Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1623 kayıt bulundu.

Davranış Biyolojisi Nedir

1)Yurt seçimi (Teritoryum Tesisi) Bireyler beraberliklerini sürdürüp belirli bir kuluçka alanının emniyetini sağlayabilmek için bir alana, gereksinim duyarlar. Bu alan yurt ve teritoryumdur. Kurulacak yurt alanının, çıkacak yavrulara besinin kolayca sağlanabileceği uygun bir arazi parçası olması gerekir. Yurt alanlarının sınırları, bireylerin (genellikle erkeklerin) şubat sonundan mayıs ayına kadar yoğun olarak sürdürdükleri yurt belirleme ötüşü ile saptanır. Bu ötüşlerin diğer bir amacı da yurdun kurulduğunu seçilecek eşe duyurmak ve rakip erkek bireylere gözdağı vermektir. Gözdağına rağmen kurulacak yurda bir saldırı olursa, erkekler arasında şiddetli kavgalar olur. Bu tür davranışlar aynı tür içinde (interspesifik) olduğu gibi farklı türler arasında (intraspesifik) olabilir. Yapılan kavgalar genellikle tarafların karşılıklı olarak birbirlerine, keskin ve kesik kesik bağırmaları ile başlar. Kavga esnasında bireyler kafalarını birbirlerine uzatarak kısık sesler çıkarırlar. Boyun ve kuyruk tüyleri dikleşir ve kanatları yanlara hafifçe açılır. 2)Yuva Sunumu Yuva sunumu erkek bireylerce yapılır. Erkekler şubat sonundan itibaren, dişilere sunacakları yuvalara girip çıkar ve ot parçası, tavuk ve güvercin tüyleri gibi materyaller getirirler. Erkeğin işgal ettiği yuvayı dişi kabullenirse yuva ikisi tarafından müştereken yapılır. Dişinin ilgisini çekip yuvayı ona beğendirmek için erkek bireyler yuvalara, her seferinde içeride daha az kalmak üzere girip çıkar. Bu arada erkek yuva sandığı üzerinde veya yuva deliğinden dışarıyı gözleyerek sağa-sola bakar. Yuvadan çıktıktan sonra yuvaya en yakın dala tüner, bazen yuvanın üstüne konar ve tekrar içeri gibi yapıp yuva giriş deliğini vücudu ile kapatır, hemen sonra geri çıkar. Dişi yuvaya yakın bir yere gelince, erkeğin daldan dala yer değiştirip çok sık öttüğü ve dişinin ilgisini çekmek istediği izlenir. Daha çok yuvanın üstünde yapılan bu hareketler: kendi ekseni etrafında dönme; kafayı sağa-sola oynatma, ileriye uzatma; kanatları yana açma ve kanat tüylerini titretme; kuyruk tüylerini yukarı kaldırma; bazen de bir kanadı aşağı itip telekleri yere sürme şeklidir. Yuva sunma ilgi çekme hareketlerine, dişi birey kayıtsız kalır ve sunulan yuvayı kabul ettiği anlamı taşıyan erkeğin faal olduğu yuvaya girme uçuşu yapmazsa, erkeğin ötüşünü daha canlı ve keskin olarak bir başka yuva veya dal üzerinde, fakat dişiyi gözden kaçırmayacak şekilde sürdürdüğü görülür. Dişi bu sırada sunulan yuvalardan birine yönelme uçuşu yapar. Yapılan ilk uçuş genellikle yuva deliğine yakın dallar üzerine olur. Burada kısık kısık ses çıkarıp kafasını sağa sola ve öne uzatarak, etrafını izler. Bazen yuva deliğine girmeye çalışır, ve hemen geri döner. Bu arada erkek yuva deliğinden içeri girerek dişiye kur hareketleri ve ötüşleri yapar. Dişi bu davranışlara karşılık vererek yuva deliğine konup onu izler ve içeriye kısa bir süre için de olsa girer çıkar. Dişinin yuvaya sıklıkla girip çıkması ve yuvada daha uzun süre kalması onun yuvayı kabul ettiğini gösterir. Yuvaya giriş çıkışların sıklaşması ve erkeğe daha yakın bir yere konma girişimleri ile birlikte, erkeğin çiftleşme öncesi yaptığı kur hareketleri görülür. 3)Çiftleşme Çiftleşmeden önce dişi ve özellikle erkeğin sürekli aktif oldukları ve dallar üzerinde oynaştıkları gözlenir. Bu kur hareketleri eşlerin uyarılması için yeterlidir. Çiftleşmede erkeğin dişinin üstüne çıktığı ve omuz kemeri yada ensesini gagası ile kavradığı görülür. Çiftleşme süresi genellikle 3-6 saniye arasında değişir. Erkek dişinin üzerinden inince kanatlarından birini yere doğru uzatarak tekrar çiftleşme teşebbüsünde bulunur. Mart-Kasım ortasına kadar olan dönemde çiftleşme faaliyetleri iklim koşullarına ve özellikle sıcaklığa bağlıdır. Dişi 4-5 yumurta bırakır. Kuluçka süresi 10-11 gün sürer. Yavrular 15-19 günde yuvadan uçar. Kuluçka başarısı % 90’dır. 4)Besin Arama Hareketleri Besinlerini genellikle toprağın üstünde ve ağacın yapraklı kısımlarında ararlar. Topraktaki yemi açığa çıkarmak için, toprağı tırnakları ile eşelerler. Topraktaki kurumuş yaprak ve otları yana atarlar. Ağaçtaki gizli zengin besinlere ulaşınca, dalın üstünde kanatlarıyla pırpır yaparak bunlara yakalar. Uçabilen böcekleri de çok yakından takip ederler. Besin olarak; kelebek tırtılı, böcek larvaları, böcekler ve sinekler hayvansal besinlerini oluşturur; buğday, arpa, mısır, tohumları taze ot yaprakları bitkisel besinlerini oluşturur. Beslenme grup halinde gerçekleşir. Bu sırada gruptan birkaç birey tehlikelere karşı gözcülük yapar. 5)Rahatlama (konfor) Hareketleri Serçeler güneş banyosu yaparken, vücut tüylerini kabartıp,kanatlarını hafifçe yere doğru açar, güneş ışınlarının vücudun bütün bölgelerine girmesi için kendi ekseni etrafında dönerler. Bunlarda sıklıkla gözlenen davranışlardan biri de kum ve su banyosundaki hareketlerdir. Bunun için, özellikle vücutlarının üst kısımlarındaki tüyleri gevşeterek, hızlı bir şekilde sağa-sola sıçrarlar. Su içine girince, su içer, kum banyosunda daima kumları gagalar ve içinde yiyebileceği besinler varsa onları yer. Tepinme hareketleri: Suda ve özellikle kumda tepinme hareketlerine rastlanır. Sudan veya kumdan çıkınca, kanadın biri sabit şekilde durur, diğeri omuzdan aşağıya inerek şiddetli bir şekilde silkelenir. Daha sonra diğer kanadı ile aynı hareketleri yapar. Yakında bulunan bir ağaca veya dal üzerine konarak tüylerini gagaları ile düzeltirler. Bazen ayak parmaklarıyla başın üst kısmını düzeltirler. Gagayı da bir dala sürterek temizlerler. 6)Ötüşler Yuva Çevresindeki Ötüşler: Kur yaparken ve rakiplerini korkutmak için aralıksız ve yüksek bir sesle öterler. Bu tür ötüşler sırasında tüylerini kabartırlar. Yalvarış Ötüşleri: Biraz gelişmiş civcivler ve uçma durumuna gelmiş yavrular kısık bir sesle ve çok sesli olarak öterler. Uçma durumuna gelmiş yavruların yer arama ötüşleri, tek düze yüksek sesledir. Ana-Babaları bu ötüşlere bir şeyler anlatır gibi yumuşak ve sessizce karşılık verir. Diyalog Kurma Ötüşleri: Yalnız kalan birey, grubu bulabilmek için kısa ve keskin bir şekilde öter. Tehlikeye Karşı Alarm Ötüşleri: Kuralsız olarak yüksek sesle ve uzatarak öterler. Yavrular tehlike altında ise tehdit unsuruna 1 metre kadar yaklaşacak şekilde alçak uçuşlar yaparlar. KAYNAKLAR 1) ERDOĞAN, Ali, Ankara/Beytepe Serçe Populasyonları ile İlgili Biyolojik Çalışmalar 19-27 (1982)

http://www.biyologlar.com/davranis-biyolojisi-nedir

BİTKİSEL DOKULAR

I ) BİTKİSEL DOKULAR: A-) BÖLÜNÜR DOKU= Hücreleri küçük, çekirdekleri büyük, sitoplazmaları fazla, kofulları küçük ve az sayıda, hücre arası boşluk yok, hücre çeperleri ince, devamlı bölünebilen hücrelerdir, metabolizmaları hızlıdır. 1- Birincil Bölünür Doku (Primer Meristerm): Bitkinin kök ve gövde ucunda bulunur. Boyuna uzamayı sağlar. Kökte kaliptra, gövdede genç yapraklar tarafından korunur. Bölünür doku geliştikçe dermatojenden epidermis, periblemden korteks, pleromdan merkezi silindir oluşturur. 2-İkincil Bölünür Doku(Seconder Meristerm): Bölünmez dokuların tekrar mitoz bölünme yeteneği kazanmasıyla oluşur, böylece kambiyum ve mantar kambiyumu (fellogen) oluşur. Kambiyum kök ve gövdede bulunur. Ilıman bölgelerdeki çok yıllık iki çenekli bitkilerde, ilkbaharda büyük hücreler, sonbaharda küçük hücreler oluşur. Bölünür mantar doku, bitkide mantarlaşma oluşturarak bitkinin dış etkenlerden korunmasını sağlar. B-) BÖLÜNMEZ DOKU=Hücreleri büyük, sitoplazması az, kofullar büyük, çekirdekleri küçük,hücre arası boşluk var, çeperleri kalındır. 1- Temel Doku(parankima doku): Kök ve gövdenin korteksinde, yaprağın mezofil tabakasında bulunur. Çekirdekleri büyük, ince çeperli, bol sitoplazmalı, kofulları küçük, canlı hücrelerdir. a- Özümleme Parankiması: Yaprakların mezofil ve genç gövdede bulunur. Bol kloroplast taşır. Bu doku fotosentez yapımında görevlidir. Mezofil tabakası palizat ve sünger parankiması olarak 2ye ayrılır. Palizat hücreleri silindirik,epidermisin altında sık ve düzenli olarak dizilmiştir. Sünger hücreleri düzensiz dizilmiş ve aralarında boşluklar vardır. b- İletim Parankiması: fotosentez yapan dokularla iletim demetleri arasında bulunur. Bu iki doku arasında su ve besin taşınmasını sağlar. Kloroplastı yoktur. c- Depo Parankiması: kök, gövde, meyve ve tohum gibi organlarda bulunur. Su ve besin depolar. d- Havalandırma Parankiması: Su ve bataklık bitkilerinde bulunur. Kök ve gövdedeki parankima hücreleri arasında boşluklar oluşturur. Böylece hava depolanmasını sağlayarak gaz alışverişi kolaylaşır. 2- Koruyucu Doku: Bitkide kök, gövde, yaprak ve meyvelerin üzerini örter. Tek ya da çok sıralı hücrelerden oluşur. Hücreleri kalın çeperli ve klorofilsizdir. Kara bitkilerinde su kaybını önlemede önemli görev yapar. İçte bulunan dokuları dış etkenlere karşı korur. a-Epidermis: Kök, genç dal ve yapraklarının üzerini örten canlı dokudur. Tek sıra hücrelerden oluşur. Bu hücreler çok büyük kofullu,az sitoplazmalıdır. Güneş ışığının yaprağın altına iletilmesini sağlar. Bazı epidermis hücreleri, dışa doğru uzayarak tüyleri oluşturur. Tek hücreli olanlara basit, çok hücreli olanlara bileşik tüy denir. Tüyler kökten emme, sarmaşıkta tutma, ısırgan otunda savunma, nanede salgılama gibi görevler yapar. Bazı epidermis hücrelerinin dışı kalınlaşarak kutikula adı verilen koruyucu bir tabaka oluşturur. Kutikula bitkinin su kaybını azaltır. Bazı bitkilerde kutikulanın üzeri mumsu maddelerden oluşmuş tabakayla örtülerek su kaybını en aza indirir. Bu tabakaya kutin tabakası denir. Yaprak ve genç gövdedeki bazı epidermis hücreleri farklılaşarak stoma veya gözenek adı verilen fotosentez yapabilen hücrelere dönüşür. Stoma, su kaybını ve gaz alışverişini sağlar. Stomalar kara bitkilerinde yaprağın alt epidermisinde, su bitkilerinde üst epidermiste bulunur. b-Mantar Doku: Çok yıllık bitkilerin kök ve gövdelerinin üstünde bulunur. Epidermisin parçalanmasıyla oluşur. Mantar dokunun hücreleri ölüdür. Hücrelerin içi su geçirmeyecek şekilde hava ile doludur. Mantar dokuda gaz alış verişini sağlayan yapı, kavuçuklardır. Kavuçuklar, gövde yüzeyinde ince yarıklar veya yuvarlak kabartılar halinde bulunur. Yaprak sapı ile gövde arasında oluştuğunda su ve besinin yağrağa geçişine engel olur. buda yaprak dökümüne neden olur. 3- Destek Doku: Bitkilere şekil ve destek veren dokulara denir. Hücrelerde selüloz çeper desteklik görevi yapar Otsu bitkilerde ayrıca turgor basıncıda desteklik görevi görür. Çok yıllık odunsu bitkilerde iletim demetleri de desteklik işine yardımcı olur. a-Pek Doku(kollenkima): Gövde yaprak ve yaprak sapında görülür. Canlı hücrelerden oluşur. Kalınlaşma hücre çeperinin köşelerinde ise köşe kollenkiması, her tarafında olursa levha kollenkiması adını alır. Örn; begonya köşe, mürver ağacı levha kol. görülür. b-Sert Doku(sklerankima): sitoplazma ve çekirdekleri kaybolmuş, tüm çeperleri kalınlaşmış ve ölmüştür. Örn; keten, kenevir, sarımsak gibi bitkilerde mekik şeklinde lifli sert doku hücreleri vardır. Ayva ve armutta çekirdeğe yakın taş hücrelerinden oluşan sert doku bulunur. Fındık ve ceviz kabuğunda, mum çiçeğinde taş hücreleri bulunur. 4- İletim doku: İletim dokuda su ve organik madde taşınır. a-Odun Boruları: hücreler arasındaki çeperler erimiştir. Ölü hücrelerden oluşur. Odun borularının görevi su ve suda erimiş tuzları taşımaktır. Kökteki emici tüylerle topraktan alınan su, bitkinin diğer organlarına taşınır. Taşıma aşağıdan yukarı tek yönlüdür ve soymuk borularına göre hızlıdır. Odun borularında iletimi sağlayan güçler; kılcallık, kök basıncı, terlemedir. b-Soymuk Boruları: tek sıra halinde üst üste dizilmiş canlı hücrelerden oluşur. Hücreler arasındaki çeper tamamen erimiştir. Bu yüzden kalburlu borular adınıda alır. Soymuk borularının yanında arkadaş hücreleride bulunur. Bu borularda besin taşınır. Soymuk borularında madde iletimi çift yönlüdür. İletim yavaş gerçekleşir. 5- Salgı Doku: Hücreleri canlı, bol sitoplazmalı, büyük çekirdekli ve küçük kofulludur. Çeperleri incedir. Tek tek yada gruplar halinde diğer dokular arasına dağılmıştır. a-Hücre İçi Salgılar: Salgılar hücre içinde birikir. Zamanla stop. kaybederek içi salgıyla dolu olarak kalırlar. b-hücre dışı salgılar: salgı hücrede oluşur. Daha sonra hücre dışına atılır. c-Salgı Boruları: Birkaç salgı hücresi uzayarak salgı borusu haline gelir. Salgı bor. içinde süte benzer bir salgı bulunur. Çiçekteki bal özü adı verilen salgılar tozlaşmayı sağlar. Reçine ve tanen gibi maddeler salgılar. Bitkiyi çürümeye ve mikroorganizmalara karşı korur. Böcekçil bitkilerdeki salgılar sindirimi salgılar. Isırgan otundaki yakıcı salgılar, korumayı sağlar.

http://www.biyologlar.com/bitkisel-dokular-1

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

SÜNGERLER HAKKINDA BİLGİ

SÜNGERLER HAKKINDA BİLGİ

Deniz diplerinin inanılmaz ren ve biçimlerdeki nazlı güzelleridir süngerler. Yüzyıllar boyuna hep biti sanılan bu ilginç hayvanların, sakin görünen yaşantıları gerçekte oldukça renklidir. Bu nedenledir ki çok uzun yıllardır insanların ilgisini çekmişlerdir. Sünger avcılığı günümüzde hala bir meslek olma niteliğini koruyor. Süngerlerle avcılar arasındaki amansız mücadeleye yüzyıllardır tanıklık ediyor denizler. Sünger avcılarının topladığı süngerler önceleri yalnızca banyo ve mutfaklarda temizlik gereci, boya fırçası, zırh ve miğfer astarı, kap, bebek emziği, tıbbi cihaz malzemesi ve tampon olarak kullanılırken, bugün artık biyokimya laboratuvarlarında ve ilaç endüstrisinde önemli araştırmalara da konu oluyor. Süngerler, en ilkel çok hücreli canlı gruplarındandır. Tanımlanmış yaklaşık 5000 türü vardır süngerlerin. Renkleri, vücut yüzeyindeki su alıp veren gözeneklerin büyüklükleri ve dizilişleriyle sivri, mikroskobik çıkıntıları sünger türlerinin tanımlanmasında yardımcı olur. Rengarenk, canlı süngerler laboratuvarlara taşındığında, örnek kavanozlarının dibinde önce renkleri solar sonra da sulu çamur haline dönüşürler. Bazen, süngerlerin kimliğini belirlemek için mikroskobik düzeyde analiz yapmak gerekir. Süngerlerin çok büyük bir bölümü denizlerde, geri kalanlar da tatlı sularda yaşar. Tüm okyanus ve denizlerde, hemen hemen her derinlikte süngerlere rastlamak olasıdır. Kimi yalnızca birkaç cm büyüklükte olan süngerlerin, 2 m olanları da vardır. Yüz milyonlarca yıldır değişmeden kalmış olan bu canlılarda kalp, beyin, ciğer gibi organlar, gerçek dokular ve sinir sistemleri bulunmaz. Karmaşık hareket yetenekleride yoktur. Bütün bu özellikleri ve hiç yer değiştirmiyormuş gibi gözükmeleri nedeniyle çok uzun yıllar hep bitki sanılmıştır süngerler. 1600’lü yıllarda İngiliz bitkibilimciler, “Sünger diye adlandırdığımız ve deniz köpüğünün oyduğu bazı maddelerden bilimsel yayınlarda söz etmek çok fazla yer kaplayacağı gibi, okuyuculara da pek katkısı olmaz” diyorlardı. İlk kez 1765’te hayvanlara özgü yapısal ve fizyolojik özellikleri ortaya çıkarılmış olan süngerler, 1600’lü yıllarda bilim adamlarının düşündüklerinin aksine, bugün birçok bilimsel araştırmaya konu oluyor. Süngerler yaşamlarını daha çok özelleşmiş hücreler yardımıyla sürdürürler, değişik hücreler değişik işlevler üstlenmiştir. İskeletleri kalkerli ya da silisli kristal iğneciklerden (spikül), sponjin denen bir proteinden ya da bunların karışımından oluşur. Por adı verilen gözenekler sayesinde suyu süzerek çekerler ve sonra minik boşaltım deliklerinden geri püskürtürler. Serin ve tuzlu sularda yaşayan süngerler, hareketsiz olduklarından kendi yakınlarına gelen yiyecekleri hidrolik sistemlerinin yardımıyla suhidrolik sistemlerinin yardımıyla sudan süzerler. Süngerler genellikle gözle görülemeyecek kadar küçük organik maddeleri, diatomları ve bazı tekhücreli mikroskobik bitkileri, ölü ya da canlı planktonları ve bakterileri besin olarak alırlar. Kısa bir süre önce Akdeniz’deki sualtı mağaralarında yaşayan bir sünger türünün etobur olduğu ve kabuklu minik hayvanları (Crustacea) yediği saptanmış. Bu etobur sünger, hayvanın dış kabuğuna iğnecikleriyle yaptıktan sonra, korumasız avının etrafında toplanan özel hücreleri sayesinde sindirim yaparlar. Süngerler hem eşeyli hem de eşeysiz üreme yapabilirler. Eşeyli üreyenlerinin çoğunluğu ayrı eşeyli, bir kısmı da hermafrodittir (hem dişi hem de erkek üreme organına sahiptir). Bunlar, yumurta ve spermleri farklı zamanlarda üretirler. Dışarı salınan bu spermler komşu süngerlerce alınır. Eşeysiz üreme yapan süngerlerse tomurcuklanmayla ürerler. Tatlı sularda yaşayan süngerler eşeysiz olarak çoğalırlar. Süngerler, güneş ışığı ve havayla karşılaştıklarında ölseler bile tekrar suya sokulduklarında tomurcukları yaşar ve bunlardan yeni süngerler oluşabilir. sci.ege.edu.tr

http://www.biyologlar.com/sungerler-hakkinda-bilgi

Göç nedir ?

Kuşlarda göç, tanımlanmış iki coğrafi bölge arasında düzenli tekrarlanan nüfus hareketi olarak tanımlanabilir. Pek çok kuş türünde görülen ve üreme sonrası genç bireylerin çevreye yayılmalarını tanımlayan “saçılma” ve besin kaynaklarının bazı yıllarda yetersizliği sonucu baykuşlarda ve çaprazgagalarda olduğu gibi güneye ani hareketlenme ile tanımlı “işgal” göç sayılmazlar. Neredeyse her göçmen tür için farklı olan göç rota ve yordamları, kuş topluluğunun tarihçesine, geniş engelleri aşabilme yeteneklerine, topoğrafik engellerin konumlarına ve kışlama ve üreme alanlarının birbirlerine göre konumlarına bağlı. Son elli yılda sürdürülen kapsamlı halkalama ve işaretleme programları sayesinde yüzlerce türün göç ayrıntıları bilinmekte. Örneğin, Kuzey Amerika kuşlarının başlıca göç rotası kıyı ve dağ sıralarının aynı yönde uzanması nedeniyle kuzey-güney doğrultusunda. Avrasya'da ise sonbaharda kuşlar önce doğu-batı doğrultusunda hareketlendikten sonra, ancak Akdeniz ve Büyük Sahra'yı geçerlerken kuzey-güney hattına dönerler. Genel olarak söylemek gerekirse, Güney Yarımküre'de üreyen kuşlar Kuzey Yarımküre'deki benzerleriyle karşılaştırıldıklarında pek göç hareketi göstermezler. Bazı kırlangıçlar ve sinekkapanlar kışları kuzeye, tropikal Amerika'ya yönlenseler de hep küçük bir azınlık olarak kalırlar. Bunun başlıca nedeni, Kuzey Yarımküre'deki kara parçalarının kutuplara daha yakın kesimlerde geniş yüzölçüme sahip olmaları. Göç rotaları, çoğu zaman kuş türlerinin uzak geçmişteki yayılma hareketlerini yansıtırlar. Örneğin Grönland'ın ve Alaska'nın tundra çayırlarını Avrasya'nın iki farklı ucundan gelerek kolonize eden Kuyrukkakanlar (Oenanthe oenanthe), kışlamak için çok daha yakın olmasına karşın Kuzey Amerika yerine okyanusu aşarak atalarının bir zamanlar geldiği Avrupa kıtası üzerinden Afrika'ya gitmeyi yeğlerler. Kuzeybatı yayılışının ucu İskandinavya'ya ulaşan Kutup Çıvgını (Phylloscopus borealis) ise Asya'yı boydan boya çapraz bir rotada katederek kışın Güneydoğu Asya'ya ulaşır. Günümüzde izlediğimiz göç hareketleri, son buzul çağı bitiminde buzulların geri çekilmesi ile şekillenmiş. Buzulların en güneye, Anadolu’ya ulaştığı dönemde bugünkü Sahra Çölü tundra ve tayga içeren büyük bir bataklıktı. Buzulların geri çekilmesi ile vejetasyon kuşakları da kuzeye doğru hareket etti ve kuzeye yaklaştıkça kış ve yaz arasında çevre koşulları giderek daha aşırı hale geldi. Kendi uygun habitatlarını, örneğin tundrayı izleyen kuş türlerinin dağılımları kuzeye doğru ilerlerken giderek kış ve yaz arasındaki farklar belirginleşti ve hep biraz daha güneyde “beklemek” durumunda kaldılar. Elbette bu uzun süreç boyunca “bekleme” ve üreme alanları arasında giderek artan mesafeyle baş edebilmek için pek çok adaptasyon evrimsel olarak gelişti.

http://www.biyologlar.com/goc-nedir-

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kanseri tedavi etmenin yolunun kanser kök hücrelerini yok etmekten geçtiğini belirten Anadolu Sağlık Merkezi İç hastalıkları ve Hematoloji Uzmanı Prof. Dr. Zafer Gülbaş, kanser hastalarında kök hücre uygulamalarıyla ilgili Medical Tribune’ün sorularını yanıtladı. MT: Kök hücre tedavisi ile ilgili yeni gelişmelerden bahsedebilir misiniz? Önceki yıllarda, kanseri dokudaki olgun hücrelerin yaptığını düşünüyorduk ama bugün kansere neden olan bir kök hücrenin var olduğunu biliyoruz. Kök hücre, kanserli hücreleri oluşturuyor ve bunlar çoğaldıkça hastalık ortaya çıkıyor. Kanseri tedavi etmek için birçok kemoterapi çeşidi, immünoterapi, radyoterapi ve cerrahi tedavi uygulandı.  Ancak kanserin birçok hastada tekrarlamasını önleyemiyoruz. Şu anki bilgilerimize göre kanseri tedavi etmenin yolu ise kanser kök hücresini yok etmekten geçiyor. Kanser kök hücresinin varlığını nasıl tanıyabileceğimiz ve nasıl ortadan kaldırabileceğimizle ilgili sorunun yanıtı aranıyor.  Bugün için en önemli konu bu. Dünyada birçok merkezde bu konu üzerinde çalışmalar yürütülüyor. Bütün kanser türlerinde kanser kök hücresinin olduğuna inanılıyor.  Johns Hopkins Üniversitesi Kemik İliği Programı Direktörü Prof. Dr. Richard Jones ve ekibi bu hipotezi miyeloma denilen hematolojik kanserde açıkladı. Richard Jones’un kanser kök hücre teorisinde  şöyle bir kuram kullanıyor. Yabani bir otu ne kadar çok temizlerseniz temizleyin eğer kökünü çıkarmıyorsanız bir süre sonra tekrar çıkacaktır. Kanser için de aynı durum sözkonusu olup, kök orada olduğu sürece kanser tekrar oluşuyor. Kanser kök hücresi önümüzdeki 5-10  yılın en çok çalışılacak konularından biri olup,  kanseri ortadan kaldırmanın belki de anahtarının yattığı konudur. MT: Kök hücrelerin kanser tedavisinde kullanıldığı alanlar hangileri? Hematopoetik kök hücre nakli dışında, kanser tedavisinde kanser kök hücresine karşı aşı üretme çalışmaları yeni bir alan. Oldukça ilgi çekici ve önümüzdeki süreçte yararlı olup olmadığını öğreneceğiz. Ayrıca kanser hücresine özgü T lenfositleri ve NK lenfositleri üretmek ve tedavide kullanmak ilgi çekici ümit verici gelişmeler. MT: Hematolojik kanserlerde kanser kök hücresini yok etmek mümkün mü? Hematolojik kanserlerde kemik iliği nakli yapmak için yüksek doz tedavi uygulandığında, hastanın kemik iliği bir daha üretim yapamaz hale geliyor. Bu da yüksek doz tedavilerin kök hücreyi ortadan kaldırabildiğini gösteriyor. Ancak yüksek doz tedavi her kanserde aynı sonucu vermiyor. Bu konuda yapılan çalışmalarda allojenik kök hücre nakliyle kanserli kök hücrenin ortadan kaldırılabileceğini gösteriyor. Yöntem, her kanser türünde aynı sonucu vermese de; özellikle lenfoma, lösemi gibi hematolojik kanserlerde kanser kök hücresinin ortadan kaldırılmasında etkili oluyor. MT: Şu an Türkiye’de kök hücre tedavisi hematolojik hastalıklarda yaygın kullanılıyor mu? Ülkemizde kök hücre nakli yapan birçok merkez var. Sağlık bakanlığı kök hücre naklinin yaygınlaşması ve hastaların bu tedaviden yararlanmasını sağlamak için önemli destek veriyor. Ancak her hastaya kök hücre nakli için uygun donör bulamıyoruz. Normalde biz kök hücre naklini HLA doku grubu uygun kişilerden yapıyoruz. HLA doku grubu uygun kişi bulma şansı kardeş sayısına göre değişmekle birlikte yüzde 25-50 civarında değişiyor. HLA doku grubu uygun donör bulunmadığında, donör bankalarına baş vuruyoruz ve %25 hastaya da bu şekilde çözüm buluyoruz. Bankada da bulmazsak hasta donörsüz kalıyor. Bu durumda yüzde 50 antijen uyumlu aile içindeki donörlerden haploidentik nakil yapabiliyoruz ve hastaların hemen hepsi allojenik nakil olma şansını yakalıyor. Böylece bu tedavi ile hastalıklarının ortadan kaldırılma şansı doğuyor. Johns Hopkins grubu ve İtalyan bilim adamları bu konuda çok çalışıyorlar. Ve elde ettikleri sonuçlara göre; doku uyumlu akraba dışı donörden yapılacak nakilde elde edilecek sonuç ile haplodentik  aile içi nakilin sonuçları benzer. Haplodentik nakil dediğimiz nakil bugün için donör bulunamayan hastalarda kemik iliği nakli yapılmasına imkan veriyor.    MT:Haploidentik nakilde başarıyı etkileyen faktörler nelerdir? Enfeksiyon ve graft versus horst hastalığı (GVHD) dediğimiz graftın alıcının organlarına karşı reaksiyon vermesidir. GVHD, donör hücrelerinin alıcının organlarını tanıyıp tahrip etmesidir. Donörün bağışıklık sistemi alıcıya yerleştikten sonra alıcının karaciğerine, cildine, barsaklarına, kemik iliğine zarar vermektedir. Bu zararı verdiğinde enfeksiyonlara  hastalar daha sık yakalanmaktadır. Hastaların ölümü, graft versus host hastalığından olduğu gibi  bazen hastalık tekrarından da  oluyor. Ama akraba dışı nakillerle bu tip nakilleri kıyasladığımızda ikisinin de başarı oranı benzerdir. Biz Anadolu Sağlık Merkezinde akrabadışı donör bulunamayan hastalara haploidentik nakil yapıyoruz. Sağlık Bakanlığı tüm organ nakillerini olduğu gibi kemik iliği nakline de önemli destek vermektedir. Bunlar zor nakiller. Bu nakli olanlara aile desteği de çok önemli. Anadolu Sağlık Merkezi’nde hastalarımıza bu olanağı sağlıyoruz. Anadolu Sağlık Merkezi Kemik İliği Ünitesi’nde son bir yıl içinde 166 nakil gerçekleştirdik, 21’i haploidentik nakildir. MT: Kemoterapi öncesi kök hücre saklama yönteminden bahsedebilir misiniz? Kemoterapi öncesi kök hücreler hastanın kendinden toplanacaksa, G-CSF dediğimiz ilacı tek başına 4-6 gün yada 1-3 günlük kemoterapi verip kemoterapi sonrası 7-10 gün cilt altı vererek kol kanından topluyor, sonra belirli solüsyonlarla karıştırarak otomatize alette adım adım dondurup saklıyoruz. Bu şekilde kök hücreleri güvenli olarak en az 5 yıl saklayabiliyoruz. Hastanın sağlıklı donoründen ise 4-6 gün G-CSF dediğimiz ilacı tek başına 4-6 gün cilt altı vererek kol kanından toplayarak donduruyoruz. Kol kanından toplama işlemini hücre ayırıcı denen cihazlarla yapıyoruz. Bu işleme kök hücre aferezi diyoruz. MT: Türkiye’nin kök hücre konusunda geldiği noktayı nasıl değerlendiriyorsunuz? Türkiye’de yeterli sayıda merkez var mı? Türkiye kemik iliği nakli konusunda uluslararası standartlarda başarılı işlemler gerçekleştiriliyor. Son 2-3 yılda nakil yapılan yıllık hasta sayısı, 800’lü değerlerden 2000’lerin üzerine  çıktı. Ancak halihazırda ülkemizde 1000-1500 hasta halen bu tedaviden yararlanamıyor. Merkezlerin aktivitesinin artması gerekiyor. Sağlık Bakanlığı bu konuda hastalarımızın yanında. Yeni yönerge  değişiklikleri  yapılarak kemik iliği nakli merkezlerinin kalite standartları da yükseltilmeye çalışılıyor. Kemik iliği naklinde,  nakil sonrası süreçte enfeksiyon riskinin olmaması başarıyı etkileyen en önemli unsurların başında geliyor. Bu nedenle yeni açılacak merkezlerde aranan kalite standartları daha da ağırlaştırılıyor.  http://www.medical-tribune.com.tr

http://www.biyologlar.com/kok-hucre-calismalari-kanseri-ortadan-kaldirabilecek-mi

