Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 838 kayıt bulundu.
GÜVERCİN HASTALIKLARI

GÜVERCİN HASTALIKLARI

CİRCOVİRÜS Son yıllarda saptanan bu hastalık oldukça yenidir. Bu nedenle hastalık ve sonuçları hakkında bilinenler fazla değildir. Hastalığa Circovirus adı ile bilinen bir virüs türü neden olmaktadır. Bu virüs daha çok genç kuşları ve yeni yavruları etkilemektedir. Hastalık ilk başlarda solunum yolları sorunları şeklinde kendini gösterir. Ağırlık kaybı ve ishal vardır. Daha ileri aşamalarda tüylerin büyümesinde karakteristik anormallikler ve vücut dokularının özellikle de iç organların gelişiminde anormallikler gözlenebilir. Virüsün vücuttaki en önemli etkisi. Dalak, Bursa Fabrici ve Thymus üzerindedir. Thymus (timüs) göğüs kemiğinin arkasında bulunan bir iç salgı bezidir. Bursa Fabrici ise kloak’ın urodaeum adı verilen orta kısmında yer alan çıkıntı şeklinde bir organdır. Bunların işlevleri vücudun savunma mekanizması ve bağışıklık sisteminin gelişmesi ve işlemesini sağlamaktır. Virüs bu organlarda hücreleri tahrip ederek organlara zarar verir ve kuşun bağışıklık sistemini olumsuz etkiler. Böylelikle kuşlarımız hastalıklara karşı savunmasız hale gelirler. Kuşlarımızın bildiğimiz bütün güvercin hastalıklarına yakalanmaları çok daha kolay olur. Hastalığa yakalanan kuşlarımız ise daha zor tedavi edilebilir hale gelirler. Virüsün güvercinlerdeki etkisi AİDS’in insanlardaki etkisine benzetilebilir. Circovirus başlı başına bir hastalık gibi görünmemekte ve her zaman ikincil derece kliniksel belirtiler veren bir enfeksiyon olarak değerlendirilmektedir. Bunun nedeni bu virüsün kendi başına belirgin bir hastalık tablosu sunmaması ancak daha çok diğer hastalıklarla birlikte olduğunda fark edilebilmesidir. Circovirus’ün vücuda girmesinin ardından özellikle Chalamydia, Ornithosis, Pasteurella, PMV1, Trichomonas, Aspergillus gibi hastalıklar ortaya çıkma eğiliminde olurlar. Virüsün bulaşma şeklinin temas sonucu olduğu genel kabul görmektedir. Hijyenik koşullara dikkat edilmesi virüsün bulaşmasını engelleyici olacaktır. Bilinen bir tedavi şekli yoktur. İlaç tedavisi sadece bu hastalıkla birlikte görülen yan hastalıklar için uygulanabilir. Ancak güvercinimizin savunma sistemini güçlendirici vitamin ve mineral takviyeleri yararlı olacaktır. E-COLİ “Eshericia coli” adı verilen bir bakterinin neden olduğu hastalıktır. Kısaca E. Coli adı ile anılmaktadır. İnsanda ve hayvanlarda bağırsaklarda bulunan bu bakteri aslında bağırsak florasının bir parçasıdır. Ancak normalden fazla miktarda bulunması sonucu hastalık kendini gösterir. Güvercinlerde hastalığın en belirgin göstergesi ishaldir. Bu hastalığa yakalanan kuşlarımız süratli ve şiddetli bir şekilde su ve elektrolit kaybına uğrarlar. Özellikle genç kuşları çabuk etkiler. Genç kuşlarda şiddetli vakalar ani ölümle sonuçlanabilir. Yetişkin kuşlarda ölüm pek görülmez ancak, kuşlarımızın gücünü kaybetmesine bağlı olarak diğer hastalıkların ortaya çıkışı hızlanabilir. Çabuk bulaşan ve kolay yayılan bir hastalıktır. BELİRTİLERİ En belirgin belirtisi sulu ishal şeklinde dışkıdır. Dışkının rengi yeşil ve sarımsı bir tondadır. Hasta kuşlarda bağırsak iltihabı oluştuğu için dışkının kokusu normalden daha kötü kokuludur. Hasta kuşlarda performans tamamen düşer. Genel bir kayıtsızlık hali gelir. Yeme karşı isteksizlik vardır. Aşırı ve çabuk zayıflama saptanabilir. Hastalığa neden olan bakteri, kan dolaşımına girerek kuşun vücudunun herhangi bir organına yerleşebilir. Bu durum sonucu kuşta sistematik bozukluklar gözlenebilir. Mikrobun yerleştiği vücut bölgesine göre kuş değişik belirtiler verebilir. Örneğin mikrop kanatlara yerleşirse, kanatlarda tutulma olur ve buna bağlı olarak kuş kanadını taşıyamıyormuş gibi davranabilir. Kanat düşürür, kanatlarını yerde sürüklemeye başlar. Mikrop ayaklara yerleşirse topallama veya yürüyememe gibi sorunlarla karşılaşılabilir. Benzer belirtiler güvercinlerde Salmonella, Cocidiosis ve Hexamitiasis gibi hastalıklarda da vardır. Kuşun sorunlarının hangi hastalıktan kaynaklandığının doğru tespit edilmesi gerekmektedir. Hastalığın kesin tanısı dışkının mikroskobik analizi ile yapılabilir. BULAŞMA ŞEKLİ Hasta kuşların dışkılarında hastalık mikrobu bol miktarda bulunur. Kuşlarımızın yediği yem ve içtiği sulara bu dışkıların bulaşması yolu ile hastalık yayılır. Ayrıca coli mikrobu salmalarımızın içinde bulunan ve güvercin tozu dediğimiz beyaz toza, karışarak solunum yolu ile de alınabilir. Salma içi temizliğine dikkat edilmesi, hijyenik koşullara uyulması gibi önlemler alarak hastalığı engellemek mümkündür. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri kökenli bir hastalık olduğu için tedavisinde antibiyotikler kullanılmaktadır. İlaçla tedavi edilebilen bir hastalıktır. Amoxycilin, Trimetoprim ve Sulfadiazin, Furazolidon etken maddeli ilaçlar hastalığın tedavide kullanılmaktadır. Bu etken maddeleri taşıyan bazı ilaçlar şunlardır. ALFOXİL 20 GR TOZ Abfar firmasının üretimi olan ilaç, toz şeklindedir. Etken madde olarak 100 gr poşette 20 gr amoxycilin bulundurur. Güçlü bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde özellikle CRD ve E. Coli enfeksiyonlarında etkilidir. Ticari şekli 100 gramlık 10 aleminyum poşetten oluşan bir kutu şeklindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 10 mg ilaç vermektir. (bu yarım poşet ilacın binde biri kadardır) İlaç kuşların içme sularına her gün taze olarak karıştırılıp verilir. İlaç uygulamasına 3 gün devam edilir. ATAVETRİN ORAL SÜSPANSİYON Atabay ilaç firmasının üretimi olan ilaç, bir şurup şeklindedir. Etken madde olarak her ml’de, 80 mg Trimetoprim ve 400 mg sulfadiazin bulundurur. Geniş spektrumlu ve kesin tesirli bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Salmonella, E.Coli gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, kuş başına 7.5 mg etken maddedir. Bunu sağlayabilmek için 5 litre suya 0.5 ml ilaç karıştırmak gerekmektedir. Tedaviye 5 gün süre ile devam edilir. 4-5 gün ilaca ara verilip iyileşme sağlanmamışsa aynı doz tekrar edilebilir. Ticari şekli 50 ve 200 ml’lik şişeler halindedir. 1 Ölçek 40 cc’dir. Burada dikkat edilmesi gereken önemli bir nokta, sulfa grubu ilaçları kuşlarımızda kullandığımızda kuşlarımızın kalsiyum kaynaklarından uzak tutulması gerektiğidir. Kalsiyum içeren ilaçlar, gaga taşları, gritler, ahtapot kemikleri, kursak taşı gibi materyallerin salmadan uzaklaştırılması gerekmektedir. FURAVET TOZ Vilsan ilaç firmasının bir üretimidir. İlaç toz şeklinde olup her gramı 250 mg Neomcine ve 200 mg Furazolidon bulundurur. İlaç piyasada 20 ve 100 gramlık ambalajlar halinde satılmaktadır. Bu ilaç kombinasyonu geniş etkili bir anti - bakteriyeldir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Streptococcosis, Salmonella, E.Coli, Pasteurelosis (kolera) ve CRD gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, 2 litre içme suyuna yarım gram ilaç koyarak tedaviye her gün yenilenecek sularla 5 gün kadar devam etmektir. HAEMOPHILLUS Bu hastalığın nedeni Haemophillus adlı bir bakteridir. Bu bakteri güvercinlerimizin solunum yollarına yerleşerek burada çeşitli sorunlara yol açar. Hastalığın en önemli belirtisi kuşun her iki göz kapağında belirgin şişme ve göz sulanması ile birlikte gözlerde ve burunda akıntı gözlenmesidir. Bu hastalığı, diğer CRD hastalıklarına bağlı göz sorunlarından ayıran en önemli özellik hastalığın her iki gözde aynı anda görülmesidir. Ayrıca gözün iç dokusunda şişme vardır. Bunun yanı sıra solunum yollarında çeşitli problemler vardır. Nefes alma güçlüğü, aksırma vb. Hastalık doğrudan temas veya hastalık mikrobunu taşıyan göz ve burun akıntılarının salma tabanında biriken toz ve dışkılara bulaşarak, kuşlarımızın yedikleri yem ya da içtikleri sulara taşınması yolu ile yayılır. Hastalığın tedavisinde antibiyotikler olumlu sonuç vermektedir. Özellikle Tetracyline grubu antibiyotikler kullanılmaktadır. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. Haemoproteus adı verilen protozonun neden olduğu bir hastalıktır. Bu protozonun, Haemoproteus Columbae, Haemoproteus Sacharrovi, Haemoproteus Maccallumi adı ile bilinen üç türü güvercinleri etkilemektedir. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hastalığın yayılabilmesi için bu protozonun, güvercinin vücuduna girmeden önce ara konak görevi görecek bir canlının içinde gelişim göstermesi gerekmektedir. Bu canlı, bütün güvercin yetiştiricilerinin çok iyi tanıdığı atsineğidir. Hippobosca Equina veya Pseudolynchia Canariensis bilimsel adı ile tanılan atsineği, Haemoproteus hastalığının taşıyıcı ve bulaştırıcısıdır. Hastalık bu nedenle daha çok yaz aylarında karşımıza çıkar. Yabani güvercinlerin büyük bir yüzdesi bu mikrobu ( protozonu ) taşımaktadır. BELİRTİLERİ Hastalığın belirtileri Plasmodiosis ( sıtma ) hastalığına çok benzer. Hatta tamamen aynı belirtilere sahip olduklarını da söyleyebiliriz. Bu nedenle her iki hastalığı birbirinden ayırabilmek oldukça zordur. Bu konuda kesin tanı kan analizleri sonucu verilebilmektedir. Ateş yükselir 43 dereceye kadar çıkar ve nöbetler halinde tekrarlanır. Sarımtırak renkli ve beyaz posalı ishal şeklinde bir dışkı gözlenebilir. Hasta kuşlarda genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Alyuvarların oksijen taşıyıcı gücü azalır. Solunum sıklığı artar. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Haemoproteus’da ölüm pek görülmez ancak yan hastalıklara karşı uyanık olmak gerekmektedir. BULAŞMA ŞEKLİ Atsinekleri aracılığı ile bulaşan bir hastalıktır. Atsineği hastalığı taşıyan bir güvercinden kan emer ve bu işlem sonrası mikrobu alır. Mikrop sineğin vücudu içinde bir gelişim seyri izler ve son olarak sineğin tükürük bezlerine ulaşır. Yeni bir kan emme seansı sırasında ise buradan başka bir güvercine bulaştırılır. Güvercinin vücuduna giren mikrop 6 hafta kadar sürecek bir süreç sonucu olgunlaşır ve hastalığı bulaştırabilecek konuma gelir. Ancak güvercinde hastalık belirtileri mikrobun alınmasını takiben 15 – 30 gün sonra görülmeye başlar. Hastalıktan korunabilmek için özellikle yaz aylarında atsineklerine karşı önlemler alınmalıdır. Salmanın tel kafesle kapatılarak sineklerin girişi engellenebilir. Kuşlarınızın yabani güvercinlerle olan temasını tamamen kesmeniz gerekmektedir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bu hastalığın tedavisinde kullanılan ilaçlar, Plasmodiosis ( sıtma ) hastalığında kullanılan ilaçların aynısıdır. Bu ilaçlar, quinin ( kinin ) türevleri olan Clorquine, Primaquine ve Quinacrine etken maddesine sahip ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. TUBERCULOSIS (VEREM) GENEL BİLGİLER Güvercinlerde görülen verem hastalığıdır. Mycobakterium avium adlı bir bakterinin neden olduğu bu hastalık, yaygın ve bulaşıcı bir özellik taşır. Söz konusu bakterinin 20 kadar çeşidi bulunmakla birlikte yaygın olarak 3 tipi ile karşılaşırız. Bunlar insanda, sığırlarda ve kuşlarda hastalığa neden olan türlerdir. İnsanda ve sığırlarda görülen türü kuşlarda görülmez ancak bazı papağanlar bu durumun istisnasıdır. Kuşlarda görülen türü ise insanda ve sığırlarda da görülür. Bu nedenle kuşlardan insana ve diğer bazı memeli hayvanlara bulaşabilen bir hastalıktır. Hatta yabani güvercinlerin hastalığın ciddi birer taşıyıcısı olduğunu ve hastalığı hayvanlara bulaştırmada önemli bir rol oynadıklarını söyleyebiliriz. Yavaş gelişen sinsi bir hastalıktır. Kuşlarımız hastalığı bir süredir taşıyor olmakla birlikte belirtileri oldukça geç fark edilmeye başlar. Zamanla belirginleşen ağırlık kaybı, solgunluk hastalığın dikkat çekici özelliğidir. Tedavisi olmayan bir hastalık olup genellikle ölümle sonuçlanmaktadır. BELİRTİLERİ Ağırlık kaybı ve ciddi zayıflama ile birlikte, gözlerde, tüylerde solgunluk ve matlaşma, ağız içi mükozasında belirgin renk kaybı gözlenir. Kansızlık, ishal, baş tüylerinin kısmen dökülerek kelleşmesi, elle yoklandığında göğüs kemiğinin keskin kenarının kolayca hissedilmesi gibi belirtilerin yanı sıra, mikrop bölgesel lenf bezlerinde şişme ve yerel yaralara neden olabilir. Güvercinin iç organlarında özellikle karaciğer ve dalakta sarı – yeşil peynirimsi yumrular şeklinde doku yapısı değişiklikleri meydana gelir. Bunlar ölü kuşlar üzerinde yapılacak inceleme ile tespit edilebilirler. Ayrıca yaşayan kuşlarda yapılacak kan analizi hastalığın kesin teşhisini sağlar. BULAŞMA ŞEKLİ Hasta kuşların dışkıları hastalık mikrobunu taşır. Bunların sağlıklı kuşlarımızın tükettikleri yem ve içme sularına karışması hastalığın yayılmasını sağlar. Mikrobun salmalarımızdaki güvercin tozu dediğimiz beyaz toza bulaşarak solunum yolu ile de alınması mümkündür. Kuşlarımızın bu mikrobu toprak, mineral taşları ve grit gibi kaynaklarını yerken de alabilir. Kötü hijyenik koşullar, salmaların güneş ışığı görmemesi örneğin bodrum, depo gibi güneş görmeyen kapalı alanlarda kuş yetiştirilmesi gibi olaylar hastalık için uygun ortam yaratırlar. Salmanızın serçe, sığırcık, yabani güvercin gibi kuşlara açık olması kuşlarınıza hastalık bulaşma riskini artırır. TEDAVİSİ Ne yazık ki tedavisi olmayan bir hastalıktır. Hasta kuştan insana da mikrop geçme durumu olduğu için tedaviye çabalamak anlamsız ve zararlı olabilir. Eğer kuşunuzun hastalığının Tuberculosis ( verem ) olduğuna eminseniz bu kuşu hemen ayırmak ve söylemeye de dilim varmıyor ama imha etmek yapılacak en doğru yoldur. Çünkü hastalığı iyileştirme ihtimalimiz yoktur ve ölüm kaçınılmaz sondur. İmha yöntemi olarak öldürmek ve yakarak yok etmek önerilmektedir. HEXAMİTİASİS GENEL BİLGİLER Güvercinlerde Hexamit columbae adı verilen bir protozonun neden olduğu hastalıktır. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hexamitiasis hastalığına güvercinlerin yanı sıra tavuklar, hindiler, bıldırcınlar, keklikler, ördekler ve bazı kuş türlerinde de rastlanmaktadır. Ancak diğer türlerde hastalığa neden olan Hexamit protozonu daha farklıdır. Hastalığın karakteristik özelliği bağırsak iltihabına bağlı olarak gelişen ishal ve özellikle de kanlı ishaldir. Hastalık daha çok yaz aylarında yaygınlık kazanmakta ve özellikle genç kuşlarda daha fazla görülmektedir. Hastalığın yayılmasını önlemek için salma içi hijyenik koşullara dikkat edilmesi çok önemlidir. BELİRTİLERİ Hastalık ilk belirtisini kusma ile gösterir. Yenilen yemlerin kusulması hastalığın bir başlangıç belirtisi olmakla birlikte, mutlak değildir. Yani bu hastalığa yakalanan kuşlar mutlaka kusacak diye bir koşul yoktur. Ayrıca bu kusma başka nedenlerle olabilecek kusmalarla karıştırılabilir. Bu nedenle kusmayı takip eden günlerde yapılacak gözlemler önemlidir. Hasta kuşlarda ilk dikkati çeken özellik dışkılarının sulu ve köpüklü oluşudur. Daha sonraki aşamalarda gelişen bağırsak iltihabına bağlı olarak dışkıda kan gözlenebilir. Dışkının diğer bir özelliği de normalden daha fazla kötü bir kokuya sahip olmasıdır. Hasta kuşların ağız içi incelemesinde ağız içi mükozasında yara saptanabilir. Hastalığın gelişimine bağlı olarak, kuşlarda kayıtsızlık, bir kenara çekilip tüy kabartma ve düşünme hali ortaya çıkar. Kuşun yeme karşı ilgisi azalır ve hasta kuş daha az yem tüketmeye başlar. Buna karşın su tüketiminde bir artma vardır. Hastalığın tedavisine geç başlanması durumunda kuşlarımızda belirgin bir kilo kaybı gözlenir. Kilo kaybı özellikle genç kuşları fazlasıyla etkiler ve ölümler gelebilir. Ölüm öncesi kuşlarda titreme hali gibi bir durum saptanabilir. Aşırı kilo kaybına uğrayan kuşlarımızın tedavisini yapıp bu hastalığı ortadan kaldırsak bile kilo kaybından kaynaklanan gelişim noksanlığı bu kuşlarımızı kalan ömürleri boyunca etkiler. BULAŞMA ŞEKLİ Hastalık mikrobu, hasta kuşların dışkıları yolu ile yayılır. Dışkıda bol miktarda bulunan mikrop, bir şekilde kuşlarımızın yediği yemlere veya içtiği sulara bulaşabilir. Mikrop bulaşmış yiyeceği yiyen ya da içen kuş mikrobu alır. Mikrop vücuda girdikten sonra kuluçka süresi 4 – 5 gün kadardır. Yani mikrobun alınmasını takiben 5 gün kadar sonra hastalık belirtileri kendini göstermeye başlar. HASTALIĞIN TEŞHİSİ Hexamitiasis hastalığında hastalık belirtileri diğer güvercin hastalıklarından, Salmonella, E. Coli, Coccidiasis ve PMV1’e benzerlik gösterir. Bu nedenle kesin teşhis önemlidir. Hasta kuşların dışkılarında yapılacak mikroskobik inceleme sonucu hastalığın kesin tanısı yapılabilir. HASTALIĞIN TEDAVİSİ İlaçla tedavi edilebilen bir hastalıktır. Hexamitiasis tedavisinde, Ronidazole, Metranizadol, Dimetridazole etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeleri taşıyan güvercinler için özel üretilmiş ilaçlar yalnız yurt dışında bulunmaktadır. Yurdumuzda bunlardan sadece metronizadol etken maddeli olan bazı ilaçlar beşeri ilaç ( insanların tüketimi için hazırlanan ) olarak bulunmaktadır. Dozaj ve kullanım biçimi ayarlanarak bu ilaçlardan yararlanılabilir. Aşağıda ilk önce yurt dışında bulunan şekilleri tanıtıldıktan sonra ülkemizde bulabileceğimiz türleri hakkında da bilgi verilecektir. Bu iki ilaç Ronidazole etken maddesine sahiptir: RİDZOL-S : Toz şeklinde olan ilaç, Jeeds European firmasının bir üretimidir. %10’luk konsantreye sahip olan ilaç 4.5 litre suya bir çay kaşığı karıştırılarak 7 gün süre ile kullanılır. Yurtdışı fiyatı 20 –60 Dolar’dır. DACZAL TABLET : Dac Firmasının bir üretimi olan ilaç 5 mg’lık tabletler şeklindedir. Güvercin başına 1 tablet düşecek şekilde 7 gün süre ile verilir. Yurtdışı satış fiyatı 11.95 Dolar’dır. Bu iki ilaç Metranidazole etken maddesine sahiptir: FİSHZOLE TABLET : Thomas lab firmasının bir üretimi olan ilaç, tablet başına 250 mg ilaç bulundurmaktadır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Yurtdışı satış fiyatı 15.95 Dolardır. FLAGYL : Jeeds European firmasının bir üretimi olan ilaç, toz şeklindedir. 4.5 litre suya bir çay kaşığı kadar karıştırılarak 8 gün kadar kullanılır. Yurtdışı fiyatı 20 – 55 Dolardır. Bu ilaç, Dimetridazole etken maddesine sahiptir: HARKANKER SOLUB : Harkanker firmasının üretimi olan ilaç,toz şeklinde olup kuşların içme sularına karıştırılarak kullanılmaktadır. Bir poşet ilaç 4.5 litre suya karıştırılarak kuşlara 7 gün süresince verilir. Yurtdışı satış fiyatı 12.95 Dolar’dır. Ülkemizde bu etken maddelere karşılık gelen beşeri ilaçlar : Ülkemizde yukarda belirtilen 4 etken maddeden sadece Metranidazol içeren beşeri ilaç (insanların tüketimi için hazırlanmış) bulunmaktadır. Bu etken maddeyi taşıyan ilaçlar arasında Metrajil, Flagly ve Nidazol sayılabilir. METRAJİL : 250 mg’lık tablet şeklindedir. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. FLAGLY SÜSPANSİYON : 125 mg’lık toz halindedir. Su ile karıştırılıp şurup haline getirildikten sonra, kuşların içme sularına bir litre suya günlük olarak 5 ml karıştırılır. Tedaviye 3 gün süre ile devam edilir. NİDAZOL : 250 mg’lık tablet şeklinde olanı kullanılmalıdır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. PARAMYXOVİRÜS (SALLABAŞ) PMV-1 kısa ismiyle tanınan bu hastalık güvercin hastalıkları içinde en bulaşıcı ve ağır olanlarından birisidir ve Paratifo ile beraber en fazla güvercin ölümüne yol açan hastalıktır.. Ülkemizde genelde "sallabaş" adı ile bilinmesine rağmen, aslen sallabaş bir çok hastalıklardan dolayı güvercinlerimizde baş gösterebilen bir hastalık belirtisidir. Paratifo, zehirlenme, bakterisel enfeksiyonlar bu hastalıkların başında gelir ve hepsi kuşta sallabaş hareketinin görünmesine neden olur. Bu hastalıklardan bazıları ötekilerine göre daha kolay tedavi edilebilir ve bazılarının tedavisi yoktur. Fakat duymuş olabileceklerinizin aksine sahte sallabaş diye bir hastalık yoktur. Bu nedenle baş dönmesi dışında baska belirtilere bakılmadan her hangi bir tedavi yöntemine geçmek yanlış olabilir. PMV-1 kümes hayvanları hastalığı olan "Newcastle" hastalığı virüsünün yakın akrabasıdır. Fakat çeşitli kaynaklarda belirtildigi gibi "Newcastle" hastalığı değildir. PMV-1 tavuklara bulaşmıyacağı gibi "Newcastle" da güvercinlere bulaşmaz. Bu nedenle PMV işaretleri gösteren güvercinlere "Newcastle" hastalığı ilaçları kullanmak faydasızdır. (PMV 1 aşılarında Newcastle virüs kullanımı, bu virüsün paramyxovirosis ile yakın akrabalılığından istifade etmek amacıyla olup, tedavi amaçlı ilaçların bu ilişki kurularak kullanılmamasını belirtmek isterim. Not: Makaleye bu nokta veteriner arkadaşlardan gelen uyarılar sonucu eklemiştir) PMV-1'in bulaşma yolları doğrudan temas veya patojen taşıyan tozdur. Bu toz (salmalarımızda olan beyaz toz) hava yoluyla bulaşıma neden olabileceği gibi at sineği, sivri sinek, sinek, fare veya insanlar tarafındanda bir sonraki kuşa geşebilir. Bu nedenle salmaların havalandırma koşullarının ideal olması büyük derecede önemlidir. Salmalara sineklerin ve farelerin girmesini engelleyici önlemler alınması sadece bu hastalığa karşı değil bir çok hastalığa karşı etkin bir önlemdir. Bütün bu nedenlerin yanında bence en büyük tehlike insanlardan gelmektedir. Ziyaret ettiğimiz salmalarda dokunduğumuz kuşlardan veya elbiselerimize (özellikle ayakkabı tabanına) tutunan tozlardan en büyük zarar gelmektedir. Kuslarımızı görmeye gelen kuşçularda bu riske dahildir. Güvercin beslemenin sosyal bir hayat tarzı olduğunu düşünürsek bu riskleri ortadan kaldırmanın mümkün olmadığını fakat önlemler alınabileceğini görürüz. Bu önlemleri düşünürken aklımızda bulundurmamız gereken bir gerçek sadece gözle görünür belirtileri taşıyan kuşların bu tür hastalıklara sahip olmadığıdır. Başı dönmüş bir kuşun bu hastalığın son aşamalarında olduğu ve büyük bir olasılıkla aynı salmada daha bir çok kuşun bu hastalığı taşıdığı (hasta veya taşıyıcı durumunda) başka bir gerçektir. Bu tür riskleri olabildiğince azaltmak için bence yapılabilecek şeyler şunlardır: * Ziyaret eden kişilerin kuşlarınıza dokunmalarına izin vermeyin. Eğer ziyaretciniz usta bir kuşçuysa nedenlerini anlıyacaktır. * Salmalarınıza yürüyerek girilebiliyorsa, ziyaretcilerinizi ya dışarıda tutun yada kullanmaları için bir iki çift terlik bulundurun. * Ziyaret ettiğiniz bir kuşçudan geri geldiğinizde salmanıza gitmeden ellerinizi dezenfekte edici bir sabunla yıkayıp elbiselerinizi ve ayakkabınızı değiştirin. * Satın aldığınız kuşları kendi kuşlarınızın yanına almadan en az 30 gün ayrı bir salmada tutup gözleme alın. Çoğu virüs ve bakterilerin yaşam devri 30 gün olduğu için kendisini göstermemiş hastalıkların kuşlarınızı etkilemeden ortaya çıkmalarını sağlamış olursunuz. * Salmanızın havalandırmasına büyük önem verin. Bu kuşların dışında sizin sağlığınız içinde önemli. * Yemlik, suluk ve banyoluklarınızı salmanın dışında tutmayın. Vahşi hayvanların bunları kullanmasını engelleyin. * Serçe, kumru gibi vahşi kuşların salmanıza girmesini engelleyin. Kuşlarımızı etkileyecek bakteri, virüs ve parazitlerin vahşi hayvanlarda doğal olarak olabileceğini ve bu hayvanları sizin gözlemliyebileceğiniz şekilde etkilemiyebileceğini unutmayın. * Kuşlarınızı taşıdıkları parazitlerden arındırın. Bunların kuşlarınızın zayıf düşüp hastalıklara kolay hedef olmasına yol açacağını bilin. * Kuşlarınızı yerde yemlemeyin. Yemlik kullanmak çoğu hastalık risklerini elemine edecektir. * Kuslarınıza her gün taze su verin. * Suluk ve yemliklerinizi temiz tutup içlerine dışkı ve toz girmesini engelleyin. * Salmalarınızı temiz tutun. * Salmaların zemininin her zaman kuru olmasına dikkat edin (bakteri ve virüsler bu ortamda yaşamlarını sürdüremez ve çoğalamazlar). Dışkıları devamlı temizleyin. Çoğu hastalıkların ve kurtların bu yolla bulaştığını unutmayın. * Hastalık belirtileri gösteren kuşlarınızı hemen ötekilerinden ayırın. Bunlar benim yapmaya çalıştığım ve tavsiye ettiğim şeyler. Bunlardan her yapılan kuşlarınızın hastalanma olasılığını biraz daha azaltır. Kuşlara dokunmanın bu hastalıkla ilgisini ben kötü bir anı ile biliyorum: Yıllar önce Atlanta'dan ziyaretime gelen arkadaşım Eran'la beraber Afganistanlı bir arkadaşın kuşlarını seyretmeye gittik. Güzel bir gün geçirdik. Beraber kuşlarını uçurduk, yeni çıkan yavrularına baktık. Akşam üzeri bizim eve geldik. Eran daha ilk defa benim kuşları görüyordu. Ona ilk gösterdiğim kuş benim dumanlıların yavrusuydu. Övüne övüne gösterdim ve yavruyu anlata anlata bitiremedim. Kuş Eran'ında bayağı hoşuna gitti. Ondan sonra ergen kuşları uçurup seyrettik. Onlarda inmeden benim dumanlı yavruyu havaya attım. Daha ikinci uçuşu olduğu halde beni mahcup etmedi. Bir iki kere kuyruğunun üstünde kaydı ve ilk taklasını attı. Nasıl ama dedim. Kuş böyle olur. Daha sarı sarı tüyleri var. İki tur daha atabilse oyuna girecek. Benim gurur kaynağım. Kuşları içeri soktuk. Aksam yemeğini yiyip Eran'ı hava alanına götürdüm ve yolcu ettim. Ertesi gün akşam üzeri yine kuşlara gittigimde her zamanki gibi gözlerimin ilk aradığı kuş dumanlı yavruydu. Fakat bu sefer hafif bir halsizliği vardı. Pek uçmakta istemedi. Bende zorlamadım. Bundan sonra her gün dahada kötüye gitti ve bir süre sonra kafasıda dönmeye başladı. Ne kadar uğrastıysam nafile. Ben bunları yaparken bir gün Afganistanlı arkadaştan e-mail geldi. Halim kötü diyordu. Kuşlarım teker teker dökülüyor. Her gün bir iki tanesi ölüyor. Ne yapacağımı bilmiyorum. Birden ziyaret ettiğimiz gün aklıma geldi. Söylediğine göre ilk ölen kuş biz gittiğimizde ilk gösterdiği kuştu ve bende elime alıp incelemiştim. Eve geri geldigimde arkadaşıma kusları göstereceğim diye heyecanla ellerimi yıkamadığımıda hatırladım. İlk dokunduğum kuşumda gözüm gibi baktığım dumanlı yavrumdu. Bazen böyle hatalarımızla öğreniyoruz. Umarım benim öğrendiklerimde başkalarının hata yapmadan öğrenmesine katkıda bulunur. PMV-1'e geri dönelim: Bu hastalığın işaretleri ilk olarak kuşların fazla su içmeye başlaması ve sulu dışkularuyla başlar. Kısa zamanda kuşlarda sinir sistemi sorunları görülür. Felç, boyun titremesi, fazla ürkeklik ve klasik vücudun (özellikle boyun) dönmesi veya kıvrılması. Sinir sistemi bozukluklarının başlamasından önce bu hastalığı teşhis edebilmek için şüphelendiğiniz kuşu sırtının üzerinde yere bırakarak veya aniden yanında elinizi çırparak korkutup havalanmasını sağlıyabilirsiniz. Sinirsel bozukluk gözle görünmese dahi bu hastalığı taşıyan kuşda etkisi başlamışdır ve kuş sağlıklı olduğunda yapabileceği gibi korkutulduğunda normal bir kalkış yapamaz. Uçuşa kalkışında bir bozukluğa şahit olabilirsiniz. Sırt üstü pozisyondan ayağa kalkmasıda sorunlu olabilir. Şüphelendiğiniz kuşu gözlem altına aldığınızda yemini yerde verirseniz, yem yemekte güçlük çektiğini görebilirsiniz. Tam yeme gaga atarken başının kenara çekmeside klasik bir işaret. Hastalık ilerledikce bu hareket dahada ağırlaşacak ve kafasının tamamen dönmesine kadar gidecektir. Bu kuşları beslemek için kenarları alçak olan tabak şeklinde yemlikler ve suluklar kullanabilirsiniz. Fakat hastalık ilerledikce yem yemek ve su içmek kuş için imkansızlaşacaktır. Bu durumda elle beslemeye geçmeniz gerekebilir. Hastalıkları bu seviyeye gelen kuşların bazıları hemen ölürler ve bazılarıda yaşadıkları halde hayatlarının sonuna kadar hafif sinir sistemi bozuklukları gösterirler. Sonuçta bu hastalıktan kuşların kurtulması mümkün değildir. Yaşayanlarda taşıyıcı haline gelirler. Boyun dönmesinin ve öteki sinirsel bozuklukların bir çok hastalığa özellikle Paratifo'yada özgü olduğunu düşünürsek bu hastalığa kesin teşhis koymanın tek yolu alınacak kanın labaratuarda analize edilmesidir. PMV-1 taşıyan kuş iki üç hafta içinde antikor (kana dışarıdan giren maddelere karşı savunmaya geçen madde) üretmeye başlar ve bu antikorlar labaratuarda teşhis edilebilir. Çoğunlukla PMV-1'e yakalanan kuşlarda Paratifoda mevcuttur. Paratifo kendisini ilk iki üç gün içinde gösterdiği için test sırasında bu hastalığıda aramak yerindedir. İlk teşhisden sonra kuş paratifo için tedavi edilirse ve iyileşme gösterirse bu PMV-1 virüsüne karşı vücudun savunmasını kolaylaştırır. Dolayısıyla, anlıyacağınız gibi PMV-1'in antibiyotiklerle veya her hangi başka bir ilaçla tedavisi mümkün değildir. Yapılabilecek tek şey bu hastalığa karşı sağlıklı kuşları her yıl aşılamaktır. Konuıtuğum bazı kişiler bu aşının sadece 6 ay vücuda yararlı oldugunu ve 6 ay sonra tekrarlanması gerektiğini savunuyor. PMV-1 aslında tek başına kuşları öldürmez. Kuşların ölüm nedenlerinin başında yem ve su alamamaları gelir. Bunun yanında PMV-1 kuşun vücut savunma sistemini aşırı derecede yıprattığı için aynı zamanda kuşda baska hastalıklarda mevcuttur. Bunların başında daha önce dediğim gibi paratifo gelir. Pamuk ve Coccidiosis bunu takip eder. Hastalanan kuşlarınızın tedavi edilemiyeceği ve ölmiyenlerin bile taşıyıcı hale geleceği düşünülürse, istemesekde bir ilaç bulunana kadar tek çözüm bu kuşların imha edilmesidir. Ne olursa olsun, bu hastalığı taşıyan kusları satmak veya başkalarına vermek yapılmaması gereken bir şeydir. Bulaşıcılık özelliği çok fazla olduğu için PMV-1 salgınına yol açacak bir harekettir. Umarım kimse kendi kuşlarında yaşadığı duyguları başka bir kuşçunun veya kuşçuların yaşamasını istemez. Eğer hasta kuşlarınız sizin için çok değerliyse ve imha edemiyecekseniz, öteki kuşlarınızdan her zaman ayrı tutulmalı ve öteki kuşlarınızında devamlı aşılarının yapılması gerekmektedir. Bu hastalığı geçiren kuşların aşılanması mümkün değildir. Eğer kuşlarınız aşılanmamışsa ve bu hastalığın bir kuşunuzda mevcut olduğunu düşünüyorsanız, acil olarak geri kalan kuşlarınızı aşılıyabilirsiniz. Fakat aşıyı vurduktan sonra antikorun iki üç hafta içinde üretilmeye başlamasından dolayı bu süre içinde hastalığa yakalanan başka kuşlarınızda olabilir. Hasta kuşları imha ettikten veya salmadan çıkarttıktan sonra arta kalan yemlerin ve dışkıların her gün temizlenmesi ve salmanın bir ucundan öteki ucuna kadar dezenfekte edilmesi şarttır. Dezenfekte etmek için "SANICOOP" gibi hazır temizleyiciler kullanabileceğiniz gibi kloraklı çamaşır suyuda kullanabilirsiniz. Bundan bahsetmişken bu tür dezenfekte işlemlerini gelenek haline getirip en az haftada bir bütün yemlik ve sulukları dezenfekte etmenizi ve buna yapabildiğiniz kadar bütün salmayı eklemenizi tavsiye ederim. PMV-1 hastalığı süresince kuşlarınıza genel antibiyotik vererek yan hastalıklarla başa çıkmanız ve B vitamini takviyesiyle kuşunuza yardımcı olmanız, değerli kuşlarınızın kendilerini en kısa zamanda toparlamalarına yardımcı olur. PLASMODİOSİS (SITMA) GENEL BİLGİLER Bu hastalık, malaria ya da sıtma adı ile bildiğimiz hastalığın güvercinlerde görülen türüdür. “Güvercin Sıtması” olarak adlandırabileceğimiz bu hastalığa neden olan mikrop, plasmodiasis ( plasmodium ) adı verilen tek hücreli bir protozondur. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Güvercin sıtmasının bulaşma ve yayılmasına neden olan en önemli etken sivrisineklerdir. Bu hastalık yaz aylarında hızlı bir şekilde yayılır ve bir çok güvercini etkiler. Yabani güvercin türlerinde oldukça yaygındır. Yapılan bir araştırmaya göre yaz aylarında yabani güvercinlerin % 35’inde bu hastalığa rastlanmıştır. SİVRİSİNEKLER Sürekli güvercinlerin üzerinde yaşama eğiliminde olmadıklarından güvercinlerin bir dış paraziti olarak adlandırılmamakla birlikte sivrisinekler, zaman zaman güvercinlerden de kan emmektedirler. Özellikle bazı türleri kuşları ve güvercinleri tercih etme eğilimindedirler. Sivrisinekler, güvercin sıtmasına neden olan başlıca mikrop taşıyıcı canlılardır. Bataklık alanlar, su birikintileri, dere ve nehir kenarları, gibi sulak alanlar sivrisineklerin üreme ve gelişme alanlarını oluşturur. Dişi sinek buralara larvalarını bırakarak çoğalır. Sivrisinekler kan emerek yaşayan birer canlıdırlar. Ancak sadece dişi sivrisinekler kan emerler. Dişilerin yumurta geliştirebilmeleri için kana ihtiyaçları vardır. Erkek sivrisinekler ise su ya da bitki özsularıyla karınlarını doyururlar. Dişi sineğin kan emdikten sonra bu kanı sindirme işlemi ortalama üç – dört gün sürer. Bu süre içinde yumurtalar olgunlaşır. Daha sonra kan emme işlemi tekrarlanır. Yumurtalar 3 gün içersinde açılır ve 20 – 22 derece sıcaklıktaki bir su da 15 günlük bir sürenin sonunda erginleşirler. Dişi sivrisineklerin ömrü, yaz aylarında fazla aktiviteden dolayı 2 ay kadardır. Buna karşın kış aylarında 9 ay kadar yaşarlar. Erkek sivrisinekler ise çok daha az ömürlüdürler. Çoğu, çiftleşmeden hemen sonra ölürler. Sivrisinekler kan emmek için genellikle geceyi beklerler. Kanını emeceği canlıyı bulmasında kısa mesafelerde sıcaklık ve nem gibi uyarılar, gelişmiş duyu organları sayesinde kolayca algılanabilir. Sivrisinek kan emeceği canlının çıplak bir noktasına konar ve kan emmek için özelleşmiş hortumu sayesinde bu işi gerçekleştirir. Ağız parçaları deriyi delebilecek tarzda sokucu bir yapıdadır. Her sokuşta yaraya tükürük akıtılır böylelikle kan emilmese bile hastalık taşıyan mikroplar bulaştırılabilir. Sivrisinek türleri içersinde, Culidae familyasına dahil olan Anopheles, Culex ve Aedes türleri yaygın olarak gözlenen ve gerek insan ve gerekse hayvanlardan kan emen türlerdir. Bu türler kuşlar ve güvercinlerden de kan emerler. Özellikle Culex pipiens’i adı ile bilinen tür özellikle kuşları tercih etmektedir. Ancak bu türler içinde sadece Anopheles türü üyeleri sıtma mikrobunu taşırlar. Ülkemizde sıtma mikrobu taşıyan Anopheles türleri arasında Anopheles sacharovi ile Anopheles maculipenis en yaygın rastlananlardır. Anopheles türlerini diğer sivrisineklerden ayırt etmenin en kolay yolu bir yere konduğunda duruş şekline bakmaktır. Anopheles türleri kondukları zemine vücutları dar açı yapacak şekilde dururlar. Diğer türlerin vücutları zemine paralel konumdadır. Ayrıca Anopheles türlerinin uzun ayakları, yuvarlaklaşmış pulları ve hafif benekli kanatları bulunur. Bu özelliklere bakarak uzman olmayan birisi bile hastalık taşıyıcısı Anopneles’i diğerlerinden ayırt edebilir. HASTALIĞIN BELİRTİLERİ En dikkat çekici özellik nöbetler halinde tekrarlayan ateş yükselmesidir. Kuşu etkileyen plasmodium türüne göre ateş süreleri ve tekrarlanma sıklıkları değişebilir. Bu dönemlerde kuş birden durgunlaşır, bir kenara çekilip düşünmeye ve tüy kabartmaya başlar. Nöbet geçtiğinde kısmen düzelmiş gibi bir görüntü sunar ancak genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Böyle bir durumda ölümcül sonuçlar doğurabilir. Hastalığın kesin teşhisi kan analizi ile yapılabilir. Tedavi edilmemesi durumunda hastalık kronikleşme eğilimi gösterir ve zamanla böbrekleri tahrip ederek kuşun ölümüne neden olabilir. HASTALIĞIN TEDAVİSİ VE KULLANILAN İLAÇLAR İlaçla tedavi edilebilen bir hastalık olmakla birlikte hastalığın teşhisinde gecikilmesi ve tedaviye geç başlanması sonucu tedavisi zor hale gelebilir. Hastalıktan kaçınabilmek için özellikle salmalarınızın içine sivrisineklerin girmesini engellemek gerekmektedir. Uygun gözenekli bir kafes teli kullanılabilir. Kuşlarımızın diğer yabani güvercinlerle ve başka kuşlarla olan temasını engellemek yerinde olur. Quinie ( kinin ) etken maddeli ilaçlar hastalığın tedavisinde kullanılmaktadır. Bu ilaçlar, Clorquine, Primaquine ve Quinacrine etken maddelerine sahip olan çeşitli ticari isimlerdeki ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. Pox (Frengi - Çiçek) Frengi, halk arasında bazen çiçek olarakta geçer, "borreliota avium" virüsünün neden olduğu bir hastalıktır. Özellikle posta güvercinlerinde olmak üzere çoğunlukla sıcak havalı bölgelerde ortaya çıkar. Çoğu virüs nedenli hastalıkların aksine bulaşıcılığı dışkılardan değil, kan emici parazitlerden (sivri sinek, kene, sakırga, uyuz böceği etc.) dolayıdır. Parazitler taşıyıcı görevi yapıp hastalığı güvercinden güvercine bulaştırır. Bu virüs temasla bulaşabileceği gibi içme suyunda günlerce yaşayabilir. Virüs hasta kuşlar tarafından salya ve sümük ile vücuttan atılabilir. Bu sıvılar yerde kuruduktan sonra tozlaşarak hava yoluyla bulaşıma neden olabilir. Virüsün bu yolla vücuda girebilmesi için güvercinin vücudunda yaranın (kavga sırasında göz ve gaga kenarındaki yaralanmalar gibi) mevcut olması lazımdır. Virüs vücutta bulduğu yaralardan kan sistemine geçip burada çoğalır ve bu safhadan sonra yeniden deri yüzeyine gelip burada tomurcuklanır. Tomurcuklanma insanlarda görülen çiçek hastalığına benzer (hastalık isminide buradan almıştır). Tomurcuklanma çoğunlukla derinin tüylerle kaplı olmadığı kısımlarda baş gösterir. Göz çevresi, gaga başlangıcı ve bacaklar tomurcuklanmanın kabuklaşmış bir şekilde görülebileceği bölgelerdir. Hastalık hızla ilerler ve ve tamurcuklar irin üretmeye başlarlar. Hastalığı öldürücü yapanda bu özelliğidir. Virüs burun, ağız veya boğaza yerleşip irin üretmeye başladığında kuşların nefes alması ve yem yemesi büyük derecede zorlaşır. Hasta kuşun boğazına bakıldığında sarı ve sert irin parçaları görülebilir. Bu parçalar tomurcuk yaralarından çıkarak oluştuğundan sıyrılması veya deriden koparılması oldukca zordur. Bu safhada akılda bulundurulması gereken en önemli şey görülen belirtilerin pamuk (trichomoniasis) ile aynı olmasıdır. Pamuk tedavisi altında bulunan bir kuşun tedaviye cevap vermemesi halinde frengi tedavisine geçilmesinde fayda vardır. Bu iki hastalığın aynı zamanda bir kuşda mevcut olma olasılığıda yüksektir. Frengiyi pamuktan ayırmanın en kolay yolu tomurcuklanmanın bacaklarda veya pamuğun olmıyacağı bir şekilde göz çevresinde bulunmasıdır. Bunun yanında mikroskop altında teşhis konulabilir. Frengi daha çok genç kuşlarda ortaya çıkar. Yavruların derisinde kahverengimsi renklenmeler görülebilir. Frengili bir kuşun nefes alma ve yeme sorunlarının dışında yan hastalıklara karşı açık olması başka bir sorundur. Bu konuda yardımcı olabilmek için A vitamini takviyesi yaparak derinin dayanıklılığını arttırıp tomurcuk yaralarının hızla iyileşmesini sağlıyabilirsiniz. Frengi geçiren kuşlar hayatlarının sonuna kadar bu hastalığa bağımsızlık kazanır (Burada frenginin değişik varyasyonlarının var olduğu unutulmamalı. Bağımsızlık sadece kuşun atlattığı varyasyona karşı oluşur). Yıllık frengi aşısı (İğne yerine kuşun baldırından yolunan bir kaç tüyle derinin tüy deliklerinden kanamasını sağlayıp buraya sürülecek süngerimsi bez parçaları ile veriliyor) bu hastalığa karşı kuşlarınızın en sağlam savunması olur. Colombovac'ın frengi ve paratifo karışım aşısı kullanılarak iki hastalığa karşı birden aşılıyabilirsiniz. Bu aşı iğneyle her kusa 0.02cc ölçüsünde boyundan verilir. 6 haftalıktan küçük kuşlara aşı yapmamanız ve bir kere açılan aşı paketini bir daha kullanmak üzere elinizde tutmamanız önemlidir. Frengi tek başına kuşları zor öldüreceği için tek yapacağı şey kuşların çirkin bir görünüşte olmalarını saşlamasıdır. Asıl sorun yan hastalıklardan gelmektedir. Bunun dışında pamukla beraber baş göstermesi bir çok kuşunuzu kaybetmenize neden olabilir. Hastalık sırasında 1/4 Carnidazole tabletini kuşlara ağızdan 6 gün süresince verip bunu 7 gün süresiyle Albon vererek takip etmek bu yan hastalıkların etkisini ortadan kaldırır. Bunların dışında Pox Dry ilacını hem frengi hemde pamuk yaraları üzerine sürerek hızlı bir şekilde kurumalarını sağlıyabilirsiniz. Bu hastalığın bulaşmasının en büyük nedeni parazitler olduğu için salmanızda kuşlara değmiyecek yerlerde parazit (sinek?) kağıdı kullanabilirsiniz. Belli bir süre sonra bu kağıtların güvercin tozu nedeniyle etkisiz hale gelmesi doğal. Bu durumda kağıtları sıcak suda sabunla hafifce yıkayıp yeniden kullanabilirsiniz. Bunu yaparken pilastik eldiven takmanız iyi olur. Eğer bu kağıtları kullanmak zor geliyorsa (kuşlara sert bir şekilde yapışırlar) boş bir cam kavanoza beş altı tane kağıt şeridini koyup salmada geceleri ağzını açabilirsiniz. Böylece kuşlarınıza zarar vermesini ve tozlardan etkilenmesini engellemiş fakat sinek, sivri sineklerden kurtulmuş ve öteki parazitleride salmadan uzaklaştırmış olursunuz. Kronik Solunum Yolu Hastalıkları Chronic Respiratory Disease İngilizce adından kısaltılarak CRD adı ile anılan ve Türkçe’ye “kronik solunum yolları hastalıkları” olarak çevirebileceğimiz bu hastalık tek bir hastalığın adı değil, solunum yollarında görülen bütün hastalıkları kapsayan ortak bir adlandırmadır. Güvercinlerde görülen CRD hastalıkları 3 tanedir. Bu yazı kapsamında söz konusu 3 hastalık hakkında bilgi verilecektir. Bu hastalıklar şunlardır ; 1 ) Ornithosis 2 ) Coryza 3 ) Mycoplasmosis Solunum yollarında görülen bu hastalıklar güvercinlerde çok yaygındır. Kış aylarında havanın soğumasına paralel olarak bu hastalıklarda da artma gözlenir. Bu hastalıklar aslında pek çok faktörün karşılıklı etkileşimi sonucu gelişmektedir. Kuşlarımız için öldürücü bir hastalık görünümü sunmamakla birlikte bazı ağır vakalar ölüm riski taşımaktadırlar. Ancak asıl sorun CRD hastalıklarının, başka hastalıklarla birlikte görülme eğiliminde olmasıdır. Bu durum kuşlarımızda ciddi güç kaybı yaratmakta ve hayati risk tehlikesi artmaktadır. Kuşlarımızda görülen uçuş yeteneklerinin azalmasının en önemli nedenleri arasında CRD hastalıkları gelmektedir. Stres etmenleri, kötü hijyenik koşullar vb. hastalığın gelişmesinde çok önemli rol oynarlar. Bu etkenler yok edilmediğinde hastalık geçmiş gibi görünse bile her zaman tekrarlama eğilimindedir. Şimdi bu hastalıkları tek tek ele almak istiyoruz. ORNİTHOSİS GENEL BİLGİLER Chlamydia Psittaci adı verilen bir bakterinin neden olduğu hastalıktır. Psittacosis adı ile de bilinen bu hastalığa, bazen etken olduğu mikrop nedeni ile Chlamydia hastalığı da denilmektedir. Aslında bir solunum yolları hastalığıdır. Güvercinlerde dikkat çekici belirtisi gözlerde olduğu için bir göz hastalığı olarak algılanır. Güvercinler arasında yaygın olarak gözlenen hastalıklardan biridir. Bir çok kuş türünde gözlenen bu hastalık dünya çapında yayılmıştır. Diğer evcil olmayan kuş türleri hastalığı taşıyıcı rol oynamaktadırlar. Kuşların yanı sıra insan ve diğer memeli hayvanlarda da görülmektedir. Yaygın olarak papağanlar, güvercinler, hindiler ve ördeklerde rastlanır. Chlamydia Psittaci kendi içinde hem RNA hem de DNA bulunduran bir bakteri olmakla birlikte üreyebilmek için içinde bulunduğu vücuttan bu maddeleri almak durumundadır. Bunun sonucu olarak vücut hücrelerinde bozulmalara neden olur. BELİRTİLER Hastalık uzun süre belirgin bir belirti vermeyebilir. Bu nedenle gözden kaçar ve dikkat edilmez. Ancak kuşun güç kaybına bağlı olarak kendini birden ortaya koyabilir. İlk aşamalarda kuşlarımızdaki performans eksikliğinin yaygın sebebi olabilir. İyi uçan bir kuşumuzun belirgin başka bir neden olmaksızın uçuş gücünün düşmesi dikkatimizi çekmelidir. Yavru kuşlarda yavaş gelişme durumu dikkat çekicidir. Hastalık, sonraki aşamalarda iştahsızlık, tüy kabartma, kilo kaybı, karışık tüyler, titreme, gerginlik hali, yeşilimsi ishal ve solunum yolları sorunları ile kendini gösterir. Daha ağır vakalarda mikrop karaciğere yayılır ve burada iltihaba neden olur. Bu aşamada hastalık ölümcül olabilir. Hastalığı geçiren ve tedavi olan kuşlar kısmen bu mikroba karşı güç kazanırlar ve tekrar bu hastalığa yakalanma riskleri azalır. Mikrop vücuda girdikten bir süre sonra gözlerde ve özellikle de tek gözde yaşarma ve akıntı ile kendini belli eder. Aslında başka belirtileri olmakla birlikte bunlar genellikle dikkatten kaçmaktadır. Böyle olduğu için Ornithosis sanki bir göz hastalığı gibi algılanmakta ve bir çok kaynakta Ornithosis ( one eye cold ) olarak belirtilmektedir. ONE EYE COLD ( TEK GÖZ SOĞUK ALGINLIĞI ) Chlamydia Psittaci mikrobun gözlere yayılması durumunda ilk belirtiler gözde yaşarma ve akıntıdır. Daha sonra kuşun gözünün etrafı tam yuvarlak bir halka şeklinde hafif şişer ve kızarır. Su toplamış gibi bir görünümü vardır. Genellikle tek gözde ortaya çıkar. Bu nedenle hastalığa İngilizce “One Eye Cold” denilmektedir. Tedavi edilmediği taktire bu kızarıklık gözün etrafına doğru yayılır ve genişler. Gözdeki yaşarma ve akıntı mikropludur ve mikrobun etrafa bulaşmasına yol açar. Güvercinlerde gözlerde belirti veren diğer bir hastalık olan Coryza ile karıştırılmamalıdır. Bazı durumlarda gözdeki enfeksiyon körlük ile sonuçlanabilir. BULAŞMA ŞEKLİ Kuşların mikrop taşıyan göz akıntıları salmalarımızın içinde bulaşmaya neden olurlar. Mikrop salma içindeki güvercin tozu dediğimiz beyaz toza bulaşarak taşınır. Solunum yolu ile diğer kuşlara geçer. Hasta kuşlarla aynı banyo suyunda yıkanan diğer kuşlar hastalığı kapabilirler. Bu hastalığın önemli bir özelliği insana da bulaşmasıdır. Eğer güvercininizden mikrop kapmak istemiyorsanız dikkat etmeniz ve hasta kuşlarınızı süratle tedavi etmeniz gerekmektedir. Güvercin tozunun solunması yolu ile mikrop insana geçebilmektedir. Hastalık mikrobu güvercin tarafından bırakıldıktan sonra 48 saat kadar salma içinde aktif konumdadır. Bu süre içinde mikrop alınırsa mikrobu alan insanın hassaslığına bağlı olarak 5 – 14 gün arasında hastalığın ilk belirtileri görülmeye başlar. İnsandaki belirtiler gribe benzer. Ateş, baş ağrısı, göğüs ağrısı, yorgunluk, kuru öksürük ve bazı vakalarda mide bulantısı ve kusma görülür. HASTALIĞIN TEŞHİSİ Hastalığın kesin teşhisi kan tahlili ile yapılabilir. Ölü kuşlar üzerinde yapılacak otopside karaciğerde yapılacak inceleme ile belirlenebilir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri nedenli bir hastalık olduğundan antibiyotiklerle tedavi edilebilmektedir. Antibiyotik uygulaması oldukça olumlu sonuçlanmaktadır. Çeşitli antibiyotikler bu amaçla kullanılabilir. Yurt dışında bu hastalık için üretilmiş olan güvercin ilaçlarında yaygın olarak Chlortetracyline ve Doxycyline etken maddeli ilaçlar kullanılmaktadır. Ayrıca kuşların multivitamin takviyesine gereksinimleri vardır. Tedavi sırasında kuşların kalsiyum kaynaklarından ( grit taşları, gaga taşları vb) uzak tutulması gerekmektedir. Çünkü kalsiyum Chlortetracyline’nin ve Doxycyline’nin etkisini azaltmaktadır. Yumurtlama dönemlerinde olan kuşlarda bu ilaçlar kullanılmamalıdır. DEVAMİSİN OBLET Chlortetracyline Hydrochloride etken maddeli bir ilaçtır. Her oblette 500 mg etken madde bulunur. 12 Obletlik ambalajlar halinde piyasada satılmaktadır. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Vetaş ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur, Güvercinler için kullanılabilecek doz, kuş başına günde 15 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ¼ tablet karıştırmak uygun olabilir. DOXİVET –10 SOLÜSYON Doxycyline Hiklat etken maddeli bir ilaçtır. Farmavet ilaç firmasının bir üretimidir. 1 ml ilaçta 100 mg etken madde bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur. Ticari şekli 1 ve 5 litrelik ambalajlar halindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 25 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ½ ml karıştırmak uygun olabilir. TERRAMYCİN GÖZ MERHEMİ Beşeri ( insanlar için üretilmiş) bir ilaçtır. Pfizer firmasının bir üretimi olup, eczanelerde bulunur. Etken maddesi, Oxytetracyline ve B vitaminidir. Antibakteriyel etkili bu merhemin deri ve göz için olan iki tipi bulunmaktadır. Göz için olanı güvercinlerde One eye cold hastalığında haricen yani dışarıdan sürülmek sureti ile kullanılabilir. Günde 1 – 2 kez dıştan göze sürülür. Ticari şekli 3.5 gr’lık tüpler halindedir. BAVİTSOLE ORAL SOLÜSYON Bayer ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. A, D3, E ve C vitaminleri bulunduran kompleks bir ilaçtır. Güvercinlerde her türlü vitamin eksikliklerinde, çeşitli hastalıkların tedavisinde takviye olarak ve sulfa grubu ilaçlar ile antibiyotiklerin yanında destekleyici olarak kullanılabilir. Bu ilacı tercih etmemin önemli bir nedeni içinde kalsium bulundurmamasıdır. Böylece sulfa grubu ilaçlar ile bazı antibiyotiklerin yanında kullanılması gayet uygundur. Ticari şekli 1 litrelik solüsyon halindedir. Güvercinler için 1 litre içme suyana 10 kuş hesabıyla 1 cc ilaç katılarak kullanılabilir. İlaç kullanımına 5 gün devam edip bir süre ara verdikten sonra tekrar başlanabilir. CORYZA ( CATARRH ) GENEL BİLGİLER “Akut Nezle” adı ile Türkçeleştirebileceğimiz bu hastalığa Hemophilus İnfluenzae adlı bir bakteri neden olmaktadır. Kış aylarında daha çok görülen bir hastalıktır. Hastalığın mikrobu güvercinin üst solunum yollarına yerleşir ve çeşitli rahatsızlıklar yaratır. Çoğu zaman Ornithosis ve mycoplasmasis ile bağlantılı olarak gelişir. Hızlı bir gelişme gösterir. Hassas bazı kuşlarda mikrobun vücuda girişinden itibaren 3 gün içinde hastalığın belirtileri görülmeye başlar. BELİRTİLER Başlangıçta kuşun boğazda sümük salgısı vardır. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Kuşta solunum zorluğu, hırıltılı soluma, ses çıkartırken hırıltılı tonlar gözlenebilir. Sulu yeşilimsi bir ishal ile birlikte ağırlık kaybı, uçma isteksizliği ve yavru veriminde düşme vardır. En belirgin özellik, burun akıntısı ve her iki gözde de yaşarmaların olmasıdır. Burun akıntısı ve sümük kokuludur. Sinüslerde şişme gözlenir. Buna bağlı olarak kuşun yüzünde ve özellikle göz altlarından buruna doğru olan bölümlerde, alın kısmında hissedilir bir şişme oluşur. Öldürücü bir hastalık değildir. Bu hastalıktan ölüm oranı oldukça düşüktür. Ancak güvercinlerde ciddi strese neden olan bu durum diğer hastalıkların ortaya çıkma ihtimalini hızlandırır. BULAŞMA ŞEKLİ Diğer evcil olmayan kuşlarla her türlü temasın kesilmesi gerekir. Bu kuşlar mikrobu taşıyıcıdırlar. Hasta kuşların akıttıkları göz yaşı ve sümük gibi salgılar mikropludur. Bu salgıların kuruyup toz haline gelmesi ve bu tozun solunması yolu ile hastalık bulaşabilir. Ayrıca aynı salgıların içme suyuna bulaşması ile bu suları içen kuşlarda hastalanabilirler. Doğrudan temas ise başka bir bulaşma yoludur. Eğer salmanızda bir güvercin hastalandıysa mikrobun bütün salmaya yayıldığını düşünerek önlem almanız gerekmektedir. Temizlik, salma içinde havadar bir ortam yaratılması rutubetin önlenmesi ve hijyenik koşullara uyulması hastalık riskini azaltacaktır. HASTALIĞIN TEŞHİSİ Kesin olarak teşhis edebilmek için burun veya göz akıntısının laboratuvar analizi gereklidir. HASTALIĞIN TEDAVİSİ Bakterilerin neden olduğu bir hastalık olduğu için antibiyotiklerle tedavi edilebilmektedir. Antibiyotiklerin yanı sıra vitamin takviyesi de önemlidir. Ornithosis için kullanılan ilaçlar aynen Coryza için de kullanılabilir. Farklı olarak Tylosin ve Eritromycin etken maddeli antibiyotikler ilave edilebilir. Vitamin olarak yukarda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. TYLAN SOLUBE Tylosin etken maddeli bir antibiyotiktir. Lilly - Ellanco fimasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Kullanılacak doz 10 güvercin için 1 gram ilaç 2 litre içme suyuna karıştırılarak verilebilir. İlaç tedavisi 2 gün sonra kesilmelidir. Ağır durumlarda tedavi 5 güne kadar uzatılabilir. ERİTROM TOZ Eritromycin etken maddeli bir antibiyotiktir. 1 gram ilaç 55 mg etken madde içerir. Ticari şekli 50 ve 225 gr’lık cam kavanoz halindedir. Vetaş ilaç firmasının bir üretimi olup veteriner ilaçları satan eczane ve ecza depolarında bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. 1 litre içme suyuna 1 ölçek ilaç ( 2.5 gr ) karıştırılarak 5 gün süre ile kullanılır. kullanılır. MYCOPLASMOSİS ( MYCOPLASMA ) GENEL BİLGİLER “Kronik Nezle” olarak adlandırabileceğimiz bir hastalıktır. Hastalık genellikle diğer solunum yolları hastalıklarının ( Ornithosis ve Coryza ) bir devamı şeklinde kendini gösterir. Hastalığın etkeni mycoplasma denilen bakteri kökenli bir organizmadır. BELİRTİLERİ Hastalık belirti olarak diğer solunum yolları hastalıkları ile benzer bir görüntü sunduğu için ayırt edilmesi oldukça zordur. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Burunun dış deliklerinde sümük şeklinde oluşum vardır. Burun akıntısı gözlenebilir. Aksırma vardır. Sinüslerdeki şişmeye bağlı olarak yüzde ve özelliklede alın bölgesinde şişlik görülebilir. Kuşun ateşinde yükselme saptanabilir. Özellikle geceleri hırıltılı soluma, hırıltılı ses çıkarma ve nefes alıp verme zorlukları gözlenebilir. Kuş nefes alırken burnu tıkalı olduğu için gagasını açma ihtiyacı hisseder. Solunum yetersizliğine bağlı olarak kandaki oksijen miktarı azalır ve kuşun derisinin rengi mavimsi bir görünüm kazanabilir. Kuşun karın ya da göğüs bölgesindeki tüyler aralanıp deri rengi kontrol edilebilir. Güvercinlerimizin uçuş performansını ve yumurta üretimini olumsuz etkiler. Bu hastalıktan ölüm olayı görünmez ancak bu hastalığın en önemli özelliği diğer bazı hastalıklarla birlikte seyretmesidir. Böyle olduğunda kuşumuz için ölümcül risk yaratır. BULAŞMA ŞEKLİ Bu mikroorganizma sadece canlı vücutlarda yaşayabilir. Kuşun vücudunun dışında yaşam süresi 15 – 20 dakika ile sınırlıdır. Bu nedenle fazla bulaşıcı bir hastalık değildir. Bulaşma daha çok direk temas yolu ile olmaktadır. Evcil olmayan diğer kuş türleri mikrobu taşıyıcıdırlar. Hastalığın yayılmasını sağlayan en önemli etkenler arasında, olumsuz hijyenik koşullar, salma içinde rutubetli ve havasız ortam başta gelmektedir. HASTALIĞIN TEŞHİSİ Kesin tanı hasta kuşun kan analizi ile olabilir. Kuşun salgıladığı balgamın tahlili ise hastalığın aşamaları ve seyri konusunda bir fikir vermektedir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın tedavisinde antibiyotikler ve vitaminler kullanılmaktadır. Ancak genellikle başka hastalıklarla birlikte görüldüğü için ilaç seçimi buna göre değişebilir. Enrofloxacin, Oxytetracyline, Chlortetracyline ve Doxycyline, Tyolisin etken maddeli ilaçlar tercih edilmektedir. Vitamin olarak yukarıda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. BAYTRİL % 2.5 ORAL SOLÜSYON : Bayer ilaç firmasının bir üretimidir. Kuvvetli bir anti – bakteriyeldir. Etken maddesi Enrofloxacin’dir. 1 cc ilaç 25 mg etken madde içerir. Aynı ilacın % 10 konsantrasyona sahip olanı da vardır. Ancak %2.5’luk olan güvercinler için daha uygundur. Hem de fiyat olarak daha ucuzdur. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde kısa adı CRD olan kronik solunum yolları hastalıklarında ve Salmonella’da kullanılmaktadır. Kullanılacak doz, güvercin için, kuş başına 5 mg’dır. Bu dozu sağlayabilmek için, 2 litre suya 0.5 cc ilaç karıştırmak uygundur. Tedaviye 5 gün süre ile devam edilmelidir. Ticari şekli 20, 50, ve 100 ml’lik şişeler halindedir. Salmanızda yumurtlamak üzere olan kuşlarınız ya da bir aydan küçük yavrularınız varsa bu ilacı kullanmayınız. Yavrularda sakatlıklara neden olabilmektedir. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. CADİDİASİS(TERS KURSAK) GENEL BİLGİLER Sour crop İngilizce adından Türkçe’ye çevirerek “ters kursak” olarak adlandırabileceğimiz bu hastalığın bir diğer adı da Candida’dır. Ancak hastalık Mycosis, Muget, Yeast ve Trush adları ile de bilinmektedir. Fungal bir hastalıktır. Fungal ( mikotik ) hastalıklar, toplumda yaygın adı ile mantar hastalıkları olarak bilinirler. Cadidiasis de sindirim bölgesinde özelliklede üst sindirim bölgesinde görülen müzmin formlu bir mantar hastalığıdır. Mantar mikrobunun yerleşerek hastalığa neden olduğu bölge, proventriculus olarak da adlandırılan ve kursaktan sonra yemlerin geçtiği ilk durak olan bezlimidedir. Kümes hayvanları, serçeler, su kuşları ve güvercinler gibi bir çok kuş türünde yaygın olarak gözlenen bir hastalık türüdür. Hastalığa neden olan mikrop Candida abbicans adı verilen bir mantar organizmasıdır. Bu mikrop daha çok bozuk yem üzerinde bulunmaktadır. Güvercinlere bayat ve küflü yem verilmesi hastalık riskini çok artırmaktadır. Güvercinlere verdiğimiz yemlere mutlaka dikkat etmemiz gerekmektedir. Verilen yemlerin taze olduğunun göstergesi bu yemlerin çimlenme yeteneğini kaybetmemiş olmasıdır. Yem olarak “kısır tohum” kullanımı doğru değildir. HASTALIĞIN SEYRİ VE BELİRTİLERİ Mantar mikrobu, bezlimide de küçük yaralara neden olmaktadır. Bu yaralar ufak boğumlar oluşturarak zaman zaman bir aşağıda yer alan ve taşlık adı ile bilinen kaslımideye yemlerin geçişini engellemektedir. Bu durum bezlimide de yemlerin birikerek buranın şişmesine neden olur. Bu şişlik bezlimideyi çevreleyen kan damarlarına basınç yapar ve yer yer bu damarların patlayarak kanamasına neden olur. Bu kanama güvercinin ağzından kan gelmesi şeklinde kendini gösterir. Bazen yuva içinde yerde gördüğümüz ve anlam veremediğimiz kan birikintilerinin nedeni bu tür bir kanama olabilir. Bezlimidenin bu şekilde tıkanması aynı zamanda kursakta şişmeye de neden olur ve kuş ara sıra kusarak bu birikintiyi atmaya çalışır. Kusmuğun kokusu, normalden daha kötüdür. Özet olarak kursakta şişme ve zaman zaman tahıl içeriğinin kusulması ile birlikte ağızdan kan gelmesi gibi durumlar bize kuşumuzda Cadidiasis hastalığının bulunduğunu göstermektedir. Bunun yanı sıra ağız içinde veya damakta görülen küçük beyaz mantar oluşumları hastalığı belirlememizi sağlar. Daha net olan bu göstergelerin yanı sıra, kayıtsızlık, iştah kaybı, ağırlık kaybı, kuşun performansında düşme, genç kuşlarda yavaş büyüme, yetişkin kuşlarda telek çürümesi ve tüy yarılması gibi durumlar bu hastalığın diğer belirtileridir. Boğazdan alınacak örnekler üzerinde yapılacak kültür testi ile hastalığa kesin teşhis koyulabilir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın deri enfeksiyonu ve tüy çürümesi şeklinde seyretmesi durumunda, banyo sularına karıştırılacak Bakır sülfat sorunun çözümü için yararlıdır. Bakır sülfat için 1 / 2000 oranında sulandırma uygundur. Bunun için 4.5 litre banyo suyuna yarım çay kaşığı ilaç karıştırmak gerekir. Bakır sülfat, sülfürik asidin bakır II okside etkimesi ile oluşan bir tuzdur. Parlak mavi kristaller halindedir ve piyasada “göz taşı” adı ile satılmaktadır. Kimyasal madde satan yerlerde bulunabilir. Ankara’da Ulus’ta Modern Çarşı’nın üst katında var. Hastalığın bezlimide de görülmesi durumunda Nystatin etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeyi bulunduran güvercinler için üretilmiş özel bir ilaç ülkemizde yoktur. İçinde bu etken maddeyi bulunduran beşeri bir ilaç eczanelerde bulunabilir. Bu ilaç veteriner hekim kontrolünde gerekli doz ayarlaması yapılarak güvercinlere kullanılabilir. Bu ilaç hakkında kısa bilgiler aşağıda verilmiştir. MİKOSTATİN SÜSPANSİYON Her ml de 100.000 IU etken madde bulunmaktadır. Bristol-Myers squibb firmasının bir üretimidir. Anti fungal etkilidir. Canker (Pamuk) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Kaynak: veterinerhekimiz.com

