Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1260 kayıt bulundu.

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Viral Hepatit

Bütün dünyada oldukça yaygın bir hastalık grubu olan viral hepatitler, halk arasında "sarılık" olarak tanımlanıyor. Ancak sarılık, viral hepatitlerin yalnızca bir bulgusu. Karaciğer iltihabına yol açıyor Hastaların çoğu sarılık olmadan bu hastalığı geçiriyor. Viral Hepatit ;virüslerin yol açtığı karaciğer iltihabı. Virüsler vücuda kan yada ağız yolu ile girerek karaciğere yerleşip çoğalarak karaciğer hücrelerini hasara uğratıyor ve karaciğerin işlevlerini bozuyor. Bugüne kadar hastalık yapan beş tane hepatit virüsü saptandı. Bunlar A, B, C, D ve E tipi hepatit virüsleri. Viral Hepatit hastalığının belirtileri arasında aşırı halsizlik, çabuk yorulma, bulantı, kusma, çay rengi idrar, belirsiz eklem ve kas ağrıları, sarılık yeralıyor. Halk arasında bulaşıcı olarak biliniyor A ve E tipi viral hepatitler halk arasında "Bulaşışıcı Sarılık" olarak bilinen bir hastalık. Bulaşıcı sarılıkta ani başlayan ,belirgin işaretler veren hastalık tablosu oluşuyor ve kendiliğinden iyileşiyor. Koşulların kötülüğü tetikliyor Bulaşıcı sarılığa, koşulları kötü olan toplumlarda sık rastlanıyor. Bulaşıcı sarılığa neden olan A ve E tipi hepatit virüsleri hastaların dışkılarında bulunuyor. Dışkıların bulaştığı su ve yiyeceklerle yada yakın temas yolu ile geçiyor. Kan yolu temas sonucu bulaşma yok denecek kadar az. Bulaşıcı sarılığın en iyi tedavisi istirahat ,dengeli ve yeterli beslenme. Bulaşıcı sarılık, büyük oranda dışkı ve ağız yolu ile bulaşıyor. Bu yol ile bulaşmanın önlenmesi bir alt yapı sorunu. Kişisel korunmada ise,temizlik kurallarına dikkat etmek gerekiyor. En etkili kişisel korunma, hasta kişilerin sağlıklı kişilerle temasının denetlenmesi. Hastaya ait eşyaların kullanılmaması gerekiyor. Hasta kişilerin başkalarına kesinlikle yiyecek hazırlamaması gerekiyor. Kullanılan mutfak eşyası ,elbise ,çarşaf gibi eşyaların sabun ve sıcak suyla yıkanması gerekiyor. `Gizli sarılık` B,C,D tipi viral hepatitler, halk arasında "Gizli Sarılık" ya da "Kara Sarılık" olarak biliniyor. Gizli sarılık mikrobunu alan kişilerin bir kısmı bu mikrobu vücutlarında taşıyor ve başkalarına bulaştırıyor. Bu kişilere "taşıyıcı" deniliyor. Taşıyıcı olmak dahi ilerde siroz ve karaciğer kanseri gelişmesi için yeterli oluyor. Üstelik taşıyıcı kişilerin virüsü başka kişilere de bulaştırması toplumun geleceği açısından büyük bir sorun oluşturuyor. Gizli sarılık mikrobu, kan nakli,ortak enjektör kullanımı yada herhangi bir yolla kan teması, cinsel ilişki ve anneden bebeğe şeklinde yayılıyor. Gizli sarılıkta ani başlayan hastalıkta en iyi tedavi, istirahat, dengeli ve yeterli beslenme. Günümüzde eski yanlış inançların aksine ,bir çok değişik ilaçlarla sarılığın tedavisi yapılıyor. Gizli sarılıkta başlıca bulaşma , kan yoluyla olduğundan; kan yolu ile bulaşmaya yönelik önlemler alınmalı. Bunun için kan bankalarında ,hastane ve Kızılay`da virüs taramaları yapılıyor. Ortak iğne ya da enjektör kullanımından kaçınılmalı. Ayrıca her şüpheli cinsel ilişkide prezervatif kullanılmalı. Ailede sarılık geçiren kimse varsa ya da risk altındaki kişiler hekime başvurarak korunma sağlamalı.

http://www.biyologlar.com/viral-hepatit

ARILAR YOK OLMASIN

TEMA Vakfı'nın ''Türkiye Arıcılığındaki Tehlikeler'' raporunda, arılarda 'yanlış arıcılık uygulamaları' ve iklim koşulları nedeniyle yüzde son iki kışta 50 azalma olduğu belirtildi. Raporda, Türkiye'deki 4,5 milyon bal arısı kolonisinin, koloni başına 17 kilogram bal verdiği ve yılda 50-60 bin ton bal üretildiği kaydedildi. Türkiye'deki 20 koloniden sadece bir tanesinin ana arısının değiştirilebildiği belirtilen raporda, şu görüşlere yer verildi: ''Bu ana arıların da damızlık vasıfları ve kaliteleri kontrol edilemedi. Türkiye'de bal kalitesi denetimi yok denecek kadar yetersiz ve göstermelik. Ticari früktozlu ve sakarozlu ballar yaygın olarak pazarlanıyor. Yanlış arıcılık uygulamaları ve olumsuz iklim koşulları nedeniyle son iki kışta yüzde 50'yi geçen koloni kayıpları oldu, bal üretimi düştü. İhracat durdu, ithalat başladı.'' ''BİR DAMLA BAL İÇİN 120 BİN ÇİÇEĞE ZİYARET'' Raporda, bal arılarının nektar ve polen toplamak için çiçekleri ziyaret etmesinin, onların döllenmesini ve ürünün oluşmasını da sağladığı belirtilerek, arıların bir damla bal üretimi için yaklaşık 120 bin çiçeği ziyaret ettikleri kaydedildi. Bitkilerin gelişmesinde, tarımsal ürünlerin oluşmasında ve hayvancılığın ana girdisi yem bitkilerinin veriminde, arıların, su ve gübre kadar önemli olduğu ifade edilen raporda, ''Özellikle zararlı böcek mücadelesi yapılan tarım alanlarında diğer dölleyici böceklerin ölmesi nedeniyle döllenmede mutlaka bal arısına ihtiyaç duyulduğu'' vurgulandı. Raporda, Türkiye'nin bir kıta gibi yedi ayrı iklim özelliği gösterdiği, 12 bin bitkisinin büyük bölümünün nektarlı ve polenli olduğu hatırlatılarak, bozuk mera ve orman alanlarının rehabilite edilmesine paralel olarak ballı bitkilerin miktar ve çeşit olarak daha da artacağı vurgulandı. ''AMERİKAN YAVRU ÇÜRÜKLÜĞÜ'' Türkiye'de eğitim, damızlık, arı sağlığı ve bal kalitesinin kontrolü gibi önemli sorunlar bulunduğu ve arıcılığın usta çırak ilişkisiyle öğrenildiği ifade edilen raporda, modern arıcılık tekniklerinin hala üretici tabanına benimsetilemediği savunuldu. Her yıl Türkiye'de damızlık değeri yüksek en az 2,2 milyon ana arı kullanılması gerektiği ve TÜBİTAK'ın yürüttüğü bir araştırma sonucunda Bitlis'te yüzde 42, Diyarbakır'da yüzde 49, Hatay'da yüzde 52 oranında ''Amerikan yavru çürüklüğü'' tespit edildiği bildirilen raporda, şu görüşlere yer verildi: ''Avrupa Birliği mevzuatına göre, 'Amerikan Yavru Çürüklüğü' görülen kolonilerin yakılması gerekir. AB'ye uyum kuralları gereği Bakanlar Kurulu 'Bu mevzuata uyacağım' diye imza atmıştır, ancak Türkiye'de böyle bir uygulama başlatılamamıştır. Üretimde neredeyse sağlıklı koloni yokken Tarım Bakanlığı'nda arı hastalıklarını teşhis edip doğru tedaviyi önerecek teçhizli ve yetkili bir arı hastalıkları laboratuvarı bulunmamaktadır. Yaygın olan hastalıklara karşın ülke genelinde uyulması gereken tedbirlerle ilgili bir politika da geliştirilememiştir. Üreticiler yoğun arı hastalıkları ile bulaşık kolonileri tedavi etmek amacı ile pek çok kimyasallar kullanmaktadırlar.'' ''PETEKLER, PETROL ÜRÜNÜ NAFTALİN VE PARAFİNDEN'' Türkiye'de naftalin kalıntısız ve parafin katkısız temel petek bulunmadığı bildirilen raporda, bu peteklerin balla birlikte tüketildiği iddia edildi. Naftalin ve parafinin petrol ürünü ve kanserojen olduğu, petekli bal tüketim alışkanlığına sahip tüketicilere temel petekler olmadan petekli balları nasıl yiyeceklerinin anlatılması gerektiği vurgulandı. Üreticilerin ise son yıllarda sakarozun yerine daha ucuz olduğu için glikoza ve früktoza yöneldikleri belirtilen raporda, şunlara yer verildi: ''Bu sahtecilik daha da yaygınlaşmış, hiç arı görmemiş ticari şekerler doğrudan bal diye satılır olmuştur. Ticari glikoz ve früktozun piyasa değeri 1 YTL civarındadır. Bu sanayi ürünleri doğrudan veya doğal balla karıştırılarak en az 7-8 YTL ye bal diye satılmaktadır. Bu durum şekersiz bal üreten ve pazarlayanların aleyhine haksız bir rekabet yaratmaktadır. Nitekim binlerce doğal bal üreticisi balını maliyetinin altında satmak mecburiyetinde kaldıkları için üretimden vazgeçmişler ve arıcılığı bırakmışlardır. Diğer taraftan bal diye ticari früktoza kilogram başına en az 7-8 YTL ödeyen tüketici kandırılmaktadır.'' ARI ÖLÜMLERİ YÜZDE 50-60'LARA ULAŞTI Türkiye'de son iki yıldır kitlesel arı ölümleri görüldüğü, ilk olarak 2007'de Hatay'da 32 bin koloninin öldüğü anımsatılan raporda, Adıyaman, Ardahan ve Ankara'da yüzde 50- 60'lara varan arı ölümlerinin gerçekleştiği bildirildi. Son yıllarda ülke genelinde yaşanan kuraklığın arıcılığı olumsuz etkilediği, 2006 ilkbaharında yaşanan soğukların arı florasını dondurduğu ve kolonilerin de sonbaharda genç nesil yetiştiremedikleri aktarılan raporda, damızlık arıların geniş ölçekli kullanılmaması, kullanılanların vasıfsız olmaları, arı hastalıklarının yaygınlığı ve arıların ''Genetiği Değiştirilmiş Organizma'' (GDO) içeren früktozla beslenmeleri gibi nedenlerden hassaslaşan ve zayıflayan kolonilerinin yaşanan olumsuz iklim koşullarının da tetiklemesi ile öldükleri kaydedildi. Raporda, şöyle denildi: ''Yıllık bal üretimi 60-65 bin tonken, arı ölümlerine paralel olarak iklimsel nedenlerle flora yetersizliği de etkili olmuş, 2007 üretim sezonunda bal üretimi yarı yarıya azalmıştır. Tarım ve Köyişleri Bakanlığı 8 bin ton bal ithaline izin vermiş, arı ve bal cenneti Türkiye, bal ithal eden ülke konumuna düşmüştür. Arılara pancar şekeri yedirilerek üretilen balların bir laboratuvar analiz yöntemi henüz Türkiye'de bilinmemektedir. Pancar şekeri ile bal üretimi Türkiye'de olduğu gibi başka ülkelerde de yaygındır. İthal ballar vitrinlerdedir. Nasıl üretildikleri bilinmeyen ancak dünya piyasasında yaklaşık 2 dolar olan bu balları tüketicimiz en az 10 dolara yemeye devam etmektedir.'' TEMA Vakfı'nın hazırladığı raporun tümüne şu linkten ulaşabilirsiniz.. www.tema.org.tr/TurkiyeAriciligindakiTehlikeler.pdf

http://www.biyologlar.com/arilar-yok-olmasin

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

Filogenetik Hakkında Bilgi

Biyolojide filogenetik çeşitli organizma grupları (örneğin türler veya topluluklar) arasındaki evrimsel ilişkinin araştırmasıdır. Bu ilişkiler filogeni olarak adlandırılır. Filogenetik terimi Yunanca kökenlidir, "kabile, ırk" anlamına gelen file veya filon  ve doğumla ilişkili anlamındaki genetikos ("doğum" anlamında olan genesis kökünden gelir) terimlerinden türetilmiştir. Organzimaların sınıflandırması ve adlandırması olan taksonomi, filogenetikten büyük miktarda etkilenmiştir ama yöntemsel ve mantıksal olarak farklıdır. Bu iki saha, "kladizm" veya "kladistik" olarak bilinen filogenetik sistematik bilim dalında örtüşürler. Filogenetik sistematikte taksonları birbirinden ayırdetmek için sadece filogenetik ağaçlar kullanılır. Evrimsel hayat ağacının araştırılması için filogenetik analiz yöntemleri vazgeçilmez hâle gelmiştir. İlgili bir kavram olan filogenez, bir biyolojik türün (veya bir organizmalar grubunun) bir dizi şekillerden geçerek meydana gelen evrimsel gelişimidir. Bu terim bir organizmanın belli bir özelliğinin (örneğin anatomik bir yapısının) gelişimi için de kullanılabilir. Bu ismin sıfat hali filogeniktir.

http://www.biyologlar.com/filogenetik-hakkinda-bilgi

TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI

BİYOLOG MESLEĞİ, GÖREV ALANLARI, BİYOLOGLARIN YETKİ VE SORUMLULUKLARI İLE BİYOLOG ODALARI VE TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI Genel Gerekçe Türkiye Cumhuriyeti Anayasası'nın 135 inci maddesinin verdiği hak ve teşvikten yola çıkarak, Biyologların görev alanları, yetki ve sorumlulukları ile Türkiye Biyolog Odaları ve Biyologlar Birliği kanunlarının teklif edilmesi kararlaştırılmıştır. 1933 Üniversite reformu ile ilk defa İstanbul Üniversitesinde nebatat ve hayvanat kürsüsü olarak öğretime başlayan Biyoloji bölümleri ilk mezunlarını 1937de vermiştir. 68 yıldır kadrosu olan ama yetki ve sorumluluğu belli olmayan Biyologların yetki ve sorumluluklarının belirlenmesi için bu kanun tasarısı hazırlanmıştır. Biyoloji biliminin eğitimini alarak Biyolog unvanını kullanmaya hak kazanmış kişilerin; tüm bilimsel, hukuki ve çalışma alanlarındaki görev ve sorumluluklarını belirlemek, mesleki özlük haklarını korumak ve mesleki faaliyetlerini kolaylaştırmak, bu kanun teklifinin temel gerekçesini oluşturmaktadır. Biyoloji, canlı sistemlerin bilimidir. Biyologlar ise; canlılarla ilgili araştırma, (deney, gözlem, koleksiyon, istatistik, koruma, kontrol, inceleme, test, tanı ve değerlendirme) yapar. Canlıların gelişimi, evrimi, kalıtımı, fizyolojisi, ekolojisi, korunması, tanı ve sınıflandırılması, davranışlarını ve özelliklere etki eden faktörlerin neden ve sonuç ilişkilerini araştırır, tanımlar. Aynı zamanda Biyolog, Biyoloji yada Biyolojinin özelleşmiş alt dallarında laboratuar ve arazi çalışmaları yapar. Bu çalışmalarla ilgili yetki ve sorumlulukları taşır. Çalışmalarını yaparken çeşitli biyolojik, matematiksel, fiziksel ve kimyasal yöntemlerle, uygun araç ve gereçlerden yararlanır. Çalışma sonuçları çevre, sağlık, üretim, eğitim, teknoloji ve ekonomi gibi yaşamsal alanlarda uygulanır. Ülkemiz iklim koşulları, coğrafi konumu ve jeomorfolojik yapısı nedeniyle çok zengin ve kendisine özgü bir Biyolojik çeşitliliğe sahiptir. Avrupa'nın sahip olduğu tür sayısına yakın bir flora (bitkiler) ve fauna (hayvanlar) zenginliğine sahip ülkemizin bu biyolojik zenginliğinin korunması konularında dünya ülkeleri arasında hak ettiği yeri alması Biyologların bu tür çalışmalara etkin bir biçimde katılmasıyla mümkün olacaktır. Ülkemiz Biyolojik zenginliklerinin belirlenmesi, korunması Türkiye Büyük Millet Meclisi tarafından değerlendirilmiş 1996 yılında 96/8857 karar sayısı ile Milletlerarası Biyolojik Çeşitlilik sözleşmesi kabul edilerek Biyolojik çeşitlilik daha da önem kazanmıştır Biyolojik zenginliklerle, kalkınma arasında sıkı bir ilişki mevcuttur. Zira tüm ekonomik faaliyetler temelde doğal kaynaklara dayanmaktadır. Bu da biyolojik sistemlerin etkin bir biçimde araştırılması ve anlaşılmasına bağlıdır. Canlı doğal kaynaklarımızı akılcı bir biçimde değerlendirerek kendilerini yenileme, kapasitelerini yitirmeden gelecek kuşaklara aktarabilmek için Biyologlara ihtiyaç vardır ve her zaman olacaktır. Biyologlar,çevre, eğitim, tarım,orman,tıp, sağlık ve ekonomi gibi hayati konularda ülkemizde önemli sorumluluklar yüklenerek hizmet vermektedirler. Bu yüzyılın Biyoloji çağı olacağı göz önüne alınarak Biyologların görev, yetki ve sorumlulukları ile Biyolog Odaları ve Türkiye Biyologlar Birliği Kanun tasarısı hazırlanmıştır. Ulusal Programda Biyologların yeri; Ülkemizin hazırladığı AB'ye uyum için ulusal programda kısa ve orta vadede yer alan beşeri tıbbi ürünler ve gıdaların piyasa kontrolü başlığı altında yer alan uyum yasalarının hazırlanmasında ve uygulanmasında biyologların rolü kaçınılmaz olacaktır. Bilindiği gibi 560 sayılı KHK r0; Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Yönetmelikr1; te ülke mevzuatında yer almayan hususlarda Uluslar arası mevzuata uyumlu işlem yapılacağı belirtilmektedir. Bu mevzuatın içeriğini bilen ve yorumunu yapabilecek kabiliyetteki biyologların varlığı ülkemiz için bir avantajdır. AB için hazırlanan Ulusal Programda Beşeri Tıbbı Ürünler başlığı içerisinde yer alan biyolojik ürünlerin İyi Üretim Uygulamaları (GMP) na göre üretilmesi, etkili ve güvenli sunumu için yasal olarak görev ve sorumluluklarının belirlenmesi zorunlu olan biyologlarının katkısı büyük olacaktır. Ayrıca tıbbi cihazlar konusunda AB ülkelerinde eğitim almasını önerdiğimiz teknik personel içerisinde mesleki yatkınlıklarından dolayı biyologların olması ülkemiz lehine bir durum olacaktır. Ulusal Programda bitkisel ürünler başlığı altında; transgenik bitkilere ilişkin düzenlemelerde, arıcılığın geliştirilmesi maksadıyla flora çeşitleri, flora mevsimi ve kapasitelerinin haritalandırılması ve de arıcılık Araştırma Enstitülerinin tüm ülkeye etkin bir şekilde hizmet vermesinin sağlanacağı ifade edilmektedir. Genetik, entomoloji, bitki anatomisi,patolojisi ve fizyolojisi konularında yeterli eğitim almış biyologların bu gelişmelere sağlayacağı katkı yadsınamaz düzeyde olacaktır. Aynı zamanda yerli hayvan gen kaynaklarının korunacağı ve bu maksatla Hayvan Gen Bankasının kurulacağı ifade edilmektedir. Tüm dünyada olduğu gibi ülkemizde de bitki ve hayvan gen bankalarının kurulması biyologların işbirliği ile sağlanacaktır. Ormancılık alanında;yaklaşık yarısı verimli durumda olan 20,7 milyon hektarlık ormanlık alanın 1,8'i biyolojik çeşitlilik olmak üzere yüzde 17,5'i korunan alanlar Olarak değerlendirilmektedir. Ormanların ekosistem yaklaşım dahilinde, devamlılık, çok amaçlı yararlanma, biyolojik çeşitlilik ile su ve yaban hayatının korunması doğrultusunda; eko turizm, verimlilik, kirlenme, yangın-böcek-heyelan-kar-çığ-sel-don ve kuraklık gerçekleri ile ergonomik faktörler dikkate alınarak işletilmesi, korunması ve geliştirilmesi için biyologların görev ve sorumluluklarına ihtiyaç duyulacağı açık bir gerçektir. Ayrıca korunan alanlar ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeniden incelenmelidir. Yeşil ve yaşanabilir bir çevre yaratma konusunda gerekli toplumsal iradenin oluşturulması amacına katkı sağlayacak olan Biyolog Odaları ve Biyologlar Birliğine ait yasa Tasarısının desteklenmesi AB uyum sürecinde olan ülkemiz için bir avantaj olacaktır. AB ülkelerinin üçüncü ülkelerle olan ticaretlerinde Bitki Sağlığı Sertifikası geçerlidir. Üye uygulaması mevcut değildir. Bu uygulamanın yürürlüğe konabilmesi için bitki anatomisi,fizyolojisi, morfolojisi,taksonomi ve sistematiği konusunda birikimi ve terminoloji yatkınlığı olan ülkemiz biyologlarının değerlendirilmesi esas olmalıdır. AB ülkeleri ile Ortak Balıkçılık Politikasının Belirlenmesinde; etkin bir koruma ve kontrol sisteminin oluşturulması ile denizlerdeki ve iç sulardaki doğal ortamın korunması, kontrolü, ve geliştirilmesini sağlamak, kaynakların rasyonel kullanımı ile ilgili tedbirleri almak gerekecektir. Yetiştiricilikle; yapılan üretimin çevre, turizm, ulaştırma ve diğer ilgili sektörlerle etkileşimi dikkate alarak geliştirmeye ve yaygınlaştırmaya önem vermek gerekecektir. Ayrıca gerekli altyapı tamamlandıktan sonra açık deniz balıkçılığına geçmek gerekecektir. Ülke sularının ekolojik ve limnolojik özellikleri belirlenecek, ortama en uygun ve ekonomik değeri yüksek türlerin yetiştirilmesi için balıklandırma faaliyetlerine geçilerek teknik ve hijyenik şartların sağlanması gerekecektir. Yetiştiricilikten elde edilecek deniz ürünlerinin yaklaşık yüzde 80r17;inin AB ülkelerine ihraç edileceği planlanırken, bu çalışmalar içerisinde aktif olarak yer alan biyologlarla ilgili Oda ve Birlik yasasının kabul edilmesi ülkemiz biyologlarının bu çalışmalara arzu edilen katkıyı sağlayacağı anlamını taşır. Ülkemizin farklı ekolojik karakterdeki ekosistem mozaiği, binlerce hayvan ve bitki türü ile bunların ırk ve populasyonlarının barınmasına imkan sağlamıştır. Ülkemizde üç bine yakın endemik olmak üzere dokuz binin üzerinde bitki türü tespit edilmiştir. Hayvan türlerinin ise seksen bin olduğu tahmin edilmektedir. Ülkemiz aynı zamanda yeryüzünün en önemli gen merkezlerindendir. Biyolog Odaları ve Türkiye Biyologlar Birliğinin hazırlayacağı ve hazırlanacak olan koruma projelerine katılması ve giderek karar süreçlerinde etkili olması; Türkiye'nin AB' ye uyum sürecinde, uluslar arası ilişkilerin güçlenmesinde Doğa Koruma konusunda avantajlı duruma gelmesine katkı sağlayacaktır. Ulusal Politikamızın belirlenmesinde; yukarıda sözü edilen tüm konu ve kavramlara sahip çıkabilecek, onları zenginleştirecek, takipçisi olabilecek nitelikteki insan gücü olan biyologlara ve onların meslek birliği olan Biyolog Odaları ve Türkiye Biyologlar Birliğir17;ne şiddetle ihtiyaç duyulacağı göz önüne alınmalıdır. Uluslar arası sözleşmeler ve Biyologlar; Dünyada, biyolojik çeşitlilikle ilgili uluslararası sözleşmelerde fauna ve flora ile birlikte doğal kaynakların yönetimi ve yok edilişinin durdurulması çalışmalarında daha çok biyologlar sorumluluk almaktadır. Avrupa'nın Yaban Hayatı ve Yaşama Ortamlarını Koruma Sözleşmesi olarak bilinen Bern Sözleşmesi ile ilgili olarak fauna ve floranın korunarak gelecek nesillere aktarılması konularında; CITES Sözleşmesi olarak bilinen "nesli tehlikede olan yabani hayvan ve bitki türlerinin uluslararası ticaretine ilişkin sözleşme" gereği yabani türler ya da onların derileri ve trofelerinin ihracatı, transit ve ithalatı ile ilgili konularda; Sulak Alanlar Sözleşmesi olarak ifade edilen Ramsar Sözleşmesi ile sulak alan ekosistemlerindeki bitki ve hayvan toplulukları ve su kuşlarının biyolojisi, ekolojisi ve yayılışı konularında; Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesinde biyolojik çeşitliliğin korunmasında, biyolojik kaynaklardan özellikle genetik çeşitlilikten sağlanan faydanın eşit ve adil paylaşımı konularında biyologlar görev almak zorundadır. Birleşmiş Milletlerin kuraklık ve çölleşmeye maruz ülkeler kapsamına aldığı Türkiye'de de çölleşme ile mücadelede asıl görev alması gereken biyologlardır. Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesine ek Cartagena Biyogüvenlik Protokolü ile biyolojik çeşitlilik, transgenik canlılar, gen transferi ile ilgili konularda ve bu kapsamda taraf olacağımız diğer sözleşmelerin kapsamında olan alanlarda biyologların doğrudan görev, sorumluluk ve yetki almaları ulusal çıkarlar açısından çok önemlidir. Biyologların Şikayet ve İstekleri Türkiye'de biyologların çalışma yerlerinde konumları ile ilgili karşılaştıkları güçlükler son yıllarda aşılmaz hale gelmiştir. Bugün bu sorunlar biyologlarla ilgili gündemin ana konusunu teşkil etmektedir. Biyologların çalıştıkları sahalarda görev, sorumluluk ve yetkileri ile ilgili bir mevzuat yoktur. Ülkemizin doğal kaynaklarının korunmasında, temel tıpla ilgili uygulamalarda, ormancılık ve tarımla ilgili konularda doğrudan görev almaları gerekirken bu görevlerdeki biyologlara, araştırma, koordinasyon, inceleme, planlama, proje ve analiz aşamalarında bilfiil sorumluluk aldıkları halde yetki verilmemektedir. olarak çalışmaktadırlar. Avrupa birliğine tam üyelik aşamasında olan Türkiye'de bu yanlış uygulamalar Avrupa Birliği normlarına ve meslek standartlarına uymamaktadır. Bu nedenlerle demokratik bir ülke olan Türkiye'de biyologların hak ettikleri görev, sorumluluk ve yetkilerin tam olarak belirlenmesi ve bir mevzuat kapsamında görevlendirilmeleri bir zorunluluk haline gelmiştir. Düzenleyen karakecili Düzenleme Tarihi: 19/05/2008 Mehmet İPEK Eskişehir Osmangazi Üniversitesi Gokhan #2 Mesaj Tarihi 18/02/2008 Yönetici Mesaj Sayısı: 211 Katılım Tarihi: 07.02.08 Yasal girişimler 1991 yıllarda çok yoğunlaşmış. İlk yasa tasarısı çok yoğun tartışmalar sonucunda hazırlanmış kitap haline getirilmiş ve TBMM´ne Tınaz Titiz 'in bakanlığı döneminde verilmiştir. Meclis'de yoğun muhalefetle karşılaşılmış Tıp ve Ziraatçıların karşı çıkması ve meclisin tatile girmesi nedeniyle görüşülememiştir. Burada en önemli sorun odalaşmak isteyen meslektaşlarımızın etkin destek vermemeleridir. Bu 2007 yılına kadar böyle devam etti. Oda yasası 1995-1996 yıllarında yeniden güncellenerek TBMM için çalışmalara başlandı. Bu dönemde yasa, komisyonlarda görüşülmeye başlanmış Hükümet adına görüş otuşturmak üzere Sağlık Bakanlığı görevlendirilmiştir. Sağlık Bakanlığında yapılan toplantıya o dönemdeki yönetim ile birlikte Biyologlar Derneği danışmanı olarak üniversiteden hocalarımızda katılmıştır. Sağlık Bakanlığı, Meslek Yasası´nın çıkmasını ancak odalaşmanın karşısında olduğu konusunda bir görüş benimseyerek komisyona göndermiş ve yasanın çıkmasını engellemiştir. 2000 yılında 3. kez güncelenen yasa Osman Durmuş kanalıyla meclise gönderilmiş ama çıkarılamamıştır. 2005 yılında 4. güncellenen yasa tasarısı Kanunlar kararlar dairesine oradan da Salih Kapusuz'a verilmiş. Ne kadar haklı olursanız olun talep edenlerin hem örgütlülükleri hem de güç dengeleri üzerindeki etkinlikleri yasaların çıkması üzerinde çok etkilidir. Kanun yapma yetkisi siyasetin elindedir. Siyasetin zayıf noktası ise oy ve oy potansiyelidir. Eğer güç olamazsak hiç bir hak kazanamayız. Bunun için birlik olmalıyız ve dernek çatısı altında birleşmeliyiz. Şu anda resmi olarak kurulmuş iki dernek bulunmakta. En azından bunlardan her hangi birine üye olmalıyız ki sayı gücümüz olsun. Aksi taktirde değil meslek odası, ekmek yiyeceğimiz iş sahası bile bulamayız. Düzenleyen Gokhan Düzenleme Tarihi: 18/02/2008 BİYOLOGLAR BİRLİĞİ DERNEĞİ Genel Sekreter Gökhan KAVUNCUOĞLU Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/turkiye-biyologlar-birligi-kanun-tasarisi

KPDS VE ÜDS’DE ZAMANI DOĞRU KULLANMAK

Daha önceki makale ve yazılarımda da belirttiğim gibi, KPDS, ÜDS, YDS gibi akademik sınavlarda zamanı doğru kullanmak oldukça önemlidir. Bu temel olgu aslında “sınav” kavramının vazgeçilmez unsurlarından biridir. Yani; bir soruyu doğru yapmak kadar o soruyu ne kadar sürede yapabildiğinizde toplamda alacağınız puanı belirleyen önemli unsurlardan biridir. Yaklaşmakta olan ÜDS ve KPDS sınavlarına hazırlanan adaylara tavsiyem, sadece bilgilerini artırmaları değil, fakat aynı zamanda soru çözüm sürelerini iyi ayarlayabilmeyi öğrenmeleridir. Örneğin KPDS sınavının soru sayısını ve toplam süreye bir göz atalım; Soru Sayısı: 100 Toplam Sınav Süresi: 180 Dakika Düz mantık güderek ve basit bir hesap yaparak şu sonuca varabiliriz; 1 soruyu 1 dakikada yapabiliyorsak, sınavı 100 dakikada bitirebiliriz. Ancak bir soruyu 2 dakikada çözebiliyorsak, o zaman da sınav süresini aşan 200 dakikaya denk geliyor demektir. Matematiksel olarak her soruyu 1,8 dakikalık bir ortalama ile çözebilmeliyiz. İşte bu noktada sadece İngilizce bilgisinin yeterli olmadığı ortaya çıkmaktadır. KPDS ve ÜDS sınavlarında mutlaka zamanı doğru kullanabilmek için TEST TEKNİĞİNE ihtiyacınız vardır. Aşağıda verilen örneklere bakınca test tekniğinin gereği daha da iyi anlaşılacaktır; Bu soruyu kaç dakikada çözebilirsiniz? Çevirerek veya tüm seçenekleri tek tek yerine koyarak bunu kaç dakikada yapabilirsiniz ? Elinizde sözlük olsa kaç dakikada çözebilirsiniz? KPDS MAYIS 2008 Sorusu 11. ---- not all negative thoughts and feelings are bad for health, specific emotional states, especially stress and depression, have now been linked to heart trouble of all kinds. A) When B) Suppose that C) As if D) Whenever E) Though Ya bu soru için kaç dakika harcarsınız ? KPDS MAYIS 2008 Sorusu 12. The Danish poet and novelist Jeppe Aakjær grew up in the Jutland farming area and ---- was well aware of the harsh conditions endured by farm labourers in his country. A) on the contrary B) even so C) so D) still E) nevertheless Ya bu soru için kaç dakika harcarsınız ? KPDS MAYIS 2008 Sorusu 58. (I) The label homo sapiens was first attached to man by Linnaeus in his classification of the animal kingdom over two hundred years ago. (II) That kingdom is now thought to include over threequarters of a million species. (III) Still, the physiology of the human body parallels, in a host of different ways, that of the animals. (IV) Though very many more species may be discovered, it is not likely that anything will ever shake our conviction that we belong to a very special class. (V) This conviction is quite as strong today as it was in the eighteenth century. A) I B) II C) III D) IV E) V Ya bu paragraf ve soruları için kaç dakika harcarsınız ? In many primitive communities there is a taboo on mentioning a man’s name except in certain special circumstances, because his name is believed to contain within it something of himself, which would be lost and wasted if his name were uttered without first taking special precautions. This belief about words is widespread. Among the more primitive and the uneducated, it is universal. A remarkably matter-of fact practical application of it occurs even in the present day in the Tibetan prayer-wheel. If, thinks the Tibetan peasant, a prayer uttered once does some good, then the same prayer uttered many times will do more good. Therefore, since he assumes that the efficacy lies in the prayer as an entity in itself, he writes it round the rim of a wheel, and then frugally employs the water of a mountain stream to turn it all day long, instead of wastefully employing his own lungs and lips to say it again and again. 76. In this passage, the author points out that ----. A) most societies in the world today are still very primitive B) in primitive societies, words are often felt to embody the idea they express C) the unsophisticated are no less intelligent than the sophisticated D) Tibetan peasants should not be regarded as primitive E) the Tibetan peasant does not really believe that the prayer-wheel can do any good 77. As we understand from the passage, an underlying belief behind the Tibetan prayer-wheel is that ----. A) for a prayer to be answered, it must be repeated many times B) man can achieve nothing without the help of stronger powers C) man is powerless against the forces of evil D) human effort can achieve almost anything E) the forces of nature must never be opposed 78. The author uses the example of the Tibetan prayer-wheel to ----. A) show that all religions are fundamentally alike B)demonstrate how unrealistic primitive peoples are C) illustrate just how powerful words are felt to be in primitive societies D) show how inventive primitive peoples are E) show how unique the natives of Tibet are 79. It is clear from the passage that, among primitive societies, it is generally believed that a man’s name ----. A) should be constantly repeatedB)has a wholesome effect upon his life C) will bring calamity to those who use it D) should only be spoken under appropriate circumstances E) is of little importance as it is so rarely used 80. We can conclude from the passage that the Tibetan peasant ----. A) is not tolerant of the religious beliefs of othersB)bears no resemblance to other primitive peasants C) never calls any member of his family by name D) is not deeply religious and does not treat his religion seriously E) – though primitive – has a very practical attitude towards life NOT : Yukarıda verilen tüm soruların ve geriye kalan tüm soruların test teknikleri ile kolayca çözümleri KPDS MAYIS 2008 SORU ÇÖZÜMLERİ kitapçığımızda verilmiştir. SONUÇ Bu soruların cevaplanmasında sadece kelime bilgisi ve dil bilgisi asla yeterli değildir. Her soru türü ve soru türüne yaklaşım için özel test teknikleri şarttır. Bu test tekniklerini edinebilmek için mutlaka düzgün ve amaca uygun kaynak, eğitmen, çalışma planı veya kursu öneririm.