Balık Örneklerinin Toplanması ve Tespiti

Fauna tespitiyle ilgili olan sistematik çalışmalarda doğadan balık örneklerinin toplanması çok özen gösterilmesi gereken önemli konulardan biridir. Balıklar, toplanacak tür ve alttürlere bağlı olarak, çok çeşitli alet ve yöntemlerle yakalanabilirler. Bu yüzden örnek toplayacak kişinin herşeyden önce amacına uygun olan alet ve yöntemi saptaması gerekmektedir. Aksi takdirde arazide yapılacak uğraşıların büyük bir kısmı sonuca ulaşmaktan uzak kalacak, dolayısıyla boş yere zaman ve iş gücü sarfedilmiş olacaktır. Balık örneklerinin yakalanmasında kullanılabilecek çok çeşitli yöntemler olmakla beraber, bunların avlama etkinlikleri av ortamındaki çeşitli koşulların durumuna da bağlı kalmaktadır. Bu yüzden, bir taraftan yakalanacak örneklerin çeşitli özellikleri (küçük veya büyük boylu oluşu, bentik veya pelâjik yaşam sürdürmesi, gececi veya gündüzcü karakterde olması v.b.) göz önüne alınırken, bir taraftanda uygulanacak alet ve yöntemin avlama yapılacak ortamın koşullarına uygun olmasına dikkat etmek gerekmektedir. Örneğin, zemini taşlık, kayalık olan veya çeşitli bitki kökleri bulunan bir su ortamında balık örnekleri yakalamak için ığrıp denilen ağların kullanılması son derece külfetli ve hatalı bir iştir. Zira böyle bir ortamda çekilecek ığrıp, birtaraftan da sürekli şekilde zemindeki engellere takılarak yırtılabilecek, diğer taraftan zemini düzenli şekilde tarayamayacağı için örnek yakalama olasılığı çok düşük olacaktır.Genel olarak balık örneklerinin yakalanmasında kepçe, ığrıp, fanyalı ağ, kör ağ veya galsama ağı, serpme, pinter, olta, elektrik şoku v.b. gibi av aletleri ile çeşitli tipteki dalyan ve tuzaklardan yararlanılmaktadır. Bu alet ve tuzakların dışında etkinlikleri çok fazla olmasına rağmen, doğadaki dengeyi çabuk bozması nedeniyle yasaların izin vermediği bazı yöntemlerde vardır. Örneğin, Sığır kuyruğu, sütleğen v.b. gibi zehirli otlar; Enderin gibi ziraat ilâçları; dinamit, tahrip kalıbı ve sönmemiş kireç gibi patlayıcı maddeler kanunlann yasakladığı başlıca av yöntemleridir.Burada, sadece yasal olan av alet ve yöntemlerinden kısaca söz edilmesi yararlı olacaktır.Örneklerin tespitiÇeşitli av araç ve yöntemleri kullanılarak ortamlarından yakalanan balık örneklerine, araştırmanın amacına uygun şekilde işlem yapılır. Eğer yakalanan örnekler ergin hale gelmiş büyük boylu bireylerden oluşuyorsa, bunların tür ve alttürlerini arazide saptama olanağı vardır, dolayısıyla tanıma amacıyla laboratuvara götürülmeleri gerekmez. Yakalamadan hemen sonra türlerin saptanabildiği bazı durumlarda da örnekler henüz canlılıklarını yitirmeden tekrar suya bırakılabilirler. Arazide tanınmaları güç olan örneklerin daha ayrıntılı incelemeler için laboratuvara götürülmeleri zorunludur. Kendi ortamlarından canlı olarak yakalanan örneklerden ilerideki araştırmalar için yararlanılmak isteniyorsa bunların herşeyden önce dikkatlice öldürülmeleri gerekir. Genellikle balık örneklerinin öldürülmesi, su dışında bırakılarak boğulmalarının sağlanması şeklinde yapılırsa da, canlı örneklerin su dışında uzun süre kalmaları sonucunda, balıkların vücutlarında ölümden dolayı bir sertleşme oluştuğundan böyle örneklere bilahare şekil vermek güç olmaktadır. Bu nedenle özellikle müze materyali olarak kullanılacak örneklerin, bu yöntemle öldürülmeleri pek yararlı olmamaktadır. Balıkların zedelenmeden ve düzgün bir şekilde kalmalarının sağlanmasında kullanılan yöntemlerden en iyisi, sıvı bir uyuşturucu kullanılmasıdır. Bu iş içinde en uygun anestezik (MS222) olarak bilinen Fenoxiethanol'dür. Canlı olarak yakalanan balıklar bu maddenin 0.001 lik solüsyonunda bırakılarak çok kısa zamanda ve hiçbir zarara uğramadan bayıltılırlar. Bu şekilde bayıltılan örnekler istenilen şekil verildikten sonra ya çok düşük temparatür derecelerinde aniden dondurulur veya uygun fiksatifler içine alınarak uzun süre muhafaza edilirler.Dondurma yöntemiyle tespit edilen örnekler , orijinal renk ve şekillerini daha iyi korumaktadırlar. Bunun için en iyi yöntem, örnekleri gerekli bilgileri taşıyan etiketleriyle birlikte naylon torbalar içersine düzgün bir şekilde ve yüzgeçlerine zarar vermeyecek titizlikte yerleştirip aniden dondurmaktır. Ancak incelenecekleri zaman donmuş materyal çözülür ve üzerlerinde gerekli tetkikler yapılır. Fakat dondurulmuş örnekler, uzun zaman muhafaza edilemezler. Bu açıdan dondurma, özellikle zaman zaman eritilerek incelenmeleri gereken örneklerin saklanmasında geçerli bir yöntem değildir. Bu nedenle bilimsel araştırmalar için (bilhassa faunistik çalışmalarda) örnekleri çok uzun zaman bozulmadan koruyabilen çeşitli fiksatiflerden yararlanılmaktadır. Bunlar içersinde en iyisi % 4 lük formalin solüsyonudur. Bu solüsyonla örnekleri tespit etmek için herbir balık sığ bir kapta (özellikle mumlu küvette) yan yatırılmalı ve mümkün olduğunca düzgün bir şekil verilmelidir. Yüzgeçlerin açık kalmasını sağlamak için de çok ince böcek iğneleri yardımıyla herbir yüzgeç gergin hale getirilmelidir. Sonra, bu örneklerin üzerini örtecek şekilde % 4 lük formalin solüsyonu ilâve edilir ve bu şekilde birkaç gün bırakılarak sertleşmeleri; dolayısıyla belli şekil kazanmaları sağlanmış olur. Şayet örnekler 30 cm. den daha büyük boylu ise, bunların karın kısımlarından jiletle küçük bir yarık açılır veyahut da anal açıklıklarından bir enjektör yardımıyla % 40 lik formol enjekte edilerek iç organlarının tespiti yapılır ve kokuşması önlenir. Mumlu küvetlerde tutularak belli şekil kazandırılmış olan örnekler devamlı muhafaza için başaşaği olarak kavanozlara yerleştirilir ve kuyruk kısımlarını örtecek şekilde fiksatif doldurulur. Balık örneklerinin devamlı muhafazasında genellikle % 4 lük formalin kullanılırsa da bazen % 70 lik Etil alkol veya % l lik Propilen Fenoxatol çözeltisi de kullanılabilir. Bu prezervatiflerin bulunmadığı hallerde genellikle kolay temin edilen ve daha ucuz olan bazı maddelerden de yararlanmak mümkündür. Bunların başhcalan % 70 lik tuvalet ispirtosu, % 50lik NaCl çözeltisi ve % 100 lük (saf olarak) sirkeden ibarettir. Örnekleri taşıyan herbir kavanozun içinde kurşunkalem veya erimez mürekkeple yazılmış bir etiket bulunmalıdır. Bu etikete ilgili türün adı, toplandığı yer, tarih ve toplayanın adı yazılmaktadır.Özellikle % 70 lik Etil alkol ile yapılan muhafazalarda alkolün uçucu olması nedeniyle zamanla kavanozlarda bir eksilme meydana gelmekte, bu durum örneklerin açıkta kalan kısımlarının, özellikle kuyruk yüzgeçlerinin kurumasına ve bozulmasına neden olmaktadır. Bu türlü eksilmelerin önlenmesinde kavanozların kapaklarına ince bir tabaka halinde vazelin sürülmesi çok iyi sonuçlar vermektedir. Diğer taraftan % 4 îük formalin solusyonundaki çok uzun süreli muhafazalarda, formalinin asidik özelliği nedeniyle örnekler esmerleşmekte ve üzerlerindeki leke ve benekler belirsiz hale gelmektedir. Bu durumu önlemek için de % 4 lük formalin solüsyonunun her 4 litresine bir çorba kaşığı kadar Boraks ilâve edilmesi yararlı olmaktadır. Bu sayede formalinin asidik özelliği bir dereceye kadar giderilmiş olur.Yumurta veya larvalar ya %4 lük formol ya da % 70 lik alkol içeren küçük tüplerde saklanabilir. Her tüp içine gerekli bilgileri taşıyan etiketler konulmalıdır (tür adı, lokalite, tarih, örneklerin taze rengi, habitat, toplayanın adı v.b.). Yumurtaların toplanmasında (özellikle yumurtalarınn kümeli olduğu hallerde) mümkün olduğu kadar bol sayıda örnek almalıdır. Zira, yumurtaların substratuma tutturuluş şekilleri, tanımlamada önem taşıyabilir. Bazen balık türleri, sadece pullarından teşhis edilebilirler. Diğer taraftan, vücudun yanlarından alınmış birkaç sağlam pul yardımıyla hayvanın yaşı ve geçmişine ait bazı bilgiler edinme olanağı da vardır, örneklerden pullar alındığında küçük bir zarf içine konup yassı hale getirilmeli ve sonra kurumaya bırakılmalıdır. Bu şekilde pullar uzun süre saklanabilirler. Zarfın üzerinde tür adı, lokalite, tarih, toplayanın adı, numunenin boyu, ağırlığı ve cinsiyeti yazılmalıdır. Tür tanımı amacıyla alınan pullar temizlenmeli, kuru olarak veya gliserin jeli içinde lam üzerinde preparat haline getirilmelidir.Diğer omurgalılarda olduğu gibi, balıkların tanınmasında da bazı kemikler (örneğin, Cyprinid'lerin farinks ve Salmonid'lerin Vomer kemikleri) çok yararlı olabilmektedir. Bazı türlerin yaş ve büyümelerine ilişkin bilgilerin elde edilmesinde belli bazı kemiklerin büyük önemi vardır; Percidae ve Esocidae üyelerinin operküler kemikleri gibi. Bütün böyle kemiklerin incelenme ve bunu izleyerek saklanmaları için hazırlanmaları oldukça basittir. Bunun için daima taze ya da dondurulmuş materyal kullanılmalıdır. Zira önceden tespit olmuş materyal bu amaca uygun değildir. Gerekli kemikler ilgili balıktan üzerlerindeki diğer dokularla beraber kesilerek çıkarılırlar. Sonra herbir kemik birkaç dakika çok sıcak suya atılır ve nihayet yumuşak dokuları temizlemek için küçük ve sert bir fırça ile dikkatlice fırçalanır. Kemik tamamen temizleninceye kadar buna devam edilir. Sonra temiz bir kağıt üzerine konarak ılık bir ortamda yavaş yavaş kurumaya bırakılır. Kemiğin çıkarıldığı balığa ait gerekli bilgiler (tür adı, lokalitesi, tarih, toplayanın adı, boy ağırlık ve seks durumu) etiketine yazılır.Toplanan örneklerin tayini yapılırken bazı kuşku uyandıran durumlar varsa o türe ait biraz daha fazla örnek, yukarıda açıklandığı şekilde öldürülüp muhafazaya alınarak incelenmek üzere, toplanmasıyla ilgili tüm verilerle birlikte o konuda otorite sayılan bir ihtiyoloğa gönderilmelidir. Genellikle örneklerin taze olarak posta ile gönderilmesi iyi sonuç vermez, çünkü fikse edilmemiş örneklerin oldukça süratli bozulmaları söz konusudur. Tespit edilmiş örnekleri göndermeden önce örneklerden tespit solüsyonu iyice süzülmeli ve aynı solüsyon ile ıslatılmış nemli tülbent bezine sarılan bu örnekler sonra da bir naylon torba içine yerleştirilmelidir. Bu paketçik, içinde ambalaj materyali bulunan sert bir kutu içine konup, tümü tek bir paket yapılarak gönderildiğinde, örnekler mükemmel bir şekilde alıcısına ulaşmış olurlar.

http://www.biyologlar.com/balik-orneklerinin-toplanmasi-ve-tespiti-1

AMİNO ASİT TANIMA REAKSİYONLARI

Doğada 300’den fazla amino asit tanımlanmış olmasına rağmen memelilerde bunlardan yalnızca 20 tanesi proteinlerin yapısında yer almaktadır. Amino asitler prolin dışında aynı karbon üzerinde amino (-NH2) ve karboksil (-COOH) grubu bulundururlar. Prolin ise siklik bir yapıya sahiptir ve amino grubu yerine imino grubu taşır. Amino asitlerin genel gösterimleri R-CH-NH2-COOH şeklindedir. R grubu değişken gruptur. R grubunun değişmesiyle 20 çeşit primer veya standart amino asit meydana gelir. Bu 20 çeşit amino asitin değişik sayı ve sıra ile dizilimi çok sayıda proteinin ortaya çıkmasına yol açar. Glisin dışındaki tüm amino asitlerin en az bir tane asimetrik karbonu vardır ve optik olarak aktiftirler. Bunlar da D ve L olarak iki ayrı konfigürasyonda olabilirler. Ancak proteinlerin yapısında bulunan tüm amino asitler L konfigürasyonundadırlar. D amino asitler ise bazı antibiyotiklerde ve bakteriyel hücre duvarında bulunurlar.Amino asitler amfoterik moleküllerdir. Yani hem asidik hem de bazik gruplar içerirler. Monoaminomonokarboksilik asitler sulu çözeltilerde dipolar çözeltiler yani zwitterion şeklinde bulunurlar. a-karboksil grubu dissosiye ve negatif yüklüdür, a-amino grubu protonlanmış ve pozitif yüklüdür, yani molekül nötrdür. Asidik pH’da karboksil grubu bir proton alır ve molekülün net yükü pozitif olur. Bazik pH’da ise amino grubu proton kaybeder ve net yük negatif olur. Bir amino asidin net yükünün sıfır olduğu pH’a izoelektrik nokta denir. Amino asitler renksiz, suda tamamen, etil alkolde ise kısmen çözünmelerine karşılık, eterde hiç çözünme özellikleri olmayan organik bileşiklerdir. Amino asit çözeltilerinin görünür bölgede ışık absorblama özellikleri yoktur. Ancak UV bölgede (280 nm’de) tirozin, triptofan, fenilalanin ve histidin gibi halkalı yapıya sahip amino asitlerin ışık absorblama yetenekleri vardır. Bu özellik biyolojik sıvılardaki protein miktarının belirlenmesinde zaman zaman faydalanılabilen bir özelliktir.Amino amino asitler, bulundurduğu karboksil ve amino grupları, reaksiyon gücü oldukça yüksek fonksiyonel gruplar oldukları için bu grupların verdiği bütün reaksiyonları verirler. Amino asitlerin verdiği bu reaksiyonlar gerek biyolojik sıvılardaki serbest amino asitlerin cinsi ve miktarı, gerekse protein yapısına giren amino asitlerin miktarı, cinsi ve sırasını tespit etmede son derece önemlidir. I. Amino Asit Tayininin Klinik ÖnemiDolaşımdaki amino asitler böbrekte glomerüler membranlar tarafından filtre edilirler. Bu filtrattaki amino asit konsantrasyonu plazmadakine yakındır. Ancak filtrattaki amino asitlerin büyük bir kısmı tübüler sistemde özel transport sistemleri ile geri emilip dolaşıma verilirler. Çok az bir kısmı ise idrarla atılır. Normal yetişkin bir kişinin 24 saatlik idrar amino asit düzeyi 50-200 mg arasında değişir. Bu değişimde etkili faktör diyettin tabiatıdır. Kan amino asit seviyeleri yükseldiği zaman idrarla amino asit atılımında artış meydana gelir. Bu duruma aminoasidüri denir. İki tip aminoasidüriden bahsedilebilir. 1) Taşma tipi (overflow tipi) : Amino asit metabolizmasında rol oynayan enzimlerin eksik veya hatalı olması sonucu görülür. Böbrek eşik düzeylerinin aşılması sebebiyle böbrekler normal çalıştığı halde böbreğin reabsorbsiyon kapasitesi aşıldığından idrar amino asit düzeyi artar. Fenilketonüri, tirozinozis, alkaptonüri ve akçaağaç şurubu idrar hastalığı buna örnektir.2) Renal tip:Böbrek tubuluslarındaki bozukluk sonucu oluşan aminoasidüri türüdür. Bunu sebebi konjenital veya akkiz olabileceği gibi ağır metal zehirlenmeleri, fenol zehirlenmesi veya yanıklar da olabilir. Fankoni sendromu, sistinozis, Wilson hastalığı ve nefrotik sendrom gibi.II. Amino Asitlerin Kalitatif ve Kantitatif Tayininde Kullanılan MetotlarProteinlerin amino asit kompozisyonunu tespit belirlemek için kullanılan metotlar üç basamakta toplanır:1. Proteinlerin amino asitlerine hidrolizi (6N HCl, +110oC’de 24 saat ısıtma)2. Karışımdaki amino asitlerin ayırımı 3. Her bir amino asidin miktarının belirlenmesia) Ninhidrin Reaksiyonuα-amino grubunun en karakteristik reaksiyonu olan ninhidrin reaksiyonu amino asitlerin hem kalitatif hem de kantitatif tayininde sıklıkla kullanılan bir reaksiyondur. Bütün α-amino asitler ve peptidler bu renk reaksiyonunu verirler. Ancak bazı amino asitler mavi kompleks yerine değişik renklerle ortaya çıkarlar. Örneğin, prolin ve hidroksiprolin sarı, asparagin ise kahverengi renk oluşturur. Diğer amino asitler ise mavinin değişik tonları şeklinde kompleksler oluştururlar. b) Gazometrik ÖlçümAmino asitlerin α-amino grubu HNO2 (nitröz asit) ile reaksiyona girdiği zaman karboksilli asitlerin hidroksi türevlerini meydana getirir. Bu reaksiyon sırasında açığa çıkan N2 gazometrik olarak ölçülür. c) Kromatografik YöntemlerAmino asitleri ve peptidleri ayırmada kullanılan değişik kromatografik yöntemler vardır. Bunlar arasında kağıt kromatografisi, ince tabaka kromatografisi, iyon değiştirme kromatografisi, gaz kromatografisi ve yüksek basınçlı sıvı kromatografisi (HPLC) en sık kullanılanlardır. d) Elektroforetik YöntemlerYüksek elektrikli bir ortamda amino asitlerin yük ve büyüklük farklılıklarından faydalanılarak ayrılması tekniğidir. e) Amino Asit Sırası Tayinine Yönelik YöntemlerPeptid ve proteinlerin sırasının belirlenmesi birçok genetik kusurun ortaya çıkarılmasında faydalı olacaktır. Bir proteindeki amino asit sırasını belirlemek için N-terminal ya da C-terminal amino asit rezidülerine spesifik reaksiyonlar kullanılır. N-terminal amino asitlerin belirlenmesinde kullanılan yöntemler.Sanger YöntemiAlkali ortamda bir polipeptidin N-terminal amino asidinin amino grubu ile 2,4 dinitrofluorobenzen (DNF) reaksiyona girerek sarı renkli 2,4-dinitrofenol türevlerini meydana getirirler. Bu türevler elde mevcut olan amino asitlerin aynı reaktifle reaksiyona sokulmasıyla hazırlanmış olan standartları ile kağıt kromatografisi işlemine tabi tutulur. Kromatografi kağıdında elde edilen lekeler değerlendirilerek amino asidin cinsi tespit edilir. Dansil Klorür YöntemiBir polipeptidin N-terminal aminosidinin amino grubu ile floresans bir madde olan dansil klorür yüksek pH’da reaksiyona girer. Böylece dansil klorür ile işaretlenen amino asit florometrik olarak ölçülür. Bu metodla amino asit türevlerinin düşük miktarları (1 nM) bile belirlenir.Edman YöntemiEn önemli ve en çok kullanılan metoddur. Edman reaksiyonuyla sadece N-terminal ucu tanınmaz aynı zamanda bu reaksiyonun tekrarlanması ile uzun polipeptidlerin amino asit sırası tam olarak tespit edilir. Fenilizotiyosiyanat alkali ortamda peptidin N-terminal amino grubu ile reaksiyona girerek N-terminal amino asidin fenilizotiyosiyanat türevi oluşur. Sanger ve dansil klorür yöntemlerinden farklı olarak polipeptid parçalanmaz, sadece bir amino asit eksik polipeptid kalır. Daha sonra oluşan bu türev gaz kromotografisi ile tespit edilir.C-terminal amino asitlerinin belirlenmesinde kullanılan metodlarPolipeptidin C-terminal kalıntılarını tespit etmek için kullanılan metodlar N-terminali tespit etmek için kullanılanlar kadar kesin sonuç vermezler. Ancak bu amaç için kullanılan iki metod vardır.Hidrazinle parçalanma (Hidrazinoliz)Bu reaksiyon sırasında hidrazin ile C terminalindeki aminoasitler ayrılır. Karboksi peptidazla parçalanma Protein parçalayıcı bir enzim olan karboksipeptidaz bir proteindeki en son peptid bağına (C-terminal) etki ederek C-terminal amino asidinin koparılmasını sağlar. Elde edilen serbest amino asit, amino asitlere spesifik reaksiyonlarla tespit edilir. Bu işleme devam edilerek her defasında yeni bir C-terminal amino asit belirlenebilir. III. Kalitatif Amino Asit Tayin YöntemleriKalitatif amino asit tayini kan ve idrar örneklerinde yapılabilir. İdrar örnekleri günün herhangi bir saatinde alınan (rastgele) idrar örneği olabileceği gibi 24 saatlik idrar da olabilir. Hücre içi amino asit seviyesi kan dolaşımından (plazma) 10 kat daha yüksektir. Kan örneği alınırken bu özellik dikkate alınmalıdır. Amino asit seviyesine plazmada bakılır. Kan heparinize enjektörle alınmalıdır. Hemolizden sakınılmalıdır. Yapılacak DeneylerFenil Pirüvik Asit Deneyi4 ml idrar üzerine 1 ml magnezyum ayıracı (11 gr MgCl2, 14 gr NH4Cl ve 20 ml der-NH4OH/litre) konarak 5 dakika bekletilir, süzülür. Süzüntü 2 damla % 10’luk HCl ile asidik hale getirilir. 2 damla % 10’luk FeCl3 ilave edilir. Mavi-yeşil renk oluşursa deney pozitifdir. Fenilketonüride sıklıkla kullanılmaktadır. Triptofan Deneyi2 ml örnek üzerine 2 ml derişik CH3COOH ilave edilir. Bu karışımın üzerine damla damla tabaka oluşturacak şekilde tüp cidarından derişik H2SO4 sızdırılır. İki sıvının birleşme yerinde mor halkanın oluşumu örnekte triptofan bulunduğunu (pozitif reaksiyon) gösterir. (örnek: Hartnup hastalığı)Ninhidrin Deneyia) Deneyin PrensibiBu deneyde normalde sarı olan ninhidrin, amino asitlerle reaksiyona girerek mavi-menekşe rengine dönüşür ve bu metot bu renk oluşumunun tespitine dayanır.Bu reaksiyon sırasında 1. basamakta ninhidrin ile amino asit reaksiyona girerek amino asitten bir karbon eksik bir aldehit, redükte ninhidrin, NH3 ve CO2 meydana gelir. İkinci aşamada açığa çıkan NH3, bir mol okside ninhidrinle bir mol redükte ninhidrin arasında köprü kurarak mavi-mor renkli kompleks oluşturur.Ninhidrin NH2-C-COOH’daki serbest a-amino grubu ile reaksiyona girer. Bu grup tüm amino asitlerde, polipeptidlerde ya da proteinlerde bulunmaktadır. Dekarboksilasyon reaksiyonu serbest amino asitlerde meydana gelmekte iken, peptidlerde ve proteinlerde meydana gelmemektedir. Böylelikle teorik olarak yalnızca amino asitler renk değişimine neden olurlar. Ancak peptidler ya da proteinler her zaman için interferansa yol açabilirler.b) Reaktifler ve Malzemeler A. Malzemeler B. Reaktifler® Test tüpleri ® Ninhidrin Solüsyonu® Pipetler ° Ninhidrin: 0.35 g® Ocak ° 100 ml etanol® Spektrofotometre c) Deneyin Yapılışı1 ml ninhidrin solüsyonu (0.35 g ninhidrinin 100 ml etanole tamamlanması ile hazırlanır.) 5 ml numuneye (plazma) eklenir. Test tüpünün ağzı parafilm ile kapatılır. ( buharlaşmadan dolayı meydana gelebilecek kayıpları önlemek için) 2. Hafifçe karıştırılarak 4-7 dakika süreyle kaynatma işlemine tabi tutulur.3. Daha sonra soğuk su altında tutularak oda ısısına kadar soğutulur. Not: Isopropanol ya da 1/1 aseton/butanol karışımı ninhidrin solüsyonunun hazırlanmasında etanol yerine kullanılabilir.

http://www.biyologlar.com/amino-asit-tanima-reaksiyonlari-2

Popüler Bilim ve Gelecek "Ayna Nöronlar"

Popüler Bilim ve Gelecek "Ayna Nöronlar"

Ayna Nöronlar: Beyindeki bu hücreler, sadece bir hareket ortaya koyduğumuzda değil ayrıca aynı hareketin başkaları tarafından gerçekleşmesini gözlemlediğimizde de ateşlenmektedir.

http://www.biyologlar.com/populer-bilim-ve-gelecek-ayna-noronlar

Cıvık Mantarlar Ögrendiklerini Diğer Cıvık Mantarlara Aktarabiliyorlar

Cıvık Mantarlar Ögrendiklerini Diğer Cıvık Mantarlara Aktarabiliyorlar

P. polycephalum, bir hücreli organizma, daha çok cıvık mantar olarak bilinir. Laboratuarda agarda büyütülebilir. Credit: Audrey Dussutour (CNRS)

http://www.biyologlar.com/civik-mantarlar-ogrendiklerini-diger-civik-mantarlara-aktarabiliyorlar

Monterey Körfezin’de bir asır sonra yeniden bulunan canlı

Monterey Körfezin’de bir asır sonra yeniden bulunan canlı

Bilim adamları, 1900 yılında ilk kez tarif edildiğinden beri kesin olarak görülemeyen garip ve zor bulunan bir yaratığın bulgularını doğruladılar.

http://www.biyologlar.com/monterey-korfezinde-bir-asir-sonra-yeniden-bulunan-canli

 DNA izolasyon Analiz Yöntemi

DNA izolasyon Analiz Yöntemi

Tıbbi Biyoloji laboratuarında yaygın olarak kullanılan amonyum asetat yöntemi ile DNA izolasyonu aşağıda açıklanmıştır.

http://www.biyologlar.com/dna-izolasyon-analiz-yontemi

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Bir araştırma ekibi, arkeal ve ökaryotik hücrelerin genetik materyalini nasıl paketlediğini ve depoladıklarını gösteren çarpıcı paralellikler buldu. Credit: Santangelo and Luger Labs

http://www.biyologlar.com/sonucta-o-kadar-da-farkli-degiliz-insanlardaki-hucreler-ve-saglam-mikroplar-ortak-bir-atayi-paylasiyor

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili- 3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde 3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit

VARYASYON NEDİR

Bir tür içinde pek çok karakterleri bakımından önemli ölçüde faklılıklar bulunmaktadır. Yani tür içinde aynı gen havuzunu paylaşan bireyler arasında farklılıklar mevcuttur. Başka bir deyişle, aynı türün değişik alanlarda yaşayan populasyonları (populasyonlar arası) ve aynı yöredeki bir populasyonun bireyleri arasında (populasyonlar içi) pek çok özellikleri bakımından bir çeşitlilik vardır. Populasyon içinde her bir karakter, ya da karakter kümeleri bakımından farklı morfolojiye sahip bireyler bulunmaktadır. Nitekim, Linnaeus dahil, birçok taksonomist geçmişte bu hatayı yapmışlardır. Örneğin, atmacagillerden çakın kuşu adı verilen kuşun genç bireyleri ile ergin bireylerinin fenotipleri arasında, tüy deseni bakından önemli morjolojik farklılıklar bulunmaktadır. Linnaeus, başlangıçta bunları iki ayrı tür içinde yerleştirmiştir. Erginlere Accipiter palumbanus L., Genç bireylere A. gentilis L. adını vermiştir. Fakat, türün biyolojisi hakkında bilgiler artıkça, ergin ve genç bireyler arasındaki “morfolojik” farkı anlaşılmış, hepsi artık, doğru olarak, A.gentilis içine konulmuştur. Bugün dahi, -genetik, ekolojik, evrim ve populasyon biyolojisi bilgileri ile yeteri ölçüde donatılmamış olan – bazı taksonomistler, benzer hataları tekrar yapmaktadırlar. Bir populasyon içerisinde bireylerin taşıdıkları özellikler birbirinin hiçbir zaman aynı değildir. Boy, renk ve desen gibi kalitatif ve kantitatif özelliklerde az ya da çok değişkenlik görülür. Bu değişime varyasyon diyoruz. Sistematikte varyasyonlar iki grupta ele alınmalıdır. Genetik yapıyla ilgili olmayan ve ilgili olan varyasyonlar. Genetik olmayan varyasyonların ayırdedici özellikleri olmadığından sınıflandırma çalışmalarında önemli yoktur. Buna karşılık taksonların genetik yapısına işlenmiş, nesilden nesile taşınabilen genetik varyasyonlar sınıflandırmada ve sistematikte önemlidir. Bunlar; • I. Genetik olmayan varyasyonlar • A. Bireysel Varyasyonlar • a. yaş, b. mevsimsel, c. nesillere ait • B. Toplumsal varyasyonlar • C. Ekolojik varyasyonlar • a. habitat varyasyonu, b. iklimsel varyasyon, c. konukçu varyasyonu, • d. populasyon yoğunluğuna bağlı varyasyon, e. allometrik varyasyonlar • D. Traumatik varyasyonlar • a. parazit nedeniyle, b. çeşitli anormallikler • II. Genetik Varyasyonlar A. Cinsiyetle ilgili varyasyonlar • a.Primer eşey özellikleri, b.Sekonder eşey özellikleri, c. Gynandromorph’lar B. Cinsiyet ile ilgili olmayan varyasyonlar • a. Devamlı varyasyonlar www.sistematiginesaslari.8m.com

http://www.biyologlar.com/varyasyon-nedir

Kuşlar neden göç ederler?

Bu sorun, hala ornitolojide en zorlu sorulardan birisi. Genellikle kuş göçleri üreme ve üreme dışı dönemlerin aynı bölgede geçirilmesinin avantajlı ya da mümkün olmadığı durumlarda görülür. Ancak, bazen daha yakında elverişli kışlama alanları varken türün neden binlerce kilometre öteye göç ettiğini açıklamak her zaman kolay değil. Göç, olanca risklerine karşın hala vazgeçilmediğine göre kuşlara hatırı sayılır yararlar sağlıyor olmalı. Uzun göç yolculuğu, tamamlamak için harcanan enerjinin yanısıra yorgunluk, kaybolma, yırtıcılara yem olma gibi riskleri nedeniyle tehlikeli bir girişim. Kuzey Yarımküre'den güneye göçen küçük kuşların yarısından fazlası asla geri dönmüyor. Örneğin diğer akrabalarının aksine çok daha geç, Ağustos ayında yuva yapan Ada Doğanı (Falco eleonorae) bu gibi küçük göçmenlerle beslenerek yaşamak için evrilmiş bir yırtıcı. Buna, insanoğlunun ve olumsuz hava koşullarının etkilerini eklersek göç ve kışlama sırasında ölüm oranının yüksekliği bizi şaşırtmamalı. Kuşların, kış aylarının olumsuz çevre koşullarından güneye kaçmaları kolay anlaşılsa da belki de daha ilginç bir soru neden uygun koşullar tropikal bölgelerde yıl boyu hüküm sürdüğü halde tekrar kuzeye döndükleri. Burada önemli nokta, her ne kadar kış boyunca düşmanca koşullar hüküm sürse de, kuzey enlemlerinde ilkbahar ve yaz ayları boyunca üremek için tropikal bölgelere göre daha uygun özelliklerin bulunması. Tropikal enlemlerde gece-gündüz uzunluğu neredeyse sabit olduğu halde, ilkbahar ve yaz boyunca kuzey enlemlerinde gündüzler gecelerden belirgin derecede uzun. Diğer taraftan ılıman ve tropikal bölgelerde yerli kuş populasyonlarının yoğunluğu özellikle üreme sırasında yüksek rekabet oluştururken, daha az türe sahip sahip kuzey enlemlerinde bu rekabet daha düşük. Bu bakış açısına göre, kuzey enlemlerdeki çoğu göçmen kuş türleri (kuzeyin zorlu kışından kaçıp tropik bölgeye tahammül eden ılıman kökenli kuşlar değil) kuzeydeki geçici yaz bolluğundan faydalanan tropikal kökenli kuşlardır. Aynı türün farklı coğrafyalarda yaşayan toplulukları göç davranışını sonradan kazanabilir ya da kaybedebilirler. Örneğin Küçük İskete (Serinus serinus) son yüzyıl içinde Akdeniz havzasından kuzeye, Avrupa'ya yayıldı. Atasal Akdeniz toplulukları yerliyken, yeni kuzey populasyonları artık göçmen oldular. Tam tersi bir gelişme, Güney Afrika'da kışlayan Kara Leylek (Ciconia nigra) ve Arıkuşu (Merops apiaster) gibi bazı göçmen türlerin bir kısmının artık orada üreyen yerli türlere dönüşmeleri. Genel olarak, tropikal bölgeye göç eden kuşlar geride ılıman bölgede kalanlara göre kışı daha iyi atlatırken, geride kalan yerli türler üreme açısından göçmenlerden daha başarılı olurlar. Tropikal bölgedeki yerli türler ise uzun yaşamayı düşük üremeye feda ederler. Kurdukları yuvaların pek azı başarılıdır, yavru sayıları düşüktür ve her çift yılda birçok kere üremeyi dener, ama erginler uzun ömürlüdürler. Göç, yerel koşullar yakındaki yörelere fırsatçı hareketleri teşvik ettiği durumlarda evrilir. Populasyonun sadece bir kısmında başlayan bu davranış eğer avantajlı ise, bir süre sonra göç etmeyen toplulukların yeryüzünden silinmesi sonucunda o türün tüm bireyleri için bir kural haline gelir. Farklı göç şekilleri Farklı türlerin kışlama ve üreme alanları arasında izledikleri rota ya da kışlama alanlarında yerleşme şekilleri değişik göç şekilleri oluşturuyor. En belirgin farklılıklardan biri süzülen kuşlarla, kanat çırpan aktif uçucular arasında. Uçabilmek için termallere bağımlı süzülen kuşlar, geniş su kitlelerini aşamadıklarından kıyı kenarını izleyerek gündüzleri uçarlar ve denizleri karaların birbirlerine en çok yaklaştıkları bölgelerden geçerler. Diğer taraftan pek çok ötücü kuş, yağmurcun ve su kuşu yer şekillerine bağlı kalmaksızın geniş bir cephe şeklinde geceleri göç ederler. Bazı durumlarda ilkbahar ve sonbahardaki göç rotası aynı olmaz. Örneğin, Sibirya’da üreyen Kara Gerdanlı Dalgıç (Gavia arctica) toplulukları sonbaharda doğrudan bir uçuşla Karadeniz’e iner, ancak ilkbaharda aynı rotadan geri dönmek yerine önce batıya Baltık Denizi’ne, sonra doğuya uçar. Havalanabilmek için donmamış su yüzeyine gerek duyan dalgıçların, buzu geç çözülen gölleri ilkbaharda kullanamaması nedeniyle bu tip bir göçün ("halka göç") daha avantajlı olduğu sanılıyor. Pek çok ötücü kuş türünde erkek bireyler, dişilere göre daha kısa mesafe göç eder. Bu durumun, erkeklerin ilkbaharda en iyi üreme alanlarını ele geçirmek için giriştikleri yoğun rekabetin sonucu olduğu sanılıyor. Yine muhtemelen aynı nedenden dolayı sonbahar göçü neredeyse aylar süren bir sürede gerçekleştiği halde, ilkbahar göçü çok daha dar bir zaman aralığında gerçekleşir. Süper yakıt: İçyağı Göç eden kuşların büyük çoğunluğu bir seferde uzun mesafeleri aşabilmek için deri altında yağ depolar. Yağ parçalandığında, aynı miktarda karbonhidrat veya proteinle karşılaştırılırsa onların iki katı enerji ve su üretir. Biriktirilen yağ, bazen vücut ağırlığının iki katına çıkmasına neden olabilir. Bu denli çok yağın kısa sürede biriktirilebilmesi için uygun metabolik ve davranışsal değişiklikliklerin oluşması gerekiyor. Bu değişiklikler arasında aşırı yeme (hiperfagi), metabolizmalarının nitelik değiştirmesi, iç organların bazılarının küçülmesi sayılabilir. Yağ, normal zamanlarda küçük kuşların vücutlarının %3 ila %5'ine karşılık gelir. Oysa göç sırasında bu değer %25'e, bazı kıyı kuşlarında % 45'e ulaşabiliyor. Ötücü kuşlar tipik olarak bir seferinde birkaç yüz kilometre uçtuktan sonra 1 ila 3, bazı durumlarda daha da uzun süre dinlenip azalan rezervlerini yeniden tamamlarlar. Uzun mesafeler kateden kıyıkuşları da göçlerini üç veya dört ayakta gerçekleştirirler. Her yolculuk ayağı sırasında dinlendikleri bu mola noktaları birçok tür için yaşamsal önem taşır. Yapılan araştırmalar, küçük kuşların bir saatlik bir uçuş sırasında vücut ağırlıklarının yaklaşık %1'ini kaybettiklerini göstermiş. Ünlü göç araştırmacısı Peter Berthold, ağırlığının %40'ı yağ olan bir göçmen kuşun 100 saat boyunca durmadan uçabileceğini ve bu süre zarfında 2500 km. yol katedeceğini hesaplamış. Yakıtı tasarruflu kullanma açısından hiçbir insan yapısı motor kuşların metabolizmasıyla baş edemez!

