Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 420 kayıt bulundu.
Flores'in Küçük İnsanları

Flores'in Küçük İnsanları

Flores Adası’nın ismini hiç duydunuz mu? İlk bakışta Endonezya’da şirin bir tatil yeri gibi görünen bu ada aslında tarih öncesi çağlarda barındırdığı, küçük insanları yani “Homo Floresiensisleri” sebebiyle arkeoloji ve antropoloji dünyasında önemli bir yere sahip. Homo Floresiensis'lere ev sahipliği apan Flores Adası Kayıp medeniyetler üzerinde araştırma yaptığınızda karşılaşacağınız muhtemel isimlerden biri; Flores Adası. Burada yüzyıllar önce yaşadığı tespit edilen, fiziksel özellikleri açısından “küçük” olarak tabir edebileceğimiz Homo Floresiensisler ve onların bu alanda nasıl yaşam sürdükleri konusu oldukça ilgi çekici. Antrolopoloji ve arkeoloji alanları için ilk medeniyetler, ilk insanlar, kullandıkları aletler..vs. hakkında bilgi sahibi olmak oldukça önemlidir. Bulunan kalıntılar insanlık tarihine ışık tutar. Mısır, Mezopotamya uygarlıklarını çoğumuz biliriz, bu alanlar hala gözde alanlardır. Fakat dünyanın bilinmeyen noktalarında kazara keşifler yapmak ve aslında oldukça şaşırtıcı sonuçlara ulaşmak da mümkün. Bu durum Flores Adası için de geçerli bir durum. Flores Adası’ndaki insanlık tarihi için önemli bir adım sayılan keşif; New England Armidale Üni­versitesi’nden Michael Morwood, Endonezya Arkeoloji Mer­kezinden R. P. Soejono ve ekibi tarafından gerçekleştirilmiştir. Ekip 2003 yılında “Liang Bua” adı verilen bir mağarada kazı çalışması yaparken 800 bin yıl öncesine ait olduğu belirtilen taş aletler ve sonrasında “Homo Floresiensis” olarak adlandırılacak olan insan kalıntılarına ulaşmışlardır. Bu önemli bir buluştur çünkü bulunan insan kalıntıları normal olarak tabir edebileceğimiz fiziksel özelliklerden oldukça küçük niteliklere sahiptir. Şöyle ki; radyometrik tespitlere göre bulunan insan kalıntılarının yaklaşık 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilmiştir. Kafatasının oldukça küçük olması ilgi çeken diğer bir husustur. Kalıntıların en eskisinin 94.000 yıl en yenisinin ise 12.000 yıllık olduğu belirlenmiştir. Tüm bu bilgiler 2004 yılında Nature isimli dergide büyük bir heyecanla paylaşılmış ve yeni bir türün ortaya çıktığı belirtilmiştir. Bu durum da insanın evrimi üzerine yeni tartışmaları gündeme getirmiştir. Bu tartışmaları ve öne sürülen savları kısaca ele alacağız fakat öncesinde homo florensis’in insanın evrimi tablosunda aldığı konumdan kısaca bahsetmenin faydalı olacağı inancındayız. Homo Floresiensis’in aile içindeki yeri Soldan sağa: Homo Floresiensis, Lucy (Australopithecus Afarensis), Homo Erectus ve Homo Sapiens. Flores Adası’nda bulunan insan buluntularının yeni bir tür olduğu savı bir dönemin ses getiren konusu olmuştur. “Homo Floresiensis” olarak adlandırılan bu yeni türün Avrupalı Neandertalların doğu ayağını temsil eden; “Homo Erectus” ve modern insan olarak tabir edilen “Homo Sapiens”den önce yaşadığı “Australopithecus Afarensis” ile yakın özelliklere sahip olduğu savunulmuştur. Homo Floresiensis’in küçük ama oldukça zeki bir tür olduğunu savunan araştırmacılar bu savlarını onların kullandıkları karışık yapıda taş aletler ile güçlendirmeye çalışmışlardır. Homo Floresiensis’in beyin büyüklüğünün Homo Saphiens’in sahip olduğu beyin büyüklüğünün 1/3’ü olmasına rağmen zeki oldukları düşünülmektedir. Bu küçük insanların yaşadıkları çağın tehlikelerine karşı kendilerini korudukları, kullandıkları aletlere bakıldığında avcılıkla ilgilendikleri belirlenmiştir, bunların tümüne bakıldığında yüksek bir zekâyı temsil ettikleri savı güçlenmektedir. Homo Floresiensis’e yazın ve sinema tarihinde önemli yere sahip, J. R. R. Tolkien’in Yüzüklerin Efendisi isimli eserinden esinlenerek “Hobbit” adı da verilmiştir. Dünya çapında bilinen önemli eserlerden biri olan bu eserde önemli karakterlerden birini temsil eden hobbitler, küçük cüsseleri ve zekâlarıyla dikkat çekmektedir. Gerçekte de hobbitlerin var olabileceğinin savunulması heyecan uyandırmıştır. Homo Floresiensis’e dair tartışmalar Flores Adası’nda bulunan kalıntıların daha önce keşfedilmeyen yeni bir tür mü yoksa Homo Saphiens’in farklılık geçirmiş bir türü mü olduğu sorusu keşiften günümüze kadar devam eden bir tartışmaya neden olmuştur. Yazılan bilimsel makalelerde yıllara bağlı olarak gözlemlenen farklı yorumlar ilgi çekicidir. Keşfin yapıldığı 2003 yılında kesin bir şekilde dile getirilen yeni tür bulunduğuna dair sav, yapılan araştırmalar sonucu eski etkisini yitirmiştir. 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilen kafatasının oldukça küçük olması dikkat çekicidir. Bulunan kalıntıların sadece dokuz tane olması, bu alanda kapsamlı bir fikir yürütmeyi engelleyici bir unsur olarak karşımıza çıkmaktadır. İlk bulunan kadın iskeletinin Homo Saphiens’in uzak bir türünü temsil ettiği, LB1 adı verilen iskeletteki anormallik nedeninin “Mikrosefali” isimli bir hastalık olduğu savı güçlenmeye başlamıştır. Mikrosefali; beyinde ortaya çıkan küçük bir urun sebep olduğu bir rahatsızlıktır ve zihinsel engele yol açmaktadır. Bu kuramı destekleyen anatomist Maciej Henneberg mikrosefalik kafatasıyla LB1 arasında muhtemel benzerlikleri vurgulamıştır. Ama az sayıda bulunan iskeletlerden yola çıkarak bir medeniyetin tamamında mikrosefali rahatsızlığının var olduğunu söylemek mümkün değildir. 2005 yılında Homo Floresiensis için en kapsamlı araştırma yapılmıştır. Florida Eyalet Üniversite­si’nden Dr. Dean Falk’un liderliğini yaptığı uluslar ara­sı bir uzman grubu LB1 kafatasının üç boyutlu bir maketini yapıp, bunu şempanze, modern insan(modern cüce), mirosefalik bir beyin ve Homo Eractus ile karşılaştırmıştır. Bu incelemeye göre LB1; modern cüce beyninden ve mikrosefalik beyinden daha farklı bir özellik taşımakta ve yeni bir türü temsil etmektedir. Bu araştırmanın doğruluğu halen tartışılan bir konudur. Kimi bilim adamlarına göre bu çalışmada mikrosefalik beyin örneği kullanılmamıştır. 2010 yılında gelindiğinde ise; bu türün Homo Saphiens’in bir türü olduğu, “Kretenizm” adı verilen hastalığın ve yaşanılan ortamın da getirisi olarak küçük bir yapıya sahip olduğu savı ortaya çıkar. Günümüzde o bölgede yaşayan halkın da minyon bir tipe sahip olması bu savı güçlendiren bir unsur olmaktadır. Bu sav belki doğru olabilir çünkü antopolojik çalışmalara göre yaşam alanının sahip olduğu coğrafi koşullar canlılarda fizyolojik farklılıklara neden olabilmektedir. Kazılarda Homo Floresiensis ile birlikte ortaya çıkan balık, kurbağa, yılan, kaplumbağa, dev sıçan, kuş, yarasa ve Stegodon (soyu tükenmiş bir tür cüce fil), Komodo ejderi ve dev kertenkele gibi diğer iri hayvanlara ait iskeletler Flores Adası’nın doğal ortamını gözler önüne sermiştir. Homo Floresiensis bu doğal ortamda varlığını devam ettirmeye çalışmıştır. Fiziksel yapının da zaman içersinde Flores’in kaynakları doğrultusunda şekillendiği inancı dikkat çekicidir. Aynı bölgede özellikle Stegodon(cüce fil)’in görülmesi bu inancı güçlendirmektedir. Homo Floresiensis’in yok oluşu Homo Floresiensis’in nasıl yok olduğu sorusunun cevabını aradığımızda kesin bir bilgiye ulaşmamız mümkün değil fakat bu konudaki en baskın görüş; Flores Adası’nda gerçekleşmiş olan bir volkanik patlama sonucu Homo Floresiensis’in yok olmasıdır. Bu görüşün kesin bir veriyi sunması imkânsızdır çünkü böyle bir doğal felaketten kurtulanların olup olmadığı ve başka bir yerde yaşamlarını devam ettirip ettirmediklerine dair bir iz yoktur. Homo Floresiensis keşfin yapıldığı 2003 yılından günümüze yaklaşık 9 yıldır tartışılan bir konu olma özelliğine sahiptir. Paleoantropologlar, anotomi uzmanları gibi farklı branşlardan bilim adamlarının ilgisini çeken bu konu her geçen sene farklı savları ortaya çıkarmaktadır. Bu konudaki son görüş; yeni bir tür olmadığı yönündedir. Fakat ilerleyen senelerde bu konuda belki de bulanacak başka veriler ışında çok farklı savlar ortaya çıkacaktır. İnsanın evrim süreci her daim merak uyandıran bir konu olduğundan bu açıdan dikkat çekici olan Homo Floresiensis’in yeni bir tür olup olmadığı sorunsalının daha pek çok yıllar tartışılması muhtemeldir. Kaynakça: Pennsylvannia State University Press Release, “No Hobbits in this Shire: Researchers say skeletal remains are pygmy ancestors”, 23 Ağustos 2006. http://insanveevren.wordpress.com/2012/04/15/tarih-oncesi-flores-adalilar-bilmecesi/ http://www.kesfetmekicinbak.com/ http://en.wikipedia.org/wiki/Homo_floresiensis http://www.sciencedaily.com/releases/2010/09/100928025514.htm http://www.sciencedaily.com/releases/2008/12/081217124418.htm Yazar hakkında: Sinem Doğan Açık Bilim Haziran 2012 http://www.acikbilim.com/2012/06/dosyalar/floresin-kucuk-insanlari.html

http://www.biyologlar.com/floresin-kucuk-insanlari

Köpek Balıkları

Köpek Balıkları

Köpek balığı (Selachimorpha), kıkırdaklı balıklar (Chondrichthyes) sınıfının Elasmobranchii alt sınıfını oluşturan iki üst takımdan biri olan Selachimorpha (diğeri, Batoidea) içinde sınıflanan canlı türlerinin ortak adıdır.Beslenmelerine göre üç gruba ayrılırlar.Serbest yüzen deniz canlılarıyla beslenenler: Hexanchus, Lamnidae, Alopias, Carcharhinidae, Squalidae, SomniosusTabanda yaşayan deniz canlılarıyla beslenenler: Heterodontida, Scyliorhinidae, Triakidae, Oxynotidae, Echinorhinidae, Pristiophoridae, SquatinoideiPlanktonla beslenenler: Dev köpek balığı (Cetorhinus maximus), balina köpekbalığı (Rhincodontidae)Vatozlar gibi köpekbalıklarının kanında da diğer canlılara nazaran daha fazla üre bulunur (% 05 - 8). Bu oran Teleostei balıklarınkinden yaklaşık yüz misli daha fazladır.Birim hacimdeki alyuvar sayısı Teleostei balıklarınkine göre yaklaşık 5-8 misli daha azdır. Bu eksiklik her alyuvarın yüzeyinin yaklaşık 5 defa daha büyütülmesi ile giderilmiştir. Sınıflandırma  Takımlar Üst alem:     Eukaryota - ÖkaryotlarAlem:     Animalia - Hayvanlar (Hayvanlar)Alt alem:     Eumetazoa - Gerçek dokulular(Grup)     Bilateria - Bilateral simetrililerÜst şube:     Deuterostomia - İkincil ağızlılarŞube:     Chordata - Kordalılar (Kordalılar)Alt şube:     Vertebrata - Omurgalılar (Omurgalılar)İnfa şube:     Gnathostomata - GerçekçenelilerSınıf:     Chondrichthyes - Kıkırdaklı balıklarAlt sınıf:     Elasmobranchii - YassısolungaçlılarÜst takım:     Selachimorpha- Köpekbalıkları    Carcharhiniformes    Heterodontiformes    Hexanchiformes    Lamniformes    Orectolobiformes    Pristiophoriformes    Squaliformes    Squatiniformes    Xenacanthida (soyu tükenmiş)  

http://www.biyologlar.com/kopek-baliklari

Kaplumbağa Türleri

Kaplumbağa Türleri

Kaplumbağa (ya da tosbağa) Testudines takımını oluşturan çok sert ve kemiksi bir kabuk içinde yaşayan, ağır yürüyüşlü, dört ayaklı, sürüngen bir hayvandır.Hareketleri yönünden ne kadar telaşsız ve ağır hayvanlarsa onların tarih boyunca gelişimi de o kadar yavaş olmuştur. Kaplumbağalar, öteki sürüngenlerle birlikte Mezozoik'in ilk dönemi olan Trias Çağı'nda ortaya çıktılar. 200 milyon yıldan beri kaplumbağaların vücut yapıları önemli hiçbir değişikliğe uğramamıştır. Hâlbuki kaplumbağalar, dünyada soyu henüz tükenmemiş en eski hayvanlardandır.Açlığa pek dayanıklıdırlar. Çok uzun ömürlüdürler. Yüz, yüz elli yıl kadar yaşarlar.Kaplumbağalar çeşitlerine ve yaşadıkları iklim kuşağına göre kış uykusuna yatarlar. Deniz kaplumbağaları kış uykusuna yatmazlar çünkü onlar göç eden hayvanlardır. Bu iç güdünün ortaya çıkmasının nedeni İklim değişikliğidir. Bol Güneş ışığı alan kuru topraklarda kendine bir delik kazıp bütün kışı orada geçirmek üzere içine girer.Günümüzde, soyunu sürdürmekte olan 250'ye yakın kaplumbağa türü bulunmaktadır.

http://www.biyologlar.com/kaplumbaga-turleri

Bilim adamlari nesli tukenen bir virusu canlandirdi

Bilim adamlari nesli tukenen bir virusu canlandirdi

Temel bir organizmayı sentezlemek artık imkansız değil. Üstelik bir grup bilim insanı bu çalışmayı bir adım daha ileri taşımış. Decade3d via Getty Images

http://www.biyologlar.com/bilim-adamlari-nesli-tukenen-bir-virusu-canlandirdi

ÜLKEMİZDE 146 KUŞ TÜRÜ YOK OLMA TEHTİDİ ALTINDA

9 bin kuştan 426' sı ( %4,7) Anadolu'da yaşıyor. İnsanlığın ortak hazinesi ve mirası olarak korumakla görevli olduğumuz bu kuşlardan 146 türü dünya çapında tehlike altında. Bunların nüfusları ülkemizde de tehlike altında. Tepeli pelikan, küçük karabatak, yaz ördeği, pasbaş, dikkuyruk, kara akbaba, şah kartal, küçük kerkenez, huş tavuğu, toy ve boz kiraz kuşu, ülkemizde ürüyebilen ender türlerden. Türkiye’de uluslar arası karakterde 100’den fazla önemli kuş alanı var ve bu sayı Türkiye’yi dünyanın önemli kuş ülkelerinden biri kılıyor. Soyu tehlike türlerden; küçük sakarca kazı, sibirya kazı, ak kuyruklu kartal bozkır delicesi, büyük orman kartalı, bıldırcın, kara kanatlı bataklık kırlangıcı, sürmeli kız kuşu büyük su çulluğu gibi kuşlar sadece bunlardan bazıları dır. Türkiye’de pek çok kuş türü çeşitli tehlikelerle karşı karşıya bulunduğuna hiç şüphe yoktur. Bu tehlikelerden bazıları; Çeşitli nedenlerle insanlar tarafından izlenme ve yoğun av baskısı, Turizm gelişmesi sonucunda kuşların doğal yaşam alanlarının daraltması, Bitki koruma ilaçları ile evrensel ve sanayi artıklarının çevreye verdiği zarar, Kuluçka, beslenme, geceleme, dinlenme veya kışlama alanlarının tahrip edilmesi Sulak alanların kurutulması, Tarımın yoğunlaşması, Ormanların, meraların . çayırların yok edilmesi, Yüksek gerim hattı ile yol yapımı veya trafiğin verdiği zarar, Yoğun ve bölgesel sanayileşme ile belli bölgelerdeki canlı varlıkların yok oluşu. Kuşların, biyolojik bir varlık olarak en az insanlar kadar yaşama hakkı ve her türün biyolojik denge içinde önemli yeri ve görevi vardır.

http://www.biyologlar.com/ulkemizde-146-kus-turu-yok-olma-tehtidi-altinda

Kloroplast’ın Kökeni

Kloroplast’ın Kökeni

Bristol Üniversitesi liderliğindeki yeni bir araştırma. Kloroplastın ilk geliştiği kökenine, zamanlama ve yaşam alanına ışık tuttu. Gösel: Patricia Sanchez-Baracaldo

http://www.biyologlar.com/kloroplastin-kokeni

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Kene İle Bulaşan Hastalıklar

ÖZET Parazitlerin neden olduğu hastalıklar önemli sağlık problemidir. Endoparazit ve ektoparaziter hastalıklar mevcuttur. Kenelerle bulaşan hastalıklar en sık görülen vektör kaynaklı hastalıklardır. Keneler bakteri, virüs spiroket, protozoa, nematod ve toksinler gibi patojenleri yayabilir ve böylece ektoparaziter kaynaklı hastalıklara sebep olurlar. Ülkemizde keneler için iklim koşulları, bitki örtüsü ve yüzey şekli bakımından uygun koşullar vardır. Bu makalemizde kenelerle bulaşan hastalıkları özetlemeye çalıştık. SUMMARY Paraziter diseases are important medical problems.There are endoparasitic and ectoparasitic diseases. Tick-borne diseases are the most common vector-borne illnesses. Ticks can spread bacteria, viruses, spiroketia, protozoa, nemadot and toxins and by so they made ectoparasitic diseases. Our country has suitable conditions to continue biologic activity of ticks acording to seasons, plants and surface forms. In this article we have tried to summary tick-borne diseases. İrfan Nuhoğlu1, Murat Aydın1, Süleyman Türedi2, Abdülkadir Gündüz2, Murat Topbaş3 1KTÜ Tıp Fakültesi İç Hastalıkları Anabilim Dalı, 2Acil Tıp Anabilim Dalı, 3Halk Sağlığı AD, Trabzon. Anahtar Kelimeler: Kene, Kırım- Kongo Kanamalı Ateşi, Lyme Hastalığı. Key words: Tick, Crimean-Congo Haemorhagic Fever, Lyme disease. Sorumlu yazar/ Corresponding author: İrfan Nuhoğlu, KTÜ Tıp Fakültesi İç Hastalıkları AD, Trabzon irfannuhoglu@hotmail.com GİRİŞ Parazitlere bağlı hastalıklar günümüzde önemli sağlık problemlerindendir. Bu durum endoparazitlerden kaynaklanabileceği gibi; kene gibi ektoparazitlerden de kaynaklanır (1). Keneler tüm dünya üzerindeki memeli, kuş ve sürüngenlerden kan emen eksternal parazitlerdir (2). Keneler Araknidea sınıfına ait artropodlardan olup balıklar dışındaki tüm omurgalıların kanlarıyla beslenebilirler. Dünya üzerinde omurgalıları etkileyen 899 adet kene türü mevcuttur. Bunların 185’i Argasidae, 713’ü İxodidae, 1 tanesi ise Nuttalliellidae soyuna bağlıdır (5,6). Bakteri, spiroket, rickettsia, protozoa, virüs, nematod ve toksinler gibi birçok farklı patojeni taşıyabilir ve yayabilirler (3). Tıbbi ve ekonomik önemleri insanlara ve hayvanlara hastalık bulaştırabilme kabiliyetlerinin olduğunun fark edilmesiyle anlaşılmıştır. İnsanlar üzerinde oluşturdukları önemli sağlık sorunları yanında çiftlik hayvanları üzerinde büyük ekonomik kayıplara neden olabilirler. Türkiye; iklimi, yüzey şekli ve bitki örtüsü bakımından, kenelerin biyolojik aktivitelerini sürdürmeleri için uygun koşullara sahip bir ülkedir (7-9). Günümüze kadar kullanılan hiçbir mücadele yöntemi, tam bir kene eradikasyonu sağlayamamıştır. Bugünkü bilgiler ışığında kene eradikasyonunun neredeyse imkânsız olduğu kabul edilmektedir. KIRIM KONGO KANAMALI ATEŞİ (KKKA) KKKA Afrika’nın bazı bölgelerinde, Asya, Doğu Avrupa ve Orta Doğu’da görülen ölümcül bir viral enfeksiyondur (10,11). Bildirilmiş mortalite oranı % 3-30 olan bu hastalığa neden olan virüs Bünyavirüs ailesinden Nairo virüs genusuna bağlı olup; insanda ciddi hastalığa neden olur (11-12). Tıbbi olarak önemi kene ile taşınan virüsler arasında en yaygın coğrafi dağılıma sahip olmasıdır(13). Hastalık ilk kez 12.yy’da bugünkü Tacikistan topraklarında hemorajik bir sendrom olarak tanımlanmıştır (10). KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden 200 Sovyet askerinde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda gösterildi (10,11). Virüsün yaşam çevrimi ‘kene-omurgalı-kene’ şeklinde olup; hayvanlarda hastalık yaptığına dair bir delil yoktur (11). Virüsler Hyalomma genusu keneleri ile taşınır. TAF Preventive Medicine Bulletin, 2008: 7(5) 462 Resim 1. Türkiye’de Kırım Kongo Kanamalı Ateşi Vakalarının Dağılımı Enfekte anneden yumurtaya transovarial; larvanymph- erişkin şeklinde transstadial olarak geçiş gösterirler. Virüsün Avrupa’daki ana taşıyıcısı Akdeniz hyalomması olarak bilinen H.marginatum marginatum’dur (10,11). Komşu bazı ülkelerde 1970’lerden beri epidemiler bildirilmesine rağmen Türkiye’de virüsle enfekte vakalar ilk kez 2002 yılında bildirilmiştir. 2002-2005 yılları arasında Sağlık Bakanlığı’na 500 vaka bildirilmiş ve bunların 26’sı (% 5,2) ölmüştür (Resim 1) (13-16). Türkiye’de ki salgında vakaların % 90’ı çiftçilerdi (13,14). İnsan vücudu; enfekte kenelerin ısırması ile veya hasta olan bir kişiyle enfeksiyonun akut fazı sırasında temas ettikten sonra enfekte olabilir. Ayrıca içinde virüs bulunan kan ve dokularla temastan sonra geçiş olabilir. Hastalığın ortaya çıktığı insan vücudu virüsün bilinen tek konağıdır (17). Hastalığın seyrinde 4 faz vardır: 1. İnkübasyon fazı kene ısırığını takiben 3-7 gündür (18). Bu dönemde herhangi bulgu vermez. Türkiye’de 5,5 gün olan bu fazın süresi viral doz ve bulaşma yoluna bağlıdır (12). 2. Prehemorajik faz; ani yükselen ve 39-41 derece arasında seyreden ateşle karakterizedir. Ateş 4-5 gün sebat eder(10). Baş ve kas ağrısı, baş dönmesi, ishal, burun akıntısı ve kusma olabilir (19).Yüz boyun ve göğüste hiperemi, skleral konjesyon, konjuktivit görülebilir. 1-7 gün sürebilen bu fazın ortalama süresi 3 gündür(10). 3. Hemorajik faz; genellikle 2-3 gün gibi kısa sürer. Genellikle hastalığın 3-5. günlerinde başlar ve hızlı bir seyir gösterir. Bu dönemin ateşle herhangi bir ilişkisi yoktur (10). Hemoraji peteşiden başlayarak, müköz membran ve derideki büyük hematomlara kadar ilerleyebilir. Diğer bölgelerden kanamalar vajen, diş eti ve serebral kanamaları içerir(20). En sık kanayan bölgeler ise burun, GİS (hematemez, melena ve intraabdominal), genital (menometroraji), idrar (hematüri) ve solunum yollarıdır. Türkiye’de vakaların % 20-40’ında hepatomegali; % 14-23’ünde ise splenomegali bulunur (15). 4. Konvalesan faz hastalık başlamasıyla beraber 10-20 gün içinde başlar. Bu dönemde değişken nabız, taşikardi, komplet saç kaybı, polinörit, solunum zorluğu, kserostomi, görme azlığı, işitme kaybı, hafıza kaybı olabilir(10). Tanıda trombositopeni, lökopeni, AST-ALT-LDHCKP düzeylerinde artış, PT ve aPTT sürelerinde uzama, fibrinojen düzeyinde azalma ve fibrin yıkım ürünlerinde artma görülebilir. CBC ve Biyokimyasal testler 5-9 günde normal seviyelerine inerler (21). Virüs izolasyonu 2-5 günde sağlanabilir ama hücre kültürleri sensitiviteden yoksundur ve genellikle hastalığın ilk 5 gününde karşılaşılan yüksek viremi ilişkisini gösterir (22). KKKA virüs enfeksiyonunun hızlı laboratuar teşhisi için seçilecek metot Revers Transkriptaz PCR’dir. Bu yöntem hızlı, yüksek sensitif ve yüksek spesifiktir (23). Hastalık ortaya çıktıktan sonra ilk 7 gün içinde İg M ve İg G TAF Preventive Medicine Bulletin, 2008: 7(5) antikorları serolojik olarak ELİSA ve İmmünfloresan yöntemi ile tespit edilebilir(24). Tedavinin temeli; trombosit, TDP ve eritrosit ile yapılan destekleyici tedaviye dayanır. Hastada potansiyel kanama alanları tespit edilmeli ve bulaştırma riski için koruyucu önlemler alınmalıdır. Sıvı elektrolit dengesine dikkat edilmelidir. Etki mekanizması açık olmamakla beraber Ribavirin tavsiye edilen antiviral ajandır. Bu ilacın akut respiratuar sendrom tedavisinde kullanımına bağlı hemolitik anemi, hipokalsemi ve hipomagnezemi yan etkileri bildirilmiştir (25,26). ROCKY DAĞLARI BENEKLİ ATEŞİ (RDBA) Amerikan Köpek Kenesi (Dermecentor variabilis) ile taşınan bakteriyel (Ricketsia ricketsii) bir enfeksiyondur (27). Kan damarlarının endoteliyal ve düz kas hücrelerini etkileyen küçük, pleomorfik,zorunlu hücre içi parazitidir. Hastalık Amerika’nın kuzeybatısında ilk kez 19.yy ın sonlarında tanımlanmıştır. Hastalık etkeni ajan ise 1900’lü yılların başlarında Howard Ricketts tarafından tanımlanmıştır (28). İnsandan insana geçiş tanımlanmamıştır (29). Hastalık kuzey, orta ve güney Amerika da endemiktir. İsmine rağmen yıllık vakaların sadece % 2’si Rocky dağları bölgesinde görülür (27). 5-9 yaşlarındaki çocuklar ve 60 yaşın üstündeki erişkinler olmak üzere iki tepesi olan bimodal yaş dağılımına sahiptir. 1998 yılında 365 vaka bildirilmiştir (29). Çoğu vaka 1 Mayıs-31 Temmuz arasında bildirilir ki bu dönem köpek kenesi populasyonunun en yüksek seviyede olduğu dönemdir. Hastalık çoğunlukla vahşi hayvan ve kenelerin birlikte bulundukları alanlarda ortaya çıkar. İmmatür evrelerde keneler tarla faresi gibi küçük kemirgenler üzerinde; erişkin olanlar ise insan ve köpek gibi daha büyük canlılar üzerinde yaşarlar (27). Ricketsia ile enfekte olan hastalar genellikle ısırık sonrasındaki 5-10 günlük bir inkübasyon periyodunu takiben hastalık ortaya çıktıktan sonraki ilk hafta içinde doktora başvururlar (30). Hastalık; ateş, bulantı, kusma, iştahsızlık, baş ve kas ağrısını içeren başlangıç belirtileri verir (27,31). Ateşin 2-5’ inci gününde önkol, el ve ayak bileği üzerinde küçük, düz, pembe ve kaşıntısız noktalar şeklinde benekli bir döküntü gelişir (30,31). Bu benekler üzerlerine basınç uygulandığında solarlar. Hastalığa ait bu karakteristik döküntü genellikle 6. güne kadar ortaya çıkmaz ve hastaların % 35-65 inde görülür (31,32). Döküntü genç hastalarda yaşlılara göre daha erken gelişir (30). Döküntü daha sonra avuç içi ve ayakaltı dâhil vücudun geri kalan bölümlerine yayılır (27). Bu durum ise hastaların % 50-80’ inde ve ancak geç evrelerde görülebilir. Hastaların % 10-15’ inde ise hiçbir zaman döküntü gelişmez (30,31). Temel laboratuar testlerinde normal veya hafifçe baskılanmış WBC, trombositopeni, yükselmiş karaciğer transaminazları ve hiponatremi bulunur. BOS incelendiğinde monosit hâkimiyeti olan bir beyaz küre artışı tespit edilir (31,32). Hastalığın ensefalit, non kardiyojenik pulmoner ödem, ARDS, kardiyak aritmiler, koagülopati, GİS kanaması ve deri nekrozunu da içeren major komplikasyonları vardır. Eğer tedavi edilmezse 8-15 gün içerisinde ölüm gerçekleşebilir. Mortalite oranı tedavi edilmemiş vakalarda % 25; tedavi edilmiş vakalarda % 5 olarak rapor edilmiştir (28). Tanı öykü ve fizik muayeneye dayanır. Eğer döküntü mevcut ise rickettsial organizma deriden yapılan biyopsideki vasküler endotel içinde direk immünofloresan veya immünoperoksidaz boyama yöntemiyle tespit edilebilir (31,33). Ama bu yöntem çok sık kullanılmamaktadır (34). Seroloji tanıyı destekleyebilir ancak bu da hastalığın ortaya çıkışından 7-10 gün sonra pozitifleşir (31). Mümkün olan en kısa sürede antibiyotik tedavine başlamak önemlidir (27,35). Tetrasiklin ve kloramfenikol tedavide etkindir. Bazı hastalarda doksisiklin birinci tercihtir. Tedavi en az 5-7 gün devam etmeli veya hasta en az iki gün afebril olana kadar sürmelidir (31,36). Ölümlerin çoğu medikal tedavideki gecikme nedeniyledir. Hastalık erken fark edilip tedavi edilirse hızlı bir düzelme gösterir (27). LYME HASTALIĞI Kalp, eklem ve sinir sistemini de içeren; ciddi problemler oluşturabilen Lyme hastalığı siyah bacaklı olarak adlandırılan geyik kenesi (İxodes scapularis) ile taşınan bir bakteriyel hastalıktır (27). Sıcaklık 35 Fahrenheit üzerinde olduğu sürece tüm yıl boyunca aktif kalabilirler. Zirve aktivite ayları nymphler için Mayıs-Haziran; erişkinler için ise Ekim-Kasım aylarıdır. Borelia burgdorferi adlı spiroketin neden olduğu Lyme hastalığı hem ABD de hem de dünyada kene ile taşınan en yaygın hastalıktır (28,35,36). Birleşik devletlerde ilk kez 1975 yılında Connecticut’ta bulunan Lyme bölgesinde çok fazla sayıda çocukta görülen artrit vakaları sonucunda bildirildi (26). Borelia hastalığa neden olan ajan olarak 1980’li yılların başlarında izole edilebilmiştir (33). Hastalığın 15 yaş gençlerde ve 29 yaşlarda olan iki tepeli bimodal bir yaş dağılımı vardır ve birçok vaka Mayıs-Eylül döneminde meydana gelir. ABD’de TAF Preventive Medicine Bulletin, 2008: 7(5) 464 1999 yılında hastalık kontrol ve korunma merkezine (CDC) 16273 vaka rapor edilmiştir (37). ABD’de ki araştırmalar kenelerin Lyme hastalığını nymph evresinde beslenmenin 2 ya da daha sonraki günlerinde naklettiklerini göstermiştir (26). Bu evrede 2 mm den küçük olduklarından sıklıkla fark edilmezler; beslenmek ve enfeksiyonu yaymak için fazla zamanları vardır. Erişkin keneler ise daha büyük olduklarından fark edilmeleri ve vücuttan uzaklaştırılmaları daha kolaydır. Kene uygun teknikle erken dönemde çıkarılırsa enfeksiyonu yayma şansı çok azdır (26). Lyme hastalığının 3 evresi bunlunur: 1. Erken lokalize evrede; kene ısırığını takiben günler içinde (7-14 gün) hastaların % 60-80 inde Eritema Cronicum Migrans adı verilen kırmızı, yavaşça genişleyen boğa gözü şeklinde döküntü meydana gelir (34,30). Isırık etrafında küçük, kırmızı bir papül olarak başlar; günler içerisinde merkezden dışa doğru genişler. Lezyonun merkezinde hiperemik, deriden kabarık bir beneklenme kalabilir ve ortalama çapı 16 cm olan lezyonun çapı bazı vakalarda 70cm’ye kadar ulaşabilir. Döküntü ile beraber yorgunluk, kas ağrısı, eklem ve baş ağrısı, ateş ve üşümeyi içeren sistemik semptomlar olabilir. Fizik muayenede boyun sertliği, bölgesel adenopati ve ısırık bölgesinden bağımsız bölgelerde, primer lezyondan daha küçük sekonder deri lezyonları görülebilir. Eğer tedavi edilmezse genellikle birkaç haftadan daha uzun bir sürede kendiliğinden iyileşir (34,35). 2. Hastalığın erken dissemine formu kene ısırığını takiben günler-aylar içinde birçok sistemi de içeren semptomlarla ortaya çıkar. Birçok hasta kene tarafından ısırılıp ısırılmadığını hatırlamaz. Hastalarda eritema kronikum migrans olmayabilir. Lenfositik menenjit, sıklıkla Bell palsi gibi kraniyel sinir palsileri, azalmış duyu, güçsüzlük ve refleks yokluğunu da içeren nörolojik semptomlar olabilir (5- 2). Kardiyak semptomlar çoğunlukla erkeklerde olur, bitkinlik ve çarpıntı şeklinde ortaya çıkar. Çeşitli derecede atriyoventriküler bloklar ve orta derecede peri/miyokardit olabilir. Artrit genelde geç ortaya çıkar ama bu evrede de görülebilir. Bölgesel veya jeneralize adenopati, konjonktivit, iritis, hepatit ve mikroskopik hematüri veya proteinüri görülebilir (32,34,35) 3. Hastalığın geç evresi sıklıkla kronik artritle karakterizedir. Bu durum tedavi edilmemiş eritema migransı olan hastaların yaklaşık % 10 unda meydana gelir. Büyük eklemleri özellikle de diz eklemini içeren mono veya asimetrik oligoartriküler artrit olarak tanımlanmıştır. Nörolojik sistem subakut ensefalopati, aksonal polinöropati ve lökoensefalopati şeklinde etkilenebilir. Geç bulgular genelde birkaç yıl içinde spontan olarak iyileşir (30,32). Teşhis edilmesi zor bir hastalıktır (38).Tanı, öykü ve fizik muayeneye dayanır. Rutin laboratuar testleri tanıda rolü azdır. Seroloji testleri tanıyı doğrular ancak hastalığın ortaya çıkmasından 4-6 hafta sonrasına kadar tanı değerleri yoktur (30). ELİSA testi % 89 sensitif, % 72 spesifiktir. Pozitif test sonuçları Western Blot ile desteklenmelidir. PCR özellikle etkilenmiş eklemlerden alınan eklem sıvılarında yararlıdır (40). Eğer nörolojik bulgular varsa BOS’tan çalışma yapılabilir. Sinoviyal sıvı artritin ayırıcı tanısını yapmak için alınır. Organizmanın doku ve vücut sıvılarından izolasyonu çok zordur (31). Hastalığın sahip olduğu ciddi sekel potansiyeli nedeniyle erken tanı ve tedavi önem taşır. Ciddi vakalarda parenteral antibiyotikler gerekir. Erken dönemde yakalanırsa oral antibiyotiklerle tedavi edilebilir(26). Amoksisilin ve doksisiklin 2-3 hafta süre ile tedavide tercih edilir. Komplike olmayan vakalarda tedavi en az 14-21 gün; ciddi veya komplike vakalarda 30 gündür (41). Hastalık nadir görülür ama oldukça fatal seyreder (30). 1998 yılında Amerikan Gıda ve İlaç Dairesi hastalıktan korunma da kullanılmak üzere ilk kez bir aşıya onay verdi. Rekombinant OspA (LYMErix) aşısı üzerindeki iki çalışma aşının semptomatik enfeksiyondan korunmada % 76-92 arasında etkili olduğunu göstermiştir. Aşı keneye maruziyet açısından yüksek veya orta riskli kişilere önerilmiş, düşük riskli veya risksiz olan kişilere, 15 yaşından gençlere, 70 yaşını geçmiş yaşlılara ve yeterli çalışma olmamasından dolayı hamilelere önerilmemektedir (42). ERLİKİYOZ Hastalık küçük, gram-negatif, pleomorfik, zorunlu hücre içi bir organizma olan Ehrlichia tarafından oluşturulur. ABD’ de Ehrlichia chaffeensis ve Ehrlichia ewingii’ nin neden olduğu İnsan Monositik Erlikiyozu (İME) ve henüz isimlendirilmemiş bir ehrlichia türünün, muhtemel Ehrlichia phagocytophila/Ehrlichia equi’nin neden olduğu İnsan Granülositik Erlikiyozu (İGE) olmak üzere iki farklı formu vardır (43). Ehrlichia chaffeensis yıldız kenesi olan Amblyomma americanum tarafından taşınır. Beyaz kuyruklu geyik bu kenenin tek major konağıdır ve tek doğal rezervuardır (35). Hastalık ilk kez 1935 yılında bir grup araştırma köpeğinde tespit edildi. 1986 yılında insanda tanımlandı. Dünya çapında yaygın bir hastalık TAF Preventive Medicine Bulletin, 2008: 7(5) olmasına rağmen vakaların çoğu ABD’ de bildirilmektedir. Her iki türün de çoğu vakası Nisan- Eylül döneminde görülür. Vakaların % 75’ten fazlası erkeklerde görülür ve yaşlılar daha sık etkilenir. Klinik her iki türde de birbirine benzer. Hastalar kene ısırığı sonrası 7-10 günlük bir inkübasyon periyodunu takiben hastalanmanın ilk haftası içinde sağlık kuruluşuna başvururlar. Belirtiler ateş, baş ağrısı, kırgınlık ve kas ağrısıdır. Buna ek olarak bulantı, kusma, ishal, öksürük, eklem ağrısı, konfüzyon ve vucutta döküntü olabilir (35). Döküntü; İME olan erişkin hastaların yarısından biraz azında; İGE olan erişkin hastaların ise % 10’ undan biraz azında görülür. Bununla beraber enfekte çocuk hastaların % 60’ında döküntü görülmeyebilir. Döküntü gövdeyi içerir ama elleri ve ayakları tutmaz ve ısırık bölgesiyle ilişkili değildir. Maküler, papüler, retiküler, makülopapüler veya peteşiyel şekillerde olabilir. İGE de respiratuar veya renal yetersizlik, fırsatçı enfeksiyonlar veya hemoraji(DİC) gibi komplikasyonlar çok sık görülür (29). Laboratuar bulguları ise lökopeni, trombositopeni ve artmış karaciğer transaminazlarından oluşur. İGE de orta derecede bir anemi; hem İGE hem de İME de artmış ESR, BUN, kreatinin; İME de ise yükselmiş protein düzeyi ve lenfositik pleositozu olan BOS bulunabilir (44). Tanı öykü, fizik muayene ve laboratuar bulgularına dayanır. Seroloji tanıyı destekler ancak 1-2 haftada pozitifleşir. PCR da tanıyı destekler ancak akut safhada yapılmalıdır. Kültürler yararlı değildir. Tanıdaki temel metot konvelasan evredeki serokonversiyonun tespitidir. Tedavide tercih edilecek ilaç Doksisiklin’dir. Alternatif olarak kloramfenikol ve rifampin kullanılabilir. Tedavi süresi en az iki hafta olmalıdır. Tedavi edilmediği zaman tüm hasta grubunun % 50 sine varan bir oranda hospitalizasyon gerektiren ciddi bir hastalık oluşabilir. Uzamış ateş, böbrek yetersizliği, DİC, ARDS, meningoensefalit, nöbet veya koma şeklinde ciddi manifestasyonlar olabilir. Öngörülen mortalite oranı % 2-3 dür ve E.chaffeensis tarafından oluşturulan enfeksiyon diğer erlikiyoz türlerinden daha ciddidir (35). TULAREMİ Tularemi; küçük, gram negatif, hareketsiz bir kokobasil olan Francisella tularensis tarafından oluşturulan enfeksiyöz bir hastalıktır. Hastalık aynı zaman da Tavşan ateşi olarakta bilinir. İnsanlara sindirim, inokülasyon, inhalasyon ve kontaminasyon yollarıyla bulaşabilir. Amerika ‘da vakaların yarısından fazlasında kene ısırığı sorumludur (31). Her yıl bu ülkede 150-300 arasında vaka rapor edilir. Hastalık erkeklerde sık görülür. Özellikle kış aylarında avcılıkla uğraşanların derilerideki küçük lezyonların avlanan enfekte tavşanla teması ile bulaşır. Yaz ve sonbahar mevsimlerinde zirve yapar (45). İyi pişmemiş enfekte etler ve kontamine sular da bulaşma nedenidir. İnkübasyon periyodu ortalama 3-5 gündür. Birçok hastada ateş, üşüme, baş ağrısı, kırgınlık, anoreksi, yorgunluk, öksürük, kas ağrısı, göğüste rahatsızlık hissi, kusma, karın ağrısı ve ishali de içeren generalize semptomlar bulunur. Bunlara ek olarak hasta 6 farklı klasik modelden biriyle gelebilir: 1. Ülseroglandüler model: en sık görülen ve en kolay fark edilendir. Hastalar içerdiği lenf bezlerine drene olan bölgedeki ağrılı deri ülseriyle beraber olan, lokalize, hassas lenfadenopatilerden sikayetçidirler. En sık tutulan lenf bezleri çocuklarda servikal ve oksipital; erişkinlerde inguinal bölgede olanlardır. 2. Glandüler tip ise ülseroglandüler tip ile benzerdir ama bunda deri ülseri yoktur. 3. Oküloglandüler tipte organizmalar konjonktivaya yerleşmişlerdir. Vakaların % 90’ında tek taraflı tutulum olur. Fotofobi ve artmış lakrimasyonu içeren erken belirtiler vardır. Geç dönemde hastalarda göz kapağı ödemi, skleral enjeksiyonu olan ağrılı konjonktivit, kemozis ve küçük yeşil konjonktival ülser veya papül gelişir. Priaurikülar, submandibular ve servikal bezler sıklıkla tutulur. 4. Faringeal tipte ise organizmalar orofarinkse yerleşmişlerdir. Ciddi boğaz ağrısı bulunur. Fizik muayenede eksudatif farenjit veya tonsilit; servikal, preparotit veya retrofarengeal lanfadenopati bulunabilir. 5. Tifoid model ise herhangi bir lenfadenopati ile ilişkili değildir. Diğer tiplerde belirtilen genel semptomlara ek olarak burada sulu ishal vardır. 6. Pnömonik tip ise akut respiratuar bir hastalık olarak ortaya çıkar. Belirtiler ateş, minimal balgamlı veya balgamsız öksürük, substernal göğüs hassasiyeti ve plörotik göğüs ağrısından oluşur. Radyografilerde lobar, apikal veya miliyer infiltrasyonlar, hiler adenopati ve plevral efüzyon bulunabilir (45). Tanı; hikâye ve fizik muayeneye dayanır. Laboratuar testleri genellikle spesifik değildir. WBC ve ESR düzeyleri normal yâda hafif yüksektir. Organizma kültürde üretilebilir ama bu yöntem laboratuar çalışanlarına bulaşma riskinden dolayı sıklıkla kullanılan bir yöntem değildir. Göğüs radyografilerinde oval opasite, hiler adenopati ve plevral efüzyon triadından oluşan bulgular olabilir. Seroloji yaklaşık iki haftalık bir süre içinde tanıyı destekler (31). TAF Preventive Medicine Bulletin, 2008: 7(5) 466 www.korhek.org Hastada menenjit düşünülmüyorsa streptomisin ilk seçilecek ilaçtır. Alternatif olarak gentamisin, tetrasiklin, kloramfenikol ve florokinolonlar düşünülebilir. Tedavi 7-14 gün sürmelidir. Korunmada canlı aşı mevcuttur ve laboratuar çalışanları ve patojene tekrarlayan maruziyeti olan kişilere uygulanabilir. BABESİYOZ Hastalık etkeni eritrositleri enfekte eden ve hemolizlerine neden olan Babesia genusuna ait protozoal bir parazit olan Babesia divergens veya Babesia microti’ dir. Hastalık geçişi İxodes kenelerinin farklı türleri ile olur. Etken geyik kenesi ile taşınır (46). Hastaların % 5 kadarında fulminan seyrederek hospitalizasyon veya ölümle sonuçlanan bir tablo oluşturur. Özellikle splenektomi yapılmış hastalarda ciddi hastalık tablosu oluşturur. Tripanozoma’dan sonra memelilere kan yoluyla bulaşan en sık ikinci parazittir (47). Semptomlar diğer kene ile geçen hastalıklara benzer ve inokülasyondan bir hafta sonra başlayan influenza benzeri belirtiler verir. Ateş, terleme, kas ağrısı ve baş ağrısı görülür. Hemolitik anemi, hemoglobinüri, böbrek yetersizliği yapabilir. Enfeksiyon genç erişkinlerde yıllarca asemptomatik olarak kalabilir (46). Nadir de olsa oftalmik tutulum olabilir. Hastada ateş, hemolitik anemi ve uygun temas öyküsü varsa babesiyoz düşünülebilir. Tanı kan yaymalarda protozoanın tespitine dayanır. Karakteristik olarak Malta Haçı görünümü vardır. Serolojik testler ve PCR yardımcı yöntemleridir. Orta derecedeki vakalar semptomatik tedavi gerektirir. Persistan yüksek ateş, progresif anemi, yükselen parasitemi olan ciddi vakalarda Kinin+Klindamisin veya Atovaquon+Azitromisin en az 7-10 gün boyunca kullanılmalıdır. Yüksek parasitemisi olan ciddi hastalarda exchange transfüzyon yapılabilir (46). KOLORADO KENE ATEŞİ Hastalık bir ağaç kenesi olan D.andersoni tarafından nakledilen RNA orbivirus tarafından oluşturulur. Çoğunlukla Amrikadaki Rocky dağları bölgesinde her yıl 200-300 arasında vaka tespit edilir. İmmün yetmezliği olan ve splenektomi geçirmiş olan hastalar ciddi komplikasyonlar açısından risk altındadır (46). İnokülasyondan sonra bir hafta içinde influenza benzeri semptomlar başlar. Hastaların üçte birinde boğaz ağrısı bulunur. En önemli özelliği; menenjit, döküntü ve konjuktivit ile ilişkili olan bifazik ateştir. Hastalık genellikle 7-10 gün arasında sonlanır. Tanı genellikle immünfloresan boyama ile konur. Bununla beraber lökopeni ve trombositopeni bulunabilir. Spesifik bir tedavi yoktur. Destek tedavisi verilir. Belirtiler ortaya çıkmışsa diğer kene geçişli hastalıkları kapsayan ampirik olarak tetrasiklin, doksisiklin veya kloramfenikol kullanılabilir. DÖNEK ATEŞ Hastalığa Borrelia genusundan bir spiroket neden olur. Ornithodoros genus keneler esas vektördür. Tipik olarak hastalık sporadiktir (48). Ortalama inokülasyon periyodu bir haftadır. İnfluenza benzeri semptomlar, artralji, bulantı ve kusma olur. Genellikle 40 derecenin üzerinde, düzensiz ve bazen deliryumla ilişkili ateş olabilir. Hastaların çoğunda splenomegali bulunur. Meningeal bulgular olabilir. Epistaksis hemoptizi, iridosiklit, koma, kraniyel sinir palsi, pnomonit, miyokardit ve dalak rüptürünü içeren komplikasyonlar olabilir. Tanı; kan, kemik iliğinde ve ateş epizotu sırasında BOS’da spiroketin tespitiyle konulabilir. Lökosit sayısı normal veya orta derecede artmıştır. Trombositopeni tespit edilebilir. Tedavide 5-10 gün boyunca doksisiklin tercih edilir. Alternatif olarak eritromisin kullanılabilir. Eğer ilaçlar geç febril evrede verilirse Jarisch- Herxheimer reaksiyonu meydana gelebilir. Antibiyotik tedavisinin öncesi ve sonrasındaki 2 saatlik periyotlarda asetaminofen uygulanması reaksiyonun ciddiyetini azaltabilir. KOMBİNE ENFEKSİYONLAR Aynı kene birden fazla enfeksiyöz patojende taşıyabilir. Bundan dolayı bir ısırıkla birden fazla hastalığı bulaştırabilir. Örneğin İ.scapularis; erlikiyoz, lyme hastalığı ve babesiyozu bulaştırabilir. Lyme hastalığı bulunanların % 23’ünde babesiyoz; % 10-30 unda erlikiyoz bulunur. Kombine enfeksiyonların daha ciddi semptomlar oluşturacağı akılda bulundurulmalıdır. KAYNAKLAR 1. Rajput ZI, Hu S, Chen W, Arıjo AG, Xiao C. Importance of ticks and their chemical and immunological control livestock. Journal of Zhejiang University. 2006; 7(11): 912-921. TAF Preventive Medicine Bulletin, 2008: 7(5) www.korhek.org 467 2 Furman DP, Loomis EC. The ticks of California (Ascari: Ixodida). University of California Publications. Bulletin of the California Insect Survey. 1984; 25: 1-239. 3. Edlow JA, Danzl D, Halamka J, Pollack VC. Tick- Borne Diseases. www.eMedicine.com. 4. Snelson JT. Animal ectoparasites and disease vector causing major reduction in world food supplies. FAO Plant Prodection Bulleton. 1975; 13: 103-114. 5. Barker SC, Murrell A. Systematics and evolution of ticks with alist of valid genus and species names. Parasitology. 2004; 129(7):15-36. 6. Klompen JSH, Black WC, Keirans JE, Oliver JH. Evolition of tiks. Annu Rev Entomol. 1996; 41(1): 141-161. 7. Güler S, 198. Ankara ve civarındaki koyun ve keçilerde kış ixodidaeleri üzerine araştırmalar. U. Ü. Vet. Fak. Derg. 1 :54-55. 8. Güler S, Özer E, Erdoğmş SZ, Köroğlu E, Bektaş İ. Malatya ve bazı Güneydoğu Anadolu illerinde sığır, koyun ve keçilerde bulunan kene türleri. Doğa-Tr. J. Of Veterinary and animal Science. 1993; 17: 229-231. 9. Karaer Z, Yukarı BA, Aydın L. Türkiye keneleri ve vektörlükleri. Parazitolojide Andropod Hastalıkları ve Vektörler. İzmir, Türkiye. Parazitoloji Derneği Yayın No: 13, 1997, p. 363-434. 10. Hoogstraal H. The epidemiologymof tick borne Crimean-Congo hemorrhagic fever in Asia, europe and Africa. J Med Entomol 1979; 15: 307- 417. 11. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H. Crimean-Congo hemorrhagic fever. In:Monath TP, ed. The arboviruses: epidemiology and ecology, volume 2. Boca Raton, FL, USA:CRC Pres, 1988, p. 177-260. 12. Ergönül O, Celikbaş A, Dokuzoğuz B, Eren S, Baykam N, Esener H. The characteristicks of Crimean-Congo hemorhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin Infect Dis. 2004; 39: 285-89. 13. Ergönül Ö. Crimean-Congo haemorrhagic fever. The Lancet. 2006; 6: 203-214. 14. Kartı SS, Odabaşı S, Korten V, et al. Crimean- Congo hemorrhagic fever in Turkey. Emerg Infect Dis. 2004; 19: 1379-84. 15. Ozkurt Z, Kiki I, Erol S, et al. Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect. 2006; 52: 207-15. 16. Türkiye’de KKKA yayılım haritası. www.tvhb.org.tr 17. Whitehause CA. Crimean-Congo hemorrhagic fever. Antivir Res 2004; 64: 145-60. 18. Swanepoel R, Gill DE, Shepherd AJ, et al. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 794-800. 19. Smego RA, Sarwari AR, Siddiqui AR. Crimean- Congo hemorrhagic fever: Prevention and control limitations in a resource poor country. Clin Infect Dis. 2004; 38: 1731-35. 20. Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean- Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36: 120-32. 21. Ergönül O, Celikbaş A, Baykam N, Eren S, Esener H, Dokuzoğuz B. Analysis of the mortality among the patients with Crimean-Congo hemorrhagic fever virus infection. Clin Microbiol Infect (in press). 22. Burt FJ, Leman PA, Abott JC, Swanepoel R. Serodiagnosis of Crimean-Congo haemorhagic fever. Epidemiol Infect. 1994;113: 551-62. 23. Schwarz TF, Nsanze H, Longson M, et al. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean- Congo hemorrhagic fever virus in the United Arab Emirates. Am J Trop Med Hyg. 1996; 55: 190-96. 24. Ahephered AJ, Swanepoel R, Leman PA. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989; 11: 801- 806. 25. Knowles SR, Phillips EJ, Dresser I, Matukas I. Common adverse events associated with the use of ribavirin for severe acte respiratory syndrome in Canada. Clin Infect Dis. 2003; 37: 1139-42. 26. Chiou HE, LiuCI, Buttrey MJ, et al. Advere effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest. 2005; 128: 263-72. 27. Ticks. www.co.franklin.oh 28. Walker DH, Raoult D. Rickettsia rickettsii and other spotted fever group rickettsiae (Rocky Mountain spotted fever and other spotted fevers). In: Mandel GL, Douglas RG, Bennett JE Dolin R, eds. Mandell, Douglas and Bennett’s Principles and practice of infectious diseases. 5th ed. Philadelphia. Churchill Livingstone, 2000, p. 2393-402. 29. Walker DH. Tick-transmitted infectious diseases in the United States. Annu Rev public Health 1998; 19: 237-69. 30. Tick information. www.cdc.gov. 31. Spach DH, Liles WC, Campbell GL, Quick RE, Anderson DE Jr, Fritsche TR: Tick-borne diseases in the United States. N Engl J Med. 1993; 329: 936-47. 32. Thorner AR, Walker DH, Petri WA Jr. Rocky mountain spotted fever. Clin Ifect Dis. 1998; 27: 1353-60. TAF Preventive Medicine Bulletin, 2008: 7(5) 468 www.korhek.org 33. Steeve AC. Lyme borreliosis. In: Kasper DL, Harrison TR: Harrison’s Manual of medicine.16th ed. New York: McGraw-Hill, 2005, p. 995-9. 34. Tick-borne diseases. www.aafp.org. 35. Centers for Disease Control and Prevention. Rocky Mountain spotted fever. Accessed online April 11 2005. at: www.cdc.gov. 36. Taege AJ. Tick trouble: overview of tick-borne diseases. Cleve Clin J Med. 2000; 67: 245-9. 37. Ticks. www.health.nsw.gov.au. 38. Centers for disease control and prevention. Lyme disease-United States, 1999. MMWR morb Mortal Wkly Rep. 2001; 50: 181-85. 39. Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, et al. The early clinical manifestation of Lyme disease. Ann Intern Med. 1983; 99: 76-82. 40. Beers MH, Berkow R. The Merck manual of diagnosis and therapy. 17th ed. Merck Research Laboratories. Whitehause Station, n.J, 1999. 41. Treatment of Lyme disease. Med Lett Drugs Ther. 2000; 42: 37-9. 42. Deborah SF. Prevent Tick bites: Prevent Lyme Disease. Rutgers Coperative extensions. 1992, FS637. 43. Belman AL. Tick-borne diseases. Semin Pediatr Neurol. 1999; 6: 249-66. 44. Fritz CL, Glaser CA. Erlichsis. Infect Dis Clin North Am. 1998; 12: 123-36. 45. Cox SK, Everett ED. Tularemia, an analysis of 25 cases. Mo Med 1981; 78: 70-4. 46. Bratton RL; Corey GR. Tick-Borne Diseases. www.aafp.org. 47. Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitology. 2000; 30: 1323-1337. Kaynak:TAF Preventive Medicine Bulletin, 2008: 7(5) Konu İle İlgili PDF formatını buradan indire bilirsiniz http://www.korhek.org/khb/khb_007_05-461.pdf

http://www.biyologlar.com/kene-ile-bulasan-hastaliklar

Keneler Hakkında Bilgi

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır (Şekil 2). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 2. Ixodidae ailesinde bulunan soyların ayırım anahtarı. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şelil 2. Ixodidae ailesindeki soyların ayırım anahtarı Anal oluk anusun önünde Soy: BOOPHILUS Soy: RHIPICEPHALUS Soy: DERMACENTOR Soy: ANOCENTOR 7 feston 11 feston Feston var, anal oluk belirgin, Coxa I’de derin yarık var Feston yok, anal oluk belirsiz, Coxa I bütün Basis capituli altıgen şeklinde Basis capituli dikdörtgen şeklinde Soy: HAEMAPHYSALIS II. Palp eklemi laterale çıkıntı yapar II. Palp eklemi düz Soy: AMBLYOMMA Soy: HYALOMMA Ağız organelleri Basis capituliden çok daha uzun, II. Palp ekleminin boyu eninden daha fazla Ağız organelleri Basis capituli ile yakın uzunlukta, II. Palp ekleminin eni ile boyu birbirine yakın Soy: IXODES Anal oluk anusun arkasında Capitulum terminalde yerleşmiş, üstten bakıldığında görülür, Scutum var Capitulum ventralde yerleşmiş, üstten görülmez, Scutum yok Argasidae Ixodidae Basis capituli II. Palp segmenti Basis capituli II. Palp segmenti Anal oluk Anus Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com

http://www.biyologlar.com/keneler-hakkinda-bilgi

Doğal Besi Yerleri

süt, yumurta, patates, havuç gibi doğal maddelerden yapılırlar. I-Sütlü besiyerleri Kaymağı alınmış süt besiyeri; Süt 20 dk, kaynatılıp buzdolabı veya serin bir yerde bir gece bekletilerek kaymak tutması sağlanır. Kaymağın altındaki süt pipetle alınıp, tüplere dağıtılır. Otoklavda 115°C'de 20 dk. tutularak sterillenir. Turnusollü süt; Kaymağı alınmış süte turnusolün alkolik. çözeltisinden %2 oranında konur. Üstteki gibi sterillenir. Bromkrezol morlu süt; Bir litre kaymağı alınmış süte, 0.02 gr brom krezol moru eklenir. 45-50°C'ye ısıtılıp eritilir. Üstteki gibi sterillenir. Anaeroblar için bromkrezol morlu süt; 10 cm3 bronkrezol morlu süt tüplere dağıtılır. Her tüpe bir gram indirgenmiş demir ilave edilir. Otoklavda l20°C'de 30 dk ısıtarak sterilize edilir. Metilen mavili süt; Kaymağı alınmış süte metilen mavisinin sudaki %1'lik çözeltisinden %10 oranında ilave edilir. Otoklavda 115°C'de 10 dk ısıtarak sterilize edilir. II - Yumurtalı besiyerleri Pai'nin yumurtalı besiyeri; Üç kısım yumurtaya (75 ml ye), bir kısım fizyolojik tuzlu su (25 ml) eklenerek hazırlanır. Yumurtalar su ve sabunla fırçalanarak temizlenir. %70 alkolde 5 dk. tutulup çıkarılır. Kuruduktan sonra steril bir pensle geniş ucundan büyükçe bir delik açılır. Şişenin ağzına doğru ters çevrilip sivri ucuda kırılan yumurtaların muhteviyatı boncuklu steril şişeye akıtılır. Üzerine tuzlu su ilave edilir. Homojen oluncaya kadar çalkalanır, steril gaz bezinde süzülür, tüplere 5-6 ml. olarak dağıtılır. Koagulatörde, eğri olarak 85°C'de üç gün, günde birer saat ısıtılarak koagüle ve sterilize edilir. Pai besiyeri, bakterilerin laboratuvarda, oda derecesinde saklanması ve difteri etkeninin tanınması amaçlarıyla kullanılır. Enterobakter'ler bu besiyerinde 1-2 yıl canlı kalırlar ve R şekline geçiş, jeloz besiyerinden daha azdır. Besiyerine ekilen bakterinin 37°C'de bir gece bekletilmesi ile hazırlanan kültür, karanlık ve serin bir dolapta uzun süre saklanabilir. Bu sürede besiyerinin kurumaması için, vidalı kapaklı şişeler kullanılmalıdır. Dorset'in yumurtalı besiyeri; Dört taze yumurta, Pai besiyerindeki gibi hazırlanır. Bu besiyeri Mycobacterium tuberculosis'in üretilmesi için kullanılır. Besiyerine indikatör olarak bazik füksin ilave edildiğinde pembe renk meydana gelir ve tüberküloz basilinin erken devrede ürediği görülebilir. III - Patates besiyeri; Büyük patatesler alınıp, iyice yıkanır ve kabukları soyulur. Tüpe girecek büyüklükte 5 cm uzunlukta, silindir şeklinde kesilir. Suda iyice yıkanır. Silindir şeklindeki patates uzunlamasına ve eğik olarak ikiye kesilir. Her parça kalın tarafı altta kalacak şekilde patates tüpüne yerleştirilir. Tüp steril su ile doldurulur. 100°C'de 30 dk ısıtılır. Su boşaltıldıktan sonra otoklavda 115°C'de 20 dk. tutularak sterilize edilir. Patatesler dilimlere ayrılıp, petri kutularında da besiyeri hazırlanabilir.

http://www.biyologlar.com/dogal-besi-yerleri

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

Senozoyik

(3. zaman) . Memeli ve Ot devri 65 milyon önce başlamış, 2 milyon yıl önce sonlanmıştır. Yaklaşık olarak 63 milyon sürmüştür. Senozoik tersiyer ve kuaterner olmak üzere iki döneme ayrılarak incelenir. Tersiyer başında ikinci toplu yok oluşun ardından yeryüzünde her şey yeniden başladı. Yaşam tümüyle normal hale gelinceye kadar yaklaşık 10 milyon yıl geçmişti. Büyük felaketten keseli ve plasentalı memelilerin ilkel tipleri az bir kayıpla kurtulmuştu. Bunlar, dallanan evrim kollarıyla çeşitlenerek karaları işgal etmeye ve dinozorlardan boşalan evrimsel alanları hızla doldurmaya başladı. Bu zamanda kıtaların birbirinden ayrı takımadalar biçimindeki konumu, memelilerin birbirinden etkilenmeden farklı evrimsel çizgilerde çeşitlenmelerine neden olmuştur. Tersiyerin eosen bölümünde primatlar görülmeye başlanmıştır. Bu dönemde At, fil, deve gibi günümüzdeki dev cüsseli hayvanları 10 kğ’ dan az olan küçük hayvanlar şeklinde ortaya çıkmışlardır. Yine eosende, kuzey Amerika ile Asya arasındaki Bering boğazı iklimsel değişiklikler nedeniyle bir çok hayvan grubu için kara köprüsü oldu. Böylece, çağımız toynaklılarının (atların) ataları Avrupa, Asya ve Kuzey Amerika'ya yayıldı. Oligosen bölümünün en önemli olayı Himalaya dağ kuşağının yükselmesidir. Tersiyerin miyosen bölümünde kıtalar arasındaki su engellerinin zaman zaman kalkmasıyla; Avrupa-Asya-Afrika, Asya-Kuzey Amerika arasında hayvansal göçler yaşandı. Tersiyerin PLİYOSEN (yaklaşık 20 milyon yıl) bölümünde hominidler (insan soyu) ortaya çıkmıştır. Bölümün sonunda hominidler oldukça etkili olmaya başlamış ve jeolojik son dönemine kendi ismini verecek kadar etkili olmuşlardır. Daha önce belirtildiği gibi senozoik (3. zaman)’in son dönemi kuaterner olarak adlandırılmıkatadır. Kuaterner Antropozik (insan zamanı) olarak da adlandırılmaktadır. Kuaterner (Antropozoik) dönemi, en önemli buzulların görüldüğü dönem olan Pleistosen (Buzul çağları) ve şimdiki zaman anlamında Holosen olmak üzere iki bölüme ayrılır. Pleyistosen insan türlerinin evrim geçirdiği bir devredir. İnsan alet yapmaya ve ateşi kullanmaya bu devrede başladı. Pleyistosen'de buzul çağlar ile bunları bölen ılıman hatta tropik dönemler de yaşandı. Buzul dönemlerde buzullar ılıman kuşağa doğru ilerleyerek zaman zaman karaların yüzde otuzunu kapladı; buna bağlı olarak deniz seviyeleri düştü ve kıtalar arasında karasal bağlantılar oluştu. Bu durum hayvan ve insan türlerinin göçlerine olanak sağladı. Pleyistosen sonunda buzul çağları sona ermiş; iklim ılımanlaşmış ve denizler hemen hemen günümüzün seviyesine ulaşmıştır. Pleyistosen sonunda gerçekleşen yok oluşla birçok hayvan türünün soyu tükenmiştir. Pleyistosen'de yaşanan son buzul çağının sona ermesiyle başlayan devre yaklaşık 10 bin yıl öncesinden başlayan ve günümüze ulaşan bir zaman dilimi holosen olarak adlandırılmaktadır. Buzul çağları arasında daha sıcak bir buzul arası dönemi ifade eden Holosen, insanlığın tüm kayıtlı tarihini ve uygarlığını içerir. Bu devrede insanlar yerleşik hayata ve tarım toplumuna geçerek pek çok uygarlık kurmuşlar ve doğayı ciddi olarak etkileyip değiştirmişlerdir.

http://www.biyologlar.com/senozoyik

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Opuntia ficusindica - "Dikenli İncir"

Opuntia ficusindica - "Dikenli İncir"

Opuntia ficusindica "Dikenli İncir" derler. Ayrıca pabuç inciri, frenk inciri, kaynana dili gibi başka isimleri de var...

http://www.biyologlar.com/opuntia-ficusindica-dikenli-incir

Genetik Yapımız ve Davranışlarımız Arasındaki İlişki

Daha doğum anından itibaren bebeğin annesine mi yoksa babasına mı benzediğini merak ederiz. Yeni doğan bebeği görenler, öncelikle bu benzerlik konusundaki kanaatlerini açıklama gereği hissederler ya da gerçekten ortada öylesine bir benzerlik vardır ki, kendilerini bu konuda bir şey söylemekten alıkoyamazlar. Çoğu zaman "Hıh, deyip birisinin burnundan düşmüş"üzdür Kime benzediğimiz, fiziksel özelliklerimizi, bazı huylarımızı kimden aldığımız yaşamımızın sonraki dönemlerinde de insan ilişkilerindeki temel ilgi alanlarından birisi olmakta devam eder. Çocuk ya da genç, hoşa giden veya gitmeyen bir tutum gösterdiğinde, bu tutumun hep hesapta tutulan sorumlularından biri de kalıtımsal mirasıdır. Baba, matematikten "pekiyi" alan oğlunun başarısında, biraz da kendi kalıtımsal mirasını etken olarak gördüğü için öğünür. Eşine kimi huylarından dolayı kızgın olan anne, kızı bu baba huylarından bazılarını gösterse, öfkesini yönelttiği kaynaklardan birisi de eşinin kalıtımsal mirasıdır; o yüzden açık ya da gizli "çekmez olasıca!" diye hayıflanır. Şöyle ya da böyle kalıtım, gündelik yaşamımızda büyük ve büyülü bir yer tutar. Gündelik yaşamımızda böylesine önemli bir yeri olan kalıtım, doğal olarak tarihte, toplumsal ve politik yaşamda da "soy sop sorunu" şeklinde hak ettiği yeri almıştır. Evlilikler, politik tercihler sırasında, soyaçekimin bu büyüsel etkisi kendisini çoğu zaman hemen hissettirir. "Kız anasına bakılarak alınır"; soyun gücüne inanç, mezhepsel farklılıklara, babadan oğula geçen dinsel ve politik iktidar biçimlerine yol açar; demokratik söylemin başat olduğu modern zamanlarda bile partilerin başına soyaçekimin büyüsünden faydalanılacak liderler seçilmeye çalışılır. Kalıtımsal miras ve soyaçekim konusunun şüphesiz bilimsel tecessüsü uyandırması gecikmemiş, "genetik", bilim dünyasının en önemli alanlarından birisi haline gelmiştir. Bu yüzyılın ortalarında kalıtımsal mirasın geçiş yolu olan kromozomların, genlerin ve genetik şifrenin taşıyıcısı DNA'nın yapısının keşfiyle, insanlık tarihinde belki etkisi gelecekte çok daha belirginleşecek olan "genetik devrim" ortaya çıkmıştır. Genetik şifre hakkındaki artan bilgi, DNA'ların ayrıştırılıp yeni yapılar elde etmek üzere yeniden birleştirilmesi (rekombinant DNA teknolojisi), insanlığı diğer tüm devrimlerde olmadık biçimde politik, toplumsal ve etik, yepyeni bir meydan okumayla karşı karşıya bırakmaktadır. Artık tüm canlılarda, bitki, hayvan ve insanda istenilen değişikliklerin ortaya çıkarılması ve kopyalama mümkündür. Moleküler biyoloji ve gen mühendisliği gibi iki temel alandan beslenen yeni bir bilimsel ve teknolojik alan olan biyoteknoloji, insan ve toplum için inanılması güç olumlu vaadlerde bulunmaktadır. 1987'de Amerikalı ve İngiliz bilimcilerin önderliğinde başlatılan "İnsan genomu projesi" tüm hızıyla sürmektedir. Bu projeyle ilk aşamada insan genlerinin, ikinci aşamada tüm DNA dizilimlerinin ayrıntılı bir haritasının çıkarılması hedeflenmektedir. İnsan DNA'sında 3 milyar harf olduğu sanılmakta, projenin başlangıcından beri 76 milyon harfin yerinin saptandığı, 2002 yılında 500 milyon harfin yerinin saptanmış olacağı bildirilmektedir. Halen süren ama bir yandan da gerek bilimsel gerek politik çevrelerin tepki ve eleştirilerine hedef olan bu proje, nihai amacı olan insan genomundaki her noktanın DNA diziliminin elde edilmesini gerçekleştirebilirse, ortaya çıkabilecek imkan ve sorunların bugünden hayal edilmesi bile mümkün değildir. Şu sıralarda İngiltere'de Cambridge'de sürmekte olan "İnsan Genetiği Haritası Araştırması" için insan DNA'sından elde edilen 1 milyon kopya derin dondurucularda saklanmakta, varılan sonuçlar Avrupa Biyoenformasyon Enstitüsü (EBI) tarafından dünyaya açıklanmaktadır. EBI, şimdiye kadar 20 bin organizmanın genetik yapısını bilimcilere açıklamıştır. İnternetteki sayfasına her gün on bin kişi girip biriken bilgiyi elde etmektedir. EBI'nın interteki sayfasını okuyanların sayısı son bir yılda 7 kat artmış durumdadır. Bugün "tıbbi genetik" bilgi sayesinde sağlanan bazı hastalıkların nedenleri ve erken tanınması ile birlikte ortaya çıkan imkanların "müthiş" bir düzeye gelmesi ve daha anne karnında hatalı genlerin hatalı olmayanlarla değiştirilmesi yoluyla kesin etkili olacak "genetik tedavi" ulaşılmak istenen ilk hedeflerdendir. Genetikteki çok hızlı gelişme, yalnızca tıp alanıyla sınırlı değildir. İlaç şirketleri de, genetik mühendislikte araştırma-geliştirmeye giderek aratan oranlarda kaynak ayırmaktadır. Biyoteknolojinin tıp ve eczacılık dışındaki diğer hedefleri arasında tarım ve petrokimya alanlarında pek çok ürünün ucuza ve bol miktarda üretilmesini sağlamak bulunmaktadır. Genetik çalışmaların böylesine gelişme ve tüm toplumsal ve ekonomik alanlara yayılma eğilimi, "genetik araştırmaların ekonomisi"yle uğraşan "genomics" adlı yeni bir bilgi türü bile ortaya çıkarmıştır. Ancak insan söz konusu olduğunda, genetik devrimdeki ve biyoteknolojideki tüm bu olumlu gelişmeleri gölgeleyen bazı soru işaretleri ve eleştiriler ortaya çıkmaktadır. Tüm bunların sonucu olarak geçenlerde aralarında ülkemizin de bulunduğu, İngiltere dışındaki 19 Avrupa ülkesi, araştırma amaçlı dahi olsa insan embriyosu üretimini ve kopyalanmasını yasaklayan bir anlaşma imzalamıştır. Bir zamanlar, örneğin matbaanın icadında olduğu gibi, bilimsel ve teknolojik gelişmelere, dinsel ve ahlaki nedenlerle din adamları karşı çıkarlarken bugün benzer gerekçelerle bizzat bazı bilimcilerin kendileri bilimsel etkinliğin sınırlandırılması gerektiğini savunmaktadırlar. İnsanın en bilmecemsi yanı, davranışlarıdır. İnsanla ilgili her türlü bilmeceyi mutlaka çözme (!) azim ve kararlılığında olan genetik bilimciler, uzunca bir süreden beri, felsefenin ve beşeri bilimlerin yıllardır tartıştıkları konulara da el atmışlar; insanın (ve hatta toplumun) karmaşık davranışlarının genetik bakımdan açıklanabilmesi için bugüne kadar birçok araştırma yapmışlardır. Bazı fiziksel hastalıkların genetik nedenlere bağlı olarak ortaya çıktıkları kanıtlanalı beri, önce ruhsal hastalıkların daha sonra işsizlikten çapkınlığa, homoseksüellikten toplumsal şiddete kadar tüm etik, politik, ekonomik sorunların nedenleri DNA dizilimlerinde aranmaya, insanı her türlü davranışının sorumluluğundan muaf tutmaya çalışan bir gayret başlamış, bir nükleotid'in değişimiyle bu sorunların düzelebileceği şeklinde hayaller kurulmuştur. Bu hayal ticaretinin kışkırtılmasında medyanın rolü hiç de azımsanmayacak bir ölçüdedir. Genetik devrimin ve biyoteknolojinin önemi, hem gelişmiş ülkelerin hükümetleri hem de uluslar arası büyük şirketler tarafından çoktandır kavranılmış, bu alanda çok ciddi yatırımlar yapılmıştır. Tüm bunlar nedeniyle, zaten eskiden beri gündelik yaşamda büyük ve büyülü etkiye sahip olan kalıtım ve soyaçekim sorunu, bu kez bilimsel bilgi ve teknolojideki gelişmelerin sonuçları olarak ilerideki günlerde hiçbirimizin kayıtsız kalamayacağı biçimde önümüze gelecektir. Bilgiler yenilenmeli, tüm toplumsal yaşamı derinden sarsacak olan durumlara ve tartışmalara hazır olunmalıdır.