http://www.biyologlar.com/kpds-ve-udsde-zamani-dogru-kullanmak


Balık Örneklerinin Toplanması ve Tespiti

Fauna tespitiyle ilgili olan sistematik çalışmalarda doğadan balık örneklerinin toplanması çok özen gösterilmesi gereken önemli konulardan biridir. Balıklar, toplanacak tür ve alttürlere bağlı olarak, çok çeşitli alet ve yöntemlerle yakalanabilirler. Bu yüzden örnek toplayacak kişinin herşeyden önce amacına uygun olan alet ve yöntemi saptaması gerekmektedir. Aksi takdirde arazide yapılacak uğraşıların büyük bir kısmı sonuca ulaşmaktan uzak kalacak, dolayısıyla boş yere zaman ve iş gücü sarfedilmiş olacaktır. Balık örneklerinin yakalanmasında kullanılabilecek çok çeşitli yöntemler olmakla beraber, bunların avlama etkinlikleri av ortamındaki çeşitli koşulların durumuna da bağlı kalmaktadır. Bu yüzden, bir taraftan yakalanacak örneklerin çeşitli özellikleri (küçük veya büyük boylu oluşu, bentik veya pelâjik yaşam sürdürmesi, gececi veya gündüzcü karakterde olması v.b.) göz önüne alınırken, bir taraftanda uygulanacak alet ve yöntemin avlama yapılacak ortamın koşullarına uygun olmasına dikkat etmek gerekmektedir. Örneğin, zemini taşlık, kayalık olan veya çeşitli bitki kökleri bulunan bir su ortamında balık örnekleri yakalamak için ığrıp denilen ağların kullanılması son derece külfetli ve hatalı bir iştir. Zira böyle bir ortamda çekilecek ığrıp, birtaraftan da sürekli şekilde zemindeki engellere takılarak yırtılabilecek, diğer taraftan zemini düzenli şekilde tarayamayacağı için örnek yakalama olasılığı çok düşük olacaktır.Genel olarak balık örneklerinin yakalanmasında kepçe, ığrıp, fanyalı ağ, kör ağ veya galsama ağı, serpme, pinter, olta, elektrik şoku v.b. gibi av aletleri ile çeşitli tipteki dalyan ve tuzaklardan yararlanılmaktadır. Bu alet ve tuzakların dışında etkinlikleri çok fazla olmasına rağmen, doğadaki dengeyi çabuk bozması nedeniyle yasaların izin vermediği bazı yöntemlerde vardır. Örneğin, Sığır kuyruğu, sütleğen v.b. gibi zehirli otlar; Enderin gibi ziraat ilâçları; dinamit, tahrip kalıbı ve sönmemiş kireç gibi patlayıcı maddeler kanunlann yasakladığı başlıca av yöntemleridir.Burada, sadece yasal olan av alet ve yöntemlerinden kısaca söz edilmesi yararlı olacaktır.Örneklerin tespitiÇeşitli av araç ve yöntemleri kullanılarak ortamlarından yakalanan balık örneklerine, araştırmanın amacına uygun şekilde işlem yapılır. Eğer yakalanan örnekler ergin hale gelmiş büyük boylu bireylerden oluşuyorsa, bunların tür ve alttürlerini arazide saptama olanağı vardır, dolayısıyla tanıma amacıyla laboratuvara götürülmeleri gerekmez. Yakalamadan hemen sonra türlerin saptanabildiği bazı durumlarda da örnekler henüz canlılıklarını yitirmeden tekrar suya bırakılabilirler. Arazide tanınmaları güç olan örneklerin daha ayrıntılı incelemeler için laboratuvara götürülmeleri zorunludur. Kendi ortamlarından canlı olarak yakalanan örneklerden ilerideki araştırmalar için yararlanılmak isteniyorsa bunların herşeyden önce dikkatlice öldürülmeleri gerekir. Genellikle balık örneklerinin öldürülmesi, su dışında bırakılarak boğulmalarının sağlanması şeklinde yapılırsa da, canlı örneklerin su dışında uzun süre kalmaları sonucunda, balıkların vücutlarında ölümden dolayı bir sertleşme oluştuğundan böyle örneklere bilahare şekil vermek güç olmaktadır. Bu nedenle özellikle müze materyali olarak kullanılacak örneklerin, bu yöntemle öldürülmeleri pek yararlı olmamaktadır. Balıkların zedelenmeden ve düzgün bir şekilde kalmalarının sağlanmasında kullanılan yöntemlerden en iyisi, sıvı bir uyuşturucu kullanılmasıdır. Bu iş içinde en uygun anestezik (MS222) olarak bilinen Fenoxiethanol'dür. Canlı olarak yakalanan balıklar bu maddenin 0.001 lik solüsyonunda bırakılarak çok kısa zamanda ve hiçbir zarara uğramadan bayıltılırlar. Bu şekilde bayıltılan örnekler istenilen şekil verildikten sonra ya çok düşük temparatür derecelerinde aniden dondurulur veya uygun fiksatifler içine alınarak uzun süre muhafaza edilirler.Dondurma yöntemiyle tespit edilen örnekler , orijinal renk ve şekillerini daha iyi korumaktadırlar. Bunun için en iyi yöntem, örnekleri gerekli bilgileri taşıyan etiketleriyle birlikte naylon torbalar içersine düzgün bir şekilde ve yüzgeçlerine zarar vermeyecek titizlikte yerleştirip aniden dondurmaktır. Ancak incelenecekleri zaman donmuş materyal çözülür ve üzerlerinde gerekli tetkikler yapılır. Fakat dondurulmuş örnekler, uzun zaman muhafaza edilemezler. Bu açıdan dondurma, özellikle zaman zaman eritilerek incelenmeleri gereken örneklerin saklanmasında geçerli bir yöntem değildir. Bu nedenle bilimsel araştırmalar için (bilhassa faunistik çalışmalarda) örnekleri çok uzun zaman bozulmadan koruyabilen çeşitli fiksatiflerden yararlanılmaktadır. Bunlar içersinde en iyisi % 4 lük formalin solüsyonudur. Bu solüsyonla örnekleri tespit etmek için herbir balık sığ bir kapta (özellikle mumlu küvette) yan yatırılmalı ve mümkün olduğunca düzgün bir şekil verilmelidir. Yüzgeçlerin açık kalmasını sağlamak için de çok ince böcek iğneleri yardımıyla herbir yüzgeç gergin hale getirilmelidir. Sonra, bu örneklerin üzerini örtecek şekilde % 4 lük formalin solüsyonu ilâve edilir ve bu şekilde birkaç gün bırakılarak sertleşmeleri; dolayısıyla belli şekil kazanmaları sağlanmış olur. Şayet örnekler 30 cm. den daha büyük boylu ise, bunların karın kısımlarından jiletle küçük bir yarık açılır veyahut da anal açıklıklarından bir enjektör yardımıyla % 40 lik formol enjekte edilerek iç organlarının tespiti yapılır ve kokuşması önlenir. Mumlu küvetlerde tutularak belli şekil kazandırılmış olan örnekler devamlı muhafaza için başaşaği olarak kavanozlara yerleştirilir ve kuyruk kısımlarını örtecek şekilde fiksatif doldurulur. Balık örneklerinin devamlı muhafazasında genellikle % 4 lük formalin kullanılırsa da bazen % 70 lik Etil alkol veya % l lik Propilen Fenoxatol çözeltisi de kullanılabilir. Bu prezervatiflerin bulunmadığı hallerde genellikle kolay temin edilen ve daha ucuz olan bazı maddelerden de yararlanmak mümkündür. Bunların başhcalan % 70 lik tuvalet ispirtosu, % 50lik NaCl çözeltisi ve % 100 lük (saf olarak) sirkeden ibarettir. Örnekleri taşıyan herbir kavanozun içinde kurşunkalem veya erimez mürekkeple yazılmış bir etiket bulunmalıdır. Bu etikete ilgili türün adı, toplandığı yer, tarih ve toplayanın adı yazılmaktadır.Özellikle % 70 lik Etil alkol ile yapılan muhafazalarda alkolün uçucu olması nedeniyle zamanla kavanozlarda bir eksilme meydana gelmekte, bu durum örneklerin açıkta kalan kısımlarının, özellikle kuyruk yüzgeçlerinin kurumasına ve bozulmasına neden olmaktadır. Bu türlü eksilmelerin önlenmesinde kavanozların kapaklarına ince bir tabaka halinde vazelin sürülmesi çok iyi sonuçlar vermektedir. Diğer taraftan % 4 îük formalin solusyonundaki çok uzun süreli muhafazalarda, formalinin asidik özelliği nedeniyle örnekler esmerleşmekte ve üzerlerindeki leke ve benekler belirsiz hale gelmektedir. Bu durumu önlemek için de % 4 lük formalin solüsyonunun her 4 litresine bir çorba kaşığı kadar Boraks ilâve edilmesi yararlı olmaktadır. Bu sayede formalinin asidik özelliği bir dereceye kadar giderilmiş olur.Yumurta veya larvalar ya %4 lük formol ya da % 70 lik alkol içeren küçük tüplerde saklanabilir. Her tüp içine gerekli bilgileri taşıyan etiketler konulmalıdır (tür adı, lokalite, tarih, örneklerin taze rengi, habitat, toplayanın adı v.b.). Yumurtaların toplanmasında (özellikle yumurtalarınn kümeli olduğu hallerde) mümkün olduğu kadar bol sayıda örnek almalıdır. Zira, yumurtaların substratuma tutturuluş şekilleri, tanımlamada önem taşıyabilir. Bazen balık türleri, sadece pullarından teşhis edilebilirler. Diğer taraftan, vücudun yanlarından alınmış birkaç sağlam pul yardımıyla hayvanın yaşı ve geçmişine ait bazı bilgiler edinme olanağı da vardır, örneklerden pullar alındığında küçük bir zarf içine konup yassı hale getirilmeli ve sonra kurumaya bırakılmalıdır. Bu şekilde pullar uzun süre saklanabilirler. Zarfın üzerinde tür adı, lokalite, tarih, toplayanın adı, numunenin boyu, ağırlığı ve cinsiyeti yazılmalıdır. Tür tanımı amacıyla alınan pullar temizlenmeli, kuru olarak veya gliserin jeli içinde lam üzerinde preparat haline getirilmelidir.Diğer omurgalılarda olduğu gibi, balıkların tanınmasında da bazı kemikler (örneğin, Cyprinid'lerin farinks ve Salmonid'lerin Vomer kemikleri) çok yararlı olabilmektedir. Bazı türlerin yaş ve büyümelerine ilişkin bilgilerin elde edilmesinde belli bazı kemiklerin büyük önemi vardır; Percidae ve Esocidae üyelerinin operküler kemikleri gibi. Bütün böyle kemiklerin incelenme ve bunu izleyerek saklanmaları için hazırlanmaları oldukça basittir. Bunun için daima taze ya da dondurulmuş materyal kullanılmalıdır. Zira önceden tespit olmuş materyal bu amaca uygun değildir. Gerekli kemikler ilgili balıktan üzerlerindeki diğer dokularla beraber kesilerek çıkarılırlar. Sonra herbir kemik birkaç dakika çok sıcak suya atılır ve nihayet yumuşak dokuları temizlemek için küçük ve sert bir fırça ile dikkatlice fırçalanır. Kemik tamamen temizleninceye kadar buna devam edilir. Sonra temiz bir kağıt üzerine konarak ılık bir ortamda yavaş yavaş kurumaya bırakılır. Kemiğin çıkarıldığı balığa ait gerekli bilgiler (tür adı, lokalitesi, tarih, toplayanın adı, boy ağırlık ve seks durumu) etiketine yazılır.Toplanan örneklerin tayini yapılırken bazı kuşku uyandıran durumlar varsa o türe ait biraz daha fazla örnek, yukarıda açıklandığı şekilde öldürülüp muhafazaya alınarak incelenmek üzere, toplanmasıyla ilgili tüm verilerle birlikte o konuda otorite sayılan bir ihtiyoloğa gönderilmelidir. Genellikle örneklerin taze olarak posta ile gönderilmesi iyi sonuç vermez, çünkü fikse edilmemiş örneklerin oldukça süratli bozulmaları söz konusudur. Tespit edilmiş örnekleri göndermeden önce örneklerden tespit solüsyonu iyice süzülmeli ve aynı solüsyon ile ıslatılmış nemli tülbent bezine sarılan bu örnekler sonra da bir naylon torba içine yerleştirilmelidir. Bu paketçik, içinde ambalaj materyali bulunan sert bir kutu içine konup, tümü tek bir paket yapılarak gönderildiğinde, örnekler mükemmel bir şekilde alıcısına ulaşmış olurlar.

http://www.biyologlar.com/balik-orneklerinin-toplanmasi-ve-tespiti-1

Biyolog Aranıyor

Biyolog Aranıyor

İŞ İLANI - ANKARAAnkara'da bir çevre firmasına; flora&fauna raporlaması konusunda deneyimli (tercihen sistematik botanik, ornitoloji, memeli yada hidrobiyoloji alanlarından enaz birisinde kendisni geliştirmiş),ÇED ve/veya proje bazlı çalışmalarda tecrübesi olan biyolog alınacaktır. İlgilenen meslektaşların belirtilen özelliklerini gösterir CV'lerini, umutcyhn3@gmail.com adresine göndermeleri gerekmektedir.Not: Biyologlar Dayanışma Derneği üyelerine öncelik verilecektir.

http://www.biyologlar.com/biyolog-araniyor-4

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni bir araştırmaya göre, D vitamini takviyesi soğuk algınlığı ve grip de dahil olmak üzere akut solunum yolu enfeksiyonlarına karşı özellikle çok eksik kişilerde korunmaya yardımcı olabilir.

http://www.biyologlar.com/yeni-calisma-sonuclarina-gore-d-vitamini-soguktan-ve-gripten-koruyor

Yağda Eriyen Vitaminler

A VİTAMİNİ: A Vitamini yağda eriyen vitaminlerdendir.Balıkyağında, karaciğerde, tereyağı ve kremada, peynirde, yumurta sarısında bulunur.Sonradan A vitamini (retinol) ne dönüşecek olan Beta Karoten ve diğer karotenoidler ise yeşil yapraklı ve sarı sebzelerde ve tahıllarda bulunur.A vitamini karaciğerde depolanır. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vitamin A miktarı Retinol Equivalant ile ölçülür. Vücuttaki Fonksiyonları Sağlıklı deri ve saçlar için gereklidir. Diş, dişeti, ve kemik gelişiminde önemli rol oynar Normal iyi görme de ve gece görme de etkilidir. Bağışıklık sistemini kuvvetlendirir. Akciğer, mide, üriner sistem ve diğer organların koruyucu epitelinin düzeninde rol oynar. Eksiklik Belirtileri 1)Gece körlüğü 2)Xerophthalmia ( korneanın anormal kuruması ve kalınlaşması = göz kuruluğu) 3)Bağışıklık sisteminin zayıflaması, enfeksiyonlara elverişli hale gelme 4)Akne (sivilce) oluşumunda artış 5)Yorgunluk 6)Diş, diseti ve kemiklerde deformiteler Aşırılık ve Zehirlenme Belirtileri 1)Karaciğer bozuklukları 2)Mide bulantısı ve kusma 3)Saç dökülmesi (saçlar çabuk kopar) 4)Başağrısı 5)Eklem ağrıları 6)Dudak çatlamaları 7)Saç kuruluğu 8)İştah kaybı D VİTAMİNİ: D Vitamini yağda eriyen vitaminlerdendir. Daha çok iki şekilde bulunur.Bunlardan aktif ergosterol, kalsiferol ve D2 vitamini gibi adlarla da bilinen ergokalsiferol ışınlanmış mayalarda bulunur.Aktif 7-dehidrokolesterol ve D3 vitamini gibi adlarla da anılan kolesalsiferol ise insan derisinde güneş ışığı ile temas sonucu meydana gelir ve daha çok balık yağında ve yumurta sarısında bulunur. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vücuttaki Fonksiyonları İnce barsaklardan kalsiyum ve fosforun emilimini düzenleyerek kemik büyümesi, sertleşmesi ve tamiri üzerinde etkili olur. Raşitizmi önler Böbrek hastalıklarında düşük kan kalsiyumu seviyesini düzenler. Postoperatif kas kasılmalarını önler. Kalsiyumla birlikte kemik gelişimini kontrol eder. Bebekler ve çocuklarda kemik ve dişlerin normal gelişme ve büyümesini sağlar. Henüz kanıtlanmamış olası etkileri: Artrit, yaşlanma belirtileri ,sivilce,alkolizm, kistik fibrozis uçuk ve herpes zoster tedavisi, kolon kanserinin önlenmesi. Vitamin D alınımına dikkat edilmesi gereken durumlar: Güneş ışığı bakımından yetersiz bölgelerde yaşayan çocuklar. Yetersiz gıda alan ve fazla kalori yakan kişiler 55 yaşın üzerindekiler, özellikle menapoz sonrası kadınlar. Emziren ve hamile kadınlar. Alkol veya uyuşturucu kullananlar. Kronik hastalığı olanlar, uzun süredir stress altında olanlar, yakın geçmişte ameliyat geçirmiş olanlar. Mide-barsak kanalının bir kısmı ameliyat ile alınmış olanlar. Ağır yaralanma ve yanığı olan kişiler. Eksiklik Belirtileri Raşitizm/(Çocuklarda D vitamini eksikliği ile oluşan hastalık)Çarpık bacaklar, kemik veya eklem yerlerinde deformasyonlar, diş gelişiminde gerilik, kaslarda zayıflık, yorgunluk, bitkinlik. Osteomalazi (yetişkinlerde D vitamini eksikliği ile oluşan hastalık) kaburga kemiklerinde,omurganın alt kısmında, leğen kemiğinde, bacaklarda ağrı, kas zayıflığı ve spazmları, çabuk kırılan kemikler. Aşırılık ve Zehirlenme Belirtileri 1)Yüksek kan basıncı 2)Mide bulantısı ve kusma 3)Düzensiz kalp atışı 4)Karın ağrısı 5)İştah kaybı 6)Zihinsel ve fiziksel gelişme geriliği 7)Damar sertliğine eğilim 8)Böbrek hasarları E VİTAMİNİ: E Vitamini yağda eriyen vitaminlerdendir.Alfa,beta,gama ve delta tokoferolleri içerir. Bitkisel yağlar ve buğday tanesi en iyi kaynağıdır. Isıya karşı sabit ve pişirilmeye dayanıklıdır. Vücuttaki Fonksiyonları En iyi Antioksidandır.Hücre zarı ve taşıyıcı moleküllerin lipid kısmını stabilize ederek hücreyi serbest radikaller, ağır met@ller, zehirli bileşikler, ilaç ve radyasyonun zararlı etkilerinden korur. İmmun sistemin aktivitesi için gereklidir.Timus bezini ve alyuvarları korur.Virütik hastalıklara karşı bağışıklık sistemini geliştirir. Göz sağlığı için hayati önem taşır.Retina gelişimi için gereklidir.Serbest radikallerin katarakt yapıcı etkilerini önler. Yaşlanmaya karşı koruyucudur.Serbest radikallerin dokular, deri ve kan damarlarında oluşturduğu dejenaratif etkiyi önler.Yaşlanmayla ortaya çıkan hafıza kayıplarını da önleyici etkisi vardır. Eksiklik Belirtileri Çocuklarda hemolitik anemi ve göz bozuklukları Yetişkinlerde Dengesiz yürüme, konsantrasyon bozukluğu, düşük tiroid hormonu seviyesi, sinir harabiyeti, uyuşukluk, anemi, bağışıklık sisteminde zayıflama. E vitamini eksikliğinde kalp hastalıkları ve kanser riski artmıştır. K VİTAMİNİ: K Vitamini yagda eriyen vitaminlerdendir.Kan pıhtılaşmasında önemli rol oynar. Lahana, karnıbahar, ıspanak ve diğer yeşil sebzelerde, soya fasülyesi ve tahıllarda bulunur.Genellikle vücutta bağırsak bakterileri tarafından sentez edilir. Vücuttaki Fonksiyonlari Kan pıhtılaşmasını sağlar. Bazi çalışmalar özellikle yaşlılarda kemikleri güçlendirdiğini göstermektedir. Pıhtılaşmada ve kemik yapımında kalsiyum'a yardımcıdır. Eksiklik Belirtileri Kontrolsuz kanamalara neden olan K vitamini eksikliği malabsorbsiyon hastaları hariç ender görülür.Doğumdan sonraki ilk 3-5 gün içerisinde bağırsak florası henüz tam gelişmemiş olduğundan K vitamini eksikliği vardır. Günlük Vitamin K ihtiyaci: Genellikle sebzelerle alınan günlük 60-85 mg. herhangi bir eklemeye gerek kalmadan yeterli olmaktadır.

http://www.biyologlar.com/yagda-eriyen-vitaminler

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili- 3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde 3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit

VARYASYON NEDİR

Bir tür içinde pek çok karakterleri bakımından önemli ölçüde faklılıklar bulunmaktadır. Yani tür içinde aynı gen havuzunu paylaşan bireyler arasında farklılıklar mevcuttur. Başka bir deyişle, aynı türün değişik alanlarda yaşayan populasyonları (populasyonlar arası) ve aynı yöredeki bir populasyonun bireyleri arasında (populasyonlar içi) pek çok özellikleri bakımından bir çeşitlilik vardır. Populasyon içinde her bir karakter, ya da karakter kümeleri bakımından farklı morfolojiye sahip bireyler bulunmaktadır. Nitekim, Linnaeus dahil, birçok taksonomist geçmişte bu hatayı yapmışlardır. Örneğin, atmacagillerden çakın kuşu adı verilen kuşun genç bireyleri ile ergin bireylerinin fenotipleri arasında, tüy deseni bakından önemli morjolojik farklılıklar bulunmaktadır. Linnaeus, başlangıçta bunları iki ayrı tür içinde yerleştirmiştir. Erginlere Accipiter palumbanus L., Genç bireylere A. gentilis L. adını vermiştir. Fakat, türün biyolojisi hakkında bilgiler artıkça, ergin ve genç bireyler arasındaki “morfolojik” farkı anlaşılmış, hepsi artık, doğru olarak, A.gentilis içine konulmuştur. Bugün dahi, -genetik, ekolojik, evrim ve populasyon biyolojisi bilgileri ile yeteri ölçüde donatılmamış olan – bazı taksonomistler, benzer hataları tekrar yapmaktadırlar. Bir populasyon içerisinde bireylerin taşıdıkları özellikler birbirinin hiçbir zaman aynı değildir. Boy, renk ve desen gibi kalitatif ve kantitatif özelliklerde az ya da çok değişkenlik görülür. Bu değişime varyasyon diyoruz. Sistematikte varyasyonlar iki grupta ele alınmalıdır. Genetik yapıyla ilgili olmayan ve ilgili olan varyasyonlar. Genetik olmayan varyasyonların ayırdedici özellikleri olmadığından sınıflandırma çalışmalarında önemli yoktur. Buna karşılık taksonların genetik yapısına işlenmiş, nesilden nesile taşınabilen genetik varyasyonlar sınıflandırmada ve sistematikte önemlidir. Bunlar; • I. Genetik olmayan varyasyonlar • A. Bireysel Varyasyonlar • a. yaş, b. mevsimsel, c. nesillere ait • B. Toplumsal varyasyonlar • C. Ekolojik varyasyonlar • a. habitat varyasyonu, b. iklimsel varyasyon, c. konukçu varyasyonu, • d. populasyon yoğunluğuna bağlı varyasyon, e. allometrik varyasyonlar • D. Traumatik varyasyonlar • a. parazit nedeniyle, b. çeşitli anormallikler • II. Genetik Varyasyonlar A. Cinsiyetle ilgili varyasyonlar • a.Primer eşey özellikleri, b.Sekonder eşey özellikleri, c. Gynandromorph’lar B. Cinsiyet ile ilgili olmayan varyasyonlar • a. Devamlı varyasyonlar www.sistematiginesaslari.8m.com

http://www.biyologlar.com/varyasyon-nedir

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARI ) MORFOLOJİK ÖZELLİKLERİ

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARI ) MORFOLOJİK ÖZELLİKLERİ

Deniz kaplumbağalarının yaklaşık 100-200 milyon yıldan beri dünyamızda yaşadığı bilinmektedir. Karadan denize geçen en eski sürüngen türü olan deniz kaplumbağaları artık yaşamlarını denizde geçirmektedirler. VİDEOLAR İÇİN TIKLAYINwww.cyprusseaturtles.org/videolar/Turler..._Chelonia_mydas.html www.cyprusseaturtles.org/videolar/Turler...Caretta_caretta.html Günümüzde Dünyada yaşayan sekiz tür deniz kaplumbağası (Dermochelys coriacea, Eretmochelys imbricata, Lepidochelys kempii, Lepidochelys olivacea, Chelonia mydas, Chelonia agassizi, Natator depressus, Caretta caretta ) vardır. Ancak Akdeniz’de düzenli olarak yuvalayan türler Chelonia mydas ve Caretta caretta’dır. Dünyamızı çevreleyen ılıman denizlerde ve okyanuslarda yaşam mücadelesi vermektedirler. Günümüzde Dünyada yaşadığı bilinen sekiz tür deniz kaplumbağası; Dermochelys coriacea, Eretmochelys imbricata, Lepidochelys kempii, Lepidochelys olivacea, Chelonia mydas, Chelonia agassizi, Natator depressus, Caretta caretta vardır. Caretta caretta (Deniz Kaplumbağası): >> Yeşil kaplumbağadan biraz daha ufak olan bir türdür. Kabuk boyu 1 metreye, ağırlığı 100-120 kiloya kadar ulaşabilir. Besinlerini deniz kabukluları, omurgasız deniz canlıları(yumuşakcalar), yengeçler, deniz anaları, deniz hıyarları, deniz kestaneleri ve diğer deniz canlıları oluşturur. Büyük ve kalın bir kafasının oluşu ile diğer türlerden kolayca ayırt edilir. Kabuğu açık kahve yada koyu kızıl kahve renktedir. Üreme mevsiminde her yuvaya yaklaşık 100 kadar yumurta bırakabilmektedir. Chelonia mydas (Yeşil Kaplumbağa): >> Günümüzde yaşamlarını devam ettiren deniz kaplumbağaları içerisinde önemli bir yer tutar. Kabuk rengi zeytin yeşilinden gri-kahverengiye, hatta koyu kahverengiye kadar değişir. Kabuk boyu 1.20 m. olabilir. Ağırlıkları 100-150 Kg kadardır. Dişileri sadece üreme mevsiminde karaya çıkar. Her seferinde yaklaşık 100- 150 yumurta bırakır. Kıyılara yakın sığ sulardaki deniz otlarını yiyerek beslenirler. Deniz otlarıyla beslenmesinden ve vücudundaki yağın renginin yeşilimtırak olmasından dolayı “Yeşil Kaplumbağa” diye adlandırılmıştır. Akciğer solunumu yaparlar. Dermochelys coriacea: IUCN tarafından “CR” “Kritik Olarak Tehlike Altında” ilan edilen bir türdür. Dünyada geniş bir dağılım gösterirler. Kabuk boyları 120-240 cm, ağırlıkları 210-520 kg. Kadardır. Vücutlarında boynuzsu plaklar yoktur. Kabuk deriyle kaplı ve uzunlamasına yedi adet kabartılı çizgi bulunur. 2-3 yılda bir yuva yaparlar ve her üreme sezonunda 6-9 defa yuva yapabilirler. Her yuvaya ortalama 80 döllenmiş ve 30 adet küçük döllenmemiş yumurta bırakırlar. Kuluçka süresi yaklaşık 65 gündür. Chelonia agassizi: Güney ve Kuzey Amerika’nın pasifik kıyılarında bulunur. Yaklaşık 125 kg ağırlığında ve 115 cm. boyundadırlar. Yeşil kaplumbağanın çok yakın bir türüdür adını renginin siyahımsı olmasından dolayı almıştır. Eretmochelys imbricata: IUCN tarafından “CR” “Kritik Olarak Tehlike Altında” ilan edilen bir türdür. Atlantik, pasifik ve Hint Okyanuslarının tropikal bölgelerinde bulunurlar. Kabuk boyları 76-91 cm, ağırlıkları yaklaşık olarak 40-60 kg. Kadardır. 2-3 yılda bir yuva yaparlar ve her yuvaya ortalama 160 yumurta bırakırlar. Kuluçka süresi ortalama 60 gündür. Lepidochelys kempii: IUCN tarafından “EN” “Tehlike Altında” ilan edilen bir türdür. Meksika körfezi çevresinde sınırlı olarak bulunurlar. Kabuk boyları 62-70 cm, ağırlıkları 35-45 kg. Kadardır. Her üreme sezonunda 2 kez yuva yaparlar ve her yuvaya ortalama 110 yumurta bırakırlar. Kuluçka süreleri yaklaşık 55 gün kadardır. Lepidochelys olivacea: IUCN tarafından “EN” “Tehlike Altında” ilan edilen bir türdür. Atlantik, Pasifik ve Hint Okyanusunun tropical bölgelerinde dağılım gösterirler. Erginlerde Kabuk boyu 62-70 cm, ağırlıkları 35-45 kg. kadardır. Baş oldukca Küçük, Kabuk karinasız ve plaklar oldukca büyüktür. Sırtta 6 veya daha fazla lateral plak bulunur. Her yıl yumurtlamak için sahillere çıkarlar ve her sezonda 2 defa yuva yaparlar. Her yuvaya ortalama 105 yumurta bırakırlar. Kuluçka süresi 55 gün kadardır. Natator depressus: IUCN tarafından “DD” “Yetersiz Bilgi” olarak ilan edilen bir türdür. Avustralya, Papua Körfezi ve Gine’nin kuzey batı, kuzey ve kuzey doğu bölgelerinde çok kısıtlı oranda bulunur. Kabuk boyları 97 cm., ağırlıkları yaklaşık 80 kg. Kadardır. Her üreme sezonunda 4 defa yuva yaparlar ve her yuvaya yaklaşık olarak 50 yumurta bırakırlar. [Morfolojik özellikler] Deniz kaplumbağalarında türlerin tanımlanması için kabuk ve baş üzerinde yer alan plak diziliş ve sayıları kullanılmaktadır. » Caretta caretta Başta prefrontal plak sayısı 2 çifttir. Ancak zaman zaman bu dört plak arasında fazladan bir plak daha bulunabilir. Oval şekilde olan karapaks arkaya doğru daralma gösterir. Karapaksı örten keratin plakların üst üste binme durumu yoktur. 5 çift kostal plağın ilk çifti nukal plakla temas etmektedir. Genelde 11-12 çift marjinal plak ve geride 2 adet suprakaudal plak vardır. » Chelonia mydas Başta prefrontal plak sayısı 1 çifttir. Karapaks oval şekildedir, karapaksın arkası önüne oranla daha dardır. Karapaksı örten keratin plakların üst üste binme durumu yoktur. Kostal plak sayısı tipik olarak 4 çifttir ve birinci çift nukal plakla temas etmez. Genelde 11 çift marjinal plak ve geride 2 adet suprakaudal plak vardır. İskelet yapıları Deniz kaplumbağaları, omurgalı hayvanlar sınıfına dahil olan türlerdir. Kollar değişime uğrayarak yüzme görevini yerine getirebilecek forma gelmiştir. İskelet Karapaks (Dış kabuk), Plastron (Alt kısım), baş ve kollardan oluşmaktadır. Besinleri Chelonia mydas ve Carretta caretta türü deniz kaplumbağalarının yavruları karnivordurlar, yani etçil olarak beslenirler. Besinlerini deniz kabukluları, deniz anaları ve yumuşakcalar oluşturur. Genç bireylerde beslenme alışkanlıklarında farklılaşma başlar. Caretta caretta türü kaplumbağa genç bireyleri etcil olarak beslenmeye devam ederken Chelonia mydas genç bireyleri otcul olarakta beslenmeye başlar. Ergin bireylerde ise farklı beslenme şekli belirgin bir hal almaktadır. Caretta caretta erginlerinin besinlerini deniz kabukluları, deniz kestaneleri, süngerler, yumuşakcalar ve deniz hıyarları oluştururken, ergin Chelonia mydas’ların besinlerini ise sadece deniz algleri oluşturmaktadır. Üreme biyolojileri Sahile çıkma: Sahile yaklaşan dişi kaplumbağaları zemine basıp dinlenebilecekleri bir yerde başlarını sudan çıkarıp sahili bir süre izlerler. Bu sırada oldukca duyarlıdırlar. Sahilde ya da belli bir uzaklığa kadar sahil gerisinde doğal olmayan görüntü, ses, hareketli nesneler, yapay ışıklar ve en küçük bir tehlike sezinlediklerinde hemen geri denize dönerler. Duraklama esnasında herhangi bir tehlike sezinlememe durumunda dişi kaplumbağalar sahile çıkarlar. İleri doğru harekette baş ve boyun alçaltılır, duraklama sırasında ise baş yukarıya kaldırılarak çevre izlenir. Bazı hallerde dişi, yuva yapmadan sahilde geniş bir bölgede gezinebilir. Bu davranış sırasında dişi kaplumbağa yumurtlayabileceği uygun yer arar. Gövde çukurunun oluşturulması: Uygun yuva yeri seçen dişi kaplumbağa, her dört ayağınıda kullanarak kumda gövdesinden biraz büyük C.caretta türü sığ, C.mydas türü ise tüm gövdesini sığacak şekilde bir çukur oluşturur. Çukur içerisine yerleşerek çevreden daha az farkedilecek bir konuma gelmiş olur. Genelde gövde çukuru hayvanın arka kısmında daha derin bir şekildedir. Yumurta çukurunun oluşturulması: Arka ayakların aşağı doğru kazma hareketleriyle bu dönem başlamış olur. İki ayağın birlikte hareket etmesi sözkonusudur. İlkinde bir dönme hareketi ile kum yumuşatılır, ikincisinde ayak kum içerisine daldırılarak “avuçlama hareketi” ile kum dışarı taşınır ve oluşturulmakta olan yumurtlama çukurunun olabildiğince uzağına savrulur. Yumurta çukurunu kazılmasında arka ayakların uyumlu bir şekilde hareket edebilmesi için gövde arkası sağa sola kaydırılır. Bu sırada ön ayaklar gövdenin ön kısmının sabit kalmasını sağlar. Yumurta çukuru derinleştikce kaplumbağa ön ayakları üzerinde vücudunu yükselterek arka ayakların yuva dibine ulaşabilmesini sağlar. Her bir kazma döngüsü 30-40 saniye zaman alırken ara sıra 10-15 saniyelik dinlenme periyotları gözlemlenir. Arka ayaklar yuva dibine ulaşamaz hale geldiğinde bir süre de yumurta çukurunun zemininin yan taraflarından kum alınarak kazmaya devam edilir ve sonuçta alt kısmı üst açıklığa oranla daha geniş bir yuva kazılmış olur. Yuva kazma süresi C.caretta türü kaplumbağalarda 10-20 dakika, C.mydas türü kaplumbağalarda ise 20-40 dakika kadardır. Yumurta çukuru oluşturan dişi kaplumbağanın yaşına bağlı olarak yuva derinliği farklılıklar gösterebilmektedir. Ancak C.caretta’larda ortalama 40-50 cm C.mydas larda ortalama 60-70 cm kadardır. Yuva ağız çapı ise yaklaşık her iki türdede 20-30 cm kadardır. Yumurtlama: Yumurta çukurunun kazılmasından sonra 15-20 saniye ile birkaç dakika arasında sınırlı olan bir dinlenme süresinden sonra yumurtlama başlar. Yumurtalar tek tek bırakılabildiği gibi 2-4 lü guruplar halinde de bırakılabilir. Bu yumurta bırakmalar arasında 5-30 saniyelik dinlenmeler olmaktadır. Yumurtalma süresi C.caretta türlerinde C.mydas türlerine oranla daha kısa olmaktadır. Yumurtlama başlayana kadar çevreye çok duyarlı olan dişi kaplumbağalar yumurtlama başladıktan sonra çevreden etkilenme eşiği giderek yükselir, yani çeşitli ürkütücü faktörlerden artık etkilenmez olur. Bu durum tüm yumurtalar bırakılıncaya kadar sürer. Yumurta çukurunun kapatılması: Yumurtlamasını bitiren dişi kaplumbağa bir süre dinlendikten sonra arka ayaklarını kullanarak yumurtaların üzerini örtmeye başlar. 10-15 dakika süren kapatma işleminde gövdesi ile sağa sola doğru hareketler yapan dişi yuva üzerinin iyice kumla örtülmesini sağlar. Yuva kapatma işlemi yaklaşık 5-15 dakika sürer. Gövde çukurunun kapatılması ve yuva yerinin gizlenmesi: Yumurtaların üzeri örtülüp kumun sıkıştırılmasından sonra dişi kaplumbağa yavaş yavaş öne doğru ilerlerken ön ayakları ile arkaya kum atmaya başlar. Bu hareketler sonucunda geride kalan gövde çukuru kum ile doldurulur. Bu önden kazıp arkaya doldurma hareketi, gövde çukurunun öne doğru taşınmasına, asıl çukurun ise örtülüp gizlenmesine yol açar. Yüzeysel yapılacak olan bir inceleme ile yuvanın nereye kazılmış olduğunu anlamak oldukca zordur. Yuvanın örtülmesi ve gizlenmesi yaklaşık olarak 10-30 dakikalık bir süreyi gerektirmektedir. Denize dönüş: Yumurtlamasını tamamlayan deniz kaplumbağası ortalama 15 gün sonra birkez daha yumurtlamak üzere denize doğru yol almaya başlar.