http://www.biyologlar.com/kuslar-neden-goc-ederler

Mendel Yasaları

Avusturyalı bir papaz olan Gregor Mendel 'in genetik ilmiyle ilgili olarak bulduğu biyoloji kanunları. Manastırın bahçesinde bezelye leri birbirleriyle çaprazlama|çaprazlayarak (eşleştirerek) kalıtım için ilgi çekici sonuçlar buldu. Bugün bu sonuçlar Mendel kanunları adıyla anılmaktadır. Çalışmalarını yaptığı dönemde kromozom ve genlerin varlığı bilinmemesine rağmen, özelliklerin "faktör" adını verdiği birimlerle nesilden nesile aktarıldığını söyledi. Bugün bu birimlere, gen denmektedir.Bahçe bezelyeleriyle yıllarca yapmış olduğu çalışmalarının sonuçlarını 1865'te yayınladı. ''Bitki Melezleri Üstüne Denemeler'' isimli eseriyle genetik|genetiğin kurucusu olarak kabul edildi. Mendel'in en önemli deneylerinin konusu bezelye idi. Adi bezelye tanelerinin bazıları düz yuvarlak, bazıları buruşuktur, bazı taneler sarıyken, diğerleri yeşildir, bazı bezelye bitkileri uzun, bazıları kısadır. Bu bitkileri düzenli tozlaşmalara tabi tutan Mendel, yukarıdaki özelliklerin dölden döle nasıl aktarıldığını göstermiştir. İki özelliğin bir araya gelmesi sonucunun bir karakteristik ortalaması olabileceği düşünülebilir. Bazı saf karakterlerin birleşmesinden, gerçekte de bu sonuçlar alınabilir; ama Mendel'in deneylerine göre, iki saf karakterin çaprazından, mesela uzunluk ve kısalıktan melez uzunlar çıkmaktaydı. Uzunluk karakteri, kısalık karakterine baskın olduğundan sonuçta melez bireyler uzun görünümdeydi. Bu tip iki uzun melezin çaprazı sonucunda ise, % 25 oranında saf uzun, % 25 saf kısa, % 50 melez uzun çıkmaktaydı. İki eş saf özellik çaprazlandığında, sadece bu saf özellik ortaya çıkmaktaydı. Mendel kanunlarının esası buna dayanmaktaydı.Mendel'in bahçe bezelyeleri ile deneyleriMendel bahçe bezelyeleriyle yaptığı çaprazlamalarda bazı belirli özelliklerin değişmediğini tesbit etti. Bezelyelerin bir kısmı kısa ve çalı tipli (bodur) olduğu halde, bazıları uzun ve tırmanıcı idiler. Yine, bazıları sarı tohum ürettiği halde, bir kısmı yeşil tohum üretirdi. Bazıları renkli çiçeklere sahip olduğu halde, bazıları da beyaz çiçek ihtiva ederdi.Mendel bahçe bezelyelerinin topu topu yedi özelliğinin değişmediğini keşfetti. Ayrıca bezelye çeşitlerinde özelliklerin nesilden nesile kendi kendilerine sürdürdükleri tozlaşma sayesinde korunduğunu gördü.Melezleme tozlaşmasında ise çiçeğin erkek organlarından diğer bitkinin dişi organına çiçek tozu ( polen ) aktarılarak kolaylıkla üretilmekteydi.Farklı yedi özellik (uzunluk, kısalık, sarı tohum, yeşil tohum vs.) görüldüğünden ve melezleme tozlaşması kolaylıkla icra edildiğinden Mendel'in seçtiği konu idealdi. Onun ilk işi, kendisinin takip ettiği ve anne babadan evlatlara devamlı aktarılan yedi özelliği, olsa da olmasa da keşfetmekti. Mendel farklı bitki çeşitlerinin her birinden tohumlar toplayarak onları bahçesinde fidan olarak dikti. Deneylerle ortaya çıkan yedi özelliğin zürriyet meydana getirmede ebeveynlerden (anne babadan) evlatlara aktarıldığını göz önüne almıştı. Bezelye çiçekleri, ancak kendini dölleyebilecek bir yapıya sahip olduğundan saf soylarını devam ettirmeye müsaittir. Mendel ilk deneylerinde bezelyelerin arı döl olup olmadığını araştırmaya başladı. Bunun için aynı bitkiyi birkaç defa arka arkaya tozlaştırarak birçok döl elde etti. Her dölde elde ettiği bireyleri birbirine ve ebeveynlerine benzeyip benzemediklerine göre ayırdı. Böylece özellikleri farklı yedi saf döl elde etti. Bu özelliklerin herbirine saf karakter adını verdi.Mendel'in Dominantlık (Baskınlık) Kanunu'nu keşfetmesiMendel'in bundan sonraki işi, iki farklı karakterli bitkiyi tozlaştırdığında ne olacağını görmekti. Buna uygun olarak bir uzun ve bir kısa ebeveyn bitki seçti. Uzunundan çiçek tozu alarak kısanın dişicik borusunun üzerine serpti. Kısa bitkide tohumlar olgunlaştığında çaprazlamanın sonucunu keşfetmek için tohumları ekti. Acaba yeni bitki kısa ebeveyne mi, uzun ebeveyne mi benzeyecekti? Yoksa her iki ebeveynin karakterinin tesiriyle orta uzunlukta mı olacaktı? Üreyen fidanların hepsinin, çaprazlamayı yapmak için çiçek tozu aldığı bitkiler gibi uzun olduğunu gördü.Mendel'in ikinci adımı, hangi bitkinin farklılığa sebep olduğunu bulmaktı. Çiçek tozunu kullandığı mı, yoksa üretimde tohumlarını kullandığı bitki mi?Buna uygun olarak tozlaşma işlemini ters tatbik ederek polen için kısa bitkileri, tohum üretimi için de uzun bitkileri kullandı. Sonuçlar önceki gibi olup bütün yavru bitkiler uzun meydana gelmişti.Mendel sonra diğer karakterleri çaprazlayarak deneyler yaptı. Sarı tohumlu bitkilerle yeşil tohumlu bitkileri çaprazladı. Çaprazlamanın birinci dölünde (F1 dölünde) hepsinin sarı tohumlu olarak ürediğini gördü. Bunun gibi yuvarlak tohumlu türlerle buruşuk tohumluların çaprazlamasından yuvarlak tohumlular üretti. Mendel yedi farklı karakteri tahlil edene kadar çaprazlama deneylerini tekrar etti ve şaşırtıcı sonuçlar elde etti. Çaprazlama döllerini dikkatle takip ederek birinci çaprazlamada kullandığı ebeveyn bitkileri "P" olarak adlandırdı. Adı geçen dölün çaprazlama sonucuna (ürününe) F1 olarak ad verdi. F1 ilk evladı temsil ediyordu. İki uzun bezelyenin F1 döllerinin çaprazlamasıyla, F2 dölünü (torunları) üretti. Üretimde önceki yolu takip etti. Her ikisi de uzun olan iki F1 bitkisi seçti. Onları çaprazlayarak tozlaştırdı ve F2 dölünü vermesi için tohumları dikti. Bu çaprazlamanın sonuçları gayet dikkat çekiciydi. Bitkilerin bazıları uzun olmasına rağmen diğerleri ise kısaydı. İkisi arası uzunlukta (orta boy) hiçbir bitki meydana gelmemişti. Üretilen bitkilerin 3/4'ü uzun, 1/4'ü ise kısa idi. F2 dölünde kısa bitkilerin tekrar ortaya çıkışı Mendel için büyük bir anlam taşımaktaydı. Demek ki F1 bitkileri görünmeyen kısalık karakterine sahipti. Diğer karakterlere sahip olan F1 neslinin çaprazlamalarıyla da aynı sonuçlar elde edildi. Sarı tohumlu ile yeşil tohumlu ebeveyn bitkileri (P) birbirleriyle çaprazlandığında F2 dölünde 3/4 oranında sarı ve 1/4 oranında yeşil bezelyeler üredi. Mendel bu sonuçlardan "''Dominantlık Kanunu''"nu kurdu.Mendel'in ikinci kanunu olarak bilinen Dominantlık (Baskınlık) Kanunu açık bir ifade ile şöyle tanımlanabilir: "Aynı genetik yapıya sahip iki benzer melez çaprazlandığında meydana gelen dölde, ana-babadan gelen karakterler belirli oranlarda (baskın karakter % 75, çekinik % 25) ortaya çıkar."Mendel'in ilk kalıtım kanunu: Uzun bezelyelerin kısalarla melezlenmesinden (çaprazlanmasından) uzun F1 nesli üredi ve kısa bezelyeler F2 dölünde tekrar ortaya çıktılar. Mendel, karakterlerin meçhul faktörler tarafından kontrol edildiğini ileri sürdü. Bugün bu faktörlere " gen " denilmektedir. Mendel bu temel üzerine kalıtımın birinci kanununu yani Eştiplilik = İzotipi Kanunu'nu kurdu.Eştiplilik (İzotipi) KanunuBu kanun, çeşitli kalıtsal karakterlerin faktörleri (genler) tarafından kontrol edildiğini ve bu faktörlerin çiftler halinde bulunduğunu ifade etmektedir. Mendel'in yaşadığı zamanda gen ve kromozomlar bilinmediği halde onun "Eştiplilik Kanunu" bugün genetiğin temel kurallarını meydana getirmektedir. Eştiplilik (İzotipi) Kanunu açık bir ifade ile şöyle tarif edilebilir: "Birer karakteri farklı iki saf ( homozigot ) ırk çaprazlandığı zaman meydana gelen F1 dölünün bireylerinin hepsi melez ve birbirine benzer olur." Uzun saf bezelye ile kısa saf bezelyelerin çaprazlanmasından % 100 uzun melezler meydana gelir. Mendel uzun F1 dölü bitkilerinin saf uzun ebeveyn bitkileri gibi olmadıklarını ortaya çıkardı. Bu bezelyeler görünmediği halde kısalık faktörünü taşımaktaydılar. Bu faktör bir sonraki dölde tekrar ortaya çıkacaktı. Bu muhakeme, onun kalıtımın ikinci kanununu, yani Baskınlık (dominantlık) Kanunu'nu keşfetmesine öncülük etti. Bu kanuna göre, çiftler halinde bulunan faktörlerden (genlerden) biri diğerini maskeleyebilir veya varlığını göstermesine mani olabilir.Baskınlık (Dominantlık) KanunuBahçe bezelyelerinde olduğu gibi, uzunluk bir çift gen tarafından kontrol edilir. Uzunluk geni kısalık genine baskındır ( dominant tır). Kısalık genine çekinik ( resesif ) denir. Mendel'in çaprazlamalarında ebeveynin biri saf uzun olup, her iki uzunluk genine de sahipti. Diğeri de saf kısa olup, her iki kısalık genine sahipti. Bunların çaprazlama ürünü olan F1 dölünün bireylerinin hepsi uzun, fakat melezdiler. Bunlar bir uzunluk ve bir kısalık geni taşımalarına rağmen, uzunluk geni kısalık genine baskın olduğundan uzun olarak ortaya çıktılar. Mendel, çalışma sonuçlarını tablolar halinde göstermeyi başardı. Günümüzde her karakter en az iki genle ifade edilir. Genetik te her gen bir harf ile temsil edilir. Dominant (baskın) genler büyük harfle, resesif (çekinik) genler aynı harflerin küçükleri ile ifade edilir. Eğer uzunluğu T harfiyle gösterirsek, saf uzun bitki TT olarak yazılacaktı ve uzunluk karakterinin her iki geni böyle gösterilecekti. Büyük T, uzunluğun zıt karakter olan kısalığa baskın olduğunu ifade etmektedir. Aynı usulle, küçük t, kısalığı temsil etmektedir ve yalnız başına saf kısa, tt olarak gösterilecekti. Bütün vücut hücreleri diploit sayıda (2N) kromozom ve gen ihtiva etmelerine rağmen, gamet ler (cinsiyet hücreleri) mayoza uğrayarak kromozom ve gen sayılarını yarıya indirgediklerinden haploit sayıda (N) kromozom ve gen taşırlar. İnsanın vücut hücrelerinde 23 çift (46 adet), gametlerinde ise 23 adet kromozom bulunur.Sonuç olarak bezelyenin tohum taslağındaki yumurta hücresi ve polen tanesinden meydana gelen sperm çekirdekçiği her karakter için yalnız birer gen taşırlar. Saf uzun bezelye bitkisinde, yumurta ve sperm çekirdekleri olgunlaştığında biri T'nin birini, diğeri de diğer T'yi alır. Aynı şekilde bütün vücut hücrelerinde tt genlerini taşıyan saf kısa bitkinin genleri mayoz sonucu t ve t'ye bölünerek şekillenen yumurta veya spermlere geçerler.Mendel Ayrılma Kanunu adı ile kalıtımın üçüncü kanununu kurdu. Bu kanuna göre, bir melezde bulunan gen çiftleri birbirinden bağımsız ayrılarak gametlere gider. Bu demektir ki, gen çiftinin bir tanesini bir gamet, diğerini ise başka bir gamet taşır. Ayrıca bir melezde, dominant genle beraber bulunan resesif gen değişmez. Eğer melezin sonraki döllerinde, iki resesif bir araya gelirse resesif karakter tekrar ortaya çıkar.Mendel çaprazlamalarının çizim metodları: Mendel'in bezelyelerle olan melezleme çalışmaları, dama tahtasına benzeyen tablolarla daha açık olarak gösterilebilir. Gametler, üst ve dikey karelere yerleştirilir. Gametlerin birbiriyle eşlenmesi, diğer karelerde işaretlenir.Tt meydana gelen uzun melez bitkileri ifade eder. T (uzunluk) geni, kısalık (t) genine dominant olduğundan, bireyler uzun olarak gözükür. Eğer Tt melezleri birbiriyle çaprazlanırsa gen birleşimlerinin dört ihtimali rahatlıkla tabloda işaretlenebilir. Durum '''tablo 2'''´de gösterildiği gibi olur.Melez ebeveynlerden T ve t genlerinin birleşme ihtimallerinin sonucunda, F2 dölünde: 1/4'ü saf uzun TT, 1/2 melez uzun Tt ve 1/4'ü saf kısa tt yavru meydana gelir.Mendel'in uzun ve kısa bezelyeleri çaprazlayarak elde ettiği aynı sonuçlar kobay ların renk verasetinde de ispatlandı. Bu durumda siyah renk, beyaz renge dominanttır. Saf bir siyah kobay BB ile, saf bir beyaz kobayı bb çaprazladığımızda ne olacağını görelim. F1 dölünde bütün bireyler (yavrular) siyahtır. Genetik yapılarında ebeveynlerden farklılık arz ederler. Çünkü onlar melez siyahlar Bb'dir. İki melez çaprazlandığında F2 dölü 1/4 oranında saf siyah BB, 1/2 oranında melez siyah Bb ve 1/4 oranı saf beyaz bb olarak gözükebilir. F1 dölünün iki melezi Bb arasındaki çaprazlamadan ortaya çıkan F2 dölü, dağılım gösterir.

http://www.biyologlar.com/mendel-yasalari-2

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Rus yazar Boris Zhitkov, 1931'de anlatıcının karışık ameliyatları gerçekleştirmek için minyatür eller oluşturduğu kısa hikayesi olan Mikrohand'leri yazdı.

http://www.biyologlar.com/bilim-kurguyu-gercege-donusturen-5-nanobilim-yolu

PCR  Polimeraz zincir reaksiyonu nasıl yapılır

PCR Polimeraz zincir reaksiyonu nasıl yapılır

Polimeraz zincir reaksiyonu (PCR) bir in vitro ve in vivo DNA amplifikasyon metodudur, reaksiyonlar farklı sıcaklıklardaki üç olayın sikluslar halinde tekrarına dayanmaktadır.

http://www.biyologlar.com/pcr-polimeraz-zincir-reaksiyonu-nasil-yapilir

Davranış Çeşitleri

ÖĞRENİLMEMİŞ DAVRANIŞLAR 1. Doğuştan Gelen Davranışlar İçgüdüsel ve Ref leksif Davranışlar: Doğuştan getirilen türe özgü davranış örüntülerine “içgüdü” denir. İnsanda içgüdü değil içgüdüsel davranış kavramı kullanılır. Bir davranışın içgüdü olabilmesi için: •Doğuştan gelmelidir. •Bir türün tüm üyelerinde olmalıdır. Başka türlerde olmamalıdır. •Karmaşık bir davranış örüntüsü olmalıdır. •Öğrenilmemiş davranışlardır . •Ertelenemezler Ör: Kuşların göç etmesi, Bebeklerin emmesi Doğuştan getirilen belli bir uyarıcıya karşı organizmanın belli ve basit bir davranış gösterme eğilimine “refleks”denir. Refleksler; •Öğrenmeye dayanmaksızın ortaya çıkan, doğuştan getirilen •Belirli bir uyarıcıya verilen (yani ertelenmesi çok güç olan ama ertelenebilen) •Aniden olup biten •Basit sabit sistemsiz tepkiler olarak tanımlanır. Ör: Göz bebeğinin ışığa karşı tepki vermesi. 2. Geçici Davranışlar: Alkol, ilaç ve uyuşturucu maddeler alındığında, hastalık ve yorgunluk sonrasında gözlenen davranış değişiklikleridir. Başka bir ifade ile bu davranışlar bellibir etkenin etkisiyle ortaya çıkar ve organizma bu etkiden kurtulduğunda geçici davranışlar kendiliğinden ortadan kalkar. Öğrenme ürünü sayılmazlar. 3. Büyüme, sakatlanma, olgunlaşma sonucu ortaya çıkandavranışlar : Bu tür davranışlar da öğrenme ürünü sayılmaz. Ör: Yürüme, dik durma, ses çıkarma. ÖĞRENİLMİŞ DAVRANIŞLAR Sonradan kazanılan yani öğrenme ürünü olan davranışlardır. Bir davranışın öğrenme olabilmesi için; •Tekrar ve yaşantı yoluyla meydana gelmesi •Davranışta bir değişme yaratması •Değişikliğin nispeten kalıcı izli olması gerekmektedir. 1. İstendik Davranışlar: Planlı, eğitim ürünü davranışlardır. Ör: Yazı yazmak, okumak, iyi bir birey olmak. 2. İstenmedik Davranışlar: Eğitimin hatalı, yan ürünü davranışlardır. Ör: Kopya çekmek. Okuldan kaçmak.

http://www.biyologlar.com/davranis-cesitleri

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

Kök Hücre Nakli ile Daha İyi Görme Umudu

Kök Hücre Nakli ile Daha İyi Görme Umudu

Günümüzde görme işlevi hasarlı veya görmesi az olan gözlerin, kök hücre nakli ile yeniden görme işlevi kazanması mümkün. Dünyagöz Hastaneler Grubu’ndan Dr. Levent Akçay başarı ile gerçekleştirdiği operasyonlarda; sağlam gözden alınan kök hücrelerin, az gören göze nakli ile göz iyileştirilebiliyor. Gözün saydam tabakası olan kornea, 6 kat epitelyum hücreden oluşan ve devamlı yenilenen hücrelerden oluşur. Dolayısı ile kornea hücreleri, görme işlevinin devamlılığını sağlar. Bu nedenle korneanın saydamlığını koruması ve görmenin devam etmesi için gözdeki kök hücreler hayati öneme sahiptir. Konu ile ilgili olarak Dünyagöz Altunizade’den Dr. Levent Akçay şunları söyledi: “Saydam tabakayı oluşturan kök hücreler, 7-10 günlük bir yaşam sürecine sahiptir. Kısacası gözün en önemli görme kısmı olan kornea tabakası, 7-10 gün içinde tamamen yenilenebilir. Eğer bu yenilenme olmazsa tekrarlayan epitel dökülmeleri, şiddetli batma ve ağrı, ışıkta şiddetli rahatsızlık hissi gelişmeye başlar. Yenilenmeme devam ederse bir süre sonra yapısı bozulur ve görme yeteneği kaybolur.” Dr. Akçay, “Şiddetli enfeksiyonlar veya kök hücre yetmezliği, gözdeki kök hücre hastalığına sebep olurken; diğer bir neden de kimyasal, özellikle alkali yanıklardır. Kök hücre hastalığına bağlı gözdeki kök hücreleri tedavi edilmediği takdirde ise, görme giderek kötüleşir. Kornea nakli (keratoplasti) yapılsa bile kök hücre nakli gerçekleştirilmediğinden iyi bir sonuca ulaşılamaz. Bu nedenle limbal kök hücre hastalığı veya kök hücrelerini kaybetmiş olan gözlerde kornea nakli başarısız olur.” dedi. Kök hücre naklinde tedavi süreci Pterjıum dediğimiz gözde et çıkması da kısmi bir limbal kök hücre hastalığı olarak bilinir. Tedavi esnasında, kök hücrelerin eksik olduğu bölgedeki pterjıum alınır ve yerine aynı ya da diğer gözden konjonktiva nakli yapılarak hastalık giderilir.Daha geniş kök hücre hastalığı ya da kök hücre yetmezliği olan olgularda ise örneğin kimyasal yanıklar, iris yokluğu, ısı yanıkları gibi kök hücre nakli yapmak şart hale gelir. Limbal kök hücre nakli, kaynağı ne olursa olsun, gerçekleştirilmesi büyük dikkat ve özel uzmanlık gerektiren önemli bir cerrahidir. Dünyagöz Hastaneler Grubu’nda gerçekleştirilen kök hücre nakli ameliyatlarında, hastanın diğer gözü sağlam ise sağlam gözden kök hücre alınarak; hasta göze cerrahi ile nakli yapılır. Eğer diğer gözü de hasta ise ya da daha fazla miktarda kök hücre ihtiyacı varsa anne-baba-kardeş gibi birinci derece akrabalarından kök hücre alınarak hasta göze ekilir.http://www.medical-tribune.com.tr

http://www.biyologlar.com/kok-hucre-nakli-ile-daha-iyi-gorme-umudu

ZAK METODU İLE SERUM KOLESTEROL TAYİNİ

ZAK METODU İLE SERUM KOLESTEROL TAYİNİ

( TOTAL-ESTER- SERBEST KOLESTEROL )Prensip : Asetik asit ile eritilmiş kolesterolün demir-3 klorür ve sülfürik asit ile verdiği ve miktarla orantılı olan kırmızı menekşe renk reaksiyonuna dayanır.Reaktifler :1-) FeCl3 ( 84 mg FeCl3 bunun yerine 140 mg FeCl36H2O alınır, 100 ml glasial asetik asit içinde eritilir. Koyu renkli cam kapaklı şişede saklanır. )2-) Sülfirik asit d:1,84 p.a.3-) Dijitonin çözeltisi, %0.5 gr. ( 0.5 gr dijitonin %50’ lik alkolde eritilir.)4-) Alkol- aseton karışımı ( eşit hacimde etil alkol %95 ve aseton karışımı)5-) Saf aseton6-) Kolesterol ana çözeltisi % 100 ( 100 mg saf kolesterol asetik asitde çözünür ve 100 ml’ye tamamlanır )7-) Kolesterol çalışma çözeltisi ( 10 ml ana çözelti + 90 ml asetik asit )8-) Glasial asetik asitDeneyin yapılışıA-) TOTAL KOLESTEROLBir santrifüj tüpüne, 0.1 ml serum ve 4 ml FeCl3 konur ve karıştırılır, 30 dakika kendi halinde bırakılır. Bundan sonra santrifüj edilir.Bir deney tüpüne,2 ml santrifüj tüpündeki süpernatan kısımdan alınarak konur.2 ml asetik asit2 ml sülfirük asit konur ve karıştırılır.Aynı anda başka bir deney tüpüne kör deney olarak,2 ml FeCl3 2 ml asetik asit2 ml sülfirk asit konur ve karıştırılır. 30 dakika beklenir. 560 nm de okunur. Standart eğri grafiğinde serumda kolesterol miktarı % mg olarak okunur. B-) SERBEST KOLESTEROLBir deney tüpüne4 ml alkol- aseton karışımı0.5 ml serum konur. Kaynayan bir su banyosuna daldırılarak birkaç saniye tutulur. Çıkarılıp soğutulduktan sonra alkol- aseton karışımı ile 5 ml ye tamamlanır.Karıştırılıp, süzülür.Bir santrifüj tüpüne1 ml yukarda ki süzüntüden1 ml dijitonin çözeltisi konur, karıştırılır. 10 dakika bekledikten sonra santrifüj edilir. Üstteki sıvı atılır, dipteki çökelti üzerine 2 ml aseton konur, karıştırılarak ümülsiyon haline getirilir. Tekrar santrifüj edildikten sonra üstteki sıvı kısım atılır.Çökelti üzerine 4 ml FeCl3 konur ve eritilir. Bir deney tüpüne,2 ml yukarıda anlatılan eriyik2 ml asetik asit2 ml sülfirik asit konur, karıştırılır. 30 dakika beklenir. Kör deney total kolesterolde anlatıldığı gibi hazırlanır.560 nm de okunur.C-) ESTER KOLESTEROLEster kolesterol : Total kolesterol – Serbest kolesterolStandart eğri grafiğinin hazırlanması30 dakika oda sıcaklığında beklenir, köre karşı 560 nm de okunur. Logaritmik kağıda standart eğri grafiği çizilir.Yorumlama : Normal değerler %150-190 mg ( Total kolesterol )Ester kolesterol : Totalin %65-75Ağır karaciğer yetersizlikleri, ağır enfeksiyon hastalıklarında kolesterol düzeyinde artış görülür. Lipoid nefroz, retansiyon ikteri, miksödem, diyabet, ateroskleroz ve ksantomatozda kolesterol düzeyinde artış görülür.Karaciğer koması ve sirozda ise kolesterol ester düzeyinde azalma gözlenir.

http://www.biyologlar.com/zak-metodu-ile-serum-kolesterol-tayini

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz. Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın. İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın. Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir.Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a.Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Not:Daha yoğun hazırlanan(% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur. Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Sibernetik Organizmalaştırdığımız Böcekler

Diğer bir adıyla sayborg böcekler, yani Robocop gibi böcekler. Vücutlarına eklenen teknolojik araçlarla normalinden daha gelişmiş yeteneklere sahip olan canlıların prototiplerini oluşturmak için kullanılan böcekleri inceleyeceğiz. Sibernetik organizma (cybernetic organism), kısaltılıp dilimize girmiş haliyle sayborg (cyborg) hem biyolojik hem de yapay (elektronik, mekanik veya robotik) parçalardan oluşmuş canlılara deniyor [1]. Sayborgların insan olması gibi bir anlayış hakim olmasına karşın, bu tarz bir kısıtlama kesinlikle yok. Mikro-organizmalar bile bu tanımlamaya dahildir. Zaten sibernetik organizma adının çağrıştırdığı gibi herhangi bir organizmaya uygulanabilir; yeter ki bu teknolojik ve yapay öğeler, bahsi geçen organizmanın değiştirilmemiş haline kıyasla daha yüksek seviyelerde özelliklere sahip olmasını sağlasın. Diğer taraftan bir elektromekanik sisteme veya bir robota eklenecek olan canlı organlar veya dokular da robotun sayborga dönmesine sebep olacaktır. Popüler kültürden örnekler vermek gerekirse, organik ve sentetik parçalardan oluşturulan Robocop, Star Trek’teki Borg Queen (Şekil 1) veya Battlestar Galactica’daki insan saylonlar (cylon) ve Terminatör’ler en akılda kalan sibernetik organizmalardır. Yeri gelmişken sıkça karıştırılan iki terim olan sayborg ve androidin ayrımını da yapalım. Android insan dış görünümünü andıran robotlara verilen isim. Farkettiğiniz üzere bir android aynı zamanda bir sayborg olabilir de (yukarıdaki örnekler), olmayabilir de (örn: ASIMO, bkz. Tekinsiz Vadi).Sayborgların sadece bilim kurgu öğeleri olduğunu zannetmeyin, bu paragrafın sonunda neredeyse hepimizin birer sayborg olduğuna ikna edeceğim belki de sizleri. Öncelikle tanımı gereği gündelik hayatlarımızda kullandığımız bazı elektronik fiziksel eklentiler, bizleri birer sayborga dönüştürüyor. Kalp pilleri, kohlear ve retinal implantlar, insülin pompaları bazı organlarımızın yerini alarak değiştirilmiş vücut organlarımız haline geliyor. Bu sebeple bir başka yazımızda işlediğimiz beyin-makine arayüzleri olarak kullanılan protez kollar ve bacaklar da bizleri birer sayborga dönüştürüyor. Hatta bazı filozoflar ve teorisyenler işi daha da ileri götürerek, kontak lensler ve işitme cihazlarını bile eksik olan biyolojik yetilerimizi güçlendirmeye yaradıkları için sibernetik güçlendirmeler olarak görüyor, ancak ben bu fikire kesinlikle katılmıyorum. Çünkü bu şekilde insanların kullandığı bütün aletleri listeye eklemek mümkün.Sayborg böcekler Şekil 2: Sayborg böceğin üstten ve yandan görünümleri Berkeley bilim insanları 2009 yılında bir böceğin uçma yetilerini kontrol edebildiklerini iddia ettiler (Şekil 2). Bir beyin-makine arayüzü olan ve sinirsel uyarım yapan bir implant sayesinde böceğin uçuşunu başlatıp, yönetip, durdurabildiklerini de aşağıdaki video aracıyla kanıtladılar. Hatta bazalar kasları uyararak böceği istedikleri yöne doğru döndürebildiler. Ama esas işin enteresan kısmı böceğin sadece gerektiği zaman istenilen yöne gitmesine izin veren implantın gömülme detayları (Şekil 2). Eğer böcek istenilen yöne doğru uçuyorsa, yönelim sinyali kesiliyor ve böcek kendini tekrar stabilize edip yoluna koyulmaya devam ediyor, ancak bu sefer bilim adamlarının istediği yöne doğru uçuyor. Aslında bir nevi kontrol edilebilir zombiye dönüşmüş durumda, çünkü bu mekanizma sadece böcek istenilen hareketleri yapmadığında devreye giriyor. Kalkış ve inişlerde böcek kendi karar verip hareketleri otonom olarak yönlendiriyor, çünkü bu tarz bir karmaşık bir bilgiyi böceğe gönderip böcek dinamiğini kontrol etmek oldukça meşakkatli bir iş.DARPA sibernetik böceklere yönelik her türlü araştırmayı destekliyor [2]. Gaz sensörleri, mikrofonlar ve video kameralarla donatmayı planladıkları böceklere utanmasalar bir de minik roketler takacaklarını söyleyecekler (tabii henüz onu söyleyemiyorlar.)         Bu projedeki esas zorluk henüz koza evresinde olan canlıların Mikro ElektroMekanik Sistem (MEMS) devrelerini içerilerine alarak büyümelerini sağlamak ve elektronik-biyonik hibrit böcekler üretmek. Böylece güve (Şekil 3) veya böcek büyüdüğü zaman içlerindeki elektronik devrelere kontrol komutları gönderilebilecek [3].             Şekil 4: Böceği koza evresindeyken beynine yerleştirilen bir implantla kontrol etmek mümkün. i) Koza evresi, ii) Erişkin evresi, Kaynak: Boyce Thompson EnstitüsüAynı takım bundan önce de aşağıda videosunu seyredebileceğiniz sayborg güvelerle çalışmıştı. Gaz sensörleri, düşük çözünürlüklü kameralar ve mikrofonları da kapsayan silikon zihin arayüzleri hayvanların koza evresindeyken beyinlerine yerleştirilebiliyor (Şekil 4). Bu şekilde güve büyüdüğünde arama-kurtarma ve gözetleme görevlerinde kullanılabiliyor. Bir işitme cihazı piliyle beslenen bu elektromekanik düzeneğe sahip güvelerle çalışmanın bir dezavantajı mevcut, o da güvelerin kısa ömürleri. Ayrıca farkettiğiniz üzere USB girişi bulunan bu güveler yukarıdaki böcekler gibi serbest değiller.     Enerji ihtiyacı nasıl karşılanıyor?Şekil 5: Bir bozuk para büyüklüğündeki böceğe takılmış yaylar sayesinde enerji üretmek mümkünSayborg böcekler uzunca bir zamandır kullanılıyor olsalar da, minicik cüsseleri onları tam olarak istenilen birer insansız hava taşıtına çevirmiyor. Bu böcekler (örn. gergedan böceği) genellikle sadece kendi ağırlığının %30’unu taşıyabiliyorlar ki bu da 2.5 grama tekabül eder. Böcekler kendi hayatta kalma enerjilerini kendileri üretiyor olsalar da, eğer bu böceğe kamera veya başka yükler takmak isterseniz, dışarıdan enerji üretmeniz gerekiyor. Eğer sabit bir pil eklerseniz de zaten pilden geriye yer kalmayacağı için yeni sensörler eklemek de imkansız hale geliyor. Az güç harcayan bir alıcı-verici kullandığınızı düşünseniz bile düzenli veri işleme ve aktarımı için yaklaşık 1 ile 100 miliwatt arası enerji gerektiriyor.Bu noktada bilim insanlarının uyguladığı iki adet yöntem var. Birincisi böceğin kendi kaynaklarından enerji elde etmek. Michigan ve Western Michigan Üniversitesi bilim insanları piezoelektrik maddeden yaptıkları bir enerji jeneratörünü, böceğin kanat çırpmasından elektriğe dönüştürecek bir sistem geliştirdiler (Şekil 5). Her kanada takılacak her bir yaydan, 100 mikrowatt (μW) enerji üretilebiliyor ki, böceği yönetmek için kullanılan ortalama 80μW’tan bile daha fazla [4]. Bu tarz bir enerji kaynağında karşılarına çıkabilecek tek sorun böceğin kendi enerjisini toplamak için bir meyve arası vermesi.İkincisi enerji sağlama yöntemi ise nükleer pil kullanmak. Cornell Üniversitesi araştırmacıları 12 yıllık yarı ömre sahip, radyoaktif nikel-63 (Ni-63) izotopu kullanarak enerji sağlanan bir mikro elektromekanik sistem (MEMS) radyo frekans alıcı-vericisi kullandılar. Bu sayede onlarca yıl kendi enerjisini kendi sağlayan bir böcek yaratmış oldular ( her ne kadar böceğin ömrü bu kadar olmasa da). Bu düzenek 10 mikrosaniyede bir, 5 miliwattlık ve 100 Megaherzlik radyo frekansı yayınlayabiliyor. Tabii ki gene Amerikan Savunma Bakanlığı İleri Araştırma Projeleri Ajansı (DARPA) sponsorluğunda yapılan bu projede kontrol devreli güveler ve böcekler kullanılmış.Peki radyoaktif enerji veri transferini sağlayacak enerjiye nasıl dönüştürülüyor? İzotoptan çıkan elektronlar, silikon ve piezoelektrik bir manivela (40 mikrometre kalınlığında ve 4-8 milimetre uzunluğunda) üzerinde negatif yük birikimine sebep oluyorlar [5]. Bu manivela görece daha pozitif olan Ni-63 tabakaya doğru yaklaşmaya ve bükülmeye başlıyor. Tam değeceği sırada, bu negatif yük, tabakaya zıplama yapıyor ve yükünden kurtulan manivela tekrar başlangıç pozisyonuna geri dönüyor. İşte hareket enerjisi de tam bu geri dönme hareketi sırasında elde ediliyor. Bu döngü, izotop tüm enerjisi tükenene kadar devam ediyor, yani yaklaşık 100 yıl kadar.Her bir zıplama hareketi yaklaşık 3 dakika alıyor. Bu da her 3 dakikada bir elektrik üretildiği ve veri transferi yapılabileceği anlamına geliyor. Eğer daha farklı zaman aralıkları hedefleniyorsa, biriken elektron sayısına göre ayarlanmış bir MEMS sistemine ihtiyaç var, ve bu rahatlıkla mümkün. Tüm bu düzeneğin büyüklüğü 1 santimetrekare alan kaplıyor.En önemli çekince, bu radyoaktif kaynaktan aynı zamanda beta yayılımı yapılıp yapılmadığı ve hayvanın ve üzerindeki mekanizmanın zarar görüp görmediği. Bilim adamları sadece 21 nanometre penetrasyon yapan bu nükleer kaynağın zararsız olduğu iddiasında.Sayborg Sinekler:Şekil 6: A) Yuların ucundaki sinek, B) Yuların bağlı olduğu düzeneğin etrafı LED ekranlarla çevrili, C) Sineğin kanat çırpışlarıyla hareket eden robot, D) Kamera düzeneğiETH Zürih Üniversitesi Robotik ve Akıllı Sistemler departmanında çalışan bilim insanları 2010 yılında meyve sinekleri üzerinde yaptıkları araştırmalar sonunda, odada bulunan engellerin etrafından uçurabildikleri bir sayborg sinek yaratmayı başardılar. Bunun için yarattıkları deney koşulları çok sıradışı (Şekil 6).Aldıkları bir sineği sabit bir yulara bağlayarak (Şekil 7), çevresine 360 derecelik bir LED ekran yerleştirilmek suretiyle farklı görüntülere maruz bıraktılar [6]. Bu görüntüler sineği sağ veya sol kanatlarını hızlı veya yavaş şekilde çırpmak için tahrik eden görüntülerdi. Yani sineğe bir nevi sanal gerçeklik yaşatıyorlardı. Bu esnada aynı ortamda bulunan bir kamera sistemi de sineğin kanat çırpma hareketlerini bir robotu kontrol etmek için gerekli komutlara çeviriyordu. Bilim insanları amaçlarının sineklerdeki temel uçuş kontrol mekanizmalarını anlayıp, daha iyi canlı-taklitçi robotlar yapmak olduğunu söylüyorlar.Şekil 7: Meyve sineğinin uçmaya çalışsa bile yerinden kıpırdayamayacak şekilde sabit kaldığı düzenekKamera düzeneği kanat çırpış frekansı, pozisyonu, fazı ve genliğini algılabilecek kalitede seçilmiş. Bu bilgiler bir algoritma sayesinde robotun hareketlerine çevrilmiş ve hareket eden robotun üzerinde bulunan kamera ve yakın mesafe sensörleri sayesinde ise tekrar sineğin çevresinde gördüğü LED ekrandaki hareket görüntülerine çevrilmiş. Benzer düzenekleri popüler sinemadaki Matrix ve özellikle de Avatar filmlerinden hatırlarsınız. Böylece sinek kendisi hareket ettiği için ve çevresi de hareket ettiği simülasyonunu gerçekleştirdiği için, gerçek dünyada ilerlediği izlenimine kapılıyor.Sonsözİstekleri dışında uçmak zorunda bırakılan, bir düzeneğe bağlanan veya radyoaktiviteye maruz kalan bu hayvancağızların, hem zihinsel olarak hem de fiziksel olarak birer zombiye döndükleri aşikar. Acaba bu tarz sorunları hedef alan ve bilimsel araştırma kisvesi altında da olsa hayvanlara eziyeti suç sayan bir sayborg etiğinin bilime sunulma vakti gelmedi mi [7]?Kaynaklar:[1] http://en.wikipedia.org/wiki/Cyborg[2] http://www.darpa.mil/MTO/Programs/himems/index.html[3] http://www.technologyreview.com/computing/22039/[4] http://spectrum.ieee.org/automaton/robotics/military-robots/micro-energy-harvesters-will-make-cyborg-insects-unstoppable[5] http://spectrum.ieee.org/semiconductors/devices/nuclearpowered-transponder-for-cyborg-insect[6] http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cyborg-fly-pilots-robot-through-obstacle-course[7] Kevin Warwick, Cyborg morals, cyborg values, cyborg ethics, Ethics and Information Technology, Volume 5, Number 3, 131-137, DOI: 10.1023/B:ETIN.0000006870.65865.cf Yazar : Gökhan İnce http://www.acikbilim.com/2012/06/dosyalar/sibernetik-organizmalastirdigimiz-bocekler.html Açık Bilim Haziran 2012

http://www.biyologlar.com/sibernetik-organizmalastirdigimiz-bocekler

Kan Grupları ve Kan Uyuşmazlığı

İnsanların kanları, alyuvarlardaki aglütinojenlerin çeşitlerine ve durumuna göre gruplandırılmıştır. İnsan kanı temel kan grupları olarak 0 (sıfır), A, B ve AB olmak üzere dörde ayrılmıştır. 0 (sıfır) gurubu kanda, alyuvarlarda aglütinojen yoktur. A gurubu alyuvarlarda yalnız A, B gurubu alyuvarlarda yalnız B, AB gurubu alyuvarlarda ise hem A hem de B aglütinojenleri bulunur. Kan grupları üzerinde çalışmalar sürerken bazı insanların kanlarında bulunan alyuvarlarda Rhesus faktörü adı verilen bir maddenin varlığı ortaya çıkarılmıştır. Rhesus faktörü kısaca Rh faktörü olarak belirlenmektedir. Rh faktörü pozitif (+) ve negatif (-) işaretleriyle belirtilir. İnsanların yüzde 85inde Rh faktörü pozitif olarak vardır. İnsanların yüzde 15inde ise Rh faktörü yoktur ve bu insanlar Rh (-) olarak belirlenir.Bir insandan diğerine kan aktarılması (transfüzyon) yapılırken hem kan gruplarına hem de o gruplarda Rh faktörünün bulunup bulunmadığı göz önüne alınır. Rh faktörsüz kanı olan kişiye Rh faktörlü kan verilemez. 0 (sıfır) gurubu olan bir insan, yalnız kendi gurubundan kan alabilir, ama hem kendi gurubuna hem de diğer gruplara kan verebilir, çünkü alyuvarlarında aglütinojen yoktur. 0 (sıfır) gurubu kanı olanlara genel verici denir. AB kan gurubu olan bir insan, her gruptan kan alabilir, çünkü kan serumunda hem A hem de B aglütinojenleri vardır. Ancak kendi gurubundan başka gruplara kan veremez. AB kan gurubundan olanlara genel alıcı denir. A kan gurubu olan bir insan, kendi gurubundan ve 0 (sıfır) gurubundan kan olabilir ve kendi gurubu ile AB gurubuna kan verebilir. B kan gurubundan olan bir insan, kendi gurubu ile 0 (sıfır) gurubundan kan alabilir ve kendi gurubu ile AB gurubuna kan verebilir. Kan gruplarının özellikleri ve Rh faktörü kalıtsaldır. Kan grupları uyuşmayanlar arasındaki kan alışverişi sonucu kan alan kişide aglütinasyon olur ve kan alanı öldürür. Kan aktarımında Rh faktörü göz önünde tutulmalıdır. Bunun nedeni, Rh negatif guruba girenlerin kan serumunda antikor bulunmasıdır. Evlenmelerde Rh faktörünün önemi bu nedenle büyüktür. Rh faktörü pozitif bir erkekle Rh faktörü negatif olan bir kadının evlilikleri sonucu çocuk, babanın Rh pozitif faktörlü kanını alabileceğinden, annenin Rh negatif faktörlü kanında çocuktan anneye geçen Rh pozitif faktörüne karşı oluşacak antikorlar çocuğa geçer ve çocukta ağır bir hastalık oluşarak ölüme neden olur.Bir insana kan verilmesi, ya da aktarımı toplardamar aracılığı ile yapılır ve bir keresinde ancak, 300 gram kan verilebilir. Bu miktar gerekirse tekrarlanır.

http://www.biyologlar.com/kan-gruplari-ve-kan-uyusmazligi-1

Canlılarda davranış

Tek hücreli canlılarda davranışlar Bir uyartıya karşı canlının yer değiştirmesine taksi denir. Amip fazla ışıktan kaçar → Negatif foto taksi Amip besinli ortamda besine yönelir → Pozitif kemo taksi NOT: Bu olaylar sinir sistemiyle gerçekleşir. Bitkilerde davranışlar Uyartıya karşı pozitif veya negatif yönelmeye tropizma denir. Yönelmeyi oksin hormonu sağlar. Oksin hormonu arttıkça hücre bölünmesi artar. Az ışıklı yerlerde oksin hormonu daha fazla salgılanır. Uzun süreli tepkilerdir. Fotozma: Işığa yönelim. Geozma: Yerçekimine yönelim. Hidrozma: Suya yönelim Kemozma: Kimyasal maddelere yönelim Trava: Köklerin, yaralanan bölgenin tersine yönelmesi Haptotma: Sarmaşık gibi bitkilerin tutunma kökleriyle başka bir yapıya tutunmasını sağlar. NOT: Etkiye karşı verilen yönsüz tepkiye nasti denir. Turgor basıncıyla oluşur. Kısa sürede verilen tepkilerdir. Fotoni: Aslanağzı bitkisinin ışıkta açılması, karanlıkta kapanması Termoi: Lalenin yaprakları 5-10 °C’ta kapalı, 10-15 °C’ta açıktır Sismoi: küstümotu bitkisinin dokunulduğunda yapraklarını kapatması Hayvanlarda davranışlar Kalıtsal (doğal) davranışlar: Doğuştan gelen davranışlardır. Örn: İnsanın doğumundan hemen sonra akciğerlerinin çalışması. Kazların V şeklinde uçması. İpek böceği tırtılının kozasını ergin olunca yapması. Refleks ve İçgüdüsel Davranışlar: Canlılarda etkiye karşı oluşan ani ve değişmez tepkilere refleks denir. Sinir sistemi olan tüm canlılarda refleksler oluşur. Örn: Parmağına iğne batan birinin elini çekmesi, emme refleksi, araba kullanma NOT: Uyarıya karşı verilen kalıtsal, karmaşık davranışlar içgüdüsel davranışlardır. Örnek: Kuşların yuva yapması, kuşların göç etmesi. Kazanılmış Davranışlar: Deneyim sonucu değişen davranışlardır. Örn: Kargaların bostan korkuluğundan kaçması Fizyolojik ve davranışsal tepkilerin 24 saatlik zaman aralıklarında tekrarlanmasına günlük döngü denir. Günlük döngünün çok düzenli olması vücut içinde bir biyolojik saatle kontrol edildiğini gösterir.Bununla birlikte biyolojik saat günlük döngüye göre biraz hızlı ya da yavaş çalışır. biyolojik saat, gün ışığı gibi dış(çevresel) bir uyarı tarafından sürekli ayarlanmış olmalıdır. Örneğin bir böceğin biyolojik saatinin 25 saatte bir tamamlandığını kabul edelim. Böceğin biyolojik saatinin normal gece-gündüz döngüsüyle aynı fazda kalması için hergün bir saatlik ayarlama yapılabilir. Fakat böcek uzunca bir süre ışıkta tutulursa, biyolojik saatin günlük ayarlaması yapılamayacaktır. Böylece böceğin biyolojik saati gerçek gece-gündüz döngüsüyle aynı fazda olmaktan gittikçe çıkacaktır. Eğer böcek gün ışığında sürekli 10 gün tutulursa 10. günde biyolojik saatin günlük normal döngüden 10 saat farklılaşmış olduğu görülecektir. Sosyal davranışlar Canlılar; üreme, beslenme, barınma, korunma gibi sebeplerden dolayı sosyal davranışlar sergilerler. Örn: Arıların Dansı, böceklerin feromon salgılaması Topluluk halinde yaşan canlılarda grup davranışları vardır ve bu sosyal bir davranıştır. Bu davranış grup içinde dayanışmayı arttırır ve türün evrim sürecinde baki kalmasında avantajlar sağlar. İşbirliği, yarışma, oyun, savunma, iletişim meydana getirir ve bir hiyerarşi oluşturur. Otorite seviyelerine göre bireylerin organizasyonuna sosyal hiyerarşi denir. Hiyerarşi bir ast-üst ilişkisi getirdiği gibi belirli bir özdenetim de sağlar.