http://www.biyologlar.com/guvercin-hastaliklari

Sürüngen preparasyonu nasıl yapılır

SÜRÜNGENLER Sürüngenler (Reptilia), amfibilerle kuşlar arasında yer alan bir omurgalı grubudur. Kara hayatına uyum sağlamışlardır. Derileri kuru ve derilerinde salgı bezi yok denecek kadar azdır. Derilerinin üzeri keratin tabakası ile örtülüdür. Keratin tabaka vücudun değişik yerlerinde pul ve plaklar halinde yapılar oluşturur. Bu tabaka zaman zaman atılarak yenilenir. Sürüngenlerin bir kısmı 4 bacaklı, bir kısmı da bacaksızdır. Bacaklı olanlarda bile vücut yere değecek kadar alçaktır. Sürüngenlerin büyük bir kısmı karada, bazıları da suda yaşarlar. Ancak suda yaşayanlar da akciğerleri ile solunum yaparlar. Sürüngenlerde genellikle çiftleşme organı bulunur. (Tuatara hariç) Bu nedenle de döllenme içte gerçekleşir. Çoğu yumurta bırakır. Yumurtalar dayanıklı elastiki kabuklu yahut kuş yumurtası gibi kolayca kırılabılir tiptedir. Bazı sürüngen türleri canli doğurur, (ancak memelilerde olduğu gibi yavru anasına bir bağ ile bağlı değildir) gelişmelerinde de bir larva devresi bulunmaz. Yumurtadan çıkan yavrular minyatür erginlere benzerler. Sürüngenler genellikle diğer hayvanları avlayarak beslenirlerse de, bazı kara kaplumbağaları ile bazı kertenkele türlerinin esas besinlerini bitkisel maddeler teşkil eder. Derileri kuru olup,keratin pullar ve plakalarla örtülüdür.Derilerinde kuşlarda olduğu gibi çok az salgı bezi bulunur.Bunlarda kurbağalarda olduğu gibi dış kulak bulunmaz.beş parmaklı iki çift ekstremiteye sahiptirler.Bununla beraber,bazı kertenkele ve yılanlarda ön ve arka ekstremiteler kaybolmuştur.Bu yüzden bu hayvanlar yerde sürünerek hareket ederler.Sürüngenler iç organları kaburgalar tarafından korunan ilk omurgalılardır.Bunların akciğerleri ve kalpleri kurbağalardan daha gelişmiş olarak bulunur.Sürüngenlerin en önemli özelliği,kurbağalardan farklı olarak iç döllenme yapmaları ve buna uygun üreme organlarının gelişmesidir.   Sürüngenlerin yumurtası,kuşların yumurtası gibi vitellus bakımından çok zengin ve derimsi kabukludur.Yumurta içerisinde gelişen embriyoda amnion,karion,allantois ve vitellus yapıları bulunur.Bu yapılar memelilerin embriyo gelişiminde de görülür. Sürüngenler de kurbağa ve balıklarda olduğu gibi değişken sıcaklı hayvanlardır. Pental Sodyum (20 kat sulandırılmış) enjekte edilerek bayıltıldıkdan sonra dissekte edilmiş, önce göğüs ve karın boşluğundaki organlar stereomikroskop altında yüzeysel olarak incelenmiştir. Daha sonra akciğer, karaciğer ve diğer iç organlarla birlikte ince ve kalın bağırsak içinde fizyolojik su bulunan mumlu petri kutularında açılarak stereomikroskopta kontrol edilmiş, . ag – anterior genials alias perisai dagu depan f – perisai frontal in – perisai internasal l – perisai loreal la – perisai supralabial atau labial atas la' – perisai infralabial atau labial bawah m – perisai mental n – perisai nasal p – perisai parietal pf – perisai prefrontal pg – posterior genials atau perisai dagu belakang pro – perisai preokular pso – perisai presubokular pto – perisai post-okular r – perisai rostral so – perisai supraokular t – perisai temporal anterior dan posterior v – perisai ventral yang pertama (terdepan) REPTİLLER İLE AMFİBİALAR ARASINDA ÇOK FAZLA PREPARASYON FARKI YOKTUR. Bu laboratuvar çalışmamıza kadar incelediğimiz hayvan örnekleri omurgasız hayvanlar grubuna aittiler. Bu çalışmamızda ise Omurgalı hayvanlardan bir örnek inceleyeceğiz. Vertebrata'nın (omurgalılar) Amphibia (kurbağalar) klasisinin Anura (kuyruksuz kurbağalar) takımına mensup Rana ridibunda (su kurbağası) su içinde, su kenarlarında nemli yerlerde yaşar. Amfıbiler, suda yaşayan balıklar ile kara omurgalıları arasında orta bir yer işgal ederler. Tamamen karada ya da tamamen suda yaşayan formları olduğu gibi, hem karada hem de suda yaşayanları vardır. Bu ara durum ve kara hayatına geçiş ile ilgili organ sistemlerindeki değişiklikler kurbağada açıkça görülür. Kurbağanın vücudu baş ve gövde olmak üzere iki kısımdan meydana gelir. Başla gövde arasında bir sınır, farklılaşmış bir boyun bölgesi yoktur. Vücut pulsuz olup, çıplak, yumuşak ve kaygan bir deri ile örtülüdür. Deride mukus salan çok sayıda bez bulunur. Ergin hayvanda kuyruk tamamen kaybolmuştur. Gövdede iki çift ekstremite vardır. Başın önünde geniş bir ağız bulunur. Üst çenenin hemen ön tarafında bir çift dış burun deliği ve onların arkasında iki büyük göz vardır. Hareketli göz kapaklan üst, alt ve alt göz kapağının devamı gibi duran gözü yan yanya örten yan göz kapağından ibarettir. Ancak bu üçüncü göz kapağının kendi başına hareket yeteneği yoktur. Gözlerin arkasında orta kulağı örten 3-4 mm çapında yuvarlak iki kulak zan bulunur. Kurbağalarda dış kulak yoktur. Erkek kurbağalarda kulak zarının gerisinde ince bir zardan yapılmış bir çift dış ses kesesi bulunur. Erkek kurbağaların gövdeleri dişilere göre biraz daha ince uzundur. Dişilerde ise gelişmiş ovaryumlar nedeniyle gövdenin eni boyuna göre daha gelişmiştir. Bütün tetrapodlarda karada yürümeye elverişli (balıkların pektoral ve pelvik yüzgeçlerine karşılık) dört ekstremite vardır. Kurbağaların ön ekstremiteleri kısa olup, dört parmaklıdır. Birinci parmak körelmiştir. Erkek bireylerde ön ekstremitede çiftleşme mevsiminde ikinci parmağın yan tarafında büyük siyah bir şişkinlik (nasır) ortaya çıkar. Uzun olan arka ekstremiteler beş parmaklıdır. Birinci parmak en kısa, dördüncü ise en uzundur. Parmaklar arasında yüzme derisi gerilidir. Vücudun son ucunda iki arka ekstremite arasında kloak açıklığı vardır (Şekil 1). Şekil 1. Bir erkek kurbağanın dış görünüşü 1. dış burun deli ği 2. ağız 3. ön ayak 4. nasır (a) 5. yüzme perdesi 6. arka ayak 7. dış ses kesesi (a) 8. orta kulak zarı 9. göz Ağız içinde üst çenede oldukça küçük, sivri ve çok sayıda diş bulunur. Ayrıca damakta vomer dişleri vardır. Ön tarafta bulunan oval iki açıklık iç burun delikleridir. Alt çenede göze ilk çarpan yapı dildir. Dil çeneye ön taraftan tespit edilmiş olup, serbest kalan ucu çatallıdır. Dilin uzama ve kasılma yeteneği çok fazladır. Alt çenede diş yoktur. Yutağa (farinks) östaki borusu açılır. Burada bulunan glottis (küçük dil), besinlerin akciğerlere girmesine engelolur (Şekil 2). Şekil 2. Kurbağada ağızın iç yapısı ı. vomer dişleri 2. iç burun deliği 3. üst çene dişleri 4. göz çukurları 5. östaki borusu açıklıgı 6. farinks açıklıgı 7. ses kesesi açıklıgı (erkekte) 8. glottis (küçük dil) 9. dil 10. dil bağlantısı Kurbağada pleuroperitonal ( göğüs-kann ) boşlukları içinde ilk göze çarpan organ, kahve renkli ve yaprak şeklindeki loplardan yapılmış olan karaciğerlerdir. Karaciğer sağ, orta ve sol lop olmak üzere üç parçadan oluşmuştur. Orta lop sağ ve sol loptan birbirine bağlayan küçük bir parçadır ve bu yan loplar tarafından örtülmüştür. Orta lobun sol lop ile birleştiği yerde yeşil renkli yuvarlak bir safra kesesi vardır. Sol lobun altında da büyükçe bir mide yer alır. Midenin ön ucu çok kısa bir yemek borusu ile birleşir. Midenin sivri olan arka ucu ise bağırsağa açılır. Bu kısım midenin pilor bölgesidir. incebağırsak uzun ve kıvrıntılı bir boru halindedir. Mideden sonra gelen ilk kısım on iki parmak bağırsağı (duedenum) dır. İnce bağırsağın son kısmı sonbağırsak (rektum) dır. İncebağırsaktan daha geniş ve çok daha kısa olan bu kısım kloaka (dışkılık) açılır. Mide ile duedenum arasında pankreas yer alır. Kalp tam göğüs kemiğinin altındadır. Perikard boşluğu içine yerleşmiş durumdadır. Perikard boşluğu perikard zarı ile sınırlanır. Kalp iki kulakçık ve bir karıncıktan meydana gelir. Sağ kulakçığa anteriör ve posteriör vena cava (ön ve arka toplardamarlar)ların açıldığı sinüs venosus bağlanmıştır. Ventrikulustan ise truncus arteriosus 'tan ayrılan aort yaylan çıkar. Balıklara göre bu yaylarda bir azalma görülür. Yalnızca III. IV. ve VI. yaylar kalmış olup, III. den başa giden carotid 'ler, IV. den systemik yaylar (sağ ve sol aorta), VI.dan ise pulmonar arterler (akciğer atardamarları) meydana gelmiştir. Kirlenen kan pulmonar arterler ile temizlenmek üzere akciğerlere gider ve burada temizlendikten sonra tekrar kalbe döner. Böylece esas vücut dolaşımından başka bir de kalp ile akciğerler arasında küçük dolaşım meydana gelmiştir. Kurbağaların solunum organları gayet kısa bir soluk borusu ile bir çift akciğerden meydana gelir. Akciğerler gevşek bir dokudan yapılmıştır. Kirli kahve renkli iki kese şeklindedir. Sönük oldukları zaman ancak bir santimetre boyunda ve üçgen şeklindedirler. Kurbağalarda ayrıca kuvvetli bir deri solunumu vardır. Kurbağaların boşaltım organları böbrekleridir. Vücudun dorsal duvarına yakın, bir çift olarak bulunurlar. Koyu kırmızı renkli, uzunca oval yapılı, 1.5-2 cm uzunluğunda ve mezonefroz tipindedirIer. Bunların ventral yüzlerinde altın sarısı renginde ve şerit şeklinde böbrek üstü bezleri bulunur. Karın boşluğunun kuyruk ucunda ise beyaz renkli, ince duvarlı, büyük bir kese şeklinde idrar kesesi vardır. Bu kese kısa bir boyun bölgesi ile kloakın ventral duvarına açılır. Erkek kurbağalarda boşaltım organı ile üreme organları arasında sıkı bir ilişki vardır. Spermler ile boşaltım maddeleri müşterek bir kanaldan (üreter ya da wolf kanalı) dışarı atılırlar. Testisler san-beyaz renkli, yuvarlağımsı ve bir çift olarak böbreklere yakın bulunurlar. Dişilerde de bir çift ovaryum bulunur. Yumurta hücreleri ayrı bir kanalla (ovidukt) dışarı atılırlar. Bu yumurta kanalının kloaka açılan son kısım kısa bir şekilde genişlemiştir. Üreme mevsiminde içinde yumurta birikmiş durumdadır (Şekil 3). Şekil 3. Diseksiyonu yapılmış bir kurbağada içorganların görünüşü 1. alt çene 2. dil sağ atrium 4. ventrikulus 5. testis 6. böbreküstü bezi 7. böbrek 8. idrar torbası 9. sonbağırsak 10. yüzme perdesi 11. mezenter 12. incebağırsak 13. pankreas 14. mide 15. dalak 16. karaciğer 17. safra kesesi 18. akciğer 19. glottis 20. yutak 21. üst çene Kurbağaların sinir sistemleri, merkezi sinir sistemi beyin ve omurilik ile çevre sinir sistemi sinirlerden meydana gelir. Kurbağada beyin, ön, orta ve arka olmak üzere üç kısımdan meydana gelir. Ön beyinde koku alma siniri (olfaktorius sinirler)nin çıktığı iki bulbus olfaktorius lobu, iki beyin yarım küresi (cerebrum) ile diencephalon bulunur. Diensefalonun üzerinde epifiz bezi yer alır. orta beyinde ise görme sinirlerinin çıktığı optik loplar yer alır. Arka beyinde de cerebellum ve medulla oblangata yer alır, bundan sonra da omurilik uzanır (Şekil 4). Şekil 4 . Kurbağada beyin yapısı ı. olfaktorius siniri 2. olfaktorius lobu 3. cerebrum 4. göz sİniri 5. optik lop 6. kranial sinirler 7. Cerebelluın 8. krania! sinirler 9. Medulla oblangata 10. omurilik İzlenecek Yol Ø Kurbağanın iç organlarını incelemeye geçmeden önce, içinde kloroform ya da etere batırılmış pamuk bulunan bayıltma kabında kurbağayı bayıltırız. Bayılmış ve hareketsiz duruma gelmiş kurbağayı küvet üzerine alarak dıştan inceleyiniz. Dıştan görünen organ ve yapıları çizerek gösteriniz. Ø Üst çenenin alt çene ile birleştiği yerden kasları hafifçe keserek ağzı açarız. İç burun deliklerinden bir iğne sokarak dış burun deliklerine kadar uzandıklarını tespit ediniz. Dili bir pensle kaldırarak tespit edildiği yeri görünüz. Dişler, göz şişkinlikleri, farinks, glottis ve östaki borusu açıklıklarını görerek ağzın içten görünüşünün şeklini çiziniz. Ø Beyin ve omurilik hariç, kurbağanın tüm sistemleri ventral taraftan disseke edilebilir. Bu sistemleri ortaya çıkarabilmek için kurbağanın vücut boşluğunun açılması gerekir. Deri ile vücut çeperi arasında geniş lenf boşlukları olduğundan bu açılış iki safhada yapılmalıdır. Birincisi derinin kesilmesi, ikincisi ise vücut çeperinin kesilmesidir. * Bu işlemi yapmak için kurbağayı küvet üzerine sırt üstü yatırınız. Dört bacağından da toplu iğne ile küvete tespit ediniz. Bu sırada kurbağada ayılma belirtileri görürseniz, kloroformlu ya da eterli pamuğu başının üzerine koyarak iyice bayılmasını sağlayınız. Ø Arka üyelerin birleştiği yerden başlayarak göğüs kemiği hizasına kadar sadece deriyi düz bir çizgi şeklinde kesiniz. Göğüs kemiği hizasında kesitinizi iki yan tarafa doğru uzatınız. Açtığınız deriyi iki yan tarafa yatırıp iğneleyiniz. Bu durumda ventral vücut duvarını yapan kaslar ortaya çıkar. Göğüs kemiği hizasından aşağıya kadar tam orta istikamette uzanan büyük bir kan daman ile bu damarın iki yan tarafında göğüs kemiği karşısından başlayarak aşağıya giden ve tekrar yukarıya dönerek deriye yayılan bir çift kan damarı göze çarpar. Ortadaki damar vena abdominalis (karın bölgesi toplardamarı), iki yan taraftakiler vena cutenea magna dır. Ø Vena abdominalisin sağ tarafından kas tabakasını göğüs kemiği hizasına kadar kesiniz. Bundan sonra göğüs kemiği kaidesinden sağ ve sol tarafa doğru vena cutenea magnaya kadar küçük birer kesim yapınız. Bu şekilde ayırdığınız kas tabakasını sağa ve sola yatırıp iğneleyiniz. Ø Bu şekilde açılan pleuroperitonal boşluk içinde ilk göze çarpan organ karaciğerdir. Karaciğerin loplarını ayırt ediniz. Orta lobu görmek için sağ ve sol lopları yukarı kaldırarak bu parçayı ortaya çıkarınız. Bunun sol lop ile birleştiği yerde yeşil renkli, yuvarlak safra kesesi vardır. Sol lobun ön dış parçasını da kaldırarak büyükçe olan mideyi ortaya çıkarınız. Yemek borusunu ancak bütün iç organların incelenmesi bittikten sonra görebilirsiniz. Sindirim sistemine ait diğer parçaları on iki parmak bağırsağı. İncebağırsak, pankreas ve rektumu bulup inceleyiniz. Ø Kalbi iyi görebilmek için göğüs kemiğini kesiniz. Kurbağa henüz ölmemişse kalbin hareketini görebilirsiniz. Kalp tam göğüs kemiğinin altındadır. Perikard zarını sıyırarak kalbi açığa çıkarınız. Alt tarafta üçgen şeklinde ve daha açık renkte görünen kısım ventrikulustur. Daha koyu renkli iki siyah çıkıntı ise sağ ve sol atriumdur. Ventrikulus ile sağ atriumun dış taraftan sınırladığı bölgede toplu iğne başı kadar bir şişkinlik vardır. Bullıus cordİs adını alan bu bölgeden kalın bir kan damarı truncus arterİosus çıkar. Yüreği küt uçlu bir pensle yukarı doğru kaldırıp ventral tarafına bakınız. Üçgen şeklinde, ince çeperli bir bölge sinüs venosus tur. Buraya ön taraftan büyük bir damar girer. Ø Akciğerler ilk bakışta karaciğer loplarının altında olduklarından görülmezler. Karaciğer loplarını kaldırıp akciğerleri meydana çıkararak sünger görünümündeki bu yapıları inceleyiniz. Ø İç organları vücut duvarına bağlayan mezenterleri inceleyiniz. Sindirim sistemi organlarını ortaya çıkararak görebildiğiniz tüm iç organları gösteren bir şekil çizip isimlendiriniz. Ø Sindirim sistemine ait organları karın boşluğunun dışına çıkarınız. Kurbağa dişi ise bağırsakları çıkarmadan önce onların yan taraflarına taşmış ovaryumlar böbrekleri görmeyi engeller. Bunun için bir tarafın ovaryum ve yumurta kanalını kesip çıkarınız. Yedinci ile sekizinci omur hizasından arkaya doğru uzanan böbrekler birbirine çok yakın olarak dururlar. Üzerlerinde böbreküstü bezleri görülür. Böbreklerden geniş, beyaz iki kanal (üreter) kloaka doğru uzanır. Bu kanallar boşaltım maddelerini, erkeklerde ise aynı zamanda spermleri taşırlar. Ø İdrar kesesini bulunuz. Bunun üreterden ayrı olarak kloaka açıldığını görünüz. İdrar kesesi bacakların birleştiği yerde, kloakın hemen önündedir. Eğer patlamamışsa kolayca farkedilir. Patlamış durumda ise aynı bölgede bir zar halinde görebilirsiniz. Ø İçorgan1arın incelenmesi bitince beyinin diseksiyonu için hayvanın başının dorsali size dönük olacak şekilde çeviriniz. Ø Başın dorsalini kaplayan deriyi bistüri ile yüzünüz. Bunun için hayvanın kafasını sol elin baş ve işaret parmakları arasında tutunuz. Sağ elin 3.4.5. parmaklarını kurbağanın sırtına yaslayıp, bistüri bıçağı hayvanın kafatasına teğet tutmaya çalışarak dikkatli bir şekilde kesim yapınız. Bu şekilde gevşettiğiniz cranİuın (kafatası)'un tavanını yukarı doğru kaldırınız. Kurbağada taze beyin dokusu çok yumuşaktır. Bu nedenle beyini zedelememek için bistürinin kesim sırasında devamlı olarak kafatasına teğet tutulması gerekir. Kranium açıldıktan sonra ilk göze çarpan kısım optik loplardır. Diseksiyon makasının bir ucunu kraniumun bir kenanndan içeri doğru sokarak makası her defasında çok az ileri iterek bir seri küçük kesimler yapınız. Bu şekilde kafatasının yan kenarlarını keserek kafatası tavanının geri kalan kısmını temizleyiniz. Bistüri yardımıyla bu açıklığı genişleterek beyinin dorsalinin tamamının ortaya çıkmasını sağlayınız. Beyinin son kısmı meddulla oblangatayı görebilmek için kafatasının hemen arkasındaki ilk bir kaç omuru her iki yandan neural yaylannı kesip, omurların dorsal kısımlarını uzaklaştırınız. Bu durumda beyinin tamamı ve omuriliğin başlangıcı ortaya çıkmış olur. Dorsalden beynin görüntüsünü kısımlarını belirterek çiziniz. Ø Omurilikten çıkan sinirleri incelemek için tüm iç organları çıkarılmış, alt çene ve ağzın ventral kısmı kesilmiş ve iyice temizlenmiş hayvanda, omurilikten çıkan parlak beyaz renkli 10 çift sinirin ventral uzantılarının omurlar arasından çıkışını görmek mümkündür. Kaynak: biyoloji.ogu.edu.tr/gbII/rana.mht

http://www.biyologlar.com/surungen-preparasyonu-nasil-yapilir

PALEONTOLOJİ

Arkeobiyolojinin bir dalı olan paleontoloji, çeşitli jeolojik devirlerde yaşamış olan insan, hayvan ve bitki türlerine ait fosiller üzerinde araştırmalar yapar ve jeolojik devirlerde yaşayan canlılar hakkında bilgi sahibi olunmasına yardımcı olur. Paleontoloji, fosil bilim ya da taşıl bilim olarak da bilinir. Bir başka tanımlamayla, soyu tükenmiş organizmaların fosillerini ve biyolojisini inceleyen bilim dalıdır. İlk paleontoloji araştırmaları 19. yüzyılda yapılmaya başlanmıştır. Paelontolojide günümüzdeki büyük kaya parçalarının içerdiği bitki ve hayvan fosilleri incelenir, bu yolla jeolojik geçmişte egemen olan yaşam biçimleri belirlenir. Bu bilim dalı eski canlı türlerini bütün yönleriyle (biçimleri, yapıları, günümüzdeki canlı türleriyle taksonomik ilişkileri, coğrafi dağılımları ve çevreyle ilişkileri) inceler. Yer katmanlarının jeolojik tarihinin açığa çıkartılmasında da paleontoloji çalışmalarından elde edilen verilerden yararlanılır. Evrim teorisi günümüzde en çok paleontoloji alanındaki çalışmalarla gündeme gelir. Çünkü fosil bulguları evrimciler açısından çarpıtmaya, taraflı yorumlara ve sahtekarlıklara son derece uygun bir alan oluşturmuştur. Nitekim bilim tarihi evrim teorisine sözde delil bulma arayışlarıyla yapılmış çok sayıda sahtekarlık örneğiyle doludur. Paleontolojinin evrim teorisini desteklediği yönündeki yanlış imaj, Science dergisindeki bir makalede şöyle açıklanır: Evrimsel biyoloji ve paleontoloji alanlarının dışında kalan çok sayıda iyi eğitimli bilim adamı, ne yazık ki, fosil kayıtlarının Darwinizm'e çok uygun olduğu gibi bir yanlış fikre kapılmıştır. Bu büyük olasılıkla ikincil kaynaklardaki olağanüstü basitleştirmeden kaynaklanmaktadır; alt seviye ders kitapları, yarı-popüler makaleler vs... Öte yandan büyük olasılıkla biraz taraflı düşünce de devreye girmektedir. Darwin'den sonraki yıllarda, onun taraftarları bu yönde (fosiller alanında) gelişmeler elde etmeyi ummuşlardır. Bu gelişmeler elde edilememiş, ama yine de iyimser bir bekleyiş devam etmiş ve bir kısım hayal ürünü fanteziler de ders kitaplarına kadar girmiştir. Önde gelen evrimcilerden, N. Eldredge ve I. Tattersall ise bu konuda şu önemli yorumu yaparlar: Ayrı türlere ait fosillerin, fosil kayıtlarında bulundukları süre boyunca değişim göstermedikleri, Darwin'in Türlerin Kökeni'ni yayınlamasından önce bile paleontologlar tarafından bilinen bir gerçektir. Darwin ise gelecek nesillerin bu boşlukları dolduracak yeni fosil bulguları elde edecekleri kehanetinde bulunmuştur... Aradan geçen 120 yılı aşkın süre boyunca yürütülen tüm paleontolojik araştırmalar sonucunda, fosil kayıtlarının Darwin'in bu kehanetini doğrulamayacağı açıkça görülür hale gelmiştir. Bu, fosil kayıtlarının yetersizliğinden kaynaklanan bir sorun değildir. Fosil kayıtları açıkça söz konusu kehanetin yanlış olduğunu göstermektedir. Türlerin şaşırtıcı bir biçimde sabit oldukları ve uzun zaman dilimleri boyunca hep bu şekilde kaldıkları yönündeki gözlem, 'kral çıplak' hikayesindeki tüm özellikleri barındırmaktadır: Herkes bunu görmüş, ama görmezlikten gelmeyi tercih etmiştir. Darwin'in öngördüğü tabloyu ısrarla reddeden bir fosil kaydı ile karşı karşıya kalan paleontologlar, bu gerçeğe açıkça yüz çevirmişlerdir. Amerikalı paleontolog S. M. Stanley, fosil kayıtlarının ortaya koyduğu bu gerçeğin bilim dünyasına hakim olan Darwinist dogma tarafından nasıl göz ardı edildiğini ve ettirildiğini şöyle anlatır: Bilinen fosil kayıtları kademeli evrimle uyumlu değildir ve hiçbir zaman da uyumlu olmamıştır. İlgi çekici olan, bir takım tarihsel koşullar aracılığıyla, bu konudaki muhalefetin gizlenmiş oluşudur... Çoğu paleontolog, ellerindeki kanıtların Darwin'in küçük, yavaş ve kademeli değişikliklerin yeni tür oluşumunu sağladığı yönündeki vurgusuyla çeliştiğini hissetmiştir... ama onların bu düşüncesi susturulmuştu.

http://www.biyologlar.com/paleontoloji-1

Omurgalılar ve Özellikleri

Omurgalılar, sırtları boyunca uzanan omurgalarıyla tüm öbür hayvanlardan ayrılır. Omurga, kıkırdaktan, kemikten ya da her ikisinden oluşan iskeletlerinin en önemli bölümü ve temel eksenidir. Omurgalılar genellikle omurgasızlardan daha iri ve daha karmaşık yapılıdır. İlk omurgalılar yaklaşık 510 milyon yıl önce ortaya çıkan ilkel balıklardır. Omurganın kaslarla hareket ettirilebilen esnek bir destek oluşturduğu, böylece bu hayvanların hızlı yüzmesine olanak sağladığı düşünülmektedir. Omurga ayrıca, içindeki kanalda yer alan ve sinir sisteminin en yaşamsal bölümlerinden olan omuriliği korur. Omurilik, gövde ve uzantıları ile beyin arasında bir sinir köprüsü kurar. Bu geniş hayvan grubu balıklar, amfibyumlar, sürüngenler, kuşlar ve memelilerden oluşur. MEMELİLER (MAMALİA) Yavrularını süt salgılayan göğüs bezleriyle beslediklerinden bu hayvanlara Mammalia adı verilmiştir. Bu hayvanlar Jura’da memeli benzeri sürüngenlerden (Synapsida alt sınıfının Therapsida takımından) ayrı bir dal şeklinde meydana gelmişlerdir. Bu gruptaki hayvanların temel özelliklerinden birisi de tümünün vücudunda az yada çok sayıda kılın bulunmasıdır. Memeliler üç ana gruba ayrılır. Bunların arasında tekdelikliler yada yumurtlayan memeliler olarak tanınan grup ornitorenk ve ekidnelerden oluşur. Bu ilginç hayvanların yavruları, kışlar gibi yumurtadan çıkar, ama sonra anne sütüyle beslenir. İkinci grupta keseliler yer alır. Keselilerin yavruları çok az gelişmiş olarak doğar. Yeni doğanların uzunluğu genellikle 6 santimetreyi aşmaz. Başlıca keseliler arasında opossum, tasmanyaşeytanı, bandikut, kuskus ve kangru sayılabilir. Eteneli memeliler en geniş memeliler grubunu oluşturur. Plasenta adıyla da tanınan etene, annenin içinde gelişen ve yavru ile anne arasında köprü kurarak doğana kadar yavruyu besleyen bir organdır. Eteneli memeliler başlıca 10 grup altına toplanabilir: Böcekçiller (Insectivora) en çok eski dünyada bulunmakla birlikte bir ölçüde Kuzey Amerika’ya da yayılmıştır. Köstebekler, kirpiler ve sivrifareler en bilinen üyeleridir. Yarasalar (Chiroptera), uçan memelileri kapsar. Hemen hemen bütün iri yarasalar meyveyle beslenirken, küçüklerinin çoğu böcekleri avlar. Primatlar (Primates) maymunlar ve insanlardan oluşur. Gelişmiş beyinleri ve el becerileriyle dikkat çekerler. Dişsizler (Edentata) ya dişten tümüyle yoksundurlar yada ağızlarında basit yapılı birkaç diş taşırlar. Armadillo, karıncayiyen ve tembelhayvan bu grubun üyeleridir. Kemiriciler (Rodentia) tür ve birey sayısı en çok olan memelilerdir. Tür sayısı 4000’i aşan memelilerin yarısından çoğunu kemiriciler oluşturur. Kobay, fare ve sıçanın yanı sıra oklukirpi, kunduz ve sincap da kemiriciler arasında yer alır. Etçiller (Carnivora) aslan, kaplan, pars, sırtlan, sansar, ayı, kedi, ve köpeği de içeren yırtıcı hayvanlardır. Denizde yaşamaya büyük bir uyum gösteren foklar ve morslar ise genellikle yüzgeçayaklılar (Pinnipedia) adıyla ayrı bir grupta toplanır. Balinalar (Cetaca) hemen hemen tümüyle kılsız, balık biçimdeki memelilerdir. Suyun dışında yaşayamazlar. Gerçek balinaların yanı sıra yunuslar ve musurlar da bu grupta yer alır. Mavi balina yaşayan en iri hayvandır. Filler (Proboscidea) günümüze yalnız iki türüyle ulaşabilmiş kara hayvanlardır. Tektoynaklılar (Perissodactyla) at, eşek, zebra, tapir ve gergedandan oluşurlar. Toynaklar, bu ve sonraki grubun ayak parmaklarını çevreleyen, kalınlaşarak başkalaşıma uğramış tırnaklarıdır. Çifttoynaklılar (Artiodactyla) deve, geyik, zürafa, sığır, antilop, keçi ve koyun gibi gevişgetirenlerin yanı sıra domuz, pekari ve suaygırı gibi gevişgetirme özelliği bulunmayan hayvanları da kapsar. KARAKTERİSTİK ÖZELLİKLERİ Vücutları genel olarak belirli zaman aralıklarında dökülen kıllarla kaplıdır. Derilerinde ter, yağ, koku ve süt bezleri gibi çeşitli salgı bezleri bulunur. Bazı memelilerin vücut ve kuyruk kısımlarında sürüngenlerinkine benzeyen pullar vardır. 2. Balinalar (Cetacea) ve Deniz inekleri (Sirenia) gibi deniz memelileri dışında kalanlarda dört üye vardır. Bu deniz memelilerinde arka üyeler kaybolmuştur. Her bir üyede 5 veya daha az sayıda parmak bulunur. Gerek üyeler ve gerekse parmaklar çeşitli yaşam biçimlerine göre, örneğin, yürümek, koşmak, tırmanmak, yüzmek, uçmak ve kaçmak gibi görevleri yerine getirecek şekiller kazanmışlardır. Parmak uçlarında boynuz yapısında tırnak ve toynaklar, parmak altlarında ise etli yastıklar mevcuttur. 3. İskelet iyi bir şekilde kemikleşmiştir. Kafataslarında 2 oksipital kondil, boyunlarında 7 tane omur bulunur. Kuyrukları uzun ve hareketlidir. 4. Her iki çenede de mevcut olan dişlerin kök kısımları çukurluklar içerisine gömülüdür. Dişler beslenme durumlarına göre çeşitli şekiller gösterir. Bazılarında dişler bulunmaz. Dilleri çoğunlukla hareketlidir. Gözlerinde hareketli göz kapakları, kulaklarında etli bir dış kulak kısmı bulunur. 5. Kalpleri 2 kulakçık ve 2 karıncık olmak üzere 4 odacıklıdır. Kuşların tersine bunlarda yalnız sol aort kökü bulunmaktadır. alyuvarları yuvarlak ve çekirdeksizdir. 6. Solunumları yalnız akciğerlerle olur. Larinkste ses çıkarmaya yarayan ses telleri bulunur. Kalp ve akciğerlerin yer aldığı göğüs boşluğunu karın boşluğundan ayıran ve diyafram adı verilen kaslı bir bölme vardır. Böyle bir yapı memeliler dışında hiç bir hayvan grubunda görülmez (kuşlardaki bölme kaslı değildir). 7. Vücut sıcaklığı sabittir ve çevre koşularına bağlı olarak değişiklik göstermez (Homoiothermus). Vücut sıcaklığı metabolizma sonucunda sağlanır (endeterm). Vücut üzerinde bir kıl örtüsünün varlığı, deri altında vücudu saran bir yağ tabakasının bulunması ve kirli kan ile temiz kan dolaşımının birbirlerinden tümüyle ayrılmış olması, vücut sıcaklığının değişmezliğini sağlayan özelliklerinden bazılarıdır. 8. Sidik keseleri vardır ve boşaltım maddesi sıvı haldedir. 9. Beyinleri gelişmiş, cerebrum ve cerebellum kısımları oldukça büyüktür. Beyinden 12 çift sinir çıkar. 10. Erkeklerinde bir kopulasyon organı (penis) mevcuttur. Testisleri genellikle karın boşluğu dışında yer alan ve scrotum adı verilen torbalar içerisinde bulunur. Yumurtaları küçük ve kabuksuzdur. Yumurtanın gelişmesi yumurta kanalı (ovidukt)’nın değişmesiyle meydana gelen döl yatağında (uterus) tamamlanır. Amnion, korion ve allantois gibi embriyonik zarlar mevcuttur. Genellikle embriyoyu uterusa bağlayarak onun beslenmesini ve solunumunu sağlayan bir plasenta bulunmaktadır. yavrular doğumdan sonra dişi hayvanın süt bezlerinden salgılanan süt ile beslenir. Memeliler sürüngenlerden meydana gelmiş olmalarına karşın onlardan bir çok yapısal farklılıklar gösterirler. Bu farklılıkların en önemlileri şunlardır: 11. Memelilerde vücut örtüsü olarak pullar yerine kıllar bulunur. Yalnız bazı memelilerin vücutlarında ve kuyruk bölgelerinde sürüngenlerden kalma bir özellik olarak hala pullar mevcuttur. 12. Memelilerin kafatasında iki oksipital kondil bulunur (sürüngenlerde bir tane) ve beyin kutusu daha büyüktür. 13. Memelilerde göğüs boşluğu ile karın boşluğunu birbirinden ayıran kaslı bir diyafram vardır 14. Memelilerde alt çene kemiği bir parça halindedir (sürüngenlerde çok sayıda). 15. Memelilerde alt çene kemiği doğrudan kafatası ile eklem yapmaktadır (sürüngenlerde quadratum ile eklem yapar). 16. Memelilerin orta kulağında incus, malleus ve stapes olmak üzere üçlü bir kemik zinciri vardır (sürüngenlerde yalnız stapes karşılığı olan Columella iç kulakta bulunur, diğer iki kemik çene ile birleşmiştir). 17. Memelilerde belirli zamanlarda dökülen dişler bulunur (sürüngenlerde dişler belirli zamanlarda değiştirilmez). 18. Memelilerde kalp dört odacıklıdır ve yalnız sol aort kökü mevcuttur. 19. Memelilerde ses kutusu çok iyi gelişmiştir (sürüngenlerde körelmiştir). 20. Memeliler yavrularını salgıladıkları süt ile beslerler. 21. Vücutlarında kılların bulunması, görme, işitme ve koku alma duyularının çok gelişmiş olması, beyinlerindeki cerebrum ve cerebellum kısımlarının gelişmişliğine bağlı olarak tüm faaliyetleri iyi bir şekilde koordine edebilmesi, öğrenme ve öğrenilen şeylerin hatırda tutulmasına yarayan bir bellek oluşumu ise memelilerin kuşlardan daha evrim geçirmiş olduklarını kanıtlayan özelliklerdir.