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari-morfolojik-ozellikleri

Filogenetik ağaç yapımı

Evrim bir dallanma süreci olarak düşünülebilir. Topluluklar zaman içinde değişime uğrar ve bunun sonucu farklı dallar halinde türleşir, birbiriyle melezlenir veya tükenerek son bulur. Bu süreçler bir filogenetik ağaç olarak gösterilebilir. Filogenetiğin çözmeye çalıştığı sorun, genetik verilerin sadece bugüne ait olması, fosil kayıtlarının (osteometrik verilerin) ise tesadüfi ve güvenilmez olmasıdır. Tüm ağacın çizilebilmesi içine evrimin nasıl çalıştığı hakkındaki bilgiler kullanılır. Dolayısıyla filogenetik ağaç, evrimsel olayların meydana gelme sırasıyla ilgili bir hipoteze bağlıdır. Kladistik, canlı gruplarının birbiriyle paylaştığı özelliklere göre sınıflandırma yapması nedeniyle filogenetik ağaçlar hakkında çıkarım yapmak için hâlen tercih edilen yöntemdir. Filogenik çıkarımları yapmak için kullanılan en yaygın yöntemler arasında parsimoni, maksimum olasılık ve Markov zinciri Monte Karlo-temelli Bayes çıkarımı sayılabilir. Yirminci yüzyıl ortalarında popüler olan ama günümüzde geçerliliğini yitirmiş olan fenetik, uzaklık matrisine dayalı yöntemler kullanarak toplam benzerliğe dayalı ağaçlar inşa etmekte kullanılır, bunların filogenetik ilişkilere karşılık geldiği varsayılır. Tüm bu yöntemler sözkonusu biyolojik türlerde gözlemlenen özelliklerin evrimleşmesini betimleyen matematik modellere dayalıdır ve genelde moleküler filogenetikte uygulanırlar. Moleküler filogenetik durumunda kullanılan biyolojik özellikler, nükleotit veya amino asit dizileridir.

http://www.biyologlar.com/filogenetik-agac-yapimi

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Rus yazar Boris Zhitkov, 1931'de anlatıcının karışık ameliyatları gerçekleştirmek için minyatür eller oluşturduğu kısa hikayesi olan Mikrohand'leri yazdı.

http://www.biyologlar.com/bilim-kurguyu-gercege-donusturen-5-nanobilim-yolu

Likenlerin Özellikleri

Likenlerin Özellikleri

Likenler başlıbaşına birer organizma değildirler. Mantarlar ile alglerin birleşerek morfolojik ve fizyolojik bir bütün halinde meydana getirdikleri simbiyotik birliklerdir (Güner 1986).

http://www.biyologlar.com/likenlerin-ozellikleri

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

SİSTEMATİĞİN TARİHÇESİ

Bugün yaşayan en geri insan topluluklarında dahi çevrelerindeki canlılara isimler verildiği görülür. Hayvanların ve bitkilerin tanınmasıyla insanların ilk ilgisi tarih öncesi devirlerde başlar. Akdeniz çevresinde bulunan mağaralarda ilkçağ insanlarının çizdiği hayvan ve bitki resimleri bunun en belirgin kanıtıdır. İlk çağlarda insanlar bitkileri yenen, yenmeyen, zehirli, zehirsiz gibi kullandıkları biçime göre sınıflandırmışlardır. Daha sonra bu sınıflandırma dış görünüşlerine göre yapılmış olup bitkiler 1800’lü yıllara kadar otsu, çalımsı, ağaçsı gibi gruplara ayrılmışlardır. Darwin’in evrim teorisini ortaya atışı ile tüm canlı organizmalarda filogenetik (akrabalık ilişkisi) sınıflandırma yapılmaya başlamıştır. Yani Darwin’den sonraki dönemde aşağı yukarı tüm sınıflandırmalar bitkilerin ve hayvanların evrimsel gelişmişliklerine göre yapılmıştır. Yaşayan canlıları gruplar halinde düzenleme konusunda ilk girişimler Mezopotamya uygarlığının bilginleri tarafından yapılmıştır. Bu zamanda Asur uygarlığında yaşayan filozoflar köpek, aslan, çakal gibi canlıları köpekgiller, at, eşek, deve gibi canlıları da atgiller gruplarına sokmuşlardır. Bununla birlikte bazı hatalar da yapılmıştır. Örneğin çekirgeler, kuşların, kaplumbağalar ise balıkların grubuna sokulmuştur. Bitkilerde Son Sınıflandırma Sistemlerini Yapan Bilim Adamları: Bu bilim adamları biyoloji bilimindeki gelişmelerden yararlanmışlardır. Sistematikde kimyasal analiz yöntemleri ile elektron mikroskoplarının (SEM ve TEM) kullanılması ile Biyokimyasal sistematik ve paleobotanik gibi alanlar yeni isimlendirmelerin daha anlamlı yapılmasına yol açmıştır. Son döneme ait bazı Bitki sistematikçileri şunlardır: Robert Thorne, Takhtajan, Arthur Cronquıist ve Rolf Dahlgren gibi. www.sistematiginesaslari.8m.com Hippocrates (M.Ö. 460-377) ve Democritus (M. Ö. 460-370) gibi Yunanlı bilginler hayvanlar üzerinde ilk bilimsel çalışmaları yapmışlardır. Hippocrates hayvan isimlerini saymış, fakat sınıflandırmasıyla ilgili işaretler vermemiştir. Aristo (M.Ö. 384-322) sınıflandırmada ilk rol oynayanlar arasındadır. Yaşamının bir kısmını geçirdiği Midilli Adasında özellikle deniz hayvanlarını inceleyip zoolojik araştırmalar yapmıştır. Sadece kıyaslamalı anatomi değil, embriyoloji, davranış ve ekoloji alanın da incelemeler yapmıştır. Aristo ilk kez hayvanların yaşamlarına, hareketlerine ve vücut yapılarına göre ayrılabileceğini belirtmiş ve hayvanları Ennaima (=Kanlı Hayvanlar) ve Anaima (=Kansız Hayvanlar) olmak üzere başlıca iki gruba ayırmıştır. Bitkilerle ilgili olarak Theophrastos (M.Ö. 372-287) Aristo’nun öğrencisi olup botaniği öncüsü olarak anılır ve 480 bitkinin ayrımını yapmıştır. Plinius (M.Ö. 23-M.S. 79) “Naturalis Historia” (Tabiat Tarihi) eseriyle 1000 kadar faydalı bitkinin kültürü üzerinde bilgi vermiştir. Daha sonra 1500 yıl boyunca kayda değer bir gelişme yaşanmamıştır. 16. Yüzyıla kadar bitkiler tıbbi özellikleri ile ele alınmıştır. 16. yüzyılda Andrea Cesalpino (CAESALPINUS) (1519-1603) “De plantis” (Bitkiler hakkında) adlı eseri ile bitkileri morfolojik esaslar üzerine ilk ayırımını yapan botanikçidir. Daha sonra Kaspar Bauhin (1550-1624) 6000 bitki türünün tasnifini yapmıştır. Bauhin adlandırmada yeni yöntemler kullanan ilk botanikçi olup bugünkü familyalara benzer gruplar oluşturmuş ancak isimleri ve özellikleri belirtmemiştir. Ayrıca bitkilere ikili isimlendirmenin esaslarını ilk ortaya koyan botanikçidir. İngiliz John Ray (1627-1708) bir bitkinin tüm kısımlarının gözönünde tutulmasının gerekliliğini vurgulayan botanikçidir. Bitkilerde varyasyonun iç ve dış nedenlere, bugünkü ifade ile genotipik ve fenotipik nedenlere dayandığını ileri sürmüştür. 1693 yılında “Synopsis Methodica Animalium Quadrupedum Et Serpentini Generis” isimli eserini yayınladı. Böcekler ve kuşlar üzerindeki eseri ise ölümünden sonra yayınlandı. Bu araştırıcı da Aristo kurallarını esas aldı ve sınıflandırmada iç morfoloji de kullandı.Ray’ın 1703’de 2. cildi yayınlanan “Metodus Plantarum” adlı eseri 18000 kadar bitki türünü kapsamaktadır. Fransız Pitton de Tournefort (1656-1708) bitkiler alemini ağaç, ağaçcık ve otlar olarak sınıflandıran ve bitkileri 22 sınıfta toplayan son botanikçi olmuştur. Tournefort’un sistematiğe en büyük katkısı CİNS (genus) kategorisini kurmuş olmasıdır. 698 cinsin isimlendirmesini yapmıştır. Populus, Betula, Fagus, Lathyrus bunlardan birkaçıdır. İsveçli Carl von LINNAEUS (1707-1778) hem botanik hem de zooloji alanına katkıları olmuştur. 1735 yılında sadece 11 sayfadan oluşan SYSTEMA NATURAE isimli meşhur eserini yayınladı. 1737 yılında tüm bitki cinslerini “Genera Plantarum” (Bitki cinsleri), “Species Plantarum” (Bitki türleri) adlı eserinde de 1000 cinse ait yaklaşık 6000 bitki türünün deskripsyonunu işlemiştir. 1753 yılında yayınladığı bu eser ile ikili adlandırma sistemi (Binominal Nomenklatür), yani 2 sözcükten oluşan (Cins adı+epitet adı= TÜR adı) bir sistem geliştirdi. Sistematiğin temelini oluşturan bir çalışma olmuştur. Bu sistem hem hayvan hem de bitki sistematiğinde halen geçerliliğini korumaktadır. Daha sonraları bu araştırıcı doğayı 3 kısımda inceleyerek (hayvan, bitki ve mineral ) hayvan ve bitkileri bir sistem dahilinde göstermiştir. Bu eserde 4 bacaklılar yerine ilk kez Mammalia terimini kullandı. Bu nedenle bugün herkes Linné’yi taksonominin babası olarak tanır. • Linné, canlıları 5 taksonomik kategori içine yerleştirdi. Bunlar: • Sınıf • Takım • Cins • Tür Bu sistemiyle Linné, kendinden sonraki bilginleri öylesine etkilenmiştir ki Systema Naturae isimli kitabın 1758 yılında yayınlanan 10. baskısı Zoologıcal Nomenclature (=Hayvansal isimlendirme)’nin resmi başlangıcı olarak kabul edilmiştir. Böylece canlıların bilimsel isimleri (Latince ve Yunanca) dünyanın her yerinde kullanıla gelmiştir. Bu eserin 10. Baskısında 312 cinse bağlı 4370 hayvan ismi bulunmakta olup, bunlar 6 sınıfa ayrılmıştır: Dört bacaklılar, Kuşlar, Amphibia’lar, Balıklar, Böcekler, Solucanlar. LINNE’ nin öğrencisi olan Fabricius (1745-1808) 1775, 1782 ve 1804 yıllarında yayınladığı “Systema Entomologica” adlı eseriyle bütün böcek faunasını ortaya koymaya çalışmıştır. Bu şekil bir çalışma, bugün bir insanın çalışma gücünün çok üzerindedir ve hatta olanaksızdır. Bu nedenle bu bilginden sonra gelen toksonomistler çalışmalarını tek bir familya veya alt familyaya, hatta bunların da belirli bir coğrafi yayılış alanında bulunan türlerine yöneltmişlerdir. A.L. Jussieu (1748-1836) bitkiler aleminde ilk olarak doğal sınıflandırmayı kullanan kişi olmuştur. A. Pyramus de Candollea (1778-1841) sstematiğin anahatlarını ortaya koyan bir çalışma yapmıştır. 161 familyanın sınırları belirlemiştir. Linne'den sonraki yüzyılda canlıların sınıflandırılması çalışmaları daha da hızlanmıştır. Ancak biyolojik çeşitliliğin fazlalığı karşısında bilim adamları belli gruplar üzerinde ihtisaslaşmaya yönelmek zorunda kalmışlardır. Linnaeus eserlerinde bütün bitki ve hayvanların yanısıra bunlara ait fosilleri dahi tanımlarken,19. yüzyıl araştırıcıları sadece belli canlı grupları üzerinde araştırmalarını sürdürmüşlerdir. A.Braun (1805-1877) Braun sisteminde bitkiler ilkselden gelişmiş formlara doğru kademeli olarak sıralanmıştır. A. Wilhelm Eichler (1839-1930) Braun’un filogenetik sistemini geliştirmiştir. Bitkiler aleminin Cryptogamae ve Panerogamae olarak iki büyük gruba ayırmıştır. Adolf ENGLER (1844-1930) Eichler sistemine dayanarak yeni bir sistem oluşturmuş daha sonra Karl Prantl (1849-1893) ile birlikte 60 botanikçinin yardımı ile 23 ciltte toplanan Engler Sistemini kurulmuştur. Bu sistemde bitkiler alemi organizasyon kademeleri gözönünde tutularak sınıflandırılmış olup filogenilerinden kısmen ayrılmış doğal bir sistemdir. Monokotil bitkiler 1964’de Angiospermlerin sonuna alınmıştır. Bu sistemi birçok bilim adamı ele almış ve geliştirmiştir. R. von Wettstein (1863-1931) 1901 yılında Engler sistemin filogenetik esaslara göre kullanarak bitkiler alemini 9 Filum’a ayırmıştır. Charles E.Bessey (1845-1915), Hans Hallier (1868-1932), John Hutchinson (1884-1972) Angiospermlerin yeni bir dekripsiyonlarını yapmıştır. Dikotil bitkiler otsular ve odunsular olarak iki gruba ayırmıştır.

http://www.biyologlar.com/sistematigin-tarihcesi

2. Ulusal Alg Teknolojisi Sempozyumu

2. Ulusal Alg Teknolojisi Sempozyumu

KOngre Tarihi : 24-27 Mayıs 2016 Kongre Merkezi : Euphoria Aegean Otel Seferihisar / İzmir

http://www.biyologlar.com/2-ulusal-alg-teknolojisi-sempozyumu

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz. Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın. İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın. Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir.Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a.Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Not:Daha yoğun hazırlanan(% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur. Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Zehirli Balık Türleri

Zehirli Balık Türleri

Aslan balığı (Pterois), Hint Okyanusu ve Büyük Okyanus'un batı kısımlarında mercan kayalıklarda yaşayan zehirli deniz balıklarından oluşan bir cinstir. İnsanlar için tehlike teşkil ederler. Kıyıya yakın yerler ile 50 metre derinlik arasındaki kısımlarda yaşarlar.Yetişkinleri 40 cm uzunluğa değin erişebilirler. Gözlerinin üzerinde ve ağızlarının altında pervane benzeri pektoral yüzgeçlere iyedirler.Üst kısımlarında bulunan iğnelerin insan ile teması sonucunda birkaç gün süren yanma, terleme ve solunum zorluğu görülebilir, hatta ölüme bile neden olabilir.