http://www.biyologlar.com/genetik-yapimiz-ve-davranislarimiz-arasindaki-iliski

Ethojinin insan davranışının açıklanmasına katkıları

Etholojik araştırmaların insan davranışı incelemelerine etkisi, iki yönden olmuştur. Bunlardan birincisi, etholojik araştırmalardaki genetik faktörün önemini öne çıkartan sosyobiyoloji alanındadır; ethologların hayvan davranışı incelemelerinden yola çıkan sosyobiyologlar, evrim konusunda Darwin'in bakışından oldukça farklı bir yaklaşım geliştirdiler. Onlara göre, evrimin amacı soyun sürekliliğini sağlamaya yöneliktir; birsoyun üyesinin davranışlarına soyunu korumaya ve onun sürekliliğini sağlamaya yönelik, "soy seçici" içgüdüler yön verirler. Bu soy seçici tutumlar, insan davranışlarının da temelini oluşturur. İnsan davranışlarını da genetik olarak getirdikleri, soyu korumaya yönelik içgüdüsel tutumlar belirlemektedir; kültürel ve öğrenme yoluyla ortaya çıktıkları sanılan tüm insan etkinlikleri aslında, içgüdüsel olarak insan türünün sürekliliğini sağlamaya yönelik faaliyetlerdir. Etholojinin insan davranışının açıklanmasına ikinci etkisi ise, sosyobiyolojinin tam tersine, anne-bebek ilişkisinin önemini öne çıkartan bir şekilde olmuştur. Harlow'un maymunlarla yıllar süren araştırmalarının sonucunda, maymunlarda anne-bebek ilişkisinin onların sonraki yaşamlarında nasıl bir ruhsal ve toplumsal gelişme göstereceklerini belirlediği kanaatine varması ve ardından bu kanaatinin tüm memeliler için geçerli olduğunu söylemesi, çocuk ve erişkin psikiyatrisi üzerinde derin etkiler yaratmıştır. Başta John Bowlby olmak üzere etholojiden etkilenen psikiyatristler, erişkin yaşamda ortaya çıkan birçok ruhsal rahatsızlığın anne-bebek ilişkisindeki toplumsal-duygusal bağın ve güvenli bağlılık ilişkisinin yeterince gelişmemesiyle ilgili olduğunu öne sürmüşlerdir. Şüphesiz ethologların bu ve benzeri birçok deneysel sonuçlarına, hayvanlardan elde edilen sonuçların insanlara genellenemeyeceği söylenerek karşı çıkılabilir. Bu eleştiride bir haklılık payı vardır. İnsan yavrusu, hayvanlarda olduğu gibi, dünyaya ayrıntılı içgüdüsel tepki mekanizmalarıyla gelmemekte; oldukça bağımlı ve çaresiz bir durumda bulunmaktadır. Kaldı ki, yaşamları boyunca pek bir şey öğrenmelerine gerek olmadan içgüdüsel bilgileriyle var kalabilen hayvanlardan ayrı olarak, insan bilgisinin pek çoğunu öğrenerek elde eden ve bunları içgüdüleriyle değil aklıyla yapan bir varlıktır. Ama insan ve hayvan arasındaki tüm bu farklılıklar yine de insan zihninin doğum sırasında, bazı filozofların sandıkları gibi, boş bir levha (tabula rasa) olmadığı; belli uyaranlara karşı doğuştan gelen tepkilerden tümüyle mahrum kaldığı anlamına gelmemektedir. Örneğin, yeni doğan bebek, emme tepkisini nasıl göstereceğini bilmektedir. Aynı şekilde, yeni doğan bebekler, etrafındakileri elleriyle nasıl kavrayacaklarını bilirler; yani dokunuşla ilgili uyaranlara nasıl tepki vereceği konusunda programlanmışlardır.

http://www.biyologlar.com/ethojinin-insan-davranisinin-aciklanmasina-katkilari

Mamutun Genomu Birleştirildi

ABD’li ve Rus araştırmacıların oluşturduğu bir grup, mamut genomunun büyük bir bölümünü ortaya çıkarmayı başardı. Uzmanlar Buz Devri’nin bu devasa hayvanının DNA zincirini yeniden oluşturmak için mamutun kıl örneklerinden DNA çıkardılar. Bazı bölümleri eksik olsa da araştırmacıların tahminine göre genomun yaklaşık %80’i tamamlanmış durumda. Çalışma, mamutların soyunun tükenmesi konusuna açıklık getirebileceği gibi uzun süredir var olmayan türlerin klonlanmasının uygulanabilirliği sorusunu da yeniden gündeme getiriyor Bilim insanları bu konuda Sibirya’da donuk topraktan (kutuplarda bulunan donmuş toprak tabakası) çıkarılan çok sayıdaki tüylü mamuttan yararlandılar. Donuk toprak koşulları, çok eski zamanlardan kalan DNA’ların çıkarılmasında özellikle yeğlenen tüy ve kıl gibi parçaların korunması için çok uygun. Bir kıl örneğinde bulunan genetik malzemenin büyük bir bölümü kılın sahibi olan hayvanındır. Buna karşın araştırmacılar kemikten DNA çıkarmaya çalıştıklarında çoğunlukla mantar ve bakterilerinki de örneğe karışıyor. Araştırmada donuk topraktan çıkarılan iki mamutun kıl örnekleri kullanıldı. DNA’nın çıkarılmasının ardından, bunun ne kadarının mamuta ait olduğunun anlaşılması gerekiyordu. Bunun için de araştırmacılar, mamutun en yakın akrabası olan Afrika filinin gen haritasını çıkardılar. Yapılan ilk araştırmalar, mamut genomunun Afrika filininkinden yalnızca %0,6 oranında farklı olduğunu ortaya çıkardı. Bu, insan ve şempanze arasındaki genom farkının yaklaşık yarısı kadar. Afrika fili ve mamutun evrimsel olarak ayrılmasının, insan ve şempanze soyları arasındaki kırılmadan bile daha önce olmasıysa dikkat çekilmesi gereken bir gözlem. Öyle görünüyor ki genler, mamutlar da dahil olmak üzere fillerde, insan ve şempanze soylarında olduğundan daha yavaş evrim geçiriyor. Neden böyle olması gerektiğiyse hâlâ bilinmiyor. Mamutun toplam DNA zincirinin, insanınkinden 1,4 kez daha uzun olduğu tahmin ediliyor. Bir başka tartışma Uzun süredir çok eski zamanlara ait DNA’lardan,günümüzde var olmayan canlıları geri getirmenin hayali kuruluyordu. Ancak birçok bilim insanı bunun gerçekleşebileceği konusunda kuşkulu. Bunun nedeniyse canlının ölümünden sonra, DNA zincirinde oluşan değişimlerin bu durumu çok zorlaştırması. “Bu tıpkı, tüm malzemenin yalnızca %80’iyle bir araba yapmaya benziyor.” diyor Adelaide Üniversitesi’nden Jeremy Austin ve ekliyor: “Elimizde bütün bir genom olsa bile gerçek mutasyona karşılık zincir hatası mı yoksa DNA’nın mı zarar gördüğü konusu hâlâ çözemediğimiz bir sorun. Gen ölçeğinde bu neredeyse aşılamaz bir problem. Bundan sonraki sorunumuzsa yapay kromozomları nasıl oluşturacağımız”. Kanada’da, Ontario’daki McMaster Üniversitesi’nden genetikçi Hendrik Poinar’ın yorumuna göreyse mamutun kaç kromozomu olduğuna ilişkin “henüz” hiçbir fikrimiz yok. Kaynak: Bilim ve Teknik Ocak 2009

http://www.biyologlar.com/mamutun-genomu-birlestirildi

Artropodların Zararlı Etkileri

Artropodların konaklarına (Konak: Artropodları üzerinde veya içinde taşıyan omurgalı canlılar yani insan ve hayvanlara verilen isimdir.) zararlı etkileri 2 grupta toplanmaktadır. Bunlar; A) Artropodların direkt olarak neden olduğu zararlı etkiler: a-1) Konaklarını rahatsız etmeleri: Ektoparazit artropodlar genellikle konak üzerinde gezerken ya da yakınında uçarken onu rahatsız eder ve normal fonksiyonlarını görmesini engeller. Örneğin Mallophaga takımındaki bitler kanatlıların üzerinde gezerken onları huzursuz eder, yeterli besin almasını engeller, stres ve verim düşüklüğüne sebep olur. Meradaki ineklerin çevresinde uçuşan Hypoderma ve Tabanus cinsi sinekler onları huzursuz eder ve hayvanların sağa sola kaçışmasına neden olur ve dolayısı ile özellikle sığırların meradan yararlanmasına engel olduğu için verim kaybına ve hatta bu kaçışmalar esnasında abortlara neden olabilirler. a-2) Soyucu sömürücü etkileri: Artropodun konakçısından kan, lenf ve doku sıvılarını emmesi veya kan emme sırasında böcek tarafından çıkarılan antikoagülant madde etkisiyle kanamanın uzun süre devam etmesiyle olur. Artropod az sayıda olduğunda bu etki önemsenmeyebilirse de çok sayıda olduğunda (Ör: Kene, Tabanus cinsi sinekler gibi) kan emme sonucu anemi meydana gelmekte ve hatta hayvanların ölümüne neden olabilmektedir. Bütün hayatları boyunca kan emmek zorunda olan kenelerin, yumurtlamak için kan emmek zorunda olan dişi sivrisineklerin konaklarından kan emmeleri sömürücü bir etkidir. a-3) Dermatozlara neden olmaları: Artropodların konakçısını ısırma ya da sokması sonucu veya konak derisini istila etmesi neticesinde değişik derecede deri irritasyonlarına ve dolayısıyla dermatozlara neden olurlar. İrritasyonlar artropodların allerjik ve toksik etkileri sonucunda meydana gelebilir. Deri irritasyonu ya sivrisinek, pire, kan emici bitler gibi sokucu artropodlardan ya da uyuz etkeni olan ve deri içinde oyuk ve tüneller açan artropodlardan meydana gelir. Tabanus’ların hayvanlardan kan emerken deride oluşturdukları yaralar ve Hypoderma sineklerinin larvalarının sığırların vücudunda göçleri sırasında sırt derisi altına yerleşip deriyi delmeleri sonucu oluşan bozukluklar bir traumatik etkidir. a-4) Myiasis ve bununla ilgili bozukluklar: İnsecta sınıfı Diptera takımındaki bazı sinek larvalarının insan veya hayvanların organ veya dokularını istila etmelerine myiasis adı verilir. Zorunlu, fakültatif ve rastlansal myiasis olarak ya da larvaların yerleştiği anatomik bölgeye göre cuticol, gastricol, cavicol myiasis olarak sınıflandırılır. Bu larvalar direkt olarak kendileri doku ve organlarda zararlı olduğu gibi larvalar konakta biyolojik gelişmeleri esnasında da yan etkiler oluşturabilirler. Hypodermosisde parapleji, meteorismus görülmesi, tek tırnaklılarda gastricol myiasisde vakalarında stomatitis ve peritonitis görülmesi bunlara örnek verilebilir. Yine Hypoderma larlavarının özellikle sığırların sırt derisi altında açmış olduğu deliklerden dolayı dericilik sektöründe meydana gelen ekonomik kayıplar sinek larvalarının neden olduğu diğer zararlı etkilerdir. Ayrıca özellikle koyunlarda yaygın olarak görülen görülen cavicol myiasisde ise Oestrus ovis larvalarının sinüsler ve burun konhalarına yerleşerek tahribat yapması, hatta ethmoid kemiği de delerek beyine gitmesi ve sinirsel bozukluklara sebep olması önemli zararlı etkilerdir. a-5) Artropodların zehirli etkileri: Parazit olan ve olmayan artropodların toksik etkileri olmak üzere iki grupta incelenir. 1) Parazit olan artropodun beslenmek için konakçısını soktuğunda bıraktığı sekretlerden oluşan toksikozlar. Örneğin; bazı kene türlerinin kan emme esnasında salgıladıkları tükrük hayvanlarda sinir sistemini etkileyerek felçlere ve hatta ölümlere bile neden olabilmektedir. Ayrıca insecta sınıfındaki sivrisinek ve tahta kurularının kan emmeleri esnasında deride oluşturdukları zayıflık ve şiddetli kaşıntı da toksik etkidir. 2) Parazit olmayan arı, çıyan, örümcek ve akrep gibi artropodların özel zehir bezlerinde bulunan zehirlerle meydana gelen toksik etkidir. Bu zehir artropodun saldırı veya savunma araçlarından olup, özelliği ani etki yapması ve şiddetli acı vermesidir. a-6) Artropodların allerjik etkileri: Bazı artropodlar, konakları üzerinde gezinme ve kan emmeleri esnasında allerjik bozukluklara yol açarlar. İnsanlarda tahta kurularının deride gezinmeleri sonucu bütün vücutta şiddetli kaşıntı ve deride kırmızı kabarcıklar (ürtikerlere) oluşması allerjik bir etkidir. Allerjik reaksiyonların şiddeti kişinin dispozisyonuna bağlıdır. Aynı tür artropoda maruz kalan değişik fertlerde değişik şiddette ortaya çıkar. Ayrıca allerjik reaksiyonlarda allergenle daha önceki temas süresi ve allergene maruz kalma şeklide önemlidir. Artropodal alerjik etkiler eksternal veya parenteral yola göre de değişir. Artropodlardan ileri gelen allerjik reaksiyonlar 2 şekilde görülür. a) Parazit olmayan artropodlardan ileri gelen allerjik reaksiyonlar. Bunlar artropodun vücutları veya sekretleriyle ilgilir. Hamam böcekleri ve Dermatophagoutes cinsine bağlı ev tozu akarları örnek verilebilir. b) Parazit olan artropodlardan iler gelen allerjik reaksiyonlar. Örneğin; sivrisinek ve pire gibi insektlerin kan emmek için konakları soktuklarında bıraktıkları tükrük salgısından ileri gelir. Ayrıca tırtılların oluşturduğu etkiler toksik, mekanik veya allerjik bir nedenle oluşmaktadır. B) Artropodların hastalık etkenlerini taşımaları (vektör veya arakonakçı) ile ilgili olarak yaptığı zararlı etkiler: Hastalık etkenlerini aynı veya farklı konaklar arasında aktif olarak nakledip bulaştıran omurgasız canlılara yani artropodlara vektör adı verilir. Burada dikkat edilmesi gereken husus bütün artropodların vektör olmadığı ancak vektör tanımlaması içinde geçen türlerin artropod olduğudur. Arakonak ise hastalık etkenlerinin daha çok genç şekillerini veya larva formlarını vücudunda taşıyan ve omurgalı konaklara pasif olarak bulaşmasını sağlayan artropodlardır. Theileria sp. etkenlerinin vektörü keneler, Dipylidium caninum adlı cestodun arakonağı pirelerdir. Artropodlar hastalık etkenlerini bulaştırmaları yönünden 4 gruba ayrılır. 1) Mekanik taşıyıcı: Bu gruptaki artropodlar hastalık etkenlerini yoğun olarak bulunduğu yerlerden vücutlarına bulaştırmak süratiyle çevreye ve hatta gıdalara mekanik olarak yayarlar. Nakil olayı az çok tesadüfe bağlıdır. Mekanik taşıyıcılar patojen etkenlerin bulaşmasında tali bir rol oynarlar. Örn : Dışkı ile temasta bulunan hamam böcekleri ve kara sinekler amipli dizanteri etkeni olan Entamoeba histolytica kistlerini gıdalara naklederler. Bu tip bulaşık gıdaların insanlar tarafından yenilmesi ile de kistler sindirim kanalına girerek hastalığın oluşmasına yol açarlar. 2) Biyolojik vektör: Bu tip vektörlerde, patojen etkenler artropod vücudunda biyolojik gelişme geçirdikten sonra başka bir konağa aktif olarak nakledilir. Örn : Sivrisineklerin sıtma etkeni olan Plasmodium 'ları, bulaştırması ile lxodidae ailesindeki mera kenelerinin Babesia ve Theileria türlerini bulaştırması örnek olarak verilebilir. Sivrisinekler malaryalı insanlardan kan emerken sıtma etkenlerinin erkek ve dişi gamontlarını alırlar. Bunlar sivrisineğin midesinde bir gelişim devresi geçirdikten sonra oluşan sporozoitler tükrük bezlerine yerleşir. Sivrisineğin başka bir insandan kan emmesi ileverilen sporozoitler ile enfeksiyon oluşur. Bu tip biyolojik vektör olarak hastalık etkenini taşıma olayı; artropodun vücudunun ön tarafından olan biyolojik nakildir (salivarial). Chagas hastalığı etkeni olan Trypanosoma cruzi ise konik burunlu tahta kuruları olan Triatoma ve Rhodnius cinsi artropodlar tarafından ve bunların arka tarafından (dışkının deriye bırakılması ile) biyolojik olarak bulaştırılır (sterkorariyal). 3) Mekanik vektör: Patojen etken vektör de bir biyolojik gelişme geçirmeden diğer konaklara bulaşabiliyorsa bu tip vektörlere mekanik vektör adı verilir. Yani vektör hastalık etkenini aldıktan kısa bir süre sonra başka bir konağa bulaştırılır. Örn : Kan emen sineklerden Tabanus veya Stomoxys'lar sığırlardan kan emmeleri esnasında Trypanosoma evansi'yi alırlar. Kısa bir süre içinde bu insectler diğer bir sığırdan kan emerken hortumlarına bulaşık bulunan trypanosomaları ona naklederler. Hastalık etkenlerinin bu tip taşınması olayı kan emme süratiyle olan mekaniksel nakildir. Yukarıda Anlatılan biyolojik ve mekanik vektörler hastalık etkenlerini bulaştırma yönleri dikkate alındığında zorunlu vektörler olarak da tanımlanırlar. 4) Arakonakçı (Arakonak): Bir parazitin bir gelişme dönemini taşıyan ve sonkonağa ulaşmasında pasif olarak görev yapan artropodlardır. Örn: Köpek piresi olan Ctenocephalides canis'in köpek şeritlerinden Dipylidium caninum'a arakonaklık yapması. Arthropodolojide erişkin form omurgalıdaysa omurgalı sonkonak, erişkin form omurgasızdaysa omurgasız sonkonak olarak tanımlanır. Ancak bu tip adlandırmaya karşı görüşlerde vardır. Erişkin form omurgasızda ise daha yüksek yapılı olan canlı yani omurgalı insan veya hayvan sonkonak olarak adlandırılır. Artropodların taşıyıp bulaştırdıkları enfeksiyon etkenleri: Artropodlar; protozoonlar, bakteriler, helmintler, riketsiyalar ve viruslar olmak üzere bakteriyel ve paraziter hastalık etkenlerini arakonak, vektör veya mekanik taşıyıcı olarak taşırlar. Artropodların enfeksiyon etkenlerini konakçıya veriş biçimleri: a) Mide içeriğinde bulunan patojen etkenleri ağız organelleri ile kusma şeklinde konağa verme şekliyle olur. Örn: Fare piresi (Xenopsylla cheopis) veba hastalığı etkeni olan Pasteurella (Yersinia) pestis'i ve Phlebotomus'ların (tatarcık sineği) Leishmania'ları konaklarına veriş biçimi gibi. b) Tükrük bezleri salgısındaki etkenleri ağız organelleri yardımı ile sokmak süratiyle konağa verme. Örn : Sivrisinekler Plasmodium 'ları, keneler Babesia ve Theileria 'ları bu şekilde verirler. c) Patojen etkenlerin vücut duvarından özellikle de ağız organelleri kenarından dışarı sızması ile konağa bulaştırılması. Örn : Sivrisineklerin filariyal nematodları bulaştırması. d) Artropodların bulaşık vücut kısımlarıyla etkenlerin konaklara bulaştırması. Örn : Sivrisineklerin kanatlı çiçeğini, Chrysops türlerinin tularemiyi bulaştırması. e) Patojen etkenlerin artropodun ekskresyon sıvılarıyla konaklara bulaşması. Örn : Argasidae ailesindeki mesken keneleri virus ve spiroketaları coxal bezleriyle dışarı atarak konaklara bulaştırırlar. f) Enfekte dışkının konakçı derisi üzerindeki sıyrıklara veya konjuktivalara bırakılmasıyla bulaştırma. Örn : Triatoma cinsi uçan tahta kurularının Trypanosoma cruzi'yi bulaştırması. g) Patojen etkenle enfekte artropodun konak tarafından yenmesi veya artropodun konakçı üzerinde ezilmesiyle etkenlerin konaklara bulaşması. Örn : Farelerin pireleri yiyerek Trypanosoma lewisi ile enfekte olması, köpeklerin pireleri yiyerek Dipylidium caninum 'la enfekte olmaları gibi. Artropodların hastalık etkenlerini nakletme şekilleri: a) Transstadiyal nakil: Artropodun gelişme dönemlerinin herhangi bir safhasında iken aldığı enfeksiyon etkenlerini daha sonraki gelişme dönemlerine geçirmesi ve bu gelişme döneminde iken başka bir konaktan beslenirken etkenleri nakletmesine transstadiyal nakil ya da trasstadiyal bulaşma adı verilir. Örn : Ixodidae ailesindeki kenelerin theileriosis etkenlerini bulaştırması. b) Transovariyal nakil: Artropodun, bir jenerasyonda konaktan beslenirken aldığı etkenleri daha sonraki jenerasyonlarına aktarması ve bu jenerasyonda başka bir konaktan kan emerken etkenleri bulaştırmasına transovariyal nakil ya da transovariyal bulaşma denir. Bu bulaşma şekli bazen 8-10 jenerasyon devam edebilir. Örn : Kenelerin (Boophilus sp) babesiosis etkenlerini bulaştırması. Kene bir konaktan kan emerken etkenleri alır. Bu etkenler kene vücudunda gelişme dönemi geçirerek kenenin ovaryumlarına geçer. Kene enfekte yumurtalar bırakır. Yumurtalardan çıkan larvalar da enfektedir. Bu durum nesil boyu devam eder ve kan emerken etkenleri başka konağa nakleder. c) Monohomostadiyal nakil: Artropodun aynı gelişme dönemi içinde konaktan aldığı etkenleri başka bir konağa bulaştırması. Örn : Sivrisineklerin Plasmodium 'ları bulaştırması. d) Transsexuel nakil: Dişi artropod kan emerken aldığı etkenleri transovariyal olarak larvalarına geçirir ve bu larvalardan erişkin hale gelen erkekler etkenleri başka bir dişi artropoda bulaştırır. Bu dişi böcekde başka bir konaktan beslenirken etkenleri bulaştırır

http://www.biyologlar.com/artropodlarin-zararli-etkileri

Dinozor kolları kuş kanatlarına nasıl dönüştü?

Dinozor kolları kuş kanatlarına nasıl dönüştü?

Kuşların dinozorların soyağacının bir kolundan evrimleştiği bilinmesine rağmen, uçabilme adaptasyonu evrim biyologlarını düşündürmeye devam ediyor.

http://www.biyologlar.com/dinozor-kollari-kus-kanatlarina-nasil-donustu-1

Trematoda

Trematoda sınıfına kelebeklerde denir. - Vücutları dorso-ventral basıktır. - Vücut boşluğu yoktur. - Tüm vücut tek bir bölümden oluşmuştur. - Tüm organlar tek bir paranşim içinde toplanmıştır. -Çekmen/çengelleri vardır. -Genellikle anüsleri yoktur. -Schistosomatidae ailesi dışındakiler hermafrodittir. -Direk/indirek gelişirler. 3 tane alt sınıf vardır : -Monogenea -Aspidogastrea - Digenea MONOGENEA : - Soğukkanlı ve suda yaşayan hayvanlarda (balık, amfibi, sürüngen) parazitlenirler. -Genellikle ektoparazittirler. -Vivipar ya da ovipardırlar. -Larvaları olgunlarına benzer. -Tutunma organeli olarak arka kısımlarında çekmen/çengelleri vardır. -Direk gelişirler. Ör: Gyrodactylus Dactylogyrus ASPIDOGASTREA : - Yaklaşık 80 türü vardır. -Balık, sümüklü, kabuklu ve kaplumbağalarda parazitlenir. -Hiçbir türünün ekonomik önemi yoktur. -Digenea'lara benzerler. -Çok sayıda alveol/çekmene sahip bir ventral disk taşırlar. -Çekmen bulunmaz -Tegumentte mikrotubuller vardır. -Ekto ya da endoparazit olabilirler. Medikal açıdan önemli olan altsınıf Digenea'dır. DIGENEA : - Boyutları 0,3 mm ile 10 cm arasındadır. -Vücut segmentsiz ve tek bölümlüdür. Paramphistomum soyu tesbih tanesi gibi, Schistosoma soyu da ince, uzun ve silindirik bir yapıya sahip olamsına rağmen genellikle yaprak şekilde dorso-ventral basık bir formdadırlar. -Vücut tegument ile kaplıdır. Tegument düz (Dicrocoelium) ya da dikenli (Fasciola) olabilir. -Ağız ve karında olmak üzere 2 tane çekmen vardır. Bazılarında (Heterophyes) genital çekmen bulunur. -Bazı türlerde (Echinostomatidae) ön kısımda bir yaka ve bu yakada 1-2 sıralı diken bulunur. Sindirim sistemi : Basittir. Ağız / prepharynx / pharynx / oesophagus / barsak (kör olarak sonlanır). Anus yoktur. Beslenme doku artıkları sayesinde olur. Sindirim barsaklarda gerçekleştirilir. Sinir sistemi : Oesophagus çevresinde bir sinir tasması bulunur. Buradan çıkan sinir iplikçikleri vücuda dağılır. Boşaltım sistemi : Paranşimde kirpikli ateş hücreleri varıdır. Buradan çıkan boşaltım kanalları daha büyük kanallarla buluşup arka kısımdaki boşaltım deliğinr açılır. Üreme sistemi : Schistosoma hariç hermafrodittirler. Erkekte:2 testis / vasa deferens / sirrus kesesi (ves.seminalis + penis +sirrus) / genital delik. Dişide : ovarium / oviduct / ootip / uterus. Ootip çevresinde salgılarıyla yumurta kabuğunun şekillenmesini sağlayan Mehlis bezleri vardır. Parazitin iki yanınada ve ootipa açılan vitellojen bezlerin salgısıyla da yumurta sarısı oluşturulur. Döllenme ootipte olur. Larva dönemleri : a) Miracidium : Ön tarafı geniş, arka ksımı dardır.Üzeri kirpikli epitelle kaplıdır. Ön uçta arakonağı delmeye yarayan dikenli çıkıntı vardır.Bazı türlerde 1-2 göz lekesi bulunabilir. b) Sporokist : İnce duvarlı bir kesedir. İç duvarında bölünme yeteneğine sahip hücreler vardır. c) Redi : Silindirik yapıdadır.Ön kısımda ağız çekmeni vardır .Sindirim kanalı ve boşaltım sistemi şekillenmiştir. Vücudun vbir tarafına açılan bir doğum deliği vardır. d) Serker : Vücut gövde ve kuyruktan oluşur. Ağız, karın çekmeni, sindirim kanalı, boşaltım ve sinir sistemi gelişmiştir. Kuyruk tek ya da türe göre çatallı (furkoserker) olabilir. e) Metaserker : Serkerin gövdesini kistleşmiş şeklidir. Genellikle enfektif formdur. Schistosomalarda enfektif dönem serker dönemidir. Metaserker dönemi gözlenmez. Yumurtalar :2 tiptir : -Çift çeperli, kalın kabuklu,dikensiz,kapaklı -Çift çeperli,kalın kabuklu,dikenli,kapaksız (Örn:Schistosomatidae) Teşhis : Sedimentasyon yöntemi ile dışkı bakısı yapılır. Biyoloji : - Gelişme indirektir. -1-2 arakonak kullanılır. Genellikle 1.arakonak sümüklülerdir. 2.arakonak ise genellikle suda yaşayan balık, kabuklulardır. -Son konakata bulunan parazitten dışarı atılan yumurtalarda miracidium gelişir. Miracidium suda yumurtayı terkeder. Bazı türlerde ise (Dicrocoelium dendriticum) terketmez. Miracidium / sporokist (arakonakta serbest halde) / redi / serker / metaserker / çevre koşulları uygun olmazsa kız redi *Dicrocoelium dışındaki tüm digenik trematodların aracıları su sümüklüleridir. 1.AILE : FASCIOLIDAE Cins: Fasciola Tür: F.hepatica,F.gigantica Hastalık: fasciolosis Cins:Fascioloides Tür:F.magna Cins:Fasciolopsis Tür:F.buski Fasciola hepatica : Son konaklar: Sığır, koyun, insan dahil birçok memeli Ara konaklar: Lymnea truncatula (su yüzeyinde yaşar, beyaz renkli ve şeffaftır) Yerleşim: Karaciğer (gençler parankimde, olgunları safra yollarında) Yayılışı: Yurdumuzun her bölgesinde yaygındır Morfoloji: F.hepatica Uzunluk 2-2,5 cm Genişlik 8-15 cm Arka kısım daha sivri Kenarlar daha sivri F.gigantica Uzunluk:2,5-2,7 cm. Genişlik:3-15 cm. Arka kısım küt Kenarlar paralel Rengi sarı-kahverengidir. Kanla beslenir. Doymuşsa kırmızı gözükebilir. 2 tane çekmeni vardır. Ağzı ağız çekmeni kuşatır. Ağzı pharynx, oesophagus ve barsaklar (dallanma gösterir) takip eder. Sindirim sistemi kör olarak sonlanır. Anus yoktur. Vitallojen bezler, ovaryum (yumurta ile dolu ise siyah renkte gözükür) va testisler (arka kısımda bulunur, dallanma gösterir) üreme sistemini oluşturur. Tegument dikenlerle kaplıdır. Biyoloji: Y/M/R/S/M Yumurta safra yoluyla barsaklara karışır, dışkı ile dışarı atılır. Yumurta kapaklı, dikensiz, tek blastomerli, içi tamamen yumurta sarısıyla dolu, sarı renklidir. Dışarı atılan yumurtanın içinde uygun koşullarda 9-10 gün içinde miracidium şekillenir. Işıklı ve sulu ortamda kapağı açılan yumurtadan miracidium dışarı çıkar ve suda serbest olarak yüzmeye başlar. Suda serbest olarak yaşama süresi 1 gündür. Bu süre içinde ara konağa girmelidir. Miracidium arakonağın (L.truncatula) yumuşak dokusunu delerek ara konağa dahil olur. sporokist, redi ve serker dönemlerini geçirdikten sonra ara konağı terkeder. Ara konağı terkeden serker suda kuyruğuyla ilerler. Bir süre sonra kuyruğu kopan serker, metaserkere dönüşür. Gıdalarla birlikte serker son konağın vücuduna girer. Son konakta açılan metaserkerdenn genç kelebek açığa çıkar. Genç kelebek barsak duvarını delerek karın boşluğuna, oradan da karaciğer parankimine geçer. Karaciğer parankiminde yaklaşık 5-6 haftalık göç geçirir. Safra yollarına gelerek olgunlaşır. Prepatent süre 11-12 haftada, tüm biyolojisi ise 17-18 haftada tamamlanır. Uygun olmayan şartlarda bu süre uzar. Klinik belirtiler: Perakut dönemde: Ani ölüm karaciğer kapsülünde yırtılma, karın boşluğunda kan birikimi görülür (enfestasyon durumunda). Akut dönemde: Halsizlik, solunum güçlüğü, karın şişliği, ve ağrı (sternum'a palpasyonla teşhis edilir) görülür. Karın boşluğunda kanlı, fibrinli sıvı birikimi vardır. Ayrıca karaciğerde büyüme, kanama, hematom, göç izleri ve genç kelebekler görülür. Hastalık koyunlarda genelde akut seyreder. Kronik dönemde : Anemi, kaşeksi, çene ve karınaltında ödem, verim düşüklüğü görülür. Karaciğerde setleşme, kenarlarında düzensizlik, safra yollarında kalınlaşma, fibrosis ve kireçlenme vardır. Sığırlarda çok şiddetli reaksiyon oluştuğundan hastalık geneldekronik seyreder. Nekrotik hepatitis'te genellikle belirti görülmez. Genç kelebeklerin barsaklardan karaciğere göçü sırasında barsaklardaki bazı bakteriler de karaciğere gelie. Toksemiden ani ölüm şekillenir. Karında ağrı ve kan birikimi yoktur. Daha çok 2-4 yaşındaki iyi kondisyonlu hayvanlarda görülür. Halk arasında kara hastalık (Black disease) olarak bilinir. Etken bakteri B tipi Clostiridium novyi'dir. Derisi yüzülen hayvanlarda derialtı damarları birden siyahlaşır. Epizootiyoloji: Konak-mera-su Arakonaklar suya ve çamura girip çıkarlar (amfibiktirler). Çamurlu ve pH'ı hafif asit oaln bölgeler ara konaklar için elverişlidir. Yağış; ara konak yaşamı, miracidium ve serkerin çıkışı, toprağın nemi dolayısıyla yumurtanın gelişimi ayrıca meralar için gereklidir. Yumurtadan miracidium ve ara konakların gelişimi için optimal sıcaklık 22-26°C'dir. 10°C'nin altında gelişme durur. Kışın -4°C'nin altında yumurta, metaserker ve çoğu sümüklü ölür. İlaçlama: Stratejik ilaçlam meraya çıkıştan sonraki 1 ay içinde ve kışa girerken yapılabilir. Teşhis: Akut dönemde : Otopside karaciğerde genç kelebekler görülür. Kronik dönemde : Sedimentasyon yöntemi ile dışkı bakısı yapılarak parazit yumurtaları aranır. Kanda gamaglutamik transpeptidaz enzim seviyesine bakılabilir. İnsanlarda ultrasonografi yöntemi denenebilir. Sağaltım: Kontrol: 1) Arakonaklarla mücadele: Molluscisid kullanılarak ve drenaj ile yaşadıkları alanlar kurutularak. 2) Sonkonakların sağlatımı ile: Hayvanlarda parazitin (ilkbaharda ve sonbaharda), merada metaserkerin (ilkbaharda) en çok olduğu zaman. İlaç kullanımında biyoloji dikkate alınır. 3) Hayvanlar enfekte meraya sokulmaz. 2.AILE: DICROCOELIDAE Cins: Dicrocoelium Tür: Dicrocoelium dendriticum (kum kelebeği) Hastalık: Dicrocoeliosis Son konak: Özellikle ruminantlar. Nadiren insan, domuz ve kemiriciler. Ara konak: I. Kara sümüklüleri (Helicella, Zebrina vs.) II. Formica cinsi karıncalar Yerleşim: Karaciğer safra kanalı ve safra kesesi. Yayılış: Yurdumuzda her yerde yaygındır. Patojenite: Fazla patojenitesi yoktur. Sağaltım: İlaçlara çok dirençlidir. Thiabendazole, Netovmin, Albendazole, Praziquantel kullanılır. Biyoloji: Dışkıyla dışarıya miracidiumlu gelişmiş yumurta atılır. Kara sümüklüsü pasif olarak yumurta ve miracidiumu alır. Metaserker dışarıya çıkar®sporokist®serker (dışarı). Atılan sümüksü yumağı karıncalar alır. Serkerlerden bazıları karıncanın beynine gider ve yaptıkları tahribat sonucu karıncanın anormal davranışlarına neden olur.En tipik hareket, sabahın erken saatinde otların tepesine tırmanmak ve ağızlarıyla ota tutunup kalmaktır. Karıncanın çene kasları felç olmuştur. Otların tepesindeki metaserker taşıyan karıncaları alan son konaklar enfekte olur. metaserkerler açılır, genç kelebek serbest duruma geçer. Barsaklardan ductus choleduchus yolu ile karaciğere geçer. Prepatent süre zundur, 10-12 hafta. 3.AILE: OPISTORCHIIDAE Cins: Opistorchis Tür: O.tenuicollis (1) O.sinensis (2) Hastalık: Opistorchiosis Son konak: Köpek, kadi (1), insan (2), diğer balık yiyen etçiller Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları Yerleşim: Karaciğer safra yolları Yayılış: Türkiye, Uzakdoğu Patogenez: Dikenli tegument safra kanalı epitelini irrite ederek papillom ve karsinom gibi tümör oluşumuna neden olur. Teşhis: Dışkıda yumurtaların görülmesi ile taşhis yapılır. Sağaltım: Hexachlorophen 20 mg/kg Morfoloji: Dicrocoelium'a benzer ama testisler arkadadır. 4.AILE HETEROPHYDAE Cins: Heterophyes Tür: Heterophyes heterophyes Son konak: Karnivor ve insan Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları ( Mugil vs.) Yerleşim: İnce barsaklar Yayılış: Türkiye, Ortadoğu, Uzakdoğu Morfoloji: 1,5 mm uzunluk, genital deliği çevreleyn bir GENİTAL ÇEKMEN var. Teşhis: Yumurta (D.dendriticum'unkine benzer ama açık kahverengi) Sağaltım: Praziquantel, Niclosamide,Niclofolan Biyoloji: İnce barsaktaki yumurta dışkı ile atılır. I. ara konaklar yumurtayı Dicrocoelium'daki gibi pasif olarak alırlar. Serkerler II. ara konaklarca alınır. Kaslarda metaserkerler gelişir. Çiğ ya da az pişmiş balıkları yiyen son konaklar enfeksiyona yakalanır. 5.AILE TROGLOTREMATIDAE Cins: Paragonimus Tür: Paragonimus westermanii Son konak: İnsan, karnivor Ara konak: Yengeç, kerevit Yerleşim: Akciğer Cins:Troglotrema Tür:Troglotrema acutum Son konak:Tilki,vizon vb. Yerleşim:Sinüs(frontal ve etmoidal) 6.AILE ECHINOSTOMATIDAE Cins: Echinostoma , Echinochasmus , Echinoparphium Tür: Echinostoma revolutum , Son konak: kanatlı, memeli Tür: Echinoparphium recurvatum , Son konak: kanatlı Tür: Echinochasmus perfoliatus , Son konak: köpek, kedi Yerleşim: İnce barsak 7.AILE PARAMPHISTOMATIDAE Cins: Paramphistomum (RUMEN KELEBEĞİ) Türler: Paramphistomum cervi , Paramphistomum ichikawai Hastalık: Paramphistomosis Ara konaklar: Su sümüklüleri (Planorbis , Bulinus) Son konaklar: Ruminantlar Yerleştiği yer: Gençleri duadenuma, erişkinleri rumen ve reticuluma Yayılışı: Türkiye dahil birçok ülkede. (özellikle eskişehir,bolu) Morfoloji: -Şekli:Kesik koni biçiminde ,yuvarlak -Büyüklüğü: Erişkinler 1 cm.kadar,göç halindeki gençler 0.5 mm.den küçük -Rengi: Pembe,kırmızı -Karın çekmeni: Parazitin arka tabanında bulunur. Biyoloji: F.hepatica ve F.gigantica'ya benzerlik gözterir.Son konakların rumeninde bulunan olgun parazitlerin yumurtaları dışkıyla dışarıya atılır.Dışarıda yumurtadan miracidium gelişir ve miracidium yumurtayı terkeder.Daha sonra miracidium tatlısu sümüklüsüne girer.Sümüklüde sporokist,redi,serker gelişir ve serker dışarıya atılır.Daha sonra serker otlarda ,suda kistlenir,kuyruğu kopar ve metaserker haline gelir.Bunu gıdalarıyla birlikte alan sonkonaklar enfekte olurlar.Metaserker sindirim sisteminde açılır.Genç parazitler önce duadenuma gelir.Daha sonra geri dönerek rumen ve reticuluma gelip olgunlaşırlar. Prepatent süre yaklaşık 7-10 haftadır. Patogenez ve klinik belirtiler: -Akut dönem:Duadenum ve abomasumdaki göç halindeki genç parazitlerden ileri gelir.Parazitler mukozaya bazen kas ve serozaya kadar gömülür.Bağırsakta boğulma,ülser,kanama ve nekroza neden olurlar.Plazma albuminleri bağırsağa sızar.Kanda Ca seviyesi düşer.Plazma proteinlerinin seviyesinin düşmesi sonucu vucut boşluklarında sıvı toplanır.(ödem).İştahsızlık,kilo kaybı,açlık atrofisi, ishal ve bitkinlik görülür. -Kronik dönem:Bazen karın çekmenleri ile rumen papillalarını boğarak atrofiye neden olurlar. Teşhis: Akut dönemde ishalli dışkıda prinç tanesi büyüklüğünde pembe,beyaz renkli parazitler aranır.Kronik dönemde dışkıda yumurtalar aranır. Sağaltım: mg/kg 8.AILE SCHISTOMATIDAE Cins: Schistosoma Orientobilharzia Türler Son konak Yerleştiği vena S.mansoni insan portal, mezenterik S.haematobium insan idrar kesesi S.bovis çift tırnaklı portal, mezenterik S.japonicum insan,hayvan portal, mezenterik S.matthei çift tırnaklı portal ,mezenterik S.nasale çift ve tek tırnaklı burun mukozası O.turkestanicum memeliler portal, mezenterik Hastalık: Schistomosis, Orientobilharziosis Arakonaklar: Tatlısu sümüklüleri (Bulinus, Planorbis, Lymnea) Son konaklar: Memeli ve kanatlı Yerleştiği yer: Vena (portal ve mezenterik) Yayılışı: Orientobilharzia turkestanicum Türkiyede vardır.Koyunlarda görülmüştür. Özellikleri: -Ayrı eşeylidir. -Vucutları silindiriktir. -Yumurtaları kapaksız ve dikenlidir. -Serkerleri çatal kuyrukludur.(furcoserker). -Redi ve Metaserker dönemi yoktur. Morfoloji: -Uzunluğu 2cm.kadardır. -Erkekleri dişilerden daha geniş ve yassıdır. -Dişileri silindiriktir. -Erkek dişiyi ventralinde bulunan bir kanalda (Gynaechophoric kanal) taşır. Biyoloji: İnsan ve hayvanlarda bulunan olgun parazitlerin yumurtaları bulundukları venayı dikenleriyle delerek en yakın kanaldan dışarıya atılırlar.(Eğer idrar kesesi venasındaysa idrarla,Burun boşluğu mukozasındaki bir venadaysa sümükle,mezenterik bir venadaysa dışkıyla).Yumurta atıldığında içerisinde miracidium vardır.(Miracidium sonkonakta gelişir.).Suyla temas ettiği zaman miracidium yumurtayı terkeder ve suda uygun aracılara girer.Aracıda sporokist ve serker gelişir.Serker çatalkuyrukludur.(Furcoserker).Furcoserker kendi aktif hareketiyle sonkonakların derisinden girerek veya suyla,gıdalarla birlikte alınarak sonkonağa girer. -Prepatent süre 6-7 haftadır. -Hava kötüyse sporokistten ikinci kuşak sporokistler gelişir. -Arakonaktaki gelişim süresi 5 haftadır. -Deriden girer girmez kuyruk kopar .Ağız boşluğundan alındıysa mukozayı delerek kana karışır,kuyruğu kopar,kalp,akciğer,karaciğer yoluyla yerleşecekleri venalara giderler veerişkin duruma gelirler. -Kuyruğu koptuktan sonraki döneme SCHİSTOSUMUL denir. -Redi, metaserker dönemi yoktur. Patogenez ve klinik belirti: 1.İnvazyon dönemi: Serker (banyo) dermatitisi oluşur.Deriden giren serkerlerin çıkardıkları sekret, sitolitik enzimler ve ölen serkerlerin vucut antijenleri deride gecikmiş tip aşırı duyarlılığa neden olurlar. (Özellikle o konak için yabancı serkerlerin ölmesi sonucu).(Deri - larva migransı) 2.Göç dönemi: Schistosomaların kan yoluyla kalp,akciğer,karaciğer ve portal sisteme göç ettiği dönemdir.Akciğerlerde pneumoni tablosu şekillenebilir. 3.Olgunlaşma dönemi: Schistosomulların karaciğerde olgunlaştıkları dönemdir. 4.Yumurtlama dönemi: En patojen dönemdir.Yumurtalar damarları yırtarlar.Kanamalara neden olurlar.Anemi şekillenir. Bir kısım yumurta konağı terketmeyerek dokularda(bağırsak mukozası,karaciğer) tutulur.Buralarda yangı ve fibrosise neden olurlar. Teşhis:Dışkı ,idrar ve burun akıntısında yumurtaları görerek yapılır. Sağaltım: Genellikle antimon bileşikleri verilir.(Stibufon gibi)

http://www.biyologlar.com/trematoda


Zeka geriliği

İnsan davranış genetiğinin en tartışmalı alanlarından birisi de, zeka ile ilgilidir. Fakat ortada birçok belirsizlik olması nedeniyle zekanın genetiğinden daha önce zekanın ne olduğu ve nasıl ölçüldüğü üzerinde durmamız gerekmektedir. Zeka nedir, nasıl ölçülür? Zeka, kesin bir anlaşma olmamasına rağmen "problemleri çözmek, yeni şeyler öğrenmek, iyi düşünebilme yeteneği geliştirmek için genel zihinsel kapasite" veya "yeni durumlara karşı uyum yeteneği" olarak tanımlanmaktadır. Zekanın tanımlanmasında bunca güçlükler olsa da, herkes zeka diye bir zihinsel bir işlev olduğuna inanmaktadır; psikoloji bilimiyle uğraşanlar ise, fazladan olarak bu işlevin ölçülebilece?i kanaatindedirler. XIX. Yüzyıl'ın sonlarında İngiltere'de Sir Francis Galton, evrim teorisinin de etkisiyle, insandaki kalıtımla geçen özellikleri, farklı zihinsel yetenekleri ve kişisel karakteristikleri ölçerek bulmaya girişti. Galton, öyle bir varsayımla hareket ediyordu ki, bireysel farklılıkları gösterebildiğinde, dolaylı olarak genetik etkeni de göstermiş olacağını sanıyordu. Gerçi Galton'un bugünkü anlamıyla zekayı ölçtüğü söylenemezdi ama insanların zekalarına göre farklı sınıflara ayrılabilecekleri ve zeka ölçümlerindeki bireysel farklılıkların ancak genetik yapıyla açıklanabileceği anlayışı, Galton'dan bu yana, bazı bilimcilerin kafalarında hemen hiç değişmeden kaldı. Üstün insanları diğerlerinden ayırt etme çabası, durmaksızın sürdü. Galton'un çağdaşı ve modern psikolojinin kurucusu Wund'un insan işlevlerinin laboratuarda ölçülebilece?ini ileri süren öncü çabalarıyla, aynı zamanda liberal siyaset felsefesinin kurucusu olarak kabul edilen Locke'un duyumculuğunun bütün bilginin duyumlardan geldiği şeklindeki önermesi birleşince zekayı ölçmeye çalışan psikologlar, daha çok bireyler arasındaki duyusal-motor farklılıklara yöneldiler. Zeka farklılıklarını görme keskinliğinden, acıya karşı duyarlılığa, hatta avuç içindeki çizgilere kadar birçok etkenle açıklamaya kalkıştılar. Ve nihayet 1900'lü yıllarda Fransız hükümeti, psikolog Alfred Binet'e zihinsel özürlü çocukları diğerlerinden ayırma görevi verdi. Binet, bu somut görev karşısında artık zekayı birçok bileşenden oluşan bir işlevler toplamı olarak almak yerine, tek başına ama karmaşık bir zihin işlevi olarak ele almak zorunda kaldı. Bugün birçok konuda uygulama alanına sahip olan zeka testlerinin ilk örnekleri bu mantıkla hazırlandı. Her iki dünya savaşı sırasında orduya acilen zeki insanlar kazandırma şeklinde yeni bir somut sorun çıkınca, zeka testlerinin uygulanması ve geliştirilmesi süreci belirgin bir ivme kazandı. Binet ölçeği birçok revizyondan geçerek günümüze kadar uzandı. Zekayı daha ziyade bir soyutlama yeteneği olarak düşünen ve bugün Stanford-Binet olarak bilinen bu testin en belirgin özelliği, zekayı yaşla değişen bir işlev olarak düşünmesi, zeka yaşını ve takvim yaşını birbirinden ayırmasıydı. Bu testten sonra da birçok zeka testi geliştirildi. Bunlardan en yaygın olarak uygulananı, Wechsler tarafından geliştirilen erişkinler ve çocuklar için farklı versiyonları bulunan zeka testleridir. Bu testlerin Stanford- Binet testinden en önemli farkları, zekanın sözel ve performans olmak üzere ikiye ayrılmasıdır. Zeka testleri, geniş bir uygulama alanı bulmuş, eğitimden sağlığa, askerlikten iş ve işçi seçimine kadar birçok alanda büyük faydalar sağlamı? olsalar da, henüz zekanın niteliği ve kökenleri sorunu aydınlatılabilmiş değildir. Ancak bütün bu süreç içerisinde kazanılan bilgi ve deneyimler, insan beyninin işlevleri hakkındaki bilgimizin gelişimiyle bir araya getirildiklerinde zeka hakkında daha ayrıntılı yaklaşımların ortaya çıkmasına neden olmuştur. Artık zekanın Binet'in sandığı gibi global bir işlev birimi olduğu düşünülmemekte, tam tersine birçok işlevin (hafıza, sözel akıl yürütme, matematik akıl yürütme, benzerlik ve farklılıkları algılama hızı, kelime bilgisi vb.) karşılıklı iç ilişkilerinin değişik görünümlerinin zekayı oluşturduğu sanılmaktadır. Dolayısıyla ortaya yeni zeka tanımları ve bu tanımlar uyarınca geliştirilmiş yeni zeka ve bilişsel testler çıkmaktadır. Örneğin bunlardan Thorndike'ın yapmış olduğu zeka tanımı oldukça ilginçtir. Thorndike, zekanın mekanik, toplumsal ve soyut olmak üzere üç türü bulunduğunu savunmaktadır. Mekanik zeka, insanın el ve alet kullanma becerisini; toplumsal zeka, diğer insanları anlama ve kişiler arası ilişkiler kurma, soyut zeka ise, semboller ve kavramlarla düşünebilme yeteneğini temsil etmektedir. Zeka testlerinin kesin bir biçimde zeki olanlarla olmayanları birbirlerinden ayırdığı şeklindeki eski katı anlayış da bu arada yumuşamıştır. Değerlendirmelerde kültürel farklılıklar, deneklerin testin gerekli gördüğü koşullarda yetişip yetişmedikleri gibi ara belirleyenler hesap edilmeye başlanmıştır. Daha önemlisi, zeka testlerinde ölçülenin insanın doğuştan getirdiği kapasite değil, bu kapasitenin davranışa dönüşmüş bölümü olduğu kabul edilmektedir. Bütün bunların sonucunda, artık zeka testi kavramından vazgeçilmekte, onun yerine "genel yetenek ölçümleri" gibi daha iddiasız ifadeler kullanılma yoluna gidilmektedir. Sürecin böyle bir yönelime girmesinde, kazanılan bilgi ve deneyimler kadar, şüphesiz bilimcileri etkileyen Jean Piaget gibi düşünür-bilimcilerin görüşleri etkili olmuştur. Piaget'in "genetik epistemoloji" adını verdiği yaklaşıma göre, bütün insanlarda belli gelişim evrelerine karşılık gelen bir global yapı olarak aynı zeka potansiyeli vardır. Ancak biyolojik uyum ile çevreye uyum arasındaki etkileşme; fiziksel, bilişsel ve duygusal kapasiteleriyle ilgili olarak organizmaların performanslarına göre zeka da farklılıklar göstermektedir. Piaget' e göre ayrıca zeka, psikolojik testlerle ölçülemez; ancak niteliksel bir yapı şeklinde analiz edilebilir. Sir Galton'dan bu yana zeka hakkında yapılan en ilgi çekici araştırma konularından biri de, zekanın kalıtımla, çevre ile, ırkla ve doğum düzeniyle bağlantılarının araştırılmasıdır. Araştırmaların doğru bir sonuç vermesi için gerekli olan ara belirleyenleri hesaba katma işlemleri, bu araştırmaların hiçbirisinde tam olarak yapıl(a)madığından bilimsel olarak genellikle ciddiye alınmamaktadırlar. Kaldı ki, zekanın tanımının böylesine belirsiz olduğu koşullarda, zeka adına neyin ölçüldüğü bile belli değildir. Yine de zekanın genetiği konusunda bugüne kadar yapılan, birçok eleştiri alamalarına rağmen çoğunlukla kabul gören ciddi araştırmalardan elde edilen en genel sonuçları şöyle özetlemek mümkündür: Zeka, bireyin kişilik özelliklerine göre daha kalıtımsal bir nitelik sergilemektedir ve hatta zeka üzerinde kalıtımın rolünün, çevrenin rolünden daha fazla olduğunu söylemek mümkündür. Bir başka deyişle, bilim çevrelerinde "doğa mı yoksa yetiştirilme tarzı mı, insan davranışında daha baskındır?" sorusuna cevap bulmaya çalışan ünlü 'nature-nurture' tartışmasında, zeka ile ilgili olarak, şimdilik doğa yanlılarının yani genetikçilerin raundu önde bitirdikleri söylenebilir... Araştırmaların ortaya çıkardığı bir başka sonuç da, beyin vebazı beyin alt-bölümleri ne kadar büyük olursa, zekanın da genellikle o kadar artmakta olduğudur ama burada önemli olan, büyümüş beyin dokusunun kalitesidir...Kadınlarda zekanın sözel denilen bölümünün, erkeklerde ise, performans zeka genellikle daha iyi gelişmiş olduğu da bugün bilimsel bir gerçek olarak kabul edilmektedir. Ama zekanın genetiği ile ilgili olarak ortaya konan bilimsel iddialardan ayrı olarak, öjenik bir bakış açısıyla yapılmış birçok sözde-bilimsel önyargılar da bulunmaktadır.  

http://www.biyologlar.com/zeka-geriligi

PALEONTOLOJİ

Arkeobiyolojinin bir dalı olan paleontoloji, çeşitli jeolojik devirlerde yaşamış olan insan, hayvan ve bitki türlerine ait fosiller üzerinde araştırmalar yapar ve jeolojik devirlerde yaşayan canlılar hakkında bilgi sahibi olunmasına yardımcı olur. Paleontoloji, fosil bilim ya da taşıl bilim olarak da bilinir. Bir başka tanımlamayla, soyu tükenmiş organizmaların fosillerini ve biyolojisini inceleyen bilim dalıdır. İlk paleontoloji araştırmaları 19. yüzyılda yapılmaya başlanmıştır. Paelontolojide günümüzdeki büyük kaya parçalarının içerdiği bitki ve hayvan fosilleri incelenir, bu yolla jeolojik geçmişte egemen olan yaşam biçimleri belirlenir. Bu bilim dalı eski canlı türlerini bütün yönleriyle (biçimleri, yapıları, günümüzdeki canlı türleriyle taksonomik ilişkileri, coğrafi dağılımları ve çevreyle ilişkileri) inceler. Yer katmanlarının jeolojik tarihinin açığa çıkartılmasında da paleontoloji çalışmalarından elde edilen verilerden yararlanılır. Evrim teorisi günümüzde en çok paleontoloji alanındaki çalışmalarla gündeme gelir. Çünkü fosil bulguları evrimciler açısından çarpıtmaya, taraflı yorumlara ve sahtekarlıklara son derece uygun bir alan oluşturmuştur. Nitekim bilim tarihi evrim teorisine sözde delil bulma arayışlarıyla yapılmış çok sayıda sahtekarlık örneğiyle doludur. Paleontolojinin evrim teorisini desteklediği yönündeki yanlış imaj, Science dergisindeki bir makalede şöyle açıklanır: Evrimsel biyoloji ve paleontoloji alanlarının dışında kalan çok sayıda iyi eğitimli bilim adamı, ne yazık ki, fosil kayıtlarının Darwinizm'e çok uygun olduğu gibi bir yanlış fikre kapılmıştır. Bu büyük olasılıkla ikincil kaynaklardaki olağanüstü basitleştirmeden kaynaklanmaktadır; alt seviye ders kitapları, yarı-popüler makaleler vs... Öte yandan büyük olasılıkla biraz taraflı düşünce de devreye girmektedir. Darwin'den sonraki yıllarda, onun taraftarları bu yönde (fosiller alanında) gelişmeler elde etmeyi ummuşlardır. Bu gelişmeler elde edilememiş, ama yine de iyimser bir bekleyiş devam etmiş ve bir kısım hayal ürünü fanteziler de ders kitaplarına kadar girmiştir. Önde gelen evrimcilerden, N. Eldredge ve I. Tattersall ise bu konuda şu önemli yorumu yaparlar: Ayrı türlere ait fosillerin, fosil kayıtlarında bulundukları süre boyunca değişim göstermedikleri, Darwin'in Türlerin Kökeni'ni yayınlamasından önce bile paleontologlar tarafından bilinen bir gerçektir. Darwin ise gelecek nesillerin bu boşlukları dolduracak yeni fosil bulguları elde edecekleri kehanetinde bulunmuştur... Aradan geçen 120 yılı aşkın süre boyunca yürütülen tüm paleontolojik araştırmalar sonucunda, fosil kayıtlarının Darwin'in bu kehanetini doğrulamayacağı açıkça görülür hale gelmiştir. Bu, fosil kayıtlarının yetersizliğinden kaynaklanan bir sorun değildir. Fosil kayıtları açıkça söz konusu kehanetin yanlış olduğunu göstermektedir. Türlerin şaşırtıcı bir biçimde sabit oldukları ve uzun zaman dilimleri boyunca hep bu şekilde kaldıkları yönündeki gözlem, 'kral çıplak' hikayesindeki tüm özellikleri barındırmaktadır: Herkes bunu görmüş, ama görmezlikten gelmeyi tercih etmiştir. Darwin'in öngördüğü tabloyu ısrarla reddeden bir fosil kaydı ile karşı karşıya kalan paleontologlar, bu gerçeğe açıkça yüz çevirmişlerdir. Amerikalı paleontolog S. M. Stanley, fosil kayıtlarının ortaya koyduğu bu gerçeğin bilim dünyasına hakim olan Darwinist dogma tarafından nasıl göz ardı edildiğini ve ettirildiğini şöyle anlatır: Bilinen fosil kayıtları kademeli evrimle uyumlu değildir ve hiçbir zaman da uyumlu olmamıştır. İlgi çekici olan, bir takım tarihsel koşullar aracılığıyla, bu konudaki muhalefetin gizlenmiş oluşudur... Çoğu paleontolog, ellerindeki kanıtların Darwin'in küçük, yavaş ve kademeli değişikliklerin yeni tür oluşumunu sağladığı yönündeki vurgusuyla çeliştiğini hissetmiştir... ama onların bu düşüncesi susturulmuştu.