http://www.biyologlar.com/omurgalilar-ve-ozellikleri

Kuyruksallayangiller (Motacillidae)

Richard incir kuşu (Anthus richardi) Kır incir kuşu (Anthus campestris) Ağaç incir kuşu (Anthus trivialis) Çayır incir kuşu (Anthus pratensis) Yeşil sırtlı incir kuşu (Anthus hodgsoni) Kızıl gerdanlı incir kuşu (Anthus cervinus) Dağ incir kuşu (Anthus spinoletta) Sarı kuyruksallayan (Motacilla flava) Sarı başlı kuyruksallayan (Motacilla citreola) Dağ kuyruksallayanı (Motacilla cinerea) Ak kuyruksallayan (Motacilla alba)

http://www.biyologlar.com/kuyruksallayangiller-motacillidae

Kızılkanat (Scardinius erythrophthalmus)

Kızılkanat (Scardinius erythrophthalmus)

Kızılkanat (Scardinius erythrophthalmus), sazangiller (Cyprinidae) familyasına ait bir tatlısu balığı türü. Avrupa'da Ural Dağları'ndan İspanya'nın doğusuna kadar ve Finlandiya'dan İtalya'nın kuzeyine kadar yaygındır. Türkiye'nin sadece kuzeyinde bulunur.Kızılkanat ortalama 20-30 cm (en büyükleri 50 cm) uzunluğunda, ortalama 250-300 gram (en büyükleri 2-3 kilo) agırlığında olur. Yanları yassı olur ve yüksek bir sırtları vardır. Sırtları ve kafalarının üst kısımı ela veya kahverengi-yeşilimsi parlar. Yanları çinko rengi parlar ve karın kısımları gümüşümsü beyaz parlar. Yüzgeçleri kan kırmızısı rengindedir, ama bazen kavun içi renkli yüzgeçleri olanlarınada rastlanır. Kızılkanatlar sık sık kızılgöz balığı ile karıştırılırlar. Bu ikisi aynı familyaya aitlerdir ama aynı balık türü değildirler.Kızılkanatlar bir sürünün içinde yaşarlar, ve duran ya da yavaş akan suların, bol su bitkilerinin bulunduğu alçak su seviyesinde yaşamayı tercih ederler. Yetişkin kızılkanatlar neredeyse sadece su bitkilerinden beslenirler. Beslenmelerinin çok az bir bölümü kurtlardan ve solucanlardan oluşur.Üreme zamanları Mayıs ile Haziran aylarındadır. Bu zamanda dişileri 100.000 ila 200.000 adet 1,5 milimetre büyüklüğünde yumurtalarını su bitkilerinin üzerine yapışık halde bırakır. Kızılkanatlar birçok diğer sazangiller türleri ile birlikte aynı zamanda yumurtladıkları için, sık sık bu yumurtalar diğer türlerinkiler ile karışır ve melez balık türleri maydana gelir. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya: Cyprinidae (Sazangiller)Cins:     ScardiniusTür:     S. erythrophthalmus

http://www.biyologlar.com/kizilkanat-scardinius-erythrophthalmus

Canlıların Sınıflandırılması nedir,nasıl yapılır

CANLILARIN SINIFLANDIRILMASI Dünyamızda yaşamakta olan canlılar incelenirse özelliklerinin çok farklı olduğu gözlenir.Bu farklara rağmen bu canlıları derece derece ve birbirlerine benzeyenleri bir araya toplayarak gruplandırmak mümkündür.Canlıların benzerliklerine göre gruplandırılmasına sınıflandırma (sistematik) denir.Hayvanlar ve bitkiler belirli bir düzen içerisinde sınıflandırılır. SINIFLANDIRMA SİSTEMİNİN GELİŞİMİ Canlılar; monera, protista, fungi, bitki ve hayvan olmak üzere gözle görülmeyen çok küçük organizmalardan dev ağaçlara ve binalara kadar bir dağılım gösterirler.Bu büyük hayat çeşitliliğini tanıyabilmek için, büyük grupları daha küçük gruplara ayırmak gerekir.Biyologlar dünyadaki canlıları sınıflandırmamış olsalardı, bu kadar çeşitli olan canlılara ulaşmak mümkün olmayacaktı. Sınıflandırmanın amacı, canlıları bir sistematiğe oturtmak ve tabiatı daha kolay anlaşılabilir hale getirmektir. İlk sınıflandırmayı Yunan Filozofu Aristoteles (m.ö.383-322) yapmıştır.Aristoteles bitkileri otlar, çalılar, ağaçlar; hayvanları ise yaşadıkları yere göre karada, suda ve havada yaşayanlar şeklinde gruplandırmıştır.Aristoteles’in sınıflandırması canlıların görülebilen ve morfolojik özelliklerine göre yapılmıştır. Günümüzdeki sınıflandırılmada, canlıların bütün özellikleri göz önünde bulundurulur. Örneğin yarasanın kanatlarına bakarak onu kuşlar sınıfında incelemek mümkün değildir.Yarasa bütün özellikleri ile bir memeli hayvandır. Sınıflandırma, canlıların görülen bir veya birkaç özelliğine göre yapılırsa ‘suni sınıflandırma’ (yapay sınıflandırma) adını alır. Aristo’nun yapmış olduğu sınıflandırma yapay sınıflandırmadır. Buna ampirik sınıflandırma da denir. Günümüzde sınıflandırma, canlıların akrabalık ilişkilerine göre yapılır. Sınıflandırılmada canlıların tüm özellikleri göz önünde bulundurulur.Bu çeşit sınıflandırmaya ‘tabii sınıflandırma’ (doğal sınıflandırma) denir. Doğal sınıflandırma bilimsel olan sınıflandırılmadır.Buna filogenetik sistematik da denir. Bir canlıyı türün evrim sistematiğine geçirdiği gelişmelere filogeni (soy oluş), embriyo döneminde geçirdiği değişmelere ontogeni (birey oluş) denir. SINIFLANDIRMA BİRİMLERİ Sınıflandırmanın en küçük birimi tür dür.Sınıflandırmada tür kavramını ilk kuran kişi John Ray dır. Tür ortak bir atadan gelem,yapı görev bakımından ortak özelliklere sahip olan, kendi aralarında çiftleşerek verimli döller meydana getirebilen bireylerin oluşturduğu topluluktur. Sistematikte her tür iki isimle adlandırılır.Bu iki isimden 1. si canlının cinsini 2. si tanımlayıcı özelliğini belirtir.Her türün iki isimle adlandırılması ilk kez Carolus Linnaeus tarafından kullanılmıştır. Türlerden daha büyük topluluklar da vardır.Bunlar sırasıyla cins, familya, takım, sınıf, şube ve alem dir. Birbirlerine çok benzeyen yakın türlerin gruplaşmasıyla cinsler ortaya çıkar.Örneğin kedi, aslan ve kaplan türleri ‘felis’ cins adı altında toplanır. Felis domesticus :Kedi Felis leo :Aslan Felis tigris :Kaplan Her tür kendi cinsiyle belirtilir.Bu kural bütün dünyada kullanılır. Böylece karışıklık önlenir.Cinslerin ortak karakterlerine göre gruplaşmasına familyalar meydana gelir.Benzer familyalar takımları oluşturur.Benzer takımların gruplaşmasıyla sınıflar ortaya çıkar. Sınıfların bir araya gelmesiyle şubeler, şubelerin bir arya gelmesiyle alem meydana gelir. Sınıflandırmada birimler büyükten küçüğe doğru gidildikçe, birimin kapsadığı birey sayısı artar, aralarındaki benzerlik azalır.Büyük biriden küçük birime doğru gidildikçe birey sayısı azalır, benzerlik artar. BİLİMSEL SINIFLANDIRMANIN DAYANDIGI TEMELLER Günümüzde geçerli olan sınıflandırma filogenetik sınıflandırmadır. Bu sınıflandırmaya göre bütün canlıların ortak bir atası vardır.Bu sınıflandırmanın açıklanabilmesi için akrabalık derecelerinin açıklanması gerekir.Akrabalık derecelerinin belirlenmesinde bazı temel kurallar göz önüne alınır. 1) Homolog Organlar: Yapıları ve gelişimleri birbirlerine benzeyen fakat farklı görevleri olan organlara homolog organlar denir.Örneğin fok balığının ön yüzgeci, yarasanın kanadı, kedinin pençesi, atın ön bacağı, insanın eli homolog organlardır.bunları her biri yaklaşık olarak aynı sayıda kemik, kas, sinir ve kan damarlarına sahiptir.Aynı plana göre düzenlenmiş ve aynı gelişme biçimine sahiptir.homolog organlar canlıların ortak bir atadan geldiğinin kanıtlarından biri olarak ileri sürülmektedir. Bazı organlar aynı kökten gelmedikleri halde, yaptıkları görev aynıdır. Bu organlara anolog organlar denir.Kuş ve böcek kanatları analog organlardır. 2) Embriyolojik Benzerlik: Canlıların embriyo dönemlerinde geçirdikleri evreler ve farklılaşmalar birbirine çok benziyorsa bu canlılar yakın akrabadır.Omurgalı hayvanlarının embriyolarının ilk evreleri çok belirgin bir benzerlik gösterir.İlk evrede balık ve domuz embriyosunu ayırmak çok zordur. 3)Biyokimyasal Benzerlik: Çeşitli hayvanların plazma proteinleri arasındaki benzerlik derecelerinin antijen-antikor tekniği ile denenir. Her hayvan türünün kan içeriği kendine özgün bir protein bileşimine sahiptir.yakın akraba olan canlıların plazma proteinlerinin benzerliği daha fazadır. Bütün hayvanlarda hücrenin çalışması ve kalıtım faktörlerinin dölden döle geçmesi kromozomlar tarafından kontrol edilir.Bütün canlılarda kromozomların kimyasal yapısını DNA (deoksiribonükleik asit) meydana getirir.Akrabalık derecesi yakın olan canlıların DNA’larının baz dizilimlerinin benzerliği de artmaktadır. Hayvanlar, protein metabolizması sonucu oluşan azotlu artıkları üre, ürik asit ve amonyak şeklinde idrarla vicuttan uzaklaştırılabilir. Sınıflandırılmada canlıların idrarlarının bileşimi de dikkate alınır. Memeli canlılarının çoğunda sindirim için aynı veya benzer enzimler kullanılır.Bu olaylar canlıların ortak bir kökten geldiğinin kanıtlarından biri olarak gösterilmektedir. Bunlar başka yumurta tiplerinin benzerliği, organizmaların simetri şekilleri anatomik yapılarındaki benzerlikler gibi özellikler de doğal sınıflandırma yapılırken dikkate alınır. Bazı organizmalar mevcut bir sınıflandırma sistemine koymak oldukça zordur.Çünkü canlıların taşıdıkları özelliklerin bazısı bir gruba, bazısı da diğer bir gruba ait olabilir.Örneğin tek hücreli olan euglena; hareketli , kloroplast taşıyan ve kendi besinini yapabilen canlıdır. Euglena, hareketinden dolayı hayvan, kloroplast taşıdıgı ve kendi besinini kendisi yaptığından dolayı da bitki olarak kabul edilmiştir. Bakteriler: Heteretroflardır. Parazit yada saprofit beslenirler. Fotosentez ya da kemosentez yapan ototrof olanları vardır. Mavi-Yeşil algler:Fotosentez yaparlar.Kloroplastları yoktur. Fotosentez olayı stoplazma içine dağılmış klorofiller aracılığı ile olur. PROTİSTA a) Kamçılılar: Tek hücreli yapıya sahiptirler. Suda hareket ederler. Heterotrof ve otorotrof olanları vardır.Örnek:Euglena. b) Kök ayaklılar: Tek hücreli olan bu protozoalar besinlerini yalancı ayakları ile alır ve hareket eder.Örnek:Amip c) Sporlular: Sporla ürerler. parazityaşarlar. Örnek: Plazmadizmmalaria d) Silliler: Hücrenin çevresi hareket ve besin almayı saglayan sillerle çevrilidir. Örnek: Şapkalı mantar. FUNGİ Çok çekirdekli hücrelere sahip olup, sporlarla ürerler. Örnek: Şapkalı mantar. BİTKİLER Algler, çiçeksiz bitkiler ve çiçekli bitkiler olmak üzere üç grupta incelenir. Algler: İletim demetleri yoktur.İletim demetleri olmadığından su ve suda erimiş madensel tuzları tüm bitki tüzeyi ile alırlar.Doku farklılaşması yoktur. Çiçeksiz Bitkiler: Kendi arasında ikiye ayrılır. 1) Kara yosunları: İletim demetleri yoktur.Eşeyli ve eşeysiz üreme, döl değişimi şeklinde birbirini takip eder. Gametleri gametongium denen keselerde oluşturur.döllenme sonucu oluşan zigot bir süre ebeveyne bağlı kalır. 2) Eğrelti otları: İletim demetleri vardır.Gerçek kökleri yoktur. Eşeyli ve eşeysiz üreme döl değişimi şeklinde birbirini takip eder. Çiçekli Bitkiler:İyi gelişmiş iletim sistemleri vardır.Üreme organları çiçek şeklinde özelleşmiştir.Açık ve kapalı tohum olak üzere iki grupta incelenir. 1) Açık tohumlular: Her zaman yeşildirler.Soymuk demetlerinde kalburlu hücreler vardır, arkadaş hücreleri yoktur.Çiçekleri daima tek eşeylidir.Tohumları daima çok çeneklidir.Tohum taslakları yumurtalık dışına gelişir. 2) Kapalı tohumlular: En gelişmiş bitki sınıfıdır.Her zaman yeşil değildirler.Çiçekleri genelde erseliktir.Çiçeklerinde çanak ve taç yaprak farklılaşması vardır.Kapalı tohumların iki önemli sınıfı vardır. 1)Monokotiledonlar (bir çenekliler): Embriyolarında tek çenek yaprağı taşırlar.Otsu bitkilerdir.Tek yada çok yıllık olabilirler.İletim demetleri dağınık ve düzensiz sıralanmıştır.Korteksi incedir.Meristem kambiyumu yoktur.Yaprakları paralel damarlıdır. Saçak kök sistemi bulunur. 2) Dikotiledonlar(iki çenekliler): Embriyolarında iki çenek yaprağı taşırlar.Otsu ve odunsu bitkilerdir.Tek yada çok yıllık olabilirler. İletim demetleri dairesel çizilmiştir. Korteksi incedir.Enine kalınlaşmasını sağlayan kambiyum (meristem) bulunur.Yaprakları ağsı damarlıdır.Ana kök ve buna bağlı yarı kökler gelişmiştir. HAYVANLAR Çok hücreli heterotrof canlılarıdır.Aktif hareket ederler. Omurgalılar ve omurgasızlar olmak üzere iki gruba ayrılırlar. Omurgalılar(kordalılar) Omurgalılar ve ilkel kordalılar olmak üzere iki gruba ayrılırlar. A) Omurgalılar:Vücutlarının sırt tarafında bir sinir kordonu bulunur.İç iskelet eklemlidir. İskelete bağlı kaslar hareketi sağlar.Hepsinde beyin ve beyini koruyan kafatası vardır.Dolaşım sistemleri kapalıdır.Holozoik olarak beslenirler.Çoğu ayrı eşeylidir.Balıklar, kuşlar, kurbağalar, sürüngenler ve memeliler olmak üzere beş sınıfa ayrılırlar. 1) Balıklar: Vicutları pullarla örtülüdür.İç iskelet kemikten ya da kıkırdaktan oluşmuştur.Solungaç solunumu yaparlar.Kalpleri iki odacıklıdır.Kalplerinde sürekli kirli kan bulunur.Vücutlarında temiz kan dolaşır.Soğuk kanlı hayvanlardır.Boşaltım organları mezonefros tipi böbreklerdir.Boşaltım maddelerinin, üreme hücrelerinin ve sindirim artıklarının toplandığı kloak denilen yapıya sahiptirler.Örnek:köpek balığı, alabalık, sazan. 2) Kuşlar: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sağa kıvrılarak dallanır.Sıcakkanlıdırlar.Boşaltım organı metanefroz tipi böbreklerdir, vücut tüylerle kaplıdır.Tüysüz olan bölgeler pullarla örtülüdür.Kloaklıdırlar. Dişleri yoktur.Örnek:martı, bülbül, tavuk, ördek, deve kuşu. 3) Kurbağalar: Lavralar solungaç solunumu, erginleri akciğer ve deri solunumu yaparlar.Kalpleri üç odacıklıdır.Vücutlarında karışık kan dolaşır.Soğukkanlıdırlar.Azotlu dolaşım maddesi amonyaktır.Boşaltım organı mezonefroz tipi böceklerdir.Kloak lıdır.Derilerinin mukus salgısı olan mukus, deriyi kaygan tutar.Örnek:semender, kuyruklu kurbağa, su kurbağası. 4) Sürüngenler: Akciğer solunumu yaparlar.Kalpleri üç odacıklıdır (timsah hariç).Soğukkanlıdırlar.Erginlerinin boşaltım organları metanefroz tipi böbreklerdir.kloak lıdırlar.Dişilerde yumurta kanalının bir bölümü yumurta akı, diğer bölümü yumurta kabuğu yapacak şekilde özelleşmiştir.Vücut keratinle kaplı olduğundan kurudur. Örnek:yılan, timsah, kaplumbağa, kertenkele. 5) Memeliler: Akciğer solunumu yaparlar.Kalpleri dört odacıklıdır.Kalbin sol karıncığından çıkan aort sola kıvrılarak dallanır. Sıcakkanlı hayvanlardır.Kloak yoktur.Ürogenital sistem sindirim sisteminden ayrı olarakdışarıya açılır.Boşaltım organı metanesaz tipi böbreklerdir.Sinir sistemleri çok gelişmiştir.Örnek:fare, yarasa, kirpi, insan,balina.  B) İlkel kordalılar: İskeletleri kıkırdaktır.Yutak bölgesinde solungaç yarıkları, sırt tarafında da sırt ipliği bulunur.Bu grubun tek örneğiAmfiyoksüs tür. OMURGASIZLAR Süngerler, sölentereler, solucanlar, yumuşakçalar, eklembacaklılar ve derisi dikenliler olmak üzere gruplandırılmışlardır. a) Süngerler: Yapısını oluşturan hücreler arasında iş bölümü vardır.Hücresel farklılaşma görülmesine karşın hücrelerde doku oluşturmak için iş bölümü yoktur. b) Sölenterler: Bu şube üyeleri oyu bir kese gibi düzenlenmiş tek açıklı sindirim boşluklarına sahiptirler.Örnek:deniz anası, hidra, mercanlar. c) Yassı solucanlar: Sinir ve üreme sistemlerine sahiptirler.Örnek: tenya, planoria. d) Yuvarlak solucanlar: Bitki ve hayvanlarda parazit yaşarlar.Örnek: bağırsak solucanı. e) Böcekler: Vücutlarının tamamı epidermisin salgıladığı kitin ile kaplıdır.Trache solunumu yaparlar. CANLILARDA BESLENME İLİŞKİLERİ Besleme sistemine göre canlılar üreticiler(ototroflar) ve tüketiciler(heterotroflar) olmak üzere iki grupta incelenir.Üretici canlılar(ototroflar) kendi besinlerini yapar.Tüketiciler(heterotroflar) besinlerini kendileri yapamaz.Doğrudan veya dolaylı olarak ototrof canlılardan sağlar. OTOTROF BESLENME Kendi besinini kendisi sentezleyebilen organizmalara ototrof (üretici) canlı denir.Enerji sayesinde inorganik maddelerden organik madde sentezleyebilirler.Bitkiler, algler ve bazı bakteriler ototrof canlılardır.Kullanılan enerji kaynağına göre, ototrof organizmalar fotosentez yapanlar ve kemosentez yapanlar olmak üzere iki bölümde incelenir.fotosentez yapan canlıların klorofili vardır.bunlar klorofilleri sayesinde güneş ışınlarını soğurarak organik besinlerde kimyasal bağ enerjisine çevirirler. Kemosentez yapan organizmalar genellikle bakterilerdir.Bunlar gerekli enerjiyi amonyak, hidrojen, sülfür gibi belirli inorganik maddeleri oksitleyerek sağlar. Nitrit bakterileri amonyağı nitrite, nitrat bakterileri nitriti, nitrata dönüştürür.bu sırada açığa çıkan enerji bakteriler tarafından ATP sentezinde kullanılır.Bu şekilde gerçekleşen ATP sentezine kemosentetik fosforilasyon denir.Bu ATP inorganik maddelerden organik maddelerin sentezi sırasında kullanılır. Nitrit ve nitrat bakterileri azot döngüsünde rol oynar.Amonyağı, yeşil bitkilerin kolayca alıp kullanabileceği nitrat bileşiklerine dönüştürür.Amonyağın nitrata dönüştürülmesine nitrifikasyon denir. HETEROTROF BESLENME İnorganik maddelerden organik besin yapamayan, organik besinleri hazır olarak alan canlıların beslenme biçimine heterotrof beslenme denir.Böyle beslenen canlılara dış beslek veya tüketiciler adı verilir. Heterotrof canlıların beslenme ve yaşama şekilleri holozoik, simbiyoz, saprofit olmak üzere üç grupta incelenir. a) Holozoik Beslenme:Bu şekilde beslene canlılar besinlerini katı parçalar halinde alarak sindirirler.bunların sindirim sistemleri, avlarını yakalayabilmek için duyu organları, sinir sistemleri ve kas yapıları gelişmiştir.Otçul hayvanlar, etçil hayvanlar ve hem otçul hem etçil hayvanlar bu grupta incelenir. b) Birlikte Yaşama:İki veya daha fazla türün bir arada kurdukları yaşam şekline simbiyosim denir.Bu canlılardan biri konak diğeri konuk adını alır.Birlikte yaşama yararlı ve zararlı birliktelikten oluşur.Yararlı birliklerin beslenme biçimi kommensalizm ve mutualizm dir.Zararlı birlikteliklerin ise parazitizmdir. 1) Mutualizm:Bir arada yaşayan canlıların karşılıklı olarak yarar sağlaması şeklindeki beslenme biçimidir.Bu beslenme biçimine en tipik örnek likenlerdir.Liken, mantar ve yeşil algler in birlikte oluşturdugu bir yaşama birliğidir. 2) Kommensalizm:Bir canlı üzerinde yaşadığı canlıya zarar vermeden bu canlıdan yararlanıyorsa bu yaşama şekline kommensalizm denir.Örnek olarak yengeçlerin solungaçlarına tutunarak yaşayan bazı yassı kurtlar. 3) Parazitizm:Bir arada yaşayan iki canlıdan birinin digerini sömürerek ona zarar vermesi şeklinde olan beslenme ilişkisidir.Bazı bakterilerin sindirim enzimleri yoktur.Önemli monomerleri diğer canlı organizmalardan sağlarlar.Böyle bakterilere parazit bakteriler denir. Hastalık yapan parazit bakterilere de patojen bakteriler denir. Bir canlı diğer bir canlının deri ve solungaçlarına yapışarak yaşıyorsa bu canlılara ektoparazit (dış parazit) denir.Koku ve diğer duyu organları iyi gelişmiştir.Bit, pire, tahtakurusu, uyuz böceği, sivrisinek bir ekoparazittir. Bir canlı diğer bir canlının iç kısmında yaşıyorsa endoparazit denir. Bu parazitler hücre içerisinde yaşıyorsa bunlara hücre parazitleri denir.Örneğin sıtmaya neden olan parazit plazmadium al yuvar hücresinde yaşar.Endoparazitler çok sayıda gamet oluştururlar. Bundan dolayı üreme sistemleri çok gelişmiştir Bitki üzerinde yaşayan ve konak organizmanın odun borularından su ve madensel tuzlar alarak fotosentez yapabilen parazitlere yarı parazit denir.Üzerinde yaşadığı konak bitkinin soymuk borularından hazır organik maddeler alarak yaşayan parazit bitkilere tam parazit denir. c) Saprofit (çürükçül) beslenme:Biramayası, küf mantarı ve bakterilerin çoğu besinlerini katı olarak alamazlar.Bunlar gerekli olan organik besin maddelerini kokuşmaya yüz tutmuş bitki ve hayvan ölüleri üzerinden canlı artık ve salgılarından sağlarlar.Saprofitler öncelikle dışarı salgıladıkları enzimle besinlerini sindirir.Daha sonra küçük molekülleri emerler.Bu şekilde heterotrof beslenmeye saprofit beslenme denir.Saprofit bakterilerinin bir kısmı çürümede, bir kısmı ise mayalanmada rol oynar. HEM OTOTROF HEM HETEROTROF BESLENME Sinek kapan ve ibrik otu gibi böcek yiyen bitkiler fotosentezle organik madde yapar.Ayrıca yakaladıkları böcekleri salgıladıkları enzimlerle hücre dışında sindirirler.Daha sonra bu besinleri emerler. DOGADA MADDE DEVRİ Organik artıklar ve cesetler ayrıştırılarak inorganik maddelere dönüştürülür.Bu yollarla serbest kalan inorganik maddeler yeniden fotosentez ve kemosentez de kullanılır hale getirilir.Fotosentez ve kemosentez olaylarıyla inorganik maddeler yeniden organik bileşiklere dönüştürülür. Bu dönüşümlere doğada madde döngüsü denir. Karbon devri: Bir dönümlük şeker kamışı her yıl atmosfer tabakasından 20 ton kadar karbondioksit kullanır.Bitki ve hayvan enerji elde etmek için organik maddeleri yıkar.Karbondioksit ve su ya kadar parçalanır.Hücre solunumu denen bu olay sonucunda oluşan karbondioksit tekrar atmosfer tabakasına verilir. Azot devri: Bitkiler aminoasit ve protein sentezi yapabilmek için gerekli olan azotu, nitrat tuzları olarak topraktan alırlar.Bitkiler tarafından alınan nitratlar bitki hücreleri tarafından aminoasit ve protein sentezinde kullanılır. Ölmüş bitki ve hayvanla, canlıların artıkları ve salgılarındaki proteinli maddeler saprofitler tarafından amonyağa dönüştürülür.Bu olaya pütrüfikasyon (kokuşma) denir. Amonyak nitrit bakterileri tarafından nitrite; nitritte nitrat bakterileri tarafından nitrata dönüştürülür.Bu olaya nitrifikasyon denir. Bitki tarafından kullanılmayan nitratlar azot bozan bakteriler ile parçalanır.Bu parçalanmadan açığa çıkan azot tekrar havaya karışır.Bu olaya denitrifikasyon denir. Havanın azotu toprağa iki şekilde geçer: 1)Yıldırım çakması sonucu azot oksijenle birleşir.Daha sonra su ile etkileşince nitrik asit meydana gelir.Yağmurla toprağa inen nitrik asit toprakta bulunan sodyum ve potasyum bileşikleri ile etkileşerek nitrat tuzlarını oluşturur. 2)Toprakta, havanın serbest azotunu bağlayabilen ve kullanabilen azot bakterileri vardır.baklagillerin köklerindeki urlarda yaşayan ribozom da havanın serbest azotunu bağlayabilir ve azotlu madde yapar.Bu bakterilerin ölüleri topraktaki azotlu organik artıkları oluşturur.

