinir sistemi ve solunum sistemi tutulumları, kalp tutulumu ve endokardit, üriner sistem kandidozu, artrit, osteomiyelit, karaciğer ve dalak tutulumu, göz ve damar infeksiyonunun yanı sıra dissemine kandidoz görülebilir. Aspergilloz Aspergilloz dünyada invaziv küf mantarları ile gelişen infeksiyonlar içinde en yaygın olanıdır. Hem sağlıklı hem de bağışıklık sistemi baskılanmış insanlarda hastalık yapabilir. Aspergilloz terimi eskiden hem ortaya çıkan hastalık hem de kolonizasyon için kullanılırken, bugün bu terim invaziv hastalık ve allerjik hastalığı ifade eder, ancak kolonizasyon için kullanılmaz. Aspergillus türleri insanlarda kolonizasyon ve sonrasında allerjik reaksiyon, daha önceden mevcut kavitelerde yerleşerek (fungus topu ve aspergilloma) veya doku invazyonu ile infeksiyon yapabilir. İnvaziv hastalığa yol açan Aspergillus türleri görülme sıklığına göre A. fumigatus (yaklaşık %90), A. flavus (yaklaşık %10), A. niger, A. terreus ve A. nidulans (< yaklaşık %2) şeklinde sıralanır. A. niger otomikozun, A. flavus da sinüzitin önde gelen etkenlerindendir. Aspergillus türlerinin çoğu sadece aseksüel üremekle birlikte telemorflu olanlar askomiçettir. Patojenik Aspergillus türleri klinik laboratuvarlarda kullanılan bakteriyolojik veya fungal besiyerlerinde kolaylıkla ürer. Mikroorganizma 36-90 saat sonra agar yüzeyinde küçük, tüylü beyaz koloniler meydana getirir. 30-37°C'de, 36-48 saat geçtikten sonra sporulasyon meydana gelir. Aspergillus Antarktika dahil dünyanın her yerinde bulunur. Başlıca ekolojik yerleşim yeri bozulan sebze artıklarıdır. Çiftliklerde, saman depolarında en az 106/m3 spor mevcuttur. Kistik fibrozlu hastalarda kolonizasyon toplumdan yüksektir ve marihuanada bol miktarda Aspergillus sporu bulunabilir. On yıl boyunca izlenen otopsiler içinde invaziv aspergilloz %1.4 sıklıkta saptanmıştır. Bununla birlikte, bağışıklık sistemi baskılanmış hastalarda insidans %10.7 olup, en yüksek insidans karaciğer transplant alıcılarında ve hematolojik malign hastalığı olanlarda görülmektedir. Çevrede inşaat çalışmaları olduğunda, bağışıklık sistemi baskılanmış hastalar arasında küçük salgınlar geliştiği bildirilmektedir. En fazla akciğer ve beyinde tutulum yapar. AIDS'li olgularda invaziv aspergilloz genellikle otopsi sırasında belirlenir. İnsan immünyetmezlik virüsü (HIV) infeksiyonu için çok aktif antiretroviral tedavi [Highly Active Antiretroviral Therapy (HAART)] öncesinde insidansı %0.9-8.6 arasında bildirilmekteydi. Astımlı hastalardaki allerjik bronkopulmoner aspergilloz (ABPA) %6-28 arasında değişirken, kistik fibrozlu hastalarda %6-25 oranlarında bildirilmektedir. Hastalık tablolarının gelişmesi için gereken inokülum büyüklüğü kesin olarak bilinmemekle birlikte, bağışıklık sistemi baskılanmış hastalarda bu miktar muhtemelen daha küçüktür. Mikroorganizmaya maruz kaldıktan sonra hastalık gelişmesine kadar geçen inkübasyon süresi değişkendir ve iki farklı olguda 36 saat ile üç ay kadar değişik olabilmektedir. Nötropenik hastalar hastaneye ilk geliş sırasında Aspergillus ile kolonize olsalar bile nötropeninin 12. gününden önce invaziv aspergilloz görülmemektedir. Kriptokokoz Kriptokokoz Cryptococcus neoformans tarafından meydana getirilen sistemik bir infeksiyondur. 1894 kadar erken yıllarda Otto Buse "coccidia türleri"nin neden olduğu tümör benzeri yuvarlak oluşumlar tanımlamıştır. Bütün kriptokok türleri içinde C. neoformans en patojenik olandır. Kriptokokal menenjit HIV infeksiyonu olan insanlardaki, hayatı tehdit eden en şiddetli infeksiyondur. C. neoformans kapsüllü, tomurcuklanarak çoğalan maya benzeri bir mantardır. Kriptokok polisakkarid kapsülünün kimyasal yapısına göre üç varyete içinde dört serotip belirlenmiştir: Serotip A: C. neoformans var. grubii, Serotip D: C. neoformans var. neoformans, Serotip B ve C: C. neoformans var. gattii. C. neoformans'ın seksüel şekli Filobasidiella neoformans olarak sınıflandırılır ve iki çiftleşme fenotipi vardır: a- ve a-çiftleşme tipi. Klinik izolatlarda a-tipi çiftleşme her zaman daha hakimdir. C. neoformans var. neoformans ve grubii her yerde yaygın olarak bulunur. Bunlar, bütün yıl boyunca, özellikle yaşlı güvercinlerin dışkılarında bulunur ve en fazla bağışıklığı zayıflamış bireylerde hastalık yapar. C. neoformans güvercinlerin dışkısında yüksek konsantrasyonda ürer, ancak kuşlar infekte değildir. C. neoformans doğada saprofittir. Kriptokokal infeksiyonlar herhangi bir endemik alan belirlenmeksizin, dünyanın her tarafında görülür, ancak serotiplerin dağılımı farklılık gösterir. Dünyada şimdiye kadar en yaygın görülen serotip A olmakla birlikte, bazı bölgelerde serotip D ile infeksiyon artmaktadır. Predispozan faktörlerle birlikte serotip A ile D arasındaki klinik tabloların farklılık göstermesi, konak ve çevre ile ilişkili faktörlerin bu dağılımı etkilediği görüşünü desteklemektedir. C. neoformans var. gattii tropikal ve subtropikal bölgelerde yaygındır ve esas olarak Avustralya, Güney Amerika, Afrika'nın bazı bölgeleri, Güney Batı Asya, Avrupa'nın güneyi ve California'nın kuzeyinde, okaliptüs ağacının nehir kenarı ve karasal bölgede yetişen türleriyle birlikte bulunur. Yakınlarda Vancouver Adası'nda bir salgın meydana gelmiştir. En yüksek insidansı okaliptüs ağacının çiçeklenme mevsiminde, yani kasım ile şubat ayları arasında yapar. Hem insan hem de hayvanda doğadan alınmış infeksiyon gösterilmiş, ancak hayvandan insana bulaş gösterilememiştir. Bulgular, hastalığın esas olarak mikroorganizmanın aerosolize olup, solunumla alındıktan sonra geliştiğini göstermektedir. Doğada güvercin dışkısı ve topraktan bu mekanizmaya uygun olarak, alveole birikmeye uygun boyutta (< 2 µm) canlı partiküller elde edilmiştir. Güvercinlerle yoğun teması olan sağlıklı bireylerde kriptokokal antijene ve kriptokoksine karşı gecikmiş deri testi pozitifliğinin oranı yüksektir. Doğada bu kadar yaygın olmasına rağmen çok sayıda bireyi etkileyen salgınlar çok nadirdir, iş ile ilişkili bir predispozisyon belirlenmediği gibi, güvercinle, toprak veya okaliptüsle temas öyküsü de tanıda yararlı değildir. İnsandan insana solunum yoluyla bulaş gösterilmemiş, ancak aktif kriptokokozu bulunan olgudan yapılan doku transplantasyonu sonrasında sistemik infeksiyon ve endoftalmit bildirilmiştir. Çalışmaların çoğu, her hastadaki infeksiyonun tek bir C. neoformans ile meydana geldiğini ve tekrarlayan infeksiyonların başlangıçtaki bu mikroorganizma tarafından oluşturulduğunu desteklemektedir. ABD, Batı Avrupa ve Avustralya'da AIDS'li hastalarda kriptokokoz insidansı %6-10 olarak tahmin edilmektedir. Fakat HAART uygulanmadan önceki dönemde, ABD'de AIDS'li hastalarda kriptokokozla ilişkili ölümün, muhtemelen azollerin kandidoza yönelik olarak yaygın olarak kullanımı nedeniyle 1987 yılında %7.7'den 1992 yılında %5'e düştüğü gösterilmiştir. HAART'nin uygulamaya girmesinden sonra kriptokokoz insidansı biraz daha azalmıştır. Sahra altı Afrika'da AIDS hastalarında kriptokokozun insidansı %15-30 arasındadır. Kriptokokoz Zimbabwe'deki HIV infeksiyonu olan hastalarda AIDS göstergesi olan hastalıkların %88'ini ve erişkin menenjitlerinin de en önemli nedenini oluşturmaktadır. AIDS'lilerde, olguların neredeyse %100'ünde, hatta C. neoformans var. gattii'nin endemik olduğu yörelerde bile C. neoformans var. grubii etkendir. Fransa'da C. neoformans infeksiyonları, insidansı serotip A'dan cilt lezyonlarında yüksek, menenjitlerde daha düşük olan serotip D tarafından meydana getirilir. Bağışıklık sistemi sağlam olan bireyde kriptokokal infeksiyonların %70-80'inde etken C. neoformans var. gattii'dir. Anlaşılamayan nedenlerle kriptokok menenjiti çocuklarda istatistiksel olarak beklenenden daha nadir görülmektedir. Yeni immün baskılayıcı tedaviler de fırsatçı mikozların sıklık, spektrum ve klinik tablosundaki değişiklikte rol oynamış olabilir. HAART ile tedavi edilen HIV infekte hastalarda C. neoformans insidansındaki düşme ile organ transplant alıcıları kriptokok infeksiyon riski altında olan gruplar içinde yeniden önem kazanmıştır. Mukormikoz ve Diğer Zigomiçet İnfeksiyonları Mukormikoz Mukorales takımındaki mantarların yaptığı infeksiyonların genel adıdır. Hastalık için fikomikoz ve zigomikoz gibi diğer isimler de kullanılır. Ayrıca, zigomikoz sözcüğü Entomophtorales ile oluşan hastalığı da kapsar. Mucorales ve Entomophtorales takımları Zygomycetes sınıfına dahildir. Zigomikozların başlıca şekilleri rinoserebral, pulmoner, kütanöz, gastrointestinal ve dissemine hastalıktır. Rhizopus, Mucor, Rhizomucor ve Absidia insanda zigomikoza en fazla neden olan türlerdir. Bunlardan tıbbi önem taşıyan zigomiçetler etrafta ve dokularda hifa yaparak üreyen küf mantarlarıdır. Bu mantarlar her yerde yaygın olarak bulunmasına ve özellikle çürüyen organik materyallerde üremesine rağmen mukormikoz nadir bir hastalık olup, hemen daima altta yatan hastalığı olan bireylerde görülür. Bunun tek istisnası, yeni tanımlanan bir tür olan ve özellikle bağışıklık sistemi sağlam bireylerde de zigomikoz etkeni olduğu bildirilen Apophysomyces elegans'tır. Mukormikoz tablosunda en sık izole edilen etkenler Rhizopus türleri olup, bunları Rhizomucor takip eder. Bu cinsler arasında ayrım mikroskobik olarak rizoitlerin varlığı ve yerleşimi, apofizlerin bulunması ve kolumellaların morfolojisine göre yapılır. Bu mikroorganizmaların özel olarak tanınması tedavinin takibi, özellikle de esas etken olan mantarın eradikasyonunun kanıtlanması ve daha sonraki klinik örneklerde üreyen mantarın başlangıçtaki etkenle aynı olup olmadığını belirlemek için, farklı antifungal ilaçlara karşı türe özgü yanıtların gösterilmesi ve yeni antifungal ilaçların geliştirilmesi çalışmaları için gereklidir. Mucoraceae çürüyen maddelerde bol bulunur, örneğin Rhizopus türleri küflü ekmekten sıklıkla izole edilebilir. Hızla üremeleri ve spor oluşturmaları nedeniyle bu sporların inhalasyonu her gün söz konusu olan bir durumdur. Steril olmayan yapışkan bantlarla deride meydana gelen mukormikoz bildirilmiştir. Tahta dil basacağı ve mikrobiyolojik örnek alınmasında kullanılan eküvyonların da kas dokuya ve GİS'e derin invazyonu bildirilmiştir, nadiren dissemine infeksiyon da gelişir. Bu mikroorganizmaların birçok ekolojik ortamda bolca bulunmalarına rağmen çok seyrek olarak infeksiyona yol açması, etkenin virülansının insan için oldukça düşük olduğuna işaret eder. Hastalık insanda belirli gruplarda görülür. Olguların çoğu bağışıklığı ileri derecede baskılanmış, diyabetik veya travma hastasıdır. Giderek artan sayıda transplantasyon hastası risk grubu oluşturmaktadır. Bu hasta grubunda bütün değişik klinik şekiller görülebilir. Hastaların yarısından çoğunda rinoserebral tutulum görülürken, yaklaşık %10'unda pulmoner, kütanöz ve dissemine hastalık, %2'sinde de böbrek ve GİS tutulumu görülür. Bu transplant olgularının 3/4'ünde ek olarak ya diyabet vardır ya da bu hastalar rejeksiyon için tedavi almıştır. Çok az sayıdaki normal bireylerde de invaziv mukormikoz bildirilmiştir. Mukormikoz için risk faktörleri Tablo 1'de sıralanmıştır. Penisilyoz Penisilyoz, dokularda maya gibi üreyen dimorfik bir küf mantarı olan Penicillium marneffei tarafından meydana getirilir. Mantar Güneydoğu Asya'da endemik olup, ilk olarak Rhizomys sinensis adlı sağlıklı bambu sıçanlarından soyutlanmış, bunların yaşadığı bölgedeki toprakta varlığı da gösterilmiştir. İnsanlarda ve kemirgenlerde derin yerleşimli infeksiyonlara yol açar. AIDS ortaya çıkmadan önceki dönemde endemik bölgedeki (Tayland'ın kuzeyi ve Çin'in güneydoğudaki kırsal bölgeleri) penisilyozlu hastaların çoğunda altta yatan hiç bir hastalık yok iken, bugün penisilyoz üçüncü sıklıktaki AIDS göstergesi olan hastalık olarak görülmektedir. Hastalık Tayland'ın Chiang Mai eyaletinde HIV ile ilişkili fırsatçı infeksiyonlar içinde tüberküloz ve kriptokokozdan sonra üçüncü sık infeksiyondur. En çok HIV ile infekte genç erişkinlerde görülmekle birlikte, çocukları etkilediği de bildirilmiştir. Hastalık muhtemelen toprak gibi çevresel kaynaklardan, konidyaların inhalasyonu sonucu gelişir. Fuzaryoz Fusarium türleri bütün dünyada yaygın olarak toprakta bulunur. Fusarium türleri ile gelişen infeksiyonlar (en yaygın türler Fusarium solani ve arkasından gelen Fusarium verticillioides'tir) nadir olup, bölgesel veya yaygın infeksiyona yol açabilir. Bölgesel infeksiyonlara örnekler keratomikoz, endoftalmit, sürekli ambulatuar periton diyaliz kateteri olan hastada peritonit, paronişi, invaziv burun infeksiyonu ile kemik, eklem ve deride travmaya bağlı lezyonlardır. 1970 yılından sonra, hematolojik malign hastalığı ve bağışıklık sistemi baskılanmış olgularda (AIDS) yaygın fuzaryoz giderek artan sayıda görülmeye başlamıştır. Bu infeksiyon solunum yolu ve çatlaklardan deri yoluyla inoküle olabilir. Yaygın infeksiyonun hemen öncesinde sinüzit tespit edilmiş ve kateter yoluyla da hematojen yayılım görülen olgular bildirilmiştir. Yaygın infeksiyonun bulunduğu olguların büyük bir bölümü akut lösemilidir ve hastaların çoğunda uzamış ve ağır (< 100 nötrofil/mm3) nötropeni mevcuttur. Ağır yanık ve sıcak çarpmasından sonra fuzaryoz geliştiği bildirilen nadir olgular mevcuttur. SİSTEMİK MANTARLAR Blastomikoz Hastalık tek bir dimorfik tür olan Blastomyces dermatitidis tarafından meydana getirilir. Seksüel veya teleomorfik şekli Ajellomyces dermatitidis'tir. 35°C'nin altındaki sıcaklıkta tek tip, hiyalin, septalı hifa ve konidya oluşturarak küf şeklinde ürer. Kolonilerin tam olarak gelişmesi için en az iki hafta gerekir. Zenginleştirilmiş besiyerinde 37°C'de maya şekline döner ve katlantılı, nemli koloniler yapar. B. dermatitidis'in doğal yerleşim yeri tam olarak çözülememiştir. Endemik bölge Kuzey Amerika'nın güneydoğu ve orta kesimlerinin güneyidir. Özellikle Mississippi ve Ohio Nehri civarında yaygındır. Köpekler sık infekte olur, ancak B. dermatitidis için hayvan rezervuar olduğuna dair herhangi bir kanıt elde edilememiştir. Muhtemelen doğada yılın büyük bir bölümünde dorman olarak kalır ve uygun iklimsel koşullarda konidya üretmeye başlayarak hava yoluyla bulaşabilir hale gelir. Hastalık daha çok orta yaştaki erişkin erkeklerde görülür. Blastomikoz her yaşta görülebildiği halde hastaların %60'ı 30-60 yaş arasındadır. Olguların %4'ünden azı 20 yaş altındadır ve hastalık nadiren çocuklarda görülmektedir. Ancak son zamanlarda özellikle salgınlarda her iki cinsiyetin de eşit oranda tutulduğu, hastaların üçte ikisini 16 yaşından küçüklerin oluşturduğu bildirilmiştir. Erkek/kadın oranı geniş çalışmalarda 6/1 ila 15/1 arasında değişmektedir. Muhtemelen her iki cins de hastalığa duyarlı olmakla birlikte, erkekler kronik veya dissemine hastalık geçirmeye daha yatkındır. Genetik veya ırka ait hastalık oranlarındaki farklılıklar kanıtlanamamıştır. Sosyoekonomik ve çalışma koşullarıyla ilgili verilere göre fakirlik, malnütrisyon, el emeği ile iş yapma, tarım, yapım işi, toprak ve tahta ile temas hastalık gelişmesiyle ilişkili bulunmuştur. Blastomikoz insidansı AIDS dahil, bağışıklık sistemi baskılanmış hastalarda da nispeten düşüktür, ancak artma göstermektedir. Koksidioidomikoz Koksidioidomikoz birbirinden ayırt edilemeyen Coccidioides immitis ve Coccidioides posadasii tarafından meydana getirilir. Dimorfik bir mantar olan C. immitis miçel ya da sferül denen özel bir yapıda bulunur. Her iki şekil de aseksüel ürer ve bu nedenle klasik olarak seksüel sporların sınıflandırmasına dayanan taksonomide bu etkeni sınıflandırmak mümkün değildir. Moleküler analizlere göre ise B. dermatitidis ve Histoplasma capsulatum'a yakındır. C. immitis rutin besiyerlerinde ve toprakta ürerken, apikal uzama göstererek miçel yapar. Bunların bir bölümü (artokonidya), bir hafta içinde otoliz ve hücre duvarının incelmesiyle olgunlaşır. Kalan kısmı ise, varil şeklini alıp hidrofobik bir dış tabaka geliştirir ve yıllar boyunca yaşama yeteneği kazanır. Artrokonidyaların kalıntıdan kolayca ayrılabilen hassas bir bağlantıyla bağlı olması, küçük hava hareketlerinde bile kopmaları sonucu hava yoluyla yayılarak inhalasyonuna imkan verir. Akciğerde artrokonidyalar hidrofobik dış duvarını kaybederek yeniden şekillenir ve küresel bir yapı kazanır. Bu dönemde çekirdek ile hücre bölünür ve septalarla ayrılarak ve kız hücre veya endospor adı verilen her biri yaşayabilen formlar meydana gelir. Dokuda sferüller 75 µm boyutuna kadar büyüyebilir ve olgunlaşırken dış duvarı incelerek yırtılır, canlı endosporlar açığa çıkar. Bunlar ya dokuda aynı gelişimi gösterir ya da infeksiyon yerinden ayrıldığında miçelyal üreme gösterebilir. Etken dünyanın Batı Yarımküresinde neredeyse tamamı kuzey ve 40. enlem üzerinde sınırlı bölgeye hastır. Dimorfik bir mantar olup, ABD'nin güneybatı, Meksika'nın kuzey ve Orta ve Güney Amerika'nın bazı bölgelerinde yoğunlaşmıştır. Koksidial antijenle California okul çocuklarında deri testi reaktivitesi ile prevalans araştırmalarında infeksiyon riski yaklaşık %15, hatta askeri personelde bu oran %25-50 arasında iken, bugün bu risk her yıl için %3 olarak hesaplanmaktadır. C. immitis diğer mikroorganizmalar tarafından inhibe edildiği halde, toprağın işlenmesi veya çeşitli kimyasal maddelerle muamelesi organizmanın yerleştiği bölgeyi kısıtlamamıştır. Miçeller toprağın birkaç metre altında bulunabilir ve bahar yağmurlarından sonra üretilebilir. Hava kuruduğu ve ısındığı zaman miçeller infeksiyöz artrokonidyalara dönüşür ve bunlar yaz süresinde en yüksek sayıya ulaşır. Endemik bölgede çöl kemirgenleri, köpek ve sığır gibi yerleşik faunada doğal infeksiyonlar da görülür. C. immitis artrokonidyalarının inhalasyonu ya infeksiyona ya da koksidioidine karşı gecikmiş aşırı duyarlılık yanıtına yol açar. İnfeksiyonların yarısından fazlası iyi seyirli, geri kalanı da semptomatik fakat kendi kendine sınırlanan şekilde seyreder. Olguların yaklaşık %1'lik grubu ilerleyici akciğer hastalığına veya disseminasyona gider. Bazı bireyler birincil infeksiyondan sonra disseminasyon açısından risk taşır. Bu gruplar Filipinli, Afrikalı Amerikalı, Latin Amerikalı ve Kızılderililer'dir. Bu etnik yatkınlık, infeksiyona karşı etkin yanıt için genetik zeminin önemini ortaya çıkarır. Ek olarak erkekler, üçüncü trimestırdaki gebeler, hücresel bağışıklığın bozulduğu hastalar (AIDS) ve çok küçük ve çok ileri yaşlar ağır hastalığa duyarlılığa neden olur. Ağır akciğer hastalığı riskini arttıran durumlar arasında diyabet, sigara içme, düşük gelir ve ileri yaş sayılabilir. Artrokonidyaların yoğun olduğu havanın solunmasıyla gelişen salgınlar bildirilmiştir. Koksidioidomikoz endemik bölgede çalışan inşaat işçileri, arkeoloji öğrencileri ve toprakla bağlantılı iş yapan diğer kişilerde de iş hastalığı olarak görülebilir. Histoplazmoz Histoplazmoz insan ve hayvanda mantara bağlı olarak görülen akciğer hastalıklarının en önemli nedenlerindendir. Etken H. capsulatum'dur. İnfeksiyon tüm dünyada görülür ve miçel parçaları ve mikrokonidyaların inhalasyonu sonucu gelişir. İnsidansı dünyanın çeşitli bölgelerinde büyük farklılıklar gösterir. H. capsulatum Ascomycetes sınıfının bir üyesidir ve insandan en sık H. capsulatum var. capsulatum ve H. capsulatum var. duboisii soyutlanmaktadır. Ajellomyces capsulatum adı verilen heterohalik seksüel şekli mevcuttur. Sıcaklığa bağlı dimorfik bir mantar olan H. capsulatum 35ºC'nin altında beyaz veya kahverengi küf mantarı, 37ºC'de küçük, yapışkan, yığın şeklinde koloniler oluşturan maya mantarı halinde ürer. Tipik olarak yavaş ürediğinden, en uygun koşullarda küf kolonisi bir-iki haftada meydana gelir ve bundan sonra konidyalar oluşur. Ancak klinik örneklerden üretmek için bazen 8-12 hafta beklemek gerekebilir. İlk soyutlandığı zaman çoğunlukla kahverengidir ve uzun beklediği zaman rengi beyaza döner. Oda sıcaklığında hem mikrokonidya hem de makrokonidya yapar. H. capsulatum doğada azot içeriği yüksek toprakta ve yarasa ve kuş türlerinin yaşadığı yerlerde bulunur. H. capsulatum kuş pisliği, tavuk kümesleri, yarasaların yaşadığı mağaralar ve benzeri yerlerden soyutlanabilir. Konidyalar kuruduğunda kolayca havaya dağılır ve rüzgarla veya kuş ve yarasalarla da taşınabilir. Etken, hastalığın en prevalan olduğu şu coğrafik bölgelerde yaygındır: Missouri'de Ohio-Mississippi Vadisi, Kentucky, Tennessee, Indiana, Ohio ve Güney İllinois. Bu bölge kuş dışkılarının yığınlar halinde en yaygın bulunduğu yerdir. Afrika'daki histoplazmoz olgularında hem H. capsulatum hem de stabil varyantı H. capsulatum var. duboisii soyutlanmıştır. Afrika'da H. capsulatum var. duboisii ile gelişen histoplazmoz olguları bütün dünyada H. capsulatum var. capsulatum ile görülen histoplazmoz olgularından deri ve kemik lezyonlarının daha sık, akciğer tutulumunun daha az, dev hücre gelişiminin bariz ve dokudaki maya hücrelerinin daha büyük ve kalın duvarlı olmasıyla farklılık gösterir. Bu klinik özellikler tipik ve her zaman görülüyor olmasına rağmen, in vitro olarak H. capsulatum var. duboisii'nin diğerlerinden morfolojik, fizyolojik ve antijenik içerik özelliklerine göre güvenilir bir şekilde ayırt edilemez. Aslında H. capsulatum var. duboisii ile H. capsulatum var. capsulatum'un çiftleşmesi ve her ikisinin de seksüel şeklinin A. capsulatum olması nedeniyle aynı türdür. Histoplazmin antijeni özel bir buyyon vasatında H. capsulatum'un miçel fazının üretilmesiyle elde edilir. Standardize edilmiş konsantrasyondaki kültür filtratı 0.1 mL intradermal olarak enjekte edilir. Kırk sekiz saat sonra, 5 mm'den büyük endürasyon pozitif reaksiyonu gösterir. Pozitif test sonucu, H. capsulatum'a karşı daha önceden duyarlılık olduğunu gösterir. Daha önceden testin negatif olduğu bilinmiyorsa, pozitif testin tanısal değeri yoktur. Bazı antijenik determinantları başka patojenik mantarlarla ortak olduğundan dolayı çapraz reaksiyonlar görülebilir. Örneğin; C. immitis veya B. dermatitidis'e karşı duyarlı bireylerde histoplazmin testiyle yanlış pozitif sonuç alınabilir. 1950'li yıllardan beri bütün dünyada yapılmakta olan histoplazmin deri testi çalışmaları ile hastalığın prevalansına ilişkin yoğun bilgi birikimi sağlanmıştır. ABD'nin orta kesimlerinde bazı bölgelerde, 20 yaş üstündeki toplumun %80-90'ında deri testi reaktivitesi görülmektedir. Deri testi araştırmaları ile, sadece ABD'de 40 milyondan fazla kişinin etkene duyarlandığı ve her yıl 500.000 yeni infeksiyon geliştiği hesaplanmaktadır. Bunların 55.000-200.000'i semptomatik olup, 1500-4000'i hastaneye yatış gerektirmektedir. Bu hesaba göre her yıl 20-30 ölüm meydana gelmektedir. Bu hesap 1980 öncesi verileri göstermekte olup, AIDS nedeniyle fırsatçı histoplazmoz gelişen olguları kapsamamaktadır. Aynı anda çok sayıda kişinin maruz kalmasına bağlı olarak akut respiratuar histoplazmoz salgınları ve epidemiler görülmüştür. Histoplazmin deri testi reaktivitesi erkek ve kadınlar arasında fark göstermezken, hastalık erkeklerde kadınlardan dört kat daha fazla gelişir. Puberte öncesinde kadın ve erkeklerin hastalığa yakalanma hızları ve deri testi reaktif olanların oranı eşittir. Bebeklerde ve 50 yaş üzerinde hastalık ağır ve mortalite daha yüksektir. Hastalığa birçok evcil ve vahşi hayvan duyarlı olup, yarasa gibi bazı hayvanlar rezervuar olarak organizmanın yayılımında rol oynar. SUBKÜTAN MİKOZLAR Sporotrikoz Sporothrix schenkii tarafından meydana getirilen akut veya subakut bir infeksiyondur. Etken dimorfik bir mantardır ve hem hifalı saprofitik hem de parazitik maya evresi vardır. Laboratuvarda 25ºC'de ve arkasından 37ºC'de bekletildiğinde her iki fazda da üretilir. Lenfokütanöz veya ekstrakütanöz yerleşimli lezyonlardan kültür yapıldığında hem 35ºC'de hem de 37ºC'de üreme olurken, yayılımı çok sınırlı olan kütanöz lezyonlardan yapılan kültürlerde sadece 35ºC'de ürediği bildirilirken, bunun aksine her iki grup lezyondan elde edilen mikroorganizmanın termo-tolerans göstermediğine dair bulgular da elde edilmiştir. S. schenkii 26-27ºC sıcaklık ve %92-100 nem oranında, yosun, çürüyen bitkiler, toprak ve saman varlığında daha iyi ürer ve mikroorganizmanın hayatta kalımı artar. Bununla birlikte, hastalık Brezilya, Peru, Hindistan gibi çok geniş bir iklimsel ve coğrafik dağılımda görülmektedir. Birçok salgın sırasında S. schenkii'nin kaynağı tespit edilebilmekle birlikte, endemik bölgelerdeki infeksiyon rezervuarı her zaman bulunamaz. Bu noktanın halen tam anlaşılamamış olması nedeniyle, endemik bölgelerde koruyucu önlemler alınmasına engel olmaktadır. Sporotrikoz kedi, armadillo, at ve eşek gibi hayvanlarda da görülür. Bunların ve diğer hayvan türlerinin rezervuar olarak rollerinin belirlenmesi için çalışmalara ihtiyaç vardır. İnfeksiyon genellikle travma sonrasında mantarın deriye teması ile gelişir. Sıyrık, abrazyon gibi küçük zedelenmeler de giriş için yeterlidir. Ender olarak sporların inhalasyon yoluyla alınması sonucu da hastalık gelişebilir. Sporotrikoz cinsiyet farkı gösterir ve erkeklerde kadınlardan daha fazla rastlanır, ancak bunun nedeni bilinmemektedir. Farklı yaş gruplarındaki sıklık da değişmekte, hastalık çocuklarda erişkinlerden daha seyrek görülmektedir. Toprak ve bitki ile uğraşan mesleklerde, örneğin; çiçek yetiştirenler, bahçıvanlar, maden işçileri ve oduncularda infeksiyon riski daha yüksektir. Hastalık insandan insana geçmez, ancak kapalı topluluk ve aynı aile fertleri arasında, aynı kaynağa temas sonucu birkaç olgu bildirilmiştir. Esmer Mantar "Black Mould" İnfeksiyonları Esmer mantarlar koyu renkli pigment yapan heterojen bir grup mantar olup, her yerde bulunur ancak insanda nadir olarak infeksiyon yapar. Bu mantarların virülansının görece düşük olduğu ve hastalığın klinik seyrinin esas olarak konağa ait faktörler tarafından etkilendiği düşünülmektedir. İnfeksiyonun klinik spektrumu esmer miçetomalar, kromoblastomikoz, sinüzit ve yüzeyel, kütanöz, subkütan, sistemik feohifomikozları kapsar. Yakın zamanlarda bu tablolara fungemi de eklenmiştir. İnsanda çok sayıda cinsin infeksiyon yaptığı gösterilmiştir. Bunlar; Alternaria, Curvularia, Bipolaris, Exserohilum, Exophiala ve Wangiella'dır. Feohifomikoz (Yunanca "phaeo" koyu renkli, esmer) klinik örneklerde maya benzeri hücreler, yalancı hifa ve hifa gibi fungal ögelerin tek başına veya birlikte bulunmasıyla karakterizedir. Feohifomikoz miçetoma ve kromoblastomikozdan farklı olarak deri ve deri altı dokularla sınırlı değildir ve daha çeşitli inflamatuvar reaksiyonlara neden olur. Kütanöz olmayan feohifomikozlar her doku ve organı tutabilir ve en fazla sinüsler, akciğer ve beyinde görülür. İnvaziv hastalığa ilaveten allerjik reaksiyonlar da sıktır, sinüzit ve akciğer hastalıklarına yol açar. Kromoblastomikoz Deri ve deri altı dokunun kronik, lokalize infeksiyonudur ve genellikle ekstremitelerde kabarık, kurutlu lezyonlar oluşturur. Birçok kahverengi pigment yapan mantar tarafından meydana getirilir. Bu etkenlerin isimlendirmesi konusunda yazarlar arasında anlaşmazlık vardır. En fazla rastlanan etkenler sıklık sırasına göre Phialophora verrucosa, Fonsecaea pedrosoi, Fonsecaea compacta, Cladosporium carrionii, Rhinocladiella aquaspersa (Ramichloridium cerophilum) şeklinde sıralanabilir. Diğer pigment oluşturan mantarlar tarafından da sporadik kromoblastomikoz olguları meydana getirilebilir. Etkenler dokuda tipik olarak kalın duvarlı, koyu kahverengi sklerotik hücreler meydana getirir. Kromoblastomikoz etkenleri toprak, odun ve bozunan bitki artıkları gibi maddelerin bulunduğu çevrede yaygın olarak bulunur. İnfeksiyon insanda genellikle derinin kesik veya kıymık batması gibi travma ile zedelenmesi sonucu mantarın girmesiyle meydana gelir. Hastalık çıplak ayakla gezilen yerlerde ve ılıman iklimlerdeki kırsal kesimlerde daha fazla görülür. İnsandan insana bulaşma olmaz. Kromoblastomikoz çocuk ve ergenlerde nadirdir. Hastalık Japonya dışında, erkeklerde kadınlardan daha sık görülür ki bu daha çok mesleki temasın önemini göstermektedir. Olguların büyük bölümü 30-50 yaş arasındadır. Hastalığın aynı çevresel etkenlere temas etmiş çocuklarda nadir görülmesi uzun bir süre sessiz kaldığı (latent) dönem olduğunu düşündürmektedir. Verrüköz veya nodüler lezyonlar sıktır ve daha çok alt ekstremitelerde yerleşir. Entomoftoramikoz Doğu ve Batı Afrika, Güney ve Orta Amerika ve Güneydoğu Asya'daki yağmur ormanlarında görülür. Ilıman iklimlerde toprak ve nemli alanlarda çürüyen bitkiler üzerinde saprofit olarak yaşayan ve rinoserebral konidyobolomikoz etkeni olan Conidiobolus coronatus (Entomophtora coronata) tarafından oluşturulur. Tüm yazarlar aynı kanıda olmasa da, araştırıcıların en çok kabul ettiği yaklaşım basidyobolomikoz etkeninin Basidiobolus ranarum olduğu ve B. meristosporus ve B. haptosporus'un bunun sinonimleri olduğudur. B. ranarum topraktan, çürüyen bitkilerden, infekte böcekleri yutmuş kurbağa ve kertenkelelerin bağırsağından soyutlanmıştır. Kuluçka süresi tam bilinmemekte, kıymık batması ve böcek ısırması ile birlikte yaraya kontaminasyon olduğunda hastalık geliştiği düşünülmektedir. Lobomikoz Lobomikozun başlaması çok yavaş ve sinsi, hastalığın seyri çok yavaştır, öyle ki 40-50 yıl sürebilir. Hastalığın kuluçka süresinin uzun olması endemik bölgede bulunma öyküsünün araştırılmasını gerekli kılar. Hastalık travmaya bağlı derideki zedelenme sonucu gelişir ki, bunlar kıymık batması ve böcek ısırmasının yanı sıra yılan sokması, kesi ve bitki keserken yaralanma sonucu gelişebilir. Etken özellikle sulak çevrelerde yaygın bulunur ki, bu muhtemelen yaşam döngüsünün önemli bir bölümünü oluşturur. Hastalık Amerika kıtasının tropikal bölgesinde yaygındır. İnfekte bireylerden etken soyutlanamamıştır ve etken olan mantar tanınamamıştır. Etken deriden girip aylar ya da yıllarca burada kalır, daha sonra deri altı dokulara geçerek genellikle 30-40 yaşlarındaki erkeklerde hastalığa yol açar. Miçetoma Miçetoma Afrika ve Amerika kıtalarının kurak, tropikal ve subtropikal bölgelerinde, özellikle çöle komşu alanlarda yaygındır. Sahra ve Arabistan çölleri hem olgu sayısının fazlalığı hem de etken mikroorganizmaların karışıklığı nedeniyle en önemli endemik bölgedir. Tropikal ve subtropikal bölgelerdeki kurak alanlarda en fazla görülen etken Madurella mycetomatis, Actinomadura madurae, Actinomadura pelletieri ve Streptomyces somaliensis'tir. Bu mikroorganizmalar Afrika ve Asya'nın büyük çöllerinde ve Güneydoğu Avrupa'da bol bulunur. Latin Amerika'nın nispeten nemli yörelerinde Nocardia brasiliensis daha sık, Madurea grisea ise daha enderdir. Romanya gibi ılıman iklimlerden de olgular bildirilmiştir. Erkeklerde kadınlardan daha sık görülür. Etkilenen yaş en fazla 20-50 yaş arasındadır. Etken deride zedelenme sonrası kontaminasyon sonucu girer. Odun, diken ve toprakla kirlenen yaralardan bulaşma şansı vardır. Tropikal ve subtropikal bölgelerde akasya ağacı gibi dikenli bitkiler etkenin girişini kolaylaştırır. Miçetoma etkenlerinin çoğu bitki ve toprak, canlı ve ölü bitkilerde bulunur. Pnömosistis İnfeksiyonu Eski adıyla Pneumocystis carinii yeni adıyla Pneumocystis jirovecii taksonomik yeri belli olmadığından öksüz organizma olarak adlandırılan, ancak son yıllarda ribozomal RNA'sının mantarlarda bulunan rRNA ile homolog olması nedeniyle mantar olarak kabul edilen bir etkendir. Öte yandan gelişmeler bununla da kalmamış, insanda hastalık yapan tür P. jirovecii olarak yeniden adlandırılmıştır. Etken memeli hücrelerindeki özellikleri taşır. Genel olarak dört morfolojik şekil tanımlanmıştır: Trofozoid, kist, prekist ve sporozoid (intrakistik cisimcikler). Tanısal şekil kisttir ve Giemsa, Papanikolaou ve Grocott metenamin gümüş nitrat boyalarıyla boyanır. AIDS epidemisinin erken dönemlerinde P. carinii pnömonisi (PCP)'ne ABD'deki hastaların üçte ikisinde bulunan AIDS tanımlayıcı hastalık olarak sık rastlanmaktaydı. HAART tedavisinin kullanılmaya başlanmasından sonra diğer fırsatçı infeksiyonlarda olduğu gibi PCP insidansı da 1992-1995 yılları arasında %21.5 iken, 1996-1997 yıllarında %3.4'e düştü. Buna rağmen hastalık ABD'de AIDS tanımlayıcı hastalıklar arasında en fazla görülenidir. P. jirovecii AIDS, malign hastalık sırasında kemoterapi rejimleri, immünsüpresif tedavi alanlar, organ transplantasyonu olguları ve doğmalık immünsüpresif durumlar gibi bağışıklık sistemi baskılanmış hastalarda ağır ve öldürücü pnömoniye yol açar. Ancak infeksiyon her zaman akciğerle sınırlı olmayıp lenfatik ve hematojen yolla yayılabilir. Yaygın infeksiyon en fazla tiroid, karaciğer, kemik iliği, lenf bezi ve dalakta tutulum yapar. PCP için en önemli risk faktörü CD4 sayısının 200/mm3'ün altında olmasıdır. Ancak HAART sonrasında bu risk daha azalmış, ancak bu tedavi altında gelişen PCP tablolarında CD4 sayılarının çok daha düşük olduğu gösterilmiştir. PCP kadın ve erkeklerde eşit oranda görülmektedir. Bir çalışmada Afrikalı Amerikalılar'ın beyazların üçte biri sıklıkta hastalığa yakalandığı bildirilmişse de bu bulgu tekrarlanmamıştır. HIV geçiş yolu ile PCP riski farklılık göstermemektedir. Hastaların Pneumocystis ile kolonize olmaları infeksiyon riskini arttırdığı gibi taşıyıcılar etkenin bulaşında önemli rol oynamaktadır. Çocuklarda PCP HIV epidemisinin ilk yıllarında, çocuklarda 1.3 olgu/100 çocuk yılı, bebeklikten adölesan çağa kadar da 9.5 olgu/100 çocuk yılı sıklıkta görülmekteydi. Gebelikteki tarama ve vertikal geçişin önlenmesi pediatrik HIV infeksiyonunu azalttı, öte yandan HAART döneminin başlaması çocuk hastalardaki bütün fırsatçı infeksiyonlar gibi muhtemelen PCP olgularını da azalttı. Ancak HAART'nin çocuk hastalardaki sonuçları henüz net değildir. HIV infeksiyonu olan çocuklarda PCP gelişimi erişkinlerdeki kadar CD4 sayısı ile ilişkili değildir. İnsidans çocuklarda üç-altı ayda pik yapmakta, altı yaş üzerindeki çocuklarda ise CD4 sayısı önem kazanmakta ve erişkinlerdeki gibi CD4 sayısı < 200/mm3 olması profilaksi endikasyonu olarak kabul edilmektedir. Pneumocystis infeksiyonunun bulaşması da, çevresel ortamdaki kaynağı da tam olarak anlaşılamamıştır. Yıllar boyunca bağışıklık sisteminin zayıflaması sonucu latent infeksiyonun reaktivasyonu teorisi kabul görmüştü. Günümüzde ise çevresel kaynaklardan alınabilmesi ve insandan insana bulaştırılmasının mümkün olduğu gösterilmiştir. Ayrıca, infekte olmayan bireylerin etkeni asemptomatik olarak taşıyabildikleri bilinmektedir. Hayvan ve insanda hava yolu ile bulaşa ilişkin kanıtlar elde edilmiş ise de halen bu olgular için solunum izolasyonu önerilmemektedir. KAYNAKLAR Abi-Said D, Anaissie E, Uzun O, et al. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis 1997; 24: 1122-8. Al-Asiri RH, Van Dijken PJ, Mahmood MA, et al. Isolated hepatic mucormycosis in an immunocompetent chil. Am J Gastoenterol 1996; 91: 606-7. Ammari LK, Puck JM, McGowan KL. Catheter related Fusarium solani fungemia and pulmonary infection in a patient with leukemia in remission. Clin Infect Dis 1993; 16: 148-50. Boutati EI, Anaissie EJ. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: Ten years' experience in a cancer center and implications for management. Blood 1997; 90: 999-1008. Brandt ME, Hutwagner LC, Klug LA, et al. Molecular subtype distribution of Cryptococcus neoformans in four areas of the United States. Cryptococcal Disease Active Surveillance Group. J Clin Microbiol 1996; 34: 912-7. Brandt ME, Pfaller MA, Hajjeh RA, et al. Molecular subtypes and antifungal susceptibilities of serial Cryptococcus neoformans isolates in human immunodeficiency virus-associated cryptococcosis. Cryptococcal Disease Active Surveillance Group. J Infect Dis 1996; 174: 812-20. Brodsky AL, Gregg MB, Lowenstein MS, et al. Outbreak of histoplasmosis associated with the 1970 earth day activities. Am J Med 1973; 54: 333-42. Bustamente B, Campos PE. Endemic sporotrichosis. Curr Opin Infect Dis 2001; 14: 145-9. Calgiani G. Coccidioides immitis. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2746-57. Chapman S. Blastomyces dermatitidis. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2733-46. Chariyalertsyak S, Sirisantana T, Supparatpinyo K, et al. Case-control study of risk factors for Penicillium marneffei infection in human immunodeficiency virus-infected patients in northern Thailand. Clin Infect Dis 1997; 24: 1080-6. Deepe GS Jr. Histoplasma capsulatum. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2718-33. Denning DW. Aspergillus species. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2674-84. Denning DW. Invasive aspergillosis. Clin Infect Dis 1998; 26: 781-805. Diamond R. Cryptococcus neoformans. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2707-18. Dromer F, Mathoulin S, Dupont B, et al. Epidemiology of cryptococcosis in France: A 9-year survey (1985-1993). French Cryptococcosis Study Group. Clin Infect Dis 1996; 23: 82-90. Dromer F, Mathoulin S, Dupont B, et al. French Cryptococcosis Study Group. Individual and environmental factors associated with infection due to Cryptococcus neoformans serotype D. Clin Infect Dis 1996; 23: 91-6. Edwards J. Candida species. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2656-74. Gartenbeg G, Bottone EJ, Keusch GT, et al. Hospital-acquired mucormycosis (Rhizopus rhizopodiformis) of skin and subcutaneus tissue: Epidemiology, mycolgyand treatment. N Engl J Med 1978; 299: 1115-7. Gerson SL, Talbot Hurwitz S, et al. Prolonged granulocytopenia: The major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med 1984; 100: 345-51. Guarro J, Gené J. Opportunistic fungal infections in human. Eur J Clin Microbiol Infect Dis 1995; 14: 741-54. Heyderman RS, Gangaidzo IT, Hakim JG, et al. Cryptococcal meningitis in human immunodeficiency virus infected patients in Harare, Zimbabwe. Clin Infect Dis 1998; 26: 284-9. Hoepelmen A. Opportunistic fungi. In: Cohen J, Powderly WG (eds). Infectious Diseases. 2nd ed. Spain: Mosby, 2004: 2341-61. Hospenthal DR, Bennett JE. Miscellanous fungi and Prototheca. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2772-80. Jarvis WR. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis 1995; 20: 1526-30. Kanda Y, Yamamoto R, Chizuka A, et al. Prophylactic action of oral fluconazole against fungal infection in neutropenic patients. Cancer 2000; 89: 1611-25. Khoo SH, Dening DW. Invasive aspergillosis in patients with AIDS. Clin Infect Dis 1994; 19(Suppl 1): 41-8. Krcmery Jesenka Z, Spanik S, et al. Fungemia dure to Fusarium spp. in cancer patients. J Hosp Infect 1997; 36: 223-8. Levitz SM. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. J Infect Dis 1991; 13: 1163-9. Marr KA, Seidel K, Slavin MA, et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic bone marrow transplant recipients: Long term follow-up of a randomized, placebo controlled trial. Blood 2000; 96: 2055-61. Martino P, Raccah R, Gentile G, et al. Aspergillus colonization of the nose and pulmonary aspergillosis in neutropenic patients: A retrospective study. Haematologica 1989; 74: 263-5. Mead JH, Lupton GP, Dillavau CL, et al. Cutaneus Rhizopus infection: Occurence as a postoperative complication associated with elasticized adhesive drssing. JAMA 1979; 242: 272-4. Mitchell SJ, Gray J, Morgan MEI, et al. Nosocomial infection with Rhizopus microsporus in preterm infants: Association with wooden tongue depressors. Lancet 1996; 34: 441-3. Mitchell TG. Systemic fungi. In: Cohen J, Powderly WG (eds). Infectious Diseases. 2nd ed. Spain: Mosby, 2004: 2363-81. Morris A, Lundgren JD, Masur H, et al. Current epidemiology of Pneumocystis pneumonia. Emerg Infect Dis 2004; 10: 1713-20. Nucci M, Akiti T, Barreiros G, et al. Nosocomial fungemia due to Exofiala jeanselmei var. jeanselmei and a Rhinocladiella species: A newly described causes of bloodstream infections. J Clin Microbiol 2001; 39: 514-8. Pappas PG, Tellez I, Nolazco D, et al. Sporotrichosis in Peru: Description of a hyperendemic area. Clin Infect Dis 2000; 30: 65-70. Pfaller MA. International surveillance of bloodstream infections due to Candida species: Frequency of occurence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 2001; 39: 3254-9. Richardson M. Subcutan mycoses. In: Cohen J, Powderly WG (eds). Infectious Diseases. 2nd ed. Spain: Mosby, 2004: 2383-96. Safdar N, Maki DG. The commonality of risk factor for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, Enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 2002; 136: 834-44. Selik RM, Chu SY, Ward JW. Trends in infectious diseases and cancers among persons dying of HIV infection in th United States from 1987 to 1992. Ann Intern Med 1995; 123: 933-6. Silveira F, Nucci M. Emergence of black moulds in fungal disease: Epidemiology and therapy. Curr Opin Infect Dis 2001; 14: 679-84. Singh N, Gayowski T, Singh J, et al. Invasive gastrointestinal zygomycosis in a liver transplant recipient: Case report and review of zygomycosis in solid organ transplant recipients. Clin Infect Dis 1995; 20: 617-20. Singh N. Trends in the epidemiology of opportunistic fungal infections: Predisposing factors and the impact of antimicrobial use practices. Clin Infect Dis 2001; 33: 1692-6. Speed BR, Dunt D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 1995; 21: 28-34. Sturm AW, Grave W, Kwee WS. Disseminated Fusarium oxysporum infection in a patient with heat stroke. Lancet 1989; 1: 968. Sugar AM. Agents of mucormycosis and related species. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2685-2605. Thomas CF, Limper AH. Pneumocystis pneumonia. N Engl J Med 2004; 350: 2487-98. Raad I, Hachem R. Treatment of central venous catheter-elated fungemia due to Fusarium oxysporum. Clin Infect Dis 1995; 20: 709-11. van Elden LJR, Walenkamp AME, Hoepelman AIM. Declining number of patients with cryptococcosis in the Netherlands in the era of highly active antiretroviral therapy. AIDS 2000; 14: 2787-800. Verveij PE, Voss A, Donelly JP, et al. Wooden sticks source of a pseudoepidemic of infection with Rhizopus microsporus var. rhizopodiformis among immunocompromized patients. J Clin Microbiol 1997; 35: 2422-3. Wazir JF, Ansari NA. Pneumocystis carinii infection. Arch Pathol Lab Med 2004; 128: 1023-7. YAZIŞMA ADRESİ Yrd. Doç. Dr. A. Seza İNAL Çukurova Üniversitesi Tıp Fakültesi Klinik Bakteriyolojisi ve İnfeksiyon Hastalıkları Anabilim Dalı, ADANA