http://www.biyologlar.com/paleontoloji-1

Insecta (Hexapoda, Entoma, Böcekler) Sınıfı

Insecta (Hexapoda, Entoma, Böcekler) Sınıfı Bu sınıf böcekleri yani haşareleri içerir. Erişkinlerde vücut belirgin olarak 3 bölüme ayrılmıştır. Bunlar baş, göğüs ve abdomendir. Başta bir çift anten vardır ve göğüs 3 segmentden oluşmuştur. Bu halkaların her birinden birer çift ayak çıkar. Bazı türlerde ise thoraxdan bir veya iki çift kanat çıkar. Abdomen ise değişik sayıda segmentlerden oluşmuştur. Baş (Capot) : Oval veya küremsi yapıdadır. Genellikle iki adet küremsi (bileşik, compound) göz bulunur. Ayrıca üçgen şeklinde dizilmiş üç basit göz "ocellus" bulunur. İnsectlerdeki bu petek gözler çok büyük olup, başın sağlı sollu iki geniş alanını kaplarlar. Böceklerde çok iyi gelişmiş olan bu gözler çok iyi bir görme olanağı sağlarlar. Başta bir çift anten bulunur. Antenler duyu organları olup, başın önemli organlarıdırlar. Bu antenlerin üzerlerinde hava akımlarına karşı duyarlı tüyler bulunur. Ayrıca anten üzerinde çeşitli kokuları almaya yarayan bir çift anten vardır. Antenler çeşitli segmentlerden meydana gelir ve değişik türlerde farklıdır. Böceklerde ağız organelleri üç değişik tipte olabilir. Bunlar kesici-parçalayıcı, sokucu-emici ve yalayıcı-emici ağız tipleridir. Ancak nadiren bazı türlerde örneğin myiasis etkenlerinde ağız organelleri redüksiyona uğramıştır. Bu ağız organelleri tiplerinden sokucu-emici tip kan emicilerde iyi gelişmiş olup, ağız yapılışı bir hortum (rostellum) dan ibarettir. Bu hortum anten, palp, üst dudak (labrum), üst çene (mandibula), alt çene (1. maxilla), hypopharynx (tükrük yolu) ve alt dudak (labium, 2. maxilla) dan oluşmuştur. Göğüs (Thorax) :Thorax üç segmentden oluşmuştur. Bunlardan birincisine ve önde bulunana prothorax, ortadakine mesothorax arkadakine ise metathorax adı verilir. Bu halkalar belirgin ise de bazen ilk ikisi bazende üçü birden birbiriyle kaynaşmıştır. Ayak ve kanatlar bu halkalara yapışırlar. Kanat; böcekler için önemli bir organ olup, normal olarak her böcekte iki çift kanat vardır. Eğer kanat varsa bunlar mesothorax ve metathoraxdan çıkarlar. Bazı böcek türlerinde metathoraxdan çıkan kanat redüksiyona uğramış ve bir halter şeklini almıştır. Bu halter şeklindeki kanat denge organı görevi yapar. Bit ve pire gibi insectlerde kanat bulunmaz. Karıncalarda ise kanat bir süre bulunur ve sonra atılırlar. Önemli olan Diptera takımında ise iki çift kanat bulunur. Kanadın üzerindeki tüy ve lekeler ile kanadın şekli, rengi ve üzerindeki damarlar tür ayrımında önemlidir. Boru şeklinde olan damarların içinden sinir iplikleri ve kanadı besleyen sıvı geçer. Coleopteralarda ön kanatlar kitini ve mat olup, zar şeklinde olan arka kanatlan muhafazada kullanılır. Göğüsün her segmentinden bir çift ayak çıkar. Yani insectler üç çift bacaklıdırlar. Ayak sıra ile coxae, trochanter, femur, tibia, tarsus ve pulvillus denen kısımlardan oluşur. Tarsusun uç kısmında tutunmaya yarayan pulvillum denen yastıkçılar ve kancalar bulunabilir. Abdomen (karın) : Abdomendeki halkalar genel olarak belirgin olup, halka sayısı değişmekle beraber genellikle 11 halkadan oluşmuştur. Bu segmentlerin bazıları birbiriyle kaynaşmışlardır, Abdomenin arka tarafında türlere göre değişmek üzere anüs ve cinselorganlar bulunur. Erkeklerde çiftleşmeye yarayan genital organlar hypopygium adını alır ve bazenda kılıfıyla birlikte penis bulunur. Dişilerde ise yumurtlamaya hizmet eden ovipozitor bulunur. İnsectlerde sindirim sistemi ağızIa başlar ve birçok kör keselerden oluşan mide ve bağırsaklarla devam eder ve anüsle sona erer. Bağırsaklar ön, orta (mideye tekabül eder) ve son bağırsaktan ibarettir. Midenin bağırsağa geçtiği yerde birçok kanalcık yani malpighi kanalları vardır. Bu kanallar böceğin ekskresyon aygıtları olup, artık maddeleri toplar ve son bağırsağa dökerler. Böceklerde kaslar çeşitli halkalar içerisinde uzunlamasına ve enlilemesine şeritler meydana getirirler. Bunlar çizgili kaslardandır. Kaslar çeşitli organları özellikle de ayak ve kanatları hareket ettirirler. Örneğin uçan bir sineğin kanadı dakikada 300 kez çırpma yapar. İnsectlerde sinir sistemi merdiven şeklinde olup, vücudun dorsalinde arkaya doğru uzanır. Bu sinir ipcikleri birbirlerine sinir ipleriyle bağlıdır. Merkezi sinir sistemi, başta bulunan cervical ganglion (gelişmemiş ilksel bir beyin) ve bunların oesophagus etrafında birleşmeleri ile oluşur. Karın sinirleri ise başta beyin görevini yapan baş sinir ganglionundan çıkarlar. Böceklerde duyu organları,antenlerde, palplerde, başın çeşitli girinti ve çıkıntı yapan bölgelerinde, coxae ve trochanter üzerinde bulunurlar. Böceklerde solunum sistemleri karın halkalarının yan taraflarında bulunan ve stigma (solunum deliği) adını alan organellerde sonuçlanan, vücut içinde bir yumak halinde bulunan borucuklardan ibarettir. Solunum sistemi genel olarak trachea sistemiyle yapılır. Dallı ve budaklı borucuklar şeklinde olan bu trachealar stigmalarla dışarı açılır. Stigmalar abdomendeki segmentlerin yan taraflarından dışarı açılır. Her segmentde birer çift olabilir. Baş ve thoraxda genelde stigma olmaz. Stigmalar yalnız abdomen halkalarının iki yanında bulunurlar. Stigmaların etrafı kalın bir kitin tabakasıyla çevrilmiş ve kaslarla idare edilen bir kapağa sahitir.Böcek istediği zaman burayı kapatır. Solunum hareketleri kas kontraksiyonları ve vücut duvarının genişlemesiyle olur. Dolaşım sistemi yönünden böceklerde kapalı bir durum görülmemektedir. Böceklerde gerçek bir karın boşluğu yoktur. Bunların iç organlarının üzerini bir yağ tabakası örter ve aralarında boşluklar bulunur. Kalp dorsalde ve arkada yer alır ve genişlemiş bir damardan ibarettir. İnsectlerde kan dolaşımları açıktır ve vücudun dorsalinde üzerinde delikler bulunan, iç kısmında vücudun ön tarafına doğru açılıp arka tarafına doğru kapanan kapakcıkları taşıyan bir damardan ibarettir. Vücut boşluğunda serbest olarak dolaşan kan hemolenftir. Bu hemolenf kalp adı verilen damar içine girer ve bunun sıkışması ile de ön tarafa doğru hareket eder. Bunun sonucunda üzerindeki deliklerden vücut boşluğuna hemolenfi iter. İnsectlerde üreme sistemleri erkek ve dişi bireylerde farklıdır. Böceklerde erkek ve dişi ayrılmışlardır. Erkek üreme organları, genellikle ikiadet testis, ve sırası ile vasa defferens (boşaltı kanalı), vesicula seminalis (tohum kesesi), ductus ejaculatorius (boşaltım borusu) ve eklenti bezlerinden oluşur. Dişilerde ise iki tane yumurtalık vardır. Bu ovaryumların her biri bileşik borucuklardan yani ovarial tüplerden oluşmuştur. Her iki ovaryum oviducta (yumurta yolu) açılır. Oviduct vajinaya bağlıdır. Ayrıca çiftleşme esnasında spermatozoitleri toplayan receptaculum seminis (tohum torbası) yada spermatheca adı verilen bir torba bulunur. Bu torba vajinaya açılır. Dişilerde en son organ olarak da yumurtlamaya yardımcı olan ovipositor adını alan organ vardır. Böceklerin çoğunda yaşamları boyunca bir kez kopulasyon olur. Döllenmeden sonra erkek ölür, spermatozoitler dişinin yaşamı boyunca spermatekada canlı kalırlar ve gelişen yumurtayı döllerler. Dişi ve erkek böcek çiftleştikten sonra türlere göre değişrnek üzere yumurta, larva yada pupa bırakırlar. Bu duruma göre bazı insectler ovipar (Dişileri yumurta bırakır), bazıları vivipar (Dişileri canlı, hareketli larvaları bırakır, buna larvipar da denir.) ve hatta bazılarıda pupipar (Dişilerin doğrudan pupa bırakması) 'dır. İnsectlerin üzerleri kitin tabakasından oluşan bir kılıfla örtülüdür. Böceklerin biyolojik gelişmeleri sırasında erişkin hale yani olgun (matur) hale gelebilmesi için, böceğin büyüyüp gelişebilmesi için üzerindeki bu kılıfı atması olayına gömlek değiştirme adı verilir. Bu gömlek değiştirme olayı böceğin gelişmesi sırasında tüm dönemlerde meydana gelir. Böceklerde sırası ile erişkin -yumurta -larva -pupa ve erişkin dönemleri görülür. Ancak bazı türlerde bu biyolojik gelişme evrelerinde değişiklikler olur. Yani erşkin-yumurta-nymph-erişkin böcek dönemleri görülür. Böceklerin gelişmesi sırasında iki tip larva şekli görülür. Bunlar; Magot Larva: Başları küçük ve ayakları bulunmayan larvalara magot larva adı verilir. Dipteralarda ve pirelerde görülür. Oligopod Larva: Bu tip larvaların başları belirgindir ve thoraxda üç çift bacak bulunur. Coleopteralarda görülür. Pupa: Tam metamorfoz geçiren böceklerin biyolojilerini tamamlarken girmiş oldukları hareketsiz safhaya pupa adı verilir. Pupayı çevreleyen ve onu koruyan yapıya ise kokon adı verilir. İki çeşit pupa vardır. Bunlar, Obtek pupa: Pupa ince bir zarla örtülüdür ve pupa serbestçe hareket eder. Örn : Nematocera ve Brachycera 'larda, Koarktat pupa ise pupa içinde böcek görülmez ve pupa hareketsizdir. Örn : Cyclorrhapha 'larda görülen pupa şeklidir. İnsectlerde Gelişme (Metamorfosis-Metamorphosis-Metamorfoz -Başkalaşım) : İnsectlerin gelişmesinde yumurtadan çıkan genç artropod az çok erginlerine benzeyebileceği gibi bazı türlerde ise yumurtadan çıkan genç artropodlar erginlere hiç benzemezler. Yumurtadan çıkan ve erişkine hiç benzemeyen artropodun erişkine benzeyinceye kadar geçirdiği değişiklikler olayının tümüne metamorfosis adı verilir. Yani metamorfoz gelişme döneminde bir böcekte meydana gelen yapısal ve şekilsel değişikliklerdir. Metamorfoz yönünden insectler üç grupta toplanırlar. a) Metamorfosis göstermeyen yada ilkel bir metamorfosis gösteren insectler : Bu gruptaki insectler direk gelişirler. Yumurtadan çıkan genç formlar büyüklükleri dışında erişkinlere tamamen benzerler. Bu formlar kısa sürede gelişip erişkinlerin büyüklüklerine erişirler. Apterygota alt sınıfındaki insectler bu gruptandır. Bu gruptaki insectlerin bu tip gelişmelerine ametabola adı da verilir. b) Yarım metamorfosis veya basit metamorfosis (Bemimetabola) gösteren insectler : Bu gruptaki insectlerin gelişmesinde yumurta -nymph -erişkin (imago) dönemleri sırası ile görülür. Yani yumurtadan çıkan genç formlar erginlere bazı eksiklikler dışında (kanatlannın olmayışı gibi) tamamen benzerler. Bu döneme nymph dönemi adı verilir. Nymph'ler türlere göre değişrnek üzere birkaç kez gömlek değiştirdikten sonra erişkin yani imago haline geçerler. Bu tip gelişme Pterygota alt sınıfına bağlı Exopterygota bölümündeki insectlerde görülür. Bunlardan bazılan Orthoptera, Mallophaga, Anoplura ve Hemiptera 'lardır. c) Tam veya komplex metamorfosis (Bolometabola) gösteren insectler : Tam başkalaşım geçiren böceklerin biyolojilerinde sırası ile Yumurta -Larva -Pupa -Erişkin böcek dönemleri görülür. Yani yumurtadan çıkan genç formlar erişkinlere hiç benzemezler ve kurtcuk biçimindedirler. Bu döneme larva adı verilir. Larvalar birkaç gömlek değiştirdikten sonra hareketsiz ve sakin bir devreye girerler. Bu esnada artropodun etrafında koruyucu bir kılıf veya kabuk meydana gelir. Bu koruyucu kılıfa kokon ve kokon içerisindeki döneme ise pupa yada bazı insect türlerinde krizalit adı verilir. Daha sonra kokon açılarak erişkin böcekler dışarı çıkarlar.Yani bu tür insectlerin gelişmesinde görülen dönemler arasında hiç bir morfolojik fark yönünden benzerlik yoktur. Bunun içİn de bu gruptaki böceklerde tam metamorfosis görülür. Örneğin Pterygota alt sınıfındaki Endopterygota bölümünde bulunan insectlerde bu tip bir gelişme yani holometabola görülür. Örn: Lepidoptera, Siphonaptera ve Diptera takımlarında tam başkalaşım görülür. İnsecta Sınıfının Sınıflandırılması (Classificationu) İnsecta sınıfında iki alt sınıf vardır. 1- Subclasis (Alt sınıf) : Apterygota Bunlar kanatsız insectlerdir. Gelişmelerinde metamorfoz göstermezler. Bu alt sınıftaki türlerin Veteriner Hekimlik yönünden bir önemleri yoktur. Bu alt sınıfa bağlı; Thysanura Diplura Collembala Protura takımları bulunur. 2- Subclasis : Pterygota Bu alt sınıftakiler erişkin dönemlerinde kanatları olan veya kanatlı formlardan köken almış yada evoluasyon sonucu sonradan kanatsız olmuş insectlerdir. Pteryagota 'lar tam veya yarım metamorfoz geçirirler. Bunlar iki alt bölüme (division) aynlırlar. 2.a- Exopterygota bölümü (Hemimetabola bölümü) : Bu bölümdeki böceklerin kanatları dışa doğru bir sürgün veya tomurcuk gibi gelişir. Biyolojilerinde yarım metamorfosis gösterirler ve bunun içinde hernimetabola bölümü olarakta adlandınlırlar. Bu insectlerin erişkin olmayan yani genç dönemleri (immature) yapıları ve yaşadıkları yerler bakımından erginlerine benzerler. Exopterygota bölümünde bulunan önemli takımlar şunlardır: Takım (Order) : Orthoptera (Blattaria, Hamam böcekleri, Çekirge) Takım: Mallophaga (Isıran bitler) Takım: Anoplura (Siphunculata, Sokucu bitler) Takım: Herniptera (Tahta kurulan) Takım: Odonata (Kız böceği) Takım: Thysanoptera (Ekin -Fidan bitleri) Takım: Dermaptera (Kulağa kaçanlar) Takım: Plecoptera (Taş sinekleri) Takım: Isoptera (Termitler. beyaz kanncalar) Takım: Psocoptera (Kitap bitleri) 2.b- Endopterygota bölümü (Holometabola bölümü) : Bu bölümdeki insectlerin gelişmelerinde tam metamorfoz görülür. Kanatları internal olarak yani bir kokan içinde veya koza içinde gelişir. Bu bölümde bulunan önemli takımlar şunlardır. Takım: Coleoptera (Kın kanatlılar) Takım: Hymenoptera (Zar kanatlılar, bal arıları, normal karıncalar ve eşek arıları) Takım: Lepidoptera (Kelebek ve güveler) Takım: Neuroptera (Sinir kanatlılar) Takım: Siphonaptera (Aphaniptera, Pireler) Takım: Diptera (Gerçek sinekler, çift kanatlılar) Exopterygota Bölümü Bu bölüm içerisinde çok sayıda takım varsa da bunlar içerisinde Veteriner Hekimlik yönünden önemli olanlar üzerinde durulacaktır. Yani insan ve hayvan sağlığı yönünden önemli olan, hastalıklar oluşturan ve vektörlük yapan türlerden bahsedilecektir. OrthopteraTakım; (Syn: Blattaria) Bu takım; hamam böcekleri yanında, ağustos böcekleri ve çekirgeleri kapsar. Bunlar veteriner ve insan hekimliği yönünden parazitlik etkileri olmamalarına karşılık bazı hastalık etkenlerine arakonaklık yapmaları ve taşıyıcılık görevi yapmaları yönünden önemlidir. Bunlardan Melanoplus cinsine bağlı çekirgeler Tetrameres americana ve Cheilospirura amulosa'ya arakonaklık yaparlar. Hamam böcekleri değişik uzunlukta ve büyüklükte olup, vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden meydana gelmiştir. Başlarında bir çift anten, bir çift göz ve parçalamaya ve çiğnemeye elverişli ağız organelleri vardır. Göğüs halkalarının dorsalinden masothorax ve metathoraxdan iki çift kanat çıkar. Bunlardan birincisi sertleşmiş ve kitini yapıda olup, metathoraxdan çıkan ve ince bir zar gibi olanının üzerini örter. Göğüs halkalarının ventral kısmından uzun üç çift bacak çıkar. Hamam böcekleri kanatlı olmalarına rağmen uçamazlar. Sıcak ve rutubetli yerlerde yaşarlar. Mekaniksel olarak bazı protozoon kistlerini taşırlar ve bir kısım nematodlara arakonaklık yaparlar.Hamam böceklerinden üç tür yurdumuzda bulunmuştur. Bunlar; Blatta orientalis (Şark hamam böceği) Blatella germanica (Alman hamam böceği) Periplanata americana'dır. Hamam böcekleri spirurida takımındaki bazı nematodlara, Gongylonema 'ya bazı tavuk cestodlarına (Raillietina sp) ve oxyspirura cinsi nematodlara arakonaklık yaparlar. Bakterilerden salmanella 'lara vektörlük yapabilirler. Yine değişik bakteri, protozoon, mantar gibi değişik hastalık etkenlerini mekanik olarak bir yerden başka bir yere taşırlar ve özellikle yiyeceklere bulaştırırlar. Kolera, tifo ve verem basilleri ile Entamoeba coli, Entamoeba histolytica, Balantidium coli, Giardia intestinalis ve Trichomonas hominis kistlerinin yayılmasında aktif olarak rol oynarlar. Aynca helmintlerden Tetrameres, Acuaria, Hymenolepis ve Moniliformis cinslerine arakonaklık yaparlar. Hamam böcekleri sıcak yerlerde yaşar ve karanlıkta dolaşırlar. Duvarların çatlak ve oyuklarına, tahta kenarlarının arasına yada arkalarına, su ve kalorifer borularının arkasına ve dolaplara gizlenirler. Bu insectler nişastalı ve şekerli besinleri severler. Ancak diğer besinlerle de beslenebilirler. Bu nedenle mutfaklarda yiyecek konulan dolaplarda, kiler ve fırınlarda sıkça rastlanılır. Ayrıca hayvan barınaklarında da bunlara sıkça rastlanılır. Blatella germanica yani alman hamam böceği 15 mm uzunlukta olup, açık kahverengindedir. Thoraxın üst kısmında iki koyu çizgi görülür. Kanatlar her iki cinsiyette de mevcut olup, vücut uzunluğunu biraz geçer. Şark hamam böceği (Blatta orientalis) ise nisbeten daha büyük olup, 25 mm uzunluğunda ve koyu siyah renktedir. Kanatlar erkeklerde abdomenin ucuna kadar ulaşmaz ve dişilerde ise kanatlar daha da küçülmüştür. Hamam böceklerinin dişileri içlerinde yumurtaları bulunan ve yumurta paketleri adını alan silindir şeklindeki yumurta paketlerini uygun yerlere bırakırlar. Bu yumurta paketleri içerisinde çok sayıda yumurta bulunur. Uygun ısı ve besin bulunduğu ortamda çabucak gelişerek nymphler oluşur. Yumurtadan erişkinlerin oluşması normal şartlarda 30 -50 gün kadar sürer. Hamam böcekleri ile mücadelede insectisit yani insect öldürücü ilaçlar kullanılır. Toz şeklinde olanIarı hamam böceklerinin geçecekleri yerlere dökülür yada bir puar yardımı ile toz ilaçlar bunların saklandıkları yerlere serpilirler. Toz ilaçların kullanılması bu tip ilaçların kalıcı etkisinden dolayı daha faydalıdır. Bunun yanısıra solüsyon halindeki ilaçlarda bunların saklandıkları yerlere püskürtülürler. Ancak bu solüsyonların mutlak süratte hamam böceklerinin vücutlarına temas etmesi gerekir. Kontrolde dieldrin ve lindan gibi klorlu hidrokarbonlu insectisitler sprey şeklinde saklandıkları yerlere püskürtülerek uygulanır. Ancak yumurtadan çıkacak yeni nesilleri öldürmek için ilaç tekrarlanmalıdır. Bu amaçla sentetik pyretroidlerde kullanılabilir. Bunlann dışında 25 gr kaynamış patatese 75 gr borik asit karıştırılarak un haline getirilir. Etrafta yiyecek bulundurmamak şartıyla küçük tabaklar içinde hamam böceklerinin yemesine bırakılır. Hamam böcekleri ile mücadelede meskenlerin tümünde mücadele yapılır ve temizliğe dikkat edilir. Kullanılan ilaçlara karşı direnç gelişebileceği için farklı gruplardan insektisitlerin değiştirilerek kullanılmasında yarar vardır. Phthiraptera (Bitler) Gözle görülebilecek büyüklükte olan bitler 1 -2 mm büyüklüktedirler. Vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden oluşur. Erişkin formlarında daima üç çift bacak bulunur. Kanatları yoktur. .Gözleri rudimenterdir yada yoktur. Bitler bütün yaşam dönemlerini (yumurta -nymph -erişkin) konak üzerinde geçiren insectlerdir. Yani daimi ve tek konaklı parazitlerdir. Bitler kan emen hakiki bitler (Anoplura) ile tüy ve yapağı yiyen bitler (Mallophaga) olmak üzere iki takımda incelenirler. Mallophaga ve Anoplura takımındaki türler arasındaki farklar şunlardır: MalloRhaga Takımı AnoRlma Takımı- Baş ve Thorax Baş thoraxdan geniş Baş thoraxdan dar ve ve kalkan seklindedir. sivrilmis sekildedir. Ağız organelleri Kesmeye -parçalamaya Sokmaya -emmeye elverislidir. elverislidir. Gtdası Epidermis artıkları Konakçımn kam ve tüvler Konaklan Türlerin çoğunluğu Hepsi memelilerde bulunur kanatlılarda, çok azı ise memelilerde bulunur. Mallophaga Takımı: Bu takıma bağlı üç alt takım (suborder) vardır. Bunlardan Amblycera ve Ischnocera alt takımları daha önemlidir. Suborder : Amblycera Antenleri başın iki yanındaki çukurlarda olup, kolayca görülemez. Bunların mandibulaları önden ısırır. Çok hareketli, uzun yapılı ve sarı renklidirler. Mesothorax ve metathorax arasında genellikle görülebilen bir çizgi vardır. 1) Familya (Aile): Gyropidae Memeli hayvanlarda ve daha çok kemiricilerde (kobay) bulunurlar. Genus (Cins) : Gyropus Bu cinse bağlı en önemli tür Gyropus ovalis'dir. Kemirici hayvanlarda bulunurlar. Kobayların mallophagose'unu meydana getirir. Erkekleri 1 mm, dişileri ise 1.2 mm uzunluğundadır. 2) Familya: Menoponidae Kanatlılarda görülür. Bu ailedeki türlerin başları çok genişlemiş ve üç köşeli bir görünüm almıştır. Antenleri dört eklemlidir ve tarsuslarında bir çift tırnak bulunur. Bu ailede bulunan önemli türler: Species (Tür) : Menopon gallinae Species : Menopon phaeostomum Species : Holomenopon leucoxanthum Species : Menacanthus stramineus Species : Trinoton anserinum Bunlardan en yaygın olarak görülen cins menapon' dur. Daha ziyade konağının derisi üzerinde yaşadığından vücut biti adını alır. Süratli hareket eder. Özellikle genç hayvanlarda ölüme sebep olabilirler. Suborder : Ischnocera Bu alt takımdakilerin mandibulaları alttan ısırır ve antenleri kolay görülür. Hareketleri nisbeten yavaştır. Geniş yapılıdırlar ancak bazı türleri dar ve uzundurlar. Renkleri kırmızı esmer veya gri siyahtır. Mesothorax ve metathorax kaynaşmıştır. I) Familya: Philopteridae: Kanatlılarda, kuşlarda görülürler. Bu ailedeki önemli türler: Species : Lipeurus heterographus Lipeurus'lann vücutları dar ve uzundur. Vücut kenarları birbirine paraleldir. Species : Lipeurus caponis Species : Goniodes gigas Goniodes'ler tavuk tüylerinin sapı üzerinde bulunurlar ve renkleri kırmızımtrak esmerdir. Species : Goniocotes gallinae Species : Chelopistes meleagridis Species : Columbicola columbae Species: Anaticola crassicornis Philopteridae ailesindeki türlerin antenleri 5 eklemlidir. Ayak tarsuslarının uç kısmında bır çift tırnak bulunur. 2) Familya: Trichodectidae : Antenleri 3 eklemlidir. Tarsusların uç kısmında tek bir çengel bulunur. Bu ailedeki türler memelilerde görülür. Memelilerin tüyleri arasında yaşarlar. Bu ailede üç önemli cins bulunur, Cins: Trichodectes Species: Trichodectes canis: Köpeklerde bulunan mallophaga türüdür. Açık san renktedir. Başı dikdört.gen şeklinde olup, antenleri tüylüdür. Cins: Felicola Species : Felicola subrostrata: Kedilerde bulunur. Başlarının ön kısmı üçgen şeklindedir. Genus: Damalinia (Bovicola) : Ayaklan ve ayak uçlarındaki çengelleri uzundur. Species : Damalinia (Bovicola) bovis : Sığırlarda görülür. Species : Damalinia (Bovicola) ovis : Koyunlarda bulunur. Species : Damalinia (Bovicola) equi : Tektırnaklılar konaklarıdır. Species : Damalinia (Bovicola) caprae : Keçilerde Species : Damalinia (Bovicola) painei : Keçilerde Species : Damalinia (Bovicola) limbala : Keçilerde bulunan mallophaga türleridirler. Suborder : Rhynchophthirina : Bu alt takımda bulunan mallophaga türleri fazla önemli değidirler. Önemli cins ve türü ise; Cins: Haematomyzus Species : Haematomyzus elephantis'dir. Fil bitleri'dir. Anoplura (Siphunculata) Takımı Gerçek bitler olup, yalnız memelilerde bulunurlar ve konaklarından kan emerek beslenirler. Bu takıma bağlı 5 aile vardır. I) Familya: Haematopinidae : Hayvan bitleridir. Aile adından da anlaşıldığı gibi kan emenler anlamına gelir. Gözleri bazen hiç yoktur bazen de çok basittir. Baş ön tarafa doğru çıkıntılar yapmıştır. Bacaklar aynı büyüklüktedir. Bu ailedeki önemli cinsler; Genus: Haematopinus Species : Haematopinus asini : At bitidir. At, katır ve eşeklerin kuyruk ve yelelerindeki kıllarda bulunur. Species : Haematopinus bufali: Mandalarda bulunur. Species : Haematopinus suis: Domuzlarda bulunur. Species : Haematopinus eurysternus : Sığırlarda görülür. Özellikle kaşektik sığırların uzun kıllı kısımlarında bulunur. Species: Haematopinus tuberculatus: Mandalardabulunur. 2) Familya: Linognathidae: Gözleri olmayabilir. Ön bacaklar daha küçüktür, yani birinci çift bacaklar çok zayıftır. Bu ailedeki cins ve bağlı olan türler; Genus: Linognathus : Koyun, sığır, keçi, köpek ve tilkilerde görülür. Bulundukları hayvanlarda linognathose adı verilen belirtilere sebep olurlar. Bu cinse bağlı türler; Species : Linognathus ovillus : Koyunlarda vücut biti türüdür. Species : L. africanus: Koyunlarda bulunur. Species : L. pedalis : Koyunların bacaklarında bulunur ve bacak biti adını alır. Specıes: .stenopsıs: Keçi bitidir Species : L. vituli : Konakları sığırlardır. Species : L. setosus : Köpek ve tilkilerde görülür. Genus: Solenopotes Species : Solenopotes capillatus : Sığırlarda bulunur. Species : Microthoracius cameli: Deve biti. 3) Familya: Pediculidae : İnsan bitleri bu grupta bulunurlar. Maymunlarda ve insanlarda yaşarlar. Gözleri vardır. Tarsuslarının nihayetinde bir tek çengel bulunur. Bu ailedeki türler tarafından insanlarda meydana getirilen belirtilere yada enfestasyon olayına "pediculosis" adı verilir. Bu ailede bulunan türler; Species : Pediculus humanus: İnsanlarda parazitlenir. Bu türün iki varyetesi vardır. Bunlardan Pediculus humanus capitis baş biti adını alır ve kafa saçı, bazan sakal, kaş v,e bıyıkta yerleşir. Diğeri ise Pediculus humanus corporis olup, daha çok gövde kısımlarında ve çamaşırların katlanmış, kıvrım yerlerinde bulunurlar. Bu son türe İnsanlardaki vücut biti adı verilir. Species : Phthirus pubis: Oran olarak diğer türlere göre daha geniş yapılıdırlar. Ancak abdamenleri daha kısadır ve orta bacak ile arka bacakların tırnakları kuvvetlidir. İnsanlarda eşeysel organların ve anüsün civarındaki kılların arasında bulunurlar. Bunun içinde insanların kasık biti veya edep biti adını alırlar. Bu bölgelerden kan emerken tahrişlere ve ekzamalara yol açarlar. Bu belirtilere "Phthiriosis" adı verilir. Aynca pediculidae ailesine bağlı olarak Pedicinus cinsi bulunur. Pedicinus cinsi maymunlarda bulunan bit türüdür. 4) Familya: Hoplopleuridae: Bu ailedeki türler fare ve kemiricilerde parazitlenirler. Bulunan türler; Genus: Polyplax, Hoplopleura, Haemodipsus. Species : Polyplax spinulosa: Farelerde ve sıçanlarda yaşarlar. Bu tür protozoonlardan Haemobartonella türlerini bulaştırır. Ayrıca fare tifusü, bulaşıcı anemia ve fare trypanosomiosis hastalıklarıın insanlara bulaştırırlar. Species : Polyplax serrata' Kemiricilerde bulunur. Eperythrozoon ve Francisella türlerini bulaştırırlar. Bu türlerden başka bu aileye bağlı olarak kemiricilerdede Hoplopleura ve Haemodipsus cinsleri de vardır. 5) Familya: Echinophthiriidae: Foklarda ve deniz fıllerinde yaşarlar. Bu bitlerin kara yırtıcılarından denizde yaşayan memelilere geçtikleri tahmin edilmektedir. Vücutları kılların değişmesinden dolayı pullarla örtülüdür. Familya: Cimicidae (Gerçek tahtakuruları) Bu ailedeki tahtakurularının antenleri dört eklemlidir. Kanatları iyice küçülmüş ve atrofiye olmuştur. Vücutları oval ve dorso -ventral olarak basıktır. Bunlar hoşa gitmeyen bir koku yayarlar ve geceleri beslenirler. İnsan omurgalı hayvanlar ve kanatlılardan kan emerler. Bu aileye bağlı olarak bulunan önemli cins ve türler Familya: Formidae (Karmcalar) : Bu ailede karıncalar bulunur. Kanatlı veya kanatsız olabilirler. Ağız organelleri parçalayıcı ve çiğneyici tiptedir. Toplu halde yaşarlar. Yumurtayla çoğalırlar. Kopulasyondan sonra dişi ve erkekler kanatlarını kaybederler. İşçi karıncalar ise iyi gelişmemiş dişiler olup, kanatsızdır ve bunların zehir bezleri vardır. İnsan ve hayvanları ısırdıklarında şiddetli kaşıntıya sebep olabilirler. Bu aileye bağlı en önemli tür Formica fusca' dır. Bunların hekimlik yönünden önemleri kanatlı cestodlarından Raillietina türlerine ve trematodlardan Dicrocoelium dentriticuma arakonaklık görevi yapmalarıdır. Familya: Vespidae Yaban arıları adını alan, bu ailedeki türler tek tek yada toplu halde yaşarlar. Bunlar etcildirler. Ancak hem hayvansal hemde bitkisel besinlerle beslenirler. Karın bölgesi hareketli olduğundan ağılı iğnelerini her yönde kullanabilirler. Yaban arılan türlerinden özelikle Vespa crabro,Vespa germanica ve Vespa orientalis türlerinin sokması çok acı verir, ağır klinik belirtilere hatta ölümlere yol açabilirler. Çeşitli hastalık etkenlerini besinlere mekanik olarak bulaştırabilirler.Tesadüfen ağıza girdiklerinde insan ve hayvanların dil yada boğaz çevresini sokarak buraların şişmesine sebep olabilirler, ayrıca allerjik reaksiyonlara ve anfılaktik şoka sebep olarak ölümlere yol açabilirler. Familya: Apidae (Bal anları) Bu aile bal anlarını kapsar. Bunlar genellikle toplu halde yada tek tek yaşarlar. Zehirli iğneleri yönünden insan ve hayvanlar için çok zararlı olabilirler. Bu arı ağılaması olayına Hymenopterismus adı verilir. Arı sokmaları sonucu acı, allerjik bozukluklar ve hatta anafılaktik reaksiyonlar oluşur. Boğaz ve dil gibi hayati bölgeleri sokmaları sonucu ölümler görülebilir. Arı sokmalarında eğer arı iğnesi içeride kalmışsa çıkarılır. Bu yerlere gazyağı ve benzin damlatılır. Uzun süre arı sokması sonucu bazı kişilerde bağışıklık gelişir. Bazı fertlerde ise şiddetli bir duyarlılık görülmektedir. Yılan zehirine karşı hazırlanan serum arı zehirine karşı da kullanılmaktadır. An soktuğu zaman deride kaldığı sürece zehir bezesinden salgı yapar. Bunun için arı sokmalarında iğnenin en kısa sürede çıkarılması gerekir. İğnesi kopan arı kısa sürede ölmektedir. Bu ailede bulunan en önemli tür Apis mellifera (Apis mellifica) dır. Bu tür bal arısı olarak adlandırılır. Ekonomik olarak en önemli türdür. Normal bir arı topluluğu 40.000 -70.000 ergin bireyden oluşur. Bundan daha az birey içeren yuvalar zayıf olarak nitelendirilir ve kışı geçirmeleri zayıf ihtimaldir. Bir yuvada yani kovanda üreme yeteneği olan bir kraliçe (ana arı), dişi olan ve üreme yeteneği olmayan işçi arılar ve üreme dönemlerinde ortaya çıkan erkek arılar vardır. Ana arı 20 -25 mm boyunda, anteni 12 segmentli ve nokta gözler alında birbirine değmez. İşçi anlarda ana arı özelliklerini gösterirler. Ancak büyüklükleri 13 –15 mm kadardır. Erkek arılar da 15 -17 mm boyunda olup, işçilere ve ana arıya göre daha tıknaz yapılıdır. Arıların gelişmelerinde yumurta, larva, pupa ve erişkin dönemleri vardır yani tam metamorfoz geçirirler. Ana arının görevi Mart'ın başından Eylül'ün sonuna kadar yumurta bırakma ve salgıladığı feromonla yuvanın düzenini ve böylece bütünlüğünü sağlamaktır. Günde yaklaşık 3.000 yumurta bırakırlar. Yumurtadan ergin oluncaya kadar işçi anlar için 21 gün. Ana arılar için 16 ve erkek arıların gelişmesi içinde 24 gün geçmesi gerekir. İnsan ve hayvanları en çok sokan arı türleri ; Apis mel!ifica (Bal arısı), Vespa crabro, V. silvetris (Sarıca arılar), Polistes gallicus ve Bombus sp.'dir.Arılarda alkalen zehir bezi (küçük olan) ve asit zehir bezi (büyük ve çatal şeklinde olan) olmak üzere iki adet zehir keseleri bulunur. Bunların; alyuvarları eritici, sinir uçlarını ağılayıcı, yangı yapıcı, allerji oluşturucu ve bölgesel nekroz oluşturucu etkileri vardır. Hymenopterismus’un tedavisinde yapılacak işlemler. -Bir pens veya bıçak ucu ile dikkatlice iğne çıkarılır. -Sokulan bölgeye buz tatbik edilir. -Antihistaminikli solüsyon veya pomadlar lokal olarak uygulanır. -Antihistaminikler oral veya parenteral olarak verilebilir. Şayet anafilaktik reaksiyonlar oluşmuş ise; -Özel enjektörlerde bulunan adrenalin 0.3-0.5 ml (1:1000 sulandırılmış) deri altı veya damar içi yolla verilir. -Parenteral olarak antihistaminikler verilir. -Damar içi serum fizyolojik verilir. -Kortizon endikedir. -Solunum yolu açık tutulur. Eğer siyanoz varsa oksijen verilir. An sokmalarına karşı duyarlı kişilere koruyucu olarak arı antitoksini verilebilir. Neuroptera Takımı (planipennia -Sinirkanatlılar) Bu takımdaki böcekler küçük kelebeklere ve odonata takımındaki insectlere morfolojik olarak benzerler. Vücut caput, thorax ve abdomenden meydana gelmiştir. Çiğneyici ağız organelleri ve yarım küre şeklinde büyük bileşik gözlere sahiptirler. İki çift kanatları vardır. Çeşitli türlerde kanatlar renklenmeler ve desenler gösterirler. Cam gibi saydam olan kanatlar, çoğunlukla kahverengi benekler şeklindedir. Kanat üzerindeki damarlar kanat kenarlarına doğru çatallaşır ve birbirlerine birçok enine damarla bağlanırlar. Böceğin dinlenmesi sırasında kanatlar genellikle abdomenin üzerinde çatı şeklinde dururlar. Gelişmelerinde tam başkalaşım görülür ve çoğunlukla akşamları ve geceleri aktiftirler. Lepidoptera Takımı (Kelebek ve Güveler) Lepidoptera takımında kelebek ve güveler bulunur. Kelebeklerin ağız organelleri iyi gelişmemiştir. Besinlerini çiçeklerin nektar ve polenlerinden sağlarlar. Bazı türleri ise kısa süren yaşamlarında hiç besin almazlar. Kelebekler böcekler içerisinde kanadı, gövdesi ve bacakları pullarla tamamen örtülü olan insektlerdir. İki çift kanatlrın vardır. Kanat üzerindeki renkli ve kitini olan bu örtüler kelebeklere güzel bir görünüm verirler. Lepidoptera takımındaki .artropodların gelişmelerinde sırası ile yumurta, larva (tırtıl), krizalit (koza içinde) ve erişkin dönemleri vardır. Yani gelişmelerinde holometabol görülür. Ancak bunların larvalarına tırtıl, pupa dönem karşılıklarına da krizalit adı verilir. Larvaları çok ayaklı olup, polipod larva türüne örnektir. Kelebek tırtıllarının üzerindeki kılların zehir keseleri ile ilişkili olduğu ve bu nedenle tırtılların insanlarda allerjik dermatitislere neden olduğu belirtilmektedir. İşte kelebek türlerinden bazılarının canlı yada ölü tırtıllarının diplerinde zehirli salgı yapan bezeler bulunan vücut kıllarının insaınn derisi üzerine yada gözüne düşerek dokulara saplanması sonucu oluşan allerjik dermatitise tırtıl dermatitisi ya da Lepidopterizm (Lepidopterismus) adı verilir. İnsanlarda deride oluşan lezyonlara analjezik ve anti inflamatuar merhemler sürülür. Bulunan kıllar pensle çıkarılır. Bu tırtılları yiyen hayvanlarda ölümle sonuçlanabilen hastalıklar oluşabilir. Bu yüzden ördek ve tavuklarda zehirlenmeler görülmüştür. Aynca bu takımda bulunan ve arılarda büyük ekonomik kayıplara sebep olan türler vardır. Bunlar; Aile: Galleridae Species : Galleria mellonella (Büyük balmumugüvesi) Species : Achroia grisella (Küçük balmumugüvesi) Bu türlerden başka bu takımda evlerde görülen değişik güvelerde bulunmaktadır. Bunlar içerisinde en önemlisi olan ve arı güvesi olarak bilinen büyük balmumugüvesi hakkında bilgi verilecektir. Galleria mellonella Arıların büyük mum güvesi olarak bilinen bu parazit özellikle havalanması iyi olamayan karanlık ve zayıf kovanlarda etkili olur. Bu parazit küçük mum güvesi olan Achroia grisella'ya göre daha zararlıdır. Büyük mum güvesi karanlık, sıcak ve iyi havalandırılmayan yerlerde depolanmış peteklerde büyük zarar verirler. Genellikle alçak rakımlı yerlerde daha yaygındırlar. Yüksek rakımlı yerlerde yoğunluğu ve zararları daha azdır. Güve larvaları peteklerde tüneller açarak, peteklerdeki bal, polen ve balmumunu yiyerek koloniye büyük zarar verirler. Zararlı etkisi daha çok depolanmış sahipsiz peteklerde ve ağ örerek olmaktadır. Ayrıca güçsüz kolonilerdeki peteklerde de aynı zararı yapabilmektedirler. Güçsüz ve hastalıklı koloniler güve için uygun gelişme ortamıdırlar. Güve larvaları petek gözlerinde açtıkları tüneller sebebiyle, petek gözlerinin bozulmasına ve balın akmasına sebep olurlar. Dişi Galleria mellonella türleri yumurtalarını genellikle kovandaki yarık ve çatlaklara, ışıktan uzak loş yerlere kümeler halinde bırakırlar. Bir küme içinde 80 -100, hatta bazen daha fazla yumurta bırakabilmektedirler. Herbir dişinin bıraktığı yumurta sayısı 500 kadardır. Yumurtadan larvalar 24 -26 derece sıcaklıkta 5 -6 günde, 10 -l5 derece sıcaklıkta 34 günde çıkar. Larvalar hareketlidir, peteklerde yuva yapar ve gelişmesini sürdürürler. Larva dönemi 30 derece sıcaklıkta ortalama bir ay sürer. Ancak bu süre alınan gıdaya ve sıcaklığa göre değişir. Larva gelişmesi için en uygun sıcaklık 30 -35 derece sıcaklıktır. Gelişmesini tamamlayan larvalar sert, tüylü, beyaz renkli ipek bir koza örerler. Koza içerisinde larva pupaya (krizalit) dönüşür. Pupa dönemi 8 -14 gün sürer. Pupadan grimsi kahverengi ergin kelebekler çıkar. Dişi kelebekler kozadan çıktıktan 4 -10 gün sonra yumurtlamaya başlar. Erginler iklim şartlarına bağlı olarak değişmek üzere 2 -5 hafta yaşarlar. Ömürleri düşük sıcaklıkta daha da uzar. Pupadan çıkan ergin kelebekler çiftleşerek yumurtlamak üzere tekrar koloniye girmeye çalışırlar. Galleriosis'li kovanlarda larvalar gelişmesini tamamladıktan sonra kovan içinde sert tüylü ipekten ağ ve koza örerek kovandaki arıların faaliyetlerine engel olurlar. Böylece de büyük ekonomik kayıplara yol açarlar. Ayrıca bu zararlarının yanısıra larvalar peteklerdeki balın sır kısımlarını zedeleyerek, tüneller açarlar ve balın dışarı akmasına neden olurlar. Galleriosis'de kontrol ve korunma: Arıcılıkta Galleria enfestasyonlarının kontrolünde şu tedbirler alınır. l- Balmumu güvesinin en etkili düşmanı arıların kendisidir. Bunun için koloniler güçlü tutulmalıdır. Bu tip güçlü kolonilerde arılar güve larvalarını kovan dışına taşıyarak, zararlı etkilerinden kurtulurlar. 2- Kovanda yarık ve çatlaklar bırakılmamalı, kırıntı ve her türlü artıklar temizlenmelidir. 3- Arılı kovanlara verilecek ilaçlar anlar içinde zararlı olabileceği için, ilaçlı mücadele depolanmış arısız petek ve ancılık malzemelerinde uygulanmalıdır. 4- Boş petekler ve diğer malzemeler yeterli hava akımının bulunduğu bir odada 60 derecede 34 saat, -12 derece sıcaklıkta 3 saat tutulmalıdır. Düşük ısı ve yüksek sıcaklık balarısı zararlılarının bütün dönemlerindeki bireyleri öldürmektedir. 5- Petek güvesine karşı bakteriler, mantarlar ve peradatör böcekler kullanılarak biyolojik mücadele yapılmaktadır. Bunun için de arılara zararlı olmayan ancak kelebek larvalarına (tırtıl) etkili olan Bacillus thuringuensis toxinleri kullanılmaktadır. 6- Kontrolde diğer bir önlemde ilaçlamadır. Bunun için güve görülen kovanlardaki arılar başka temiz bir kovana boşaltılır. Güveli çerçeveler bir kovan yada sandık içinde, paradiklorbenzen (PDB ), ethylene dibromit, metyl bromid, karbondisülfid gibi ilaçlarla ilaçlanır. Çerçeveler tamamen asalaklardan temizlendikten sonra istenilen kovana konulabilir. Ayrıca depolarda da ilaçlamalar yapılır. ilaçlar ergin kelebekleri, larva ve pupaları öldürür. Ayrıca toz kükürt fumigasyon halinde kullanılabilir. Siphonaptera (= Aphaniptera) Takımı (Pireler) Pireler, sıcak kanlı memelilerden yani kanatlı ve memelilerden kan emen ve yalnız ergin devrelerinde geçici parazit olan insectlerdir. insecta sınıfının genel özelliklerini gösterirler. Vücut caput, thorax ve abdomene ayrılmıştır. Vücutları latero -lateral yani iki yanlı olarak (bilateral) basıktır. Vücut parlak sarı kahverenginde sağlam bir kitinle örtülüdür. Pirelerin erginleri 1.5 -5 mm büyüklüğünde olup, 3. çift bacakları çok uzun ve sıçramaya elverişlidir. Yani, pireler zıplayan böceklerdir. Kanatları redüksiyona uğramış olup, görülemez. Ağız organelleri sokmaya -emmeye elverişlidir. Pirelerde baş (capitilum) önden yuvarlağımsı ve ellipsoidal, iki yandan basık ve gövdeye yapışık görünümdedir. Başlarında bir çift antenleri ve bazı türlerinde ise bir çift gözleri vardır. Pire türlerinin bazılarında siyah iri dikenler şeklinde tarak (ctenidia) lar vardır. Bu taraklar başın alt kısmında ise genal tarak (yanak tarağı), boyun kısımlarında ise pronotal tarak (boyun tarağı, omuz tarağı) adını alır. Thorax üç kısımdan oluşmuştur. Thorax üstte notum, altta ise sternum olarak adlandırılır. Thorax pronotum, mesonotum ve metanotumdan meydana gelir. Thoraxın ventralinde uzunlukları önden arkaya doğru artan üç çift bacak çıkar. Bunlardan 3. çift bacaklar çok uzundur ve sıçramaya elverişlidir. Abdomen halkalardan oluşmuştur ve bu karın halkaları birbirine geçmelidir. Onun için pireler çok fazla kan emebilirler. Karın halkaları üstte tergum, altta ise sternum olarak adlandırılır. Sekiz karın halkası vardır. Her halkada spiracle (stigma) bulunur. Ayrıca son halkada pygidium (his organeli), antipygidial bristil (uzun diken) ve anal stylet adını alan değişik dikenler bulunur. Dişilerin arka taraftarında kitinsel bir kese biçiminde olan, türlere göre şekilleri değişen spermatheca (reseptaculum seminis, tohum kesesi) bulunur.Erkeklerde ise kitinsel, ince, uzun ve dinlenme sırasında spiral biçiminde kıvrılmış kopulasyon organı olan clasper bulunur. Pirelerin yumurtaları oval ve beyaz renkte olup, 0.5 mm büyüklüğündedir. Pirelerin gelişmesinde tam metamorfoz görülür. Larvaları kurtcuk biçiminde olup, beyaz renklidir. Olgunlaşan larvaları 6 mm kadar uzunlukta olabilir. Pireler pupa dönemini yaklaşık 4x2 mm ebatlarında olan bir kokon içerisinde geçirir. Kokonun çevresi toz ve toprak ile bulaşıktır. Pireler kozmopolit yani her yerde bulunabilen canlılardır. Her türlü konaktan kan emerler (euroxen parazit). Ancak bazı türleri özellikle kendi konaklarına daha çok gelirler. Dişileri çiftleşmeden sonra toplu iğnenin 1/4'i başı büyüklüğündeki, krem rengindeki yumurtalarını toz, toprak içerisine bırakırlar. Ancak konak üzerine bırakılan yumurtalarda yapışıcı özellikte olmadıklarından kayarak toprağa düşerler. Yumurtadan 1 -2 hafta içerisinde kurtcuk şeklinde ve üzerleri tüylü larvalar çıkar. Larvalar çok aktiftirler. Bunlar topraktaki organik maddelerle, hayvansal artıklarla, kan pıhtılarıyla, kokuşan bitkisel maddelerle yada konağın dışkılarıyla beslenirler. Bunun sonucunda büyüyerek gelişirler ve 11 halkalı kurtçuk şeklini alırlar. Larvalar ışıktan kaçarlar. Larva dönemi 9 -200 gün arasında değişir. Larvalar saldıkları bir salgıyla toz toprak arasında kendilerine bir kokon (koza) örerler. Bu pupa dönemi 10 gün ile bir kaç ay arasında değişir. Bu kokonun içerisinde pire gelişir ve kokonu açarak dışarı çıkar. Ancak Tungidae ailesindeki pirelerin biyolojileri biraz daha farklıdır. Bu ailedeki türlerde dişiler yumurtalarını konak derisinde meydana getirdikleri şişliklerin içerisine ya da yaralara bırakırlar. Larvalar yumurtayı konak üzerindeyken terkeder ve daha sonra yere düşerler. Bu larvalar daha sonra bir kokon içerisinde pupa dönemini geçirerek ergin erkek ve dişiler oluşur. Tungidae ailesindeki pirelerin bu özelliklerinden dolayı pireler geçici parazitizmden daimi parazitizme geçiş halinde olan artropodlar olarak kabul edilirler. Siphonaptera takımında bulunan aile ve türler: Familya: Tungidae Bu ailedeki pirelere oyuk, tünel açan pireler adı verilir. Çünkü dişileri döllendikten sonra konakçısının derisine girer, çok şiddetli olarak irrite eder ve etrafındaki doku şişerek pireyi içine hapseder. Dişi pireler yumurtalarını buralara bıraktıktan sonra dokunun sıkıştırması sonucu ölürler. Tungidae ailesindeki pireler küçük ve ayakları diğer türlere oranla kısa ve zayıftır. Genal ve pronotal taraklar bulunmaz. Bu ailede iki önemli tür vardır. Species : Tunga penetrans Bu türün büyüklüğü 1 mm kadardır. Başın ön kısmı sivrilmiştir. Thorax segmentleri çok dardır. Gözleri geniş ve piğmentlidir. Kırmızı esmer renktedirler. Dişilerde spermatheca konik şekildedir. Başlıca konakları kanatlılardır. Fakat domuz, evcil memeliler ve insanlardan da kan emebilirler. Konaklarına çok şiddetli ağrılar verirler ve hatta deri içerisinde ezilen pirenin dokuları gangrene yol açabilir. Bu tür Güney Amerika' da ve Afrika' da yaygındır. Species : Echidnophaga gallinacea Başlıca konakları tavuklar ve diğer kanatlılardır. Büyüklükleri 1.5 mm' dir. Baştaki alın kısmı köşelidir. Thorax'ın notumları dardır. Genal ve pronotal tarak yoktur. Spermatheca iyi kitinize olmuştur. Bu tür köpek, rat, insan ve diğer hayvanlardan da kan emebilir. Tropik ve subtropik bölgelerde görülmektedir. Familya: Pulicidae Bu ailedeki türlerde genellikle gözler mevcuttur. Bazı türlerinde genal ve pronotal taraklar bulunabilir. Bu ailede bulunan türler; Species : Pulex irritans İnsan piresi olarak bilinen ve insanlardan kan emen bu tür, karnivorlardan ve diğer hayvanlardan da kan emebilir. 1.5 -4 mm uzunluğundadır. Gözünün alt kısmında uzunca bir diken bulunur. Thorax segmentlerinde birer sıra, birinci karın halkasında 2 ve ikinci ile 7. abdominal tergumda ise birer sıra diken bulunur. Erkeklerde clasper geniştir ve biri uzun üç hareketli çıkıntısı vardır. Dişilerde spermathecanın başı yuvarlak ve kitinize olup, kuyruk kısmı kıvrılmış bir parmağa benzer. Genal ve pronotal taraklar yoktur. Pulex irritans doğal şartlarda olmasa bile deneysel koşullarda veba hastalığına vektörlük yapabilmektedir. Türkiyede bu pire türüne rastlanılmıştır. Bu tür ayrıca helmintlerden Hymenolepis nana, Hymenolepis dimunata ve Dipylidium caninum'a arakonaklık yapar. Species : Ctenocephalides canis Köpek piresi olan bu tür, 2 -3.5 mm uzunluktadır. Her kenarda sekiz adet diken ihtiva eden genal ve pronotal tarakları bulunur. Baş yuvarlağımsı şekildedir. Şeritlerden Dipylidium caninum'un arakonaklığını yapar. İnsan ve diğer karnivorlardan da kan emerler. Species : Ctenocephalides felis Kedi piresi olarak tanımlanır. Ancak köpek ve insanlardan da kan emebilir. 2 -3 mm büyüklüğündedir. Alın kısmı daha uzun, dar ve sivridir. Genal ve pronotal tarakları vardır. Genal tarağın ön dikeni hemen hemen 2. nin uzunluğu kadardır. Türkiye'de yaygındır. Species : Spilopsyllus cunuculi Tavşanlarda görülen pire türüdür. Genal tarak 5 -6, pronotal tarak ise 14 -17 koyu renkli büyük dikenden oluşur. Genal tarak subvertikal olarak yerleşmiştir. Dişilerde spermathecanın deliği terminaldir. Tavşanlarda görülmesinin yanında kedi, tilki ve ratlarda da saptanmıştır. Bu tür myxomatosis virusuna vektörlük yapar. Species : Xenopsylla cheopis Xenopsylla genusu içinde bulunan türlerin en yaygınıdır. Asya rat piresi olarak bilinir. Thoraxın mesonotumunda kitini vertikal bir çizgi bulunur. Antenlerinin 3. eklemi asimetriktir. Göz kılı gözün önündedir. Genal ve pronotal taraklar mevcut değildir. Afrika'da ve Güney Amerika'da yaygındır. Ancak dünyanın her kıtasına yayılmıştır. Bu tür veba hastalığı etkeni olan Pasleurella pestis'in vektörlüğünü yapar. Species : Leptopsylla segnis Farelerde görülen pire türüdür. Genal ve pronotal tarak vardır. Ayrıca alında küçük ve az sayıda dikenden ibaret bir alın tarağı bulunur. Familya: Ceratophyllidae Bu ailenin bazı türlerinde frontal çıkıntı vardır. Gözler genellikle mevcuttur. Küçük memelilerle, kuşlarda bulunurlar. Species : Ceratopyllus gallinae Erginleri 2 -3 mm uzunluğunda, vücutları uzunca ve genel olarak renkleri esmerdir. Baş yuvarlak olup, genal tarak yoktur. Pronotal tarak bulunur ve 12 diken taşırlar. Kanatlılarda ve özellikle de tavuklarda bulunurlar. Kuş piresi yada Avrupa kanatlı piresi olarak adlandırılırlar. Kanatlılarda şiddetli yaralanmalara neden olurlar. Species: Ceratopyllus columbae Güvercin piresi olarak adlandırılır. Özellikleri C. galhnae'ye benzer. Species : Nosopsyllus fasciatgs Fare ve sıçanlarda bulunur. Avrupa rat piresi olarak adlandırılır. Ancak diğer hayvanlardan da kan emebilirler. Genal tarak yoktur. Pronotal tarak vardır ve 8 dikenlidir. Gözleri iyi gelişmiştir. Pirelerin Yaptığı Zararlar: Erişkin pireler mutlak süratle kan emerler. Bunun ıçınde buldukları her konak üzerine giderler. Bunların her canlıdan kan emmeleri hastalık etkenlerini bu canlılar arasında nakletmelerine sebep olurlar. Pireler fare ve sıçanlarda bulunan veba etkenlerini kan emmeleri esnasında alırlar. Pire tarafından alınan bu etkenler pirenin midesinde çoğalırlar. Bu pirelerin insanlara gelip kan emmeleri esnasında bu etkenleri onlara aktarırlar. Aynca fare ve rat pireleri fare tifüsu etkeni olan Rickettsiya typhı’yı taşırlar. Tavşan piresi myxomatosis virusunu, köpek piresi Dipyhdium caninum'u, yine köpek ve kedi pireleri Dipetalonema reconditum,Dirofilaria immilis, insan pireleri Hymenolepis nana'yı naklederler. Pireler ayrıca Tularemi'yi mekanik olarak naklederler. Pirelerin zararlı etkilerini sıralayacak olursak; Yukarıda anlatıldığı gibi hastalık etkenlerine vektörlük veya arakonaklık yapmaları, Bazı pire türleri konaklarına traumatik (yaralayıcı) olarak etki yapmaları, Konaklarından kan emmeleri sonucu soyucu -sömürücü etki yapmaları, AIlerjik etkilerinin olması. Özellikle köpeklerde bu tip etkiler sıkça görülmektedir. Konaklarını huzursuz etmeleri, Deride irrtasyon sonucu kaşıntı, dermatitis ve ürtikerlere neden olmaları, Deride tünel açan pire türleri deri altına yerleşerek, kaşıntı, şiddetli ağrı ve bulunduğu yerde irinleşmelere sebep olmaları gibi etkileri vardır. Pirelere karşı mücadelede insektisitler bir hafta ara ile iki kez uygulanmalıdır. Mücadelede insan ve hayvan meskenlerinde pirenin yumurta ve larvaları toprakta bulunduğundan, eğer meskenler toprak zeminli ise buralara insectisitler püskürtülür, toz şeklinde olanlar ise serpilirler. Hayvanlar üzerinde bulunan pireler için insectisitler solüsyon halinde ise püskürtülür veya banyo edilir. Toz halinde ise hayvanların tüyleri arasına serpilirler. BHC'li ve organik fosforlu ilaçlar tercih edilir. Fenol bileşikleri ve BHC'li ilaçlar kedilerde kullanılmaz. Pire allerjisine karşı kortikosteroidler kullanılır. Organik fosforlulardan dichlorvos, sentetik pyretroidlerden permethrin, organik klorlulardan ise lindan kullanılabilir. Ancak lindan kediler için toksiktir. Pirelerde kontrol amacıyla kedi ve köpeklerde dichlorvos ve diazinon ihtiva eden tasmalar kullanılabilir. Fire enfestasyonlarının kontrolündeki başarı barınaklar ve meskenlerde özellikle yataklarda yapılacak ilaçlamaya ve temizlik işlemlerine bağlıdır. Son yıllarda bu amaçla methoprene aerosol kontrol amacıyla kullanılmaktadır. Bu ilaç pire larvalarının bulunabileceği yataklık, halı, kilim gibi yerlere uygulanır. Larvalar tarafından alınan ilaç etkisini pupa döneminde gösterir. İlaç pupalardan erişkin formların çıkışını önleyerek kontrolü sağlar.Kanatlılarda pire mücadelesinde ise malathion ve carbaryl kullanılabilir. Bu ilaçlar toz ve özellikle Echidnophaga enfestasyonlarında solüsyon şeklinde uygulanır. Korunma için kanatlı bannaklarında altlıklar uzaklaştırılır ve yakılır. Barınaklar (kümesIer) % 1 ronnel solüsyonu ile 14 gün aralıklarla iki defa ilaçlanmalıdır. Diptera Takımı (Sinekler = İkikanatlılar) İnsecta sınıfının en önemli takımlarındandır. Bu takımda bulunan artropodlar insecta sınıfının genel özelliklerini gösterir. Yani vücut caput, thorax ve abdomene ayrılmıştır. Diptera (di= iki, ptera= kanat) ların başlarında bir çift anten, bir çift petek göz, sokucu- emici, parçalayıcı veya yalayıcı -emici ağız organellerine sahiptir. Erginlerinin mesothoraxlarından çıkan bir çift fonksiyonel kanatları vardır. Arkadan çıkan kanatlar rudimenter olup, topuz şeklindedir ve denge organı görevini yaparlar. Sinek uçarken dengeyi sağlar. Bazı türlerinde ise ağız organelleri atrofiye olmuştur. Böylece bunların beslenmeleri söz konusu değildir. Topuz şeklinde olan ve dengeyi sağlayan kanatlara halter adı verilir. Dişiler yumurta, larva veya pupa meydana getirerek çoğalırlar. Yani dipteraların gelişmelerinde tam bir metamorfoz vardır. Sokucu -emici olanlarda hortum (probiscic) iyi gelişmiştir ve çoğunlukla insan ve hayvanlardan kan emerler. Kan emmeleri esnasında oluşturdukları anemi ve sokma yerlerindeki toksik etkiden dolayı kızarıklık ve kaşıntının yanısıra, bazı hastalık etkenlerini (bakteri, virus, protozoon, helminth gibi) canlılar arasında nakletmeleri ile önemlidirler. Bu takımdaki bazı sinekler larvalarından dolayı önem taşırlar. Çünkü bu sineklerin larvaları konaklarının iç ve dış paraziti olabilmektedirler yani myiasis oluşturmaktadırlar. Dipteraların bazı türlerinin larva şekillerinin insan ve hayvanlarda hastalık oluşturmaları olayına. myiasis adı verilir. Myiasise neden olan türlerin erişkin şekillerinin hiçbir paraziter etkisi yoktur ve ömürleri çok kısadır. Diptera takımında insan ve hayvan sağlığı yönünden önemli olan üç alt takım bulunur. Bunlar ; Suborder (Alttakım) : Nematocera Genellikle uzun vücutlu ve narin yapılı sivrisineklerdir. Küçük sinekler olup, erişkinlerin antenleri baş ve thoraxdan daha uzundur. Olgun sineklerin antenleri çok sayıda (8'den fazla) eklemden (segmentden) oluşmuştur. Antenlerin üzerinde "arista" adı verilen üzeri tüylü bir kıl yoktur. Kanatları pullu, kıllı yada parlaktır. Kanat venleri birbiri ile kesişmez. Ayakları çok uzun veya biraz uzuncadır. Dişileri kan emerler. Larvalarının baş kısmı iyi gelişmiştir. Larvaların mandibulaları yatay olarak (horizantal) ısırır. Larva ve pupaları obtektir ve suda yaşarlar. Ayın zamanda hareketlidirler. Su border: Brachycera Nematoceralara göre daha tıknaz yapılı ve kuvvetli yapılıdır. İri sineklerdir. Erişkinlerin antenleri thoraxdan kısa olup, 6'dan daha az segmentlidir. Antenleri birbirinden farklı şekilleri olan segmentlerin birleşmesinden meydana gelmiştir. Antenleri üzerinde (3. segment) bir. arista bulunabilir. Arista antenin ucuna doğru yer alır. Karekteristik damarlanma görülen kanatlarda, kanat venlerinde kesişme görülür. Dişileri kan emerler. Larvalarında baş kapsülü kısmen yada tamamen körelmiştir. Larvaları suda yaşar ve pupalarıda obtek olup, suda yaşarlar. Larvaların mandibulaları vertical (dikey olarak) olarak ısırır. Suborder : Cyclorrhapha Bu alttakımdaki türlerin erginleri tüylü ve çeşitli metalik renklere sahiptirler. Kan emen türlerin dişi ve erkekleri kan emer. Olgun sineklerin antenleri 3 segmentlidir ve aristalıdır. Arista 3. segmentin dorsalinde yer alır. Kurt benzeri olan larvalarında baş yoktur. Bu tip larvalar hareketli olup, magot adını alırlar. Pupa koarktat olup, hareketsizdir. Larva ve pupa dönemleri toprakta geçer. Suborder : Nematocera Bu alttakımda bulunan aileler şunlardır. Familya: Culicidae (Sivrisinekler) Familya: Ceratopogonidae (= Heleidae, Acısinekler) Familya: Simuliidae (= Melusinidae, Siyahsinekler, Körsinekler) Familya: Psychodidae (Tatarcıklar) Culicidae Ailesi (Sivrisinekler) Sivrisinekler yaz geceleri düşünülebilecek her yerde bulunan, özellikle ışıklar söndürüldükten sonra insanlardan kan emen ve vızıltısı ile insanları sürekli rahatsız eden insectlerdir. Sivrisinekler 2 -10 mm uzunluğundadır. Bu ailedeki artropodların vücutları; narin, başları küçük ve küreseldir. Bacakları uzundur. Vücutları genellikle silindirik yapıdadır. Antenleri 14 -15 segmentden meydana gelmiştir ve erkeklerde tüylüdür. Ağız organelleri uzun ve silindirik bir biçimde olup, sokmaya -emmeye elverişlidir. Abdomen uzun yapılı ve thorax karekteristik olarak kama şeklindedir. Kanatları uzun ve dar olup, kondukları zaman abdomen üzerinde düz katlanırlar. Culicidae ailesinde bulunan önemli sivrisinek cinsleri; Anopheles, Aedes, Culex, Mansonia ve Theobaldia' dır. Bunlardan özellikle ilk üç tür önemlidir. Sivrisinekler su kenarlarında çoğunlukla bulunurlar. Durgun sularda, durgun deniz sularında larvaları gelişir. Sivrisineklerin sadece dişileri insan ve hayvanlardan kan emerler. Erkek sivrisineklerde alt ve üst çene (maksilla ve mandibula) kısalmış olduklarından konağın derisini delememekte ve kan emememektedirler. Bunlar bitki artıklarından doku özsuyu emerek beslenirler. Sivrisineklerin biyolojisi Dişi sivrisinekler yumurtalarını su yüzeyine veya suda yüzen bitki üzerlerine bırakırlar. Yumurta bırakma şeklinde her türün kendine has özellikleri vardır. Anopheles ve Aedes cinsindekiler yumurtalarını tek tek bıraktıkları halde, Culex cİnsindekiler yumurtalarını paketler halinde bırakırlar. Bazı türler yumurtalarını temiz akarsulara, bir kısmı durgun su birikntilerine yada ağır akan su yollarına, hatta bazıları da deniz suyuna bırakırlar. Culex cinsindekiler yumurtalarını foseptik sularına da bırakmaktadırlar. Yumurtadan çıkan larvalar 10 -11 halkalı olup, kurtçuk şeklindedirler. Larvalar aktif ve hareketli olup, bükülüp açılma şeklinde bulundukları su içinde hareket ederler. Larvalar türlere göre değişmek üzere vücut halkalarında hava borusu taşırlar. Bu hava deliklerini su yüzeyine doğru uzatırlar. Anopheles'lerin larvaları vücutlarının son 3 -4 halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine parelel dururlar. Culex ve Aedes larvaları ise vücutlarının son halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine dikey dururlar. Larvalar 4 defa gömlek değiştirdikten sonra pupa safhasına girerler. Pupa evresinde baş ve thorax yuvarlak kokon benzeri bir yapının içinde bulunurken abdomen serbest vaziyettedir. Bu dönemde daha az aktiftirler. Pupalardan çıkan erişkin sinekler, beslenmek amacı ile çoğaldıkları yerden birkaç kilometre ve hatta rüzgar ve değişik vasıtalarla çok daha uzağa gidebilirler. Erişkin sivrisineklerin kondukları yüzeye duruş şekilleride farklıdır. Anopheles'ler kondukları yüzeye eğik durdukları halde, Aedes ve Culex'ler paralel dururlar. Yaşam süreleri sıcak bölgelerde 6 aydır. Türkiye'de ise bu süre 1 -2 ay kadardır. Culicidae'ler bitki özsularıyla ve şekerli suyla beslenebilirler. Fakat dişiler yumurtlayabilmek için mutlaka bir miktar kan emmek zorundadırlar. Dişi bireyler geceleyin ışığa doğru ve konakçısının vücut ısısına doğru yönelirler. Gündüzleri ise karanlık ve kuytu köşelerde saklanırlar. Sivrisineklerin (Culicidae) Önemi Konaklarını huzursuz ederler. Kan emilen yerde çok rahatsız edici kaşıntıların meydana gelmesine neden olurlar. Çok sayıda oldukları zaman kan emerek soyucu -sömürücü etkilerini gösterirler. Sivrisineklerin esas önemleri sıcak ülkelere doğru gittikçe sıklığı artan, birçok hastalığın bulaşmasına aracılık etmeleridir. İnsan, maymun ve kanatlılar arasında sıtma etkeni olan plasmodium'ların biyolojik vektörüdürler. Dişi Anopheles türleri insanlarda sıtmaya neden olan plasmodium türlerine, Anopheles, Culex ve Aedes türleri ise kanatlılarda sıtmaya neden olan plasmodium türlerine vektörlük yaparlar. Ayrıca sivrisineklerden bazı türler nematodlardan Wuchereria bancraıli (insanlarda fil hastalığı etkeni) ve köpeklerde Dirofilaria immitis larvalarını naklederek, bu helmintIere arakonaklık yaparlar. Bakterilerden Borrelia anserina (Kanatlı spiroketası) 'yı Aedes cinsindeki türler bulaştırır. Yine Mansonia türleri Brugia malayi'nin naklini sağlarlar. Sivrisinekler sarı humma virusuna, doğu ve batı at encephalitislerine ve Japon B encephalitisine vektörlük yapar. Ayrıca kanatlı çiçeğine mekanik taşıyıcılık yaparlar. Tavşan myxomatosis'ine de vektörlük yaparlar. Sivrisineklere karşı mücadele Sivrisineklere karşı mücadele larvalara ve erişkinlere karşı olmak üzere iki şekilde yapılır. Larvalara karşı mücadelenin başında bunların yaşadıkları yerlerin ortamını bozmak gelir. Bunun için taşkınları önlemek, kanalizasyon sistemlerini iyi yapmak ve bataklıkları kurutmak gerekir. Bataklıklar ve durgun sular drenajla kurutulmaya çalışılır. Bunun mümkün olmadığı durumlarda ise bu bölgelere insectisitler sürekli olarak yada planlı olarak belirli periyodlarla kullanılır. Bu amaçla en çok kullanılan ilaçlar organik klorlu ve organik fosforlu insectisitlerdir. Taşkınlara bu ilaçlar püskürtülerek uygulanır. Ayrıca larvalara karşı mücadelede biyolojik savaş metodları da kullanılmaktadır. Bunun için Gambusia cinsi balık türleri, yetiştirilmelidir. Bu balıklar sinek larvalarını yiyerek kontrolü sağlarlar. Bu amaçla ayrıca larvalar için patojen olan ve larvalarda salgınlar oluşturan çeşitli bakteri, protozoon ve helmintler de uygulanabilir.Sivrisineklerin erişkinlerine karşı ise insectisitler kullanılmalıdır. Bunun için en uygunları karbamatlı ve organik fosforlu insektisitlerdir. Ayrıca özellikle Anophellere karşı kalıcı etkili ilaçların kullanılması ile iyi bir kontrol sağlanmaktadır. Ancak çevreye etkilerinden dolayi bu tip ilaçlar pek tercih edilmemektedir. Ayrıca mekanik önlemler ve sinekleri uzaklaştırıcı tedbirlerde alınır. Familya: Ceratopogonidae (= Heleidae, Acısinekler) Bu ailedeki türler sivrisineklerden daha küçük olup, 1 -3 mm boyundadırlar. Antenleri 13 -15 segmentlidir. Dişilerde çok seyrek ve kısa kıllıdır. Erkeklerde ise çok kıllı ve uzundurlar. Ağız organelleri sokucu -emici tiptedir. Hortumları kısadır. Thoraxın her üç parçası kaynaşmıştır. Thorax başın üst tarafına doğru bir kamburlaşma yapar. Kanatları geniş, uçları yuvarlak ve üzerlerinde duman renginde benekler vardır. Kanatlarında pulların olmasıyla sivrisineklerden, daha uzun antenlere sahip olmaları ile de Simulium'lardan ayrılırlar. En tipik özellikleri benekli kanatlara sahip olmalarıdır. Ceratopogonidae ailesindeki türler konaklarını soktuklarında büyük acı verirler. Bunun içinde acısinekler adını alırlar. Dişileri kan emer, erkekleri ise bitki özsuyu ile beslenirler. Bu ailede bulunan ve hekimlik açısından önemli olan Cilicoides (acısinek)'dir. Culicoides'lerin kanatları tüylüdür. Bu cinse bağlı önemli tür ise Culicoides robertsi' dir. Bu türe kumsinekleri adı da verilir. Bu sinekler bataklık bölgelerde ürerler. Dişiler döllenmiş yumurtalarını sığ akarsuların kıyılarına, su içindeki bitkilerin ve taşların üzerine bırakırlar. Dişiler yaşamları boyunca birkaç kez yumurta bırakırlar. Yumurtadan çıkan kurtçuk benzeri larvalar hem karada hemde suda yaşayabilirler. Daha sonra pupa dönemini geçirerek erişkin sinekler meydana gelir. Erişkinler yumurtlamadan önce kan emerler. Sabah vakitleri ve ikindi vaktinde daha çok saldırgan olurlar. Ayrıca bulutlu ve kapalı havalarda çok aktiftirler. Erişkinleri yazın Mayıs ayından Eylül ayına kadar görülürler. Yaz aylarında gelişme süresi 1 -2 aydır. Kışı ise larva döneminde çamura gömülü olarak geçirirler. Veteriner Hekimlik yönünden önemli olan Culicoides'ler sivrisineklerden daha küçük yapılı oldukları için sivrisinekler için yapılan tellerden kolaylıkla geçebilirler. Culicoides 'ler toplu halde uçuşurlar. İnsanlardan ve hayvanlardan kan emerler. Çok sayıda olduklarında hayvanları ürkütüp kaçıştırırlar. Konaklarından kan emerek soyucu -sömürücü etki gösterirler ve fazla sayıda olduklarında anemiye yol açarlar. Ayrıca konaklarını sokmaları kuvvetli tepki oluşturur. Sokma yerinde kaşıntı, ödem ve şiddetli acıya neden olabilirler. Bazen 2 cm büyüklüğünde, seröz bir sıvı dolmuş kabarcıklar meydana gelir. Daha çok orman ve açık arazide çalışanlara saldırırlar. Culicoides türlerinin en önemli

http://www.biyologlar.com/insecta-hexapoda-entoma-bocekler-sinifi

Evrimsel Biyoloji Nedir

...Staphylococcus aureus,örnek olarak alınırsa,ameliyatlı hastalarda bir çok enfeksiyona neden olan bir bakteri olarak şimdi hemen hemen tüm penisilin,ampisilin ve benzer ilaçlara karşı dirençlidir. Metisilin bir alternatif olarak geliştirilmiş ,bir kaç yıl işe yaramış,ancak birçok S.auereus toplumu metisilin'e direnç kazanmış,daha sonra da sefalosporinler,karbapenemler,eritromisin,tetrasiklin,streptomisin,sulfonamitler ve florokinonlar bu sonla karşılaşmışlardır.Hatta başka bir yeni ilaç olan vankomisin başlangıçta bu sorunu çözmüş gibi görünmesine karşın onun da giderek daha etkisizleştiği görülmektedri.Bel soğukluğu (gonorrhea) hastalığına neden olan bakteri olan Neisseria gonorrhea'nın ilaca dirençli soylarının sıklığı giderek artarken ,New York kentinde 1995 yılı itibariyle bu hastalık için tedavi gören vakaların %40 'ından fazlasında penisilin,tetrasiklin ya da her ikisine de direnç gözlendi . Zatürre (pnömoni)bakterisinin pek çok soyu penisiline çok dirençli ve kolera bakterisinin bazı soyları antibiyotiklerin bir çok çeşidine karşı direnç gösterir.Vereme neden olan bakterilerin pek çok soyu ile sıtmaya neden olan canlılar giderek artan biçimde var olan tüm ilaçlara direnç geliştirmişlerdir.Bir kişiye AIDS'e neden olan HIV,insan bağışıklık yetmezlik virüsü,bulaşırsa ilaç tedavisi başlandıktan 6-12 sonraki süre içinde ilaca dirençli virüs belirtileri ortaya çıkmaya başlar. Antibiyotik kullanımı arttıkça,bu antibiyotiklere dirençli bakteriler de artar,böylece kazanılanlar aynı hızla yitirilir. Bu neden oluyor ? İlaçlar,bakteri genlerinde ilaca - dirençli mutasyonlara neden olur mu ? Mutasyonlar,ilaçla karşılaşmadan da ortaya çıkar mı ? ilaçla karşılaşmamış bakteri toplumlarında da mevcut mudur ?Bir ilaca dirençliliğe kaç mutasyon yol açar ? Hangi sıklıkla bunlar ortaya çıkar ? Mutasyonlar bir bakteriden ötekine yayılır mı ? Bakteri ya da virüslerin aynı türü arasında mı yayılır,yoksa farklı türler arasında geçiş olur mu ? Canlının toplum büyümesi böyle mutasyonlarla nasıl etkilenir ? Direncin evrimi ilaçların düşük dozları kullanılarak önlenebilir mi ? Ya da yüksek dozlar ile ? Farklı ilaçların kombinasyonu ile ?Bir birey ,ilaca dirençli canlıların enfeksiyonundan doktorun reçetesini aynen uygulayarak sakınabilir mi? Ya da diğer her birey diğerleri kadar bilinçli olduğunda mı bu kounma söz konusu olabilir ? ...*

http://www.biyologlar.com/evrimsel-biyoloji-nedir

Bakterilerde Köken ve erken evrim

Modern bakterilerin ataları, yaklaşık 4 milyar yıl önce, dünyada gelişen ilk yaşam biçimi olan tek hücreli mikroorganizmalardı. Yaklaşık 3 milyar yıl boyunca tüm canlılar mikroskopiktiler, bakteri ve arkeler yaşamın başlıca biçimleriydi. Bakteri fosilleri, örneğin stromatolitler, mevcut olmakla beraber, bunların kendine has morfolojilerinin olmaması, bunlar kullanılarak bakteri evriminin anlaşılmasına veya belli bakteri türlerinini kökeninin belirlenmesini engellemektedir. Ancak gen dizileri bakteri filogenetiğinin inşası için kullanılabilir, bu çalışmalar bakterilerin arke/ökaryot soyundan ayrılmış evrimsel bir dal olduğunu göstermiştir. Bakteri ve arkelerin en yakın zamanlı ortak atası muhtemelen yaklaşık 2,5-3,2 milyar yıl önce yaşamış bir hipertemofil'di. Bakteriler, evrimdeki ikinci büyük ayrışmada, ökaryotların arkelerden oluşmasında da yer almışlardır. Bunda, eski bakteriler, ökaryotların ataları ile endosimbiyotik bir ilişki kurmuşlardır. Bu süreçte, proto-ökaryotik hücreler, alfa-proteobakteriyel hücreleri içlerine alıp mitokondri veya hidojenozomları oluşturdular. Bu organeller günümüz ökaryotlarının tümünde hala bulunmaktadır ("mitokondrisiz" protozoalarda dahi aslında son derece küçülmüş olarak mevcutturlar). Daha sonraki bir dönemde, farklı bir olay sonucu, bazı mitokondrili ökaryotların, siyanobakteri-benzeri canlıları içlerine alması sonucunda, bitki ve yosunlardaki kloroplastlar oluştu. Hatta bazı yosun gruplarında bu olayı izleyen başka içe almalar meydana gelmiş, bazı heterotrofik ökaryotik konak hücrelerin, ökaryotik bir alg hücresini içine alması sonucunda "ikinci kuşak" bir plastid oluşmuştur.