http://www.biyologlar.com/canlilarin-siniflandirilmasi-nedirnasil-yapilir

Büyük Beyaz Köpekbalığı - Carcharodon carharias

Büyük Beyaz Köpekbalığı Nedir? Büyük beyaz köpekbalığı,(Carcharodon carharias),genellikle soğuk kıyı sularında yaşayan,çok büyük ve hızlı yüzücü,yırtıcı bir balık türüdür.Hakkındaki ilk bilimsel araştırma,1554 yılında çıkardığı bir kitaptaki tanım ve çizimleriyle Rönesans dönemi araştırmacılarından Guillaume Rondelet’e aittir.1785’te Carolus Linnaeus çıkardığı katoloğunda (Systema Naturae),bu türü bilimsel olarak Carolus Linnaeus olarak isimlendirmiştir.Yüzyıllar boyu bu yanlış anlaşılmış balık ta Afrika’da yaşayan diğer yırtıcı kediler gibi,birazda popüler medya ve yanlış bilgilendirilen insanlar yardımıyla,bir korku kaynağı oluşturmuştur.Fakat biz burada bu köpekbalığının dünyasını inceleyip,denizler aleminde hakettiği rolü anlamaya çalışacağız. 2- İsimler ve Sınıflandırma Linnaeus’un sınıflandırma sistemi bütün türleri isim üzerinden adlandırır,genel ve spesifik olarak.Linnaeus’un kitabının onuncu baskısı,bilimsel isimler hakkında en eski yayın olarak seçilmiştir,dolayısıyla Squalus carharias büyük beyaz köpekbalığının kabul edilen en eski ismidir.Büyük beyaz köpekbalığı değişik bir genel isim altında olmalıydı,çünkü Linnaeus’tan sonraki bilim adamları farkattiler ki “Squalus” daha birçok değişik köpekbalığı temsil ediyordu.1833’te Sir Andrew Smith “Carcharodon” isminin genel (cenerik) isim olarak verilmesini önerdi,fakat Linnaeus’un verdiği spesifik ismin Sir Andrew’un verdiği genel isimle birlikte kabul edilmesi ancak 40 yıl sonra olabild Büyük beyaz köpekbalığı Lamnidae uskumru köpekbalıkları familyası grubunda yer alır.Bu familyada iki mako ve iki de porbeagle köpekbalığı türü olmak üzere dört tür daha yer alır.Bunların sadece biri shortfin mako,Güney Afrika açıklarında yaygındır.Büyük beyaz köpekbalığı için kullanılan lokal (yerel) isimler dil gruplarına göre değişiklik gösterir.Fakat ingilizce konuşulan ülkelerde “white shark (beyaz köpekbalığı) ismi yaygın olarak kullanılır.Daha az yaygın olarak ta daha eski bir kelime olan “man-eater”(insan yiyici) kelimesi kullanılır.Avustralya’da “white pointer”(beyaz değnek)kelimesi yaygındır.Daha az yaygın olarak ta “white death”(beyaz ölüm).Güney Afrika’da da bu terimler kullanılır,fakat “blue pointer”(mavi değnek) bazı büyük beyazların arkası mavimsi renkte olduğu için veya Britanya ordusundaki askerlere verilen eski bir takma isim olan “tommy” kelimesi de kullanılır.Afrikalıların kullandığı (witdoodshaai)kelimesi daha az kullanılan ingilizce isimlerin birinden gelmiştir. En çok aşina olduğumuz köpekbalıkları büyük beyaz köpekbalığı gibi,torpido benzeri ve diğer köpekbalıkları ile karşılaştırıldığında oldukça kalın,bir gövdeye sahiptir.Büyük beyaz köpekbalığının burnu kısa ve koniseldir.Gözler yuvarlak ve zifiri siyahtır.Dişler özellikle üst çenedekiler küçük testere dizilimsi keskin kenarlardan oluşan oldukça üçgensel bir yapıya sahiptir.İki metreden küçük olan bazı gençler(yetişkin olmayanlar) düz diş yüzeylerine(kenarlarına) sahip olabilirler.Beş solungaç yarığı(yırtmacı) uzundur ve hepsi göğüs yüzgeçlerinin önünde yer alır.Yetişkinlerdeki anal ve ikinci sırt yüzgeçleri neredeyse dikdörtgensel bir yapıya sahiptir ve çok küçüktür.Kuyruk yüzgeci hilal biçimindedir(üst ve alt uçlar yaklaşık olarak aynı büyüklüktedir).Kabaca göze ve pelvis yüzgecine doğru uzanan bir çizgi üzerinde yer alan vücudun üst kısmı siyahtan açık griye değişir.Bunun altında,gövde beyazdır.Taze yakalanmış olanları genellikle zamanla suyun dışında(havada)solan pirinç kaplama renginde bir parlaklık gösterirler.Göğüs yüzgecinin vücuda bağlandığı yerde genellikle siyah bir nokta mevcuttur. Shortfin mako köpekbalığı görünüş olarak büyük beyaz köpekbalığına benzer.Gövde üzerinde ve yanlardaki parlak mavi renkle diğerlerinden farklılık gösterir.(Gövde üzerinde ve yanlardaki parlak mavi ona ait belirgin bir özelliktir).Daha büyük gözleri vardır.Dişleri daha dar ve düz yüzeylidir.Büyüdüğünde 4 metreye kadar ul Şekil 2:177cm olgunlaşmış dişi(Kwazulu-Natal) WHITE SHARK Sistematik Order:Lamniformes Family:Laminidae Genus:Carcharodon Species:carharias 3-Yetişme Ortamı Büyük beyaz köpekbalığı en çok kıta Avrupası sularında görülen ılıman denizlerin yakın kıyı balığıdır.Tropikal kuşaktan tamamen kaçınmak(özellikle büyük olanları),fakat özellikle Orta Amerika,tropikal Güney Amerika ve merkezi Pasifik adaları gibi bazı bölgelerde çok sık ta görülmez.Issız sulardan gelen birçok rapor,bu türün geniş bir alana yayılabilme ve hatta okyanus havzalarını karşıdan karşıya geçebilme yeteneğinde olduğunu gösterir.Büyük beyaz köpekbalıkları çoğunlukla yakın yüzey(üst) sularda bulunurlar,özellikle avlanırken,fakat istisnai bir olayda bir büyük beyaz 1280 metre derinlikte bir oltaya takılmıştır. Büyük beyaz köpekbalığı açısından zengin olarak bilinen bölgeler, muhtemelen bu bölgelerde insanla8spor balıkçıları,denize girenler,akuba dalgıçları,sörfçüler gibi)daha fazla bir etkileşimi yansıtır.Bu bölgeler Kaliforniya,ABD’nin Orta-Atlantik Federe Devletleri,Güney Afrika ve Doğu Avustralya,Yeni Zelanda ve bazı Pasifik adaları gibi yerlerdir. 4-Beyaz Köpekbalığı Ekolojisi ve Korunması Yetenekli olduğu kadar etkileyici de olan beyaz köpekbalığı(diğer deniz canlılarından ayrı)bir ortamda kalamaz.O, karmaşık kuralları olan karşılıklı bir dayanışmanın hüküm sürdüğü deniz canlılarının gerekli bir üyesidir(parçasıdır). Kıyı şeridindeki bütün ekosistemler,güneşin ışık enerjisini yakalayıp,diğer canlıların kullanabileceği bir formda paketleyen fotosentetik organizmalarla başlar.Bu bitkiler çok geniş bir otçul tarafından yenir(bu bitkiler çok geniş bir otçul hayvan kitlesini besler).Bu otçul hayvanlar etçil hayvanlar tarafından yenir(bu otçul hayvanlar etçil hayvanları besler).Bu etçil hayvanlarda daha büyük etçil hayvanlara yem olur.Bu sayede,enerji,besin zincirinin daha uzak noktalarında yer alan,çok daha büyük hayvanlara iletilir(geçer). Enerji,bir beslenme seviyesinden,bir sonraki beslenme seviyesine geçerken,yaklaşık %90’ını kaybeder.Bu nedenle ,her beslenme seviyesi,bir alttaki beslenme seviyesinin ancak 1/10(onda biri)kadar canlı madde içerir.(Bir seviyedeki bütün canlı varlıkların toplam madde miktarı,bir alttaki seviyeye göre 10 kat daha azdır).En yukarıdaki beslenme seviyesinde büyük beyaz köpekbalığı gibi en zirvedeki yırtıcılar yer alır.sayısal olarak çok nadir olmalarına rağmen,bu en zirvedeki yırtıcılar,bütün ekosistemin üzerinde bulunan bir başlıktır.Nerdeyse okyanusta olup biten her şey büyük beyaz köpekbalığını beslemek içindir.Oldukça yakın geçmişe kadar,büyük beyaz köpekbalığının ne kadar yediği hakkında çok az fikir sahibi olduk.Son zamanlarda Kuzey Atlantik’in batısında yapılmış çok önemli bir deney,büyük beyaz köpekbalığının,keskin ısı farklarındaki ortamlarda yüzüşünden kaslarındaki ısı değişimini inceledi.Bu ölçümler temel alınarak yapılan ılımlı bir tahmine göre,45 kilogram balina yağı yemiş yaklaşık 5 metrelik bir büyük beyaz köpekbalığı,1.5 ay başka hiç bir şey yemeye ihtiyacı olmaksızın yaşayabilir.Ortalama bir kütle ve yağ içeriğine sahip olan bir Kuzey deniz Fili yavrusu temel alındığında,bir yavrunun bir büyük beyaz köpekbalığına 3 ay yeteceği tahmin edilmektedir. Sonuç olarak gözüküyor ki,büyük beyaz köpekbalığı çok az bir sıklıkta bu gibi deniz memelileri ile beslenme ihtiyacındadır ve muhtemelen deniz Fillerinin beyaz köpekbalıklarınca ölümü hastalıklar,boğulmalar ve kendi aralarındaki kavgalar gibi sebeplerdeki ölüm oranı oldukça düşüktür. Zirvede bir yırtıcı olmasına rağmen,beyaz köpekbalığının da korktuğu yırtıcılar mevcuttur.1997 yılında Farallon adası açıklarında,bir öldürülen balinanın(Orcinus orca) 10-12 foot(yaklaşık 3-3.5 metre)uzunluğundaki bir beyaz köpekbalığını öldürüp yemesi gözlenmiş ve filme alınmıştır.Bu saldırıdaki öldürülen balina belki kendi yavrularını koruyordu,belki de bu atak tamamen kendisiyle av konusunda rekabet halinde olan bir rakibi devre dışı bırakma vakası idi.Bu gibi aşırı derecede ilgi çeken bazı olayların olmasına rağmen,büyük beyaz köpekbalığını yiyen doğal yırtıcılar nadirdir.Bu güne kadar büyük beyazların en göze çarpan öldürücüleri insanlar olmuştur.Bu türün eti sıkı(sertçe),beyaz ve lezzetlidir.Belki de bundan daha önemlisi,büyük beyazın çenesi ve dişleri nadir bulunan bir ganimet ve hatıra eşyası olarak dünya çapında aşırı derecede gözdedir(değerlidir).Kaliforniya açıklarında her yıl 10-20 büyük beyaz öldürülür.Yakın geçmişte bu rakama erişmedeki pay,büyük ölçüde spor için balık avlayan Kaliforniyalılara ait olmuş çene ve dişleri tutup geri kalanı atmışlardır.Bu günlerde ise,büyük beyazların büyük çoğunluğu ticari balıkçılar tarafından yanlışlıkla tutulmaktadır.Bunların bir kısmı bilimsel araştırma kurumlarına bağışlanmakta,diğerleri de genellikle internet üzerinden açık arttırmayla satılmaktadır.1993’ün ekiminde,Kaliforniya büyük beyaz köpekbalığını korunması gereken canlı türlerine dahil eden ilk Amerikan federe devleti olmuştur.1994’ün ilk gününden itibaren bütün Amerika Birleşik Devletleri sularında büyük beyaz köpekbalığının ticari ve spor amaçlı avlanması yasaklanmıştır.Büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir gemi Amerika Birleşik Devletleri suları dışında yakalanmış büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir geminin,Kaliforniya limanına yanaşmasına izin verilmez.İzin verilen yegane yakalamalar,sınırlı sayıdaki ticari balıkların yanlışlıkla yakaladıkları ile bilimsel araştırma ve eğitim amaçlı yakalamalardır. En azından Kaliforniya suları sınırları içinde,büyük beyaz köpekbalığı kanun tarafından korunmaktadır.Fakat Pasifik kıyı şeridi boyunca uzanan diğer sularda,bu muhteşem köpekbalığı tehlikeleri göze almak zorundadır.Büyük beyaz köpekbalığının aşırı derecede sınırlı olan üreme kabiliyeti göz önüne alındığında,bir yok edilme oranı bile,bu türün soyunun tamamen tükenmesi sonucunu doğurması yüksek derecede olasıdır. Kişi,büyük beyaz köpekbalığını korumak için,çok sağlam delillere dayanan bütün tavrını oluşturabilir.Büyük beyaz köpekbalığının deniz ekosistemindeki rolünü tam olarak anlamamamıza rağmen,onun çevresel önemini örnek olarak verebiliriz.Bu hayvanı ahlaksal yükümlülüklerimizden dolayı korumamız gerektiğinden bahsedebiliriz,fakat daima ahlaksal aciliyetler ve öncelikler konusunda bir tartışma söz konusu olacaktır.Muhtemelen okuyucular,büyük beyaz köpekbalığının korunması için ileri sürülen aşağıdaki sade fikri en doyurucu bulacaklardır.Büyük beyaz köpekbalığı,dünyamıza zenginlik,ilgi çekici bir farklılık,efsaneler ve gizemler katan nadir bir yabani hayvandır. 5- Boyut ve Yaş Köpekbalıklarının yaşlanması basit bir proses değildir.Bunun ana sebepleri,büyümenin beslenmeyle olan ilgisi,coğrafi alanı ve bazı türlerdeki erkek ve dişi büyüme oranının,ki yaşla yavaşlar,değişiklik göstermesidir.Araştırmacılar,ağaç tabakalarında olduğu gibi,omurga kemiğindeki kireçlenme tabakasının büyük beyaz köpekbalığının yaşını yansıttığını gösterdiler.Bu temelde Doğu Pasifik büyük beyaz köpekbalıkları 13-14 yaşında 16 ft (4.75m)’ye ulaşırlarken,Kuzey Atlantik köpekbalıklarının aynı uzunluğa 20 yaşlarında ulaşabildiğini bulmuştur. Yeni doğmuş büyük beyaz köpekbalıklarının boyu 109-129cm civarındadır.Büyüklük ve cinsel olgunluk balıktan balığa değişkenlik gösterir.Erkekler yaklaşık 9 yaşlarında,3.5-4.5m boyutlarında olgunlaşır.Dişilerse 12-14 yaşlarında,4.5-6m civarlarındayken olgunlaşırlar.Görülmüş olan en büyüklerin (5m üzerinde)çoğu dişi olmasına rağmen,bugün hala erkeklerin dişilerden daha büyük bir maksimum boyuta ulaşıp ulaşmadığı bilinmiyor.Geçtiğimiz yıllarda birçok doğru olmayan maksimum boyutlar rapor edilmiştir,bir rapordaki on yıllar boyunca tartışılmış olan 36 feet(11m)’lik bir boyutun,aslında 16 feet olduğu fakat yazım hatasına maruz kaldığı düşünülmektedir.Son yıllarda yakalanan en büyük köpekbalığı ölçülmemiştir,fakat araştırmacıların biri Malta diğeri de South Avustralya’dan olan büyük beyaz köpekbalıklarının 7m’den büyük olduğu hakkında çok az şüpheleri vardır.Bu köpekbalıkları 30 yaşına yaklaşıyorlardı.Yakın zamanlarda Gans Bay’da yakalanmış ve Cape Town’daki shark Research Centre’de incelenmiş 6m’lik bir dişinin,bir omurga bandının bir yıla eşit olduğu varsayımıyla,yaklaşık 22 yaşında olduğu tahmin edilmiştir. 6-Üreme ve gelişim Büyük beyaz köpekbalığında döllenme dahilidir ve dişiler yavruları canlı olarak dünyaya getirirler(onlar ovovovipar’dır).Kur yapma davranışları “tam olarak”bilinmez,fakat bilim adamları yaralı bireylerin,erkek erkeğe olan saldırganlığın veya çiftleşmeden önceki erkeklerin dişileri hafifçe ısırmalarının sonucu olduğuna inanırlar.Embriyolar,kendi yumurtalarının bütün sarısını tükettikten sonra,ana içindeki yumurtadan hatta diğer embriyolarla beslenmeye başlar.Büyük beyaz köpekbalığının akrabalarında da görülen bu olayı “intrauterine cannibalism”(döl yatağı yamyamlığı) olarak adlandırılır.Yavrulu dişiler belgelenmemiştir,fakat diğer köpekbalıklarında olduğu gibi,büyük dişiler küçüklerden daha fazla yavru taşırlar.Bir Avustralya dişisi 11 yavruyla bulunmuştur.Gebelik süresinin kesin olarak bilinmemesine rağmen,büyük boyutta olan dişilerde yaklaşık 1 yıl veya daha fazla olduğu tahmin edilmektedir.Cape Town’daki Shark Research Centre(Köpekbalığı Araştırma Merkezi)’nde çalışan Dr. Leonardo Compago çok sayıda değişken ve bilinmeyeni de göz önünde bulundurarak,ortalama bir dişinin üreme potansiyelini izlemiştir.15 yaş ve 5 metrede olgunlaşan 30-31 yaşlarında 7.2m’lik maksimum boyuta ulaşan doğumdan sonraki bir yıllık dinlenme süresiyle birlikte her 3 yılda ortalama olarak 9 yavru doğuran ortalama bir dişinin,ölümünden önceki seneye kadar 45 yavru dünyaya getireceği tahmin edilmiştir.Bununla beraber,doğal ölümler,nispi sağlık ve çiftleşme mevcudiyeti gibi nedenlerle,dişilerin çoğu,özellikle insan etkisinin çok fazla olduğu bölgelerde,muhtemelen daha az yavru dünyaya getiriler. Bazı araştırmacılar büyük beyaz köpekbalıklarının,ılıman denizlerin kıyı sularında,kendi kendini soyutlamış yavrusunu beslemeyen dişiler tarafından dünyaya getirildiğine ve daha sonra büyüdükçe daha geniş sıcaklık ortamlarına adapte olduklarına inanırlar.Bu da büyük köpekbalıklarının açık okyanus alanlarına doğru açılmayı göze alabilmelerini sağlayan ve tropikal orta-okyanus adalarında görülmelerini açıklayan bir teoridir.Bilim adamları genç büyük beyaz köpekbalıklarının (iki yaş veya daha küçük) bilinen dağılımları ve büyüme tahminleri sonuçlarından yola çıkarak,su sıcaklıklarına karşı toleranslarının gelişimine kadar,coğrafi olarak dar sıcaklık değişimli alanların içine sınırlandırabileceklerine dikkat çekmişlerdir. 7-Yiyecek ve Beslenme Alışkanlıkları Büyükbeyaz köpekbalığının zirvede bir yırtıcı olduğu,denize çıkışı olmayan bölgelerde yaşayan insanlar arasında bile bilinir. Bu yaratığın sırf görünüşü , gücü ve korku veren çeneleri böyle bir gözlemi gerekli kılar. Fakat sürpriz bir şekilde, beyaz köpekbalıkları aynı zamanda leş ve çöp süpürücülerdir (yiyicileridir). Araştırmacılar şu aşağıdaki şeyleri mide içeriklerinde bulmuş ve kayıtlara geçirmişlerdir:Sardalya’dan mersin balığına kadar her çeşit ve büyüklükteki kemikli balıklar, diğer daha büyük köpekbalığı dahil kıkırdaklı balıklar, deniz kaplumbağaları, sümsük kuşu martı ve penguenler dahil çeşitli kuşlar, yunus, domuzbalığı, fok, ölü balina gibi deniz memelileri,abalon, diğer deniz salyangozları, kalamar,supya, denizyıldızı,yengeç dahil çeşitli omurgasızlar. Fok kolonilerinin bulunduğu alanlarda,3 m. ve daha büyük boyutlardaki büyük beyaz köpekbalıkları,çoğunlukla balıktan oluşan diyetlerini gözle görülür bir şekilde foklara doğru kaydırırlar.Jackass penguins zaman zaman ısırılmalarına rağmen çok nadiren büyük beyaz köpekbalığının midesinde görülmüştür.Özellikle önemli beslenme alanları Bird Island(Kuş Adası),Doğu Cape,Pyer ve Robben Adaları,Batı Cape gibi yerlerdir.Bununla beraber,büyük beyaz köpekbalığı,fokların bulunmadığı veya çok nadir olduğu tropikal alanlarda,kemikli balıkları diğer köpekbalıkları ve deniz memelileriyle çok rahat bir şekilde hayatta kalma yeteneğine haizdir.Şu noktaya dikkat etmekte yarar vardır ki,uzmanlaşmış bir yırtıcı,bir alanda bulabildiği bir tercihi başka bir alanda bulamayabilir,dolayısıyla büyük köpekbalıkları deniz içinde yüzen neredeyse her şeyi pusuya düşürme veya yakalama yeteneğine sahiptir. Büyük canlı fokların büyük beyaz köpekbalıklarının en zor avları arasında olduğu düşünülmektedir.Bu foklar,onları tamamen suyun dışına fırlatabilen, “ısır”ve “bırak” taktiğiyle,genellikle yüksek hızla ani bir hamleyle öldürürler.Bu eylem bilim adamlarınca savunarak öldürme olarak nitelendirilir,bir başka deyişle,köpekbalıkları bu sayede kendilerini,korku ve heyecan içindeki yaralı bir hayvanın diş ve pençelerinden korurlar.Güney Afrika açıklarında,penguenlerin bu şekilde defalarca havaya fırlatıldıkları görülmüştür.Bu davranış şekli,gerçek bir beslenme çeşidinin bir parçası olmasından çok,avıyla oynama veya avını test etme amacına yönelik olabilir.Yaralı,ölmek üzere olan av,köpekbalığı tarafından yeterince zayıf hale düşene kadar kuşatma altında tutulur ve en sonunda tüketilir. 8- Yaşayan(hala var olan)Fosil Akrabalar Yaşayan büyük beyaz köpekbalığı Carcharodon cinsi içinde sınıflandırılan beş türden biridir.Diğer dördünün nesli tükenmiştir.Şu andaki araştırmacılar inanırlar ki bugünkü büyük beyaz köpekbalığının en eski atası kabul edilen bir tür,Carcharodon landanensis,Paleocene çağında (65-57 milyon yıl önce) ortaya çıkmış ve yaklaşık aynı çağlarda bu kökten iki değişik grup(sülale,soy,nesil)oluşmuştur.Bugünkü yaşayn büyük beyazın da içinde bulunduğu birinci grup,göreceli olarak daha küçük olan C. landanensis(2-3m uzunluğundadır)ile bağlantısı (akrabalığı)olan orta dereceli fosil türlerine sahiptir.Ayrı bir cins olarak kabul edilen ikinci grup,Carcharocles,bazı araştırmacılara göre,izleri yaklaşık 50 milyon yıl öncelerine kadar gelen devasa akrabaları da kapsar.Bu kocaman köpek balıklarının evrimi vücut büyüklüğünün artmasıyla karakterize edilmiştir ve oldukça yakın zamanlara kadar yaşamış olabilir. Modern büyük beyaz köpekbalığı yaklaşık 20 milyon yıl önce Miyosen çağlarda evrim geçirmiştir(evrimleşerek bugünkü halini almıştır).Aynı zamanlarda,ikinci paralel gruptan (sülaleden) gelen (evrimleşmiş olan)Carcharodon megalodon ve C.angustidens isimlerini verdiğimiz çok daha büyük diğer iki kardeş tür dünya denizlerinde varlığını sürdürüyordu.Peru’da C. megalodon’a ait 17cm uzunluğunda dişler bulunmuştur.Bu bize gösterir ki,bu tür 13m veya daha büyük bir uzunluğa ve yaklaşık 20 ton ağırlığa erişmiştir.Bu dev yırtıcı,en azından büyük boyutta olanları muhtemelen çoğunlukla balinalarla beslenmiştir.Bazı araştırmacılar,balinaların evrimleşip,kutup sularında bol miktarda bulunan planktonlarla beslenmek için bu sulara doğru göç etme eğilimi göstermesinin bu köpekbalığı türünün neslinin tükenmesine neden olduğunu varsayalar.Bu dev köpekbalıklarının değişik sıcaklıklara adapte olamaması ve buzlu sulara göç eden balinaları takip edememesi,ana yiyecek kaynağını yılın büyük bir bölümü için kaybetmesi sonucunu doğurmuştur. Güney Afrika’da Carcharodon’un üç türünün fosilleşmiş dişleri bulunmuştur.Uloa yakınlarındaki KwaZulu-Natal’daki Miyosen tortusundan anlaşılmıştır ki modern büyük beyaz köpekbalığı C.angustidens’e ait olan fosil dişler 15 milyon yıllıktır.Daha büyük C.angustidens’lerin 15cm’yi bulan dişleri,Kwa-Zulu-Natal bölgesinde,Doğu Cape’deki Eocene yatağında ve Namibya’da bulunmuştur.Pürtüksüz dişlere sahip olan(Otodontidae familyası)Paleocene devasa köpekbalıklarına başka bir yakın grup ta Carcharodon türüyle paralel olarak evrime uğramış ve bugün hayatta olan porbeagle köpekbalıklarının (Lamna cinsi)oluşumuna yol açmıştır. 9- İnsana Karşı Saldırılar İnsanın en büyük korkularından biri,yabani bir hayvan tarafından canlı canlı yenmektir.Muhtemelen büyük beyaz köpekbalığı endişelerinin esrarı,büyük ölçüde onun uzun zamanlar boyunca sadece bu amaçla insanlara saldırması olmuştur. Rapor edilen büyük beyaz köpekbalığı saldırıları,öteki köpekbalığı saldırılarından daha fazladır.Bununla beraber rapor edilmiş bütün köpekbalığı saldırılarının %80’i büyük beyaz köpekbalıklarının nadir olduğu tropikal bölgelerde meydana gelmiştir.Bu bölgelerdeki ataklardan genellikle çekiç balıkları (bir tür köpekbalığı) ve requiem köpekbalığı sorumlu tutulmuştur.Gerçekten de Durban’daki Oceanographic Research Institute’un(Okyanus Araştırmaları Enstitusu)eski yöneticisi Dr.Davies daha1964’lerde Güney Afrika’da 7 tehlikeli türden bahsetmektedir.Bugün hala köpekbalığı saldırılarından daha fazla insan boğulmalar,arı sokmaları,şimşek çarpmaları veya yılan sokmaları gibi nedenlerle yaralanır veya ölür.Buna rağmen,büyük beyaz köpekbalıkları su içinde insan için tehlikelidir ve bazı bölgelerden diğer bazı bölgelere göre daha fazla saldırı olayı rapor edilmiştir. Amerikalı araştırmacılar 1926’dan 1991’e kadar bütün dünya çapında vuku bulmuş 115 büyük beyaz köpekbalığı saldırısı belgelemişlerdir.Güney Afrika açıklarında,altısı ölümle sonuçlanan,29 saldırı meydana gelmiştir.Güney Afrika’da 1940’tan bu yana toplam olarak 28’i ölümle sonuçlanan 89 köpekbalığı saldırısı rapor edildiği düşünüldüğünde,bu saldırıların bazılarının diğer türler tarafından yapıldığı sonucuna varılabilir. Niçin Büyük Beyaz Köpekbalıkları Tehlikelidir? Bazı popüler iddiaların tersine,biz karada yaşayanlar,okyanus ortamına doğal olarak uyamadığımız için bu büyük,hızlı,yırtıcılar insanları potansiyel av olarak görürler ve bu yüzden tehlikelidir.Aynı zamanda,sudaki, insanlara,takip edilip dışarıya atılması gereken bölgesel işgalciler olarak kabul ettikleri için de tepki gösterebilirler.Bu teori büyük beyaz köpekbalıklarını atfedilmiş,kurbanların hayatta kaldığı,tek ısırıklı saldırıları da muhtemelen açıklar.Özellikle geçmiş dönemde bir kısım film ve kitapta yapılan bazı sansasyonel köpekbalığı tasvirleri içimize korku salmak için çılgınca bir yok etme ve intikam alma karalılığı içinde olan nefret dolu canavarlar çizmiş ve onun doğal yırtıcı davranışlarını çarpıtmıştır.Hiçbir şey hakikatten öteye gidemez. 10- Denize Girenler,Sörfçüler ve Dalgıçlara Tavsiyeler Bütün önlemlere rağmen,olası bir saldırı durumunda bilinmesi gereken birkaç şey vardır. 1-En önemli şey kanı mümkün olduğunca çabuk durdurmaktır.Kol bacak gibi uzuvlardaki yaralarda çok ta fazla sıkı olmamasına dikkat ederek,sıkıca bir sargı sarılması kanı durdurmaya yardımcı olacaktır.Yumuşak ve esnek herhangi bir şeyi(kumaşı)sıkıştırıp bandaj olarak yara üzerine yerleştirin.Yaralıyı hareketsiz ve mümkün olduğunca sıcak tutun,küçük ve önemsiz bir yara gibi bile gözükse hemen tıbbi acil yardım çağırın. 2-Denize girenlerin veya sörfçülerin büyük ve önemli yaralanmalarında,yaralıyı kum üzerinde denize paralel bir şekilde yatırıp başa doğru kan akışını desteklemek için ayaklarını yukarıya kaldırın.Yaralıyı başı su tarafına gelecek şekilde yatırmayın.Gerekirse yaralının nefes almasına yardımcı olun. 3-Tıbbi yardımın gelmesini beklerken,yaralıyla rahatlatan bir edayla konuşarak onu sakin ve ayık tutun.Yaralıyı hastaneye yetiştirmek amacıyla sahilden uzağa veya bir araca taşımaya teşebbüs etmeyin.Bu yaralıyı şoka sokabilir. 4-Vücut iç sıcaklığını düşürüp yaralıyı şoka sokmasına yardım etme ihtimali olduğundan,hiçbir içecek özellikle alkollü içecek vermeyin.Yaralının dudaklarını ıslatmak amacıyla su kullanılabilir. 11- Kaynaklar: Weidnfield & Nicolson, London, 222pp. Cliff, G., S.F.J. Dudley & B. Davis. 1989. Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark, Carcharodon carcharias. S. Afr. J. Mar. Sci., 8:131-144. Compagno, L.J.V. 1981. Legend versus reality: the Jaws image and shark diversity. Oceanus 24 (4); 5-16 -1984. Sharks of the World. FAO Species Catalogue, vol. 4,2 parts, Rome. -D.A. Ebert & M.J. Smale. 1989. Guide to the Sharks and Rays of Southern Africa. Struik Publishers, Cape Town, 160pp. Condon, T. (ed.). 1991. Great white Sharks - a Perspective. Underwater, no.17. Ihlane Publications, Durban: 1-130. Cousteau, J. -Y. & P. Coustea. 1970. The Shark: Splendid Savage of the Sea. Doubleday & Co., Garden City, 277 pp. Davies, D.H. 1964. About Sharks and Shark Attack. Shuter & Shooter, Pietermaritzburg, 237pp Ellis, R. & J.E. McCosker. 1991. Great White Shark. Stanford University Press, Harper Collins, New York, 270pp. Sibley, G. et al (eds.). 1985. Biology of the white shark. Mem. So. Calif. Acad. Sci. 9, 150pp Smith, M.M. & P.C. Heemstra (eds.). 1986. Smiths’s Sea Fishes. Macmillan South Africa, Johannesburg, 1047pp. Springer, V.G.& J.P Gold. 1989. Sharks in Questions. Smithsonian Institution Press, Washington, D.C., 187pp. Van der Elst, R. 1986. Sharks and Stingrays. Struik Publishers, Cape Town, 64 pp. Not:Alıntıdır ayrıca karakter sınırlaması olduğu için parça parça yollayabildim kusura bakmayın arkadaşlar