http://www.biyologlar.com/canlilarda-davranis

Regresyon Analizi Nedir

Regresyon Analizi “Minority Report” filmini seyredenler hatırlarsa; kurguda işlenen konu üç insanın geleceği görebilme yetenekleriyle ilgiliydi. Bu yetenekler kullanılarak suçların daha işlenmeden öngörülebiliyor ve polisler tarafından daha olay gerçekleşmeden engellenebiliyordu. Daha günümüze yakın benzer bir örnek Amerikan yapımı bir dizi olan “Person of Interest”. Kurgu yine benzer olmakla birlikte doğa üstü yeteneklerden farklı olarak dayanağı olan “veri” kullanılıyor. Son teknoloji bir bilgisayar ve suçluları bulacak bir algoritma kullanılarak hukuk dışı müdahaleler bulunularak suçların daha işlenmeden engellenmesi kurgusu etrafında dönen bir dizi. Bu tarz bir geleceğin çok uzakta olmadığına eminim. Etik açısından da ayrıyetten çok tartışılacak bir konu. Günümüzde şuan bu teknolojiye sahip değiliz. Fakat farklı alanlarda buna benzer büyük boyutlu veriler toplanarak gerek pazar araştırmalarında gerek biyoloji, tıp alanında göreceli büyük boyutlu verilerdan yararlanılarak ve bir kaç regresyon tekniği uygulanarak hali hazırda bir azınlık raporu yazmak mümkün. Regresyon analizi, araştırmak istediğimiz bağımlı değişkenin yada değişkenlerin üzerinde bağımsız değişkenlerin etkisi olup olmadığını ve aralarındaki ilişkiyi araştıran bir yöntemdir. Veriden öğrenerek stokastik bir model kurulur. Verinin yapısına göre regresyon yöntemleride değişmektedir. Araştırılacak bağımlı değişken kategorikte olabilir, aralıklı sayılardanda oluşabilir. Kanser ve kanser değil (0=kanser ve 1=kanser değil) kategorik bir değişkendir. Mikrodizi çipinde üretilen aralıklı (154,5; 151,1;..) bir değişken gibi de olabilir. Regresyon analizi yapılmasının amacı iki önemli soruyu cevaplamak içindir. Birincisi değişkenlerim asıl araştırmak istediğim değişkenimi veya değişkenlerimi yada var olan durumu açıklayacak düzeyde bir model kurabiliyor muyum? Eğer kurabiliyorsam doğru araştırma üzerindeyim demektir. İkincisi ise, elimde ki yeterli bilgiyi(veriyi) kullanarak bir sonraki gözlemin ne durumda olacağını tahmin edebilir miyim sorusudur? Bu son sorunun cevabı zaman zaman çözülmesi imkansız hale gelebiliyor. Çözülememesinin bir kaç nedeni olabilir. Veriyi açıklayacak yeterli değişken elde edilememiş olabilir. Yanlış değişkenler seçilmiş olabilir. Veri elde edilirken yapılmış hatalar olabilir. Regresyon yöntemlerinin algoritmasına bağlı olarak bazı varsayımlarının sağlanamamasından kaynaklanıyor olabilir yada kontrol altında tutulamayan olağanüstü (dış faktörler) durumlar olabilir. Kur, hisse senedi gibi şeylerin tahminin büyük oranda sapmasının sebebi bu diyebiliriz. Regresyon problemlerinde kullanılan bir çok algoritma vardır. Regresyon yöntemlerini birbirinden ayıran noktalardan biriside burasıdır. Bunlardan en bilinir ve yaygın olanı en küçük kareler (EKK) olarak bilinen yöntemdir. Gerçek duruma en yakın fonksiyon eğrisi oluşturmamızı sağlar. Gözlemlerin rastgeleliğinden kaynaklanan hatayı küçülterek uygun denklem katsayılarını ve uygun eğriyi çizmemizi sağlar. Bu işleme optimizasyon da denebilir. Aşağıda ki grafik üzerinde 3 farklı model görebiliriz. Kırmızı olan doğrusal regresyon modeliyle çizilmiş bir grafiktir. Siyah olan polinomik ve mavi olan ise kübik bir regreson eğrisidir. Hangi modelin veriyi daha iyi açıkladığını anlamak için birkaç kritere bakılarak karar verilebilir. Model kurulmadan önce de mutlaka keşfedici veri analizi yaparak varsayım hatalarını giderildikten sonra model kurulması daha doğru bir adım olacaktır. İstatistiksel olarak anlamlı bir regresyon modeli kurulup kurulmadığı t-testi, anova gibi hipotez testleri ile hızlıca test edilebilir. Fakat anlamlı bir model kurulsa bile analizi bitiremeyiz. Çoklu bağlantı, artıkların(hataların) etkileri, tahmini değerlerin en düşük ve en yüksek aralıkları, modelde ki katsayıların etkileri incelenmesi kesinlikle gerekmektedir. Son analiz aşamasında ekstrem bir durum bulunursa bu etkilerin giderilmesi için farklı yöntemler kullanılması gerekmektedir. Gerekirse model değiştirilebilir yada parametrik olmayan yöntemler seçilerek tekrar regresyon modeli kurulmaya çalışılabilir. Çoğu çalışmalar maalesef model kurulduktan sonra bitiriliyor ve model sonrası analiz yapılmadan yorum yapılmaya çalışılıyor.

http://www.biyologlar.com/regresyon-analizi-nedir

Paleozoyik

(1. Zaman) 545 milyon önce başlamış, 250 milyon yıl önce sona ermiştir. Yaklaşık olarak 295 milyon sürmüştür. Paleozoyik’in ilk döneminde (kambriyen) hayvanlar aleminde hızlı bir evrimleşme ve dolayısıyla çeşitlenme olmuştur. Çoğu kitapta bu çeşitlenme “kambriyen patlaması” olarak ifade edilmektedir. Kambriyen patlamasına (hayvanların çeşitlenmesi) neden olan faktörler çeşitli olabilir. Bunların başında ekolojik faktörler gelir. İkincisi jeolojik faktörler gösterilmektedir. Son yıllarda bir diğer faktör olarak genetik etkenler gösterilmektedir. Genetik faktör olarak Hox genlerinin hayvanlarda evrimleşmesiyle önemli bir etkide bulunduğu sanılmaktadır. Bilinen hayvan şubelerinin bir çoğunun paleozoyikte ortaya çıkmış ve çeşitlenmiştir. Tüm tartışmalara karşın "Kambriyen Patlaması" olarak adlandırılan ve bu süreçte, sadece 25 milyon yıl içinde bugün bilinen hayvan şubelerinin neredeyse hemen hepsi ortaya çıkmış ve hızla evrimleşmişlerdir. Paleozoyik’in ikinci dönemimde (ordovisiyen) ilk omurgalılar (balıklar) oluşmuş, dönemim sonuna doğru bitkiler ve böcekler kara yaşamına geçmişlerdir. Paleozoyik’in devoniyen dönemimde çift yaşamlılar (amphbia) oluşmasıyla omurgalılarda karasal yaşama uyum sağladı. Devoniyen’de balıkların çeşitliliğinden dolayı bu döneme “Balık Çağı” adı da verilmektedir. Kömür devri olarak da bilinen karbonifer döneminde yeryüzünün çoğu kısmında bataklık ormanları şeklinde dev boyutlu bitkiler bulunuyordu. Dünya kömür rezervlerinin büyük bir bölümü bu devire ait olduğundan, devire "karbon içeren" anlamında Karbonifer adı verilmiştir. Karbonifer tüm dünya karalarının ekvatoral düzlemde bir araya toplanmaya başladığı ve büyük bir bölümünün günümüz Amazon ormanlarına benzetilebilecek yağmur ve bataklık ormanlarıyla kaplı olduğu bir devirdi. Dev boyutlu bitki örtüsünün yanı sıra, dev boyutlu böcekler, kırkayaklar ve akrepler ve çeşitli iki yaşamlılar bu devrin önemli canlılarıydı. Yine bu dönemde paleoziyik başında tek olan dünya karaları (Rodinia) parçalanmış ve tekrar birleşmek üzere yeni bir dünya kıtasını (Pangea) oluşturmaya başlamıştır. Karbonifer'in sonuna doğru iklim kuraklaşmaya başladı. Kuraklaşan iklimle birlikte bitkilerin ve ormanların yapısı da değişti ve yeni ortamda sürüngenler kendilerini yavaş yavaş göstermeye başladı. Paleozoyik’in son döneminde (permiyen) pangea tamamen oluştu. Bataklık ormanlarının yok oldu. Sürüngenler yaygınlaşmaya başladı ve dönemim sonunda hayvanlar dünyasında büyük bir yokoluş olmuştur (İlk Kitlesel Biyolojik Yokoluş). Hayvan türlerinin % 90 kadar yol olduğu varsayılmaktadır. İLK KİTLESEL BİYOLOJİK YOKOLUŞ 1. zaman (Paleozoyik) yaklaşık 295 milyon yıl sürdü. Zamanın sonuna kadar omurgalı sınıflardan balıklar, çift yaşamlılar (kurbağalar) ve sürüngenler hızla evrimleşti. zaman sırasındaki en önemli olay canlıların sulardan karalara çıkması ve buralarda kendilerine yeni yaşam alanları bulmasıydı. Bu olay bitkiler - balıklar - çift yaşamlılar - sürüngenler arasındaki evrimsel ilişkilerle gerçekleşti. 1. zaman sonundaki ani iklimsel değişiklikler biyolojik toplu bir yok oluşa neden olmuştur. Tüm türlerin % 90 - 95'i oradan kalktı. Böylece bir çok tür 2. zamana geçemedi.

http://www.biyologlar.com/paleozoyik

Deniz Kaplumbağaları Hakkında Bilgi

Denizkaplumbağaları yaklaşık 95 milyon yıldan beri dünyamızda yaşamaktadırlar. Ataları, yıllar önce, dinazorların yaşadığı devirde deniz ortamına geçmiş dev kara kaplumbağalarıdır. İlk deniz kaplumbağaları bugünkülere pek benzemiyorlardı. Değişimleri milyonlarca yıl sürmüş ve ayakları yüzgeç şekline dönüşmüş, ağır ve kocaman gövdeleri yassılarak daha hafif ve su yaşamına elverişli bir biçim almıştır. Dinazorlar ve dev kara kaplumbağaları tamamen yok olmuşlardır; bugün ancak müzelerde fosillerini görebilmekteyiz. Fakat denizkaplumbağaları nasıl olduysa yaşamlarını sürdürebilmişlerdir. Bunların yedi değişik türü, dünyamızı çevreleyen sıcak ve ılıman okyanuslarda hâlâ yüzmektedirler. Dişilerin karaya çıkarak yuva yapıp yumurtladıkları kısa devreler dışında, bütün hayatlarını suda geçirirler. Denizkaplumbağaları denizi balıklarla, balinalarla, diğer deniz yaratıklarıyla ve bizlerle paylaşırlar. Ülkemiz sularında bu türlerden sadece iki tanesi yaşar: Sini Kaplumbağası (Caretta caretta) ve Yeşil Kaplumbağa (Chelonia mydas) Kristof Kolomb Yeni Dünya’yı keşfettiği zaman Karaib Denizi’nde milyonlarca denizkaplumbağası bulunuyordu. Kolomb ve onu onu takip eden diğer kâşifler, tüccarlar, sömürgeciler ve korsanlar özellikle bir tür denizkaplumbağasının etinin lezzetli olduğunun farkına vardılar. Bu kaplumbağa tamamen kahverengi olup, boyu 1 metreye, ağırlığı ise 136 kilograma kadar ulaşabiliyor ve kıyıya yakın sığ sularda yetişen deniz otlarıyla besleniyordu. Denizciler bu uysal hayvanı kolayca avlayabiliyorlardı. Onu, kabuğunun üzerine sırt üstü devirip savunmasız hale getirdikten sonra yüzgeçlerini bağlayıp taze ete ihtiyaçları olduğu zaman öldürmek üzere gemilerine götürüyorlardı. Bu kaplumbağa, vücudundaki yağın rengi yediği ottan dolayı yeşil olduğundan “yeşil kaplumbağa” diye isimlendirilmiştir. Otla beslenen tek denizkaplumbağası türüdür. Yüzyıllar sonra günümüzde de yeşil kaplumbağalar hâlâ avlanıp, öldürülmekte ve sayıları gün geçtikçe azalmaktadır. Sini Kaplumbağası (Caretta caretta) Sini kaplumbağası yeşilden biraz daha ufaktır. Ağırlığı 135-180 kilogram arasında değişer. Yengeç ve başka deniz hayvanlarıyla beslenir. Bu kaplumbağa mercan yuvaları ve kayaların yakınında avlanır. Büyük ve kalın kafası, geniş ve kısa boynuyla kolayca tanınabilir. Diğer denizkaplumbağaları gibi, bu da kara kaplumbağalarının tersine başını kabuğunun içine çekemez. Kabuğu bir zırh gibi olmakla beraber, başı ve yüzgeçleri korumasızdır. Bazı köpekbalıkları ve katil balinalar açıkta kalan bu kısımlara saldırabilirler. Fakat sini kaplumbağası iri ve hızlı olduğundan doğal düşmanı çok azdır. Yeşil Kaplumbağa Yumurtuyor Dişi yeşil kaplumbağa, her zaman yuvasını yaptığı kumsala tek başına çıktı. Bir süre önce yakın sularda bir erkek yeşil kaplumbağa ile çiftleşmişti. Artık yumurtlama zamanı gelmişti. Bir yumurtlama mevsiminde üç veya dört kere yumurtlayabilir. Suda ne kadar hızlı ve ortama uyumluysa, karada da tam tersine o kadar yavaş, hantal ve savunmasızdır. Dişi kendisini denizden dışarı zorlukla çekti ve kumsalda gelgit sularının erişemeyeceği kadar ilerledi. Yüzgeçleriyle vücuduna göre bir yuva kazdı. Yuvaya yerleşip arka yüzgeçlerini kürek gibi kullanarak şişe şeklinde bir delik kazdı. Sonra bu deliğe pingpong topuna benzer, beyaz ve kaplı görünümü veren yaklaşık yüz adet yumurta bıraktı. Kaplumbağa, yumurtlaması bittikten sonra yuvayı kumla örtecek ve arkasında traktör izine benzeyen bir iz bırakarak ağır ağır denize dönecektir. Ne yazık ki anne kaplumbağa yumurtalarını ne kadar çok tehlikenin beklediğinden habersiz. Çoğu kez insanlar, yumurtaları meraktan veya yemek için topluyor. Ayrıca köpek, tilki veya kum yengeci yumurtaları yemeye çok meraklı. Bu yüzden kaplumbağaların ürediği kumsallar mutlak koruma altına alınmalıdır. Yumurtadan Çıkan Yavrular Kumsala varan güneş ışınları kuma gömülü kaplumbağa yumurtalarını ısıtır. Yumurtalar yuvanın içinde gelişir ve iki ay sonra çatlamaya hazır hale gelirler. Yavrular burunlarının ucundaki sivri kısım ile yumurta kabuklarını delmeye başlarlar. Bu özel sivri kısım yumurtadan çıkınca kaybolur. Yavrular kabukları çatlatarak kırarlar. Hepsinin yumurtadan hemen hemen aynı zamanda çıkmaları gereklidir. Çünkü yuvadan kaçış işlemini elbirliğiyle yapmak zorundadırlar. Yavru kaplumbağalar başlarının üzerindeki kumu kazmaya başlarlar. Kum, boş kabuklarının üstüne düşerek çukurun içinde yükselmelerine olanak sağlayan basamaklar oluşturur. Birkaç gün içinde yuvanın tavanına varırlar. Derken bir gece veya bir sabah erken saatlerde kumsalda koyu renkli küçük kafalar ve yüzgeçler belirir. Beş santimetrelik yavrular sürünerek denize doğru yol alırlar. Denize Doğru Yarış Kaplumbağa yavruları deniz yönünü denizin pırıltısından hissederler. Suyun üzerindeki parlaklık onları çeker. Yuvadan çıkıp sel gibi akarak denize doğru yarışlarına başlarlar. Hayat dolu ama savunmasız yavrular, kumsal boyunca beceriksizce çabalayıp dururlar. Bunların da anneleri gibi denize varabilmeleri için etrafın tamamen karanlık olması gereklidir. Işık yanan bir ev, araba, sokak lambası varsa yavrular ışığa doğru ilerler ve sonunda hepsi ölürler. Yavruların gece çıkmalarının asıl sebebi ise kızgın güneşten korunmak içindir. Gündüz çıkacak olsalar güneşin kavurucu sıcaklığı onları derhal kurutup öldürecektir. Yumurtadan çıkan yavruların kabukları yumaşaktır ve kendilerini koruma nitelikleri çok az olduğundan pek çok doğal düşmana yem olur: Yengeç orduları onları yakalar veya deniz kuşları toplanıp, küçük kaplumbağaları keskin gagalarıyla yakalayıp kendilerine ziyafet çekerler. Yavrulardan çok azı denize varabilir ve bunların çoğu balıklara yem olur. Yavrulardan ancak bir, iki tanesi hayatta kalır. Yaşamlarının ilk yılını nerede geçirdikleri doğanın çok sayıdaki sırlarından biridir. Örneğin yeşil kaplumbağalar bir yaşına gelip kıyılardaki sığ sularda beslenmeye başlayana kadar hiç ortalıkta görünmezler. Bir yaşındaki yavrular bir yemek tabağı büyüklüğündedirler. Denizkaplumbağaları Nerelerde Yumurtlar? Denizkaplumbağaları dünya çevresindeki geniş, ılıman kuşak içinde yaşarlar. Akdeniz’de olduğu gibi Pasifik ve Atlantik okyanuslarında yaşayan kaplumbağa topluluklarının sayıları da her geçen gün azalmaktadır. Denizkaplumbağalarının başka bir özelliği büyüdükleri zaman yumurta bırakmak için doğdukları kumsallara geri dönmeleridir. Bu kaplumbağaların yumartlamak için binlerce kilometre yüzdükten sonra doğdukları yeri nasıl buldukları bilim adamlarınca halen tam anlaşılamamıştır. Akdeniz’deki denizkaplumbağalarının bir kısmının da sadece Akdeniz’de yaşadığı ve kışladığı sanılmaktadır. Kaplumbağaların bu göç hareketleri “markalama”, yani üzerlerine konan özel işaretler ile ancak izlenebilmektedir. Kaplumbağalar mı? Kaplumbağa Ürünleri mi? Denizkaplumbağaları dünyamızdan hızla yok olmakta. Oysa yok olan bir hayvan türü bir daha hiçbir zaman geri gelmeyecektir. Yok olma sebeplerinden biri de insanların kaplumbağaları çeşitli amaçlarla avlamasından ileri gelmekte. Bazı kaplumbağaların kabuğundan “bağ” denen taraklar, gözlük çerçeveleri, düğme vb. yapılmakta. Çok pahalı olan bu maddeleri artık insanların satması da alması da doğru değildir. Bazı kaplumbağaların derisinden çanta ve pabuç yapılmakta. Bazılarından ise çorba... Kimi yörelerde kaplumbağa kanının bazı hastalıklara iyi geldiği inancı yaygınsa da bunun doğru olmadığı artık anlaşılmıştır. Unutmayın, siz veya çevrenizdekiler yukarıda saydıklarımızı kullanıyorsanız, bu ender hayvanın yok olmasına sebep oluyorsunuz demektir. Kaplumbağa Avı Çok eskiden beri kıyılarda yaşayanlar, ailelerinin beslenmesine katkıda bulunmak için denizkaplumbağalarını avlamışlardr. Bazen tek bir balıkçı bir kaplumbağayı besin olarak kullanmak amacıyla zıpkınlamış; bazen de grup halindeki balıkçılar, soluk almak için su yüzüne çıkan kaplumbağları ağlarla yakalayıp yemek üzere köylerine götürmüştür. Yıllar boyunca denizkaplumbağalarının bol olduğu zamanlarda bu tip avlanmaların kaplumbağa sayısını çok az etkilediği zannediliyordu. Fakat denizkaplumbağasına istek giderek arttı. Ya kaplumbağa avlayıp satarak ya da kaplumbağadan yapılmış ürünler satılarak para kazanılıyordu. Denizkaplumbağası avlamak kazançlı bir iş haline gelmişti. Böylece avcılar kaplumbağaları kimi zaman denizde, kimi zaman da yumurtlamaya çıktıklarında daha yumurtalarını bırakamadan yüzlercesine yakalamaya başladılar. Kaplumbağalar giderek azaldılar ve hemen hemen yok oldular. Ülkemizde yasalar bütün denizkaplumbağalarını koruma altına almış ve kaplumbağa ürünlerinin ticaretini yasaklamıştır. Yine de bu yasaklara uymayan kişiler halen aramızda bulunmaktadır. Trolcüler ve Kaplumbağalar Dünyanın her yerinde ticari balıkçı tekneleri denizlerden yiyecek sağlar. Bu teknelerin bazıları kıyı sularında dolaşıp deniz dibini “Trol” denen büyük ağlarla tarayarak avlanırlar. Deniz dibini tarayarak yapılan bu tarz balıkçılık, balık, karides, mercan yuvalarına çok zarar verdiği gibi, ne yazık ki çoğu zaman Caretta Caretta cinsi kaplumbağalar da tesadüfen bu ağlara yakalanmaktadır. Örneğin, birçok kaplumbağa, karides trolcülerin büyük huni şeklinde ağlarına yakalanıp, karideslerle beraber ağın içinde sürükleniyorlar ve su yüzeyine çıkıp nefes alamadıkları için de boğulup ölüyor. Böylece az sayıda kalan denizkaplumbağaları daha da azalıyor. Bu soruna bir çözüm yolu bulunması gerekmekte. Amerika Birleşik Devletleri’nin güneydoğu kıyılarındaki karides balıkçıları bu konuda yardımcı olmakta ve sadece karidesi içine alıp, kaplumbağanın giremeyeceği şekilde yapılmış yeni ağlar yapmaktadırlar. Yumurtlayacak Yeri Yok Bir denizkaplumbağası Türkiye’nin güney sahillerinin cennet köşelerinden biri olan Side kıyılarında bir kumsala sürünerek çıkar, şaşırır. Bir de ne görür? Kumsalın büyük bir kısmını apartman ve oteller işgal etmiş. Geri kalan dar kumsal şeridinde ise insan kalabalığı vardır. Kaplumbağa tekrar denize açılıp gece geri döner. Bu sefer pencerelerdeki yüzlerce ışık ortalığı aydınlattığından kumsal pırıl pırıldır. Kumsalın bazı yerleri ise beton rıhtımlarla çevrelenmiş ve yükselmiş. Kaplumbağaya artık yumurtlayacak yer kalmamıştır. Kıyının başka bir yerinde başka bir kaplumbağa boş kalmış ufak ber kumsal şeridine çıkıp yumurtlar. Yavrular yumurtalardan çıkma günü gelince ışıklara doğru sürünürler. Fakat vardıkları yer deniz değil, yakındaki bir yolun sokak lambalarının ışığıdır. Ertesi gün yakıcı güneşin altında hepsi ölecektir. Bir zamanlar denizkaplumbağalarının güvence içinde yumurtlamalarına uygun yüzlerce kilometre uzunluğunda kıyılar vardı. Bugün artık her şey değişti. Bu bölüm hazırlanırken Doğal Hayatı Koruma Derneği'nin "Bütün Yönleriyle Denizkaplumbağaları" adlı yayınından faydalanılmıştır.

http://www.biyologlar.com/deniz-kaplumbagalari-hakkinda-bilgi

Çevre Kanunu ( Bölüm-2 )