http://www.biyologlar.com/zehirli-balik-turleri

Helmintlerde Tespit, Boyama ve Kalıcı Preparat Yapımı

Ahmet GÖKÇEN Harran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, Türkiye ÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önem arz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekilde korunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlar örneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir. Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır. Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat. Fixation, Staining and Preparation of Permanent Mounts of Helminths SUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists. Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal and external details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methods are absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size of specimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixation and staining methods of helminths has been discussed. Key Words: Helminth, relaxation, fixation, staining, permanent mounts GİRİŞ Helmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğu sindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10). Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gerekse bu alanda yeni çalışmaya başlayan teknik personel ve akademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır. Çünkü incelenecek örneği her zaman ve her yerde bulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarında müfredat programına göre uygun örnekleri seçerek uygulamalı eğitim birimlerinde kullanılma kolaylığı sağlar (1). Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerin canlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmiş olmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıkla ulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olmasıgerekir (1, 12). Gerekli laboratuar malzemeleri : 1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselere zarar vermemesi için, 2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesi için kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir. 3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır. 4. Eldiven: Tek kullanımlık olanlar tercih edilir. 5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır. 6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır. 7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır. 8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/Review Geliş tarihi/Submission date: 02 Kasım/02 November 2007 Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008 Kabul tarihi/Accepted date: 06 Mart/06 March 2008 Yazışma /Correspoding Author: Ahmet Gökçen Tel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58 E-mail: agokcen@harran.edu.tr Gökçen A. 178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir. 9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12). Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar : Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvanda her türden yeterli sayıda helmint olmayabilir. O zaman birkaç hayvandan toplanan türlerden preparatlar yapılabilir. Bazı helmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazıları gibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyle durumlarda morfolojik özelliklerine göre teşhise yardımcı olan bölümleri dikkate alınan helmintler, parçalar halinde ayrılarak kalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleri düzenli tutulmalı ve özellikle bölümlere ayrılan örneklerde karışmaya fırsat verilmemelidir. Buna karşın nematodların çoğu ince bir kutikülaya sahip olduklarından boyama ve montaj yapılamayabilir. Bunların tespiti, suyunun giderilmesi ve montajı çok zor olduğu için genellikle içine birkaç damla gliserin ilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitim amacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudan ya da laktofenolde şeffaflandırıldıktan sonra morfolojik özellikleri mikroskopta incelenebilir (12). Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasında aceleci olunmamalı, işlem aşamaları sırası atlanılmadan ve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır. Örneğin alkol serilerinden tam geçirilmeyen ve bunun sonucu tam dehidrasyonu sağlanmayan örnekler preparatlarda bulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarak görülemeyebilir. Bazı helmint örnekleri çok küçük olduğu için gerek temizlerken, gerekse mikroskop altında çalışırken veya örnekleri tespit ve boyama kaplarına naklederken örnekler zarar görüp teşhise yardımcı olan morfolojik özellikleri tahrip olabilir. Bu gibi olumsuzluklara yol açmamak için nazik ve kibar olunmalıdır (1, 11). Kalıcı preparat yapılacak helmintler, iç ve dış detaylarının bozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir. Parazit öldükten sonra vücudunda otolitik reaksiyonlar başlayacağından teşhis kriterleri olan bazı detaylar da dejenere olabilir. Konak hayvan ölünce ektopara-zitler konağı terk ederken endoparazitler belli bir süre sonra ölürler ve kısa süre içinde dejenere olmaya başlarlar. En iyi örnek, konak hayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilir kesilmez elde edilen canlı helmintlerdir. Cestod ve trematodlarda dejenerasyon ölümden birkaç dakika sonra başlarken nematodlarda bu süre birkaç saate kadar uzayabilir (10, 12). Helmintlerin boyanarak kalıcı preparat haline getirilme aşamaları : a. Helmintlerin konaklardan elde edilmesi, b. Helmintlerin temizlenmesi, c. Helmintlerin relaksatiyonu-gevşetilmesi d. Helmintlerin fikzasyonu-tespiti e. Helmintlerin boyanması ve kalıcı preparatlara monte edilmesi. a. Helmintlerin konaklardan elde edilmesi: İyi bir preparat yapımı için, örneklerin bütün ve canlı olarak elde edilmesi gerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardan kısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirim sistemi özafagustan rectuma kadar bütün olarak açılır. Büyük hayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuş bölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozaya yapışmış helmintleri çıkarmak için zorlamamalı, kendiliğinden ayrılması için içerisine fizyolojik tuzlu su ilave edilmiş bir küvete konularak, birkaç saat buzdolabında masere edilmek suretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleri bağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyon iğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmaları gerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobu kullanılabilir. Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarının açığa çıkarak zarar görmesini önlemek için; toplama, temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşak tüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılar kullanılmalıdır. Organın dokusu içerisinde bulunan helmintleri toplamak için bu organları küçük parçalara ayırarak incelemek gerekir. Uzun süre önce ölmüş veya dondurulmuş halde olan örnekler kalıcı preparat yapımı için uygun değildir (9, 12). b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlice alınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmış dışkı artıkları ve benzeri yabancı partiküllerden serum fizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir. Çok küçük örnekler stereomikroskop altında temizlenebilir. Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı ve kaplar çalkalanmamalıdır (12). c. Canlı helmintlerin relaksatiyonu-gevşetilmesi: Relaksatiyon veya gevşetme, helmintlerin doğal görünümde kalmalarının yapay olarak sağlanmasını içeren bir süreçtir. Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumak halinde toplanmaları nedeniyle montaj esnasında teşhise yarayan morfolojik özellikleri tahrip olabilir. Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlı hayvanların (Balık, kurbağa vb.) deri, solungaç ve burun boşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlar balıkların 1/4000’lik formalin solüsyonunda 30 dakika kadar bekletilmeleri ile gevşemiş halde toplanırlar. Küçük Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 179 trematodlar preparata yerleştirilir. Üzerine birkaç damla serum fizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saat kadar bekletilerek gevşetilebilir. Çok küçük olanları diseksiyon mikroskobu kullanılarak puar veya ince bir pipet yardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonunda saklanırlar (3, 4, 13). Digenea’lar halk arasında kelebek olarak adlandırılan, genellikle ince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi iç organ boşluklarında bulunan trematodlardır. Bunlar yerleştiği organların diseksiyonu ve içeriğin çeşme suyu altında yıkanması ile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsa osmotik şok sonucu yırtılmalara ve dejenerasyonlara maruz kalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisinde birkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler. Bir lam boyutundan daha uzun olan örnekler birkaç kez katlanarak lam boyutuna getirilebildiği gibi deney tüpleri veya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibi uygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler (1, 3, 4, 11, 13). Cestodlar, segmentli yapıda olup genellikle konakların sindirim sistemi lumeninde yapışma organelleri ile tutunmuş halde bulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırça yardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojik veya % 5-10’luk etil alkolden herhangi birisinde 5–15 dakika bekletilerek gevşetilirler (4, 6, 9, 11). Nematodlar dışkı artıklarından temizlendikten sonra doğrudan glasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonra kıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etil alkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir. Buna engel olmak için temizlenen nematodlar direkt kaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, nematodların hem yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (6, 12). Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğu gibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esas olan dikencikler bulunduğu için daha fazla itina ister. Lumene yapışmış halde bulunan proboscis kısmı çok dikkatli bir şekilde kopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içine alınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11). Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyuna alınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlerce beklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlı suda bekletme yöntemidir (1). d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespit dokuların canlı iken sahip olduğu özelliklerinin muhafaza edilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklı kalması için iyi bir şekilde tespit edilmesi gerekir. Tespitin amacı gevşetilmiş örneklerin gerçek boyutunda kalmalarını sağlamak ve bünyelerinde olabilecek metabolik ve dokusal değişiklikleri durdurmaktır (12). Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay ve ucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanında AFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi (***) de kullanılabilir (1). Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendikten sonra doğrudan AFA solüsyonu ile tespit edilirken, büyük olanları iki lam arasına konularak 48 saat süreyle tespit edilip % 70’lik etil alkolde uzun süre saklanabilirler (12). Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30 dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudan AFA solüsyonuna alınırken, büyük olanları morfolojik yapılarına göre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacak şekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamların yanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerek cestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’larda olduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra % 70’lik etil alkole alınarak uzun süre saklanabilirler (12). Nematodlar glasiyal asetik asitte hem tespit edilip hem de saklanabilirler. Bunun yanında direkt kaynama derecesindeki %70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, hem nematodların yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (1, 6, 12). Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonuna alınarak tespit edilir. AFA solüsyonunda 3–7 gün tespit edildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir. İşlemler esnasında ve bu helmintleri naklederken çok dikkatli olunmalıdır. Aksi halde pens ile baş kısmından tutulursa teşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir (12). Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyinden AFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler. Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildikten sonra % 70’lik etil alkolde uzun süre saklanabilirler (1). e. Helmintlerin boyanması ve kalıcı preparata monte edilmesi: Monogenea’lar çift lamel arası gliserin jeli (****) ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparat haline getirilirler. Şeffaf oldukları için iç organelleri kolaylıkla görülebilir ve boyanmadan kalıcı preparat yapılabilirler (12). Bunun için: 1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmint bir pipet veya puar yardımıyla 22 x 22 mm veya daha büyük ölçekli bir lamel üzerine yerleştirilir. 2. Hava kabarcığı oluşturmadan üzerine bir damla gliserin jeli damlatılır. Gökçen A. 180 3. Üzerine yavaşça daha küçük bir lamel kapatılıp serin bir yerde bir süre bekletilir, kenarlardan çıkan gliserin jelin fazla kısmı tıraşlanarak temizlenir. 4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerine monte edilerek Kanada balsamı ile yapıştırılır. Lama montaj esnasında küçük lamelli olan taraf alta yani lama temas eden yüze gelmeli ve kenar boşlukları büyük lamel tarafından korunmuş olmalıdır. Montaj işlemi biten preparat, 37 ºC’lik etüvde bir süre kurutularak kullanıma hazır hale getirilebilir (1, 12). Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’s acetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyaması gibi çeşitli boyama metotları kullanılabilir. Aşamaları-nın karmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çok tercih edilen Semichon’s acetocarmine (*****) boyama metodudur (10, 12). Bunun için: 1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarmin boya solüsyonuna alınarak 2–4 saat boyanır. 2. Boyanan örnekler %70’lik etil alkolde 15–30 dakika bekletilir. 3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodun büyüklüğüne göre 15 saniye – 10 dakika arasında tutulur. 4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazik alkol ile muamele edilir. 5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etil alkolde 15–30 dakika ve daha sonra %96’lık absolüte etil alkolde her biri 15–30 dakika olmak üzere üç kez alkolden geçirilir. 6. Ksilen veya toluende her biri 10–20 dakika olmak üzere iki kez tutulur. Daha sonra iki lam arasına monte edilerek Kanada balsamı veya Gum-damar ile yapıştırılır. Cestodların boyanması Digenea’lardaki gibi Semichon’s acetocarmine metoduyla yapılabilir. Bunun yanında Borax Carmine (******) ile de boyanmaktadır. Büyük cestodlarda teşhis kriterlerine esas olmak üzere morfolojik farklılık gösteren skoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümünden kesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaç olgun halka alınarak boyanıp ayrı ayrı preparatlara monte edilir. Metrelerce uzunluğundaki cestodun tamamını boyamaya gerek yoktur. Tespit ve boyama esnasında çok dikkatli olmalı, birden fazla tür varsa farklı türlerin skoleks ve halkaları birbirine karıştırılmamalıdır (12). Borax Carmin ile boyama prosedürünün aşamaları şunlardır. 1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık) geçirilir. 2. Hazırlanan Borax – Carmin solüsyonunda 15 dakika boyanır. 3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve %70’lik etil alkol şişelerine alınır. 4. Preparata monte edilerek kanada balsamı ile yapıştırılıp, 37 °C’lik etüvde kurutulur. Nematodların bir kısmı toprakta serbest yaşarken, önemli bir bölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerinde parazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2 cm’den küçük olanları bütün halde bir preparata monte etmek için uygundur. Buna karşın daha büyük nematodlar morfolojik yapılarına göre teşhise yardımcı olacak bölümleri kasilerek ayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinli bloklarda histolojik kesitler alınarak preparatlara monte dilip hematoksilen eosin ile boyanarak teşhis edilirler (12). Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilen nematodlar ksilen veya toluende bekletildikten sonra boyanmadan direkt preparata monte edilebilirler. Eğer %70’lik etil alkolde saklanacaklarsa içerisine %5’lik gliserol ilave edilmesi gerekir (10, 12). Kalıcı preparat yapımında prosedür şu aşamalardan oluşur: 1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde 30 dakika tespit edilir. 2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika, %96’lık absolüte etil alkolde iki kez 30’ar dakika, Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli. 3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanada balsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvde birkaç hafta kurutularak kalıcı preparat haline getirilebilir. Acanthocephala’lar genellikle balık, kaplumbağa, su kuşları nadiren insan ve evcil hayvanların ince bağırsaklarında lokalize olurlar (4, 11, 13). Acanthocephala’lar boyalı veya nematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir. Boyama yapılacaksa; Van Cleave’s hematoxylin veya Mayer’s hematoxylin metodlarıyla ya da cestodlarda olduğu gibi en çok önerilen Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veya yavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibi konaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyük sülükler boyanmadan direkt incelenip % 70’lik etil alkol konulmuş şişelerde boyanmadan saklanırken, küçük sülükler Digenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Parazitlerin iç ve dış yapılarını uygun şekilde korumak için laboratuarlarda değişik metotlar uygulanmaktadır. Teşhis ve eğitim amacıyla kullanılan ve söz konusu metotlarla elde edilen koleksiyonlardan her zaman yararlanılabilir. Sonuç olarak, bu derlemede farklı kaynaklarda dağınık şekilde bulunan Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 181 helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparata montaj metotlarının toplu olarak sunulması gereği vardır. Bunun zaman ve emek kaybını önlemek için helmintoloji alanında yeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir. Metinde geçen kimyasal bileşikler ve formülasyonları (*) AFA (Alkol-Formalin-Asetik asit) fikzatifi 1. Ticari Formalin (HCHO) : 100 ml 2. Etil alkol (C2H5OH, % 95’lik) : 250 ml 3. Glasiyal asetik asit (CH3COOH) : 50 ml 4. Gliserin (C3H5(OH)3) : 100 ml 5. Distile su : 500 ml (**) Gilson’un fikzatifi 1. Nitrik asit (HNO3, % 80’lik) : 15 ml 2. Glasiyel asetik asit (CH3COOH) : 4 ml 3. Civa klörür (HgCl2) : 20 gr 4. Etil alkol (C2H5OH, % 60’lık) : 100 ml 5. Distile su : 800 ml (***)Shaudin’in fikzatifi 1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml 2. Etil alkol (C2H5OH, % 95’lik) : 100 ml 3. Glasiyel asetik asit (CH3COOH) : 15 ml (****) Gliserin jeli bileşimi 1. Jelatin : 10 gr 2. Distile su : 60 ml 3. Gliserin : 70 ml 4. Fenol : 1gr Hazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir. Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonra geniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır. (*****) Semichon’s Acetocarmine (Stok solüsyonu) 1. Glasiyal asetik asit (CH3COOH) : 250 ml 2. Distile su : 250 ml 3. Carmin : 5 gr 4. Etil alkol (C2H5OH, % 70’lik) : 500 ml (******) Borax Carmine bileşimi 1. Carmine : 3 gr 2. Borax (Na2B4O7. 10H2O) : 4 gr 3. Distile su : 100 ml 4. Etil alkol (C2H5OH, % 70’lik): 100 ml Hazırlanışı: Carmin ve borax distile su ile çözünene kadar kaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildikten sonra süzgeç kâğıdından süzülerek kullanılır. KAYNAKLAR 1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8– 227–2. Headquarters, Washington, USA. 2. Anderson RC, 1992. Nematode Parasites of Vertebrates, Their Development and Transmission, CAB Int, UK. p. 1–12. 3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., William Heinemann, London. p. 295–304. 4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368 Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara. 5. Hendrix CM, 1997. Laboratory Procedures for Veterinary Technicians, 3rd. Ed., Mosby, Inc., USA. 6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth- Heinemann, Oxford. p. 181–204. 7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde Evcil Tavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod ve Nematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul. 8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971. Manuel of Veterinary Parasitological Laboratory Techniques, HMSO, Technical Bulletin No:18, London. 9. Pratt PW, 1997. Laboratory Precedures for Veterinary Technicians, 3rd. ed., Mosby Inc., Missouri. 10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary Clinical Parasitology 6th. ed., Iowa State University, Ames, Iowa. 11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th. ed., Bailliere Tindall, London. p.763–777. 12. Upton SJ, 2005. Animal Parasitology, Biology 625 Laboratory Manual, Kansas Satate University, USA. 13. Urquhart GM, Armour J, Duncan JL, Dunn AM and Jennings FW, 1988. Veterinary Parasitology. ELBS, Longman UK. p. 269–279. Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008 PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341Ahmet GÖKÇEN Harran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, Türkiye ÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önem arz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekilde korunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlar örneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir. Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır. Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat. Fixation, Staining and Preparation of Permanent Mounts of Helminths SUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists. Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal and external details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methods are absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size of specimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixation and staining methods of helminths has been discussed. Key Words: Helminth, relaxation, fixation, staining, permanent mounts GİRİŞ Helmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğu sindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10). Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gerekse bu alanda yeni çalışmaya başlayan teknik personel ve akademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır. Çünkü incelenecek örneği her zaman ve her yerde bulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarında müfredat programına göre uygun örnekleri seçerek uygulamalı eğitim birimlerinde kullanılma kolaylığı sağlar (1). Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerin canlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmiş olmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıkla ulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olması gerekir (1, 12). Gerekli laboratuar malzemeleri : 1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselere zarar vermemesi için, 2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesi için kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir. 3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır. 4. Eldiven: Tek kullanımlık olanlar tercih edilir. 5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır. 6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır. 7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır. 8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/Review Geliş tarihi/Submission date: 02 Kasım/02 November 2007 Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008 Kabul tarihi/Accepted date: 06 Mart/06 March 2008 Yazışma /Correspoding Author: Ahmet Gökçen Tel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58 E-mail: agokcen@harran.edu.tr Gökçen A. 178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir. 9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12). Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar : Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvanda her türden yeterli sayıda helmint olmayabilir. O zaman birkaç hayvandan toplanan türlerden preparatlar yapılabilir. Bazı helmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazıları gibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyle durumlarda morfolojik özelliklerine göre teşhise yardımcı olan bölümleri dikkate alınan helmintler, parçalar halinde ayrılarak kalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleri düzenli tutulmalı ve özellikle bölümlere ayrılan örneklerde karışmaya fırsat verilmemelidir. Buna karşın nematodların çoğu ince bir kutikülaya sahip olduklarından boyama ve montaj yapılamayabilir. Bunların tespiti, suyunun giderilmesi ve montajı çok zor olduğu için genellikle içine birkaç damla gliserin ilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitim amacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudan ya da laktofenolde şeffaflandırıldıktan sonra morfolojik özellikleri mikroskopta incelenebilir (12). Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasında aceleci olunmamalı, işlem aşamaları sırası atlanılmadan ve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır. Örneğin alkol serilerinden tam geçirilmeyen ve bunun sonucu tam dehidrasyonu sağlanmayan örnekler preparatlarda bulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarak görülemeyebilir. Bazı helmint örnekleri çok küçük olduğu için gerek temizlerken, gerekse mikroskop altında çalışırken veya örnekleri tespit ve boyama kaplarına naklederken örnekler zarar görüp teşhise yardımcı olan morfolojik özellikleri tahrip olabilir. Bu gibi olumsuzluklara yol açmamak için nazik ve kibar olunmalıdır (1, 11). Kalıcı preparat yapılacak helmintler, iç ve dış detaylarının bozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir. Parazit öldükten sonra vücudunda otolitik reaksiyonlar başlayacağından teşhis kriterleri olan bazı detaylar da dejenere olabilir. Konak hayvan ölünce ektopara-zitler konağı terk ederken endoparazitler belli bir süre sonra ölürler ve kısa süre içinde dejenere olmaya başlarlar. En iyi örnek, konak hayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilir kesilmez elde edilen canlı helmintlerdir. Cestod ve trematodlarda dejenerasyon ölümden birkaç dakika sonra başlarken nematodlarda bu süre birkaç saate kadar uzayabilir (10, 12). Helmintlerin boyanarak kalıcı preparat haline getirilme aşamaları : a. Helmintlerin konaklardan elde edilmesi, b. Helmintlerin temizlenmesi, c. Helmintlerin relaksatiyonu-gevşetilmesi d. Helmintlerin fikzasyonu-tespiti e. Helmintlerin boyanması ve kalıcı preparatlara monte edilmesi. a. Helmintlerin konaklardan elde edilmesi: İyi bir preparat yapımı için, örneklerin bütün ve canlı olarak elde edilmesi gerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardan kısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirim sistemi özafagustan rectuma kadar bütün olarak açılır. Büyük hayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuş bölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozaya yapışmış helmintleri çıkarmak için zorlamamalı, kendiliğinden ayrılması için içerisine fizyolojik tuzlu su ilave edilmiş bir küvete konularak, birkaç saat buzdolabında masere edilmek suretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleri bağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyon iğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmaları gerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobu kullanılabilir. Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarının açığa çıkarak zarar görmesini önlemek için; toplama, temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşak tüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılar kullanılmalıdır. Organın dokusu içerisinde bulunan helmintleri toplamak için bu organları küçük parçalara ayırarak incelemek gerekir. Uzun süre önce ölmüş veya dondurulmuş halde olan örnekler kalıcı preparat yapımı için uygun değildir (9, 12). b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlice alınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmış dışkı artıkları ve benzeri yabancı partiküllerden serum fizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir. Çok küçük örnekler stereomikroskop altında temizlenebilir. Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı ve kaplar çalkalanmamalıdır (12). c. Canlı helmintlerin relaksatiyonu-gevşetilmesi: Relaksatiyon veya gevşetme, helmintlerin doğal görünümde kalmalarının yapay olarak sağlanmasını içeren bir süreçtir. Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumak halinde toplanmaları nedeniyle montaj esnasında teşhise yarayan morfolojik özellikleri tahrip olabilir. Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlı hayvanların (Balık, kurbağa vb.) deri, solungaç ve burun boşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlar balıkların 1/4000’lik formalin solüsyonunda 30 dakika kadar bekletilmeleri ile gevşemiş halde toplanırlar. Küçük Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 179 trematodlar preparata yerleştirilir. Üzerine birkaç damla serum fizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saat kadar bekletilerek gevşetilebilir. Çok küçük olanları diseksiyon mikroskobu kullanılarak puar veya ince bir pipet yardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonunda saklanırlar (3, 4, 13). Digenea’lar halk arasında kelebek olarak adlandırılan, genellikle ince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi iç organ boşluklarında bulunan trematodlardır. Bunlar yerleştiği organların diseksiyonu ve içeriğin çeşme suyu altında yıkanması ile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsa osmotik şok sonucu yırtılmalara ve dejenerasyonlara maruz kalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisinde birkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler. Bir lam boyutundan daha uzun olan örnekler birkaç kez katlanarak lam boyutuna getirilebildiği gibi deney tüpleri veya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibi uygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler (1, 3, 4, 11, 13). Cestodlar, segmentli yapıda olup genellikle konakların sindirim sistemi lumeninde yapışma organelleri ile tutunmuş halde bulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırça yardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojik veya % 5-10’luk etil alkolden herhangi birisinde 5–15 dakika bekletilerek gevşetilirler (4, 6, 9, 11). Nematodlar dışkı artıklarından temizlendikten sonra doğrudan glasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonra kıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etil alkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir. Buna engel olmak için temizlenen nematodlar direkt kaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, nematodların hem yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (6, 12). Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğu gibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esas olan dikencikler bulunduğu için daha fazla itina ister. Lumene yapışmış halde bulunan proboscis kısmı çok dikkatli bir şekilde kopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içine alınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11). Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyuna alınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlerce beklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlı suda bekletme yöntemidir (1). d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespit dokuların canlı iken sahip olduğu özelliklerinin muhafaza edilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklı kalması için iyi bir şekilde tespit edilmesi gerekir. Tespitin amacı gevşetilmiş örneklerin gerçek boyutunda kalmalarını sağlamak ve bünyelerinde olabilecek metabolik ve dokusal değişiklikleri durdurmaktır (12). Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay ve ucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanında AFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi (***) de kullanılabilir (1). Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendikten sonra doğrudan AFA solüsyonu ile tespit edilirken, büyük olanları iki lam arasına konularak 48 saat süreyle tespit edilip % 70’lik etil alkolde uzun süre saklanabilirler (12). Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30 dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudan AFA solüsyonuna alınırken, büyük olanları morfolojik yapılarına göre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacak şekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamların yanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerek cestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’larda olduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra % 70’lik etil alkole alınarak uzun süre saklanabilirler (12). Nematodlar glasiyal asetik asitte hem tespit edilip hem de saklanabilirler. Bunun yanında direkt kaynama derecesindeki %70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, hem nematodların yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (1, 6, 12). Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonuna alınarak tespit edilir. AFA solüsyonunda 3–7 gün tespit edildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir. İşlemler esnasında ve bu helmintleri naklederken çok dikkatli olunmalıdır. Aksi halde pens ile baş kısmından tutulursa teşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir (12). Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyinden AFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler. Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildikten sonra % 70’lik etil alkolde uzun süre saklanabilirler (1). e. Helmintlerin boyanması ve kalıcı preparata monte edilmesi: Monogenea’lar çift lamel arası gliserin jeli (****) ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparat haline getirilirler. Şeffaf oldukları için iç organelleri kolaylıkla görülebilir ve boyanmadan kalıcı preparat yapılabilirler (12). Bunun için: 1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmint bir pipet veya puar yardımıyla 22 x 22 mm veya daha büyük ölçekli bir lamel üzerine yerleştirilir. 2. Hava kabarcığı oluşturmadan üzerine bir damla gliserin jeli damlatılır. Gökçen A. 180 3. Üzerine yavaşça daha küçük bir lamel kapatılıp serin bir yerde bir süre bekletilir, kenarlardan çıkan gliserin jelin fazla kısmı tıraşlanarak temizlenir. 4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerine monte edilerek Kanada balsamı ile yapıştırılır. Lama montaj esnasında küçük lamelli olan taraf alta yani lama temas eden yüze gelmeli ve kenar boşlukları büyük lamel tarafından korunmuş olmalıdır. Montaj işlemi biten preparat, 37 ºC’lik etüvde bir süre kurutularak kullanıma hazır hale getirilebilir (1, 12). Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’s acetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyaması gibi çeşitli boyama metotları kullanılabilir. Aşamaları-nın karmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çok tercih edilen Semichon’s acetocarmine (*****) boyama metodudur (10, 12). Bunun için: 1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarmin boya solüsyonuna alınarak 2–4 saat boyanır. 2. Boyanan örnekler %70’lik etil alkolde 15–30 dakika bekletilir. 3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodun büyüklüğüne göre 15 saniye – 10 dakika arasında tutulur. 4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazik alkol ile muamele edilir. 5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etil alkolde 15–30 dakika ve daha sonra %96’lık absolüte etil alkolde her biri 15–30 dakika olmak üzere üç kez alkolden geçirilir. 6. Ksilen veya toluende her biri 10–20 dakika olmak üzere iki kez tutulur. Daha sonra iki lam arasına monte edilerek Kanada balsamı veya Gum-damar ile yapıştırılır. Cestodların boyanması Digenea’lardaki gibi Semichon’s acetocarmine metoduyla yapılabilir. Bunun yanında Borax Carmine (******) ile de boyanmaktadır. Büyük cestodlarda teşhis kriterlerine esas olmak üzere morfolojik farklılık gösteren skoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümünden kesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaç olgun halka alınarak boyanıp ayrı ayrı preparatlara monte edilir. Metrelerce uzunluğundaki cestodun tamamını boyamaya gerek yoktur. Tespit ve boyama esnasında çok dikkatli olmalı, birden fazla tür varsa farklı türlerin skoleks ve halkaları birbirine karıştırılmamalıdır (12). Borax Carmin ile boyama prosedürünün aşamaları şunlardır. 1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık) geçirilir. 2. Hazırlanan Borax – Carmin solüsyonunda 15 dakika boyanır. 3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve %70’lik etil alkol şişelerine alınır. 4. Preparata monte edilerek kanada balsamı ile yapıştırılıp, 37 °C’lik etüvde kurutulur. Nematodların bir kısmı toprakta serbest yaşarken, önemli bir bölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerinde parazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2 cm’den küçük olanları bütün halde bir preparata monte etmek için uygundur. Buna karşın daha büyük nematodlar morfolojik yapılarına göre teşhise yardımcı olacak bölümleri kasilerek ayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinli bloklarda histolojik kesitler alınarak preparatlara monte dilip hematoksilen eosin ile boyanarak teşhis edilirler (12). Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilen nematodlar ksilen veya toluende bekletildikten sonra boyanmadan direkt preparata monte edilebilirler. Eğer %70’lik etil alkolde saklanacaklarsa içerisine %5’lik gliserol ilave edilmesi gerekir (10, 12). Kalıcı preparat yapımında prosedür şu aşamalardan oluşur: 1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde 30 dakika tespit edilir. 2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika, %96’lık absolüte etil alkolde iki kez 30’ar dakika, Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli. 3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanada balsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvde birkaç hafta kurutularak kalıcı preparat haline getirilebilir. Acanthocephala’lar genellikle balık, kaplumbağa, su kuşları nadiren insan ve evcil hayvanların ince bağırsaklarında lokalize olurlar (4, 11, 13). Acanthocephala’lar boyalı veya nematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir. Boyama yapılacaksa; Van Cleave’s hematoxylin veya Mayer’s hematoxylin metodlarıyla ya da cestodlarda olduğu gibi en çok önerilen Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veya yavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibi konaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyük sülükler boyanmadan direkt incelenip % 70’lik etil alkol konulmuş şişelerde boyanmadan saklanırken, küçük sülükler Digenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Parazitlerin iç ve dış yapılarını uygun şekilde korumak için laboratuarlarda değişik metotlar uygulanmaktadır. Teşhis ve eğitim amacıyla kullanılan ve söz konusu metotlarla elde edilen koleksiyonlardan her zaman yararlanılabilir. Sonuç olarak, bu derlemede farklı kaynaklarda dağınık şekilde bulunan Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 181 helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparata montaj metotlarının toplu olarak sunulması gereği vardır. Bunun zaman ve emek kaybını önlemek için helmintoloji alanında yeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir. Metinde geçen kimyasal bileşikler ve formülasyonları (*) AFA (Alkol-Formalin-Asetik asit) fikzatifi 1. Ticari Formalin (HCHO) : 100 ml 2. Etil alkol (C2H5OH, % 95’lik) : 250 ml 3. Glasiyal asetik asit (CH3COOH) : 50 ml 4. Gliserin (C3H5(OH)3) : 100 ml 5. Distile su : 500 ml (**) Gilson’un fikzatifi 1. Nitrik asit (HNO3, % 80’lik) : 15 ml 2. Glasiyel asetik asit (CH3COOH) : 4 ml 3. Civa klörür (HgCl2) : 20 gr 4. Etil alkol (C2H5OH, % 60’lık) : 100 ml 5. Distile su : 800 ml (***)Shaudin’in fikzatifi 1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml 2. Etil alkol (C2H5OH, % 95’lik) : 100 ml 3. Glasiyel asetik asit (CH3COOH) : 15 ml (****) Gliserin jeli bileşimi 1. Jelatin : 10 gr 2. Distile su : 60 ml 3. Gliserin : 70 ml 4. Fenol : 1gr Hazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir. Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonra geniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır. (*****) Semichon’s Acetocarmine (Stok solüsyonu) 1. Glasiyal asetik asit (CH3COOH) : 250 ml 2. Distile su : 250 ml 3. Carmin : 5 gr 4. Etil alkol (C2H5OH, % 70’lik) : 500 ml (******) Borax Carmine bileşimi 1. Carmine : 3 gr 2. Borax (Na2B4O7. 10H2O) : 4 gr 3. Distile su : 100 ml 4. Etil alkol (C2H5OH, % 70’lik): 100 ml Hazırlanışı: Carmin ve borax distile su ile çözünene kadar kaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildikten sonra süzgeç kâğıdından süzülerek kullanılır. KAYNAKLAR 1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8– 227–2. Headquarters, Washington, USA. 2. Anderson RC, 1992. Nematode Parasites of Vertebrates, Their Development and Transmission, CAB Int, UK. p. 1–12. 3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., William Heinemann, London. p. 295–304. 4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368 Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara. 5. Hendrix CM, 1997. Laboratory Procedures for Veterinary Technicians, 3rd. Ed., Mosby, Inc., USA. 6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth- Heinemann, Oxford. p. 181–204. 7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde Evcil Tavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod ve Nematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul. 8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971. Manuel of Veterinary Parasitological Laboratory Techniques, HMSO, Technical Bulletin No:18, London. 9. Pratt PW, 1997. Laboratory Precedures for Veterinary Technicians, 3rd. ed., Mosby Inc., Missouri. 10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary Clinical Parasitology 6th. ed., Iowa State University, Ames, Iowa. 11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th. ed., Bailliere Tindall, London. p. 763–777. 12. Upton SJ, 2005. Animal Parasitology, Biology 625 Laboratory Manual, Kansas Satate University, USA. 13. Urquhart GM, Armour J, Duncan JL, Dunn AM and Jennings FW, 1988. Veterinary Parasitology. ELBS, Longman UK. p. 269–279. Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008 PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341

http://www.biyologlar.com/helmintlerde-tespit-boyama-ve-kalici-preparat-yapimi

BİYOLOJİK TÜR KAVRAMLARI NELERDİR

1. Morfolojik tür kavramı: Buna Linne veya klasik tür kavramı da denir. Cronquist’e göre “Tür, diğerlerinden sürekli olarak farklı kalan gruplara denir”. Diğer bir deyişle; birbirine fenotip bakımından yeterli derecede benzerlik gösteren fertler topluluğudur. 2. Biyolojik tür kavramı: Biyolojik tür kavramı, günümüzde sistematikçiler tarafından en çok benimsenen kavramdır. Biyolojik tür; gerek fiili olarak gerekse de potansiyel olarak çiftleşebilen doğal populasyonlardır. Yani türü oluşturan toplulukların 3 önemli özelliği vardır. Bunlar; • a. Döl verme topluluklarıdır, • b. Ekolojik bir birimdirler, • c. Genetik bir birimdirler. 3. Genetik tür kavramı Biyolojik tür kavramına çok yakındır. Buna göre, populasyonun gen akışı ve üreme bakımından izole olması biyolojik bir olaydır. Ama, türü tanımlamanın yolu, populasyonlar veya populasyon grupları arasında genetik farklılığı veya uzaklığı ölçmektir. Türün bireyleri populasyon içinde ortak bir gen havuzunu paylaşır ve yeni neslin bireyleri bir önceki kuşağın gen havuzunun yeniden düzenlenmesiyle ortaya çıkar. Genetik türün zorluğu populasyonlar arasındaki gerçek genetik farklılığı az bilmemizden kaynaklanır. 4. Paleontolojik tür kavramı Paleontologlar, fosillerle çalıştıklarından, ideal tür ile yetinmeleri zordur. Materyalleri çoğu zaman noksandır. Paleontologlar felsefi bakımdan biyolojik tür kavramına dayanmalarına rağmen, pratikte başka tanım yolları ararlar. Ayrıca fosillerin ortaya çıktıkları, sonra kayboldukları zaman boyutuyla ilgilenirler. Yani fosillere dayanılrak yapılan bir tanımlamadır. 5. Evrimsel tür kavramı Biyolojik (ve genetik) tür kavramları birçok yönden faydalı olmasına karşın doğrudan evrimi ifade etmez. Biyolojik tür kavramının dayandığı özelikler, genetik tür tanımı evrimsel açıdan önemli olmakla birlikte, doğrudan evrimle ilgili hiçbir ölçüt içermemektedir. Biyolojik tür tanımı, evrimle türememiş bir türe de aynı biçimde uygulanabiler. Evrimsel bir tür, diğerlerinden farklı olarak türeyen (evrilen) ve kendi eşşiz evrimsel rolü ve eğilimleri olan bir nesiller dizisidir. 6. Kıladistik tür kavramı Evrim soy ağacında internodlar (ara bölgeler) arasında kalan fertlerdir. Evrimsel tür kavramı az sayıda modifikasyonla benimsenir. “Bir tür, kimliğini diğer nesiller dizisinden farklı tutan ve kendi evrimsel eğilimleri ile tarihi geçmişi olan tek bir atasal ve oğulsal populasyonlar dizisidir”. Bu tanım kıladistik bakış açısını vurgulamakta ve evrimsel tür tanımından çok az farklıdır. Tanımda vurgulanan “tek bir dizi” kıladogramdaki tek bir dala denk gelmektedir. 7. Biyosistematik tür kavramı Yukarıda verilen başlıca tür kavramlarına ek olarak, çok sayıda bakış açısı vardır. Bu tür kavramları, Linné hiyerarşinin sınırlarının ötesindeki, üreme ilişkilerin yansıtmaya çalışırlar. Biyosistematik çalışma yapan (Deneysel) taksonomistler birçok sözcük ortaya atmışlardır. Bunların en yaygın olanları ekotip, Ekotür ve Sönotür’tir. Ekotip, yakın akraba ama ekolojik olarak farklı ortamlarda yetişen populasyonları ifade eder. Ekotür; benzer ama oluşturdukları melezlerin canlılığı çok düşüktür; Sönotür ise suni olarak bile çapraz olarak döllenemeyenlerdir. Agregat tür, çeşitli nedenlerle iyi ayırdedilemeyen tür komplekslerini ifade eder, agregat türün öğelerine bazen mikrotür denir. 8. Tipe bağlı tür Esas olan tip formudur. Tip sabit ve değişmezdir. Bu tipin özelliğini gösteren fertler aynı türdedir. En eski tür tanımları bu grupta toplanır. Tip: Türün isimlendirildiği o türe ait örnelerdir. 9. Nominalist tür (ismen varolan, sembolik) Doğada esas olan sadece fertlerdir. Yani verilen isimler sembollerdir. Ama fertler gerçektir. Tür doğada gerçek olarak değil düşünce olarak mevcuttur.

http://www.biyologlar.com/biyolojik-tur-kavramlari-nelerdir

Tıbbi Mantarlar

Canlı bilimi olarak adlandırılan ve canlılarla uğraş alanı bulan bilim dalına biyoloji adı verilmektedir.Biyoloji bilimi tarih içerisinde çok çeşitli ve ilkelden modern düzeye doğru bir gelişme gösteren bilimler toplamından oluşmuştur.Çok çeşitli diyorum,sadece sistematik bile kendi içerisinde taksonomik inceleme alanları ile birçok alt dala ayrılmış;olay sadece taksonomi ile bitmemiş,farmakoloji,embriyoloji,mikrobiyoloji,genetik vb Bu bilim dalları gibi bir çok alt dala ayrılmış ve bunların inceleme alanları ilkelden modern düzeye doğru olmuştur. İlkelden modern düzeye olmak zorunda zaten…Öyle değil mi?Bir çok aletin gelişimi 16. yy dan itibaren olmamış mıdır?Teknik cihazların olmadığı yada ilkel sayılabilecek aletlerle ne yapılabilir?Bunlar sorgulandığı zaman sorunun cevabı kendiliğinden ortaya çıkmaktadır.İlkel olduğu bilim tarihi incelendiğinde de daha belirgin bir şekilde ortaya çıkmaktadır. Yukarıda belirttiğim gibi,aletlerin gelişimi ile beraber,biyoloji bilimi de daha modern manada gelişim sahası içerisine girmiştir.Peki bu aletler sadece biyoloji bilimi ile meydana getirilmiş aletler midir?Tabi ki hayır…Bu aletlerin geliştirilme safhası içerisinde fizik,kimya,matematik gibi bir çok bilim dalından da istifade edilmiştir.Bu duruma göre “biyoloji bilimi diğer bilim dalları ile de iç içedir” diyebiliriz.Aslında doğru ama bir o kadar dar kapsamlı olan bu söylemi genişletmek istiyorum;”bütün bilim dalları bir biri ile iç içedir” deme ihtiyacını kendi içimde hissediyorum… Biyoloji biliminin alt dalları olduğunu ifade etmiştim…Bu alt dallardan birisi de mikrobiyoloji adı verilen bilim dalıdır.Basit bir tanımlama ile ifade edersek,”mikrobiyoloji, canlı organizmalarda parazit olarak yaşayan canlıların ve bu canlılar ile konak olan canlıların birbiri ile olan etkileşimlerini inceler” diyebiliriz… Mikrobiyoloji,parazit olarak yaşayan ve göz ile görülen bitten pireden tutunda;bakteri,virüs gibi gözle görülemeyen parazitler üzerinde de inceleme yapmaktadır.Bu incelemeyi yaparken,sadece bu canlılar değil,bu canlıların konakçı ile yani üzerinde yaşadığı canlılar ile olan ilişkilerine de eğilmektedir. Mikrobiyolojinin incelediği bir sınıf ise mantarlar olup,bu mantarlar genel olarak gözle görülemeyen ve canlı organizmaya zarar veren tipte mantarlardır.Mantarların gözle görülenleri genel olarak hastalık yapmamakta,ancak amanita gibi mantarların yenmesi sonucu zehirlenmeler meydana gelmektedir ki;bu duruma “misetismus” adı verilmektedir. Mantarlar ökaryotik canlılar olup eşeyli veya eşeysiz üreyen türleri mevcuttur.Hücre duvarları vardır.Cryptococcus neoformans gibi mantarlarda ise kapsül bulunmaktadır.Hücre duvarlarının yapısında kitin,glukan ve manan yer almaktadır. Bazı mantarlar oda ısısında küf şeklinde,insan vücudunda ise maya şeklinde çoğalmaktadır.Bu tip mantarlara dimorfik mantarlar adı verilmektedir. Mantarların neden olduğu rahatsızlıklardan bir kısmını da irdelemeden edemiyeceğim…Bunlardan ilki nezle benzeri reaksiyona neden olmalarıdır.Bazı mantarların neden olduğu bu reaksiyonlar virüslerin neden olduğu nezleden daha uzun süreli ve daha ağırdır. Bazı mantarlar deri dışı yerlerde,örneğin saç,kıllar vb yerlerde rahatsızlıklara neden olur.Bu tip mantarlara örnek olarak Malassezia furfur (yaptığı hastalık;pityriasis versicolor),Exophiala werneckii(yaptığı hastalık;tinea nigra) verilebilinir. Bazı mantarlar deride rahatsılıklara neden olabilir.Bu tip mantarlara örnek olarak Microsporum canis(yaptığı hastalık;tinea capitis) verilebilinir. Bu tip mantarların yanı sıra iç organlarda rahatsızlık veren mantarlarda vardır.Menenjit gibi rahatsızlıklara neden olabilen bu tip mantarlar ise daha çok vücudun zayıf kaldığı durumlarda etkilidirler. Mantarlardan korunmak için bazı tedbirler mevcuttur.Vücut hatlarının kuru tutlması,ayağın koruyucu bir ayakkabı ile kapatılması ve alerjen olunan şeylerden kaçınılması söylenebilir…

http://www.biyologlar.com/tibbi-mantarlar

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz.  Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın.  İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın.  Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir. Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a. Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Notaha yoğun hazırlanan (% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur.Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri-1

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Kene İle Bulaşan Hastalıklar