http://www.biyologlar.com/carcharodon-carhariasbuyuk-beyaz-kopekbaligi

Aracnida (=Aracbnoidea ) Sınıfı

Bu sınıfta hekimlik açısından önemli olan keneler, uyuz etkenleri, akrepler ve örümcekler bulunur. Arachnida sınıfındaki artropodların erişkinlerinde 4 çift bacak bulunur. Ayrıca antenleri ve kanatlan da bulunmadığı gibi vücutta baş ve thoraxın birleşmesiyle oluşmuş cephalothorax ve abdomen olmak üzere iki kısımdan oluşmuştur. Yine arachnidlerde ağız organellerinin yan taraflarında cheliser adı verilen kesici organel bulunur. Daha önce bahsedilen insecta sınıfındaki artropodların ise erişkinlerinde 3 çift bacak, anten, kanat ( bazılarında yok) bulunur, bunların vücutları üç parçalı olup, caput, tharox ve abdomenden oluşmuştur ve chelicer ( şelişer ) leri yoktur. Arachnida 'larda caput ve thoraxın birleşmesiyle oluşan cephalothoraxa “prosoma”, abdomene ise " opisthosoma" adı verilir. Prosoma' da iki kısma ayrılır. Ağız organellerinin bulunduğu kısma "gnathosoma" ( = capitulum ) ve bacakların çıktığı kısma ise "podosoma" adı verilir. Podosoma ve opisthosoma' dan meydana gelen yani bacakların çıktığı kısma ve abdomene birlikte "idiosoma"adı verılır. Podosomada "propodosoma"( 1 ve 2.çift bacaklar kısmı) ve "metapodosoma" (3 ve 4. çift bacaklar kısmı) olarak ikiye ayrılır. Gnathosoma ve propodosoma'nın ikisine birden "proterosoma" metapodosoma ve opisthosoma'nın ikisine birden ise "hysterosoma"adı verilir. Gnathosoma üzerinde makas şeklinde olan chelicerler, en önde bulanan ve bir çift bacak şeklinde görülen pedipalpler ve hypostom bulunur. Chelicerler konak derisini delmeye ve kesmeye yarayan iki tane hareketli oluşumlardır. Pedipalpler ise artropodun yiyeceğini yakalamasında ve dokunma duyusu olarak görev yaparlar. Hypostom'un üzere dişler gibi oluşumlarla kaplıdır. Bu yapıları ile konak derisine girdiği zaman geriye çekilmesini engeller ve konaktan kan emmeye yarayan bir oluşumdur. Erişkin arachnidlerde ve nymhlerde 4 çift bacak, larvalarında ise 3 çift bacak bulunur. Bu sınıftaki türlerin tümü kanatsız artropodlardır. Göz bazılarında vardır, bazı türlerde ise bulunmaz. Göz eğer varsa basit göz biçimindedir. Solunum genellikte trachealarla olur. Ancak bunlar bir çift stigma ile dışarı açılırlar. Çoğunlukla erkekleri dişilerinden küçüktür ve dorselden bakıldığında bazı türleri direkt olarak ayrılırlar, yani sexuel dimorfismus vardır. Biyolojik gelişmelerinde erişkin -yumurta -larva -nymph -erişkin dönemleri görülür. Yumurtadan çıkan larvalar erişkinlere genellikle benzerler. Daha sonraki nymph dönemi ise sexuel organlarının olmayışı dışında erişkinlere benzemektedir. Bu nedenle bu sınıftaki parazitlerin gelişmelerinde yarım metamorfoz (= hemimetabola ) görülür. Sindirim kanalları birtakım divertiküllere ve kollara ayrılmıştır. Bu özelikleri ilede gıda deposu olarak görev yaptıkları gibi sindirim bezi olarakta fonksiyon yaparlar. Arachnida Sınıfının Sınıflandırılması Bu sınıf altında üç önemli takım bulunur. Bunlar, Order: Scorpionidea (=akrepler ) Order: Araneidea ( = örümcekler ) Order: Acarina (=kene, uyuz etkenleri ve diğer akarlar) Order: Scorpionidea Akreplerde vücut yapıları cephalo- thorax ve abdomen şeklindedir. Vücudun ön tarafında ve ağzın iki yanında bir çift chelicer ve onun gerisinde yine bir çift pedipalpleri bulunur. Pedipalpler makas şeklinde tutucu organellerdir. Bunların gerisinde ise 4 çift bacak vardır. Abdomenleri ise preabdomen ve postabdomen olmak üzere iki kısımdan oluşmuştur. Bunlardan preabdomen geniş yapıda olup, 7 segmentlidir. Postabdomen ise daha ince yapılı olup, 6 segmentden meydana gelmiştir. Kuyruk adıda verilen postabdomenin son halkası yuvarlağımsıdır ve uç kısmında zehir bezesini taşıyan bir iğne ( telson) bulunur. Akreplerin büyüklüğü 3 cm' den 8 cm 'ye kadar değişir. Vücudun en geniş yeri 1 cm, en dar yeri ise kuyruk kısmı olup, 3 -4 mm'dir. Renkleri siyah, solgun sarı, kahverenkli ve bazen yeşil renkli olabilir. Akreplerde vücut segmentasyon gösterir ve bunlarda dimorfismus yoktur. Scorpionidea 'lar sıcak ve kurak bölgelerde bulunurlar. Gececi parazitler olup, gündüzleri duvar ve tahta çatlakları arasında, kuytu yerlerde saklanırlar. Dişileri ovipardır. Ancak genellikle ovovivipardırlar. Yani uterusta şekillenen yumurtalar içinde gelişen yavrular çıkar. Akreplerin son halkasının uç kısmında bulunan iğne zehir bezeleri ile bağlantılıdır. Bu iğne ile bir canlıya soktuğunda zehiri derhal boşaltır. Zehirin felç edici etkisi vardır. Akrepler genellikle evlere girerler. Tropikal bölgelerde yaşayan bazı türleri insan ve hayvanlar için çok zehirli olup, ölümlere yol açabilirler. Akrepler kanivor artropodlardır, gıdalarını pedipalplerindeki kıskaçları ile yakalarlar. Bazı akrep türleri konaklarını soktukları yerlerde sadece lokal olarak şişliklere ve ağrılara neden olduğu halde, çok zehirli olan türleri sinir sistemi bozukluklarına, konvulsiyonlara, solunum güçlüğü ve kalpte bozukluklara neden olurlar. Akrep zehirlemesine scorpionismus ( = skorpionizm ) adı verilir. Zehirlenmelerin tedavisinde en iyi yol özel antitoksin akrep serumu kullanılmasıdır. Order: Araneidea Örümceklerde vücut cephalo-thorax ve abdomenden oluşmuştur. Abdomende segmentasyon gözükmez ve bir boğumla cephalothorax'dan ayrılmıştır. Ağızlarının yan tarafında iki eklemli ve nihayeti bir iğne ile sonlanmış olan chelicerleri vardır. Bunlar zehir bezeleri ile irtibatlıdır. Zehir iğneleri vasıtası ile canlı artropodları ısırır, zehirini akıtarak daha sonrada yerler. Pedipalpleri duyu organı olarak görev yaparlar ve ergin erkeklerde çiftleşmeye hizmet ederler. Bazı türlerinde dimorfismus görülür ve dişileri erkeklerinden biraz daha büyük olup, abdomenleri daha yuvarlaktır. Örümceklerin bazıları toprak altında bazılarıda taşların altında ve ağaç kovuklarında yaşarlar. Çoğalmaları akrepler gibidir. Araneidea takımında bulunan bazı örümcek türleri insan ve hayvanlarda zehirleyici etki gösterir. Bu canlılarda ağır hastalıklar ve ölümlere yol açabilirler. Bunların toxinleri bir neurotoxin olup, özellikle merkezi sinir sitemini etkilerler. Bazı türleri ise lokal nekrozlara neden olurlar. Zehirli olan cinsleri; Latrodectus ve Loxosceles' dir. Bu örümcek cinslerinin chelicerleri ile insan ve hayvanların derilerini delerek dokulara zehir akıtmaları sonucu oluşan yerel nekroz ve genel belirtilerle karekterize olan artropod zehirlenmesine “araneismus" yada örümcek ağılaması (=örümcek zehirlenmesi) adı verilir. Latrodectus cisindeki türlerin sokması sonucu zehiri merkezi sinir sitemini etkiler ve sistemik belirtilere yol açar. Buna "Latrodectismus" yada sistemik araneismus (sistemik arachnidismus) denir. Latrodectus'ların dişisi 10-20 mm, erkeği ise 4-7 mm büyüklüğündedir. Siyah renklidirler. Abdomen üzerinde kırmızı benekler bulunur. Bunlar kuru ve çorak yerlerde, duvar çatlaklarında, ağaç kovuklarında ve kemirgen yuvalarında yaşarlar. Bu türlerin dişileri çiftleştikten sonra erkeğini öldürdüğü için bunlara kara dul adıda verilmektedir. Loxosceles türlerinin sokması sonucu hemoliz oluşur ve ısırılan yerde nekroz meydana gelir, ortaları düşer ve yerlerinde yaralar oluşur. Bu türlerden ileri gelen zehirlenmede lokal reaksiyonlar oluşur. Bu nedenle bu türlerin oluşturduğu zehirlenmeye "Loxoscelismus" ya da nekrotik araknidizm adı verilir. Loxosceles türleri sarı esmer renkte olup, bunlar genellikle evlerde, karanlık ve nemli yerlerde yaşarlar. İnsanları yüzünden, boynundan, omuz yada kolundan sokarlar. Sokulan yerde önce şişlik, içleri kanla dolu kabarcıklar daha sonrada nekrozlar oluşur. Örümcek sokmalarında ilk yardım olarak önce zehir emilir, sokulan yer kanatılır, bölge üstten sıkılır ve kan emilerek tükürülür. Yara amonyak yada potasyum permanganat ile yakılır. Serumlar verilir. Order: Acarina Bu takımda keneler ve uyuz etkenleri başta olmak üzere hekimlik yönünden önemli olan ektoparazitler bulunmaktadır. Acarina takımında bulunan artropodları inceleyen bilim dalına " akaroloji" adı verilir. Acarina takımındaki türlerin vücutları iki kısımdan oluşmuştur. Bunlar capitulum ( gnathosoma ) ve idiosoma' dır. Hatta bazı türlerde vücutları tek parçalı gibidir. Bu artropodların vücutlarında segmentasyon yoktur veya çok belirsizdir. Ağız organelleri besinleri yakalamaya yarayan bir çift pedipalp, kesici bir çift chelicer ve bunlar arasında sokmaya yarayan bir adet hipostom (rostellutrı)' dan ibarettir. Erişkinlerinde ve nymph'lerinde 4 çift, larvalarında ise 3 çift bacak bulunur. Erkek ve dişiler arasında sexuel dimorfismus vardır. Acarina 'larda solunum trachealarla olur yada bütün vücut yüzeyinden olur. Sinir sistemleri basittir ve göz bazılarında vardır. Bu gruptaki parazitler deri hastalıklarına (uyuz) neden olmaları ve birçok enfeksiyon etkenlerine vektörlük yapmaları (keneler) yönünden büyük önem taşırlar. Acarina takımında 6 alttakım bulunur. Bunlar; l-Suborder : Metastigmata 2-Suborder : Mesostigmata 3-Suborder : Prostigmata 6-Suborder : Holothyroidea 4-Suborder : Astigmata 5-Suborder : Nostostigmata 6-Suborder : Holothyroidea Bunlardan son iki alttakımın ekonomik önemleri yoktur. İlk 4 alttakım özellikle Veteriner Hekimlik yönünden önemli olan artropodları içerir. Suborder : Metastigmata Bu alttakımda keneler yer alır. Stigmaları 4. veya 3. coxae'nın hemen yanında yada arkasında bulunur. Acarina takımının genel özelliklerini taşırlar. Hipostomları üzerinde uçları geriye dönük olan dişler bulunur. Vücutları yekpare bir kese şeklinde olup, gnathosoma ve idiosomadan ibarettir. Larvalarında 3 çift, nymph ve erişkinlerinde 4 çift bacak bulunur. Nimfler olgunlarından genital organlarının olmayışı ile ayrılırlar. Erişkin ve doymuş bir dişi kenenin uzunluğu 2 cm'ye kadar ulaşabilir. Bu alt tabında Ixodidae ve Argasidae aileleri vardır. Familya: lxodidae ( Sert keneler veya mera keneleri) Bu ailede bulunan artropodlar mera keneleridir. Bu kenelerde vücut yapısı"capitulum ve idiosomadan oluşmuştur. İlk bakışta erkek ve dişi keneler birbirlerinden kolaylıkla ayrılırlar. Yani sexuel dimorfısmus vardır. Erkekleri dişilerinden daha küçüktür ve bütün vücutları kitin tabakası ile örtülüdür. Kenelerin dorsalinde bulunan bu sert kitini plaka scutum adını alır. Scutum erkeklerde vücudun bütün dorsal kısmını kaplarken, dişilerde, nymph ve larvalarda capitulum'un arkasında ve vücut dorsalinde küçük bir yaka şeklindedir. Ağız organelleri capitulum 'un ön tarafında yer almıştır. Capitulum; basis capituli ve bundan çıkan bir çift chelicer, chelicer kılıfı, hipostom ve bir çift palpden oluşmuştur. Chelicerler hypostomu üstten örterler ve deriyi kesmeye, delmeye yararlar. Chelicerler tarafından açılan deriye chelicerler ve hypostom birlikte girer ve daha sonra hipostom üzerindeki küçük dişcikler geriye doğru açılarak hipostomun deriden çıkması önlenir. Hypostom kenenin konaktan kan emmesini sağlayan organeldir. Chelicer'lerin yan taraftarında his organeli olarak görev yapan bir çift palp bulunur. Başın arkasında ve vücudun kenar kısmında bazı türlerde bir çift göz mevcuttur. Gözler scutumun marginal kenarına bitişik yer alırlar. lxodidlerin bazı türlerinde göz bulunmaz. Vücudun ventralinde ise bacaklar, ön tarafta genital delik, arka tarafta anüs, çeşitli oluklar, stigmalar ve erkeklerde kitinsel plaklar bulunur. Bacaklar sırası ile coxae, trochanter, femur, tibia, pretarsus ve tarsus'dur. Tarsus'un uç kısmında iki adet tırnak bulunur. Tırnakların ventral yüzünde ise disk şeklinde düz yüzeylere tutunmaya yarayan pulvillum vardır. Genital delik median hat üzerinde ve ikinci coxaların ön kenarı hizasında olup, enine bir yarık şeklindedir. Nymph 'lerde genital delik kapalı olduğu halde larvalarda henüz şekillenmemiştir. Anüs vücudun arkasında yer alır ve çeşitli plaklarla kuşatılmıştır. Stigmalar 4. coxanın arkasındadır ve larvalarda bulunmaz. Bunlarda solunum vücut yüzeyi ile olur. Ixodidlerin bazı türlerinde scutumun üzeri adeta nakışla işlenmiş gibi süslüdür. Yine bazı türlerin vücudunun arka kenar kısımlarında festoons (festum) adı verilen oluşumlar vardır. Bu ailedeki keneler vücutlarının dorsalinde kitini sert bir plaka taşımalarından dolayı “sert keneler" veya biyolojilerini merada geçirdiklerinden dolayıda "mera kenelerı" olarak adlandırılırlar. Mera kenelerinin erkekleri en fazla 3-4 mm büyüklüğünde olduğu halde, dişileri kan emdiklerinde 1 cm büyüklüğüne ulaşırlar. Dişilerde scutum önde bir yaka şeklindedir. Vücudun geri kalan kısmı deri ile kaplıdır. Bundan dolayı dişiler fazla miktarda kan emebilirler. Erkeklerde ise bütün vücut kitinle kaplandığı için çok az miktarda kan emerler ve vücut genişleme göstermez. Keneler sexuel olarak çoğalırlar. Genital organlar dişilerde 2 adet ovaryum, uterus ve genital deliğe açılan vajinadan ibarettir. Ovaryum bir çok yerlerde kör keseler halinde olan sindirim kanalı ile ilişki halindedir. Bu durum kan parazitleri ile enfekte kenelerin bu parazitleri sindirim kanalından ovaryuma ve oradanda yumurtalara geçirebilmesi bakımından önem taşır. Erkeklerde genital organlar bir çift testis ve genital deliğe açılan vasa deferensden oluşmuştur. Keneler bütün hayatları boyunca kan emmek zorunda olan artropodlardır. Sindirim sistemleri hipostomdan başlar ve bir çok kör keseler halinde bağırsaklarla devam eder. Ixodidae ailesindeki kenelerin biyolojileri Mera keneleri ilkbahar sonlarından başlar ve sonbahar sonlarına kadar aktivite gösterirler. Hayvanlarda kulak içi, kulak kepçesi, yüz, karın altı, perianal bölge ve bazende vücudun diğer kısımlarında yerleşirler. Erkek ve dişiler genellikle bir arada bulunurlar ve çoğunlukla kopulasyon kan emme esnasında olur. Erişkin. dişi keneler yumurtalarını toprak veya meraya bırakırlar. Daha çok çatlak ve yarıklara, taş altlarına ve ağaç oyuklarına bırakırlar. Yumurtalar kahverenginde ve oval şekildedirler. Türlere ve kan emmelerine göre değişmek üzere 2-18 bin yumurta bırakırlar. Yumurtlama vücudun ventral ön tarafında bulunan genital delikte olur ve bunlar yapışkan bir madde ile birbirlerine yapıştırıldıklarından bir yumurta kitlesi şeklindedirler. Erişkin dişi bir kere yumurtlar ve daha sonra kuru bir hal alır ve ölür. Yumurtadan çıkan larvalar (uygun ısı ve rutubette türlere göre değişmek üzere 3-7 günde larvalar çıkar) çayır ve otların üst kısımlarına tırmanarak, ön ayakları ile o yörede bulunan konaklara tutunurlar. Kenelerde her türün seçtiği konak türleri varsada, aç kaldıklarında başka konaklardanda beslenebilirler. Konağa tutunan larvalar kan emerek doyarlar ve gömlek değiştirerek nymph safhasına geçerler. Nymph 'ler kan emerek gömlek değiştirirler ve bunlardanda erişkinler oluşur. Erişkin keneler kan emdikten sonra çoğunlukla konak üzerindeyken çiftleşme olur. Kopulasyondan hemen sora erkekler yere düşer ve ölür. Döllenmiş dişi kene ise kan emer, doyar ve toprağa düşerek yumurtlar ve ölür Yukarıda anlatılan biyolojik gelişme genel olarak görülen bir gelişme şeklidir. Ancak lxodidae ailesindeki kene türlerinin kullandıkları konak sayılarına göre bu biyolojik gelişme değişmektedir. Sert keneler gelişmelerinde kullandıkları konak sayısına göre 3 grupta toplanırlar. 1- Bir konaklı keneler Eğer kene biyolojik gelişmesini bir konakta tamamlıyorsa bu kenelere bir konaklı keneler denir. Kenenin kan emmiş doymuş dişisi (döllenmiş ) konağı terkeder toprağa düşer, yumurtlar ve sonra ölür. Uygun ısıda yumurtalar içinde embiryo gelişir ve 3 çift bacaklı larva halini alır. Bu larvalar beyaz renkli yumurta kabuğundan dışarı çıkarak etrafta bulunan otlar üzerine tırmanırlar. Bunlar toplu iğne başının ¼’ü büyüklüğündedirler. Larvalar arka iki çift bacaklarını otlara salarlar ve ön bir çift bacaklarını ise havada sallarlar. Bu civardan geçmekte olan konaklara tutunurlar ve doyuncaya kadar konaktan kan emerler. Bu durumda toplu iğne başı büyüklüğünde ve gri bir görünüm kazanırlar. Hypostomlarını deriden çekerler ve konağın üzerinden ayrılmaksızın gömlek değiştirme evresine girerler. Bu safhada larvanın üzerindeki deri beyazlaşır ve onun vücudunun içinde nymph meydana gelir. Nympler larvanın üstderisi olan kabuğu açarak dışarı çıkarlar. Nympler şekil bakımından erişkinlere benzerler ancak genital organlar gelişmemiştir. Bu nymph 'lerde üzerinde bulundukları aynı konaktan tekrar kan emmeye başlarlar. Doyduklarında küçük bir saçma tanesi şeklindedirler. Bunlarda hypostomlarını deriden çekerler ve bulundukları konağı terketmeden bulundukları yerde gömlek değiştirme safhasına geçerler. Nymplerin üzerini örten deri bir kabuk şeklini alır ve onun içinde de erişkin kene şekillenir. Erkek ve dişi olarak şekillenen bu keneler nymphin gömlek şeklini almış üst derisini açarak dışarı çıkarlar. Yine aynı konaktan kan emmeye başlarlar. Kan emme esnasında kopulasyon olur, dişiler doyuncaya kadar kan emdikten soma konağı terkederek toprağa düşer, yumurtlar ve ölürler. Yani bu tip kenelerde kene yumurta hariç bütün yaşam dönemlerini aynı konak üzerinde geçirir. Aç larva olarak tutunduğu konaktan doymuş dişiler olarak ayrılırlar. Tüm gömlek değiştirmeler konak üzerinde olur. Örneğin; Boophilus annulatus ve Boophilus decoloratus türleri bir konaklı kenelerdir. 2-) İki konaklı keneler Bu tür keneler biyolojik evrimini tamamlayabilmesi için iki konak kullanır. Bu konaklar aynı veya ayrı türler olabilir. Konak üzerinde kan emmiş ve doymuş olan dişiler toprağa düşer yumurtlar ve ölürler. Yumurtadan çıkan larvalar oradan geçmekte olan 1. konak bir canlının üzerine tutunurlar. Doyuncaya kadar kan emerler ve hypostomlarını geriye çekerek, aynı konak üzerinde gömlek değiştirirler ve nymph olurlar. Aç olan bu nymphler aynı konaktan kan emerler ve doyduktan sonra toprağa düşerler. Toprakta gömlek değiştiren nymphlerden erişkinler oluşur. Aç olan erişkin keneler bu yörede bulunan 2. bir konağa tutunurlar, kan emerler ve doyduktan sonra kopulasyon olur. Döllenmiş dişiler bu konağı terkeder toprağa düşer ve yumurtladıktan sonra ölürler. Yani aç larva olarak tutunduğu konaktan doymuş nymph olarak ayrılır. İlk gömlek değiştirme 1. konakta, 2. gömlek değiştirme toprakta olur. Örnek: Hyalomma türleri, Rhipicephalus everts;ve Rhicephalus bursa türleri iki konaklı kenelerdir 3-) Üç konaklı keneler Bu tip keneler gelişmelerini tamamlayabiImek için üç konağa ihtiyaç duyarlar. Yumurtadan çıkan larvalar 1. konağa tutunurlar. Bunlar kan emer ve doyduktan sonra toprağa düşerler. Toprakta gömlek deyiştirdikten sonra aç nymphler oluşur. Bu aç nymphler kan emmek üzere 2. bir ayrı veya ayrı konağa tutunurlar. Kan emip doyan nymphler konağı terkeder ve toprağa düşerler. Toprakta gömlek değiştirdikten sonra aç erişkinler oluşur. Aç erişkin keneler kan emmek için 3. bir aynı veya ayrı konağa tutunurlar. Kan emerler, doyarlar ve çiftleştikten sonra dişiler toprağa düşer yumurtlar ve ölürler. Yani her gelişme döneminde ayrı bir konaktan beslenirler ve her gömlek değiştirme olayı toprakta olur. Örneğin; lxodes ricinus, Rhipicephalus appendiculatus, Haemaphysalis ve Dermacentor türleri gelişmeleinde üç konak kullanırlar. Ixodidae ailesine bağlı olarak bulunan kene cinsleri şunlardır. Genus: Ixodes Genus: Haemaphysalis Genus: Boophilus Genus: Dermacentor Genus: Hyalomma Genus: Amblyomma Genus: Rhipicephalus Genus: Ixodes Ixodes 'lerin palpleri ve hypostomları uzundur. Anal oluk belirgin ve anüsü önden kuşatır. Scutum nakışlı değildir. Göz ve feston bulunmaz. Erkeklerin ventral yüzü birbirinden belirgin sınırlarla ayrılmış 7 alandan oluşur. Palpleri uzun raket şeklinde ve üzerinde kıllar bulunur. Bu cinste bulunan türler; lxodes ricinus, lxodes hexagonus, I. pilosus, l persulcatus ve l rubicundus'dur. Bunlardan en önemli olan tür I. ricunus olup, çoğunlukla sığır ve koyunlardan kan emerler. Avrupa'da ve Türkiye'de yaygındır ve üç konaklı kenedir. Özellikle ılıman ve rutubetli iklim bölgelerinde bulunur. Ixodes ricinus türü konağından kan emerek verdiği zararın yanısıra Babesia bovis, Babesia divergens'i sığırlara, Anaplasma ovis'i koyunlara ve Babesia canis'i köpeklere bulaştınrlar. Aynca Louping-ill virusuna, Rusya ilkbahar yaz encephalitisine ve Coxiella burnettii'ye vektörlük yapmaktadırlar. Genus:Boophilus Bunların ağız organelleri kısadır. Palpleri kısa ve çıkıntılı olup, hipostoma eşit yada kısadır. Göz ve çift anal plakları vardır. Festonları bulunmaz. Boophilus cinsinde bulunan türler; Boophilus annulatus, B. decoloratus, B. calcaratus ve B. microplus' dur. Bunlardan ülkemizde en yaygın olarak görülen tür B. annulatus'dur. Tek konaklı kenedir ve genellikle sığırlardan kan emerler. Sığırların önemli kan protzoonlarından olan Babesia bigemia, B. bovis, Anaplasma marginale, A.centrale ve Borrelia theileri (spirochaetosis)'ye vektörlük yaparlar. Genus: Hyalomma Hyalomma'ların ağız organelleri uzundur. Palpleri uzun olup, 2. palp segmenti çok uzundur. Göz, anal ve subanal plaklar vardır. Scutum koyu renklidir ve nakışIı değildir. Festonlar düzensizdir ve bir bölümü birbiriyle kaynaşmıştır. Bu cinste bulunan önemli türler; Hyalomma anatolicum excavatum, H. anatolicum anatolicum, H. marginatum ve H. detritum' dur. Yurdumuzda görülmektedirler ve yaygın kene türleridir. İki konaklı keneler olup, ruminant ve tektırnaklılardan kan emmerler bunlar konaklarına Theileia annulata, Theileria parva, T.dispar, Babesia caballi, B.equi, Coxiella burnetii (Q humması etkeni), Rickettsia bovis ve Rickettsia canari'yi naklederler. Genus: Rhipicephalus Palpleri ve hypostomları kısadır. Göz ve anal plakları vardır. Anal oluk belirgindir. Basis capituli dışa doğru çıkıntılıdır. Bu cinsteki türler feston taşırlar. Bulunan önemli türler; Rhipicephalus bursa, R sanguineus ve R appendiculatus' dur. Bulardan R. bursa çoğunlukla koyunlardan kan emerler. Bu tür Babesia ovis, Theileria ovis, Babesia bovis, Babesia equi, B. caballi, Anaplasma marginale, Rickettsia avina, Coxiella bumetii ve koyunlarda Nairobi hastalığı virusunu konaklarına bulaştırır. R. bursa türü gelişmelerini iki konakta tamamlarlar. R. sanguineus türü ise genellikle köpeklerden kan emer ve üç konaklı kene olup, ülkemizde yaygındır. Babesia canis, B.vogeli, Hepatozoon canis, Pasteurella tularensis, Rickettsia, Coxiella ve Borrelia türlerine vektölük yaparlar. R.appendiculatus ise Afrikanın tropikal bölgelerinde yaygındır ve sığırlardan kan emerek bunlara Theileria parva'yı taşırlar. Ayrıca T.mutans, B. bigemina ve Hepatozoon canis'e vektörlük yaparlar. Bu üç türden ayrı olarak Rhipicephalus capensis ve R. everisi türleri de bulunmaktadır. Genus: Haemophysalis Palpleri kısa ve 2. palp segmenti basis capituliden daha geniştir. İkinci palp segmenti uzunluğuna oranla iki misli daha geniştir. Göz ve anal plakları bulunmaz. Anal oluk belirgin değildir yada bulunmaz. Anal oluk anüsü arkadan kuşatır. Feston taşırlar. Üç konaklı kenelerdir. Bu cinse bağlı olarak Haemaphysalis punctata, H. parva, H. longicornis ve H. leachi türleri vardır. H. punctata ve H. longicornis ruminantlardan kan emerler. Bunlar B. bigemina, B. motasi, Anaplasma marginale, Anaplasma centrale ve Theileria türlerini naklederler. H. leachi türü ise köpeklerden kan emer. Sarı köpek kenesi adını alır. Köpeklere B. canis, Coxiella bumetii ve Rickettsia conori ' yi bulaştırırlar. Genus: Dermacentor Bu cinsteki kene türlerinin palpleri kısa ve basis capitulinin hizasındadır. Palpleri geniştir. Gözleri vardır, anal plakları yoktur. Scutumları renkli ve nakışlıdır. Bu cinse bağlı türlerin çoğunluğu üç konaklıdır. Genellikle tektırnaklılardan ve köpeklerden kan emerler. Bulunan türler; Dermacentor andersoni, D. reticulatus, D, marginatus, D. niveus, D. occidentalis ve D. variabilis'dir. Bunlardan D. marginatus ve D. reticulatus ülkemizde yaygındır. Bu türler Babesia caballi, B. equi ve B. canis'e vektörlük yaparlar. Genus: Amblyomma Palpleri uzun ve hipostomları kalındır. Gözleri vardır ve anal plakları yoktur. Scutumlarının üzeri nakışlıdır. Festonları vardır ve bunlar arasında kaynaşma yoktur. Türkiyede görülen türü Amblyomma variegatum'dur. Üç konaklı kenedir. Sığırlara Theileria mutans'ı bulaştırır. Bu cinse bağlı olarak A. americanum, A. hebraeum ve A. maculatum türleride bulunur. Ixodidae ailesine bağlı olarak bulunan bu cinslerden başka sürüngenlerde bulunan Aponomma ve evcil ve yabani hayvanlarda bulunan Rhipicentor cinsleride bulunmaktadır. Familya: Argasidae Bu ailedeki keneler mesken keneleri olarak bilinirler. Mesken keneleri ahır, ağıl ve kümesIerde bulunur ve buraya giren hayvanlardan kan emerler. Genel morfolojik ve biyolojik özellikleri yönünden mera kenelerine benzerler. Ancak bazı farklılıklarda vardır.Ixodidae ailesi ile aralarındaki bu farklılıklar verilerek mesken kenelerin özellikleri anlatılacaktır. Morfolojik Farklılıklar 1. Ixodidae'lerde capitulum dorsalden bakıldığında vücudun ön tarafında bir çıkıntı yapmış şekilde görüldüğü halde, Argasidae'lerde larva dönemleri hariç capitulum ventralde yer alır ve bu nedenle dorsalden bakılınca görülmez. 2. Ixodidae'lerde scutum vardır. Erkeklerde scutum tüm vücudu örter ve fazla kan ememezler. Bunların dişi, larva ve nymph 'lerinde scutum önde yaka şeklindedir ve fazla kan emerler. Argasidae'lerde ise scutum yoktur. 3. Ixodidae'lerin erkeklerinin ventralinde görülen kitini plaklar, Argasidae'lerde yoktur. 4. Ixodid 'lerin palpleri köşelidir. Argasid 'lerin ise silindiriktir. 5. Ixodidae ailesindeki kenelerin ayak uçlarında pulvillum adı verilen yastıkçıklar bulunur. Bu nedenle bunlar cam ve fayans gibi düz zeminlere tırmanabilirler. Ancak Argasidae'lerde pulvillum yoktur. 6. Ixodidae'lerin dorsalinde bulunan scutum nedeni ile özellikle kan emmiş olan erkek ve dişiler arasında sexuel dimorfismus vardır. Argasidae'lerde ise böyle bir farklılık bulunmaz. 7. Ixodidae'lerin arka taraflarında feston vardır. Argasidae'lerde yoktur. 8. Mera kenelerinin bazı türlerinde göz vardır. Gözler büyüktür ve scutumun ön kenarının iki yanında bulunur. Mesken kenelerinde göz vardır. Bunlarda vücudun ventralinde ve ön kısmının iki yanında bulunur. 9. Ixodidlerde stigmalar büyüktür ve 4. coxanın arkasındadır. .ArgasidIerde ise stigmalar küçüktür ve 4. coxanın önündedir. ıo. Ixodidlerde erkek ve dişi büyüklük ve scutumun konumuna göre ayrılır. Erkekler dişilere göre daha küçüktür. Scutum erkeklerde tüm vücudu örter. ArgasidIerde ise erkek ve dişi genital deliğin morfolojik özelliğine göre ayrılır. Erkeklerde genital delik at yarık şeklinde olduğu halde, dişilerde enlemesine bir yarık şeklindedir. ll. Sert kenelerin dişilerinde basis capituli üzerinde poros area vardır. Yumuşak kenelerin dişilerinde poros area yoktur. Biyolojik Farklılıklar l. Ixodidae aileasindeki keneler doğada, özellikle açık yerlerde ve meralarda gelişmelerine karşılık, Argasidae türleri ahır, ağıl ve kümes gibi kapalı ve örtülü yerlerde gelişirler. Bunun için Ixodidae ailesindeki kenelere mera keneleri, Argasidae ailesindeki kenelere ise mesken keneleri adı verilir. 2. Mera kenelerinin hemen hepsi memelilerin parazitidirler. Ancak 2 ve 3 konaklı olan bazı türleri kanatlılardan da kan emebilir. Bunun aksine Argasidae türlerinin bir kısmı genellikle sadece kanatlılardan bir kısmı ise memelilerden kan emerler. 3. Ixodidae türleri konakçıya tutunduğunda iyice doyuncaya kadar kan emer, gömlek değiştirir. Yumurtlar ve ölür.Ancak argasidae türleri konaklarından azar azar ve kısa süreli olarak kan emerler ve her seferinde nisbeten az sayıda (200-300 adet) yumurtlar. Fakat yumurtlamadan soma ölmezler ve bir kaçkez yumurtlayabilirler. 4. Ixodidae türleri konaklarından doyuncaya kadar sabit olarak kalırlar. Argasidae türleri ise geçici ve gezicidirler. 5. Mera kenelerinde bir nymph safası vardır. Argasidae'lerde ise bir kaç nymph safhası vardır ve bunlarda bütün gömlek değiştirmeler konak dışında meydana gelir. 