BEŞİNCİ BÖLÜM Cezai hükümler İdari nitelikteki cezalar: Madde 20 – (Değişik: 26/4/2006 – 5491/14 md.) İdarî nitelikteki cezalar şunlardır: a) Ek 4 üncü madde uyarınca emisyon ölçümü yaptırmayan motorlu taşıt sahiplerine 500 Türk Lirası, yönetmeliklerle belirlenen standartlara aykırı emisyona sebep olan motorlu taşıt sahiplerine 1.000 Türk Lirası idarî para cezası verilir. b) Hava kirliliği yönünden önemli etkileri nedeniyle kurulması ve işletilmesi yönetmelikle izne tâbi tutulan tesisleri, yetkili makamlardan izin almadan kuran ve işleten veya iznin iptal edilmesine rağmen kurmaya ve işletmeye devam eden veya bu tesislerde izin almaksızın sonradan değişiklik yapan veya yetkili makamların gerekli gördükleri değişiklikleri tanınan sürede yapmayanlara 24.000 Türk Lirası idarî para cezası verilir. Bu tesislerde emisyon miktarları yönetmelikle belirlenen sınırları aşıyorsa 48.000 Türk Lirası idarî para cezası verilir. İzne tâbi tesisleri, aldıkları izin belgesinde veya yönetmeliklerde öngörülen önlemleri almadan veya yönetmeliklerde belirlenen emisyon standartlarına ve sınırlamalarına aykırı olarak işletenlere 24.000 Türk Lirası idarî para cezası verilir. c) Hava kirliliği yönünden kurulması ve işletilmesi izne tâbi olmayan tesislerin işletilmesi sırasında yönetmelikle belirlenen standartlara aykırı emisyona neden olanlara 6.000 Türk Lirası idarî para cezası verilir. Bu Kanunun ek 9 uncu maddesine aykırı davrananlara 2.000 Türk Lirası idarî para cezası verilir. Bu bendin birinci paragrafında öngörülen fiilin konutlarla ilgili olarak işlenmesi halinde verilecek ceza toplu veya ferdî ısıtılan konutlarda her bağımsız bölüm için 300 Türk Lirasıdır. Bu cezai sorumluluk toplu ısıtılan konutlarda yöneticiye, ferdî ısıtılan konutlarda ise konutu kullanana aittir. d) Hava kirliliği yönünden özel önem taşıyan bölgelerde veya kirliliğin ciddi boyutlara ulaştığı zamanlarda ve yerlerde veya kritik meteorolojik şartlarda yönetmeliklerle öngörülen önlemleri almayan, yasaklara aykırı davranan ya da mahallî çevre kurullarınca bu konuda alınan kararlara uymayanlara bu maddenin (b) ve (c) bentlerinde öngörülen cezalar bir kat artırılarak verilir. Bu fiilin konutlarla ilgili olarak işlenmesi halinde cezai sorumluluk bu maddenin (c) bendinin üçüncü paragrafına göre tespit edilir. e) Çevresel Etki Değerlendirmesi sürecine başlamadan veya bu süreci tamamlamadan inşaata başlayan ya da faaliyete geçenlere yapılan proje bedelinin yüzde ikisi oranında idarî para cezası verilir. Cezaya konu olan durumlarda yatırımcı faaliyet alanını eski hale getirmekle yükümlüdür. Çevresel Etki Değerlendirmesi sürecinde verdikleri taahhütnameye aykırı davrananlara, her bir ihlal için 10.000 Türk Lirası idarî para cezası verilir. f) 11 inci maddeye göre kurulması zorunlu olan atık alım, ön arıtma, arıtma veya bertaraf tesislerini kurmayanlar ile kurup da çalıştırmayanlara 60.000 Türk Lirası idarî para cezası verilir. g) 12 nci maddede öngörülen bildirim ve bilgi verme yükümlülüğünü yerine getirmeyenlere 6.000 Türk Lirası idarî para cezası verilir. h) Bu Kanunun 14 üncü maddesine göre çıkarılan yönetmelikle belirlenen önlemleri almayan veya standartlara aykırı şekilde gürültü ve titreşime neden olanlara, konutlar için 400 Türk Lirası, ulaşım araçları için 1.200 Türk Lirası, işyerleri ve atölyeler için 4.000 Türk Lirası, fabrika, şantiye ve eğlence gürültüsü için 12.000 Türk Lirası idarî para cezası verilir. ı) Bu Kanunda öngörülen yasaklara ve sınırlamalara aykırı olarak ülkenin egemenlik alanlarındaki denizlerde ve yargılama yetkisine tâbi olan deniz yetki alanlarında ve bunlarla bağlantılı sularda, tabiî veya sunî göller ve baraj gölleri ile akarsularda; 1) Petrol ve petrol türevleri (ham petrol, akaryakıt, sintine, slaç, slop, rafine ürün, yağlı atık vb.) tahliyesi veya deşarjı yapan tankerlerden, bin (dahil) gros tona kadar olanlar için gros ton başına 40 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara, bu miktar ve ilave her gros ton başına 10 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 100 Kuruş, 2) Kirli balast tahliyesi yapan tankerlerden bin (dahil) gros tona kadar olanlar için gros ton başına 30 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara bu miktar ve ilave her gros ton başına 6 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 100 Kuruş, 3) Petrol türevleri (sintine, slaç, slop, akaryakıt, yağlı atık vb.) veya kirli balast tahliyesi yapan gemi ve diğer deniz vasıtalarından bin gros tona kadar olanlar için gros ton başına 20 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara bu miktar ve ilave her gros ton başına 4 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 100 Kuruş, 4) Katı atık bırakan veya evsel atıksu deşarjı yapan tanker, gemi ve diğer deniz araçlarından bin (dahil) gros tona kadar olanlar için gros ton başına 10 Türk Lirası, bin ilâ beşbin (dahil) gros ton arasında olanlara bu miktar ve ilave her gros ton başına 2 Türk Lirası, beşbin gros tondan fazla olanlara ise, yukarıdaki miktarlar ve ilave her gros ton başına 40 Kuruş, idarî para cezası verilir. Tehlikeli madde ve atıkların deşarjı durumunda uygulanacak idarî para cezaları, petrol ve türevleri kategorisi esas alınarak on katı verilir. Kirliliğin oluşmasını müteakip gemi veya deniz aracının kendi imkânları ile neden olduğu kirliliği giderdiğinin tespit edilmesi durumunda, idarî para cezası 1/3 oranında uygulanır. Cezanın derhal ve defaten ödenmemesi veya bu hususta yeterli teminat gösterilmemesi halinde, gemiler ve götürülebilen diğer deniz vasıtaları en yakın liman yetkilisine teslim edilerek seyrüseferden ve faaliyetten men edilir. Banka teminat mektubu veya geminin bağlı olduğu kulüp sigortacısı tarafından düzenlenecek teminat mektubu teminat olarak kabul edilir. Yabancı devlet egemenliği altındaki sularda bu devletlerin mevzuatının Türk bayraklı gemiler tarafından ihlali durumunda, ilgili devletin ceza uygulamaması ve Türkiye'nin cezalandırmasını talep etmesi durumunda bu Kanun hükümleri uygulanır. Bu bendin birinci paragrafı dışında, bu Kanun ve bu Kanun uyarınca çıkarılan yönetmeliklere aykırı olarak ülkenin egemenlik alanındaki denizlere ve yargılama yetkisine tâbi olan deniz yetki alanlarına, içme ve kullanma suyu sağlama amacına yönelik olmayan sulara atık boşaltanlara 24.000 Türk Lirası idarî para cezası verilir. Yukarıda öngörülen fiilin konutlarla ilgili olarak işlenmesi halinde her konut ve bağımsız bölüm için 600 Türk Lirası idarî para cezası verilir. Bu cezai sorumluluk, müstakil konutlarda konutu kullanana, diğer konutlarda ise yöneticiye aittir. i) Bu Kanunun ek 8 inci maddesi uyarınca yürürlüğe konulan yönetmelik hükümlerine aykırı davrananlara 1.000 Türk Lirası idarî para cezası verilir. j) Kanunda ve yönetmelikte öngörülen yasaklara veya standartlara aykırı olarak veya önlemleri almadan atıkları toprağa verenlere 24.000 Türk Lirası idarî para cezası verilir. Bu fiilin konutlarla ilgili olarak işlenmesi halinde her konut ve bağımsız bölüm için 600 Türk Lirası idarî para cezası verilir. Bu cezai sorumluluk, müstakil konutlarda konutu kullanana, diğer konutlarda ise yöneticiye aittir. k) Bu Kanunun 9 uncu maddesinin (a) bendinde belirtilen hususlara aykırı olarak biyolojik çeşitliliği tahrip edenlere, (d) bendi uyarınca ilan edilen Özel Çevre Koruma Bölgeleri için tespit edilen koruma ve kullanma esaslarına aykırı davrananlara ve (e) bendinin ikinci paragrafı uyarınca sulak alanlar için yönetmelikle belirlenen koruma ve kullanım usûl ve esaslarına aykırı davrananlar ile (f) bendinde belirlenen esaslara ve yasaklamalara aykırı davrananlara 20.000 Türk Lirası, (e) bendinin birinci paragrafına aykırı davrananlara 100.000 Türk Lirası idarî para cezası verilir. l) Bu Kanunun ek 1 inci maddesinin (c) bendine aykırı olarak anız yakanlara her dekar için 20 Türk Lirası idarî para cezası verilir. Anız yakma fiilinin orman ve sulak alanlara bitişik yerler ile meskûn mahallerde işlenmesi durumunda ceza beş kat artırılır. Bu Kanunun ek 1 inci maddesinin (d) bendi uyarınca tespit edilen esaslara aykırı olarak ülkenin egemenlik alanlarındaki denizlerden ve kazasına tâbi olan deniz yetki alanlarından, akarsular ve göller ile tarım alanlarından belirlenen esaslara aykırı olarak kum, çakıl ve benzeri maddeleri alanlara metreküp başına 120 Türk Lirası idarî para cezası verilir. m) Bu Kanunun ek 2 nci maddesinde öngörülen çevre yönetim birimini kurmayanlara 6.000 Türk Lirası, çevre görevlisi bulundurmayanlara ya da Bakanlıkça yetkilendirilmiş firmalardan hizmet almayanlara 4.000 Türk Lirası idarî para cezası verilir. n) Bu Kanunun 9 uncu maddesi uyarınca belirlenen koruma esaslarına aykırı olarak içme ve kullanma suyu koruma alanlarına, kaynağın kendisine ve bu kaynağı besleyen yerüstü ve yeraltı sularına, sulama ve drenaj kanallarına atık boşaltanlara 48.000 Türk Lirası idarî para cezası verilir. Bu fiilin konutlarla ilgili olarak işlenmesi halinde her konut ve bağımsız bölüm için 1.200 Türk Lirası idarî para cezası verilir. Bu cezai sorumluluk, müstakil konutlarda konutu kullanana, diğer konutlarda ise yöneticiye aittir. Bu alanlarda Kanuna ve yönetmeliklere aykırı olarak yapılan yapılar 3194 sayılı İmar Kanununda belirlenen esaslara göre yıktırılır. o) Bu Kanunun 11 inci maddesinde öngörülen acil durum plânlarını yönetmelikle belirlenen usûl ve esaslara uygun olarak hazırlamayan ve bu plânların uygulanması için gerekli tedbirleri almayan, ekip ve ekipmanları bulundurmayanlar ile yerel, bölgesel ve ulusal acil durum plânlarına uymayanlara 12.000 Türk Lirası idarî para cezası verilir. p) Bu Kanunun 13 üncü maddesinde öngörülen malî sorumluluk sigortasını yaptırmayanlara 24.000 Türk Lirası idarî para cezası verilir. r) Bu Kanunda ve yönetmeliklerde öngörülen usûl ve esaslara, yasaklara veya sınırlamalara aykırı olarak atık toplayan, taşıyan, geçici ve ara depolama yapan, geri kazanan, geri dönüşüm sağlayan, tekrar kullanan veya bertaraf edenlere 24.000 Türk Lirası, ithal edenlere 60.000 Türk Lirası idarî para cezası verilir. s) Umuma açık yerlerde her ne şekilde olursa olsun çevreyi kirletenlere 100 Türk Lirası idarî para cezası verilir. t) Tehlikeli atıkların her ne şekilde olursa olsun ülkeye girişini sağlayanlara ayrı ayrı 2.000.000 Türk Lirası idarî para cezası verilir. u) Tehlikeli atıkları ilgili mercilere ön bildirimde bulunmadan ihraç eden veya transit geçişini yapanlara 2.000.000 Türk Lirası idarî para cezası verilir. v) Bu Kanunda ve ilgili yönetmeliklerde öngörülen yasaklara veya sınırlamalara aykırı olarak tehlikeli atıkları toplayan, ayıran, geçici ve ara depolama yapan, geri kazanan, yeniden kullanan, taşıyan, ambalajlayan, etiketleyen, bertaraf eden ve ömrü dolan tehlikeli atık bertaraf tesislerini kurallara uygun olarak kapatmayanlara 100.000 Türk Lirasından 1.000.000 Türk Lirasına kadar idarî para cezası verilir. y) Tehlikeli kimyasallar ve bu kimyasalları içeren eşyayı bu Kanunda ve ilgili yönetmeliklerde belirtilen usûl ve esaslara, yasak ve sınırlamalara aykırı olarak üreten, işleyen, ithal ve ihraç eden, taşıyan, depolayan, kullanan, ambalajlayan, etiketleyen, satan ve satışa sunanlara, 100.000 Türk Lirasından 1.000.000 Türk Lirasına kadar idarî para cezası verilir. Bu maddenin (k), (l), (r), (s), (t), (u), (v) ve (y) bentlerinde öngörülen idarî para cezaları kurum, kuruluş ve işletmelere üç katı olarak verilir. Bu maddede öngörülen ceza miktarlarını on katına kadar artırmaya Bakanlar Kurulu yetkilidir. Bu maddenin uygulamasında Türk Ceza Kanunu ile diğer kanunların, fiilin suç oluşturması haline ilişkin hükümleri saklıdır. Kuruluş ve işletmelere verilecek idari nitelikte cezalar: Madde 21 – (Mülga: 26/4/2006 – 5491/24 md.) Gemiler için verilecek cezalar: Madde 22 – (Mülga: 26/4/2006 – 5491/24 md.) Fiillerin tekrarı: Madde 23 – (Değişik : 26/4/2006 – 5491/15 md.) Bu Kanunda belirtilen idarî para cezaları, bu cezaların verilmesini gerektiren fiillerin işlenmesinden itibaren üç yıl içinde birinci tekrarında bir kat, ikinci ve müteakip tekrarında iki kat artırılarak verilir. İdari cezalarda yetki: Madde 24 – (Değişik: 26/4/2006 – 5491/16 md.) Bu Kanunda öngörülen idarî yaptırım kararlarını verme yetkisi Bakanlığa aittir. Bu yetki, 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından da kullanılır. Bu Kanunda öngörülen idarî yaptırım kararları Bakanlık merkez teşkilâtında genel müdürler, taşra teşkilâtında il çevre ve orman müdürlerince verilir. Bu Kanunun 12 nci maddesinin birinci fıkrası uyarınca denetim yetkisi verilen kurum ve merciler tarafından verilen idarî para cezalarının yüzde ellisi, bu Kanun uyarınca yapılacak denetimlerle ilgili harcamaları karşılamak ve diğer çevre hizmetlerinde kullanılmak üzere bu kurumların bütçesine gelir kaydedilir, yüzde ellisi ise genel bütçeye gelir kaydedilir. Bu Kanun uyarınca yapılacak denetimlerle ilgili harcamaları karşılamak ve diğer çevre hizmetlerinde kullanılmak üzere, Bakanlık bütçesine, genel bütçeye gelir kaydedilecek idarî para cezaları karşılığı gerekli ödenek öngörülür. İdarî yaptırımların uygulanması, tahsil usûlü ve itiraz(1) Madde 25 – (Değişik: 26/4/2006 – 5491/17 md.) Bu Kanunda öngörülen idarî yaptırımların uygulanmasını gerektiren fiillerle ilgili olarak yetkili denetleme elemanlarınca bir tutanak tanzim edilir. Bu tutanak denetleme elemanlarının bağlı bulunduğu ve idarî yaptırım kararını vermeye yetkili mercie intikal ettirilir. Bu merci, tutanağı değerlendirerek gerekli idarî yaptırım kararını verir. İdarî yaptırım kararı, 11/2/1959 tarihli ve 7201 sayılı Tebligat Kanunu hükümlerine göre idarî yaptırım kararını veren merci tarafından ilgiliye tebliğ edilir. İdarî yaptırım kararlarına karşı tebliğ tarihinden itibaren otuz gün içinde idare mahkemesinde dava açılabilir. Dava açmış olmak idarece verilen cezanın tahsilini durdurmaz. İdarî para cezalarının tahsil usûlü hakkında 30/3/2005 tarihli ve 5326 sayılı Kabahatler Kanunu hükümleri uygulanır. Ceza vermeye yetkili kurum ve merciler tarafından tahsil edilen idarî para cezaları, Maliye Bakanlığından izin alınarak Bakanlıkça bastırılan ve dağıtılan makbuz karşılığında tahsil edilir. Bu Kanuna göre verilecek idarî para cezalarında ihlalin tespiti ve cezanın kesilmesi usûlleri ile ceza uygulamasında kullanılacak makbuzların şekli, dağıtımı ve kontrolüne ilişkin usûl ve esaslar Maliye Bakanlığının görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Adlî nitelikteki cezalar(1) Madde 26 – (Değişik: 26/4/2006 – 5491/18 md.) Bu Kanunun 12 nci maddesinde öngörülen bildirim ve bilgi verme yükümlülüğüne aykırı olarak yanlış ve yanıltıcı bilgi verenler, altı aydan bir yıla kadar hapis cezası ile cezalandırılır. Bu Kanunun uygulanmasında yanlış ve yanıltıcı belge düzenleyenler ve kullananlar hakkında 26/9/2004 tarihli ve 5237 sayılı Türk Ceza Kanununun belgede sahtecilik suçuna ilişkin hükümleri uygulanır. Bu maddeye göre yargıya intikal eden çevresel etki değerlendirmesine ilişkin ihtilaflarda çevresel etki değerlendirmesi süreci yargılama sonuna kadar durur. Diğer kanunlarda yazılı cezalar: Madde 27 – Bu Kanunda yazılı fiiller hakkında verilecek idari nitelikteki cezalar, bu fiiller için diğer kanunlarda yazılı cezaların uygulanmasına engel olmaz. ALTINCI BÖLÜM Çeşitli Hükümler Kirletenin sorumluluğu: Madde 28 – (Değişik: 3/3/1988 - 3416/8.md.) Çevreyi kirletenler ve çevreye zarar verenler sebep oldukları kirlenme ve bozulmadan doğan zararlardan dolayı kusur şartı aranmaksızın sorumludurlar. ––––––––––––––––––––––– (1) Bu madde başlığı "İdari cezalara itiraz:" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 17 nci maddesiyle metne işlendiği şekilde değiştirilmiştir. Kirletenin, meydana gelen zararlardan ötürü genel hükümlere göre de tazminat sorumluluğu saklıdır. (Ek fıkra: 26/4/2006 – 5491/19 md.) Çevreye verilen zararların tazminine ilişkin talepler zarar görenin zararı ve tazminat yükümlüsünü öğrendiği tarihten itibaren beş yıl sonra zamanaşımına uğrar. Teşvik: Madde 29 – (Değişik birinci fıkra: 26/4/2006 – 5491/20 md.) Çevre kirliliğinin önlenmesi ve giderilmesine ilişkin faaliyetler teşvik tedbirlerinden yararlandırılır. Bu amaçla her yılın başında belirlenen teşvik sistemine Bakanlığın görüşü alınmak sureti ile Hazine Müsteşarlığınca yeni esaslar getirilebilir. (Ek fıkra: 26/4/2006 – 5491/20 md.) Arıtma tesisi kuran, işleten ve yönetmeliklerde belirtilen yükümlülükleri yerine getiren kuruluşların arıtma tesislerinde kullandıkları elektrik enerjisi tarifesinin, sanayi tesislerinde kullanılan enerji tarifesinin yüzde ellisine kadar indirim uygulamaya Bakanlığın teklifi üzerine Bakanlar Kurulu yetkilidir. Teşvik tedbirleri ile ilgili esaslar yönetmelikle belirlenir. Bu Kanunda belirlenen cezalara neden olan fiilleri işleyen gerçek ve tüzelkişiler, verilen süre içinde söz konusu yükümlülüklerini yerine getirmedikleri takdirde bu maddede yazılı teşvik tedbirlerinden yararlanamazlar ve daha önce kendileri ile ilgili olarak uygulanmakta olan teşvik tedbirleri durdurulur. Bilgi edinme ve başvuru hakkı(2) Madde 30 – (Değişik: 26/4/2006 – 5491/21 md.) Çevreyi kirleten veya bozan bir faaliyetten zarar gören veya haberdar olan herkes ilgili mercilere başvurarak faaliyetle ilgili gerekli önlemlerin alınmasını veya faaliyetin durdurulmasını isteyebilir. Herkes, 9/10/2003 tarihli ve 4982 sayılı Bilgi Edinme Hakkı Kanunu kapsamında çevreye ilişkin bilgilere ulaşma hakkına sahiptir. Ancak, açıklanması halinde üreme alanları, nadir türler gibi çevresel değerlere zarar verecek bilgilere ilişkin talepler de bu Kanun kapsamında reddedilebilir. Yönetmelikler: Madde 31 – (Değişik: 3/3/1988 - 3416/9 md.) Bu Kanunun uygulanmasıyla ilgili olarak çıkarılacak yönetmelikler, ilgili Bakanlıkların görüşü alınarak Bakanlıkça hazırlanır. Kanunun yüyürürlüğe girmesinden başlayarak en geç beş ay içinde Resmi Gazede yayımlanarak yürürlüğe konulur.(3) Uygulanmayacak Hükümler Madde 32 – (Değişik: 3/3/1988 - 3416/10 md.) Bu Kanuna göre yürürlüğe konulacak yönetmeliklerin yayımından itibaren deniz kirliliğinin önlenmesi hususunda 618 sayılı Limanlar Kanununun 4 ve 11 inci maddeleri gereği yürürlükte bulunan ceza hükümleri ile 1380 sayılı Su Ürünleri Kanununun 3288 sayılı Kanunla değişik geçici 1 inci maddesi hükümleri uygulanmaz. Ek Madde –(Ek: 4/6/1986 - 3301/6 md.; Mülga: 26/4/2006 – 5491/24 md.) –––––––––––––––––––––––––––– (1) Bu madde başlığı "Mahkemece verilecek cezalar:" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 18 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı "İdari makamlara başvurma:" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 21 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. (3) 26/4/2006 tarihli ve 5491 sayılı Kanunun 22 nci maddesiyle bu maddede yeralan “Çevre Genel Müdürlüğünce” ibaresi “Bakanlıkça” olarak değiştirilmiş ve metne işlenmiştir. Ek Madde 1 – (Ek: 26/4/2006 – 5491/23 md.) Toprağın korunmasına ve kirliliğinin önlenmesine ilişkin esaslar şunlardır: a) Toprağın korunmasına ve kirliliğinin önlenmesine, giderilmesine ilişkin usûl ve esaslar ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. b) Taşocağı ve madencilik faaliyetleri, malzeme ve toprak temini için arazide yapılan kazılar, dökümler ve doğaya bırakılan atıklarla bozulan doğal yapının yeniden kazanılmasına ilişkin usûl ve esaslar ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Anız yakılması, çayır ve mer'aların tahribi ve erozyona sebebiyet verecek her türlü faaliyet yasaktır. Ancak, ikinci ürün ekilen yörelerde valiliklerce hazırlanan eylem plânı çerçevesinde ve valiliklerin sorumluluğunda kontrollü anız yakmaya izin verilebilir. d) Ülkenin egemenlik alanlarındaki denizlerden, akar ve kuru dere yataklarından, göl yataklarından ve tarım arazilerinden kum, çakıl ve benzeri maddelerin alınması ile ilgili esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 2 – (Ek: 26/4/2006 – 5491/23 md.) Faaliyetleri sonucu çevre kirliliğine neden olacak veya çevreye zarar verecek kurum, kuruluş ve işletmeler çevre yönetim birimi kurmak, çevre görevlisi istihdam etmek veya Bakanlıkça yetkilendirilmiş kurum ve kuruluşlardan bu amaçla hizmet satın almakla yükümlüdürler. Bu konuyla ilgili usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 3 – (Ek: 26/4/2006 – 5491/23 md.) Bakanlık, yönetmelikte belirtilen koşulları taşıyanları çevre gönüllüsü olarak görevlendirebilir. Bu görev için ilgililere herhangi bir ücret ödenmez. Görevini kötüye kullandığı tespit edilen çevre gönüllülerinin bu görevleri sona erdirilir. Çevre gönüllülerinin çalışma ve eğitimlerine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Ek Madde 4 – (Ek: 26/4/2006 – 5491/23 md.) Motorlu taşıt sahipleri, egzoz emisyonlarının yönetmelikle belirlenen standartlara uygunluğunu belgelemek üzere egzoz emisyon ölçümü yaptırmak zorundadırlar. Trafikte seyreden taşıtların egzoz emisyon ölçümleri ve standartları ile ilgili usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Motorlu taşıt üreticileri de üretim aşamasında yönetmelikle belirlenen emisyon standartlarını sağlamakla yükümlüdür. Ek Madde 5 – (Ek: 26/4/2006 – 5491/23 md.) Bakanlık, bu Kanunla öngörülen ölçme, izleme ve denetleme faaliyetleri ile çevre sorunlarının çözümüne yönelik diğer faaliyetleri yerine getirmek üzere gerekli kurumsal altyapıyı oluşturur. Ek Madde 6 –(Ek: 26/4/2006 – 5491/23 md.) Hava kalitesinin korunması ve hava kirliliğinin önlenmesi için, ulusal enerji kaynakları öncelikli olmak üzere, Bakanlıkça belirlenen standartlara uygun temiz ve kaliteli yakıtların ve yakma sistemlerinin üretilmesi ve kullanılması zorunludur. Standartlara uygun olmayan yakma sistemi ve yakıt üretenlere ruhsat verilmez, verilenlerin ruhsatları iptal edilir. Bakanlıkça, belirlenen temiz hava politikalarının il ve ilçe merkezlerinde uygulanması ve hava kalitesinin izlenmesi esastır. Hava kalitesinin belirlenmesi, izlenmesi ve ölçülmesine yönelik yöntemler, hava kalitesi sınır değerleri ve bu sınır değerlerin aşılmaması için alınması gerekli önlemler ile kamuoyunun bilgilendirilmesi ve bilinçlendirilmesine ilişkin çalışmalar Bakanlıkça yürütülür. Bu çalışmalara ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 7 – (Ek: 26/4/2006 – 5491/23 md.) Bakanlık, çevre ile ilgili olarak gerekli gördüğü her türlü veri ve bilgiyi, kamu kurum ve kuruluşları ile gerçek ve tüzel kişilerden doğrudan istemeye yetkilidir. Kendilerinden veri ve bilgi istenen tüm kamu kurum ve kuruluşları ile gerçek ve tüzel kişiler bu veri ve bilgileri bedelsiz olarak ve talep edilen sürede vermekle yükümlüdür. Ek Madde 8 – (Ek: 26/4/2006 – 5491/23 md.) İyonlaştırıcı olmayan radyasyon yayılımı sonucu oluşan elektromanyetik alanların çevre ve insan sağlığı üzerindeki olumsuz etkilerinin önlenmesi için usûl ve esaslar, ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ek Madde 9 – (Ek: 26/4/2006 – 5491/23 md.) Kokuya sebep olan emisyonların, yönetmelikle belirlenen sınır değerlerin üzerinde çevreye verilmesi yasaktır. Kokuya sebep olanlar, koku emisyonlarının önlenmesine ilişkin tedbirleri almakla yükümlüdür. Buna ilişkin idarî ve teknik usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Geçici Madde 1 – (2872 sayılı Kanunun numarasız geçici maddesi olup teselsül için numaralandırılmıştır.) Bu Kanunda belirtilen ilgili yönetmelikler yürürlüğe konuluncaya kadar gemiler ve diğer deniz taşıt araçlarına 618 sayılı Limanlar Kanununun hükümlerine göre denizlerin kirletilmesi ile ilgili olarak yapılan ceza uygulamasına devam olunur. Geçici Madde 2 – (Ek: 3/3/1988 - 3416/11.md.) Bu Kanunun 12 ve 13 üncü maddelerinde belirtilen ilgili yönetmelikler yürürlüğe konuluncaya kadar, her türlü yakıt, atık, artık ve kimyasal maddenin ithali Çevre Genel Müdürlüğünün bağlı olduğu Devlet Bakanının onayına tabidir. Yürürlük: Madde 33 – Bu Kanun yayımı tarihinde yürürlüğe girer. Yürütme: Madde 34 – Bu Kanun hükümlerini Bakanlar Kurulu yürütür. 9/8/1983 TARİH VE 2872 SAYILI ANA KANUNA İŞLENEMEYEN GEÇİCİ MADDELER 1 - 3/3/1988 tarih ve 3416 sayılı Kanunun Geçici Maddesi: Geçici Madde 1 – Bu Kanunun 6 ncı maddesiyle değiştirilen 2872 sayılı Çevre Kanununun 18 inci maddesinin (b) bendi gereğince Fona ödenmesi gereken meblağ, 1986 yılı için on lira üzerinden alınır. 2 – 26/4/2006 tarihli ve 5491 sayılı Kanunun Geçici Maddeleri: Geçici Madde 1 – Bu Kanun uyarınca ilgili bakanlıkların görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikler bu Kanunun yürürlüğe girmesinden itibaren en geç bir yıl; Hazine Müsteşarlığı tarafından tespit edilecek sigorta genel şartları ile Hazine Müsteşarlığının bağlı bulunduğu Bakan tarafından onaylanacak tarife ve talimatlar bu Kanunun yürürlüğe girmesinden itibaren en geç bir yıl içinde yayımlanır. Geçici Madde 2 – Bu Kanunun yürürlüğe girdiği tarihte faal durumda olan işletmelere bu Kanun ve yönetmeliklerle getirilen ek yükümlülüklerin gerçekleştirilmesi için, yönetmeliklerin yayımlanmasından sonra, Bakanlıkça bir yıla kadar süre verilebilir. 2872 sayılı Çevre Kanununun 9 uncu maddesinin (h) bendine aykırı tesisler, bu Kanunun yayımı tarihinden itibaren bir yıl içerisinde kapatılır. Geçici Madde 3 – Bu Kanunun yürürlüğe girmesinden önce Çevresel Etki Değerlendirmesi Yönetmeliği hükümlerine tâbi olduğu halde, yükümlülüklerini yerine getirmeyenlerden, halihazırda yer seçimi uygun olanlar, bu Kanunun yürürlüğe girdiği tarihten itibaren altı ay içinde, ilgili yönetmelikler çerçevesinde gerekli yükümlülüklerini yerine getirdiklerini gösterir çevresel durum değerlendirme raporunu hazırlayarak Bakanlığa sunar. İlgili yönetmeliklerde belirlenen şartları sağlayanlar başvuru tarihinden itibaren altı ay içinde karara bağlanır. Çevresel durum değerlendirme raporunu altı ay içinde Bakanlığa sunmayan ya da raporun Bakanlığa sunulmasından itibaren altı ay içerisinde gerekli çevre koruma önlemlerini almayan faaliyetler Bakanlıkça süre verilmeksizin durdurulur. Yürürlükteki mevzuat uyarınca yer seçimi uygun olmayan faaliyetler için ilgili mevzuat hükümlerinin uygulanması esastır. Geçici Madde 4 – Atıksu arıtma ve evsel nitelikli katı atık bertaraf tesisini kurmamış belediyeler ile, halihazırda faaliyette olup, atıksu arıtma tesisini kurmamış organize sanayi bölgeleri, diğer sanayi kuruluşları ile yerleşim birimleri, bu tesislerin kurulmasına ilişkin iş termin plânlarını bu Kanunun yürürlüğe girdiği tarihten itibaren bir yıl içinde Bakanlığa sunmak ve aşağıda belirtilen sürelerde işletmeye almak zorundadır. İşletmeye alma süreleri, iş termin plânının Bakanlığa sunulmasından itibaren; belediyelerde nüfusu, 100.000’den fazla olanlarda 3 yıl, 100.000 ilâ 50.000 arasında olanlarda 5 yıl, 50.000 ilâ 10.000 arasında olanlarda 7 yıl, 10.000 ilâ 2.000 arasında olanlarda 10 yıl, organize sanayi bölgeleriyle bunların dışında kalan endüstri tesislerinde ve atıksu üreten her türlü tesiste 2 yıldır. Halen inşaatı devam eden atıksu arıtma ve katı atık bertaraf tesisleri için iş termin plânı hazırlanması şartı aranmaz. Tesisin işletmeye alınma süresi bu maddede belirlenen işletmeye alınma sürelerini geçemez. Belediyeler, organize sanayi bölgeleri, diğer sanayi kuruluşları ile yerleşim yerleri bu hükümden yararlanmak için bu Kanunun yayımı tarihinden itibaren üç ay içinde Bakanlığa başvurmak zorundadır. Bu Kanunun 8 inci maddesi ile atıksu altyapı sistemlerinin ve katı atık bertaraf tesisleri kurma yükümlülüğü verilen kurum ve kuruluşların, bu yükümlülüklerini, bu maddede belirtilen süre içinde yerine getirmemeleri halinde; belediyelerde nüfusu 100.000’den fazla olanlara 50.000 Türk Lirası, 100.000 ilâ 50.000 arasında olanlara 30.000 Türk Lirası, 50.000 ilâ 10.000 arasında olanlara 20.000 Türk Lirası, 10.000 ilâ 2.000 arasında olanlara 10.000 Türk Lirası, organize sanayi bölgelerinde 100.000 Türk Lirası, bunların dışında kalan endüstri tesislerine ve atıksu üreten her türlü tesise 60.000 Türk Lirası idarî para cezası verilir. Geçici Madde 5 – Bu Kanuna ekli (1) sayılı listede gösterilen kadrolar iptal edilerek, 190 sayılı Kanun Hükmünde Kararnamenin eki (I) sayılı cetvelin Çevre ve Orman Bakanlığına ilişkin bölümünden çıkartılmış, ekli (2) sayılı listede gösterilen kadrolar ise ihdas edilerek, 190 sayılı Kanun Hükmünde Kararnamenin eki (I) sayılı cetvelin Çevre ve Orman Bakanlığına ilişkin bölümüne eklenmiştir. Geçici Madde 6 – Bu Kanunda geçen Türk Lirası ibaresi karşılığında, uygulamada 28/1/2004 tarihli ve 5083 sayılı Türkiye Cumhuriyeti Devletinin Para Birimi Hakkında Kanun hükümlerine göre Ülkede tedavülde bulunan para "Yeni Türk Lirası" olarak adlandırıldığı sürece bu ibare kullanılır. 2872 SAYILI KANUNDA EK VE DEĞİŞİKLİK YAPAN MEVZUATIN YÜRÜRLÜKTEN KALDlRDIĞI KANUN VE HÜKÜMLERİ GÖSTERİR LİSTE Yürürlükten Kaldıran Mevzuatın Yürürlükten Kaldırılan Kanun veya Kanun Hükümleri Tarihi Sayısı Maddesi ______________________________________________ ____________ __________ _________ 2872 sayılı Kanun 4, 5, 6, 7 nci maddeleri ve diğer Ka nunların bu KHK'ye aykırı hükümleri 8/6/1984 KHK222 30 2872 sayılı Kanunun 5 inci maddesi 13/3/1990 KHK-409 12 2872 sayılı Kanunun 4 üncü maddesi 9/8/1991 KHK-443 43 2872 SAYILI KANUNA EK VE DEĞİŞİKLİK GETİREN MEVZUATIN YÜRÜRLÜĞE GİRİŞ TARİHİNİ GÖSTERİR LİSTE Kanun Yürürlüğe No. Farklı tarihte yürürlüğe giren maddeler giriş tarihi KHK-222 — 18/6/1984 3301 — 19/6/1986 3362 — 26/5/1987 3416 — 11/3/1988 KHK-409 — 10/4/1990 KHK-443 — 21/8/1991 4629 –– 1/1/2002 ta- rihinden geçerli olmak üzere 3/3/2001 tarihinde 5177 10 5/6/2004 5216 24 23/7/2004 5491 1, 2, 3, 4,5,9,10,11,12,13,14,15,16,18,20,21,22,23,24,25,26, 28,29,30,31, Ek Madde, 1,2,3,4,5,6,7,8,9, İşlenemeyen Hüküm Geciçi Madde 1,2,3,4,5 ve 6 13/5/2006

http://www.biyologlar.com/cevre-kanunu-bolum-2-

&quot;Caretta caretta&quot; Davutlar Sahiline İlk Kez Yumurta Bıraktı

"Caretta caretta" Davutlar Sahiline İlk Kez Yumurta Bıraktı

08.06.2012 gece saat 24.00 sıralarında Aydın-Kuşadası-Davutlar Beldesi Mersin Oteli Plajında bir adet Caretta Caretta yumurtlamış ve tarafımızdan görüntüleri çekilmiştir. Mersin Club Otel yöneticilerinin ihbarıyla Caretta caretta’nın bu alana yumurta bıraktığının anlaşılması üzerine 09.06.2012 tarihinde Orman ve Su İşleri IV. Bölge Müdürlüğümüz personeli tarafından, olayın olduğu yeri koruma altına almışlardır. Ülkemiz kıyılarında Dalyan’dan başlamak üzere genellikle Güney Ege ve Akdeniz kıyılarını üreme alanı olarak seçen Caretta caretta cinsi iribaş bir deniz kaplumbağası, Davutlar kumsallarına ilk kez yuva yaparak yumurta bıraktı.   Caretta Caretta’ nın yuva yaptığı yerin denize çok yakın olması nedeniyle, Pamukkale Üniversitesi’nden Dalyan DEKAMER (Deniz Kaplumbağaları Araştırma Kurtarma ve Rehabilitasyon Merkezi) Müdürü Prof. Dr. Yakup Kaska’ya bilgi verildi. Birlikte yapılan inceleme sonrasında deniz suyunun gelebileceği noktalar tespit edildi. Caretta Caretta’ nın yumurtalarının zarar görebileceğine karar verilerek, yuvada bulunan yumurtaların dalgaların ulaşamayacağı bir noktaya transferlerinin yapılması için kumdaki nem durumları kontrol edildi. Prof. Dr. Yakup Kaska’ nın önerisiyle en uygun alan seçildi. Yumurtaların bulunduğu yuva Prof. Dr. Yakup Kaska tarafından büyük bir hassasiyetle itina gösterilerek açıldı.  Anne Caretta’ nın yuvaya bıraktığı şekilde yumurtalar tek tek, uygun olarak döndürülmeden yumurta kolilerine çıkan kumlardan konularak üzerlerine bırakıldı. Çıkarılan yumurtalar büyük bir dikkat ve kıpırdatmadan, diğer yuvaya taşındı. Yuvadan 81 yumurtanın çıktığı tespit edildi. Yumurtaların çıkış sırasına göre, Prof. Dr. Yakup Kaska tarafından yumurtalar eski yuvanın ölçülerine göre yapılan yeni yuvaya tek tek yerleştirildi. Yuvanın etrafı örgülü telle çevrilerek koruma altına alındı. Prof. Dr. Yakup Kaska, “Kuşadası bölgesinde ilk kez Caretta yuvası tespit edildi. Bugüne kadar bu bölgede hiç Caretta yuvası tespit edilmemişti. Buradaki yuvanın yeri denize çok yakın olması nedeniyle, yumurtalar uygun şekilde, döndürmeden taşındı.  Toplam 81 yumurtanın 4-5 adedinin döllenmemiş olduğu görüldü. Çiftleşen kaplumbağalar 15 gün sonra yumurta yapar ve bir dişi bir sezonda 3-5 yuva yapar. Bu nedenle bu kaplumbağa eğer tekrar bu kumsala gelirse, bu kumsala ait olup olmadığı anlaşılabilir” dedi. Bölge Müdürü Rahmi BAYRAK  ise konuşmasında; “Bölge Müdürlüğümüzce, Caretta Caretta’ nın Kuşadası sahiline yumurta bırakmasından sonra büyük duyarlılık gösterilerek, tüm ilgili kurumları koruma çalışmaları için Kuşadası’na gönderdik. Caretta Carettalar deniz ekosisteminin en önemli canlıları arasındadır. Kurum olarak bu konuda her türlü hassasiyeti gösteriyoruz. Kuşadası’nda ilk kez böyle bir durumla karşılaştık. Yavruların yumurtadan çıkışına kadar, korumaya ve takip etmeye devam edeceğiz. Bakanlığımız, Kaymakamlık, Yerel Yönetim, Üniversite, Sivil Toplum Kuruluşu ve yöredeki vatandaşların işbirliğiyle çok güzel bir çalışma gerçekleştirildi. Bunun sonucunu yine hep birlikte takip ederek, yöre insanlarını da bilgilendirip, duyarlılığa teşvik ederek, yumurtaların çıkmasını bekleyeceğiz.”  dedi. Kaynak: http://www.milliparklar.gov.tr

http://www.biyologlar.com/caretta-caretta-davutlar-sahiline-ilk-kez-yumurta-birakti

Kan Parazitleri

Laboratuvarda kan örnekleri ile çalışırken genel temizlik ve güvenlik kurallarına uyulması gerekir. Böylece çevrenizi, çevrenizdeki diğer kişileri ve kendi sağlığınızı korumuş olursunuz.  Koruyucu eldiven ve laboratuvar önlüğü giyiniz.  Eğer ellerinizde yada üzerinizde açık yara veya ezikler varsa mutlaka yara bandı vb. ile kapatın.  İğne, lanset gibi maddeleri sadece bir kez kullanın ve kullanılmış malzemeleri uygun çöp kutusuna atın.  Çalışma tamamlandıktan sonra eldivenlerinizi çıkartın ve ellerinizi mutlaka yıkayın.  Laboratuvarı temizleyin ve dekontaminasyon işlemlerini uygulayın. Örnek Toplama: Zamanlama: Örnekler uygun ortamlarda ve sağaltım (tedavi) öncesinde toplanmalıdır. Eğer malarya veya babesiadan şüpheleniliyor ise örnekler zaman geçirmeden incelenmelidir. Kanda parazit görülmesi (parazitemi) oranı parazit türüne göre dalgalanma gösterir. Bu nedenle birden fazla froti yapılması (8-12 saat ara ile 2-3 gün) tavsiye edilir. Microflaria enfeksiyonu (türe bağlı olarak) belirgin bir dalgalanma sergiler. Bu yüzden örnekleme zamanı çok önemlidir. Eğer mikroflariadan şüphe ediliyor ise örneklemenin aşağıdaki saatlerde yapılması uygundur. Loa loa–Öğlen (saat 10 ile 14 arası) Brugia or Wuchereria–Akşam saat 8 civarı (20.00) Mansonella–Günün herhangi bir saatinde. Örnek Tipi: Venöz kan örnekleri (venalardan alınan kan), teşhis amaçlı bir çok çalışma için uygundur (flariasis ve trypanosomiasis dahil). Ancak bazı enfeksiyonlarda örneğin malariada kan tüplerindeki antikoagulant (pıhtılaşma önleyici) maddeler parazitin morfolojisine ve boyanma özelliklerine olumsuz etkilerde bulunabilir. Bu problem, frotilerin (yayma) kan alınmasından sonra en kısa sürede yapılması ile bir miktar azaltılabilir. Bu gibi durumlarda kapillar kan örnegi (kulak yada kuyruk ucu, insanda parmak ucu) alınması tavsiye edilir. Kılcal (Capillary) Kan İncelemesi: 1. Temiz bir lam alınır ve bir kenarına hasta adı veya numarası, örnek tarih ve saati kaydedilir. (Kayıt cam kalemi ile yapılmalıdır. Normal permanent kalemler işlemler sırasında silinebilir). 2. Kan alınacak bölge Kulak ucu (kuyruk ucu veya parmak, bebeklerde topuk veya ayak baş parmağı) alkol ile temizlenir ve kuruması beklenir. 3. Kulak ucu çok küçük kesilerek (lancet ile delinerek) kanatılır. İlk damla kan alınır ve yayma yapılır. (Yayma için iki thick blood-kalın yayma- ve iki thin blood-ince yayma- yapılması tavsiye edilir). 4. Uygun boyamalarla boyanan örnekler mikroskopla incelenir (immersiyon). Venöz (Venous) Kan İncelemesi: 1. Kan alınacak tüp ve lam üzerine hasta kaydı yapılır. Lam alkol ile temizlenip kurutulur. 2. Kan alınacak bölge temizlenir, alkol ile silinip kuruması beklenir. 3. Uygun bir venadan kan alınır ve EDTA’lı tüplere konur. Yavaş hareketler ile kan iyice karıştırılır. (Diğer antikoagulanlarda kullanılabilir ancak EDTA tercih edilmektedir). 4. En az iki kalın ve iki ince yayma preperat kan alınmasından sonraki mümkün olan en kısa sürede hazırlanılmalıdır. 5. Uygun boyamalar ile boyanan örnek incelenir. Örneklerin Hazırlanıp İncelenmesi: Yayma Örneklerinin (froti) Hazırlanması: Yukarda da belirtildiği gibi, eğer venöz kan kullanılıyorsa frotiler kan alınmasından sonra en kısa sürede yapılmalıdır. Aksi taktirde antikoagulanların parazit morfolojilerini ve boyanma karakterlerini değiştirebileceği unutulmamalıdır. Kalın Yayma (Thick smears) Hazırlanması: Kalın yayma bir damla kanın mümkün olduğunca homojen olarak yayılması işlemidir. Dehemoglobinize olmuş (parçalanmış) alyuvarları incelemek için hazırlanır. Bu yöntem ile kan elemanları ve varsa parazitler ince yaymaya oranla daha fazla yoğunlaştırılmış olur. Bu yüzden kalın yayma, ince yaymaya oranla daha iyi teşhis imkanı sağlar ancak parazit morfolojileri en iyi olarak görünmezler. Pozitif örneklerde (özellikle malaria) tür tayini yapabilmek için ince yayma yapılması tavsiye edilir. Her hasta için en az iki preperat hazırlanılmalıdır. 1. Önceden temizlenmiş ve üzerine hasta kaydı yapılmış lam alınır. 2. Lam’ım ortasına bir damla kan konulur. 3. Bir başka temiz lam köşesi kullanılarak, dairesel hareketler ile kan yayılır (yaklaşık 1.5 cm çapında). 4. Örneğin istenilen kalınlıkta yayılıp yayaılmamış olduğu, altına konulan bir gazetedeki yazıların kısmen okunaklı olması ile kontrol edilebilir. 5. Preperat düz bir yere konarak kuruması beklenir (toz ve böceklerden uzak tutulmalıdır). Yeteri kadar kurumamış yada çok kalın hazırlanmış örnekler işlemler esnasında lamelden ayrılırlar. Oda ısısında yapılan kurutmalar bir kaç saat sürebilir. Minimum 30 dakikalık kurutma gereklidir bu şekilde hazırlanmış örnekler çok dikkatli olarak işlemlere tabi tutulmalıdır. Kurutma işlemi orta ısılı bir etüv yada kurutma dolaplarında yapılabilir. Aşırı sıcak ortamlar istenmez çünkü bu işlem ısı ile örnek tespiti (fiksasyon) yapılmasına yol açar. İnce Yayma (Thin smears)Hazırlanması: İnce yaymada kan gittikçe incelen bir kan katmanı oluşturur. Son kısmında alyuvarlar tek bir katman oluşturmalıdır yada birbirlerinden uzak konumlarda olmalıdır. Her hasta için en az iki örnek hazırlanılmalıdır. 1. Bir damla kan alınıp, lamın hasta kaydı yapılmış kenarından yaklaşık 1.5 cm uzağına konur. 2. İkinci bir lam kan damlasının önüne yaklaşık 45° açı ile konulur. 3. Lam hafif geri çekilerek damla ile temas ettirilir ve kanın lam temas yüzeyine yayılması beklenir. 4. Üstteki lam hızla ileri doğru itilerek kan olabildiğince ince yayılır. Kanın son kısımlarda çok ince yayılmış olmasına dikkat ediniz. Bu işlem uygun miktarda kan ve iyi bir yayma tekniği ile sağlanır. Aksi taktirde yayma istenilen kalitede olmaz. 5. Preperatın kurumasını sağlayın. 6. Preperatı saf (absolute) metanol içerisinde tespit edin 7. Fix the smears by dipping them in absolute methanol. Microfilariae Teşhisi İçin Örnek Hazırlama: A. Kapillar kan örneği alınır. B. Mikroflarialar perifer kanda yoğun olarak bulunurlar. Bu nedenle venöz kan bu tür incelemelerde tercih edilmezler. C. Mikroflaria kontrolü için venöz kan kullanılması gerekirse bu örnek mutlaka konsantre edilmelidir. Bu amaca yönelik çeşitli yöntemler mevcuttur. 1. Örnek modifiye Knott metadu ile konsantre edilir. 2. Filtrasyon Metodu. Bu yöntemde 5 µm çaplı gözenekleri olan filtreler kullanılır. Fitrede kanın şekilli elemanları ve organizmalar takılıp kalırlar. Filtredeki kan şekilli elemanları uygun maddeler ile parçalanır ve filtre üzerindeki organizmalar geri toplanıp lam üzerine yayılır ve incelenir (Bu amaca yönelik çeşitli teşhis kitleri mevcuttur. Ticari markalar olduğu için isimler ve kullanılan malzemeler burada işlenmemiştir) Kan Örneklerinin Nakli: Kan Yayma Örneklerinin Mikroskobik İncelemeler İçin Taşınması: 1. Üzerleri etiketlenmiş ve kurutulmuş yayma preperatlar (boyanmış yada boyanmamış) uygun lam kutularına yerleştirilir. Bu kutularda lamların birbirine temasını engelleyecek ara bölmeler olmalıdır. 2. Bu lam kutusunu sağlam ve arsında şok emici destekleri olan bir başka kutuya yerleştir. Bu sayede nakil sırasında kırılmalar engellenmiş olur. 3. Örnek ile ilgili bilgiler ve gönderen ile ilgili bilgiler detaylı olarak yazılıp kutuya yerleştirilir. 4. Uygun taşıma yolu ile istenilen yere gönderilir. Tam Kan Örneğinin Nakli: 1. Sızdırmaz steril bir kap (deney tüpü vs) içerisine antikoagulanlı kan konur ve etiketlenir. Bu örnek bir kutuya yerleştirilir ve etrafına, sızdırma durumunda kanın emilmesi için emici maddeler konulur. 2. Bu kutu içerisi şok emiciler ile desteklenmiş ikinci bir kutuya yerleştirilir. Örnek (kimden, ne için ve ne zaman alındığı gibi) ve gönderen ile ilgili detaylı bilgiler yazılıp kutuya yerleştirilir. 3. Hazırlanmış kutu veya kutular en kısa sürede (8-12 saat) ilgili laboratuvara ulaştırılmalıdır. Soğuk sistem taşıma gerekebilir. Bu durum ilgili laboratuvar ile görüşülmelidir. İlaç Testleri veya Moleküler Biyoloji Testleri İçin Örnek Nakli: 1. Yukardaki paketleme işlemleri aynen uygulanır. 2. Paket oda sıcaklığında nakledilir. Antikor veya İlaç Testleri İçin Serum (yada Plazma) Örneği Nakli: 1. Paketleme ve etiketleme işlemleri yukarıdaki örneklerde olduğu gibi yapılır. 2. Ek bilgiler yazılıp kutuya konur. 3. Örnek oda ısısında ancak mümkün olduğunca kısa sürede hedefe ulaşması sağlanır. 4. Not: Parazit izolasyon (ayrımı) ve teşhislerinde süre kritik öneme sahişptir. Antikor kökenli taramalarda süre daha az önemlidir. Boyama: Kan Frotilerinin Boyaması: Hazırlanan ikili örneklerden sadece bir set boyanır. İkinci set yedekte bekletilir. Bu durum eğer boyamalarda bir hata olursa, örnek kaybını engellemiş olur. Ayrıca herhangi bir teşhis olayında daha sonraki incelemeler için kaynak oluşturur. Giemsa Boyama: -Kan parazitlerinin aranmasında ve teşhisinde kullanılır. Basit Giemsa Boyama: 1. Preperat hazırlanıp havada kurutulur. 2. Absolute metanolde bir dakika tespit edilir. 3. Kurutulmuş preperat giemsa ile boyanır (30 dakika-Giemsa boyası 1:20 oranında distile suda sulandırılır). 4. Boyama sonrası preperat distile su ile durulanır (Su akar vaziyette olmalıdır). 5. Preperat kurutulup 100X’lük objektif ile incelenir. Not: Preperatlar saklanmak istenirse üzerlerindeki mineral yağ yıkanmalıdır. Yıkama için Ksilol (XYLOL) kullanılır. Preperat üzerine ksilol dökülüp yağı ertmesi bekletilir ve ksilol akıtılıp (işlem mineral yağ tamamen kaybolana kadar bir kaç kez tekrarlanabilir) kurutulur. Geliştirilmiş Giemsa Boyama: 1.Giemsa boyamada kullanılan solüsyonların hazırlanması. A. Stok Giemsa Buffer (100X, 0.67 M) Na2HPO4 59.24 gr NaH2PO4H2O 36.38 gr Deionized water 1000.00 ml B. Otoklav yada 0.2 µm çapında delikleri olan filtre kullanarak sterlizasyon yapılır. Bu şekilde hazırlanmış stok solüsyon oda ısısında bir yıl kullanılabilir. C. Giemsa Buffer, 0.0067M, pH 7.2 (Stok giemsa buffer 100kat sulandırılır) Stok Giemsa Buffer 10.0 ml Dİstile (yada deiyonize) su 990.0 ml Solüsyon da pH7.2 olmalıdır. Kullanmadan önce kontrol edilip ayarlanır. Oda ısısında bir ay dayanır. D. Triton X-100 (% 5) Deiyonize Su (56°C’ ye kadar ısıtılır) 95.0 ml Triton X- 100 5.0 ml Ilık su içerisine Triton X-100 yavaşça ilave edilirken dairesel hareketler ile karıştırılır. Triton X-10 E. Stok Giemsa Boyası: Giemsa boyası hazır olarak satın alınabilir. Aşağıdaki formül daha iyi sonuç verdiği ileri sürülmektedir. Cam Boncuk (3 mm çapında) 30.0 ml Absolute methanol, (asetonsuz) 270.0 ml Giemsa Boya (saf-toz) 3.0 gr Glycerol (Gliserol) 140.0 ml a. Yukarda sayılan maddeleri temiz kahve renkli bir şişe içerisine yerleştirin. Ağzını sıkıca kapatın. b. Şişeyi bir çalkalayıcıda her gün 30-60 dakika ve en az 14 gün boyunca çalkalayın. c. Şişeyi ağzı kapalı olarak nemden uzak olarak oda ısısında saklayınız. Oda ısısında stok bozulmadan kalır (Stok gimza boyası eskidikçe boyama kalitesi artacaktır). d. Kullanmadan önce çalkalayıp bir numara Whatman filtre kağıdında süzün. Bu solüsyondan çalışmak üzere Giemsa boyası hazırlayın. F. Gimsa Boya Hazırlanması (% 2.5) G. Her boyama için taze olarak hazırlanması tavsiye edilir. Bir günden fazla süre geçmiş Giemsa boyası boyamalarda kullanılmamalıdır. Giemsa buffer 39 ml Stok Giemsa Boyası 1 ml Triton X-100 (%5) 2 damla 2. Boyama: A. Bir şahle (boyama küveti) içerisine yukarda açıklandığı şekilde taze olarak Giemsa boyası hazırlayın B. İkinci bir şahleyi Giemsa buffer ile doldurun ve içerisine her 40 ml için iki damla Triton X-100 ekleyin. C. Preperatı Giemsa (% 2.5) ile 45-60 dakika süresince boyayınız. D. Preperatı çıkartıp Giemsa buffer içerisine batırarak (3-5 kez) durulayın. Kalın yayma preperatlarda dikkatli olunmalıdır. E. Preperatı dik olarak bir yere yerleştirip kurutun. Notaha yoğun hazırlanan (% 10) Giemsa boyalar ile daha kısa süre bekletilerek (10 dakika) boyama yapılabilir. Ancak bu durum hem daha fazla madde kullanımını gerektirir. Hem de boyama kalitesi çok iyi olmaya bilir. İyi bir boyama yapılmış olup olmadığını pozitif örnekler kullanarak kontrol edilmesi tavsiye edilir. Boyanmamış Yayma Preperatların Uzun Süreli Saklamalar İçin Hazırlanması: Her hangi bir amaç için yayma preperatlar daha sonra incelemek için saklanabilirler. Bu saklamalar, boyama yapılmış preperatlar için sadece kuru ve temiz bir kutuda ve bir birlerine temas etmeden gerçekleştirilebilir. Anacak bazı durumlarda preperatlar hiç bir işlem yapılmadan daha sonraki uygulamalar için saklanmak istenebilir. Bu preperatlar daha sonra istenilen yöntemle işlenip incelenebilirler. 1. Yayma preperat hazırlanır ve çabucak kuruması ağlanır. 2. Örnek absolute (% 100) methanol içerisinde tespit edilir ve kurutulur. 3. Bir lam kutusuna yerleştirilir ve etiketlenir (örnek ile bilgiler kaydedilir) 4. Kutu derin dondurucularda; -70°C yada daha soğuk bir dolapta istenilen süre kadar depolanır. 5. Kullanılacak olan örnekler dolaptan çıkartılır ve boyama işlemleri öncesinde kısa bir süre kurutulur. Isı farklılığından dolayı oluşan su damlacıkları buharlaştırılıp lam kurutulur.Daha sonra boyama işlemlerine geçilir. Microskobik Muayene Kalın Yayma Preperatların İncelenmesi: Alyuvarlar (eritrosit, red blood cell-RBC) parçalanmış (eritilip yok olmuş) ve varsa paraziter organizmalar daha yoğunlaştırılmış olduğundan kontrol ve teşhis çalışmaları için daha uygundur. Karışık (mix) enfeksiyonların teşhisinde de daha yararlıdır. 1. Bütün preperatı küçük büyütme altında inceleyin (10X yada 20X objektif). Böylece büyük parazitleri (mikroflaria gibi) daha kolay teşhis edilir. 2. Daha sonra, mineral yağ ve büyük büyütme (100X objektif) ile örneği tekrar inceleyin. Bu incelemede de küçük parazitler (theileria, babesia gibi) araması yapılır. Preperatta bol miktarda akyuvar (leukosit. white blood cell-WBC) görülecektir. 3. Eğer herhangi bir paraziter yapı görülür ise, o zaman ince yayma preperat incelenerek, tür tayini yapılır. 4. Eğer hiç parazit göremediniz ise; bu durum gerçekten parazit yokluğundan mı kaynaklanıyor, yoksa inceleme devam ettirilmeli midir sorularına araştırmanın hassasiyetine göre yada klinik tabloya göre karar verilir. Hassas durumlarda preperattan en az 100 (200-300) mikroskop sahası (akyuvarların bol görüldüğü) incelenmelidir ve birden fazla preperat incelemesi yapılmalıdır. İnce Yayma Preperatların İncelenmesi: İnce yayma preperatlar farklı amaçlar için kullanılabilir. 1- Tespit edilmiş olan bir parazitin tür tayini amacı ile kullanılabilir. 2- Kalın yaymaların kuruması beklenirken hızlı bir kontrol için kullanılabilir. 3- Yeterli kalın yayma preperat olmadığında kullanılabilir. İnce yaymalarda; eğer aynı örneğin kalın yayma incelemesi yapılmamış ise önce küçük büyütmeler (10x yada 20x objektifler) ile preperat taranmalıdır. Bu sayede mikroflaria benzeri parazitler aranmış olur. Daha sonra büyük büyütme ile (100x objektif) örnek taranır. Parazitlik Yoğunluğunun Tespiti: Bazı durumlarda parazitlik (parazitemi) yoğunluğunun tespiti klinik açıdan önemli bilgiler sağlayabileceği için gerekli olabilir. Bu durumda yoğunluk tespiti ya alyuvarlara yada akyuvarlara oranlanarak hesaplanmaya çalışılır. Alyuvar(RBC) Sayısına Göre Oranlama: Örnekteki 500 ila 2000 arasında alyuvar sayılır ve incelenir, bunlardan kaçtanesinin parazitli olduğu tespit edilir. Sonuç oranlanarak yüzde (%) cinsinden ifade edilir. Eğer parazitlik oranı yüksek ( > 10%) ise 500 alyuvar (RBC) saymak yeterlidir. Düşük oranlarda (<1%) 2000 yada daha fazla alyuvarı incelemek gereklidir. Parazitlik (parasitemia- %) = (parazitli RBC / toplam RBC) X 100 Akyuvar (WBC) Sayısına Göre Oranlama: Kalın yayma preperatlarında parazitler akyuvarlara oranlanırlar. Akyuvarlar ve parazitler sayılır. Bu sayıma 500 parazit veya 1000 akyuvar sayana kadar devam edilir. Hesaplama eğer kullanılan kan hacmi biliniyorsa bilinen hacim üzerinden hesaplanır. Hacim bilinmiyor ise, bir milimetreküp kanda 8000 akyuvar olduğu ortalamasına göre yapılır. Parazitler/milimetre küp (kan) = (parazitler/ WBC) X WBC sayısı (bir milimetre küp kanda yada < 8,000 akyuvarda> Florasanlı Boyalar ile Boyanmış Kan Parazitlerinin Teşhisi: Kan yayma preperatları, acridine orange ile (Kawamoto tekniği) boyanıp ya floresan mikroskop yada özel fitrelere sahip ışık mikroskoplar altında incelenir. Bu boyamada nükleer DNA yeşile boyanırlarken, stoplazmik RNA kırmızıya boyanır. Böylece parazitleri tanımak kolaylaşır. Bu yöntem özellikler malaria (sıtma) etkenlerinin teşhisinde yaygın olarak kullanılmaktadır. Afrika trypanosoma’sında da kullanılmıştır Quantitative Buffy Coat (QBC®; Becton Dickinson) metodu, Bu yöntemde kan örnekleri direk olarak içerisinde akridine orange ve antikoagulan bulunan, cam boncuklu tüplere alınır. Örnekler hematokrit santrifüjde, santrifüj edilip floresans mikroskopla incelenir. Parazitler (malaria-sıtma) granülosit katmanın altında bulunurlar. Bu yöntem diğer kan parazitleri içinde adapte edilmiştir. Antikor (Antibody)Tespiti: Parazit enfeksiyonları konakçıların dokularında yada konakçı atıklarında (dışkı-idrar gibi) görülerek teşhis edilirler. Ancak bu teşhis yöntemleri, derin dokular içerisine yerleşen bazı hastalıklarda yetersiz kalmaktadır (toxoplasmosis yada toxocariasis). Ayrıca cysticercosis ve echinococcosis gibi hastalıklarda örnek alınması, konakçının hayatını tehlikeye sokacağından tavsiye edilmezler. Bu gibi durumlarda, belirgin bir parazit ile enfekte olmuş konakçıda, antikor testlerinin uygulanması büyük avantaj ve kolaylık sağlar. Antikor testlerinde pozitif olarak teşhis edilen konakçının enfektemi olduğu yoksa daha önce geçirdiği bir hastalığın antikorlarını mı taşıyor olduğu ayırt edilmelidir. Parazit hastalıklarında antikor tespiti hastada belirgin olmayan bir zaman da hastalığın varlığını işaret eder. Ancak hastalığın hangi safhada olduğunu kesin olarak belirlemez. Yani antikor tespit edilen hastada, hastalık başlama, gelişme safhalarında olabileceği gibi geçmiş de olabilir. Hastalık geçirmiş olan canlıda antikor düzeyi yavaşça düşer ancak tedaviden sonra dahi antikor düzeyi altı aydan bir kaç yıla kadar değişen sürelerde belirgin düzeylerde kalabilir. Bu durumda incelenen parazitin antikor yoğunluğunun (titrasyonunun), hastalık süresince ve hastalıktan sonra hangi seviyelerde olduğu bilinmesi yararlı olur. Toxoplasma gondii enfeksiyonlarında, spesifik immunoglobulin M (IgM) ve immunoglobulin A (IgA) tespiti hastalık zamanı hakkında bazı bilgiler verebilir. Ancak diğer hastalıklar için tavsiye edilmemektedir. Eğer dışkı, idrar ve kan örneklerinde şüphelenilen parazit görülmemiş ise veya negatif çıkmış ise, parazite spesifik immunoglobulin G (IgG) antikor testi istenilebilir. Parazite-spesifik IgM, IgA, yada IgE teşhis için uygun değildir. Bu nedenle bu antikorların tespiti istenmemelidir. Parazit spesifik IgG negatifken, pozitif çıkan IgM, IgA, yada IgE düzeyleri yalancı pozitif olarak değerlendirilmelidir. Uygulanan testlerin spesifitesi (özel oluşu) ve sensitivitesi (hassasiyeti) sonuçlar üzerinde çok etkilidir. Parazitler, hayat siklusları içerisinde değişik evreler geçirirler. Bu nedenle antijenler, evrelerden sadece birine spesifik olabileceği gibi genel olarak parazite (tüm evrelerinde) spesifik de olabilir. Bu nedenle kullanılacak antijen ve antikor testleri çok iyi bir incelemenin (kaynak bilgiler ve deneyler) sonunda seçilmiş olmalıdır. Testte kullanılacak olan spesifik antijenin yada antikorun spesifite dereceleri çok iyi bilinmelidir. Yayınlanmış olan kitap yada makalelerde aynı konuyu inceleyenlerin mutlak bir birinin aynı olduğunu düşünmek hatalıdır. Hatta bu tür çalışmalar farklı bölgelerde, farklı solüsyonlar yada farklı araştırmacılarca yapılmış çalışmalar olarak, sonuçları kıyaslama açısından daha önemlidir. Örnek İhtiyaçları: Bütün parazit antikor teşhis testlerinde serum yada plazma kullanılabilir. Toxoascaris veya toxoplasmosis için göz yaşı akıntıları da, serum ile beraber antikor testleri için kullanılabilmektedir. Yine, merkezi sinir sistemi enfeksiyonlarında da (cysticercosis yada toxoplasmosis) serebrospinal (beyin-omurilik) sıvıları, serum eşliğinde incelemeye alınabilir. Bütün örnekler oda ısında nakledilebilirler. Bu incelemeler için akut fazdaki enfeksiyonlardan örnek istenilmez. Geçerli sonuçlar genellikle bir test sonucunda elde edilebilmektedir. Parazit enfeksiyonları hasta üzerinde fark edildikleri dönemde, incelenmeye alınırlar ki bu zaman enfeksiyonun akut safhası genellikle geçmiş olur.