ÖZET Parazitlerin neden olduğu hastalıklar önemli sağlık problemidir. Endoparazit ve ektoparaziter hastalıklar mevcuttur. Kenelerle bulaşan hastalıklar en sık görülen vektör kaynaklı hastalıklardır. Keneler bakteri, virüs spiroket, protozoa, nematod ve toksinler gibi patojenleri yayabilir ve böylece ektoparaziter kaynaklı hastalıklara sebep olurlar. Ülkemizde keneler için iklim koşulları, bitki örtüsü ve yüzey şekli bakımından uygun koşullar vardır. Bu makalemizde kenelerle bulaşan hastalıkları özetlemeye çalıştık. SUMMARY Paraziter diseases are important medical problems.There are endoparasitic and ectoparasitic diseases. Tick-borne diseases are the most common vector-borne illnesses. Ticks can spread bacteria, viruses, spiroketia, protozoa, nemadot and toxins and by so they made ectoparasitic diseases. Our country has suitable conditions to continue biologic activity of ticks acording to seasons, plants and surface forms. In this article we have tried to summary tick-borne diseases. İrfan Nuhoğlu1, Murat Aydın1, Süleyman Türedi2, Abdülkadir Gündüz2, Murat Topbaş3 1KTÜ Tıp Fakültesi İç Hastalıkları Anabilim Dalı, 2Acil Tıp Anabilim Dalı, 3Halk Sağlığı AD, Trabzon. Anahtar Kelimeler: Kene, Kırım- Kongo Kanamalı Ateşi, Lyme Hastalığı. Key words: Tick, Crimean-Congo Haemorhagic Fever, Lyme disease. Sorumlu yazar/ Corresponding author: İrfan Nuhoğlu, KTÜ Tıp Fakültesi İç Hastalıkları AD, Trabzon irfannuhoglu@hotmail.com GİRİŞ Parazitlere bağlı hastalıklar günümüzde önemli sağlık problemlerindendir. Bu durum endoparazitlerden kaynaklanabileceği gibi; kene gibi ektoparazitlerden de kaynaklanır (1). Keneler tüm dünya üzerindeki memeli, kuş ve sürüngenlerden kan emen eksternal parazitlerdir (2). Keneler Araknidea sınıfına ait artropodlardan olup balıklar dışındaki tüm omurgalıların kanlarıyla beslenebilirler. Dünya üzerinde omurgalıları etkileyen 899 adet kene türü mevcuttur. Bunların 185’i Argasidae, 713’ü İxodidae, 1 tanesi ise Nuttalliellidae soyuna bağlıdır (5,6). Bakteri, spiroket, rickettsia, protozoa, virüs, nematod ve toksinler gibi birçok farklı patojeni taşıyabilir ve yayabilirler (3). Tıbbi ve ekonomik önemleri insanlara ve hayvanlara hastalık bulaştırabilme kabiliyetlerinin olduğunun fark edilmesiyle anlaşılmıştır. İnsanlar üzerinde oluşturdukları önemli sağlık sorunları yanında çiftlik hayvanları üzerinde büyük ekonomik kayıplara neden olabilirler. Türkiye; iklimi, yüzey şekli ve bitki örtüsü bakımından, kenelerin biyolojik aktivitelerini sürdürmeleri için uygun koşullara sahip bir ülkedir (7-9). Günümüze kadar kullanılan hiçbir mücadele yöntemi, tam bir kene eradikasyonu sağlayamamıştır. Bugünkü bilgiler ışığında kene eradikasyonunun neredeyse imkânsız olduğu kabul edilmektedir. KIRIM KONGO KANAMALI ATEŞİ (KKKA) KKKA Afrika’nın bazı bölgelerinde, Asya, Doğu Avrupa ve Orta Doğu’da görülen ölümcül bir viral enfeksiyondur (10,11). Bildirilmiş mortalite oranı % 3-30 olan bu hastalığa neden olan virüs Bünyavirüs ailesinden Nairo virüs genusuna bağlı olup; insanda ciddi hastalığa neden olur (11-12). Tıbbi olarak önemi kene ile taşınan virüsler arasında en yaygın coğrafi dağılıma sahip olmasıdır(13). Hastalık ilk kez 12.yy’da bugünkü Tacikistan topraklarında hemorajik bir sendrom olarak tanımlanmıştır (10). KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden 200 Sovyet askerinde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda gösterildi (10,11). Virüsün yaşam çevrimi ‘kene-omurgalı-kene’ şeklinde olup; hayvanlarda hastalık yaptığına dair bir delil yoktur (11). Virüsler Hyalomma genusu keneleri ile taşınır. TAF Preventive Medicine Bulletin, 2008: 7(5) 462 Resim 1. Türkiye’de Kırım Kongo Kanamalı Ateşi Vakalarının Dağılımı Enfekte anneden yumurtaya transovarial; larvanymph- erişkin şeklinde transstadial olarak geçiş gösterirler. Virüsün Avrupa’daki ana taşıyıcısı Akdeniz hyalomması olarak bilinen H.marginatum marginatum’dur (10,11). Komşu bazı ülkelerde 1970’lerden beri epidemiler bildirilmesine rağmen Türkiye’de virüsle enfekte vakalar ilk kez 2002 yılında bildirilmiştir. 2002-2005 yılları arasında Sağlık Bakanlığı’na 500 vaka bildirilmiş ve bunların 26’sı (% 5,2) ölmüştür (Resim 1) (13-16). Türkiye’de ki salgında vakaların % 90’ı çiftçilerdi (13,14). İnsan vücudu; enfekte kenelerin ısırması ile veya hasta olan bir kişiyle enfeksiyonun akut fazı sırasında temas ettikten sonra enfekte olabilir. Ayrıca içinde virüs bulunan kan ve dokularla temastan sonra geçiş olabilir. Hastalığın ortaya çıktığı insan vücudu virüsün bilinen tek konağıdır (17). Hastalığın seyrinde 4 faz vardır: 1. İnkübasyon fazı kene ısırığını takiben 3-7 gündür (18). Bu dönemde herhangi bulgu vermez. Türkiye’de 5,5 gün olan bu fazın süresi viral doz ve bulaşma yoluna bağlıdır (12). 2. Prehemorajik faz; ani yükselen ve 39-41 derece arasında seyreden ateşle karakterizedir. Ateş 4-5 gün sebat eder(10). Baş ve kas ağrısı, baş dönmesi, ishal, burun akıntısı ve kusma olabilir (19).Yüz boyun ve göğüste hiperemi, skleral konjesyon, konjuktivit görülebilir. 1-7 gün sürebilen bu fazın ortalama süresi 3 gündür(10). 3. Hemorajik faz; genellikle 2-3 gün gibi kısa sürer. Genellikle hastalığın 3-5. günlerinde başlar ve hızlı bir seyir gösterir. Bu dönemin ateşle herhangi bir ilişkisi yoktur (10). Hemoraji peteşiden başlayarak, müköz membran ve derideki büyük hematomlara kadar ilerleyebilir. Diğer bölgelerden kanamalar vajen, diş eti ve serebral kanamaları içerir(20). En sık kanayan bölgeler ise burun, GİS (hematemez, melena ve intraabdominal), genital (menometroraji), idrar (hematüri) ve solunum yollarıdır. Türkiye’de vakaların % 20-40’ında hepatomegali; % 14-23’ünde ise splenomegali bulunur (15). 4. Konvalesan faz hastalık başlamasıyla beraber 10-20 gün içinde başlar. Bu dönemde değişken nabız, taşikardi, komplet saç kaybı, polinörit, solunum zorluğu, kserostomi, görme azlığı, işitme kaybı, hafıza kaybı olabilir(10). Tanıda trombositopeni, lökopeni, AST-ALT-LDHCKP düzeylerinde artış, PT ve aPTT sürelerinde uzama, fibrinojen düzeyinde azalma ve fibrin yıkım ürünlerinde artma görülebilir. CBC ve Biyokimyasal testler 5-9 günde normal seviyelerine inerler (21). Virüs izolasyonu 2-5 günde sağlanabilir ama hücre kültürleri sensitiviteden yoksundur ve genellikle hastalığın ilk 5 gününde karşılaşılan yüksek viremi ilişkisini gösterir (22). KKKA virüs enfeksiyonunun hızlı laboratuar teşhisi için seçilecek metot Revers Transkriptaz PCR’dir. Bu yöntem hızlı, yüksek sensitif ve yüksek spesifiktir (23). Hastalık ortaya çıktıktan sonra ilk 7 gün içinde İg M ve İg G TAF Preventive Medicine Bulletin, 2008: 7(5) antikorları serolojik olarak ELİSA ve İmmünfloresan yöntemi ile tespit edilebilir(24). Tedavinin temeli; trombosit, TDP ve eritrosit ile yapılan destekleyici tedaviye dayanır. Hastada potansiyel kanama alanları tespit edilmeli ve bulaştırma riski için koruyucu önlemler alınmalıdır. Sıvı elektrolit dengesine dikkat edilmelidir. Etki mekanizması açık olmamakla beraber Ribavirin tavsiye edilen antiviral ajandır. Bu ilacın akut respiratuar sendrom tedavisinde kullanımına bağlı hemolitik anemi, hipokalsemi ve hipomagnezemi yan etkileri bildirilmiştir (25,26). ROCKY DAĞLARI BENEKLİ ATEŞİ (RDBA) Amerikan Köpek Kenesi (Dermecentor variabilis) ile taşınan bakteriyel (Ricketsia ricketsii) bir enfeksiyondur (27). Kan damarlarının endoteliyal ve düz kas hücrelerini etkileyen küçük, pleomorfik,zorunlu hücre içi parazitidir. Hastalık Amerika’nın kuzeybatısında ilk kez 19.yy ın sonlarında tanımlanmıştır. Hastalık etkeni ajan ise 1900’lü yılların başlarında Howard Ricketts tarafından tanımlanmıştır (28). İnsandan insana geçiş tanımlanmamıştır (29). Hastalık kuzey, orta ve güney Amerika da endemiktir. İsmine rağmen yıllık vakaların sadece % 2’si Rocky dağları bölgesinde görülür (27). 5-9 yaşlarındaki çocuklar ve 60 yaşın üstündeki erişkinler olmak üzere iki tepesi olan bimodal yaş dağılımına sahiptir. 1998 yılında 365 vaka bildirilmiştir (29). Çoğu vaka 1 Mayıs-31 Temmuz arasında bildirilir ki bu dönem köpek kenesi populasyonunun en yüksek seviyede olduğu dönemdir. Hastalık çoğunlukla vahşi hayvan ve kenelerin birlikte bulundukları alanlarda ortaya çıkar. İmmatür evrelerde keneler tarla faresi gibi küçük kemirgenler üzerinde; erişkin olanlar ise insan ve köpek gibi daha büyük canlılar üzerinde yaşarlar (27). Ricketsia ile enfekte olan hastalar genellikle ısırık sonrasındaki 5-10 günlük bir inkübasyon periyodunu takiben hastalık ortaya çıktıktan sonraki ilk hafta içinde doktora başvururlar (30). Hastalık; ateş, bulantı, kusma, iştahsızlık, baş ve kas ağrısını içeren başlangıç belirtileri verir (27,31). Ateşin 2-5’ inci gününde önkol, el ve ayak bileği üzerinde küçük, düz, pembe ve kaşıntısız noktalar şeklinde benekli bir döküntü gelişir (30,31). Bu benekler üzerlerine basınç uygulandığında solarlar. Hastalığa ait bu karakteristik döküntü genellikle 6. güne kadar ortaya çıkmaz ve hastaların % 35-65 inde görülür (31,32). Döküntü genç hastalarda yaşlılara göre daha erken gelişir (30). Döküntü daha sonra avuç içi ve ayakaltı dâhil vücudun geri kalan bölümlerine yayılır (27). Bu durum ise hastaların % 50-80’ inde ve ancak geç evrelerde görülebilir. Hastaların % 10-15’ inde ise hiçbir zaman döküntü gelişmez (30,31). Temel laboratuar testlerinde normal veya hafifçe baskılanmış WBC, trombositopeni, yükselmiş karaciğer transaminazları ve hiponatremi bulunur. BOS incelendiğinde monosit hâkimiyeti olan bir beyaz küre artışı tespit edilir (31,32). Hastalığın ensefalit, non kardiyojenik pulmoner ödem, ARDS, kardiyak aritmiler, koagülopati, GİS kanaması ve deri nekrozunu da içeren major komplikasyonları vardır. Eğer tedavi edilmezse 8-15 gün içerisinde ölüm gerçekleşebilir. Mortalite oranı tedavi edilmemiş vakalarda % 25; tedavi edilmiş vakalarda % 5 olarak rapor edilmiştir (28). Tanı öykü ve fizik muayeneye dayanır. Eğer döküntü mevcut ise rickettsial organizma deriden yapılan biyopsideki vasküler endotel içinde direk immünofloresan veya immünoperoksidaz boyama yöntemiyle tespit edilebilir (31,33). Ama bu yöntem çok sık kullanılmamaktadır (34). Seroloji tanıyı destekleyebilir ancak bu da hastalığın ortaya çıkışından 7-10 gün sonra pozitifleşir (31). Mümkün olan en kısa sürede antibiyotik tedavine başlamak önemlidir (27,35). Tetrasiklin ve kloramfenikol tedavide etkindir. Bazı hastalarda doksisiklin birinci tercihtir. Tedavi en az 5-7 gün devam etmeli veya hasta en az iki gün afebril olana kadar sürmelidir (31,36). Ölümlerin çoğu medikal tedavideki gecikme nedeniyledir. Hastalık erken fark edilip tedavi edilirse hızlı bir düzelme gösterir (27). LYME HASTALIĞI Kalp, eklem ve sinir sistemini de içeren; ciddi problemler oluşturabilen Lyme hastalığı siyah bacaklı olarak adlandırılan geyik kenesi (İxodes scapularis) ile taşınan bir bakteriyel hastalıktır (27). Sıcaklık 35 Fahrenheit üzerinde olduğu sürece tüm yıl boyunca aktif kalabilirler. Zirve aktivite ayları nymphler için Mayıs-Haziran; erişkinler için ise Ekim-Kasım aylarıdır. Borelia burgdorferi adlı spiroketin neden olduğu Lyme hastalığı hem ABD de hem de dünyada kene ile taşınan en yaygın hastalıktır (28,35,36). Birleşik devletlerde ilk kez 1975 yılında Connecticut’ta bulunan Lyme bölgesinde çok fazla sayıda çocukta görülen artrit vakaları sonucunda bildirildi (26). Borelia hastalığa neden olan ajan olarak 1980’li yılların başlarında izole edilebilmiştir (33). Hastalığın 15 yaş gençlerde ve 29 yaşlarda olan iki tepeli bimodal bir yaş dağılımı vardır ve birçok vaka Mayıs-Eylül döneminde meydana gelir. ABD’de TAF Preventive Medicine Bulletin, 2008: 7(5) 464 1999 yılında hastalık kontrol ve korunma merkezine (CDC) 16273 vaka rapor edilmiştir (37). ABD’de ki araştırmalar kenelerin Lyme hastalığını nymph evresinde beslenmenin 2 ya da daha sonraki günlerinde naklettiklerini göstermiştir (26). Bu evrede 2 mm den küçük olduklarından sıklıkla fark edilmezler; beslenmek ve enfeksiyonu yaymak için fazla zamanları vardır. Erişkin keneler ise daha büyük olduklarından fark edilmeleri ve vücuttan uzaklaştırılmaları daha kolaydır. Kene uygun teknikle erken dönemde çıkarılırsa enfeksiyonu yayma şansı çok azdır (26). Lyme hastalığının 3 evresi bunlunur: 1. Erken lokalize evrede; kene ısırığını takiben günler içinde (7-14 gün) hastaların % 60-80 inde Eritema Cronicum Migrans adı verilen kırmızı, yavaşça genişleyen boğa gözü şeklinde döküntü meydana gelir (34,30). Isırık etrafında küçük, kırmızı bir papül olarak başlar; günler içerisinde merkezden dışa doğru genişler. Lezyonun merkezinde hiperemik, deriden kabarık bir beneklenme kalabilir ve ortalama çapı 16 cm olan lezyonun çapı bazı vakalarda 70cm’ye kadar ulaşabilir. Döküntü ile beraber yorgunluk, kas ağrısı, eklem ve baş ağrısı, ateş ve üşümeyi içeren sistemik semptomlar olabilir. Fizik muayenede boyun sertliği, bölgesel adenopati ve ısırık bölgesinden bağımsız bölgelerde, primer lezyondan daha küçük sekonder deri lezyonları görülebilir. Eğer tedavi edilmezse genellikle birkaç haftadan daha uzun bir sürede kendiliğinden iyileşir (34,35). 2. Hastalığın erken dissemine formu kene ısırığını takiben günler-aylar içinde birçok sistemi de içeren semptomlarla ortaya çıkar. Birçok hasta kene tarafından ısırılıp ısırılmadığını hatırlamaz. Hastalarda eritema kronikum migrans olmayabilir. Lenfositik menenjit, sıklıkla Bell palsi gibi kraniyel sinir palsileri, azalmış duyu, güçsüzlük ve refleks yokluğunu da içeren nörolojik semptomlar olabilir (5- 2). Kardiyak semptomlar çoğunlukla erkeklerde olur, bitkinlik ve çarpıntı şeklinde ortaya çıkar. Çeşitli derecede atriyoventriküler bloklar ve orta derecede peri/miyokardit olabilir. Artrit genelde geç ortaya çıkar ama bu evrede de görülebilir. Bölgesel veya jeneralize adenopati, konjonktivit, iritis, hepatit ve mikroskopik hematüri veya proteinüri görülebilir (32,34,35) 3. Hastalığın geç evresi sıklıkla kronik artritle karakterizedir. Bu durum tedavi edilmemiş eritema migransı olan hastaların yaklaşık % 10 unda meydana gelir. Büyük eklemleri özellikle de diz eklemini içeren mono veya asimetrik oligoartriküler artrit olarak tanımlanmıştır. Nörolojik sistem subakut ensefalopati, aksonal polinöropati ve lökoensefalopati şeklinde etkilenebilir. Geç bulgular genelde birkaç yıl içinde spontan olarak iyileşir (30,32). Teşhis edilmesi zor bir hastalıktır (38).Tanı, öykü ve fizik muayeneye dayanır. Rutin laboratuar testleri tanıda rolü azdır. Seroloji testleri tanıyı doğrular ancak hastalığın ortaya çıkmasından 4-6 hafta sonrasına kadar tanı değerleri yoktur (30). ELİSA testi % 89 sensitif, % 72 spesifiktir. Pozitif test sonuçları Western Blot ile desteklenmelidir. PCR özellikle etkilenmiş eklemlerden alınan eklem sıvılarında yararlıdır (40). Eğer nörolojik bulgular varsa BOS’tan çalışma yapılabilir. Sinoviyal sıvı artritin ayırıcı tanısını yapmak için alınır. Organizmanın doku ve vücut sıvılarından izolasyonu çok zordur (31). Hastalığın sahip olduğu ciddi sekel potansiyeli nedeniyle erken tanı ve tedavi önem taşır. Ciddi vakalarda parenteral antibiyotikler gerekir. Erken dönemde yakalanırsa oral antibiyotiklerle tedavi edilebilir(26). Amoksisilin ve doksisiklin 2-3 hafta süre ile tedavide tercih edilir. Komplike olmayan vakalarda tedavi en az 14-21 gün; ciddi veya komplike vakalarda 30 gündür (41). Hastalık nadir görülür ama oldukça fatal seyreder (30). 1998 yılında Amerikan Gıda ve İlaç Dairesi hastalıktan korunma da kullanılmak üzere ilk kez bir aşıya onay verdi. Rekombinant OspA (LYMErix) aşısı üzerindeki iki çalışma aşının semptomatik enfeksiyondan korunmada % 76-92 arasında etkili olduğunu göstermiştir. Aşı keneye maruziyet açısından yüksek veya orta riskli kişilere önerilmiş, düşük riskli veya risksiz olan kişilere, 15 yaşından gençlere, 70 yaşını geçmiş yaşlılara ve yeterli çalışma olmamasından dolayı hamilelere önerilmemektedir (42). ERLİKİYOZ Hastalık küçük, gram-negatif, pleomorfik, zorunlu hücre içi bir organizma olan Ehrlichia tarafından oluşturulur. ABD’ de Ehrlichia chaffeensis ve Ehrlichia ewingii’ nin neden olduğu İnsan Monositik Erlikiyozu (İME) ve henüz isimlendirilmemiş bir ehrlichia türünün, muhtemel Ehrlichia phagocytophila/Ehrlichia equi’nin neden olduğu İnsan Granülositik Erlikiyozu (İGE) olmak üzere iki farklı formu vardır (43). Ehrlichia chaffeensis yıldız kenesi olan Amblyomma americanum tarafından taşınır. Beyaz kuyruklu geyik bu kenenin tek major konağıdır ve tek doğal rezervuardır (35). Hastalık ilk kez 1935 yılında bir grup araştırma köpeğinde tespit edildi. 1986 yılında insanda tanımlandı. Dünya çapında yaygın bir hastalık TAF Preventive Medicine Bulletin, 2008: 7(5) olmasına rağmen vakaların çoğu ABD’ de bildirilmektedir. Her iki türün de çoğu vakası Nisan- Eylül döneminde görülür. Vakaların % 75’ten fazlası erkeklerde görülür ve yaşlılar daha sık etkilenir. Klinik her iki türde de birbirine benzer. Hastalar kene ısırığı sonrası 7-10 günlük bir inkübasyon periyodunu takiben hastalanmanın ilk haftası içinde sağlık kuruluşuna başvururlar. Belirtiler ateş, baş ağrısı, kırgınlık ve kas ağrısıdır. Buna ek olarak bulantı, kusma, ishal, öksürük, eklem ağrısı, konfüzyon ve vucutta döküntü olabilir (35). Döküntü; İME olan erişkin hastaların yarısından biraz azında; İGE olan erişkin hastaların ise % 10’ undan biraz azında görülür. Bununla beraber enfekte çocuk hastaların % 60’ında döküntü görülmeyebilir. Döküntü gövdeyi içerir ama elleri ve ayakları tutmaz ve ısırık bölgesiyle ilişkili değildir. Maküler, papüler, retiküler, makülopapüler veya peteşiyel şekillerde olabilir. İGE de respiratuar veya renal yetersizlik, fırsatçı enfeksiyonlar veya hemoraji(DİC) gibi komplikasyonlar çok sık görülür (29). Laboratuar bulguları ise lökopeni, trombositopeni ve artmış karaciğer transaminazlarından oluşur. İGE de orta derecede bir anemi; hem İGE hem de İME de artmış ESR, BUN, kreatinin; İME de ise yükselmiş protein düzeyi ve lenfositik pleositozu olan BOS bulunabilir (44). Tanı öykü, fizik muayene ve laboratuar bulgularına dayanır. Seroloji tanıyı destekler ancak 1-2 haftada pozitifleşir. PCR da tanıyı destekler ancak akut safhada yapılmalıdır. Kültürler yararlı değildir. Tanıdaki temel metot konvelasan evredeki serokonversiyonun tespitidir. Tedavide tercih edilecek ilaç Doksisiklin’dir. Alternatif olarak kloramfenikol ve rifampin kullanılabilir. Tedavi süresi en az iki hafta olmalıdır. Tedavi edilmediği zaman tüm hasta grubunun % 50 sine varan bir oranda hospitalizasyon gerektiren ciddi bir hastalık oluşabilir. Uzamış ateş, böbrek yetersizliği, DİC, ARDS, meningoensefalit, nöbet veya koma şeklinde ciddi manifestasyonlar olabilir. Öngörülen mortalite oranı % 2-3 dür ve E.chaffeensis tarafından oluşturulan enfeksiyon diğer erlikiyoz türlerinden daha ciddidir (35). TULAREMİ Tularemi; küçük, gram negatif, hareketsiz bir kokobasil olan Francisella tularensis tarafından oluşturulan enfeksiyöz bir hastalıktır. Hastalık aynı zaman da Tavşan ateşi olarakta bilinir. İnsanlara sindirim, inokülasyon, inhalasyon ve kontaminasyon yollarıyla bulaşabilir. Amerika ‘da vakaların yarısından fazlasında kene ısırığı sorumludur (31). Her yıl bu ülkede 150-300 arasında vaka rapor edilir. Hastalık erkeklerde sık görülür. Özellikle kış aylarında avcılıkla uğraşanların derilerideki küçük lezyonların avlanan enfekte tavşanla teması ile bulaşır. Yaz ve sonbahar mevsimlerinde zirve yapar (45). İyi pişmemiş enfekte etler ve kontamine sular da bulaşma nedenidir. İnkübasyon periyodu ortalama 3-5 gündür. Birçok hastada ateş, üşüme, baş ağrısı, kırgınlık, anoreksi, yorgunluk, öksürük, kas ağrısı, göğüste rahatsızlık hissi, kusma, karın ağrısı ve ishali de içeren generalize semptomlar bulunur. Bunlara ek olarak hasta 6 farklı klasik modelden biriyle gelebilir: 1. Ülseroglandüler model: en sık görülen ve en kolay fark edilendir. Hastalar içerdiği lenf bezlerine drene olan bölgedeki ağrılı deri ülseriyle beraber olan, lokalize, hassas lenfadenopatilerden sikayetçidirler. En sık tutulan lenf bezleri çocuklarda servikal ve oksipital; erişkinlerde inguinal bölgede olanlardır. 2. Glandüler tip ise ülseroglandüler tip ile benzerdir ama bunda deri ülseri yoktur. 3. Oküloglandüler tipte organizmalar konjonktivaya yerleşmişlerdir. Vakaların % 90’ında tek taraflı tutulum olur. Fotofobi ve artmış lakrimasyonu içeren erken belirtiler vardır. Geç dönemde hastalarda göz kapağı ödemi, skleral enjeksiyonu olan ağrılı konjonktivit, kemozis ve küçük yeşil konjonktival ülser veya papül gelişir. Priaurikülar, submandibular ve servikal bezler sıklıkla tutulur. 4. Faringeal tipte ise organizmalar orofarinkse yerleşmişlerdir. Ciddi boğaz ağrısı bulunur. Fizik muayenede eksudatif farenjit veya tonsilit; servikal, preparotit veya retrofarengeal lanfadenopati bulunabilir. 5. Tifoid model ise herhangi bir lenfadenopati ile ilişkili değildir. Diğer tiplerde belirtilen genel semptomlara ek olarak burada sulu ishal vardır. 6. Pnömonik tip ise akut respiratuar bir hastalık olarak ortaya çıkar. Belirtiler ateş, minimal balgamlı veya balgamsız öksürük, substernal göğüs hassasiyeti ve plörotik göğüs ağrısından oluşur. Radyografilerde lobar, apikal veya miliyer infiltrasyonlar, hiler adenopati ve plevral efüzyon bulunabilir (45). Tanı; hikâye ve fizik muayeneye dayanır. Laboratuar testleri genellikle spesifik değildir. WBC ve ESR düzeyleri normal yâda hafif yüksektir. Organizma kültürde üretilebilir ama bu yöntem laboratuar çalışanlarına bulaşma riskinden dolayı sıklıkla kullanılan bir yöntem değildir. Göğüs radyografilerinde oval opasite, hiler adenopati ve plevral efüzyon triadından oluşan bulgular olabilir. Seroloji yaklaşık iki haftalık bir süre içinde tanıyı destekler (31). TAF Preventive Medicine Bulletin, 2008: 7(5) 466 www.korhek.org Hastada menenjit düşünülmüyorsa streptomisin ilk seçilecek ilaçtır. Alternatif olarak gentamisin, tetrasiklin, kloramfenikol ve florokinolonlar düşünülebilir. Tedavi 7-14 gün sürmelidir. Korunmada canlı aşı mevcuttur ve laboratuar çalışanları ve patojene tekrarlayan maruziyeti olan kişilere uygulanabilir. BABESİYOZ Hastalık etkeni eritrositleri enfekte eden ve hemolizlerine neden olan Babesia genusuna ait protozoal bir parazit olan Babesia divergens veya Babesia microti’ dir. Hastalık geçişi İxodes kenelerinin farklı türleri ile olur. Etken geyik kenesi ile taşınır (46). Hastaların % 5 kadarında fulminan seyrederek hospitalizasyon veya ölümle sonuçlanan bir tablo oluşturur. Özellikle splenektomi yapılmış hastalarda ciddi hastalık tablosu oluşturur. Tripanozoma’dan sonra memelilere kan yoluyla bulaşan en sık ikinci parazittir (47). Semptomlar diğer kene ile geçen hastalıklara benzer ve inokülasyondan bir hafta sonra başlayan influenza benzeri belirtiler verir. Ateş, terleme, kas ağrısı ve baş ağrısı görülür. Hemolitik anemi, hemoglobinüri, böbrek yetersizliği yapabilir. Enfeksiyon genç erişkinlerde yıllarca asemptomatik olarak kalabilir (46). Nadir de olsa oftalmik tutulum olabilir. Hastada ateş, hemolitik anemi ve uygun temas öyküsü varsa babesiyoz düşünülebilir. Tanı kan yaymalarda protozoanın tespitine dayanır. Karakteristik olarak Malta Haçı görünümü vardır. Serolojik testler ve PCR yardımcı yöntemleridir. Orta derecedeki vakalar semptomatik tedavi gerektirir. Persistan yüksek ateş, progresif anemi, yükselen parasitemi olan ciddi vakalarda Kinin+Klindamisin veya Atovaquon+Azitromisin en az 7-10 gün boyunca kullanılmalıdır. Yüksek parasitemisi olan ciddi hastalarda exchange transfüzyon yapılabilir (46). KOLORADO KENE ATEŞİ Hastalık bir ağaç kenesi olan D.andersoni tarafından nakledilen RNA orbivirus tarafından oluşturulur. Çoğunlukla Amrikadaki Rocky dağları bölgesinde her yıl 200-300 arasında vaka tespit edilir. İmmün yetmezliği olan ve splenektomi geçirmiş olan hastalar ciddi komplikasyonlar açısından risk altındadır (46). İnokülasyondan sonra bir hafta içinde influenza benzeri semptomlar başlar. Hastaların üçte birinde boğaz ağrısı bulunur. En önemli özelliği; menenjit, döküntü ve konjuktivit ile ilişkili olan bifazik ateştir. Hastalık genellikle 7-10 gün arasında sonlanır. Tanı genellikle immünfloresan boyama ile konur. Bununla beraber lökopeni ve trombositopeni bulunabilir. Spesifik bir tedavi yoktur. Destek tedavisi verilir. Belirtiler ortaya çıkmışsa diğer kene geçişli hastalıkları kapsayan ampirik olarak tetrasiklin, doksisiklin veya kloramfenikol kullanılabilir. DÖNEK ATEŞ Hastalığa Borrelia genusundan bir spiroket neden olur. Ornithodoros genus keneler esas vektördür. Tipik olarak hastalık sporadiktir (48). Ortalama inokülasyon periyodu bir haftadır. İnfluenza benzeri semptomlar, artralji, bulantı ve kusma olur. Genellikle 40 derecenin üzerinde, düzensiz ve bazen deliryumla ilişkili ateş olabilir. Hastaların çoğunda splenomegali bulunur. Meningeal bulgular olabilir. Epistaksis hemoptizi, iridosiklit, koma, kraniyel sinir palsi, pnomonit, miyokardit ve dalak rüptürünü içeren komplikasyonlar olabilir. Tanı; kan, kemik iliğinde ve ateş epizotu sırasında BOS’da spiroketin tespitiyle konulabilir. Lökosit sayısı normal veya orta derecede artmıştır. Trombositopeni tespit edilebilir. Tedavide 5-10 gün boyunca doksisiklin tercih edilir. Alternatif olarak eritromisin kullanılabilir. Eğer ilaçlar geç febril evrede verilirse Jarisch- Herxheimer reaksiyonu meydana gelebilir. Antibiyotik tedavisinin öncesi ve sonrasındaki 2 saatlik periyotlarda asetaminofen uygulanması reaksiyonun ciddiyetini azaltabilir. KOMBİNE ENFEKSİYONLAR Aynı kene birden fazla enfeksiyöz patojende taşıyabilir. Bundan dolayı bir ısırıkla birden fazla hastalığı bulaştırabilir. Örneğin İ.scapularis; erlikiyoz, lyme hastalığı ve babesiyozu bulaştırabilir. Lyme hastalığı bulunanların % 23’ünde babesiyoz; % 10-30 unda erlikiyoz bulunur. Kombine enfeksiyonların daha ciddi semptomlar oluşturacağı akılda bulundurulmalıdır. KAYNAKLAR 1. Rajput ZI, Hu S, Chen W, Arıjo AG, Xiao C. Importance of ticks and their chemical and immunological control livestock. Journal of Zhejiang University. 2006; 7(11): 912-921. TAF Preventive Medicine Bulletin, 2008: 7(5) www.korhek.org 467 2 Furman DP, Loomis EC. The ticks of California (Ascari: Ixodida). University of California Publications. Bulletin of the California Insect Survey. 1984; 25: 1-239. 3. Edlow JA, Danzl D, Halamka J, Pollack VC. Tick- Borne Diseases. www.eMedicine.com. 4. Snelson JT. Animal ectoparasites and disease vector causing major reduction in world food supplies. FAO Plant Prodection Bulleton. 1975; 13: 103-114. 5. Barker SC, Murrell A. Systematics and evolution of ticks with alist of valid genus and species names. Parasitology. 2004; 129(7):15-36. 6. Klompen JSH, Black WC, Keirans JE, Oliver JH. Evolition of tiks. Annu Rev Entomol. 1996; 41(1): 141-161. 7. Güler S, 198. Ankara ve civarındaki koyun ve keçilerde kış ixodidaeleri üzerine araştırmalar. U. Ü. Vet. Fak. Derg. 1 :54-55. 8. Güler S, Özer E, Erdoğmş SZ, Köroğlu E, Bektaş İ. Malatya ve bazı Güneydoğu Anadolu illerinde sığır, koyun ve keçilerde bulunan kene türleri. Doğa-Tr. J. Of Veterinary and animal Science. 1993; 17: 229-231. 9. Karaer Z, Yukarı BA, Aydın L. Türkiye keneleri ve vektörlükleri. Parazitolojide Andropod Hastalıkları ve Vektörler. İzmir, Türkiye. Parazitoloji Derneği Yayın No: 13, 1997, p. 363-434. 10. Hoogstraal H. The epidemiologymof tick borne Crimean-Congo hemorrhagic fever in Asia, europe and Africa. J Med Entomol 1979; 15: 307- 417. 11. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H. Crimean-Congo hemorrhagic fever. In:Monath TP, ed. The arboviruses: epidemiology and ecology, volume 2. Boca Raton, FL, USA:CRC Pres, 1988, p. 177-260. 12. Ergönül O, Celikbaş A, Dokuzoğuz B, Eren S, Baykam N, Esener H. The characteristicks of Crimean-Congo hemorhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin Infect Dis. 2004; 39: 285-89. 13. Ergönül Ö. Crimean-Congo haemorrhagic fever. The Lancet. 2006; 6: 203-214. 14. Kartı SS, Odabaşı S, Korten V, et al. Crimean- Congo hemorrhagic fever in Turkey. Emerg Infect Dis. 2004; 19: 1379-84. 15. Ozkurt Z, Kiki I, Erol S, et al. Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect. 2006; 52: 207-15. 16. Türkiye’de KKKA yayılım haritası. www.tvhb.org.tr 17. Whitehause CA. Crimean-Congo hemorrhagic fever. Antivir Res 2004; 64: 145-60. 18. Swanepoel R, Gill DE, Shepherd AJ, et al. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 794-800. 19. Smego RA, Sarwari AR, Siddiqui AR. Crimean- Congo hemorrhagic fever: Prevention and control limitations in a resource poor country. Clin Infect Dis. 2004; 38: 1731-35. 20. Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean- Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36: 120-32. 21. Ergönül O, Celikbaş A, Baykam N, Eren S, Esener H, Dokuzoğuz B. Analysis of the mortality among the patients with Crimean-Congo hemorrhagic fever virus infection. Clin Microbiol Infect (in press). 22. Burt FJ, Leman PA, Abott JC, Swanepoel R. Serodiagnosis of Crimean-Congo haemorhagic fever. Epidemiol Infect. 1994;113: 551-62. 23. Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean- Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996; 55: 190-96. 24. Ahephered AJ, Swanepoel R, Leman PA. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 801- 806. 25. Knowles SR, Phillips EJ, Dresser I, Matukas I. Common adverse events associated with the use of ribavirin for severe acte respiratory syndrome in Canada. Clin Infect Dis. 2003; 37: 1139-42. 26. Chiou HE, LiuCI, Buttrey MJ, et al. Advere effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest. 2005; 128: 263-72. 27. Ticks. www.co.franklin.oh 28. Walker DH, Raoult D. Rickettsia rickettsii and other spotted fever group rickettsiae (Rocky Mountain spotted fever and other spotted fevers). In: Mandel GL, Douglas RG, Bennett JE Dolin R, eds. Mandell, Douglas and Bennett’s Principles and practice of infectious diseases. 5th ed. Philadelphia. Churchill Livingstone, 2000, p. 2393-402. 29. Walker DH. Tick-transmitted infectious diseases in the United States. Annu Rev public Health 1998; 19: 237-69. 30. Tick information. www.cdc.gov. 31. Spach DH, Liles WC, Campbell GL, Quick RE, Anderson DE Jr, Fritsche TR: Tick-borne diseases in the United States. N Engl J Med. 1993; 329: 936-47. 32. Thorner AR, Walker DH, Petri WA Jr. Rocky mountain spotted fever. Clin Ifect Dis. 1998; 27: 1353-60. TAF Preventive Medicine Bulletin, 2008: 7(5) 468 www.korhek.org 33. Steeve AC. Lyme borreliosis. In: Kasper DL, Harrison TR: Harrison’s Manual of medicine.16th ed. New York: McGraw-Hill, 2005, p. 995-9. 34. Tick-borne diseases. www.aafp.org. 35. Centers for Disease Control and Prevention. Rocky Mountain spotted fever. Accessed online April 11 2005. at: www.cdc.gov. 36. Taege AJ. Tick trouble: overview of tick-borne diseases. Cleve Clin J Med. 2000; 67: 245-9. 37. Ticks. www.health.nsw.gov.au. 38. Centers for disease control and prevention. Lyme disease-United States, 1999. MMWR morb Mortal Wkly Rep. 2001; 50: 181-85. 39. Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, et al. The early clinical manifestation of Lyme disease. Ann Intern Med. 1983; 99: 76-82. 40. Beers MH, Berkow R. The Merck manual of diagnosis and therapy. 17th ed. Merck Research Laboratories. Whitehause Station, n.J, 1999. 41. Treatment of Lyme disease. Med Lett Drugs Ther. 2000; 42: 37-9. 42. Deborah SF. Prevent Tick bites: Prevent Lyme Disease. Rutgers Coperative extensions. 1992, FS637. 43. Belman AL. Tick-borne diseases. Semin Pediatr Neurol. 1999; 6: 249-66. 44. Fritz CL, Glaser CA. Erlichsis. Infect Dis Clin North Am. 1998; 12: 123-36. 45. Cox SK, Everett ED. Tularemia, an analysis of 25 cases. Mo Med 1981; 78: 70-4. 46. Bratton RL; Corey GR. Tick-Borne Diseases. www.aafp.org. 47. Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitology. 2000; 30: 1323-1337. Kaynak:TAF Preventive Medicine Bulletin, 2008: 7(5) Konu İle İlgili PDF formatını buradan indire bilirsiniz http://www.korhek.org/khb/khb_007_05-461.pdf

http://www.biyologlar.com/kene-ile-bulasan-hastaliklar

Keneler Hakkında Bilgi

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır (Şekil 2). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 2. Ixodidae ailesinde bulunan soyların ayırım anahtarı. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şelil 2. Ixodidae ailesindeki soyların ayırım anahtarı Anal oluk anusun önünde Soy: BOOPHILUS Soy: RHIPICEPHALUS Soy: DERMACENTOR Soy: ANOCENTOR 7 feston 11 feston Feston var, anal oluk belirgin, Coxa I’de derin yarık var Feston yok, anal oluk belirsiz, Coxa I bütün Basis capituli altıgen şeklinde Basis capituli dikdörtgen şeklinde Soy: HAEMAPHYSALIS II. Palp eklemi laterale çıkıntı yapar II. Palp eklemi düz Soy: AMBLYOMMA Soy: HYALOMMA Ağız organelleri Basis capituliden çok daha uzun, II. Palp ekleminin boyu eninden daha fazla Ağız organelleri Basis capituli ile yakın uzunlukta, II. Palp ekleminin eni ile boyu birbirine yakın Soy: IXODES Anal oluk anusun arkasında Capitulum terminalde yerleşmiş, üstten bakıldığında görülür, Scutum var Capitulum ventralde yerleşmiş, üstten görülmez, Scutum yok Argasidae Ixodidae Basis capituli II. Palp segmenti Basis capituli II. Palp segmenti Anal oluk Anus Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com

http://www.biyologlar.com/keneler-hakkinda-bilgi

YAPRAKLARIN GENEL YAPISI

Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2'i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır. YAPRAKLARIN GENEL YAPISI Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir. Öncelikle yaprakların dış yapılarını inceleyelim. Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar. Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu. Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir. Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir. Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir. Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır. Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar. Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde tasarlanmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir. Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını genişletir veya daraltırlar(porları) Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler. KUSURSUZ BİR TASARIM: GÖZENEKLER Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2'i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur. Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur. Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir. Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar. Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.