http://www.biyologlar.com/firsatci-enfeksiyonlar

Çift zincirli RNA yapaymıdır? doğalmıdır?

RNA, DNA'ya çok benzer olmakla beraber ama bazı yapısal ayrıntılarında farklılık gösterir. Hücre içinde RNA genelde tek zincirli, DNA ise genelde çift zincirlidir. çift zincirli RNA (dsRNA) RNA interferans, uygun çift zincirli RNA’nın hücreye girdiği zaman, endojenik komplementer mRNA dizisinin parçalanmasına yol açan, transkripsiyon sonrası gen susturma mekanizmasıdır. RNA interferans, Dicer adı verilen bir RNase III enzimi tarafından çift zincirli RNA’nın küçük engelleyici RNA’lara (siRNA) kesilmesi ile başlamaktadır. Bu siRNA’lar daha sonra, bir multiprotein-RNA nükleaz kompleksi olan, RNA- indükleyici baskılama kompleksine (RISC) bağlanır. RISC, siRNA’ları komplementer mRNA’yı bulmak için kullanır ve hedef mRNA’yı endonükleolitik olarak keser. Neticede spesifik mRNA’nın azalması uygun protein(ler)in azalmasına yol açar. RNA interferans ve RNA baskılamanın diğer formları olan transkripsiyon sonrası gen baskılama/co-supresyon ve quelling bitkiler, hayvanlar, fungus ve protozoa gibi geniş bir organizma çeşidinde gözlenmiştir. RNA interferans doğal bir mekanizma olmakla birlikte in vitro olarak sentezlenen siRNA’lar kullanılarak endojenik genlerin ekspresyonu baskılanabilmektedir. Bu yüzden RNA interferans moleküler biyolojide gen fonksiyonu analizinde ve aynı zamanda gen terapisinde geniş bir uygulama alanına sahiptir. Bu derlemede RNA interferans ve onun spesifik varyantları olan transkripsiyon sonrası gen baskılama/co-supresyon ve quelling’den, RNA interferansın mekanizmasından ve onun tedavi alanındaki uygulamalarından bahsedilmektedir.   Anahtar Kelimeler: RNA İnterferans, RNAi, siRNA, Gen baskılama. RNA İNTERFERANS (RNAi) Ramazan GÜNDOĞDU, Venhar ÇELİK      