http://www.biyologlar.com/kan-parazitleri-1

Mikobakteri Kültür Yöntemleri

Mikroskopik muayenede ARB araştırılması, TBC tanısı için oldukça değerli, basit ve ucuz bir yöntem olup ön tanı değeri taşır. Fakat tüberkülozun kesin tanısı için etken ajanın kültür ortamında tekrar gösterilmesi ve bazı in vitro testler ile doğrulanması gerekir. Kültür yöntemi; M.tuberculosis için “altın standart” olarak kabul edilmektedir. Mikobakterilerin üretilmesinde çalışılacak laboratuvar ortamının imkanları ölçüsünde standart besiyerlerinden MGIT, BACTEC gibi komplike sistemlere kadar farklı kültür yöntemleri uygulanabilir. Mikobakterilerin izolasyonu için ideal ortam;Az sayıdaki mikobakterilerin hızlı ve bol miktarda üremelerine izin vermeli, Ekonomik olmalı, içeriğinde bulunan maddelerin temininde ve hazırlanmasında zorluk yaşanmamalı, Pigment oluşumu ve koloni morfolojisine dayanarak izolatlar arasındaki farklılıkları saptamaya yardımcı olmalı, Mikobakteri dışındaki kontaminant mikroorganizmaların üremesini inhibe etmeli, İlaç duyarlılık testleri uygulamak için uygun olmalıdır. Tüberkülozda kullanılan standart besiyerleri değişik başlıklar altında toplanabilir:İçerikleri yönünden; Sentetik besiyerleri (Sauton, Long vb.) Yarı sentetik besiyerleri (Yumans, Dubos, Middlebrook vb.) Kompleks besiyerleri (Löwenstein Jensen, Ogawa, Trudeau) Görünüm yönündenKatı besiyerleri (Yumurtalı ve agarlı; Löwenstein Jensen, agarlı Middlebrook, Treduau vb.) Sıvı besiyerleri (Middlebrook, Youmans, Sula vb.) Karışık besiyerleri (Gliserinli, patatesli buyyon vb.) Kullanım amacına görePrimo kültür - ilk izolasyon (Löwenstein Jensen, agarlı Middlebrook, Trudeau, Ogawa vb.) Araştırma Üretim (Tüberkülin, BCG; Sauton, Proskauer, Long vb.) Antimikrobiyal madde içeriğine göreNonselektif: Antibiyotik içermezler. Selektif: Antibiyotik içerirler. Günümüzde mikobakterilerin ilk izolasyonunda en sık kullanılanlar yumurtalı besiyerleri ve/veya agarlı besiyerleridir. Agarlı besiyerlerine göre yumurtalı besiyerlerinin hazırlanması daha zahmetli fakat daha ucuzdur ve koloni görüntüsü daha tipiktir. Bu nedenle Türkiye dahil Tüberküloz hastalığının sık görüldüğü ülkelerde en sık yumurtalı besiyerleri, bunlardan da en sık Löwenstein Jensen besiyeri kullanılmaktadır. Yine yumurtalı ve katı olan Ogawa besiyeri de basit ve ucuz bir besiyeridir. Uzak Doğu’da özellikle Japonya’da kullanılır. Amerika’da yumurtalı besiyeri olarak Treduau ve ayrıca agarlı besiyeri olarak Middlebrook 7H10 ve 7H11 en sık kullanılan besiyerleridir. Petragnani besiyeri özellikle yoğun kontamine örneklerden mikobakteri izolasyonunda tercih edilir. American Thoracic Society Medium (ATSM), diğerlerine göre daha düşük oranda malaşit yeşili içerdiğinden özellikle BOS, plevra sıvısı, biyopsi gibi steril örneklerde tavsiye edilir. Löwenstein Jensen besiyerinin klinik örneklerden mikobakteri izolasyonundaki duyarlılığı; üreme zamanının daha uzun olması, koloni oluşumunun daha geç tespit edilmesi gibi nedenlerden dolayı, Middlebrook 7H10, 7H11 ve sıvı formu (broth) olan 7H9 besiyerleri ile karşılaştırıldığında daha düşüktür. Balgam kültürlerinde ilk seçenek yumurtalı besiyerleridir. Balgam dışı örneklerde ise en verimli yöntem sıvı besiyerlerini kullanmaktır. Ekonomik yeterliliği olan laboratuvarlarda özellikle BOS, vücut boşluk sıvıları ve biyopsi gibi tekrarlanamayan örneklerde sıvı besiyerlerinin kullanılması tavsiye edilmektedir.Yumurtalı BesiyerleriAvantajları 1. Hazırlanması kolaydır. 2. Mevcut en ucuz besiyeridir ve tüberküloz bakterisinin iyi üremesine müsaade eder. 3. Taze yumurtadan hazırlandığı, sıkı kapaklı tüplerde saklandığı ve buharlaştırarak sıvı artığının minumuma indirildiği durumlarda haftalarca buzdolabında saklanabilir. 4. Tüplere dağıtıldıktan sonra koagüle edildiğinden ve ayrıca eklenen malaşit yeşili mikobakteri dışındaki diğer bakterilerin üremesini engellediğinden kontaminasyon riski düşüktür.Dezavantajları1. Pozitifliğin saptanma süresi uzundur. Özellikle örnekte az sayıda bakteri bulunması ya da güçlü dekontaminasyon işlemi uygulanması durumunda belirgin kolonilerin izlenmesi 6-8 hafta gibi uzun bir süreyi alabilir.2. Kontaminasyon durumunda çoğu kez besiyerinin tüm yüzeyi etkilendiğinden sıklıkla besiyeri kaybedilir. Besiyeri Hazırlarken Dikkat Edilmesi Gereken Kurallar:İyi kalitede bir besiyeri elde etmek için kullanılan kimyasal maddelerin saf olması, cam malzemelerin ve distile suyun steril olması gerekir. Besiyeri hazırlama yönteminde yer alan kurallar aynen uygulanmalı, değişikliklerden kaçınılmalıdır. 1. Çalıştığınız ortamı mümkün olduğu kadar temiz tutunuz. Tezgahın üzerini uygun bir dezenfektan (1/10 ya da 1/20 oranında sulandırılmış çamaşır suyu gibi) ile siliniz. Yerleri toz oluşmasını engellemek için nemli bezlerle siliniz.2. Cam malzemeleri ve diğer aletleri steril ettikten sonra kullanınız.3. Kimyasal maddelerin tavsiye edilen saflıkta olmasına dikkat ediniz.4. Koagülatör ısısını önceden kontrol ediniz.5. Asepsi kurallarına özenle uyunuz (tüplerin ve şişelerin ağzını alevden geçirme vb.).6. Yumurtaların kabuklarını kırmadan önce mutlaka temizleyiniz.7. Koagülasyonda tavsiye edilen ısının ve sürenin üzerine çıkmayınız.8. Hazırlamış olduğunuz besiyerlerini ışıklı ortamda (özellikle UV altında) tutmayınız. Buzdolabında saklayınız (Buzdolabı ışığının kapak kapatıldıktan sonra söndüğünden emin olunuz). 9. Tüplere dağıtım aşamasında besiyeri hacmini kullandığınız tüplere göre ayarlayınız (6-8 ml küçük şişelere, 20 ml deney tüpüne). Gereksiz tasarruflardan kaçınınız. LOWENSTEIN - JENSEN BESİYERİ HAZIRLANMASITuz Solüsyonu Monopotasyum Fosfat 2400 mgMagnezyum Sülfat 240 mgMagnezyum Sitrat 600 mgL- Asparagine 3600 mg Gliserin 12 mlDistile Su 600 ml Yukarıdaki maddeler tartılıp büyük bir balona konularak eriyinceye kadar benmaride kaynatılır. Otoklavda 121oC’de 30 dakika sterilize edilir.Besiyeri İçin Gerekli Yumurtanın Hazırlanması1. Önce, 2 gr malaşit yeşili tartılır, 100 ml distile su içinde eritilir. Bu şekilde hazırlanmış % 2’lik malaşit yeşili stok çözeltisi koyu renkli bir aktarılır, güneş ışığından uzak bir yerde muhafaza edilir. 2. 25 adet sağlam, taze yumurta alınır, üzeri kirli olanlar sabunlu suyla iyice fırçalanır. Yumurtalar geniş bir kaba konulur. Steril bir kapta UV lambası altında 45 dakika bekletilerek sterilize edilir. UV lamba yoksa yumurtalar, %70’lik etil alkol ile doldurulmuş geniş ve derin bir kapta 15 dakika bekletilir. 3. Bu sterilize edilmiş yumurtalar, ağzı lastik tıpa ile kapatılabilen steril bir balona, steril huni vasıtasıyla kırılır. Balonun ağzı kapatılarak balonda toplanan yumurtalar homojen hale gelinceye kadar çalkalanır. Daha önce hazırlanıp steril edilmiş büyük balondaki tuz solüsyonuna steril bir tülbentten süzülerek ilave edilir. 4.Bunun üzerine % 2 lik malaşit yeşilinden 25 ml ilave edilir, hepsi birlikte çalkalanır. 5. Özel tevzi (dağıtım) cihazları ile 6-8 ml hacimlerde, 160x16 mm’lik tüplere steril şartlarda dağıtılır. 6. Aral Gürsel sulu tip koagülatörde 78-80oC’de 1 saat koagüle edilir. 7. Koagüle edilen besiyerleri, 37oC’lik etüvde 24 saat bekletilir. Ertesi gün kontamine olmuş besiyerleri ayrılır. Steril ve sağlam olan besiyerleri 2-8oC’de (buzdolabında) saklanır. İlaçlı Löwenstein-Jensen besiyerlerinin raf ömrü 2 ay; ilaçsız (normal) Löwenstein-Jensen besiyerinin (kurumasına mani olunduğu taktirde) raf ömrü ise 6 aydır. 8. Ticari olarak baz Lowenstein-Jensen besiyeri temin edilebilir. Bunlarda benzer şekilde hazırlanır. Ancak bu besiyerleri patates unu içerdiğinden ilaçlı besiyeri yapımında kullanılmaz. SIVI KÜLTÜR SİSTEMLERİSolid besiyerlerine göre mikobakterilerin, daha kısa sürede üremesine olanak sağlarlar. Bactec ve MGIT sistemleri bu amaçla kullanılmaktadır.BACTEC Bactec yöntemi sıvı besiyerinde üreyen mikobakterinin üremesinin radyometrik olarak izlenmesi esasına dayanır.Temel prensip 14C ile işaretli substrat içeren besiyerinde bu substratı kullanarak üreyen mikobakterilerin 14CO2 üretmesidir. Tespit edilen 14CO2 miktarı vial içindeki üremenin miktarı ve oranını yansıtır ve üreme indeksi olarak tanımlanır. İlaç duyarlılık testleri Bactec sistemi kullanılarak yapılabilir.MGITMGIT yöntemi mikobakterilerin klinik örneklerden (kan ve idrar hariç) hızlı izolasyonunu optimize etmek için geliştirilmiş in vitro bir sistemdir. Hastalardan alınan örnekler işlendikten sonra MGIT tüplerine inoküle edilir. MGIT tüplerinin dip kısımlarında fluorescent içeren silikon bulunur ve sıvı besiyerinde bulunan çözünmüş haldeki O2 varlığına duyarlıdır. Sıvı besiyerinde üreyen mikobakterilerin açığa çıkardığı çözünmüş haldeki oksijen floresan açığa çıkarır ve üremenin tespit edilmesini sağlar.

http://www.biyologlar.com/mikobakteri-kultur-yontemleri

HİSTOLOJİ LABORATUVARDA KULLANILAN BAZI ÇÖZELTİLER

A-Cam Kapları Yıkamak İçinCam eşyadaki kaba kir bildiğimiz gibi sabun veya herhangibir temizleme tozu ve sıcak su ile temizlenir.Saf su ile çalkalanır ve kurutulur Reçine ve parafin ile kirlenmiş camlar önce toluen veya ksilol ile yıkandıktan sonra sıcak su ve sabun ile yıkanmalıdır. Bu nedenle boyalarda kullanılan artık ksilol veya toluol saklanmalıdır. Erimeyen organik kalıntılar, boya çöküntüleri veya metalik tuzlar cam kaplar aşağıdaki çözeltilerle temizlenebilir.1-Potasyum dichromate-sulfuric acid temizleme sıvısında yıkayarak temizlenir. Bunun için birkaç dakikadan birkaç güne kadar bu sıvıda bırakılır. Daha sonra asit kalıntısını kaldırmak için su ile iyice yıkanır. Potassium dichromate 200 gm.Su 1 litreKonsantre Sulfuric asit 750 cc Çözeltiyi sıcağa dayanıklı bir cam kavanozda yap. Önce potassium dichromate’ı suda erit, çabuk erimesini istiyorsan ısıt. Soğuduğu zaman, bir taraftan cam bir çubuk ile karıştır ve sülfirik eşiti yavaşça ilave et. Isı yükselecektir. Koyu yeşil oluncaya kadar birçok defa kullanılabilir. 2-Potasyum bikromat...................60 grSülfürik asit..............................1000 cc 3-Potasyum permanganat...............10 grSodyum hidroksit.......................10 grDistile su....................................100 cc 4-Kral SuyuHidroklorik asit..........................3 birimNitrik asit...................................1 birimB-Lam ve Lamellerin Temizlenmesi: Yeni lam ve lameller % 90 veya 95’lik alkolde bırakılır, sonra buradan teker teker alınan lam veya lameller temiz eski bir mendil veya pamuklu bir bez ile iyice kurulanır Temizliğini kontrol için pipet ile üstüne su damlatılır. Su dağılırsa lam ve lameller temizlenmiştir, su damla halinde kalırsa halen kirli demektir. Böyle camları temizlemek için 15 dakika kadar yarı yarıya eter ve saf alkol karışımına bırakılır. Kullanılmış lam ve lameller- Eğer üzerlerine balsam ve sakız yapışmamışsa sıcak su ve yıkama tozları ile iyice yıkanır ve suda çalkandıktan sonda % 90 veya 95’lik alkolde bırakılır. Silinip kurutulduktan sonra kullanılmağa hazırdır. Lam ve lameller bu yöntemle temizlenmezse bir veya iki gün temizleme solusyonunda bırakılır sonra suda yıkanır ve ammonium hidroksit ile alkalize edilmiş suda birkaç saat bırakılır. Suda yıkanır, alkolde bekletildikten sonra kurulanır. Balsam veya sakızlı lam veya lamelleri ise bahsettiğimiz yıkamadan önce ksilol veya toluol içinde bırakmalıdır.Lamları Jelatinleme YöntemiGelatine powder........................................5 grKalium chrom (III) sülfat rein....................0.5 grDistile su................................................... Distile su LABORATUVARDA KULLANILAN BAZI BOYA ÇÖZELTİLERİA-Nötral Red (nötral kırmızısı): Bir şişe saf suya rengi kırmızı oluncaya kadar bu boyadan karıştırınız. Çözeltinin saydam olması şarttır. B-Sirke asitli metilen yeşili: 100 cc saf suya 2 gr sirke asidi ve bir miktar da metilen yeşilinden karıştırınız. Çözeltinin rengi mavimsi yeşil olmalıdır. C-Karmin - sirke asidi: 45 hacim saf ve yoğun sirke asidini 55 hacim saf su ile karıştırınız. Buna biraz (örneğin %45 yoğunluğundaki 100 cc sirke asidine 5gr ) saf carmin ekleyin ve dar boyunlu bir cam kap içinde bir baget ile hafifçe kaynatınız. Çözelti soğuduktan sonra bunu bu filtre kağıdıyla süzünüz ve damlalıklı şişelerde saklayınız. Filtre kağıdında kalan kısmını tekrar kullanılabilir. Karmin-sirke asidini ağzı iyice kapanan şişelerde uzun zaman bozulmadan saklanabilir.LABORATUVARDA KULLANILAN BAZI FİZYOLOJİK SIVILARBasit tuz eriyiği: Kurbağa için Memeliler için NaCl...............................6,5 gr. NaCl...............................8-9 gr.Saf su .............................1000 cm3 Saf su .............................1000 cm3 Ringer eriyiği Kurba ğa için Memeliler için Saf su ..........................1000 cm3 Saf su ..........................1000 cm3NaCl ..................................6gr NaCl.............................. 9gr CaCl2 .............................. 0,2gr CaCl2 .............................0,2grKCl................................... 0,2 gr KCl ................................ 0,2grNaHCO3...........................0,1 gr NaHCO3 ...........................0,1gr NORMALİTE-MOLARİTENormalite: Çözeltinin litresindeki eşdeğer gram sayısıdır.Molarite : Çözünmüş maddenin, çözeltinin litresindeki mol veya formülgram sayısına denir ve M ile gösterilir.Konsantrasyon:Çözelti veya çözgenin belirli bir miktarındaki çözünmüşmadde miktarına denir. Bu miktarlar amaca uygun değişikbirimlerle ifade edilebilir.Yüzdesel konsantrasyon: Çözelti veya çözgenin 100 cc veya 100 gramındaki çözünmüş madde miktarıdır. Bir çözeltinin yüzdesi verildiğinde, genel olarak o çözeltinin 100 gramındaki madde miktarı anlaşılır.Çözücü : Saf halde bulunan çözücü ( Su, alkol, aseton ). Çözelti: Çözünen madde + çözücü