http://www.biyologlar.com/yapraklarin-genel-yapisi

Sucul Bitkiler

SU BİTKİLERİ Sucul bitkiler karada yaşayanlar ile karşılaştırıldığında çeşitli stolojik, morfolojik ve anatomik farklılıklar göstermektedir.Ayrıca bu bitkilerin üreme şekilleri ve tiplerinin de değiştiği görülmektedir. Çeşitli su bitkileri türleri ile yaşadıkları susul ortam arasında doğrudan ilişki vardır.Örneğin Myriophyllaceae familyası üyeleri suya tamamen gömülmüş halde yaşadıkları halde su mercimekleri (lemna türleri )suyun üzerinde kalırlar.Nilüferler (Nymphea türleri) ise bir yandan rizom gövde ve kökleri ile çamura tutunurlar, geniş yaprakları ise su yüzeyinde yüzer. Su bitkileri yaşadıkları ortama uyabilmek için bazı morfolojik değişiklikler geçirmişlerdir.Kök , gövde veya yapraklar bazen ince lam veya iplik şekline dönüşebilir.Çiçekler ise çok küçük olup yalnızca bir tek üreme organı içeririler.İletim kanalları karadaki çiçekli bitkilere oranla azalmış ve daha az farklılaşma göstermiştir. Eğreltilerde yaprak ve kökler oldukça kısa bir gövdeye bağlanmışlardır.Çiçeklenmezler doğrudan yaprak veya gövde üzerinde gelişen sporlara sahiptirler.Sporlar gelişerek üzerinde mikroskopik üreme organı bulunan çok küçük boylu bitkiyi oluşturur.Döllenme olayından sonra tekrar yeni genç eğreltiler meydana gelir. Çiçekli bitkiler tipik olarak kök , gövde , yaprak ve çiçeklerden meydana gelmişlerdir.Çiçekler bitkinin eşeysel üreme merkezindedir.Erkek üreme organları ( etamin) polenleri oluşturur.Dişi üreme organları ise ovul içeren pistilden oluşmuştur.Bazı bitkiler biseksüel ( dişi ve erkek üreme organı taşıyan) çiçeklere sahiptirler.Bazıları ise yalnızca dişi ve erkek çiçekler taşırlar.Döllenen her ovul; tohumu, pistil ise meyveyi oluşturur.Tohumlar daha sonra yeni genç bitkiyi meydana getirir. Epidermis hücreleri klorofil taşırlar ve karbondioksit asimilasyonunda önemli rol oynar.Buna karşın hava organlarında epidermis hücrelerde klorofil bulunmaz ve bu organlarda stoma adı verilen delikler vardır.Böylece hava sirkilasyonu sağlanır. Su bitkilerinde hava dokuların (aerifer) bulunuşu önemli bir özelliktir.Boşluklu süngerimsi yapıdaki bu dokular şamandıra görevini görürler ve su altı organlarının yüzmesini temin ederler. Su altı organları bazen büyük ölçüde değişime uğrayarak özel şamandıra şeklini alırlar. Örneğin;Yaprak sapları ( petiol) veya nodüller arası kısımları şişkin şekilde olabilir ve köklerin zeminle irtibatı olmayabilir.Bazılarında farklı çeşit bir kaç kök bulunabilir. Yapraklar su içine gömülü, yüzücü veya su üstünde bulunabilirler.Aynı tür 2 veya 3 farklı çeşit yaprak tipini dalları üstünde taşıyabilir.Yaprakları su içinde veya dışında oluşlarına göre şekilleri , yapıları, dokuları farklılaşmalar gösterebilir.Su içindekiler çok ince yapılıdırlar.Dallanma gösterirler veya yassılaşmışlardır.Bazılarının membranları ince veya saydamdır.Yaprakların üst ve alt düzeyleri arasında farklılaşma olmayabilir klorofilli dokular her iki yüzeyde yer alırlar.Havada bulunan yapraklarda alt yüzeydeki epidermada stomalar bulunur.Böylece hava epidermis altındaki klorofilli dokulara ulaşır.Yüzücü yapraklarda ise iki yüzleri arasında farklılaşmalar olabilir.Örneğin;stomalar üst ve alt epidermada bulunan su ile temas etmesi nedeniyle alt yüzeyde havanın doku içine girmesi mümkün olmaz.Genellikle alt yüzeyler kırmızımtrak renktedir.Su bitkilerinde dahi çiçeklenme genellikle havada olur.Çiçekler su dışında açar ve döllenme kara bitkilerinde olduğu gibi gerçekleşir. Polenler rüzgar yoluyla veya böceklerle(Diptera) taşınır.Bazen ise su üstünde kayarak döllenmeyi sağlar.Bazılarında ise su içinde olur.Ancak döllenme çiçek açmadan gerçekleşir.( Kleistogami) SU BİTKİLERİNDE ÜREME Sucul bitkiler çiçeklenme ve döllenme yönünden gerçekten farklılaşmalar göstermişlerdir.Döllenme suda olur ve polenler bu ortamdaki yayılmaya uyum göstermişlerdir.Polen su içinde serbest hale geçer , dişi çiçeğin stigmasını bulana kadar su içinde gezinir. Döllenmeden sonra meyve oluşumu su içinde olur.Çiçekleri havada olan su bitkilerinde dahi genellikle meyve su içinde gelişir.Meyveyi taşıyan dalcıklar eğilerek genç meyveyi su içine yöneltir.Sucul meyveler etlidir, tohumları jelleşme oluşumu ile açılır.Tohumlar su içinde veya üstünde yüzerler. Eşeysel üreme her ne kadar bitkisel türlerin çeşitliliğinde (Diversite ) önemli ise de eşeysiz (Vejetatif) üreme su bitkilerinde önemli rol oynar.Bazı türlerin eşeysiz olarak üremesi ile aşırı çoğalması genellikle insan aktivitesi sonucu ortamda değişmeler olduğunu simgeler. Su bitkilerinde üç çeşit üreme tipine rastlanır.Tomurcuklanma veya çeliklenme (Vegatatif) , eşeysiz (sporla) ve eşeyli üreme.  

http://www.biyologlar.com/sucul-bitkiler

Periferik yayma ve boyama teknikleri

Kan örneklerinin alınması: Yaymalar ven ya da kılcal damar kanı ile yapılır. Ven kanı için antikoagülan olarak EDTA (etilen diamin tetraasetik asit)’nın potasyum tuzunu içeren eflatun kapaklı vakumlu tüpler kullanılır. EDTA kalsiyum şelasyonu yaparak pıhtılaşmayı önler. Heparin hücre morfolojilerini bozduğundan uygun değildir. Kapiler kanı parmak ucundan (bebeklerde topuk tabanının iç ya da dış kısmından) alınır. Tam kan sayımı (hemogram) için hastanın 2 saatten daha uzun süre aç olması gerekmez. Lamların temizlenmesi: Yaymalar kirli, tozlu, yağlı lamlara yapılmamalıdır. Deterjanlarla iyi temizlenmemiş ve kurutulmamış lamlara yapılan yaymalarda çıplak gözle seçilen boşluklar oluşur. Ayrıca eritrosit morfolojisi incelenirken artefakt (yapay) olarak yer yer hedef hücreleri ya da stomatositler görülebilir. Lamlar önceden temizlenmiş olsalar bile, yayma yapılırken tekrar silinmelidir. Kan yayması: YaymaEDTA’lı örnek 1-2 saatten fazla bekletilmeden yapılmalıdır. Aksi takdirde lökositlerde morfolojik değişiklikler olur (çekirdekte büzüşme, sitoplazmada vaküolleşme). Lamın bir ucunun 1 cm uzağına, orta çizgi üzerine küçük bir kan damlası konur. Ardından yayıcı (bu bir lamel ya da lamdan daha dar, ucu düz bir cam olabilir) 30o lik açıyla damlanın önüne getirilir ve geriye doğru damlayla temas ettirildikten sonra elin düzgün ve hızlı hareketiyle ileriye doğru sürülür. Kan damlası sonuna kadar yayılmadan yayıcı yukarıya kaldırılmamalıdır. Yaymanın uç kısmı düz olmayıp ince uzun tüylü görünümdedir (Prof. Dr. Cavit Çehreli bu görünümü mum alevine benzetir). Kan damlasının büyüklüğüne, 30o lik açının azalıp çoğalmasınagöre yaymanın kalınlığı değişir. İdeal bir yayma yaklaşık 3 cm uzunluğunda olmalı ve lamın diğer ucuna 1 cm kala sonlanmalıdır (Dacie & Lewis, Practical Haematology’den). Preparatın boyanması: Romanowsky boyaları  başlıca iki bileşene dayanır: bazik (metilen mavisi ya da azür B) ve asidik (eozin Y). Laboratuvarlarımızda daha çok May-Grünwald-Giemsa yöntemi kullanılır. Bu yöntemde yaymaların önceden alkolle tespiti  gerekmez. Çünki May-Grünwald boyasında metil alkol vardır.

http://www.biyologlar.com/periferik-yayma-ve-boyama-teknikleri

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili-3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit-1

BAZI ÖZEL HİSTOLOJİK PREPATATLARIN YAPIMI

1-KAN PREPARATI: Omurgalı kanı iki türlü incelenir.a-Canlı olarak b-Tespit edilmiş ve boyanmış olaraka.Canlı olarak preparat hazırlanması: Doğrudan doğruya parmaktan lama alınan kan incelenir veya % 0.9’luk fizyolojik su içine kan damlatılıp , incelenir. Eritrositler birbirinden ayrıldığı için iyi görülür.Ayrıca 300 mg Ruj.nötr 100 cm3 saf suda eritilir. Bir damla lam üzerine konur sonra diğer bir lamın kısa kenarı ile bu sıvı lam üzerine yayılır ve kurutulur. Sonra bir damla kan konur ve lamel kapatılır. Bir süre sonra kan hücrelerinin bu boyayı alarak çeşitli renklerde oldukları görülür. Eritrositler bu boyayı almazlar. Sıcak kanlı hayvanların lökösitlerin ameboid hareketlerini görmek için lam hafifçe ısıtılır. Soğuk kanlılarda oda sıcaklığında bu hareketi görebiliriz.b- Tesbit edilmiş ve boyanmış olarak: Alkolde temizlenen parmak ucundan sterilize iğne ile çıkarılan kan temiz bir lam üzerine konur. Başka bir lamın kısa kenarı ile iyice yayılır. Biraz kuruması beklenir, sonra metil alkol içinde 3 dakika bekletilir. Daha sonra lam üzerine saf su damlatılır. Biraz bekletilir, suyu akıtıldıktan sonra bir kap içindeki Giemza boyasına konur (10 cc distile su+1 cc Giemsa ). 30 dakika bekledikten sonra çeşme suyunda yıkanır, kurutulur, incelenir.2-MİTOZ BÖLÜNME PREPARATIKuru soğan ya da arpacık soğanı kökleri su içine gelecek şekilde suyun içine konur. Üç hacim absolü alkol+1 hacim glasiyal asetik asit içine uzayan köklerin uç kısımları kesilerek biriktirilir. Bu karışımdan çıkan kökler 3 N HCl içinde 2-3 dakika bırakılır ( 24 cc HCl alınır. 100 cc ye distile su ile tamamlanır. 100 cc % 50’ lik asetik asit içine 1 gr orcein konur. Asitten çıkarılan kökler boya içinde 1.5 saat bekletilir. Lam üzerine 1 kök konur. Üzerine 1 damla % 45’ lik asetik asit damlatılır. Üzerine lamel kapatılır. Gazlı bez yardımıyla üstten bastırılarak yayılır ve mikroskopta incelenir. 3-MAYOZ BÖLÜNME PREPARATI1-Çekirge testisleri çıkarılır.2-3 hacim alkol+1 hacim glasiyal asetik asit içersinde 24 saat buzdolabında fikse edilir.3-Saklamak için % 70 ‘lik alkol kullanılır.4-Boya 1 gr orcein 100 ml % 50 ‘lik Asetik asit içinde çözülür 30 ‘ dakika5-% 45 ‘lik asetik asit damlatılıp ezilir.6-Mikroskopta incelenir. 4-DÜZ KAS PREPARATI ( KURBAĞA MESANESİNDEN )Araç ve GereçlerKurbağaŞişe mantarıLam, lamel, makas, pens, küvetBouin, etil alkol, eter veya kloroformBouin Çözeltisi9 gr pikrik asit 75 cc distile suda çözülür ( %74’ lük )% 40’ lık formol...........25 ccGlasiyal asetik asit.......5 cc Bouin taze hazırlanır. Asetik asit buharlaştığından çözeltinin yapısı bozulabilir. İyi saklanırsa uzun süre kullanılabilir. Mesaneyi iyi fikse ettiği gibi sertleştirerek kolay boyanır hale getirir. Hemalum % 1’ lik suda hazırlanmış olarak kullanılır. Eozinin ise % 70’ lik etil alkolde hazırlanmış % 1 ‘ lik çözeltisi kullanılır.Kurbağa bayıltılır. Mesanesi kesilerek alınır. Parafinde kaynatılmış veye doyurulmuş, ortası delik mantarın delik kısmı üstüne iğne ile gerilir. Bouin çözeltisine aktarılır. Mesane alt yüzeyde olmalı ve Bouin ile temas etmelidir. 1-2 saat sonra mesane sarı renk alır ve sertleşir. % 70’ lik alkole aktarılır. Objenin rengi giderilinceye kadar alkol değiştirilir. Sonra hemen hematoksilen ile istenilen mor renk alınıncaya kadar boyanır. Eozin ile 15 dakika boyanır. % 70-90-100’lük etil alkollerde 10’ ar dakika dehidre edilir. Ksilolde 5 dakika tutulur. Pensle çıkarılan materyel filtre kağıdı üzerine alınır. Mesane küçük parçalara ayrılarak lam üzerine alınır. Entellan damlatılarak lamel kapatılır. Kurutulur ve incelenir. 5-ÇİZGİLİ KAS PREPARATI (Çekirgeden): Çekirgenin abdomeni açılır. 2 kas demeti görülür. Steromikroskop altında kas çıkarılır. % 0.6’ lık fizyolojik sıvıya konur (NaCl ile hazırlanmış ). Buradan 1 hacim asetik asit+3 hacim % 96’ lık etil alkol içeren tespit çözeltisine aktarılır. Burada demet halindeki kaslar iğne veya pensle küçük parçalara ayrılır. 1 kas lifi lama alınır. Üzerine 1-2 damla asetocarmin damlatılır, 1-2 dakika beklenir. Üzerine lamel kapatılır ve hafifçe bastırılır. Sonra lamelin bir tarafından asetocarmin çekilip diğer taraftan % 96’ lık alkol eklenir. Bu işlem 2 defa tekrarlanır. Lameli yavaşça kaldırıp 1 damla kanada balzamı veya entellan damlatılır ve lamel kapatılır. Bu işlemlerin lamel kapatılarak yapılmasının nedeni kas üzerinde baskı yapmaktır. Baskı olmadığı zaman kas büzülür.6-KEMİK PREPARATIAraç ve Gereçler% 5- % 7.5’ lik Nitrik asit ( 100 cc % 65’lik nitrik asit+1200 cc distile su)% 5’ lik sodyum sülfatEtil alkolKreozot (karanfil yağı )Uzun kemik (3-5 cm boyunda )Preparasyon 2 teknikle yapılabilir.1-Yumuşatma: Gerekli maddeler bulunduğu takdirde daha kolay ve uygun bir tekniktir.2-İnceltme: Daha çok el becerisine dayanır.a-Kemiğin yumuşatılarak preparat hazırlanması: Uzun kemik parçasının üzerindeki yağ, kas kısımları bistüri ile temizlenir. Kemiğin anorganik yapısını eritmek için % 5 veya 7.5 lik seyreltilmiş nitrik asit içine konur., 24-48 saat bırakılır. Sık sık çalkalanır. 5 saatte bir çözelti tazelenir. Kemikler jiletle kesilecek kadar yumuşayınca çıkarılır.. 24-48 saat kadar % 5’lik sodyum sülfat içinde bırakılır. Sonra asitin giderrilmesi için çeşme suyunda 1-2 gün yıkanır.Keskin jiletle yumuşamış ve yıkanmış kemikten çok ince kesitler alınarak % 50 ve % 70’ lik alkol bulunan petri kaplarında 10-60 dakika bekletilir. Kreozot içine alınarak 15-20 dakika şeffaflandırılır. Temiz bir lam üzerine alınan kemik kesiti üzerine entallan damlatılarak lamelle kapatılır.Kesitler düzgün ve yeterli incelikte alınmışsa Havers kanalları ve konsantrik lameller izlenir. Boyuna alınan kesitlerle de Volkman ve Havers kanalları ve lameller izlenir. Mikroskopta inceleme yaparken diyafram kısılırsa daha iyi görüntü alınır.b-Kemiğin inceltilmesi ile preparat yapımı: Uzun kemiklerden kemik testeresi ile enine parçalar kesilir. Bunlar döner zımpara taşlarında ( elektrikli veya kolla dönen ) mümkün olduğu kadar inceltilir. Daha sonra kesilen bir tahta üzerine koyarak ince dişli demir eğici ile çalışarak inceltmeye devam edilir. Bu arada kesitler incelendikce daire şeklindeki kesitten kopmalar olur. Kopan parçalar ponza taşında tekrar inceltmeye devam edilir. Ponza taşı üzerinde düzgün bir yüzey elde edilir. Bu yüzey üzerine su damlatılır. Ve kesitler parmak ucu ile taş üzerine sürtülerek daha da inceltilir.Parmak ucunda tutulan kesitlerden parmağın izleri görünüyor ise kemik parçaları yeteri kadar incelmiş demektir.İnceliği uygun görülen kesitler 5-10 ‘kadar HNO3 de bekletilir. Sonra damıtık suda birkaç değiştirme ile iyice yıkanır. Filtre kağıdından suları süzülür. Dikdörtgen veya kare şeklinde kesilerek lama yerleştirip lamel kapatılır.Kesiler saydam olduğu için kanada balzamının ksilol ile seyreltilerek kullanılması tercih edilir. 7-KIKIRDAK PREPERATIKurbağanın ön ve arka ekstremitelerinin eklem yerlerindeki kıkırdak kullanılır. Hayvan eter veya kloroformla bayılttıktan sonra ekstremitlerinden biri eklem yerinden kesilir. Kasları kemikten ayrılır. Temizlenmiş olan kemik fizyolojik suya konur (%0.8 NaCl).Keskin bir jiletle uzun kemiklerin uçlarındaki mavimsi renkli kıkırdaktan ince kesitler alınıp, fizyolojik suda lamel altında incelenir. Kıkırdak ara maddesi bu bölgede homojendir.Kapsülde genellikle bir kıkırdak hücresi bulunur. Ara maddeleri açık gri kapsül beyaz renkli , plazma ve nukleus mavimtrak görünür. Bunu boyamak için Karmin- Asetik Bunu boyamak için Karmin -Asetik asit kullanılır. Bu boya fiksatiftir. Onun için kesit lam üzerine konan 1-2 damla asetokarmin içinde 1-2 dakika bekletilir, lamel kapatılır. Bu arada materyal tespit edildiği için hücreler büzülür. Nukleus kırmızı, plazma pembe boyanır. Kapsül ve ara madde az boyanır veya hic boyanmaz. Preparatın devamlı olması için : Boyanan kesit % 96 lık alkolde 5 dakika tutulur. Sonra kreozt veya karanfil yağı içine konur. En fazla yarım saatte bu kesiler şeffaflaşır. Temiz bir lama bir damla Kanada balzamı veya entellan damlatılır. Kesit bunun üzerine yerleştirilir ve lamel kapatılır.b- Kıkırdak pikrik asit içermeyen herhangibir fiksatif içinde tespit edilir. Sonra iyice yıkanır. Aşağıda formülü verilen Von Wijre boyasında 24 saat boyanır. %70’ lik etil alkol.......................100 ccHCL.............................................0.1 ccToluidin mavisi ........................ 0.1 gr Boyadan sonra % 70 alkol içinde (0.001 HCL li) hiç boyası çıkmayıncaya kadar kalacak, % 70-80 -90-100 alkol serilerinde dehidrasyon yapılarak şeffaflaştırıcı (kreozot) içine aktarılır. Lam üzerine alınınca 1 damla Kanada balzamı veya entellan eklenerek lamel kapatılır. 8- KURBAĞA DERİSİ Kurbağanın sırt derisi kesilerek delikli bir mantar üzerine gerilir. Bouin de 3-4 saat tesbit edilir. İğneleri çıkartılarak ufak parçalara bölünür. Sarı rengi giderilinceye kadar % 70 alkolde yıkanır. % 80’lik etil alkolde 1 saat % 90’lik etil alkolde 1 saat % 100’ lık etil alkolde 1 saat Ksilol + %30’luk alkolde 15-30' Ksilolde 30 dakika Ksilol+parafinde 30 dakika Etüvdeki parafinde 24 saat Bloklanır. Daha sonra mikrotomda 12 mm’lik kesitler alınır. Kesitler bir gün bekletilir. Ksilolde 5-10 dakika Alkol serilerinde (% 100-96-80-80 ) beşer dakika Hematoksilen Akarsuda 15 dakika boyama Eosin (Eosin su ile yapıldıysa akarsudan sonra . %80’ e kadar alkol serilerinden geçirilir sonra eosinle boyanır ). % 96 - %100’ lik alkol 1-2 dakika Ksilol 2-3 dakika Kanada balzamı ve lamel kapatılması 9-DEV KROMOZOMLARIN PREPARATI: Bu teknikte absolü metil alkol sadece tespit ve lamel kapatma sırasında çözücü olarak kullanılır. Ringer çözeltisi içine alınan ganglion veya tükrük bezi temiz bir lam üzerine alınır. Üzerine 1 damla % 45’ lik asetik asit eklenerek 3-4 dakika tespit edilir. Fazla tutulursa parçalanır. Lamel kapatılır. Fiksatifin fazlası emdirilir.Kullanılan lam daha önceden albümin veya başka bir yapıştırıcı sürülmüş ve kurutulmuş olmalıdır. Lam ve lamel içinde alkol bulunan bir kaba aktarılır. 12 saat ya da daha fazla bekletilir. Lamel kendiliğinden düşmemişse ince bir iğne yardımı ile lamel alınır. Üzerine tükrük bezi yapışmış lam alkolde doyurulmuş amonyum ferri sülfat bulunan kaba taşınır. 12 saat bekledikten sonra biraz hematoksilen kristali boyaya aktarılır. Alkol banyosundan sonra 5-10 dakika alkolde doyurulmuş lityum karbonat çözeltisinde bekletilir. Kırmızı bir boyama yapılacaksa 1-3 saniye alkolik eozinde ( 100 cc % 90’ lık alkol+ 0.5 gr eosin ) bekletilir. Entellan damlatılarak lamel kapatılır.

http://www.biyologlar.com/bazi-ozel-histolojik-prepatatlarin-yapimi-1

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

Kanlıca mantarı Lactarius deliciosus

Alem: Fungi Bölüm: Basidiomycota Sınıf: Homobasidiomycetae Alt takım: Russulales Familya: Russulaceae Cins: Lactarius Lactarius deliciosus, Kanlıca mantarı olarak da bilinir, Russulaceae ailesinden yenebilen bir mantar türü. Görünüş olarak Lactarius salmonicolor 'a benzer, ancak erişkin formda şapkasının rengi turuncu, gri ve hafif yeşilimsi tonlardadır. Lamelleri turuncu renktedir. Kesildiği veya berelendiği zaman havaya temas edince yeşilimsi bir renk alır, sıkıldığı zaman süt benzeri bir sıvı çıkar. Tadı hafif acı-ekşimsi ama lezzetlidir.

http://www.biyologlar.com/kanlica-mantari-lactarius-deliciosus

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Canlı Biliminin Önemli Dalları

Canlıların dünya üzerinde çok çeşitli olması nedeniyle değişik bilim dallan gelişmiştir. Bu bilim dalları şu şekilde sıralanabilir. Botanik: Bitkiler alemini inceleyen bilim demektir. Bitkilerin yapısı, yayılışları ve çeşitlerini inceler. Botaniğin ilgilendiği konu alanına göre alt bilim dalları gelişmiştir. Örneğin; Kriptogamlar: Çiçeksiz Bitkiler, Tohumsuz Bitkiler Fanerogamlar: Tohumlu Bitkiler Gymnospermler: Açık Tohumlu Bitkiler Angiospermler: Kapalı Tohumlu Bitkiler Algoloji: Yosun Bilimi Mikoloji: Mantarları inceleyen bilim vb. gibi. Zooloji: Hayvanlar alemini inceleyen bilim dalıdır. Hayvanların yayı­lışı, yaşam şekli ve yapıiannı inceler. Büyük hayvan gruplarına göre zooloji­nin alt bilim dallan gelişmiştir. Örneğin; İhtiyoloji: Balıkları inceleyen bilim dalı Ornitoloji: Kuşları inceleyen bilim dalı Herpetoloji: Kurbağa ve sürüngenleri inceleyen bilim dalı Antropoloji: İnsan ve ırklarını inceleyen bilim dalı Mikrobiyoloji: Bakteri, virüs ve tek hücreliler gibi mikroorganiz­maların yapılarını, görevlerini, yaşam şekillerini, yarar ve zararları ile sınıflandırılmasını inceleyen bilim dalıdır. Paleontoloji: Dünyanın bu güne kadar jeolojik çağlarda yaşamış tüm canlı fosillerini inceler. Bu bilim dalında canlı objeye göre değişen alt dallan vardır. Örnek olarak; Paleobotanik; bitki fosillerini inceleyen bilim dalıdır. Taksonomi: Canlıların sınıflandırılmasıyla ilgili bilim dalıdır. Canlı­lar benzerlik ve farklılıklarına göre gruplandınlır. Benzer olanlar aynı gruba dahil edilirler. Taksonomi doğadaki canlı çeşitliliğini tanımamızı sağlar. Anotomi: Canlıların organ ve yapılarını, organların birbiriyle olan i-lişkilerini inceleyen bilim dalıdır. Morfoloji: Canlı vücudunun dış yapısını ve görünüşlerini inceler. Sitoloji: Hücre ve organellerin yapı ve işlevini inceler. Hücrenin yapı­sını, enerji üretimi ve tüketimini, protein sentezi ile hücre bölünmesini ince­ler. Histoloji: Dokuların yapı ve işlevlerini inceleyen bilim dalıdır. Canlı dokularının neler olduğunu, canlıda nerelerde bulunduğunu, hangi organların yapısına katıldığı ve ne tür görevleri olduğunu inceler. Fizyoloji: Organizmaların doku, organ ve organ sistemlerinin işlevle­rini ve işleyişlerini inceler. Genetik: Canlıların kalıtsal özelliklerinin dölden döle aktarımını, ge­netik yapılarını inceler. Ayrıca genlerin işlevini ve genlerde oluşan değişik­likleri araştırır. Evrim (Evolüsyon): Günümüz canlılarının oluşumunu inceler. Canlı­ların milyonlarca yılda geçirdikleri değişimi inceleyerek yeni türlerin oluşu­munu açıklar. Canlıların uzun bir gelişimden sonra bugünkü şeklini aldığını gösterir. Biyokimya: Canlıların kimyasal yapısı ile canlı yapısındaki maddeleri ve canlıda meydana gelen biyokimyasal reaksiyonları inceler. Bunun yanı sıra biyoloji ile ilgili olarak Ekoloji, Biyomatematik, Biyocoğrafya, Uzay biyolojisi gibi biyolojiye bağlı bilim dallan vardır. Bu­rada bahsedilenler sadece bu kadar değildir. Biyolojinin bundan başka daha birçok alt bilim dalları da vardır. Ayrıca her bilim dalı kendi içerisinde daha küçük alt bilim dallarına ayrılmaktadır. Örneğin; morfoloji bilim dalı hücre morfolojisi, bitki morfolojisi, böcek morfolojisi ve insan morfolojisi gibi alt ihtisas alanlarına ayrılır.