http://www.biyologlar.com/cift-zincirli-rna-yapaymidir-dogalmidir

Gen Tadavi

Gen tedavisi, çeşitli pek çok klinik durumun gelecekteki tedavisi için ümit vermeye devam etmektedir. Alışılmamış, biçim verilmiş gen transfer vektörlerinin gelişimi, tedaviye yönelik gen ifadelerinin verimini ve stabilitesini arttıracaktır. Doku ve organ nakli konusunda ise gen tedavisinden nakledilmiş dokunun akut ve kronik reddedilmesini engellemek amacı ile ya reddetmeyi engellemede önemli yeni genler (örneğin: yardımcı uyarıcı blokaj molekülleri yada imünosupresif sitokinez) yada adezyon molekülleri gibi reddetme ile alakalı moleküllerin üretimini engellemek için anti-duyusal nükleik asitler aşılayarak yararlanılmaktadır.Genlerin yabancı donör antijenlerini (alloantijenler) kodlayan gen tedavisi vektörleri tarafından taşınımı ayrıca alıcıda donöre özel cevapsızlık (immunolojik tolerans) oluşturmanın etkili bir yolu olup, belki de potansiyel olarak zararlı bütün vücut immunosüpresyonuna olan ihtiyacı ortadan kaldırabilir. Hastalıklar üzerinde yapılan yüzlerce yıllık çalışmalar teşhis, tedavi ve araştırmada bugün kullanılan çeşitli pek çok sofistike tekniğin gelişmesine neden olmuştur. 1960'larda hastalıkların nedenini anlamak üzere yapılan araştırmalar hastalıklı hücrelerin biyokimyasını analiz etmek ve çeşitli protein etkileşimlerini incelemekle sınırlı idi. Bu araştırmalar değerli idiyse de, o zamanın bilim adamları hastalık proseslerini, tam olarak anlamak üzere onları oluşturan parçalara ayırıp incelemek için gerekli teknoloji ve ajanlardan yoksundular. DNA'yı spesifik noktalarından kesen kesme enzimleri ilk olarak 1970'lerde keşfedildi ve moleküler biyolojide kullanılmaya başlandı. Genleri kesmek, ayırmak ve bir araya getirmek için bu kesme enzimlerini kullanarak, araştırmacılar, genetik faktörlerin hastalıklarda oynadığı önemli rolleri anlamaya başladılar. Şu anda, İnsan Genom Projesi tamamlanmak üzereyken, bize açık olan bilgi hazinesini yorumlamaya çalışıp, hastalıklar ve genler arasında yeni bağlar kurabiliriz. Bir kere kurulduktan sonra, bu bilgi gen tedavisinin bir tedavi stratejisi olarak kullanımını hızlandırmaya yarayacaktır. Allograft reddedilmesi ve immonolojik toleransÖngörülebilen gelecekte, hastalara allojenik yani “major histocompatibility complex locus”ta aynı olmayan organlar nakil edilmeye devam edilecektir. İmmunnosupresif ilaçların verilmesi gibi herhangi bir tedavi uygulamadan, ana olarak T-hücrelerinin arabuluculuk yaptığı bağışıklık cevabı, böyle bir aşılamayı reddedecektir.?Şekil 1??Kendine tolerans (vücüdün kendi T hücrelerinin vücut dokularına reaksiyon gösterememesi) olgunlaşmamış T hücreleri, gelişip timustan geçerken kazanılır. Bunun olmasının nedeni potansiyel olarak otoreaktif T hücrelerinin çoğunun klonal silme işlemi ile "negatif olarak seçilmiş olmalarıdır" fakat klonal anerji (antijene karşı cevapsız kalan, varlığını sürdürebilen T hücrelerinin varlığı) ve düzenleyici T hücreleri populasyonu yaratılmasının bu konuda bir rolü olabilir. Nakil İmmünologlarının en büyük hedefi doku alıcılarında, alloantijenlere karşı uzun zamanlı nakil toleransı yaratmaktır. Bu tür bir bağışıklık durumunda hasta, yabancı antijenlere (örn. bakteriler, virüsler ve ortaya çıkan kötü niyetli hücreler) karşı normal reaksiyon gösterirken, doku naklini reddetmek yerine tolere edecektir. Bu tür ideal bir durumda, sistemsel immunosüpresif ilaçlara (getirdikleri bütün dezavantajlarla birlikte) gerek kalmayacak, ve doku alıcıları tüm fonksiyonlarını yerine getirebilen, sağlıklı bir bağışıklık sistemi sahibi olacaklardır. Gen tedavisi nedir?Bir gen, belirli bir proteini kodlayan çizgisel bir DNA zinciridir. Bazı nadir durumlarda, genellikle hücre bölünürken, bir genin nükleotit zinciri (DNA taban çiftlerinin sırası) birbirine karışıp, mutasyon geçirebilir ve böylece oluşan protein hatalı olur. Bu tür mutasyon olayları sistik fibrosis, adenosine deaminase (ADA) yetersizliği ve orak hücresi anemisi gibi genetik hastalıkların ana nedenidir. Örneğin sistik fibrosisten rahatsız kişiler, sistik fibrosis transmembran iletim düzenleyicisi adındaki hücresel taşıma proteinini hatalı olarak üretirler, ki bu akciğerlerinde mukoza birikmesine yol açar. Gen tedavisinin ilk uygulamaları, hatalı bir genin (ya da gen kombinasyonunun) neden olduğu bir hastalığın, eğer genler “doğru” versiyonları ile değiştirilebilirlerse kontrol altına alınabileceği, engellenebileceği yada tedavi edilebileceği prensibi üzerine kurulmuştu. Gen tedavisi doğuştan var olan yada sonradan edinilen pek çok genetik hastalık için kullanılmaktadır. Fakat pek çok hastalık birden fazla genetik faktör ile bağlantılıdır (polijeniktir). Hastalık sürecindeki çeşitli genlerin ve kodladıkları proteinlerin bağlantıları hatasız olarak kurulana dek, gen tedavisi klinik olarak, ancak ADA yetersizliği, familial hypercholesterolaemia ve sistik fibrosis gibi tek gen hataları için önleyici ve iyileştirici tedavi olarak etkili olacaktır. Gen tedavisi protokollerini kullanan pek çok klinik deneme zaten tamamlanmıştır, genel olarak kullanılan gen transfer vektörlerinin yetersizliği yüzünden protokollerin etkisi önceden öngörüldüğü kadar dramatik olmamışsa da sistik fibrosis ve ADA yetersizliğinden şikayetçi hastalarda bir takım başarılar elde edilmiştir. 1980’lerde aslen “gen değiştirme tedavisi” olarak bilinen gen tedavisi, ilk tanımını aşmıştır ve in vivo yada ex vivo, bir gen transferi öğesi içeren her türlü protokole uygulanmaktadır. Bu genlerin mutlaka hastalığa yol açıyor olması da gerekmemektedir. In vivo gen transferi genlerin hücrelere vücutta bulundukları yerde aşılanmasıdır. (örneğin: kol üzerindeki deri hücrelerine yada gen transfer vektörünün ciğerlere çekilmesinden sonra akciğer epitel hücrelerine) Ex vivo gen transferi, genlerin geçici olarak hastadan alınmış hücrelere verilip, tekrar hastaya aşılanmasıdır (örneğin: kemik iliği hücreleri). Gen tedavisi somatik hücre gen transferi (normal diploid hücrelere yapılan transfer), ve germline gen transferi (üreme sisteminin haploid sperm yada yumurta hücrelerine yapılan transfer) olarak alt gruplarına ayrılabilir. Germline gen transfer hakkındaki etik konular somatik gen transferi ile ilgili olanlardan çok daha karışıktır çünkü genler sadece alıcılara değil aynı zamanda onların çocuklarına da aktarılır. Germline gen transferi araştırmalar için transgenik hayvan üretiminde, tarım ve biyoteknoloji için çeşitli alanlarda gittikçe artarak kullanılmaktadır, fakat hayvanlarda transfer edilen her genin uzun dönem etkileri dikkatlice gözlenip analiz edilmelidir, eğer varsa kalmış olan vektör DNA’larda büyük önem taşır. Germline gen tedavisinin insanlara getirebileceği yararlar kayda değerdir. Ciddi ve acı verici kalıcı genetik hastalıkların gelişimi doğumdan önce önlenebilir ve izleyen kuşaklarda ortadan kaldırılabilir. Fakat, hatalı kullanım ve öjenik potansiyeli yüzünden, insanlarda gen tedavisi geniş bir biçimde tartışılmalı ve alakalı güvenlik konuları değerlendirilmelidir. Ancak bundan sonra bu yaklaşım hastalıkların tedavisinde kullanılabilir. Nakilde gen tedavisi kullanımıDNA’nın nakil araştırmalarında kullanımının kayıtlı ilk denemesi Haskova, onun meslektaşları ve verici soydan DNA naklinin, takip eden bir nakile karşı bağışıklığa (ani reddetmeye) neden olup olmayacağını araştırmakta olan Medawar tarafından uygulandı. Medawar tarafından yürütülen deneylerde, soy A bir verici farenin dalağından alınan DNA arındırılıp, 5 mg’ı daha önceden müdahale edilmemiş bir farenin (CBA soyu) peritoneal (karın) boşluğuna enjekte edildi. Alıcı fareye 3-5 gün sonra verici soy A farenin derisi nakledildi ve aşılamalar zaman içinde gözlendi. Aşılamalar DNA almayan farelerle aynı zaman içinde reddedildi, herhangi bir artış gözlenmedi. Medawar, nakil toleransı yaratmak için verici soy hücrelerini neonatelere enjekte etmekteki başarısının ardından gerçekleştirdiği bir başka deneyde, yine nakil toleransı yaratmak için yeni doğmuş farelere tekrar tekrar “yüksek dozlarda” verici soy DNA’sı aşılanmıştı; fakat bu yaklaşım deri aşılamalarının kabul edilme sürelerini uzatmadı. Bu erken deneylerin negatif sonuçları Medawar tarafından saf olmayan DNA preparatlarına ve polisakkaritlerle kontaminasyona bağlanmış olsa da, şimdi anlayabiliyoruz ki, kas içi enjeksiyon gibi farklı enjeksiyon yolları seçilseydi, - Geissler ve meslektaşları tarafından yakın zamanda ortaya konduğu gibi - çok daha değişik sonuçlar elde edilebilirdi. Organ nakli şu anda son safhasındaki organ yetersizlikleri için iyice yerleşmiş bir tedavidir. İmmünosupresif ilaçlardaki kayda değer gelişmeler (örneğin. Siklosporin, kortikosteroidler ve rapamisin) 1 yıllık ve 5 yıllık böbrek nakillerinin başarı şansını sırasıyla %85 ve %75’e çıkarmıştır. Bu etkileyici bir başarı olsa da, sağlıklı nakiller hala reddedilebilmektedir ve sistemsel immünosupresif ilaçların kullanımı da beraberinde kanser oluşumu riskinin artması, enfeksiyonlar ve iskemiye bağlı kalp hastalığı gibi kayda değer riskler getirir ve bu riskler uzun zamandır sorunsuz nakiller için de geçerlidir. Gen tedavisi var olan nakil ile alaklı problemlere yaklaşım için iyi bir stratejidir fakat genellikle sadece tamamlayıcı bir yaklaşım olarak kullanılmaktadır. Örneğin, nakil edilecek organların immünojenliklerini azaltmak amacıyla bu organlara, T-hücresi aktivasyonunu engelleyecek genler aşılanabilir yada alıcıya, vericiye ait Major Histocompatibility Locus (MHC) antijenleri aşılanıp nakil toleransı yaratılabilir. Her iki yöntemde potansiyel olarak kuvvetlidir. Nakil ile alakalı genlerMHC iyi korumalı fakat polimorfik bir gen lokusudur. MHC molekülleri, hücre içinde işlenmiş peptitleri heliksel bir yivde ligantlarına, T-hücresi alıcısına (TCR) sunan yüzey proteinleridir. Eğer uygun ko-uyarıcı moleküller antijen sunan hücrenin üstünde mevcut ise, antijen sunan hücreye peptit sunan MHC molekülü ve T-hücresi üzerinde belli bir TCR arasında “akrabalık etkileşimi” T-hücresi aktivasyonuna yol açabilir. MHC sınıf I molekülleri 3 alfa alanı ve MHC gen lokusu tarafından kodlanmamış bir ?2 mikroglobulin zincirinden oluşur. MHC sınıf II molekülleri iki alfa alanı ve iki beta alanından oluşur. Sınıf I molekülün üstünde sunulan peptitler genellikle hücre içi proteinlerden gelirken, sınıf II moleküller hücre dışı kaynaklı peptitler sunarlar. Peptitlerin gelişmemiş MHC moleküllerine taşınma mekanizması da bu iki sınıf molekül için çok farkldır. MHC, allograft (Bir canlıdan, genetik yapısı farklı başka bir canlıya doku yada organ nakli/aşılanması) reddini tetikleyen ana tanıma molekülüdür çünkü kendi (sinjeneik) ve kendi olmayan (allojeneik) arasındaki farkı saptar. Uygun bir organ vericisi aranırken, nakil edilen organa mümkün olduğu kadar çok çalışma şansı yaratabilmek için verici ve alıcı arasında karşılaştırılan antijenler MHC antijenleridir. Bahsi geçen durumlarda, MHC’nin bu potansiyelinden bağışıklık sistemininin dengesini bağışıklıktan toleransa kaydırmak için yararlanılmıştır. Tolerans yaratmak maksadıyla organ alıcısının, vericinin MHC antijenlerine maruz bırakılması, ilk olarak 1953’te Billingham ve meslektaşları tarafından bir fare modelinde, verici soydan hücreler alıcı farenin uterusuna enjekte edilmesiyle gerçekleştirildi. Bu ilk denemenin ve takip eden araştırmaların ardından nakil öncesi kan nakilleri (mutlaka organ vericisinden olması gerekmeden) MHC alloantijenlerini alıcıya verebilmek için klinik olarak kullanılmaya başlandı ama sınırlı başarı elde edildi. Fakat kan ürünlerinin kullanılması beraberinde enfeksiyonlar, nakil reaksiyonları gibi doğal riskler getirdiğinden, özelleşmiş bir yaklaşım kullanan daha yenilikçi bir tedavi organ alıcılarını kanda bulunan alloantijenlere karşı duyarlı hale getirme riskini ortadan kaldırmış olur. Verici genlerinin, alıcının hücrelerine yada dokularına verilmesi gayet özelleşmiş bir tedavidir, yabancı hücrelerle alakalı riskler taşımaz ve alıcıların verici dokusu vücuda girmeden önce yabancı genlerle ön-tedavi edilmesine olanak verir. Hayvan modellerdeki MHC gen transferleri ayrıca allojenik MHC antijenlerinin, diğer antijenlerin etkisi olmadan alıcının bağışık hücreleri üzerindeki etkilerini incelemek için yararlıdır. Bu tür bir yaklaşım ilk olarak Madsen ve meslektaşları tarafından, vericiden alınan tek bir MHC sınıf I geni, alıcı türü bir farenin hücre hattına transfekt edilip, ardından alıcıya verildiğinde yürütülmüştü. Bu çalışma ile takip eden kalp nakline karşı cevapsızlık sağlanmasının yanında alıcının, vericinin uyuşmayan her türlü MHC moleküllerine maruz kalmasına gerek olmadığı anlaşıldı. Bu deney bu yöntemin işe yarayabileceğini kanıtlamış olsa da, transfekt edilmiş alıcı hücrelerini kullanmak klinik olarak pratik bir çözüm değildir. Bundan sonraki adım Wong ve meslektaşları tarafından atılmıştır; alıcı fareden alınan kemik iliği hücreleri MHC sınıf I gen ile retroviral bir gen tedavisi vektörü kullanılarak ex vivo transdüksiyona uğratılmış (virüs ile enfekte edilmiş) Bu yaklaşım tarzı da tamamen allojeneik bir kalp naklinde uzun dönem cevapsızlık yaratmıştır ama alıcı daha önce MHC sınıf I genlerine maruz kalmadığı bir vericiden alınan 3. parti bir nakli reddetmiştir. MHC moleküllerinin bir başka enteresan özelliği de çözünebilir yada zara bağlı olmalarına bağlı olarak bağışıklık sisteminin cevabını değiştirebilme yeteneğidir. İnsan karaciğeri naklini izleyen gözlemler ortaya koymuştur ki, çözünebilir insan verici lökosit antijenleri (HLA; insan MHC antijenleri) nakil sonrasında yüksek konsantrasyonlardadırlar. Bu toleranslı duruma sadece verici lökositlerinin mikrokimerizminin (düşük düzeylerde verici hücrelerinin alıcıda varlığını sürdürmesi) yol açtığı hipotezi ileri sürülmektedir; lakin eşit miktarda geçerli başka bir açıklama ise bu toleransın karaciğerin doğal olarak salgıladığı bol miktarda çözünebilir MHC molekülünün etkisi olduğudur. Çözünebilir vericiye ait MHC sınıf I moleküllerin immünosupresif etkileri olabilir, ve bu organ nakillerinde, organın fonksiyonunu sürdürmesini iyileştirebilir. Geissler ve meslektaşları, alıcı soydan gelen hepatositlerin lipofektin ile zara bağlı yada çözünebilir MHC sınıf I molekülleri kodlanan plazmit kullanılarak bir fare modeli kullanmışlardır. Zara bağlı MHC sınıf I moleküllerini belirten hepatositlerin, sitotoksik T-lenfosit (CTL) öncü hücrelerini primelarken, çözünebilir MHC sınıf I hücrelerine maruz kalmanın CTL öncülerin sayısını (frekansını) düşürdüğü gözlendi ki bu çözünebilir HLA sınıf I hücrelerinin insan alloreaktif CTL’lerde apoptoza neden olabileceğinin göstergesidir. İmmunosüpresif Sitokinezİmmuno-ayarlayıcı moleküller kodlayan genlerin nakledilen organ civarına verilmesi, yada direkt nakledilen organa verilmesinin, akut yada kronik reddetmede yabancı dokuya karşı oluşan bağışıklık cevabını azaltmada geniş bir faaliyet alanı vardır.Sitokinezler bağışıklık sisteminin çözünebilir ayarlayıcılarıdır ve bazılarının immünosüpresif etkileri vardır. Interlökin 10’un viral formu (vIL-10) Epstein-Barr virüsü tarafından kodlanmış olan bir proteindir, yapı olarak insan ve fare için homologdur ve IL-10’un sahip olduğu T-hücresi ko-uyarıcı özelliklerine sahip değildir. T-hücresi aktivasyonun kapatılması yada aşağı çekilmesinin gerektiği dokulara gen transferi yapılmasında yararlı bir araçtır. DeBruyne ve meslektaşları, nakil edilecek sıçan kalbine DNA-lipozom kompleksleri kullanılarak vaskülater perfüzyon aracılığı ile yapılan vIL-10 gen transferi nakil edilen organın hayatta kalma süresini uzattığı görülmüştür. (8 gün yaşayan muamele görmemiş organlara karşı 16 gün) Sonuç vIL-10 genine bağlandı, çünkü vIL-10’a bir anti-duyu plazmidiyle yapılan tedavi yada vIL-10’a hedeflenmiş bir monoklonal antikor nakil-uzatma etkisini tersine çevirdi. Dönüşüm büyüme faktörü beta (TGF) gibi diğer sitokin genleri de ayrıca kayda değer immünosupresif etkiler göstermişlerdir. Lakin bu yaklaşım tarzının amacı immünologikal tolerans yaratmak değildir, fakat yine de yerel immünosüpresyon yaratmak için yararlı olabilir. Ko-uyarıcı sinyalin engellenmesiKendine özgü TCR-MHC etkileşiminden oluşan hücre içi ilk sinyalden ayrı olarak bir T-hücresinin tam aktivasyonu CD28 ve B7-1 yada B7-2 (sırasıyla CD80 yada CD86)nin etkileşiminden oluşan ikinci bir ko-uyarıcı sinyal gerektirir. Sitotoksik T-lenfosit antijen 4 (CTLA-4 yada diğer adıyla CD152) CD80 ve CD86 için alternatif bir liganttır ve CD28 ile homologdur. CTLA-4 ün T-hücresi aktivasyonu aşağı çekmekle ilgili bir rolü olduğu düşünülmektedir. Bu ko-uyarıcı sinyalin mesela bir füzyon proteini kullanarak engellenmesinin, pek çok mürin ve primat çalışmalarında hücre arabuluğunda oluşan in vivo hümoral bağışıklık cevaplarını engellediği görülmüştür. CTLA-4Ig genini [CTLA-4 ve bir immunoglobulin (Ig)] bir kalp naklinin ardından damar içinden vermek üzere adenoviral bir vektör kullanan bir çalışmada, ortalama yaşama süresi kontrol grubundaki 6 güne göre, CTLA-4Ig transgenin ifade eden adenoviral vektörle tedavi edilen grupta 23 gün saptandı. Chahine ve meslektaşları tarafından yapılan bir başka çalışmada ise, CTLA-4Ig transgeni sinjeneik ve allojeneik iki grup fare kas öncü hücresine (lökoblastlar) transfekt edildikten sonra, diabetik bir farenin böbrek kapsüllünün altına allojeneik pankreas adacık(?) hücreleriyle beraber nakil edilmiştir. Sinejeik lökoblastlar adacıkların yaşama süresinde kayda değer bir artışa neden olmuşlar ve 11 günden 31.7 güne çıkarmışlardır, allojeneik lökoblastların yararlı bir etkisi görülmemiştir. Sinejeik lökoblastlar aktif olarak CTLA-4IG salgılamışlar ve allojeneik adacıkların olduğu çevrede immünosüpresyon yaratmışlar ve onların fonksiyonlarına devam etmelerine izin vermişlerdir. Lökoblastlar allojeneik olduğunda ise, alıcıdaki MHC eşitsizliği onları yok etmeye yetmiş ve CTLA-4IG’nin üretimini engellemiştir. Kronik reddetmeyle alakalı genlerİmmünosupresif ilaçlar ve organ korumasındaki gelişmelere rağmen bir allograft nakilden yıllar sonra hasar görmeye devam edebilir, bu yüzden kronik reddetme nakledilen organların başarısız olmasındaki en önemli etkendir. Histolojik olarak, kronik reddetme sırasında düz kas hücrelerinin nakil edilen organın damar ağı(?) etrafında hızla çoğaldığı ve bazen nakil aterosklerozuna (Atar damar duvarının esnekliğini yitirmesi ve sertleşmesi) neden olduğu görülmüştür, durumun bu son noktaya gelmesine pek çok faktör katkıda bulunur. Hücreler arası yapışma molekülü 1 (ICAM-1) gibi yapışma molekülleri ve vasküler endotelial-hücre büyüme faktörü gibi büyüme faktörleri artar ve teşvik edilebilir (inducible) nitrik oksit sintazın dengesi bozulur. ICAM-1ICAM-1 Ig süperfamilyasının bir üyesidir ve hücresel yapışma ve T-hücresi ko-uyarılmasında çok önemlidir. ICAM-1’in etkilerini ortadan kaldırıp T-hücresi aktivasyonunu azaltmaya yönelik yöntemler, böbrek allograftı hastaları ve ICAM-1 molekülüne karşı hedeflenmiş antikorlar kullanan klinik deneyler başarıyla yürütülmüş durumda. 18 hastalık bir çalışmada, anti-ICAM-1 antikoru (BIRR1) ölü vericilerden böbrek nakledilen ve nakil fonksiyonu gecikmesi riski yüksek olan hastalara verildi. BIRR1 serumunun yeterli bir miktarı (>10?g/ml) hem nakil fonksiyonu gecikmesi hem de reddetme olaylarının (p<0.01) kayda değer bir miktarda azalmasına neden oldu. Bu terapi mürin modellerde ICAM-1’in mRNA’sına hedeflenen anti-duyu oligonükleotitleri kullanmak için geliştirildi. Nitrik dioksitNakledilen organlardaki, vesselların intimal (iç) çoğalmaları kronik reddetmenin başka bir göstergesidir. İç kaplar tabakadan kaynaklanan nitrik dioksidin vasküler yara oluşumunun endojen bir inhibitörü olduğu hipotezini test etmek için, bir Sendai virüs virosomu iç kaplar tabaka hücreleri kaynaklı nitrik dioksit sintaz genini in vivo olarak nakletmek için kullanılmıştır. Von der Leyen ve meslektaşları, bir balon yara modeli kullanarak farenin karotid arterinin iç kaplar tabakasının bozulmasının ardından endothelial-hücresi nitrik oksit sintaz geninin transfer edilmesinin neointimal çoğalmayı %70 kadar düşürdüğünü ortaya koydular. Oksijen serbest radikalleriNakilden önce, çoğu organlar soğuk ortamda, tam bir kan kaynağı olmadan saklanır, bu olay soğuk iskemi etkisine neden olur. Bu, yeniden bağlanan kan kaynağını reperfusionu ile birleşince oksijen serbest radikallerinin neden olduğu hücre hasarı yaratabilir. Bu durumun kronik reddetme şansını kuvvetlendirdiği düşünülmektedir. Ciddi bir hasarı önlemek için, serbest radikalleri temizlemek üzere çözünebilir süperoksit dizmutaz (SOD) ex vivo olarak nakledilecek organa verilmiştir. Bugüne kadar, gen transferinde SOD’un kullanıldığı birkaç çalışma yapılmıştır. Bir araştırmada oksidasyon hasarı ile ilgili hastalıklar için SOD (yada aynı etkiye sahip katalaz) şifreleyen rekombinant adenovirüs kullanıldı. Farelerdeki bu akciğer-perfüzyon modelinde, iskemi-reperfüzyon hasarı değerlendirildi; ve sürpriz bir şekilde SOD’un fazla ifadesi iskemi-reperfüzyon hasarını kötüleştirdi. Hem SOD hem katalaz transgenlerinin ifadesi iskemi-reperfüzyon hasarındaki bu artışı engelledi fakat ondan koruyamadı. Uygulama yöntemleri ve gen tedavisi vektörleri için hücre hedefleriTimus içi uygulamaTimusiçi T-hücresi gelişimi prosesinin, nakil ve tolerans yaratma için kullanımı ilk olarak Posselt ve meslektaşları tarafından betimlenmiştir. Kendine tolerans (kendi dokusunda meydana gelmiş antijene cevap verememe) CD4- ve CD8- (çift negatif) olan T-lenfosit öncü hücreleri timustan geçerken oluşur. T-hücreleri timik epitel hücrelerindeki antijene maruz kaldıkları için, timustaki atijenle etkileşmeye yüksek eğilimi olan ve bu nedenle otoreaktif olan hücreler klonal silme prosesiyle negatif seleksiyona uğrar. TCR’leri timusiçi antijenlere eğilimi olmayan (yada çok az olan) fakat kendi MHC’sine karşı etkileşime yüksek eğilimi olan hücreler pozitif seleksiyona uğrarlar; ve bu hücreler gelişip, çoğalabilir ve çevrede daha büyük klonal populasyonlara genişleyebilirler/yayılabilirler. Knechtle ve meslektaşları, bir fare modelinde, bir gen tedavisi yöntemi kullanarak tolerans yaratmanın mümkün olduğunu gösterdiler. İlk olarak sinejeik alıcı kas hücreleri aldılar ve in vitro olarak bu hücreleri vericiden alınmış olan MHC sınıf I genleri ile transfekt ettiler. Bu hücreler daha sonra alıcının timüsüne enjekte edildi. Daha sonra alıcının çevresel bağışıklık sistemi, anti-lenfosit serumu kullanılarak potansiyel alloreaktif T-hücrelerinden temizlendi. Bunu alıcının bağışıklık sisteminin cevapsız kaldığı bir karaciğer nakli izledi. Takip eden bir çalışmada, verici soydan fareden MHC sınıf I tamamlayıcı (koplementer) DNA (cDNA), timik hücreleri yerlerinde transfekt etmek için, direkt olarak alıcının timüsüne verildi; polimeraz zincir reaksiyonu (PCR) kullanılarak yapılan analizde timüste geçici olarak verici DNA’sına rastlandı (timositlerin timüsten dışarı verilmesi nedeniyle de bir süre daha sonra dalakta) Yukarıdaki yaklaşımlar ya DNA ile transfekt edilmiş hücreler yada çıplak DNA’nın kendisini kullanarak verici MHC genlerini alıcıya ulaştırmışlardır. DNA transfeksiyonu kullanılarak başarılmış gen tedavisinin verimi adenovirüs kullanılarak arttırılabilirdi. Adenovirüs vektörleri (yada sadece “Adenovirüs”) timüs içi uygulamalar için idealdir çünkü yüksek titrelerde üretilebilir ve çok çeşitli hücre türlerini transdüse edebilir. Genler, antijen sunan timik epitel hücrelerine değil gelişmekte olan timositlere de transfer edilebilir fakat immünojenik adenoviral antijenlere karşı merkezi tolerans (timüs, dalak ve kemik iliği gibi merkezi lenfoid organlardaki lenfositlerde oluşan tolerans) Ilan ve meslektaşları tarafından da ortaya konduğu gibi yaratılabilir. Çalışmalarında, rekombinant adenovirüsün timüs içine aşılanmasının nötralize edici antikorlar ve rekombinant adenovirüse karşı CTL’lerin orataya çıkışını inhibe ettiğini ortaya koymuşlardır. KaraciğerGen transferi ve organ nakliyle ilgili olarak karaciğerin pek çok ilginç özelliği vardır. Bazı durumlarda karaciğer organ nakli alıcılarının MHC-uyuşmazlığı olan nakilleri, nakil sonrası sistemik immünosupresyona gerek bırakmadan kendiliğinden kabul ettikleri olmuştur. Bu gözlemin nedeninin nakil sonrası verici MHC moleküllerinin çözünerek kan dolaşımına karışmasının ardından alloreaktif CTL cevabını aşağıya çekmesi olduğu hipotezi ortaya atılmıştır. Karaciğer kapı venası yada karaciğer arteri veya ikisi birden, viral yada non-viral gen tedavisi vektörlerinden herhangi birinin perfüzatını in vivo olarak vermenin en iyi yollarıdır. Chia ve meslektaşları bir çalışmalarında, perfüzyondan sonra etkili gen transferinin bir rapörtör gen kodlayan adenovirüs, tespit edilmiş soğuk korunmuş karaciğere hem karaciğer kapı venası hem de hepatik arterden verilerek elde edilebileceğini gösterdiler. Bu verim artışının nedeninin kısmen karaciğer içi mikro dolaşıma daha iyi ulaşımdan ve böylece virüs, hücre temaslarının artışından dolayı olduğu söylenmiştir.Fare modellerinde hepatik gen transferi için retroviral vektörlerde kullanılmıştır, lakin bu hücreler sadece aktif olarak bölünen hücrelerin transdüksiyonunda etkilidir bu yüzden hepatositleri bölünmeye teşvik etmek için retroviral transdüksiyondan önce kısmi bir hepatektomi gerçekleştirilmelidir. Kemik iliği hücreleriKemik iliği hücrelerinin, özelliklede haematopoietik gövde hücrelerinin önemi gen tedavisi de azımsanmaz. Kendini yenileme ve tüm kan hücresi yapıcı türlere farklılaşabilme potansiyeli, uzun dönem transgen ifadesi gerektiği durumlarda (genetik bozukluklar gibi) onları çok çekici hedefler haline getirir. HSC’lerin kemik iliği ve çevresindeki kanda aşırı düşük bir frekansta bulunması nedeniyle ne yazık ki ex vivo transdüksiyondan sonra takip eden in vivo bir biyolojik etki yaratacak kadar çok miktarda elde etmek çok zordur. HSC’lerin gen tedavisi için arındırılması ana olarak granülosit makrofaj koloni uyarma faktörü gibi bir ajan kullanarak, gövde hücrelerini kemik iliğinden hareketlendirip, çevre dolaşıma yöneltmek üzerine kuruludur; bundan sonra hücreler florasan-aktivasyonlu hücre sıralama yada antikor kaplı manyetik bilyalar gibi yöntemlerle seçilirler. Bu tür pozitif seleksiyon yöntemleri c-kit (faredeki gövde-hücresi faktörü alıcısı) ve CD38 (insanlarda) gibi gövde hücreleri için özel hücre yüzeyi izleri gerektirir. Negatif tüketme (kesinlikle gövde hücresi olmayan hücreleri dışarı atan) genellikle pozitif seleksiyonla kombine olarak kullanılan ayrı bir metottur. Gövde hücrelerine özgü yeni işaretler arama şu an üzerinde aktif olarak araştırma yapılan bir alandır. Klinik nakilleri göz önünde tutarsak, kemik iliği çok sık nakledilen bir dokudur, örneğin lökemiya yada başka hemotolojik hastalıklara karşı köklü bi sitotoksik terapi uygulanan hastalar için. Alıcıya, vericinin kemik iliği aşılanarak, alıcının nakilden önce uyumsuz bir organın alloantijenlerine maruz kalmasını sağlamak için kullanıldı. GvHD oluşması ihtimaline rağmen, bu yaklaşım harcanan emeğe değer. Alıcıların, vericilerden alınmış MHC transgenlerine maruz bırakılması daha özelleşmiş ve güvenli bir metottur; ayrıca canlı verici lenfositlerinin aşılanmasına gerek bırakmadığı için GvHD yaratan hücrelerin transferi olmadığı için bir risk taşımaz. MHC genlerinin sinejeik kemik iliğine ex vivo yada in vivo olarak transferi alıcıyı alloantijenlere maruz bırakma için bir yöntem olarak kullanılabilir. Kemik iliğine gen transferi kan yapıcı hücrelerdeki bağışıklık fonksiyonunu ayarlayan immüno düzenleyici molekülleri (sitokinler gibi) şifreleyen genleri nakletmek için kullanılabilir. Sykes ve meslektaşları radyasyona maruz bırakılmış bir fare üstüne ortaya koydular ki, retroviral bir gen tedavisi vektörü kullanarak, verici MHC sınıf I geninin verici soyu kemik iliği hücrelerine ex vivo olarak nakil öncesi transferi tek bir alloantijen yüzünden uyumsuzluk çıkaran deri aşılamalarının yaşama süresini arttırdı, fakat çoklu uyumsuz, tamamen allojeneik deri aşılamaları reddedildi.Wong ve meslektaşları, verici MHC sınıf I molekülü şifreleyen retroviral bir vektör kullanan