6. Mera keneleri açlığa mesken kenelerine göre daha dayanıksızdırlar Ixodidler 1-2 yıl, Argasidler ise 9-10 yıl aç kalabilirler. Argasidae ailesindeki keneler vücutlarının üzerinde kitini plakların olmamasıyla "yumuşak keneler" ve biyolojik gelişmelerini barınaklarda geçirdiği içinde "mesken keneleri" olarak adlandırılırlar. Argasidae ailesindeki kenelerin larva. nvmoh ve eriskinlerinin avrımı: Organ Larva Nymph Erişkin Bacak 3 çift 4 çift 4 çift Peritrem Yoktur Vardır Vardır Capitulum Anteroterminal Anteroventral Anteroventral Genital Delik Yoktur Yoktur Vardır * Erkeklerde dar ve yarım ay şeklinde, dişilerde ise kabarık, geniş ve enine bir yarık şeklindedir. Argasidae ailesinde bulunan kene cinsleri: Genus: Argas, Genus: Ornithodoros (= Ornithodorus), Genus: Otobius Genus: Argas Bu genustaki keneler genel olarak kanatlıların parazitidirler. Vücutları ince yapılı, ovalimsi, dorso-ventral yassı, ön uçları daralmış ve arka uçları geniş ve yuvarlağımsıdır. Bu kenelerin dorsal ve ventral yüzünü ayıran bir çizgi bulunur. Bu çizgi Argaslarda oldukça ince olup, kenenin kan emip doymasına rağmem keskin bir şekilde kalır. Gözleri yoktur. Dorsal yüzlerinde çok sayıda ufak ve yassı dairemsi çukurlar bulunur. Argas cinsine bağlı olarak bulunan türler; Argas percicus: Kanatlılardan (tavuk, bindi, kaz gibi) kan emerler. Ördeklerde kene toksikozuna neden olmaktadır. Argas reflexus: Güvercinlerin parazitidir. Argas sanchezi: Kanatlılardan kan emer. Agas radiatus, Argas miniatus ve Argas mianensis türleride kanatlı keneleridirler. Bunlardan en yaygın olanları A. persicus ve A. reflexus' dur. Argas türleri kan emecek kanatlı bulamadıklarında evcil memelilerden ve insanlardan da kan emebilirler. Biyolojik gelişmeleri Argas türlerinin erginleri kanatlı barınaklarının tahta aralıkları, tünek çatlakları ve çatısında güvercin barındıran veya kuş bulunduran evlerin çatı kısımlarında bulunurlar. Buralarda çatlak ve yarıklara saklanırlar. Buralarda çiftleşirler. Döllenen dişi kan emmek için konağına saldırır, kan emer ve doyduktan sonra konağından ayrılarak çatlak ve yarıklara çekilirler ve buralarda yumurtlarlar. Dişiler kan emek için birkaç kez konağına saldırır ve her kan emişten sonra yumurtlar. Yumurtalardan uygun ısıda yaklaşık 3 hafta sonra larvalar çıkar. Larvalar konaklarına tutunarak kan emer ve doyduktan sonra kanağı terkeder ve bir hafta içinde gömlek değiştirir. Bunun sonucu oluşan 1. nymph'ler tekrar kanaklarına saldırır, kan emer doyar ve konaklarından ayrılarak değişik yerlere saklanırlar. Buralarda yaklaşık bir ay içinde 2. nymph olur. Bunlarda konaklarından kan emer, doyar ve konaklarını terkederek gizlenirler. Argas persicus'da 6-8 hafta sonra, A. reflexus'da ise bir yıl sonra erişkin kene haline gelirler. Bu kenelerin kan emme süreleri 2 saat kadardır. Konaklarından sadece geceleri kan emerler. Ayrıca ülkemiz iklim şartlarında kışın aktivite göstermezler. İlkbaharda havalar ısınınca aç döllenmiş dişi kan emerek biyolojik gelişmeyi başlatır. Argasidae ailesindeki kene türleri kümesIerde bulunan kanatlıların üzerine gelerek bütün gelişme dönemlerinde kan emerler. Özellikle geceleri hayvanları rahatsız ederler. Kanatlılarda huzursuzluğa ve dolayısı ile verim düşüklüğüne neden olurlar. Ayrıca ağır enfestasyonlarda anemi şekillenir. Yine A. persicus türü ördeklerde kene felcine neden olabilir. Argas türleri Anaplasma marginale, Aegyptionella pullorum, Borrelia anserina'nın (Spirochaetosis etkeni ) vektörlüğünü yaparlar. Bu cinse bağlı keneler kümesIere giren insanlarada saldırabilir ve kan emerler. Genus:Ornithodorus Bu cinste bulunan kenelerin yan kenarları yuvarlağımsıdır. Lateralde vücudun dorsal ve ventral yüzünü ayıran çizgi bulunmaz. Vücut dorso-ventral olarak yassılaşmıştır. Aç iken vücudu ince ve kenarları yukarı doğru kıvrılmıştır. Kan emmiş olanlarda ise kenarları yuvarlaklaşmıştır. Elipsoidal şeklinde olup, bazı türlerinde vücudun iki yanının ortası hafif içeri doğru çekik (konkav)dir. Erişkinlerin dorsalinde değişik kıvrımlar vardır. Göz çoğu türlerde bulunur. Bu cinse bağlı türler; Omithodorus laharensis, O. Moubata, O. turicata'dır. Bunlardan yaygın olan ve Türkiye'de de görülen tür O. lahorensis'dir. Bunlar ağıllarda saklanırlar. Toprak veya balmumu renginde olup, koyun ve keçilerden kan emerler. Ayrıca diğer hayvanlardan ve insanlardan kan emebilirler. Koyun ve keçiler bütün yaz mevsimini merada geçirip kış geldiğinde ahır veya ağıllara alındığında keneler bunların üzerine gelirler. Bunun için Ornithodorus 'lara kış kenesi adı verilir. Biyolojileri: Erişkinleri ağıllarda bulundukları çatlak ve yarıklarda çiftleştikten sonra erkekler ölür, dişiler kan emmek için konaklarına tutunurlar ve kan emerler. Doyduktan sonra konaklarını terkeder ve saklanırlar. Saklandıkları yarıklarda yumurtlarlar. Mayıs-Ağustos aylarında yumurtalarını bırakırlar. Yumurtadan yaklaşık bir ay sonra larvalar çıkar. Sonbahar başlarında çıkan larvalar, bu mevsimde havaların soğumasıyla ağıla sokulan hayvanlara saldırır ve kan emerler. Doyduktan sonra konağı terketmeksizin gömlek değiştirir ve l.nymph'ler oluşur. Daha sonra sırası ile konak üzerinde 2.ve 3. nymph'ler meydana gelir. Kan emip doymuş olan 3. nymph 'ler konaklarını terkederler ve saklanma yerlerinde gömlek değiştirerek erişkinler oluşur. Larvadan 3 nymph safhasına kadar olan dönem bir ay kadar sürer. Bir dişi kene bir kopulasyondan sonra hiç çiftleşmeden 2 yıl fertil yumurta bırakabilir. Erişkinler kan emmeden 10-l2 yıl yaşayabilirler. Ornithodorus türleri de geceleri konaklarından kan emerler. Bunlar her gelişme formlarında hayvanların boyun, sırt, vücudun yan taraftan ve kuyruk sokumu bölgesimde yapağı yada tiftik arasında bulunarak bu bölgelerin derisinden kan emerler. Bunun için hayvanlara ilk bakıldığında keneler görülmezler. Keneleri görmek için yapağı aralanarak el bu kısımlarda dolaştırılır ve parmak uçları ile kenelerin varlığı anlaşılır. Çok sayıda olduklarında hayvanlarda kondüsyonun düşük olduğu kış aylarında kan emerek anemiye sebep olurlar ve ekonomik kayıplara yol açarlar. Ornithodorus lahorensis Rickettsia, Tularemi ve bazı Trypanosoma türlerini taşırlar. Ayrıca bu cinse bağlı türler Q- humması etkeni olan Coxiella bumetii'yi naklederler. Konakçı bulamadıklarında insanlara saldırarak kan emerler ve onlarda bazen toksikasyon, felç ve ölümlere yol açabilirler. Genus: Otobius Otobius megnini türü Kuzey ve Güney Amerika, Güney Afrika ve Hindistan' da bulunur ve kulak kenesi olarak adlandırılır. Larva ve nymph 'leri çoğunlukla köpeklerin kulaklarında parazitlenir. Ancak diğer evcil hayvanlar, yabani hayvanlar ve insanlarda bulunabilir. Larvaları doyduklarında hemen hemen küreseldirler. Nymphleri orta kısımlarında daha geniştir. Bu cinsin erişkinleri parazit değildir. Erişkinleri beslenmezler ancak dişileri 500-600 kadar yumurtayı yiyecek depolarının altlarına, taş ve duvar çatlaklarına bırakırlar. Bunlar konaklarından kan emerek irritasyona ve yangıya neden olurlar. Sekunder bakterilerin işe karışması ile de daha da komplike olurlar. Verim düşüklüğüne neden olurlar. Ağır enfestasyonlarda kulak içinde paket halindeki larva ve nymphlerin görülmesi ile tanı konulur. O. megnini'den ayrı olarak tavşanlarda bulunan diğer bir türde O. lagophilus' dur. Özellikleri O. megnini 'ye benzer. Kenelerin Zararlı Etkileri 1. Kan emmeleri veya kan emdikten sonra kanamanın uzun bir süre devam etmesi sonucu anemiye neden olmaları. Bu etkileri ağır enfestasyonlarda görülür. Tek bir dişi kene günde 0.5- 2 ml kan emebilir. Böylece kenelerle enfeste hayvanlarda verim düşer ve hatta ölüm olayları görülebilir 2. Kenelerin konakları üzerinde yaralayıcı etkileri vardır. Kene kan emmek için deriyi soktuğunda deriyi delerek yaralanmalara ve dermatozlara neden olurlar. Ağır enfetasyonlarda bu yaralar piyojen bakterilerle sekunder olarak enfekte olurlar ve kene piyemisi şekillenir. Ayrıca bu gibi enfekte yaralar myiasis etkenlerini ortama davet eder. Myiasis etkenleri yumurta ve larvalarını buralara bırakırlar. Böylece sekunder hastalıklara ortam hazırlarlar. Deri kalitesi bozulur ve verim kaybı oluşur. 3. Kenelerin konakları için bir etkileride paralizIere neden olmalarıdır. Ixodes ve Dermacentor gibi kene türlerinin nymph ve özellikle erişkin dişilerinin tükrük salgısında bulunan toksin kene felcine neden olur. Arka ayaklardan başlayan ve öne doğru yayılan ve hatda ölümle sonuçlanan felç olayı oluşur. Bu toksin solunum ve sinir sistemini etkilemektedir. Kene felci ( tick parlysis) insanlarda özellikle çocuklarda ve evcil hayvanlarda görülmektedir. 4. Kene toksikozuna neden olmaları Hyalomma cinsine bağlı türler tarafından oluşturulur. Erişkin kene tarafından oluşturulan toxin ruminat ve dumuzlarda mukoz membranların hiperemisi ve yaş egzama ile karekterize terleme belirtilerine yol açar. Ayrıca Argas persicus türü ördeklerde kene toksikozuna neden olabilmektedir. 5. Kenelerin en önemli etkilerinden biride çeşitli hastalık etkenlerine vektörlük yapmalandır. Keneler protozoonlar, viruslar, bakteriler, riketsiyalar, spiroketler ve helmintlere biyolojik veya mekanik taşıyıcılık yaparlar. Paraziter enfeksiyonlardan Veteriner Hekimlik yönünden önemli olan Babesia ve Theileria etkenlerini nakletmeleri yönünden büyük önemleri vardır. Keneler bu hastalık etkenlerini iki şekilde naklederler.Bunlar; Transstadial nakil: Kenenin bir gelişme döneminde kan emerken aldığı hastalık etkenini bir sonraki gelişme döneminde kan emerken konağına aktarmasıdır. Üç konaklı keneler larva safhasında aldığı etkenleri nymph evresinde kan emdiği konağa aktarır. Nymph döneminde aldığı etkenleri ise erişkin safhada kan emdikleri konağa aktarırlar (iki konaklı kenelerde de bu durum görülür.). Hyalomma türlerinin Theileria annulata'yı nakletmeleri örnek olarak verilebilir. . Transovarial nakil: Tek konaklı kenelerde etkenler kenenin yumurtalarına geçer. Yumurtadan çıkan larvalar enfekte olduğu için bu dönemde kan emerken etkenleri konağa nakleder. Boophilus türlerinin Babesia türlerini nakletmesi transovarial nakildir. Kenelerin hastalık etkenlerini nakletmelerindeki yüksek potansiyeli şu özelliklerinden ileri gelir: 1. Sabit ve yavaş olarak kan emerler. Bu sırada konağı ile birlikte taşınarak geniş bir alana dağılırlar. 2. Çevre şartlarına oldukça dayanıklı olup, kolay kolay etkilenmezler. 3. Doğal düşmanları oldukça azdır. 4. Kene türlerinin çoğunluğu geniş bir konakçı spektrumuna (euroxene)sahiptir. Bu nedenle aç kalma ve ölme sorunları daha azdır. 5. Keneler uzun süre yaşarlar ve açlığa oldukça dayanıklıdırlar. 6. Kenelerin yüksek üreme güçleri vardır. Bazı türler 18.000'ne kadar yumurta bırakabilirler. 7. Birçok kene türü hastalık etkenlerini tansovarial olarak yeni nesillerine aktarırlar. Böylece bir enfekte keneden binlerce yeni enfekte nesiloluşur. Lyme hastalığı: Bu hastalığın etkeni spiroketalardan olan Borrelia burgdorferi'dir. Köpek, at, sığır, koyun, kedi ve insanlarda bildirilmiştir. Hastalığın vektörlüğünden birinci derecede sorumlu olan tür lxodes ricinus' dur. Bu mera kenesi türü etkenle bir defa enfekte olduktan sonra bütün ömürleri boyunca bulaşık kalırlar. Transstadial (%80) ve transovarial (%20) olarak nakledilirler. Lyme enfeksiyonunda ilk klinik belirti deride oluşan Erythema Chronicum Migrans (ECM)'dır. Bu klinik bulgu hastalık için patognomonik lezyon olup, deri döküntüsü şeklindedir. Buna yerel bir lenfbezi büyümesi, ateş ve halsizlik de eşlik edebilir. Ayrıca sinir sistemi, kalp ve kas iskelet sistemi ile ilgili belirtiler görülür. Suborder: Mesostigmata Mesostigmata alt takımındaki akarlar oldukça küçük olup, 1-2 mm büyüklüğündedirler ve kenelere benzerler. Vücutları gnathosoma ve idiosomadan ibarettir. Stigmaları bir çift olup, coxae'ların lateralinde yer alır. Bu alt takımda önemli olan aile; Familya: Dermanyssidae Bu aileye bağlı bulunan cinsler; Genus: Dermanyssus Genus: Pneumonysus Genus: Ornithonyssus Genus: Ophionyssus Genus: Allodermanyssus Genus: Varroa Genus: Dermanyssus Bu cinste bulunan ve yaygın olarak görülen tür Dermanyssus gallinae' dir. Bu türün erişkinleri 0.5-1 mm büyüklüğündedir. Vücudu oval şekilde ve ön tarafında ince uzun yapıda ağız organelleri bulunur. Vücudun dorsal kısmı yaka şeklinde küçük bir kitinle örtülüdür. Erişkinlerinde ve nymphlerinde 4 çift bacak bulunur. Uzun bacaklıdırlar. İdiosoma seyrek ve kısa kıllarla örtülüdür. Bu parazit tüm kanatlılardan kan emer ve fırsat buldukça da insanlara saldırabilir. Bu akarlar beyaz, gri veya siyah renkte olmalarına rağmen kan emince kırmızı renk alırlar. Bu nedenle tavukların kırmızı akan ya da "tavuk kırmızı biti" olarak adlandırılır. Bunlar kümesIerde hayvanların üzerinde ya da meskenlerde çatlak ve aralıklarda kum yığını halinde bulunurlar. Dişileri yumurtalarını buralara bırakır. Yumurtalardan çıkan larvalar gömlek değiştirirler ve I. nymph 'ler oluşur. Bunlar konaklarından kan emerler, gömlek değiştirirler ve 2. nymph'ler meydana gelir. Bunlarda kan emer ve gömlek değiştirerek erişkinler oluşur. Biyolojileri optimal şartlar altında 7 günde tamamlanır. Erişkinler kan emmeksizin 4-5 ay canlılıklarını korurlar. Dermanyssus gallinae'nin erişkin ve nymph'leri konaklarından kan emerler. Larvaları ise beslenmezler. Dermanyssus gallinae'nin erişkinleri ve nymph'leri değişik zamanlarda ve periyodik olarak kanatlılardan kan emerler. Gündüzleri ise kümesIerde saklanırlar. Evlerin çatısındaki güvercinlerde bulunduklarından buradan insanlara geçebilirler. Ayrıca kümese giren insanlara da saldırırlar. Bu parazitler özellikle yazın aktivite gösterirler ve uygun şartlarda çok çabuk ürerler. Konaklannı irrite ederek huzursuzlandınr ve kan emerek anemiye sebep olurlar. Bu durum yumurta verimlerinin düşmesine ve et verim kaybına yol açar. Ağır enfestasyonlarda ölüm olayları görülebilir. Bu ektoparazit türü kanatlıların spirochetosis etkeni olan Borrelia anserina'ya vektörlük yapar. İnsanları sokması sonucu deride kızarıklık, lokal olarak şişlikler, lokal ya da yaygın allerjik bozukluklar ve kaşıntıya neden olurlar. Bu parazit türüne kuş akarcığı adı da verilmektedir. Genus: Ornithonyssus (=Bdellonyssus, Liponyssus) Bunlar şekil ve biyolojileri bakımından Dermanyssus 'lara benzerler. Ancak bunların Vücudunda çok daha fazla uzun tüyler bulunur. Kanatlılardan, fare ve ratlardan kan emerler. Bunlara keme akarcığı adı verilir. Kan emmemişleri kirli sarı renkli olduğu halde, kan emrniş olanlan kırmızı - boz renktedir. Erişkinleri oval ve 1 mm uzunluğundadır. İnsanlara saldırdıklarında özelikle çocuklarda şiddetli yanma ve kaşıntıya neden olurlar. Bu cinste bulunan türler; Ornithonyssus sylviarum, O. bursa ve O. bacoti'dir. Fareler arasında rickettsia etkeni olan Rickettsia acari'yi naklederler. Genus: AlIodermanyssus Önemli tür Allodermanyssus sanguineus' dur. Bunlar fare ve ratlarda bulunurlar. Özellikle evcil rat ve farelerden kan emerler. Bunun için ev fare akarı adını alırlar. Biyolojileri Dermanyssus'lara benzer. Bu tür fare ve ratlar arasında veya bunlardan insanlara riketsiyal çiçek etkeni olan Rickettsia akari'yi vektörlük yaparak bulaştırırlar. Genus: Pneumonyssus Pneumonyssus cinsine bağlı türlerden P. caninum köpeklerin burun yollarında ve nasal sinuslarda, P.simicola ise maymunların bronşlarında parazitlenir. Biyolojileri iyi bilinmemektedir. Bulaşmanın direkt temasla olabileceği kaydedilmiştir. Genus: Ophionyssus Bilinen tür Ophionyssus natricis'diro Yılanların akarıdır. Sarımsı kahverengindedirler. Ancak kan emdiklerinde koyu kırmızı renk alırlar. Biyoloji ve beslenme özellikleri Dermanyssus 'lara benzer. Ağır enfestasyonlarda anemi, zayıflama ve ölüme yol açarlar. Ayrıca yılanların bakteriyel bir patojeni olan Aeromonas hydrophila 'yı mekanik olarak naklederler. Yılanların diğer akarları olan Entonyssus ve Entophionyssus cinsleri trachae ve akciğerlerde parazitlenirler. Genus: Varroa Species: Varroa jacobsoni (Arı akarı) Ergin dişileri 1.2 mm uzunluğunda ve 1.5 mm enindedir. Vücutları dorso-ventral olarak yassıdır. Dişi varroa 'lar enine ovalimsi, erkekler ise yuvarlağımsıdır. Erkek varroa 'lar 0.8 mm uzunlukta ve 0.7 mm enindedir. Dişi akarlar açık veya koyu kahverenklidirler, erkekler ise beyaz gri veya sarımtrak renklidirler. Ergin dişilerde sırt kısmı hafif dış bükeydir. Vücut sert kitini tabaka ile örtülüdür. Dorsalden bakıldığında ağız organelleri ve bacakları iyi görülmez. Vücut gnathosoma ve idiosoma olmak üzere iki kısımdan oluşmuştur. Ağız organelleri delici ve emici tiptedir. Bir çift cheliserleri vardır. ve bu arı derisinin delinmesinde rol oynar. Bunların kenarında bir çift pedipalp bulunur. Erişkin varroalarda 6 eklemli 4 bacak bulunur. Erkek akarların ağız organelleri hemolenf emmeye elverişli değildir. Dişileri ise uygun ağız organelleri ile arı yavrularının ve erişkin arıların hemolenfini emer. Varroa jacobsoni'nin vücudunun sırt kısmında ve yanlarında diken gibi kıllar bulunur. Bu kıllar akarın arı üzerinde durmasını sağlar. Bu tür arıların genellikle baş ve thorax arasına yerleşir. Solunum çok iyi gelişmiş olan trake sistemiyle olur. Biyolojileri: Varroa jacobsoni'nin biyolojisi ilkbaharda arı larvasının yetiştirilmeye başlamasıyla başlar ve sonbaharda son genç işçi arılar çıkıncaya kadar devam eder. Kışı ergin dişi olarak geçirir. Bu akar erkek arılar üzerinde yaşar. Üreme için özellikle erkek arı gözlerini seçer. Varroa 'ların erkek arıları tercih etmelerinin bir çok nedenleri vardır. Bunlar; erkek arı larvalarının kapalı göz içinde kaldıkları sürenin daha uzun olması, kovanda erkek arı gözlerinin daha çok peteklerin alt ve yan kenarlarında bulunması, erkek arı larvalarının dişilerden daha fazla besinle beslenmesi ve hormonal etki gibi faktörlerdir. Kışı ergin arılar üzerinde geçiren döllenmiş dişi parazitler ilkbaharda gelişmekte olan 5-6 günlük larvaların bulunduğu petek gözlerine, gözler kapatılmadan 1-2 gün önce girerler. Dişi akar larvanın hemolenfini emer ve 2-9 adet yumurtasını buralara bırakır. 2-3 defa bulunduğu yere yumurtlayabilir. Yumurtalardan 24 saat sonra 3 çift bacaklı larvalar çıkar. Bunlar 2 gün sonra gömlek değiştirerek 1. nymph (protonymph) olur. Bu 4 çift bacaklı 1. nymphler larvanın hemolenfini emer ve gömlek değiştirerek 3-5 günde 2. nymph (deutonimf) ler oluşur, 2. nymph dönemi 1-2 gün sürer ve bunlar arı pupasının kan sıvısı ile beslenirler. Bunlardan da erişkin akarlar oluşur. Dişi varroa 8-10, erkek erişkin ise 6-7 günde yumurtadan oluşur. Ergin erkek ve dişi akar petek gözlerinde çiftleşir ve erkekler kapalı göz içerisinde ölürler. Bunun için arılar üzerinde erkek varroalara rastlanmaz. Çiftleşmiş genç dişi varroalar ise gözler içerisinde genç arıya tutunarak beslenmelerini sürdürürler ve arıyla birlikte gözden çıkarlar. Döllenmiş olarak gözden çıkan varroalar 5 gün sonra yumurtlamaya başlarlar. Yani bu akarlar bir süre sonra tekrar yavru gözlerine dönerek yumurtlamaya başlarlar. Erişkin dişi akarlar yazın 2-3 ay, kışın ise 5-8 ay yaşamlarını sürdürürler. Varroa'ların üreme potansiyelleri çok yüksektir. Bir nesilden diğer neslin oluşmasına kadar geçen süre yaklaşık 7 gündür. Erkek arılarda ise biyolojik gelişme 24 gün olduğundan, bir nesil arı oluşana kadar varroalarda 3 nesil meydana gelmektedir. Varroaların yaşaması ve çoğalması için mutlaka bal arısının hemolenfini emmesi gerekmektedir. Bulaşması: Bulaşma daha çok arıdan arıya olmakla beraber bunda gezginci ancılığında rolü vardır. Türkiye'ye Bulga.rİstan'dan geçtiği ve Trakya yöresinden de Ege bölgesine yayıldığı ve göçer ancılar vasıtasıyla bütün illerin bulaşık olduğu bildirilmiştir. Bulaşmada arıcılarında rolü vardır. Bulaşık arı kolonilerinden sağlıklı ailelere yavru ve genç işçi arı verilmesiyle, ailelerin kontrolsüz birleştirilrneleri ile ve işçi arıların çiçekten çiçeğe konarken akarı oralara taşımasıyla olmaktadır. Klinik belirtiler: Arı varroasis'ine neden olan Varroa jacobsoni ergin an ve larvaların hemolenfini emdiği için, yavru arı ve ergin anlara zarar verirler. Arılar güçsüz düşerler ve akarlardan kurtulmak için büyük gayret sarfederler ve bunun sonucunda da huzursuz olur ve uzun bir can çekişmesinden sonra ölürler. Ölümler kovan dışında olur. Enfeste arılar iyi uçamazlar. Sıcak havalarda enfeste arılar kovan uçuş deliğinin önünde sürünürken görülürler. Bu akarlar beslenirken yaralar açarlar ve bu yaralardan bakteriyel etkenler arılara girerek septisemiden ölüme neden olurlar. Ayrıca varroasis'de etkenler erkek arılar üzerinde daha yoğun bulunduklarından, kovanda erkek arı sayısı belirgin sayıda azalır ve cinsel güçleri düşer. Yine ana arı ve işçi arıların ömürleri kısalır ve işçi arılar normalden daha küçük olurlar. Arı larvaları rahatsız oldukları için petek gözünden dışarıya çıkarlar ve kovan dip tahtasının üzerine düşerler ve hatta bunlardan oluşacak arılarda da anomaliler oluşur. Bazen ölü larvalar dışarıya atılamazlar ve gözler koyu renkli olup, deliklerin çerçevesi beyazlaşmıştır. Arılarda yüksek kayıplar kışın ortaya çıkar. Ana arının yumurtlama yeteneğinin azalması ve işçi arıların beslenme yeteneklerinin bozulması ile ekonomik kayıplara yol açarlar. Varrosis’ de teşhis: Kovanın dip tahtası üzerine konan kağıt üzerine düşen akarları toplayıp inceleyerek, kapalı erkek yavru gözleri ince uçlu bir pensle açılarak dışarı çıkarılan larvaların üzerinde akarlar aranarak konulur. Erişkin dişi akarları çıplak gözle görebiliriz. Ancak nymphler için büyüteç yada en iyisi stero -mikroskop altında incelenmeyle teşhis edilir. Ergin arılar üzerindeki varroaları görmek için ise 200 kadar arı örneği bir fırça ile toplanır. Kavanoza konan bu örnekler üzerine sıvı deterjanlı sıcak su dökülür. Arılar tel süzgeçle sallanarak ayrılır ve dipteki tortuda parazitler aranır. Ayrıca arılar etilasetat ile öldürülür, alkolde yıkanır ve akarın an üzerinden ayrılması sağlanır. Çöküntü stero- mikroskopta incelenir. Kontrol: Varroasis'e karşı kimyasal mücadele erken ilkbahar ve geç sonbahar aylarında yapılır. Bu zamanlarda kovandaki bal miktarı az olduğu için kullanılan ilacın bala geçmesi gibi bir sorunun da önüne geçmiş olunur. ilaçlama için en uygun zaman arıların kovana döndükleri güneş batımından sonraki akşam üzeri yapılır. Bunun için gaz halinde kullanılan fumigantlar, toz şeklinde kullanılan ilaçlar, kontakt etkili ilaçlar ve şurup, kek gibi oral yolla etkili ilaçlar olarak gruplandırılan insektisit ve akarisitler kullanılır. Bunun için ülkemizde kullanılan ilaçlar; Perizin (Diethyl-thiophosphate), Folbex-VA (Bromopropylate), Varation-TKV (Malathion % 0.1), Varroacide ( Amitraz ), Vamitrat- Va ( Amitraz ) ve Apistan ( trifuoromethyl, sentetik pyretroiddir )'dır. Kontrol'de ayrıca biyolojik mücadele ve fiziksel mücadele metotlarıda kullanılmaktadır. Suborder: Prostigmata Bu alt takımdaki parazitlerin stigmaları gnathosomanın kaidesinde bulunur. Bulunan aileler; Familya: Trombiculidae Familya: Cheyletiellidae Familya: Demodicidae Familya: Myobiidae Familya: Pediculoididae Familya: Psorergatidae Familya: Tarsonemidae Familya: Trombiculidae Bu aileye bağlı Trombicula, Neotrombicula ve Leptotrombicula cinsleri bulunur. Bu cinslere bağlı türler ise T.dicoxale, T.minor, T.sarcina, T.akamushi ve N. autumnalis'dir Bunlardan yurdumuzda koyun ve sığırlarda saptanmış olan tür Trombicula dicoxale'dir. Ayrıca ülkemiz için en önemli türlerden birisi de N autumnalis' dir. Bu ailede bulunan türlerin erişgin ve nymph 'leri mera ve çayırlarda, kırsal, çalılık ve taşlık yerlerde serbest olarak yaşarlar. Bu evreleri parazit değildir. Ancak larvaları insan ve hayvanlardan lenf sıvısı emerek parazitlenirler. Erişkinleri 2 mm büyüklüğünde, gnathosoma üçgen şeklinde ve vücut cephalo-thorax abdomen şeklindedir. Vücut abdomenden sonra bir boğumlanma ile ayrıImıştır. Erişkin ve nymph 'lerinde görülen bu boğumlanma larvalarda görülmez. Erişkinleri beyaz sarımtrak renklidir ve vücutları sık kıllarla örtülüdür. Şeliserleri tırnak biçiminde ve uçları sivridir. Larvaları 0.2 -0.5 mm büyüklüğünde ve vücut toparlağımsıdır. Larvaların üzeri ince tüylerle kaplı olup, sarıdan kırmızı turuncuya kadar değişen renkte ve dorsal kısımda küçük bir kitini plaka taşırlar. Biyolojik gelişmeleri şöyledir. Trombikulid yumurtaları erişkinler tarafından toprağa veya otlar üzerine ilkbahar aylarında bırakılır. Yumurtalardan 6 bacaklı larvalar çıkar. Bu larvalar bulunduğu ortamdaki kuşlara, reptillere ve memelilere saldırırlar. Larvalar fare gibi küçük omurgalı konaklarda kulaklara yerleşebilir. Buralarda şeliser ve hipostomlarını deriye sokarak beslenirler. Bu esnada tükrüğe benzer bir madde salgılarlar. Larvalar daha sonra yere düşer ve dinlenme dönemi olan deutonimfler oluşur. Daha sonra ikinci dinlenme dönemi olan tritonimfler meydana gelir ve bunlarda erişkin akarcıklar haline geçerler. Trombicula larvaları bulundukları yerlerde başta tavşan, kemirgenler ve kuşlar olmak üzere değişik memeli hayvanlara ve insanlara sadırırlar. Bunlar özellikle ayak kısımlarında, şeliserleri ile tutunduğunda dermatitlere neden olurlar. Uyuz benzeri belirtiler ortaya çıkar. Sokulan yerde ortaları solgun, kenarları hiperemik lezyonlar oluşur, bu lezyonlar zamanla nekrozlaşır. Bazen kırmızı papüller meydana gelir ve bunlar kaşıntılıdır. Larvaların yaptığı bu lezyonlara güz uyuzu yada çalılık uyuzu adı verilir. Zamanla lokal direnç nedeniyle 4-8 gün içinde larvalar kendiliğinden deriden yere bırakılır. Bu türlerden T akamushi insanlara akarcık tifusu etkeni olan Rickettsia tsutsugamushi'yi bulaştırırlar. Bu durum özellikle uzak doğuda önemlidir. Oluşan şiddetli kaşıntıya karşı soğuk su banyoları veya kompresleri, antihistaminikli kremler uygulanır. Kaşıntıyı önlemek için %5 benzocaine, %2 metilsalisilat, %0.5 salisilik asit, %72 etanol ve % 19.5 su karışımı kullanılır. Familya: Tarsonemidae Bu ailede bulunan akarlardan Tarsonemus hominis türü insanların ürogenital organlarında bulunmuştur. Bu türden ayrı olarak özellikle hekimlik açısından önemli olan ve arıcılık sektöründe sorun oluşturan ve arılarda görülen akar türü ise Acarapis woodi' dir. Acarapis woodi'ye yaşlı arılarda yani ergin arılarda 1. göğüs stigmasının gerisinde yer alan trachea ( soluk borusu) ve bunun dallarında rastlanır. Bunun için arıların trachea akarı olarak bilinir. Hindistan ve Pakistan'da yaygındır. Erişkin akar 80 -120 mikron büyüklükte olup, trcheada rahatlıkla hareket eder ve kanat köklerine yerleşerek arı hemolenfi ile beslenir. Uzun ve delici olan ağız yapısıyla trachea duvarım delerek hemolenfı emer. Döllenmiş dişi yumurtalarını tracheaya bırakır ve sırası ile larva, nimf ve erişkin safhaları görülür. Bulaşma arıdan arıya contact temasla olmaktadır. Klinik olarak trachea çevresinden hemolenfin akması sonucu kabuklaşma görülür. Oksijen değişimi engellendiği için arılar ölürler. Büyük kayıplar arıların kovanda bulunduğu kış başlangıcında meydana gelir. Enfestasyon ilkbaharda ortaya çıkar ve enfeste arılar uçamaz ve sürünerek yürürler. Teşhis için trachea açılarak üzerine lamel kapatılır ve mikroskopta erişkin yada larva formları aranır. Ayrıca enfeste arıların tracheaları kahverengindedir. Normalde soluk borusu beyaz renklidir. Mücadelede akarları tam anlamıyla eradike edebilmek için birer hafta arayla 7 kez ilaçlama yapılmalıdır. Fumigasyon şeklinde kullanılan ilaçlar tercih edilir. İlaçlama anında kovandaki tüm delik ve çatlaklar kapatılmalı ve ilaçlama sonrası hemen açılmalıdır. ilaç uygulaması 10 gün sonra tekrarlanmalıdır. Familya: Pediculoididae (= Pyometidae) Önemli tür Pediculoides (= Pyometes) ventricosus'dur. Dişileri 220, erkekleri ise 150 mikron uzunluğundadır. Dişilerin arka uçu kesemsi koniktir. Bu türün sadece dişileri insanlarda ve hayvanlarda parazitlenir. Tahıl ambarlarında yaşayan insektIerin yada bunların gelişme dönemlerinin üzerinde bulunurlar. Bu akarlar bitki tohumlarına saldıran böceklerle beslenirler. Özelliklede bu böceklerin larvalarıyla beslendikleri için faydalıdırlar. Ancak bu ambarlara giren insan ve evcil hayvanlara da saldırarak kaşıntılı dermatitlere neden olurlar. Özellikle tahlıların bol olduğu yaz aylarında ve harman zamanında yaygındırlar. Biyolojileri farklılık gösterir. Deriye tutunan dişinin uterusundaki yumurtalardan larvalar gelişir. Her dişide 100-300 kadar larva gelişebilir. Bu larvaların sadece % 3-4'ü erkektir. Bu erkekler de ananın genita! deliğine yakın dururlar ve genç dişileri delikten çıkma esnasında döllerler. Her erkek 30 kadar dişi ile çiftleşir. Daha sonra dişiler yeni konak ararlar. Yaz aylarında tahılların bol olduğu dönemlerde 3-4 ayda bir yeni nesiller gelişir. Biyolojik gelişme için en uygun sıcaklık 26-28oC'dir. 25derecede'de yaklaşık 10 günde yeni nesiller ortaya çıkmaya başlar. Bunların yalnız dişileri insanlara saldırarak uyuz benzeri belirtilere neden olurlar. Bunun için Piyometes ventricosus'un konakların derilerine yapışarak parazitlenmesi sonucu oluşan dermatite "arpa uyuzu" ya da "Acarodermatitis urticarioides" adı verilmektedir. Tahıl uyuzu etkenleri olan bu akarcıklar başlangıçta açıkta olan kol, yüz, el ve bacakları sararlar ve zamanla tüm vücuda yayılırlar. Deride önce kabarcıklar, veziküller ve kaşıma sonucu peteşiyel kanamalar ve kızarıklıklar görülür. Buralarda kaşıntı sonucu yaralar oluşur. Bu yaralardan yapılan preparatlarda akarların görülmesiyle tanı konulur. Familya: Cheyletidae (= Cheyletiellidae ) Bu ailede bulunan akarların kutikulaları yumuşaktır ve şeliserleri uzundu. Palpleri 3-5 eklemden oluşmuş olup, uçlarında iri kanca bulunur. Memelilerde ve kuşlarda ektoparazit olarak yaşarlar. Bazı türler ise doğada serbest olarak yaşarlar. Memelilerde bulunan cins; Genus: Cheyletiella Bu cinsdeki türler köpek, kedi ve tavşanlarda parazitlenirler. Bağlı türler; Cheyletiella parasitivorax: Tavşanlar konaklandır. C. yasguri: Köpeklerde C. blakei: kedilerde C.strandtmanni: Yabani tavşanlarda C. .furmani: Tavşanlarda bulunur. Bu türlerin büyüklüğü 0.4 x 0.25 mm kadardır. Bu konakların kılları arasında yaşarlar ve çok hızlı hareket ederler. Konaklarının lenf sıvısını emerek beslenirler. Dişi parazitler yumurtalarını iplik benzeri bir salgı içerisinde kıllara yapıştırarak bırakırlar. Yumurta içinde önce prelarvalar ve bunlardan larva oluşur ve yumurtayı terkederler. Daha sonra sırası ile I. dönem nymph ve erişkinler oluşur. Cheyletiella cinsindeki bu parazitler konaklarında kılların keçeleşmesine ve karışık bir görünüm kazanmasına ve nisbetende kıl dökülmesine neden olurlar. Tüm dünyada yaygın olarak bulunan bu parazitler hayvan bakıcılarına ve sahiplerine de geçebilmektedir. İnsanlarda kaşıntı ile seyreden bir dermatite neden olmaktadırlar. Kontakt temasla insanlara geçen bu akarlar irrtasyon, eriytem, vesicül ve pustullere yol açarlar. Bu türlerin enfestasyonlarının teşhisi için şüpeli kısımlardan kıllar alınır ve mikroskobik bakıda iplik benzeri maddeyle kıllar üzerinde bulunan yumurtaların görülmesiyle konulur. Yada lezyonlu kısımların bir sıvı yağ veya gliserin ile yumuşatılmasından sonra kazıntı alınır ve mikroskobik olarak incelenerek tanı konulur. Bunlardan başka en iyi tanı metodlarından birisi de, Cheyletiella türleri hareketli olduklanndan kıllar aralanır ve selefobant yapıştırılır. Daha sonra bu bant kaldırılarak bir lam üzerine yapıştırılır ve akarlar incelenir. Familya: Psorergatidae Genus: Psorergates Bu cinse bağlı bulunan ve koyunların derisinde parazitlenen tür Psorergates ovis' dir. Avustralya, Yeni Zellanda ve Güney Afrika'da yaygın bir türdür. Akarlar oldukca küçük ve küreselolup, 0.2 mm' den daha küçüktürler. P. ovis özellikle yapağısı bol merinos koyunlarında parazitlenirler. Koyunlarda kaşıntıya neden olurlar. Yünler matlaşır ve hayvanlar kaşıntıdan dolayı kendilerini yani yapağılarını ısırırlar ve yapağının yolunarak dükülmesine yol açarlar. Teşhisi uyuzun tanısında yapılan işlemler gibi yapılarak konulur. Familya: Myobiidae Bu aileye bağlı olarak Myobia musculi türü bulunur. Farelerde ve ratlarda parazitlenir. Laboratuvar hayvanlarında hafif bir dermatitise neden olur. Farelerde kıl kaybına yol açarlar ve bulaşma temasla olur. Büyüklükleri 350-500 mikron kadardır. Biyolojilerini 12-13 günde tamamlarlar. Konaklarında uyuz benzeri lezyonlar oluştururlar. Myobiidae ailesine bağlı diyer bir cins Syringophilus'dur. Kanatlılarda bulunur. Bu cinse bağlı Syringophilus columbae güvercilerin, S. uncinata türü ise tavus kuşlarının tüylerinin dip kısmında yerleşirler. Familya: Demodicidae Bu ailede bulunan ve tüm evcil hayvanlarda ve insanlarda rastlanan cins Demodex' dir. Demodex cinsindeki türlerin insan ve hayvanlarda meydana getirdiyi hastalığa "Demodicosis" adı verilir. Demodex'ler diğer uyuz etkenlerinden farklı yapıda bir vücut morfolojisine sahiptirler. Demedex türlerinde vücut caput, thorax ve abdomen olarak ayrılmıştır. Vücudun arka ucu geriye doğru kuyruk gibi uzamış ve kurtçuk şeklindedir. Abdomenin üzeri enine çizgilidir. Erişkinleri 0.1-0.4 mm uzunluğundadır. Şeliserleri kısa, kalın ve makas gibidir. Hipostom delik biçimindedir. Palpleri iki segmentlidir. Bacaklar 4 çift olup, thoraxdan çıkarlar ve çok kısa, kalın ve üç boğumludur. Ayrıca tarsuslarının uç kısımlarında birer çift kalın ve sivri tırnak bulunur. Çiftleşme organı 4. çift bacak koksaları arasında bulunur. Larvaları 3 çift bacaklıdır. Demodex cinsine bağlı bulunan türlerden insan ve domuzlarda bulunanlar hariç konak isimlerine göre adlandırılırlar. Bu türler ve konakları Demodex folliculorum: İnsan D. phylloides : Domuz D. ovis: Koyun D. canis: Köpek D. equi: Tektırnaklılar D. cati : Kedi D. caprae: Keçi D. bovis: Sığır D. cuniculi : Tavşan Bu türler konaklarının kıl folliküllerine ve yağ bezlerine yerleşerek folliküler uyuza neden olurlar. Biyolojik gelişmelerinde sırası ile yumurta -larva -1. nymph (protonymph) -2. nymph ı-- (deutonmyph) ve erişkin dönemleri bulunur. Gelişmelerini 9-14 günde tamamlarlar.