http://www.biyologlar.com/histoloji-laboratuvarda-kullanilan-bazi-cozeltiler-1

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi

Kene İle Bulaşan Hastalıklar

ÖZET Parazitlerin neden olduğu hastalıklar önemli sağlık problemidir. Endoparazit ve ektoparaziter hastalıklar mevcuttur. Kenelerle bulaşan hastalıklar en sık görülen vektör kaynaklı hastalıklardır. Keneler bakteri, virüs spiroket, protozoa, nematod ve toksinler gibi patojenleri yayabilir ve böylece ektoparaziter kaynaklı hastalıklara sebep olurlar. Ülkemizde keneler için iklim koşulları, bitki örtüsü ve yüzey şekli bakımından uygun koşullar vardır. Bu makalemizde kenelerle bulaşan hastalıkları özetlemeye çalıştık. SUMMARY Paraziter diseases are important medical problems.There are endoparasitic and ectoparasitic diseases. Tick-borne diseases are the most common vector-borne illnesses. Ticks can spread bacteria, viruses, spiroketia, protozoa, nemadot and toxins and by so they made ectoparasitic diseases. Our country has suitable conditions to continue biologic activity of ticks acording to seasons, plants and surface forms. In this article we have tried to summary tick-borne diseases. İrfan Nuhoğlu1, Murat Aydın1, Süleyman Türedi2, Abdülkadir Gündüz2, Murat Topbaş3 1KTÜ Tıp Fakültesi İç Hastalıkları Anabilim Dalı, 2Acil Tıp Anabilim Dalı, 3Halk Sağlığı AD, Trabzon. Anahtar Kelimeler: Kene, Kırım- Kongo Kanamalı Ateşi, Lyme Hastalığı. Key words: Tick, Crimean-Congo Haemorhagic Fever, Lyme disease. Sorumlu yazar/ Corresponding author: İrfan Nuhoğlu, KTÜ Tıp Fakültesi İç Hastalıkları AD, Trabzon irfannuhoglu@hotmail.com GİRİŞ Parazitlere bağlı hastalıklar günümüzde önemli sağlık problemlerindendir. Bu durum endoparazitlerden kaynaklanabileceği gibi; kene gibi ektoparazitlerden de kaynaklanır (1). Keneler tüm dünya üzerindeki memeli, kuş ve sürüngenlerden kan emen eksternal parazitlerdir (2). Keneler Araknidea sınıfına ait artropodlardan olup balıklar dışındaki tüm omurgalıların kanlarıyla beslenebilirler. Dünya üzerinde omurgalıları etkileyen 899 adet kene türü mevcuttur. Bunların 185’i Argasidae, 713’ü İxodidae, 1 tanesi ise Nuttalliellidae soyuna bağlıdır (5,6). Bakteri, spiroket, rickettsia, protozoa, virüs, nematod ve toksinler gibi birçok farklı patojeni taşıyabilir ve yayabilirler (3). Tıbbi ve ekonomik önemleri insanlara ve hayvanlara hastalık bulaştırabilme kabiliyetlerinin olduğunun fark edilmesiyle anlaşılmıştır. İnsanlar üzerinde oluşturdukları önemli sağlık sorunları yanında çiftlik hayvanları üzerinde büyük ekonomik kayıplara neden olabilirler. Türkiye; iklimi, yüzey şekli ve bitki örtüsü bakımından, kenelerin biyolojik aktivitelerini sürdürmeleri için uygun koşullara sahip bir ülkedir (7-9). Günümüze kadar kullanılan hiçbir mücadele yöntemi, tam bir kene eradikasyonu sağlayamamıştır. Bugünkü bilgiler ışığında kene eradikasyonunun neredeyse imkânsız olduğu kabul edilmektedir. KIRIM KONGO KANAMALI ATEŞİ (KKKA) KKKA Afrika’nın bazı bölgelerinde, Asya, Doğu Avrupa ve Orta Doğu’da görülen ölümcül bir viral enfeksiyondur (10,11). Bildirilmiş mortalite oranı % 3-30 olan bu hastalığa neden olan virüs Bünyavirüs ailesinden Nairo virüs genusuna bağlı olup; insanda ciddi hastalığa neden olur (11-12). Tıbbi olarak önemi kene ile taşınan virüsler arasında en yaygın coğrafi dağılıma sahip olmasıdır(13). Hastalık ilk kez 12.yy’da bugünkü Tacikistan topraklarında hemorajik bir sendrom olarak tanımlanmıştır (10). KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden 200 Sovyet askerinde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda gösterildi (10,11). Virüsün yaşam çevrimi ‘kene-omurgalı-kene’ şeklinde olup; hayvanlarda hastalık yaptığına dair bir delil yoktur (11). Virüsler Hyalomma genusu keneleri ile taşınır. TAF Preventive Medicine Bulletin, 2008: 7(5) 462 Resim 1. Türkiye’de Kırım Kongo Kanamalı Ateşi Vakalarının Dağılımı Enfekte anneden yumurtaya transovarial; larvanymph- erişkin şeklinde transstadial olarak geçiş gösterirler. Virüsün Avrupa’daki ana taşıyıcısı Akdeniz hyalomması olarak bilinen H.marginatum marginatum’dur (10,11). Komşu bazı ülkelerde 1970’lerden beri epidemiler bildirilmesine rağmen Türkiye’de virüsle enfekte vakalar ilk kez 2002 yılında bildirilmiştir. 2002-2005 yılları arasında Sağlık Bakanlığı’na 500 vaka bildirilmiş ve bunların 26’sı (% 5,2) ölmüştür (Resim 1) (13-16). Türkiye’de ki salgında vakaların % 90’ı çiftçilerdi (13,14). İnsan vücudu; enfekte kenelerin ısırması ile veya hasta olan bir kişiyle enfeksiyonun akut fazı sırasında temas ettikten sonra enfekte olabilir. Ayrıca içinde virüs bulunan kan ve dokularla temastan sonra geçiş olabilir. Hastalığın ortaya çıktığı insan vücudu virüsün bilinen tek konağıdır (17). Hastalığın seyrinde 4 faz vardır: 1. İnkübasyon fazı kene ısırığını takiben 3-7 gündür (18). Bu dönemde herhangi bulgu vermez. Türkiye’de 5,5 gün olan bu fazın süresi viral doz ve bulaşma yoluna bağlıdır (12). 2. Prehemorajik faz; ani yükselen ve 39-41 derece arasında seyreden ateşle karakterizedir. Ateş 4-5 gün sebat eder(10). Baş ve kas ağrısı, baş dönmesi, ishal, burun akıntısı ve kusma olabilir (19).Yüz boyun ve göğüste hiperemi, skleral konjesyon, konjuktivit görülebilir. 1-7 gün sürebilen bu fazın ortalama süresi 3 gündür(10). 3. Hemorajik faz; genellikle 2-3 gün gibi kısa sürer. Genellikle hastalığın 3-5. günlerinde başlar ve hızlı bir seyir gösterir. Bu dönemin ateşle herhangi bir ilişkisi yoktur (10). Hemoraji peteşiden başlayarak, müköz membran ve derideki büyük hematomlara kadar ilerleyebilir. Diğer bölgelerden kanamalar vajen, diş eti ve serebral kanamaları içerir(20). En sık kanayan bölgeler ise burun, GİS (hematemez, melena ve intraabdominal), genital (menometroraji), idrar (hematüri) ve solunum yollarıdır. Türkiye’de vakaların % 20-40’ında hepatomegali; % 14-23’ünde ise splenomegali bulunur (15). 4. Konvalesan faz hastalık başlamasıyla beraber 10-20 gün içinde başlar. Bu dönemde değişken nabız, taşikardi, komplet saç kaybı, polinörit, solunum zorluğu, kserostomi, görme azlığı, işitme kaybı, hafıza kaybı olabilir(10). Tanıda trombositopeni, lökopeni, AST-ALT-LDHCKP düzeylerinde artış, PT ve aPTT sürelerinde uzama, fibrinojen düzeyinde azalma ve fibrin yıkım ürünlerinde artma görülebilir. CBC ve Biyokimyasal testler 5-9 günde normal seviyelerine inerler (21). Virüs izolasyonu 2-5 günde sağlanabilir ama hücre kültürleri sensitiviteden yoksundur ve genellikle hastalığın ilk 5 gününde karşılaşılan yüksek viremi ilişkisini gösterir (22). KKKA virüs enfeksiyonunun hızlı laboratuar teşhisi için seçilecek metot Revers Transkriptaz PCR’dir. Bu yöntem hızlı, yüksek sensitif ve yüksek spesifiktir (23). Hastalık ortaya çıktıktan sonra ilk 7 gün içinde İg M ve İg G TAF Preventive Medicine Bulletin, 2008: 7(5) antikorları serolojik olarak ELİSA ve İmmünfloresan yöntemi ile tespit edilebilir(24). Tedavinin temeli; trombosit, TDP ve eritrosit ile yapılan destekleyici tedaviye dayanır. Hastada potansiyel kanama alanları tespit edilmeli ve bulaştırma riski için koruyucu önlemler alınmalıdır. Sıvı elektrolit dengesine dikkat edilmelidir. Etki mekanizması açık olmamakla beraber Ribavirin tavsiye edilen antiviral ajandır. Bu ilacın akut respiratuar sendrom tedavisinde kullanımına bağlı hemolitik anemi, hipokalsemi ve hipomagnezemi yan etkileri bildirilmiştir (25,26). ROCKY DAĞLARI BENEKLİ ATEŞİ (RDBA) Amerikan Köpek Kenesi (Dermecentor variabilis) ile taşınan bakteriyel (Ricketsia ricketsii) bir enfeksiyondur (27). Kan damarlarının endoteliyal ve düz kas hücrelerini etkileyen küçük, pleomorfik,zorunlu hücre içi parazitidir. Hastalık Amerika’nın kuzeybatısında ilk kez 19.yy ın sonlarında tanımlanmıştır. Hastalık etkeni ajan ise 1900’lü yılların başlarında Howard Ricketts tarafından tanımlanmıştır (28). İnsandan insana geçiş tanımlanmamıştır (29). Hastalık kuzey, orta ve güney Amerika da endemiktir. İsmine rağmen yıllık vakaların sadece % 2’si Rocky dağları bölgesinde görülür (27). 5-9 yaşlarındaki çocuklar ve 60 yaşın üstündeki erişkinler olmak üzere iki tepesi olan bimodal yaş dağılımına sahiptir. 1998 yılında 365 vaka bildirilmiştir (29). Çoğu vaka 1 Mayıs-31 Temmuz arasında bildirilir ki bu dönem köpek kenesi populasyonunun en yüksek seviyede olduğu dönemdir. Hastalık çoğunlukla vahşi hayvan ve kenelerin birlikte bulundukları alanlarda ortaya çıkar. İmmatür evrelerde keneler tarla faresi gibi küçük kemirgenler üzerinde; erişkin olanlar ise insan ve köpek gibi daha büyük canlılar üzerinde yaşarlar (27). Ricketsia ile enfekte olan hastalar genellikle ısırık sonrasındaki 5-10 günlük bir inkübasyon periyodunu takiben hastalık ortaya çıktıktan sonraki ilk hafta içinde doktora başvururlar (30). Hastalık; ateş, bulantı, kusma, iştahsızlık, baş ve kas ağrısını içeren başlangıç belirtileri verir (27,31). Ateşin 2-5’ inci gününde önkol, el ve ayak bileği üzerinde küçük, düz, pembe ve kaşıntısız noktalar şeklinde benekli bir döküntü gelişir (30,31). Bu benekler üzerlerine basınç uygulandığında solarlar. Hastalığa ait bu karakteristik döküntü genellikle 6. güne kadar ortaya çıkmaz ve hastaların % 35-65 inde görülür (31,32). Döküntü genç hastalarda yaşlılara göre daha erken gelişir (30). Döküntü daha sonra avuç içi ve ayakaltı dâhil vücudun geri kalan bölümlerine yayılır (27). Bu durum ise hastaların % 50-80’ inde ve ancak geç evrelerde görülebilir. Hastaların % 10-15’ inde ise hiçbir zaman döküntü gelişmez (30,31). Temel laboratuar testlerinde normal veya hafifçe baskılanmış WBC, trombositopeni, yükselmiş karaciğer transaminazları ve hiponatremi bulunur. BOS incelendiğinde monosit hâkimiyeti olan bir beyaz küre artışı tespit edilir (31,32). Hastalığın ensefalit, non kardiyojenik pulmoner ödem, ARDS, kardiyak aritmiler, koagülopati, GİS kanaması ve deri nekrozunu da içeren major komplikasyonları vardır. Eğer tedavi edilmezse 8-15 gün içerisinde ölüm gerçekleşebilir. Mortalite oranı tedavi edilmemiş vakalarda % 25; tedavi edilmiş vakalarda % 5 olarak rapor edilmiştir (28). Tanı öykü ve fizik muayeneye dayanır. Eğer döküntü mevcut ise rickettsial organizma deriden yapılan biyopsideki vasküler endotel içinde direk immünofloresan veya immünoperoksidaz boyama yöntemiyle tespit edilebilir (31,33). Ama bu yöntem çok sık kullanılmamaktadır (34). Seroloji tanıyı destekleyebilir ancak bu da hastalığın ortaya çıkışından 7-10 gün sonra pozitifleşir (31). Mümkün olan en kısa sürede antibiyotik tedavine başlamak önemlidir (27,35). Tetrasiklin ve kloramfenikol tedavide etkindir. Bazı hastalarda doksisiklin birinci tercihtir. Tedavi en az 5-7 gün devam etmeli veya hasta en az iki gün afebril olana kadar sürmelidir (31,36). Ölümlerin çoğu medikal tedavideki gecikme nedeniyledir. Hastalık erken fark edilip tedavi edilirse hızlı bir düzelme gösterir (27). LYME HASTALIĞI Kalp, eklem ve sinir sistemini de içeren; ciddi problemler oluşturabilen Lyme hastalığı siyah bacaklı olarak adlandırılan geyik kenesi (İxodes scapularis) ile taşınan bir bakteriyel hastalıktır (27). Sıcaklık 35 Fahrenheit üzerinde olduğu sürece tüm yıl boyunca aktif kalabilirler. Zirve aktivite ayları nymphler için Mayıs-Haziran; erişkinler için ise Ekim-Kasım aylarıdır. Borelia burgdorferi adlı spiroketin neden olduğu Lyme hastalığı hem ABD de hem de dünyada kene ile taşınan en yaygın hastalıktır (28,35,36). Birleşik devletlerde ilk kez 1975 yılında Connecticut’ta bulunan Lyme bölgesinde çok fazla sayıda çocukta görülen artrit vakaları sonucunda bildirildi (26). Borelia hastalığa neden olan ajan olarak 1980’li yılların başlarında izole edilebilmiştir (33). Hastalığın 15 yaş gençlerde ve 29 yaşlarda olan iki tepeli bimodal bir yaş dağılımı vardır ve birçok vaka Mayıs-Eylül döneminde meydana gelir. ABD’de TAF Preventive Medicine Bulletin, 2008: 7(5) 464 1999 yılında hastalık kontrol ve korunma merkezine (CDC) 16273 vaka rapor edilmiştir (37). ABD’de ki araştırmalar kenelerin Lyme hastalığını nymph evresinde beslenmenin 2 ya da daha sonraki günlerinde naklettiklerini göstermiştir (26). Bu evrede 2 mm den küçük olduklarından sıklıkla fark edilmezler; beslenmek ve enfeksiyonu yaymak için fazla zamanları vardır. Erişkin keneler ise daha büyük olduklarından fark edilmeleri ve vücuttan uzaklaştırılmaları daha kolaydır. Kene uygun teknikle erken dönemde çıkarılırsa enfeksiyonu yayma şansı çok azdır (26). Lyme hastalığının 3 evresi bunlunur: 1. Erken lokalize evrede; kene ısırığını takiben günler içinde (7-14 gün) hastaların % 60-80 inde Eritema Cronicum Migrans adı verilen kırmızı, yavaşça genişleyen boğa gözü şeklinde döküntü meydana gelir (34,30). Isırık etrafında küçük, kırmızı bir papül olarak başlar; günler içerisinde merkezden dışa doğru genişler. Lezyonun merkezinde hiperemik, deriden kabarık bir beneklenme kalabilir ve ortalama çapı 16 cm olan lezyonun çapı bazı vakalarda 70cm’ye kadar ulaşabilir. Döküntü ile beraber yorgunluk, kas ağrısı, eklem ve baş ağrısı, ateş ve üşümeyi içeren sistemik semptomlar olabilir. Fizik muayenede boyun sertliği, bölgesel adenopati ve ısırık bölgesinden bağımsız bölgelerde, primer lezyondan daha küçük sekonder deri lezyonları görülebilir. Eğer tedavi edilmezse genellikle birkaç haftadan daha uzun bir sürede kendiliğinden iyileşir (34,35). 2. Hastalığın erken dissemine formu kene ısırığını takiben günler-aylar içinde birçok sistemi de içeren semptomlarla ortaya çıkar. Birçok hasta kene tarafından ısırılıp ısırılmadığını hatırlamaz. Hastalarda eritema kronikum migrans olmayabilir. Lenfositik menenjit, sıklıkla Bell palsi gibi kraniyel sinir palsileri, azalmış duyu, güçsüzlük ve refleks yokluğunu da içeren nörolojik semptomlar olabilir (5- 2). Kardiyak semptomlar çoğunlukla erkeklerde olur, bitkinlik ve çarpıntı şeklinde ortaya çıkar. Çeşitli derecede atriyoventriküler bloklar ve orta derecede peri/miyokardit olabilir. Artrit genelde geç ortaya çıkar ama bu evrede de görülebilir. Bölgesel veya jeneralize adenopati, konjonktivit, iritis, hepatit ve mikroskopik hematüri veya proteinüri görülebilir (32,34,35) 3. Hastalığın geç evresi sıklıkla kronik artritle karakterizedir. Bu durum tedavi edilmemiş eritema migransı olan hastaların yaklaşık % 10 unda meydana gelir. Büyük eklemleri özellikle de diz eklemini içeren mono veya asimetrik oligoartriküler artrit olarak tanımlanmıştır. Nörolojik sistem subakut ensefalopati, aksonal polinöropati ve lökoensefalopati şeklinde etkilenebilir. Geç bulgular genelde birkaç yıl içinde spontan olarak iyileşir (30,32). Teşhis edilmesi zor bir hastalıktır (38).Tanı, öykü ve fizik muayeneye dayanır. Rutin laboratuar testleri tanıda rolü azdır. Seroloji testleri tanıyı doğrular ancak hastalığın ortaya çıkmasından 4-6 hafta sonrasına kadar tanı değerleri yoktur (30). ELİSA testi % 89 sensitif, % 72 spesifiktir. Pozitif test sonuçları Western Blot ile desteklenmelidir. PCR özellikle etkilenmiş eklemlerden alınan eklem sıvılarında yararlıdır (40). Eğer nörolojik bulgular varsa BOS’tan çalışma yapılabilir. Sinoviyal sıvı artritin ayırıcı tanısını yapmak için alınır. Organizmanın doku ve vücut sıvılarından izolasyonu çok zordur (31). Hastalığın sahip olduğu ciddi sekel potansiyeli nedeniyle erken tanı ve tedavi önem taşır. Ciddi vakalarda parenteral antibiyotikler gerekir. Erken dönemde yakalanırsa oral antibiyotiklerle tedavi edilebilir(26). Amoksisilin ve doksisiklin 2-3 hafta süre ile tedavide tercih edilir. Komplike olmayan vakalarda tedavi en az 14-21 gün; ciddi veya komplike vakalarda 30 gündür (41). Hastalık nadir görülür ama oldukça fatal seyreder (30). 1998 yılında Amerikan Gıda ve İlaç Dairesi hastalıktan korunma da kullanılmak üzere ilk kez bir aşıya onay verdi. Rekombinant OspA (LYMErix) aşısı üzerindeki iki çalışma aşının semptomatik enfeksiyondan korunmada % 76-92 arasında etkili olduğunu göstermiştir. Aşı keneye maruziyet açısından yüksek veya orta riskli kişilere önerilmiş, düşük riskli veya risksiz olan kişilere, 15 yaşından gençlere, 70 yaşını geçmiş yaşlılara ve yeterli çalışma olmamasından dolayı hamilelere önerilmemektedir (42). ERLİKİYOZ Hastalık küçük, gram-negatif, pleomorfik, zorunlu hücre içi bir organizma olan Ehrlichia tarafından oluşturulur. ABD’ de Ehrlichia chaffeensis ve Ehrlichia ewingii’ nin neden olduğu İnsan Monositik Erlikiyozu (İME) ve henüz isimlendirilmemiş bir ehrlichia türünün, muhtemel Ehrlichia phagocytophila/Ehrlichia equi’nin neden olduğu İnsan Granülositik Erlikiyozu (İGE) olmak üzere iki farklı formu vardır (43). Ehrlichia chaffeensis yıldız kenesi olan Amblyomma americanum tarafından taşınır. Beyaz kuyruklu geyik bu kenenin tek major konağıdır ve tek doğal rezervuardır (35). Hastalık ilk kez 1935 yılında bir grup araştırma köpeğinde tespit edildi. 1986 yılında insanda tanımlandı. Dünya çapında yaygın bir hastalık TAF Preventive Medicine Bulletin, 2008: 7(5) olmasına rağmen vakaların çoğu ABD’ de bildirilmektedir. Her iki türün de çoğu vakası Nisan- Eylül döneminde görülür. Vakaların % 75’ten fazlası erkeklerde görülür ve yaşlılar daha sık etkilenir. Klinik her iki türde de birbirine benzer. Hastalar kene ısırığı sonrası 7-10 günlük bir inkübasyon periyodunu takiben hastalanmanın ilk haftası içinde sağlık kuruluşuna başvururlar. Belirtiler ateş, baş ağrısı, kırgınlık ve kas ağrısıdır. Buna ek olarak bulantı, kusma, ishal, öksürük, eklem ağrısı, konfüzyon ve vucutta döküntü olabilir (35). Döküntü; İME olan erişkin hastaların yarısından biraz azında; İGE olan erişkin hastaların ise % 10’ undan biraz azında görülür. Bununla beraber enfekte çocuk hastaların % 60’ında döküntü görülmeyebilir. Döküntü gövdeyi içerir ama elleri ve ayakları tutmaz ve ısırık bölgesiyle ilişkili değildir. Maküler, papüler, retiküler, makülopapüler veya peteşiyel şekillerde olabilir. İGE de respiratuar veya renal yetersizlik, fırsatçı enfeksiyonlar veya hemoraji(DİC) gibi komplikasyonlar çok sık görülür (29). Laboratuar bulguları ise lökopeni, trombositopeni ve artmış karaciğer transaminazlarından oluşur. İGE de orta derecede bir anemi; hem İGE hem de İME de artmış ESR, BUN, kreatinin; İME de ise yükselmiş protein düzeyi ve lenfositik pleositozu olan BOS bulunabilir (44). Tanı öykü, fizik muayene ve laboratuar bulgularına dayanır. Seroloji tanıyı destekler ancak 1-2 haftada pozitifleşir. PCR da tanıyı destekler ancak akut safhada yapılmalıdır. Kültürler yararlı değildir. Tanıdaki temel metot konvelasan evredeki serokonversiyonun tespitidir. Tedavide tercih edilecek ilaç Doksisiklin’dir. Alternatif olarak kloramfenikol ve rifampin kullanılabilir. Tedavi süresi en az iki hafta olmalıdır. Tedavi edilmediği zaman tüm hasta grubunun % 50 sine varan bir oranda hospitalizasyon gerektiren ciddi bir hastalık oluşabilir. Uzamış ateş, böbrek yetersizliği, DİC, ARDS, meningoensefalit, nöbet veya koma şeklinde ciddi manifestasyonlar olabilir. Öngörülen mortalite oranı % 2-3 dür ve E.chaffeensis tarafından oluşturulan enfeksiyon diğer erlikiyoz türlerinden daha ciddidir (35). TULAREMİ Tularemi; küçük, gram negatif, hareketsiz bir kokobasil olan Francisella tularensis tarafından oluşturulan enfeksiyöz bir hastalıktır. Hastalık aynı zaman da Tavşan ateşi olarakta bilinir. İnsanlara sindirim, inokülasyon, inhalasyon ve kontaminasyon yollarıyla bulaşabilir. Amerika ‘da vakaların yarısından fazlasında kene ısırığı sorumludur (31). Her yıl bu ülkede 150-300 arasında vaka rapor edilir. Hastalık erkeklerde sık görülür. Özellikle kış aylarında avcılıkla uğraşanların derilerideki küçük lezyonların avlanan enfekte tavşanla teması ile bulaşır. Yaz ve sonbahar mevsimlerinde zirve yapar (45). İyi pişmemiş enfekte etler ve kontamine sular da bulaşma nedenidir. İnkübasyon periyodu ortalama 3-5 gündür. Birçok hastada ateş, üşüme, baş ağrısı, kırgınlık, anoreksi, yorgunluk, öksürük, kas ağrısı, göğüste rahatsızlık hissi, kusma, karın ağrısı ve ishali de içeren generalize semptomlar bulunur. Bunlara ek olarak hasta 6 farklı klasik modelden biriyle gelebilir: 1. Ülseroglandüler model: en sık görülen ve en kolay fark edilendir. Hastalar içerdiği lenf bezlerine drene olan bölgedeki ağrılı deri ülseriyle beraber olan, lokalize, hassas lenfadenopatilerden sikayetçidirler. En sık tutulan lenf bezleri çocuklarda servikal ve oksipital; erişkinlerde inguinal bölgede olanlardır. 2. Glandüler tip ise ülseroglandüler tip ile benzerdir ama bunda deri ülseri yoktur. 3. Oküloglandüler tipte organizmalar konjonktivaya yerleşmişlerdir. Vakaların % 90’ında tek taraflı tutulum olur. Fotofobi ve artmış lakrimasyonu içeren erken belirtiler vardır. Geç dönemde hastalarda göz kapağı ödemi, skleral enjeksiyonu olan ağrılı konjonktivit, kemozis ve küçük yeşil konjonktival ülser veya papül gelişir. Priaurikülar, submandibular ve servikal bezler sıklıkla tutulur. 4. Faringeal tipte ise organizmalar orofarinkse yerleşmişlerdir. Ciddi boğaz ağrısı bulunur. Fizik muayenede eksudatif farenjit veya tonsilit; servikal, preparotit veya retrofarengeal lanfadenopati bulunabilir. 5. Tifoid model ise herhangi bir lenfadenopati ile ilişkili değildir. Diğer tiplerde belirtilen genel semptomlara ek olarak burada sulu ishal vardır. 6. Pnömonik tip ise akut respiratuar bir hastalık olarak ortaya çıkar. Belirtiler ateş, minimal balgamlı veya balgamsız öksürük, substernal göğüs hassasiyeti ve plörotik göğüs ağrısından oluşur. Radyografilerde lobar, apikal veya miliyer infiltrasyonlar, hiler adenopati ve plevral efüzyon bulunabilir (45). Tanı; hikâye ve fizik muayeneye dayanır. Laboratuar testleri genellikle spesifik değildir. WBC ve ESR düzeyleri normal yâda hafif yüksektir. Organizma kültürde üretilebilir ama bu yöntem laboratuar çalışanlarına bulaşma riskinden dolayı sıklıkla kullanılan bir yöntem değildir. Göğüs radyografilerinde oval opasite, hiler adenopati ve plevral efüzyon triadından oluşan bulgular olabilir. Seroloji yaklaşık iki haftalık bir süre içinde tanıyı destekler (31). TAF Preventive Medicine Bulletin, 2008: 7(5) 466 www.korhek.org Hastada menenjit düşünülmüyorsa streptomisin ilk seçilecek ilaçtır. Alternatif olarak gentamisin, tetrasiklin, kloramfenikol ve florokinolonlar düşünülebilir. Tedavi 7-14 gün sürmelidir. Korunmada canlı aşı mevcuttur ve laboratuar çalışanları ve patojene tekrarlayan maruziyeti olan kişilere uygulanabilir. BABESİYOZ Hastalık etkeni eritrositleri enfekte eden ve hemolizlerine neden olan Babesia genusuna ait protozoal bir parazit olan Babesia divergens veya Babesia microti’ dir. Hastalık geçişi İxodes kenelerinin farklı türleri ile olur. Etken geyik kenesi ile taşınır (46). Hastaların % 5 kadarında fulminan seyrederek hospitalizasyon veya ölümle sonuçlanan bir tablo oluşturur. Özellikle splenektomi yapılmış hastalarda ciddi hastalık tablosu oluşturur. Tripanozoma’dan sonra memelilere kan yoluyla bulaşan en sık ikinci parazittir (47). Semptomlar diğer kene ile geçen hastalıklara benzer ve inokülasyondan bir hafta sonra başlayan influenza benzeri belirtiler verir. Ateş, terleme, kas ağrısı ve baş ağrısı görülür. Hemolitik anemi, hemoglobinüri, böbrek yetersizliği yapabilir. Enfeksiyon genç erişkinlerde yıllarca asemptomatik olarak kalabilir (46). Nadir de olsa oftalmik tutulum olabilir. Hastada ateş, hemolitik anemi ve uygun temas öyküsü varsa babesiyoz düşünülebilir. Tanı kan yaymalarda protozoanın tespitine dayanır. Karakteristik olarak Malta Haçı görünümü vardır. Serolojik testler ve PCR yardımcı yöntemleridir. Orta derecedeki vakalar semptomatik tedavi gerektirir. Persistan yüksek ateş, progresif anemi, yükselen parasitemi olan ciddi vakalarda Kinin+Klindamisin veya Atovaquon+Azitromisin en az 7-10 gün boyunca kullanılmalıdır. Yüksek parasitemisi olan ciddi hastalarda exchange transfüzyon yapılabilir (46). KOLORADO KENE ATEŞİ Hastalık bir ağaç kenesi olan D.andersoni tarafından nakledilen RNA orbivirus tarafından oluşturulur. Çoğunlukla Amrikadaki Rocky dağları bölgesinde her yıl 200-300 arasında vaka tespit edilir. İmmün yetmezliği olan ve splenektomi geçirmiş olan hastalar ciddi komplikasyonlar açısından risk altındadır (46). İnokülasyondan sonra bir hafta içinde influenza benzeri semptomlar başlar. Hastaların üçte birinde boğaz ağrısı bulunur. En önemli özelliği; menenjit, döküntü ve konjuktivit ile ilişkili olan bifazik ateştir. Hastalık genellikle 7-10 gün arasında sonlanır. Tanı genellikle immünfloresan boyama ile konur. Bununla beraber lökopeni ve trombositopeni bulunabilir. Spesifik bir tedavi yoktur. Destek tedavisi verilir. Belirtiler ortaya çıkmışsa diğer kene geçişli hastalıkları kapsayan ampirik olarak tetrasiklin, doksisiklin veya kloramfenikol kullanılabilir. DÖNEK ATEŞ Hastalığa Borrelia genusundan bir spiroket neden olur. Ornithodoros genus keneler esas vektördür. Tipik olarak hastalık sporadiktir (48). Ortalama inokülasyon periyodu bir haftadır. İnfluenza benzeri semptomlar, artralji, bulantı ve kusma olur. Genellikle 40 derecenin üzerinde, düzensiz ve bazen deliryumla ilişkili ateş olabilir. Hastaların çoğunda splenomegali bulunur. Meningeal bulgular olabilir. Epistaksis hemoptizi, iridosiklit, koma, kraniyel sinir palsi, pnomonit, miyokardit ve dalak rüptürünü içeren komplikasyonlar olabilir. Tanı; kan, kemik iliğinde ve ateş epizotu sırasında BOS’da spiroketin tespitiyle konulabilir. Lökosit sayısı normal veya orta derecede artmıştır. Trombositopeni tespit edilebilir. Tedavide 5-10 gün boyunca doksisiklin tercih edilir. Alternatif olarak eritromisin kullanılabilir. Eğer ilaçlar geç febril evrede verilirse Jarisch- Herxheimer reaksiyonu meydana gelebilir. Antibiyotik tedavisinin öncesi ve sonrasındaki 2 saatlik periyotlarda asetaminofen uygulanması reaksiyonun ciddiyetini azaltabilir. KOMBİNE ENFEKSİYONLAR Aynı kene birden fazla enfeksiyöz patojende taşıyabilir. Bundan dolayı bir ısırıkla birden fazla hastalığı bulaştırabilir. Örneğin İ.scapularis; erlikiyoz, lyme hastalığı ve babesiyozu bulaştırabilir. Lyme hastalığı bulunanların % 23’ünde babesiyoz; % 10-30 unda erlikiyoz bulunur. Kombine enfeksiyonların daha ciddi semptomlar oluşturacağı akılda bulundurulmalıdır. KAYNAKLAR 1. Rajput ZI, Hu S, Chen W, Arıjo AG, Xiao C. Importance of ticks and their chemical and immunological control livestock. Journal of Zhejiang University. 2006; 7(11): 912-921. TAF Preventive Medicine Bulletin, 2008: 7(5) www.korhek.org 467 2 Furman DP, Loomis EC. The ticks of California (Ascari: Ixodida). University of California Publications. Bulletin of the California Insect Survey. 1984; 25: 1-239. 3. Edlow JA, Danzl D, Halamka J, Pollack VC. Tick- Borne Diseases. www.eMedicine.com. 4. Snelson JT. Animal ectoparasites and disease vector causing major reduction in world food supplies. FAO Plant Prodection Bulleton. 1975; 13: 103-114. 5. Barker SC, Murrell A. Systematics and evolution of ticks with alist of valid genus and species names. Parasitology. 2004; 129(7):15-36. 6. Klompen JSH, Black WC, Keirans JE, Oliver JH. Evolition of tiks. Annu Rev Entomol. 1996; 41(1): 141-161. 7. Güler S, 198. Ankara ve civarındaki koyun ve keçilerde kış ixodidaeleri üzerine araştırmalar. U. Ü. Vet. Fak. Derg. 1 :54-55. 8. Güler S, Özer E, Erdoğmş SZ, Köroğlu E, Bektaş İ. Malatya ve bazı Güneydoğu Anadolu illerinde sığır, koyun ve keçilerde bulunan kene türleri. Doğa-Tr. J. Of Veterinary and animal Science. 1993; 17: 229-231. 9. Karaer Z, Yukarı BA, Aydın L. Türkiye keneleri ve vektörlükleri. Parazitolojide Andropod Hastalıkları ve Vektörler. İzmir, Türkiye. Parazitoloji Derneği Yayın No: 13, 1997, p. 363-434. 10. Hoogstraal H. The epidemiologymof tick borne Crimean-Congo hemorrhagic fever in Asia, europe and Africa. J Med Entomol 1979; 15: 307- 417. 11. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H. Crimean-Congo hemorrhagic fever. In:Monath TP, ed. The arboviruses: epidemiology and ecology, volume 2. Boca Raton, FL, USA:CRC Pres, 1988, p. 177-260. 12. Ergönül O, Celikbaş A, Dokuzoğuz B, Eren S, Baykam N, Esener H. The characteristicks of Crimean-Congo hemorhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin Infect Dis. 2004; 39: 285-89. 13. Ergönül Ö. Crimean-Congo haemorrhagic fever. The Lancet. 2006; 6: 203-214. 14. Kartı SS, Odabaşı S, Korten V, et al. Crimean- Congo hemorrhagic fever in Turkey. Emerg Infect Dis. 2004; 19: 1379-84. 15. Ozkurt Z, Kiki I, Erol S, et al. Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect. 2006; 52: 207-15. 16. Türkiye’de KKKA yayılım haritası. www.tvhb.org.tr 17. Whitehause CA. Crimean-Congo hemorrhagic fever. Antivir Res 2004; 64: 145-60. 18. Swanepoel R, Gill DE, Shepherd AJ, et al. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 794-800. 19. Smego RA, Sarwari AR, Siddiqui AR. Crimean- Congo hemorrhagic fever: Prevention and control limitations in a resource poor country. Clin Infect Dis. 2004; 38: 1731-35. 20. Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean- Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36: 120-32. 21. Ergönül O, Celikbaş A, Baykam N, Eren S, Esener H, Dokuzoğuz B. Analysis of the mortality among the patients with Crimean-Congo hemorrhagic fever virus infection. Clin Microbiol Infect (in press). 22. Burt FJ, Leman PA, Abott JC, Swanepoel R. Serodiagnosis of Crimean-Congo haemorhagic fever. Epidemiol Infect. 1994;113: 551-62. 23. Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean- Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996; 55: 190-96. 24. Ahephered AJ, Swanepoel R, Leman PA. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 801- 806. 25. Knowles SR, Phillips EJ, Dresser I, Matukas I. Common adverse events associated with the use of ribavirin for severe acte respiratory syndrome in Canada. Clin Infect Dis. 2003; 37: 1139-42. 26. Chiou HE, LiuCI, Buttrey MJ, et al. Advere effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest. 2005; 128: 263-72. 27. Ticks. www.co.franklin.oh 28. Walker DH, Raoult D. Rickettsia rickettsii and other spotted fever group rickettsiae (Rocky Mountain spotted fever and other spotted fevers). In: Mandel GL, Douglas RG, Bennett JE Dolin R, eds. Mandell, Douglas and Bennett’s Principles and practice of infectious diseases. 5th ed. Philadelphia. Churchill Livingstone, 2000, p. 2393-402. 29. Walker DH. Tick-transmitted infectious diseases in the United States. Annu Rev public Health 1998; 19: 237-69. 30. Tick information. www.cdc.gov. 31. Spach DH, Liles WC, Campbell GL, Quick RE, Anderson DE Jr, Fritsche TR: Tick-borne diseases in the United States. N Engl J Med. 1993; 329: 936-47. 32. Thorner AR, Walker DH, Petri WA Jr. Rocky mountain spotted fever. Clin Ifect Dis. 1998; 27: 1353-60. TAF Preventive Medicine Bulletin, 2008: 7(5) 468 www.korhek.org 33. Steeve AC. Lyme borreliosis. In: Kasper DL, Harrison TR: Harrison’s Manual of medicine.16th ed. New York: McGraw-Hill, 2005, p. 995-9. 34. Tick-borne diseases. www.aafp.org. 35. Centers for Disease Control and Prevention. Rocky Mountain spotted fever. Accessed online April 11 2005. at: www.cdc.gov. 36. Taege AJ. Tick trouble: overview of tick-borne diseases. Cleve Clin J Med. 2000; 67: 245-9. 37. Ticks. www.health.nsw.gov.au. 38. Centers for disease control and prevention. Lyme disease-United States, 1999. MMWR morb Mortal Wkly Rep. 2001; 50: 181-85. 39. Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, et al. The early clinical manifestation of Lyme disease. Ann Intern Med. 1983; 99: 76-82. 40. Beers MH, Berkow R. The Merck manual of diagnosis and therapy. 17th ed. Merck Research Laboratories. Whitehause Station, n.J, 1999. 41. Treatment of Lyme disease. Med Lett Drugs Ther. 2000; 42: 37-9. 42. Deborah SF. Prevent Tick bites: Prevent Lyme Disease. Rutgers Coperative extensions. 1992, FS637. 43. Belman AL. Tick-borne diseases. Semin Pediatr Neurol. 1999; 6: 249-66. 44. Fritz CL, Glaser CA. Erlichsis. Infect Dis Clin North Am. 1998; 12: 123-36. 45. Cox SK, Everett ED. Tularemia, an analysis of 25 cases. Mo Med 1981; 78: 70-4. 46. Bratton RL; Corey GR. Tick-Borne Diseases. www.aafp.org. 47. Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitology. 2000; 30: 1323-1337. Kaynak:TAF Preventive Medicine Bulletin, 2008: 7(5) Konu İle İlgili PDF formatını buradan indire bilirsiniz http://www.korhek.org/khb/khb_007_05-461.pdf

http://www.biyologlar.com/kene-ile-bulasan-hastaliklar

Sucul Bitkiler

SU BİTKİLERİ Sucul bitkiler karada yaşayanlar ile karşılaştırıldığında çeşitli stolojik, morfolojik ve anatomik farklılıklar göstermektedir.Ayrıca bu bitkilerin üreme şekilleri ve tiplerinin de değiştiği görülmektedir. Çeşitli su bitkileri türleri ile yaşadıkları susul ortam arasında doğrudan ilişki vardır.Örneğin Myriophyllaceae familyası üyeleri suya tamamen gömülmüş halde yaşadıkları halde su mercimekleri (lemna türleri )suyun üzerinde kalırlar.Nilüferler (Nymphea türleri) ise bir yandan rizom gövde ve kökleri ile çamura tutunurlar, geniş yaprakları ise su yüzeyinde yüzer. Su bitkileri yaşadıkları ortama uyabilmek için bazı morfolojik değişiklikler geçirmişlerdir.Kök , gövde veya yapraklar bazen ince lam veya iplik şekline dönüşebilir.Çiçekler ise çok küçük olup yalnızca bir tek üreme organı içeririler.İletim kanalları karadaki çiçekli bitkilere oranla azalmış ve daha az farklılaşma göstermiştir. Eğreltilerde yaprak ve kökler oldukça kısa bir gövdeye bağlanmışlardır.Çiçeklenmezler doğrudan yaprak veya gövde üzerinde gelişen sporlara sahiptirler.Sporlar gelişerek üzerinde mikroskopik üreme organı bulunan çok küçük boylu bitkiyi oluşturur.Döllenme olayından sonra tekrar yeni genç eğreltiler meydana gelir. Çiçekli bitkiler tipik olarak kök , gövde , yaprak ve çiçeklerden meydana gelmişlerdir.Çiçekler bitkinin eşeysel üreme merkezindedir.Erkek üreme organları ( etamin) polenleri oluşturur.Dişi üreme organları ise ovul içeren pistilden oluşmuştur.Bazı bitkiler biseksüel ( dişi ve erkek üreme organı taşıyan) çiçeklere sahiptirler.Bazıları ise yalnızca dişi ve erkek çiçekler taşırlar.Döllenen her ovul; tohumu, pistil ise meyveyi oluşturur.Tohumlar daha sonra yeni genç bitkiyi meydana getirir. Epidermis hücreleri klorofil taşırlar ve karbondioksit asimilasyonunda önemli rol oynar.Buna karşın hava organlarında epidermis hücrelerde klorofil bulunmaz ve bu organlarda stoma adı verilen delikler vardır.Böylece hava sirkilasyonu sağlanır. Su bitkilerinde hava dokuların (aerifer) bulunuşu önemli bir özelliktir.Boşluklu süngerimsi yapıdaki bu dokular şamandıra görevini görürler ve su altı organlarının yüzmesini temin ederler. Su altı organları bazen büyük ölçüde değişime uğrayarak özel şamandıra şeklini alırlar. Örneğin;Yaprak sapları ( petiol) veya nodüller arası kısımları şişkin şekilde olabilir ve köklerin zeminle irtibatı olmayabilir.Bazılarında farklı çeşit bir kaç kök bulunabilir. Yapraklar su içine gömülü, yüzücü veya su üstünde bulunabilirler.Aynı tür 2 veya 3 farklı çeşit yaprak tipini dalları üstünde taşıyabilir.Yaprakları su içinde veya dışında oluşlarına göre şekilleri , yapıları, dokuları farklılaşmalar gösterebilir.Su içindekiler çok ince yapılıdırlar.Dallanma gösterirler veya yassılaşmışlardır.Bazılarının membranları ince veya saydamdır.Yaprakların üst ve alt düzeyleri arasında farklılaşma olmayabilir klorofilli dokular her iki yüzeyde yer alırlar.Havada bulunan yapraklarda alt yüzeydeki epidermada stomalar bulunur.Böylece hava epidermis altındaki klorofilli dokulara ulaşır.Yüzücü yapraklarda ise iki yüzleri arasında farklılaşmalar olabilir.Örneğin;stomalar üst ve alt epidermada bulunan su ile temas etmesi nedeniyle alt yüzeyde havanın doku içine girmesi mümkün olmaz.Genellikle alt yüzeyler kırmızımtrak renktedir.Su bitkilerinde dahi çiçeklenme genellikle havada olur.Çiçekler su dışında açar ve döllenme kara bitkilerinde olduğu gibi gerçekleşir. Polenler rüzgar yoluyla veya böceklerle(Diptera) taşınır.Bazen ise su üstünde kayarak döllenmeyi sağlar.Bazılarında ise su içinde olur.Ancak döllenme çiçek açmadan gerçekleşir.( Kleistogami) SU BİTKİLERİNDE ÜREME Sucul bitkiler çiçeklenme ve döllenme yönünden gerçekten farklılaşmalar göstermişlerdir.Döllenme suda olur ve polenler bu ortamdaki yayılmaya uyum göstermişlerdir.Polen su içinde serbest hale geçer , dişi çiçeğin stigmasını bulana kadar su içinde gezinir. Döllenmeden sonra meyve oluşumu su içinde olur.Çiçekleri havada olan su bitkilerinde dahi genellikle meyve su içinde gelişir.Meyveyi taşıyan dalcıklar eğilerek genç meyveyi su içine yöneltir.Sucul meyveler etlidir, tohumları jelleşme oluşumu ile açılır.Tohumlar su içinde veya üstünde yüzerler. Eşeysel üreme her ne kadar bitkisel türlerin çeşitliliğinde (Diversite ) önemli ise de eşeysiz (Vejetatif) üreme su bitkilerinde önemli rol oynar.Bazı türlerin eşeysiz olarak üremesi ile aşırı çoğalması genellikle insan aktivitesi sonucu ortamda değişmeler olduğunu simgeler. Su bitkilerinde üç çeşit üreme tipine rastlanır.Tomurcuklanma veya çeliklenme (Vegatatif) , eşeysiz (sporla) ve eşeyli üreme.  