benzer bir sistem üzerinde çalışma yaptılar. Bu sefer MHC haplotip H2k’li bir CBA fareleri nakil alıcıları olarak kullanıldı. İlk olarak 28 gün boyunca iki doz anti-CD4 monoklonal antikoru ve 5 X 106 kemik iliği hücreleri ile ön tedavi edildiler. Bu hücreler vericiye özel MHC sınıf I geni Kb taşıyan retroviral vektörlerle ex vivo olarak transdüksiyona uğratıldılar. Bu tolerizasyon rejiminin sonucu olarak, fareler vericiye özel [C57BL/10 (H2b)] kalp nakillerini süresiz olarak kabül edebildiler. Bu çalışmanın önemli bir klinik manası vardır, çünkü nakledilen bir organın uzun süreli kabul edilmesi için alıcının nakil edilen organ üzerinde bulunan her tür verici MHC molekülüne maruz bırakılmasına gerek olmadığını ortaya koymuştur. Bu tolerejenik (yada cevapsız) durum, bağışıklık sisteminin gücünü azaltmamaktadır; bağışıklık sistemi her hangi bir üçüncü parti antijene karşı yine tüm gücüyle saldırmaktadır. Gen transferi vektörleriVektörler gen tedavisinde, daha sonradan transgen(ler) trafından şifrelenmiş tedavi edici proteinleri ifade edecek alakalı genleri nakleden araçlardır. Alakalı genlerden ayrı olarak bir gen tedavisi protokolünde en önemli faktör vektör seçimidir ve bu başarı yada başarısızlığı belirler. Ne yazık ki, “iyi evrensel vektör” diye bir şey yoktur; şu anda kullanımdaki tüm vektörler hem avantajlara hem dezavantajlara sahiptirler. Örneğin bir vektör, hedef hücrelere çok etkili bir şekildi girebilir, fakat girdikten sonra güçlü bir bağışıklık cevabına neden olur ve bu da hücrenin bağışıklık sistemi tarafından yok edilmesine neden olur. Vektör seçerken pek çok faktörün göz önünde tutulması gerekir. En önemlileri: 1- transgenin ifade edilmesi gerekli zaman uzunluğu2- hedef hücrenin bölünme durumu3- hedef hücrenin türü4- transgenin büyüklüğü5- aşılanacak vektöre karşı bir bağışıklık cevabı oluşma potansiyeli ve bunun zararlı olup olmadığı6- vektörü birden fazla kez uygulama imkanı7- vektörün üretim kolaylığı8- mevcut tesisler9- güvenlik unsurları10- düzenleyici unsurlar Viral gen transferiMilyonlarca yıldır, virüsler bitki, hayvan ve insan hücreleri dahil her türlü hücreye gen transfer ediyorlar. Viral gen transferi deneysel tekniği bu doğal yetenekten gelişmiştir, ve bilim adamları ile hekimlere gerçek avantajlar sunmaktadır:1- özel hücre bağlama ve giriş özellikleri2- transgenin hücrenin çekirdeğine etkili bir şekilde hedeflenmesi3- hücre içi degradeden kaçınabilmesiViral vektör sistemlerinin çoğunun geliştirilmesinde kullanılmış olan genel prensip, yaban tipinde (doğada bulunan değişmemiş hali) bozulmamış bir virüsün güvenli ve etkili gen transferi için modifiye edilmesidir. Örneğin, viral replikasyonla ilişkili genler modifiye edilebilir yada silinebilir, ve böylece yeni rekombinant virüs “replikasyon arızalı” hale gelir ve gen tedavisi protokollerinde kullanılmak için daha güvenli hale gelir. (Şekil 4)Genelde, virüs tarafından nakledilmesi gereken transgen moleküler biyolojik teknikler kullanılarak viral genomun içine konmalıdır; transgenler genellikle viral replikasyon genlerinin çıkarılmasıyla oluşan boşluğa eklenir. Genelde, viral vektörün doğal hali ne kadar azaltılmışsa, (virulansla ilgili genlerin ne kadar büyük kısmı çıkarılmışsa) virüs gen tedavisi protokollerinde kullanılmak üzere o kadar emniyetlidir. Genin boyutu, viral genomdaki potansiyel boşluğa uydurulmalıdır, eğer yeni viral genom çok büyük ise, enfekte edici bir partiküle sığdırılamaz. Vektör olarak kullanılan virüslerin çoğu replikasyonyon genlerinden mahrum olup, kendilerini normal hücrelerde kopyalayamadıkları için, transgene sahip rekombinant virüs, hücre hattında daha yüksek titrelere kadar büyütülmelidir. Bu hücre hattı, virüsün replike olabilmesi için gereken tüm tamamlatıcı genleri (daha önceden çıkarılan genler) içeren bir hücre hattıdır. Rekombinant viral partiküller, daha sonra paketleyici hücre hattından canlı bulaşıcı virüsler olarak arındırılıp, in vivo yada ex vivo olarak hücreleri yada dokuları enfekte etmek (transdüksiyona uğratmak) için kullanılır. Retroviral VektörlerRetroviridae spumavirüs (köpüklü virüsler), Moloney-mürin-lentivirüs-ilişkili virüsler [örneğin, Moloney mürin lökemya virüsü (MMLV) ve insan endojen retrovirüsleri C familyası (HERV-C)] ve lentivirüsleri [örneğin. Human immünodeficiency virus tip 1 (HIV-1) ve tip 2 (HIV-2)] içeren geniş bir RNA virüsleri familyasıdır. Retroviral virionların çapları 80 nm’den 130 nm’e kadar değişir, ve genomları uzunlukları 3.5 ila 10 kb arasında olan, iki eş pozitif-duyu tek-iplikli RNA moleküllerinden oluşur. Genomlar, entegraz ve ters transkriptaz enzimleri ile birlikte bir kapsid ile örtülüdür. Retroviral vektörler şu an için klinik denemelerde en yaygın olarak kullanılan viral vektörlerdir.Retrovirüsler, sadece aktif olarak mitoza uğrayan hücreleri transdüksiyona uğratırlar, pluripotent (bir çok çeşitli hücre tipine gelişme yeteneğinde olan hücreler) HSC’lere gen transfer eden protokollere uygundurlar. Retroviral vektörler uzun dönemde iyi gen ifadesi oluştururlar ve teknik olarak üretilmeleri kolaydır. Fakat düşük viral titreler (genelde ml’de 1 x 107 koloni oluşturan ünite) verirler ve çok nadir olsa da yardımcı virüs kontaminasyonu olasıdır ve dikkatle izlenmelidir. MMLVMiller labaratuvarından LNSX serisinden vektörler gibi, bugün gen tedavisi uygulamalarında kullanılan retroviral vektörlerin çoğu MMLV bazlıdır. Replikasyon gag, pol ve env bölgeleri çıkarılarak engellenmiştir. gag bölgesi kapsid proteinlerini kodlar, pol bölgesi RNA bağımlı DNA polimeraz (ters transkriptaz) ve entegraz kodlar, env bölgesi ise alıcı tanıma ve kılıf demirleme içik gerekli proteinleri kodlar. Genom ayrıca, her iki ucunda uzun son tekrarları (LTR’ler) içerir ki bunlar DNA sentezlemede ve viral genlerin transkripsiyonun düzenlenmesinde hayati rol oynarlar. Örneğin, LNSX vektöründe, LTR bir neomisin-direnç işaretleyici geninin [neomycin-resistance-marker gene] (transdüksiyona uğramış hücreleri seçmek için kullanılan) transkripsiyonunu yürütür, bir iç Simian virüs 40 (SV40) promoteri ise transgenin transkripsiyonunu yürütür. gag, pol ve env gen ürünleri, daha önce bu genlerin transger edilip stabil bir biçimde ifade edildiği tamamlayıcı paketleme hücre hattı tarafından sağlanmalıdır. Bir retroviral vektör plazmidi paketleyici hücre hattına (pA317 gibi) sokulduğu zaman viral RNA üretilir, virionların içine yerleştirilir, ve ortama salgılanır. Ml başına 1 x 107 koloni-oluşturan üniteye kadar viral titreler bu şekilde elde edilebilir. Elde edilen viral partiküller gag, pol ve env genlerinden yoksun olduğu için her partikül sadece kendini hücrenin genomuna entegre edebilir, daha fazla viral partikül üretemez. Transdüksiyonla nakledilmiş DNA zincirleri kararlı bir şekilde hedef hücrenin kromozal DNA’sına entegre edilirler ve böylece hücrenin bölünmesiyle oluşacak oğul hücrelere de geçerler. LentivirüslerRetrovirüsler ailesinin en yeni keşfedilen üyeleri retrovirüsleri lentivirüsler olarak bilinen bir alt sınıfında üye olan insan bağışıklıkyetersizliği virüsleridir(HIV’ler). HIV’lerden türetilmiş olan gen tedavisi vektörleri, MMLV retrovirüs vektörlerine göre pek çok avantaja sahiptirler. Lentivirüs vektörleri aktif olarak bölünen hücrelerin yanı sıra, bölünmeyen hücreleri de transüksiyona uğratabilirler, bu yüzden gen transferi araçları olarak çok daha yararlıdırlar. Genetik materyallerini host hücrenin genomuna entegre ettikleri için, lentivirüslerin transgenlerin uzun zamanlı, stabil ifadesini sağlayacak potansiyel vardır. Lentivirüslerin, immünolojik amaçlarla gen tedavisi vektörleri olarak kullanılması çok heyecan vericidir çünkü lentivirüslerin CD4+ T hücreleri, makrofajlar ve HSC’lere karşı olan doğal bir tropizmaları vardır; bu lentivirüsleri HIV ve AIDS enfeksiyonunu önlemek yada tedavi etmek amacında olan gen tedavisi yaklaşımları için çok yararlı araçlar kılar. Vestikuler stomatitis virüsü G proteininin lentiviral kılıfa verilmesi gibi gen modifikasyonları bu vektörün tropizmasını genişletmiştir. Bu vektörler şimdi sistik fibrosisin gen tedavisi için solunum epitel hücrelerini hedeflemek üzere kullanılabilmektedir. AdenovirüslerAdenovirüsler, kapsid çapı 70-100 nm, 252 kapsomerden (240 hekzon, 12 penton) oluşan, kılıfsız, ikozahedral, çift iplikli DNA’lı virüslerdir. Hedef hücrenin genomuyla birleşmezler, bunun yerine host hücrenin çekirdeğinde ekstrakromozal bir yapı olarak kalırlar. Replikasyon-kusurlu rekombinant adenovirüsler klinik denemelerde en çok kullanılan ikinci viral vektör grubudur. Adenovirüsler insanları yaygın olarak enfekte ederler, ilk izole edilebilmeleri 1953’te aküt solunumsal semptomları olan ABD acemi erlerinden, Rowe ve meslektaşları tarafından başarıldı. Temel (dönüşmemiş) hücre kültürleri bu erlerin adenoitlerinden elde edilmiştir, ve kültürdeki hücrelerin virüsün varlığı yüzünden kendiliklerinden dejenere olduğu gözlenmiştir. Bugüne kadar 47 adenovirüs serotipi tanımlanmıştır, hafif soğuk algınlığından febrile paryngtise kadar pek çok rahatsızlıkla ilişkileri saptanmıştır. Ad2 ve Ad5 üzerlerinde en çok çalışılanlardır ve gen tedavisi uygulamalarında en yaygın olarak kullanılan serotiplerdir. Ağır rahatsızlıklarla alakaları yoktur, sadece hafif soğuk algınlığı oluştururlar. Adenovirüsün 36-kb genomu iki ana bölgeye bölünebilir, virüsün replikasyon çevrimi sırasında genlerin ifade edildiği zamana göre, erken (E) geç (G). Erken genlerin 4 bölgesi vardır, bunlar E1, E2, E3 ve E4 olarak isimlendirilirler, geç genlerin ise G1, G2, G3, G4 ve G5 (L1-5 ingilizce) 5 kodlama ünitesinde oluşan bir tek bölgesi vardırAdenovirüslerin E1 bölgesi E1A ve E1B olarak ikiye ayrılır. E1A gen ürünü viral prometerler bağlayarak diğer adenoviral transkripsiyon ünitelerinin ifade edilmesini aktive eden bir viral transkripsiyon ünitesidir. E1B bölgesi hücresel p53 tümör bastırıcı proteinle etkileşime giren 55-kD proteinini kodlar. p53, host hücrenin devrinin ilerleyişini G1 fazından S fazına ki bu faz viral replikasyon için optimaldir, regüle eder. E1B p53’den ayrı olarak viral E4 proteinlerini de bağlar, bu iki madde ortak olarak çalışıp hostun protein sentezini kapatırlar. E2 bölgesi viral DNA polimeraz ve anenovirüs tek iplikli DNA bağlama proteinini kodlar. E3 bölgesi adenovirüsün in vitro replikasyonu için gerekli değildir fakat virüse enfekte hücrelerin CTL’ler ve TNF-a tarafından öldürülmesini engelleyerek, host defans mekanizmalarına karşı bir miktar koruma sağlar. E4 bölgesi (1) viral ve hücresel protein ifadesi (2) viral DNA replikasyonu (3) host proteinlerinin sentezinin kapatılmasıile alakası olduğu bilinen proteinler kodlar. Geç genler (G1-G5) viral DNA replikasyonunun ilk adımında ifade edilir, ve virion oluşumu için gerekli yapısal polipeptitleri kodlarlar. Yeni sentezlenmiş viral partiküllerin birikmesinden kaynaklanan hücre iskeleti ve zarının bozulması, hücrenin çökmesine ve virüsün yayılmasına neden olur.E1 bölgesi viral replikasyon için gereklidir; bu yüzden E1 bölgesi suni olarak çıkarılmış adenovirüsler, replikasyon kusurlu olarak görülür. Replikasyon-kusurlu bir adenovirüste, E1 bölgesi ifade edilecek trangen ile doldurulabilir. Daha büyük genler yerleştirebilmek için ve bunun yanında virüsün immünojenliğini azaltmak için vektörden E3 ve E4 bölgelerinin silinmesi gibi bir işlemle daha fazla genetik materyal çıkarılması daha önce uygulanmıştır; bu tür rekombinant virüslere genelde “bağırsaksız” denir. Gen tedavisi için, hem in vivo hem de ex vivo olarak neredeyse her türlü hücre cinsinde adenovirüslerin transdüksiyon verimi diğer viral vektörlerle karşılaştırıldığında yüksektir. Nakiller için, adenovirüslerin belirgin bir avantajı düşük sıcaklıklarda (örneğin. 4ºC) hedef hücrenin yüzeyine tutunabilmesidir. Adenovirüsün kapsid polipeptitlerinin yapısal stabilitesinden dolayı, viral partiküller ml başına 1 X 1013 plak oluşturan ünite (pfu) gibi yüksek bir titreye arındırılıp konsantre edilebilirler, fakat ml başına 1 X 1010 pfu gibi bir titre daha alışılmıştır. Retroviral titreler çok daha düşüktür (ml başına 1 X 107 pfu) çünkü kapsidleri yapısal olarak kararsızdır ve sezyum klorid gradyanında arındırılıp, konsantre edilemezler. Adenovirüslerin bir başka avantajı da adenovirüs genomunun insan genomuna entegre olmayıp, hedef hücrenin çekirdeğinde kendini eşlemeyen ekstrakromozal bir yapı olarak kalmasıdır; lakin bunun ayrıca çok düşük bir ihtimalle de olsa, insan onkojenlerini aktive etme ve insan tümör bastırıcı genin işleyişini bozma ihtimali vardır. İn vivo olarak bir vektör olarak adenovirüs kullanılmasının bir büyük dezavantajı, kapsidden türemiş peptitlere karşı oluşan CTL cevabıdır; bu cevap vektör tarafından transdüksiyona uğratılmış hücrelerin yok edilmesine, lokal doku kaybına ve iltihaba neden olabilir. Adenovirüs tarafından kodlanan yabancı transgen ürünlerinin peptitlerini sunan host hücrelerin, CTL’nin aracılık yaptığı yıkıma hedef olduğu gösterilmiştir. Adenovirüsler çok rastlanan virüsler olduğu için, insanları büyük bir çoğunluğu spesifik serotiplerden en az bir tanesinin bağışıklığına sahip. Gen tedaviside bu aynı serotipin kullanılması durumunda neredeyse her zaman hızlı ve güçlü bir bağışıklık cevabı oluşur, öyle ki adenovirüs vektörünün verilmesinden günler sonra bile hastanın serasında yüksek miktarda anti-adenovirüs antikoruna rastlanır. Bu tür vektörlerin alıcılarını screen’erek daha önceden karşılaştıkları serotipler belirlenebilir, ve başka bir serotip vektör olarak kullanılabilir. Fakat, bu yaklaşım değişik serotiplerden çok geniş bir rekombinant vektörler panelinin mevcut olmasını gerektirir. Bir başka potansiyel problem ise, aynı serotipteki vektörün tekrar verilmesi ile oluşacak güçlü ikincil bağışıklık cevabıdır. Adenovirüs tarafından kodlanmış bir transgenin ifade edilme periyodu oldukça kısadır. İfade rapor edildiğine göre “makul” bir seviyede in vivo olarak 14 gün sürmektedir; ancak bağışıklık cevabının manipulasyonu daha uzun ifade periyotlarına da neden olmuştur. Bu kısa ifade süresi ana olarak bir ölçüye kadar da transgenin kendisine (özellikle transgen normalde kişide ifade edilmiş değilse [yabancı] CTL cevabına neden olan viral polipeptitlerin ifade edilmesinden kaynaklanır. Adenoviral genom kendisini hedef hücrenin genomuna entegre etmediği için, sadece oğul hücrelerden (eğer hedef hücreler bölünüyorsa) birisi transgene sahip olacaklardır ve böylece transgene sahip hücrelerin sayısı yarıya inecektir. Adenoviral gen transferi trangenin sadece bir kerelik transferinin gerektiği, büyüme faktörü terapisi gibi, uzun dönem ifadenin tersine büyüme faktörünün geçici ifadesinin gerektiği durumlar için idealdir. Nakil toleransı yaratmaya yönelik protokollerde, adenoviral vektörün alıcıya nakilden önce verilmesi, alıcıda uzun dönem immmünolojik tolerans yaratacak düzenleyici T-lenfosit populasyonunun oluşmasını sağlamaya yetecektir. Adeno-benzeri virüslerAdeno-benzeri virüs (AAV) vektörleri adenovirüs vektörlerinin sunduğu, geniş host hücre spektrumu dahil avantajların çoğuna sahip olup, bazı durumlarda nispeten daha yüksek transdüksiyon verimine sahiptirler. Ayrıca, yüksek derecede hücre ölümüne (sitopatojenisite) neden olan adenovirüsün tersine, AAV’ler hedef hücrelerde çok az hasara neden olurlar. AAV ayrıca stabil olarak belli yerlerde, host hücrenin genomuna (insanlarda kromozom 19’da) entegre olur ki bunun daha uzun süren transgen ifadesi gibi yararlı bir etkisi vardır. Bununla beraber, AAV’lerin ana-hücre kültürlerinin transdüksiyonunda retroviral vektörlere göre kayda değer bir biçimde düşük verimli olduğuna dair kanıtlar vardır. Ana-hücre transüksiyonlarında, AAV vektörlerinin çoğu host genomun içine entegre olmaz, onun yerine ekstrakromosal olarak kalır, bu verimsizlik in vivo uygulamalardaki yararlılığını azaltmaktadır. Herpes simpleks virüsüHerpes simpleks virüsü (HSV) vektörleri çeşitli uygulamalar için geliştirilmektedir, bunların içinde Parkinson hastalığı, habis gliomas (bir nevi beyin tümörü), beyinsel iskemisi (gerekli gıdayı alamayan beyin dokusunun beslenememekten zarar görmesi) gibi hastalıkların tedavisi gibi nöronal dokuyu hedefleyen gen transfer protokolleri vardır. HSV, host hücrenin çekirdeğinde ekstrakromosal bir DNA elemanı olarak kalır, çevre sinir sistemindeki duyusal nöronlarda ve bazı merkezi sinir sistemi dokularında uzun ömürlü belirtisiz enfeksiyonlar yaratma gibi kusursuz bir yeteneğe sahiptir. Bu olay, hedef nöronal dokuda uzun zamanlı gen ifadesi için fırsat yaratır. HSV vektörlerinin ayrıca geniş host hücre spektrumları vardır, ve büyük gen eklemelerini kabul edebilirler, ve replikasyon için gerekli en-erken (IE) genlerinden çoklu silme işlemleri ile hedef hücrelere karşı daha az sitotoksik hale getirilmişlerdir ve güvenlikle ilgili kaygılar azalmıştır. Şu anda HSV nin bir gen tedavisi vektörü olarak kullanılmasıyla ilgili en önemli sorum klinik kullanımındaki güvenliktir, çünkü bu virüsün yaban tipinin insan beyninde lytical bir şekilde çoğalıp, potansiyel olarak çok ciddi ensefalit (beyinin iltihabi lezyonu) e neden olduğu bildirilmiştir. Vaccinia virüsüVaccinia virüsü (ineklerde çiçek hastalığına neden olan virüs) şu anda nakil çalışmaları için vektör olarak kullanılmasada, kanser gen tedavisisi için geliştirme altındadır. Vaccinia virüsü, dünya çapında çiçek hastalığının yok edilmesinde kullanılmıştır, ve güvenli bir canlı aşı maddesi olduğunu ortaya konmuştur. Vaccinia virüs vektörleri host hücrenin genomuna entegre olmazlar, bununla birlikte büyük transgenler barındırabilirler ve aşırı şekilde immünojeniktirler. Vaccinia virüsü hastaları tümör antijenlerine karşı bağışık hale getirmek üzere büyük genomuna tümör antijen genleri yada bağışıklık cevabını kuvvetlendiren proteinler kodlayan genler yerleştirilerek kullanılabilir. Transgenlerin çoğu in vivo olarak yüksek seviyelerde ifade edilirler, bu tümor antijenine karşı normal durumda kanserli hücreyi öldürmeye yetmeyecek kuvvette olan, spesifik bir bağışıklık cevabına neden olur. Eğer gerekli ise, geniş kapasitesi sayesinde vektöre birden fazla gen klonlanabilir. Viral olmayan gen transferiViral vektörlerden transgenlere yer açmak, iltihabi cevapları azaltmak, yada güvenliklerini arttırmak amacıyla gerekli olmayan genler çıkarılabilir; bu virüsün basitleştirilmesini gerektirir, bazen de aşırı bir şekilde. Geri kalan, ilgili genlerin yüksek seviyelerde, yüksek bir derecede düzenlenmiş kendine özgü bir biçimde, kontrollü bir periyot boyunca (uzun yada kısa olabilir) ifade edilmesi için dizayn edilmiş suni bir vektör kabuğu olabilir. Aynı sonuçları elde etmek için başka bir yaklaşım tarzı ise, hücrelerin çekirdeklerine genetik materyali basit bir şekilde aşılayan bir sistem yaratmaktır. Bu bakış açısı, geçtiğimiz birkaç yılda yoğun araştırmaların odağı olmuştur ve bu araştırmalar birkaç viral olmayan vektörün geliştirilmesiyle sonuçlanmıştır. LipozomlarEn temel formunda, lipozomlar bir katyonik amfifil ve bir nötral fosfolipid (tipik olarak, dioleoyl- fosfatidiletanolamin) olmak üzere iki lipid türünden oluşurlar. İkiside de ticari olarak mevcuttur. Lipozomlar, kendiliklerinden DNA’ya bağlanıp, yoğunlaştırarak hücrelerin plazma zarlarına yüksek eğilimi olan kompleksler oluştururlar; bu endositoz olayı ile lipozomların sitoplazmaya alınmasına neden olur. Bu temel protokolün pek çok adaptasyonu denenmiştir ve değişen seviyelerde gen ifadesine neden olmuşlardır. Fuzijenik virozomlarÇok yakın geçmişte, viral transfer vektörlerinin bazı avantajları, lipozomların basitlik ve güvenliği ile birleştirildi ve ortaya fuzijenik virozomlar çıktı. Virozomlar, Sendai virüsünün zar birleşme proteinleri, plasmit DNA’yı kaplamayan lipozomlarla yada antiduyu uygulamaları için oligodeoksinükleotitlerle birleştirilerek oluşturuldu. Virozomlardaki viral proteinlerin doğasından kaynaklanan hücre zarlarıyla birleşme yeteneği sayesinde bu hibrid vektörler nükleik asitlerini hedef hücreye çok etkili bir şekilde transfer ederek, iyi gen ifadesi veriyorlar. Her viral vektörün genomuna eklenebilen transgenin büyüklüğü ile ilgili bir limiti vardır, virozom ve lipozom teknolojilerinde böyle bir limit bulunmamaktadır. 100 kilobaz çifte kadar genler ex vivo ve in vivo olarak fuzijenik virozomlar kullanılarak nakledilebilmiştir. DNA-ligant birleşmesi/çiftiDNA-ligant çifti iki ana bileşenden oluşur: DNA-bağlayıcı bir alan ve hüce-yüzeyi alıcıları için bir ligant. Transgen bu şekilde spesifik olarak hedef hücreye yönlendirilebilir ve orada alıcı-aracılığında endositoz ile ilçeri alınır. DNA-ligant kompleksi endositik yola girdikten sonra, çift, endozom lizozomla birleştiğinde muhtemelen yok olacaktır. Curiel ve meslektaşları, adenovirüsten türemiş bir domaini ligantın hücre yüzeyi alıcısı parçasıyla birleştiren bir metod kullanarak bundan kaçınabilmişlerdir. Çiftin bu noktadan sonra, özelleşikliği adenovirüsler kadardır, geniş bir host hücre spektrumuna bağlanabilirler; ayrıca çiftin endozom bir lizozom tarafından yok edilmeden önce endozomu terk edip sitoplasmaya (endozomoliz diye bilinen bir proses ile) girmesini sağlayan bir adenovirüs karakteristiğine sahiptirler. Çıplak DNAViral olmayan gen transferi teknikleri için en basit fikirlerden biri arındırılmış DNA’nın plazmitler şeklinde kullanılmasıdır. Bu yaklaşım, DNA aşılamaları için, diğer protokollerle birlikte kullanılmıştır, ve gen tedavisi ile ilgili pek çok durumda denenmiştir. Bu yaklaşımın basitliğine rağmen çalışmalar transfeksiyon veriminin çok düşük olduğunu ortaya çıkarmıştır ve kullanımını sınırlandırmıştır. Verici fare ırkından alınan MHC sınıf I antijenini kodlayan plazmit DNA’nın, bir doz anti-lenfosit serumu ile birlikte aşılanması, takip eden karaciğer nakillerinde vericiye özel tolerans yaratmıştır. Verici DNA’sına timüste enjeksiyondan 4 gün sonrasına kadar, dalakta ise enjeksiyondan 7 gün sonrasına kadar rastlanmıştır. Balistik gen nakliBu fiziksel metod mikro taşıyıcıların kullanımı gerektirir. (genelde altın partikülleri yada herhangi bir başka inert madde) Bu partiküller DNA ile kaplanır ve gen tabancası denilen patlayıcı yada gaz-itmeli bir balistik cihaz ile yüksek hızlarda ateşlenir. Partiküller hedef hücreye girdikten sonra, DNA micro taşıyıcılardan yavaşça ayrılır, ve yararlı olacak seviyelerde gen transkripsiyonu ve tercümesine neden olur. Bu teknik deneysel olarak geniş çapta kullanılmıştır, ama klinik kullanımı ortaya çıkarılabilir yüzeylerle sınırlıdır çünkü ateşlenen partiküller, dokunun derinliklerine ulaşamazlar. Muhtemel klinik kullanım alanları sidik torbası üretelyumu, kornea, epitel hücreleridir. CaPO4 transfeksiyonuCaPO4 transfeksiyonu, moleküler biyologlar tarafından transgenleri hücrelere in vitro olarak aşılamada yıllardır başarıyla kullanılan nispeten verimli kimyasal bir metottur (%10). Takip eden deneylerde ve klinikte kullanılan vektörlerin çoğunun üretimindeki protokollerin önemli bir parçası olsa da, bu metod in vivo uygulama için uygun değildir. Promoter daraltılmasıGen tedavisi vektörlerinin başarısı için alakalı gene uygun bir promoter bağlanması şarttır. Bir promoter genin üstünde bulunan, mRNA ve ardından protein sentezi için üzerine proteinlerin (transkripsiyon faktörleri, DNA polimeraz) bağlandığı düzenleyici bir DNA zinciridir. Deneysel ifade vektörlerinin ve gen tedavisi vektörlerinin çoğu, klonlayacakları esas (sürekli) genlerin yüksek seviyesi yüzünden patojen virüslerden elde edilen promoter elemanları kullanırlar Çeşitşi gen transfer çalışmalarında sitomegalovirüs(CMV), Rous sarkoma virüsü (RSV) ve SV40’tan elde edilen promoter ve arttırıcı elemanlar kullanmışlardır ve cesaret verici başarılar elde edilmiştir fakat ifade seviyesi, kullanılan vektör, vektörün verilme şekli ve transdüksiyona uğratılan hücrenin türü dahil pek çok faktöre bağlıdır. Araştırmacılar tarafından en çok karşılaşılan problemlerden biri trangenlerin çok düşük seviyelerde ve geçici olarak ifade edilmeleridir. Bu kötü ifadelerden sorumlu moleküler mekanizma çok yetersiz bir biçimde tanımlansa da, ana neden promoterin daraltılması olabilir. Promoter daraltmanın gen tedavisi alanındaki önemi göz önüne alınınca, bu problemle direkt olarak ilgilenmek için dikkate değer birkaç çalışma yapılmıştır. Deneysel sistemlerde gösterilmiştir ki, adenoviral vektörlerin in vivo olarak uygulanması belirli yada belirsiz bağışıklık cevapları aracılığıyla sitokin üretimine neden olmaktadır. Bu sitokinler daha sonra transgeni taşıyan adenovirüs tarafından enfekte edilmiş hücreleri etkileyip, sitokinlerin arabululuk ettiği hücresel sinyaller başlatacaklar ve transgen ifadesini ayarlayacaklardır/kontrol altına alacaklardır. Qin ve meslektaşları, pek çok viral promoter tarafından kontrol edilen transgen ifadesinin IFN ve TNF inhibe edildiğini ve bu iki sitokininde birlikte işleyen etkileri olduğunu keşfetmişlerdir. CMV ve RSV’den türetilen promoterler sitokin uygulamasına karşı en hassas olanlardır Yine rekombinant adenovirüs kullanan başka bir fare modelinde Harms ve Splitter, nötralize edici anti-IFN monoklonal antikorunun in vivo olarak verilmesinin transgen ifadesini arttırdığını göstermişlerdir. Moleküler seviyede, SV40, CMV ve RSV’den türetilen promoterlerin hepsi aynı interferon cevap zincirine sahiptir. IFN’in hücre yüzeyinde etkileşime girmesinden dolayı oluşan çekirdeksek faktörler bu viral promoterlerdeki elemanlara bağlanırlar ve bu transgenin ifade edilmesini inhibe eder. Yangıya neden olan sitokinlerin olmadığı bir ortamda güçlü, ana viral promoterler in vitro olarak memeli ifadelerinde kullanılmıştır ve başarı elde edilmiştir. Bu güçlü viral promoterlerin kullanımı doğal olarak klinik gen tedavisi protokollerinin geliştirilmesi bakımından ideal olarak kabul edilmiştir. Bununla beraber, transgen ifadesinin düşük seviyede olması genellikle rastlanan bir olgudur ve bunun nedeninin vektörün belirli bir bileşeninden çok, tamamının dizaynından kaynaklandığı düşünülmektedir. Gen tedavisi ifade sistemlerinin de yaygın iki olgu da viral promoter ve arttırıcı elemanlardır. İn vitro ifade vektörlerinde ve in vivo gen tedavisi vektörlerinde kullanılan virüsler ve izole edilmiş viral promoterler enfekte olmuş hücrelerin ürettiği sitokinlerden ters bir biçimde etkilenebilirler. Bu yüzden gen transferi için trangenin ifadesinin gerektiği anda ve yerde vektörün verileceği ortamda olacak faktörler tarafından yukarı çekilebilecek promoterler seçmek mantıklıdır. Örneğin MHC sınıf I promoteri immüno-ayarlayıcı gen tedavisi uygulamaları için daha uygun olacaktır çünkü, IFN gibi yangısal sitokinler aslında transkripsiyonu arttırmak için bu promoter üzerine tesir ederler. İlk Gen Tedavisi İnsanda ilk gen tedavisi denemesini 1990’da Dr. French Anderson gerçekleştirdi. Ex vivo gen tedavisi stratejisinin kullanıldığı yöntemde adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tii kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamı tehlikeye atabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen tedavisi denemesi olarak seçilmesinin bazı nedenleri vardır.Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen tedavisinin başarı ihtimalini artırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir:Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteinin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen tedavisi 2 hasta çocuk üzerinde gerçekleştirilmiştir. Tedavide, hastaların hücreleri (T-lenfosit) alınarak laboratuar şartlarında doku kültürü yoluyla çoğaltılmıştır. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledilmiştir. Virüs hücrelere girerek genetik materyale geni yerleştirmiştir. Genetik olarak başarıyla seçilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltılmıştır. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verilmiştir. Bu işlem yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlanmıştır. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edilmiştir. Tedavi sonucunda iki çocukta da iyileşme kaydedilmiştir. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler ve AİDS gibi hastalıklarla başa çıkmak için gen tedavileri tasarlanmıştır.