http://www.biyologlar.com/bakterilerde-koken-ve-erken-evrim

Büyük Beyaz Köpekbalığı - Carcharodon carharias

Büyük Beyaz Köpekbalığı Nedir? Büyük beyaz köpekbalığı,(Carcharodon carharias),genellikle soğuk kıyı sularında yaşayan,çok büyük ve hızlı yüzücü,yırtıcı bir balık türüdür.Hakkındaki ilk bilimsel araştırma,1554 yılında çıkardığı bir kitaptaki tanım ve çizimleriyle Rönesans dönemi araştırmacılarından Guillaume Rondelet’e aittir.1785’te Carolus Linnaeus çıkardığı katoloğunda (Systema Naturae),bu türü bilimsel olarak Carolus Linnaeus olarak isimlendirmiştir.Yüzyıllar boyu bu yanlış anlaşılmış balık ta Afrika’da yaşayan diğer yırtıcı kediler gibi,birazda popüler medya ve yanlış bilgilendirilen insanlar yardımıyla,bir korku kaynağı oluşturmuştur.Fakat biz burada bu köpekbalığının dünyasını inceleyip,denizler aleminde hakettiği rolü anlamaya çalışacağız. 2- İsimler ve Sınıflandırma Linnaeus’un sınıflandırma sistemi bütün türleri isim üzerinden adlandırır,genel ve spesifik olarak.Linnaeus’un kitabının onuncu baskısı,bilimsel isimler hakkında en eski yayın olarak seçilmiştir,dolayısıyla Squalus carharias büyük beyaz köpekbalığının kabul edilen en eski ismidir.Büyük beyaz köpekbalığı değişik bir genel isim altında olmalıydı,çünkü Linnaeus’tan sonraki bilim adamları farkattiler ki “Squalus” daha birçok değişik köpekbalığı temsil ediyordu.1833’te Sir Andrew Smith “Carcharodon” isminin genel (cenerik) isim olarak verilmesini önerdi,fakat Linnaeus’un verdiği spesifik ismin Sir Andrew’un verdiği genel isimle birlikte kabul edilmesi ancak 40 yıl sonra olabild Büyük beyaz köpekbalığı Lamnidae uskumru köpekbalıkları familyası grubunda yer alır.Bu familyada iki mako ve iki de porbeagle köpekbalığı türü olmak üzere dört tür daha yer alır.Bunların sadece biri shortfin mako,Güney Afrika açıklarında yaygındır.Büyük beyaz köpekbalığı için kullanılan lokal (yerel) isimler dil gruplarına göre değişiklik gösterir.Fakat ingilizce konuşulan ülkelerde “white shark (beyaz köpekbalığı) ismi yaygın olarak kullanılır.Daha az yaygın olarak ta daha eski bir kelime olan “man-eater”(insan yiyici) kelimesi kullanılır.Avustralya’da “white pointer”(beyaz değnek)kelimesi yaygındır.Daha az yaygın olarak ta “white death”(beyaz ölüm).Güney Afrika’da da bu terimler kullanılır,fakat “blue pointer”(mavi değnek) bazı büyük beyazların arkası mavimsi renkte olduğu için veya Britanya ordusundaki askerlere verilen eski bir takma isim olan “tommy” kelimesi de kullanılır.Afrikalıların kullandığı (witdoodshaai)kelimesi daha az kullanılan ingilizce isimlerin birinden gelmiştir. En çok aşina olduğumuz köpekbalıkları büyük beyaz köpekbalığı gibi,torpido benzeri ve diğer köpekbalıkları ile karşılaştırıldığında oldukça kalın,bir gövdeye sahiptir.Büyük beyaz köpekbalığının burnu kısa ve koniseldir.Gözler yuvarlak ve zifiri siyahtır.Dişler özellikle üst çenedekiler küçük testere dizilimsi keskin kenarlardan oluşan oldukça üçgensel bir yapıya sahiptir.İki metreden küçük olan bazı gençler(yetişkin olmayanlar) düz diş yüzeylerine(kenarlarına) sahip olabilirler.Beş solungaç yarığı(yırtmacı) uzundur ve hepsi göğüs yüzgeçlerinin önünde yer alır.Yetişkinlerdeki anal ve ikinci sırt yüzgeçleri neredeyse dikdörtgensel bir yapıya sahiptir ve çok küçüktür.Kuyruk yüzgeci hilal biçimindedir(üst ve alt uçlar yaklaşık olarak aynı büyüklüktedir).Kabaca göze ve pelvis yüzgecine doğru uzanan bir çizgi üzerinde yer alan vücudun üst kısmı siyahtan açık griye değişir.Bunun altında,gövde beyazdır.Taze yakalanmış olanları genellikle zamanla suyun dışında(havada)solan pirinç kaplama renginde bir parlaklık gösterirler.Göğüs yüzgecinin vücuda bağlandığı yerde genellikle siyah bir nokta mevcuttur. Shortfin mako köpekbalığı görünüş olarak büyük beyaz köpekbalığına benzer.Gövde üzerinde ve yanlardaki parlak mavi renkle diğerlerinden farklılık gösterir.(Gövde üzerinde ve yanlardaki parlak mavi ona ait belirgin bir özelliktir).Daha büyük gözleri vardır.Dişleri daha dar ve düz yüzeylidir.Büyüdüğünde 4 metreye kadar ul Şekil 2:177cm olgunlaşmış dişi(Kwazulu-Natal) WHITE SHARK Sistematik Order:Lamniformes Family:Laminidae Genus:Carcharodon Species:carharias 3-Yetişme Ortamı Büyük beyaz köpekbalığı en çok kıta Avrupası sularında görülen ılıman denizlerin yakın kıyı balığıdır.Tropikal kuşaktan tamamen kaçınmak(özellikle büyük olanları),fakat özellikle Orta Amerika,tropikal Güney Amerika ve merkezi Pasifik adaları gibi bazı bölgelerde çok sık ta görülmez.Issız sulardan gelen birçok rapor,bu türün geniş bir alana yayılabilme ve hatta okyanus havzalarını karşıdan karşıya geçebilme yeteneğinde olduğunu gösterir.Büyük beyaz köpekbalıkları çoğunlukla yakın yüzey(üst) sularda bulunurlar,özellikle avlanırken,fakat istisnai bir olayda bir büyük beyaz 1280 metre derinlikte bir oltaya takılmıştır. Büyük beyaz köpekbalığı açısından zengin olarak bilinen bölgeler, muhtemelen bu bölgelerde insanla8spor balıkçıları,denize girenler,akuba dalgıçları,sörfçüler gibi)daha fazla bir etkileşimi yansıtır.Bu bölgeler Kaliforniya,ABD’nin Orta-Atlantik Federe Devletleri,Güney Afrika ve Doğu Avustralya,Yeni Zelanda ve bazı Pasifik adaları gibi yerlerdir. 4-Beyaz Köpekbalığı Ekolojisi ve Korunması Yetenekli olduğu kadar etkileyici de olan beyaz köpekbalığı(diğer deniz canlılarından ayrı)bir ortamda kalamaz.O, karmaşık kuralları olan karşılıklı bir dayanışmanın hüküm sürdüğü deniz canlılarının gerekli bir üyesidir(parçasıdır). Kıyı şeridindeki bütün ekosistemler,güneşin ışık enerjisini yakalayıp,diğer canlıların kullanabileceği bir formda paketleyen fotosentetik organizmalarla başlar.Bu bitkiler çok geniş bir otçul tarafından yenir(bu bitkiler çok geniş bir otçul hayvan kitlesini besler).Bu otçul hayvanlar etçil hayvanlar tarafından yenir(bu otçul hayvanlar etçil hayvanları besler).Bu etçil hayvanlarda daha büyük etçil hayvanlara yem olur.Bu sayede,enerji,besin zincirinin daha uzak noktalarında yer alan,çok daha büyük hayvanlara iletilir(geçer). Enerji,bir beslenme seviyesinden,bir sonraki beslenme seviyesine geçerken,yaklaşık %90’ını kaybeder.Bu nedenle ,her beslenme seviyesi,bir alttaki beslenme seviyesinin ancak 1/10(onda biri)kadar canlı madde içerir.(Bir seviyedeki bütün canlı varlıkların toplam madde miktarı,bir alttaki seviyeye göre 10 kat daha azdır).En yukarıdaki beslenme seviyesinde büyük beyaz köpekbalığı gibi en zirvedeki yırtıcılar yer alır.sayısal olarak çok nadir olmalarına rağmen,bu en zirvedeki yırtıcılar,bütün ekosistemin üzerinde bulunan bir başlıktır.Nerdeyse okyanusta olup biten her şey büyük beyaz köpekbalığını beslemek içindir.Oldukça yakın geçmişe kadar,büyük beyaz köpekbalığının ne kadar yediği hakkında çok az fikir sahibi olduk.Son zamanlarda Kuzey Atlantik’in batısında yapılmış çok önemli bir deney,büyük beyaz köpekbalığının,keskin ısı farklarındaki ortamlarda yüzüşünden kaslarındaki ısı değişimini inceledi.Bu ölçümler temel alınarak yapılan ılımlı bir tahmine göre,45 kilogram balina yağı yemiş yaklaşık 5 metrelik bir büyük beyaz köpekbalığı,1.5 ay başka hiç bir şey yemeye ihtiyacı olmaksızın yaşayabilir.Ortalama bir kütle ve yağ içeriğine sahip olan bir Kuzey deniz Fili yavrusu temel alındığında,bir yavrunun bir büyük beyaz köpekbalığına 3 ay yeteceği tahmin edilmektedir. Sonuç olarak gözüküyor ki,büyük beyaz köpekbalığı çok az bir sıklıkta bu gibi deniz memelileri ile beslenme ihtiyacındadır ve muhtemelen deniz Fillerinin beyaz köpekbalıklarınca ölümü hastalıklar,boğulmalar ve kendi aralarındaki kavgalar gibi sebeplerdeki ölüm oranı oldukça düşüktür. Zirvede bir yırtıcı olmasına rağmen,beyaz köpekbalığının da korktuğu yırtıcılar mevcuttur.1997 yılında Farallon adası açıklarında,bir öldürülen balinanın(Orcinus orca) 10-12 foot(yaklaşık 3-3.5 metre)uzunluğundaki bir beyaz köpekbalığını öldürüp yemesi gözlenmiş ve filme alınmıştır.Bu saldırıdaki öldürülen balina belki kendi yavrularını koruyordu,belki de bu atak tamamen kendisiyle av konusunda rekabet halinde olan bir rakibi devre dışı bırakma vakası idi.Bu gibi aşırı derecede ilgi çeken bazı olayların olmasına rağmen,büyük beyaz köpekbalığını yiyen doğal yırtıcılar nadirdir.Bu güne kadar büyük beyazların en göze çarpan öldürücüleri insanlar olmuştur.Bu türün eti sıkı(sertçe),beyaz ve lezzetlidir.Belki de bundan daha önemlisi,büyük beyazın çenesi ve dişleri nadir bulunan bir ganimet ve hatıra eşyası olarak dünya çapında aşırı derecede gözdedir(değerlidir).Kaliforniya açıklarında her yıl 10-20 büyük beyaz öldürülür.Yakın geçmişte bu rakama erişmedeki pay,büyük ölçüde spor için balık avlayan Kaliforniyalılara ait olmuş çene ve dişleri tutup geri kalanı atmışlardır.Bu günlerde ise,büyük beyazların büyük çoğunluğu ticari balıkçılar tarafından yanlışlıkla tutulmaktadır.Bunların bir kısmı bilimsel araştırma kurumlarına bağışlanmakta,diğerleri de genellikle internet üzerinden açık arttırmayla satılmaktadır.1993’ün ekiminde,Kaliforniya büyük beyaz köpekbalığını korunması gereken canlı türlerine dahil eden ilk Amerikan federe devleti olmuştur.1994’ün ilk gününden itibaren bütün Amerika Birleşik Devletleri sularında büyük beyaz köpekbalığının ticari ve spor amaçlı avlanması yasaklanmıştır.Büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir gemi Amerika Birleşik Devletleri suları dışında yakalanmış büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir geminin,Kaliforniya limanına yanaşmasına izin verilmez.İzin verilen yegane yakalamalar,sınırlı sayıdaki ticari balıkların yanlışlıkla yakaladıkları ile bilimsel araştırma ve eğitim amaçlı yakalamalardır. En azından Kaliforniya suları sınırları içinde,büyük beyaz köpekbalığı kanun tarafından korunmaktadır.Fakat Pasifik kıyı şeridi boyunca uzanan diğer sularda,bu muhteşem köpekbalığı tehlikeleri göze almak zorundadır.Büyük beyaz köpekbalığının aşırı derecede sınırlı olan üreme kabiliyeti göz önüne alındığında,bir yok edilme oranı bile,bu türün soyunun tamamen tükenmesi sonucunu doğurması yüksek derecede olasıdır. Kişi,büyük beyaz köpekbalığını korumak için,çok sağlam delillere dayanan bütün tavrını oluşturabilir.Büyük beyaz köpekbalığının deniz ekosistemindeki rolünü tam olarak anlamamamıza rağmen,onun çevresel önemini örnek olarak verebiliriz.Bu hayvanı ahlaksal yükümlülüklerimizden dolayı korumamız gerektiğinden bahsedebiliriz,fakat daima ahlaksal aciliyetler ve öncelikler konusunda bir tartışma söz konusu olacaktır.Muhtemelen okuyucular,büyük beyaz köpekbalığının korunması için ileri sürülen aşağıdaki sade fikri en doyurucu bulacaklardır.Büyük beyaz köpekbalığı,dünyamıza zenginlik,ilgi çekici bir farklılık,efsaneler ve gizemler katan nadir bir yabani hayvandır. 5- Boyut ve Yaş Köpekbalıklarının yaşlanması basit bir proses değildir.Bunun ana sebepleri,büyümenin beslenmeyle olan ilgisi,coğrafi alanı ve bazı türlerdeki erkek ve dişi büyüme oranının,ki yaşla yavaşlar,değişiklik göstermesidir.Araştırmacılar,ağaç tabakalarında olduğu gibi,omurga kemiğindeki kireçlenme tabakasının büyük beyaz köpekbalığının yaşını yansıttığını gösterdiler.Bu temelde Doğu Pasifik büyük beyaz köpekbalıkları 13-14 yaşında 16 ft (4.75m)’ye ulaşırlarken,Kuzey Atlantik köpekbalıklarının aynı uzunluğa 20 yaşlarında ulaşabildiğini bulmuştur. Yeni doğmuş büyük beyaz köpekbalıklarının boyu 109-129cm civarındadır.Büyüklük ve cinsel olgunluk balıktan balığa değişkenlik gösterir.Erkekler yaklaşık 9 yaşlarında,3.5-4.5m boyutlarında olgunlaşır.Dişilerse 12-14 yaşlarında,4.5-6m civarlarındayken olgunlaşırlar.Görülmüş olan en büyüklerin (5m üzerinde)çoğu dişi olmasına rağmen,bugün hala erkeklerin dişilerden daha büyük bir maksimum boyuta ulaşıp ulaşmadığı bilinmiyor.Geçtiğimiz yıllarda birçok doğru olmayan maksimum boyutlar rapor edilmiştir,bir rapordaki on yıllar boyunca tartışılmış olan 36 feet(11m)’lik bir boyutun,aslında 16 feet olduğu fakat yazım hatasına maruz kaldığı düşünülmektedir.Son yıllarda yakalanan en büyük köpekbalığı ölçülmemiştir,fakat araştırmacıların biri Malta diğeri de South Avustralya’dan olan büyük beyaz köpekbalıklarının 7m’den büyük olduğu hakkında çok az şüpheleri vardır.Bu köpekbalıkları 30 yaşına yaklaşıyorlardı.Yakın zamanlarda Gans Bay’da yakalanmış ve Cape Town’daki shark Research Centre’de incelenmiş 6m’lik bir dişinin,bir omurga bandının bir yıla eşit olduğu varsayımıyla,yaklaşık 22 yaşında olduğu tahmin edilmiştir. 6-Üreme ve gelişim Büyük beyaz köpekbalığında döllenme dahilidir ve dişiler yavruları canlı olarak dünyaya getirirler(onlar ovovovipar’dır).Kur yapma davranışları “tam olarak”bilinmez,fakat bilim adamları yaralı bireylerin,erkek erkeğe olan saldırganlığın veya çiftleşmeden önceki erkeklerin dişileri hafifçe ısırmalarının sonucu olduğuna inanırlar.Embriyolar,kendi yumurtalarının bütün sarısını tükettikten sonra,ana içindeki yumurtadan hatta diğer embriyolarla beslenmeye başlar.Büyük beyaz köpekbalığının akrabalarında da görülen bu olayı “intrauterine cannibalism”(döl yatağı yamyamlığı) olarak adlandırılır.Yavrulu dişiler belgelenmemiştir,fakat diğer köpekbalıklarında olduğu gibi,büyük dişiler küçüklerden daha fazla yavru taşırlar.Bir Avustralya dişisi 11 yavruyla bulunmuştur.Gebelik süresinin kesin olarak bilinmemesine rağmen,büyük boyutta olan dişilerde yaklaşık 1 yıl veya daha fazla olduğu tahmin edilmektedir.Cape Town’daki Shark Research Centre(Köpekbalığı Araştırma Merkezi)’nde çalışan Dr. Leonardo Compago çok sayıda değişken ve bilinmeyeni de göz önünde bulundurarak,ortalama bir dişinin üreme potansiyelini izlemiştir.15 yaş ve 5 metrede olgunlaşan 30-31 yaşlarında 7.2m’lik maksimum boyuta ulaşan doğumdan sonraki bir yıllık dinlenme süresiyle birlikte her 3 yılda ortalama olarak 9 yavru doğuran ortalama bir dişinin,ölümünden önceki seneye kadar 45 yavru dünyaya getireceği tahmin edilmiştir.Bununla beraber,doğal ölümler,nispi sağlık ve çiftleşme mevcudiyeti gibi nedenlerle,dişilerin çoğu,özellikle insan etkisinin çok fazla olduğu bölgelerde,muhtemelen daha az yavru dünyaya getiriler. Bazı araştırmacılar büyük beyaz köpekbalıklarının,ılıman denizlerin kıyı sularında,kendi kendini soyutlamış yavrusunu beslemeyen dişiler tarafından dünyaya getirildiğine ve daha sonra büyüdükçe daha geniş sıcaklık ortamlarına adapte olduklarına inanırlar.Bu da büyük köpekbalıklarının açık okyanus alanlarına doğru açılmayı göze alabilmelerini sağlayan ve tropikal orta-okyanus adalarında görülmelerini açıklayan bir teoridir.Bilim adamları genç büyük beyaz köpekbalıklarının (iki yaş veya daha küçük) bilinen dağılımları ve büyüme tahminleri sonuçlarından yola çıkarak,su sıcaklıklarına karşı toleranslarının gelişimine kadar,coğrafi olarak dar sıcaklık değişimli alanların içine sınırlandırabileceklerine dikkat çekmişlerdir. 7-Yiyecek ve Beslenme Alışkanlıkları Büyükbeyaz köpekbalığının zirvede bir yırtıcı olduğu,denize çıkışı olmayan bölgelerde yaşayan insanlar arasında bile bilinir. Bu yaratığın sırf görünüşü , gücü ve korku veren çeneleri böyle bir gözlemi gerekli kılar. Fakat sürpriz bir şekilde, beyaz köpekbalıkları aynı zamanda leş ve çöp süpürücülerdir (yiyicileridir). Araştırmacılar şu aşağıdaki şeyleri mide içeriklerinde bulmuş ve kayıtlara geçirmişlerdir:Sardalya’dan mersin balığına kadar her çeşit ve büyüklükteki kemikli balıklar, diğer daha büyük köpekbalığı dahil kıkırdaklı balıklar, deniz kaplumbağaları, sümsük kuşu martı ve penguenler dahil çeşitli kuşlar, yunus, domuzbalığı, fok, ölü balina gibi deniz memelileri,abalon, diğer deniz salyangozları, kalamar,supya, denizyıldızı,yengeç dahil çeşitli omurgasızlar. Fok kolonilerinin bulunduğu alanlarda,3 m. ve daha büyük boyutlardaki büyük beyaz köpekbalıkları,çoğunlukla balıktan oluşan diyetlerini gözle görülür bir şekilde foklara doğru kaydırırlar.Jackass penguins zaman zaman ısırılmalarına rağmen çok nadiren büyük beyaz köpekbalığının midesinde görülmüştür.Özellikle önemli beslenme alanları Bird Island(Kuş Adası),Doğu Cape,Pyer ve Robben Adaları,Batı Cape gibi yerlerdir.Bununla beraber,büyük beyaz köpekbalığı,fokların bulunmadığı veya çok nadir olduğu tropikal alanlarda,kemikli balıkları diğer köpekbalıkları ve deniz memelileriyle çok rahat bir şekilde hayatta kalma yeteneğine haizdir.Şu noktaya dikkat etmekte yarar vardır ki,uzmanlaşmış bir yırtıcı,bir alanda bulabildiği bir tercihi başka bir alanda bulamayabilir,dolayısıyla büyük köpekbalıkları deniz içinde yüzen neredeyse her şeyi pusuya düşürme veya yakalama yeteneğine sahiptir. Büyük canlı fokların büyük beyaz köpekbalıklarının en zor avları arasında olduğu düşünülmektedir.Bu foklar,onları tamamen suyun dışına fırlatabilen, “ısır”ve “bırak” taktiğiyle,genellikle yüksek hızla ani bir hamleyle öldürürler.Bu eylem bilim adamlarınca savunarak öldürme olarak nitelendirilir,bir başka deyişle,köpekbalıkları bu sayede kendilerini,korku ve heyecan içindeki yaralı bir hayvanın diş ve pençelerinden korurlar.Güney Afrika açıklarında,penguenlerin bu şekilde defalarca havaya fırlatıldıkları görülmüştür.Bu davranış şekli,gerçek bir beslenme çeşidinin bir parçası olmasından çok,avıyla oynama veya avını test etme amacına yönelik olabilir.Yaralı,ölmek üzere olan av,köpekbalığı tarafından yeterince zayıf hale düşene kadar kuşatma altında tutulur ve en sonunda tüketilir. 8- Yaşayan(hala var olan)Fosil Akrabalar Yaşayan büyük beyaz köpekbalığı Carcharodon cinsi içinde sınıflandırılan beş türden biridir.Diğer dördünün nesli tükenmiştir.Şu andaki araştırmacılar inanırlar ki bugünkü büyük beyaz köpekbalığının en eski atası kabul edilen bir tür,Carcharodon landanensis,Paleocene çağında (65-57 milyon yıl önce) ortaya çıkmış ve yaklaşık aynı çağlarda bu kökten iki değişik grup(sülale,soy,nesil)oluşmuştur.Bugünkü yaşayn büyük beyazın da içinde bulunduğu birinci grup,göreceli olarak daha küçük olan C. landanensis(2-3m uzunluğundadır)ile bağlantısı (akrabalığı)olan orta dereceli fosil türlerine sahiptir.Ayrı bir cins olarak kabul edilen ikinci grup,Carcharocles,bazı araştırmacılara göre,izleri yaklaşık 50 milyon yıl öncelerine kadar gelen devasa akrabaları da kapsar.Bu kocaman köpek balıklarının evrimi vücut büyüklüğünün artmasıyla karakterize edilmiştir ve oldukça yakın zamanlara kadar yaşamış olabilir. Modern büyük beyaz köpekbalığı yaklaşık 20 milyon yıl önce Miyosen çağlarda evrim geçirmiştir(evrimleşerek bugünkü halini almıştır).Aynı zamanlarda,ikinci paralel gruptan (sülaleden) gelen (evrimleşmiş olan)Carcharodon megalodon ve C.angustidens isimlerini verdiğimiz çok daha büyük diğer iki kardeş tür dünya denizlerinde varlığını sürdürüyordu.Peru’da C. megalodon’a ait 17cm uzunluğunda dişler bulunmuştur.Bu bize gösterir ki,bu tür 13m veya daha büyük bir uzunluğa ve yaklaşık 20 ton ağırlığa erişmiştir.Bu dev yırtıcı,en azından büyük boyutta olanları muhtemelen çoğunlukla balinalarla beslenmiştir.Bazı araştırmacılar,balinaların evrimleşip,kutup sularında bol miktarda bulunan planktonlarla beslenmek için bu sulara doğru göç etme eğilimi göstermesinin bu köpekbalığı türünün neslinin tükenmesine neden olduğunu varsayalar.Bu dev köpekbalıklarının değişik sıcaklıklara adapte olamaması ve buzlu sulara göç eden balinaları takip edememesi,ana yiyecek kaynağını yılın büyük bir bölümü için kaybetmesi sonucunu doğurmuştur. Güney Afrika’da Carcharodon’un üç türünün fosilleşmiş dişleri bulunmuştur.Uloa yakınlarındaki KwaZulu-Natal’daki Miyosen tortusundan anlaşılmıştır ki modern büyük beyaz köpekbalığı C.angustidens’e ait olan fosil dişler 15 milyon yıllıktır.Daha büyük C.angustidens’lerin 15cm’yi bulan dişleri,Kwa-Zulu-Natal bölgesinde,Doğu Cape’deki Eocene yatağında ve Namibya’da bulunmuştur.Pürtüksüz dişlere sahip olan(Otodontidae familyası)Paleocene devasa köpekbalıklarına başka bir yakın grup ta Carcharodon türüyle paralel olarak evrime uğramış ve bugün hayatta olan porbeagle köpekbalıklarının (Lamna cinsi)oluşumuna yol açmıştır. 9- İnsana Karşı Saldırılar İnsanın en büyük korkularından biri,yabani bir hayvan tarafından canlı canlı yenmektir.Muhtemelen büyük beyaz köpekbalığı endişelerinin esrarı,büyük ölçüde onun uzun zamanlar boyunca sadece bu amaçla insanlara saldırması olmuştur. Rapor edilen büyük beyaz köpekbalığı saldırıları,öteki köpekbalığı saldırılarından daha fazladır.Bununla beraber rapor edilmiş bütün köpekbalığı saldırılarının %80’i büyük beyaz köpekbalıklarının nadir olduğu tropikal bölgelerde meydana gelmiştir.Bu bölgelerdeki ataklardan genellikle çekiç balıkları (bir tür köpekbalığı) ve requiem köpekbalığı sorumlu tutulmuştur.Gerçekten de Durban’daki Oceanographic Research Institute’un(Okyanus Araştırmaları Enstitusu)eski yöneticisi Dr.Davies daha1964’lerde Güney Afrika’da 7 tehlikeli türden bahsetmektedir.Bugün hala köpekbalığı saldırılarından daha fazla insan boğulmalar,arı sokmaları,şimşek çarpmaları veya yılan sokmaları gibi nedenlerle yaralanır veya ölür.Buna rağmen,büyük beyaz köpekbalıkları su içinde insan için tehlikelidir ve bazı bölgelerden diğer bazı bölgelere göre daha fazla saldırı olayı rapor edilmiştir. Amerikalı araştırmacılar 1926’dan 1991’e kadar bütün dünya çapında vuku bulmuş 115 büyük beyaz köpekbalığı saldırısı belgelemişlerdir.Güney Afrika açıklarında,altısı ölümle sonuçlanan,29 saldırı meydana gelmiştir.Güney Afrika’da 1940’tan bu yana toplam olarak 28’i ölümle sonuçlanan 89 köpekbalığı saldırısı rapor edildiği düşünüldüğünde,bu saldırıların bazılarının diğer türler tarafından yapıldığı sonucuna varılabilir. Niçin Büyük Beyaz Köpekbalıkları Tehlikelidir? Bazı popüler iddiaların tersine,biz karada yaşayanlar,okyanus ortamına doğal olarak uyamadığımız için bu büyük,hızlı,yırtıcılar insanları potansiyel av olarak görürler ve bu yüzden tehlikelidir.Aynı zamanda,sudaki, insanlara,takip edilip dışarıya atılması gereken bölgesel işgalciler olarak kabul ettikleri için de tepki gösterebilirler.Bu teori büyük beyaz köpekbalıklarını atfedilmiş,kurbanların hayatta kaldığı,tek ısırıklı saldırıları da muhtemelen açıklar.Özellikle geçmiş dönemde bir kısım film ve kitapta yapılan bazı sansasyonel köpekbalığı tasvirleri içimize korku salmak için çılgınca bir yok etme ve intikam alma karalılığı içinde olan nefret dolu canavarlar çizmiş ve onun doğal yırtıcı davranışlarını çarpıtmıştır.Hiçbir şey hakikatten öteye gidemez. 10- Denize Girenler,Sörfçüler ve Dalgıçlara Tavsiyeler Bütün önlemlere rağmen,olası bir saldırı durumunda bilinmesi gereken birkaç şey vardır. 1-En önemli şey kanı mümkün olduğunca çabuk durdurmaktır.Kol bacak gibi uzuvlardaki yaralarda çok ta fazla sıkı olmamasına dikkat ederek,sıkıca bir sargı sarılması kanı durdurmaya yardımcı olacaktır.Yumuşak ve esnek herhangi bir şeyi(kumaşı)sıkıştırıp bandaj olarak yara üzerine yerleştirin.Yaralıyı hareketsiz ve mümkün olduğunca sıcak tutun,küçük ve önemsiz bir yara gibi bile gözükse hemen tıbbi acil yardım çağırın. 2-Denize girenlerin veya sörfçülerin büyük ve önemli yaralanmalarında,yaralıyı kum üzerinde denize paralel bir şekilde yatırıp başa doğru kan akışını desteklemek için ayaklarını yukarıya kaldırın.Yaralıyı başı su tarafına gelecek şekilde yatırmayın.Gerekirse yaralının nefes almasına yardımcı olun. 3-Tıbbi yardımın gelmesini beklerken,yaralıyla rahatlatan bir edayla konuşarak onu sakin ve ayık tutun.Yaralıyı hastaneye yetiştirmek amacıyla sahilden uzağa veya bir araca taşımaya teşebbüs etmeyin.Bu yaralıyı şoka sokabilir. 4-Vücut iç sıcaklığını düşürüp yaralıyı şoka sokmasına yardım etme ihtimali olduğundan,hiçbir içecek özellikle alkollü içecek vermeyin.Yaralının dudaklarını ıslatmak amacıyla su kullanılabilir. 11- Kaynaklar: Weidnfield & Nicolson, London, 222pp. Cliff, G., S.F.J. Dudley & B. Davis. 1989. Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark, Carcharodon carcharias. S. Afr. J. Mar. Sci., 8:131-144. Compagno, L.J.V. 1981. Legend versus reality: the Jaws image and shark diversity. Oceanus 24 (4); 5-16 -1984. Sharks of the World. FAO Species Catalogue, vol. 4,2 parts, Rome. -D.A. Ebert & M.J. Smale. 1989. Guide to the Sharks and Rays of Southern Africa. Struik Publishers, Cape Town, 160pp. Condon, T. (ed.). 1991. Great white Sharks - a Perspective. Underwater, no.17. Ihlane Publications, Durban: 1-130. Cousteau, J. -Y. & P. Coustea. 1970. The Shark: Splendid Savage of the Sea. Doubleday & Co., Garden City, 277 pp. Davies, D.H. 1964. About Sharks and Shark Attack. Shuter & Shooter, Pietermaritzburg, 237pp Ellis, R. & J.E. McCosker. 1991. Great White Shark. Stanford University Press, Harper Collins, New York, 270pp. Sibley, G. et al (eds.). 1985. Biology of the white shark. Mem. So. Calif. Acad. Sci. 9, 150pp Smith, M.M. & P.C. Heemstra (eds.). 1986. Smiths’s Sea Fishes. Macmillan South Africa, Johannesburg, 1047pp. Springer, V.G.& J.P Gold. 1989. Sharks in Questions. Smithsonian Institution Press, Washington, D.C., 187pp. Van der Elst, R. 1986. Sharks and Stingrays. Struik Publishers, Cape Town, 64 pp. Not:Alıntıdır ayrıca karakter sınırlaması olduğu için parça parça yollayabildim kusura bakmayın arkadaşlar

http://www.biyologlar.com/carcharodon-carhariasbuyuk-beyaz-kopekbaligi

İnsanın Biyokültürel Evrimi

İnsanlık gerçektende 30.000 yıl önce çok mu medeniydi? Aslında bu soruyu sormak bile bilime hakaret. Erich von daniken'in bayatlamış hipotezleri halen Bilime zarar vermektedir. Bilimin en çok zara verdiği dallarından biri insan bilimi yani sosyal antropolojidir. Halen bu gün bile Agarta gibi efsanelere inanılması gibi, uzaylıların dünyamıza gelip Cro-Magnon'ların ve Neandertal'lerin kültürünü geliştirdiğini inanılmaktadır. Bununla birlikte Mısır'daki piramitleri ve bazı eski çağlardaki yapıları uzayılıarın yaptığını söyleyenlerde var. İlk olarak söylemek istediğim bir şey var, geçen senelerde İran'daydı her ahlde Deccel diye bir çocuğu naletlemişlerdi. Nedeni ise çocuğun tek gözlü doğmasıydı. İnsanlık gerçektende 30.000 yıl önce çok mu medeniydi? Aslında bu soruyu sormak bile bilime hakaret. Erich von daniken'in bayatlamış hipotezleri halen Bilime zarar vermektedir. Bilimin en çok zara verdiği dallarından biri insan bilimi yani sosyal antropolojidir. Halen bu gün bile Agarta gibi efsanelere inanılması gibi, uzaylıların dünyamıza gelip Cro-Magnon'ların ve Neandertal'lerin kültürünü geliştirdiğini inanılmaktadır. Bununla birlikte Mısır'daki piramitleri ve bazı eski çağlardaki yapıları uzayılıarın yaptığını söyleyenlerde var. Aslında Bilim bu tür safsataları çoktan çökertmişitir. Aslında Daniken'in taraftarlarının en çok takıldığı nıkta şudur. Eski çağlardaki duvarlarda tek gözlü iri insanların çizilmiş olması dev arazilere ise atmosferden görülücek işaretler bırakılması halen bir kanıt olarak görünmektedir. Aslında bunlar abartılmış ve o şekilde görülmek istenenmektedir. İlk olarak söylemek istediğim bir şey var, geçen senelerde İran'daydı her ahlde Deccel diye bir çocuğu naletlemişlerdi. Nedeni ise çocuğun tek gözlü doğmasıydı. Çokcuk sadece fiziksel ve bio şekilde engelliydi. Doktorlar çocuğun sağlık durumunun iyi olduğunu söylemişlerdi, sadece gözü ortada bulunuyordu. Şimdi birde bu olayın binlerce yıl önce gerçekleştiğini düşünün, o zaman ki insaların tepkilerinin düşünün, hepsi o kişiden korkacaktır yada o insanı tanrı olarak göreceklerdir. İşte buda o duvardaki resmi açıklıyor. Çağillik ve bilimin yokluğu, diğer konuya gelecek olursak tarlalarda bu gün güya ufoların yaptığı işaretlere, bunu şöyle açıklamak isterim; maç sırasında taraftarlar kendi takımını desteklemk için büyük bir pankart açarlar, açtıkları bu pankart spor takımını çokşturmak içindir, yada başka şeyler içindir. Bü tür şeyleri görünmyen şeylere yormaya bayılıyoruz sanırım. Asıl konumuza dönelim yani insanın biyokültürel evrimine, halen Homo sapien sapien'in Homo helmi'den mi? yoksa Homo Neandertal'lerden mi? geldi, aslında bu konu halen tartışılmaktadır. Bir çok bilim adamı Neandertallerin bizim ancak kuzenimiz olabileceği yönde fikirleri var, ve modern insanın Homo helmi'den Afrika'daki Homo Helmi popülasyonundan türediğini düşünüyorlar. Ama ne olursa olsun evrimin ilk basamaklarında çıkan bazı türler bir arada yaşamış ve birbirlerine istekli isteksiz sosyol kültür öğretmiştir. Hatta Afrika'da bu gün bulunan eski gıda tüketimlerine bakılınca, tarihin ilk balık lokantasına rastlanıyor. Bu balık lokantası bir mağradır ve buz çağında sığınan neandertaller gibi türlerin tabaklarda sırayla ve düzenle dizmişerler ve o şekilde birbirlerine sunmuşlardır. Eğer Cro-Magnon'ların beyin amileyatına kalkıştı gibi sözlerle bizi avutmaya çalışan kendilerini bilime adamış ama bilimden uzak olan bu insanlar neden tıpbi ihtiyaçları varken, mağralrda yaşadıklarını açıklyabilir mi? Ama bu insanların sadece bu iddaları yoktur, neden tüm maymunlar evrim geçirmedi? ve neden maymunlar şimdi artık insan olmuyor? yani maymunlar cehennemi neden yaşanmıyor? gibi saçma ve bilimin yanıtını verdiği halde halen sordukları bu sorulardan asla vaz geçmiyorlar. İlk olarak evrim tek ve düz bir çizgi diğil yani evrim onların hayl ettiği gibi düz ilerlemez, kördür. Neden maymunlar evrim geçirmiyor sorusunun cevabını size vermekten guru duyarım, insan ve şempanze ayrıldıktan sonra insanın evrimi 1 milyon yıl önce yavaşlamıştır. Bu yavaşlama cinsel yolla evrimede etki etmiştir. Ama tam tersine şempanzelerde evrim çok hızlı ilerlemye devam etmiştir. Bu durum şempanzenin kendi alınında yani pozitif şekilde evrim geçirmesine sebep oldu. Şempanzelerin evrim hızı %3 oranında, peki bu durumda akla gelen soru şudur. Neden şempanzeler akıllı diğil? İnsanlarda mutasyonlar daha az sayıda ortaya çıksa bile, önemli olanlar hızla yayılıyor. İnsanın avantajına olan mutasyonlar, mesela zeka, muhtamelen güçlü bir doğal ayıklanma baskısı altında oluştu. Yani bu beceriyi hızlı kazanan insanlar hayatta kalırken, diğerleri yok oldu. Biz asıl konumuza dönelim yani Cro-magnon'ların ve Neandertal'lerin bzie kazadırdıklarına. Cra-Magnon'lar yaptıkları deniz araçlarıyla, zamanımızdan 30.000 ile 20.000 yıl önce Kore'den Japonya'ya, Bering Boğazı yoluyla Asya'dan Amerika'ya daha sonra da Avustralya'ya ayak basmışlardır. Avustralya'da en son yapılan kazılarda elde edilen bulgular ise bu görüşün aksine, Avustralya'da yaşamın 50.000 yıl önce başladığını göstermektedir. 30 ile 25.000 yıl öncesinden, özellikle magdalenyen evresinden itibaren, cro-magnon lar, doğal mağaraları terk ederek, çadır ve kulübelerde yaşamaya başlamışlardır. Isı kaybını önlemek için yan yana toprağa gömdükleri kulübelerinin duvarlarım mamutların fildişleri ile örüyor, sonra hayvan derisiyle kaplıyorlardı. Böyle tek bir kulübenin yapımında 95 mamutun kemiğinin kullanıldığı tespit edilmiştir. Cro-magnon lar da, H.neanderthalensis ler gibi ölülerini gömmüşler, bazen çoklu gömülere de yönelmişlerdir. Ancak özel mezarlıklar yapmamışlardır. Mağara resim sanatı prehistoryanın altın çağıdır. Din H.neanderthalensis ler ile, sanat ise cro-magnon larla başlamıştır diyebiliriz. Cisimlerin üç boyutlu olarak algılanması ve soyut düşünme kavramı 30.000 yıl önce üst yontma taş çağı insanı ile beraber ortaya çıkmış ve gelişmiştir. Cro-magnon lar, mağaraların en kuytu ve karanlık köşelerine duvar resimleri yapmışlardır. Fransa'da 67, İspanya'da 31 resimli mağara belirlenmiştir. 33-30 bin yıl öncesine ait, duvarlarında renkli olarak yapılmış ağızları açık mağara ayıları, koşan aslanlar ve kavga eden gergedanlar bulunan Fransa'daki Chauver mağarası, daha başlangıçtan itibaren perspektif anlayışının bilindiğini bize göstermektedir. Bu mağaralar arasında en ünlüsü, mavi, kırmızı ve siyah renkler kullanarak yapılmış, bizon, vahşi at, kıllı gergedan ve ren geyiği başta olmak üzere, 150 hayvan resmini ve 850 gravürü içeren birçok dehlizi ile Fransa'daki Lascaux mağarasıdır. Yine Fransa'daki Cosquer, Ebbou ve Niaux ile İspanya'daki Altamira mağaraları, cro-magnon resim sanatının en ilginç örneklerini bizlere sunmaktadır. Cro-magnonlar, boya olarak doğal minerallerden kırmızı için okn, siyah için manganez dioksidi, ayrıca limonid ve hematiti kullanmışlardır. Çevresinde yaşayan av hayvanlarını, doğal boyutlarını, anatomik ayrıntılarını ve canlılığını resmeden üst yontma taş çağı insanı, kendini nedense ya hiç görüntülememiş, ya da yarı insan, yarı hayvan şeklinde çizmiştir. Magdalenyen kültür evresinde tapmak amacıyla kullanıldığı kuvvetle muhtemel olan 150 resimli mağara tespit edilmiştir. Bu mağaralarda genellikle hiç oturulmamıştır. Bazı mağaralarda insanlar hayvan maskesi altında görüntülenmişlerdir. İspanya'daki Altamira mağarasında ise çok sayıda geometrik motifler bulunmuştur.

http://www.biyologlar.com/insanin-biyokulturel-evrimi

TUNDRA

Kutuplarda, toprakları sürekli don olan dağların yüksek kesimlerinde ve yaz aylarında kısa bir vejetasyon dönemine sahip olan bölgelerde görülür. Sıcaklık 0°C'lik bir izoterm gösterir; arktik yani alpinik vejetasyon (likenler, yosunlar ve bodur çalılıklar) yaygındır; ağaçlar sürekli büyüme yeteneğini yitirmişlerdir. Soğuk ve berrak sular, bu donmuş topraklarda derinlere süzülüp akamadıklarından, gölet, turba ve bataklıklar oluştururlar. Aşırı iklim şartları (biyosönötiğin ikinci kuralına göre) tür bakımından fakir kommünitelerin oluşumuna neden olur. Öncelikle Avrupa, Asya ve Kuzey Amerika'nın kuzey kıyılarını içine alan arktik tundralarda, ren geyikleri (Rangifer), kutup tilkisi (Alopex lagopus), kartavşanları ya da kutuptavşanları (Lepus timidus ve Lepus articus), misköküzü (Ovibos, bugün sadece Grönland'da yaşar), lemmingler (Lemmus) ve birkaç tür kazıcı fare gibi az sayıda memeli hayvan türü bulunmaktadır. Bunlara kıtaların buzul kenarındaki kutupayıları (Thalarctos) ve arktik deniz memelileri de dahildir. Tundralar, kuş ve böcek faunası bakımından da fakirdir. Bu hayvanların tipik özellikleri, soğuğa dayanıklılık, yaz döneminde gece ve gündüz işlerliği, vücut renklerinin açık renkli olması olarak sayılabilir. Arktik ve antarktik tundralarla karşılaştırılabilen yüksek dağ biyotopları "Oreal", alpinik bir formasyon olarak ağaç sınırının üst yarısında görülür. Ada biçimindeki bu küçük bölgelerin özel memeli faunası oluşmamış; fakat tundralardaki gibi tipik kuşlar ve böcekler meydana gelmiştir. Özellikle ülkemizin yüksek dağlarında tipik bir böcek faunasına rastlanır. Tundralar, özünde bir buzul relikti olan ekosistemlerdir. Buzul dönemlerde, tundralar önemli ölçüde genişlemiştir. Bu genişleme sırasında faunanın bir kısmının (örneğin mamut ve yünlü gergedanların) soyu tükenmiş, diğer türler de (misköküzü, rengeyikleri ve kutupayısı) iyice azalmıştır. Yaşamaya uygun olmayan aşırı iklim koşulları, kommünitenin az sayıda üyesine ve özellikle insan müdahalesine karşı büyük ölçüde duyarlı olan canlılara etkili olmuştur. Sivrisineklerin çok büyük miktarlarda bulunması tundralar içinde tipiktir. Çünkü larvalar için çok sayıda uygun su birikintileri bulunur. Ancak buralarda sivrisineklerin kan emmesi (dişilerin) ve bununla ilişkili olarak bitki özsuyu (erkek) ile beslenme zorunluluğu, sınırlayıcı bir durum oluşturur.

http://www.biyologlar.com/tundra

DİNOZORLAR (Dinosauria)

Çoğunlukla İkinci jeolojik zamanda (Mezozoik dönem) havada, suda ve karada yaşamış ve soyu tükenmiş sürüngenlerin bir takımına verilen ad. Dinosaurus, yâni dinozor “Korkunç kertenkele” demektir. Et yiyeni, ot yiyeni, cücesi, devi, hantalı, atiği vardı. Paleontologların dinozor fosilleri üzerinde yaptıkları zaman incelemeleri, bunların I. jeolojik zamanın Permiyen devrinde, yâni bundan 270 ilâ 225 milyon yıl kadar önceki bir zaman diliminde, dünyâ sahnesine çıkmış olabileceklerini ortaya çıkarmıştır. Bunlar arasında 30 m uzunluk ve 80 ton ağırlığa ulaşanları mevcuttu. Uçan bâzı türlerinde kanat uçları arası 16 metreyi buluyordu. Serçe kadar olanları da vardı. Dinozorların muazzam cüsselerine rağmen, ayaklarının diğer sürüngenlerde olduğu gibi vücutlarının yanında değil de gövdelerinin altında oluşu hareket kabiliyetlerini kolaylaştırmıştır. Tyrannasaurus Rex (korkunç kertenkelelerin kralı) adındaki çeşidinin, saatte 70 km’lik bir hızla koşabildiği, Robert Bakker tarafından ispat edilmiştir. 250 milyon yıl kadar önce yaşadıkları sanılan dinozorlar, 65-70 milyon yıl önce, II. jeolojik zamanın son devri olan Kretase (veya tebeşir) devrinde birdenbire tükendiler. Dinozorlar, yıllardır soğukkanlı, aşırı büyümüş kertenkeleler olarak tanınmıştır. Son yıllarda yapılan incelemeler, davranışları hakkında kıymetli bilgiler ortaya çıkarmıştır. Bu bilgiler, 1978 yılında jeolog Jack Horner ile Bob Makela’nın ABD’de Montana’da 80 milyon yıl kadar önce fosilleşmiş 15 dinozor yavrusunu barındıran taşlaşmış bir yuvayı keşfetmesiyle elde edildi. Bu keşiften sonra iki jeolog her yıl bu bölgede kazılarına devam ederek, çeşitli devrelerinde iken fosilleşmiş birçok dinozor fosili ihtivâ eden on kadar yuva ve yüz kadar da dinozor yumurtası buldular. Yuvalarda farklı büyüklükte yavruların varlığı, dinozorların yumurtadan çıkan yavrularını belli bir gelişme devresine kadar besleyip koruduklarını ve yüksek bir analık şefkatine sâhib olduklarını ortaya koydu. Jeolog Horner, dinozorların soğukkanlı hayvanlar olmalarının da desteklediği hızlı bir bazal metabolizmaya sâhib olduklarını ve bu sebepten hızlı bir büyüme sergiledikleri iddia edilmektedir. Birçok araştırmalar ise, dinozorların gerçekte sıcakkanlı, yüksek vücut metabolizmaları olan hayvanlar oldukları eğilimine ağırlık kazandırmıştır. Bu yeni teoriye göre dinozorların tıpkı memeli hayvanlar gibi karmaşık fizyolojileri ile yeryüzünün değişik çevrelerinde yaşadıkları ileri sürülmektedir. Dinozorlar arasındaki teorilerin birbirinden farklı olmasında bu yaratıkların fizyoloji ve hayat tarzlarını incelemek için elde bulunan tek imkânın müzelerdeki dinozor kalıntılarından ibâret olmasının büyük payı vardı. Kalıntılara dayanarak ilmî sonuçlar bulmak imkânı yok gibidir. O yüzden dinozorlar hakkındaki bilgiler bir spekülasyondan ileri gidemiyordu. Günümüzde ise yapılan çalışmalar sonucunda dinozorlar hakkındaki bilgilerimiz artmış bulunmaktadır. Yavrularına karşı olan şefkatleri, sosyal alışkanlıkları, avlanma stratejileri, zekâ seviyeleri, beslenme rejimleri gibi çeşitli konularda net bilgiler elde edilmiş bulunmaktadır. Dinozorların nesli niçin tükendi? Bu konuda çeşitli hipotezler ileri sürüldü: İklimin soğuması, besin kaynaklarının değişmesi, oksijen azlığı, kozmik ışınların artması, memeli hayvanların saldırısı vs. Bugüne kadar bu hipotezlerin hiç biri herkesçe kabul edilmedi. California Üniversitesi Jeoloji Profesörü Walter Alvarez’e göre, 65 milyon yıl önce dünyâya birkaç yıldız çarptı. Meydana gelen toz bulutları güneşi sakladı. Dünyâda yaşanan uzun meteor kışının soğuğuna dayanamayan çeşitli canlılarla berâber dinozorlar da kayboldu. Alverez, teorisini yıldızlarda bulunan iridyum madeninin dinozor kalıntılarında bol miktarda görülmesine dayandırmıştı. Sovyet jeologu Vasili Yeliseyev ise, dinozorların raşitizm denen kemik yumuşaması hastalığından öldüklerini ileri sürmektedir. Dinozorlar yeryüzünde 180 milyon yıl kadar yaşadılar. Bu süre içinde dünyâ iklimi çok değişti ve ilkel Gondvana kıtası parçalanarak bugünkü kıtalar meydana geldi. Dinozorlar bu büyük değişmelere rağmen kendilerini yeni ortamlara uydurdu ve çoğalmaya devâm etti. Kretase devri sonlarına doğru (bundan 65 milyon yıl kadar önce) dinozorlar birden bire tükendi. Vasili Yeliseyev, Kongo Halk Cumhûriyetinin balta girmemiş ormanlarında incelemeler yaparken orman hayvanlarının savan hayvanlarından çok daha küçük olduğunu fark etti; gri gazel, tavşan büyüklüğündedir. Büyük kirpilerin ılık kuşaklarda yaşayanları çok iri olduğu hâlde orman kirpileri küçük bir aslan yavrusu kadardır. Orman zürafası (okapi) 1.5-2 m, savan zürafası ise 6 m yüksekliktedir. Cengel (balta girmemiş orman) su aygırları 1.5, savan su aygırları ise 4 m uzunluktadır. Fil avcıları, cengel fillerinin dişlerinin savan fillerine göre daha küçük ve kalitesiz olduğunu söylemektedir. Kongo köylerinde erişkin keçiler oğlak kadardır. Bütün bunların sebebi ne? Cengellerde yağmur suyu CO2 ve organik asitlerle yüklü olduğundan çok aşındırıcıdır, kayaları şiddetle aşındırır ve toprağın derinliklerine sızar, bu sırada topraktaki Na, K ve Ca gibi eriyen elemanları yıkayıp götürür. İskeletin gelişmesi içinse, kalsiyum tuzları gereklidir. Nemli ormanlarda yaşayan hayvanların küçük oluşu bununla ilgilidir. Buna karşı savanlara çok daha az yağmur düşer. Bu yağmur derinlere sızamadan buharlaşır, böylece savanlarda kalsiyum tuzları toprakta kalır; savan bitki ve hayvanları bu kalsiyumu kullandıklarından büyük olur. Peki bunların dinozorlarla ilgisi nedir? Kretase sonlarına doğru geniş kurak alanları su bastı. Dünyânın iklimi sıcak ve nemli bir hâl aldı, öyle ki kuzey kutbunda palmiyeler büyüdü. Denizlerin çok yayılması sonucu nemlilik çok arttı ve dinmeyen yağmurlar başladı. Bu büyük yağmurlar topraktaki Ca tuzlarını yıkayıp denizlere ve göllere götürdüler. Toprak kalsiyumca fakirleşince dinozorların kemikleri yumuşadı ve tonlarca ağırlığın altında eğrildi. Bu dev hayvanlar bundan öldü. Kazılarda eğrilmiş dinozor kemiklerine çok rastlanmaktadır. Dinozor yumurtalarının kabuklarının inceldiği ve kusurlu olduğu da anlaşılmıştır. Raşitizm önce ot yiyici dinozorları çökertti, bunlar et yiyici dinozorların kurbanı oldular. Et yiyici dinozorlar ot yiyici dinozorlar ölünce öldü, çünkü yiyecek bir şey kalmamıştı. Kalsiyumsuz kalmak kedi kadar küçük dinozorları etkilemedi, kaplumbağa ve kertenkeleler de kalsiyum eksikliğinden etkilenmedi. Küçük dinozorlarla memeliler arasında bir ölüm- kalım savaşı başladı ve memeliler bütün cüce dinozorları yiyip bitirdiler. Dinozorlarla ilgili bir diğer esrar da bâzı yerlerde üstüste yığılmış dinozor iskelet ve kemiklerine rastlanmasıdır. Âdetâ dinozorlar ölmek için belli bir noktaya toplanmışlardır. Böyle bir “dinozor mezarlığı” Büyük Sahra’da Agades civârında bulunmuştur. Bugün bunun açıklaması şöyle yapılmaktadır: Dinozorlar çok ağır oldukları için karada kolay yürüyemiyorlardı, ömürlerinin büyük bir kısmını herhalde suda geçirdiler. Ot yiyen dinozorların dişleri çok zayıf bulunmuştur ve bunların yalnız yumuşak su bitkileri yiyebildikleri düşünülmektedir. Büyük ihtimâlle dinozorlar sularda, özellikle ırmaklarda öldü; akıntıyla sürüklenen cesetler deniz ve göllerde birikti. Sâkin denizlerin dibinde kalan ve üstleri hızla örtülen iskeletler bütün halde bugüne kadar kaldı. Buna karşı dalgalı bir kıyıya erişen iskeletler parçalandı, kemikler aşındı ve birbirine karıştı. Kretase sonlarında denizler karaları istilâ etmeseydi bugün belki dinozorlar görülebilecekti. Milyonlarca yıldır devâm eden dünyâ ve onun üzerinde zamanla değişen hâdiseler insanlar için büyük bir ibrettir. Bir yaratıcının bulunduğuna işârettir.