http://www.biyologlar.com/canli-biliminin-onemli-dallari

Epitel Doku

Epitel dokusu, sıkıca biraraya gelmiş polihedral hücreler ile çok az hücrelerarası maddeden oluşur. Bu hücreler arasındaki bağlantılar güçlüdür. Böylece, oluşan hücresel tabakalar vücudun yüzeyini örter ve boşluklarını döşer. Epitel dokusunun başlıca görevleri: Yüzeyleri örtmek ve döşemek (deri) Emilim (barsaklar) Salgılama (bezlerin epitelyal hücreleri) Duyu algılama (nöroepitel) Kasılma (miyoepitelyal hücreler) Kökeni: Her 3 germ yaprağından da gelişir. Deriyi, ağız, burun ve anüsü döşeyen epitel ektodermal; solunum, sindirim sistemi ve sindirim sisteminin bezleri (pankreas ve karaciğer) endodermal; kan damarlarının endotel örtüsü mezodermal orijinlidir. Hücre şekli: Yüksek prizmatikten, kübiğe ve alçak yassıya kadar değişirken , boyutları da değişiktir. Çekirdeğin şekli çoğunlukla ve kabaca hücre şekline uyar. Bütün epitel hücreleri, altlarında bulunan bağ dokusu ile temas halindedir. Bunların bazal yüzeyindeki tabaka bazal lamina olarak isimlendirilir. Yalnızca elektron mikroskopta görülen bu tabaka ince fibrillerin oluşturduğu narin bir ağdan meydana gelen 20-100 nm kalınlığında yoğun bir tabaka olarak belirir ve lamina densa olarak adlandırılır. Lamina densa’nın yanısıra bazal laminadaki yoğun tabakanın tek ya da her iki yanında elektron-geçirgen tabakalar bulunabilir, bunlar lamina rara ya da lamina lusida olarak isimlendirilir. Bazal laminanın ana bileşenleri 1-Tip IV kollajen 2-Laminin (glikoprotein) 3-Heparan sülfat (proteoglikan) dır. Bazal lamina, altındaki bağ dokusuna tip VII kollajenle ve yüzeysel dermisin elastik elementlerinden olan mikrofibril demetleri ile tutunur. Bazal lamina yalnızca epitelyal dokularda değil, aynı zamanda bağ dokusu ile temas eden diğer hücre tiplerinde de bulunur. Bazal lamina, bağ dokusu ile diğer dokular arasında makromoleküllerin değiş – tokuşunu sınırlayan yada düzenleyen bir bariyer oluşturur. Hücrelerarası etkileşim için gerekli bilgileri de içerir. Bir diğer fonksiyonu ise epitelyal hücrelerin yerini ve hareketlerini düzenler. Bazal laminanın bileşenleri epitel, kas, yağ ve Schwan hücreleri tarafından salgılanır. Bazen retiküler lifler, bazal lamina ile sıkı bir ilişki içinde olan ve retiküler lamina adı verilen bir tabaka oluştururlar. Bu retiküler lifler, bağ dokusu hücreleri tarafından üretilirler. Bazal membran, akciğer alveolleri ve böbrek glomerüllerinde her iki epitel hücre tabakasına ait bazal laminaların kaynaşması ile oluşan, bu nedenle bazal laminadan daha kalın olan ve ışık mikroskobu ile görülebilen yapılardır. PAS + dir. Genellikle 2 bazal laminanın kaynaşması ile oluşabildiği gibi bazen bir bir bazal bir retiküler laminanın birleşmesi ile oluşur. Epitel Dokusunun İnnervasyonu: Epitel dokularının çoğu lamina propriadaki sinir pleksuslarından zengin duyu sinir sonlanmaları alır. Epitel Hücrelerinin Yenilenmesi: Epitel dokuları dayanıksız yapıdadır, hücreler mitotik aktivite ile devamlı olarak yenilenir. Yenilenme hızı ince bağırsakta süratli (2-5 gün), pankreasta yavaştır (50 günde bir). Çok katlı ve yalancı çok katlı epitelde mitoz, germinal tabakada meydana gelir. Metaplazi: Bazı fizyolojik ve patolojik şartlar altında bir epitel tipi değişime uğrayarak başka bir epitel tipine dönüşür. Polarite: Epitel hücrelerinin önemli bir özelliğidir. Vücut dışını veya vücut boşluğunu sınırlayan apikal yüzü ve bazal laminaya oturan, iç vücut yapılarına dönük bazal yüzeyi vardır. Kan damarları epitele girmediğinden bütün besinlerin lamina proprianın altında bulunan kapillerlerden çıkarak epitele geçmesi gerekir. Besinler ve epitelyal hücre ürünlerinin öncülleri, bazal laminadan diffüzyonla geçerek bazo-lateral yüzeylerinden genellikle de enerji gerektiren bir işlemle hücre içine alınır. Epitel hücrelerinin aktivitelerini etkileyen hormonlar, nörotransmitterler gibi kimyasal ulakların reseptörleri de bazo-lateral membranda toplanır. Absorbtif hücrelerde, apikal hücre membranı yapısındaki membran, proteinlerin yanısıra disakkaritler ve peptidazlar gibi enzimleri de içerir. Bu enzimler, emilen moleküllerin sindirimini tamamlar. Sıkı bağlantıların, çeşitli hücre membran bölgelerindeki esas membran proteinlerinin birbirine karışmasını önlemeye yardımcı olduğu düşünülmektedir.   Vücudun iç ve dış yüzeyini örter.Bunun 4 görevi vardır;Bulundukları organı dış etkilerden korumak,Salgı yapmak,Emmek, Mukus ve benzeri maddeleri iletmek.Epitel doku işlevine göre 2 grupta incelenir; 1.Örtü epiteli:Asıl görevi korumaktır.Ancak bazen emilim görevide yaparlar.Hücrelerinin sıralanışına göre Tek katlı ve Çok katlı olmak üzere ayrılırlar. A.Tek katlı epitel:Yan yana dizilmiş hücrelerden oluşur.Hücreleri yassı,kübik veya silindiriktir., a.Tek katlı yassı epitel: Akciğer alveolleri,kan damarlarının iç yüzü ve kılcal damarlarda bulunur. b.Tek katlı kübik epitel:Omurgalı böbreklerinde,tiroit bezinde bulunur. c.Tek katlı silindirik epitel:Omurgalının solunum yollarında,incebağırsakta bulunan silindirik epitel emme görevi yapar. B.Çok katlı epitel:Üst üste sıralanmış hücrelerden oluşur.Omugalıların derisinde bu doku vardır.Bu epitel dokuyu incelediğimizde en altta silindirik,ortada kübik,üstte ise yassı epitelden oluşmuştur.En üstteki epitel genellikle ölüdür.Bu ölü hücre alttaki canlı hücreleri dış etkilerden korur.Kan damarı içermez. 2.Salgı(Bez) epiteli;Salgı yapma yeteneğindeki hücrelerdir.Tükürük bezi,mide bezleri,ter bezleri,hipofiz,tiroit gibi salgı yapan organlarda bulunur.Hücre sayısına göre; A.Tek hücreli bezler ; Silindirik hücrelerden oluşur.Bunlara “goblet” hücresi denir.Toprak solucanının derisinden,sindirim kanalından,solunum organlarından salgılanan mukus buna örnektir. B.Çok hücreli bezler; Salgı yapan hücrelerin bir araya gelmesi ile oluşurlar.Salgılarını bir kanala ve buradan vücut boşluğuna veren bezlere ekzokrin(dış salgı) bezi denir.Tükrük bezi,mide ve bağırsak bezleri ile gözyaşı bezleri dış salgı bezleridir.Salgılarını doğrudan kana veren bezlere endokrin(iç salgı) bezi denir.Bunlar kanalsız bezlerdir.Salgılarına hormon denir.Hipofiz,tiroit,paratiroit,böbreküstü bezleri birer iç salgı bezidir

http://www.biyologlar.com/epitel-doku

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

Tatlı Su Protozoonları ve Önemi

Protozoa tek hücreli, ökaryotik mikroorganizmalardır. Özellikle bakteri, tek hücreli alg ve diğer protistler üzerinden beslenirler. 80.000’in üzerinde protozoon türü tanımlanmıştır. Bunların yarıdan fazlası fosil, yaklaşık 10.000 kadarı da simbiyonttur [1]. Protozoon türleri uzun yıllar sadece insanlara verdikleri zarar düşünülerek, parazitolojik açıdan ele alınmış, serbest yaşayan protozoonlar ihmal edilmiştir. Gerçekte çok sayıda parazit protozoon olmasına rağmen, daha da fazla sayıda hem sucul hem de karasal habitatlarda yaşayan serbest protozoon türü bulunmaktadır. Serbest yaşayan protozoonların bulundukları ortamdaki önemlerinin anlaşılmasından sonra, araştırmacılar dikkatlerini tıbbi protozoolojiden, serbest yaşayan protozoonların ekolojisine çevirmişlerdir. Genel limnolojik çalışmalarda heterotrofik protozoa uzun bir süre dikkate alınmamıştır. Kesin olarak ortaya koymak güç olmakla birlikte, bu ihmalin sebebi, muhtemelen uzman eksikliği veya daha büyük olan metazoonlara göre preparasyon işlemlerinin zor ve zaman alıcı olması gösterilebilir [2]. Protozoonların mikrobiyal besin ağında ve organik kirlilik yükü yüksek suların arıtılmasında önemli rolleri bulunmaktadır. Bunların yanı sıra atık su arıtma sistemlerinin performans göstergesi ve doğal suların kirlilik ve ötrofikasyon indikatörü olarak da kullanılmaktadırlar [3-9]. Protozoon türlerinin planktonik besin ağının önemli bir parçası olduğu ve sucul habitatlarda toplam zooplankton biyoması içerisinde önemli bir yere sahip olduğunun anlaşılmasından sonra göl, gölet, akarsu, rezervuar, kaynak suları ve sulak alanlar gibi tatlı su ekosistemlerinde, protozoon biyomas ve tür çeşitliliğinde meydana gelen mevsimsel değişimler, komünite yapıları çeşitli çalışmalarda ele alınmıştır. Ülkemizde değişik ekosistemlerde bulunan farklı organizma gruplarına ait çalışmalarda büyük aşamalar kaydedilmiş olmasına karşın, protozoonlar ile ilgili çalışmalar yeterli ölçüde değildir. Türkiye tatlı su protozoonları ile ilgili bilgiler yeni, az ve eksiktir. Bu çalışmanın bu alanda yapılacak olan araştırmalara temel bilgi sağlaması beklenmektedir. Protısta Alemi ve Protozoonlar Önceleri tüm canlılar iki alemli sınıflandırma sistemi (Kingdom: Plantae, Kingdom: Animalia) içerisinde ya bitki ya da hayvan olarak kabul edilmişler ve protozoonlar hayvanlar alemine dahil edilmişlerdir. Uzun bir zamandır kullanılmakta olan Whittaker’in beş-alemli sınıflandırma sisteminde bitki, mantar ya da hayvan tanımına uymayan tüm ökaryotik hücre organizasyonu gösteren tek hücreli canlılar Protista alemini oluşturmaktadır. Moleküler tekniklerin gelişmesi sonucunda canlı türleri arasındaki filogenetik ilişkiler ortaya çıkarılmış ve üç domain (süperkingdom) sistemi (Bacteria-Archaea-Eukarya) bilim dünyasına girmiştir. Bu sınıflandırma sisteminde bütün ökaryotik canlılar üçüncü domain olan Eukarya’ya dahil edilmiş ve domain Eukarya dört aleme (Protista-Plantae-Fungi-Animalia) bölünmüştür. Son zamanlarda bilim adamları bugün yaşayan türler arasındaki filogenetik ilişkilere dayanan sekiz alemden (Archaebacteria-Eubacteria-Archaezoa-Protista-Chromista-Plantae-Fungi-Animalia) oluşan yeni bir sınıflandırma sistemini teklif etmişlerdir [10,11]. Archaezoa olarak sınıflandırılan bir hücreli organizmalar (Archaeamoebae-Metamonada-Microsporidia) gerçek bir çekirdeğe sahiptirler, ancak mitokondri, endoplazmik retikulum ve Golgi aygıtından yoksundurlar. Moleküler verilere göre, Archaezoa üyeleri en eski ökaryotik hücreler olup, anaerobik periyodda, Golgi ve endoplazmik retikulumun gelişimi ve mitokondriyal simbiyontların hücreye dahil olmasından önce, ökaryotik evrim hattından ayrılmışlardır. Kahverengi algler ile klorofil c içeren diğer tek hücreli ökaryotlar Chromista adı altında ayrı bir alem içerisinde toplanmış, geriye kalan bir hücreli ökaryotlar, Protista alemine dahil edilmişlerdir [10-13] . Protista üyeleri yapı ve işlev bakımından çok çeşitlidir ve sınıflandırılması güçlüklerle dolu bir geçmişe sahiptir. Bu alemin sınırı değişik sınıflandırmalar arasında büyük farklılıklar göstermektedir [12, 14-16]. Çoğunluğu tek hücreli ve mikroskobik ökaryot canlılar olmasına karşın, aynı zamanda daha basit çok hücrelileri ve hatta deniz yosunları gibi karmaşık yapılı iri organizmaları da kapsar. Bunları bir araya toplayan asıl faktör hayvan, mantar ya da gerçek bitki olmamalarıdır. Protista aleminin, geleneksel bir yaklaşımla hayvan benzeri (Mastigophora-Sarcodina-Ciliata), mantar benzeri (Sporozoa-Mycetozoa-Gymnomycota), bitki benzeri (Euglenoidea-Dinoflagellata) gruplar şeklinde düzenlenmesi kabul görmektedir. Hayvan benzeri bir hücreliler olarak “Protozoa”, evrimsel ya da sistematik bir anlam ifade etmediğinden, takson olarak kabul edilmez. Protozoa kavramı, fonksiyonel anlamda bir organizasyon düzeyini ifade etmek için kullanılır. Bu grubu oluşturan organizmalar, hayvanlarla aynı tip beslenme stratejisini kullanırlar. Hayvan benzeri bir hücreliler enerji ve besinlerini heterotrofi yoluyla (osmotrofi-fagotrofi) elde ederler. Çok sayıda flagellat miksotrofiktir ve her iki beslenme stratejisini de (heterotrofi-ototrofi) kullanırlar. Bir çok heterotrofik protozoa da sitoplazmalarında fotosentez yapabilen endosimbiyontlar içerirler. Protozoanın olağanüstü çeşitliliğini içeren bir sınıflandırma sistemi düzenlemek oldukça zordur. Finlay ve Esteban [17] belirleyici karakter olarak fagotrofinin önemini vurgulayarak, tatlı suda yaygın olarak bulunan serbest yaşayan protozoonları aşağıda belirtildiği gibi 16 şubeye ayırmışlardır. Bu sınıflandırmada protozoa kavramı, eski sınıflandırmalarda tanımlanan Kingdom Protozoa’yı ve geleneksel bir şekilde protozoon olarak kabul edilen ancak şimdi Archaezoa ve Chromista’ya (esas olarak fototrofik protistler ya da alglerdir) dahil edilen organizmaları içermektedir. ARCHAEAMOEBAE: Mitokondriden yoksun, tek-kamçılı ameboyit hücreler olup, “pelobiont”lar da denir (örneğin Mastigamoeba, Mastiginella, Pelomyxa). Kamçı Pelomyxa cinsinde güçlükle gözlenir, bu nedenle amip olarak da tanımlanmaktadır. Organik madde bakımından zengin, anoksik sedimentlerde yaygın olarak bulunurlar. Özel bir besin tercihleri yoktur; bakteri, alg, detritus vs. üzerinden beslenirler. METAMONADA: Mitokondriden yoksun anaerobik kamçılı protistlerdir. İki, dört, sekiz (ya da bazen daha fazla) kamçı taşırlar. Çoğunluğu endokommensal olmasına karşın, parazit türler ve serbest yaşayan diplomonad türleri de (örneğin Hexamita, Trepomonas) içerir. Organik olarak zengin, anoksik sedimentlerde yaygın olarak bulunurlar, bakteri üzerinden osmotrofik ve fagotrofik olarak beslenirler. PERCOLOZOA: Genellikle 1-4 (bazen daha fazla) arasında değişen kamçı taşıyan flagellatları (örneğin ameboyit olmayan dört kamçılı Percolomonas, çok kamçılı pseudosiliyatlar), geçici kamçılı safhaları bulunan ameboyit flagellatları (örneğin iki kamçılı Naeglaria, dört kamçılı Tetramitus), kamçılı safha bulunmayan ameboyit formları (örneğin Vahlkampfia) ve modifiye olmuş mitokondri (hidrogenozom) içeren anaerobik flagellatları (örneğin Psalteriomonas) içeren karışık bir gruptur. Bazıları fakültatif patojendirler. Tümü sedimentlerde yaşar ve esas olarak bakteri üzerinden beslenirler. PARABASALA: Çok sayıda kamçıya sahip hidrogenozom içeren anaerobik, heterotrofik flagellatlardır. Karakteristik olarak parabasal cisimcik (modifiye olmuş Golgi) içerirler. Muhtemelen Ditrichomonas, Pseudotrichomonas hariç, hemen hemen tümü endosimbiyotiktir. İyi bilinmemekle beraber, bakteri üzerinden beslendikleri tahmin edilmektedir. Bazı araştırıcılar Parabasala’yı Archaezoa alemine dahil ederler. EUGLENOZOA: Genellikle iki (nadiren daha fazla) kamçı taşıyan flagellatlardır. Kamçılardan biri ya da her ikisi de anteriyör bir çöküntüden çıkar. Çoğu fagotrofiktir (örneğin Rhyhchomonas, Bodo, Astasia, Paranema, Entosiphon, Anisonema). Fagotrofik türler esas olarak sedimentlerde yaşarlar ve buraya tutunmuş bakteriler ya da su sütununda asılı duran bakteriler üzerinden beslenirler. Entosiphon gibi daha büyük öglenoyitler büyük partiküllerle beslenirler. Kinetoplastid içeren biflagellat bodonidleri de içerir. Serbest yaşayanlara ilaveten simbiyotik olan üyeleri de vardır. Ichthyobodo necator tatlı su balıklarının solungaçlarında ektoparazit olarak yaşar. OPALOZOA: Çoğu biflagellat protistlerdir (Anisomonas, Apusomonas, Cercomonas, Heteromita). Esas olarak bakteri üzerinden beslenirler. Kathalepharis türleri planktonda küçük algler üzerinden, bazıları ise (örneğin Cercomonas) pseudopod oluşturarak bakteri üzerinden beslenirler. Cyathobodo kendini zemine tespit etmek için sap oluşturur. Bu takson endokommensal olarak yaşayan opalinidleri de kapsar. CHOANOZOA: Serbest yaşayan, tek kamçılı, renksiz flagellatlardır. Hücrelerin apikal yüzeyinde bulunan çok sayıda ince sitoplazmik uzantı, kamçının etrafında yaka benzeri bir yapı oluşturur. Çoğunlukla sesildirler. Soliter ya da koloniyal, çıplak ya da lorikalı olabilirler. Sadece fagotrofik formları içerir, tatlı sudaki süspanse bakteri ve diğer küçük partiküller üzerinden beslenirler (örneğin Codonosiga, Diploeca, Diplosigopsis, Monosiga, Sphaeroeca). DINOZOA: Ekolojik bakımdan önemli olan bir şubedir. Deniz ve tatlı sularda serbest, bir kısmı da diğer protistler veya metazoonlarda simbiyont olarak yaşayan, iki heterodinamik kamçı taşıyan flagellatlardır. Renksiz türler osmotrofiktirler, detritus ya da diğer protistler üzerinden beslenirler. Katadinium, Peridinium, Gymnodium ve Ceratium cinslerinde fagotrofik tatlı su türleri bulunur. CILIOPHORA: Protista içerisinde yer alan şubeler arasında en homojen gruplardan biridir. Nüklear dualizm (makro- ve mikronükleus) göstermeleri, hareket ve beslenme için sil veya bileşik sil yapıları (sir, membranel vs.) taşımaları, homothetogenik (enine) bölünmenin görülmesi (flagellatlarda symmetrogenik bölünme görülür) diagnostik özellikleridir. Bir çoğu kompleks ağız siliyatürüne sahiptir. Çoğu aerobiktir, anaerobik türlerde mitokondri yoktur ya da hidrogenozom bulunur. Siliyatlarda beslenme heterotrofiktir, fakat bazı türler fotosentetik algal protistler içerirler. Çoğunluğu serbest yaşar, çok sayıda türü kommensal veya nadiren de parazit olarak yaşayan simbiyontlardır. Ichthyopthyrius multifiliis balıklarda beyaz benek hastalığı etkenidir. Yumuşak zeminlerde geniş populasyonlar oluştururlar (örneğin Loxodes, Spirostomum, Caenomorpha, Aspidisca, Acineta, Nassula, Cyclidium, Vorticella, Frontonia, Paremecium, Prorodon, Lacrymaria, Actinobolina). Bir çok siliyat serbest, fakat bazı peritrich ve suktorlar sesil yaşarlar. Vorticella soliterdir, fakat Epistylis, Carchesium, Zoothamnium ve Operculaia koloniyaldir. Küçük türler bakteri üzerinden, büyük türler ise büyük tek hücreli algler, flamentöz siyanobakteri, diğer protozoonlar ve nadiren rotifer ve diğer mikrozooplankton üzerinden beslenirler. Halteria viridis gibi miksotrofik türlerin metalimniyonda aşırı çoğalması primer üretim bakımından önemli olabilir. RHIZOPODA: Beslenme ve hareket için pseudopod oluşturan, kamçısız amiplerdir. Yalancı ayaklar lobsu (lopopod), ipliksi (filopod) ya da ağsı (retikulopod) olabilir. Çıplak amipler lobsu (örneğin Amoeba, Acanthamoeba) ya da ipliksi (örneğin Vampyrella) yalancı ayaklara, kabuklu amipler ya lobsu (örneğin Arcella) ya da ipliksi (örneğin Euglypha) yalancı ayaklara sahiptirler. Foraminiferlerin (Granuloreticulosa) tümü hemen hemen denizeldir, kabuk yüzeyindeki deliklerden yalancı ayaklar ipliksi şekilde çıkarlar ve ağsı bir yapı şekillendirirler. Taksonun üyeleri esas olarak serbest yaşarlar, fakat endosimbiyont olarak yaşayanları da vardır (örneğin Entamoeba). Serbest yaşayanların tümü fagotrofik heterotroflardır. Alg, detritus, bakteri vs. üzerinden beslenirler. Vampyrella flamentöz yeşil algler üzerinde parazit yaşarlar. Bazı kabuklular planktoniktirler (örneğin Difflugia). HELIOZOA: Aksopodlu fagotrofik hücrelerdir. Sert, mikrotübüler aksonem içeren aksopodlar hücrenin etrafından ışınsal olarak çıkar. Güneş hayvancıkları da denir. Esas olarak tatlı sularda yaşarlar (örneğin Actinosphaerium, Actinophrys, Clathrulina). Bazıları denizeldir. Alg, protozoa ve rotiferler üzerinden beslenirler. Aksopodlar diffüzyonla beslenmede kullanılır. Esas olarak planktonik protistlerdir ve sap ya da aksopodlar aracılığı ile yüzeye tutunabilirler. BICOSOECA, DICTYOCHAE, PHAEOPHYTA, HAPTOMONADA ve CRYPTOMONADA : Kingdom Chromista’ya ait şubelerdir. Çoğunluğu fototrof olduğu halde, fagotrofik türler de içerirler. Tatlısu formlarında miksotrofi ve fagotrofi özellikle chrysomonadlarda yaygındır. Chrysomonadlar iki kamçılı, sesil ya da hareketli ve soliter ya da koloniyal olabilirler (örneğin Spumella, Uroglena, Dinobryon). Beslenme ile ilgili organelleri başta olmak üzere, protozoon morfolojisi ve fonksiyonel rolleri arasında yakın bir ilişki vardır. Bulundukları habitatlarda fonksiyonel rolleri dikkate alındığında, serbest protozoonlar siliyatlar, sarkodinler (kök bacaklılar) ve heterotrofik flagellatlar olmak üzere üç büyük gruba ayrılırlar. Fonksiyonel gruplar aynı yerde, bir arada yaşadıkları halde, besin yakalama mekanizmaları farklıdır. Flagellatlar genellikle 20μm’den, amipler 50 μm’den, siliyatlar 200 μm’den daha küçüktürler. Ancak bazı amip ve siliyatların büyüklükleri 2 mm’ye kadar ulaşabilir (örneğin Pelomyxa, Actinosphaerium, Stentor). Protozoonlar kendi büyüklüklerine uygun besini tercih ederek, mikrobiyal populasyonları kontrol altında tutarlar. Fonksiyonel özellikler dikkate alındığında, siliyatlar (besin yakalamada sil kullanırlar) yırtıcı beslenenler (örneğin Prorodon, Monodinium, Didinium, Dileptus, Chidonella, Nassula), süzerek beslenenler (Cyclidium, Colpidium, Vorticella, Aspidisca, Eupletes, Strombidium, Strobilidium) ve difüzyon ile beslenenler (Suctoria) olarak ayrılabilirler. Sarkodinler kendi içinde üç fonksiyonel gruba ayrılır: çıplak amipler, kabuklu amipler ve heliozoonlar. Bu protistler gruplara göre çeşitlilik gösteren pseudopodlarla, protistin büyüklüğüne uygun olarak alg yada bakteriler üzerinden, Pelomyxa türleri canlı olmayan organik partiküller üzerinden beslenirler. Heterotrofik flagellatlar diğer gruplara göre daha küçüktürler. Bu nedenle sucul ortamlarda, yüzey ve dipte önemli bakteri tüketicileridir. Yırtıcı beslenme (örneğin chrysomonadlar), süzerek beslenme (örneğin choanoflagellatlar) ve difüzyonla beslenme (örneğin Ciliophrys ve helioflagellatlar) bu grupta da görülür. Taksonomik gruplar ile fonksiyonel gruplar arasında yakın bir ilişki yoktur. Farklı türler, benzer ekolojik fonksiyonları olmasına karşın, farklı taksonomik gruplarda yer alabilirler. Heliozoonlar ve helioflagellatlar morfolojik olarak birbirlerine benzedikleri halde, farklı şubelerde yer alırlar. Bu iki şube benzer beslenme stratejisine sahiptirler. Benzer şekilde farklı beslenme stratejisi geliştiren bir hücrelilere çeşitli taksonomik gruplarda rastlanmaktadır. Örneğin değişik pek çok bir hücreli grubunda fotosentez yapan türler vardır. Bir grup fotosentez yapan türleri, heterotrofik türleri ve miksotrofik türleri içerebilir. Protist çeşitliliği ile ilgili iki farklı görüş bulunmaktadır. Mikrobiyal çeşitliliğin, makroskobik hayvan ve bitki çeşitliliği ile ayırt edici bazı özelliklere sahip olduğunu vurgulayan Finlay ve Esteban [17], tatlı su protozoon türlerinin az sayıda bireyle ya da kist olarak temsil edilse bile, tüm nemli habitatlarda her zaman bulunduklarını ve muhtemelen hiçbir zaman da yok olmadıklarını ifade etmişlerdir. Lokal olarak, birçok tür nadir ya da kriptiktir (gizli türler, kist halinde olanlar). Çevresel koşulların onların tercih ettikleri yönde gelişmesini beklerler. Uzun süre “aktif” durumdan çok “potansiyel” durumda kalırlar. Bundan dolayı aktif biyoçeşitlilikten çok, potansiyel biyoçeşitlilikten söz edilir. Boyutlarının küçük olması, dirençli kistler oluşturmaları ve bir yerden bir yere kolay bir şekilde taşınmalarından dolayı kozmopolit türler olarak kabul edilirler. Mikrobiyal ökaryot türlerin dağılışı nadir olarak coğrafik bariyerlerle sınırlanmıştır. Bu nedenle spesifik coğrafik dağılımları hakkında bilgi vermek oldukça zordur. Endemizm nadirdir,global tür çeşitliliği azdır ve en azından siliyatların çoğu halihazırda tanımlanmıştır [18-21]. Siliyat türlerinin çoğunun kozmopolit olduğu konusunda Finlay ve Fenchel’in görüşlerine katılan Foissner [22] önceki araştırıcıların aksine tür çeşitliliğinin çok fazla olduğunu, halen tanımlanmamış çok sayıda türün olduğunu, endemizmin yaygın olduğu ve spesifik coğrafik dağılış gösterdiklerini ileri sürmüştür. Yüksek yapılı hayvan ve bitkilerle karşılaştırıldığında, küçük oldukları ve yaşamlarının çoğunu kist safhasında geçirdikleri için protistleri tanımlamanın güç olduğunu ifade eden Foissner [23], sadece uygun koşullar oluştuğunda kistten çıktıklarını, birkaç tane her zaman mevcut ve sayısal olarak dominant tür tarafından gizlendiğini ve bu nedenle nadir türlerin gözden kaçırılabileceğini açıklamıştır.

http://www.biyologlar.com/tatli-su-protozoonlari-ve-onemi

Surprising global species shake-up discovered

Surprising global species shake-up discovered

The diversity of the world's life forms — from corals to carnivores — is under assault. Decades of scientific studies document the fraying of ecosystems and a grim tally of species extinctions due to destroyed habitat, pollution, climate change, invasives and overharvesting. Which makes a recent report in the journal Science rather surprising. Nick Gotelli, a professor at the University of Vermont, with colleagues from Saint Andrews University, Scotland, and the University of Maine, re-examined data from one hundred long-term monitoring studies done around the world — polar regions to the tropics, in the oceans and on land. They discovered that the number of species in many of these places has not changed much — or has actually increased. Now wait a minute. A global extinction crisis should show up in declining levels of local biodiversity, right? That's not what the scientists found. Instead they discovered that, on average, the number of species recorded remained the same over time. Fifty-nine of the one hundred biological communities showed an increase in species richness and 41 a decrease. In all the studies, the rate of change was modest. But the researchers did discover something changing rapidly: which species were living in the places being studied. Almost 80 percent of the communities the team examined showed substantial changes in species composition, averaging about 10 percent change per decade — significantly higher than the rate of change predicted by models. In other words, this new report shows that a huge turnover of species in habitats around the globe is under way, resulting in the creation of novel biological communities. "Right under our noses, in the same place that a team might have looked a decade earlier, or even just a year earlier, a new assemblage of plants and animals may be taking hold," Gotelli says. The causes of this shift are not yet fully clear, but the implications for conservation and policy could be significant. Historically, conservation science and planning has focused on protecting endangered species more than on shifts in which plants and animals are assembled together. "A main policy application of this work is that we're going to need to focus as much on the identity of species as on the number of species," Gotelli says. "The number of species in a place may not be our best scorecard for environmental change." For example, the scientists write that disturbed coral reefs can be replaced by a group of species dominated by algae. This replacement might keep the species count the same, but not necessarily provide the fisheries, tourism ("algae diving" doesn't have quite the same appeal as "reef diving") or coastal protections that the original coral reef did. "In the oceans we no longer have many anchovies, but we seem to have an awful lot of jellyfish," says Gotelli. "Those kinds of changes are not going to be seen by just counting the number of species that are present." The new research, led by Maria Dornelas at Saint Andrews University in Scotland, carefully looked for previous studies that had tracked and tallied species over many years. The team selected 100 that contained six million observations of more than 35,000 different species — including datasets that go back to 1874 and many over the last 40 years. Given widespread observation of habitat change and individual species declines — and knowing that extinction rates are many times higher than normal — the scientists predicted a drop, over time, in the number of species observed in most of these studies. Why they didn't find this drop could be driven by many forces. One is related to what science writer David Quammen semi-famously termed our "planet of weeds." In other words, invasive species or successful colonists or weedy generalists — think kudzu and rats — may be spreading into new places, keeping the local species tally up, even as the planet's overall biodiversity is degraded. "We move species around," Gotelli says. "There is a huge ant diversity in Florida, and about 30 percent of the ant species are non-natives. They have been accidentally introduced, mostly from the Old World tropics, and they are now a part of the local assemblage. So you can have increased diversity in local communities because of global homogenization." And sampling issues may conceal important realities: some species may have become so rare — think white rhinos — that they're highly unlikely to be found in a general species survey and so don't show in the initial results nor disappear in later ones. Range shifts associated with climate change could be at work, too, quickly pushing species into new terrain. On May 6, the White House released its National Climate Assessment noting that, as a result of human-caused warming, "species, including many iconic species, may disappear from regions where they have been prevalent or become extinct, altering some regions so much that their mix of plant and animal life will become almost unrecognizable." This study in Science,"Assemblage Time Series Reveal Biodiversity Change Systematic Loss," published on April 18, underlines this emerging reality, giving it a new and worrisome precision and leading Nick Gotelli and his co-authors to conclude that there "is need to expand the focus of research and planning from biodiversity loss to biodiversity change." Source : joshua.e.brown@uvm.edu http://www.biologynews.net