http://www.biyologlar.com/gen-tadavi

GEN AKTARIM TEKNİKLERİ HAKKINDA BİLGİ

Gen tedavisinde, etkin bir gen aktarımı en önemli bir koşuldur. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler: Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır.Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mm boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır.En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Gen aktarım teknikleri Viral Vektörler 1. Retroviral vektörler                      2. Adenoviral vektörler 3. Adeno-asociated virus                  4. Herpes Simpleks Virus Tip-1 5. Polio Virus                                  6. Ördek Hepatit Virusu 7. Parvovirus                                  8. Sendaivirus 9. Sindbis virus Fiziksel ve Kimyasal Yöntemler 1. Transferin-reseptörü aracılığı ile     2. Asiaglikoprotein DNA konjugatları 3. Lipofection                               4. Direk aktarım 5. Kalsium fosfat çöktürmesi ile        6. Diethilaminoetil dekstran 7. Elektroporasyon                         8. Sonikasyon 9. Kazıma yöntemiyle                     10 Polibrene/dimetilsulfoksid 11 Jet injeksiyon                           12 Partikül bombardımanı Genlerin vücuda yerleştirilmesi yöntemleri Genleri vücuda yerleştirmenin çeşitli yolları vardır. Genel olarak, gen tedavisi iki esas bölümde sınıflandırılabilir. l. ex vivo yaklaşım: Bu yaklaşımda hücreler vücuttan alınır; in vitro kosullarda gen transferi yapılır. Tekrar vücuda geri verilir. Bu yaklaşımın avantajları şunlardır: a. Gen aktarımı genel olarak yüksektir. b. Eger vektör seçilebilir marker gen taşıyorsa; gen aktarılan hücreler  zenginleştirilebilir. c. Re-implantasyon öncesinde etkinlik kontrol edilebilir. 2. in vivo yaklaşım: Vücuttaki hücrelere genlerin direk transferidir. Bu aktarım, in vitro koşullarda gerçekleştirilir ve hücreler alıcıya tekrar geri verilerek yapıldığı gibi alıcının dokusuna in situ direk aktarım şeklinde de yapılabılır. Ayrıca henüz kullanılmamakta ise de bir vektör aracılığı ile de kan yoluyla aktarım gerçekleştirilebilir. Bu vektörler plasmidin konakçı hücrede takibini sağlayacak şekilde flöresans ile işaretlenebilir. En önemli sorun spesifiklik ve durağan gen transferinin düşük etkinliğidir. Bu klinikde arka arkaya tedavi işlemlerini gerektirmektedir. Gen tedavisinde antisens oligonükleotid kullanımı Antisens oligonükleotidler, küçük sentetik nükleotid dizileri olup; bunlar spesifik DNA veya RNA dizilerine komplementerdirler. Eksojen oligonükleotidler nükleik asit bağlayıcı reseptörler aracılığı ile hücre içerisine alınırlar. Terapötik ürün olarak hazırlanmalarında başlıca sorun hücre içerisine taşınabilmeleridir. Oligonükleotidlerin gen tedavisinde kullanılması ‘eğer belirli bir gen bir hastalıktan sorumlu ise; bunun çalıştırılmaması klinik anormalliğin düzelmesini sağlayabilir’ prensibinden yola çıkarak tasarlanmaya başlanmıştır. Antisens oligonükleotidler genin çevrilmesini durdurarak hastalığa neden olan genlerin ekspresyonunu engelleyen yapılardır. Bu yapılar onkogenleri kontrol altına alabilmekte ve virüs DNA’sının çevrilmesini engelleyebilmektedirler. Bir çok ilaçda amaç defektif veya istenmeyen proteinin sentez edildikten sonra fonksionuna engel olmaktır. Antisens teknolojide amaç protein sentezinin spesifik kısa tek sarmal DNA veya RNA dizileri kullanılarak önlenmesidir. Bu önleme, protein sentezinin: 1) Genomik DNA'nın mRNA'ya transkripsiyonunda 2) mRNA'nın proteine translasyonu sırasında mümkün olabilir. Sitoplazmik mRNA, DNA 'ya oranla daha kolay bir hedef gibi görünmektedir. Bu yaklaşımla, c-myc geni/lenfoma hücre dizileri bcr-abl/ Kronik Myelositer Lösemide blast hücrelerinde denemeler yapılmıştır. In vitro çalışmalarda, anormal mRNA oluşturan Burkitt lenfoma hücre dizilerinin çoğalması antisens oligonükleotidlerle durdurulmuştur. Antisens oligonükleotidler, hücre dizilerinin kanserleşmesini veya metastatik potansiyellerini azaltır. Anti-sens olarak geliştirilen ve AIDS'li hastalarda oluşan sitomegalovirus retinitini tedavi edecek olan ilaç intra vitreal enjeksiyonla 1998 yılında insanda kullanılmaya başlanmıştır. Oligonükleotid ile gen modifikasyonu Amaç DNA'da var olan hatanın, yapısal DNA hatasına dönüştürülerek, tamir mekanizmasının tanıyabilmesini sağlamaktır. 20 bazlık bir oligonükleotide bağlanan bir alkile edici ajan, ikili helikse yapışır. Tek iplikçikli oligonükleotid hedef DNA'da kendisine uyan bölgeye yapışır. Replikasyon sırasında, hücre tamir mekanizmaları devreye girer ve düzeltmeyi yapar. Bu metod ile obesite, b-adrenerjik reseptör mutasyonu, Hb S ve kistik fibrozisin gen tedavisi çalışmaları yapılmaktadır. Genetik immünomodülasyon: Genetik immünomodülasyon, gen tedavisinde sitokinleri kodlayan genlerin vektörler aracılığı ile aktarılmasını kapsamaktadır. Sitokinlerin, klinik olarak tümör büyümesi üzerine önemli etkisi vardır. Immün sistemde yapılacak modifikasyonla, konakçının antitümör immün yanıtı geliştirilebilir. Tümör infiltre eden lenfositlere TNF geni aktarılması modeli bunun bir örneğidir. İlaç hedeflemesi: Gen tedavisinde kullanılan vektörlerin spesifik olarak hastalıklı hücrelerde eksprese olurken normal hücrelerde bunun oluşmaması temel amaçtır. Değişik doku ve hücrelerde gen tedavi yaklaşımları aşağıda özetlenmiştir. Kemik iligi: Kemik iliği transplantasyonu için gerekli olan teknik işlemlerin ve tedavinin geliştirilmesi ile hematopoetik sistem gen tedavisi için uygun bir aday doku olmuştur. Pluripotent hematopoetik kök hücre, kemik iliği hücrelerinin %0.01-0.1'i kadardır. Pluripotent olması ve kendiliğinden yenilenmesi, ideal bir hedef doku halini almasını sağlar. Ex vivo tedavinin en güzel örneğidir. Bir kaç hücreye bir gen aktarımı olması halinde dahi, aktarılan genin sürekli varlığı mümkün olacaktır. Yüksek sınıf hayvanlarda, bu hücrelerin enfekte edilmesi güçtür. Kemik iliğindeki bağ dokusu hücrelerinin etkin transferde önemli rolü olduğu gösterilmiştir. Kemik iliğinin gen tedavisi için ilk hedef doku olmasının nedenleri şöyle sıralanabilir. 1-  Kemik iliği hücreleri kolayca elde edilebilir. 2-  In vitro olarak çalışılabilirler. 3-  Bireye tekrar reinfüze edilebilirler. 4- Infüzyon sonrası organizmada çoğalarak, farklılaşmaya uğrarlar. Böylece organizmada yeni bir hücre popülasyonu oluşturulabilir. Kas: Çok sayıda hedef hücreye gereksinim olduğundan; yüksek etkinlikte gen transferine ihtiyaç vardır. Retrovirusla infekte edilen primer myoblastların hayvan kası içine zerk edilmesi ile altı aylık bir sürenin üzerinde gen ekspresyonu sağlanmıştır. En önemli dezavantajı, myoblastların zerk edildigi bölgede kalmasıdır. Adenovirus vektörünün intravenöz olarak sıçana verildikten sonra, etkin bir transduction hem kas fibrillerinde, hem de diğer dokularda sağlanmıştır. Kas fibrillerinin in vivo direkt gen aktarım teknikleri için de kullanılabildiği gösterilmiştir. Plazmid DNA'nın iskelet ve kalp kaslarına direkt zerki ile durağan gen ekspresyonu sağlanmıştır. Bu zerk edilen plazmid DNA'sı hücrede episomlar olarak bulunmaktadır. Bu prosedür, primatlarda çok etkin değildir.Insan büyüme hormonu genlerinin transferi ile de hayvanlarda bu hormonun düzeyleri üç ay sonra belirlenebilmiştir. Karaciğer: Hepatositleri, kültür ortamında manüple etmek oldukça güçtür. Çünkü bu hücreler kültür ortamında çok az bölünmeye uğrarlar ve retroviral vektörlerle transduction etkinliği %20-25 gibi düşük düzeylerdedir. Her ne kadar in vivo olarak, hepatositler normal koşullarda bölünmezken, kısmi hepatektomi, hepatositlerin hücre bölünmesini aktive eder. Bunu takiben retrovirus vektörünün in vivo perfüzyonu ile çok sayıda hepatosit infekte edilebilir. Ancak etkinlik %1-2 civarındadır. Alfa-1- antitrypsin geni intraportal yolla adenoviral vektörle karaciğere aktarılmışsa da, genin ekspresyonu kısa sürmüştür. Santral sinir sistemi: Yapısal ve fizyolojik kompleksliği nedeni ile SSS bozukluklarında somatik gen tedavisi uygulanması beraberinde önemli sorunları da getirmektedir. HSV-1 vektörleri hem in vivo, hem de ex vivo olarak sinir hücrelerinde aktarımda kullanılmıştır. Trakea epiteli: Bu hücrelerin organizma dışına alınıp, kültüre edilmesi ve sonra tekrar organizmaya implante edilmesindeki zorluklar nedeni ile in vivo aktarım kullanılmaktadır. Adenoviral vektörler ile trakea epiteline invivo gen aktarımı, sıçanlarda başarılmıştır. Lenfosit: Adenosine Deaminaz enzim eksikliğinde kullanılmıştır. T hücrelerinin yaşam sürelerinin sınırlı olmasının nedeni ile arka arkaya infüzyona ihtiyaç bulunmaktadır. AIDS ve kanser tedavisinde en uygun hedef doku olarak ortaya çıkmaktadır. Oküler hücreler: Vitröz içine adenovirus aracılığı ile gen aktarımı yapılmıştır. Periferik kan progenitör hücreler: Kemik iliği yerine, periferik kandan izole edilen progenitör hücrelere gen transfer edilmesi ile uzun süreli hematopoesis saglanmıştır. Umbilikal ven epiteli: Umbilikal ven epiteline "Doku Faktör" transferi yapılmıştır. Gen Terapisinin Çözüm Bekleyen Sorunları: İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynak: Dr. Ümit Yaşar, Farmakoloji AD

http://www.biyologlar.com/gen-aktarim-teknikleri-hakkinda-bilgi

Genetik İstatistik Nedir ?

1.Genel Bakış Canlılarda kalıtım ve değişim olgusunu inceleyen genetik bilimi çeşitli bilimsel inceleme yaklaşımları içinde olmuştur. Bu yaklaşımları; soy çözümlemesi (pedigree) içeren taransmisyon genetiği, kromozom incelemeleri içeren sitogenetik, genomik, proteomiks ve biyoinformatik alanlarını da kapsayan moleküler genetik çözümleme, ve populasyon genetiği olarak sıralayabiliriz. Moleküler genetik, gen fonksiyonlarının moleküler ve biyokimyasal çözümlemeleri yoluyla gen terapisine olanak sağlayarak tıp, tarım ve biyoetik alanlarında bilgiye ve yaşam süreçlerine çok geniş açılımlı önemli katkılarda bulunmuştur. Bir molekülün genetik malzeme olarak kullanılabilmesi için kopyalama, genetik bilgi depolama, bilgi ifade etme ve mutasyon yoluyla değişim karakteristiklerine sahip olması gerekmektedir. Genden proteine bilgi akışı:DNA (depolanmış bilgi), mRNA-tRNA-rRNA-Ribosom (kopyalanmış ve tertip edilmiş bilgi) ve Protein(aktif ürün) sıra düzeni içinde gerçekleşmektedir. Genetik verilerin bilgiye dönüştürülmesi gayretinde bu sıra düzeninin dikkate alınması gereklidir. Bu anlayış içerisinde, gen ve protein düzeyinden, yaşam olguları ve süreçleri düzeyine geçişin betimsel ve sebeb-sonuç etkileşimi dahil tüm yönleri ile anlaşılması genetik istatistik yöntemleri ile olanaklı hale gelmiştir. 2.Genetik Çözümleme ve İstatistik Genetik bilimi ondokuzuncu yüzyılda fenotiplerin sürekli ve dereceli değişimi ile kendini gösteren canlı özelliklerinin (traits) incelenmesi ile ilgilenmiş, yirminci yüzyılda toplamsal alellerin sürekli değişimin temelini oluşturduğunu göstererek çeşitli polijenic özelliklerin bulunması için büyük sayılarda organizma populasyonlarının araştırılmasını önermiştir. Kalıtımsallığın fenotipik değişkenliğe (VP) genetik katkının ölçüsünü oluşturduğu bulunarak, genetik değişkenlik (VG), çevresel değişkenlik (VE), etkileşimli değişkenlik (VGE) bileşenlerinin tayini ve ölçümü ortaya konulmuş, gözlenmesi zor olan genotipleri ve genotipik değişimi fenotipler ve fenotipik değişim ile açıklama önem kazanmıştır. Sonuç olarak, yirmibirinci yüzyıla gelindiğinde genetik yapılardaki antijenlerin (alellerin) insan ve diğer canlı toplumlarında kronik hastalıklar dahil olmak üzere pek çok olguyla ilişkisinin karakterize edilmesi başarılmıştır. Niceliksel özellikler loci'si (QTL) olarak adlandırılan genlerin genom boyunca haritalandırılması ve DNA dizinlemesi bu karakterizasyonun temelini oluşturmaktadır. Populasyon ve alt-populasyonlar düzeyinde yapılan genetik çalışmalarda alel çokluklarının hesaplanması ve Hardy-Weinberg Kanunu uzantısında homozigot ve heterozigot çokluklarının, doğal seçim, mutasyon, göç, genetik sürüklenme ve rasgele olmayan çiftleşme durumları altında incelenmesi, ilişki (association), bağlantı (linkage), ayrım(segregation), haplotip çözümlemesi gibi konular olasılık ve istatistik modellerinin yardımıyla gerçekleştirilmektedir. 2.1.İstatistik Model İstatistik çözümlemenin ana hatları olasılık modeli, nedensellik ve yapısal model, ve istatistik sonuç çıkarımından oluşur. Genetik çalışmalarda olduğu gibi, bütün bilimsel çalışmalarda hedef (ilgilenilen) populasyondaki bir özellik X değişkeni veya özellikler X=(X1, ......, Xm) vektör değişkeni ile ifade edilir ki bunların gözlenen değerleri x ve x  ile gösterilir. Bu değişkenlerin gözlenen değerlerinin Aj veya Ajk, j= 1,....j, k=1,.....m, gibi değer alt kümelerinden birine veya bunların kesişim/bileşim kümesine düşmesi durumu (rasgele) olay veya olgu gerçekleşmesi olarak ifade edilir. Söz konusu olayların/olguların olasılıkları X'in olasılık dağılım fonksiyonu F(x,θ) veya X'in çok değişkenli olasılık dağılımı F(x,θ) kullanılarak açıklanır. Burada   θ ve θ dağılımların parametreleridir. İstatistik çözümlemede F(.), θ, θ 'nin kestirimi modelleme ve sonuç çıkarımına ait tüm yaklaşımların esasını oluşturur. Örneğin, allel çokluklarının bulunması ve çokluklara ait olasılıksal hesaplar F(.), ondan türetilen olasılık fonksiyonları f(.) ve θ, θ parametrelerinin tayinine yöneliktir. İlişki ve korelasyon ölçümleri, nedensellik yapısını irdeleyen genelleştirilmiş doğrusal modeller ve bunun içinde yer alan logit, probit gibi diğer modeller, zaman dinamiğini çözümlemeye içselleştiren stokastik modeller tümüyle dağılım fonksiyonları ve onların parametrelerine ait bilgileri kullanmak durumundadır (Silvey (1975), Steel ve Torrie (1980)). Parametre kestirimi güven aralığı kestirimi ve hipotez testlerinde, doğru ve geçerli deney tasarımı veya örnekleme planları yoluyla gözlenen x ve x değerlerinin fonksiyonu olan yeterli istatistiklerin kullanılması gereklidir. Hipotez testi oluşturmada, boş ve alternatif hipotez kurgusu, test istatistiği tayini ve onun olasılık dağılımı, testin önem derecesi, ve hata payları toleransı konularında kuram ve yöntem bilgisi eksiklikleri mutlaka yanlış ve yanlı sonuçlara yol açar. Bir diğer önemli husus x, x  değişkenlerinin tipleridir. Değişkenler aldıkları değerlerin ara, oran, sıra veya nitelik değerleri olmasına bağlı olarak sınıflara ayrılır. Kullanılacak istatistik yöntemi ve yaklaşımlar, pek çok uygulayıcının bilinci dışında, değişken tiplerine göre farklılıklar gösterir. 2.2.Genetik Çözümleme Genetik çalışmalarda veriye erişme, veri analizi ve doğru, güvenilir, geçerli sonuç çıkarım bilgisine ulaşma istatistik kuram ve yöntemlerine dayalı olarak gelişim göstermektedir (Elston, Olson ve Palmer (2002), Klug ve Cummings (2003)). Tam bir liste halinde olmamakla birlikte, genetik çözümleme konuları ile istatistik yöntemler ilintisi aşağıda gösterilmiştir: Genetik Çözümleme İstatistik Yöntem Bağlantı, Seçim, Mutasyon ve Seçim Dengesi, Hardy-Weinberg Eşitliği Kombinatorik, Olasılık Dağılımı Kestirimi, Uyum İyiliği Testleri Gen Sayımı, Alel Çokluğu, Ayrım Çözümlemesi, Skorlama Sayma Teknikleri, En Çok Olabilirlik (ML), LR ve EM Kestirim Yöntemleri, Bayesci Çözümleme, Odds Oranı Genotip Çoklukları, Durum-Kontrol İlişki Testleri, Geçis/Eşitsizlik Testleri Hipotez Testleri, LR, Sınıflandırılmış Veri Analizi, Çok Boyutlu ve Değişkenli Olasılık Dağılım Modelleri, Lojistik Regresyon Akrabalık ve Hüviyet Katsayıları Genotip Tahminleri, Nicelik Özellikleri, Risk Oranları Bağlantı Çözümlemesi Rasgele Cisimler ve Haritalar Varyans-Kovaryans Çözümlemesi Düzenleme (Array) ve Faktörleme, Polijenik Modelleme, QTL Haritalama ML, Çok Değişkenli Analiz Faktör Analizi Hastalık ve Marker Loci Haritalaması,İlişki Çözümlemesi Grafik Kuramı, MCMC, Markov Süreçleri, Hastings-Metropolis Yöntemi,Ardışık Olasılık Oran Testleri Moleküler Filojeni, Radyasyon Hibrid Haritalama Stokastik Süreç Modelleri, ML, Bayesci Kestirim Rekombinasyon Modellemesi, Chiasma Sıra (Sequence) Çözümlemesi Yenileme Süreçleri, Poisson Süreçleri, Dinamik Programlama Paralel Süreçleme, Yayılma ve Dallanma Süreçleri 3.HLA Sistemi İnsanda beyaz kan hücrelerindeki antijenik sistemlerin pek çok türünün saptanmasıyla İnsan Lökosit Antijen (HLA) sistemi geliştirilmiştir. HLA ve hastalıklar arasındaki ilişkilerin anlaşılması için genetik seçim, göç ve bağlantı ile insan evrimi etkileşimi arasındaki bağıntı HLA verileri kullanılarak saptanmaya çalışılmıştır (Thomson (1981), Cavalli-Sforza, Menozzi ve Piazza (1994)). Aile ve somatik hücre hibrid incelemeleri bileşiminde HLA sistemi insanda kromozom 6'nın kısa kolu üzerinde haritalanmıştır. HLA bölgesinde bulunan antijenler 3 loci'de çoklu aleller ile kontrol edilmektedir. Bu aleller HLA-A, HLA-B, HLA-C olarak tanımlanmıştır. Diğer bir locus HLA-D olup bunun karışık limfosit kültürü (MLC) tepkisini kontrol ettiği saptanmıştır (Thomson, 1981). Bağışıklıkla ilişkili DR antijeni de HLA bölgesinde yer almaktadır. HLA sisteminin incelenmesi, doku transplantasyonlarında verici ve alıcıların antijenlerinin uyum saptaması için büyük önem taşımaktadır. HLA ve hastalıklar arasındaki ilişkinin ölçümünde göreli risk ve delta istatistikleri kullanılmaktadır. Ayrıca bağlantı (linkage) incelemeleri hastalıkların haplotip ilişkilerini tespit etmek için uygulanmaktadır (Zachary (1995), Thomson (1981)). Hastalıklar ve HLA ilintisine ilişkin çalışmalar populasyon ve aile çalışmaları olmak üzere iki yaklaşım içinde yapılmaktadır. Aile çalışmaları, HLA çok polimorfik bir sistem olduğundan, ancak ailesel toplulaşma olan durumlarda bilgi içeriği yüksek sonuçlar vermektedir. Populasyon çalışmalarında HLA fenotipleri birbiriyle bağlantısız kontrol bireyleri üzerinde gözlenerek kullanılmaktadır. Her iki durumda da istatistiki anlamda populasyon heterojenliği, kontrol yeterliliği, bağlantı eşitsizliği gibi unsurlara özel önem verilmesi gerekmektedir.  Yararlanılan Kaynaklar Cavalli-Sforza, L.L., P. Menozzi, A.Piazza (1994). The History and Geography of Human Genes, Princeton University Press Elston, R., J. Olson, L. Palmer (2002). Biostatistical Genetics and Genetic Epidemiology. Wiley Klug, W.S., M.R. Cummings (2003). Genetics; A Molecular Perspective. Prentice Hall, Pearson Education Inc. Silvey, S.D. (1975). Statistical Inference. Halsted Press Steel, R.G.D., J.H.Torrie (1985). Principles and Procedures of Statistics; A Biometrical Approach. Mc Graw Hill Thomson, G.(1981). A review of theoretical aspects of HLA and disease association. Theoretical Population Biology, 20, 168-208 Zachary, A.A. (1995). Statistical analysis of genetic data, ASHI Quarterly, 4-7

http://www.biyologlar.com/genetik-istatistik-nedir-

Fırsatçı enfeksiyon tanımını yapınız ve sık görülen fırsatçı fungal enfeksiyon etkenleri hakkında kısaca bilgi veriniz.