http://www.biyologlar.com/sucul-bitkiler

HAYVANLARI KORUMA KANUNU

Kanun No. 5199 Kabul Tarihi : 24.6.2004 BİRİNCİ KISIM Genel Hükümler BİRİNCİ BÖLÜM Amaç, Kapsam, Tanımlar ve İlkeler Amaç MADDE 1. - Bu Kanunun amacı; hayvanların rahat yaşamlarını ve hayvanlara iyi ve uygun muamele edilmesini temin etmek, hayvanların acı, ıstırap ve eziyet çekmelerine karşı en iyi şekilde korunmalarını, her türlü mağduriyetlerinin önlenmesini sağlamaktır. Kapsam MADDE 2. - Bu Kanun, amaç maddesi doğrultusunda yapılacak düzenlemeleri, alınacak önlemleri, sağlanacak eşgüdümü, denetim, sınırlama ve yükümlülükler ile tâbi olunacak cezaî hükümleri kapsar. Tanımlar MADDE 3. - Bu Kanunda geçen terimlerden; a)Yaşama ortamı: Bir hayvanın veya hayvan topluluğunun doğal olarak yaşadığı yeri, b) Etoloji: Bir hayvan türünün doğuştan gelen, kendine özgü davranışlarını inceleyen bilim dalını, c) Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, d) Tür: Birbirleriyle çiftleşebilen ve üreme yeteneğine sahip verimli döller verebilen populasyonları, e) Evcil hayvan: İnsan tarafından kültüre alınmış ve eğitilmiş hayvanları, f) Sahipsiz hayvan: Barınacak yeri olmayan veya sahibinin ya da koruyucusunun ev ve arazisinin sınırları dışında bulunan ve herhangi bir sahip veya koruyucunun kontrolü ya da doğrudan denetimi altında bulunmayan evcil hayvanları, g) Güçten düşmüş hayvan: Bulaşıcı ve salgın hayvan hastalıkları haricinde yaşlanma, sakatlanma, yaralanma ve hastalanma gibi çeşitli nedenlerle fizikî olarak iş yapabilme yeteneğini kaybetmiş binek ve yük hayvanlarını, h)Yabani hayvan: Doğada serbest yaşayan evcilleştirilmemiş ve kültüre alınmamış omurgalı ve omurgasız hayvanları, ı) Ev ve süs hayvanı: İnsan tarafından özellikle evde, işyerlerinde ya da arazisinde özel zevk ve refakat amacıyla muhafaza edilen veya edilmesi tasarlanan bakımı ve sorumluluğu sahiplerince üstlenilen her türlü hayvanı, j) Kontrollü hayvan: Bir kişi, kuruluş, kurum ya da tüzel kişilik tarafından sahiplenilen, bakımı, aşıları, periyodik sağlık kontrolleri yapılan işaretlenmiş kayıt altındaki ev ve süs hayvanlarını, k) Hayvan bakımevi: Hayvanların rehabilite edileceği bir tesisi, l) Deney: Herhangi bir hayvanın acı, eziyet, üzüntü veya uzun süreli hasara neden olacak deneysel ya da diğer bilimsel amaçlarla kullanılmasını, m) Deney hayvanı: Deneyde kullanılan ya da kullanılacak olan hayvanı, n) Kesim hayvanı: Gıda amaçlı kesimi yapılan hayvanları, o) Bakanlık: Çevre ve Orman Bakanlığını, İfade eder. İlkeler MADDE 4. - Hayvanların korunmasına ve rahat yaşamalarına ilişkin temel ilkeler şunlardır: a) Bütün hayvanlar eşit doğar ve bu Kanun hükümleri çerçevesinde yaşama hakkına sahiptir. b) Evcil hayvanlar, türüne özgü hayat şartları içinde yaşama özgürlüğüne sahiptir. Sahipsiz hayvanların da, sahipli hayvanlar gibi yaşamları desteklenmelidir. c) Hayvanların korunması, gözetilmesi, bakımı ve kötü muamelelerden uzak tutulması için gerekli önlemler alınmalıdır. d) Hiçbir maddî kazanç ve menfaat amacı gütmeksizin, sadece insanî ve vicdanî sorumluluklarla, sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen koşulları taşıyan gerçek ve tüzel kişilerin teşviki ve bu kapsamda eşgüdüm sağlanması esastır. e) Nesli yok olma tehlikesi altında bulunan tür ve bunların yaşama ortamlarının korunması esastır. f) Yabani hayvanların yaşama ortamlarından koparılmaması, doğada serbestçe yaşayan bir hayvanın yakalanıp özgürlükten yoksun bırakılmaması esastır. g) Hayvanların korunması ve rahat yaşamalarının sağlanmasında; insanlarla diğer hayvanların hijyen, sağlık ve güvenlikleri de dikkate alınmalıdır. h) Hayvanların türüne özgü şartlarda bakılması, beslenmesi, barındırılma ve taşınması esastır. ı) Hayvanları taşıyan ve taşıtanlar onları türüne ve özelliğine uygun ortam ve şartlarda taşımalı, taşıma sırasında beslemeli ve bakımını yapmalıdırlar. j) Yerel yönetimlerin, gönüllü kuruluşlarla işbirliği içerisinde, sahipsiz ve güçten düşmüş hayvanların korunması için hayvan bakımevleri ve hastaneler kurarak onların bakımlarını ve tedavilerini sağlamaları ve eğitim çalışmaları yapmaları esastır. k) Kontrolsüz üremeyi önlemek amacıyla, toplu yaşanan yerlerde beslenen ve barındırılan kedi ve köpeklerin sahiplerince kısırlaştırılması esastır. Bununla birlikte, söz konusu hayvanlarını yavrulatmak isteyenler, doğacak yavruları belediyece kayıt altına aldırarak bakmakla ve/veya dağıtımını yapmakla yükümlüdür. İKİNCİ KISIM Koruma Tedbirleri BİRİNCİ BÖLÜM Hayvanların Sahiplenilmesi, Bakımı ve Korunması Hayvanların sahiplenilmesi ve bakımı MADDE 5. - Bir hayvanı, bakımının gerektirdiği yaygın eğitim programına katılarak sahiplenen veya ona bakan kişi, hayvanı barındırmak, hayvanın türüne ve üreme yöntemine uygun olan etolojik ihtiyaçlarını temin etmek, sağlığına dikkat etmek, insan, hayvan ve çevre sağlığı açısından gerekli tüm önlemleri almakla yükümlüdür. Hayvan sahipleri, sahip oldukları hayvanlardan kaynaklanan çevre kirliliğini ve insanlara verilebilecek zarar ve rahatsızlıkları önleyici tedbirleri almakla yükümlü olup; zamanında ve yeterli seviyede tedbir alınmamasından kaynaklanan zararları tazmin etmek zorundadırlar. Ev ve süs hayvanı satan kişiler, bu hayvanların bakımı ve korunması ile ilgili olarak yerel yönetimler tarafından düzenlenen eğitim programlarına katılarak sertifika almakla yükümlüdürler. Ev ve süs hayvanı ve kontrollü hayvanları bulundurma ve sahiplenme şartları, hayvan bakımı konularında verilecek eğitim ile ilgili usul ve esaslar ile sahiplenilerek bakılan hayvanların çevreye verecekleri zarar ve rahatsızlıkları önleyici tedbirler, Tarım ve Köyişleri Bakanlığı ile eşgüdüm sağlanmak suretiyle, İçişleri Bakanlığı ve ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ticarî amaç güdülmeden bilhassa ev ve bahçesi içerisinde bakılan ev ve süs hayvanları sahiplerinin borcundan dolayı haczedilemezler. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, hayvanları sahiplenen ve onu üretmek için seçenler annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Ev ve süs hayvanları ile kontrollü hayvanlardan, doğal yaşama ortamlarına tekrar uyum sağlayamayacak durumda olanlar terk edilemez; beslenemeyeceği ve iklimine uyum sağlayamayacağı ortama bırakılamaz. Ancak, yeniden sahiplendirme yapılabilir ya da hayvan bakımevlerine teslim edilebilir. Sahipsiz ve güçten düşmüş hayvanların korunması MADDE 6. - Sahipsiz ya da güçten düşmüş hayvanların, 3285 sayılı Hayvan Sağlığı Zabıtası Kanununda öngörülen durumlar dışında öldürülmeleri yasaktır. Güçten düşmüş hayvanlar ticarî ve gösteri amaçlı veya herhangi bir şekilde binicilik ve taşımacılık amacıyla çalıştırılamaz. Sahipsiz hayvanların korunması, bakılması ve gözetimi için yürürlükteki mevzuat hükümleri çerçevesinde, yerel yönetimler yetki ve sorumluluklarına ilişkin düzenlemeler ile çevreye olabilecek olumsuz etkilerini gidermeye yönelik tedbirler, Tarım ve Köyişleri Bakanlığı ve İçişleri Bakanlığı ile eşgüdüm sağlanarak, diğer ilgili kuruluşların da görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Sahipsiz veya güçten düşmüş hayvanların en hızlı şekilde yerel yönetimlerce kurulan veya izin verilen hayvan bakımevlerine götürülmesi zorunludur. Bu hayvanların öncelikle söz konusu merkezlerde oluşturulacak müşahede yerlerinde tutulması sağlanır. Müşahede yerlerinde kısırlaştırılan, aşılanan ve rehabilite edilen hayvanların kaydedildikten sonra öncelikle alındıkları ortama bırakılmaları esastır. Sahipsiz veya güçten düşmüş hayvanların toplatılması ve hayvan bakımevlerinin çalışma usul ve esasları, ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvan bakımevleri ve hastanelerin kurulması amacıyla Hazineye ait araziler öncelikle tahsis edilir. Amacı dışında kullanıldığı tespit edilen arazilerin tahsisi iptal edilir. Hiçbir kazanç ve menfaat sağlamamak kaydıyla sadece insanî ve vicdanî amaçlarla sahipsiz ve güçten düşmüş hayvanlara bakan veya bakmak isteyen ve bu Kanunda öngörülen şartları taşıyan gerçek ve tüzel kişilere; belediyeler, orman idareleri, Maliye Bakanlığı, Özelleştirme İdaresi Başkanlığı tarafından, mülkiyeti idarelerde kalmak koşuluyla arazi ve buna ait binalar ve demirbaşlar tahsis edilebilir. Tahsis edilen arazilerin üzerinde amaca uygun tesisler ilgili Bakanlığın/İdarenin izni ile yapılır. İKİNCİ BÖLÜM Hayvanlara Müdahaleler Cerrahi müdahaleler MADDE 7. - Hayvanlara tıbbî ve cerrahi müdahaleler sadece veteriner hekimler tarafından yapılır. Kontrolsüz üremenin önlenmesi için, hayvanlara acı vermeden kısırlaştırma müdahaleleri yapılır. Yasak müdahaleler MADDE 8. - Bir hayvan neslini yok edecek her türlü müdahale yasaktır. Hayvanların, yaşadıkları sürece, tıbbî amaçlar dışında organ veya dokularının tümü ya da bir bölümü çıkarılıp alınamaz veya tahrip edilemez. Ev ve süs hayvanının dış görünüşünü değiştirmeye yönelik veya diğer tedavi edici olmayan kuyruk ve kulak kesilmesi, ses tellerinin alınması ve tırnak ve dişlerinin sökülmesine yönelik cerrahi müdahale yapılması yasaktır. Ancak bu yasaklamalara; bir veteriner hekimin, veteriner hekimliği uygulamaları ile ilgili tıbbî sebepler veya özel bir hayvanın yararı için gerektiğinde tedavi edici olmayan müdahaleyi gerekli görmesi veya üremenin önlenmesi durumlarında izin verilebilir. Bir hayvana tıbbî amaçlar dışında, onun türüne ve etolojik özelliklerine aykırı hale getirecek şekilde ve dozda hormon ve ilaç vermek, çeşitli maddelerle doping yapmak, hayvanların türlerine has davranış ve fizikî özelliklerini yapay yöntemlerle değiştirmek yasaktır. Hayvan deneyleri MADDE 9. - Hayvanlar, bilimsel olmayan teşhis, tedavi ve deneylerde kullanılamazlar. Tıbbî ve bilimsel deneylerin uygulanması ve deneylerin hayvanları koruyacak şekilde yapılması ve deneylerde kullanılacak hayvanların uygun biçimde bakılması ve barındırılması esastır. Başkaca bir seçenek olmaması halinde, hayvanlar bilimsel çalışmalarda deney hayvanı olarak kullanılabilir. Hayvan deneyi yapan kurum ve kuruluşlarda bu deneylerin yapılmasına kendi bünyelerinde kurulmuş ve kurulacak etik kurullar yoluyla izin verilir. Etik kurulların kuruluşu, çalışma usul ve esasları, Tarım ve Köyişleri Bakanlığı ile Sağlık Bakanlığının ve ilgili kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Deney hayvanlarının yetiştirilmesi, beslenmesi, barındırılması, bakılması, deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin tescil edilmesi, çalışan personelin nitelikleri, tutulacak kayıtlar, ne tür hayvanların yetiştirileceği ve deney hayvanı besleyen, tedarik eden ve kullanıcı işletmelerin uyacağı esaslar Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. ÜÇÜNCÜ BÖLÜM Hayvanların Ticareti ve Eğitilmesi Hayvanların ticareti MADDE 10. - Satılırken; hayvanların sağlıklarının iyi, barındırıldıkları yerin temiz ve sağlık şartlarına uygun olması zorunludur. Çiftlik hayvanlarının bakımı, beslenmesi, nakliyesi ve kesimi esnasında hayvanların refahı ve güvenliğinin sağlanması hususundaki düzenlemeler Tarım ve Köyişleri Bakanlığınca çıkarılacak yönetmelikle belirlenir. Yabani hayvanların ticaretine ilişkin düzenlemeler Bakanlıkça çıkarılacak yönetmelikle belirlenir. Ev ve süs hayvanlarının üretimini ve ticaretini yapanlar, annenin ve yavrularının sağlığını tehlikeye atmamak için gerekli anatomik, fizyolojik ve davranış karakteristikleri ile ilgili önlemleri almakla yükümlüdür. Hayvanların ticarî amaçla film çekimi ve reklam için kullanılması ile ilgili hususlar izne tâbidir. Bu izne ait usul ve esaslar ilgili kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Bir hayvan; acı, ıstırap ya da zarar görecek şekilde, film çekimi, gösteri, reklam ve benzeri işler için kullanılamaz. Deney hayvanlarının ithalat ve ihracatı izne tâbidir. Bu izin, Bakanlığın görüşü alınarak Tarım ve Köyişleri Bakanlığınca verilir. Hasta, sakat ve yaşlı durumda bulunan veya iyileşemeyecek derecede ağrısı veya acısı olan bir hayvanı usulüne uygun kesmek ya da ağrısız öldürme amacından başka bir amaçla birine devretmek, satmak veya almak yasaktır. Eğitim MADDE 11. - Hayvanlar, doğal kapasitesini veya gücünü aşacak şekilde veya yaralanmasına, gereksiz acı çekmesine, kötü alışkanlıklara özendirilmesine neden olacak yöntemlerle eğitilemez. Hayvanları başka bir canlı hayvanla dövüştürmek yasaktır. Folklorik amaca yönelik, şiddet içermeyen geleneksel gösteriler, Bakanlığın uygun görüşü alınarak il hayvanları koruma kurullarından izin alınmak suretiyle düzenlenebilir. DÖRDÜNCÜ BÖLÜM Hayvanların Kesimi, Öldürülmesi ve Yasaklar Hayvanların kesimi MADDE 12. - Hayvanların kesilmesi; dini kuralların gerektirdiği özel koşullar dikkate alınarak hayvanı korkutmadan, ürkütmeden, en az acı verecek şekilde, hijyenik kurallara uyularak ve usulüne uygun olarak bir anda yapılır. Hayvanların kesiminin ehliyetli kişilerce yapılması sağlanır. Dini amaçla kurban kesmek isteyenlerin kurbanlarını dini hükümlere, sağlık şartlarına, çevre temizliğine uygun olarak, hayvana en az acı verecek şekilde bir anda kesimi, kesim yerleri, ehliyetli kesim yapacak kişiler ve ilgili diğer hususlar Bakanlık, kurum ve kuruluşların görüşü alınarak, Diyanet İşleri Başkanlığının bağlı olduğu Bakanlıkça çıkarılacak yönetmelikle belirlenir. Hayvanların öldürülmesi MADDE 13. - Kanunî istisnalar ile tıbbî ve bilimsel gerekçeler ve gıda amaçlı olmayan, insan ve çevre sağlığına yönelen önlenemez tehditler bulunan acil durumlar dışında yavrulama, gebelik ve süt anneliği dönemlerinde hayvanlar öldürülemez. Öldürme işleminden sorumlu kişi ve kuruluşlar, hayvanın kesin olarak öldüğünden emin olunduktan sonra, hayvanın ölüsünü usulüne uygun olarak bertaraf etmek veya ettirmekle yükümlüdürler. Öldürme esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasaklar MADDE 14. - Hayvanlarla ilgili yasaklar şunlardır: a) Hayvanlara kasıtlı olarak kötü davranmak, acımasız ve zalimce işlem yapmak, dövmek, aç ve susuz bırakmak, aşırı soğuğa ve sıcağa maruz bırakmak, bakımlarını ihmal etmek, fiziksel ve psikolojik acı çektirmek. b) Hayvanları, gücünü aştığı açıkça görülen fiillere zorlamak. c) Hayvan bakımı eğitimi almamış kişilerce ev ve süs hayvanı satmak. d) Ev ve süs hayvanlarını onaltı yaşından küçüklere satmak. e) Hayvanların kesin olarak öldüğü anlaşılmadan, vücutlarına müdahalelerde bulunmak. f) Kesim hayvanları ve 4915 sayılı Kanun çerçevesinde avlanmasına ve özel üretim çiftliklerinde kesim hayvanı olarak üretimine izin verilen av hayvanları ile ticarete konu yabani hayvanlar dışındaki hayvanları, et ihtiyacı amacıyla kesip ya da öldürüp piyasaya sürmek. g) Kesim için yetiştirilmiş hayvanlar dışındaki hayvanları ödül, ikramiye ya da prim olarak dağıtmak. h) Tıbbî gerekçeler hariç hayvanlara ya da onların ana karnındaki yavrularına veya havyar üretimi hariç yumurtalarına zarar verebilecek sunî müdahaleler yapmak, yabancı maddeler vermek. ı) Hayvanları hasta, gebelik süresinin 2/3’ünü tamamlamış gebe ve yeni ana iken çalıştırmak, uygun olmayan koşullarda barındırmak. j) Hayvanlarla cinsel ilişkide bulunmak, işkence yapmak. k) Sağlık nedenleri ile gerekli olmadıkça bir hayvana zor kullanarak yem yedirmek, acı, ıstırap ya da zarar veren yiyecekler ile alkollü içki, sigara, uyuşturucu ve bunun gibi bağımlılık yapan yiyecek veya içecekler vermek. l) Pitbull Terrier, Japanese Tosa gibi tehlike arz eden hayvanları üretmek; sahiplendirilmesini, ülkemize girişini, satışını ve reklamını yapmak; takas etmek, sergilemek ve hediye etmek. ÜÇÜNCÜ KISIM Hayvan Koruma Yönetimi BİRİNCİ BÖLÜM Mahallî Hayvan Koruma Kurulları Teşkilât, Görev ve Sorumluluklar İl hayvanları koruma kurulu MADDE 15. - Her ilde il hayvanları koruma kurulu, valinin başkanlığında, sadece hayvanların korunması ve mevcut sorunlar ile çözümlerine yönelik olmak üzere toplanır. Bu toplantılara; a) Büyükşehir belediyesi olan illerde büyükşehir belediye başkanları, büyükşehire bağlı ilçe belediye başkanları, büyükşehir olmayan illerde belediye başkanları, b) İl çevre ve orman müdürü, c) İl tarım müdürü, d) İl sağlık müdürü, e) İl millî eğitim müdürü, f) İl müftüsü, g) Belediyelerin veteriner işleri müdürü, h) Veteriner fakülteleri olan yerlerde fakülte temsilcisi, ı) Münhasıran hayvanları koruma ile ilgili faaliyet gösteren gönüllü kuruluşlardan valilik takdiri ile seçilecek en çok iki temsilci, j) İl veya bölge veteriner hekimler odasından bir temsilci, Katılır. Kurul başkanı gerekli gördüğü durumlarda konuyla ilgili olarak diğer kurum ve kuruluşlardan yetkili isteyebilir. İl hayvan koruma kurulu sekretaryasını, il çevre ve orman müdürlüğü yürütür. Kurul, çalışmalarının sonucunu, önemli politika, strateji, uygulama, inceleme ve görüşleri Bakanlığa bildirir. İllerde temsilciliği bulunmayan kuruluş var ise il hayvan koruma kurulları diğer üyelerden oluşur. Kurul, kurul başkanı tarafından toplantıya çağrılır. İl hayvan koruma kurulunun çalışma esas ve usulleri Bakanlıkça çıkarılacak yönetmelikle belirlenir. İl hayvanları koruma kurulunun görevleri MADDE 16. - Hayvanları koruma kurulu münhasıran hayvanların korunması, sorunların tespiti ve çözümlerini karara bağlamak üzere; av ve yaban hayvanlarının ve yaşama alanlarının korunması ve avcılığın düzenlenmesi hususlarında alınmış olan Merkez Av Komisyonu kararlarını göz önünde bulundurarak; a) Hayvanların korunması ve kullanılmasında onların yasal temsilciliği niteliği ile bu Kanunda belirtilen görevleri yerine getirmek, b) İl sınırları içinde hayvanların korunmasına ilişkin sorunları belirleyip, koruma sorunlarının çözüm tekliflerini içeren yıllık, beş yıllık ve on yıllık plân ve projeler yapmak, yıllık hedef raporları hazırlayıp Bakanlığın uygun görüşüne sunmak, Bakanlığın olumlu görüşünü alarak hayvanların korunması amacıyla her türlü önlemi almak, c) Hazırlanan uygulama programlarının uygulanmasını sağlamak ve sonuçtan Bakanlığa bilgi vermek, d) Hayvanların korunması ile ilgili olarak çeşitli kişi, kurum ve kuruluşların il düzeyindeki faaliyetlerini izlemek, yönlendirmek ve bu konuda gerekli eşgüdümü sağlamak, e) İlde kurulacak olan hayvan bakımevleri ve hayvan hastanelerini desteklemek, geliştirmek ve gerekli önlemleri almak, f) Yerel hayvan koruma gönüllülerinin müracaatlarını değerlendirmek, g) Hayvan sevgisi, korunması ve yaşatılması ile ilgili eğitici faaliyetler düzenlemek, j) Bu Kanuna göre çıkarılacak mevzuatla verilecek görevleri yapmak, İle görevli ve yükümlüdür. İKİNCİ BÖLÜM Denetim ve Hayvan Koruma Gönüllüleri Denetim MADDE 17. - Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki Bakanlıkça mahallin en büyük mülkî amirine yetki devri suretiyle devredilebilir. Denetim elemanlarının nitelikleri ve denetime ilişkin usul ve esaslar ile kayıt ve izleme sistemi kurma, bildirim yükümlülüğü ile bunları verecekler hakkındaki usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel yönetimler, ev ve süs hayvanları ile sahipsiz hayvanların kayıt altına alınması ile ilgili işlemleri yapmakla yükümlüdürler. Yerel hayvan koruma görevlilerinin sorumlulukları MADDE 18. - Özellikle kedi ve köpekler gibi sahipsiz hayvanların kendi mekânlarında, bulundukları bölge ve mahallerde yaşamaları sorumluluğunu üstlenen gönüllü kişilere yerel hayvan koruma görevlisi adı verilir. Bu görevliler, hayvan koruma dernek ve vakıflarına üye ya da bu konuda faydalı hizmetler yapmış kişiler arasından il hayvan koruma kurulu tarafından her yıl için seçilir. Yerel hayvan koruma görevlileri görev anında belgelerini taşımak zorundadır ve bu belgelerin her yıl yenilenmesi gerekir. Olumsuz faaliyetleri tespit edilen kişilerin belgeleri iptal edilir. Yerel hayvan görevlilerinin görev ve sorumluluklarına, bu kişilere verilecek belgelere, bu belgelerin iptaline ve verilecek eğitime ilişkin usul ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yerel hayvan koruma görevlileri; bölge ve mahallerindeki, öncelikle köpekler ve kediler olmak üzere, sahipsiz hayvanların bakımları, aşılarının yapılması, aşılı hayvanların markalanması ve kayıtlarının tutulmasının sağlanması, kısırlaştırılması, saldırgan olanların eğitilmesi ve sahiplendirilmelerinin yapılması için yerel yönetimler tarafından kurulan hayvan bakımevlerine gönderilmesi gibi yapılan tüm faaliyetleri yerel yönetimler ile eşgüdümlü olarak yaparlar. ÜÇÜNCÜ BÖLÜM Hayvanların Korunmasının Desteklenmesi Mali destek MADDE 19. - Ev ve süs hayvanlarının korunması amacıyla bakımevleri ve hastaneler kurmak; buralarda bakım, rehabilitasyon, aşılama ve kısırlaştırma gibi faaliyetleri yürütmek için, başta yerel yönetimler olmak üzere diğer ilgili kurum ve kuruluşlara Bakanlıkça uygun görülen miktarlarda mali destek sağlanır. Bu amaçla Bakanlık bütçesine gerekli ödenek konulur. Bu ödeneğin kullanımına ilişkin esas ve usuller, Maliye Bakanlığının olumlu görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. DÖRDÜNCÜ BÖLÜM Diğer Hükümler Eğitici yayınlar MADDE 20. - Hayvanların korunması ve refahı amacıyla; yaygın ve örgün eğitime yönelik programların yapılması, radyo ve televizyon programlarında bu konuya yer verilmesi esastır. Türkiye Radyo ve Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20'sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. Trafik kazaları MADDE 21. - Bir hayvana çarpan ve ona zarar veren sürücü, onu en yakın veteriner hekim ya da tedavi ünitesine götürmek veya götürülmesini sağlamak zorundadır. Hayvanat bahçeleri MADDE 22. - İşletme sahipleri ve belediyeler hayvanat bahçelerini, doğal yaşama ortamına en uygun şekilde tanzim etmekle ve ettirmekle yükümlüdürler. Hayvanat bahçelerinin kuruluşu ile çalışma usul ve esasları Tarım ve Köyişleri Bakanlığının görüşü alınmak suretiyle Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yasak ve izinler MADDE 23. - Bu Kanun kapsamında olan ev ve süs hayvanlarının ticaretinin yapılması, ithalatı ve ihracatı ile her ne şekilde olursa olsun, ülkeden çıkarılması ve sokulması ile ilgili her türlü izin ve işlemlerde Bakanlığın görüşü alınmak kaydıyla Tarım ve Köyişleri Bakanlığı yetkilidir. Tarım ve Köyişleri Bakanlığının ilgili birimlerince, yıl içinde yapılan ithalat ve ihracat ile ilgili bilgiler Bakanlığa bildirilir. Koruma altına alma MADDE 24. - Bu Kanunun hayvanları korumaya yönelik hükümlerine aykırı hareket eden ve bu suretle bulundurduğu hayvanların bakımını ciddi şekilde ihmal eden ya da onlara ağrı, acı veya zarar veren kişilerin denetimle yetkili merci tarafından hayvan bulundurması yasaklanır ve hayvanlarına el konulur. Söz konusu hayvan yeniden sahiplendirilir ya da koruma altına alınır. DÖRDÜNCÜ KISIM Cezai Hükümler BİRİNCİ BÖLÜM İdari Para Cezası Verme Yetkisi, Cezalar, Ödeme Süresi, Tahsil ve İtiraz İdarî para cezası verme yetkisi MADDE 25. - Bu Kanunda öngörülen idarî para cezaları bu Kanunun 17 nci maddesinde belirtilen denetime yetkili merci tarafından verilir. İdari para cezalarına itiraz MADDE 26. - İdarî para cezalarına karşı cezanın tebliği tarihinden itibaren onbeş gün içinde idare mahkemesine dava açılabilir. Davanın açılmış olması idarece verilen cezanın yerine getirilmesini durdurmaz. Bu konuda idare mahkemelerinin verdiği kararlar kesindir. İdarî para cezalarının ödenme süresi ve tahsili MADDE 27. - İdarî para cezalarının ödenme süresi cezanın tebliği tarihinden itibaren otuz gündür. Ceza vermeye yetkili merciler tarafından, Bakanlıkça bastırılan ve dağıtılan makbuz karşılığında verilen para cezaları, ilgilileri tarafından mahallin en büyük mal memurluğuna yatırılır. Yatırılan paranın % 80'i ilgili belediyeye takip eden ay içinde aktarılır. Bu para, tahsisi mahiyette olup amacı dışında kullanılamaz. Bu Kanuna göre verilecek idarî para cezalarında kullanılacak makbuzların şekli, dağıtımı ve kontrolü ile ilgili esas ve usuller yönetmelikle belirlenir. Öngörülen süre içinde ödenmeyen para cezaları, gecikme zammı ile birlikte 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Cezalar MADDE 28. - Bu Kanun hükümlerine aykırı davrananlara aşağıdaki cezalar verilir: a) 4 üncü maddenin (k) bendinin ikinci cümlesi hükmüne aykırı davrananlara, hayvan başına ikiyüzellimilyon lira idarî para cezası. b) 5 inci maddenin birinci, ikinci, üçüncü ve altıncı fıkralarında öngörülen hayvanların sahiplenilmesi ve bakımı ile ilgili yasaklara ve yükümlülüklere uymayan ve alınması gereken önlemleri almayanlara hayvan başına ellimilyon lira, yedinci fıkrasında öngörülen yükümlülük ve yasaklara uymayanlara hayvan başına yüzellimilyon lira idarî para cezası. c) 6 ncı maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira idarî para cezası. d) 7 nci maddede yazılan cerrahi amaçlı müdahaleler ile ilgili hükümlere aykırı davrananlara hayvan başına yüzellimilyon lira idarî para cezası. e) 8 inci maddenin birinci fıkrasında yazılı, bir hayvan neslini yok edecek müdahalede bulunanlara hayvan başına yedibuçukmilyar lira idarî para cezası; ikinci, üçüncü ve dördüncü fıkralarına uymayanlara hayvan başına birmilyar lira idarî para cezası. f) 9 uncu maddede ve çıkarılacak yönetmeliklerinde belirtilen hususlara uymayanlara hayvan başına ikiyüzellimilyon lira; yetkisi olmadığı halde hayvan deneyi yapanlara hayvan başına birmilyar lira idarî para cezası. g) 10 uncu maddede belirtilen hayvan ticareti izni almayanlara ve bu konudaki yasaklara ve yönetmelik hükümlerine aykırı davrananlara ikimilyarbeşyüzmilyon lira idarî para cezası. h) 11 inci maddenin birinci fıkrasındaki eğitim ile ilgili yasaklara aykırı davrananlara birmilyarikiyüzellimilyon lira, ikinci fıkrasına aykırı davrananlara hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. ı) 12 nci maddenin birinci fıkrasına aykırı hareket edenlere hayvan başına beşyüzmilyon lira; ikinci fıkrasına aykırı hareket edenlere hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. j) 13 üncü madde hükümlerine aykırı davrananlara, öldürülen hayvan başına beşyüzmilyon lira idarî para cezası, aykırı davranışların işletmelerce gösterilmesi halinde öldürülen hayvan başına birmilyarikiyüzellimilyon lira idarî para cezası. k) 14 üncü maddenin (a), (b), (c), (d), (e), (g), (h), (ı), (j) ve (k) bentlerine aykırı davrananlara ikiyüzellimilyon lira idarî para cezası; (f) ve (l) bentlerine aykırı davrananlara hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası verilir, kesilmiş ve canlı hayvanlara el konulur. l) RTÜK’ün takibi sonucunda 20 nci maddeye aykırı hareket ettiği tespit edilen ulusal radyo ve televizyon kurum ve kuruluşlarına maddenin ihlal edildiği her ay için beşmilyar lira idarî para cezası. m) 21 inci maddeye aykırı hareket edenlere hayvan başına ikiyüzellimilyon lira idarî para cezası. n) 22 nci maddeye uymayanlara, hayvanat bahçelerinde kötü şartlarda barındırdıkları hayvan başına altıyüzmilyon lira idarî para cezası. o) 23 üncü maddeye aykırı hareket edenlere hayvan başına ikimilyarbeşyüzmilyon lira idarî para cezası. Bu maddenin (b) bendinde atıfta bulunulan 5 inci maddenin birinci, ikinci ve beşinci fıkraları ile (o) bendi dışında kalan fiillerin, veteriner hekim, veteriner sağlık teknisyeni, hayvan koruma gönüllüsü, hayvan koruma derneği üyeleri, hayvan koruma vakfı üyeleri, hayvan toplama, gözetim altına alma, bakma, koruma ile görevlendirilmiş olan kişilerce işlenmesi halinde verilecek ceza iki kat artırılarak uygulanır. Bu maddede yazılı idarî para cezaları, her takvim yılı başından geçerli olmak üzere, o yıl için 4.1.1961 tarihli ve 213 sayılı Vergi Usul Kanununun mükerrer 298 inci maddesi hükümleri uyarınca tespit ve ilân edilen yeniden değerleme oranında artırılarak uygulanır. BEŞİNCİ KISIM Çeşitli, Son ve Geçici Hükümler BİRİNCİ BÖLÜM Çeşitli Hükümler Birden fazla hükmün ihlâli MADDE 29. - Bu Kanunda suç olarak öngörülen fiiller başka kanunlara göre de suç ise, en ağır cezayı gerektiren kanun hükümleri uygulanır. Fiili ile bu Kanunun birden fazla hükmünü ihlal edenlere daha ağır olan ceza verilir. Fiillerin tekrarı MADDE 30. - Bu Kanunda, ceza hükmü altına alınmış fiillerin tekrarı halinde para cezaları bir kat, daha fazla tekrarı halinde üç kat artırılarak verilir. İKİNCİ BÖLÜM Son ve Geçici Hükümler Saklı hükümler MADDE 31. - 4915 sayılı Kara Avcılığı Kanunu, 3285 sayılı Hayvan Sağlığı ve Zabıtası Kanunu, 4631 sayılı Hayvan Islahı Kanunu ile 1380 sayılı Su Ürünleri Kanunu hükümleri saklıdır. GEÇİCİ MADDE 1. - Bu Kanunun 14 üncü maddesinin (l) bendinde belirtilen hayvanlardan, yurda bu Kanunun yürürlüğe girdiği tarihten önce sokulmuş olanların sahipleri; üç ay içerisinde hayvan koruma kurullarına bildirimde bulunarak bunları kayıt altına aldırmak; altı ay içerisinde kısırlaştırarak kısırlaştırıldıklarına ilişkin belgeleri il hayvan koruma kurullarına teslim etmek zorundadırlar. GEÇİCİ MADDE 2. - Bu Kanun gereğince çıkarılması gerekli bulunan yönetmelikler, Kanunun yürürlüğe girdiği tarihten itibaren bir yıl içinde hazırlanır. Yürürlük MADDE 32. - Bu Kanun yayımı tarihinde yürürlüğe girer. Yürütme MADDE 33. - Bu Kanun hükümlerini Bakanlar Kurulu yürütür.

http://www.biyologlar.com/hayvanlari-koruma-kanunu

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:KANSER TEDAVİSİNDE BAKTERİLER VE NANO ROBOTLAR     Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:Her bir bakteri 4 pikoNewtonluk kuvvet uygulayabilecek kuyruk organellerine sahip. Tek başına küçük olmasına karşın 5000 tanesini birlikte çalıştırdığınız zaman bir piramit yaptırabiliyorsunuz.Hayvanlar üzerindeki ilk klinik deneyler2011 yılının başında Mantel ve ekibi, hazırladıkları tüm sistemi gerçek anlamda ilk kez bir canlıda denediler, tek bir farkla bu kez bakterileri es geçtiler. MRI kullanarak yönlendirdikleri bir mikro taşıyıcı sistemi karaciğerinde tümör olan bir tavşana doxorubicin adlı bir kemoterapi ilacı taşımak için kullandılar. Bu taşıyıcı sistem iddia edildiği gibi vücut içerisinde yok olacak cinste bir polimerden üretilmişti. Polimerin tasarımı, farklı hızlarda çözünecek şekilde yapılmıştı, böylece yeterli dozda ilaç iletimi sağlanıyordu. Her bir taşıyıcının yüzde otuzu manyetik nano taneciklerken kalan yüzde yetmişi ilaçtı. Mantel sadece kemoterapi değil, radyoterapi ilaçları olan radyoaktif maddelerin de iletiminin mümkün olduğunu belirtti [5].Bazı kan damarları “Y” şeklinde çatallandıklarından geleneksel ilaç iletim sistemlerinin yaklaşık yüzde 50 ihtimalle tümörlü dokunun olduğu yöne, yüzde 50 ihtimalle de karaciğerin alakasız bir bölgesine gidip yan etkiye sebebiyet veriyorlar. İşte Mantel’in bu sistemi manyetik kontrolü sayesinde hiçbir çatallanmadan etkilenmeyecek bir özelliğe sahip olduğu için fark yaratıyor. Ayrıca hiçbir kan damarına zarar vermiyor. Geleneksel kemoterapide kateter (sonda) ile yapılan bir ilaç sevkiyatı, kateterin tümöre çok yaklaşıncaya kadar karaciğerin dibine kadar sokulması ve bu sırada da tabii ki bir çok damara zarar verilmesi anlamına geliyor. Bu sebeple de hastalar günlerce, hatta haftalarca damarlarının iyileşmesini bekliyorlar ki, yeni bir doz daha alabilsinler. Ancak manyetik mikrotaşıyıcı robotlar kullanıldığında, sondanın damarlara bu kadar yakınlaşmasına gerek kalmıyor. Zarar görmeyen damarlar sayesinde de hasta arka arkaya günler içerisinde birçok dozu az az ancak hızlı bir şekilde alabiliyor. Bu şekilde de kimyasal zehirlenmelerin önüne geçiliyor.Ekip, 2011 yılının sonunda tekrar bakterili nanobot sisteminin testlerine yöneldi. Ancak Mantel’in görüşüne göre bu metodlar her ne kadar hayvanlar üzerinde etkili olsa da pratik hayatımızdaki uygulamalarından 4-7 yıl uzaktayız.Not: Konuyla ilgili daha fazla bilgi sahibi olmak isteyenlere Sylvian Mantel’in İngilizce altyazılı Fransızca bir TEDx sunumunu seyretmelerini öneriyorum.Kaynaklar:[1] http://apl.aip.org/resource/1/applab/v90/i11/p114105_s1?isAuthorized=no[2] http://www.technologyreview.com/computing/21619/?a=f[3] http://www.newscientist.com/article/dn17071-bacteria-take-fantastic-voyage-through-bloodstream.html[4] Sylvain Martel, Mahmood Mohammadi: A robotic micro-assembly process inspired by the construction of the ancient pyramids and relying on several thousand flagellated bacteria acting as micro-workers. Intelligent Robots and Systems, pp 426-427,  2009.[5] http://www.healthimaginghub.com/feature-articles/digital-radiography/2945 Yazar hakkında: Gökhan İncehttp://www.acikbilim.com/2012/07/dosyalar/kanser-tedavisinde-bakteriler-ve-nano-robotlar.html

http://www.biyologlar.com/kanser-tedavisine-bakteriler-ve-nano-robotlar

Periferik yayma ve boyama teknikleri

Kan örneklerinin alınması: Yaymalar ven ya da kılcal damar kanı ile yapılır. Ven kanı için antikoagülan olarak EDTA (etilen diamin tetraasetik asit)’nın potasyum tuzunu içeren eflatun kapaklı vakumlu tüpler kullanılır. EDTA kalsiyum şelasyonu yaparak pıhtılaşmayı önler. Heparin hücre morfolojilerini bozduğundan uygun değildir. Kapiler kanı parmak ucundan (bebeklerde topuk tabanının iç ya da dış kısmından) alınır. Tam kan sayımı (hemogram) için hastanın 2 saatten daha uzun süre aç olması gerekmez. Lamların temizlenmesi: Yaymalar kirli, tozlu, yağlı lamlara yapılmamalıdır. Deterjanlarla iyi temizlenmemiş ve kurutulmamış lamlara yapılan yaymalarda çıplak gözle seçilen boşluklar oluşur. Ayrıca eritrosit morfolojisi incelenirken artefakt (yapay) olarak yer yer hedef hücreleri ya da stomatositler görülebilir. Lamlar önceden temizlenmiş olsalar bile, yayma yapılırken tekrar silinmelidir. Kan yayması: YaymaEDTA’lı örnek 1-2 saatten fazla bekletilmeden yapılmalıdır. Aksi takdirde lökositlerde morfolojik değişiklikler olur (çekirdekte büzüşme, sitoplazmada vaküolleşme). Lamın bir ucunun 1 cm uzağına, orta çizgi üzerine küçük bir kan damlası konur. Ardından yayıcı (bu bir lamel ya da lamdan daha dar, ucu düz bir cam olabilir) 30o lik açıyla damlanın önüne getirilir ve geriye doğru damlayla temas ettirildikten sonra elin düzgün ve hızlı hareketiyle ileriye doğru sürülür. Kan damlası sonuna kadar yayılmadan yayıcı yukarıya kaldırılmamalıdır. Yaymanın uç kısmı düz olmayıp ince uzun tüylü görünümdedir (Prof. Dr. Cavit Çehreli bu görünümü mum alevine benzetir). Kan damlasının büyüklüğüne, 30o lik açının azalıp çoğalmasınagöre yaymanın kalınlığı değişir. İdeal bir yayma yaklaşık 3 cm uzunluğunda olmalı ve lamın diğer ucuna 1 cm kala sonlanmalıdır (Dacie & Lewis, Practical Haematology’den). Preparatın boyanması: Romanowsky boyaları  başlıca iki bileşene dayanır: bazik (metilen mavisi ya da azür B) ve asidik (eozin Y). Laboratuvarlarımızda daha çok May-Grünwald-Giemsa yöntemi kullanılır. Bu yöntemde yaymaların önceden alkolle tespiti  gerekmez. Çünki May-Grünwald boyasında metil alkol vardır.

http://www.biyologlar.com/periferik-yayma-ve-boyama-teknikleri

BİYOLOJİK MATERYAL İNCELEME YÖNTEMLERİ

1) İn vivo inceleme :  Bu yöntemde hücreler veya organizmanın tümü, yaşadıkları doğal ortam içinde incelenirler. Bu yolla davranış ve hareketler incelenir. Örnek : Bir hücrelilerin kültürleri.2) İn vitro inceleme : Çok hücreli organizmalarda hücreleri, organizma içinde incelemekte kullanılır. Organizmadan ya tümü ile ya da organizmadan alınan parçalar incelenir. İncelenecek materyalin canlı olarak korunması veya bozulmadan saklanması için Preparasyon teknikleri denen bir seri işlemlere gerek vardır.Bu işlemler sırasında;1. Çalışmaların önceden planlanması2. Çalışma yöntemi3. Çalışma sırasındaki ölçüm ve tartımlar4. Çalışma sırasındaki özen ve çalışanların uyumu5. Çalışma sırası olası olumsuzluklara karşı önleyici tedbirler6. Çalışmanın kullanılabilir hale getirilerek sonlandırılması  gibi hususlar uyulması gereken önemli konulardır.Bir önemli hususta çalışma sırasında kullanılan materyal ve malzemeler çok çeşitli olduğundan bunlardan bazılarının tekrar kullanılabilmesi için uygun yöntemlerle temizlenmesi gereklidir. Bir önemli hususta çalışma sırasında kullanılan materyal ve malzemeler çok çeşitli olduğundan bunlardan bazılarının tekrar kullanılabilmesi için uygun yöntemlerle temizlenmesi gereklidir.

http://www.biyologlar.com/biyolojik-materyal-inceleme-yontemleri

 
3WTURK CMS v6.03WTURK CMS v6.0