http://www.biyologlar.com/dinozorlar-dinosauria

AKILLI TASARIM-EVRİMSEL TASARIM

“En büyük tehlike akılsızlığı, akıllılık olarak gördüğünüzde başlar ”Prof. Dr. Ali Demirsoy, Hacettepe Üniversitesi Bazı bireylerde kalıtsal bir nedenle ortaya çıkan sorunlar “Anomali” ya da “Hastalık” olarak adlandırılır. İyi bir tasarımda bu anomalilerin hiç olmaması ya da çok seyrek olması beklenir. Hâlbuki bugün tıbben her insanda doğuştan en az 10 anomalinin olduğu söylenir. Bu normal tasarlanmış bir arabanın beklenilmeyen bir arıza göstermesi gibi bir şeydir. Kâğıt üzerinde böyle bir hata beklenmez; imalat sırasında ortaya çıkar. Dolayısıyla buna üretim hatası denir ve suç tasarlayıcısına yüklenmez. Akıllı tasarıma göre bir canlının tasarlanmasından ölümüne kadar geçen süreçler doğaüstü güç tarafından denetlenmektedir ve dolayısıyla hem tasarım aşamasında hem de üretim süreci içerisinde –biz fani varlıkların kusuru olmadan- ortaya çıkabilecek tüm aksaklıklardan doğaüstü güç sorumludur. Ancak hem yetkili ve her şeye kadir ol hem de hata yap ikilemini çözemeyen dogmatikler, çıkarı “Takdiri İlahi”, yani doğaüstü gücün isteği ya da takdiri olarak sunarak hem kendilerini hem de karşılarındakileri kandırmanın yolunu bulmuşlardır. Elimizde olan ya da olmayan gelebilecek her olumsuzluğun faili ya da sorumlusu bulunmuştur: Bir türlü hesap soramayacağımız, ulaşamayacağımız, ne eder ne yaparsa iyidir diye inandığımız Doğaüstü Güç; çoğumuza göre Tanrı. Böylece insanlık tarihi boyunca kusurumuz olsun ya da olmasın uğradığımız her zararı büyük bir tevekkül (kabul) ile benimseyeceğimiz bir felsefeye saplanmış olduk. Ancak herkeste her zaman görülen, yani bir anomali olarak değil de, genel bir tasarım hatası olarak herkesin gözlediği yapı ve işleyişlere ne diyeceğiz; bu sefer “Taktiri ilahi” demeyle atlatamayız. Çünkü takdir, birçok seçeneğin arasında birisine layık görülen bir şeyi ifade eder. Yani başımıza bir bela gelmişse, yüce Tanrı o iş için beni seçmiş demektir. Dogmaya inanıyorsanız yapacağınız bir şey olamaz, kabul edeceksiniz. Eğer inanmıyorsanız nedenini araştıracaksınız, gerekirse er ya da geç çaresini bulacaksınız. Ancak, bir kusur sadece bir toplumun birisinde değil de herkeste bulunuyorsa, o takdiri ilahi olmaktan çıkmış, genel bir tasarım kusuru olmuştur. Bu tasarım kusurları eğer her şeyi bilen ve her şeye kadir bir varlık tarafından yapılmışsa, o zaman bu varlığın, kulları olan bizler için iyi niyetinden kuşku duyabiliriz. Çünkü hiç kimse durup dururken kitle halinde eziyet etmeyi amaçlamaz. Bunun tanımı psikolojide ya da sosyolojide hoş olmayan çok ağır bir tanımdır… Gelin görün ki, ortalığı akıllı tasarım velvelesine veren birçok insan (bunların arasında ne yazık ki bilim adamı; hatta bilimlerin bilimi diyebileceğimiz biyoloji alanında çalışanlar), aşağıda yüzlercesinin arasından verilmiş sadece birkaç genel kusurun neden doğaüstü güç tarafından reva görüldüğünü bir türlü açıklayamıyor. Moleküler ya da hücre düzeyine indiğimizde hatalı tasarımla ilgili onlarca örnek verebiliriz. Ancak bu örnekler çok akademik kalacağından, bu konuda yeterince bilgisi olmayanlar anlamakta zorlanabilir diye verilmemiştir. Doğuştan yüksek tansiyon, şeker hastası, çeşit çeşit yetmezlikler, kas ve kemik bozuklukları ve benzer onlarcasını kişiye özgü olduğu genel bir durumu yansıtmadığı için –genel bir tasarım hatası olarak- gündeme getirmeyeceğiz. Bu nedenle vereceğimiz tasarım hatalarına ilişkin örnekler özellikle hemen herkesin her zaman tanık olduğu çocuklardaki bazı kusurlardan –yani genel tasarım hatalarından- seçilmiştir. Bunun nedeni, akıllı tasarımcıların, ortaya çıkmış kusuru, ergin kişinin suçlarına –günahlarına- bağlamasından kurtulmak içindir. 1. Çocuk büyüten ve gecelerini uykusuz geçiren herkes şunun farkındadır. Çocuklar doğduklarının ilk birkaç ayında bazen çok daha uzun süre gaz sorunu yaşayarak ailelerini ve kendilerini perişan ederler. Bu gaz ya anadan geçer ya da çocuğun sindirim sistemindeki tasarım hatasından kaynaklanır. Ancak bir evrimsel biyoloji uzmanına sorarsanız, ağaçtan ağaca atlarken anasının sırtına yapışarak, her sıçrayışta sürekli gazını çıkaran bir canlının böyle bir sorunu olmamıştır. Bu nedenle primat yavruları gaz sancıları çekmez. Ne zamanki doğal yaşamdan ve doğal evrim sürecinden ayrıldık, bu sorun karşımıza çıktı. Ancak evrimsel yapısal değişim, sosyal evrime ayak uyduramadığı için, zamanında gerekli önlemler oluşamadı. 2. Çocukların iç kulak ile ağız arasındaki östaki borusu, normalden kısa olduğu için ağızdaki mikroplar sık sık orta kulağa geçer ve bir sürü soruna neden olur. Primatlarda bu sorun var mı; büyük bir olasılıkla yok.Ancak bir evrimsel biyoloji uzmanına sorarsanız, sosyal gelişmeleri öğrenebilmek için, kafası beklenilenden çok daha büyük olarak dünyaya gelmeye zorlanmış bir çocukta bu sorunun ortaya çıkması kaçınılmazdır. Acaba doğaüstü güç insanın sosyal yaşama geçişini bilemiyor muydu? Yoksa böyle bir ödüle karşı ceza mı uygulamaya kalkıştı? 3. Çocukların, özellikle kız çocuklarının idrar kesesini dışarıya bağlayan kanal erişkinlere göre kısa olması nedeniyle sık sık idrar yolları hastalıklarına tutulmaktadır. Ne olurdu bu boruyu biraz daha uzun olarak yaparak yaratsaydı?Ancak bir evrimsel biyoloji uzmanına sorarsanız, dört ayağının üstünde gezen bir canlı için bu kısalığın büyük bir sakıncası yoktu; ne zaman ki, yere inip de ilk olarak otura otura sonra iki ayağımız üzerinde gezmeye başladık; oturduğumuz yerdeki mikroplar çok daha kolay içlere kadar girebildiği için bu sorunlar ortaya çıktı. O zaman sormazlar mı, beni iki ayağım üzerine kaldırırken, bu boruyu niye bir iki santim uzatmadın?4. Penisteki sünnet derisi çoğunluk herhangi bir soruna neden olmadan doğum olmasına karşın, bir kısmında idrar yapamayacak derecede kapalı olduğu için önemli sorunlara neden olmaktadır. Bu derinin erişkin olmadan kesilmesi ise Musevi ve İslam inancına göre tanrının isteğidir. Bu derinin atılması sırasında, yine bu iki dinin de ortak olarak birleştiği inanca, yani çocukların suçsuz olarak doğduğu inancına karşın, milyonlarca çocuğun sünnet işlemi sırasında mikrop kapmasından dolayı ölmesini nasıl açıklayacaksınız? Günahsızların ceza çekmesi hiçbir öğretide hoş karşılanamaz. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu deri kapalı durarak idrar yollarının ve penis başının olası enfeksiyonları önlemek için meydana gelmiştir. Doğal ortamda er ya da geç normal işlevini görmeye başlar; ancak bezlere sarılmış kapalı ortamda yetiştirilen bir bireyde bu aksaklığın giderilmesi zor olur.5. Bugün hangi çocuk doktoruna giderseniz gidin, çocuğa bakmadan D vitamini de içeren bir ilaç yazıyor. Bunu muhakkak almalısınız diyor. Burada birisi yanılıyor, ya doktor ya da doğaüstü güç. Çünkü akıllı tasarım olsaydı, ana sütü ile birlikte bu maddeler de verilmiş olacaktı. Ancak bir evrimsel biyoloji uzmanına sorarsanız, insan, güneş ışığının çok yoğun olduğu Doğu Afrika’da evrimleştiğinden D vitamininin oluşması için ek bir kaynağa ihtiyaç duyulmamıştı. Ne zaman ki kuzeye yayıldı, eksiklik ortaya çıktı. Düzeltilebilir miydi? Çok basit birkaç önlemle bu eksiklik giderilebilirdi. Zaten canlıların hemen hepsi (bizden başka yer değiştiren iki memeli hariç) bulundukları yerde kaldıkları için gerekli D vitaminini sentezlemektedirler. Bunu yer değiştiren insan yapamadığı için, gittiği yerde özellikle güneş ışınlarının eksikliğinden dolayı bozukluk ortaya çıkmaktadır. Eğer akıllı tasarımcıların inandığı gibi insanoğlu orta kuşakta bulunan bir yerde dünyaya inmiş olsalardı, böyle bir eksikliği yaşamayacaklardı. Demek ki bir enlemden öbür enleme geçince akıllı tasarım akılsız tasarım haline dönüşmüş. Niye düzeltilmemiş? Doğa aklıyla değil, seçenekleri rastlantıyla seçtiği için her zaman doğru yolu bulamaz; bu nedenle de bu güne kadar jeolojik dönemlerde bağrında barındırdığı yaklaşık 20 milyon (belki 100 milyon) canlı türünü bu akılsız tasarıma kurban etmiştir. 6. Hemen hemen hiçbir işleve sahip olmayan 20 yaş dişlerimiz çoğumuzun korkulu rüyası olmuş; birçoğumuza kötü günler yaşatmıştır. Dogmatikler bunun için kem küm bir şeyler söyleseler de hiç kimse inandırıcı bir açıklamasını yapamamaktadır. İnançlara göre insan aynen yaratılmışsa, evrimleşmemişse, 20 yaş dişleri de insanın başına bela olarak verilmiştir. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu dişler otçul (daha çok ot yediğimiz) dönemde öğütme işinde kullanılıyordu; daha sonra omnivor (yani her şeyi yer hale geçince), özellikle de yiyeceklerimizi pişirerek daha yumuşak hale getirince gerek kalmadığı için doğal seçilim ile ortadan kaldırma sürecine sokulmuştur. Evrim, sabırlı ve sürekli bir işleyişin adı olduğu için de, hemen ortadan kaldırılamamış, zamana bırakılmıştır. 7. Osteoporaz (kemik erimesi). Bugün kırk yaşını geçmiş herkesin korkulu rüyasıdır ve geçici de olsa tedavisi için önemli harcamalar yapılmaktadır. Her şeyi bilen doğaüstü güç, ömrümüzün ortalarında neden bizi oluşturan iskeletin içini boşaltsın ve kırıklarla uğraştırsın. Bunların içine her besinimizde bolca bulabileceğimiz kalsiyumu yerleştirme güç mü olacaktı? Yoksa bu da mı takdiri ilahi hanesine yazılacak? Ancak bir evrimsel biyoloji uzmanına sorarsanız, kemikler işlev gördüğü sürece ve doğada güç kullandığı sürece sağlıklı kalır; sürekli kitap okuyan ve dua eden birinin, kemikler (bu bağlamda kaslar) üzerindeki tonus (basınç etkisi) azalacağı için içini boşaltması kaçınılmazdır. Evrim, gerçekler üzerinden işlev yapar, acımasızdır, tarafsızdır; duygular ve sevgiler üzerinden değil…8. Elli yaşını geçmiş her erkeğin aklı prostatındadır. Çoğunluk doğru dürüst işeyemez, olur olmaz yerde işemeye kalkışır; bu nedenle kana kana bir şey hatta su bile içemez. Tuvaletin başında dakikalarca bekler. Daha sonra eşeysel işlevleri aksadığı için karısından azar işitir; aşağılanır; semavi dinlerin üstün varlık olarak tanımladığı o erkek süklüm püklüm bir kediye (kedi bile denmez olsa olsa pisik demek gerekir) dönüşür ve daha da vahimi er ya da geç kanserleşmeye başlar. Doksan yaşına gelmiş bir insanın %90 prostat kanseri olma olasılığı vardır. Dogmatikler akıllarını kutsal kitaptaki bilgilerle bozdukları ve prostat da bu kitapların bulunduğu dönemde bilinmediği için birkaç yakın ayet ve hadisle belki geçiştirebilirler; ancak en iyisi bu konuya hiç değinmemektir… Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, prostat bezi, sahneye çıkarken ozmos, yani su geçişlerini düzenleme gibi bir görevi üstlenmek için ortaya çıkmıştı; ancak zamanla başka işlevleri de yüklenince, olması gerekenden fazla bir görevi daha üstlendi ve başarılı da olamadı. Eğer bir varlığı korkularından arındırmak için tasarım yapmış olsaydınız, iki paralık bir sifinkter (kapak) ile bu sorunu çözerdiniz. Ancak, evrim gelecek için plan kurmaz, o anda gereksinme duyulan şeyleri en iyi şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz.10. Menopoza girmiş her kadının rahim kanseri ve meme kanseri korkulu rüyasıdır. Çocuk yapma yetisini yitirmiş ve başka bir görevi kalmamış bir organın vücuttan kaldırılması çok zor biyolojik işlem değildir. Böyle bir korkuyu insanlara yaşatmanın ne anlamı var? Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, doğa bir canlının üreme gücünü yitirmiş bir bireyi barındırmak gibi bir lüksü olmadığı için uygun yöntemi geliştirme denemesine girişmemiştir. 11. Neredeyse her üç kişiden biri omurga rahatsızlığı çekmektedir. Diğer canlılara bakıyorsunuz beli kayan canlı yok gibi. Bu insana eziyet niye? Akıllı tasarımcılar “Tanrının verdiği organı korumak gerekir” diye bir yaklaşımla konuyu savsaklamaya kalkışırlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine yürüyen atalarımız, ağırlığı tüm omurgaya dağıttığı ve onu da dört noktadan toprağa verdiği için böyle bir sorunla karşılaşmadı. Ancak iki ayağı üzerine kalkınca, ağırlık merkezi 4-5. omurların arasına yoğunlaştı, burası da yeterince kasla desteklenemediği için ve evrim mekanizması deneme-yanılma yöntemi ile çalıştığı yani çok ağır işlediği için de bu kadar kısa süre içinde gerekli önlemi geliştiremedi. Böylece öne uzattığımız iki elimizle tutacağımız bir kiloluk bir yük, kaldıraç misali 4-5. omurlara 20 kiloluk bir baskı oluşturdu. 12. Hemen hiçbir hayvanda görülmeyen fıtık ve özellikle kasık fıtığı niye insanlarda görülüyor diye düşünebilirsiniz. Akıllı tasarımcılar ancak bir önceki yanıtı verebilirler. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine gezdiğimiz için iç organlar özellikle testislerin vücut dışına çıktığı kanala (ingunial kanala) basınç yapmıyordu; ne zaman ki iki ayak üzerine kalktık, iç organlar basınç yapınca, özellikle belirli bir yaştan sonra bağırsaklar bu kanaldan dışarıya sarkmaya başlar. Evrimsel gelişme bu aksaklığı niye düzeltmedi? Ya bir çıkar yol bulamadı ya da geliştirmek için yeterince zaman bulamadı. Akıllı bir tasarım olsaydı hem bu sorunu hem de yukarıdaki sorunu bir çırpıda çözecek çareyi yürürlüğe koyardı.13. Eskiye ait insan fosillerine bakıyoruz; çürük diş hemen hemen yok (biraz da erken öldüklerinden dolayı); ancak ne zaman ki besinlerini öğütüp, pişirmeye ve özellikle de tahılla beslenmeye başlıyorlar, o zaman diş çürükleri ortaya çıkıyor. Doğaüstü güç insanı vahşi bir hayvan gibi doğada dolaşsın diye mi tasarladı? Uygarlığa geçeceği ve geçişte yaşanacak sorunlar tahmin edilemez miydi? Akıllı tasarımcılara sormanıza gerek yok; çünkü onlar bulunan bunca insana ait fosili zaten insan neslinin atası olarak kabul etmiyorlar. İnsanın zembille gökten indiğine inanıyorlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, “diş çürümeleri neden oluyor?” diye, o size der ki, tahılla beslenme, mayalanmaya bağlı olarak ağızda asidik tepkimelerin ve aşınmaların meydana gelmesini tetiklediği için olmuştur diyecektir. Bu tasarım hatasını giderebilmek için de akşam-sabah macunlarla fırçalama yoluna gideriz. 14. Akşam sabah hamdolsun verdiğin nimetlere diye dua ediyoruz. Bu kadar çeşitli yiyecek verdiği için. Pekâlâ, yaklaşık 400.000 bitki olmasına karşın niye daha çok çeşitli meyve ve sebze sunmadığını bir türlü aklımıza getirmiyoruz. Çünkü olandan başkasını düşünemiyoruz. Düşünebilmeniz için evrim mantığına sahip olmanız gerekir; o da bizde yok. İnsan oluştuktan çok daha sonraki devirlere bakacak olursak, bugün nimet olarak tanımladığımız sebze ve meyvelerin ve keza hayvanların hiç birini göremeyiz. Doğa, elmayı, armudu, kirazı, kayısıyı, portakalı, şeftaliyi, mısırı, domatesi, salatalığı, kabağı, nohudu, şeker pancarını, karnabaharı, lahanayı, kıvırcığı, marulu, Çin marulunu, kırmızılâhanayı, Montofon ineğini, Holstein ineğini, Legorn tavuğunu ve bugün kullandığımız daha onlarca ürünü bugünkü haliyle evrimleştirmemiştir. Ama her devirde evrim mantığına sahip insanlar olduğu için “akıllı tasarım ürünü olarak belirtilen” verimsiz varlıkları insani tasarımla çok daha kullanılabilir ve verimli hale getirdiler. Siz, domatesi, şeftaliyi, elmayı, portakalı ve yukarıda yazılan bitki ve meyveleri doğaya bırakın belirli bir süre sonra asıllarına döneceklerdir, yani evrimsel tasarıma. Montofon ineğinin, Holstein ineğinin ve Legorn tavuğunun zaten doğada üreme şansı olmayacaktı. Kıvırcığı, marulu, karnabaharı, lahanayı, Çin marulunu, aysbergi, süs lahanalarını, brokoliyi, kırmızılâhanayı doğaya bırakın yıllar sonra yumruları sadece bir fındık bilemedin ceviz kadar kalmış Bürüksel lahanasına döndüğünü göreceksiniz. İnsan olmasaydı mısır bitkisi ise hiçbir zaman olmayacaktı. Doğa insanı düşünerek bunları evrimleştirmediği için, bizim amacımıza en uygun şekli vermedi. Akıllı bir tasarımda eşrefi mahlûka neden en iyisinin sunulmadığını merak etmiş olmalısınız. Nede olsa insan olmanın en önemli özelliği merak etmektir. Daha iyi bir tasarımın yapılma zevki insana mı bırakılmış dersiniz (böylece akıllı tasarımcılara zor zamanlarda kullanabilecekleri bir açıklama da vermiş oluyorum). Bütün bu değerli yiyeceklerimiz doğada bugünkü haliyle bulunmuyor. Doğal işletiminin hatalarla dolu olmasından dolayı, anormallikler, örneğin poliployidi dediğimiz kromozom çoğalmaları nedeniyle bugünkü sulu ve iri meyveler oluşuyor ya da doğaüstü gücün bizim için esirgediği kalıtsal kombinasyonları insanlar ıslah yoluyla kendisi yapıyor.15. Doğada birbiri için zararlı çok sayıda canlı vardır. Ancak bir canlıya zarar veren bir tür başka bir canlı için yararlı işler yapara; ya da tersi. Örneğin çoğumuzun irkildiği yılan, doğanın dengesinin sağlanması için en önemle canlı gruplarından biridir. Yılanlar olması kemiriciler doğadaki bütün dengeleri allak bullak eder. Dolayısıyla kimin yararlı kimin yararsız olduğuna doğanın işletim sistemi karar verir. Ancak bazı canlı türleri örneğin çiçek, veba, humma, sıtma ve benzer onlarcası, doğada başka hiçbir canlıya şu ya da bu şekilde yarar sağlamıyor. Biyolojik döngülerinin varsa ara kademelerinde de sağlamıyorlar. Bu canlılar sadece insanları hasta etmek için evrimleşmiştir (akıllı tasarımcılara göre yaratılmışlar). Bir doğaüstü güç bu kadar canlı türü içinde en çok değer verdiği ve eşrefi mahlûkat olarak kitaplarında tanımladığı bu türe bu kadar eziyeti, korkuyu ve ıstırabı neden reva görmüştür dersiniz? İnsanlık tarihinden bu yana milyarlarca insan (bunların içinde günahsız olarak bildiğimiz çocuklar) ömrünün baharını bile görmeden bu canlılarca öldürüldüler. Sizce böyle bir tasarım akıllı tasarım mıdır? Sus sus öyle söyleme –Tanrının işine karışılmaz- günahkâr olursun demeyle ne zamana kadar yorumlama yetinizi bastıracaksınız? Dünya tamamlanmamış bir tasarımdır-Van Gogh Bir anlamda dünya tamamlanmamış bir tasarım olduğu için evrim sürmektedir. Eğer her şey mükemmel tasarlanmış olsaydı, evrimleşmeye gerek duyulmayacaktı. Halbuki canlı daha iyi daha etkili daha uyumlu yapıyı kazanabilmek için 3.8 milyar yıldır daha yetkin olmayı aramaktadır, yani evrimleşme çabası içerisindedir. Bir zamanlar denizanalarının daha sonra balıkları daha sonra kurbağagillerin daha sonra sürüngenlerin daha sonra kuş ve memelilerin ortaya çıkışı bu tasarımı daha başarılı hale getirmedir. Tanrısal bir tasarımda ilk olarak basitini yapma, daha sonra kullana kullana daha etkilisini geliştirme gibi bir mantık olamaz. Bir taraftan Tanrının her şeye kadir olduğuna ve deneme yanılma yöntemiyle doğruyu bulma gibi bir savurganlığa gerek duymayacağına inanma, diğer taraftan da zaman içinde organizasyon bakımından gittikçe daha gelişmiş canlıların dünyada sırasıyla yer aldığını, organizasyon bakımından ilkel olanların zamanla ortadan kalkıp yerini daha gelişmiş organizmalar bıraktığını gözleyip de evrim fikrine inanmama, ancak akıllı tasarımcılara yakışır. Hemşerim ve yakın dostum olan ressam Prof. Dr. Zafer Gençaydın, bir gün bana biliyor musun Ali, Ortaçağda doğması ve Ortaçağ mantığında yaşaması gereken birçok insan, herhalde yanlış bir planlamadan dolayı ne yazık ki zamanımızda doğmuştur; doğmakla da kalmamış bir kısmı üniversitelerde hoca olmuşlar, dedi. Ah, Tanrı dünyayı yeniden yarataydı,Yaratırken de beni yanında tutaydı;Derdim: “Ya benim adımı sil defterinden,Ya da benim dilediğimce yarat dünyayı.” Ömer Hayyam Daha önce değindiğimiz gibi, evrim gelecek için plan kurmaz, tasarım yapmaz; o anda elde bulunan nesneleri ya da özellikleri yine o anda gereksinme duyulan şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz. İşte bu nedenle dünyada bu güne kadar yaşamış canlıların %96’sı yeni değişimlere çözüm yolu bulamadığı ya da daha önce başarılı bir şekilde geliştirdiği özellikleri ile devam edemediği için yaşam sahnesinden silinmiş, yerlerini daha başarılı olanlara bırakmışlardır. Burada dogmatikler ile evrimciler arasında düşünce bakımından çok derin bir fark vardır. Dogmatikler, bu cümleden dinciler, akıllı tasarımcılar ve benzerleri görüşte olanlar başarılının (güçlünün) tanımını farklı anlarlar. Bu nedenle de doğanın işletim sistemini bir türlü anlayamazlar. Hatta bir televizyon tartışmasında, bir biyoloji profesörü (o günlerde Biyologlar Derneğinin de başkanıydı), bana dönerek hoca hoca, ne diyorsun, bir bakteri bir filden daha güçlü mü ki daha başarılı diyorsun. Dogmatiklerin güçten kastı, kas gücü ile sınırlıdır. Esasında bu görüşleri sonlarını da hazırlamaktadır. Çünkü gücü, sosyal yaşamda silah, anarşi, terörizm, para ve kaba kuvvet olarak bilirler. Hâlbuki bir evrimci, kas ve kemik gücüne dayanmayan bilgi ve becerinin daha üstün olduğunu gözlemleri ile öğrenmiştir. Bir virüsün bir fili yok edeceğini bilir. Çünkü evrimsel seçilimde kaba güç değil (bu güç ancak aynı türün bireyleri arasında daha sağlıklıyı –erkek kavgaları gibi- seçme için kullanılan evrimsel bir yöntemdir), çevrenin koşullarını en iyi kullanan, kalıtsal materyalini gelecek kuşaklara en hızlı ve en çok aktaran (çoğalan) ve başka bir türü kullandığı ince yöntemlerle alt edenler ayakta kalır; yapamayanlar elenir. Akılsız tasarımın en akıllıca yönü, akılsız olmasıdır. Hiçbir zaman tasarlayarak bir şey oluşturmaz. Tek amacı vardır: Olabildiğince çok çeşit üretmek. Bunun için israftan kaçmaz, daha doğrusu onu israf olarak görmez. Bu nedenle bir balık özelliği birbirinden farklı bir milyon yumurta bırakır. Bir tanesinin ortama uyum yapması başarıdır. O seçmeyi doğaya bırakır; bu nedenle doğal seçilim diyoruz. Üç beş bireyin yaşayabileceği bir ortama milyonlarca yumurtanın bırakılmasının başka ne anlamı olabilirdi? Bu nedenle kural olarak doğada yavrularını eksiksiz ya da kayıpsız büyüten hiçbir canlı yoktur diyebiliriz. O zaman bugünkü koşullarda neredeyse insanların doğurdukları çocukların hepsi yaşıyor diyebilirsiniz. Tam bir Akıllı Tasarımcı mantığı. İyi de o çocukları yaşatmak için doğada hiç olmayan ilaçları ve aletleri kullanarak onları başarabiliyorsunuz. Yani Akıllı Tasarımcıların mantığıyla Tanrı tasarımına karşı gelerek, o tasarımın hatalarını ilaçlarla aletlerle düzelterek… Tasarım hatasına yer yoktur. Doğa mükemmel bir mühendis değildir; varsayılan bir doğaüstü güç gibi her şeyi bilen, planlayabilen ve geleceği gören bir işletim sistemi de değildir. Var olanı kullanarak o günkü koşullara en iyi uyumu yapacakları seçen bir sistemdir. Bu nedenle doğanın işletim sisteminde keşke şöyle olsaydı özlemini dile getiremeyiz. Çünkü istek, ancak akıllı bir varlık tarafından yerine getirilir; akılsız olan bir yapı tarafından değil. Doğanın aklı yoktur; onun aklı evrimin işleyiş tarzı ve yöntemidir. Bu nedenle, ancak doğaüstü güçlere dua ederiz. Geçmişte doğal güçlere de (güneşe, aya, yıldıza, fırtınaya, ateşe ve yüzlercesine) dua ettik; yararını görmediğimiz için hemen hemen büyük bir kısmımız bu yakarmayı bıraktık; bu sefer sekiz cihetten münezzeh (yani önde, arkada, sağda, solda, altta, üste, içte ve dışta bulunmayan) varlıklara yöneldik; dilerim bu sefer başarırız… Sesimizi ve yakarışlarımızı duyan olur… Doğadaki bazı mekanizmaları anlayabilmek için evrim kavramı ve bilgisi kaçınılmazdır (dogmatiklerin böyle bir bilgiye ihtiyaçları yoktur, olmayacaktır da) . Örneğin kendi kendinize sorabilirsiniz, niye bir balık bir milyon yumurta meydana getiriyor da ancak 3-5 tanesi erginliğe ulaşabiliyor. Bir insan doğal ortamda 10 çocuk doğuruyor da ancak 1-2 tanesi erginliğe ulaşabiliyor. Bu bir savurganlık, materyal, zaman ve imkân yitirilmesi değil midir? Akıllı tasarım en az malzeme ile en çok üretim yapmanın adıdır. Hâlbuki doğa bu bakımdan inanılmaz derecede savurgandır. İşte bunun neden böyle olması gerektiğini ancak evrim bilimi bize veriyor. Çünkü akıllı bir tasarımda, her şey önceden planlanır ve tasarlanır. Eğer Ay’a gidecekseniz ona göre bir uzay gemisi, Mars’a gidecekseniz ona göre “bir” uzay gemisi tasarlarsınız. Ne bir eksiği ne bir fazlası vardır ve bu yapılar akıllı tasarımlardır. Doğa bizim bildiğimiz akla sahip olmadığı için, sorunun altından kalkabilmek için (böyle bir ifade de doğru değildir; çünkü bu da bir aklı ifade eder; esasında öyle olduğu için bize akıllı gibi görünüyor) çeşit yaratma peşine düşmüştür. Bu nedenle bir canlı birbirinden özellikleri bakımından kademe kademe farklı olan çok sayıda döl üretme stratejisini geliştirmiştir. Bir milyon tohumdan biri ya da bir milyon yumurtadan sadece biri, daha önce hiç karşılaşılamayan bir ortamda başarılı özellikleri kombine etmiş ise, o ayakta kalır diğerleri elenir. Sadece insan için örnek verelim: Her çiftleşme sırasında 300 milyon sperm üretilir, kural olarak sadece biri döllenme işlevini yapar. Ancak bu spermlerin ve yumurtaların sayıca çokluğu aynı bir dişiden ve aynı bir erkekten özellikleri bakımından farklı 70 trilyon çocuğun meydana gelmesini sağlar. Bu incirde de böyledir, narda da böyledir, balıkta da öyledir. Bir önceki paragrafta verdiğimiz uzay gemisi örneğini buraya taşırsak, önceden amaçladığımız inilecek gök cismine göre gemi planlanmadığını, binlerce, milyonlarca gemi yapılıp uzaya gönderildiğini, bunlardan birinin ya da birkaçının bir rastlantı olarak bir gök cismine inmesi ve taşıdığı özellikleri açısından orada gelişebilecek durumda olması halinde, yeni bir uygarlığın, biyoloji açıdan yeni bir türün doğuşu gerçekleşir. Böyle bir çeşitlilik zorunluluktur; çünkü gelecekte neyle karşılaşacağını bilmeyen bir sistem, çıkış yolunu olasılıkları ve çeşidi artırma ile bulabilirdi. İşte doğanın bu savurganca görülen işletim sistemi, böyle bir nedenle korunmuştur. Ne kadar akıllı bir sistem olursa olsun, gelecekte ne olacağını tam kestiremez ve bu da yok olmayla sonlanabilir. Evrimcilerin düzensizlikler içindeki düzen dediği sistem; rastgele seçilim bu nedenle başarılı olmuştur. Bu, düşünemeyen bir sistem için mükemmel bir stratejidir. Akıllı tasarım olsaydı her ortama göre kalıtsal bir birleşim imal edilirdi. O zaman da niye bundan 600 milyon yıl önce balık, 500 milyon yıl önce sürüngen, 300 milyon yıl önce memeli, 50 milyon yıl önce insan dünyada bulunmuyordu diye sorarlar? Çünkü doğa rastgele, deneme-yanılma ile ancak bu kadarını başarabildi. Akıllı bir tasarım olmuş olsaydı, bu kadar zahmetli bir yolu aşmaya gerek olmayacaktı. Aksini doğada kanıtlayan tek bir örnek yoktur. En çok sevilen ya da değerli şey özene bezene tasarlanır ve dikkatle imal edilir. İnsan Tanrı gözünde en değerli varlık olmasına karşın en çok defekti (bozukluğu) olan tür gibi görünüyor. Şimdilik insan soyunda adı konmuş 9.000 çeşit kalıtsal hastalığın olduğu bilinmektedir. Bir fabrika düşünün ki, herkesi kapsayacak bir tasarım hatasından değil (onu daha sonra ele alacağız), sadece kişilere özgü tasarım ve imalat hatasından dolayı 9.000 çeşit bozukluğu olan ürün imal ediyorsunuz ve buna da akıllı tasarım diyorsunuz. Ya akıllılığı bilmiyorsunuz ya da tasarım ne demektir onu bilmiyorsunuz. Sıkıştığınızda takdiri ilahi diyorsunuz. Bunlara kullanıldığı zaman ortaya çıkan “yaşlanmaya bağlı hastalıklar” dâhil değildir. Bu hastalıkların sayısı büyük bir olasılıkla yeni tanımlarla birlikte on binlerin üzerindedir. En ilginç olanı da hekimlerin büyük bir kısmının akıllı tasarıma sıcak bakmalarıdır. Bu, kendi mesleklerini bile tanımıyorlar anlamına gelir. Doktorluk, kalıtsal ya da sonradan ortaya çıkan bir eksikliğin giderildiği meslektir. Çoğunluk da tasarım hatalarının düzeltilmeye çalışıldığı bir meslektir. Akıllı bir tasarımı, oransal olarak bir anlamda çok daha zayıf akıllı sayılabilecek birileri düzeltiyor. Ancak bütün bunları görebilmek belirli bir sezinlemeyi, bilgiyi ve en önemlisi sadece insana özgü olan yargılamayı gerektirir. İnsan doğası gereği ben merkezli (antroposentrik) olduğu için, her şeyi kendi çıkarı açısından değerlendirir. Ben yaşıyorsam ve özellikle de iyi yaşıyorsam, bu çok iyi kurulmuş tanrısal bir düzenin sonucunda olmaktadır. Ancak, henüz erginliğe ulaşmadan ölen kardeşlerim için böyle bir yargı geçerli değildir. Benim çocuklarımın eli yüzü düzgün ise, bu tanrısal akıllı bir tasarımın sonucudur; ancak komşunun bütün aileyi ömür boyu sıkıntıya sokan sakat doğmuş çocuğu “Tanrının benim halimden şükretmem için yapmış olduğu bir düzenlemedir”. Tanrısal tasarımda acaba bencillik ve narsistlik bir ön koşul mudur? Pekâlâ, bu kadar insan neden doğanın mükemmel bir düzen içinde işlediğine inanıyor ve her şeyin mükemmel olduğuna inanıyor? İlk olarak insanı insan yapan empati yoksunluğundan. Çünkü başkasının kusuru, eksikliği ve derdi onu ilgilendirmiyor. Bu kadar kusuru görmemezlikten geliyor. Ancak en önemlisi, normalin ve anormalin ne olduğunu tam bilmiyor, tanımlayamıyor. Örneğin diyor ki bak ne güzel yiyecekler verilmiş yememiz için. Şimdi ben soruyorum, ne verilseydi aynı şeyi söyleyecektiniz. Başkasını bilmiyorsun ki. Ne güzel renkleri görüyoruz diyorsunuz? Başka renkleri tanımıyorsunuz ki bu yargıya sarılıyorsunuz. Gördüğümüz renkler ışık bandının yüzde biri bile değil; akıllı bir tasarım olsaydı biz çok daha zengin renkleri görecektik. Ancak bir evrimci bizim sadece 3 rengi neden görebildiğimizi biliyor; bu nedenle daha fazlasını da talep etmiyor. Tanrısal bir tasarımda daha fazlasını talep edebilirdik. Ancak bir evrimci görme pigmentlerinin oluştuğu dönemde, güneş ışınlarının en yoğun mavi, yeşil, kırmızı bantlarda yeryüzüne ulaştığını bu nedenle böyle bir tasarımla yetindiğini biliyor. Eğer bu dönemde X, alfa, beta ışınlarıyla da karşılaşmış olsaydık, onları da tanıyacak sistemi geliştirebilirdik ve bugün çoğu ortamda ortaya çıkan radyasyonu önceden görebilirdik ya da onlara dayanıklı bir kalıtsal molekül geliştirebilirdik. Bu cümleden bir şeyi özellikle vurgulamak istiyorum: Her şeyi büyük bir tasarım olarak görenlerin, “bu da beklenen bir şeydir, şaşılacak nesi var ki” diyebilecekleri bir tasarımları var mıdır? Önünü ve arkasını, nedenini bilmediğiniz, nasıl oluştuğunu bilmediğiniz her şey, yani basitten karmaşıklığa doğru giden yolu yani evrimsel süreci tanımadığınız sürece, uca ulaşmış her şey sizin için mucizenin bir ürünü olarak görülecektir. Bu basit bir hesap makinesini bile anlayamayan birinin bilgisayarı anlamaya kalkışması kadar sığ bir yaklaşımdır. Akıllı tasarımcılar! Evrimde basitten karmaşıklığa giden yolu öğrenmediğiniz sürece sizin hiçbir şeyi anlama ve görme şansınız olamayacaktır. Ya öğrenin ya da yoldan çekilin. Eğer akıllı tasarımla yetinmeye kalkışsaydık ne uzaya gidebilirdik ne denizlerin dibine inebilirdik. Bizim tasarımımız, ancak dünyanın yüzeyinde ince bir katmanda yaşamaya izin veriyor. İnsanı değerli bir varlık olarak niteleyen yüce bir yaratıcı bizi evrensel bir karantinaya niye sokmuş dersiniz? Bütün bu ortamlarda yaşayabilecek bir donanım verebilirdi. Ancak insan bu dünyanın çocuğu olduğu için, evrimleşerek oluştuğu için ne bulduysa onunla yetinmiştir. Evrim geleceği tahmin edemez, göremez; ancak çeşidini artırarak olası bir uyumun gerçekleşmesini sağlayabilir. Bunu da her zaman başaramaz. Bazen de belirli bir dönem için başarır; ancak kazandırdığı özellikler değişen koşullar yüzünden o canlıyı çıkmaz sokağa sokarak ortadan kalkmasına neden olur. Ancak, en önemli yargı ve yanılgı, yine akıllı tasarımcılardan elde edilebilir. Çünkü akıllı tasarımcıların hemen hepsi bütün bu sistemin mükemmel olduğunu savunur ve dayandıkları inançlar ise insanı evrenin efendisi olarak kabul eder ve onları “Eşrefi Mahlûk”, yani mahlûkların efendisi olarak görür. Bu demektir ki, insan yapılabilinecek ve elde edilebilinecek her güzelliğe layıktır. Bu güzellikleri insandan esirgemek, eşrefi mahlûk dediğimiz varlığa kötülüktür. O zaman gelin sizinle bir biyolojik oyun oynayalım. İnsanı yeniden tasarlayalım. Sürekli kendini onarmayla ölümsüzlük olabilirdi; ancak o zaman dinsel öğretideki öbür dünya sorgulamasından kaçmak anlamına gelirdi ki, bu dinsel öğretilerin belini kırar. Çünkü dayandıkları en önemli dayanak öbür dünyadaki görülecek hesabın cezası ve ödülüdür. Bu güzel tasarımı tutucuların hiçbiri kabul etmeyeceği için rafa kaldıralım. Öyle bir tasarım yapalım ki, hem dini öğretiler zarar görmesin hem de herkesin işine yarasın. Bilindiği gibi zaman insan için en önemli değer olmuştur. Yapacağımız işi ne kadar hızlı ve doğru yaparsak o kadar başarılı olur, rahat ederiz. O zaman vücudumuza –bize inanılmaz katkılarda bulunacak- hiçbir zararı olmayacak yeni bir tasarım ekleyelim derim. Örneğin, doğada, en az 500 canlı türünde çok az enerji kullanarak (kullanılan enerjinin %99’u ışığa çevrilerek) ışık çıkarma mekanizması eşrefi mahlûk biz insanlara sorunsuz monte edilebilirdi. Keza doğada, örtülerle açılıp kapanabilen çok sayıda göz yapısı da bilinmektedir. O zaman bir insanın bir parmağının ucuna, açılıp kapanabilen, aynı zamanda bir ışık sistemiyle desteklenmiş, hatta büyültme ve küçültme yeteneği olan bir göz sistemi yerleştirilebilirdi. Bunun biyolojik olarak olmaması için hiçbir neden yoktur. Bugün sistemi yeniden tasarlama görevi en basit bilgisi olan bir biyologa verilse bile bunu rahatlıkla başarabilir. Böyle bir ek yapının insanoğluna kazandıracağı olanakları ve zamanı düşünebiliyor musunuz? Bir makineyi sökmeye gerek kalmadan inceleyebilirsiniz; bir doktor bu parmakla vücudun herhangi bir deliğinden girerek ışıklı ortamda dokuları ve yapıları inceleyebilir; bir mekâna girmeden anahtar deliğinden içeriyi inceleyebilirdiniz. Sayısız olanak kazandırır. İnsanoğlu bugünkünden çok daha rahat yaşardı, çok daha ilerlemiş olurdu. Nasıl oluyor da basit bir adam bu denli yararlı bir sistemi düşünebiliyor da, her şeyi bilen bir varlık, bu imkânları bizden esirgemiş oluyor? İnsan üzerinde buna benzer onlarca –yaşamı kolaylaştıran- düzeltme yapılabilir ve yeni tasarım monte edilebilir. Bence akıllı tasarımı savunanlar –onu bilgisiz, beceriksiz ve egoist duruma düşürerek- inandıkları Tanrıya hakaret etmiş oluyorlar. Kaş yapayım derken göz çıkarıyorlar. Eşrefi mahlûk ile sefil mahlûk arasındaki ince çizgiyi anlayamıyorlar. Bazen bu kadar kanıta karşın birilerinin hala akıllı tasarıma tutunmuş olmasını, doğrusu “yine de Tanrısal bir tasarım” olarak kabul etmeye mecbur kalıyorum; çünkü doğa bu kadar hasarlı düşünce sistemi olanları bu kadar uzun süre sahnede tutmazdı; tutamazdı; ancak doğaüstü bir gücün yardımı ile böyle bozuk bir sistem borusunu öttürmeye devam edebilirdi. ABD'de yaratılış düşüncesinin, 1987 yılında (Edwards-Aguillard davasında) Anayasa Mahkemesinin aldığı kararla devlet okullarında okutulması Anayasaya aykırı olduğu gerekçesiyle yasaklanmıştır. Bu dava sürecinde Nobel Ödülü kazanmış 72 bilim adamı, 17 eyalet bilim akademisi ve 7 bilimsel organizasyon yaratılışın dini dogmalardan ve inançlardan oluştuğunu ve bilimsel olmadığını belirten bir yazı yayınladılar. Yaratılış ve akıllı tasarım konusunda diretme özellikle Amerika’nın gericileri ve sömürge zihniyetinde olanlarca sürdürülüyor. Bizimkiler farkında mı dersiniz? Mütedein (kendi halinde inanç sahipleri) olanlar ilk bakışta “Yaratılış ve Akıllı Tasarım Yaklaşımları”na geleneksel görüşlerine ters düşmediği için karşı çıkmıyorlar. Ancak, Amerika’nın bu kirli amaçlı zihniyeti, bizim gibi ülkelerde, özellikle satılmış kişilerce organize ediliyor ve yaygınlaştırılıyor. Bu konuda Türkiye’de yapılan ve karşılıksız dağıtılan yayınların bedelinin 21 milyon TL (21 trilyon YTL) olduğu belirtiliyor. Kaynağı? Bilinmiyor… Emniyet araştırıyor mu? Haşaaa… Akıllı tasarım akımı, tarihin en cani ve kanlı katililerinden biri olarak tanımlayabileceğimiz Amerika Başkanı Bush’un müntesip olduğu (bağlı olduğu) Kalvinist Kilisenin öncülüğünde başlatılmıştır ve akıllı tasarım zırvası bizzat Bush tarafından defalarca telaffuz edilmiştir. Kilise, akıllı tasarımın ve yaratılışın okullarda okutulması için defalarca yüksek mahkemeye başvurmuştur. Diyelim ki böyle bir yaklaşımı kendi inançlarını güçlendirmek açısından bir amaç olarak görmüş olabilirler. Ancak aynı kilise (kiliseler birliği) Amerika Irak’a saldırırken şöyle bir karar aldı. İsa, hem Tanrıdır hem Tanrının oğludur ve hem de Mesih’tir. Bunu kabul etmeyenler, buna iman etmeyenler biidraktir (idrak ya da anlama yeteneği yoktur); biidrakler insani sayılmazlar ve biidraklar üzerinde operasyon (burada öldürme ya da belki tıbbi deney yapma bile olabilir) yapma insanlık suçu sayılmaz. Böylece Irak’taki katliam da meşru bir zemine oturtulmuş oluyordu. Ancak, bu yaklaşımdan “Akıllı-Akılsız Tasarım”la ilgili önemli bir sonuç da çıkarılabilir. Demek ki “Akıllı Tasarım”a inanmış Kalvinist Kilise, Tanrının kendi inançlarının dışındakileri (Müslümanlar, Budistler, Ateistler vd. hatta Hıristiyan olup da başka mezheplere mensup olanları bile) yani dünya nüfusunun yaklaşık beşte dördünün bozuk mal olarak çıkarıldığını kabul ediyor. Bir anlamda akılsız tasarımı, üretim bozukluğunu tescil ediyor. Böyle bir kabul, onların İsrail’deki, Gazze’deki, Irak’taki, Afganistan’daki, Vietnam’daki, Somali’deki katliamlara duyarsız kalmasını sağlıyor. Zaman zaman Müslüman ya da diğer bir dinden olup da bu Kalvinistlerin bu fikrine dört elle sarılanları gördüğümde, Kalvinist Kilisesinin “Biidrak” tespitine inanacağım geliyor… Akıllı tasarımın görünürde çok sinsi bir siyasi boyutu da var. Amerika’da ortaya çıkan bu eğilimin zaten tarihten gelen çok geçerli bir temeli vardı: Kadercilik. Kadercilik, geçici olarak insanları rahatlatmış; ancak uzun vadede çıkmaza sokmuş; ancak en önemlisi sömürü düzenine karşı çıkamayacak kadar gözlerini kör etmişti. Batının vahşi kapitalizminin sömürü düzeni kurabilmesi için, bu kadar köklü ve kapsamlı bir öğreti biçimi bulunamazdı. Son birkaç on yıl içerisinde sinsi organizatörler harekete geçti; ülkesindeki akıllı tasarımcılar “kurulu düzene karşı çıkmayan munis vatandaşlar olacak” sömürülecek ülkelerin vatandaşları da hem meşgul edilecek hem de kolayca güdülebilecekti. İşbirlikçiler dünden hazırdı. Bu ülkelerde dini inançları bugüne kadar sömürü aracı olarak kullanan sayısız insan vardı. Bunların, oynanan oyunu fark etmesi de mümkün değildi; çünkü kul kültürü ile yetişmişlerdi; söylenene tartışmadan iman etmeleri başından beri inandırılmıştı. Böylece dünyada ne olup bitiyordan haberi olmayan, aklını öbür dünya ile bozmuş, bilimsel gelişmeleri zındıklık olarak tanımlayan, lidere körü körüne bağlı bir kesim yaratıldı. Daha doğrusu böyle bir kesim vardı, sayıları artırıldı. Sömürü düzeni tarihtekinin aksine bu sefer kansız olarak kuruldu. Dönün bir dünyaya bakın, öbür dünya işlerine daha çok zaman ayıran ülkelerin hepsi açık ya da kapalı sömürgedir. Bir toplumun hepsinin aydın olması arzulanır; ancak bu şimdilik hayal gibi görünüyor. O zaman bilimi rehber yapmış, yaratıcı, kurulu düzeni tenkit edebilen, yeni seçenekler sunabilen, toplumu geleceği hazırlayabilen insanların öne geçirilmesi yavaş da olsa yine de bir gelişmenin lokomotifi olabilir. İşte bu lokomotiflerin de önünün kesilmesi hem ülke içerisinde inançları sömüren zümre için hem de ülke dışında yağmalamaya, sömürmeye ant içmiş ülkelerin geleceği için gerekir. Işığını ve yol göstericisini yitirmiş bir toplumun sindirilmesi, sömürülmesi ve yönlendirilmesi zor olmayacaktır. İşte bu nedenle Türkiye ve Türkiye gibi ülkelerde, evrim kavramını özümsemiş ve onu, topluma yolunu bulması için ışık gibi tutacak insanları saf dışına atmak gerekirdi; onu da yeni kuşak gericiler, yani Akıllı Tasarımcılar yapıyor. “Eğer Akıllı Tasarım” olsaydı, “Akıllı Tasarımcılar” olmayacaktı. Prof. Dr. Ali Demirsoy Hacettepe Üniversitesi Kaynak: www.biyologlar.org.tr

http://www.biyologlar.com/akilli-tasarim-evrimsel-tasarim

Halk Sağlığı Alanında Haşerelere Karşı İlaçlama Usul ve Esasları Hakkında Yönetmelik

YÖNETMELİK Sağlık Bakanlığından Halk Sağlığı Alanında Haşerelere Karşı İlaçlama Usul ve Esasları Hakkında Yönetmelik BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1- Bu Yönetmelik, halk sağlığını ve huzurunu bozan zararlılara karşı insektisit, rodentisit, mollusisit, gibi maddeler kullanarak mücadele etmek isteyen gerçek ve tüzel kişilere ait işyerlerinin çalışma usûl ve esasları ile resmi kurum ve kuruluşların ilaçlama usûl ve esaslarını belirlemek suretiyle halk sağlığının korunması amacıyla hazırlanmıştır. Kapsam Madde 2- Bu Yönetmelik, halk sağlığı alanında insektisit, rodentisit, mollusisit gibi maddeler kullanılarak zararlılar ile mücadele etmek isteyen gerçek, tüzel kişiler ve bunların işyerleri ile resmi kurum ve kuruluşların izin alma şekil ve şartlarını, çalışma usul ve esaslarını, denetimlerini ve çalışan personeli kapsar. Dayanak Madde 3- Bu Yönetmelik, 181 sayılı Sağlık Bakanlığı'nın Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararname'nin 43 üncü maddesine dayanılarak hazırlanmıştır. Tanımlar Madde 4- Bu Yönetmelikte geçen; Bakanlık: Sağlık Bakanlığını, Müdürlük: İl Sağlık Müdürlüğünü, Sağlık teşkilatı: Sağlık Bakanlığı merkez ve taşra hizmet birimlerini, Halk sağlığı alanı: Ev, otel, okul, hastane, işyeri, üretim yeri, fabrika benzeri; halkın yemesi, içmesi, eğlenmesi, spor yapması gibi insan yerleşim ve çalışma yerleri ve gündelik yaşamıyla ilgili fiziki mekanlar ve çevreyi, Zararlı organizma: İnsanlara, insan faaliyetlerine veya insanların kullandıkları veya ürettikleri ürünlere; hayvanlara yada çevreye yönelik istenmeyen veya zararlı etkileri olan her türlü organizmayı, Biyosidal ürün: Bir veya birden fazla aktif madde içeren, kullanıma hazır halde satışa sunulmuş, kimyasal veya biyolojik açıdan herhangi bir hedef organizma üzerinde kontrol edici etki gösteren veya hareketini kısıtlayan, zararsız kılan, yok eden aktif madde ve preparatları, İnsektisit: Haşere mücadelesinde kullanılan biyosidal ürünü, Rodentisit: Fare, sıçan ve diğer kemiricileri kontrol etmek için kullanılan biyosidal ürünleri, Mollusisit: Sümüklüböcek gibi yumuşakçaları kontrol etmek için kullanılan biyosidal ürünleri, Kaçırıcı (Repellent): Doğrudan veya dolaylı olarak insan yada hayvan hijyenine yönelik olanlarda dahil olmak üzere, pire gibi omurgasız yada kuş gibi omurgalı zararlı organizmaları ortamdan uzaklaştırmak için kullanılan biyosidal ürünleri, İlaçlama: Halk Sağlığı alanında kullanılan İnsektisit, rodentisit ve mollusisit gibi maddelerle yapılan zararlı mücadelesini, Alet ve cihaz: İlaçlamada kullanılan nakil araçları da dahil olmak üzere motorlu, motorsuz, sabit veya seyyar her çeşit alet, araç ve makine ile bunların çalıştırılması için gerekli malzemeleri, Gereç: İlaç hazırlama ve ilaçlamada kullanılan su kapları, içerisinde ilaç hazırlama kapları, ilaç nakil kapları, su tulumbaları, çadır, örtü, koruyucu elbiseler, maskeler, lastik veya kauçuk eldivenler, çizmeler, gözlük siperler gibi koruyucu malzemeyi, İzin: Zararlılara karşı insektisit, rodentisit, mollusisit ve benzeri maddeleri kullanarak mücadele etmek isteyenlere verilen belgeyi, ifade eder. İKİNCİ BÖLÜM İzin Alma ve Başvuru Şartları İzin alma zorunluluğu Madde 5- Bakanlık tarafından uzman nezaretinde kullanılması şartıyla izin verilen; insektisit, rodentisit veya mollusisit kullanarak zararlılar ile mücadele etmek isteyen gerçek ve tüzel kişilerin, 6 ncı maddede belirtilen bilgi ve belgelerle faaliyet gösterecekleri ilin müdürlüğüne müracaat ederek izin alması zorunludur. Başvuru için gereken belgeler Madde 6- Zararlılara karşı insektisit, rodentisit ve mollusisit kullanarak mücadele yapmak isteyen başvuru sahipleri bizzat veya mesul müdür vasıtasıyla müdürlüğe bir dilekçe ile başvurmaları gerekir. Dilekçe eki dosyada; a) Depolama yerine ait Gayri Sıhhi Müesseseler Yönetmenliğine göre alınacak, ikinci Sınıf Gayri Sıhhi Müessese Ruhsatı’nın bir örneği, b) Mesûl müdür sözleşmesi ve Bakanlıkça belirlenen eğitime katıldığına dair sertifika, c) Mesûl müdüre ait diplomanın noter onaylı örneği veya geçici mezuniyet belgesi, d) Sağlık veya yardımcı sağlık personeli sözleşmesinin ve diplomasının noter onaylı örneği veya geçici mezuniyet belgesi, e) Sağlık Bakanlığının tavsiye ve direktiflerine uyacağına ve Bakanlıkça ruhsat verilmiş insektisit, rodentisit, mollusisit ve benzeri haricinde kimyasal maddeleri kullanmayacağına ve tarım alanında kullanılan pestisitleri kullanmayacağına dair, mesul müdür veya işyeri sahibi tarafından verilecek taahhütname, f) Uygulanacak ilaçlama yöntemlerini gösterir belge, g) Kullanılacak ilaçların kimyasal grupları ve galenik şekilleri hakkında açıklama raporu, h) İlaçlamada kullanılacak alet, cihaz ve gereçlerin cins, sayı ve özelliklerini gösterir belge, ı) Ekip sayısı ve ekip elemanlarının nitelikleri hakkında belge, j) İlaç hazırlama ve ilaçlama anında alınacak koruyucu sağlık tedbirlerini açıklayan rapor, k) İlkyardım dolabı, ilkyardım çantaları ve içerikleri hakkında açıklama raporu, bulundurulur. Başvurunun değerlendirilmesi Madde 7- Bu Yönetmeliğin 6 ncı maddesine göre yapılan başvuru dosya üzerinde incelenir, başvuru dosyasının bu Yönetmeliğe uygun olması durumunda Müdürlük elemanları tarafından işyeri 10 iş günü içinde yerinde incelenerek sonuçlandırılır. İnceleme sonucunda bu Yönetmelik hükümlerine uygunluğu tespit edilen yerlere Ek-2’deki izin belgesi ve Ek-3’teki mesul müdürlük belgesinden ikişer nüsha düzenlenir. Düzenlenen bu belgeler ve başvuru dosyasının bir örneği Müdürlükte saklanır, diğer nüshaları mesûl müdüre imza karşılığında verilir ve işyerinin görünen bir yerine asılır. İzin verilen firma adı, adresi ve iletişim bilgileri yazılı olarak Bakanlığa bildirilir. Bu Yönetmelik kapsamındaki mevcut bir işyerine ait şube niteliğinde ikinci bir yer açılmak istenmesi veya faaliyet gösterdiği adresin değişmesi durumunda, 6 ncı maddede belirtilen evraklar ile başvuru aynen tekrarlanır. ÜÇÜNCÜ BÖLÜM Personel ve Fiziki Altyapı Standartları Mesûl müdür Madde 8- İşyeri faaliyette olduğu sürelerde bir mesûl müdür bulunması zorunludur. Mesûl müdür sadece bir işyerinde mesûl müdürlük görevini üstlenebilir. Mesûl müdürlük için Hekim, Veteriner Hekim, Eczacı, Tıbbi Teknolog, Ziraat Mühendisi, Biyolog unvanına sahip veya entomoloji, toksikoloji alanında yüksek lisans, çevre sağlığı ve toplum sağlığı bölümü en az önlisans diplomasına sahip olunması zorunludur. Bu diplomaya sahip kişiler Bakanlık tarafından belirlenecek eğitim programına katılarak sertifika almak zorundadırlar. Mesûl müdür, idari işlerden bizzat, diğer işlemlerden ise ekip sorumluları ile birlikte sorumludur. Mesûl müdürün idari işlerinden, işleyişten ve sunulan hizmetin gerektirdiği alt yapı olanaklarının sağlanmasından işyeri sahipleri de bizzat sorumludurlar. Mesûl müdürün görevleri şunlardır: a) Açılış ve işleyiş ile ilgili her türlü izin işlemlerini yürütmek, b) İşleyişte tanımlanmış alt yapı ve hizmet kalite standartlarının korunmasını ve sürdürülmesini sağlamak, c) Ekip sorumlularını eğitmek, İşyerinin işleyişinde alt yapı, personel, malzeme yapısında meydana gelen ve bu Yönetmelikte bildirimi zorunlu kılınan bütün değişiklikleri zamanında Müdürlüğe bildirmek, d) Görevine son verilen veya ayrılan personelin izin belgelerini en geç bir hafta içerisinde Müdürlüğe iade etmek, e) Çalışma saatleri içerisinde hizmetlerini düzenli ve sürekli olarak yürütmek ve yürütülmesini sağlamak, f) Tanımlanan düzenlemelerin ilgililer tarafından yerine getirilmesini sağlamak üzere gerekli iç denetimleri yürütmek, g) Denetim sırasında yetkililere gereken bilgi ve belgeleri sunmak ve denetime yardımcı olmak, h) Atıkların usulüne uygun olarak imha edilmesini sağlamak, i) İşyerinde bulundurulması zorunlu malzemeleri kontrol ve temin etmek, j) Çalışan personelin gerekli görülen tetkiklerini ve muayenelerini periyodik olarak yaptırmak, k) Sağlık mevzuatında belirtilen ve yetkililerce tanımlanacak diğer görevleri yerine getirmek. Mesûl müdür, işyerinin işleyişi ve denetimi ile ilgili her türlü işleminde Müdürlük ve Bakanlığın birinci derecede muhatabıdır. Mesûl müdür, işyerindeki görevini sona erdirmek istediğinde veya mesûl müdürün görevine son verilmek istendiğinde, bu durumun işyeri sahibi veya mesûl müdürü tarafından Müdürlüğe bir hafta öncesinden bildirilmesi şarttır. Ekip sorumluları Madde 9- İlaçlama faaliyetini yürütecek ekipte sorumlu olarak en az bir Tıbbi Teknolog, Sağlık Memuru (Çevre Sağlığı veya Toplum Sağlığı), Hemşire, kimya teknisyeni veya ziraat teknisyeni bulunması zorunludur. Ekip sorumlusu, ilaçlama faaliyeti için gerekli hazırlıkların yapılması ve her türlü güvenlik tedbirinin alınmasından, atıkların düzenli toplanmasından sorumludur. Yapılan her ilaçlama için Ek-1 deki formu tanzim ederek bir nüshasını ilaçlama yapılan yerin sahibi/yetkilisine verilmesinden sorumludur. İşleyişte görülen aksaklıkları ve uygulamada oluşabilecek kazaları, zehirlenmeleri mesûl müdüre ve en yakın sağlık kuruluşuna bildirmekten sorumludur. Diğer personel Madde 10- İlaçlama işlerinde çalıştırılacak diğer personel, bu Yönetmeliğin 17 nci maddesinde belirtilen hususlara aykırı olmayan ve 18 inci maddede belirtilen sağlık raporuna sahip kişilerden oluşur. Bu Yönetmelikte belirtilen kıyafet ve donanımı çalışan bütün personel iş esnasında amacına ve talimatlara uygun olarak kullanmak zorundadır. Bina durumu Madde 11- İşyeri, betonarme binalarda kurulur, ahşap ise müstakil bina olması zorunludur. İşyeri zemini düz, pürüzsüz, dezenfeksiyona uygun ve kolayca temizlenebilir/yıkanabilir özellikte döşenmiş olmalıdır. Odalar arasındaki bölümler tabandan tavana kadar beton, alçıpan, sunta-lam ve benzeri malzemelerle yapılmış olmalıdır. İşyeri binasında ilgili mevzuat uyarınca yangına karşı güvenlik önlemleri alınır. Mesken olarak kullanılan binaların bir bölümünde kurulmak istenmesi durumunda, ilgili mevzuat hükümlerindeki düzenlemelerin yerine getirilmesi sorumluluğu işyeri sahip ve mesûl müdürüne aittir. İşyerinin bürosu ayrı yerde olabilir. Bu durumda, büroda ilaç ve ilaçlama ile ilgili araç gereç ve malzeme bulundurulamaz. İşyerinde şebekeye bağlı akar su bulunur. İşyeri, en az atık bırakan yakıt kullanılarak, uygun bir sistemle ısıtılır, ancak kimyasalların bulunduğu oda ve depo ısıtılmaz. İşyerinde pis su tesisatı bulunmalı, zeminde kanalizasyona, fosseptiğe veya arıtım sistemine bağlı ızgaralı ve sifonlu yer süzgeci bulunur. İşyeri tabii olarak sürekli havalandırıla bilinmeli; pencereler zeminden yüksekte planlanmalı ve demir parmaklıkla korunmuş olmalı, tabii havalandırmanın mümkün olmadığı durumlarda mekanik havalandırma sistemi bulunur. İşyerinin tüm mekanları amacına uygun aydınlatılır. Bulundurulması zorunlu asgari birimler Madde 12- İşyerinde aşağıda belirtilen nitelikleri haiz bölümler bulunur. a) Büro, (ayrı yerde olabilir-aynı yerde ise ilaç hazırlama odasından uzakta olmalıdır.) b) İlaç ve malzeme deposu, c) Çalışanlar için soyunma odası, d) Yeterli sayıda tuvalet ve duş, e) Malzeme temizleme ve hazırlık odası. İzin belgesi alındıktan sonra binada yapılan esasa ilişkin değişiklikler Müdürlüğe bildirilir. Alet, cihaz ve gereçler Madde 13- İlaçlama izni verilebilmesi için, bir işyerinde Ek-4’de belirtilen alet, cihaz ve gereçlerin bulunması zorunludur. DÖRDÜNCÜ BÖLÜM Çalışma Usul ve Esasları Her ekip için ilkyardım çantası zorunluluğu Madde 14-Kaza ve zehirlenmelere karşı kullanılmak üzere her ekibe, ekibin kullandığı ilaçlara göre spesifik antidotları ile gerekli diğer ilkyardım malzemesi bulunan ilkyardım çantasını temin etmekten, kullanılan veya miadı dolanların ikmalini yapmaktan ve bu malzemelerin kullanımına ait detaylı talimatların hazırlanarak ekiplere dağıtımından mesul müdür ve işyeri sahibi ayrı ayrı sorumludur. Kaza ve zehirlenmelerde sorumluluk Madde 15-Her ekip göreve giderken, kaza ve zehirlenmelerde kullanılmak üzere ilkyardım çantasını beraberinde götürmek zorundadır. Kaza ve zehirlenmelere karşı gerekli tedbirlerin aldırılmasından herhangi bir kaza ve zehirlenme halinde ilkyardımın yaptırılmasından ve bir tedavi kuruluşuna sevkinden ekip sorumlusu, mesûl müdür ve işyeri sahibi ayrı ayrı sorumludur. Ruhsatlı ilaçların kullanılması Madde 16-Halk sağlığını ve huzurunu bozan zararlılara karşı kullanılacak ilaçların Bakanlıktan imal veya ithal izninin alınmış olması zorunludur. Her ne suretle olursa olsun izinsiz ürünler veya diğer kimyasal maddeler bu amaçla kullanılamaz. İlaçların muhafazasında ve taşınmasında beşeri ilaç veya zirai mücadele ilaçlarının kapları ve ambalajları kullanılamaz. Çalışma süresi ve şartları Madde 17- İlaç hazırlama ve ilaçlama işlerinde; hamile kadınlar, 18 yaşından küçük çocuklar, hasta ve hastalıklı olanlar ile alkolikler çalıştırılamaz. Fiilen ilaç hazırlama ve ilaçlama işlerinde çalışanlar günde devamlı olarak 3, toplam 6 saatten fazla çalıştırılamazlar. Çalışma esnasında iş kıyafetlerinin ve koruyucu malzemelerin amacına ve talimatına uygun olarak kullanılması zorunludur. İlaç hazırlama ve ilaçlama anında herhangi bir şey yenilmesi ve içilmesi yasaktır. Çalışanların sağlık kontrolleri Madde 18- İlaç hazırlama ve ilaçlama işlerinde fiilen çalışacak olanlar işe başlamadan önce bir sağlık raporu alırlar. Bu raporda; kronik solunum yolu rahatsızlıkları (astım gibi), alerjik rahatsızlıklar, cilt hastalıkları ve nörolojik rahatsızlıklarının bulunup bulunmadığı ile kanda cholinesteras enzim seviyesinin ölçülmesi ve sağlık kontrollerinin yapılarak bu işi yapmaya uygun olduklarının belirlenmesi zorunludur. İşçilerin bu işte çalışmaları süresince de 3 ayda bir genel sağlık kontrolünden geçirilerek nörolojik muayenelerinin yapılması ve kanlarında cholinesteras enzim seviyelerinin ölçülmesi gerekir. Yapılan muayene ve ölçümler sonucunda sağlığının bozuk olduğu tespit edilenler ile bozulma eğilimi gösterenler, gerekli tedavileri yapılıp sağlıklarına kavuşuncaya kadar ilaç hazırlama ve ilaçlama işlerinde çalıştırılamazlar. İşyerinde tutulacak kayıt ve raporlar Madde 19- İşyerinde, mesûl müdür, ekip sorumlusu ile ilaç hazırlama ve ilaçlama işlerinde çalışan işçiler için ayrı ayrı birer dosya tutulur. Bu dosyalarda sözleşmeli personel için sözleşme sureti ve unvanlarını gösterir belge ile dosya sahiplerinin fotoğraflı nüfus cüzdanı sureti, işçilerin göreve başlarken bu işte çalışmasında sakınca olmadığını gösterir sağlık raporu ve periyodik sağlık kontrollerine ait raporlar muhafaza edilecektir. Ayrıca ilaçlama yapılan yerler, ilaçlama tarihleri, kullanılan ilaçlar, ilaçlamayı yapanlar, varsa meydana gelen kaza ve zehirlenmeler ile ilgili Ek-1 de belirtilen formun doldurularak ayrı bir dosyada muhafaza edilir ve istenildiğinde denetim elemanlarının incelenmesine açık tutulur. İşi bırakanların durumu bildirmesi Madde 20-İlaçlama izni alıp da herhangi bir nedenle işi bırakan işyeri sahibi 15 gün içinde durumu Müdürlüğe bildirmekle yükümlüdür. Bu iş yerinin izni iptal edilir ve Bakanlığa bilgi verilir. Havadan ilaçlama Madde 21-Meskun mahallerin zararlılara karşı havadan ilaçlanması yasaktır. Ancak afet gibi gerekli durumlarda Bakanlıktan izin alınması kaydıyla havadan ilaçlama yapılabilir. BEŞİNCİ BÖLÜM Çeşitli Hükümler İznin geçerliliğini kaybetmesi Madde 22-Verilen izin belgesi; üzerinde yazılı işyeri, şahıs ve ilaçlama şekli için geçerlidir. Bunlardan herhangi birinin değişmesi halinde geçerliliğini kaybeder. Bu durumlarda; a) İşyerinin değişmesi halinde yeni işyeri için gayrı sıhhi müessese ruhsatının alınarak izin belgesinde gerekli düzeltmenin yaptırılması için müdürlüğe başvurulur. b) İzin belgesinde yazılı şahsın aynı yerde, aynı işi yapmak ve aynı personelle çalışmak üzere işi devretmesi halinde, işi devir alan şahıs devir işlemine ait belgeler ve taahhütname ile beraber Müdürlüğe müracaat ederek izin belgesinde gerekli düzeltmenin yapılmasını talep eder. c) İşçi ve işyerini devir alan kişi yeni bir ekiple faaliyetini sürdürmek isterse, devir işlemine ait belge ve taahhütnameye ilave olarak mesûl müdür sözleşmesi ile diplomasının veya yerine geçebilecek belgenin noter tasdikli birer örneği, sağlık veya yardımcı sağlık personeli sözleşmesi ile diplomasının veya yerine geçebilecek belgenin noter tasdikli birer örneği ile müdürlüğe başvurur. d) İlaçlama şeklinde değişiklik yapılmak istenmesi halinde ise tatbik edilecek ilaçlama yöntemleri, ilaçlamada kullanılacak alet, cihaz ve gereçlerin cins ve sayıları, ilaçlama anında alınacak önlemler kullanılacak ilaçlar konusunda bilgiler ve taahhütname ile müdürlüğe başvurulur. e) İşyerinin konumu, sahibi, yapılan iş ve kullanılan ilaçlama şeklinde bir değişiklik olmamakla birlikte, cadde veya sokak isminin veya bina numarasının değişmesi gibi nedenlerle adresinde bir değişiklik olması halinde değişikliklerle ilgili bilgi ve belgeler ile beraber, gerekli düzeltmeyi yaptırmak üzere müdürlüğe başvurulur. Değişiklik tarihinden itibaren en geç 15 gün içinde bu başvuruların dilekçe ile yapılması, değişikliklerle ilgili bilgi ve belgelerin 6’ncı maddeye uygun olması ve izin belgesinin aslının da dilekçeye eklenmesi gerekir. İzin belgesinin kaybolması veya tahrip olması Madde 23-İzin belgesinin herhangi bir nedenle kaybolması veya okunmayacak ve yanlış anlamalara neden olacak şekilde tahrip olması halinde yeniden izin belgesi alınması gerekir. Bunun için izin belgesinin kaybolması halinde kayıp ilanı verilmiş gazetenin, tahrip olması halinde ise bozulan izin belgesinin bir dilekçeye eklenerek müdürlüğe başvurulması gerekir. Bu durumda müdürlükçe yeniden, eski tarih ve sayısı ile, gerekli açıklama da yapılarak izin belgesi tanzim edilir. İznin iptal edilmesi Madde 24-Verilen iznin dışında faaliyet gösteren, bu Yönetmelik hükümlerine veya sağlık teşkilatının düzenleme ve yasaklarının aksine hareket edenler yazılı olarak ikaz edilir. İkaza rağmen durumunu düzeltmeyen veya direktiflere uymamakta ısrar edenlerin izinleri, müdürlük tarafından en az 6 ay olmak üzere geçici veya kesin olarak iptal edilir. Ayrıca sorumlular hakkında yasal işlem yapılır. İznin iptal edilmesi durumunda Bakanlığa bilgi verilir. İzinsiz olarak faaliyet gösterenler Madde 25-Bu Yönetmelik hükümlerine göre gerekli izni almadan faaliyet gösterenler veya 22 inci maddede belirtilen nedenlerle, iznin geçerliliğini kaybettiği halde süresi içinde müracaatlarını yaparak izin belgesinde gerekli düzeltmeyi yaptırmayanların işyerleri kapatılarak faaliyetleri durdurulur. Aynı zamanda sorumlular hakkında genel hükümlere göre yasal işlem yapılır. Denetim Madde 26- İlaçlama izni alanların işyerleri, ilaçlama ekipleri sağlık teşkilatının daimi denetimi altındadır. Sağlık teşkilatınca görevlendirilen ekipler işyerini, ekipleri, kullandıkları alet, cihaz ve gereçleri, ilaçlama işlemlerini denetleyebilir, gerekli gördüklerinde kullanılan ilaçlardan numune alabilirler. İş sahibi, mesûl müdür ve ekip sorumluları denetimlerde gerekli kolaylığı göstermek ve yapılan uyarılara uymak zorundadırlar. Yapılan denetimde, verilen izin dışında faaliyet gösterildiğinin veya usulüne uygun ilaçlama yapılmadığının tespiti veya yapılan uyarılara uyulmaması halinde görevli ekip ilaçlama faaliyetini anında ve en çok 48 saat süre ile durdurmaya yetkilidir. Ancak bu kararın en geç 48 saat içinde müdürlük tarafından onaylanması gerekmektedir. Müdürlüğün onayı ile faaliyeti durdurma süresi, eksikliklerin tamamlanıp halk sağlığına zararsız hale getirilinceye kadar uzatılabilir. İstisnalar Madde 27- Belediyeler dahil olmak üzere kamu kurum ve kuruluşları sadece kendi işyerlerinin ilaçlama faaliyetleri için bu Yönetmelikte öngörülen izin işlemlerinden müstesnadır. Ancak bu Yönetmelikte belirtilen diğer hükümlere uymak ve her ilaçlama işleminden önce kullanılacak ilaçların isimleri ve ilaçlama tarihlerini Müdürlüğe bildirmek zorundadırlar. Düzenleme yetkisi Madde 28- Bakanlık bu Yönetmelik hükümlerinin uygulamasına yönelik alt düzenlemeleri yapmaya yetkilidir. Bu Yönetmelik doğrultusunda; Uluslararası giriş çıkış yapan hava, kara ve deniz araçlarının gümrük alanlarında alınacak tedbirler ve işlemlerin usul ve esasları Hudut ve Sahiller Genel Müdürlüğünün çıkaracağı yönerge ile belirlenir. Cezai hükümler Madde 29-Bu Yönetmelik hükümlerine uymayanlar hakkında, Türk Ceza Kanunu’ nun ilgili hükümlerine göre işlem yapılır. ALTINCI BÖLÜM Geçici ve Son Hükümler Geçici Madde 1- Bu Yönetmeliğin yayımından önce faaliyete geçmiş ilaçlama işyerleri; 6 ay içinde işyerlerini bu Yönetmeliğe uygun hale getirmek zorundadırlar. Yürürlük Madde 30- Bu Yönetmelik Resmi Gazete’de yayımı tarihinde yürürlüğe girer. Yürütme Madde 31- Bu Yönetmelik hükümlerini Sağlık Bakanı yürütür. EK-1. HALK SAĞLIĞI ALANINDA HAŞERELERLE MÜCADELE İŞLEM FORMU İLAÇLAMAYI YAPANA AİT BİLGİLER -İlaçlamayı yapan firma adı : -Açık adresi : -Mesûl müdür : -Telefon/faks numarası : -Müdürlük izin tarih ve sayısı : -İlaçlama yapan ekip sorumlusu : KULLANILAN İLACA AİT BİLGİLER: -Kullanılan ilacın ticari adı : -İlacın temin edildiği yer : -İlacın uygulama şekli : -İlacın aktif maddesi : -İlacın antidotu : -İlaç ambalajının miktarı (kg/litre) : İLAÇLAMA YAPILAN YER HAKKINDA BİLGİLER -İlaçlama yapılan yerin açık adresi : -İlaçlama yapılan haşere türü/adı : -Uygulama tarihi ve saati : -Mesken/işyeri vb. : -İşyeri ise çalışan sayısı : -Mesken ise daire sayısı : -İlaçlama yapılan yerin alanı : Ekip Sorumlusu İlaçlama Yapılan Yerin İmza Sorumlusu/Yetkilisi-İmza Not: ZEHİRLENME DURUMLARINDA GEREKTİĞİNDE ZEHİR DANIŞMA MERKEZİNİN ÜCRETSİZ 0 800 314 79 00 NOLU TELEFONUNU ARAYINIZ. Bu form iki nüsha olarak hazırlanır ve bir nüshası ilaçlama yapılan yerin yetkililerine/sahibine verilmesi zorunludur. EK - 2 T.C. ................................... VALİLİĞİ İL SAĞLIK MÜDÜRLÜĞÜ Belge No: Tarih: HALK SAĞLIĞI ALANINDA HAŞERELERE KARŞI İLAÇ UYGULAMA İZİN BELGESİ İLAÇLAMA KURULUŞUNUN ADI : TÜRÜ : ADRESİ ve TEL : SAHİBİ (SAHİPLERİ) ADI ve SOYADI : ÇALIŞMA SAATLERİ : EKİP SAYISI : Yukarıda adı ve adresi belirtilen İlaçlama kuruluşunun Mesûl Müdür ...................................................... sorumluluğunda faaliyet göstermesi İl Sağlık Müdürlüğünce uygun görülmüştür. VALİ veya adına İL SAĞLIK MÜDÜRÜ EK - 3 T.C. ................................... VALİLİĞİ İL SAĞLIK MÜDÜRLÜĞÜ Belge No: Tarih: MESÛL MÜDÜRLÜK BELGESİ MESÛL MÜDÜRÜN ADI ve SOYADI : UNVANI : Foto BABA ADI : DOĞUM YERİ : DOĞUM TARİHİ : Mezun Olduğu Fakülte : Mezuniyet Tarihi : Diploma No : Uzmanlık Diploması No (var ise) : GÖREV YAPACAĞI KURULUŞUN ADI : ADRESİ : Yukarıda açık kimliği ve mesleği yazılı olan şahıs ..................................................... isimli ilaçlama kuruluşunda mesûl müdürlük görevini yürütmesi İl Sağlık Müdürlüğünce uygun görülmüştür. İL SAĞLIK MÜDÜRÜ EK - 4 İLAÇ UYGULAMA İŞYERLERİNDE BULUNDURULMASI ZORUNLU EKİPMAN LİSTESİ 1-İşyerinde Asgari Bulundurulması Gerekli Alet ve Cihaz a) Pulverizatör (sırt tipi) 2 adet b) ULV cihazı 1 adet c) FOG cihazı 1 adet d) Sıcak su sistemi (Banyo bölümüne bağlı) 1 adet e) Çamaşır makinası 1 adet f) Kilitli dolap 1 adet g) Telefon 1 adet 2-İşyerlerinde Asgari Bulundurulması Gerekli Malzeme a) Ecza dolabı komple b) İlk yardım çantası 1 adet c) Gaz maskesi 2 adet d) Yangın söndürücüsü 1 adet e) Antidotlar- Atropin f) Eldiven 3 çift g) Baret 2 adet h) Çizme 2 çift ı) Koruyucu gözlük 5 adet i) Terazi 1 adet j) Toz maskesi 2 çift k) El feneri 1 adet l) Mezür ölçülü silindir 2 adet m) Malzeme çantası 1 adet n) Kova 2 adet o) İşçi elbisesi 2 adet p) Süzgeç 1 adet r) Sıvı deterjan 5 lt. s) Dezenfektan 2 lt.      

http://www.biyologlar.com/halk-sagligi-alaninda-haserelere-karsi-ilaclama-usul-ve-esaslari-hakkinda-yonetmelik

İNFLUENZA VİRÜSLERİ

İnfluenza A virüsü bütün dünyayı tutan influenza pandemilerine neden olur. Tek iplikçikli RNA'ya bağımlı (segmentli), RNA polimeraz aktiviteside gösterir. RNA genomu enfektif değildir. Zarfta antijenik yapıdan sorumlu hemaglutinin yada nöraminidaz taşıyan dikensi çıkıntılar bulunur. Hemaglutinin (HA) proteinleri: Virüsün hücreye tutunup içeri girmesinde rol oynar. İnfluenza aşısı, hemaglütinine karşı geliştirilmiştir. Laboratuvarda eritrositleri aglutinasyona uğratır. Nöraminidaz (N) proteinleri: Virüsün patojenitesinden sorumludur. Enfekte hücreden virüsün salınımı için sialik asiti parçalar. Solunum yolundaki koruyucu mukus tabakasını yıkar. HA enfeksiyonun başında, N sonunda iş görür. İnfluenza A virüsü HA ve N proteinlerinin antijenliği değişiklik gösterir. Antijenik yapıdaki değişiklik 2 türlüdür. 1. Nokta mutasyon (Drift) 2. Antijenik shift (ördek, tavuk, hindi influenza virusunun değişmesi) Antijenik shiftte tüm polipeptid yapısı değişir ve daha önceki antikorların koruyuculuğu kalmaz Pandemilere neden olur.İnfluenza A en çok antijenik değişkenlik gösteren tiptir. İnfluenza A hem insan hem de hayvanlarda hastalık yapabilir. İnfluenza B ve C ise sadece insanda patojendir. İnfluenza virüsü çekirdekte replike olan tek RNA virüsüdür. Virüs damlacık yolu ile bulaşır. Patogenezde nadiren viremi görülür. Şiddetli kas ağrısı gibi sistemik belirtiler dolaşımdaki sitokinlere bağlıdır. İnfluenzanın en sık komplikasyonu olan influenza pnömonisi interstisyel tiptedir. Bağışıklıklığın temelini sekretuar IgA oluşturur. Sitotoksik T hücreleride koruyucu bir rol oynar. Klinik Ani ateş yükselmesi Kas ağrısı Baş ağrısı Öksürük ile başlar LAP görülmez Tanı Seroloji Tedavi İnfluenza enfeksiyonlarının (grip) en iyi tedavisi istirahattir. Amantadin influenza A'nın proflaksi ve tedavisinde kullanılabilir. Amantadin virüsün hücrelere penetrasyonunu önler. Aşılara karşı çok az sekretuvar IgA ve IgG geliştiğinden her yıl grip mevsiminden önce (Ekim) rapel yapılması önerilir. (HA-NA glikoprotein içerirler) Amantadin ve Rimantadin Sadece influenza A virusunun çeşitli şuslarına karşı etkilidir. Virusun hücre içine girmesini ve girebilenlerin soyunmasını inhibe eder. Virusa karşı esas olarak proflaksi için kullanılır. Amantadin BOS'a geçer ve değişikliğe uğramadan idrarla atılır. Rimantadin ise BOS'a yeterli oranda geçemez ve değişikliğe uğrayarak metabolitleri idrarla atılır. Rimantadin karaciğerde metabolize edilir. Rimantadin SSS'e az geçtiğinden SSS'ne ait yan etkilere daha nadir rastlanır. Amantadin ise SSS'ne geçtiğinden; Uykusuzluk Baş dönmesi Ataksi Halusinasyonlar (Ciddi) Konvulsiyonlar (Ciddi) oluşabilir. Amantadin Dopamin agonisti etki ile parkinsonda da kullanılır. Zanamivir and oseltamivir Nöraminidaz inhibitörlerdir.

http://www.biyologlar.com/influenza-virusleri

Caretta caretta ( Deniz Kaplumbağaları)

Caretta caretta ( Deniz Kaplumbağaları)