Fırsatçı bir enfeksiyon enfeksiyon patojen haline gelmiştir normalde benign mikroorganizma neden olmaktadır. Fırsatçı enfeksiyonlar gibi organizmaların devralmaya ve yaygın bir enfeksiyona neden izin başkaları bağışıklık sistemi olan kişilerde görülür. Bağışıklık sistemini defne onları tutmak çünkü sağlıklı bir bağışıklık sistemi olan bireylerin, bu organizmaların enfeksiyon neden noktasına yaymak için, izin vermem. insanların bir dizi fırsatçı enfeksiyon riski de OI olarak bilinir. Klasik örnek, HIV / AIDS hastalarında, aslında bağışıklık sistemi kapatıldığında bir retrovirüstür bulaşmıştır. kanser İnsanlar geçiyor kemoterapi de risk olarak bireylerin ilaç organ nakli, yetersiz beslenme kurbanı hazırlık olarak bağışıklık sistemini baskılayan sürüyor, ve mevcut enfeksiyonu olan kişiler, özellikle yaşlılar vardır. Bazı fırsatçı enfeksiyonlar aslında zaten vücutta mevcut neden mikroorganizmaların. Organizmalar mevcut nüfusun% iyi 50 üzerinde, örneğin sitomegalovirus gibi. başkaları bağışıklık sistemi olan kişiler, mantar, bakteri gibi fırsatçı bir enfeksiyon deneyim ve kendi bedenlerinde protozoa coşmuş, koşmak ya da organizma kişi veya hayvanlar tarafından taşınan maruz kalmanın bir sonucudur. Fırsatçı bir enfeksiyon da bir normalde hafif şiddetli mikroorganizma neden ateş, öksürük olanlar ve soğuk algınlığı uzak başkaları bağışıklık sistemi ile insanların kalmak istenir vücut girer, oluşabilir. Tek yönlü fırsatçı enfeksiyon mücadele vücudun zararlı işgalciler düşman yapmak için tasarlanmış koruyucu ilaç almaktır. Ancak, enfeksiyonun tüm potansiyel kaynaklarının karşı korumak için imkansız, ve bazı bölgelerde, insanlar profilaktik tedavi için ödemek mümkün olmayabilir. Bu nedenle, başkaları bağışıklık sistemi olan insanlar için önemli düzenli tıbbi kontrolleri almak, böylece enfeksiyonun erken belirtileri tespit edilebilir durum ciddi hale geçecek. Bir kez bir fırsatçı enfeksiyon saptanırsa, o kadar yayıldı edemez ve daha fazla hasara neden olduğu tedavi edilmelidir. Ancak, tedavi hastanın mevcut sağlık durumu karmaşık hale geliyor. Örneğin, bir kanser Kaposi sarkomu adı verilen bazı AIDS hastalarında gelişir. Normal şartlar altında, kanser iyi huylu, ancak bu kemoterapi ile tedavi edilebilir. Kemoterapi Ancak, bu nedenle diğer tedavi yaklaşımları kullanılmalıdır hastanın bağışıklık sistemini yok edeceğini. Bazen hiçbir etkili tedavi mevcut, bu yüzden fırsatçı enfeksiyonlar çok tehlikeli olmasıdır. Candida albicans Candida albicans, eşeyli çoğalan, diploit, maya tipi bir mantar türü ve insanlarda oral ve vajinal fırsatçı enfeksiyonların etmenidir. Candida cinsine ait 200 tür olmasına karşın Candida enfeksiyonlarının %75'inin sorumlusu C. albicans'tır. Türkçe okunuşu kandida albikanstır. Bağışıklığı baskılanmış hastalarda (AIDS, kanser kemoterapisi, organ veya kemik iliği transferi durumlarında) sistemik mantarsal (fungal) enfeksiyonlar (fungemi), hastalık ve ölümün başlıca nedenleri arasındadırlar. Ayrıca bu yönde riski olmayan hastaların hastanede edindikleri enfeksiyonlar ciddi bir sağlık sorunu haline gelmiştir. C. albicans insan ağzı ve sindirim sistemi içinde yaşayan pek çok organizmadan biridir. Sağlıklı yetişkinlerin %40'ının ağzında, sağlıklı kadınların %20-25'inin vajinasında varlığı gösterilebilir. C. albicans sindirim sistemindeki varlığıyla başka patojen bakterilerin çoğalmasını engeller. Vücudun bağışıklık sistemi ve diğer zararsız bakteriler normal şartlarda Candida'yı kontrol altında tutarlar. Ancak, diğer bakterilerin sayısı C. albicans'a oranla azalırsa (örneğin antibiyotik kullanımından dolayı), bağışıklık sistemi zayıflamışsa veya mayanın çoğalmasına sağlayan başka şartlar mevcutsa (yüksek şeker, yüksek pH) C. albicans zararsız olan tek hücreli biçiminden, çok hücreli, istilacı (invasif), küf gibi ipliksi biçimine dönüşür (şekil [1]) ve vücudu istilaya başlar. C. albicansın iplikçi biçimi hem psödohif hem de gerçek hiflerden oluşabilir (şekil [2]). C. albicans iplikçi bir biçime dönüşmesine ilaveten, konak dokulara bağlanmasını sağlayan adhesinler, dokulara hem imha etmeye hem de onlara daha iyi yapışmayı sağlayan proteazlar, ve vücudun bağışıklık sisteminin tepkisini azaltan faktörler üretir. Cryptococcus neoformans, hem bitki hem hayvanlarda yaşayabilen, kapsüllü, maya tipli bir mantar (fungus) türüdür. Teleomorf adı olan Filobasidiella neoformans ile de bilinen bu tür, mantarların beş ana tipinden biri olan Basidiomycota sınıfına aittir. C. neoformans genelde (tek hücreli) mayalar gibi tomurcuklanarak çoğalır. Bazı şartlarda ise, hem laboratuvarda hem doğada, C. neoformans burada görüldüğü gibi [1] ipliksi mantar gibi büyür. Maya gibi büyürken C. neoformans polisakkaritlerden oluşmuş bir kapsüle sahiptir. Kapsülün mikroskop altında kolay görünmesi için çini mürekkebi kullanılır. Mürekkepteki pigment tanecikleri küresel maya hücresi çevreleyen kapsülün içine giremedikleri için hücrelerin etrafında siyah bir halo oluşur. C. neoformans türü üç varyant (v.), yani çeşitten oluşur: C. neoformans v. gattii, v. grubii, ve v. neoformans. C. neoformans v. gattii başlıca tropiklerde bulunur, ama Kanada'nın güneybatı kıyısında Vancouver Adasında da varlığı tespit edilmiştir. Cryptococcus gattiinin ayrı bir tür sayılabilecek kadar diğer varyantlardan farklı olduğu yakın zamanda gösterilmiştir. C. neoformans v. grubii ve v. neoformans dünyanın her tarafında bulunurlar, genelde kuş dışkısıyla pislenmiş toprakta bulunurlar. C. neoformans v. neoformans'ın genom dizini 2005 yılında yayımlanmıştır..[1] C. neoformans enfeksiyonuna kriptokokoz denir. FIRSATÇI MANTARLAR Kandidoz (Kandidiyazis ) Candida türleri gerçek veya yalancı hifa oluşturma yetenekleri olan maya türünden mantarlardır. Her yerde; toprak ve gıdalarda, insan derisinde, gastrointestinal, genitoüriner ve solunum yollarındaki mukozalarda bulunur. Belirli durumlarda klinik olarak önem taşıyan Candida türleri C. albicans, C. guilliermondii, C. krusei, C. parapsilosis, C. tropicalis, C. kefyr, C. lusitaniae, C. rugosa, C. dubliniensis ve C. glabrata (Torulopsis glabrata)'dır. Genellikle tek hücreli şekilde bulunur ve hem seksüel hem de aseksüel şekilleri vardır. Küçük (4-6 µm), ince duvarlı, oval şekilli (blastospor) olup, tomurcuklanma ile çoğalır. Rutin aerop kan kültürlerinde ve agarda iyi ürer ve özel besiyeri gerektirmez. Candida mikroorganizmaları stafilokok kolonilerini andıran düz, krem rengi-beyaz, parlak koloniler yapar. Mikroskobik incelemede maya, hifa, yalancı hifa şekilleri bulunabilir ve hifa ve yalancı hifa görülmesini kolaylaştırmak amacıyla %10'luk potasyum hidroksit kullanılabilir. Hızlı bir ön tanı için mikroorganizma serum içine konarak 90 dakika içinde hücre yüzeyinden küçük çıkıntılar meydana gelip gelmediği araştırılabilir ki, bu yöntem germ tüp testi adıyla bilinir. 1940'lı yıllarda antibiyotiklerin kullanıma girmesinden sonra kandida infeksiyonlarının insidansında keskin bir artma gözlendi. 1980-1990 yılları arasında 180 hastanede yapılan bir takip araştırmasında Candida türleri hastane infeksiyonu etkenleri arasında altıncı sırada yer alırken, idrardan en fazla soyutlanan (%46) etken idi. Candida türleri dolaşım infeksiyonlarının da en önemli dördüncü etkeni (%8) olup, mortalitesi %29 olarak bulunmuştur (mantar dışındaki dolaşım etkenlerinin mortalitesi %17). Diğer taraftan, kandidemilerde non-albicans türlere doğru giderek artan bir kayma söz konusudur. 1997-1999 yılları arasında Amerika Birleşik Devletleri (ABD), Kanada, Güney Amerika ülkeleri ve Avrupa'da yürütülen bir takip programında 71 merkezde 1184 kandidemi tespit edilmiştir. Bütün kan dolaşımı infeksiyonu etkeni olan mayaların %55'i C. albicans'a bağlı olup, bunu C. glabrata (%20), C. parapsilosis (%15), C. tropicalis (%9) ve diğer Candida türleri (%6) izlemekteydi. İnvaziv kandidozun sıklığındaki değişiklikler en fazla şu hasta gruplarında dikkat çekmektedir: Yoğun bakım ünitelerinde yatırılan hastalar, hematolojik malignansisi olanlar, hematopoietik kök hücre ve organ transplant alıcıları. Yayınlanmış 74 araştırmanın derlendiği bir yazıda Candida türleri ile kolonizasyon ve infeksiyon için en önemli risk faktörlerinin şunlar olduğu gösterilmiştir: Altta yatan hastalık varlığı [hematolojik kanser (OR 1.7-45), böbrek yetmezliği (OR 1.4-22), karaciğer yetmezliği (OR 7-42)], invaziv girişimler veya cihazlar [santral venöz kateter veya arteryel kateter (OR 5.8-26), üriner kateter (OR 1.3), bir hastanın hastaneler arasında transferi (OR 21) ve uzun süreli antibiyotik (OR 1.7-25) özellikle de vankomisin (OR 275) kullanımı]. Gerçekten de, farelerde ve insanlarda vankomisin kullanımının gastrointestinal sistem (GİS)'de C. albicans ile kolonizasyonu arttırdığı gösterilmiştir. Hematopoietik kök hücre transplant alıcılarında kandida infeksiyonlarının sıklığında genel bir azalma ile birlikte non-albicans Candida türlerinde artış gözlenmekte, bu gelişmelerden yoğun olarak uygulanan flukonazol profilaksisinin sorumlu olduğu düşünülmektedir. Nötropeni ve Graft Versus Host hastalığı sırasında flukonazol ile antifungal profilaksi (transplantasyon sonrası 75. güne kadar) yapılması invaziv kandidoz insidansında azalma, hayatta kalma oranında artmayla sonuçlanmaktadır. Bununla birlikte, transplant öncesinde en fazla kolonizasyon yapan tür C. albicans olduğu halde, transplant sonrasında ve flukonazol kullanımından sonra C. krusei ve C. glabrata sık gözlenmektedir. Bir başka çalışmada, görece C. krusei (OR 27.07) ve C. glabrata (OR 5) artışında en önemli belirleyicinin flukonazol profilaksisi olduğu gösterilmiştir. Bununla birlikte, randomize kontrollü 16 çalışmanın meta-analizinde kemik iliği transplantasyonu yapılmayan nötropenik hastalarda flukonazol profilaksisinin sistemik mantar infeksiyonlarını ve buna bağlı mortaliteyi azaltmadığı belirlenmiştir. Organ transplant alıcıları arasında invaziv kandida infeksiyonları en fazla karaciğer ve pankreas transplant alıcılarında gözlenmektedir. Karaciğer transplant alıcılarında, invaziv kandidal infeksiyonların insidansında, sistemik antifungal profilaksi yapılmasa bile genel bir azalma dikkati çekmekte, birçok merkez insidansı %10'un altında bildirmektedir. Moleküler tiplendirme sonucunda, olguların büyük çoğunluğunda önce kolonizasyon, daha sonra, bu endojen kaynaktan kandidemi geliştiği görülmüştür. Bu, C. albicans ve C. parapsilosis hariç non-albicans Candida türlerinin hepsi için doğru görünmektedir. C. parapsilosis'in infeksiyon oluşturmasında infekte biyolojik materyaller, intravenöz sıvılar, hastane çevresi ve sağlık görevlilerinin elleri ile insandan insana bulaşma önemli rol oynamaktadır. Aynı zamanda, hastadan hastaya, hemşireden hastaya ve cinsel eşler arasında insandan insana geçiş de giderek önem kazanmaktadır. AIDS'li hastalarda orofarengeal kandidoz rekürrensinin yeni bir suşla infeksiyon gelişimi de mümkün olmakla birlikte, çoğunlukla aynı türe (relaps) bağlı olduğu da gösterilmiştir. Candida infeksiyonlarının sıklığı giderek artarken, daha önce tanımlanmamış tablolar da giderek artan sayıda bildirilmektedir. Pamukçuk, özefajit, özefagus dışı gastrointestinal kandidoz, vajinit, kütanöz sendromlar (follikülit, balanit, intertrigo, dissemine kütanöz kandidoz, paronişi, kronik mukokütanöz kandidoz vb.), santral sinir sistemi ve solunum sistemi tutulumları, kalp tutulumu ve endokardit, üriner sistem kandidozu, artrit, osteomiyelit, karaciğer ve dalak tutulumu, göz ve damar infeksiyonunun yanı sıra dissemine kandidoz görülebilir. Aspergilloz Aspergilloz dünyada invaziv küf mantarları ile gelişen infeksiyonlar içinde en yaygın olanıdır. Hem sağlıklı hem de bağışıklık sistemi baskılanmış insanlarda hastalık yapabilir. Aspergilloz terimi eskiden hem ortaya çıkan hastalık hem de kolonizasyon için kullanılırken, bugün bu terim invaziv hastalık ve allerjik hastalığı ifade eder, ancak kolonizasyon için kullanılmaz. Aspergillus türleri insanlarda kolonizasyon ve sonrasında allerjik reaksiyon, daha önceden mevcut kavitelerde yerleşerek (fungus topu ve aspergilloma) veya doku invazyonu ile infeksiyon yapabilir. İnvaziv hastalığa yol açan Aspergillus türleri görülme sıklığına göre A. fumigatus (yaklaşık %90), A. flavus (yaklaşık %10), A. niger, A. terreus ve A. nidulans (< yaklaşık %2) şeklinde sıralanır. A. niger otomikozun, A. flavus da sinüzitin önde gelen etkenlerindendir. Aspergillus türlerinin çoğu sadece aseksüel üremekle birlikte telemorflu olanlar askomiçettir. Patojenik Aspergillus türleri klinik laboratuvarlarda kullanılan bakteriyolojik veya fungal besiyerlerinde kolaylıkla ürer. Mikroorganizma 36-90 saat sonra agar yüzeyinde küçük, tüylü beyaz koloniler meydana getirir. 30-37°C'de, 36-48 saat geçtikten sonra sporulasyon meydana gelir. Aspergillus Antarktika dahil dünyanın her yerinde bulunur. Başlıca ekolojik yerleşim yeri bozulan sebze artıklarıdır. Çiftliklerde, saman depolarında en az 106/m3 spor mevcuttur. Kistik fibrozlu hastalarda kolonizasyon toplumdan yüksektir ve marihuanada bol miktarda Aspergillus sporu bulunabilir. On yıl boyunca izlenen otopsiler içinde invaziv aspergilloz %1.4 sıklıkta saptanmıştır. Bununla birlikte, bağışıklık sistemi baskılanmış hastalarda insidans %10.7 olup, en yüksek insidans karaciğer transplant alıcılarında ve hematolojik malign hastalığı olanlarda görülmektedir. Çevrede inşaat çalışmaları olduğunda, bağışıklık sistemi baskılanmış hastalar arasında küçük salgınlar geliştiği bildirilmektedir. En fazla akciğer ve beyinde tutulum yapar. AIDS'li olgularda invaziv aspergilloz genellikle otopsi sırasında belirlenir. İnsan immünyetmezlik virüsü (HIV) infeksiyonu için çok aktif antiretroviral tedavi [Highly Active Antiretroviral Therapy (HAART)] öncesinde insidansı %0.9-8.6 arasında bildirilmekteydi. Astımlı hastalardaki allerjik bronkopulmoner aspergilloz (ABPA) %6-28 arasında değişirken, kistik fibrozlu hastalarda %6-25 oranlarında bildirilmektedir. Hastalık tablolarının gelişmesi için gereken inokülum büyüklüğü kesin olarak bilinmemekle birlikte, bağışıklık sistemi baskılanmış hastalarda bu miktar muhtemelen daha küçüktür. Mikroorganizmaya maruz kaldıktan sonra hastalık gelişmesine kadar geçen inkübasyon süresi değişkendir ve iki farklı olguda 36 saat ile üç ay kadar değişik olabilmektedir. Nötropenik hastalar hastaneye ilk geliş sırasında Aspergillus ile kolonize olsalar bile nötropeninin 12. gününden önce invaziv aspergilloz görülmemektedir. Kriptokokoz Kriptokokoz Cryptococcus neoformans tarafından meydana getirilen sistemik bir infeksiyondur. 1894 kadar erken yıllarda Otto Buse "coccidia türleri"nin neden olduğu tümör benzeri yuvarlak oluşumlar tanımlamıştır. Bütün kriptokok türleri içinde C. neoformans en patojenik olandır. Kriptokokal menenjit HIV infeksiyonu olan insanlardaki, hayatı tehdit eden en şiddetli infeksiyondur. C. neoformans kapsüllü, tomurcuklanarak çoğalan maya benzeri bir mantardır. Kriptokok polisakkarid kapsülünün kimyasal yapısına göre üç varyete içinde dört serotip belirlenmiştir: Serotip A: C. neoformans var. grubii, Serotip D: C. neoformans var. neoformans, Serotip B ve C: C. neoformans var. gattii. C. neoformans'ın seksüel şekli Filobasidiella neoformans olarak sınıflandırılır ve iki çiftleşme fenotipi vardır: a- ve a-çiftleşme tipi. Klinik izolatlarda a-tipi çiftleşme her zaman daha hakimdir. C. neoformans var. neoformans ve grubii her yerde yaygın olarak bulunur. Bunlar, bütün yıl boyunca, özellikle yaşlı güvercinlerin dışkılarında bulunur ve en fazla bağışıklığı zayıflamış bireylerde hastalık yapar. C. neoformans güvercinlerin dışkısında yüksek konsantrasyonda ürer, ancak kuşlar infekte değildir. C. neoformans doğada saprofittir. Kriptokokal infeksiyonlar herhangi bir endemik alan belirlenmeksizin, dünyanın her tarafında görülür, ancak serotiplerin dağılımı farklılık gösterir. Dünyada şimdiye kadar en yaygın görülen serotip A olmakla birlikte, bazı bölgelerde serotip D ile infeksiyon artmaktadır. Predispozan faktörlerle birlikte serotip A ile D arasındaki klinik tabloların farklılık göstermesi, konak ve çevre ile ilişkili faktörlerin bu dağılımı etkilediği görüşünü desteklemektedir. C. neoformans var. gattii tropikal ve subtropikal bölgelerde yaygındır ve esas olarak Avustralya, Güney Amerika, Afrika'nın bazı bölgeleri, Güney Batı Asya, Avrupa'nın güneyi ve California'nın kuzeyinde, okaliptüs ağacının nehir kenarı ve karasal bölgede yetişen türleriyle birlikte bulunur. Yakınlarda Vancouver Adası'nda bir salgın meydana gelmiştir. En yüksek insidansı okaliptüs ağacının çiçeklenme mevsiminde, yani kasım ile şubat ayları arasında yapar. Hem insan hem de hayvanda doğadan alınmış infeksiyon gösterilmiş, ancak hayvandan insana bulaş gösterilememiştir. Bulgular, hastalığın esas olarak mikroorganizmanın aerosolize olup, solunumla alındıktan sonra geliştiğini göstermektedir. Doğada güvercin dışkısı ve topraktan bu mekanizmaya uygun olarak, alveole birikmeye uygun boyutta (< 2 µm) canlı partiküller elde edilmiştir. Güvercinlerle yoğun teması olan sağlıklı bireylerde kriptokokal antijene ve kriptokoksine karşı gecikmiş deri testi pozitifliğinin oranı yüksektir. Doğada bu kadar yaygın olmasına rağmen çok sayıda bireyi etkileyen salgınlar çok nadirdir, iş ile ilişkili bir predispozisyon belirlenmediği gibi, güvercinle, toprak veya okaliptüsle temas öyküsü de tanıda yararlı değildir. İnsandan insana solunum yoluyla bulaş gösterilmemiş, ancak aktif kriptokokozu bulunan olgudan yapılan doku transplantasyonu sonrasında sistemik infeksiyon ve endoftalmit bildirilmiştir. Çalışmaların çoğu, her hastadaki infeksiyonun tek bir C. neoformans ile meydana geldiğini ve tekrarlayan infeksiyonların başlangıçtaki bu mikroorganizma tarafından oluşturulduğunu desteklemektedir. ABD, Batı Avrupa ve Avustralya'da AIDS'li hastalarda kriptokokoz insidansı %6-10 olarak tahmin edilmektedir. Fakat HAART uygulanmadan önceki dönemde, ABD'de AIDS'li hastalarda kriptokokozla ilişkili ölümün, muhtemelen azollerin kandidoza yönelik olarak yaygın olarak kullanımı nedeniyle 1987 yılında %7.7'den 1992 yılında %5'e düştüğü gösterilmiştir. HAART'nin uygulamaya girmesinden sonra kriptokokoz insidansı biraz daha azalmıştır. Sahra altı Afrika'da AIDS hastalarında kriptokokozun insidansı %15-30 arasındadır. Kriptokokoz Zimbabwe'deki HIV infeksiyonu olan hastalarda AIDS göstergesi olan hastalıkların %88'ini ve erişkin menenjitlerinin de en önemli nedenini oluşturmaktadır. AIDS'lilerde, olguların neredeyse %100'ünde, hatta C. neoformans var. gattii'nin endemik olduğu yörelerde bile C. neoformans var. grubii etkendir. Fransa'da C. neoformans infeksiyonları, insidansı serotip A'dan cilt lezyonlarında yüksek, menenjitlerde daha düşük olan serotip D tarafından meydana getirilir. Bağışıklık sistemi sağlam olan bireyde kriptokokal infeksiyonların %70-80'inde etken C. neoformans var. gattii'dir. Anlaşılamayan nedenlerle kriptokok menenjiti çocuklarda istatistiksel olarak beklenenden daha nadir görülmektedir. Yeni immün baskılayıcı tedaviler de fırsatçı mikozların sıklık, spektrum ve klinik tablosundaki değişiklikte rol oynamış olabilir. HAART ile tedavi edilen HIV infekte hastalarda C. neoformans insidansındaki düşme ile organ transplant alıcıları kriptokok infeksiyon riski altında olan gruplar içinde yeniden önem kazanmıştır. Mukormikoz ve Diğer Zigomiçet İnfeksiyonları Mukormikoz Mukorales takımındaki mantarların yaptığı infeksiyonların genel adıdır. Hastalık için fikomikoz ve zigomikoz gibi diğer isimler de kullanılır. Ayrıca, zigomikoz sözcüğü Entomophtorales ile oluşan hastalığı da kapsar. Mucorales ve Entomophtorales takımları Zygomycetes sınıfına dahildir. Zigomikozların başlıca şekilleri rinoserebral, pulmoner, kütanöz, gastrointestinal ve dissemine hastalıktır. Rhizopus, Mucor, Rhizomucor ve Absidia insanda zigomikoza en fazla neden olan türlerdir. Bunlardan tıbbi önem taşıyan zigomiçetler etrafta ve dokularda hifa yaparak üreyen küf mantarlarıdır. Bu mantarlar her yerde yaygın olarak bulunmasına ve özellikle çürüyen organik materyallerde üremesine rağmen mukormikoz nadir bir hastalık olup, hemen daima altta yatan hastalığı olan bireylerde görülür. Bunun tek istisnası, yeni tanımlanan bir tür olan ve özellikle bağışıklık sistemi sağlam bireylerde de zigomikoz etkeni olduğu bildirilen Apophysomyces elegans'tır. Mukormikoz tablosunda en sık izole edilen etkenler Rhizopus türleri olup, bunları Rhizomucor takip eder. Bu cinsler arasında ayrım mikroskobik olarak rizoitlerin varlığı ve yerleşimi, apofizlerin bulunması ve kolumellaların morfolojisine göre yapılır. Bu mikroorganizmaların özel olarak tanınması tedavinin takibi, özellikle de esas etken olan mantarın eradikasyonunun kanıtlanması ve daha sonraki klinik örneklerde üreyen mantarın başlangıçtaki etkenle aynı olup olmadığını belirlemek için, farklı antifungal ilaçlara karşı türe özgü yanıtların gösterilmesi ve yeni antifungal ilaçların geliştirilmesi çalışmaları için gereklidir. Mucoraceae çürüyen maddelerde bol bulunur, örneğin Rhizopus türleri küflü ekmekten sıklıkla izole edilebilir. Hızla üremeleri ve spor oluşturmaları nedeniyle bu sporların inhalasyonu her gün söz konusu olan bir durumdur. Steril olmayan yapışkan bantlarla deride meydana gelen mukormikoz bildirilmiştir. Tahta dil basacağı ve mikrobiyolojik örnek alınmasında kullanılan eküvyonların da kas dokuya ve GİS'e derin invazyonu bildirilmiştir, nadiren dissemine infeksiyon da gelişir. Bu mikroorganizmaların birçok ekolojik ortamda bolca bulunmalarına rağmen çok seyrek olarak infeksiyona yol açması, etkenin virülansının insan için oldukça düşük olduğuna işaret eder. Hastalık insanda belirli gruplarda görülür. Olguların çoğu bağışıklığı ileri derecede baskılanmış, diyabetik veya travma hastasıdır. Giderek artan sayıda transplantasyon hastası risk grubu oluşturmaktadır. Bu hasta grubunda bütün değişik klinik şekiller görülebilir. Hastaların yarısından çoğunda rinoserebral tutulum görülürken, yaklaşık %10'unda pulmoner, kütanöz ve dissemine hastalık, %2'sinde de böbrek ve GİS tutulumu görülür. Bu transplant olgularının 3/4'ünde ek olarak ya diyabet vardır ya da bu hastalar rejeksiyon için tedavi almıştır. Çok az sayıdaki normal bireylerde de invaziv mukormikoz bildirilmiştir. Mukormikoz için risk faktörleri Tablo 1'de sıralanmıştır. Penisilyoz Penisilyoz, dokularda maya gibi üreyen dimorfik bir küf mantarı olan Penicillium marneffei tarafından meydana getirilir. Mantar Güneydoğu Asya'da endemik olup, ilk olarak Rhizomys sinensis adlı sağlıklı bambu sıçanlarından soyutlanmış, bunların yaşadığı bölgedeki toprakta varlığı da gösterilmiştir. İnsanlarda ve kemirgenlerde derin yerleşimli infeksiyonlara yol açar. AIDS ortaya çıkmadan önceki dönemde endemik bölgedeki (Tayland'ın kuzeyi ve Çin'in güneydoğudaki kırsal bölgeleri) penisilyozlu hastaların çoğunda altta yatan hiç bir hastalık yok iken, bugün penisilyoz üçüncü sıklıktaki AIDS göstergesi olan hastalık olarak görülmektedir. Hastalık Tayland'ın Chiang Mai eyaletinde HIV ile ilişkili fırsatçı infeksiyonlar içinde tüberküloz ve kriptokokozdan sonra üçüncü sık infeksiyondur. En çok HIV ile infekte genç erişkinlerde görülmekle birlikte, çocukları etkilediği de bildirilmiştir. Hastalık muhtemelen toprak gibi çevresel kaynaklardan, konidyaların inhalasyonu sonucu gelişir. Fuzaryoz Fusarium türleri bütün dünyada yaygın olarak toprakta bulunur. Fusarium türleri ile gelişen infeksiyonlar (en yaygın türler Fusarium solani ve arkasından gelen Fusarium verticillioides'tir) nadir olup, bölgesel veya yaygın infeksiyona yol açabilir. Bölgesel infeksiyonlara örnekler keratomikoz, endoftalmit, sürekli ambulatuar periton diyaliz kateteri olan hastada peritonit, paronişi, invaziv burun infeksiyonu ile kemik, eklem ve deride travmaya bağlı lezyonlardır. 