http://www.biyologlar.com/aracnida-aracbnoidea-sinifi

GELİBOLU YARIMADASI TARİHİ MİLLİ PARKI

GELİBOLU YARIMADASI TARİHİ MİLLİ PARKI

İli : ÇANAKKALE Adı : GELİBOLU YARIMADASI TARİHİ MİLLİ PARKI Kuruluşu : 1973 Alanı : 33.000 ha. Konumu : Marmara Bölgesi’nin batısında, Çanakkale ili Eceabat ilçesindedir. Ulaşım : Çanakkale’den feribot ve motorla ulaşılır. Kaynak Değerleri :           Osmanlı İmparatorluğu’nu saf dışı etmek ve Rusya’ya yardım amacı ile İstanbul’a ulaşmak isteyen İtilaf Devletleri, güçlü donanmalarına güvenerek Gelibolu Yarımadası üzerinden saldırıya geçmişlerdi. Burada Kurmay Yarbay Mustafa Kemal’in önderliğinde Türk Milleti’nin güçlü, insanüstü direnmesi ile karşılaştılar. 250.000’i aşan Türk şehidinin kanları üzerinde yükselen anıtlar ve yine 250.000’i aşkın İngiliz, Fransız, Avustralya ve Yeni Zelanda askerlerinin kemiklerinin gömülü olduğu alanları içine alan milli park, bütün dünyaya barışın değerini anlatmaktadır. Görünecek Yerler : Gelibolu Yarımadası Tarihi Milli Parkı, Kabatepe Tanıtma Merkezi ve Müzesi, Kanlı Sırt, Conkbayırı’ndaki yazıtlar, anıtlar ve Atatürk’ün saatinin parçalandığı yer, Conkbayırı’nda İngiliz ve Yeni Zelanda anıt ve mezarlıkları, Mehmet Çavuş Anıtı, tamamı şehit olan 57. Alay Şehitliği, Anzak Koyu Anıtı ve mezarlıkları, Seddülbahirdeki Çanakkale Şehitleri Anıtı ve müzesi, Yahya Çavuş Anıtı, İngiliz Helles Anıtı, Alçıtepe köyündeki özel müze, Kilitbahir Kalesi ve müzesi, siperler, savaş kalıntıları, Seyit Onbaşı Anıtı ve Bigalı köyündeki Atatürk Evi görülebilir. Mevcut Hizmetler : Saha içerisindeki Kabatepe mevkiinde günübirlik piknik yapmak mümkündür. Çadırlı kamp ve denizden faydalanma imkanı da bulunmaktadır. Ziyaretçilere günübirlik kullanım alanı olarak planlanmış sahada kır gazinosu, büfe gibi hizmetler de sunulmaktadır. Konaklama : Kabatepe kamp ve günübirlik kullanım alanında çadır ve karavanla konaklama imkanı mevcuttur. Eceabat ilçe merkezinde oteller, Seddülbahir köyünde motel ve pansiyon bulunur.  http://www.milliparklar.gov.tr TANITIM VİDEOSU