http://www.biyologlar.com/surprising-global-species-shake-up-discovered

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

SOLUNUM SİSTEMİ FİZYOLOJİSİ

Solunum kelimesi iki anlamda kullanılabilir. Hücresel düzeyde, hücresel oksidatif Matabolizma anlamındadır. Organizma düzeyinde ise, gaz değişim yüzeylerinin, yani akciğerlerin atmosfer havası ile havalanması demektir. Solunum sistemi, dolaşım sisteminin atmosferle olan bağlantısını sağlar. Amfibian denilen kurbağa gibi hem karada hem de suda yasayan canlılarda ¤¤¤¤bolizma düşük olduğu için cilt solunumu yeterlidir. Eğer insanlarda kurbağalar gibi cilt solunumu yapsalardı, o zaman insanların ¤¤¤¤bolizması daha yüksek olduğu için, insan vücudunun yüzeyinin, gerçek yüzeyinden kat kat fazla olması gerekir idi. Akciğerler ağırlık olarak vücudun pek az bir kısmını oluştururlar, fakat yüzey olarak çok fazla bir yer kaplar. Yunan mitolojisine göre, "PNEUMA" yani nefes, görülmez kişisel bir ruhtur ve sahibine hayat verir. Sağlıklı insanlar, soluk almayı, değerini takdir etmeden, verilmiş bir hak gibi kabul ederler, çünkü soluk alıp verme hemen hemen gayretsizdir ve bilinçsizce yapılır. Oysa solunum hastalığı olanlar için, her soluk bir altın değerindedir. Solunum hastalıkları genellikle, soluk havasının ya sigara dumanı ya da kirli hava ile kirlenmesinden kaynaklanır. Solunum sisteminin bir diğer görevi de ses çıkarmaktır. Konuşurken, solunum sisteminde dolasan hava, ses tellerini titreştirir, oluşan bu sesin havayla dolu boşluklarda yankılanmasıyla bazı frekanslar diğerleri üzerine baskın çıkar, bu da her kişiye kendine has özel sesini verir. SOLUNUM SİSTEMİ ANATOMİSİ Solunum sistemi burun, ağız, farinks (yutak), larinks (gırtlak), trakea (soluk borusu), bronşlar, bronsioller, ve alveollerden oluşur. Trakeadan sonra ilk dallanan yapılara bronşlar, broşlardan sonraki daha dar çaplı yapılara da bronsioller denilmektedir. Bronşlar, bronsioller ve terminal bronsiollerde gaz alışverişi olmaz, bu kanallar anatomik ölü boşluk olarak adlandırılır. Anatomik ölü boşlukta bulunan hava hacmi 150 ml dir. Gaz değişimi yapılan alanlar ise respiratuvar bronsiol, duktus alveolaris, ve alveol keseleridir. Anatomik ölü boşluk nedeni ile her bir solunum ile akciğerlere alınan 500 ml havanın 350 ml sinde gaz değişimi yapılmaktadır. Diffüzyon: Gerek akciğerlerde gerekse hücre düzeyinde gaz alışverişi diffüzyon ile olmaktadır. Bu diffüzyon pasif bir olaydır, yani gazlar konsantrasyon farkları doğrultusunda diffüzyona uğrarlar. Bir sıvıda çözünmüş olan gazin konsantrasyonu o gazin kısmi basıncı ile ifade edilmektedir. Gazin kısmi basıncı büyüdükçe, konsantrasyonu da artmaktadır. Akciğerlere gelen venöz kanda, alveol içindeki atmosfer havasına oranla, CO2 basıncı daha yüksek, O2 basıncı ise daha düşüktür; bu sebeple, CO2 alveol içine verilirken, O2 de kana geçmektedir. Kanda oksijenin % 97 si eritrositler içinde hemoglobine bağlı olarak taşınır, geri kalan % 3 ise plazmada fiziksel olarak çözünmüş halde taşınmaktadır. Karbondioksit ise 4 şekilde taşınır. % 70 oranında plazmada HCO3 iyonu seklinde taşınır. Hücrelerde oluşan CO2, kana geçtiği zaman eritrositler içine alınır. Eritrositler içinde CO2, karbonik anhidraz enziminin etkisiyle H2O ile birleşir. Karbonik anhidraz: CO2 + H2O HCO3 + H Yukarıdaki reaksiyonda ortaya çıkan hidrojen iyonları hemoglobin molekülüne bağlanır, bikarbonat iyonları ise eritrositlerden plazmaya çıkar ve akciğerlere kadar plazmada gelir. Kan akciğerlere gelince, bikarbonat iyonlarının eritrositler içine girmesi ile reaksiyon tersine döner, sonuçta su ve karbondioksit oluşur ve solunum yoluyla dışarı atılır. Karbondioksitin % 70 i bu yolla taşınır. Karbondioksitin bir kısmı doğrudan hemoglobin molekülüne bağlanarak taşınır. Çok az bir kısmı plazmada fiziksel olarak çözünmüş halde taşınır. Az bir kısmı da plazma proteinleri ile karboamino bileşikleri oluşturarak taşınır. Solunum Sisteminin Fonksiyonları: 1.Oksijen temin eder. 2. Karbondioksiti atar. 3. Kanın hidrojen iyon konsantrasyonunu (pH sini) düzenler. 4. Konuşmak için gerekli sesleri üretir (fonasyon). 5. Mikroplara karsı vücudu savunur. 6. Kan pıhtısını tutar ve eritir. Solunum Sisteminin Organizasyonu: Sağ ve sol olmak üzere 2 akciğer vardır. Akciğerler esas olarak ALVEOL denilen (alveolus, tekil; alveoli, çogul) içi hava dolu küçük keseciklerden oluşur. Alveol kanla, atmosfer havasının gaz değiştirdikleri yerdir ve her bir akciğerde yaklaşık 150 milyon alveol vardır. HAVAYOLU dış ortamla, alveol arasında havanın geçtiği tüm tüplere verilen isimdir. Inspirasyon soluk alma demektir ve solunum sırasında dış ortamdan, havanın havayolları aracılığı ile alveollere hareket etmesidir. Ekspirasyon ise soluk verme demektir ve havanın alveollerden dış ortama, yine havayolu aracılığı ile verilmesi demektir. Soluk alıp verme sırasında, 1 dakikada yaklaşık 4 litre hava alveollere girip çıkarken, alveollerin çevresindeki kapiller damarlardan ise 1 dakikada 5 L kan geçer. Ağır egzersiz sırasında hava akışı 30-40 kat artabilirken, kan akimi da 5-6 kat artabilir. Her zaman için alveole giren hava ile alveol çevresindeki kapillerler içindeki kan birbiriyle orantılı olmalıdır. Alveoler hava ile kapiller kan birbirinden çok ince bir zar ile ayrılmıştır, bu zar oksijen ve karbondioksitin diffüze olmasına olanak tanır. Havayolu: Soluk alma sırasında, hava ya ağızdan ya da burundan farenkse geçer, farenks hem yiyecekler hem de hava için ortak bir geçiş yoludur. Farinks 2 tüpe ayrılır, birisi özafagustur ki buradan yiyecekler mideye geçer, diğeri ise larinks dir ki, bu havayolunun bir parçasıdır. Ses telleri larinkste bulunur, geçen havanın bu telleri titretmesi ile ses oluşur. Larinks trakea denilen uzun bir tüpe açılır. Trakeada 2 tane bronşa dallanır. Bir bronş sağ akciğere bir bronş da sol akciğere girer. (Bronchus=bronş, bronchi=bronşlar) Trakea ve bronşların duvarları kartilaj denilen kıkırdak dokusu içerir ve kartilaj bu yapılara esneklik ve dayanıklılık verir. Akciğerler içerisinde bronşların dallanması devam eder, her bir dallanma daha dar, daha kısa, ve daha çok sayıda tüp oluşması ile sonuçlanır. Bu dallanmalar sırasında kartilaj içermeyen ilk dallanmalardaki tüplere bronsiyol denir. Alveoller, respiratuvar bronsiyollerden itibaren görülmeye baslar. Havayolları larinksten itibaren 2 bölüme ayrılır. 1)İletici kısım 2)respiratuvar kısım. İletici kısımda hiç alveol olmadığı için bu kısımda gaz değişimi olmaz. Respiratuvar kısım ise respiratuvar bronsiollerden itibaren baslar. Bu kısımda gaz değişimi olur. Farinksten, respiratuvar bronsiollerin sonuna kadar tüm havayolu boyunca, epitelyal yüzeyler silya içerir. Tüm havayolu boyuna ayrıca mukus salgılayan epitel hücreleri ile çeşitli bezler bulunur. Silyalar sürekli olarak farinkse doğru hareket halindedirler. Bu yapıyı mukustan yapılmış bir yürüyen merdivene benzetebiliriz. Bu yürüyen merdiven sayesinde solunum havasındaki toz mukusa yapışır ve yavaş ama sürekli hareket halindeki silya hareketleriyle farinkse doğru iletilir ve farinkse varınca, burada yutulur. Bu mukus yürüyen merdiveni akciğerleri temiz tutmak için çok önemlidir. Silyer aktivite zararlı pek çok etkenle inhibe edilebilir. Örneğin sigara içmek silyaları saatlerce immobilize eder. Silyer aktivitenin azalması akciğer enfeksiyonu ile ya da atılamayan mukusun havayolunu tıkamasıyla sonuçlanabilir. İkinci koruma mekanizması fagositlerdir. Tüm havayolu ve alveoller boyunca bulunan fagositler solunumla alınan küçük parçacıkları ve bakterileri fagosite ederek bunların öteki akciğer hücrelerine ya da kan dolaşımına geçmesini önlerler. ALVEOL Alveoller küçük, içi hava dolu keseciklerdir. Alveol duvarının havaya bakan iç yüzleri yalnızca 1 hücre kalınlığındadır. Bu iç yüzey Tip I hücreleri denilen epitel hücreleri tarafından 1 sıra olarak oluşturulmuştur. Alveollerin duvarları ayni zamanda kapiller damarları da içerir. Kapiller damarların endotel hücreleri, alveol endotel hücrelerinden çok az bir interstisiyel sıvı ve bir bazal membranla ayrılmıştır. Sonuç olarak kapiller damarlardaki kan, alveollerdeki havadan yalnızca 0,2 m m kalınlığında bir bariyerle ayrılmıştır. Ortalama bir eritrositin çapının 7 m m olduğunu düşünürsek, 0,2 m m lik bir bariyerin ne kadar ince olduğu çok açıktır. Kapiller damarlar ile temas eden alveol yüzeyinin toplam alanı 75 m2 dir ki bu bir tenis kortunun alanına eşittir, ya da bir diğer deyişle, vücut dış yüzeyinin 80 katidir. Bu kadar ince ve büyük bir alan olması sebebiyle oksijen ve karbondioksit büyük miktarlarda hızlıca değişmektedir. Alveol epitelinde Tip I hücrelerine ek olarak daha az sayıda Tip II hücreleri vardır. Şekilsel olarak Tip I den daha büyük olan bu Tip II hücreleri surfaktan denilen bir madde sentezlerler. GÖGÜS KAFESİ Akciğerler toraks denilen göğüs kafesi içinde yerleşmiştir. Toraks kapalı bir bölmedir. Boyunda kaslar ve bağ dokusu tarafından sınırlanmıştır, altta ise diyafram denilen kubbe seklinde bir çizgili kas ile karından tümüyle ayrılmıştır. Toraks duvarları, omurilik, kostalar, iman tahtası (sternum), ve kostalar arasındaki kas olan interkostal kaslardan oluşur. Toraks duvarı ek olarak büyük miktarda elastik bağ dokusu içerir. Her akciğer plevra zari denilen bir zar ile tamamen kaplanmıştır. Bu zar iki katli bir zardır. Plevra zarını hayalde canlandırmak için içi su dolu bir balona bir yumruğu bastırdığınızı düşünün. Yumruk akciğeri temsil etmektedir, yumruğu ilk saran balon zari visseral plevrayı temsil etmektedir. İkinci katman ise pariyetal plevrayı temsil etmektedir. Visseral plevra ile parietal plevra arasında intraplevral sıvı denilen çok ince bir sıvı tabakası vardır. Bunun toplam miktarı sadece birkaç ml dir. Gelişim sırasında bu iki plevra zari arasında yaklaşık 4 mm Hg lik negatif bir basınç oluşur. Bu negatif basınç sayesinde, normalde kollabe olması gereken alveol açık kalır. Bu negatif basınç alveolleri dışa doğru çekerken, göğüs kafesini de içe doğru çeker. Göğsün kesici aletlerle olan yaralanmasında parietal plevra delindiği için plevral aralıktaki basınç atmosfer basıncına eşitlenir, yani negatif basınç kalmaz. Pnemotoraks denilen bu yaralanmada alveolleri dışa doğru çeken negatif basınç olmadığı için akciğerler kollabe olur, yani söner. İNSPİRASYON (SOLUK ALMA) Inspirasyon, diyafram ve inspiratuvar interkostal kasların kasılmasıyla baslar. Diyaframın kasılmasıyla göğüs boşluğu karına doğru büyür. Interkostal kasların kasılmasıyla da göğüs yukarı ve dışa doğru büyür. Göğüsün bu büyümesi intraplevral aralıktaki basıncı daha da negatif yapar. Bu da akciğerleri daha da büyüterek havanın akciğerlere doğru emilmesine yol açar. EKSPİRASYON (SOLUK VERME) Inspirasyonun sonunda, diyafram ve inspiratuvar interkostal kaslara giden sinirler, kasları uyarmayı sonlandırır ve böylelikle kaslar gevşerler. Göğüs duvarı ve dolayısı ile akciğerler pasif olarak orijinal değerlerine dönerler. Akciğerler küçülünce, alveollerin içindeki hava sıkışır ve alveol içi basınç atmosfer basıncını geçer. Dolayısı ile alveol içindeki hava kolayca havayollarından dışarı atılır. Sonuç olarak istirahat halinde ekspirasyon pasif bir olaydır, inspiratuvar kasların gevşemesi ve akciğerlerin elastikiyeti sayesinde gerçekleşir. Fakat egzersiz sırasında daha büyük miktarda hava dışarı atılmak zorunda olduğu için ekspiratuvar interkostal kaslar ve karin kaslarının kasılmasıyla göğüs daha aktif olarak küçülür. KOMPLİANS (ESNEME) Belirli bir basınç altında belirli bir maddenin ne kadar esneyebildiğine o maddenin kompliansi denir. Dolayısı ile akciğerlerin kompliyansi ne kadar çok olursa, esneyebilmeleri de o kadar çok olur. Tersine komplians azalmışsa akciğerlerin esneyebilmeleri de zor olur. Akciğerlerin kompliyansinin azaldığı hastalıklarda, esneklik azaldığı için, akciğerleri genişletmek için daha fazla güç uygulamak gerekecektir. Bu tür hastalar, yüzeysel ve hızlı solurlar. Akciğerlerin kompliansini etkileyen bir diğer faktör de alveollerin yüzey gerilimidir. Alveollerin yüzeyleri nemlidir ve alveoller ince bir su tabakası ile kaplı gibi düşünülebilir. Bu su tabakası gerilmiş bir balon gibi davranır ve akciğerlerin genişlemesini engelleyen bir güç gibi davranır. Akciğerlerin genişlemesini etkileyen bu güce "yüzey gerilimi" denir. Sonuç olarak akciğerlerin genişlemesi hem akciğerlerin elastik dokusunu germek, hem de bu yüzey gerilimini asmak için daha fazla enerjiye ihtiyaç duyacaktır. Alveollerdeki Tip II hücreler surfaktan denilen bir madde sentezlerler. Surfaktan yüzey gerilimini azalttığı için akciğerlerin kompliansini arttırır, yani akciğerleri genişletmek için daha az enerjiye gereksinim duyulur. Respiratuvar Distress Sendromu denilen hastalıkta yeni doğan bebekler yeteri kadar surfaktan sentezleyemedikleri için bu bebekler soluk alıp vermek için çok enerji harcarlar ve çocukların yorgunluktan bitkin düşerek ölmelerine neden olabilir. Gebe kadına kortizol yapılması çocukta surfaktan sentezini artırır. AKCİĞER KAPASİTELERİ Tek bir solukla akciğerlere alınan veya akciğerlerden çıkarılan hava msktarina tidal volum (soluk hacmi) denir, miktarı 500 ml dir. Pasif ekspirasyondan sonra akciğerlerde kalan hava miktarına fonksiyonel rezidüel kapasite denir, yaklaşık 2300 ml dir. Zorlu bir ekspirasyondan sonra, akciğerlerde kalan hava miktarına rezidüel volüm denir, miktarı 1200 ml dir. Normal bir inspirasyondan sonra zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar yedek volüm denir, 3000 ml civarındadır. Normal pasif ekspirasyondan sonra zorlu ekspirasyon ile akciğerlerden atılan hava miktarına ekspiratuvar yedek volüm denir, 1100 ml civarındadır. Normal bir ekspirasyondan sonra, zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar kapasite denir. Tidal volüm, inspiratuvar ve ekspiratuvar yedek volümlerin toplamı akciğerlere kas kuvveti ile alınıp verilebilen maksimum hava miktarını gösterir, ve buna vital kapasite denir. Vital kapasite genç erkeklerde 4,6 L genç kızlarda ise 3,1 L dir. Maksimum ekspirasyondan sonra akciğerlerde kalan hava miktarına residüel volüm denir, ve yaklaşık 1200 ml civarındadır. Vital kapasite ile residüel volümün toplamına ise Total akciğer kapasitesi denir. Bu bahsedilen volümlere statik volümler denir, çünkü bu ölçümler hava akimi olmadığı zaman yapılan ölçümlerdir. Zorlu ekspirasyon sırasında yapılan akciğer volüm değişikliklerine ise dinamik akciğer volümleri denir. Bunlar FEV1 ve FVC dir. FEV1 birinci saniyede akciğerlerden çıkarılabilen hava miktarıdır. FVC ise maksimum inspirasyondan sonra akciğerlerden çıkarılabilen maksimum hava miktarıdır. Sağlıklı genç bireylerde FEV1 4 L FVC ,ise 5 L dir ve oran 0,8 dir. GÖĞÜS HASTALIKLARI Göğüs hastalıkları iki genel kısma ayrılırlar. Obsruktif Hastalıklar: Bu hastalıklarda hava yolu direnci artmıştır (amfizem, astım). Restriktif Hastalıklar: Akciğer kompliansi azalmıştır (pulmoner fibrozis, respiratuvar distress sendromu).

http://www.biyologlar.com/solunum-sistemi-fizyolojisi

Bakteriyofaj Nedir ?

Bakteri yiyen canlı bakterilerin büyümesine engel olan onları eriten ve ancak elektron mikroskopla görülebilen bir ültravirüs. Süzgeçlerden geçen ve kültürden kültüre nakledilmesi mümkün olan bu ultra- virüs bakteri kolonilerinde görülebilen değişiklikler yapabilmekte ve bakteri hücrelerini hiç bir artık bırakmadan eritebilmektedir. bakteriyofajlar ın bilhassa zararlı bakterilerden meydana gelen çeşitli salgınlarda bakterileri yok etmek suretiyle önemli rolleri vardır Synechococcus bakterisinin fajı S-PM2 elektron mikroskobu fotoğrafı Bakteriyofaj bakteri ve Yunanca phagein yemek fiilinden tÜretme bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları hayvan bitki ve mantarları enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitl ilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme dna veya RNA olabilir ama genelde 5 – 500 kilo baz çifti uzunluğunda çift sarmallı dnadan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda örneğin Toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği virion bulunmuştur ve deniz bakterilerinin %70i fajlar tarafından enfekte olmuş olabilirler Tarihçe 1913te Britan yalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla ta kip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix dHérelle 3 eylül 1917de dizanteri basilinin düşmanının görünmez bir mikrobunu keşfettiğini açıklayıp ona bakteryofaj adını verdi Çoğalması bakteriyofajların, litik veya lizogenik hayat döngüleri olabilir bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizo genik döngü buna tezat olarak konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar temperate phage denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür ama konağın şartları bozulursa örneğin besin kaynaklarının tükenmesi durumunda endojen fajlar profaj olarak adlandırılırlar etkinleşirler. Bir çoğalma süreci başlar sonucunda konak hücre parçalanır. ilginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar bu olguya lizogenik dönüşüm lysogenic conversion denir. Bunun iyi bilinen bir örneği Vibrio cholera nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve giriş T4 bakteriyofajının yapısı. 1. baş 2. Kuyruk 3. Nükleik asit 4. Kapsit 5. Yaka 6. Kın 7. Kuyruk lifleri 8. Ekserler 9. Taban plakası.Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki öz gül reseptörlere bağlanırlar bunlar arasında lipoPolisakkaritler teikoik asitler proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluş up bağlanırlar. Karmaşık bakteryofajlar örneğin T-çift fajları genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. iyice bağlandıktan sonra kuyruk büzülür bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. protein ve Nükleik asit sentezi Kısa süre bazen Dakikalar içinde bakteri ribozomları viral mrnanın Proteine çevirimine translasyonuna başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mrnayı tercihen çevirmesine neden olabilirler. Konağın kendi Protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur kuyruk onun üzerinde büyür. kafa kapsidi ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde dna kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması lizis veya salgılanma yoluyla salınırlar. T4 fajları durumunda hücre içine girmelerinden 20 Dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300ü bulabilen faj salınır. Bunun gerçekleşmesi hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimiKeşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batıda faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliğinde 1940lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar milyonlarca yıldır süregeldiği gibi bakterilerle beraber evrimleştikleri için sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca etkili bir faj özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir bakteri tipinin doğru tanımlandığından emin olmak gerekebilir bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak sıkça olduğu gibi birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler onun için açık bir yaraya uygulanmaları en iyi Sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006da ABD gıda ve ilaç idaresi Food and Drug Administration bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır.  

http://www.biyologlar.com/bakteriyofaj-nedir-

Örümcek Türleri

Örümcek, eklembacaklıların örümceğimsiler (Arachnida) sınıfının örümcekler (Araneida) takımından türlerine verilen genel ad. Hemen hemen dünyanın her tarafında yaşarlar. 63.000 kadar türü vardır. Baş ve göğüs kaynaşmıştır. Karın, göğüse ince bir bel (pedisel) ile bağlanmıştır. Aynı büyüklükte başka bir canlının beli bu kadar ince değildir. İçinden sindirim borusu, kan damarları nefes boruları ve sinir sistemi geçer. Örümceklerin boyları, birkaç cm'den 35 cm'ye kadar değişir. Ağızlarının önünde iki zehir çengeli (keliser) ve iki his ayağı (pedipalp) yer alır. Göğüslerinde ise, gelişmiş dört çift yürüme bacağı vardır. Uçları, tarak gibi dişli iki çengelle sonlanır. Örümcek bunların sayesinde ağ üzerinde rahatça dolaşır. Bir kısmı ileriye, geriye ve yanlara doğru yürüyebilirler. Çoğunun başında 3 veya 4 çift osel (basit) göz bulunur. Gözlerin dizilişi, sınıflandırmada önemli bir özelliktir. Yuvarlak olan karın kısmı yumuşak ve esnek olup, alt kısmında solunum delikleri, ipek bezleri, anüs ve cinsiyet organları yer alır. GENEL ÖZELLİKLER Örümcekler, yırtıcı hayvanlardır. Birbirlerine saldırmaktan çekinmezler. Avları çok çeşitlidir. Çoğu, böceklerle beslendiklerinden faydalı sayılırlar. Bazı tropikal türler amfibyum, sürüngen, küçük kuş ve memeli gibi omurgalıları avlarlar. Örümceklerin hepsi avlarını yakalamak için tuzak ağları kurmaz. Bir kısmı avlarını kovalayarak veya üzerlerine sıçrayarak yakalar. Suda böcek, kurbağa ve balık avlayanlar da vardır. Yakaladığı avını, kıskaçlarına açılan zehir salgısı ile felce uğratır. Sonra ısırarak avının iç organlarına, eritici enzimler ihtiva eden tükrük salgısını akıtır. Kısa bir zaman zarfında, avın iç organları eriyerek sıvı haline gelir. Örümcek, emici midesini bir pompa gibi kullanarak bu sıvıyı emer. Av, kısa bir sürede içi boş kabuğa döner. Örümcek, bu boş kabuğu ya olduğu yere bırakır veya başka bir yere atar. Böcekler, küçük kuşlar bu avlar arasındadırlar. Güney Amerika'da yaşayan, bacakları hariç 10 cm boyunda olan, toprakaltı inlerinde barınan bazı türler, tavşan ve tavukların içini boşaltabilecek güçtedir. Örümceklerin özofagusları (yemek borusu) çok dar olduğundan böyle beslenmek zorundadırlar. Ayrıca, ağız parçaları da bir sineği bile parçalayacak güçte değildir. Zehir çengelleri, avı delmeye ve zehir akıtmaya yarar. Uçtaki iğneli kısımları, bir şırınga gibi birer yan delikle biter. Deliğin böyle enjektörvari oluşu, tıkanma tehlikesini önler. İğne ava girince, zehir bu delikten sızar. Örümcekler, iki keliseri de kullanırlar. Isırdıkları zaman yanyana iki delik olması bu yüzdendir. Keliser, aynı zamanda, delik açma ve küçük cisimleri taşıma işlerine de yarar. Örümceklerin böceklerden ayrılan birçok özelliği vardır. Böceklerin çoğu kanatlı olduğu halde, örümcekler kanatsızdır. Böceklerde 6 bacak olmasına karşılık örümceklerde 8 bacak vardır. Antenleri olmadığından, ağız önündeki pedipalpler bu görevi üstlenirler. Dış görünüşleri bacağa benzediğinden bunlara duyu bacakları da denir. Üzerleri duyu algılayıcı tüylerle kaplı olup, dokunma, tad alma ve çevreyi koklayıp araştırma gibi görevler yaparlar. Üreme dönemlerinde erkeklerde spermaları biriktirip dişiye aktaran bir kopulasyon (çiftleşme) organı olarak da iş görürler. ve her tehlikeye karşı sperleri vardır. Örümceklerde trakealar (solunum boruları), akreplerde olduğu gibi karın altında kitap akciğerleri tipindedir. Kitap yaprakları şeklindeki deri kıvrımlarından dolayı solunum organları bu adı alır. İki veya dört tane kitap akciğerleri vardır. Eğer örümcekte bunlar iki ise, eksikliği ek solunum boruları ile tamamlanır ÖRÜMCEK AĞI NASIL OLUŞUR Örümceklerde, diğer eklembacaklılar gibi açık bir dolaşım sistemi bulunur. Kılcal damarları yoktur. Hemen hemen her yerde rastlanan örümcek ağı, aslında bir sanat şaheseridir. Yapılış maksadı avlanmak olan ağ, bir nevi tuzaktır. Fakat her örümcek türü ağ yapmaz. Ancak bütün örümcekler ağ tellerinden yumurtalarının etrafını saran kozalar yaparlar. Bazıları da ağ bezlerini, yaprakları yapıştırmakta, yuvalarının içini döşemede, açtıkları çukurun çevresini kapatmakta vs. işlerde kullanırlar. Ağ kurmayan bu tür avcı örümcekler de, arkalarında ağdan bir iz bırakarak, rüzgarla sürüklenmekten korunurlar. Erkekler, dişileri bulmakta da bu izlerden faydalanırlar. Karın altlarının arka taraflarında üç çift ağ organları bulunur. Her birinin dışarıya ayrı bir çıkışı vardır. Bezlerden meydana gelen yapışkan ve sıvı iplik maddesi, havayla temas edince sertleşir. Her ağ memeciğinde 100 kadar ince ve küçük kanalcıklar bulunur. Bu ince kanalcıklardan sızan iplikçikler bir araya gelerek büküldükleri zaman tek iplik durumuna gelirler. Esnek ve yapışkandırlar. Bir sinek ne kadar sert çarpsa da kopmazlar. Ağ yapmak isteyen örümcek, ağ organlarını bacaklarının bir kısmı ile bastırarak ağ maddesinin akışını başlatır. Örümcekler, iplik deliklerinden çıkan tellerin hepsini toplayıp bir tek tel halinde kullandıkları gibi bunlardan ayrı ayrı incecik tel de yaparlar. Düşme esnasında bir yere taktığı ağ telini, kendisi yere varıncaya kadar uzatabilir. Genç örümcekler, ağ tellerinin sayesinde uzun mesafelere uçabilirler. Bunun için telin bir ucunu bir yere bağlayarak kendilerini hava akımlarına bırakırlar. Böylece yerlerinden havalanan örümcekler, karada 5 km, denizde ise yüzlerce km uzaklara savrulabilirler. Okyanuslardaki ıssız adalarda yaşayan örümcekler, hep böyle havadan gelmişlerdir. Sonbaharda bol bol rastlanan ağ telleri de uçan genç örümceklerden kalmıştır. Ağ yapacak olan bir örümcek, önce yüksekçe bir yere tırmanarak, ağın ucunu bulunduğu kısma yapıştırarak ipek iplik yardımıyla aşağı süzülür. Gözüne kestirdiği bir dala ulaşarak bağlantı kurar. Sonra o iplik üzerinde gidip gelerek ağı kalınlaştırır. Daha sonra vücudundan çıkmakta olan ipliğin bir ucunu ilk ipliğe tutturarak kendisini boşluğa bırakır. Ağa bağlı halde bir yere varınca, o ucu vardığı yere yapıştırır. Bu yolla birkaç gidiş gelişte ağın kaba iskeleti meydana gelir. Bundan sonra iskeletin merkezi çevresinde dairevi halkalar yaparak ağı tamamlar. Ağ örümü çoğunlukla gece olur. Örülmesi en fazla 60 dakika alır. Ağın ortasında spiral ve yapışkan bir yer vardır. Diğer iplikçikler kurudur. Bir sinek ağa konsa hemen yapışır. Kurtulmak için çırpındıkça daha da yapışır. İkaz iplikçiği ile avın yakalandığını anlayan örümcek gelerek avını zehirler. İkaz iplikçiğinin bir ucu ağa bağlı, diğer ucu ise daima kendisindedir. Ağlar, genellikle yere dik vaziyettedir. Maksat, uçan arı ve sinekleri yakalamaktır. Her örümcek türünün, kendisine has ağ örme stili vardır. Ancak dikkati çeken nokta, ağlarda geometrik inceliklerin her zaman varlığıdır. Ağ örme işi örümceklerin, doğuştan kazandıkları bir sanattır. Küçük bir örümcek, daha önce hiç ağı görmemiş ve örmemiş olmasına rağmen büyüklere benzer ağlar örer. ÖRÜMCEKLER NASIL KORUNUR ? Bazı örümcekler düşmanlarından korunmak için çeşitli hilelere başvururlar. Güneydoğu Asya'da bir örümcek türü yaptığı büyük ve dairevi ağının ortasında durur. Bu duruş örümcek yiyen kuşlar için kolay bir hedef teşkil eder. Örümcek, düşmanlarını yanıltmak için birkaç adet sahte ağ merkezi tesis eder. Yediği avlarının kalıntılarını da ağ merkezlerine takarak manken örümcekler kullanır. Başka bir örümcek çeşidi de diken ve ağaç kabuklarından manken örümcekler yapar. Örümcek ağlarının ipleri ipektir. Bu iplikler, aynı çaptaki çelik telden daha sağlamdır. Örümceğin ipeği, ipekböceğinin ipeğinden daha ince ve daha dayanıklıdır. Üstelik bildiğimiz ipekten daha güzeldir. Ancak yapılan araştırmalar göstermiştir ki, örümcek ipeği tellerinden ince ipek elde etmeye imkân yoktur. Daha doğrusu çok pahalıya mal olmaktadır. Bunun başlıca sebebi, örümcekleri bir arada tutmanın zorluğudur. Zira bir arada bulunan örümcekler birbirini yerler. ÖRÜMCEKLERDE ÜREME Örümcekler ayrı eşeyli canlılardır. Dişileri erkeklerden daha iridir. Bazı türlerde erkekler de ağ yapar. Örümceklerde bir arada yaşamak, toplum ve aile hayatı yoktur dense de bazı türlerin birkaç birey olarak yasadıkları litaratüre geçmiştir. Erkekten daha iri olan dişiler, çiftleşme sonrası diğer örümceği yiyebilirler. Örümceklerde en ilgi çekici hususlardan biri de erkeklerde duyu bacaklarının eşleşme organı vazifesi görmesidir. Erkek önce bir sperma ağı örerek üzerine bir damla spermatozoon sıvısı bırakır. Sonra ters dönerek bu sıvıyı şırıngaya çeker gibi pedipalplerin şişkin kısmına doldurur. Bundan sonra dişiyi aramaya çıkar. Örümceklerin çiftleşmesinde erkek örümcek, daima ölümle karşı karşıyadır. Çiftleşme zamanında erkek örümcekler dişilerin karşısında çeşitli hareketlerle, dişilere açlığını unutturmaya çalışırlar. Sıçramalarla yaptığı bu hareketlere örümceğin sevgi dansı denir. Dişi örümceğe açlığını unutturmak için dans yaparken ondan uzak durmaya da dikkat eder. Zira bir anda yakalanmak tehlikesi vardır. Bazıları, çiftleşme öncesi dişi örümceğe bir böcek ikram ederek açlığını giderir. Bir tehlike kalmadığını anlayınca dişiye yaklaşır. Açlığını hatırlayan dişi, erkeği yemeyi düşündüğü için, erkekler çiftleşmeden sonra hemen kaçarlar.Genelde erkek, dişi aramaktan, sevgi dansından ve çiftleşmekten yorulduğu için dişi için çiftleşme sonrası en yakın protein kaynağı olarak görülür ve birçok örümcek kaçmaya fırsat bulamadan dişi örümceğe yem olur. Fakat her çiftleşmeden sonra dişinin mutlaka erkek örümceği yediği söylenemez. Dişi örümcekler yumurtalarını, ağ ipiyle yaptıkları kokon adı verilen kozalara (torbalara) bırakırlar. Bir kozada bazan yüzlerce yumurta olabilir. Genellikle yazın sonlarında döllenen yumurtalar, ilkbaharda yavru verir. Yaz başlarında döllenen yumurtalardan 20-60 gün içinde yavru çıkar. Örümcek, sonbaharda sarımsı beyaz renkli kokon adı verilen ipek bir koza içine bıraktığı yumurtalarına karşı çok şefkatli olmasına rağmen dişilerin yumurtaları veya yavruları yediği de olur.Bu durum yumurtaların döllenmemiş olduğunu gösterebilir.Yumuşak ve çok küçük olan bu yumurtalarla dolu kozayı bir dala, taş altına duvar yarığına, ağaç kovuğuna veya çalılıklar arasına emin bir yere yapıştırır.Kokon anne örümcek tarafından çevrilerek alttaki yavrularında hava alması sağlanır. İlkbaharda doğan yavrular ana-babalarına benzerler. Doğduktan birkaç gün sonra iyi bir ağ kurup kendi kendilerine beslenirler. Çoğu türlerde, yavrular erişkinliğe erdiği zaman babaları çoktan ölmüş olacaktır. Zira erkek örümcekler erişkinlikten sonra birkaç yıl yaşarlar. SINIFLANDIRMA Trigonotarbida - tükenmiş Amblypygi Araneida - örümcekler Mesothelae Opisthothelae Araneomorphae Mygalomorphae - tarantula ve tarantula benzeri örümcekler Phalangiotarbida - tükenmiş Opiliones - phalangidler, uzun bacaklı örümcekler (6,300 tür) Palpigradi Pseudoscorpionida - yalancıakrepler Ricinulei Schizomida Scorpiones - akrepler (2,000 tür) Solifugae - böğler (900 tür) Haptopoda - tükenmiş Uropygi - (100 tür) Acarina - maytlar ve keneler (30,000 tür) Acariformes Sarcoptiformes Trombidiformes Opilioacariformes Parasitiformes

http://www.biyologlar.com/orumcek-turleri

HÜCRELERARASI BAĞLANTILAR

Epitel hücreleri birbirlerine sıkıca yapışmıştır, ayırmak için oldukça büyük bir mekanik güç gerekir. Hücrelerarası yapışma özelliği, çekme kuvvetine ve basınca maruz kalan epitelyal dokularda (deri) belirgindir. Yapışma; kısmen plazma membranının membran proteinlerinden olan glikoproteinlerin bağlayıcı özelliğinden (cell adhesion molecules) ve az miktardaki hücrelerarası proteoglikanlarla sağlanır. Bazı glikoproteinler, ortamda Ca++ bulunmadığında yapışkanlıklarını yitirirler. Bu yapışmaya ek olarak, epitel hücrelerinin lateral membranları arasında bağlantı yapıları vardır. Bu bağlantılar yalnızca yapışma bölgeleri olarak görev yapmakla kalmaz, aynı zamanda hücrelerarası aralıktan (paraselüler) materyal akışını önler ve komşu hücreler arasındaki iletişim mekanizmasını oluşturur. Bağlantılar, hücrenin tepesinden tabanına doğru belirli bir düzen içinde bulunurlar. Zonula okludens (sıkı bağlantı): En üstte, komşu hücrelerin unıt membranlarının dış yapraklarının kaynaşması ile oluşur ve 5 tabakalı bir görünüm oluşur. Fonksiyonu epitel hücreleri arasında (paraselüler yol ) apikalden bazale ya da bazalden apikale madde geçişini engelleyecek şekilde oldukca sıkı bir tutunma meydana getirmektir. *Sıvı alışverişinin çok olduğu proksimal tübülde 1 veya yok *İdrar geçişinin engellendiği mesane epitelinde ise çok sayıdadır. Zonula adherens: Bu bağlantı hücreyi çepeçevre sarar ve bu yapının komşu hücreleri birbirlerine bağladığı düşünülmektedir. Bu bağlantıda, aktin içeren çok sayıda mikrofilamanın, bağlantı bölgesi membranlarının sitoplazmik yüzeyinde bulunan yoğun plakların içine girer. Plaklar miyozin, tropomiyozin, a - aktinin ve vinkülin içerirler. Mikrofilamanlar, apikal sitoplazmada bulunan çeşitli tip filamanlardan oluşan terminal ağ’ dan uzanmaktadır. Terminal ağ, sitoplazmik organallerin bulunmadığı bu bölgede hücrenin tepesine belirli bir direnç sağlar. Zonula okludens ve zonula adherens terminal bar olarak bilinen yapıyı oluşturur. İnce barsakta, ışık mikroskobu ile eozinofilik bir bant olarak izlenir. Gap junction (Nexus): Epitel hücrelerinin çoğunda lateral membranlar boyunca hemen her yerde ancak az sayıda bulunabilir. Embriyogenez sırasında çok sayıdadır. Olasılıkla gelişen hücrelerin düzenlenmesinden sorumludur. Komşu hücre membranları arasında 2 nm’lik bir dar aralık vardır. Gap junction proteinleri, merkezlerinde yaklaşık 1.5 nm çapında hidrofilik bir delik içeren altıgenler yapar. Bu birim konnekson olarak tanımlanır. Komşu hücre membranlarındaki konneksonlar, 2 hücre arasında hidrofilik kanal oluşturacak şekilde aynı düzeyde yer alırlar. Molekül ağırlığı 1500’ün altındaki moleküller bu kanallardan geçebilir. Bazı hormonlar, cAMP, GMP ve iyonlar gibi bilgi iletici maddeler bilgiyi dokudaki hücreler boyunca yayar, hücrelerin bağımsız üniteler şeklinde değil de, birlikte hareket etmelerini sağlar. Kalp kasındaki gap junctionlar, kalbin düzenli olarak atmasından sorumludurlar. Desmozom (Maküla adherens): Disk şeklinde kompleks bir yapıdır, komşu hücrenin yüzeyinde buna özdeş bir yapı ile bağlantı kurar. Bu bağlantıda aralık, normal aralık olan 20 nm’ den daha geniştir ( 30 nm). Hücrelerarası alan da çizgi halinde yoğun materyele sahiptir. Her iki komşu hücrenin iç tarafında tutunma plağı olarak isimlendirilen ve en az 12 proteinden oluşan bir yapı bulunur. Sitokeratin türlerinin ara filaman grupları, tutunma plağı içine girer ya da keskin dönüşlerle kıvrılarak sitoplazmaya geri dönerler. Lateral membranlarda yamalar halinde dağılmıştır. Epidermiste yalnızca bu tip bağlantı bulunur. Bazen daha basit tipleri de bulunur. Hemidesmozom: Epitelyal hücrelerinin bazal laminaya temas ettiği yüzeyde bulunur. Epitel hücre plazmalemması üzerinde yarı desmozom şeklini alırlar. Epitel hücrelerinin alttaki bazal laminaya tutunmasını sağlar.

http://www.biyologlar.com/hucrelerarasi-baglantilar

 
3WTURK CMS v6.03WTURK CMS v6.0