1970 yılından sonra, hematolojik malign hastalığı ve bağışıklık sistemi baskılanmış olgularda (AIDS) yaygın fuzaryoz giderek artan sayıda görülmeye başlamıştır. Bu infeksiyon solunum yolu ve çatlaklardan deri yoluyla inoküle olabilir. Yaygın infeksiyonun hemen öncesinde sinüzit tespit edilmiş ve kateter yoluyla da hematojen yayılım görülen olgular bildirilmiştir. Yaygın infeksiyonun bulunduğu olguların büyük bir bölümü akut lösemilidir ve hastaların çoğunda uzamış ve ağır (< 100 nötrofil/mm3) nötropeni mevcuttur. Ağır yanık ve sıcak çarpmasından sonra fuzaryoz geliştiği bildirilen nadir olgular mevcuttur. SİSTEMİK MANTARLAR Blastomikoz Hastalık tek bir dimorfik tür olan Blastomyces dermatitidis tarafından meydana getirilir. Seksüel veya teleomorfik şekli Ajellomyces dermatitidis'tir. 35°C'nin altındaki sıcaklıkta tek tip, hiyalin, septalı hifa ve konidya oluşturarak küf şeklinde ürer. Kolonilerin tam olarak gelişmesi için en az iki hafta gerekir. Zenginleştirilmiş besiyerinde 37°C'de maya şekline döner ve katlantılı, nemli koloniler yapar. B. dermatitidis'in doğal yerleşim yeri tam olarak çözülememiştir. Endemik bölge Kuzey Amerika'nın güneydoğu ve orta kesimlerinin güneyidir. Özellikle Mississippi ve Ohio Nehri civarında yaygındır. Köpekler sık infekte olur, ancak B. dermatitidis için hayvan rezervuar olduğuna dair herhangi bir kanıt elde edilememiştir. Muhtemelen doğada yılın büyük bir bölümünde dorman olarak kalır ve uygun iklimsel koşullarda konidya üretmeye başlayarak hava yoluyla bulaşabilir hale gelir. Hastalık daha çok orta yaştaki erişkin erkeklerde görülür. Blastomikoz her yaşta görülebildiği halde hastaların %60'ı 30-60 yaş arasındadır. Olguların %4'ünden azı 20 yaş altındadır ve hastalık nadiren çocuklarda görülmektedir. Ancak son zamanlarda özellikle salgınlarda her iki cinsiyetin de eşit oranda tutulduğu, hastaların üçte ikisini 16 yaşından küçüklerin oluşturduğu bildirilmiştir. Erkek/kadın oranı geniş çalışmalarda 6/1 ila 15/1 arasında değişmektedir. Muhtemelen her iki cins de hastalığa duyarlı olmakla birlikte, erkekler kronik veya dissemine hastalık geçirmeye daha yatkındır. Genetik veya ırka ait hastalık oranlarındaki farklılıklar kanıtlanamamıştır. Sosyoekonomik ve çalışma koşullarıyla ilgili verilere göre fakirlik, malnütrisyon, el emeği ile iş yapma, tarım, yapım işi, toprak ve tahta ile temas hastalık gelişmesiyle ilişkili bulunmuştur. Blastomikoz insidansı AIDS dahil, bağışıklık sistemi baskılanmış hastalarda da nispeten düşüktür, ancak artma göstermektedir. Koksidioidomikoz Koksidioidomikoz birbirinden ayırt edilemeyen Coccidioides immitis ve Coccidioides posadasii tarafından meydana getirilir. Dimorfik bir mantar olan C. immitis miçel ya da sferül denen özel bir yapıda bulunur. Her iki şekil de aseksüel ürer ve bu nedenle klasik olarak seksüel sporların sınıflandırmasına dayanan taksonomide bu etkeni sınıflandırmak mümkün değildir. Moleküler analizlere göre ise B. dermatitidis ve Histoplasma capsulatum'a yakındır. C. immitis rutin besiyerlerinde ve toprakta ürerken, apikal uzama göstererek miçel yapar. Bunların bir bölümü (artokonidya), bir hafta içinde otoliz ve hücre duvarının incelmesiyle olgunlaşır. Kalan kısmı ise, varil şeklini alıp hidrofobik bir dış tabaka geliştirir ve yıllar boyunca yaşama yeteneği kazanır. Artrokonidyaların kalıntıdan kolayca ayrılabilen hassas bir bağlantıyla bağlı olması, küçük hava hareketlerinde bile kopmaları sonucu hava yoluyla yayılarak inhalasyonuna imkan verir. Akciğerde artrokonidyalar hidrofobik dış duvarını kaybederek yeniden şekillenir ve küresel bir yapı kazanır. Bu dönemde çekirdek ile hücre bölünür ve septalarla ayrılarak ve kız hücre veya endospor adı verilen her biri yaşayabilen formlar meydana gelir. Dokuda sferüller 75 µm boyutuna kadar büyüyebilir ve olgunlaşırken dış duvarı incelerek yırtılır, canlı endosporlar açığa çıkar. Bunlar ya dokuda aynı gelişimi gösterir ya da infeksiyon yerinden ayrıldığında miçelyal üreme gösterebilir. Etken dünyanın Batı Yarımküresinde neredeyse tamamı kuzey ve 40. enlem üzerinde sınırlı bölgeye hastır. Dimorfik bir mantar olup, ABD'nin güneybatı, Meksika'nın kuzey ve Orta ve Güney Amerika'nın bazı bölgelerinde yoğunlaşmıştır. Koksidial antijenle California okul çocuklarında deri testi reaktivitesi ile prevalans araştırmalarında infeksiyon riski yaklaşık %15, hatta askeri personelde bu oran %25-50 arasında iken, bugün bu risk her yıl için %3 olarak hesaplanmaktadır. C. immitis diğer mikroorganizmalar tarafından inhibe edildiği halde, toprağın işlenmesi veya çeşitli kimyasal maddelerle muamelesi organizmanın yerleştiği bölgeyi kısıtlamamıştır. Miçeller toprağın birkaç metre altında bulunabilir ve bahar yağmurlarından sonra üretilebilir. Hava kuruduğu ve ısındığı zaman miçeller infeksiyöz artrokonidyalara dönüşür ve bunlar yaz süresinde en yüksek sayıya ulaşır. Endemik bölgede çöl kemirgenleri, köpek ve sığır gibi yerleşik faunada doğal infeksiyonlar da görülür. C. immitis artrokonidyalarının inhalasyonu ya infeksiyona ya da koksidioidine karşı gecikmiş aşırı duyarlılık yanıtına yol açar. İnfeksiyonların yarısından fazlası iyi seyirli, geri kalanı da semptomatik fakat kendi kendine sınırlanan şekilde seyreder. Olguların yaklaşık %1'lik grubu ilerleyici akciğer hastalığına veya disseminasyona gider. Bazı bireyler birincil infeksiyondan sonra disseminasyon açısından risk taşır. Bu gruplar Filipinli, Afrikalı Amerikalı, Latin Amerikalı ve Kızılderililer'dir. Bu etnik yatkınlık, infeksiyona karşı etkin yanıt için genetik zeminin önemini ortaya çıkarır. Ek olarak erkekler, üçüncü trimestırdaki gebeler, hücresel bağışıklığın bozulduğu hastalar (AIDS) ve çok küçük ve çok ileri yaşlar ağır hastalığa duyarlılığa neden olur. Ağır akciğer hastalığı riskini arttıran durumlar arasında diyabet, sigara içme, düşük gelir ve ileri yaş sayılabilir. Artrokonidyaların yoğun olduğu havanın solunmasıyla gelişen salgınlar bildirilmiştir. Koksidioidomikoz endemik bölgede çalışan inşaat işçileri, arkeoloji öğrencileri ve toprakla bağlantılı iş yapan diğer kişilerde de iş hastalığı olarak görülebilir. Histoplazmoz Histoplazmoz insan ve hayvanda mantara bağlı olarak görülen akciğer hastalıklarının en önemli nedenlerindendir. Etken H. capsulatum'dur. İnfeksiyon tüm dünyada görülür ve miçel parçaları ve mikrokonidyaların inhalasyonu sonucu gelişir. İnsidansı dünyanın çeşitli bölgelerinde büyük farklılıklar gösterir. H. capsulatum Ascomycetes sınıfının bir üyesidir ve insandan en sık H. capsulatum var. capsulatum ve H. capsulatum var. duboisii soyutlanmaktadır. Ajellomyces capsulatum adı verilen heterohalik seksüel şekli mevcuttur. Sıcaklığa bağlı dimorfik bir mantar olan H. capsulatum 35ºC'nin altında beyaz veya kahverengi küf mantarı, 37ºC'de küçük, yapışkan, yığın şeklinde koloniler oluşturan maya mantarı halinde ürer. Tipik olarak yavaş ürediğinden, en uygun koşullarda küf kolonisi bir-iki haftada meydana gelir ve bundan sonra konidyalar oluşur. Ancak klinik örneklerden üretmek için bazen 8-12 hafta beklemek gerekebilir. İlk soyutlandığı zaman çoğunlukla kahverengidir ve uzun beklediği zaman rengi beyaza döner. Oda sıcaklığında hem mikrokonidya hem de makrokonidya yapar. H. capsulatum doğada azot içeriği yüksek toprakta ve yarasa ve kuş türlerinin yaşadığı yerlerde bulunur. H. capsulatum kuş pisliği, tavuk kümesleri, yarasaların yaşadığı mağaralar ve benzeri yerlerden soyutlanabilir. Konidyalar kuruduğunda kolayca havaya dağılır ve rüzgarla veya kuş ve yarasalarla da taşınabilir. Etken, hastalığın en prevalan olduğu şu coğrafik bölgelerde yaygındır: Missouri'de Ohio-Mississippi Vadisi, Kentucky, Tennessee, Indiana, Ohio ve Güney İllinois. Bu bölge kuş dışkılarının yığınlar halinde en yaygın bulunduğu yerdir. Afrika'daki histoplazmoz olgularında hem H. capsulatum hem de stabil varyantı H. capsulatum var. duboisii soyutlanmıştır. Afrika'da H. capsulatum var. duboisii ile gelişen histoplazmoz olguları bütün dünyada H. capsulatum var. capsulatum ile görülen histoplazmoz olgularından deri ve kemik lezyonlarının daha sık, akciğer tutulumunun daha az, dev hücre gelişiminin bariz ve dokudaki maya hücrelerinin daha büyük ve kalın duvarlı olmasıyla farklılık gösterir. Bu klinik özellikler tipik ve her zaman görülüyor olmasına rağmen, in vitro olarak H. capsulatum var. duboisii'nin diğerlerinden morfolojik, fizyolojik ve antijenik içerik özelliklerine göre güvenilir bir şekilde ayırt edilemez. Aslında H. capsulatum var. duboisii ile H. capsulatum var. capsulatum'un çiftleşmesi ve her ikisinin de seksüel şeklinin A. capsulatum olması nedeniyle aynı türdür. Histoplazmin antijeni özel bir buyyon vasatında H. capsulatum'un miçel fazının üretilmesiyle elde edilir. Standardize edilmiş konsantrasyondaki kültür filtratı 0.1 mL intradermal olarak enjekte edilir. Kırk sekiz saat sonra, 5 mm'den büyük endürasyon pozitif reaksiyonu gösterir. Pozitif test sonucu, H. capsulatum'a karşı daha önceden duyarlılık olduğunu gösterir. Daha önceden testin negatif olduğu bilinmiyorsa, pozitif testin tanısal değeri yoktur. Bazı antijenik determinantları başka patojenik mantarlarla ortak olduğundan dolayı çapraz reaksiyonlar görülebilir. Örneğin; C. immitis veya B. dermatitidis'e karşı duyarlı bireylerde histoplazmin testiyle yanlış pozitif sonuç alınabilir. 1950'li yıllardan beri bütün dünyada yapılmakta olan histoplazmin deri testi çalışmaları ile hastalığın prevalansına ilişkin yoğun bilgi birikimi sağlanmıştır. ABD'nin orta kesimlerinde bazı bölgelerde, 20 yaş üstündeki toplumun %80-90'ında deri testi reaktivitesi görülmektedir. Deri testi araştırmaları ile, sadece ABD'de 40 milyondan fazla kişinin etkene duyarlandığı ve her yıl 500.000 yeni infeksiyon geliştiği hesaplanmaktadır. Bunların 55.000-200.000'i semptomatik olup, 1500-4000'i hastaneye yatış gerektirmektedir. Bu hesaba göre her yıl 20-30 ölüm meydana gelmektedir. Bu hesap 1980 öncesi verileri göstermekte olup, AIDS nedeniyle fırsatçı histoplazmoz gelişen olguları kapsamamaktadır. Aynı anda çok sayıda kişinin maruz kalmasına bağlı olarak akut respiratuar histoplazmoz salgınları ve epidemiler görülmüştür. Histoplazmin deri testi reaktivitesi erkek ve kadınlar arasında fark göstermezken, hastalık erkeklerde kadınlardan dört kat daha fazla gelişir. Puberte öncesinde kadın ve erkeklerin hastalığa yakalanma hızları ve deri testi reaktif olanların oranı eşittir. Bebeklerde ve 50 yaş üzerinde hastalık ağır ve mortalite daha yüksektir. Hastalığa birçok evcil ve vahşi hayvan duyarlı olup, yarasa gibi bazı hayvanlar rezervuar olarak organizmanın yayılımında rol oynar. SUBKÜTAN MİKOZLAR Sporotrikoz Sporothrix schenkii tarafından meydana getirilen akut veya subakut bir infeksiyondur. Etken dimorfik bir mantardır ve hem hifalı saprofitik hem de parazitik maya evresi vardır. Laboratuvarda 25ºC'de ve arkasından 37ºC'de bekletildiğinde her iki fazda da üretilir. Lenfokütanöz veya ekstrakütanöz yerleşimli lezyonlardan kültür yapıldığında hem 35ºC'de hem de 37ºC'de üreme olurken, yayılımı çok sınırlı olan kütanöz lezyonlardan yapılan kültürlerde sadece 35ºC'de ürediği bildirilirken, bunun aksine her iki grup lezyondan elde edilen mikroorganizmanın termo-tolerans göstermediğine dair bulgular da elde edilmiştir. S. schenkii 26-27ºC sıcaklık ve %92-100 nem oranında, yosun, çürüyen bitkiler, toprak ve saman varlığında daha iyi ürer ve mikroorganizmanın hayatta kalımı artar. Bununla birlikte, hastalık Brezilya, Peru, Hindistan gibi çok geniş bir iklimsel ve coğrafik dağılımda görülmektedir. Birçok salgın sırasında S. schenkii'nin kaynağı tespit edilebilmekle birlikte, endemik bölgelerdeki infeksiyon rezervuarı her zaman bulunamaz. Bu noktanın halen tam anlaşılamamış olması nedeniyle, endemik bölgelerde koruyucu önlemler alınmasına engel olmaktadır. Sporotrikoz kedi, armadillo, at ve eşek gibi hayvanlarda da görülür. Bunların ve diğer hayvan türlerinin rezervuar olarak rollerinin belirlenmesi için çalışmalara ihtiyaç vardır. İnfeksiyon genellikle travma sonrasında mantarın deriye teması ile gelişir. Sıyrık, abrazyon gibi küçük zedelenmeler de giriş için yeterlidir. Ender olarak sporların inhalasyon yoluyla alınması sonucu da hastalık gelişebilir. Sporotrikoz cinsiyet farkı gösterir ve erkeklerde kadınlardan daha fazla rastlanır, ancak bunun nedeni bilinmemektedir. Farklı yaş gruplarındaki sıklık da değişmekte, hastalık çocuklarda erişkinlerden daha seyrek görülmektedir. Toprak ve bitki ile uğraşan mesleklerde, örneğin; çiçek yetiştirenler, bahçıvanlar, maden işçileri ve oduncularda infeksiyon riski daha yüksektir. Hastalık insandan insana geçmez, ancak kapalı topluluk ve aynı aile fertleri arasında, aynı kaynağa temas sonucu birkaç olgu bildirilmiştir. Esmer Mantar "Black Mould" İnfeksiyonları Esmer mantarlar koyu renkli pigment yapan heterojen bir grup mantar olup, her yerde bulunur ancak insanda nadir olarak infeksiyon yapar. Bu mantarların virülansının görece düşük olduğu ve hastalığın klinik seyrinin esas olarak konağa ait faktörler tarafından etkilendiği düşünülmektedir. İnfeksiyonun klinik spektrumu esmer miçetomalar, kromoblastomikoz, sinüzit ve yüzeyel, kütanöz, subkütan, sistemik feohifomikozları kapsar. Yakın zamanlarda bu tablolara fungemi de eklenmiştir. İnsanda çok sayıda cinsin infeksiyon yaptığı gösterilmiştir. Bunlar; Alternaria, Curvularia, Bipolaris, Exserohilum, Exophiala ve Wangiella'dır. Feohifomikoz (Yunanca "phaeo" koyu renkli, esmer) klinik örneklerde maya benzeri hücreler, yalancı hifa ve hifa gibi fungal ögelerin tek başına veya birlikte bulunmasıyla karakterizedir. Feohifomikoz miçetoma ve kromoblastomikozdan farklı olarak deri ve deri altı dokularla sınırlı değildir ve daha çeşitli inflamatuvar reaksiyonlara neden olur. Kütanöz olmayan feohifomikozlar her doku ve organı tutabilir ve en fazla sinüsler, akciğer ve beyinde görülür. İnvaziv hastalığa ilaveten allerjik reaksiyonlar da sıktır, sinüzit ve akciğer hastalıklarına yol açar. Kromoblastomikoz Deri ve deri altı dokunun kronik, lokalize infeksiyonudur ve genellikle ekstremitelerde kabarık, kurutlu lezyonlar oluşturur. Birçok kahverengi pigment yapan mantar tarafından meydana getirilir. Bu etkenlerin isimlendirmesi konusunda yazarlar arasında anlaşmazlık vardır. En fazla rastlanan etkenler sıklık sırasına göre Phialophora verrucosa, Fonsecaea pedrosoi, Fonsecaea compacta, Cladosporium carrionii, Rhinocladiella aquaspersa (Ramichloridium cerophilum) şeklinde sıralanabilir. Diğer pigment oluşturan mantarlar tarafından da sporadik kromoblastomikoz olguları meydana getirilebilir. Etkenler dokuda tipik olarak kalın duvarlı, koyu kahverengi sklerotik hücreler meydana getirir. Kromoblastomikoz etkenleri toprak, odun ve bozunan bitki artıkları gibi maddelerin bulunduğu çevrede yaygın olarak bulunur. İnfeksiyon insanda genellikle derinin kesik veya kıymık batması gibi travma ile zedelenmesi sonucu mantarın girmesiyle meydana gelir. Hastalık çıplak ayakla gezilen yerlerde ve ılıman iklimlerdeki kırsal kesimlerde daha fazla görülür. İnsandan insana bulaşma olmaz. Kromoblastomikoz çocuk ve ergenlerde nadirdir. Hastalık Japonya dışında, erkeklerde kadınlardan daha sık görülür ki bu daha çok mesleki temasın önemini göstermektedir. Olguların büyük bölümü 30-50 yaş arasındadır. Hastalığın aynı çevresel etkenlere temas etmiş çocuklarda nadir görülmesi uzun bir süre sessiz kaldığı (latent) dönem olduğunu düşündürmektedir. Verrüköz veya nodüler lezyonlar sıktır ve daha çok alt ekstremitelerde yerleşir. Entomoftoramikoz Doğu ve Batı Afrika, Güney ve Orta Amerika ve Güneydoğu Asya'daki yağmur ormanlarında görülür. Ilıman iklimlerde toprak ve nemli alanlarda çürüyen bitkiler üzerinde saprofit olarak yaşayan ve rinoserebral konidyobolomikoz etkeni olan Conidiobolus coronatus (Entomophtora coronata) tarafından oluşturulur. Tüm yazarlar aynı kanıda olmasa da, araştırıcıların en çok kabul ettiği yaklaşım basidyobolomikoz etkeninin Basidiobolus ranarum olduğu ve B. meristosporus ve B. haptosporus'un bunun sinonimleri olduğudur. B. ranarum topraktan, çürüyen bitkilerden, infekte böcekleri yutmuş kurbağa ve kertenkelelerin bağırsağından soyutlanmıştır. Kuluçka süresi tam bilinmemekte, kıymık batması ve böcek ısırması ile birlikte yaraya kontaminasyon olduğunda hastalık geliştiği düşünülmektedir. Lobomikoz Lobomikozun başlaması çok yavaş ve sinsi, hastalığın seyri çok yavaştır, öyle ki 40-50 yıl sürebilir. Hastalığın kuluçka süresinin uzun olması endemik bölgede bulunma öyküsünün araştırılmasını gerekli kılar. Hastalık travmaya bağlı derideki zedelenme sonucu gelişir ki, bunlar kıymık batması ve böcek ısırmasının yanı sıra yılan sokması, kesi ve bitki keserken yaralanma sonucu gelişebilir. Etken özellikle sulak çevrelerde yaygın bulunur ki, bu muhtemelen yaşam döngüsünün önemli bir bölümünü oluşturur. Hastalık Amerika kıtasının tropikal bölgesinde yaygındır. İnfekte bireylerden etken soyutlanamamıştır ve etken olan mantar tanınamamıştır. Etken deriden girip aylar ya da yıllarca burada kalır, daha sonra deri altı dokulara geçerek genellikle 30-40 yaşlarındaki erkeklerde hastalığa yol açar. Miçetoma Miçetoma Afrika ve Amerika kıtalarının kurak, tropikal ve subtropikal bölgelerinde, özellikle çöle komşu alanlarda yaygındır. Sahra ve Arabistan çölleri hem olgu sayısının fazlalığı hem de etken mikroorganizmaların karışıklığı nedeniyle en önemli endemik bölgedir. Tropikal ve subtropikal bölgelerdeki kurak alanlarda en fazla görülen etken Madurella mycetomatis, Actinomadura madurae, Actinomadura pelletieri ve Streptomyces somaliensis'tir. Bu mikroorganizmalar Afrika ve Asya'nın büyük çöllerinde ve Güneydoğu Avrupa'da bol bulunur. Latin Amerika'nın nispeten nemli yörelerinde Nocardia brasiliensis daha sık, Madurea grisea ise daha enderdir. Romanya gibi ılıman iklimlerden de olgular bildirilmiştir. Erkeklerde kadınlardan daha sık görülür. Etkilenen yaş en fazla 20-50 yaş arasındadır. Etken deride zedelenme sonrası kontaminasyon sonucu girer. Odun, diken ve toprakla kirlenen yaralardan bulaşma şansı vardır. Tropikal ve subtropikal bölgelerde akasya ağacı gibi dikenli bitkiler etkenin girişini kolaylaştırır. Miçetoma etkenlerinin çoğu bitki ve toprak, canlı ve ölü bitkilerde bulunur. Pnömosistis İnfeksiyonu Eski adıyla Pneumocystis carinii yeni adıyla Pneumocystis jirovecii taksonomik yeri belli olmadığından öksüz organizma olarak adlandırılan, ancak son yıllarda ribozomal RNA'sının mantarlarda bulunan rRNA ile homolog olması nedeniyle mantar olarak kabul edilen bir etkendir. Öte yandan gelişmeler bununla da kalmamış, insanda hastalık yapan tür P. jirovecii olarak yeniden adlandırılmıştır. Etken memeli hücrelerindeki özellikleri taşır. Genel olarak dört morfolojik şekil tanımlanmıştır: Trofozoid, kist, prekist ve sporozoid (intrakistik cisimcikler). Tanısal şekil kisttir ve Giemsa, Papanikolaou ve Grocott metenamin gümüş nitrat boyalarıyla boyanır. AIDS epidemisinin erken dönemlerinde P. carinii pnömonisi (PCP)'ne ABD'deki hastaların üçte ikisinde bulunan AIDS tanımlayıcı hastalık olarak sık rastlanmaktaydı. HAART tedavisinin kullanılmaya başlanmasından sonra diğer fırsatçı infeksiyonlarda olduğu gibi PCP insidansı da 1992-1995 yılları arasında %21.5 iken, 1996-1997 yıllarında %3.4'e düştü. Buna rağmen hastalık ABD'de AIDS tanımlayıcı hastalıklar arasında en fazla görülenidir. P. jirovecii AIDS, malign hastalık sırasında kemoterapi rejimleri, immünsüpresif tedavi alanlar, organ transplantasyonu olguları ve doğmalık immünsüpresif durumlar gibi bağışıklık sistemi baskılanmış hastalarda ağır ve öldürücü pnömoniye yol açar. Ancak infeksiyon her zaman akciğerle sınırlı olmayıp lenfatik ve hematojen yolla yayılabilir. Yaygın infeksiyon en fazla tiroid, karaciğer, kemik iliği, lenf bezi ve dalakta tutulum yapar. PCP için en önemli risk faktörü CD4 sayısının 200/mm3'ün altında olmasıdır. Ancak HAART sonrasında bu risk daha azalmış, ancak bu tedavi altında gelişen PCP tablolarında CD4 sayılarının çok daha düşük olduğu gösterilmiştir. PCP kadın ve erkeklerde eşit oranda görülmektedir. Bir çalışmada Afrikalı Amerikalılar'ın beyazların üçte biri sıklıkta hastalığa yakalandığı bildirilmişse de bu bulgu tekrarlanmamıştır. HIV geçiş yolu ile PCP riski farklılık göstermemektedir. Hastaların Pneumocystis ile kolonize olmaları infeksiyon riskini arttırdığı gibi taşıyıcılar etkenin bulaşında önemli rol oynamaktadır. Çocuklarda PCP HIV epidemisinin ilk yıllarında, çocuklarda 1.3 olgu/100 çocuk yılı, bebeklikten adölesan çağa kadar da 9.5 olgu/100 çocuk yılı sıklıkta görülmekteydi. Gebelikteki tarama ve vertikal geçişin önlenmesi pediatrik HIV infeksiyonunu azalttı, öte yandan HAART döneminin başlaması çocuk hastalardaki bütün fırsatçı infeksiyonlar gibi muhtemelen PCP olgularını da azalttı. Ancak HAART'nin çocuk hastalardaki sonuçları henüz net değildir. HIV infeksiyonu olan çocuklarda PCP gelişimi erişkinlerdeki kadar CD4 sayısı ile ilişkili değildir. İnsidans çocuklarda üç-altı ayda pik yapmakta, altı yaş üzerindeki çocuklarda ise CD4 sayısı önem kazanmakta ve erişkinlerdeki gibi CD4 sayısı < 200/mm3 olması profilaksi endikasyonu olarak kabul edilmektedir. Pneumocystis infeksiyonunun bulaşması da, çevresel ortamdaki kaynağı da tam olarak anlaşılamamıştır. Yıllar boyunca bağışıklık sisteminin zayıflaması sonucu latent infeksiyonun reaktivasyonu teorisi kabul görmüştü. Günümüzde ise çevresel kaynaklardan alınabilmesi ve insandan insana bulaştırılmasının mümkün olduğu gösterilmiştir. Ayrıca, infekte olmayan bireylerin etkeni asemptomatik olarak taşıyabildikleri bilinmektedir. Hayvan ve insanda hava yolu ile bulaşa ilişkin kanıtlar elde edilmiş ise de halen bu olgular için solunum izolasyonu önerilmemektedir. KAYNAKLAR Abi-Said D, Anaissie E, Uzun O, et al. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis 1997; 24: 1122-8. Al-Asiri RH, Van Dijken PJ, Mahmood MA, et al. Isolated hepatic mucormycosis in an immunocompetent chil. Am J Gastoenterol 1996; 91: 606-7. Ammari LK, Puck JM, McGowan KL. Catheter related Fusarium solani fungemia and pulmonary infection in a patient with leukemia in remission. Clin Infect Dis 1993; 16: 148-50. Boutati EI, Anaissie EJ. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: Ten years' experience in a cancer center and implications for management. Blood 1997; 90: 999-1008. Brandt ME, Hutwagner LC, Klug LA, et al. Molecular subtype distribution of Cryptococcus neoformans in four areas of the United States. Cryptococcal Disease Active Surveillance Group. J Clin Microbiol 1996; 34: 912-7. Brandt ME, Pfaller MA, Hajjeh RA, et al. Molecular subtypes and antifungal susceptibilities of serial Cryptococcus neoformans isolates in human immunodeficiency virus-associated cryptococcosis. Cryptococcal Disease Active Surveillance Group. J Infect Dis 1996; 174: 812-20. Brodsky AL, Gregg MB, Lowenstein MS, et al. Outbreak of histoplasmosis associated with the 1970 earth day activities. Am J Med 1973; 54: 333-42. Bustamente B, Campos PE. Endemic sporotrichosis. Curr Opin Infect Dis 2001; 14: 145-9. Calgiani G. Coccidioides immitis. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2746-57. Chapman S. Blastomyces dermatitidis. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2733-46. Chariyalertsyak S, Sirisantana T, Supparatpinyo K, et al. Case-control study of risk factors for Penicillium marneffei infection in human immunodeficiency virus-infected patients in northern Thailand. Clin Infect Dis 1997; 24: 1080-6. Deepe GS Jr. Histoplasma capsulatum. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2718-33. Denning DW. Aspergillus species. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2674-84. Denning DW. Invasive aspergillosis. Clin Infect Dis 1998; 26: 781-805. Diamond R. Cryptococcus neoformans. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2707-18. Dromer F, Mathoulin S, Dupont B, et al. Epidemiology of cryptococcosis in France: A 9-year survey (1985-1993). French Cryptococcosis Study Group. Clin Infect Dis 1996; 23: 82-90. Dromer F, Mathoulin S, Dupont B, et al. French Cryptococcosis Study Group. Individual and environmental factors associated with infection due to Cryptococcus neoformans serotype D. Clin Infect Dis 1996; 23: 91-6. Edwards J. Candida species. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2656-74. Gartenbeg G, Bottone EJ, Keusch GT, et al. Hospital-acquired mucormycosis (Rhizopus rhizopodiformis) of skin and subcutaneus tissue: Epidemiology, mycolgyand treatment. N Engl J Med 1978; 299: 1115-7. Gerson SL, Talbot Hurwitz S, et al. Prolonged granulocytopenia: The major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med 1984; 100: 345-51. Guarro J, Gené J. Opportunistic fungal infections in human. Eur J Clin Microbiol Infect Dis 1995; 14: 741-54. Heyderman RS, Gangaidzo IT, Hakim JG, et al. Cryptococcal meningitis in human immunodeficiency virus infected patients in Harare, Zimbabwe. Clin Infect Dis 1998; 26: 284-9. Hoepelmen A. Opportunistic fungi. In: Cohen J, Powderly WG (eds). Infectious Diseases. 2nd ed. Spain: Mosby, 2004: 2341-61. Hospenthal DR, Bennett JE. Miscellanous fungi and Prototheca. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2772-80. Jarvis WR. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis 1995; 20: 1526-30. Kanda Y, Yamamoto R, Chizuka A, et al. Prophylactic action of oral fluconazole against fungal infection in neutropenic patients. Cancer 2000; 89: 1611-25. Khoo SH, Dening DW. Invasive aspergillosis in patients with AIDS. Clin Infect Dis 1994; 19(Suppl 1): 41-8. Krcmery Jesenka Z, Spanik S, et al. Fungemia dure to Fusarium spp. in cancer patients. J Hosp Infect 1997; 36: 223-8. Levitz SM. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. J Infect Dis 1991; 13: 1163-9. Marr KA, Seidel K, Slavin MA, et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic bone marrow transplant recipients: Long term follow-up of a randomized, placebo controlled trial. Blood 2000; 96: 2055-61. Martino P, Raccah R, Gentile G, et al. Aspergillus colonization of the nose and pulmonary aspergillosis in neutropenic patients: A retrospective study. Haematologica 1989; 74: 263-5. Mead JH, Lupton GP, Dillavau CL, et al. Cutaneus Rhizopus infection: Occurence as a postoperative complication associated with elasticized adhesive drssing. JAMA 1979; 242: 272-4. Mitchell SJ, Gray J, Morgan MEI, et al. Nosocomial infection with Rhizopus microsporus in preterm infants: Association with wooden tongue depressors. Lancet 1996; 34: 441-3. Mitchell TG. Systemic fungi. In: Cohen J, Powderly WG (eds). Infectious Diseases. 2nd ed. Spain: Mosby, 2004: 2363-81. Morris A, Lundgren JD, Masur H, et al. Current epidemiology of Pneumocystis pneumonia. Emerg Infect Dis 2004; 10: 1713-20. Nucci M, Akiti T, Barreiros G, et al. Nosocomial fungemia due to Exofiala jeanselmei var. jeanselmei and a Rhinocladiella species: A newly described causes of bloodstream infections. J Clin Microbiol 2001; 39: 514-8. Pappas PG, Tellez I, Nolazco D, et al. Sporotrichosis in Peru: Description of a hyperendemic area. Clin Infect Dis 2000; 30: 65-70. Pfaller MA. International surveillance of bloodstream infections due to Candida species: Frequency of occurence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 2001; 39: 3254-9. Richardson M. Subcutan mycoses. In: Cohen J, Powderly WG (eds). Infectious Diseases. 2nd ed. Spain: Mosby, 2004: 2383-96. Safdar N, Maki DG. The commonality of risk factor for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, Enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 2002; 136: 834-44. Selik RM, Chu SY, Ward JW. Trends in infectious diseases and cancers among persons dying of HIV infection in th United States from 1987 to 1992. Ann Intern Med 1995; 123: 933-6. Silveira F, Nucci M. Emergence of black moulds in fungal disease: Epidemiology and therapy. Curr Opin Infect Dis 2001; 14: 679-84. Singh N, Gayowski T, Singh J, et al. Invasive gastrointestinal zygomycosis in a liver transplant recipient: Case report and review of zygomycosis in solid organ transplant recipients. Clin Infect Dis 1995; 20: 617-20. Singh N. Trends in the epidemiology of opportunistic fungal infections: Predisposing factors and the impact of antimicrobial use practices. Clin Infect Dis 2001; 33: 1692-6. Speed BR, Dunt D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 1995; 21: 28-34. Sturm AW, Grave W, Kwee WS. Disseminated Fusarium oxysporum infection in a patient with heat stroke. Lancet 1989; 1: 968. Sugar AM. Agents of mucormycosis and related species. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases. 5th ed. USA: Churchill Livingstone, 2000: 2685-2605. Thomas CF, Limper AH. Pneumocystis pneumonia. N Engl J Med 2004; 350: 2487-98. Raad I, Hachem R. Treatment of central venous catheter-elated fungemia due to Fusarium oxysporum. Clin Infect Dis 1995; 20: 709-11. van Elden LJR, Walenkamp AME, Hoepelman AIM. Declining number of patients with cryptococcosis in the Netherlands in the era of highly active antiretroviral therapy. AIDS 2000; 14: 2787-800. Verveij PE, Voss A, Donelly JP, et al. Wooden sticks source of a pseudoepidemic of infection with Rhizopus microsporus var. rhizopodiformis among immunocompromized patients. J Clin Microbiol 1997; 35: 2422-3. Wazir JF, Ansari NA. Pneumocystis carinii infection. Arch Pathol Lab Med 2004; 128: 1023-7. YAZIŞMA ADRESİ Yrd. Doç. Dr. A. Seza İNAL Çukurova Üniversitesi Tıp Fakültesi Klinik Bakteriyolojisi ve İnfeksiyon Hastalıkları Anabilim Dalı, ADANA