Sistematiği Filum: Chordata Altfilum: Vertebrata Üst sınıf: Tetrapoda Sınıf: Reptilia Altsınıf: Anapsida Ordo: Testudines Altardo: Cryptodira Üst familia: Chelonioidae Familia: Cheloniidae Cins: Caretta Tür: Caretta Caretta Coğrafi Yayılışı Caretta Caretta Atlantik, Pasifik ve Hint Okyanusu’nun ılıman ve subtropikal sularındaki estuarin, lagün, koy ve denizlerin kıyıya yakın kesimlerinde dağılım gösterir. C.C.’lar Atlantik Okyanusu’nda Arjantin’den Nova Scotia’ya kadar bulunur. Kuzey Amerika’daki en büyük popülasyonu Kuzey Carolina’dan Florida kıyılarına kadar olan adalarda bulunur. Bu C.C.’ler kışları Bahama Adaları’na göç ederler. Kuzey Amerika’daki diğer küçük popülasyonlar ise Texas kıyılarında bulunur. Caretta Caretta ların en büyük yuvalama alanları Umman’ın Masirah Adası’dır. Akdeniz’deki önemli yuvalama alanları Yunanistan ve Türkiye sahillerindedir. Bunlara oranla çok daha düşük ancak önemli bir popülasyona ise Kıbrıs’ta rastlanmaktadır. Tunus’ta yuvalama çok nadir, İsrail’de ise daha da azdır. Zaman zaman Campedusa (İtalya), Sicilya ve hatta Sardunya’da da yuvalama olmaktadır. Mısır ve Libya için ise veriler yetersizdir. Türkiye’de ki yuvalama alanları; Ekincik, Dalyan, Dalaman, Fethiye, Patara, Kumluca, Belek, Kızılot, Demirtaş, Gazipaşa, Anamur ve Göksu Deltası’dır. Fiziksel Özellikleri Ergin bireylerde karapaks (sırt kabuğu) oval şekilli ve arkaya doğru daralmış 70–75 cm boyunda ve 50–55 cm genişliğindedir (Türkiye için). Boş oldukça büyük ve üçgenimsidir. Ancak bu büyük beyinleri olduğunu göstermez; aksine bu boşluk çeneleri kapsayan kaslar tarafından kullanılır. C.C.’ların iki alt–türü (sub–species) vardır. Bunlardan C.C. gigas Pasifik ve Hint Okyanusu’nda bulunur. Genel renklenme dorsalde kırmızımsı kahverengi, ventralde kremsi sarı şeklindedir. Diğer deniz kaplumbağalarından sağlam bir kabuk, gözleri ile burun delikleri arasında kalmış iki çift prefrontal plak (bazı bireylerde bu plakların ortasında beşinci bir plak olabilir), karapaksta beş çift kotsal plak, plastronda keropakla bağlantılı ve geniş üç çift inframarjinal plak, her bir üyede iki tırnak ve tipik olarak kahverengimsi–kırmızı renklenme gibi özelliklerle farklılaşır. Beslenme Alışkanlıkları Yavru ve genç Caretta caretta bireyleri, yüzeyde akıntı çizgilerinde toplanan makroplanktonik av üzerinde beslenir. Ergin bireyler özellikle yumuşakçalar üzerinden beslenen karnivorlardır. Etoburdurlar ve sünger, deniz anası, at nalı yengeçler ve istiridye yerler. Kurbanlarının sert kabuklarını kolayca parçalayabilmelerini sağlayan çok güçlü çeneleri vardır. Geniş bir kafa, oldukça gelişmiş çene kasları ve kuvvetli gaga, sert kabuklu avlarını parçalayabilmek için meydana gelmiş adaptasyonlardır. Biyo– Ekolojileri Caretta caretta’lar ayrı eşeylidir ve eşeysel dimorfizm erginlerde görülür. Eşeyler arasındaki büyüklük dimorfizmi hakkında çelişkili bilgiler mevcuttur. Ancak ergin erkekler dişilerden daha uzun kuyruğa ve geriye doğru kıvrılmış tırnaklara sahiptir. Yavru, genç ve ergin öncesi bireylerde eşey ayrımı yapılamaz. Caldwel (1962) ve Uchida (1967)’ya göre esaret altında yetiştirilen Caretta caretta ’nın eşeysel olgunluğa ulaşması 6–7 yıl olarak tahmin edilmektedir. Serbest olarak doğada yaşayan bireyler içinse eşeysel olgunluk yaşı; Mendonca (1981)’ya göre 10–15 yıl, Zug (1983)’e göre 14–19 yıl, Frazer (1983)’e göre 22 yıl, Frazer ve Ehrhart (1985)’a göre sırtındaki eğrilerden edinilen bilgilerle 12–30 yıl olarak tahmin edilmektedir. Üreme Caretta caretta’lar kabukları 50 cm’yi geçmeden cinsel olgunluğa erişirler. Diametre cinsinden 40–42 mm olan yumurtalar med zamanı bırakılır. Yumurtalar kirletilmemiş ve iyi süzülmüş kumullardaki ya da otlu bitki örtülerindeki yuvalara bırakılır. Dişi kıyıya gelir ve gelgitin oluşturduğu yükseltiye tırmanıp orada durur, daha sonra sığ bir çukur açmak için burnunu toprağa sürter. Çukur kazılıp yumurtalar çukura bırakılınca, kaplumbağa arka ayağının tırnaklarıyla yuvayı kumla örter. Kuluçkaya yatma 31–65 gün arası sürer. Genellikle yuva başına 120 yumurta vardır ve dişi 13 günlük aralarla kuluçkaya yatar. Dişi kıyıdaki yuvaya sadece bahar ve yazları geceleyin gelir. Dişi genellikle her yıl mevsim başına 3–4 kere yuva yapar. Yuvadaki yavrular genellikle bu zamanlarda yumurtadan çıkar ve yavrular yaşamlarındaki tek karasal yaşamı bırakıp hep birlikte çabucak denize giderler. Günlük Aktiviteleri Caretta caretta’ların olağan bir gününün beslenme ve dinlenme ile geçtiği bilinmektedir. Kuluçka sezonunda güneydoğu ABD’de yapılan araştırmalar Caretta caretta’ların yuva bulunan kumsal, kıyıdaki resifler ve diğer kayalıklarda düzenli davranışlar sergilediğini göstermiştir. Çiftleşme ve /veya beslenmenin bu bölgelerde gerleşleştirildiği tahmin edilmektedir. Kuluçka dönemi dışında, kaplumbağalar yüzlerce, hatta binlerce mil öteye göç edebilmektedir. Caretta caretta’lar derin sularda yüzeydeyken ya da kıyı yakınlarındaki sularda dipte uyuyabilmektedir. Birçok dalgıç kayalıklarda kaya altında uyuyan kaplumbağa görmüştür. Yumurtadan yeni çıkan kaplumbağaların ise tipik olarak yüzeyde süzülerek uyudukları ve bu sırada ön ayaklarının sırtlarının üstüne doğru kıvrıldığı kaydedilmiştir. Kur Yapma ve Çiftleşme Caretta caretta’ların çiftleşmesi yuvalama başlangıcından birkaç hafta önce yuvalama plajı yakınları veya özel toplanma alanlarında meydana gelebilir. Birbirlerine sıkıca sarılmış çiftler çoğunlukla yüzeyde görünmekle birlikte su altında birleşmeler de rapor edilmiştir. Caretta carettalar için kur yapma ve çiftleşme dişinin ilk yumurtlama döneminden önceki kısıtlı bir zamanda gerçekleştiğine inanılmaktadır. Daha sonra yalnızca dişiler kıyıya gelir, erkekler karayı terk edince bir daha asla geri dönmez çiftleşme mevsiminde erkekler bir dişinin kafasına burnunu sürterek ya da boynunun arkasını hafifçe ısırarak ve paletlerini dikerek kur yaparlar. Eğer dişi kaçmazsa, erkek ön paletlerindeki tırnakların yardımıyla dişinin kabuğunun üstüne çıkar. Daha sonra çiftleşmek için kuyruğunu dişinin kabuğunun altına sokar. Genellikle dişilerin çiftleşmesinin gerçekleştiği kumsalda kuluçkaya yattığı ve erkeğin asıldığı kabuğundaki tırnak izlerinin kanayabildiği gözlemlenmiştir. Çiftleşme su yüzeyi ya da altında gerçekleşebilir. Bazen erkeklerin aynı dişi için kavga ettiği gözlemlenebilmektedir. Caretta caretta’ların çiftleşmelerini gözlemleyenler hem erkeklerin, hem de dişilerin agresif bir tutum sergilediğini gözlemlemiştir. Dişi yumurtlama döneminden önce bir çok erkek ile birlikte olup birkaç ay için sperm biriktirebilir. Nihayetinde yumurtalarını bıraktığında bunlar bir çok erkek tarafından döllenmiş olur. Bu davranış popülasyonda genetik çeşitliliğin devamını sağlamaya yardımcı olur. Yuva Yapma, Kuluçkalama ve Dağılım Caretta caretta’ların neden bazı kumsallara yuva yapıp diğerlerine yapmadığı bilinmemektedir. Florida’da binlerce yuva varken, kuzeydeki tıpa tıp kumsallarda çok az kaplumbağa vardır. Bu yuva dağılımı yüzyıllar önce var olan ısı, kumsal görünümü ya da saldırının az olması gibi tercih nedenlerinin durumunu ortaya koyabilir. Bugün, insanlar Caretta carettaların yuva yaptığı yerlere etki etmektedir.sahilde dalma, deniz koyları, suni aydınlatma ve beslenmenin oluşturduğu kumsal erozyonu bir zamanların taze ve temiz kumsallarını etkilemektedir. Bu durumun gelecek yuvaları da etkileyeceği kesindir. Caretta carettaların nasıl, nerede ve ne zaman yuva yaptığını daha iyi anladıkça, yuva habitatları daha iyi korunmuş olacak. Kumsal Seçimi Çoğu dişi genellikle her seferinde daha önce yuva yaptıkları kumsala geri dönmektedir. Sadece aynı kumsalda görünmekle kalmayıp, daha önceki yuvalarının çok yakınlarına yuva yaparlar. Yuva Yapma Davranışları Sadece dişiler yuva yapar ve bunu genellikle geceleri yaparlar. Dişi okyanustan çıkar ve ara sıra duraksayarak yuva yapacağı yere doğru ilerler. Bazen okyanustan çıkacak, ancak bilinmeyen nedenlerle yuva yapmayacaktır. Buna “sahte çıkış” denir ve bu bazen doğal olarak, bazen ise kumsaldaki suni aydınlatma veya insanların varlığından kaynaklanmaktadır. Bazı türlerin bireylerinin sadece bir kere, bazılarının ondan daha fazla yapmasına rağmen çoğu dişi yuva yapma mevsiminde en az iki kere yuva yapar. Yuvayı İnşa Etmek Yuvalama sezonu genellikle Kuzey yarım kürede Mayıs–Ağustos, güney yarım kürede ise Ekim– Mart ayları arasındadır. Yumurtlama genellikle gece meydana gelir. Nadiren günüz yumurtlama da görülür. Yumurtlamak için kıyıya gelen dişi zaman zaman başını kaldırır ve kumsalı gözetler. Dişi bu dönemde dışarıdan gelecek uyarılara karşı çok hassastır ve rahatsız edildiğinde geri döner. Daha sonra kumsala doğru tırmanan dişi yumurtlayabileceği bir alan aramaya başlar. Bazı durumlarda yuvalamadan veya denize dönmeden önce önemli mesafeleri kat edebilir, karapakslarını gizleyebilecekleri sığ ve geri tarafta daha derin olan bir gövde çukuru açabilirler. Ön üyeler yuva açma olayında pek görev yapmazken arka üyeler karşılıklı iş görür. Yumurta Bırakma ve Gömme Yumurta oyuğu açılınca, dişi kaplumbağa yumurtaları bırakmaya başlar. Yumurta bırakma sırasında salgılanan mukusla birlikte aynı anda iki–üç yumurta bırakılır. Bu yuva yaklaşık 80–120 yuva alır. Caretta caretta yumurtaları genellikle küresel, beyaz, mukusla kaplı ve ping–pong topu büyüklüğündedir (yaklaşık 40 mm çapında ve 40 gr ağırlığında). Yumurtalar arasında küçük oval şekilli veya ikili yumurtalara da rastlanabilir. Caretta caretta yumurtaları esnektir ve deliğe düşerken kırılmazlar. Bu esneklik hem dişiye hem de yuvaya daha fazla yumurta sığmasını sağlar. Yuva yapan Caretta caretta’ların ağladıkları görülür, ancak bu sadece vücudun salgıladığı salgının atılmasıdır. Birçok insan yumurta bırakan kaplumbağanın transa geçtiniği ve rahatsız edilmemesi gerektiğini düşünür. Bu tamamen doğru değildir. Bir Caretta caretta’nın yumurta bırakırken yuvayı terk etmesi pek olası değildir, ancak bazıları rahatsız edilir ya da kendilerini tehlikede hissederlerse bunu etkileyebilir. Bu sebeple, bu işlem sırasında C.C.’lar rahatsız edilmemelidir. Yumurtaların hepsi bırakıldıktan sonra, dişi arka üyeleriyle ana çukuru kapatır ve yuvayı düzler. Kumu farklı taraflara da atarak yumurtaların avcılar tarafından bulunmasını engellemeye çalışır. Yuva kapandıktan sonra, kaplumbağa denize yönelir ve bir sonraki yuva yapma ya da göç zamanına kadar dinlenir. Dişi yuvayı bir kez terk etimi tekrar geri dönmez. Kuluçka Caretta caretta’ların kuluçkalama süresi yaklaşık 45–60 gündür. Ancak embriyoların gelişme hızını etkileyen kum sıcaklığı bunu kısaltabilir ya da uzatabilir. Serin kumların erkek, sıcak kumların dişi üretme eğilimi vardır. Yuvayı Terk Etme Yuvadan anneleri tarafından çıkarılan timsahların aksine, Caretta caretta’lar yuvadan kendi başına çıkmak zorundadır. Yumurtayı kırmak için yavrular, “caruncle” adı verilen geçici, sivri yumurta dişlerini kullanırlar. Bu diş yuvadan çıktıktan hemen sonra düşer. Yavrular, yumurta kabuklarını kırdıktan sonra karapakslarının düzelmesi için yuva içinde 26 saate kadar hareketsiz kalırlar, yuvayı terk etme ise yumurtadan çıktıktan 1–7 gün (ortalama 2,5 gün) sonra yavruların birbirlerine yardımıyla yüzeye doğru tırmanma şeklinde gerçekleşir. Yavrular yuvadan havanın serin olduğu geceleri ya da yağmur fırtınaları sırasında çıkmayı tercih ederler. Bunun nedeni bu havalarda kum sıcaklığının düşüklüğüdür. Yuvadaki bütün yavrular aynı zamanda yuvadan çıkmayabilir, bu durumda takip eden gecelerde gruplar halinde yavru çıkışı devam eder. Yuvadan çıkan yavrular ufuk aydınlığını kullanarak denize doğru yönelirler. Bu sırada kumsal gerisinde bulunan herhangi bir ışık kaynağı, yavruların yönlerini şaşırmalarına ve bu nedenle ölümlerine neden olabilir. Eğer hemen denize ulaşmazlarsa, güneşte kalmaktan, su kaybından, ya da yengeçler, tilkiler, köpekler, rakunlar yakın balıkları ve köpek balıkları gibi nedenlerle öleceklerdir. Denize ulaşan yavrular “yüzme çılgınlığı” denen ve yaklaşık 20 saat süren bir dönemde durmaksızın yüzerler. Ancak yavru Caretta caretta için o kadar çok tehlike vardır ki her 1000 yavrudan ancak biri gençliğe kadar hayatta kalabilir. Doğal ortam yaşayan Caretta carettalar için belgelenmiş ömür uzunluğu tahmini yoktur. Ancak ergin dişilerin üretimsel hayat süreleri 32 yıl, eşeysel olgunluğa ulaşma süresi 15–30 yıl olarak tahmin edilmiştir. Bu şartlarda maksimum ömür uzunluğunun 47–62 yıl olabileceği belirtilmiştir. Göç ve Yön Duyguları Göç: Deniz kaplumbağalarının beslenme alanından, yuva yaptıkları alana olan yüzlerce binlerce millik göçü hayvanlar aleminin en dikkate değer özelliklerindendir. Erişkin dişilerin kendi doğdukları bölgeye yuva yapmak için dönmeleri bu özelliği daha da çekici yapar. Deniz kaplumbağalarının nasıl ve nereye göç ettikleri onlarca yıldır bilim adamlarının odaklandığı bir noktadır. Elde edilecek bilgiler türlerin korunma stratejileri için çok büyük önem taşımaktadır. Bugün biliyoruz ki, deniz kaplumbağaları yaşamları boyu sürecek bu göçe yuvadan ilk çıkışlarıyla başlarlar. İlk kritik 48 saat içinde yavru kumsaldan okyanusa yürümek ve orada kendine avcılardan korunup yiyecek bulabileceği bir yer bulmalıdır. Atlantik ve Caribbean’da bir çok yavru körfez akıntılarına kapılır. Burada genç kaplumbağalar yeterli bir besin kaynağı ve az sayıda avcı bulurlar. Yıllarca Atlantik etrafında yüzüp durduktan sonra, bu genç kaplumbağalar kıyı kenarındaki sığ sulara dönecek kadar büyümüşlerdir. “Tüm Floride loggerheadlerinin birkaç yıllarını kıyı yakını habitatlarda beslenip büyüyerek geçirirler. Ergenliğe ve cinsel olgunluğa erişir erişmez, bir iki beslenme alanına göç ettikleri bilinir. Ergen kaplumbağaların üreme mevsimi hariç ömürleri boyunca kalacakları yer bu ilk beslenme alanıdır. Çiftleşme ve yuva yapma dönemine gelindiğinde hem dişi hem de erkek yuva yapılan kumsallara doğru göçe başlar. Bu olağan güç hayatları boyunca sürecektir. Yön: Açık okyanuslarda deniz kaplumbağaları güçü akıntılara maruz kalırlar, kısıtlı bir görüş açıları vardır; kafalarını suyun üstüne yalnızca birkaç santim çıkartabilir. Bu kısıtlamalara rağmen, deniz kaplumbağaları aynı yuva yapılan kumsalı bulmak için uzun mesafelere göç ederler. Bunu nasıl yaptıkları hayvanlar aleminin en gizemli sorularından biridir ve buna cevap bulabilmek bir çok araştırmacının odak noktası olmuştur. Umut verici yeni bir teori kaplumbağaların dünyanın manyetik alanının açı ve yoğunluğunu bulabildiğini iddia eder. Bu iki özelliği kullanarak kaplumbağa istediği yere gitmesini sağlayacak olan bulunduğu yerin enlem ve boylamını bulabilmektedir. Daha önceki araştırmalar da deniz kaplumbağalarının manyetik alanı belirleme yeteneğinin var olduğunu ispatlamıştır. Göç incelemeleri: Deniz kaplumbağalarının göçebe doğaları, onları anlama ve korumayı zorlaştırmaktadır. Özellikle kaplumbağaları kendi habitatları içinde korumak için, bu habitatların nerelerde olduğunu, kaplumbağaların orada nasıl davrandığını ve hangi yönlere doğru göç ettiğini bilmemiz gerekir. Bir çok araştırma yuva yerlerinde yapılmıştır ve bunun çok mantıklı sebepleri vardır. Araştırmacılar için bu bölgeler daha kolayca ulaşılabilirdir, ayrıca yeni deniz kaplumbağalarının üremesi soyun devamı için çok önemlidir. Koruma çalışmaları da en kolay yuva bulunan kumsallarda yönetilmektedir. Ancak, hayat döngüleri içinde deniz kaplumbağalarının gittiği bölgelerden, en az zaman harcananı yuva yapılan kumsallardır. Bir deniz kaplumbağasının hayatının % 90’ından fazlası suda–beslenerek, çiftleşerek, göç ederek ve kimse izlemediğinde deniz kaplumbağaları ne yaparsa onu yaparak geçer. Sonuç olarak, korumacılar için en büyük tehlikenin olduğu bölge en çok sorunla karşılaşılan okyanuslardır. Yaşamları boyunca onları tam olarak koruyabilmemiz için, kaplumbağaların göçebe motiflerinin ve sudaki davranışlarının tam olarak bilinmesi gerekir. Deniz kaplumbağalarının nereye gittiklerini belirlemek için bir çok metot uygulanır. Bunların en basitlerinden biri yuva yapmaya kumsala geldiğinde ayaklarından birine küçük, zararsız bir metal parçası takmaktır. Her parça kodlanmış bir numaraya sahiptir ve insanlara bulunduğu taktirde geri gönderilmesi için gerekli olan bir adres vardır. İnsanlar bu kimliği geri döndüklerinde, küçük bir ödül kazanırlar ve bu şekilde kaplumbağaların bulundukları, uğradıkları yerler bulunmuş olur. Populasyon: C. caretta’nın erkekleri hakkındaki bilgilerine azlığından dolayı populasyonlarının cinsiyet oranı tam olarak bilinmemektedir. Populasyonların yaş ve boyut kompozisyonları hakkında da kapsamlı bir bilgi yoktur. Ayrıca Henwood (1987), populasyonda kompozisyonların her sezonda değiştiğini ve böylece populasyonun büyüklüğü hakkında bilgi edinmenin karmaşık hale geldiğini belirtmiştir. Populasyon yapısı ve cinsiyet oranı hakkındaki eksik bilgiler ve deniz kaplumbağalarının yaşadığı biyolojik populasyonun sınırlarının tam olarak bilinmemesinden dolayı, populasyon bolluğu ve yoğunluğu hakkında tahmin yapabilmek zorlaşmaktadır. Bununla birlikte yuvalama kumsallarına gelen dişilerin direk sayımı veya yuva sayılarıyla ilgili bazı tahminler yapılmaktadır. C. caretta’nın üretkenlik organlarına etki eden faktörler bölgesel olarak değişkenlik göstermektedir ve populasyon içinde önemli oranlarda varyasyonlar söz konusudur. Bu varyasyonlar, belirli sahillerdeki üretkenlik durumunun belirlenmesini engeller. Aşırı yağmurlar, rüzgar erozyonu, dalga erozyonu ve sıcaklık gibi baskın genel çevresel faktörler üretkenliği etkiler. Yumurtlama sahillerindeki insanların varlığı, ziyaretçilerin olması ve çevredeki ışık kaynakları yuvalama yapmak için kumsala çıkmış dişileri rahatsız ederek denize dönmelerine neden olabilir. C. caretta yavruları, kum yengeçleri, köpek balıkları, predatör kemikli balıklar ile tilki, köpek, rukan gibi memelilere yem olmaktadır. Çeşitli kuşlar da gündüz saatlerinde yavruları avlarlar. Hastalık, şiddetli açlık ve soğuk sersemliği de ölümlere sebep olabilmektedir. Ancak belirli populasyonlar üzerindeki etkileri bilinmemektedir. Katran, yağ artığı ve plastik atıklarının yutulmasından ölümler meydana gelebilmektedir. Genç ergin öncesi ve ergin bireyler ise özellikle köpek balıkları tarafından avlanırlar. Ayrıca bu gruplar, katran veya plastik yutarak ölebilir veya yaralanabilirler. Ayrıca bot çarpmaları bilinçli avlanmalar ve çeşitli ağlara takılmalar da ölüme neden olan diğer faktörlerdir. C. caretta Avustralya, Güney Afrika ve ABD’de korunmaktadır. Balıkçılık endüstrisinin öncelikli avı olmasa da görüldükleri yerde avlanırlar. İnsanların çoğu iddia edilen beğenilmemiş tadından dolayı etini yemezler. Ancak Hindistan, Madagaskar ve Mozambik kıyılarında yaşayan insanlar tarafından hala tüketilmektedir. Her ne kadar C. caretta’nın eti, kabuğu ve derisi Cheloma mydas, Eretmochelys imbricata, Lepidchelys kempii ve Lepidochelys olivacea’ya göre değerli olmasa da yumurtaları dünyanın bir çok yerinde tüketilir. Mozambik, Madagaskar ve Umman kıyı şeritlerinde olduğu gibi C. caretta yumurtalarının protein amaçlı kullanılması, populasyonlarının gerilemesine neden olmuştur. Çoğunlukla ılık ve subtropikal bölgelerde yuvaladıklarından, C. caretta’nın üreme habitatları ve kışlama alanları arasında göç ettikleri sanılır, erkek göçleri hakkında ise çok az şey bilinmektedir. C.Caretta’nın grup göçü bilinmemektedir. Yıl boyunca açık deniz sularında kalabilirler. Florida’da bazı bireylerin, dipleri çamurlu kanallara girdikleri belirlenmiştir. Bazı populasyonlar ise yıl boyunca yuvalama kumsallarının yakınında yaşarlar ve yuvalama dönemleri arasında çatlak ve delikleri mesken edinebilirler. C. caretta’nın klasik anlamda “sürüler” oluşturduğuna dair herhangi bir gösterge yoktur. Bununla beraber, denizde ya da yuvalama kumsallarının yakınında lokal yoğunlaşmalar oluşturabilirler (Dodd, 1988). Koruma ve Yönetim C. caretta’nın da içinde bulunduğu deniz kaplumbağaları, bu türlerin durumları ve önemi kavrandıkça yakalanmalarını ve satışlarını yasaklayan, habitatlarının korunmasını da sağlayacak kanunlarla korunmaya çalışılmıştır. C. caretta, Uluslararası Tehlike Altındaki Türler Kongresinde (CITES) Ek 1’de listelenmiştir. Aralarında Türkiye’nin de bulunduğu bir çok ülke bu antlaşmayı imzalamıştır. Bu listede yar alan türlerin herhangi bir şekilde gelir amaçlı satışı yasaklanmıştır. Göç eden türler konferansı hazırlıklarında uluslararası korumanın şart olduğu Ek 2 listesinde yer almışlardır. Her ne kadar bazı düzenleyici kanunlarla koruma altına alınmış olsalar da bazı bölgelerdeki yetersiz veya isteksiz güvenlik güçleri ve ülkelerin ekonomik seviyelerindeki farklılıklar C. caretta ve diğer deniz kaplumbağalarının korunmasında yeterli olmamakta ve tedbirlerin uygulanmasını güçleştirmektedir. C. caretta’nın neslini devam ettirebilmesi için bütün önemli yuvalama, beslenme, göç ve kışlama habitatlarının üzerinde önemle durulması ve biyolojik verilere dayalı korumalarının uygulanması zorunlu olmuştur. Deniz kaplumbağalarının korunması için farklı bölgelerde, farklı koruma ve yönetim alternatifleri uygulanmaktadır. C. caretta’nın derisi ve kabuğu için fazla talep yoktur ve bu nedenle uluslararası ticareti de çok iyi değildir. Yumurta ve eti ise genellikle lokal olarak tüketilmektedir. CITES uygulamaları uluslararası ticareti engellemede başarılı olabilecektir. Uluslararası ticaret, yasalar tarafından değişik derecelerde başarıyla durdurulmuştur. Örneğin, ABD ve Avustralya’da yumurta tüketimi bu sayede durmuştur. Fakat kaçak avlanma devam etmektedir. Koruma kanunlarının olmadığı bölgelerde ise kanunların çıkarılması ve uygulanması türün devamlılığı için zorunlu görünmektedir. Dişilerin üretkenlikteki önemi ve yumurtlama anlarında çok hassas olmaları nedeniyle plaja gelen dişilerin rahatsız edilmemeleri gerekmektedir. Bu, yumurtlama mevsiminde insan aktivitesinin en aza indirilmesi ve yavruların yollarını bulabilmeleri için yapay ışıklandırmaların minimuma çekilmesiyle gerçekleşebilir. Yuvalar ve dişiler sahillere giren araçlardan korunmalıdır. Çünkü bunlar kumu sıkıştırabilir veya yavruların içinden çıkamayacakları izler bırakabilirler. Ayrıca bu araçların gece kullanılması da dişilerin bu sahillere gelmesini engelleyebilir. Plaj temizlemede kullanılan ağır mekanize temizleme araçları, yumurtlama mevsiminde yumurtlama plajlarında kullanılmamalı veya zarar vermeyecek boyutlarda işletilmelidir. Yumurtalar üzerindeki kaçak avcılığın, predosyonun ve erozyonun yüksek oldu bölgelerde yeni yapılanmış yuvalar, korunmuş kuluçkalıklara taşınabilir buralarda acilen yuvalara tekrar gömülür ya da nemli plaj kumu ile doldurulmuş kutularda inkübasyona bırakılabilir. Bu tip uygulamaların yaratacağı durumlarda, yöntemin taşıdığı bazı risklerden dolayı dikkatli planlama yapılması ve yürütülmesi zorunluluğu vardır. Deniz kaplumbağalarının korunmasında kullanılan bir başka metot da yavruları ilk dönemlerinde yüksek olan predasyonlardan korunabilecekleri büyüklüğe kadar ulaştırmaktadır. Konu ile ilgili araştırmacılar tarafından habitat korunmasından sonra bu metodun kullanılması gerektiği savunulmaktadır. Bu yöntem özellikle Chelonie mydas, Eretmochelys imbricata, Lepidochelys kempii populasyonlarını arttırmak için dünyanın değişik yerlerinde kullanılmıştır. Yavru kaplumbağaların korunması için, yavru kaplumbağalar üzerindeki predasyonun azaltılması, plaj ışıklandırmalarından kaynaklanan yanlış yönelmelerin önlenmesi, kirleticilerin ve besin olarak nitelendirebilecekleri plastiklerin denize ulaşmasının engellenmesi gerekmektedir. Balıkçılıkta kullanılan ağlarla rasgele yakalanmaların ve ölümlerin yüksek olduğu bölgelerde “Kaplumbağa Dışlayıcı Aygıt (TED)”ların kullanılması balıkçılıktan kaynaklanan ölümleri azaltacak bir yöndemdir. Bu yöntem özellikle ABD’de balıkçılıktan kaynaklanan ölümlerin yüksek olduğu bölgelerde kullanılmış, ergin ve ergin öncesi kaplumbağaların kurtulmasını sağlamıştır. Kaplumbağa yaşamını tehdit eden faktörler: Deniz kaplumbağaları yaşamlarının büyük bölümünü denizde geçirmekle birlikte, nesillerini devam ettirebilmek için üreme kumsallarına son derece bağımlı olan canlılardır. Bu tip kumsalların insan eliyle farklı amaçlar için işgal edilmesi ( turizm amaçlı faaliyetler, kum alımı, otlatma, tarım için kumsalların toprak ile örtülmesi vs. ) ve artık Türkiye , Yunanistan ve Kıbrıs gibi birkaç ülkede sınırlı kalması bu bölgelere yumurta bırakan kaplumbağaların nasıl yavaş yavaş yok olmaya mahkum edildiklerini ortaya koymaktadır. Ayrıca, deniz ortamında gerek ergin, gerekse yavrularını trol vb. ağlarla balıkçılar tarafından tesadüfi yakalanmaları da kaplumbağa yaşamını tehdit eden önemli bir sorundur. Çözüm ve Öneriler: Yüksek yuva yoğunluğuna sahip üreme kumsallarını olumsuz yönde etkileyecek yatırımlardan kaçınılmalıdır. Gerek turizm amaçlı gerekse bu amaç dışı yapılanmalarda, özellikle deniz kaplumbağası üreme mevsimi olan Mayıs-Ekim aylarında aydınlatma ve gürültü ile ilgili tedbirlere önem verilmelidir. ( Karayolları aydınlatması, çadır ve karavan kampingleri, otel, ev vb. ) Kumsallarda, doğal yapıyı bozucu her türlü kum ve çakıl alımı önlenmelidir. Üreme kumsallarına büfe, restoran vs. sabit tesisler kurulmamalıdır. Gece kumsallar insanlar tarafından kullanılmamalı, araba, motor, bisiklet vs. araçların üreme kumsallarına girmesi engellenmelidir. Plaj şemsiyeleri toprağa gömülmeyen türden olup yumurtlama bandının gerisinde kullanılmalıdır. Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar Ülkemizin taraf olduğu Uluslararası Sözleşmeler (Bern, Barselona Sözleşmeleri) çerçevesinde nesli tehlikede olan ve Türkiye sahillerini üreme alanı olarak kullanan deniz kaplumbağalarının korunması yönünde çalışmalar yapılmaktadır. Bu amaçla, Bakanlığımız koordinatörlüğünde ilgili Bakanlıklar, üniversiteler ve gönüllü kuruluşlardan oluşan “ Deniz Kaplumbağaları İzleme-Değerlendirme Komisyonu ” kurulmuştur. İzleme-Değerlendirme Komisyonu Akdeniz’ de önemli deniz kaplumbağası üreme alanı olarak belirlenmiş 17 alanda ( Ekincik, Dalyan, Fethiye-Çalış, Dalaman, Patara, Kale (Demre), Kumluca, Tekirova, Kızılot, Belek, Gazipaşa, Demirtaş, Göksu Deltası, Kazanlı, Anamur, Akyatan, Samandağ ) incelemelerde bulunarak, sorunları tespit etmekte ve bu sorunların giderilmesi yönünde çalışmalar gerçekleştirmektedir. KAYNAKÇA: 1- Sınıflandırma, coğrafi dağılışı, fiziksel özellikleri, beslenme alışkanlıkları, üreme, davranış özellikleri, habitatı: 2- Biyo-Ekolojileri, populasyonu: 3- Kaplumbağa yaşamını tehdit eden faktörler, Çözüm ve Öneriler, Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar    

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari

İnsan Aklının Evrimi

4.5 milyon yil önceden sonra fosil kayitlari gelistiginde, australopithecinelerin Dogu Afrika’da ve muhtemelen bu kitanin baska herhangi bir yerinde yerlesmis olduklarini görürüz. A. aferensis, hem agaçlar üzerinde hem de karada sürdürülen yasam biçimine saglanan uyumu sergiler. 3.5 ile 2.5 milyon yil önceye ait fosiller, beyin boyutlari açisindan bu dönemin bir denge dönemi oldugunu gösterir. Devamli gelisen bir sosyal zekanin ve bunun sonucu büyüyen beyin yönündeki spiral baskinin sona ermesi, ya da en azindan bir duraklama geçirmesi niçin gereklidir? Bu sorunun muhtemel yaniti, evrimin simdi iki güçlü sinirlama ile karsi karsiya oldugudur: Daha büyük beyinlerin daha çok yakita gereksinimi vardir ve serin tutulmalari gerekir. Yakit açisindan beyinler son derece aç gözlüdürler. Dinlenme halindeyken, kas dokusunun gereksinim duydugunun 22 kati enerjiye gerek duyarlar. Isi açisindan ise, yalnizca 2 derecelek bir artis bile beynin çalismasinin zayiflamasina yol açar. Australopithecineler daha çok vejetaryen olmaliydilar ve muhtemelen agaçlikli ekvatoral savanalarda yasiyorlardi. Bu yasam biçimi beyne sunulabilecek enerji miktarini kisitliyor ve australopithecineleri sürekli olarak fazla isinma riskiyle karsi karsiya birakiyordu, Bu yüzden seçilime yönelik baskilar mevcut olsa bile beyin genislemesi gerçeklesmiyordu. Eger kosullar sasirtici sekilde bir araya gelmemis olsaydi, australopithecinelerin hâlâ Afrika’da yiyecek ariyor olmalari ve Homo soyunun evrimlesmesinin gerçeklesmemis olmasi mümkündü. Ama yaklasik 2 milyon yil önce çok hizli bir beyin büyüme dönemi baslamis ve bu olay Homo soyunun baslangicini isaretlemisti. Bunun gerçeklesmesi ancak beyin büyümesi ile ilgili kisitlamalar gevsetilirse ve kuskusuz, seçilime yönelik baskilar varsa mümkün olabilirdi. Bunun nasil oldugunu açiklamaya çalisirken, aklin, beyin ve vücudun evrimi arasindaki karsilikli iliskiler son derece önem kazanmisti. Bu dönemde iki çok önemli davranissal gelisme olmustu: Bipedalizm, yani iki ayak üzerinde yürüme ve et tüketimindeki artis. Iki ayakliligin nedenleri Ikiayakliligin evrimi 3.5 milyon yil önce baslamistir. Bununla ilgili kanitlar A. aferensisin aratomisinden ve daha etkin olarak da Tanzanya , Laetoli’de günümüze kadar korunabilmis olan australopithecine ayak izlerinden elde edilmistir. Bipedalizme neden olan en muhtemel seçilimci baski Dogu Afrika’nin agaçlikli savanalarinda yiyecek arayan australopithecinelerin sikintisini çektigi termal stres olabilirdi. Agaçlara tirmanan ve dallar arasinda sallanan atalariyla australopithecineler zaten dik durmaya yatkin bir vücut yapisina sahiptiler. Antropolog Peter Wheeler, australopithecinelerin ikiayakliliga uyum saglamakla, günes tepedeyken karsi karsiya kaldiklari radyasyon miktarini yüzde 60 eksiltmeyi basardiklarina dikkat çekmistir. Üstelik, bu sekilde, hareket için gerekli enerjji maliyetlerini de düsürmüs oluyorlardi. Bipedalizm, australopithecinelerin gida ve suya gereksinim duymadan daha uzun süreler yiyecek arayabilmelerini, daha az dogal gölgelige sahip yerlerde arastirmalarini sürdürebilmelerini, böylece dogal gölge ve su kaynaklarina daha bagimli olan diger yagmacilara açik olmayan yiyecek arama köselerinden yararlanmalarini sagliyordu. Giderek daha etkinlesen ikiayakliliga geçisin bir nedeni de, 2.8 milyon yil önce Afrika’da çevresel kosullarin daha kuru ve açik çevrelere dogru degismesi olabilirdi. Çünkü dik durus pozisyonunun benimsenmesiyle, günes radyasyonunun etkisinin azaltilmis olmasi daha çok deger kazanmis oluyordu. Ellerin özgürlesmesi, beynin büyümesi Denge ve hareket için gerekli kas kontrolünü saglayabilmek açisindan ikiayaklilik daha büyük bir beyin gerektiriyordu. Ama ikiayaklilik ve kara yasaminin, beyin büyümesiyle ilgili birçok baska sonuçlari da vardi. Bunlardan bazilari antropolog Dean Falk tarafindan incelenmistir. Falk, ikiayaklilikla birlikte, beyin için bir sogutma sistemi -ya da kendi deyisiyle bir radyatör- olusturmak üzere, beyni kaplayacak bir damar aginin da seçilmis olmasi gerektigini ileri sürer. Sogutma sistemi bir kez yerini bulunca, beynin daha fazla büyümesinin neden olacagi fazla isinma konusundaki baski rahatlamisti. Çünkü bu, üzzerinde kolayca degisiklik yapilabilir nitelikte bir radyatördü ve dolayisiyla beynin yeniden büyümesi olasiligi (gereksinimi degil) ortaya çikiyordu. Dean Falk, bipedalizmin, beyindeki nörolojik baglantilarin da yeniden düzenlenmesine yol açtigini ileri sürer: “Ayaklar bir kez, yürümek için agirlik tasiyicilar haline gelip (ikinci bir çift el gibi) yakalayici durumlarindan kurtulunca, daha önce ayak kontrolü için kullanilan korteks alanlari, korteksi baska fonksiyonlar için özgür birakarak küçülmüstü.” Kuskusuz bu durum, tasima ve alet yapma olanaklarinin zenginlesmesini ve ellerin “özgürlesmesini” de beraberinde getiriyordu. Dogal çevrenin algilanmasi açisindan da önemli degisiklikler yasanmis olabilirdi, çünkü simdiye kadar (beynin) tarama alanina giren uzaklik ve yönler de artmisti; yüz yüze iliskiler çogaldigi için sosyal çevrede de bir degisim yasanmis, yüz ifadeleri yoluyla iletisim kurabilme olanaklari zenginlesmisti. Bununla birlikte, belki de bipedalizmin en önemli sonucu les yiyicilige uygun köselerden yararlanmayi kolaylastirmis olmasiydi. Etçiller için bir gölgelik bulma gereksinimi duyulan günün belirli saatlerinde, ikiayaklilarin hayvan leslerinden yararlanabilmesini saglayan bir “firsat penceresi” açilmisti. Leslie Aiello ve Peter Wheeler'in ileri sürdükleri gibi, diyetlerde et miktarinin artmasi ile mide boyutlarinin daha da küçülmesi ve böylece beyin için daha fazla metabolik enerjinin özgür kalmasi, bu arada da sabit bir metabolizme hizinin korunmasi mümkündü. Bu sekilde, beynin büyümesiyle ilgili bir baska sinirlama daha ortadan kalkmis oluyordu. Steven Mithen

http://www.biyologlar.com/insan-aklinin-evrimi

Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler

Bacaklardaki Gözler

Yakın bir geçmişte araştırmacılar, bacaklarında gözler olan sirkesinekleri yetiştirmeyi başardılar. Burada söz konusu denetim mekanizmasına göre, belli bir gen, gözün nerede olacağını belirledikten sonra, eksiksiz bir gözün oluşumunda işlevi olan tüm genler o noktada çalışmaya başlar. Sirkesineklerinde gözler, yanlış yerde olmakla birlikte her şeyleriyle eksiksizdi ve doğru bağlantılar kurulsaydı herhalde normal göz gibi işlev görebileceklerdi. Bu deneysel işlem, tek başına da önemli. Ancak özellikle evrimi kavrayış biçimimize getirdiği yenilik açısından incelenmeli. Bu deneylerde, bir fareye ait göz-konum geni kullanılarak sirkesineğinin yanlış konumda bir göz geliştirmesi sağlandı. Farenin geni, sirkesineğininkine o kadar çok benziyor ki, genetik mühendisliği kullanılarak bir sirkesineğine yerleştirildiği zaman aynı işlevi yerine getirmeyi sürdürebiliyor. Bu, kayda değer bir olgu. Sirkesinekleri, farelerden evrimsel olarak en az yarım milyar yıldır ayrılmış bulunuyorlar. Diğer bir deyişle, en son yarım milyar yıl önce ortak bir ataları vardı. Fare/sirkesineği ortak atasındaki bu göz-konum geni, daha sonra biri fareyi,diğeriyse sirkesineğini oluşturacak iki ayrı soyun da kalıtsal mirası oldu ve en az bir milyar yıllık bir evrim süresince değişmeden kaldı (yarım milyar yıldır bu iki soy ayrı olarak evrimleştikleri için. toplam evrimleşme süresi 2 x 0.5 = l milyar yıl). Sirkesineği ve farenin gözlerinin yapısal ve optik açıdan çok temel farklılıkları olduğu gözönüne alındığında, bu çok önemli. Herhalde her iki soy da, kendi amaçları doğrultusunda en uygun göz yapısını kusursuzlastırırken, gözün konumunu belirleyen temel sistemi korudular. Doğal seçilimin ayıklama gücünün bundan daha iyi bir kanıtı olamaz. Biri fare. diğeri sirkesineği olmak üzere, evrimin iki ayrı kolundan yarım milyar yıl önce yola çıkan bu "ata gen"i düşünün. Hem fare, hem de sirkesineği soylarında milyonlarca mutsyon olmuş ve bunlar doğal seçilim tarafından ayıklanmış olmalı. Tüm bu koruyucu doğal seçilimin sonucunda, çok uzun zamandır ayrı olmalarına karşın, bu iki gen aynı işlevi koruyor ve hatta yer değiştirebiliyorlar. Darwin, doğal seçilimin zararlı mütasyonlan önleme yeteneğinin farkındaydı elbette. Ama doğal seçilimin, yarım milyar yıl boyunca bir işlevi koruyacak kadar etkili bir ayıklayıcı olduğunu öne sürmeye herhalde cesaret edemezdi.  

http://www.biyologlar.com/bacaklardaki-gozler

LABORATUVAR KULLANMA TALİMATI VE ÖĞRENCİLERİN DİKKAT ETMESİ GEREKEN KURALLAR

Laboratuarlarda yapacağınız çalışmalarda kendinizin ve arkadaşlarınızı tehlikelerden korumak için aşağıdaki prensiplere uygun olarak hareket ediniz. 1. Daima öğretmen tarafından verilen ve laboratuar kitabında yazılı olan direktiflere göre çalış, katiyen verilmemiş deneyleri sınıfın emniyeti açısından yapmaya kalkışma.2. Eğer bütün sınıfın faydalanabileceği bir çözeltiyi kullanıyorsan senin için gerekli olan miktarı aldıktan sonra gerisini arkadaşlarının da kullanabilecekleri uygun bir yere bırak. Herkesin sınıf içinde koşuşup aramak suretiyle karışıklık çıkarmasına meydan verme.3. Şişe veya kavanozdan madde alırken etiketi daima iki kere oku. Emniyet ve deneyin hatasız yapılabilmesi için bu önemli hususu aklından çıkarma.4. Kimyasal maddeleri çok temiz olmalarına dikkat et. Kullanmak için aldığın çözeltiyi kullanımdan sonra fazla olarak kalırsa kesinlikle şişeyi boşaltma öğretmeninin vereceği direktife göre hareket et. 5. Kimyasal maddelerin katiyen eline alma, metal maşa, spatül, cam veya plastik kaşık kullan.6. Çözeltiyi aldığın şişenin kapağını derhal üzerine yerleştir. Aynı şekilde diğer kimyasal maddelerinde kapaklarının açık kalmamasına dikkat et.7. Hiçbir zaman dereceli ölçü silindiri ve diğer ölçü kaplarını ısıtma.8. Kolayca yanabilen maddelerle çalışırken açık aleve yakın tutma. Çünkü bu gibi yanıcı maddelerin görünmeyen buharları çalışma masasının ötesindeki ocaklara kadar ulaşıp yangına sebep olabilir. 9. Kibrit çöpü, pamuk, süzgeç kağıdı vb. katı maddeleri kesinlikle lavabolara atma 10. Kullanılmış kapları temizle her ne suretle olursa olsun onları kirli bırakma. Ve içindeki maddelerin kuruyup yapışmasına imkan verme. Eğer temizlenecek madde renkli ise veya temizlenmesi zor ise bunu çözebilecek bir çözücü maddeyi öğretmenine sorarak al ve vereceği talimata göre kullan. Temizleme işlemi bittikten sonra kapları yerine yerleştir, deney masasını temizle diğer malzemeleri usulüne uygun olarak yerleştir.11. Tehlikeli deneyler için koruyucu gözlük ya da maske kullanmayı ihmal etme. Bu tür koruyucu maddelerin hangi deneylerde kullanılacağı öğretmeniniz tarafında size belirtilecektir.12. Değişik asitlerle çalışırken son derece dikkati daima asidi su üzerine boşaltarak seyreltme işlemini yap, asitleri lavaboya boşaltırken eğer değişik iki asit ise iyice seyrelttikten sonra boşalt ayrıca boşalttığın kabı ve lavaboyu bol su ile yıkamayı ihmal etme.13. Çalışma masasına kitap ve defter bırakma ancak müsvette kağıt ile bir kalem bulundur.14. Laboratuar çalışmasından önce yapacağın deneyi iyice oku, ilgili kısımları not tut, eğer deney esnasında bir zorlukla karşılaşırsan mutlaka öğretmenine sor.15. Güç kaynağı, voltmetre, Ampermetre, termometre ve kronometre gibi araçların kullanımdan önce ne şekilde kullanılacağı hususunda öğretmeninin yapacağı açıklamalarını dinle.16. Temiz olduğuna kanaat getirirseniz bile laboratuarda bulunan beherglas, erlenmayer, balon gibi kaplarla kesinlikle su içme.17. Laboratuarlarda her ne suretle olursa olsun hiçbir maddenin tadına bakmayın.18. Beklenmedik durumların ortaya çıkması halinde veya bir değişikliğin gözlenmesi durumunda öğretmenize mutlaka haber veriniz.19. Kendi başınıza dolaplardan malzemeyi almayınız. Öğretmenin müsaadesi dışında kullanmayınız.20. İşin bittikten sonra muslukları, elektrik düğmelerini ve tüpgaz musluklarını mutlaka kapatınız.21. Laboratuarlarda ciddi olarak çalışmak mecburiyetindesiniz. Bu nedenle arkadaşlarınızla kesinlikle el hareketleri ve benzeri şakalarda bulunmayınız.22. Sıvıların pipetle emilmesi doğru değildir. Ağıza kimyasal çözeltilerin kaçması tehlikeli olduğundan bu duruma meydan vermeyiniz.23. Piset, hortum vb. araçlarla arkadaşlarınızla su veya herhangi bir madde sıçratmayınız.24. Gerektiği kadar malzeme kullanınız. Fakat asla lüzumundan fazla malzemeyi kullanmayınız.25. Bilhassa köpüklenip taşabilme durumlarına karşı dikkatli olunuz. Öğretmenlerinizin tavsiyelerine uyunuz.26. Balon, erlenmayer, beher ve şişelerin basınca karşı dayanma direnci az olduğundan sıcakken kapak veya mantar ile kapatmayınız. Böyle durumlarda kabın bütün kaidesi soğutma esnasında çatlayıp kırılabilir.27. Su üzerinde gaz toplama ile sonuçlanan bir çok denemelerde geri emmeler alabileceğinden dikkatli ol ve içinde gaz çıkışı ile reaksiyonunun devam ettiği cam balonun çıkış borusundan ayrılmadıkça ısıtma işlemine son verme.28. Elinizde cam boruların kırılması bükülmesi gibi medenemelere kesinlikle girişmeyiniz.29. Maddelerin üzerinde yazılı olan etiketleri kesinlikle koparmayınız. Kopma ihtimali olan varsa öğretmeninize mutlaka haber veriniz.30. Metalik yapılı olan ders araçlarını nemli bırakmayınız. Bu durum onların paslanıp çürümelerine neden olabilir.31. Ders bitiminden hemen sonra laboratuarın genel temizliğini yapınız.32. Temizlik işleminden sonra gerekli havalandırma işlemini gerçekleştirerek kapı ve camları usulüne uygun olarak kapatınız.  Laboratuvarda Çalışma Prensipleri 01. İdari bölüm, fiziksel, kimyasal ve mikrobiyoloji analiz laboratuvar bölümleri ayrı  birimler halinde planlanmalıdır. Laboratuvarlar yapılan analizin özelliğine uygun bir şekilde planlanmalı ve çalışmalıdır. 03. Personel için yeteri kadar soyunma dolabı bulundurulmalı, kadın ve erkek personel için soyunma odaları ve sosyal alan düşünülmelidir. Laboratuvara çanta, palto, hırka, mont ve gereksiz malzeme getirilmemelidir. 04. Laboratuvarlar özel çevre koşulları gerektiren analizlerde bu koşulları kontrol etmeye yarayan alet ­ ekipmanlarla donatılmış olarak ayrı bölümler halinde planlanmalıdır. 05. Laboratuvarlar toz, nem, buhar, titreşim, elektromanyetik etkenler ve zararlı canlılar gibi olumsuz etmenlerden korunmalıdır. Çalışma alanları 20ºC sıcaklıkta sabit tutulmalıdır. 06. Analiz yapılan bölümler, çalışan personelin rahatça hareket etmesine olanak sağlayacak genişlikte planlanmalıdır. 07. Boru sistemleri, radyatörler, aydınlatma sistem ve bağlantıları ile diğer servis noktaları kolay temizlenecek biçimde tasarlanmalı, duvarlar, taban ve tavanlarkolay temizlenir ve gerektiğinde dezenfekte edilir özellikte olmalıdır. 08. Aydınlatma, ısıtma ve havalandırma sistemleri yapılacak analizleri doğrudan veya dolaylı olarak etkilemeyecek nitelikte olmalıdır. 09. Laboratuvarda ilk yardım için gerekli ilaç ve malzeme bulunan bir dolap ve ilk yardım talimatı bulunmalıdır. 10. Laboratuvarda yangına karşı gerekli önlemler alınmalı, bu konuda mutlaka itfaiyeden uygunluk belgesi alınmalıdır. 11. Laboratuvar binasının çevresinde kirliliğe yol açacak çöp, atık yığınları, su birikintisi ve zararlı canlıların yerleşmesine uygun ortamlar bulunmamalıdır. 12. Personelin iş güvenliği için uygun giysi ve donanım kullanması sağlanmalıdır. Laboratuvarda mutlaka laboratuvar önlüğü ile çalışılmalıdır. Laboratuvar önlüğü tercihan yanmayan kumaştan, normal uzunlukta ve uygun bedende olmalıdır. 13.Uzun saçlar toplanmalı, ya topuz yapılmalı veya yanmaz bone içine alınmalıdır. Ayakkabılar laboratuvarda çalışmaya uygun olmalı, burnu açık ayakkabı giyilmemelidir. Tuvaletler laboratuvar bölümlerine açılmamalıdır. 14. Laboratuvarda herhangi birşey yenilip içilmemeli (özellikle sigara), çalışırken eller yüze sürülmemeli, ağıza herhangi birşey alınmamalıdır. 15. Laboratuvarın her bölümünde temizlik, sanitasyon dezenfeksiyon işlemleri yazılı talimatlara göre periyodik olarak yapılmalı, kayıtları tutulmalıdır. 16. Çalışan personelin periyodik sağlık kontrolleri yapılmalı, bulaşıcı bir hastalığı olan veya taşıyıcı olduğu belirlenen personel çalıştırılmamalıdır. 17. Kullanıldıktan sonra her bir eşya, alet veya cihaz belli ve yöntemine uygun biçimde temizlenerek yerlerine kaldırılmalıdır. 18. Laboratuvarların giriş ­ çıkışı denetlenmeli ve analiz yapılan bölümlere çalışanlar dışında kişilerin girmeleri engellenmelidir. 19. Laboratuvarın faaliyet gösterdiği konulara göre ortaya çıkan atıklar doğrudan alıcı ortama verilmemeli, tekniğine ve mevzuata uygun bir biçimde etkisiz hale getirilmelidir. 20. Atılacak katı maddeler çöp kutusuna atılmalıdır. İşi bitmiş, içinde sıvı bulunan beher, erlenmayer, tüp gibi temizlenecek cam kaplar da lavaboya konulmalı, masa üzerinde bırakılmamalıdır. 21. Su, gaz muslukları ve elektrik düğmeleri, çalışılmadığı hallerde kapatılmalıdır. Malzemeler kendi malınızmış gibi kullanılmalıdır. 22. Çalışmalarda dikkat ve itina ön planda tutulmalıdır. 23. Laboratuvarda başkalarının da çalıştığı düşünülerek gürültü yapılmamalıdır. Asla şaka yapılmamalıdır. 24. Laboratuvarda meydana gelen her türlü olay, laboratuvarı yönetenlere anında haber verilmelidir. 25. Laboratuvarı yönetenlerin izni olmadan hiçbir madde ve malzeme laboratuvardan dışarı çıkarılmamalıdır. 26. Katı haldeki maddeler şişelerden daima temiz bir spatül veya kaşıkla alınmalıdır. Aynı kaşık temizlenmeden başka bir madde içine sokulmamalıdır. Şişe kapakları hiçbir zaman alt tarafları ile masa üzerine konulmamalıdır. Aksi taktirde, kapak yabancı maddelerle kirleneceği için tekrar şişeye yerleştirilince bu yabancı maddeler şişe içindeki saf madde veya çözelti ile temas edip, onu bozabilir. 27. Cam kapaklı şişeler açılmazlarsa, böyle hallerde şişe kapağına bir tahta parçası ile hafifçe vurularak gevşetilir. Bu fayda etmediği taktirde camın genişlemesi için küçük bir alevle şişe döndürülerek boğazı dikkatlice ısıtılır veya şişe bir müddet su içinde batırılmış vaziyette bırakılır. Kapaklı ve tıpa ile kapatılmış kaplardaki madde kesinlikle ısıtılmamalı, üzerinde ateşe dayanıklı işareti taşımayan kaplarda ısıtma ve kaynatma yapılmamalıdır. 28. Şişelerden sıvı akıtılırken etiket tarafı yukarı gelecek şekilde tutulmalıdır. Aksi halde şişenin ağzından akan damlalar etiketi ve üzerindeki yazıyı bozar. Şişenin ağzında kalan son damlaların da şişenin kendi kapağı ile silinmesi en uygun şekildir. 29. Kimyasal maddeler gelişigüzel birbirine karıştırılmamalıdır, çok büyük tehlike yaratabilir. 30. Bazı kimyasal maddeler birbiriyle reaksiyona girerek yangına veya şiddetli patlamalara yol açarlar ya da toksik ürünler oluştururlar. Böyle maddelere geçimsiz kimyasal maddeler denir. Bunlar her zaman ayrı ayrı yerlerde muhafaza edilmelidir. Bu maddeler aşağıda verilmiştir: 31. Çözelti konulan şişelerin etiketlenmesi gerek görünüş ve gerekse yanlışlıklara meydan verilmemesi için gereklidir. Kağıt etiket kullanılıyorsa yazıların ıslanınca akmaması için çini mürekkep kullanılması iyi sonuç verir. Etiketlerin arkası nemlendirilirken ağıza ve dile sürülmemelidir. 32. Kimyasal maddeler risk gruplarına ve saklama koşullarına göre, havalandırma sistemli ayrı oda, dolap veya depolarda bulundurulmalıdır. Kimyasal maddelerin bulunduğu yer kilitli olmalı, anahtarı depo sorumlusu ve sorumlusunda olmalıdır. 33. Laboratuvarda zaman çok önemlidir. Yapılacak işler başlangıçta planlanırsa zamandan tasarruf edilebilir. Örneğin, suyu uçurma gibi bazı işler pek az dikkat ister ve bu zaman süresince başka bir analiz de yapılabilir. 34. Organik çözücüler lavaboya dökülmemelidir. Tartım veya titrasyon sonuçları küçük kağıtlara yazılmamalıdır. Bu kağıtlar kaybolabilir ve analizin tekrarlanması zorunluluğu ortaya çıkabilir. 35. Laboratuvarda çalışmalar için özel bir defter tutulmalıdır. Yapılan çalışma ve gözlemler mutlaka kaydedilmelidir. 36. Ecza dolabında neler bulunduğu, yangın söndürme cihazının nasıl çalıştığı bilinmelidir. Bu konuda eğitim yapılmalıdır. 37. Uçucu sıvılar lavaboya dökülmemelidir. 38. Şişelerin kapak veya tıpaları değiştirilmemelidir. Çözelti şişelere doldurulurken dörtte bir kadar kısım genişleme payı olarak bırakılır. 39. Etiketsiz bir şişeye veya kaba, kimyasal madde konulmaz. Ayrıca boş kaba kimyasal bir madde koyunca hemen etiketi yapıştırılmalıdır, bütün şişeler etiketli olmalıdır. Üzerinde etiketi olmayan şişelerdeki kimyasal maddeler, deneylerde kesinlikle kullanılmamalıdır. 40. Cam kesme ve mantara geçirme durumlarında ellerin kesilmemesi için özel eldiven veya bez kullanılmalıdır. Ucu sivri, kırık cam tüplerine, borulara lastik tıpa geçirilmemelidir. Böyle uçlar; havagazı ocağı, zımpara veya eğe ile düzgün hale getirilmelidir. 41. Lastik tıpalara geçirilecek cam boruların uçları su ile ıslatılmalı veya  gliserin, vazelin ile yağlanmalıdır. Cam borular lastik tıpaya direkt bastırılarak değil de döndürülerek sokulmalıdır. 42. Tüp içinde bulunan bir sıvı ısıtılacağı zaman tüp, üst kısımdan aşağıya doğru yavaş yavaş ısıtılmalı ve tüp çok hafif şekilde devamlı sallanmalıdır. Tüpün ağzı kendinize veya yanınızda çalışan kişiye doğru tutulmamalı ve asla üzerine eğilip yukarıdan aşağıya doğru bakılmamalıdır. Yüze sıçrayabilir. 43. Zehirli ve yakıcı çözeltiler, pipetten ağız yolu ile çekilmemelidir. Bu işlem için vakum ya da puar kullanılmalıdır. 44. Genel olarak toksik olmadığı bilinen kimyasal maddeler bile, ağıza alınıp tadına bakılmamalıdır. 45. Benzin, eter ve karbonsülfür gibi çok uçucu maddeler ne kadar uzakta olursa olsun açık alev bulunan laboratuvarda kullanılmamalıdır. Eter buharları 5 metre ve hatta daha uzaktaki alevden yanabilir ve o yanan buharlar ateşi taşıyabilir. 46. Sülfürik asit, nitrik asit, hidroklorik asit, hidroflorik asit gibi asitlerle bromür, hidrojen sülfür, hidrojen siyanür, klorür gibi zehirli gazlar içeren maddeler ile çeker ocakta çalışılmalıdır. 47. Tüm asitler ve alkaliler sulandırılırken daima suyun üzerine ve yavaş yavaş dökülmeli, asla tersi yapılmamalıdır. 48. Civa herhangi bir şekilde dökülürse vakum kaynağı ya da köpük tipi sentetik süngerlerle toplanmalıdır. Eğer toplanmayacak kadar eser miktarda ise üzerine toz kükürt serpilmeli ve bu yolla sülfür haline getirilerek zararsız hale sokulmalıdır. 49. Termometre kırıklarının civalı kısımları yada civa artıkları asla çöpe yada lavaboya atılmamalı, toprağa gömülmelidir. 50. Elektrikle uğraşırken eller ve basılan yer kuru olmalı, metal olmamalı, elektrik fişleri kordondan çekilerek çıkarılmamalıdır. Gerektiğinde bazı işlemleri hemen yapabilmek için gerektiği kadar elektrik bilgisi edinilmeli, büyük onarımlar mutlaka ehliyetli teknisyenlere yaptırılmalıdır. 51. Laboratuvarda, özellikle kilitlenmiş bir yerde yalnız çalışılmamalıdır. Her türlü olasılıklara karşı, tek başına çalışan kişi yapacağı işleri bir başkasına önceden anlatmalı ve sürekli haber vermelidir. 52. Kimyasallar taşınırken iki el kullanılmalı, bir el kapaktan sıkıca tutarken, diğeri ile şişenin altından kavranmalıdır. Desikatör taşınırken mutlaka kapak ve ana kısım birlikte tutulmalıdır. Desikatör kapakları arasıra vazelin ile yağlanmalıdır. 53. Laboratuvar terkedilirken bulaşıklar yıkanmalı, tüm kimyasallar güvenlik altına alınmalı, gaz muslukları ana musluktan kapatılmalıdır. 54. Gözler, hassas terazide tartma gibi işlemler dışında daima korunmalıdır. Emniyet gözlükleri takmak yararlıdır. Gazlardan dolayı gözlerin herhangi bir tahrişinde buna engel olmak için sık sık gözleri soğuk su ile yıkamak veya bol su akıtmak gereklidir. 55. Asit, baz gibi aşındırıcı ­ yakıcı maddeler deriye damladığı veya sıçradığı hallerde derhal bol miktarda su ile yıkanmalıdır. 56. İçinde kültür bulunan tüp, petri kutusu gibi malzeme açık olarak masa üzerine bırakılmamalı, tüpler önlük cebinde taşınmamalı, masa üzerine gelişigüzel konulmamalıdır. Tüpler tüplükte tutulmalıdır. 57. Çalışırken laboratuvar kapı ve pencereleri kapalı tutulmalı, mikroorganizma veya sporlarını etrafa yayacak gereksiz ve ani hareketlerden sakınılmalıdır. 58. Kültürlerin yere veya masaya dökülmesi veya kültür kaplarının kırılması halinde durum hemen laboratuvar yöneticisine bildirilmeli ve dökülen kültürün üzeri anında uygun bir dezenfektan çözeltisi ile kaplanarak (örneğin %10'luk hipoklorit çözeltisi) 15 ­ 30 dakika bekletilmeli ve daha sonra temizlenmelidir. 59. Öze uçları her kullanımdan önce ve sonra Bunzen beki alevinde usulüne uygun şekilde yakılarak sterilize edilmelidir. 60. Mikrobiyoloji laboratuvarında kullanılacak pipetler, önce ağız kısımlarına pamuk yerleştirilerek sterilize edilmeli ve bu şekilde kullanılmalıdır. 61. Kültürün yutulmaması için  tüm önlemler alınmalı kültür yutulursa, anında laboratuvar yöneticisine haber verilmelidir. 61. Mikrobiyolojik çalışmalarda steril olduğundan kuşku duyulan malzeme kullanılmamalıdır. 62. Pipetleme yapılırken kesinlikle üflenmemelidir. 63. Etil alkol gibi yanıcı, tutuşucu maddeler Bunzen beki alevi çevresinden uzak tutulmalıdır. 64. Ellerde kesik, yara ve benzeri durumlar varsa bunların üzeri ancak su geçirmez bir bantla kapatıldıktan sonra çalışılmalı, aksi takdirde çalışılmamalı ve son durum sorumluya iletilmelidir. 65. Mikroskobun objektif ve oküler kısmı her kullanımdan önce ve sonra ince mercek kağıdı ile veya bir tülbent yardımıyla dikkatlice merceğe zarar vermeden temizlenmelidir. 66. Çalışma bittikten sonra kirli malzemeler kendilerine ait kaplara konulmalıdır. Örneğin; kullanılmış pipetler, lam ve lamel hemen, içinde dezenfektan çözeltisi bulunan özel kaplara aktarılmalıdır. 67. Laboratuvardan çıkmadan önce mikroskop lambaları kapatılmalıdır. Gereksiz ışıklar söndürülmelidir. 68. Laboratuvar terkedilirken bulaşıklar yıkanmalı, tüm kimyasallar güvenlik altına alınmalı, gaz muslukları ana musluktan kapatılmalıdır. 69. Çalışma bittikten sonra eller sabunlu su ve gerektiğinde antiseptik bir sıvı ile yıkanmalıdır. 70. Kültür ve benzeri materyal laboratuvardan dışarı çıkarılmamalıdır. 71. Tüm deney sonuçları için gizlilik esasına uyulmalıdır. 72. En yakın sağlık kuruluşunun ve cankurtaran telefonları görülen yere asılmalıdır. 73. Laboratuvarda tek başına çalışılmamalıdır.

http://www.biyologlar.com/laboratuvar-kullanma-talimati-ve-ogrencilerin-dikkat-etmesi-gereken-kurallar

Mikroorganizmalarda Sınıflandırma ve yapı

Mikroorganizmalar gezegenimiz üzerindeki yaşamın taksonomisine ait herhangi bir yerde bulunabilir. Çoğu protistleri, bazı mantarları, aynı zamanda bazı mikro hayvanları ve bitkileri da içine alan belli sayıda ökaryotlar mikroskobik iken, bakteri ve arkeaların çoğunluğu mikroskobiktir. Virüsler, mikrobiyolojinin çalışma alanında olmasına rağmen, genellikle cansız sayılır ve dolayısıyla mikroorganizma olarak kabul edilmez. Prokaryotlar Prokaryotlar ya da Prokaryota; bakteriler, mavi-yeşil algler, riketsiyalar, aktinomisetler, ve mikoplazmaların gruplarının dahil olduğu; gerçek çekirdek zarları ve membrana bağlı organelleri olmayan, fosfolipid barındıran hücre duvarı ve tek helezonlu DNA molekülü hücre içinde serbest halde bulunan mikroorganizmaları kapsayan canlılar üstalemdir. Halk arasında mikrop diye adlandırılan mikroorganizmalar, hücresel yapılı olanlar ve hücresel yapıda olmayanlar olmak üzere ikiye ayrılır. Hücresel yapıda olanlar Bakteriler, mantarlar, protistlerdir. Hücresel yapıda olmayanlar ise Virüsler, viroidler, prionlardır. Canlıların bilimsel sınıflandırması içinde çok çeşitli grupları içerdiği için genel geçer özellikler belirtmek zordur. Bakteriler Bakteriler tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardır. Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadan biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır. Arkea Arkeler, Arkea  veya Arkebakteriler, canlı organizmaların bir ana bölümüdür. Yabancı literatürde bu gruptaki canlılar Archaea veya Archaebacteria, grubun tek bir üyesi ise tekil olarak Archaeum, Archaean, veya Archaeon olarak adlandırılır Arkeler, Ökaryotlar ve Bakteriler, üç-saha sisteminin (İngilizce three domain system) temel gruplarıdır. Bakteriler gibi arkaeler de çekirdeği olmayan tek hücreli canlılardır, yani prokaryotlardır (prokaryotlar altı-alemli sınıflandırmada Monera olarak adlandırılırlar). İlk tanımlanan arkaeler aşırı ortamlarda bulunmuş olmalarına rağmen sonradan hemen her habitatta raslanmışlardır. Bu üst krallığa ait tek bir organizma "arkeli" (Arkea'ye ait anlamında; İngilizce archaean) olarak adlandırılır, bu sözcük sıfat olarak da kullanılır. Ökaryotlar Ökaryotlar (Latince: Eukaryota), hücrelerinin yapısından dolayı beraber gruplandırılmış bir canlılar grubudur. Bilimsel sınıflandırmada Ökaryotlar, Bakteriler ve Arkeler, tüm canlıları kapsayan üç ana gruptur. Ökaryotların tanımlayıcı özelliği genetik malzemelerinin zarla çevrili bir (veya birkaç) çekirdek içinde yer almasıdır. Bu nedenle kelime, Eski Yunanca eu, gerçek ve karyon, çekirdek sözcüklerinden türetilmiştir. Sıfat hali ökaryotiktir. Bakteri ve arkeler çekirdeksiz olduklarından beraberce prokaryot olarak adlandırılırlar (Eski Yunanca pro-, evvel ve karyon çekirdek sözcüklerinden). Çekirdeğin yanı sıra, ökaryotların mitokondri veya kloroplast gibi zarla çevrili çeşitli organelleri vardır, bu tür hücre içi karmaşık yapılar da prokaryotlarda bulunmaz. Ökaryotların ortak bir atası olduğu için bir üst alem (domain) olarak tanımlanmışlardır. Üst alem sisteminde ökaryotların, prokaryotlara kıyasla, arkelerle daha çok ortak özellikleri vardır ve bu yüzden arkelerle beraber Neomura kladı içinde gruplandırılırlar. Protistler Protistler (Protista, bazen Protoctista), ayrışık (heterojen) bir canlı grubudur ve hayvan, bitki ya da mantar olarak değerlendirilemeyen ökaryot canlılardan oluşur. Protistler bilimsel sınıflandırma açısından âlem olarak değerlendirilse de tek soylu (monophyletic) değil, kısmi soylu (paraphyletic) bir gruptur. Protistler içinde değerlendirilen canlıların da görece basit yapılı (tek hücreli ya da ileri düzeyde özelleşmiş dokuları olmayan çok hücreli) olmak dışında ortak özellikleri pek yoktur. Beslenmeleri fotosentez, absorbsiyon ya da fagositoz ile, çoğalmaları ise eşeyli ya da eşeysiz üreme ile gerçekleşen protistlerin hareketsiz olanları olabildiği gibi, kamçı, siller ya da yalancı ayaklarla hareket ederleri de bulunur. Yaklaşık olarak 60.000 yaşayan, 60.000 kadar da soyu tükenmiş fosil türü bilinmektedir. Protistalar canlılar dünyasının ökaryot hücreli en ilkel organizma grubudur. Çoğunlukla tek hücre halinde yaşamakla birlikte koloni halinde yaşayanları da vardır. Protistalar kamçılılar, silliler, kökayaklılar, sporlular, cıvık mantarlar ve algler olmak üzere gruplara ayrılırlar. Mikro Hayvanlar Mantar Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır. Halk arasında küf, pas, rastık, maya, mildiyö, şapkalı mantar, kav mantarı, puf mantarı gibi çeşitli isimlerle anılan bütün mantarlar, mantarlar (Fungi) alemi içersinde incelenirler. Latince Fungi mantarlar, Fungus ise mantar anlamındadır. Dünyanın heryerinde bulunurlar. Fazla nemli yerlerde daha çokturlar. Yeryüzünde 1,5 milyon kadar mantar türü olduğu düşünülmekte ise de günümüzde sadece 69.000 kadar türü tanımlanmıştır. Çoğu insan, mantarların bitki olduğunu düşünmektedir, ancak mantarlar bitki değildir. Çünkü, mantarlar kendi besinlerini üretemezler. Bitkiler Bitkiler (Plantae), fotosentez yapan, ökaryotik, ağaçlar, çiçekler, otlar, eğreltiotları, yosunlar ve benzeri organizmaları içinde bulunduran çok büyük bir canlılar alemidir. Bitkiler, topluluk halinde yaşarlar. Bitkilerin bir bölgede oluşturdukları örtüye bitki örtüsü denir. Flora, bir bölgede yetişen bütün bitki türlerinin hepsine denir. Herhangi bir bölgenin yaşam koşullarında gelişen, benzer ekolojik yapı içeren bitki topluluğuna vejetasyon denir. Bunlar 4 sınıftır: Ormanlar (her zaman yeşil tropikal yağmur, subtropikal, orta kuşak, sert yapraklı, iğne yapraklı, kışın yaprak dökenler, muson ormanları, tropikal kuru, mangrov, galeri, bataklık), Çalılar (maki, garig, psödomaki), otlar (savan, step, çöl), tundra. Bitkilerin yetişmesini etkileyen bir çok faktör vardır. Bunlar; ekvatora uzaklık, denizden yükseklik(rakım), arazi eğimi, ışık, sıcaklık, nem, yıllık yağış miktarı, toprak içeriği, canlı faktörler(insan, hayvan, diğer bitkiler, mikroorganizmalar)'dir Bitkiler, fotosentezle ekolojik dengeyi sağlamada temel rol oynadıklarından, canlılar dünyasında çok önemli yere sahiptirler. Bitkiler aleminin 350.000'e yakın türü mevcuttur. 2004 itibariyle 287.655 bitki türü tanımlanmıştır. Bunlardan 258.650'si çiçekli bitkilerden, 15,000'i de yosunlardan olarak tanımlanmıştır. Bitkiler genelde ototrof (özbeslek) organizmalardır ve enerjilerini güneş ışığından alırlar. Birçok bitki kloroplastları sayesinde fotosentez ile organik bileşiklerini üretir. Bitki hücreleri genellikle kareye benzer şekildedir. Habitat ve Ekoloji [değiştir]Habitat, bir organizmanın yaşadığı ve geliştiği yer. Bu yer, fiziksel bir bölge, yeryüzünün özel bir parçası, hava, toprak ya da su olabilir. Habitat, bir okyanus ya da bir çayırlık kadar büyük olabileceği gibi, çürümüş bir ağaç kütüğünün altı ya da bir böceğin bağırsağı kadar küçük de olabilir. Bununla beraber, her zaman tanımlanabilen ve fiziksel olarak sınırlı bir bölgedir. Birden fazla hayvan ya da bitki özel bir habitatta yaşayabilir. Ekoloji, canlıların birbirleri ve çevreleriyle ilişkilerini inceleyen bilimdir. Ekosistem ise canlı ve cansız çevrenin tamamıdır. Ekosistemi de abiotik faktörler (toprak, su, hava, iklim gibi cansız faktörler) ve biyotik (üreticiler, tüketiciler ve ayrıştırıcılar) faktörler olmak üzere iki faktör oluşturur. Ekstremofil [değiştir]Ekstremofiller çoğunlukla tek hücreli olup ekstrem koşullarda yaşama gereksinim duyan ve bu koşullarda optimum olarak gelişen organizmalara denir.Ekstremofiller karasal mezofilik organizmaların büyümeleri ve üremeleri için gerekli optimal koşullardan çok farklı olan ekstrem çevrelerde gelişirler.Çoğu ekstremofiller(ekstrem koşulları seven) mikroorganizmalardır.Archaea domaini ekstremofillerin geniş dağılımlı olduğu bir domain olarak bilinmesine karşın,ekstremofiller hem bakterilerin hem de archaeaların içinde sayısız ve farklı genetik hatlarda yer almaktadır.Archaea ve ekstremofil terimleri ara sıra kendi içerisinde yer değiştirmesine karşın,pek çok mezofilik archaeaların ve pek çok ekstremofilik bakterilerin olduğu bilinmektedir.Yine,tüm ekstremofiller tek hücreli değildir.Çok hücrelilere örnek olarak ekstremofilik metazoalardan Pompeii kurdu ,psikrofilik(soğukta yaşamı seven) Grylloblattodea(böcek),artartik kabuklular(crustacea)ve Tardigrade(mikroskobik canlı) verilebilir. Mikrop terimi, bilim dünyasına ilk defa 1878'de Fransız cerrahı Charles Sédillot tarafından getirilmiştir. Sédillot, mikropların kendilerine has apayrı bir dünyası olduğunu savunmuştur. Mikrobiyoloji ilim dalı beş ana kısma ayrılmıştır: Viroloji, bakteriyoloji, protozooloji, algoloji ve mikoloji. Bunlara ilaveten moleküler ve hücresel biyoloji, biyokimya, fizyoloji, ekoloji, botanik ve zoolojiyle de yakından ilgilidir.

http://www.biyologlar.com/mikroorganizmalarda-siniflandirma-ve-yapi

  Biyoloji Laboratuvarı Çalışma Rehberi

Biyoloji Laboratuvarı Çalışma Rehberi

Tıbbi laboratuvarlar; insan kanı, idrarı, dokusu gibi vücut materyallerinin analizlerinin yapıldığı birimlerdir.

http://www.biyologlar.com/biyoloji-laboratuvari-calisma-rehberi

Ekosistem Nedir ?