http://www.biyologlar.com/firsatci-enfeksiyon-tanimini-yapiniz-ve-sik-gorulen-firsatci-fungal-enfeksiyon-etkenleri-hakkinda-kisaca-bilgi-veriniz-

Lavanta Hakkında herşey

Alem:Plantae (Bitkiler) Bölüm:Magnoliophyta(Kapalı tohumlular) Sınıf:Magnoliopsida(İki çenekliler) Takım:Lamiales Familya:Lamiaceae(Ballıbabagiller) Cins:Lavandula TÜR ADLARI İngiliz lavantası (Lavandula angustifolia) Lavandula antineae Lavandula aristibracteata Lavandula atriplicifolia Lavandula bipinnata Lavandula bramwellii Lavandula buchii Lavandula canariensis Lavandula citriodora Lavandula coronopifolia Fransız lavantası (Lavandula dentata) Lavandula dhofarensis Lavandula erythraeae Lavandula galgalloensis Lavandula gibsonii Lavandula hasikensis Lavandula lanata Portekiz lavantası (Lavandula latifolia) Lavandula macra Lavandula mairei Lavandula maroccana Lavandula minutolii Lavandula multifida Lavandula nimmoi Lavandula pedunculata Eğrelti yapraklı lavanta (Lavandula pinnata) Lavandula pubescens Lavandula qishnensis Lavandula rejdalii Lavandula rotundifolia Lavandula saharica Lavandula samhanensis Lavandula setifera Lavandula somaliensis Lavandula sublepidota Lavandula subnuda Karabaş otu (Lavandula stoechas) Lavandula tenuisecta Lavandula viridis Atlas Okyanusu adalarından Akdeniz çevresi ülkelerine ve Hindistana kadar uzanan geniş bir alanda yetişen, lavanta cinsi üyeleri, çalı görünümlü, toplu başak biçiminde mavi, morumsu ya da kırmızı çiçekler açan bitkilerdir. Lavanta, dağlarda, 1000-1800 m arasında yüksekliklerde yetişir. Kurutularak dolaplara konan çiçekleri giysileri böceklerden korur. Yaklaşık 500 metrede yetişen İngiliz lavantası (Lavandula angustifolia) türünden boyacılıkta kullanılan esans elde edilir. Batı Anadolunun maki bölgelerinde yetişen karabaş otu (Lavandula stoechas) çiçeklerinden ağrı kesici, balgam söktürücü olarak yararlanılır Lavanta ballıbabagiller(Labiatae) familyasındadır. Türkiye'de Kuzeybatı-Batı ve Güneybatı Anadolu'da yetişir. Lavanta Haziran-Ağustos ayları arasında mavi veya mor renkli çiçekler açan, 20-60 cm boylarında, aromatik kokulu, çok yıllık, otsu veya çalımsı bitkiler. Daha çok deniz ikliminin bulunduğu batı bölgelerimizde yaygın olan lavantanın, Türkiye'de yetişen iki türü vardır. Bunlar, Lavandula stoechas ve L. angustifolia'dır. Ayrıca daha ziyade kültürü yapılan, İngiliz lavanta çiçeği (L. spica) olarak bilinen türü de bulunur. İngiliz lavanta çiçeği (L. spica): Haziran-ağustos ayları arasında mavi renkli çiçekler açan, 20-50 cm boylarında çok yıllık otsu bir bitki. Gövdeleri dik ve odunludur. Dallar, yalnız alt kısımlarında yaprak taşır. Yapraklar kısa saplı, dar ve uzunca, tüylü, beyazımsı-grimsi-yeşil renklerdedir. Çiçekler dalların ucunda, uzun saplar üzerinde toplanmışladır. Çiçekler küçük ve çok kısa saplıdır. Çanak ve taç yaprakları tüp şeklindedir. Meyveleri parlak siyah renklidir. Alternatif tedavilerde lavantanın çiçekleri kullanılır. Çiçekleri açmadan toplanır ve su buharı ile distile edilerek, hemen uçucu yağ elde edilir. Uçucu yağında organik asitler, pinen, kafur, camphen vs. gibi maddeler bulunur. Lavanta çiçeği, kuvvet verici, idrar söktürücü ve romatizmaya karşı çay halinde kullanılır. Çok iyi bir koku vericidir. Haricen yatıştırıcı olarak da kullanılır. Parfümeri sanayiinde kullanılan önemli bir bitkidir. Lavanta çiçeğinin bir türü olan Lavandula stoechas, Karabaş olarak bilinir.   Bitki özellikleri: Bir metreye kadar yükselebilen, çalı görünümlü, çok yıllık bir bitkidir. İnce uzun yaprakları gümüşi, çiçekleri ise menekşe renklidir. Çiçeklerin ferahlatıcı, hoş bir kokusu vardır. Bol güneşli tepelerde ve sırtlarda yetişir. Akdeniz ülkelerinde süs bitkisi olarak da yetiştirilir. Bileşim: Cineol, cumarin, linalool içerikli uçucu lavanta yağı, tanen, flavon. Toplama ve hazırlama: Drog olarak kullanılan çiçekler, temmuz-ağustos aylarında, henüz tomurcuk halinde iken toplanmalıdır. Saplarıyla birlikte toplanan çiçekler, demet halinde bağlanıp, gölge bir yere asılarak kurutulur. İyice kuruduktan sonra, çiçekler saptan ufalanarak ayrılır. Kullanım alanları ve biçimleri: Küçük keseler içinde aralarına yerleştirildiği çamaşırlara çok hoş, iç açıcı bir koku kazandırır. Uykusuzluk çekenler de, lavanta içerikli yastıklar kullanmayı denemelidirler. Yatıştırıcı etkinliği onun başlıca özelliğidir. Lavanta çayı, uykusuzluk ve sindirim sorunlarına karşı kullanılabilir. Merkezi sinir sistemini ve üst solunum sinir sistemini olumlu etkiler. İçerdiği tanen maddesinin de yardımıyla, mayalanma belirtileri veren ishallerde başarılıdır. Safrakesesi salgılarının arttırılmasında, az da olsa, olumlu etkisi vardır. Uykuya dalmayı kolaylaştıracak ve yorgun sinir sistemini yatıştıracak bitki çayı karışımlarında genellikle lavanta da kullanılır. Mide ve bağırsak rahatsızlıklarında yatıştırıcıdır. Lavanta çayı, kafaya kan hücumunda, migren ve baş ağrılarında kullanılabilir. Tüm bu rahatsızlıklara karşı, lavanta katkılı banyolar da rahatlık sağlayabilir. Lavanta yağı, iştah açıcı, sindirim sistemini uyarıcı ve yatıştırıcı olarak, biraz ılık suya 5-6 damla veya kesme şekere 3-4 damla damlatılarak kullanılır. Lavanta çayı: 1-2 çay kaşığı dolusu çiçek, 1 bardak kaynar suyla haşlanır, 8-10 dakika demlendikten sonra süzülür. Soğutmadan, biraz bal ile tatlandırılarak ve yudumlanarak içilir. Mide, bağırsak rahatsızlıklarında ve ishalde tatlandırılmaz. Şeker hastaları kesinlikle tatlandırmaz. Lavanta banyosu: 60-70 gr lavanta çiçeği, 2-3 litre suya eklenir, kaynama derecesine kadar ısıtılır, 10-15 dakika demlendikten sonra süzülür ve banyo suyuna eklenir. Banyo süresi 15-20 dakikadır. Bu banyolar özellikle, kan basıncı düşük olan kişileri rahatlatır, canlılık kazandırır. Sinirli kişiler, dengeleyici bir rahatlığa kavuşur. Yan etkiler: Lavanta çiçeğinin bilinen hiçbir yan etkisi yoktur. Ama lavanta yağının içten kullanımında dikkatli olunması gerekir. Fazla miktarda alındığında mide ve bağırsak mukozasını tahriş edebilir. lavantadaki etkin maddelerin karaciğer kanserine yol açan Hepatit B ve C virüsünü baskı altına aldığını belirtiyor Bitkilerle gelen sağlık dünyadaki yeni trend. ABD'de ve Batı'da bu konuda her gün yeni çalışmalar ortaya çıkıyor. Doğal ürünlere, doğal sebze ve bitkilere dönüş 21. yüzyılın en güçlü sağlık akımı olarak kendini gösteriyor. Türkiye birçok özel bitkinin anavatanı olan Anadolu üzerinde bulunmasına rağmen, doğal tedavi, bitkisel tedavi gibi yöntemlerle uğraşanların sayısı fazla değil. Üstelik bitkisel tedavi-otacı geleneğini yüzlerce yıl öncesinden günümüze taşıyan birçok kişi de yasal takibatlar sonucu bu işten uzaklaştı. Ancak, son dönemde özellikle Batı'dan gelen etkiler sonucu Türkiye'de bitkisel tedavi yeniden keşfedilmeye başlandı. Bu konuda çalışanlar ve araştıranlar hızla çoğalıyor. Tempo okurlarının yakından tanıdığı Prof. Dr. İbrahim Saraçoğlu Türkiye'de bitkisel tedavi ile uğraşan önemli isimlerden birisi. Halen çalışmalarını Antalya'da sürdüren Saraçoğlu, özellikle etkin maddeler üzerine araştırmalar yapıyor. Bunun sonucunda herkesin kendi evinde rahatça uygulayabileceği bitkisel kürler geliştiriyor. Saraçoğlu'nun 2002'de yayınladığı ve geçen yıl 2. baskısını yaptığı "Bitkilerdeki Sağlık Mucizesi" kitabı bu tür "bitkisel tedavi reçeteleri" ile dolu. Prof. Saraçoğlu aynı zamanda "prostat tedavisinde brokoli kullanımını" dünyaya ilk kez tanıtan ve uluslararası kabul gören isim olarak biliniyor. Saraçoğlu "lavantanın Hepatit B ve Hepatit C tedavisinde etkin bir çare" olduğunu öne sürüyor. Bunu lavantadaki etkin maddelere dayandırıyor. Lavanta Hepatit'i karaciğerden tamamen atamıyor, ancak yılda bir uygulanacak "lavanta kürü" ile hastalığı baskı altında tutabiliyor. Saraçoğlu'nun belirttiğine göre Lavanta kürünü uygulayanların karaciğer ölçümlerinde kısa sürede belirgin bir iyileşme gözleniyor. Saraçoğlu bu konudaki sorularımızı yanıtladı: Lavantanın Hepatit tedavisinde kullanılacağı noktasına nasıl geldiniz? Lavanta ile ilişkiyi nasıl buldunuz? Lavantayı ilk defa çocukluk yıllarımda tanıdım. Anneannemin elbise dolabının bir ayrıcalığı vardı. Özenle katlanmış giysilerinin arasında ince tülbentlere sarılmış, yapraklı lavanta çiçekleri bulunurdu. Onun elbise dolabının kokusu çok farklıydı. Giydiği elbiseleri de ilk bir iki gün yoğun bir biçimde lavanta kokardı. Bazı geceler anneannemin odasında yer yatağında yatardım. Onun odasında uyuduğum geceler, lavanta kokusunu yastık yüzlerinde de derin derin algılardım. Öylesine rahat uyurdum ki... Bir gün, bitkiler üzerine olan araştırma ve çalışmalarım beni lavanta bitkisiyle karşılaştırdı. Onu koklar koklamaz anneannem aklıma geldi. Huzurlu, rahat ve uzun uzun uyduğum geceleri anımsadım. Lavanta üzerine yaptığım çalışmalarımda ilk gördüğüm, içerdiği en az on dört tane sedatif (teskin edici, rahatlatıcı) özelliği olan etkin maddeyi içerdiği idi... O yıllarda, anneannemin odasında uyurken, neden bu denli rahat, sakin ve uzun uyuduğumun sebebini bulmuştum. Günümüzde, yeni yeni yayılmaya ve uygulama alanı bulmaya başlayan aroma terapisinde de kullanılan birçok bitkiden biri olan lavantanın kullanım sebeplerinden birinin de bu olduğunu zannediyorum. Lavantada ne gibi etkin maddeler var? Araştırmalarım sonucu bunları şöyle sıralayabilirim: p-cymene, alpha-pinene, cinnamaldehyde ve carvone lavantanın içerdiği sedatif özellikli etkin maddelerden bir kaç tanesi. Lavanta üzerine olan çalışmalarımı tam sonlandıracağım sırada, anneannemin, zaman zaman lavantayı demleyip çayını içtiğini de hatırladım. O yıllarda bunun nedenini sormak aklıma bile gelmezdi. Ancak, şu var ki lavanta çayı içmek sıra dışı bir şey... Nane, papatya, kuşburnu veya adaçayı gibi, bilinen ve demlenip içilen bir türden de değildi. Onun anısına, lavantanın içindeki hikmeti araştırmak için üzerinde tekrar çalışmaya başladım. Lavantanın içerdiği etkin maddelerin kendine özgü bir sistematiği olduğunu gördüm. Bu sistematiğin içerisinde gözlediğim, lavantanın tüm karaciğer metabolizmasını mucizevi bir şekilde düzenleyebileceği idi. Bu buluşumu hatırladığım her zaman o günkü gibi heyecanlanıyorum. Lavanta karaciğer rahatsızlıklarını mı düzenliyor? Karaciğer metabolizmasının sağlıksız çalışmasından dolayı yükselen enzim değerlerinin kısa zamanda kontrol altına alınmasında ve tekrar kısa zamanda normal değerlerine indirilmesinde lavanta kürü bulunmaz bir nimet... Özellikle Hepatit-B ve Hepatit-C virüslerinin aktive olabilmelerine karşı, karaciğer metabolizmasının sağlıklı çalışmasını ve güçlü kalmasını sağlayabiliyor. Böylece virüsler bastırılarak faaliyete geçmeleri önlenmiş olabiliyordu. Yani lavanta "koruyucu" fonksiyon mu görüyor? Sonuçta, lavanta kürünün, bu virüslerin karaciğer dokusunda kansere veya siroza dönüşme riskine karşı da mükemmel bir önleyici rolünün olabileceği gerçeğini de ortaya koyuyor. Karaciğer metabolizmasının düzenli çalışmasında lavantanın çiçeklerinde bulunan 1,8 cineole, delta-3-carene ve herniarin ağırlıklı olarak etkili olurken, yapraklarının içerdiği beta-pinene'de karaciğer enfeksiyonuna karşı adeta doğal bir antibiyotik olarak görev yapmaktadır. Lavantanın yapraklarında bulunan bornyi-acetate etkin maddesi de antiviral olarak görev yapmaktadır. Tabiat ana lavantaya öylesine cömert, öylesine seçici davranmışki, içerdiği etkin maddeler özenle bir araya toplanıp sanki, genel karaciğer şikayetlerde karşı özel olarak yaratılmış. Gerek çiçeklerinde gerekse de yapraklarında moleküler yapıları ve etkin özellikleri bakımından birbirlerinden tamamen farklı maddeler bulunmaktadır. Yukarıdaki tablodan bu maddelerin etkin özelliklerini görebilirsiniz. Peki her tür lavanta bu işe uygun mu, örneğin sokakta satılanlar? Bu amaçla kullanılacak olan lavantanın bir yıldan daha fazla beklememiş olmasına özen gösterilmeli. Aktarlardan alınacak olan lavantanın sadece çiçeklerinin değil eşit oranlarda yapraklarının da bulunması gerektiğine özen gösterilmeli. Aktarlarda lavanta yağı da satılmaktadır. Bu amaçla lavantanın yağı daha da etkili olur düşüncesiyle kesinlikle kullanılmamalı. Lavantada başka hangi etkin madde var? Hepatit-C nin sebep olabileceği karaciğer kanserine dönüşme riskini büyük bir ölçüde önleyen etkin maddelerden bir tanesi de lavantanın içerdiği ursolic acid fonksiyonel maddesidir. Yeri gelmişken önemli bir noktayı hatırlatmayı uygun buluyorum; hangi bitki olursa olsun, içerdiği önemli bir etkin madde tek başına veya saf halde istenilen ölçüde veya doğrultuda faydalı olmayabilir. Çünkü, o etkin maddenin metabolizmada arzu edilen başarıyı sağlayabilmesi için, bitkinin içerdiği diğer yardımcı etkin maddelere, medyatör maddelere ve birinci derecede fonksiyonel olan etkin maddenin işlevini artırabilmek için sekonder maddelere de ihtiyaç vardır. Uygulanan bitkisel yardımcı (destekleyici) tedavide sadece etkin maddeyi düşünmemek gerekir. Bu anlamda, kullanılan bitkiyi bir bütün olarak değerlendirmek gerekir.Önemli olan diğer bir hususda kullanılacak olan bitkinin hangi kısımlarının kullanılacağı, ne müddetle demleneceği, ne zaman ve nasıl içileceği ve ne kadar süreyle, hangi aralıklarla uygulanacağıdır. Lavanta kürü başka ne gibi rahatsızlıklara iyi gelebilir? Derideki bazı rahatsızlıkların nedeni karaciğerden kaynaklanmaktadır. Lavanta kürü aynı zamanda, halk arasında ala hastalığı olarak bilinen vitiligo, sedef ve deride ileri yaşlarda oluşan yaşlılık lekelerine karşı da önleyici rol oynamaktadır ve bu hastalıkların tedavisinde de önemli bir yardımcı ve destekleyicidir. Lavanta, saç dökülmesine karşı da çok etkili. Ancak, bu konudaki uygulama dıştan olup, hazırlanması farklıdır. Lavanta kürünü destekleyen başka beslenme tavsiyeleriniz neler? Lavanta kürünün başarı oranını çok daha fazla yükseltmek ve daha hızlı bir biçimde sonuca ulaşabilmek için beslenme şeklinize dikkat ederek bazı takviye uygulamalar yapabilirsiniz. İşte bunlardan bazıları: Her gün öğle yemeklerinden yarım saat önce hiçbir şey ilave etmeden tüketeceğiniz bir porsiyon preslenmiş çilek lapası, karaciğer yetmezliğine karşı önemli bir takviye oluşturur. Tüketeceğiniz çileklerin hormonsuz olmasına özen gösteriniz. Genel olarak, karaciğer metabolizmasının sağlıklı ve düzenli çalışmasında enginarın katkısı yabana atılmayacak kadar büyüktür. Haftada iki-üç defa bir porsiyon, az suda haşlanmış (dilimlenmiş olarak) enginar tüketin. Tuzlamayın ve porsiyon başına bir çorba kaşığından fazla sıvı yağ kullanmayın. Var ise, artakalan haşlama suyunu içiniz. Taze kayısının karaciğerin dostu olduğunu unutmayın. Buradan, lavanta kürünün başarılı olabilmesi için mutlaka yukarıda bahsetmiş olduğum beslenme şekline uymak şarttır diye bir sonuç çıkartmayınız. Beslenme şeklinin uygulanmasında karaciğerin yükü hafiflemekte ve karaciğer daha rahat çalışmaktadır. Sayın Saraçoğlu, bu kürü deneyenler ne gibi sonuç aldı? Sizin gözleminiz var mı? Gerek e posta gerek faks ile, interferon tedavisi gördüğü halde sonuç alamayan çeşitli hastalar bu kürü uygulayarak kısa zamanda çok başarılı sonuç aldıklarını belirtmişlerdir. 20 kadar vakada bu olumlu sonuç tespit edilmiştir. Bu hastalar, şüphesiz ki, bir hekim kontrolünde teşhisleri konulan hastalardır. Ve lavanta kürünü bir destekleyici, bir yardımcı tedavi olarak almışlardır. Prof. Dr. İbrahim Saraçoğlu kimdir? -1949 doğumlu aslen Safranbolulu -Kimya eğitiminden sonra Avusturya Graz Teknik Üniversitesinde doktora yaptı. -Aynı üniversitede Biyoteknoloji-Mikrobiyoloji kürsüsünde asistan olarak bulundu. -1985-86 yıllarında Çukurova Üniversitesi'nde çalıştı. 1987'de doçent 1994'te profesör oldu. -Türkiye'de lab'lı deterjana geçişin öncülüğünü yaptı. -Karl franzes Üniversitesinde öğretim görevlisi olarak çalıştı. -AVL Araştırma Merkezi'nde Fizik ve Medikal Sensör bölümlerinde araştırmacı ve üst düey yönetici olarak görev yaptı. -Viyana Teknik Üniversitesi'nde misafir profesör olarak çalıştı. -Son yıllarda phyto-biyokimya ağırlıklı çalışan Saraçoğlu, bitkilerin insan sağlığı üzerindeki çalışma ve araştırmalrını aralıksız olarak sürdürüyor. ABD'de ve AB'de internet üzerindeki birçok sağlık sitesi "Prof. Saraçoğlu yöntemlerini" tüm dünyanın hizmetine sunuyor ve binlerce insan bu siteleri ziyaret ediyor. -Brokolinin prostat ve bph (benigne prostate hyperplazy) üzerine olan etkilerini ilk defa dünyaya tanıtan da Prof. Saraçoğlu'dur. -Kendisi halen Antalya'da yaşamakta ve çalışmalarını burada sürdürmektedir. Hepatit virüsün yol açtığı karaciğer iltihabı Hepatit B nedir? Karaciğerde hücrelerde hasara sebep olan, siroz ve kansere yol açabilen Hepatit B; cinsel temas, ısırık, bulaşıklı enjektör, iğne, dövme ve kulak delme aletleriyle geçer. Doğumda anneden bebeğe de bulaşır. Ortaya çıkma süresi 6-23 haftadır. Koyu renk idrar, açık renk büyük abdest, sarılık, yorgunluk, , ustura, berber makaslarını, diş fırçasını, ruju vb. kimseyle paylaşmamak gerekir. ateş gibi belirtileri olur. Bazen hiç belirtisi olmayabilir. Önlem için tıraş aletlerini, bıçaklarını Korunmasız cinsel ilişkinin riski de unutulmamalıdır. Hepatit C nedir? Hepatit C, kan ve kan ürünleriyle bulaşan bir virüs. Diğer yollarla bulaşması ise henüz kanıtlanmış değil. Cinsel temas sırasında bulaşma riski çok düşük. Kuluçka süresi 2 hafta ile 6 ay arasında. Hepatit C, bu virüse yakalanmış kişilerin % 30-90'ında kronikleşme, % 5-30'unda ise karaciğer sirozu ile kendini belli eder. Çeşitli kronik karaciğer hastalıklarında Hepatit C virüsünün rolü henüz açıklığa kavuşmamıştır. Birçok karaciğer sirozu tiplerinde Hepatit C virüsü gözlenmiştir. Hepatit C'nin henüz etkili bir tedavisi yok. Bir aşı üzerinöe ise hala çalışılıyor. Lavanta kürünün uygulanışı Bir tutam lavantayı 0.3 ml (yaklaşık bir buçuk su bardağı) suda dört dakika demleyiniz. Dört dakikadan daha fazla demlemeyiniz. Demleme süresi tamamlandıktan sonra, ılımasını beklemeden süzülmesi gerekir. Süzme işlemi tamamlandıktan sonra ılımasını bekleyiniz. On beş gün boyunca her gün, akşam yemeklerinden en az iki saat sonra bir çay bardağı dolusu içilmesi gerekir. Her defasında (her kullanımda) taze olarak hazırlanması şarttır. Bir gün önce arta kalan miktarı kullanmayınız. Kolay olsun diye bir kaç günlük hazırlayıp buzdolabında koruma altına almayınız. Hiç bir şekilde damak tadına uygun olsun diye içerisine şeker veya benzeri bir katkı ilave etmeyiniz. On beş günlük ilk kür tamamlandıktan sonra rahatsızlığın seyrine göre haftada üç-dört defa, akşam yerneklerinden en az iki saat sonra bir çay bardağı içilmeye devam edilir. Karaciğer metabolizması sağlıklı çalışmaya başladıktan sonra kür sonlandırılmış olur. Her sağlıklı insanın yılda bir defa on beş günlük lavanta kürünü uygulamasında çok büyük faydalar vardır. Değerli okuyucu hiç bir bitkisel kürü alışkanlık haline getirmeyiniz. Karaciğer yetmezliği şikayeti olanların, Hepatit-B veya Hepatit-C virüsü ile yaşamak zorunda olan insanların zaman zaman lavanta kürünü uygulamalarında çok büyük faydalar vardır. UYARI Buradaki bilgilerin herhangi bir hastalığı teşhis amacı kesinlikle yoktur. Eğer, bir rahatsızlığınız var ise, mutlaka bir hekime gidiniz. Buradaki bilgileri teşhis konulduktan sonra destekleyici veya yardımcı tedavi olarak yine hekiminize danışarak uygulayabilirsiniz.

http://www.biyologlar.com/lavanta-hakkinda-hersey

Huntington Hastalığı Nedir?

Huntington Hastalığı Nedir?

Huntington Hastalığı, (HH) beynin belirli bölümlerinde hasar oluşturan genetik bir hastalıktır. Bu hasar hastalarda zihinsel ve davranışsal bozukluklara yol açar. Daha ileri safhalarda mental geriliğe (zekâ geriliği) yol açabilir. Duygusal sorunlara neden olur. Adını 1872 yılında hastalığın kalıtsal olduğunu ilk olarak gözlemleyen, Dr. George Huntington’dan alır. Baskın (dominant) bir gen ile aktarılan hastalık beyin ve sinir sistemini etkiler.Huntington Hastalığı, (HH) “Huntington Koreası” olarak da bilinir. Bu hastalığa neden olan gen normalde beynin önemli fonksiyonlarının oluşturulmasında rol oynar. Huntington Hastalarda bu gen, genin doğru şekilde çalışmasını engelleyen bir mutasyon (değişim) vardır. Henüz tam olarak anlaşılamayan bir biçimde değişen gen, beyindeki bu alanların hasar görmesine neden olur. Herkeste Huntington Hastalık geninin iki kopyası vardır; ancak hastalığın gelişmesi için genin bir kopyasında değişme olmalıdır. Normal kopya, değişim (mutasyon ) geçirmiş kopyanın etkilerini dengeleyemez. Huntington Hastalığı geninde mutasyon (değişim ) olan insanlar, çocuklarına genlerinin normal kopyasını veya mutasyon (değişim) geçirmiş olan kopyasını aktarabilirler. Bu çocuğun değişim (mutasyon) geçirmiş geni kalıtım yoluyla alma olasılığı 2’ de 1 ya da % 50 olduğu anlamına gelir. Ayrıca çocuğun kalıtım yoluyla genin normal kopyasını alma olasılığı da yine % 50 dir.Huntington Hastalığı, aynı aile bireylerin de bile oldukça değişkendir. Huntington Hastalığının ilk belirtileri hafif kontrol edilemeyen kas hareketleri, sendeleme, sakarlık, konsantrasyon eksikliği, kolayca depresyona girme ve kısa süreli hafıza kapasitelerini kaybederler. Bu hastalık 30-50 yaşları arasında ortaya çıkmaya başlar, daha önceki yaşlarda da (% 10 ) semptomlar (genç başlangıçlı Juvenil Huntington Hastalığı)görülmeye başlayabilir. Erkek ve kadınların hastalığı kalıtma oranı tamamen aynıdır. Huntington Hastalığı tüm ırklarda görülmekle birlikte, Avrupa kökenlilerde daha sıktır. Er ya da geç bu hastalık genini taşıyan insanlarda hastalığın oluşması gerçekleşecektir. Huntington Hastalığının ilerleme oranı değişir, ancak genellikle 15-25 yılda gelişir. Hastalığın ilerleyen aşamalarında yürüme, konuşma, yutma güçlüğü, düşünme ve akıl yeteneklerini kaybetme kilo kaybı gibi etkileri ortaya çıkar.Bu hastalığın var olup olmadığı, bir dizi genetik kod belirleyici testlerle anlaşılmaktadır. Aile de ve akrabalarda bu hastalık varsa hastalığın çıkma ihtimali yüksektir. Genler, vücudumuz tarafından kullanılan kod biçimindeki bilgileri içerir. Bu kod, geni meydana getiren kimyasal maddelerin sıralanmasıyla oluşur. Normal Huntington Hastalığı geninde, bu kodun bir kısmı birkaç defa yinelenir. {DNA 4 farklı kimyasaldan oluşur(A:Adenin G:Guanin, C:Sitozin T:Timin) DNA üzerindeki anlamlı diziler genleri oluşturur. Huntington genini üzerinde karakteristik bir tekrar yineleme vardır …CAG CAG CAG CAG… Bu CAG tekrarı bireyden bireye farklılık gösterir.} Huntington Hastalarında, genin bu yinelenen kısmı normalden daha büyüktür (bu kişilerde daha fazla yineleme vardır ). Genin bir parçası genişlediği veya büyüdüğü için, bu duruma genişleme adı verilir. Bu genişlemenin boyutu, Huntington Hastalığı genindeki yinelemelerin sayısına bağlı olarak aşağıdaki gibi değişir.• *Huntington Hastalığını taşımayan insanlarda en fazla 35 yineleme olur. • Huntington Hastalarında en az 39 yineleme vardır ve çoğunun yinelemesi 40’ ın üzerindedir.OLYMPUS DIGITAL CAMERA36 ile 39 arasında yinelemesi bulunan insanlar, ara alandadır. Bu yineleme sayısı istikrarsızdır ve gen bir sonraki kuşağa aktarıldığında genişleme olabilir. Bu nedenle, bu sayı aralığında yinelemesi olan kişilerin çocukları Huntington Hastalığına yakalanma riskiyle karşı karşıya kalabilirler. Test, Huntington Hastalığı genindeki yinelemelerin sayısının ölçülmesiyle gerçekleştirilir. Huntington Hastalığına yakalanacak olan kişilerde, genin bu kısmı normalden daha büyüktür. Bir kişiye test yapılırsa ve:• Huntington Hastalığı geninde 39 veya daha fazla yineleme bulunursa, bu kişi hayatının bir döneminde Huntington Hastalığına yakalanacaktır. • Huntington Hastalığı geninde 35 veya daha az yineleme bulunursa, bu kişi hastalığa yakalanmayacaktır. • Huntington Hastalığı geninde 36 ile 39 arasında yineleme bulunursa, bu kişi kesin olarak hastalığın etki alanında veya kesin olarak bu alanın dışında değildir. Bu ara alanda yer alan bazı insanlarda Huntington Hastalığı ortaya çıkar. Bu alanda yer alan insanların çocukları, Huntington Hastalığı riskiyle karşı karşıya kalabilirler.35’’ten daha az veya 39′’dan daha fazla yinelemesi olan insanlar için test neredeyse%100 güvenilirdir. Ara alanda (36 ile 39 yineleme arasında) yer alan insanlar için sonuç daha az kesindir; ancak bu duruma az sayıda insanda rastlanır. Günümüzde HH’nin tedavisi yoktur, fakat belirtileri etkili olarak kontrol altına almak için birçok yol vardır. İstemsiz hareketler, depresyon ve ruh hali değişimlerinin tedavisi için ilaç kullanılabilir. Konuşma terapisi, konuşma ve yutkunma problemlerinin aşılmasında yardımcı olur. Yüksek kalorili diyet kilo kaybını önleyebilir ve istemsiz hareketleri ya da davranış bozukluklarını düzenleyebilir. Kuzey Amerika’da helen 30.000 kişi Huntington Hastalığından yakınmaktadır; yaklaşık 150.000 kişinin ise hasta bir ebeveyni olduğu için % 50 oranında hasta olma olasılığı vardır.1960’dan beri faliyette bulunan HH’nin tedavisi bu hastalığa sahip kişilerin neler yapmaları gerektiğinin, sosyal hayatta yaşama kabileyetlerinin arttırılması için birçok kurum ve dernek mevcuttur.( Avusturya, Kanada, Amerika Huntington Hastalığı Dernekleri ve Uluslararası Huntington Derneği faliyette bulunanlardan birkaçıdır. ) Uluslararası Huntington Birliği (IHA) Huntington Hastalığı ve aileleri olan bireyler için ortak bir endişeyi paylaşıyorlar. Ulusal gönüllü sağlık kuruluş federasyonu olan bu dernek bireysel ve aile desteği, psikososyal, klinik ve biyomedikal araştırmalar ve ilgili ülkenin Huntington Hastalığı ile ilgili etik ve yasal düzenlemeleri ve mesleki eğitimi teşvik etmektedir.4864_huntington-hastaligiBu hastalığın tedavisi için çalışmalar sürmektedir.Bilim adamları Huntington Hastalığında kaybolan belirli bir nöron tipini beynin yeniden üretmesini sağladı. Bilişsel zayıflama ve depresyona neden olan ölümcül sonuçlara götürebilen kalıtsal nörolojik bir hastalık olan Huntington Hastalığı vücudun motor işlevlerinin denetimini ve çalışmasını kontrol eden “orta çatallı nöron” adı verilen belirli bir nöron tipinin yok olması sonucu ortaya çıkıyor. Bu Huntigton Hastalığında kaybolan belirli bir nöron tipini, Huntington Hastalığına sahip fareler üzerinde yapılan çalışmalarda farelerin beyninde üretmeyi ve üretilen yeni nöron tipini beyindeki bulunan nöronal ağlarla uyum sağladığını gösterdi.Bilim adamlarının bu yöntemi keşfetmelerinde kanaryaların büyük katkısı oldu. Hayvanlar aleminde sadece kanaryalarda bulunan bir özellik olan yetişkinlikte de beyinde yeni nöronlar üretme yeteneğinden yararlanılarak keşfedildi. Bu keşif Goldman ve Rockefeller Üniversitesi’nden Fernando Nottebohm tarafından 1980’li yılların başlarında keşfedilmişti. Kanaryaların erişkin beyin dokusuna yeni nöronların nasıl ekleneceği konusunda bilgi verdikten sonra bu bilgilerin erişkin memelilerde nasıl uygulanacağı konusunda 10 yıllık süren bir çalışma sonrasında bulunmuştur. Bu çalışmalar kuşların yeni şarkı öğrendikleri zaman beyinlerindeki ses kontrolünden sorumlu bölgelerine yeni nöronlar eklediklerini ortaya koymuştur. İnsan beyninin erişkinlikte de nöron üretme yeteneğine sahip olduğu biliniyor. HH’na sahip bireyler erişkin döneme geldiklerinde nöron üretme yeteneğini kaybediyorlar. Araştırmacıların çalışmaları sırasında beyinde elde edilen nötotrofik faktör (BNDF) adlı bir proteinin üretiminin harekete geçirilmesi durumunda yerel nöral kök hücrelerin nöron üretmeye yönlendirildikleri belirtmişlerdir.ABD’’deki Rochester Üniversitesi Tıp Merkezi’ den Prof. Dr. Steve Goldman’ın başkanlığındaki bilim ekibince yapılan çalışmada, BNDF proteini, “noggin” adlı bir protein ve viral genetik tedavi edici özelliği bulunan salgı bezleriyle bağlantılı bir virüsün kullanıldığı özel bir yöntemle, farelerin beyindeki Huntigton Hastalığından etkilenen bölge üzerinde harekete geçirildi. Bu şekilde beynin söz konusu bölgesinin yakındaki, yeniden nöron üretme yeteneğini kaybetmiş nöral kök hücrelerin “orta çatallı motor nöronları” sürekli olarak üretmesi sağlandı. Daha sonra üretilen bu tip nöronların Huntington Hastalığından etkilenen striyatum bölgesini sardığını ve ardından da mevcut nöronal ağlarla bütünleştiğini gösteren bilim adamları, deneyde yer alan Huntington hastası farelerin ömür beklentilerini iki katına çıkartmayı başarmışlardır. Bu bilimsel çalışma 2013 yılının Haziran ayında “ Cell Stem Cell” adlı bilimsel dergide yayınlanmıştır. “Neuron” adlı nörolojik konular işleyen bilimsel derginin 2012 yılının Haziran ayında yayınlanan makalede California Üniversitesi San Diego Tıp Okulu’na bağlı Luduing Kanser Araştırma Enstitüsü’nden bilim adamlarının fareler ve primatlar üzerinde denedikleri yeni ilaç hakkında ki araştırmada hayvanlara tek doz olarak verilen, antisens oligonülkleotidler olarak adlandırılan bir ilaç grubundan, DNA tabanlı ilacın, Huntington Hastalığına yol açan değişime uğramış geni bularak etrafını sardığı ve gendeki toksik huntigtin proteinini üretmesine yol açan moleküller komutları bozarak hastalıkta düzelme sağladığını belirttiler. Amerika Harvard Üniversitesi’ne bağlı Massachusetts Genel Hastanesi Huntington Hastalığı semptomlarının başlamasını geciktirmek amacıyla yaptıkları klinik çalışmalarda güvenilir yüksek dozlarda besin takviyesi sağlayan kreatinli bir ilaç geliştirdiler. (2014)Kreatin, tüm memelilerin vücudunda bulunan bir amino asit türevidir. Kırmızı et ve balıkta bulunur. 1 kg ette, 1 gram bulunan kreatinin yüksek dozda alınması için çok fazla et tüketilmesi gerekir. Bilim adamlarının ürettikleri yüksek dozlu kreatin ilacı ile çok fazla et tüketilmek zorunda kalınmayacaktır. Besin takviyesi olarak sporcuların da kullandığı kreatin karaciğer, böbrek ve pankreasta doğal olarak üretilip daha sonra kan akışıyla kaslarımıza enerji sağlamak için kullanılan bir bileşiktir. Kreatinin %95 i kaslarda depolanır. Dışarıdan alınan kreatin takviyesi, kaslarımıza ulaşınca, “Kreatin Fosfat”a dönüştürülür ve bu yüksek güçlü metabolit’in kasların son enerji kaynağı olan ATP’leri üretmek için kullanılır. Kas veya adale dokularında biriken kreatin, dayanıklılık ve kuvvet gerektiren spor aktivitelerinde ani enerji ihtiyacını karşılar. Yapılan araştırmalarla; kreatin’in enerji seviyesini, dayanıklılığı, kuvvet ve dayanma gücünü artırdığı ispatlanmıştır. Alınan yüksek dozlu kreatin, beynin ATP (adenozin trifosfat) seviyelerini yükseltir ve Huntington Hastalığına neden olan nörolojik sinir dejenerasyonuna karşı koruma sağlamıştır. Semptomatik Huntigton Hastalarında kreatin önceki klinik çalışmalarda 10 gram ölçek sınırı oluşturmuştur ve bu doz yeterli olmayarak 40 grama kadar çıkılarak yüksek doz olarak değerlendirilmiştir. Massachusetts Genel Hastanesi’nde yapılan pilot bir çalışmanın sonuçlarına göre, katılımcılar da yüksek doz olarak 30 gram da karar kılınmıştır. Bilimsel projenin ilk 6 ay içinde katılımcılar iki gruba ayrıldı. Birinci grup ağız yoluyla günde 2 kez 30 gramlık dozlardan almışlardır. Diğer grup ise plesebo (içerisinde etken madde kreatin bulunmayan diğer yan maddelerin bulunduğu ilaç ) almışlardır. Bu 6 aylık aşamadan sonra katılımcılar düzenli olarak 12 ay boyunca kreatin aldılar. Bu çalışmalar sonucunda Huntigton Hastalığına sahip ve bu hastalıktan risk altında bulunan bireylerde semptomların önlenmesi veya gecikmesinin mümkün olduğu kanıtlanmıştır. Buna ek olarak bu bilimsel çalışma ile diğer genetik hastalıklar için önemli bir klinik araştırma olmuştur.İsveçli bilim adamları Huntington Hastalığı üzerinde uzun uzun çalışırken, bu hastalığın kanser riskini %53 oranın da azalttığını ortaya çıkardılar. İsveç’teki Lund Üniversitesi’nden bilim adamları, 1969-2008 yılları arasındaki hasta kayıtlarını inceledi. Kayıtlara göre, hastanelerde tedavi gören bin 510 ( genetik bir nörolojik bozukluk olan) Huntington Hastasından sadece 91;inde kanser görüldü. HH’ nın içinde yer aldığı Poliglutamin hastalıklar grubundaki diğer rahatsızlıkların da kanser riskini azalttığı belirlendi.Kaynakça:http://www.news-medical.net/health/What-is-Huntingtons-Disease-(Turkish).aspxhttp://www.who.int/genomics/public/geneticdiseases/en/index2.html#Hhttp://www.huntington-assoc.com/ <br />https://www.cell.com/neuron/searchresultspageLink=4&searchText=huntingtonhttp://www.cell.com/cell-stem-cell/searchresultssearchText=huntingtonhttp://news.harvard.edu/gazette/story/2014/02/hope-for-huntingtons-disease/Yazar: Sinem AtlıKaynak: http://www.bilgiustam.com

http://www.biyologlar.com/huntington-hastaligi-nedir

 
3WTURK CMS v6.03WTURK CMS v6.0