Ekosistem, bir alandaki canlı organizmalar ve cansız varlıkların hepsinin birden oluşturduğu sistem. Organizmalarla cansız çevre elementleri birbiriyle sıkı sıkıya bağlıdır. Karşılıklı olarak madde alışverişi yapacak biçimde birbirlerine etki yapan organizmalarla, cansız maddelerin bulunduğu herhangi bir doğa parçası bir ekosistemdir. Ekosistem yaklaşımı, bireysel organizmalar ya da topluluklardan çok tüm alanın işlevlerinin nasıl olduğuyla ilgilenir. Bir alandaki organizmalar ve cansız çevreleriyle olan ilişkilerine bakar. Bir ekosistem, temel olarak abiyotik maddeler, üreticiler, tüketiciler ve ayrıştırıcılardan oluşur. Ekosistemlerde yaşam, enerji akışı ve besin döngüleriyle sürer. Açık bir sistem olan ekosistemde, enerji ve besin giriş-çıkışı süreklidir. Bir ekosistemin dört temel bileşeni vardır. Üreticiler ototroflar, tüketiciler (hetotroflar), ayrıştırıcılar (saprofitler) ve doğal çevre. İlk üç bileşen, dördüncü bileşenin oluşturduğu cansız doğa içinde varlıklarını sürdüren canlı yaşamı kapsar. Cansız doğal çevre ile bu çevre içinde yaşamlarını sürdüren canlılar arasındaki ilişkileri ve etkileşimleri inceleyen bilim dalına ekoloji adı verilir. Ekoloji canlı varlıkların birbirleriyle ve bulundukları ortamla ilişkilerini inceler. Ekolojik denge ise doğada canlıların kendi aralarındaki ve fiziksel çevreleriyle ilişkilerini sağlıklı gelişmesine imkan tanımasıdır. Ekosistemdeki her canlı türü çevre koşullarından etkilenir ve kendi yaşam faaliyetleriyle bulunduğu habitatın koşullarını etkiler, değişikliğe uğratır. Öte yandan Biyosferdeki çeşitli ekosistemlere sürekli olarak zehirli maddeler katılmaktadır. Bunların bir kısmı doğadan kaynaklanır. Örneğin bir volkanın faaliyeti sırasında çıkan kükürt gazları çevreye yayılarak bitkilerin gelişmesini engeller. Denizlerde doğal olarak bulunan cıva deniz canlılarında birikerek insan sağlığını besin yoluyla tehdit eder. Orman içinde akan bir dereye dökülen yaprak gibi organik maddeler bu habitatta büyük ölçüde oksijen noksanlığına neden olabilir. Bununla birlikte kirlenme denilince insan müdahalesi sonunda oluşan çevre bozulması anlaşılmaktadır. Böylece ekosistemde canlıların yaşamını ciddi ölçüde etkileyen değişiklikler olmaktadır. İnsan da canlı bir varlık olarak bulunduğu ekosistemin bir parçası olduğu için kendinin neden olduğu değişiklikler başka canlılara olduğu gibi eninde sonunda kendisini de etkilemektedir. Bu değişiklikler bazen insanın o çevrede barınmasını olanaksızlaştıracak boyutlara ulaşır. Besin zincirine örnekler: 1- Ot, fare, tilki, dağ aslanı (üç üyeli bir zincir) 2- Ot, çekirge, kurbağa, yılan, atmaca (dört üyeli bir zincir) 3- Yonca, dana, insan, (üç üyeli bir zincir) İnsan genellikle besin zincirinin son halkasıdır. Tabiatta birçok küçük besin zinciri birbiri içine geçmiş durumdadır. İç içe geçmiş besin zincirlerinin tümüne besin ağı denir. Besin zinciri veya besin ağını oluşturan canlılar arasında bir denge vardır. Herhangi bir basamaktaki bir değişim hayvan populaşyonları arasındaki dengeyi bozar ve herhangi bir basamaktaki değişimi onun üzerindeki veya onunla beslenen basamağı etkiler, değişimlere hatta açlıktan ölüme sebep olur. Örneğin; fareler ortadan kalktığında bunla beslenen yılan, tilki çakal, yırtıcı kuşlar, baykuş gibi hayvanlar açlıktan ölür. Veya tersi bir durumda, ortamdaki yılın, tilki, çakal yırtıcı kuşlar, başkuş gibi hayvanlar ortamdan kaldırılırsa köyler ve kentler fare istilasına uğrar (Üç sene önceki Samsun ve Muğla’daki sıçan istilası gibi). Fare ve sıçanların çoğalmasıyla tarladaki sebzeye, meyveye verilen zarar arttığı gibi, veba, kuduz, tularemi, beyin zarı iltihaplanması, kolera, kanamalı sarılık gibi birçok hastalıkların yayılmasına sebep olur. Kısacası zincirin bozulması, türlerden birinin azalmasına diğerinin çoğalmasına sebep olur. Bu dengenin bozulması ise besin ağının son halkası olan insanı her yönden etkiler ve insan soyunun geleceğini tehdit ederek, sonunda insan soyu da ortadan kalkabilir.

http://www.biyologlar.com/ekosistem-nedir-

Balıklar ( Pisces)

Balık, tatlı ve tuzlu suda yaşayan, evrimleşme çizgileri farklı, soğukkanlı omurgalıların genel adıdır. Bu terim, bir sınıflandırmadan çok bir yaşam biçimini tanımlar. Bugün yaşayan balıklar genellikle 5 sınıf altında toplanır. Bu sınıflar, hava soluyan hayvanların 4 sınıfı olan amfibyumlar, sürüngenler, kuşlar ve memeliler kadar birbirinden farklıdır. Yaklaşık 450 milyon yıllık bir geçmişi olan balıklar, bu süre boyunca, hemen her çeşit su ortamına uyum sağlayacak biçimde gelişmiştir. Kara ortamına geçiş sürecinde büyük bir değişime uğrayarak 4 ayaklı kara omurgalılarına dönüştüklerinden, aslında kara omurgalılarının ilk ataları bu su canlılarıdır. Balık dendiğinde genellikle, yüzgeçleri olan, solungaçlarıyla solunum yapan, gövdesi kaygan ve suda hareket etmeye elverişli olan su hayvanı akla gelir. Ne var ki, bu tanıma uymayan balıkların sayısı, uyanlarından çok daha fazladır. Bazılarının gövdesi uzunlamasına genişlemiş, bazılarınınki kısa kalmış, özellikle dipte yaşayanlarda yassılaşmış, birçoğunda da yanlardan basılmıştır. Ağızlarının, gözlerinin, burun deliklerinin ve solungaçlarının konumu da türden türe büyük bir değişiklik gösterir. Balık vücudunun temel yapısı ve işlevi bütün öbür omurgalılarınkine benzer. Kara omurgalılarının vücudunu oluşturan 4 temel doku balıklarda da vardır: Dış yüzeyleri kaplayan epital doku, bağ ve destek doku (kemik, kıkırdak ve lifsi dokularla türevleri), sinir dokusu ve kas dokusu. Tipik balık vücudu, yüzmeye uyarlanmış aerodinamik profilli ve iğ biçimindedir: baş, gövde ve kuyruk bölümlerinden oluşur. Yaşamsal önemdeki organları içeren gövde boşluğu genellikle vücudun ön alt yanındadır. Bu boşluğun arka ucunda, anüs yüzgecinin tabanının hemen önünde, dışkıların boşaltıldığı anüs deliği bulunur. Omurilik ve omurga, kafa iskeletinin arka bölümünden başlayıp sırt, gövde boşluğu ve kuyruk bölgesinden geçerek kuyruk yüzgecinin tabanında sonlanır. Balıklarda çok değişik üreme biçimleri görülmekle birlikte, en yaygın olanı dişinin suya bıraktığı sayısız, küçük yumurtanın vücut dışında döllenmesine dayanır. Açık denizlerdeki yüzey balıklarının yumurtaları genellikle suya asılıymış gibi duru; kıyı ve tatlı su balıkları ise yumurtalarını deniz dibine yada bitkilerin arasına bırakır; hatta bazı türler bir salgıyla yumurtalarını kayalara yada bitkilere yapıştırır. Yumurtaları dölleyecek olan spermalar erkeklerin gövde boşluğundaki 2 (bazen 1) erbezi içinde üretilerek , süt kıvamındaki ve rengindeki bir sıvıyla suya boşaltılır. Kemikli balıklarda, erbezlerinin her birinden çıkan bir sperma kanalı, anüsün arkasındaki ürogenital deliğe, köpekbalıklarında ve vatozlarda ise dışkılığa açılır. Ayrıca bazı balıklarda, erkeğin spermalarını dişinin yumurta kanalına boşaltmasını (iç döllenme) sağlayan bir tür çiftleşme organı vardır. Balıklara duyu organları açısından bakarsak; koku duyuları, hemen hemen tüm balıklar için büyük önem taşır. Çok küçük gözlü bazı yılanbalıkları, besininin yerini bulabilmek için görmeden çok koku duyusuna güvenir. Tat duyusu da balıkların çoğunda çok gelişmiştir; yalnız ağız boşluğunda değil, başın ve vücudun bazı bölümlerinde de tat alma organları bulunur. Beslenme, tehlikelerden kaçınma ve üreyerek soyunu sürdürme açısından belki de en önemli organ gözdür. Balıkların gözü temel yapısı ve işleviyle bütün diğer omurgalılarınkine benzese de, çok değişik yaşam koşullarına uyarlanmış olduğundan değişik özellikler gösterirler. Karanlık ve loş ortamlarda yaşayan balıkların gözleri genellikle büyüktür. Ama başka bir duyusu aşırı gelişerek baskın duruma geçerse gözlerin işlevi azalır. Onlarda ses algılama ve denge, birbirleriyle çok yakın bağıntısı olan iki duyudur. Suyun içerisinde kolayca yayılan ses dalgaları, özellikle düşük frekanslı dalgalar, balıkların baş ve gövde içi sıvıları ile kemiklerine çarparak işitme organlarına iletilir. Balıklarca algılanabilen ses frekanslarının alanı insanlarınkinden çok değişiktir; bu da sesin sudaki yayılma hızından ileri gelir. Bir çok balığın, dişlerini birbirlerine sürterek yada başka yollarla birtakım sesler çıkarıp birbirleriyle iletişim kurdukları sanılmaktadır.

http://www.biyologlar.com/baliklar-pisces

TOHUM KILIFLARINDAKİ ÖZEL MADDELER

Tohumların genel tasarımlarındaki farklılıkların yanısıra, kılıfları da tam ihtiyaç duyacakları özelliklere sahip olarak yaratılmıştır.Tohumun içindeki embriyo son derece değerlidir. Bu nedenle yeni bitki tam olarak gelişene kadar bu embriyonun özenle korunması gerekir. Bu koruma her bitki türüne göre değişiklik gösteren tohum kılıfları ile sağlanmıştır. Tohum kılıfını oluşturan maddenin dayanıklılığı oranında tohum dış ortamın olumsuz etkilerinden korunur . Bundan başka kılıfı oluşturan maddeler, tohumların su üzerinde durabilmesinde ya da rüzgarlarla uçmasında da etkendirler.Tohumların dış kılıfları, son derece çeşitli ve dikkat çekici özelliklere sahiptir. Bazı dış zarlar düşmanları uzaklaştırabilmek için acı bir madde ile kaplıdır. Bazıları ise "tanen" denilen bir madde bakımından zengindir ki bu madde tohumlardaki çürümeyi sınırlandırır. Birçok bitki türünün tohumlarında ise kılıflar bir tür jöle ile kaplıdır. Proteinlerle birleşmiş kompleks şekerlerden oluşan bu jölemsi madde, su ile karşılaştığında kolayca şişer. Bu sayede tohum kolayca nemli maddelerin üzerine yapışır. Bu özellik, ileride göreceğimiz gibi filizlenme sırasında önemli rol oynayacaktır. Resimde görülen jölemsi cisimler Ocimum basilicum adlı bir çeşit fesleğen türüne aittir. Bu fesleğenin tohum kılıfları su ile bağlantı haline geçtiğinde birkaç dakika içerisinde hemen jölemsi bir madde üretir. Böylece resimdeki ilginç şekli alırlar. Bu fesleğen türünün tohumları Tayland'da ve doğunun başka bölgelerinde özellikle meyva sularına katılarak kullanılır. (Grains de Vie, s.24) Üstte görülen Ipomoea murucoide'lerin ağır tohumları bu incecik tüyler sayesinde havada uçabilmektedir. Ayrıca tohumların rüzgarla birlikte yerde yuvarlanmasını sağlayanlar da bu tüylerdir. (Grains de Vie, s.25) Tohumların koruyucu dış katmanları (tohum kılıfları) genellikle çok serttir. Bu özellik tohumu karşılaşacağı dış etkenlere karşı korur. Örneğin; bazı tohumların gelişimlerinin son aşamasında dış yüzeylerinde dayanıklı mumlu bir yapı birikir, bu sayede tohumlar su ve gaz tesirine karşı dirençli olurlar. Tohum kılıfları bitkinin türüne göre değişik malzemelerle kaplanabilir; fasulye tanesinde olduğu gibi ince bir zarla ya da kiraz çekirdeğinde olduğu gibi odunsu ve sert bir kabukla örtülü olabilir. Suya dayanıklı olması gereken tohumların kabukları diğerlerine göre daha sert ve kalındır.12 Tohumlardaki tasarıma günlük hayatımızda sık karşılaştığımız bir bitkiden, fasulye tanesinden örnek verelim: Fasulye tanesi, türüne göre bir veya iki kılıf ile çevrilmiştir. Bu kılıflar tıpkı bir palto gibi tohumu dış ortamın soğuk hava, kuraklık, mekanik etkiler gibi zorlu şartlarından korur. Burası, aynı zamanda dış ortam ile olan bütün alışverişin de yapıldığı bölgedir. Kısacası, tohumun büyümesi konusunda bu kılıf önemli bir rol oynamaktadır. Fasulye tanesinin bulunduğu yerden koparıldığı noktada oval bir iz görülür. Bu, tanenin yani tohumun anne bitkiye olan bağlantı noktasıdır. Dikkatli bir şekilde incelendiğinde burada "micropyle" denen küçük bir delik olduğu görülecektir. Bu deliği işlevleri nedeniyle bebeklerdeki göbek bağına benzetmek mümkündür. Bu özel geçiş yerinden yumurtacığın içerisindeki dişi üreme hücresini döllemeye yarayan tüp girer. Ayrıca zamanı geldiğinde su, bu delikten içeriye girerek ve tohumun filizlenmesini sağlar. Tohum kabuklarının kalınlığı da -daha önce belirttiğimiz gibi- bitkinin türüne göre özel olarak ayarlanmıştır. Her bitkinin tohum kabuğu bulunduğu ortamda gelişmesine olanak verecek yeterliliktedir; ne çok kalındır ne de çok ince. Çünkü kabuğu çok kalın olan bir tohum bütün zorlu koşullarda yaşayabilir; ancak bir dezavantaj olarak aşırı kalın bir kabuk embriyonun dışarı çıkmasında bazı problemlere neden olabilir. Zayıf kabuğu olan bir tohum ise pek çok dış etken nedeniyle daha çabuk bozulabilir. İşte bu yüzden tüm tohumlar bulundukları ortama en uygun kabuk kalınlıklarına sahiplerdir. Tohumlardaki embriyonun korunmasında ve yayılmasındaki tek etken tohum kılıfları değildir. Bazı bitki türlerinde bu işlemler aynı zamanda meyve ile de yapılmaktadır. Örneğin resimlerde değişik evreleri görülen Nicandra physaloide çiçeğinde yumurtacık bir süre sonra içerisi tohumla dolu şişkin bir meyve haline gelir. Bu meyvenin üst kabuğunun bir bölümü soyulacak olursa tohumların ilk boyutlarının yani yumurtacık olan hallerinin 500 katına ulaştıkları görülecektir. Tohumlar, anne bitkiye göbek bağı olarak nitelendirilebilecek bir bağ ile bağlanmışlardır. (Grains de Vie, s.26) Ayrıca bitki tohumlarının tasarımlarını incelediğimizde şöyle bir detayla daha karşılaşırız. Tohumların kabukları, hayvanlarla taşınan tohumlarda dağıtımlarını yapacak olan hayvanların ilgi duyacağı kadar kolay delinebilme özelliğine sahiptirler. Ancak aynı zamanda bu kabuklar, kapladıkları tohumları bütün tohum yiyiciler için cazip hale getirmeyecek bir yapıdadırlar. Kiraz tohumu ve bu tohumun içindeki bilgiler doğrultusunda büyümüş, çiçek açmış, zamanı geldiğinde de meyve verecek bir kiraz ağacı görülmektedir. Yandaki resim ise bir tür yabani incir ağacına aittir. Metrelerce yükseklikteki bu dev ağaçlar da, meyvelerinin şekeri, kusursuz rengi ve lezzeti tam olan kiraz gibi ağaçlar da küçük tohumlardan çıkmaktadır. (Aşağıdaki resimde görülen insan elindeki küçük tohum yandaki incir ağacının tohumudur) Bu ağaçlarla ilgili bütün bilgiler eksiksiz bir şekilde tohumlarında kodlanmıştır. Üstelik milyonlarca yıldır aynı tohumlara aynı bitkiler kodludur ve bu sayede aynı tohumlardan aynı bitkiler çıkmaktadır. Allah tohumlara yerleştirdiği bilgi ile herşeye güç yetiren olduğunu bize göstermektedir. Buraya kadar anlatılanlardan da açıkça görüldüğü gibi basit bir dış görünüme sahip olan tohumların aslında detaylı bir tasarımı vardır. İçlerindeki maddelerin oranlarından içeriklerine ve koruyucu üst kaplamalarına kadar tüm tohumların özellikleri bulundukları iklim koşullarına, çevre şartlarına göre değişiklik göstermektedir. Peki bu çeşitlilik ve detaylar nasıl ortaya çıkmıştır? Bu sorunun cevabı ile ilgili olarak evrim teorisini savunan kitaplara baktığımızda ilginç bir durumla karşılaşırız. Evrimciler "Neden?", "Nasıl?" gibi sorulara cevap vermektense üstü kapalı ifadeler, göz boyama yöntemleri kullanmayı tercih ederler. Bu konuyla ilgili olarak tohumların üst kaplamaları hakkında Evolution isimli evrimci bir kitapta yazılanları ele alalım. Gördüğünüz kuru tohumlardan aşağıdaki resimlerde görülen rengarenk, mis gibi kokan çiçekler yetişmektedir. Bu, üzerinde düşünülmesi gereken önemli bir yaratılış gerçeğidir. Tohumun üst kaplaması çeşitli hayvanların azı dişlerine, bağırsak asitlerine ve enzimlere, oksijensiz atmosfere direnecek kadar dayanıklıdır. Ayrıca bu tohum kaplaması gerektiğinde uygun filizlenme koşulları oluşana kadar embriyoyu havadan, yanlış filizlenmesine neden olacak sebeplerden ve tohum yiyen hayvanlardan korumak için evrimsel olarak dizayn edilmiştir. Dikkat edilirse yukarıda tohumların kusursuz tasarımındaki dikkat çekici özelliklerden bazıları arka arkaya sıralanmakta, son satırlarda ise "evrimsel dizayn" ifadesi kullanılarak tohumların evrim ile oluştuğu havası yaratılmaya çalışılmaktadır. Ancak takdir edileceği gibi yukarıdaki paragraf tohumların nasıl ortaya çıktıkları sorusunu açıklamaktan son derece uzaktır. Çünkü burada sadece tohumlardaki tasarımın kusursuzluğundan bahsedilmektedir. Sona eklenen "evrimsel olarak dizayn edilmiştir" cümlesi ise gerçekte hiçbir anlam ifade etmemektedir. Ayrıca bu ifade kendi içinde de tutarsızdır. Zira, "evrim" ve "dizayn" kavramları birbirine taban tabana zıt kavramlardır ve evrimin bir dizayn ortaya çıkarması, bir şey tasarlaması düşünülemez. Çünkü evrim tesadüflere dayalı bir süreci savunur; "dizayn" yani "tasarım" kavramı ise bir aklın varlığını gösterir. Dolayısıyla bir yerde bir dizayn varsa bu durum evrim, tesadüf, rastlantı gibi kavramların bunda hiçbir etkisi olamayacağını ortaya koyar. Canlılardaki ve şu anki konumuz olan tohumlardaki dizayn da onların evrimin değil üstün bir aklın ürünü olduklarının en açık kanıtıdır. Bu durumu şöyle bir örnekle daha açık hale getirelim. Bir gün bir resim galerisine gittiğinizi ve burada bir salon dolusu tohum resmi ile karşılaştığınızı farz edelim. Her resimde farklı bir bitkinin tohumu ile ilgili detaylar çizilmiş olsun. Galerinin sahibine bu kadar çeşitli resmi kimin çizdiğini sorduğunuzu düşünelim. Eğer bu kişi size "bu resimlerin bir ressamı yoktur, bunlar tesadüflerin yardımıyla evrimsel olarak dizayn edilmiştir" dese ne düşünürsünüz? Elbette böyle bir cevabın son derece mantıksız ve akıl dışı olduğunu hemen anlar ve ressamın varlığı konusunda ısrar edersiniz. Cansız tohum resimlerinin "evrimsel dizaynına" inanamayacağınıza göre, tamamen canlı yapılarda, içinde bir bitkiye ait tüm bilgileri bulunduran, uygun şart ve ortamlarda filizlenerek dev ağaçları, yüz binlerce çeşit meyveyi, çiçeği meydana getiren tohumları, bilinçsiz ve şuursuz tesadüflerin var ettiğine de inanamazsınız. Görüldüğü gibi burada asıl olarak bu dizaynı kimin yaptığı, nasıl yaptığı, bitkinin bu dizayna uygun bir yapıya nasıl getirildiği ve bunun nasıl yerleştirildiği gibi soruların cevabının verilmesi gerekmektedir. 1-4) Manolya bitkisi geceleri yapraklarını az kapatır. Bu sayede böceklerin kendisini daha çok ziyaret etmesini sağlamış olur. 5) Çiçek solmaya başlar. Taç yapraklar artık bir çiçeğin yere düşecek çöpleri haline gelir. 6) Taç yapraklar solar. 7) Çiçeğin polenlenmiş yumurtası meyveye dönüşmeye başlar. 8) Meyve olgunlaştığında çok güzel kırmızı bir renk alır. 9) En sonunda olgunlaşmış meyveler patlayarak düşmeye hazır tohumlar haline dönüşürler. Bu tohumlar daha sonra yanda görülen ihtişamlı manolya ağaçlarını oluşturacaklardır. Sonuç olarak, tohumların yapısında evrimcilerin tesadüf iddiaları ile asla açıklanamayacak, çok açık bir tasarım ve plan vardır. Elbette ki bu plan şuursuz tesadüflerin sonucunda ya da başka herhangi bir nedenle ortaya çıkmamıştır. Her resmin bir ressamı olduğu gibi her tasarımı her planı yapan da biri vardır.

http://www.biyologlar.com/tohum-kiliflarindaki-ozel-maddeler

Bilimin doğuşunu ve fizik kimya biyoloji matematik olarak temel biirmler haline dönüşmesini tarihsel boyutta açıklayınız

Ortaçağ sonlarında özellikle İtalya'da, zamanın siyasal istemleri teknolojiye yeni bir önem kazandırdı. Böylece askeri ve sivil mühendislik mesleği doğdu. Leonardo da Vinci bu mühendislerin en ünlüsüydü. Dahi bir ressam olarak insan anatomisini yakından inceledi ve resimlerine gerçeğe çok benzeyen biçimler aktardı. Bir heykelci olarak, zor metal döküm tekniklerini başardı. Sahne yapıtlarının yapımcı ve yönetmeni olarak, özel efektler sağlamak amacıyla karmaşık makineler geliştirdi. Askeri mühendis olarak bir kentin surlarından aşırılan havan topu mermisinin yörüngesini gözleyerek bu yörüngenin Aristoteles'in öne sürdüğü gibi iki doğrudan (eğimli bir çıkış ve ardından düşey düşüş) oluşmadığını belirledi. Leonardo ve arkadaşları doğayı gerçekten bilmek istiyorlardı. Gerçek deneyimin yerini hiçbir kitap tutamazdı ve hiçbir kitap olgular üzerinde egemenlik kuramazdı. Gerçi antik felsefenin nüfuzu kolayca kırılamayacak kadar sağlamdı, ama sağlıklı bir kuşkuculuk da gelişmeye başlamıştı. Eski otoritelerin gördüğü geleneksel kabule inen ilk önemli darbe, 15. yüzyıl sonunda Yenidünya'nın bulunuşu oldu. Büyük astronom ve coğrafyacı Ptolemaios, Avrupa, Afrika ve Asya olarak yalnızca üç kıtanın var olduğunu öne sürmüştü. Aziz Augusti-nus ve Hıristiyan bilginleri de bu görüşü benimsemişlerdi. Yoksa dünyanın öteki tarafındaki insanların baş aşağı yürümeleri gerekirdi. Yenidünya'nın bulunuşu, matematik çalışmalarını da hızlandırdı. Zenginlik ve ün arayışı denizciliğin gerçek bir bilime dönüşmesine yol açtı. Rönesans'ta canlanan düşünsel etkinlikler, antik bilgilerin tümüyle gözden geçirilmesine olanak sağladı. Ortaçağ düşüncesinin temelini oluşturan Aristoteles'in yapıtlarına Platon'un ve Galenos'un yapıtlarının çevirileri ve daha da önemlisi Arkhimedes'in, kuramsal fiziğin geleneksel felsefenin dışında nasıl oluşturulabileceğini gösteren yapıtları eklendi. Rönesans biliminin yönünü belirleyen antik yapıtların başında, Musa'nın çağdaşı olduğu kabul edilen efsanevi rahip, peygamber ve bilge Hermes Trismegistos'a dayandırılan Hermetika gelir. Hermetika yaratılış konusunda insana geleneksel metinlere göre çok daha önemli bir rol veriyordu. Tann insanı kendi suretinde yaratmıştı. Bir yaratıcı olarak ve yaratma sürecinde insan Tann'yı taklit ediyordu. Bunun için de doğanın gizlerini bilmek zorundaydı. Yakma, damıtma ve öbür simya işlemleriyle doğa işkenceden geçirilerek gizleri elde ediliyordu. Başarının ödülü, sıkıntı ve hastalıklardan kurtuluşun yanı sıra sonsuz yaşam ve gençlik olacaktı. Bu düşünce, insanın bilim ve teknoloji aracılığıyla doğaya boyun eğdirebileceği görüşüne yol açtı. Modern bilime temel oluşturan bu görüşün yalnızca Batı'da egemen olduğunu vurgulamak yerinde olur. Doğadan yararlanma konusunda yüzyıllarca geride bulunan Batı'nın Doğu'yu geçmesinde bu yaklaşımın önemli rolü olsa gerektir. Hermetika, aydınlanma ve ışık kaynağı olan Güneş üzerine coşkulu bölümler içerir. Hem Platon'un, hem de Hermetika'mn çevirmeni Floransalı Marsilio Ficino, 15. yüzyılda Güneş üzerine yazdığı incelemede adeta putperestçe hayranlığa varan bir üslup kullanmıştı. 16. yüzyılın başlarında bir Polonyalı öğrenci, İtalya'daki gezisi sırasında bu düşüncelerden etkilendi. Ülkesine döndükten sonra Ptolemaios'un astronomi sistemi üzerinde çalışmaya başladı. Görevli bulunduğu kilisenin yardımıyla, kilisenin gereksinim duyduğu Paskalya ve öteki yortuların tam günlerinin saptanması gibi önemli hesapların yapılmasında kullanılan astronomi gözlem aygıtlarını geliştirmeye koyuldu. Bu genç öğrencinin adı Mikoiaj Kopernik'tir. Fiziğin doğuşu: Yaklaşık yarım milyon yıl önce ilk insanlar, elde yapılmış yalın araçlar kullanıyor ve ateşi biliyorlardı. Bundan 20 000 yıl önce yaşayan Taş devri insanı, mağara duvarlarına resimler yapabiliyor, ok ve yay kullanabiliyordu (günümüzde bile, hâlâ Taş devri teknolojisiyle yaşamını sürdüren topluluklara Taşlanmaktadır). Günümüzden 10 000 yıl önce insanlar, toprağı işlemeye başlamışlardı. Bilimin ilk temel işaretleri ise, bundan 5 000 yıl Önce Babil'de ortaya çıkmaya başladı. Ancak Ortaçağ teknolojisi. Roma teknolojisinden pek farklı değildi; hattâ Romalıların su sistemleri daha iyiydi. Günümüzdeki anlamıyla bilim, XVII. yüzyılda ortaya çıktı. XVIII. ve XIX. yüzyıllarda endüstri devrimi gerçekleştirildi. XX. yüzyılda ise fizik, günlük yaşamda büyük bir yer tutmaya başladı. Günümüzde, bu bilim dalına dayanmayan bir yaşam düşünülemez. Klasik fiziğin temelleri, XVII. yüzyılda, GALİLEİ, KEPLER, BÖYLE, NEWTON, HOOKE, HUYGENS, GUERİCKE, TORRİCELLİ gibi bilginler tarafından atıldı. Günümüzdeki uygarlık düzeyi varlığını, bu temellere borçludur. XVII. yüzyılda, aynı zamanda, felsefe ile fiziğin birbirinden ayrılması da gerçekleşti. XVIII. yüzyıldan önce fiziğe, «doğal felsefe Bilimsel yöntem: Bilimsel yöntem, gerçeğin ortaya çıkarılmasını sağlayan «yanılmaz Neden-sonuç ilişkisi, çağımızda çok açık görünmesine karşılık, her zaman kabul edilmemiştir. Eskiden doğal olayların açıklanması, tanrıya bağlanmaktaydı. Günümüzde fizik, anlayış düzeyimizi biraz daha derine götürmeye ve olayların altında yatan gerçek nedenleri ortaya çıkarmaya çalışmaktadır. Çevrelerindeki olayları kaydeden ilk insanlar İ.Ö. 3000 yıllarında yaşayan Babillilerdi (Mezopotamya). Yazıyı bilen bu insanlar, gökcisimlerinin hareketlerini kataloglara geçirdiler. Aynı dönemde Kuzeybatı Avrupa'da yaşayanlar ise, yazıyı bilmemelerine karşılık, taşları kullanarak, gökcisimlerinin hareketlerini toprak üstünde belirtmeye çalıştılar. Babillilerin ve eski Mısırlıların tuttuğu kayıtlar, Yunanlıların eline geçti. Yunanlılar bunları yeniden düzenleme çabalarına girişti. Mekanik ve statikte bazı ilkol kavramlar (ARKHİMEDES'in banyo deneyi ve kaldıraç yasaları gibi) ortaya kondu. Yunanlıların en büyük katkısı, fiziğin gelişmesinde önemli payı bulunan bazı MATEMATİK ilkelerini bulmalarıdır. İ.S. III. yüzyılda Diophantos bazı fizik temellerini ortaya koymuştur, ama fiziğin bugünkü dayanağını oluşturan cebir daha sonra geliştirilmiştir. Bilimin geliştirilmesi, Yunanlılardan sonra Araplar tarafından yürütüldü. Bazı yeni buluşlar, sözgelimi İbni Heysem'in OPTİK konusuna ve matematik simgelere ilişkin düşünceleri, önceleri İtalya, daha sonra da Kuzey Avrupa'da ortaya çıkan bilimsel anlayışın ilk kıvılcımı oldu. Matematiğin Tarihi Gelişimi Ortaçağ İslâm Dünyası'nda başta aritmetik olmak üzere, matematiğin geometri, cebir ve trigonometri gibi dallarına önemli katkılarda bulunan matematikçiler yetişmiştir. Ancak bu dönemde gerçekleşen gelişmelerden en önemlisi, geleneksel Ebced Rakamları'nın yerine Hintlilerden öğrenilen Hint Rakamları'nın kullanılmaya başlanmasıdır. Konumsal Hint rakamları, 8. yüzyılda İslâm Dünyası'na girmiş ve hesaplama işlemini kolaylaştırdığı için matematik alanında büyük bir atılımın gerçekleştirilmesine neden olmuştur. Daha önce Arap alfabesinin harflerinden oluşan harf rakam sistemi kullanılıyordu ve bu sistemde sayılar, sabit değerler alan harflerle gösteriliyordu. Örneğin için a harfi, 10 için y harfi ve 100 içinse k harfi kullanılıyordu ve dolayısıyla sistem konumsal değildi. Böyle bir rakam sistemi ile işlem yapmak son derece güçtü. Erken tarihlerden itibaren ticaretle uğraşanların ve aritmetikçilerin kullanmaya başladıkları Hint Rakamları'nın üstünlüğü derhal farkedilmiş ve yaygın biçimde kabul görmüştü. Bu rakamlar daha sonra Batı'ya geçerek Roma Rakamları'nın yerini alacaktır. Cebir bilimi İslâm Dünyası matematikçilerinin elinde bağımsız bir disiplin kimliği kazanmış ve özellikle Hârizmî, Ebu Kâmil, Kerecî ve Ömer el-Hayyâm gibi matematikçilerin yazmış oldukları yapıtlar, Batı'yı büyük ölçüde etkilemiştir. İslâm Dünyası'nda büyük ilgi gören ve geliştirilen bilimlerden birisi olan astronomi alanındaki araştırmalara yardımcı olmak üzere trigonometri alanında da seçkin çalışmalar yapılmıştır. Bu konudaki en önemli katkı, açı hesaplarında kirişler yerine sinüs, kosinüs, tanjant ve kotanjant gibi trigonometrik fonksiyonların kullanılmış olmasıdır. Yeniçağ Bu dönem diğer alanlarda olduğu gibi matematik alanında da yeniden bir uyanışın gerçekleştiği ve özellikle trigonometri ve cebir alanlarında önemli çalışmaların yapıldığı bir dönemdir. Trigonometri, Regiomontanus, daha sonra da Rhaeticus ve Bartholomaeus Pitiscus`un çabalarıyla ve cebir ise Scipione del Ferro, Nicola Tartaglia, Geronimo Cardano ve Lodovice Ferrari tarafından yeniden hayata döndürülmüştür. Yapılan çalışmalar sonucunda geliştirilen işlem simgeleri, şu anda bizim kullandıklarımıza benzer denklemlerin ortaya çıkmasına olanak vermiş ve böylelikle, denklem kuramı biçimlenmeye başlamıştır. Rönesans matematiği özellikle Raffaello Bombelli, François Viète ve Simon Stevin ile doruk noktasına ulaşmıştır. 1585 yılında, Stevin, aşağı yukarı Takîyüddîn ile aynı anda ondalık kesirleri kullanmıştır. Bu dönemde çağdaş matematiğin temelleri atılmış ve Pierre de Fermat sayılar kuramını, Pascal olasılık kuramını, Leibniz ve Newton ise diferansiyel ve integral hesabı kurmuşlardır. Yakınçağ Bu dönemde Euler ve Lagrange, integral ve diferansiyel hesabına ilişkin 17. yüzyılda başlayan çalışmaları sürdürmüş ve bu çalışmaların gök mekaniğine uygulanması sonucunda fizik ve astronomi alanlarında büyük bir atılım gerçekleştirilmiştir. Mesela Lagrange, Üç Cisim Problemi'nin ilk özel çözümlerini vermiştir. Bu dönemde matematiğe daha sağlam bir temel oluşturmaya yönelik felsefi ağırlıklı çalışmalar genişleyerek devam etmiştir. Russell, Poincaré, Hilbert ve Brouwer gibi matematikçiler, bu konudaki görüşleriyle katkıda bulunmuşlardır. Russell, matematik ile mantığın özdeş olduğunu kanıtlamaya çalışmıştır. Matematiğin, sayı gibi kavramlarını, toplama ve çıkarma gibi işlemlerini, küme, değilleme, veya, ise gibi mantık terimleriyle ve matematiği ise "p ise q" biçimindeki önermeler kümesiyle tanımlamıştır. Hilbert'e göre ise, matematik soyut nesneleri konu alan simgesel bir sistemdir; mantığa indirgenerek değil, simgesel aksiyomatik bir yapıya dönüştürülerek temellendirilmelidir. Sezgici olan Brouwer de matematiğin temeline, kavramlara somut içerik sağlayan sezgiyi koyar; çünkü matematik bir teori olmaktan çok zihinsel bir faaliyettir. Poincaré'ye göre de matematiğin temelinde sezgi vardır ve matematik kavramlarının tanımlanmaya elverişli olması gerekir. Yine bu dönemin en orijinal matematikçileri olarak Dedekind ve Cantor sayılabilir. Dedekind, erken tarihlerden itibaren irrasyonel sayılarla ilgilenmeye başlamış, rasyonel sayılar alanının sürekli reel sayılar biçimine genişletilebileceğini görmüştür. Cantor ise, bugünkü kümeler kuramının kurucusudur. Kimya'nın Tarihsel Gelişimi Kimya sözcüğünün ( Eski Mısır dilinde "kara" ya da "Kara Ülke" ) sözcüğünden türediği sanılmaktadır Bir başka sav da khemeia (Eski Yunanca khyma: "¤¤¤¤l dökümü) sözcüğünden türediğidir Kimyanın kökenleri felsefe, simya, ¤¤¤¤lürji ve tıp gibi çok çeşitli alanlara dayanır Ama kimya ancak 17 yüzyılda mekanikçi felsefenin kurulmasıyla ayrı bir bilim olarak ortaya çıkmıştır Mezopotamyalılar, Çinliler, Mısırlılar ve Yunanlılar çok eski çağlardan beri bitkilerden boyarmadde elde etmeyi, dokumaları boyamayı, deri sepilemeyi, üzümden şarap, arpadan bira hazırlamayı, sabun üretimini, cam kaplar yapmayı biliyorlardı Eski çağlarda kimya sanatsal bir üretimdi Daha sonra Antik Çağın deneyciliği, Yunan doğa felsefesi, Rönesans simyası, tıp kimyası gelişti 18 yüzyılda kuramsal ve uygulamalı kimya, 19 yüzyılda organoteknik ve fizikokimya, 20 yüzyılda ise radyokimya, biyokimya ve kuvantum kimyası gibi yeni dallar ortaya çıktı Ünlü kimya tarihçisi Hermann Kopp, İS 300- 1600 arasını, soy (asal) olmayan ¤¤¤¤lleri soy ¤¤¤¤llere dönüştürecek filozof taşının ve insan ömrünü sonsuzlaştıracak yaşam iksirinin arandığı simya çağı; 1600- 1700 arasını ilaçların hazırlandığı iyatrokimya (tıp kimyası) çağı; 1700- 1800 arasını, yanma sürecinin araştırıldığı filojiston kimyası çağı; bundan sonraki dönemi ise nicel kimya çağı olarak adlandırmıştır 16- 18 yüzyıllar arasındaki dönem yeniçağ kimyası olarak da tanımlanır Kimyanın kökeninin, yaklaşık olarak Hıristiyanlık çağının başlarında Mısır'ın İskenderiye kentinde biçimlenmeye başladığı kabul edilir Eski Mısır'ın ¤¤¤¤lürji, boya ve cam yapımı gibi üretim zanaatları ile eski Yunan felsefesi İskenderiye'de bir araya gelerek kaynaşmış ve İS 400'lerde uygulamalı kimya bilgisi gelişmeye başlamıştır Justus von Liebig'e göre simyacılar önemli aygıt ve yöntemler bulmuşlar, sülfürik asit, hidroklorik asit, nitrik asit, amonyak, alkaliler, sayısız ¤¤¤¤l bileşikleri, şarap ruhu (alkol), eter, fosfor ve Berlin mavisi gibi çok çeşitli maddeleri kullanmışlardır Hıristiyanlığın ilk yüzyılında Yahudi Maria olarak bilinen bir kadın simyacı çeşitli türde fırınlar, ısıtma ve damıtma düzenekleri geliştirmiş, simyacı Kleopatra ise altın yapımı konusunda bir kitap yazmıştır Maria'nın buluşu olan su banyosu günümüzde de "benmari" adı altında kullanılmaktadır 350- 420 arasında İskenderiye'de yaşayan Zosimos, simya öğretisinin en önemli temsilcisidir ve 28 ciltlik bir simya ansiklopedisi yazmıştır Roma İmparatorluğu ve Bizans İmparatorluğu'nda, daha sonra da İslam ülkelerinde kimya tekniğinde büyük ilerlemeler olmuş ve Aristoteles'in bütün maddelerin sonuçta dört öğeden (toprak, su, hava, ateş) oluştuğu ve bunların birbirine dönüştüğü biçimindeki kuramı İskenderiyeli ve daha sonra da Cabir, İbn Hayyan, Ebubekir el-Razi ve İbn Sina gibi Arap simyacılar tarafından geliştirilmiştir İbn Sina özellikle dönüşümle ilgilenmiş ve el-Fennü'l-Harmis nün Tabiiyat adlı kitabının mineralojiyle ilgili bölümünde mineralleri taşlar, ateşte eriyen maddeler, kükürtler ve tuzlar olarak dört gruba ayırmıştır İbn Sina madde ve biçimin bir birlik olduğunu, doğa olaylarının açıklanmasında doğaüstü ve maddesel olmayan güçlerin etkisinin olmadığını söylemiş, kuramsal düşünceyi ve kavram üretmeyi öne çıkarmıştır Rönesans döneminde geçmiş yılların getirdiği kimya bilgisinin birikimiyle, tıp ve kimyasal üretim alanlarında uygulamalı kimya ortaya çıktı Bu dönemde eczacılıkta inorganik tedavi maddelerinin kimyasal yöntemlerle elde edilmesine "kemiatri" (kimyasal tedavi) adı verildi Kemiatrinin kimya temeline dayalı ilaç üretimi biçimindeki pratik amacının yanı sıra, hastalıklar ve madde alışverişi olaylarının kimyasal yorumu gibi kuramsal bir amacı da vardı Bu kuramsal amaçla ilgili yönelime iyatrokimya denir Günümüzde kemiatrinin karşılığı farmasötik kimya ve kuramsal biyokimyadır İyatrokimyanın öncüsü olan İsviçreli hekim Paracelsus'a ( 1493- 1541) göre tuz, kükürt ve cıva, var olan bütün cisimlerin temel yapıtaşı olan beden, can ve ruhun karşılığıydı Bu üçlü arasında denge bozulduğunda hastalık başlıyordu Paracelsus midenin bir kimya laboratuvan olduğunu, özsuların yoğunlaşmasıyla hastalıkların ortaya çıktığını ve bu durumun ilaçla giderilebileceğini savundu ve farmakolojide kimyasal maddelerden yararlanılması yolunda çaba harcadı Johann Baptist van Helmontx(1580-1644) ve Johann Rudolph Glauber (1604-68), Rönesans kimyasının temsilcileridir Suyun temel element olduğuna inanan van Helmont'un en önemli çalışmaları çeşitli süreçlerle gaz üretimini ilk kez açıkça gerçekleştirmesi ve deneylerinde teraziyi kullanarak kimyasal çalışmalara nicel özellik kazandırmasıdır Glauber'in en büyük başarısı ise, yemeklik tuzu sülfürik asitle parçalayarak tuz asidi (hidroklorik asit) ve sodyum sülfat elde etmesidir Sodyum sülfat dekahidrat günümüzde de onun adıyla Glauber tuzu olarak bilinir Glauber ayrıca ilk kez ¤¤¤¤llerin tuz asidi içinde çözünmesiyle ¤¤¤¤l klorürlerin oluşacağını gösterdi Simya 16 ve 17 yüzyıllarda Avrupa'da derebeyi saraylarında giderek yayıldı ve bu durum, bilimsel kimya gelişene ve elementlerin birbirine dönüştüğü inancının sarsılmaya başlamasına değin sürdü 17 yüzyılda kimyanın sanat ya da bilim olup olmadığı çok tartışıldı Bu yüzyılda, çağdaş anlatımla, uygulamalı ve kuramsal kimya ayırımı vardı Kemiatri, ¤¤¤¤lürji kimyası, madencilik ve demircilik kimyası uygulamalı kimyanın içinde yer alıyordu Kuramsal kimya ise betimlenebilen "tüm doğa bilimleri" anlamına gelen physica'nın içindeydi Yeniçağdaki oluşum deneyimden (experientia) deneye {experimentum) doğru oldu ve deneyin doğa araştırmasındaki bilimsel önemi kabul edildi Kimya zamanla simyadan ayrıldı ve eski çağların gizemli görüşlerinden uygulamalı kimyaya geçildi Eski kimyada madde ve bileşikler yalnızca beklenen son ürün açısından önemliydi Çeşitli reçeteler ise beklenen sonuca götüren bir araçtı Eski düşünce ve bilgilerin doğruluk ya da yanlışlıklarının denetlenmesi ancak kimyasal tepkimelerin gözlenmesi ve tepkime sürecinin incelenmesiyle olanaklıydı Mekanikçi felsefe ile kimyanın etkileşimine en iyi örnek Robert Boyle'un çalışması oldu İngiliz bilim adamı Robert Boyle 1661'de yayımladığı The Sceptical Chymist (Kuşkucu Kimyacı) adlı yapıtıyla Aristotelesçi görüşleri çürüttü Böyle, kimyasal elementleri maddenin parçalanmayan yapıtaşları olarak açıkça tanımladı, ilk kez kimyasal bileşikler ile basit karışımlar arasında ayrım yaptı, kimyasal birleşmelerde özelliklerin tümüyle değiştiğini, basit karışımlarda ise böyle değişimlerin olmadığını söyledi; gazlar üzerinde yürüttüğü deneylerde gazların basıncı ile hacimleri arasındaki bağıntıyı belirleyen yasayı buldu ve ilk kez elementlerin ve bileşiklerin doğru tanımını yaptı Böyle ayrıca havanın yanma olaylarındaki rolünü keşfetti ve havanın tartılabilir bir madde olduğunu söyledi 18 yüzyılda kimyanın temel sorunu yanma olayının (ateş ruhlarının işlevlerinin) açığa kavuşturulması oldu 17 yüzyıl ortalarına doğru maddedeki elementlerden birinin yanmaya neden olduğu ileri sürülmüş ama bu sav, ateşin maddesel bir cisim olamayacağı gerekçesiyle ünlü simyacı van Helmont tarafından reddedilmişti Alman simyacı Johann Joachim Becher (1635-82) bu öneriyi daha sonra 1669'da yeniden gözden geçirdi ve terra pinguis olarak adlandırılan ateş elementinin yanma sırasında kaçıp giden bir nesne olduğunu varsaydı Becher'in öğrencisi ve Berlinli bir hekim olan Georg Ernst Stahl ( 1660- 1734) bu nesneye "flojiston" adını verdi Yanma olayına yanlış da olsa ilk kez bir bilimsel açıklama getiren flojiston kuramına göre yanıcı maddeler, yanıcı olmayan bir kısım ile flojistondan oluşur Buna göre ¤¤¤¤l oksitler birer element, ¤¤¤¤ller ise kil (¤¤¤¤l oksit) ile flojistondan oluşan birer bileşik maddedir ¤¤¤¤l yandığında eksi kütleli "plan flojiston bir ruh gibi ayrılır ve elementin külü (¤¤¤¤l oksit) açığa çıkar Küle yeniden flojiston verildiğinde de yeniden ¤¤¤¤l oluşur Örneğin çinko oksit flojistonca zengin olan kömürle ya da hidrojen gazıyla ısıtıldığında yeniden çinko oluşur ve hafifler Bir yüzyıl boyunca kimyaya egemen olan bu kuram element kavramına uygun olmamakla birlikte kimyanın bilimsel gelişmesinde çok büyük rol oynadı Cavendish, Priestley ve Scheele ise çalışmalarında karbon dioksit, oksijen, klor, ¤¤¤¤n (bataklık gazı) ve hidrojen gazlarını ayrı gazlar olarak tanımladılar Cavendish ayrıca gazları yoğunluklarına göre ayırdı İlk kez suyun bir element olmayıp oksijen ile hidrojenin bir bileşiği olduğunu kanıtladı Bu çalışmaların da yardımıyla flojiston kuramı yıkıldı Aynı zamanda bir fizikçi olan Antoine-Laurent Lavoisier ( 1743-94) kimyanın babası sayılır Lavoisier ¤¤¤¤l oksitlerinin daha önce Priestley ve Scheele'nin keşfettiği oksijen ile ¤¤¤¤llerin yaptığı bileşikler olduğunu kanıtladı, yanma ve oksitlenme olaylarının günümüzde de geçerli olan açıklamasını yaparak kimyada yeni bir çığır açtı Kapalı kaplarda yaptığı deneylerde, kimyasal tepkimeler sırasında kütlenin değişmediğini saptayarak 1787'de kütlenin korunumu yasasını ortaya koydu Kimya'daki devrim yalnızca kavramlarda değil yöntemlerde de gerçekleşti Ağırlıksal yöntemler duyarlı çözümler yapmayı olanaklı kıldı ve kütlenin korunumu yasasıyla nicel kimya dönemi başladı Lavoisier'den sonra 1798'de Alman kimyacı Richter birleşme ağırlıkları yasasını, 1799'da gene Alman kimyacı Proust sabit oranlar yasasını ve 1803'te ingiltere'den John Dalton katlı oranlar yasasını geliştirdi Gay-Lussac da Alexander von Humboldt'un yardımıyla öbür gazlarla tepkimeye giren bir gazın her zaman belirli hacim oranlarıyla birleştiğini buldu İtalyan fizikçi Amedeo Avogadro 1811'de, gaz halindeki pek çok elementin birer atomlu değil, ikişer atomlu oldukları ve aynı koşullar altında bulunan gazların eşit hacimlerinde eşit sayıda molekül bulunacağı varsayımını geliştirdi Avogadro'nun bu varsayımını 50 yıl sonra, 1860'ta Stanislao Cannizzaro yasa düzeyine çıkardı 19 yüzyılın başlarında ingiliz kimyacı Humphry Davy ve öteki bilim adamları, volta pillerinden sağladıkları güçlü elektrik akımlarını bileşiklerin çözümlenmesi ve yeni elementlerin bulunması çalışmalarına uyguladılar Bunun sonucunda kimyasal kuvvetlerin elektriksel olduğu ve örneğin aynı elektrik yüklü iki hidrojen atomunun birbirini iteceği ve Avogadro varsayımına göre birleşerek çok atomlu molekülü oluşturmayacağı ortaya çıktı 1859'da Alman fizikçi Gustav Kirchhoff ve kimyacı Robert Bunsen'in bulduğu tayf çözümleme tekniğinin yardımıyla da o güne değin bilinen elementlerin sayısı 63'ü buldu Elementlerin atom ağırlıkları ile fiziksel ve kimyasal özellikleri arasındaki bağıntıyı bulan Rus kimyacı Dimitriy İvanoviç Mende-leyev 1871'de ilk kez kimyasal elementlerin periyodik yasasını açıkladı Mendeleyev'e göre hidrojenin dışındaki elementler artan atom ağırlıklarına göre bir sırayla düzenlendiğinde, bunlann fiziksel ve kimyasal özellikleri de bu sıraya göre düzgün bir değişim gösteriyordu Ama bu düzgün gidiş kesintilerle birkaç sıra halindeydi ve bu sıralara periyot adı verildi Mendeleyev'in tablosunda atom ağırlığı daha büyük olan bazı elementlerin ön sıralarda yer alması atom ağırlıklarının ölçüt alınamayacağını gösterdi İngiliz fizikçi HG Moseley 1913'te X ışınımı yardımıyla elementlerin atom numaralarını saptadığında bu sıralamada atom numaralarının temel alınması gerçeği ortaya çıktı Bundan sonra Mendeleyev'in tablosundaki boş olan yerler yeni keşfedilen elementlerle dolmaya başladı Wilhelm Röntgen'in 1895'te X ışınımını bulmasından hemen sonra Henri Becquerel 1896'da, uranyumdaki doğal radyoaktifliği keşfetti ve 1900'de fizikçi Max Planck kuvantum kuramını ortaya attı Rutherford 19J9'da havadaki azotu, radyum preparat-lanndan salınan alfa taneciklerinin yardımıyla oksijene ve hidrojene dönüştürerek ilk yapay element dönüşümünü gerçekleştirdi August Kekule'nin 1865'te kurduğu yapı kuramının genişletilmesi sonucunda, bire-şimleme (sentez) ve ayrıştırma yoluyla pek çok yeni madde elde edilebildi Bu kurama göre atomlar değerliklerine karşılık gelecek biçimde bileşikler halinde birleşirler ve her atomun belirli bir değerliği vardır Kekule' nin bu açıklamalarından sonra kimyasal bileşikler yeni bir biçimde değerlendirilmeye başladı Örneğin su (H2O) H-O-H, karbon dioksit (CO2) O-C-O, biçiminde gösterildi Bu gösterimden bireşimleme kimyası çok yararlandı Kekule ayrıca moleküllerin farklı özelliklerinin atomların birbiriyle yaptığı farklı bağlarla belirlendiğini kanıtladı ve kapalı formülü C6Ü6 olan benzenin halka biçiminde birleşmiş bir yapısı olduğunu çözdü Yapı kuramına dayanarak varlığı düşünülen bileşiklerin bireşimsel olarak üretilebilmesine yönelik özel yöntemler geliştirildi; yapısı bilinmeyen doğal ya da yapay bileşiklerin iç yapılarını çözmek amacıyla da tam tersi bir yol izlenerek bunların yapılan sistemli bir biçimde ve aşamalı olarak parçalanarak bulundu Kekule'nin buluşu aromatik karbon kimyasının hızla gelişmesini olanaklı kıldı F Wöhler, siyanür bileşikleriyle çalışırken üreyle formülü aynı olan amonyum siyanatı bireşimledi Biri mineral, öbürü hayvansal kökenli olan her iki ürün de aynı elementlerin aynı sayıdaki atomlarından oluşuyordu Bu buluşla izomerleşme olgusu ortaya çıktı ve inorganik kimya ile organik kimya arasındaki farklılık ortadan kalktı Kimya alanındaki çalışmalar sonraları maddelerin tepkime biçimleri, ısı etkisi, çözeltiler, kristallenme ve elektrolizle ilgili konulara yöneldi ve galvanizleme konularındaki gelişmelerden fiziksel kimya (fizikokimya) doğdu Bu arada M Berthelot termokimyanın temellerini attı Raoult, W Ostwald, van't Hoff, J W Gibbs, Le Chatelier ve S Arrhenius fiziksel kimyanın gelişmesinde önemli rol oynadılar İtalyan bilim adamı Alessandro Volta'nın 1800'de iki ¤¤¤¤l levha arasına nemli bez ya da tuz çözeltisi koyarak elektrik akımı elde etmesi kimyada önemli gelişmelere neden oldu Humphry Davy 1807'de özel olarak geliştirdiği Volta pilini kullanarak erimiş külden elektrik akımı geçirdi ve bu yolla önce potasyum adını verdiği elementi, sonra da sodadan sodyum elementini ayırmayı başardı Bu da elektrokimya dalında önemli adımlar atılmasını olanaklı kıldı Çağdaş bilimin gelişmesiyle Sanayi Devrimi arasında yakın bir ilgi olduğu düşünülmekle birlikte, Sanayi Devrimi'nin anayurdu olan İngiltere'de bile bilimsel buluşların dokuma ve ¤¤¤¤lürji sanayisini doğrudan etkilediğini göstermek zordur, 18 yüzyılda bilim dikkatli bir gözlem ve deneyciliğin sanayide üretimi önemli ölçüde iyileştirebileceğini gösterdi Ama ancak 19 yüzyılın ikinci yansından başlayarak bilim sanayiye önemli katkıda bulunmaya başladı; kimya bilimi anilin boyalar gibi yeni maddelerin üretilmesini olanaklı kıldı ve boyarmadde ile ilaç sanayisi hızla gelişen ilk kimya sanayisi oldu 20 yüzyılda madencilik, ¤¤¤¤lürji, petrol, dokuma, lastik, inşaat, gübre ve gıda maddeleriyle doğrudan ilişkisi olan kimya sanayisi elektrikten sonra bilimin uygulamaya geçirildiği sanayiler arasında ikinci sırayı aldı Yalnızca kimyanın değil, fiziğin de kimya sanayisine girmesiyle laboratuvarda elde edilen sonuçlann doğrudan uygulamaya sokulduğu kimya fabrikaları kurulmaya başladı Bu süreçlerin denetlenmesinde çeşitli aygıtlara gerek duyulduğundan fiziksel kimyacılar ve fizikçiler kimya sanayisinde etkin olmaya başladı ve böylece kimya mühendisliği mesleği doğdu. Biyolojinin Tarihsel Gelişimi Biyoloji bilimi, insanın kendini ve çevresindeki canlıları tanıma merakından doğmuştur İlk insanlar çevrelerinde yaşayan sığır , geyik ve mamut gibi hayvanların resimlerini mağara duvarlarına çizerek bunları incelemeye başlamışlardır. Antik çağdan günümüze kadar biyoloji bilimindeki gelişmeleri, ilgili bilim adamlarıyla aşağıdaki gibi özetleyebiliriz: Thales (Tales) (M.Ö. VII. yy .) İlk biyolojik yorumları yapmıştır. Aristo (M.Ö. 384-322) Canlılar dünyasını inceleyen ve ‘’bilimsel doğa tarihi’nin kurucusu olan ilk bilim adamıdır. Aristo, bir bilim adamında bulunması gereken iki önemli özelliğe, yani iyi gözlem yapabilme ve bunlardan doğru sonuçlar çıkarabilme yeteneğine sahiptir .Çalışmalarını ‘’Hayvanların Tarihi, Hayvan nesli üzerine'’ ve ‘’Hayvan Vücutlarının Kısımları Üzerine'’ adlı kitaplarında toplamıştır. Aristo, canlıların oluşumlarını ‘’kendiliğinden oluş (abiyogenez)'’ hipotezi ile açıklamış, ayrıca ilk sınıflandırmayı da yapmıştır. Galen (M.Ö. 131-201) Canlı organlarını inceleyerek fizyoloji biliminin doğmasını sağlamıştır . Galileo (Galile) 1610 yılında ilk mikroskobu bulduğu samlmaktadır. Mikroskobun keşfi biyolojik çalışmalara büyük ivme kazandırmıştır . Robert Hooke (Rabırt Huk) 1665 yılında mikroskop ile mantar kesitini inceleyerek ilk hücre ( cellula )yi tanımlamıştır. Leeuwenhoek (Lövenhuk) 1675 yılında geliştirdiği mikroskop ile ilk bir hücrelileri (bakterileri) göstermiştir. Carolus Linnaeus (Karl Linne) 1707-1778 yıllarında ilk sınıflandırmayı yapmıştır. Schleiden (Şlayden) 1838′de bitki hücreleri üzerinde çalışmalar yapmıştır. Schwann (Şivan) 1839′da hayvan hücresini bitki hücresiyle karşılaştırdı.Schleiden ve Schwann’ın hücre teorisinin ortaya konulmasında katkıları olmuştur. Charles Darwin (Çarls Darvin) 1859 yılında ‘’Türlerin Kökeni'’ adlı yayınlayarak ‘’doğal seleksiyon’ yoluyla türlerin evrimini ortaya koymuştur. Pasteur (Pastör) (1882-1895) Biyogenez hipotezini kanıtladı. Mikroskobik canlıların fermantasyona (mayalanma) neden olduğunu tespit etti. Aynca kuduz aşısının bulunmasını sağladı . Gregor Mendel (1822-1884): Kilisesinin bahçesinde yetiştirdiği bezelyelerde yaptığı deneyler sonucunda kalıtsal özelliklerin dölden döle geçişi ile ilgili önemli sonuçlar elde etmiştir. Mendel bu çalışmalarıyla genetik bilimin kurucusu olmuştur . Miescher (Mişer) 1868′de nükleik asitleri bulmuştur. Beijrinck (Bayerink) 1899′da tütün yapraklarında görülen tütün mozaik hastalığını incelemiştir. Virüslerin keşfine katkıda bulunmuştur . Wilhelm Röntgen (Vilhem Röntgen) 1895 yılında tıpta kullanılan röntgen ışınlarını bulmuştur . Sutton (Sattın) 1903 yılında kalıtımın kromozom kuramını yani genlerin kromozomlar üzerinde bulunduğunu açıklamıştır . Wilhelm Roux (Vilhem Ru) (1850-1924) Embriyolojinin kurucusu olmuştur. Otto Mayerhof (Otto Mayerhof) 1922′de kastaki enerji dönüşümlerini inceleyerek Nobel tıp ödülünü almıştır. Sir Alexender Fleming (Sör Aleksendır Fleming) 1927′de penisilini bularak bakteriyal enfeksiyonlara karşı etkin mücadeleyi sağlamıştır . E.A.F Ruska 1931 yı1ında elektron mikroskobunu bulmuştur. James Watson (Ceyms Vatsın), Francis Crick (Fransis Krik) 1953 yı1ında DNA molekül modelini ortaya koymuşlardır .İkili sarmal modeli günümüzde de geçerliliğini korumaktadır. Steven Howel (Stivın Havıl) 1986 yı1ında ateş böceklerinin ışık saçmasını sağlayan geni ayırarak tütün bitkisine aktarmış, tütün bitkisinin de ışık saçmasını sağlamıştır. İşte bu olay gen naklinin başlangıcı olmuştur. Wilmut (Vilmut) 1997 yı1ında bir koyundan alınan vücut hücresinin çekirdeğini, başka bir koyuna ait çekirdeği çıkarılan yumurta hücresine aktararak genetik ikiz elde etmiştir . Tüm bu çalışmalar biyolojiyi 21. yüzyılın en önemli bilim dallarından biri yapmıştır Biyoloji ile ilgili bazı bilgilerin tarih öncesinde ortaya çıkmış olduğunu arkeolojik veriler ortaya koymuştur. Cilalı Taş Devri'nde, çeşitli insan toplulukları tarımı ve bitkilerin tıp alanında kullanımını geliştirmişler, sözgelimi eski Mısırlılar, bazı otları ilaç olarak ve ölülerin mumyalanmasında kullanmışlardır. Bununla birlikte bir bilim dalı olarak biyolojinin gelişimi, eski Yunan döneminde ortaya çıkmıştır. Tıbbın kurucusu sayılan Hipokrates, insan biyolojisinin ayrı bir bölüm olarak gelişmesine büyük katkıda bulunmuştur. Biyolojinin temel gereçleri olan gözlem yapma ve problem belirleyerek çözüme ulaştırmayı kurumlaştıran Aristoteles'tir. Aristoteles'in özellikle üremeye ilişkin gözlemleri ve canlıların sınıflandırılması sistemiyle ilgili görüşleri önemlidir. Biyoloji incelemelerinde öncülük daha sonra Roma'ya ve İskenderiye'ye geçmiş, M.Ö. II. yy. ile M.S. II. yy'a kadar incelemeler özelikle tarım ve tıp çevresinde odaklanmıştır. Ortaçağ'da ise, biyoloji incelemesinde islâm bilginleri öne geçmişler ve eski Yunan metinlerinden öğrendikleri bilgileri geliştirerek, özellikle tıp bilimine büyük katkıda bulunmuşlardır. Rönesans'la birlikte Avrupa'da, özellikle de İtalya, Fransa ve İspanya'da biyoloji araştırmaları hızla gelişmiş, XV. ve XVI. yy'larda Leonardo da Vinci ve Micheangelo, güzel sanatlarda kusursuzluğa erişme çabaları içinde, son derece usta birer anatomi bilgini haline gelmişlerdir. Bu arada Andreas Vesalius, öğretim gereci olarak ölülerin kesilip incelenmesinden yararlanma uygulamasını başlatmış, ölüler üstünde kesip biçmelere dayalı ilk anatomi kitabıyla anatomi ve tıp araştırmalarında bir devrim gerçekleştirmiştir. XVII. yy'da William Harvey insanda dolaşım sistemine ilişkin çalışmaları başlatmıştır. XVIII. ve XIX. yüzyıllarda ise biyoloji bilimi önemli bir ilerleme kaydetmiştir.Bu dönemde yapılan çalışmalar aşağıdaki gibi özetlenebilir: Jean-Baptiste Lamarck omurgasız canlıların sınıflandırılmasının detaylı çalışmasına başladı. 1802 Modern anlamda "Biyoloji" terimi, birbirlerinden bağımsız olarak Gottfried Reinhold Treviranus ve Lamarck tarafından kullanıldı. 1817 Pierre-Joseph Pelletier ile Joseph-Bienaime Caventou klorofili elde ettiler. 1828 Friedrich Woehler, organik bir bileşiğin ilk sentezi olan ürenin sentezini gerçekleştirdi. 1838 Matthias Schleiden tüm bitki dokularının hücrelerden oluştuğunu keşfetti. 1839 Theodor Schwann tüm hayvan dokularının hücrelerden oluştuğunu keşfetti. 1856 Louis Pasteur mikroorganizmaların fermentasyonda etkili olduklarını vurguladı. 1869 Friedrich Miescher hücrelerin çekirdeğinde bulunan nükleik asitleri keşfetti. 1902 Walter S. Sutton ve Theodor Boveri mayoz bölünme sırasında kromozomların hareketlerinin Mendel'in kalıtım birimleriyle paralellik gösterdiğini saptayıp, bu birimlerin kromozomlarda bulunduğunu ileri sürdü. 1906 Mikhail Tsvett organik bileşiklerin ayrıştırılması için kromatografi tekniğini keşfetti. 1907 Ivan Pavlov sindirim fizyolojisi ve eğitim psikolojisi bakımından büyük önem taşıyan salya akıtan köpeklerle klasik koşullanma deneyini tamamladı. 1907 Emil Fischer yapay olarak peptid amino asit zincirlerinin sentezini gerçekleştirdi ve bu şekilde proteinlerde bulunan amino asitlerin birbirleriyle amino grubu - asit grubu bağlarla bağlandıklarını gösterdi. 1909 Wilhelm Ludwig Johannsen kalıtsal birimler için ilk kez "gen" terimini kullandı. 1926 James Sumner üreaz enziminin bir protein olduğunu gösterdi. 1929 Phoebus Levene nükleik asitlerdeki deoksiriboz şekerini keşfetti. 1929 Edward Doisy and Adolf Butenandt birbirlerinden bağımsız olarak östrojen hormonunu keşfettiler. 1930 John Northrop pepsin enziminin bir protein olduğunu gösterdi. 1931 Adolf Butenandt androsteronu keşfetti. 1932 Hans Krebs üre siklusunu keşfetti. 1932 Tadeus Reichstein yapay olarak gerçekleştirilen ilk vitamin sentezi olan Vitamin C'nin sentezini başardı. 1935 Wendell Stanley tütün mozaik virüsünü kristalize etti. 1944 Oswald Avery pnömokok bakterilerde DNA'nın genetik şifreyi taşıdığını gösterdi. 1944 Robert Woodward ve William von Eggers Doering kinini sentezlemeyi başardı 1948 Erwin Chargaff DNA'daki guanin birimlerinin sayısının sitozin birimlerine ve adenin birimlerinin sayısının timin birimlerine eşit olduğunu gösterdi. 1951 Robert Woodward kolesterol ve kortizonun sentezini gerçekleştirdi. 1951 Fred Sanger, Hans Tuppy, ve Ted Thompson insulin amino asit diziliminin kromatografik analizini tamamladı. 1953 James Watson ve Francis Crick DNA'nın çift sarmal yapıda olduğunu ortaya koydu. 1953 Max Perutz ve John Kendrew X-ray kırınım çalışmalarıyla hemoglobinin yapısını belirledi. 1955 Severo Ochoa RNA polimeraz enzimlerini keşfetti. 1955 Arthur Kornberg DNA polimeraz enzimlerini keşfetti. 1960 Robert Woodward klorofil sentezini gerçekleştirmeyi başardı. 1967 John Gurden nükleer transplantasyonu kullanarak bir kurbağayı klonlamayı başarıp, bir omurgalı canlıyı klonlayan ilk bilim adamı olarak tarihe geçti. 1970 Hamilton Smith ve Daniel Nathans DNA restriksiyon enzimlerini keşfetti. 1970 Howard Temin ve David Baltimore birbirinden bağımsız olarak revers transkriptaz enzimlerini keşfetti. 1972 Robert Woodward B-12 vitamininin sentezini gerçekleştirdi. 1977 Fred Sanger ve Alan Coulson dideoksinükleotidleri ve jel elektroforezini kullanımını içeren hızlı bir gen dizisi belirleme tekniğini bilimin hizmetine sundu. 1978 Fred Sanger PhiX174 virüsüne ait 5,386 bazlık dizilimi ortaya koydu ki bu tüm genom dizilimi gerçekleştirilen ilk canlıydı. 1983 Kary Mullis polimeraz zincir reaksiyonunu keşfetti. 1984 Alex Jeffreys bir genetik parmak izi metodu geliştirdi. 1985 Harry Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl ve Richard Smalley Karbon-60 Buckminster-fulleren molekülünün olağanüstü stabilitesini keşfettiler ve yapısını açığa çıkardılar. 1985 Wolfgang Kratschmer, Lowell Lamb, Konstantinos Fostiropoulos ve Donald Huffman Buckminster-fulleren'in benzende çözülebilirliğinden dolayı isten ayrılabildiğini keşfettiler. 1990 ve 2000’li yıllarda yapılan biyolojik çalışmaların çoğu genetik kopyalamalar üzerine oldu.Bu durum da XXI.yüzyılın genetik bilimi üzerine kurulacağı işaretlerini veriyor.

http://www.biyologlar.com/bilimin-dogusunu-ve-fizik-kimya-biyoloji-matematik-olarak-temel-biirmler-haline-donusmesini-tarihsel-boyutta-aciklayiniz

Derisidikenliler ( Echinodermatalar)

Echinodermatalar, gövdeleri ser ve dikenli bir kabukla örtülü çok sayıda deniz hayvanını kapsayan filumdur. En derin okyanus çukurlarından gelgit bölgelerine kadar denizlerin bütün derinliklerinde görülebilen derisidikenlilerin 20’yi aşkın sınıfı tanımlanmıştır; bu sınıflardan çoğunun soyu tükenmiş, yalnızca beş sınıftan 6 bin kadar tür bugüne dek varlığını koruyabilmiştir. Derisidikenlilerin bugün var olan bu 5 sınıfı Crinoidea (denizlaleleri ve tüy yıldızlar), Asteroidea (deniz yıldızları), Ophiuroidea (yılan yıldızları), Echinoidea (deniz kestaneleri) ve Holothuriodea (deniz hıyarları)’dır. Bazı uzmanlar Asterozoa altfilumu içindeki Asteroidea ve Ophiuroidea sınıflarını, aralarındaki yakın ilişkiye dayanarak Stelleroidea sınıfının altsınıfları olarak kabul ederler. Derisidikenlilerin en belirgin özelliği, kalsiyum karbonattan oluşan iskeletleri ve erişkinlerde beşli ışınlı bakışım gösteren gövde yapısıdır. İskelet yapısı ya deniz kestanelerinde olduğu gibi sert levhaların kaynaşmasıyla oluşmuş, içi oyuk bir kabuk biçimindedir yada pürüzsüz, çok sayıda ayrı ayrı kemik levhacık kaslarla birbirine bağlanmıştır. Deniz laleleri ile tüy yıldızlarda her iki iskelet biçimi birlikte görülür; asıl gövde bölümünde iskelet levhacıkları kaynaşmış, sap bölümünde ise eklemli bir yapı kazanmıştır. Yumuşak gövdeli deniz hıyarlarında ise, iskelet levhacıkları iyice küçülerek mikroskobik parçacıklara bölünmüştür. Yaşayan derisidikenlilerin bütün sınıflarda egemen olan bakışım (simetri) düzeni, genellikle 5 eksenli olan ışınsal bakışımdır; soyu tükenmiş türlerde görülen iki yanlı bakışım ise, yaşayan türlerden çoğunun yalnızca lavra evresine özgüdür. Ununla birlikte, deniz kestanelerinin bazı türleri erişkinlikte iki yanlı bakışımı korurken, erişkin deniz hıyarları da dıştan iki yanlı, içten ışınsal (beşli) bakışım gösterir. Özellikle savunmaya, ayrıca istenmeyen parçacıkların vücuttan atılmasına yarayan kıskaçsı organlar (pedisel) deniz kestanelerinde ve deniz yıldızlarında bulunduğu halde, öbür 3 sınıfın üyelerinde bulunmaz. Deniz kestanelerinde ayrıca 40 iskelet levhası ile kaslardan oluşan karmaşık yapılı bir çiğneme aygıtı (Aristo feneri) vardır. Derisidikenlilerin çoğu ayrı eşeylidir. Üreme genellikle spermanın yumurtayı döllemesiyle eşeysel yoldan gerçekleşir; yalnız deniz yıldızları ile deniz hıyarlarının birkaç türünde bölünmeyle eşeysiz üreme görülür. Eşeyli üremede yumurta ve spermalar denize dökülür ve döllenme su içinde gerçekleşir. Dişiler genellikle yılda bir kez ve milyonlarca yumurta döker. Döllenen yumurtalar, yumurtanın iriliğine bağlı olarak iki ayrı gelişme çizgisi izler. Az besin içeren küçük yumurtalardan serbestçe yüzebilen lavralar çıkar; bunlar bir süreliğine planktonlarla beslendikten sonra başkalaşım geçirir ve deniz tabanına yerleşir. Daha bol besin içeren iri yumurtalarda, embriyon gelişmesini yumurta içinde tamamlar ve lavra evresinden geçmeksizin doğrudan erişkine dönüşür. Derisidikenlilerin çoğu, kopan gövde parçalarını kolayca yenileyebilir.Örneğin denizyıldızlarında, ortadaki gövde diskinden küçük bir parçanın kalmış olması koşuluyla, tek bir koldan yeni bir birey gelişebilir. Derisidikenlilerin büyük bölümü, dibe çökelmiş yada yüzen çok küçük organik maddelerle, denizkestaneleri ile denizyıldızlarının birçoğu ise bitkilerle beslenir. Yalnız bazı deniz yıldızları özellikle yumuşakçalara dadanan etçil hayvanlardır.

http://www.biyologlar.com/derisidikenliler-echinodermatalar

Çok bacaklılar, Diplopoda, kırkayaklar , Chilopoda, çıyanlar

Çok bacaklılar, Diplopoda, kırkayaklar , Chilopoda, çıyanlar

Çok bacaklılar, çok ayaklılar olarak da bilinir. Omurgasızların Arhropoda (eklembacaklılar) filumundan Diplopoda (kırkayak) , Chilopoda (çıyan), Psuropoda ve Symphyla sınıfları ile soyu tükenmiş Achipolypoda grubunun üyelerine verilen ortak addır. Bazı uzmanlar bu hayvanları Myriapoda sınıfı altında toplar ve yukarıda sözü edilen sınıfları birer altsınıf olarak kabul eder. Küçük bir grup olan çok bacaklıların günümüze değin 11 bin yaşayan türü sayılmıştır. Çok bacaklılar bir çift duyarga, çiğneyici çeneler ve solunum trakerleri gibi birçok çift bacakla donanan kara eklembacaklıları sınıfıdır. Bir çok bacaklının çoğunlukla birbirinin aynı birçok halkasının her biri bir yada iki çift bacak taşır. Cinsellik deliği ya bir tanedir ve arkada bulunur (Chilopoda sınıfı) yada iki tanedir ve öndedir (üyelerinin her halkasında iki bacak bulunan kırkayaklar ve gelişmemiş sineklere benzeyen Symphyla alt sınıfı). Bütün çok bacaklılar yumurtlayarak ürer. Çok bacaklılar genellikle seyrek görülen hayvanlardır. Bazıları geniş kitlesel göçlerle dikkat çekerken, bazıları da ev ve öbür yapıların kuytu köşelerinde barınır. Yaşayan 4 sınıfı ile tropik ve ılıman bölgelere büyük ölçüde dağılmış olan çok bacaklılar, bazı yerlerde toprağın organik bölümünü (humus) kaplayarak toprak faunasında öne çıkarlar. Çeşit ve sayıca en çok ormanda bulunursalar da, çıyanlar başta olmak üzere kimi kırkayak türleri otlak yada yarı kurak çevrelerde bulunur. Kırkayak Familyası: Kırkayakgiller (Julidae). Yaşadığı Yerler: Sıcak ve ılık iklimlerin nemli bölgelerinde, çürümüş kütük, yaprak ve taşlar altında. Özellikleri: Vücutları yuvarlak ve halkalıdır. Her halkadan ikişer çift bacak çıkar. Bitkisel besinlerle beslenir. Çeşitleri: 7000’den fazla türü vardır. Çok bacaklılar (Myriapoda) sınıfının “Diplopoda” takımının Julidae familyası türlerinin genel adı. Vücutları belirgin bir baş ve çok sayıda benzer halkalardan (bölüt) meydana gelmiş eklem bacaklılardır. Her halkada ikişer çift bacak bulunur “Diplopoda” çift bacaklı demektir. Başlarında bir çift anten ve ikişer gözü vardır. Gözleri az çok böceklerin bileşik gözüne benzerse de, dikkat edildiğinde basit (osel) gözlerin meydana getirdiği bir çift küme olduğu anlaşılır. Bazı türlerinde göz bulunmaz. Yaşayışlarına uygun olarak antenlerinde koku alma tüyleri çok hassastır. İç anatomisi çıyanınkine benzer. Çıyanlar etçil, kırkayaklar otçuldur. Çok ayaklı olmalarına rağmen çok yavaş hareket ederler. Kırkayakların vücut halkalarından ikişer çift bacak çıkmasına karşılık çıyanlarda birer çift çıkar. Bacakların sayısı, türlere göre değişir. Kırkayakların çoğunda 115 çift bacak bulunur. Çıyanlarda 15 çiftten 173 çifte kadar değişir. Çokbacaklılarda her zaman tek sayıda bacak çifti vardır. Kırkayakların embriyon döneminde her halkada bir çift ayak bulunur. Yetişkinlerin her halkası iki embriyon parçası ihtiva ettiğinden iki çift bacaklı olurlar. Trake (özel solunum boruları) sistemiyle solunum yaparlar. Kırkayaklar sıcak ve ılıman bölgelerde yaşayan kara hayvanlarıdır. Genellikle koyu kahverenklidirler. Gündüzleri nemli yerlerde yaprak, ağaç kabukları ve taşlar altında gizlenir, gece beslenmeye çıkarlar. Çoğunlukla çürümüş bitkisel besin yerler. Bazen tarlalarda, sürüler halinde, bitkilerin kök ve filizlerini de yediklerinden büyük zararlar yaparlar. Çileklere çok musallat olurlar. İnsan ve hayvan dışkılarını da yediklerinden, tenya (şerit) yumurtalarının yayılmasına yardım ederler. Yuttukları barsak parazitlerinin yumurtalarını, sindirmeden tekrar dışarı atarlar. Boyları 1-20 cm arasında değişir. Benekli kırkayak (J.gutularus) 10-18 mm boyundadır. Memleketimizde bulunanların boyları 10-46 mm’dir. Tropik memleketlerde 15-20 cm’ye ulaşanları vardır. Yumurta ile ürerler. Yumurtalar, topraktan yapılmış bir yuvaya yumurtlanır ve dişi tarafından korunur. Genellikle yavrular 12-15 gün sonra yumurtalardan çıkarlar. Hayatları boyunca birkaç defa deri değiştirirler. Her deri değiştirmede, vücut halkalarının sayısı artar. Larvalar, bir yıl içinde erginleşirler. Kitinli derileri, antibiyotik etkisi olan pis kokulu, zehirli bir sıvı salgılar. İri olanlarının salgısı, insan elini tahriş eder. Testiden su içerken yutulursa, zehirlenmeye sebeb olabilir. Bazan yapraklar üstünde dolaşırlar. Korkutuldukları zaman kendilerini yere atarak, saat zembereği gibi helezoni kıvrılır, ölü taklidi yaparlar.

http://www.biyologlar.com/cok-bacaklilar-diplopoda-kirkayaklar-chilopoda-ciyanlar

HAYVAN GÖÇLERİ

Hayvanların bir kısmında bir dizi düzensiz yer değiştirme hareketleriyle, bir başka biyocoğrafik bölgeye kayma görülmektedir. Bunun yanısıra memeli, kuş, balık ve böceklerin zaman zaman göç ettikleri bilinmektedir. Göçün eski çağlarda da ortaya çıktığı, yazılı ve sözlü kaynaklardan anlaşılmaktadır. Örneğin; çekirge, kuş, sıçan ve lemming göçleri gibi. Göçte çok sayıda birey hareket eder. Göçü ortaya çıkaran en önemli nedenlerin başında üreme, yavruların yetiştirilmesi, kış gelmeden önce bulunduğu bölgeden uzaklaşma, besin kıtlığı ve topluluğun içinde bulunduğu bölgenin taşıyabileceğinden çok daha fazla büyümesi vs. sayılabilir. Düzenli göç edenlerde, göçün ortaya çıkması fizyolojik bir olaydır ve hormonlarla yakın ilişkilidir. Özellikle böcek göçleri bir felaket şeklinde ortaya çıkar. Göçmen çekirgelerin zararları eski Mısır’lılardan beri bilinmektedir. Son yıllarda Kuzey Afrika'da görülen bir çekirge sürüsünün bir trilyon birey içerdiği tahmin edilmişti. Bazı kızböcekleri, kelebekler ve kınkanatlılar çok aşırı kalabalıklaştıklarında göç sürüleri oluştururlar. Bu göçleri sırasında sık sık karalardan ayrılıp, açık denizlere doğru yayıldıkları da olur. Yorulan ve ölen bireyler, kıyılarda, bazen kilometrelerce uzayan şeritler meydana getirirler. Kuzey Amerika'da mevsimsel kelebek göçleri yapılır. Örneğin çok sayıda hükümdar kelebeği (Danaus plexippus) her yıl 32. ve 48. kuzey enlemleri arasında gider gelir. Kışı güneyde geçirirler. Uçuş mesafeleri 300 km. dir. Avrupa beyaz lahana kelebeği (Pieris brassicae) de zaman zaman çok büyük sürüler oluştururlar. Bir gece kelebeği otan Laphygma exigua, bazı yıllarda Azerbaycan'dan Batı Avrupa'ya kadar göç edebilmektedir (1964 yılında milyonlarca bireyin oluşturduğu sürü, hava akımının yardımıyla yaklaşık 14 gün içerisinde 3.500 km.lik mesafe katetmişti). Omurgalı hayvanlardan ise başta balıklar olmak üzere birçok göçmen tür vardır. Bunlardan en bilineni ringa balıklarıdır. Eşeysel olgunluğa erişmiş milyarlarca balık, önce büyük sürüler oluşturur ve daha sonra da yumurtlamak için yüksek denizlerin kıyı sularına göç ederler Tonbalıkları, uskumrular ve morina balıkları da sürüler halinde yer değiştirir. Fakat bu değeri balıkların hareketi, avlama için, genellikle balıkçılar tarafından izlenir. Diğer türler, örneğin sombalığı, kolanbalığı vs. üremek için ırmak ağızlarını arar ve uygun bir yumurtlama alan buluncaya kadar yukarılara çıkmaya devam eder. Bu şekilde tuzlu sulardan tatlı sulara geçen balıklar “Anadrom Balıklar” olarak adlandırılmaktadır. Bu tersini, yani tatlı sulardan tuzlu sulara göç eden balıklar da “Katadrom Balıklar” olarak adlandırılmaktadır. Katadrom balıklar (tatlı sulardan tuzlu suya geçenler), yukarıdaki anadrom balıkların (tuzlu sulardan tatlı sulara göç edenler) tersine hareket eder. Bunların gelişmeleri tatlı sularda tamamlanır. Eşeysel olgunluğa erişen hayvanlar yumurtlamak için bu defa denizlere göç ederler. Örneğin Avrupa yılanbalıkları (Anguilla anguilla) Batı Atlantik'teki Saragossa Denizi'ne göç eder ve orada yumurta bırakırlar. Yumurtadan çıkan larvalar daha sonra analarının geldikleri yerlere geri dönerler (Golf-Stream Avrupa kıyılarına taşınmalarında etkili rol oynar). Saydam olan bu larva-ergin balıklar daha sonra nehir ağızlarına ve oradan da nehirlere girerler. Başkalaşımları üç yıl sürer. Eşeysel olgunluğa erişen yılanbalıkları denizlere dönmek için on yıl süreyle tatlı sularda beslenirler. Tatlı sudan, yumurtalarını bırakacakları Saragossa Denizi'ne göçleri yaklaşık 1.5 yıl sürer. Göçlerinin ortaya çıkmasında nelerin etkili olduğu , balıkların Atlantiği nasıl yüzerek geçtikleri ve yumurta koymak için bireylerin bizzat Saragossa Denizi'ne nasıl ulaştıkları ayrıntılarıyla bilinmemektedir. TUCKER'e göre bunlar yumurtlama bölgesine ulaşmadan yolda ölmektedir (belki sadece yumurtaları sürüklenmektedir!). Ergin Amerika yılan balıklarının göç etmek zorunda oldukları mesafe çok kısadır. Amerika yılanbalıklarının Saragossa Denizi'nde açılan yumurtalarından çıkan larvalar, olgunlaşmak için çeşitli yönlerde göç etmektedirler. Bu araştırıcıya göre, bu arada bir grup balık yavrusu da Avrupa'ya yönelmektedir. Bu yaklaşıma göre Avrupa yılanbalıklarının tümü aslında Amerika yılanbalıklarının soyundan gelmektedir. Bu olay (tatlı su yılan balıkların göçü) son zamanlarda, kıtaların kayma kuramına dayanarak bazı açıklamalar getirilmiştir. Kuşlardaki göç etkinliği çok daha belirgindir. Kuşların önemli bir kısmını göçmen kuşlar oluşturur. Kuluçka bölgelerini yılın soğuk mevsimleri gelirken terk ederler. Gerek Bering araştırmaları ve gerekse çok sayıda kuş gözlemevindeki çalışmalar, göç yollarının ayrıntılı bir biçimde saptanmasına olanak vermiştir. Denizkırlangıçlarının (Sterna macrura) göçü çok ilginçtir. Yıl boyunca devam eden göçlerle, Kuzey Amerika'dan Antartika'ya ulaşılır. Kuşlar içinde en uzun ve en hızlı uçuşu, Pasifiğin ıslıkçı altın yağmurkuşu (Charadrius dominicus) gerçekleştirir. Bu kuş, Alaska ile Havvaii Adaları arasındaki 3.300 km. mesafeyi 35 saatte uçar. Leyleklerin (Ciconia alba), Avrupa'dan Güney Afrika'daki kışlama bölgelerine göçü ve geçtikleri yerler konusunda ayrıntılı bilgiler elde edilmiştir. Bir grup leylek İspanya üzerinden, diğer bir grup ise Türkiye üzerinden Afrika'ya göç etmektedir (harita). Hayvanların, göç uçuşu sırasında, bilindiği üzere genellikle, ters V harfi şeklinde bir uçuş düzenleri vardır. Uçuş yönünün nasıl saptandığı, birçok bilginin elde edilmiş olmasına karşın, henüz ayrıntılarıyla açıklanamamıştır. Örneğin, radyo dalgalarının posta güvercinlerinin geri dönüş yönlerini şaşırmalarına neden olduğu gözlenmiştir. Yine gece göç eden çimen sivrisinekleri gökyüzündeki yıldızlardan yararlanarak yönlerini tayin etmektedirler. Bu durum deneysel olarak da gösterilmiştir. Kuş göçlerinin bir kısmı ise ara sıra yapılan düzensiz geri çekilme ve yayılma hareketleridir. Örneğin Sibirya çam kestane alakargası (Nucifera caıyocatactes) sadece soğuk kışlarda Orta Avrupa'ya kadar uzanmaktadır. Yine bir başka örnek üveyiktir (Streptopelia turtur); 1938 yılında Güney Doğu Avrupa'dan Orta Avrupa'ya göç etmeye başladı ve daha sonra da tüm Avrupa'ya yayıldı. Memelilerde de birçok hayvan türü göç etmektedir. Birkaç yarasa türünün göçü biribirinden yüzlerce kilometre uzakta olan yaz ve kış konaklama bölgeleri arasında gerçekleşir. Toynaklılardan bazı türler, uygun otlak bulmak için göç eder. Bunlarda, göç, otlak ve tuz yalama bölgelerini bulmak için yapılabildiği gibi, ren geyiklerinde olduğu şekilde yüksek dağların kar erime sınırı boyunca da yapılabilir. Lemminglerin (Lemmus lemmus) göçleri düzensiz aralıklarla yapılır. Kuzey tundraların bu kemirgenleri bazı yıllarda aşırı derecede çoğalarak populasyon büyümesi açısından patlama noktasına ulaşır. Bu durum bireylerde huzursuzluğa neden olur ve sonuçta milyonlarca bireyden oluşan sürüler meydana gelir. Yönlendirilmemiş bu kitleler, çoğaldıkları bölgeden ayrılarak göç etmeye başlarlar. Büyük zararlara neden olan bu göçler çoğu kez deniz kıyılarına kadar devam eder ve orada denize dökülerek son bulur.

http://www.biyologlar.com/hayvan-gocleri

Evrim ve Termodinamiğin İkinci Yasası

Evrim kuramına karşı çıkanlar, inançlarını daha bilimsel bir ambalajla sunmak için termodinamiğin ikinci yasasını çarpıtıyorlar.Termodinamiğin ikinci yasası, doğada hangi süreçlerin olup olamayacağını öngörür. Birinci yasanın (enerjinin korunumu yasası) izin verdiği tüm işlemlerde sadece bazı enerji dönüşüm türleri mümkün olabilmektedir. Aşağıdaki süreç örnekleri, termodinamiğin birinci yasası ile uyumludur; fakat ikinci yasayla kontrol edilen bir düzende olmalıdır: (1) Sıcaklığı farklı iki cisim termal olarak temas ettirilirse, sıcak cisimden soğuk cisme doğru ısı akışı olur, fakat soğuktan sıcağa doğru asla ısı akışı olmaz.. (2) Tuz, suda kendiliğinden çözülür, fakat tuzlu sudan tuzu elde etmek için bazı dış işlemler gerekir. (3) Bir lastik top yere düştüğü zaman bir dizi sıçramadan sonra sonuçta durur; olayı tersine çevirmek mümkün değildir. (4) Bir sarkacın salınım genliği, destek noktasındaki sürtünme ve hava molekülleri ile çarpışmadan dolayı zamanlan azalır ve sonuçta durur. Burada sarkacın başlangıç mekanik enerjisi ısı enerjisinie çevrilir. Burada enerjinin ters dönüşümü mümkün değildir. Bu örnekler, tek yönlü süreçlerdir yani tersinmez süreçlerdir. Bu olayların hiçbiri, kendiliğinden ters yönde oluşmaz. Eğer oluşsaydı termodinamiğin ikinci kanununa aykırı olurdu (Dip not:Daha kesin olarak, zaman tersinmezliği anlamında olaylar beklenmedik sırada oluşur. Bu görüşe göre, olayların bir yönde olma olasılığı diğer yönde olma olasılğından çok çok fazladır.)Termodinamik işlemlerin tek yönlü karakteri, zaman için bir yön oluşturur. Ters yönde gösterilen komik hareketlerle dolu bir filmde olaylar, zaman tersinirli bir dünyadan anlamsız bir sıralamada oluşur. Çok çeşitli şekilde ifade edilebilen termodinamiğin ikinci kanunun, pekçok önemli uygulamalara sahiptir. Mühendislik açısından, belki de en önemli uygulama, bir ısı makinasının veriminin sınırlı olmasıdır. Basit ifadeyle, ikinci kanın ısıyı tümüyle, sürekli olarak başka bir enerjiye çeviren bir makinanın yapılmasının mümkün olmadığını söyler. Entropi kavramının asıl yeri termodinamiktir. Fakat önemi istatistik mekanik alanında daha da artmıştır. Çünkü bu inceleme yöntemi, entropi kavramını başka bir yolla açıklar.İstatistiksel mekanikte bir maddenin davranışı, madde içerisindeki atom ve moleküllerin istatistiksel davranışları ile tanımlanır. Bu şekildek incelemenin ana sonuçlarından biri: Yalıtılmış sistemler düzensizliğe eğlimlidir ve entropileri bu düzensizliğin bir ölçüsüdür. Örneğin odanızdaki havadda bulunan gaz moleklüllerini düşününüz. Eğer bütün moleküller askerler gibi düzenli hareket etselerdi, bu çok düzenli bir hal olurdu. Bu pek olağan olmayan bir haldir. Eğer molekülleri görebilseydik onların rastgele, her doğrultuda hareket ettiklerini, birleri ile çarpıştıklarını, çarpışma sırasında hızlarının değiştiğini, bazılarının daha yavaş bazılarını daha hızlı gittiğini izleyecektik. Bu, hayli düzensiz ve hata en muhtemel olan haldir. Bütün fiziksel olaylar, en olası duruma ulaşma eğilimindedi ve böyle düzensiz bir durum, düzensizliğin daima arttığı bir durumdur. Entropi, düzensizlik ölçüsü olduğu için aşağıdaki gibi anlatılabilir: Bütün doğal olaylarda evrenin entropisi artar. Bu, termodinamiğin ikinci yasasının başka bir biçimde anlatımıdır. Peki bu yasayla evrimin ilişkisi nedir? İkinci yasa ısıyı yokuş yukarı itmeyi yani soğuk cisimden sıcak cisme ısı aktarma olayında olduğu gibi, olasılık dışı bırakmaz ya da düzesizlikten düzenli duruma geçeşe de izin vermektedir. Böyle bir işlem için dışardan enerji gerektiği, örneğin sürekli elektrik verilmesi gibi açıkça ifade etmektedir. Bunun kanıtı çok uzağımızda değildir. Örneğin, mutfaktaki buzdolabı elektrikle çalışarak, daha soğuk olan içerden dışarıya ısı atmaktadır.(Serway, Fizik, 22. Bölüm,587-588) Evrim ve Entropi Enerjinin korunumu yasasını ilk olarak bir fizikçi değil bir tıp adamı açıklığa kavuşturmuştu. Bunun için deneyinde o da fareleri kullanmıştır. “Besinler yandığında ne kadar enerji oluştuğunu saptayabilirsiniz. Bir miktar besini farelere yedirirseniz, tıpkı yanmada olduğu gibi, besin oksijen etkisiyle karbon dioksite dönüşür. Enerjiyi, her iki durumdaki enerjiyi ölçerseniz canlı varlıkların cansızlarla aynı şeyi yaptığını görürsünüz. Enerjinin korunumu yasası öbür olgular için geçerli olduğu kadar yaşam için de geçerlidir Şunu da eklemek isterim: “cansız” olan şeyler için doğru olduğunu bildiğimiz her yasanın yaşam denilen o büyük olgu için sınandığında da doğru çıkması çok ilginç bir şey. Fizik yasaları bağlamında, çok daha karmaşık olan canlı varlıklarda olup bitenlerin yaşamayan varlıklarda olup bitenlerden farklı olmasını gerektiren bir bulgu henüz yoktur...” (R. Feynman, FYÜ s: 80-81) “ Canlı varlıkların en küçük molekülleri proteinlerdir. Bunlarda tirbüşon özelliği vardır ve sağa doğru dönerler. Şu kadarını söyleyebiliriz ki, aynı şeyleri kimyasal olarak yapabilirsek ve de sağa değil sola doğru yaparsak, biyolojik olarak işlemezler; çünkü, başka proteinlerle karşılaştıklarında uyumu sağlayamazlar. Sol yönlü bir yiv sol yönlü bir yive uyar; fakat sol ve sağ birbirine uymaz. Kimyasal yapılarında sağ yönlü yivi olan bakteriler “sol ve sağ yönlü” şekeri ayırt edebilirler. Bunu nasıl başarıyorlar? Fizik vi kimya iki tür molekülü de üretebilir; ancak onları ayırt edemez. Ama biyoloji ayır edeilyor. Şöyle bir açıklama akla yakın görünüyor: Çok, çok eskiden, hayat daha yeni başladığında, raslantı sonucu bir molekül ortaya çıktı ve üreyerek yayıldı vs. Uzun yıllar boyunca bu tuhaf görünümlü, çatallı yumruları olan damlacıklar birbirleriyle gevezelik edip durdular İşte bizler de başlangıçtaki bu birkaç molekülün evlatlarından başka bir şey değiliz. Bu ilk moleküllerin öyle değil de böyle bir şekil almaları tesadüf sonucunda oldu. Ya bu ya diğeri ya sağ ya da sol olmak zorundaydı. Sonra kendilerini çoğalttılar ve hala da çoğalmaya devam ediyorlar.Bu, bir atölyedeki vidalara benzer. Sağ yönlü vidalar kullanarak sağ yönlü vidalar yaparsınız, vs. Bu gerçek, yani bütün canlı moleküllerde aynı tür yiv bulunması, moleküler düzeye kadar inen canlı soyunun hep aynı niteliği taşıma özelliğinin belki de en anlamlı ifadesidir.(R. Feynman, FYÜ, s: 113-114) Entropi İki şey aynı sıcaklıkta olduğu zaman bir denge oluştuğunu söyleriz, ancak bu onların enerjilerinin de aynı olduğu anlamına gelmez; sadece, birinden enerji çıkarmanın öbüründen çıkarmak kadar kolay olduğunu belirtir. Sıcaklık “enerji verme kolaylığı” gibi bir şeydir. Onları yanyana koyarsanız, görünürde hiçbir şey olmaz. Enerjiyi eşit olarak ileri geri birbirlerine geçirirler; ancak, net sonuç sıfındır. Öyleyse, nesnelerin hepsi aynı sıcaklığa ulaşınca, bir şey yapmak için kullanabileceğimiz enerji yoktur. Ters-çevrilmezlik ilkesi öyledir ki, eğer cisimlerin sıcaklıkları farklı ise ve kendi hallerine bırakılırsa zaman geçtikçe sıcaklıkları birbirine yaklaşır ve enerjinin kullanılabilirliği giderek azalır. Bu, entropinin durmadan arttığını söyleyen entropi yasasının değişik bir ifadesidir. Sözcükler üstünde durmayalım. Bir başka deyişle, kullanılabilir enerji durmadan azalıyor da diyebeliriz. Bu, düzensiz molekül hareketleri kaosunun yol açtığı bir dünya özelliğidir. Farklı sıcaklıktaki şeyler kendi hallerine bırakılırlarsa aynı sıcaklıkta olmaya yönelirler. Aynı sıcaklıktaki iki şeyiniz, örneğin yanmayan bir ocak üstüne konulmuş su varsa, ocak ısınıp su donmayacaktır. Ancak, yanan bir ocak ve buz varsa tersi olacaktır. Demek ki tek yönlülük, her zaman kullanılabilir enerjinin kaybedilmesine yol açar. Bu konuda söyleyeceklerim bu kadar. Ancak bazı temel özellikler hakında birkaç noktaya da değinmek isitiyorum. Burada ters-çevrilmezlik gibi bir sonucu apaçık olan, ancak yasaların aşikar bir sonucu olmayan, temel yasalardan farklı bir örneğimiz var. Bunun nedenini anlamak birçok analizi gerektirir. Bu sonuç, dünyanın ekonomisi ve aşikar görünen her konudaki gerçek davranışı bakımından çok önemlidir. Belleğim, özelliklerim, geçmiş ile gelecek arasındaki fark tamamen bununla içiçedir. Ancak yasaları bilmek bunu kolayca açıklamaya yetmiyor; birçok analiz de gerekiyor. Fizik yasalarıyla olgular arasında aşikar ve doğrudan bir uyum olmaması sık karışlaşılan bir durumdur. Yasalar, değişik ölçülerde, deneyimlerrden soyutlanmışlardır. Bu özel durumda, yasal ters-çevrilebilir oldukları halde olguların çerilememesi buna örnektir. Ayrıntılı yasalarla gerçek olguların temel özelllikleri arasında çoğu zaman büyük uzaklıklar vardır. Örneğin, bir buzula uzaktan bakıp denize düşen kayaları, buz hareteldreni vb, gördüğünüzde onun küçük altıgen buz kristallerinden oluştuğunu hatırlamanız gerekli değildir. Fakat, buzun yürümesinin gerçekten de altıgen buz kristallerinden kaynaklandığını biliyoruz. Buzulun rdavranışlarını anlamak için uzun zaman gerekir (gerçekte, kristalleri ne ölçüde incelemiş olursa olsun hiç kimse buz hakkkında yeterli bilgi sahibi değildir). Buna karşın, kristalleri gerçekten anlarsak sonunda buzulları da anlayacağımızı umuyoruz. Bu derslerde fizik yasalarının temel öğelerinden sözetmemize karşın, hemen ekleyelim ki temel fizik yasalarını bugün bilebildiğimiz kadar bilmek, herhangi bir şeyi hemen anlamamızı sağlamıyor. Bunun için zaman gerekiyor., yine de ancak kısmen anlayabiliyoruz. Sanki doğa, gerçek dünyadaki en önemli şeylerin, bir sürü yasanın karışık bir rastlantısal sonucuymuş gibi göründükleri bir şekilde düzenlenmiş. Bir örnek gerekirse, proton ve nötron gibi bazı nükleer parçacıkları içeren atom çekirdekleri çok karmaşıktırlar. Enerji düzeyi dediğimiz bir şeylere sahiptirler ve değişik enerji değerleri olan durum veya koyullarda bulunurlar. Farklı çekirdeklerin enerji düzeyleri de birbirinden farklıdır. Enerji düzeylerinin durumunu saptamak karmaşık bir matematiksel problemdir; bunu ancak kısmen çözebiliyoruz. Düzeylerin kesin durumu son derece karmaşık bir şeyin sonucudur. Bu nedenle, içinde 15 parçacık bulunan nitrojen 2.4 milyon voltluk bir düzeyi, bir başkasının da 7.1 düzeyi vb olmasında şaşılacak bir şey yoktur. Doğa hakkında çok ilginç olan bir şey vardır: Tüm evrenin kendine özgü yapısı belirli bir çekirdekteki özel bir enerji düzeyinin durumuna bağımlıdır. Karbon-12 çekirdeğinde 7.82 milyon voltluk bir düzey olduğu saptanmıştır. Bu da akla gelebilecek her şey için çok büyük önem taşımaktadır. Durum şöyledir: Hidrojenle başlayalım. Başlangıçta Dünya neredeyse tümüyle hidrojenmiş gibi görünüyor. Çekimin etkisiyle hidrojen sıkışıp ısınıyor ve nükleer reaksiyon gerçekleşiyor; helyum oluşuyor.. Sonra helyum hidrojenle kısmen birleşerek daha ağır birkaç element oluşturuyor. Ancak, daha ağır olan bu eylementler hemen dağılıp helyuma dönüşyorlar.Bu nedenle bir ara, dünyadaki bütün diğer elementlerin nasıl ortaya çıktıkları anlaşılamıyordu. Çünkü, yıldızlardaki üretim süreci, hidrojenle başlayarak helyum ve yarım düzineden az başka elementten fazlasını ortaya çıkaramazdı. Bu problem karşısında Fred Hoyle (İnrgiliz astoronum) ve Edwin Salpeter (Amerikalı fizikçi), bir çıkış yolu bulunduğunu öne sürdüler. Buna göre, üç helyum atomu bir leşip bir karbon atomu yapabiliyorsa, bir yıldızda bunun ne sıklıkta oluşabileceğini kolayca hesaplayabiliriz. Sonuç şunu ortaya çıkardı: karbon ancak tek bir rastlantısal olanakla oluşabelirdi. Eğer karbonda 7.82 düzeyi olmadığı zamankinden biraz daha uszun bir süre beraber kalabilirlerdi. Biraz daha uzun kaldıklarında, başka bir şeylerin oluşması ve yeni elementler yapılması için gerekli zaman sağlanacaktı. Eğer karbonda 7.82 milyon voltluk bir enerji düzeyi varsa, periyoduk tablodaki diğer elementelerin nereden geldiği anlaşılabilirdi. Böylece dolaylı ve tepetaklak bir irdeleme ile karbonda 7.82 milyon voltluk bir düzey varolduğu tahmin edildi; laboratuvar deneyleri de bunun gerçek olduğunu gösterdi. Bu nedenle dünyada, bütün öbür elementelerin varolaması, karbondaki bu özel düzeyin varlığı ile yakından ilişkilidir. Karbondaki bu üzel düzeyin varlığı ise fizik yasaların bilen bizlere, etkileşim içinde bulununan 12 karmaşık parçacığın çok karmaşık bir rastlanıtsal sonucu olduğu izlenimini veriyor. Bu örnek fizik yasalarını anlamanın dünyadaki önemli şeyleri doğrudan anlamayı gerektirmediğini çok güzel gösteren bir örnektir. Gerçek deneyimler çoğunlukla temel yasalardan çok uzaktırlar. Dünya hakkında tartışırken onu hiyerarşik bir düzen içinde ve muhtelif düzeylerde ele alırız.Bundan kastettiğim, dünyayı sınırları kesin ve belirli düzeylere ayırmak değil. Fikirlerin hiyerarşisinden ne anladığımı bir grup kavramı açıklayarak göstereceğim. Örneğin, bir uçta fiziğin temel yasaları bulunuyor. Kesin açıklamalarının temel yasalarla yapılacağını düşündüğümüz yaklaşık kavramlar için başka başka terimler icat ederiz; örneğin “sıcaklık”. Sıcaklığın titreşim olduğunu düşünüyoruz; sıcak bir şey için kullandığımız sözcük de titreşen atomlar kütlesi için kullandığımız sözcüktür. Fakat sıcaklık hakkında konuşurken titreşen atomları unuttuğumuz da olur. Tıpkı buzullar hakında konuşunrken altıgen buzları ve ilk başta yağan kar taneciklerini unuttuğumuz gibi. Aynı şeye başka bir örnek de tuz kristalleridir.Bunlar temelde bir sürü proton, nötron ve elktrondan oluşur. Ancak bütün temel etkileşim düzenini içeren bir “tuz kristali” kavramımız vardır. Basınç da aynı türden bir kavramdır. Buradan bir üst basamağa çıkarsak, bir başka düzeyde maddelerin özelliklerini buluruz. Örneğin, ışığın bir şey içinden geçerken ne kadar büküldüğünü gösteren “kırılma endeksi” veya suyun kendini biradrada tuttuğunu gösteren “yüzey gerilimi”. Bunların her ikisi de sayılarla ifade edilir. Bunun atolmların çekimlerinden vb. kaynaklandığını görmek için bir çok yasa taramak gerektiğini sizlere hatırlatırım. Ama yine de “yüzey gerilimi” terimini kullanırız ve bunu tartışırken içerilerde ne olup bittiğine her zaman pek aldırlmayız. Hiyerarşide bir basamak daha yukarı çıkalım.Su konusunu ele alırsak dalgalar, bir de fırtına diye bir şey çıkıyor karşımıza. “Fırtına” sözcüğü de çok büyük bir olaylar topluluğunu ifade eder. Sonra “güneş lekeleri”, birer nesneler topluluğu olan “yıldızlar” var. Her zaman fazla geriye giderek düşünmeye değmez. Gerçekten bunu yapamayız da. Çünkü yukarılara çıktıkça araya gittikçe zayıflayan yeni basamaklar girer. Hepsini birden ele alarak düşünmeyi henüz başaramadık. Bu karmaşıklık sıralamasında yukarılara çıktıkça, fiziksel dünhyada son derece karmaşık bir şey olan, maddeyi son derece incelikli bir karmaşıklıkla düzenlemeyi gerektiren, kas-seğirmesi veya sinir uyarısı gibi şeylerle karşılaşırız. Daha sonra da “kurbağa” gibi şeyler gelir. Çıkmaya devam ediyoruz; “insan”, “tarih”, “politika” vb. sözcük ve kavramlara, daha üst düzeydeki şeyleri anlamak için kullanığımız bir dizi kavrama geliyoruz; çıkmayı sürdürerek kötülük, güzellik, umut gibi şeylere ulaşıyoruz. Dinsel bir mecaz yaparsak, hangi uç Tanrı’ya daha yakındır? Güzellik ve umut mu, yoksa temel yasalar mı? Söylenmesi gerekinin şu olduğunu sanıyorum: Varlığın içiçe geçmiş bağlantılarının tümüne bakmamız gerekir. Bütün bilimler, yalnız bilimler değil bütün entellektüel kökenli çabalar, hiyererşik basamaklar arasında aşağıya ve yukarıya doğru olan bağlantıları bulmaya; güzellikle tarih, tarihle insan psikolojisi.insan psikolojisiyle beyinin işlevleri, beyihnsel isinrsel uyarılar, sinirsel uyarılarla kimya vb arasında bağlantı kurmaya yönelik çabalardır. Bugün bunu yapkmıyoruz. kendimiz kandırıp bu şeyin bir ucundan öbüüne uzanan birdoğru çizebileceğimiz sanmanın yararı yoktur; çünkü, böyle bir göreceli hiyerarşinin varolduğunu yeni yeni görmeye başladık. İki uçtan birinin Tanrı’ya daha yakın olduğunu da sanmıyorum. İki uçtan birinde durmak, iskelenin yalnızca o ucunda yürüyüp olan bitenleri tam olarak anlamanın o yönde ggerçekleşeceğine inanmak yanlıştır. Kötülük, güzellik ve umuttan yana veya temel yasalardan yana olmak; bütün dünyayı derinliğine kavramanın yalnız o yolla olacağını ummak doğru değildir. Bir uçta uzmanlaşanın öbür uçta uzmanlaşanı önemsememesi akla uygun değildir. Bu iki ucun arasında çalışan büyük kütle sürekli olarak, bir adımı diğeri ile birleştirerek, dünyayı gittikçe daha iyi anlamamızı sağlıyor. Bu yolla, hem iki uçta hem de ortada çalışarak yavaş yavaş bu içiçe hiyerarşinin olağanüstü büyük dünyasını anlamaya başlıyoruz. (R. Feynman, Fizik YasalarıÜzerine,TÜBİTAK y, s: 140-147) Krallıklar ve Karanlıklar “Demiştik ki, Australantrop ya da türdeşlerinden birinin, artık yalnızca somut ve gerçek deneyini değil de bir öznel deneyini bir kişisel “benzerleştirme” nin içeriğini iletmeyi başardığı gün yeni bir dünya doğmuştu:Düşünler dünyası. Yeni bir evrim, kültür evrimi olanak kazanıyordu.İnsanın fiziksel evrimi, artık dilin evrimiyle sıkı bir bilik içinde, onun ayıklanma koşullarını altüst eden etkisine derinden bağlı larak daha uzun süre devam edecektir. Modern insan bu ortak yaşarlığın ürünüdür. Onu başka yoldan anlamak ya da yorumlamak olanaksızdır. Her canlı varlık bir taşıldır da. İçinde proteinlerinin mikroskopik yapısına dek atalarının damgasını değilse ible, izleri taşır: Bu insanın kalıtçısı olduğu fiziksel ve “düşünsel” ikilikten dolaylı, bütün hayvan türlerinden çok onun için doğrudur. Yüzbinlerce yıl boyunca, düşünsel evrimin, ancak hayatın hemen korunmasına doğrudan bağlı olaylar için önlem almaya elverişli bir beyin kabuğunun yavaş gelişmesinin baskısı altında, fiziksel evrimin ancak çok az önünde yürüdüğü düşünülebilir:Benzerleştirme gücüyle işlemleri ortaya çıkaran dili gelişmeye itecek olan ayıklanmamnın yoğun baskısı burdan gelir. taşılların tanıklık ettiği bu evrdimin şaşırtıcı hızı da yine buradan gelir. Fakat bu birlikte evrim sürdükçe, doğrudan maddi sinir sitmenin gelişmesinin baskıları gtigide yok etmesiyle, düşünsel ibleşimin daha çok bağımsızlık kazanması kaçınılmazdı. Bu evrimin sonucunda insan, insan-altı evrene egemenliğini yayıyor ve orada gizlenen tehlikelerden daha az etkileniyordu. Evrimin birinci aşamasına son veren ayıklama baskısı da artık azalacak, hiç olmazsa başka bir niteliğe bürünecekti. Bir kez çevresine gemen olduktan sonra insanın artık kendinden başka önemli düşmanı kalmıyordu. Doğrudan tür içinde ölümüne kavga artık insan türünde ayıklanmanın başlıca etmeni oldu. Hayvanların evriminde son derece seyrek rastlanan bir olgu. Günümüzde hayvan türleri içinde, belirli ırk ve topluluklar arasında, tür içi savaş bilinmez. Büyük memelilerde erkekler arasında sık görülen çarpışmaların bile, yenilenin ölümüyle sonuçlandığı çok seyrektir. Bütün uzmanlar, doğrudan kavganın yani yani Spencer’ın “struggle for life” ının, türlerin gelişiminde pek küçük bir işlevi olduğunu kabul etme konusunda birleşirler. İnsanda durum böyle değil. türün, hiç olmazsa belli bir gelişme ve yayılma düzeyinden sonra, kabile ya da ırk kavgası, evrim etmeni olarak, kuşkusuz önemli bir iş görür. Neandertal adamının birden bire yok oluşunun, atamız Homo sapiens ‘in uyguladığı bir soy kırımının sonucu olması çok olasıdır. Bunun son olduğu da söylenemez: Bildiğimiçz tarihsel soy kırımlarının sayısı az değil. Bu ayıklanma baskısı insanı hangi yönde etkiler? Bunun daha çok zeka, imgelem, irade ve tutku taşıyan ırkların yayılmasını kolaylaştırması olabileceği açıktır. Fakat bu, bireysel gözüpeklik yerine çete bağlılığını ve takım saldırganlığını, girişkenlikten çok kabile yasalarının sayfın tutulmasını da geliştirmiş olmalı. Bu yalınlaştırıcı şemaya yapılacak bütün eleştirileri kabul ediyorum. İnsan evriminin iki ayrı evreye ayrıldığını da ileri sürmüyorum. Benim yaptığım, insanın yalnız kültürel değil, fizik evriminde de kuşkusuz önemli bir işlevi olan başlıca ayıklanma baskılarını sıralamaya çalışmaktır. Buradaki önemli nokta, yüz binlerce yıl boyunca, kültürel evrimin fiziksel evrimi etkilemekten geri kalamayacağıdır; her tür hayvandan çok insanda ve doğrudan onun sonsuz özerkliği nedeniyle, ayıklama baskısını yönlendiren şey davranıştır . Davranış, genellikle otomaik olmatan çıkıp da kültürel olduktan sonra, kültürel özelliklerin de genomun evrimi üzerine baskı yapması gerekir. Bu da, kültürel evrimin gittikçe artan hızının onu genomdan tümüyle koparmasına dek sürer.(s:145) *** Açıktır ki, modern toplumlarda bu kopma toptandır. Burada ayıklanma ortadan kalkmıştır. Hiç olmazsa Darwinci anlamıyla “doğal” bir yanı kalmamıştır. Bizim toplumlarımızda, ayıklanma, henüz bir işlev gördüğü ölçüde, “en yeterlinin varkalması”nı yani daha çağdaş terimlerle “en yeterli” olanın kalıtsal varkalaşını, soyun daha çok yaylılması yoluyla, kolaylaştırmaz.Zeka, tutku, gözüpeklik ve imgelem gerçi modrn toplumlarda da her zaman başarı öğeleridir. Fakat bu kalıtsal değil kişisel başarıdır. Oysa evrimde önemli olan yalnızca birincidir. tersine, herkesin bildiği gibi istatistikler, zeka bölümü (ya da kültür düzeyi) ile aile başına düşen çocuk sayısı arasında tersi bir ilişki bulunduğunu gösreriyor. Buna karşı aynı istatistikler, evli çiftiler arasındaki zeka bölümü için olumlu bir ilişki bulunduğunu gösteriyor. Bu, en yüksek kalıtsal gizilgücü, göreli sayıları gittikçe azalan bir azınlığa doğru toplama olasılığı gösteren tehlikeli bir durumdur. Dahası var: Yakın zamanlara dek görece “ileri” toplumlarda bile, hem fiziksel hem de düşünsel açıdan en az yeterli olanların elenmesi özdevinimli ve acımasızdı. Çoğu erginlik çağına uluşamazdı. Günümüzde bu kalıtsal sakatlardan birçoğu, döl vermeye yetecek kadar yaşıyor. Bilginin ve toplumsal törenin ilerlemesi sonucurnda, türü, doğal ayıklanmanın yok olmasıyla kaçınılmazlaşan alçalmaya karşı savunun mekanizma, artık eğer en ağır kusurlar dışında işlemez olmuştur. Sık sık sergilenen bu tehlikelere karşı moleküler kalıtımdaki son ilerlemelerden beklenen çareler öne sürülüyor. Kimi yarı-bilginelrden yayılan bu yanılgıyı dağıtmak gerek. belki de kalıtsal kusurlar iyileşirilebilir, fakatbu, kusurlu kişinin yalnızca kendisi içindir, soyundan gelenler için değil. . Çağdaş moleküler kalıtımbilim bize, bir “üstün insan”yaratmak üzere kalıtsal birikimi yeni niteliklerle zenginleştirmek, bir yol göstermek şöyle dursun, böyle bir umudun boşluğunu açıklıyor: Genomun mikroskopik oranları bugün için, kuşkusuz her zaman olduğu gibi, bu tür oyunlara elverişli değildir. Bilimkurgu kuruntuları bir yana, insan türünü “iyileştirme”nin tek yolu, bilinçli ve sıkı bir ayıklama uygulaması olabilir. Bunu kim ister, buna kim yürek bulur? tür için, iler toplumlardaki ayıklanmama ya da ters ayıklanma tehlikesinin sürdüğü bir gerçektir. Ancak tehlikenin önemli boyutlar kazanması uzun bir süreye bakar: Diyelim on ya da on beş kuşak, yan birçok yüzyıl. Oysa modern toplumlar, başka yönden de ivedi ve ağır tehditlerle karşıkarşıyadır.(s:146) *** Burada sözünü ettiğim şey, ne nüfus patlaması, ne doğanın yıkımı, hatta nede megatonlardır (1 milyon ton TNT’ninkine eşit patlama gücü) bu daha derin ve daha ağır bir hastalık ruhun hastalığıdır. Bu, o hastalyğı yaratıp gittikçe de ağırlaştıran düşünsel evrimin en büyük dönüm noktasıdır. Üç yüz yıldan beri bilimde ortaya çıkan olağanüstü gelişmeler, bugün insanı, gerek kendisi ve gerekse evrenle ilişkisi üzerine kurduğu ve on binlerce yıldır kök salmış olan anlayışı, çok acılı biçimde değiştirmeye zorlamaktadır. Oysa ruh hastalığı olsun megatonlar olsun, hepsi de yalın bir düşüncenin sonucudur: Doğa nesneldir, gerçek bilginin tek kaynağı mantıklı deneyin sistematik karşılaşmasıdır. nasıl olmuş da, düşünceler ülkesinde, böylesine yalın ve açık bir düşünce, Homo sapiens’in doğşundan ancak yüz bin yıl sonra gün ışığına çıkabilmiş; nasıl olmuş da Çin’deki gibi çok yüksek uygarlıklar, Batı’dan öğrenmedin önce bunu bilememişler; yine nasıl olmuş da, Batı’da da o düşüncenin, sonunda mekanik sanatların arı pratiği içindeki tutsaklığından krtulabilmesi için Thales ile Pythagoras’tan Galilei, Descartes ve Bacon’a dek 2500 yıla yakın zaman geçmesi gerekmiş, bütün bunları anlamak çok zor.(s:146) Bir biyolog için kavramların evrimiyle canlı katmanlarının (dirimyuvarını) evrimin karşılaştırılması çekici olabilir. çünkü soyutun evreni dirimyuvarını, bunun cansız evreni aştığından daha çok aşmış bile olsa, kavramlar, organizmaların özelliklerinden bir bölümünü saklamıştır. Düşünceler de organizmalar gibi yapılarını yineleyip çoğaltmaya yönelirler; onlar gibi içeriklerini kaynaştırır, yeniden birleştirir ve ayırırlar ve sonunda onlar gibi evrim gösterirler ve kuşkusuz bu evrimde ayıklanmanın payı büyüktür. düşüncelerin evrimi üzerine bir kuram önerme denemesine girişmeyeceğim Fakat hiç olmazsa orada işlev alan başlıca etmenleri tanımlama yoluna gidilebilir. Bu ayıklanmanın, zorunlu olarak, iki düzeyde işlemesi gerekir: Düşüncenin kendi düzeyi, edim (davranış) düzeyi. Bir düşüncenin edim değeri, onu kabul eden bireye ya da topluluğa getirdiği davranış değişikliğine bağlıdır. Kendisini benimseyen insan topluluğuna daha çok tutarlılık, tutku ve kendine güven veren düşünce, bunun sonucu olarak topluluğun yayılma gücünü de artıracaktır ve bu, düşüncenin kendisinin de yükselmesi demektir.Bu yükselme değerinin, düşüncenin içerdiği nesnel doğrunun niceliğiyle zorunlu bir ilişkisi yoktur. Bir dinsel ideolojinin bir toplum için oluşturduğu güçlü dayanak, gücünü kendi yapısından değil, bu yapının kabul edilişinden, kendini benimsetmesinden alır. Bunun için de böyle bir düşüncenin yayılma gücünü edim gücünden ayırmak zordur. Yayılma gücünün kendi içinde çözümlenmesi çok daha zordur.Bu gücün, zihinde daha önceden kurulmuş olan yapılara ve bunlar arasında, daha önce kültürün taşımış olduğu düşüncelere ve kuşkusuz, saptanması bizim için çok zor olan kimi doğuştan yapılara da bağlı olduğunu söylemekle yetinelim. Fakat görülüyor ki, en üstün yayılma gücü taşıyan düşünceler, insanı, içinde bunalımından kurtulabileceği içkin bir yazgıdaki yerini belirleyerek açıklayanlardır (s:147) *** Yüzbinlerce yıl boyunca bir insanın yazgısı, onun dışında hayatını sürdüremeyeceği kendi toplumunun, yani oymağının yazgısından ayrılamazdı. Oymağa gelince, o da yalnızca birliğine dayanarak kendini savunabilir, yaşayabilirdi. Bu birliği örgütleyen ve güvenceye alan yasaların büyük öznel gücü buradan gelir. Birisinin çıkıp bunlara aykırı davrandığı durumlar olabilir; fakat kuşkusuz hiç kimsenin onları yadsıması düşünülemez. Bu tür toplumsal yapıların zorunlu olarak ve öylesine uzun bir süre boyunca kazandığı çok (s:147) büyük açıklayıcı önem düşünüldüğünde, bunların insan beyninin doğuştan kategorilerinin kalıtsal evrimini etkilemediklerini kabul etmek kolay değildir. Bu evrim yalnızca oymak yasasının kabulünü kolaylaşttırmakla kalmayıp, ona üstünlük sağlayarak onu kuran mitik açıklama gereksinimini de yaratmış olmalı. Biz o insanların torunlarıyız. Bu açıklama dileği, varoluşun anlamını bulmaya bizi zorlayan bunalım, kuşkusuz bize onların kalıtıdır. Bütün mitlerin bütün dinlerin, bütün felsefelerin ve bilimin kendisinin yaratıcısı da bunalımdır. Bu buyurucu gereksinimin, doğuştan, kalıtsal yabsanın diliyle bir yerde yazılı olduğundan ve kendi kendine geliştiğinden, ben kandi payıma şüphe etmiyorum. İnsan türünün dışında, karıncalar, beyaz karıncalar ve arılar bir yana, hayvanbal alanın hiçbir yerinde böylesine yüksek düzeyde ayrımlaşmış toplumsal örgütlenmeler bulunmaz. Toplumsal böceklerde kuruluşların değişmezliğini sağlayan hiçbir şey kültürel kalıtımdan gelmez, hepsi kalıtsal aktarımdan gelir. Toplumsal davranış onlarda tümüyle doğuştan, özdevinimseldir. İnsanda toplumsal kuruluşlar, salt kültürel olarak, hiçbir zaman böyle bir dengeliliğe ulaşamayacaktır; ayrıca, bunu kim ister ki? Mitleri ve dinleri bulmak, geniş felsefe sistemleri kurmak, insanın, toplumsal hayvan olarak arı bir özdevinimliliğe boyun eğmeden hayatını sürdürebilmek için ödemek zorunda kaldığı bedeldir. Fakat salt kültrel kalıt, toplumsal yapılara destek vurmak için, kendi başına yeterince güçlü olamazdı. Bu kalıta, düşünce için gerekli besini sağlamak üzere, bu kalıtımsal destek gerekirdi. Eğer böyle olmasaydı, türümüzde, toplumsal yapının temelindeki din olayının evrenselliği nasıl açıklanabilirdi? Yine, mitlerin, dinlerin ve felsefi ideolojilerin tükenmez çeşitliliği içinde hep aynı “biçim” in bulunmasını nasıl açıklamalı? Kolayca görülebilir ki, bunalımı yatıştıracak yasayı kurmaya yönelik “açıklama” ların hepsi de “tarih”, daha doğrusu, bireyoluştur(Ontogenie). İlkel mitlerin hemen hepsi, davranışları, topluluğun kaynaklarınıaçıklayan ve onun toplumsal yapısını dokunulmaz geleneklere oturtan, az ya da çok tanrısal kahramanlarla ilgilidir: tarih yeniden yapılmaz. Büyük dinler de aynı biçimde, esinli bir peygamberin öyküsüne dayanır; peygamber kendisi her şeyin kurucusu değilse de, kurucuyu temsil eder, onun yerine konuşur ve insanların tarihini ve yazgılarını anlatır. Bütün büyük dinler içinde kuşkusuz Yahudi-Hıristiyan geleneği, bir tanrı (s:148) peygamberiyle zenginleşmeden önce bir çöl oymağının davranışlarına doğrudan bağlı olan tarihselci yapısıyla, en “ilkel” olanıdır. Budacılık ise, tersine, daha yüksek dereceden ayırmlaşmıyş olarak, özgün biçimi içinde yalnızca Karma’ya, bireysel yazgıyı yöneten aşkın yasaya bağlanır. Budacılık insanların değil, ruhların öyküsüdür. Platon’dan Hegel ve Marx ’a dek, büyük felsefe sistemlerinin hepsi, hem açıklayıcı hem kuralcı bireyoluşlar önerirler. Gerçi Platon’da bireyoluş terisne dönmüştür. Tarihin akışında; o, ideal biçimlerin gittikçe çözülüşünü görürü ve Devlet ’te özet olarak, bir zamanı geri çevirme makinesi işletmeye çalışır. Hegel gibi Marx için de tarih, içkin, zorunlu ve iyiye yönelik bir tasarıya göre açılır. Marksist ideolojinin ruhlar üzerindeki büyük gücü, yalnızca İnsanın kurtuluşu için verdiği sözden değil, aynı zamanda ve kuşkusuz hepsinden önce, bireyoluşsal yapısından, geçmiş şimdiki ve gelecekteki tarih için yaptığı tam ve ayrıntılı açıklamadan gelir. Bununla birlikte, insan tarihiyle sınırlanmış olarak, “bilim”in verileriyle bezenmiş de olsa, tarihsel maddecilik yine de eksik kalmıştı. Buna, düşüncenin gerekli gördüğü toptan yorumu getirecek diyalektik maddeciliği de eklemek gerekiyordu: Bunda, insanlığın ve evrenin tarihleri aynı öncesiz-sonrasız yasalar altında birleşmiştir. *** Eğer, yokluğu derin bir iç bunalımına neden olacak bir tam açıklama gereksiniminin doğuştan olduğu doğruysa; eğer iç daralmasını yatıştırabilecek tek açıklama biçimi, İnsanın anlamını, ona doğanın tasarı içinde zorunlu bir yer vererek anlatacak olan bir toptan tarih açıklama biçimiyse; eğer doğru, anlamlı ve yatıştırıcı görünmek için “açıklama”nın uzun canlıcı (animist) gelenek içinde erimesi gerekiyorsa; işte o zaman, düşünce dünyasında, tek bozulmamış doğru kaynağı olarak nesnel bilgi kaynağının görülebilmesi için neden binlerce yıl geçmesi gerektiği anlaşılır. Hiçbir açıklama önermeden, başka her türden düşünsel besin karşısında bir çileci vazgeçişe zorlayan bu düyşünce, doğuştan iç daralmasını yatıştıramazdı; tersine onu ağırlaştırırdı. Bu düşünce insan doğasının doğrudan özümsediği yüz bin yıllık bir geleneği bir çırpıda sileceğini öne sürüyordu; insanın doğayla olan eski canlıcı (s: 149) bağlaşmasının bozulduğuhnu bildiriyor; bu değerli bağlaşmanın yerine, yalnızlıktan donmuş bir evrende tasalı bir arayıştan başka bir şey getirmiyordu. Katı etik bir büyüklenme dışında hiçbir desteği görünmeyen böyle bir düşünce nasıl kabul edilebilirdi? kabul edilmedi, kabul edilmiyor da. Her şeye karşın yine de etkinlik gösteriyyorsa, bu yalnızca onun olağanüstü edimsel gücüne dayanıyor. Üç yüz yılda, nesnellik boyutuna göre kurulan bilim, ruhlarda olmasa bile pratikte, toplumdaki yerini buldu. Modern toplumlar bilim üzerine oturur. Bu toplumlar, zenginliklerini, güçlerini ve eğer istenirse insan için daha büyük zenginlik ve güçlülüklerin de olabileceği inancını bilimden alır. Fakat bunun yanında da, nasıl ki bir türün biyolojik evrimindeki ilk “seçim” bütün soy sopunun geleceğini bağlayabildiyse, başlangıçtaki bir bilimsel uygulamanın bilinçsiz seçimi de kültürün evrimini tek yönlü bir yola çevirdi; öyle bir yol ki,19. yy ilericiliği, bunun şaşmaz biçimde insanlığın olağanüstü gelişmesine götürdüğünü düşünüyordu; oysa bugün önümüzde bir cehennem çukuru açıldığını görüyoruz. Modern toplumlar, bilimin kendilerine sağladığı zenginlik ve güçleri aldılar, fakat yine bilimin en derin anlamlı bildirisini almadılar, belki işitmediler bile. Bildirinin istediği: Yeni ve tek bir bilgi kaynağı tanımı, törel temellerin toptan gözden geçirilmesi, canlıcı gelenekten tam bir kopma, “eski bağlaşım” ın kesinlikle bırakılıp yeni bir anlaşmaya gidilmesi zorunluluğunun kabulü. Bilimden aldıkları bütün güçlerle donanmış olarak bütün zenginliklerden yararlanan bu toplumlar, o bilimin temelden yıktığı değer sistemlerine göre yaşamak, çocuklarına onları öğretmek istiyorlar. Bizden önce hiçbir toplum böyle bir acı çekmedi. İlkel kültürlerde de, klasiklerde de, bilgilerle değerlerin kaynakları canlıcı gelenek içinde kaynaşmıştır. tarihte ilk kez uygarlık, bir yandan değerlerini korumak için canlıcı geleneğe umutsuzca bağlı kalıp, bir yandan da bir bilgi ve doğru kaynağı olarak ona sırt çevirmeye ve kendini biçimlendirmeye çalışıyor.Batı’nın “özgürlükçü” toplumlarının, kendi töre kaynakları olarak bugün de yarım ağızla öğrettikleri şeyler, Yahudi-Hıristiyan geleneğinin, bilimci ilericiliğin, insanın “doğal” haklarına inanmanın ve yaratıcı pragmacılığın tiksindirici bir karışımıdır. Marksist toplumlar da sürekli olarak, maddeci ve diyalektik bir tarih dini öğretiyorlar; görünüşte özgürlükçülerinkine göre daha sağlam bir çerçeve, fakat belki de bugüne dek ona gücünü vermiş olan esnemezlik yüzünden; ötekinden (s: 150) daha da çürük. Ne olursa olsun, canlıcılık içinde kök salmış bu sistemlerin hepsi nesnel bilginin dışında, doğrudan dışındadırlar; saygı duymadan ve hizmet etmeden kullanmak istedikleri bilime kesinlikle karşıdırlar .kopma öylesine büyük, yalan öylesine açıktır ki, bu durum, biraz kültürü olan, biraz düşünüebilen ve her türden yaratmanın kaynağındaki törel bunalımı duyabilen herkesin vicdanına saplanmakta ve acı vermektedir. Bu acıyı çekenler, insanlar arasında, toplumun ve kültürün, evrim için izleyecekleri yolun sorumluluğunu duyan ya da duyacak olanlardır. Modern ruhun hastalığı, törel ve toplumsal varlığın kökündeki bu yalandır. Bugün bilimsel kültür karşısında pek çok kimsede, kin değilse bile korku, daha doğrusu yabancılaşma duygusu uyandıran şey, az çok bulanık biçimde tanılanmış olan bu hastalıktır.Çokluk kızgınlık, bilimin teknolojik alt ürünlerine, bombalara; doğanın yıkımına, nüfustan gelen tendide yönelik görünür.Doğal olarak, teknolojinin bilim olmadığı, bir yandan da atom gücünün kullanılmasının insanlığın yaşaması için vazgeçilmez duruma geleceği türünden bir yanıt bulmak kolaydır; doğanın yıkımının, teknolojinin ileri gittiğini değil yetersiszliğini gösterdiği söylenebilir; nüfus patlaması her yıl milyonlarca çocuğun ölümden kurtarılmasının sonucu olduğuna göre, çocukları yeniden ölüme mi bırakmalı, diye sorulabilir. Bunlar, hastalığın belirtileriyle nedenlerini birbirine karıştıran yüzeysel söylevlerdir. karşı çıkma, gerçekte, bilimin esas iletisinedir. korku, günah korkusudur: Kutsal değerleri kirletme korkusu, haklı bir korku. Bilimin değerlere saldırdığı doğrudur. Bunu doğrudan yapmaz, çünkü yargoıç değildir ve onları görmemesi gerekir : Fakat Avusturalya yerlilerinden diyalektik maddecilere dek hepsinde, canlıcı geleneğin, değerleri, töreleri, ödevleri, hakları ve yasakları üzerine oturttuğu mitik ya da felsefi bireyoluşları yıkar. İnsan bu iletiyi bütün anlamıyla kabul ediyorsa, demek binlerce yıllık düşündün iuyanmış ve kendi mutlak yalnızlığı, kökten yabancılığıyla karşı karşıya gelimştir. Artık bir çingene gibi, içinde yaşadığı evrenin bir kıyısında bulunduğunu bilir: müziği karşısında sağır, umutlarına da, acılarına da, suçlarına da ilgisiz bir evren. O zaman da suçu kim tanımlayacak? İyiyi kötüden kim ayıracak? Bütün geleneksel sistemler töreye ve değerleri insanın erimi dışında tutmuşlardır. Değerler insanın değildi: Onlar vardılar ve insana egemendiler. Fakat insan, o değerlerin de, onlara egemen olanın da kendisi olduğunu öğrenince, şimdi de onları, evrenin (s:151) duygusuz boşluğu içinde eriyip dağılmış görüyor. İşte o zaman modern insan, yalnız cisimler değil ruhun kendisi üzerindeki korkunç yıkım gücünü de artık öğrenmiş olduğu bilime dönüyor, daha doğrusu ona karşı çıkıyor. *** Nereye başvurmalı? Nesnel doğru ile değerler kuramının birbirine yabancı, birinden ötekine geçilemeyen iki alan olduğunu bir kez ve kesin olarak kabul mü etmeli? Yazar olsun, filozof olsun, hatta bilim adamı olsun, modern düşünürlerin büyük bölümünün tutumu budur: Ben bu tutumun insanların büyük bölümündeki iç daralmasını besleyip artıracağına, bu yüzden deo onlar için kabul edilmmez olduğuna inanmakla kalmıyorum, aynı zamanda iki önemli açıdan bunu mutlak olarak yanlış buluyorum: -Öncelikle, değerler ile bilginin, gerek eylem, gerekse sylemde, her zaman ve mutlaka birbirine bağlı oluşu. - Sonra ve özellikle de, “doğru” bilginin tanımının, son çözümlemede, etik düzeyde bir koyuta dayanması yüzünden. Bu iki noktadan her biri birer kısa açıklama ister. Etik ile bilgi, eylemde ve eylem yoluyla, kaçınılmaz biçimde birbirine bağlıdır: Eylem, bilgi ile değerleri birlikte ortaya sürer ya da sorguya çeker. her eylem bir etiği anlatır, belli değerlere yarar ya da zarar verir, bir değerler seçimi yapar ya da öyle görünür. Öte yandan, her eylemde bir bilginin bulunması zorunlu görünür ve buna karşı eylem de bilginin iki kaynağından biridir. Bir canlıcı sistemde, etik ile bilginin birbirine karışması çatışma yaratmaz, çünkü canlıcılık bu iki kategori arasındaki her türlü kökten ayırımı ortadan kaldırır, onları aynı gerçeğin iki görünüşü sayar. İnsanın “doğal” sayılan “hak”ları üzerine kurulmuş bir toplumsal etik düşüncesi bu tutumu yansıtır ve bu tutum Marksizmin getirdiği moralin tanımlanması girişimlerinde, hem de çok daha sistemli ve vurgulanmış biçimde ortaya çıkar. Nesnellik koyutunun, bilginin doğruluğunun zorunlu koşulu olduğu bir kez kabul edildiğide, doğrunun kendisinin aranmasında vazgeçilmez olan kökten bir ayırımı, etik alanıyla bilgi alanı arasına yerleşmiş olur. Bilginin kendisi ("epistemolojik değer” dışında) her değer yargısının dışındadır, buna karşı etik, özünde öznel olduğuna göre, bilgi alanının her zaman dışında kalır.(s:152) Bilim son aşamada, bir belit (axiome) olarak konmuş olan bu kökten ayırım yaratmıştır. Burada belirtmekten kendimi alamıyorum, eğer kültür tarihinde biricik olan bu olay, başka bir uygarlıkta değil de Hıristiyan batıda ortaya çıkmışsa; bu belki de bir bölümüyle, kilisenin kutsal alan ile dindışı alan arasındaki ayırımı kabul etmiş olmasındandır. Bu ayırımı yalnızca bilime (dinsel alan sınırı dışında kalarak) kendi yolunu arama olanağı vermekle kalmıyor, düşünceyi, nesnellik ilkesinin ortaya koyduğu çokdaha kökten bir ayrılık için de haırlamış oluyordu. Batılılar kimi dinlerde dinsel ile dindışı arasında bir ayırımı bulunmayışını, bulunamayacağını anlamakta güçlük çekerler. Hinduizmde her şey dinsel alanda kalır; hatta “dindışı” kavramı anlaşılmaz bir şeydir. Bunları ayıraç içinde söylemiştik, konumuza dönelim. Nesnellik koyutu, “eski bağlaşım” ın yıkılışını belirterek, aynı zamanda bilgi yargılarıyla değer yargıları arasındaki her türlü karışıklığı da önlüyor.Fakat geride yine de bu iki kategorinin, söylem de içinde olmak üzere eylemdeki kaçınılmaz birliği kalıyor. İlkeden ayrılmamak için, her türlü söylemin (ya da eylemin) yalnızca, birleştirdiği iki kategorinin ayırımını koruyup açıklaması durumunda ya da ölçüde, anlamlı ya da gerçeğe uygun olduğunu kabul edeceğiz.Böyle tanımlandığında, gerçeğe uygunluk kavramı, etik ile bilginin örtüştükleri ortak alan oluyor; burada değerlerle gerçeklik, birlikte fakat kaynaşmamış olarak, bu sesi duyabilecek dikkatli insana bütün anlamlarını açıklar. Buna karşı, iki kategorinin karışıp kaynaştığı gerçeğe uymayan söylem, en zararlı anlamsızlıkla, bilinçsiz de olsa, en büyük yalandan başka bir yere ulaştırmaz. Görülüyor ki, bu tehlikeli karışımın en sürekli ve en sistemli uygulama alanı ("söylem”i Descartesçı anlamında alarak) “siyasal” söylemdir. Bu yalnız meslekten politikacıların durumu da değildir. Bilim adamaları da, kendi alanları dışında, değerler kategorisiyle bilgi kategorisi arasındaki ayırımı görmekte tehlikeli bir yetersizlik gösterirler. Fakat bu da başka bir ayraçtı. Bilginin kaynağına dönelim. Demiştik ki, canlıcılık, bilgi önermeleriyle değer yargıları arasında bir ayırma yapmak istemez, ayrıca yapamaz da; çünkü Evren’de ne denli özenle gizlenmiş olursa olsun bir amaç bulunduğu kabul edildiğinde böyle bir ayırmanın anlamı kalmaz. nesnel bir sistemdeyse tersine, bilgiyle değerler arasındaki her kaynaşma yasaklanmıştır.(s: 153)Fakat ( bu en önemli noktadır; bilgiyle değerlerin mantıksal olarak kökten bağlantılı olduğu sorunu) b u yasaklama, nesnel bilgiyi kuran bu “ilk buyruk”, kendisi nesnel değildir, olamaz da: Bu bir ahlak kuralı, bir disiplindir. Gerçek bilgi değerleri tanımaz; fakat gerçek bilgiyi kurmak için bir yargı, daha doğrusu, bir değer beliti(axiome) gerekir. Açıktır ki, nesnellik koyutunu doğru bilginin koşulu olarak almak, bir bilgi yargısı değil, bir etik seçimdir, çünkü koyutun kendisine göre bu yargıcılı (arbitral) seçimden önce doğru bilgi bulunamaz.. Nesnellik koyutu, bilginin yasasını belirlemek üzere, bir değer tanımlıyor ve bu değer nesnel bilginin kendisidir. demek nesnellik koyutunu kabul etmek, bir etiğin, yani bilgi etiğinin, temel önermesini ortaya koymak oluyor. Bilgi etiğinde, bilgiyi kuran, bir ilksel değerin etik seçimidir. Onun, hepsi de insanlarca kabul erdillmesi gereken, içkin, dinsel ya da “doğal” bilgi üzerinde kurulduğu savında olan canlıcı etikten kökten ayrıldığı nokta buradadır.Bilgi etiği insana kendini kabul ettirmez, tersine, onu her söylemin ya da her eylemin gerçeğe uygunluğunun belitsel koşulu yaparak kendine kabul ettiren insandır. Discous de la Methode bir kuralcı epistemoloji önerir, ancak herşeyden önce onu bir kez de bir moral düşünme ve meditasyon olarak okumak gerek. Gerçeğe uygun söylem ise bilginin temelidir, insanlara büyük güçler sağlar ve bu güçler günümüz insanını hem zenginleştirip hem de tehdit eder, ona özgürlük sağladığı kadar tutsaklık da getirebilir. Bilimle örülmüş olan ve onun ürünleriyle yaşayan modern toplumlar, aşşırı ilaçtan zehirlenen birisi gibi onun tutsağı olmuşlardır. Maddi güçleri, bilginin temelindeki bu etikten, ahlaki zayıflıkları ise yine de başvurmaktan çekinmedikleri, fakat bilginin bozmuş olduğu değer sistemlerinden gelir. Bu çatışma öldürücüdür. Ayaklarımızın dibinde açıldığını gördüğümüz uçurumun nedeni budur. Modern dünyanın yaratıcısı olan bilgi etiği, o dünya ile uyuşabilecek, kavranmış ve kabul edilmiş duruma geldiğinde de onun evrimine yön verebilecek tek etiktir. *** Kavranmış ve kabul edilmiş dedik. Buna olanak var mı? Eğer yalnızlık kaygısı ve zolayıcı bir toptan açıklmama gerekisnimi, benim sandığım gibi doğuştansa; çağların derinliklerinden gelen bu kalıt yalnız kültürel değil, doğal olarak kalıtımsalsa; bu çetin, soyut ve (Raslantı ve Zorunluluk, s: 154) gururlu etik, kaygıyı yok edebilir, istekleri karşılayabilir mi? Bilemem.Fakat herşeye karşın büsbütün de olanaksız olmadığı düşünülemez mi? İnsanda, bilgi etiğinin sağlayamadığı bir “açıklama”dan da öte, belki bir aşma, bir üstünlük gereksinimi de vardır. Ruhlarda her zaman yaşayan büyük toplumcu düşün gücü bunun tanığı gibi görünüyor. Hiçbir değer sistemi, gereektiğinde uğruna kendini vermesini doğru gösterecek biçimde bireyi aşan bir ülkü önermedikçe, gerçek bir etik oluşturduğunu öne süremez. Bilgi etiği, doğrudan tutkusunun yüksekliği nedeniyle, belki de bu aşma gereksinimini karşılayabilir. Aşkın bir değer olarak doğru bilgiyi tanımlar ve insana, artık onu kullanmayıp, özgür ve bilinçlmi bir seçimle ona hizmet etmeyi önerir. Nedir ki bu da bir insancılıktır(humanisme), çünkü insana, bu aşkınlığın yaratıcısı ve koruyucusu olarak saygı duyar. Bilgi etiği bir anlamda da “etiğin bilgisi” dir, yani tutkuların, dileklerin ve biyolojik varlığın sınırlarının bilgisi: İnsanın içinde, saçma olmasa da olağandışı ve salt bu olağadışılığından dolayı değeril olan hayvanı görür; öyle bir hayvan ki, dirimyuvarı ve düşünceler dünyası gibi iki alanda birden yaşadığı için, einsan sevgisiyle birlikte sanat ve şiirde kendini gösteren bu acılı ikiliğin hem işkencesi altında hem de zenginliği içindedir. Canlıcı sistemlerin hepsi de, tersine, biyolojik insanın görmezden gelinmesini, alçaltılması ya da bastırılmasını, onun hayvanal koşullarına bağlı kimi özelliklerinden tiksinme ve korku duyulmasını az çok yeğlemişlerdir.Buna karşı bilgi etiği, insanı, yerine göre ona egemen olmayı bilmek koşuluyla, bu kalıta saygı gösterip onu kabul etmeye özendirir: İnsanın en yüksek niteliklerine, özgeciliğe, yüce gönüllülüğe ve yaratıcı tutkuya gelince, bilgi etiği bunların hem toplumsal biyolojik kaynaklaranı bilir hem de kendi tanımladığı ülküye yararlı aşkın değerlerini kabul eder. **** Sonuç olarak bilgi etiği benim gözümde, gerçek bir toplumculuğun(sosyalizm) üzerine urulabileceği hem ussal hem de bilinçili olarak ülkücü tek tutumdur. 19. yy’ın bu büyük düşü genç ruhlarda, acı veren bir yoğunlukla yaşamaktadır. Acı vericiliği, bu ülkünün uğradığı ihanetler ve kendi adına işlenen cinayetler yüzündendir. Bu derin özlemin, felsefi öğretisini canlıcı bir (Raslantı ve Zorunluluk, s: 155) ideolojiiçinde bulması acıklı, ancak belki de kaçınılmazdır. Diyalektik maddecilik üzerine kurulan tarihsel kehanetçiliğin, daha doğşundan büyük tehditlerle dolu olduğunu görmek kolaydı, nitekim bunlar gerçekleşmiştir. Diyalektik maddecilik, bütün öteki canlıcıklarından da daha çok, değer ve bilgi kategorilerinin birbiriyle karıştırılmasına dayanmaktadır. Onun, temelden gerçekdışı bir söylem içinde, yokluğa düşmek istemeyen her insanın, önünde boyun eğmekten başka yapacak ya da başvuracak bir şeyinin bulunmadığı tarih yasalarını “bilimsel” olarak kurmuş olduğunu ileri sürebilmesinin nedeni bu karışıklıktır. öLdürücü olmadığı zaman çocukça olan bu yasalardan kesinlikle kurtulmak gerek. Gerçeğe uygun bur toplumculuğun, yandaşlarının ruhuna kök salmış olduğunu savunduğu, bilimin alay konusu ve özünde gerçekdışı olan bir ideoloji üzerine kurulması olanağı var mı? topluculuğun tek umudu, bir yüzyıldanberi kendine egemen olan ideolojinin “düzeltilmesinde” (revizyonunda) değil, bu ideolojinin toptan bırakılmasındadır. Bu durumda gerçekten “bilimsel” bir toplumcu hümanizma, doğrunun kaynağını ve ahlakını eğer bilginin kendisinin kaynaklarında, bilgiyi özgür bir seçimle bütün öteki değerlerin ölçüsü ve güvencesi olarak en büyük değer yapan etikte değilse nerede bulabilir? Bu etiğin ahlaksal sorumluluğu, doğrudan bu beltisel seçimin özgürlüğüne dayanır. toplumsal vi siyasal kurumların temeli ve bu nedenle de onların gerçeğe uygunluğunun ölçüsü olarak, yalnızca bilgi etiği gerçek bir toplumculuğa götürebilir. düşüncenin, bilginin ve yaratıcılığın aşkın cennetinin savunulmasına, genişletilmesine ve zenginleştirilmesine adanmış kurumları o kabul ettirir. İnsan bu cennette oturu. ve canlıcığını hem yalancı tutsaklıklarından hem de maddi baskılarından gitgide kurtularak, kendisine, o cennetin hem uyruğu hem de yaratıcısı diye en değerli ve en biricik özünde hizmet eden kurumların koruyuculuğunda, sonunda gerçeğe uygun olarak yaşayabilir. Bu belki de bir ütopyadır. Fakat tutarsız bir düşde değildir. Bu, bütün gücünü mantıksal tuturlığından alan bir düşüncedir. Bu, gerçeği araşyışın zorunlu olarak varacağı sonuçtur. Eski bağlaşma çözüldü; insan artık bir rastlantıyla içine düştüğü bu evrenin duygusuz enginliği içinde yalnız olduğunu biliyor. Yazgısı gibi görevi de bir yerde yazılı değildir. Bir yanda cennet (krallık), bir yanda cehennem (karanlıklar): Seçmek kendine kalmış.”(Kitap bu satırlarla bitiyor) (J.Monod,Raslantı ve Zorunluluk s:143-156)

http://www.biyologlar.com/evrim-ve-termodinamigin-ikinci-yasasi

 
3WTURK CMS v6.03WTURK CMS v6.0