http://www.biyologlar.com/gelibolu-yarimadasi-tarihi-milli-parki

İlginç Yaşamlar.... Deniz Canlıları

Suların vazgeçilmez canlıları. Kimi zaman soframızı, kimi zaman da evimizdeki akvaryumu dolduran balıklar. Torpido ya da iğ şeklindeki vücutları var. Bu vücut yapısı sayesinde su içerisinde daha az enerji harcayarak hareket edebiliyorlar. Bazen renk renk, göz alıcı güzelliğe sahip balıklarla karşılaşırız. Vahşi yaşamda bu balıklar, 0-200 m derinliklerde yaşar ve littoral balık olarak isimlendirilir. Littoral balıklar, bulunduğu bölgedeki taş, kum, resif ya da kayaların rengine sahipler. Yani kamuflaj yetenekleri var. Balıklar için bu özellik, düşmanlarından saklanmak için bir avantaj. Bu avantajı onlara verip, renk değiştirerek saklanmalarını sağlayan renk hücreleriyse dört çeşit. Kromotofor adı verilen bu hücreler, melanofor (siyah), ksantofor (sarı), eritrofor (kırmızı) ve gümüşi renkte olan iridositler. İridositler dışındaki diğer kromotoforlar, merkezi bir kısım ve uzantılarından oluşan karmaşık bir hücresel yapıya sahip. Işık, hormon ve sinirlerin etkisiyle kromotofor içerisindeki pigment granü’lleri, bu hücrenin merkezinde toplanırsa balığın rengi açık, tüm hücreye yayılırsa renk koyu oluyor. Bu özellik ani renk değişimi olarak biliniyor. Bazen de karanlık bir ortamda yaşayan ya da uzun süre böyle bir ortamda kalmış olan bir balık, yavaş yavaş kromotofor sayısını arttırarak, vücut rengini bulunduğu ortama göre ayarlayabiliyor. Bu renk değiştirme biçimi uzun süreli olup, kalıcı. İridositler dediğimiz gümüşi renkteki kromotoforlarınsa içinde özel bir renk maddesi bulunmuyor. Bunun yerine ışığı kuvvetlice kıran, guanin kristalleri içe-riyorlar. Bu kristallerin hücre içindeki yerine göre, ışığı az ya da çok miktarda yansıtmasıyla da bir gökkuşağı rengi meydana geliyor. Açık denizlerde yaşayan balıklardaysa renk karakteristik. Sırt, mavi yeşil parıltılı olup, balığın yanlarından karnına doğru gümüşi, karın tarafı da beyaz. Sofralarımızı dolduran hamsi, sardalye, uskumruda olduğu gibi… Dip balıklarından vatoz (Rajiformes), dil ve pisi (Pleuronectiformes) balıklarına bakacak olursak, sırt taraflarının koyu renkli ve karışık desenli, karın taraflarının da soluk renkli olduğunu görürüz. Karanlık çevreye uyum sağlamak için bu gibi dip balıklarında menekşe ya da siyah renk hakim. Ayrıca diplerde ve bulanık sularda yaşayan balıklarda gözler küçük. Besin aranmasında, düşmanın algılanmasında vs. gözler yerine bıyıklar ya da koklama organı gibi başka organlar görev alıyor. Bıyıklar üzerindeki reseptörler kimi zaman tat almada, kimi zaman da besin aranmasında rol oynuyor. Balıklardaki koklama organı kara hayvanlarında olduğu gibi solunum işine yaramıyor ve yutakla bağlantısı yok. Balığın gözü ile ağzı arasında bulunan burun delikleri, her iki yanında bir çift delikten oluşup burun boşluğu içinde koklama kapsülü bulunuyor. Yüzme sırasında su, ön delikten giriyor ve koklama kapsülünden geçtikten sonra arka delikten çıkıyor. Özellikle de sürü halinde gezen balıklarda bu organ, balığın kendi sürüsünden birinin ya da düşmanın kokusunu ayırt etmede kullanılıyor. Bazı balıklarda bir bireyin yaralanmış derisinden salgılanan koku maddesi, sürünün diğer üyeleri tarafından algılanarak, ortamda düşmanın var olduğunu anlamalarını sağlıyor. Balıkların birbirleriyle haberleşmesini sağlayan diğer bir yöntem de çıkardıkları sesler. Balıklarda gırtlak olmadığı için, memeli ve kuşlarda olduğu gibi ses çıkarmıyorlar. Bunun yerine sazangiller (Cyprinidae) ailesinde olduğu gibi yüzme kesesinden hava çıkarken oluşan ya da kırlangıç balığıgiller (Triglidae)ailesindeki balıklarda görülen ‘gurlama’ şeklindeki ses gibi karakteristik sesler çıkarıyorlar. Birçok balığın kendine özgü sesi var: Trachurus, Mola ve bazı Balistes türleri üst ve alt yutak dişlerini birbirine sürterek kaba bir ses çıkarıyorlar. Bazı balıklarsa süpersonik sesler çıkarıyorlar. Genellikle, süpersonik sesler çıkaran canlılar olarak yunuslar gelir aklımıza. Fakat yunuslar, denizlerde yaşayan memeli hayvanlar. Bu sevimli canlılar 2000 Hz’den az ve 100 000 Hz’den fazla olan ‘klik’ şeklindeki sesleriyle büyüklük, boyut, boşluk tayini ve aynı zamanda da doku ve objelerin yön ve yoğunluğunu algılıyorlar. Bizim duyamadığımız bu sesler, yunusun kafasının içindeki ‘melon’ adı verilen bölgeden kaynaklanıyor. Yunuslar su içerisinde hareket ederken, genellikle kafalarını yavaş biçimde bir yandan diğer bir yana döndürerek ve yukarı aşağı hareketler yaparak, çevreyi tarıyorlar. Bu tarama sırasında, çevrelerindeki nesnelerin şeklini, gönderdikleri seslerin frekansını değiştirerek ortaya çıkarırlar. Sesin geri dönüş süresi objenin yunusa olan uzaklığını belirliyor. Yunusun kafasının yan kısımları ve alt çenesi oldukça yağlı. Geri dönen ses yansımaları, bu bölge ile algılanır. Şişe burunlu yunus (Tursiops truncatus), tırtak yunus (Delphinus delphis), çizgili yunus (Stenella coeruleoalba) ve Karadeniz’de yaşayan, ama günümüzde sayıları oldukça azalmış olan mutur (Phocena phocena), yurdumuzun denizlerinde yaşayan yunus türleri. Kontrolsüz biçimde avlanma, ağlara takılmaları, besin azlığı nedeniyle sayıları oldukça azalmış bu sevimli hayvanlar hakkında ne yazık ki ülkemizde yeterli bilimsel araştırma yok. Azalan sayılarıyla halen yaşam mücadelesi veren, suların vazgeçilmez canlılarından bir diğeriyse, Mersin morinası (Huso huso). Acipenceridae ailesinden biri olan bu değerli balık, mersin balıkları içinde en büyüğü ve yurdumuzda Karadeniz’de 100-130 m derinliklerde yaşıyor. Karides, yengeç, çeşitli kabuklular ve kabuklularla beslenen bu muhteşem hayvanın boyunun 4 m ve ağırlığının 1300 kg’a ulaştığı ne yazık ki efsanelerde kaldı. Günümüzde Mersin morinasının boyu 2 m’yi bile bulmuyor. Havyarı ve lezzetli eti yüzünden aşırı avlanıyor. Yumurtlamak için tatlı sulara girmek istediğinde önüne kurulan setler yüzünden nehre giremeyen bu değerli üyemizi, gün geçtikçe kaybediyoruz. Normal olarak denizlerde yaşayıp da yumurtlamak için tatlı sulara göç eden balıklara anadrom balıklar deniyor. Mersin morinası gibi alabalıklar da (Salmonidae ailesi) anadrom balıklar grubuna giriyor. Salmonidae ailesini diğer balıklardan ayıran en önemli özellikleri sırtlarında bulunan yağ (adipoz) yüzgeci. Etleri çok lezzetli olan bu balıklar, küçük omurgasız ve balıklarla besleniyor. Ülkemizde temiz dağ sularında ve Karadeniz’de yaşıyorlar. Salmonidae ailesinin en ilginç yaşam öyküsüne sahip olan üyesi, Pasifik som balığı (Oncorhynchus sp.). 2 Aralık 1964′de, Prairie Creek balık çiftliğinde yaşanan bir olayla araştırılmaya başlandı. Yavru balıkların bulunduğu havuzda, büyük bir som balığı görüldü. Balık, iki yıl önce okyanusa bu çiftlikten bırakılmıştı. Çünkü, bu balık çiftliğinin metal klipsini taşıyordu. Balık çiftliğinin tahliye kanallarına bakıldığında 70 kadar daha som balığının havuza girmek için beklediği görüldü. Yapılan uzun süreli araştırmalar sonucu ülkemizde yaşamayan bu göçmen balığın yaşam yolculuğu belirlendi. Bir som balığının yaşamı, ekim-ocak aylarında annelerinin sığ bir akarsuda, çakıl ve kumlar arasına yaptığı yuvaya, yumurtalarını bırakmasıyla başlıyor. Suyun sıcaklığına göre gelişimini tamamlayan yumurtalar 3-5 ay sonra açılıyor. Yavrular iki ay kadar çakıllar arasında besin keseleriyle besleniyor, daha sonra aktif olarak beslenmeye başlıyor. Parlak pembe renkli ve üzeri koyu lekeli, gene som balığı yavrusuna ‘parr’ deniyor. Parr’lar gelişerek ertesi ilk baharda 25-35 gr ağırlığa ulaşıyorlar. Bu büyüklükteki bir som balığında, tuzlu suya geçiş için fizyolojik değişimler meydana geliyor ve balığın davranışları değişiyor. Renk değiştirerek gümüşi bir renk alıyorlar. Göç etmeye hazır duruma gelmiş som balığı yavrularına ise ’smolt’ adı veriliyor. 1-5 yıl boyunca okyanusta, çok uzun mesafelere göç ediyorlar. Kanada ve Alaska’da bulunan bu balıklar, Amerika, Alaska ve Japonya kıyılarında dolaştıktan sonra üremek için yumurtadan çıktıkları akarsuya geri dönüyorlar. Ne bir şelale, ne de kuvvetli bir akıntı yıldırabilir onları. Çok uzun mesafelerde gerçekleştirdikleri bu üreme göçü sırasında hiçbir şey yemiyorlar. Doğduğu akarsulara geldiğinde sığ kesimlere yumurtalarını bırakıyor ve kısa bir süre sonra da ölüyorlar. Bu şaşırtıcı yolculuğun nasıl yapıldığına ait araştırmalar, som balığının, dünyanın manyetik alanını algılayan doğal bir pusulasının bulunduğunu söylüyor. Kendi akarsularını nasıl bulduklarına gelince; dünyadaki bütün akarsuların kendine özgü bir kimyasal bileşimi var. Som balıkları da hassas koku alma sistemleriyle, yumurtadan çıktıkları akarsuların kokusunu algılayarak yolculuklarını tamamlarlar. Balıklarda göç, yalnızca denizlerden nehirlere olmaz. Normalde tatlı sularda yaşadığı halde, yumurtlamak üzere denizlere göç eden balıklar da var. Bunlar katadrom balıklar olarak biliniyor. Yılan balıkları (Anguilla anguilla) bu gruba giriyor. Ülkemizin denizlere dökülen akarsularında ve özellikle de Akdeniz bölgesinde yaşıyorlar. Okyanuslarda dünyaya gelen yılan balığı larvasına ‘Lepto-sephalus’ adı veriliyor. Leptosephalus, şeffaf ve yassı vücutlu olup, ilk günlerde iğne gibi sivri dişleriyle planktonlarla besleniyor ve hızlı bir şekilde büyüyor. Bu sırada yavaş yavaş deniz yüzeyine doğru yaklaşıyorlar. Larvaların başkalaşımı üç yılda tamamlanıyor. Eşeysel olgunluğa 6-7 yıldan sonra erişiyorlar. Erkekleri nehir ağzında kalıyor, dişilerse nehirlere doğru göç etmeye başlıyor. Tatlı suda kaldıkları sürece sırt yeşilimsi- kahve karın ve yan tarafları sarı. Bu nedenle ’sarı yılan balığı’ olarak adlandırılırlar. Tatlı sularda 15-18 yıla kadar devamlı olarak kalabilirler. Kışın soğuğundan rahatsız olan bu balıklar; göl ve nehirlerde, suyun derin kısımlarında ve çamurlar arasında kış uykusuna yatarlar. Sonbahar sonlarına doğru çok kuvvetli bir iç güdüyle tatlı sulardan denizlere göç ederler. Bu sırada renk değiştirirler. Sırt siyah, yan tarafları gümüş parlaklığındadır. Bunlara ‘gümüş yılan balığı’ da deniyor. Gümüş yılan balıklarının etleri oldukça yağlı. Baş, genç yaştakilere göre daha kısa, çeneler küçük ve dudakları ince. Denizle bağlantısı kesilmiş sularda yaşayan yılan balıklarının bile denize ulaşmak için ıslak çayırlar üzerinden geçtikleri biliniyor. Erkek ve yumurtalarını bırakan dişi yılan balıkları yumurtalarını bıraktığı yerde ölüyor. Yılan balıkları içinde bir tür var ki, bu kuvvetli göç etme içgüdüsünün yanında elektrik üretmesiyle de kendini özel kılmış. Elektrophorus electricus (elektrikli yılan balığı) 250 cm’lik boyu, 15-20 kg ağırlığıyla Güney Amerika’nın nehir ve bataklıklarında yaşıyor. Kuyruğunun her iki yanında bulunan 6000-8000 bölmeli elektrik organı, 550 volt ve 2 amper şiddetinde elektrik üretiyor. Çizgili kasların değişikliğe uğramasıyla oluşan elektrik organı, etrafı ara doku ile çevrili, disk şeklindeki elektroplakların arka arkaya dizilmesiyle oluşuyor. Bu plakların bir yüzünde sinirler, bir yüzünde kan damarları yerleşmiş. Plaklar, aynı yüzleri, aynı yöne gelecek şekilde dizilmiş. Elektrik akımının şiddeti, elektrik plaklarının sayısına ve balığın büyüklüğüne bağlı olarak değişiyor. Elektrikli yılan balığı, iki metrelik bir uzaklıktan 1 kilovvatt kuvvetinde bir etki gösterecek kadar tehlikeli. Elektrik organını genellikle korunma amacıyla kullanıyor. Elektrik akımına giren büyük memelileri ve hatta insanları bile rahatlıkla çarpıp, bayıltıyor ve şiddetli ağrılara neden oluyor.

http://www.biyologlar.com/ilginc-yasamlar-deniz-canlilari

Sinekkapangiller (Muscicapidae)

Pas renkli çalı kızılgerdanı (Cercotrichas galactotes) Benekli sinekkapan (Muscicapa striata) Küçük sinekkapan (Ficedula parva) Alaca sinekkapan (Ficedula semitorquata) Halkalı sinekkapan, Kolyeli sinekkapan (Ficedula albicollis) Kara sinekkapan (Ficedula hypoleuca) (T) Çayır taşçalanı (Saxicola rubertra) Taş kuşu (Saxicola torquata) Kızılgerdan (Erithacus rubecula) Ardıç bülbülü (Luscinia luscinia) Bülbül (Luscinia megarhynchos) Gökgerdan (Luscinia svecica) Kara kızılkuyruk (Phoenicurus ochruros) Bayağı kızılkuyruk (Phoenicurus phoenicurus) Boz kuyrukkakan (Oenanthe isabellina) Bayağı kuyrukkakan (Oenanthe oenanthe) Alaca kuyrukkakan (Oenanthe pleschanka) Kara kulaklı kuyrukkakan (Oenanthe hispanica) Çöl kuyrukkakanı (Oenanthe deserti) Ak sırtlı kuyrukkakan (Oenanthe finschii) Kızılca kuyrukkakan (Oenanthe xanthoprymna) Kara sırtlı kuyrukkakan (Oenanthe lugens) Ak tepeli kara kuyrukkakan (Oenanthe leucopyga) Büyük kızılca kuyrukkakan (Oenanthe moesta) Taş bülbülü (Irania gutturalis) Karakuyruk (Cercomela melanura)

http://www.biyologlar.com/sinekkapangiller-muscicapidae

ILGAZ DAĞI MİLLİ PARKI

ILGAZ DAĞI MİLLİ PARKI

İli : ÇANKIRI Adı : ILGAZ DAĞI MİLLİ PARKI Kuruluşu : 1976 Alanı : 1.088 ha. Konumu : Batı Karadeniz Bölgesi’nde, Çankırı ve Kastamonu il sınırları içerisinde yer almaktadır. Ulaşım : Milli parka, park içerisinden geçen Çankırı-Kastamonu devlet karayolu ile ulaşılır. Milli park Kastamonu’ya 45 km, Çankırı\'ya 80 km, Ankara’ya ise 200 km uzaklıktadır. Kaynak Değerleri :           Orta Anadolu’dan Kuzey Anadolu’ya geçiş kuşağında yükselen Ilgaz dağlık yöresinin arazi yapısı genellikle serpantinler, şistler ve volkanik kayaçlardan meydana gelir. Sahada yer yapısı kadar, dağ oluşum hareketleri yönünden de ilgi çekici örnekler bulunmaktadır. Ülkemizin en uzun ve en hareketli kırık hattı olan Kuzey Anadolu Fayı, Ilgaz Dağı’nın güney eteklerinden geçer. Saha değişik karakterde vadiler, sırtlar ve doruklardan meydana gelir. Ayrıca üstün değerde peyzaj güzellikleri sunan jeomorfolojik bir yapıya sahiptir.           Ilgaz Dağı’nın eteklerinden doruklarına doğru gelişen karaçam, sarıçam, göknar hakim ağaç türlerinden meydana gelen bitki örtüsü, zengin orman altı topluluğu ile desteklenmektedir. Özellikle park alanında yer alan göknar ormanı, Türkiye\'deki yayılış alanında optimal özellik göstermektedir. Bol ve bütün yıl akışlı akarsuları ile zengin bitki örtüsünün oluşturduğu şartlar, karaca, geyik, yaban domuzu, kurt, ayı, tilki gibi yaban hayatı türlerine uygun yaşama ortamı sağlamaktadır.           Milli parkın diğer önemli bir kaynağı da kış sporları imkanıdır. Ilgaz Dağı’nın bu doğal ve rekreasyonel kaynakları milli parkın ana kaynak değerlerini oluşturur.  Görünecek Yerler : Jeolojik ve jeomorfolojik oluşumlar ve heybetli orman dokusunun oluşturduğu peyzajın çeşitlerini görmek mümkündür. Kayak sporu yapmayı ve izlemeyi sevenler için de Ankara Konağı olarak adlandırılan saha cazibe noktasıdır. Mevcut Hizmetler : Sahada ziyaretçilerin doğa yürüyüşü, çadırla ve karavanla kamp yapma olanağı ile günübirlik aktiviteler için uygun olanaklar mevcuttur.          Milli park sınırları içindeki Baldıran Vadisi’nde alabalık üretme istasyonu ve avlanma göletleri hizmete açıktır. Ziyaretçiler 15 Haziran- 15 Eylül tarihleri arasında sahada sportif olta balıkçılığı yapabilecekleri gibi, üretim istasyonundan balık alma imkanına da sahiptirler. Konaklama : Milli parka gelen ziyaretçilerin yeme-içme ve konaklama ihtiyaçlarını karşılamak üzere park içinde üç adet otel, Köy Hizmetleri Genel Müdürlüğü’ne ait tesis bulunmaktadır. Ayrıca milli parkta kış sporları için özel sektörce işletilen 2 adet kayak pisti ve tele-syej hattı mevcuttur. FLORA Yapılan çalışmalar sonucunda Mevcut Milli Park Alanı ve yakın çevresinde 617 takson belirlenmiştir. Genel olarak “orman”, “çalı” ve “alpin bitkiler” olmak üzere üç grupta toplanan bitki formasyonları arasında en geniş yayılışa sahip olanı ormanlardır. Kuzeye bakan yamaçların alçak kesimleri genel olarak nemcil meşe ve karaçam ormanlarıyla kaplıdır. 1.000-1.300 m yüksekliklerde gürgen ve kayın egemen duruma geçer. Bunlara diğer odunsu bitkiler ve yaprağını döken çalı toplulukları katılır. FAUNA Ilgaz Dağları çevresinde, Yabandomuzu, Bozayı, Yabankedisi, Vaşak, Kurt, Tilki, Porsuk, Ağaç sansarı, Kaya sansarı, Gelincik, Susamuru, Tavşan, Sincap, Kirpi, fare ve yarasa türlerini içeren 30 civarında memeli türünün yaşadığı sanılmaktadır. http://www.milliparklar.gov.tr TANITIM VİDEOSU      

http://www.biyologlar.com/ilgaz-dagi-milli-parki

Hamsi (Engraulis encrasicolus)

Hamsi (Engraulis encrasicolus)

Hamsi (Engraulis encrasicolus), Engraulidae familyasına ait bir balık türü. Hamsi adı arkaik Kolh dili kökenlidir ve orijinal prototipi "Küçük Sivri Balık" anlamındadır. Vücut ip şeklinde hafif yassılaşmış olup yanlarda yuvarlaktır. Alt dudak mevcut değildir, üst çene ise uzun olup, sırt rengi koyu mavi siyahımsı, alt taraf açık renklidir. Yan tarafları parlaktır. Kuyruk yüzgeci homoserk yapıdadır. Karadenizin insan yaşamıyla birleşen balığıdır. Marmara Denizinde de bulunur. Sürüler halinde yaşar ve 18 cm'e kadar büyür. Ocak - Mart arasında beslenmek için sahillere yaklaşır. Gündüzleri 30–40 m. derinlerde, geceleri yüzeye yakınlarda dolaşır. 1 yaşından itibaren olgunluğa erişip 18°-20 °C sularda, 25–60 m. derinliklerde ve az tuzlu sularda üreyip yaklaşık 40.000 yumurta döker. Ömürleri 4 yıl kadardır. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     ClupeiformesFamilya:EngraulidaeCins:     EngraulisTür:     E. encrasicolus

http://www.biyologlar.com/hamsi-engraulis-encrasicolus

Deniz alabalığı (Salmo trutta trutta)

Deniz alabalığı (Salmo trutta trutta)

Deniz alabalığı (Salmo trutta trutta), alabalıkgiller (Salmonidae) familyasından olup alabalıkların atası olarak görülür. Çoğu diğer alabalıklar gibi tatlısuda değil tuzlu suda yaşar. Ortalama 60 cm, ama iyi şartlar altında 130 cm ve 20 kilodan fazlasına kadar varabilirler. Mekik şeklinde olan vücutlarının yanları gümüşümsü gri, sırtları gri-yeşil ve karın kısımları beyazdır. Küçük balıklardan ve karideslerle beslenirler. Avrupa'nın denizlerinden kuzey denizine ve Biskaya'ya kadar yayılmışlardır. Deniz alabalığı aynı somon balığı gibi göçebe bir balıktır, ve bu balık ile birçok diğer özellikleri de ortaktır. Denizlerde büyük mesafeler kat eder ve yumurtlamak için küçük ırmakların bile dar üst kesimlerine kadar çıkar. Üreme zamanları kışın gerçekleşir. Akarsuların çakıllı kısımlarında kazdıkları kuyucuklara yumurtlarlar. Sonra bu yumurtalardan çıkan yavrular 1 ila 5 yıl bu tatlısuda yaşarlar ve sonra denize göç ederler. Göç ederken bir günde 40 kilometreye kadar geride bırakabilirler.   Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Salmoniformes (Alabalıksılar)Familya:Salmonidae (Alabalıkgiller)Cins:     SalmoTür:     S. truttaAlt tür:S. t. trutta

http://www.biyologlar.com/deniz-alabaligi-salmo-trutta-trutta

Arthropoda Filumunun Genel Karakterleri

1. Bilateral simetrilidirler. 2. Heteronom metamer (segment)'lidirler. Annelid'lerin aksine, vücudu olusturan segmentler ödevlerine göre gruplasarak özel biçimler gösterirler ve vücut birbirinden ayri bölgelere bölünür. Bu bölgeler: baş: cephalo, göğüs: thorax, karın: abdomen' dir. Ancak bu bölgeler bazi gruplarda birbirine kaynasmis olabilir. 3. Vücut, kitin'den olusan bir dis iskelet ile kaplanmistir. Bu kabuk seklindeki sert yapi, harekete engel olmamak için segmentler arasinda incelir ve bir eklem derisi halini alir. Büyüme sirasinda zaman zaman dis iskelet atilarak yenilenir. 4. Arthropodlarda esas olarak her segmentten bir çift eklemli ekstremite çikarsa da çesitli gelismeler sonucunda, Arthropoda filumunun her sinifinda ekstremite sayisi degismistir. 5. Bu grupta kaslar, omurgali iskelet kaslarinda oldugu gibi, enine çizgili tiptedir. 6. Arthropodlar iç morfolojileri ile ele alinirlarsa, sindirim sistemi agizla baslar anüsle sonlanir. Barsak kanali ön, orta ve art barsak olmak üzere 3 ayri bölümden meydana gelir. Sölom boslugu küçülmüstür. Hemosöl dolasim sisteminin bir kismini olusturur. Dolasim sistemi açiktir. Kan kismen damarlarda kismen de vücut bosluklarinda (lagün=Haemocoel) dolasir. Kalp genelde boru seklinde ve sirttadir (parazit formlar hariç). Bosaltim organlari çesitlilik gösterir; Maksil bezler, anten bezler, koksal bezler veya malpiki borucuklari seklindedir. Solunum solungaç, boru veya kitap seklindeki trakelerle ve bazi durumlarda bütün vücut yüzeyi ile de yapilir. Sinir sistemi basta bir serebral ganglionla baslar; ventralde bulunan sinir kordonlari ip merdiven seklindedir. Ayri eseyli hayvanlardir. Ancak bazi türlerde partenogenetik çogalma yani döllenmeden yavru meydana getirme görülür.

http://www.biyologlar.com/arthropoda-filumunun-genel-karakterleri

AKILLI TASARIM-EVRİMSEL TASARIM

“En büyük tehlike akılsızlığı, akıllılık olarak gördüğünüzde başlar ”Prof. Dr. Ali Demirsoy, Hacettepe Üniversitesi Bazı bireylerde kalıtsal bir nedenle ortaya çıkan sorunlar “Anomali” ya da “Hastalık” olarak adlandırılır. İyi bir tasarımda bu anomalilerin hiç olmaması ya da çok seyrek olması beklenir. Hâlbuki bugün tıbben her insanda doğuştan en az 10 anomalinin olduğu söylenir. Bu normal tasarlanmış bir arabanın beklenilmeyen bir arıza göstermesi gibi bir şeydir. Kâğıt üzerinde böyle bir hata beklenmez; imalat sırasında ortaya çıkar. Dolayısıyla buna üretim hatası denir ve suç tasarlayıcısına yüklenmez. Akıllı tasarıma göre bir canlının tasarlanmasından ölümüne kadar geçen süreçler doğaüstü güç tarafından denetlenmektedir ve dolayısıyla hem tasarım aşamasında hem de üretim süreci içerisinde –biz fani varlıkların kusuru olmadan- ortaya çıkabilecek tüm aksaklıklardan doğaüstü güç sorumludur. Ancak hem yetkili ve her şeye kadir ol hem de hata yap ikilemini çözemeyen dogmatikler, çıkarı “Takdiri İlahi”, yani doğaüstü gücün isteği ya da takdiri olarak sunarak hem kendilerini hem de karşılarındakileri kandırmanın yolunu bulmuşlardır. Elimizde olan ya da olmayan gelebilecek her olumsuzluğun faili ya da sorumlusu bulunmuştur: Bir türlü hesap soramayacağımız, ulaşamayacağımız, ne eder ne yaparsa iyidir diye inandığımız Doğaüstü Güç; çoğumuza göre Tanrı. Böylece insanlık tarihi boyunca kusurumuz olsun ya da olmasın uğradığımız her zararı büyük bir tevekkül (kabul) ile benimseyeceğimiz bir felsefeye saplanmış olduk. Ancak herkeste her zaman görülen, yani bir anomali olarak değil de, genel bir tasarım hatası olarak herkesin gözlediği yapı ve işleyişlere ne diyeceğiz; bu sefer “Taktiri ilahi” demeyle atlatamayız. Çünkü takdir, birçok seçeneğin arasında birisine layık görülen bir şeyi ifade eder. Yani başımıza bir bela gelmişse, yüce Tanrı o iş için beni seçmiş demektir. Dogmaya inanıyorsanız yapacağınız bir şey olamaz, kabul edeceksiniz. Eğer inanmıyorsanız nedenini araştıracaksınız, gerekirse er ya da geç çaresini bulacaksınız. Ancak, bir kusur sadece bir toplumun birisinde değil de herkeste bulunuyorsa, o takdiri ilahi olmaktan çıkmış, genel bir tasarım kusuru olmuştur. Bu tasarım kusurları eğer her şeyi bilen ve her şeye kadir bir varlık tarafından yapılmışsa, o zaman bu varlığın, kulları olan bizler için iyi niyetinden kuşku duyabiliriz. Çünkü hiç kimse durup dururken kitle halinde eziyet etmeyi amaçlamaz. Bunun tanımı psikolojide ya da sosyolojide hoş olmayan çok ağır bir tanımdır… Gelin görün ki, ortalığı akıllı tasarım velvelesine veren birçok insan (bunların arasında ne yazık ki bilim adamı; hatta bilimlerin bilimi diyebileceğimiz biyoloji alanında çalışanlar), aşağıda yüzlercesinin arasından verilmiş sadece birkaç genel kusurun neden doğaüstü güç tarafından reva görüldüğünü bir türlü açıklayamıyor. Moleküler ya da hücre düzeyine indiğimizde hatalı tasarımla ilgili onlarca örnek verebiliriz. Ancak bu örnekler çok akademik kalacağından, bu konuda yeterince bilgisi olmayanlar anlamakta zorlanabilir diye verilmemiştir. Doğuştan yüksek tansiyon, şeker hastası, çeşit çeşit yetmezlikler, kas ve kemik bozuklukları ve benzer onlarcasını kişiye özgü olduğu genel bir durumu yansıtmadığı için –genel bir tasarım hatası olarak- gündeme getirmeyeceğiz. Bu nedenle vereceğimiz tasarım hatalarına ilişkin örnekler özellikle hemen herkesin her zaman tanık olduğu çocuklardaki bazı kusurlardan –yani genel tasarım hatalarından- seçilmiştir. Bunun nedeni, akıllı tasarımcıların, ortaya çıkmış kusuru, ergin kişinin suçlarına –günahlarına- bağlamasından kurtulmak içindir. 1. Çocuk büyüten ve gecelerini uykusuz geçiren herkes şunun farkındadır. Çocuklar doğduklarının ilk birkaç ayında bazen çok daha uzun süre gaz sorunu yaşayarak ailelerini ve kendilerini perişan ederler. Bu gaz ya anadan geçer ya da çocuğun sindirim sistemindeki tasarım hatasından kaynaklanır. Ancak bir evrimsel biyoloji uzmanına sorarsanız, ağaçtan ağaca atlarken anasının sırtına yapışarak, her sıçrayışta sürekli gazını çıkaran bir canlının böyle bir sorunu olmamıştır. Bu nedenle primat yavruları gaz sancıları çekmez. Ne zamanki doğal yaşamdan ve doğal evrim sürecinden ayrıldık, bu sorun karşımıza çıktı. Ancak evrimsel yapısal değişim, sosyal evrime ayak uyduramadığı için, zamanında gerekli önlemler oluşamadı. 2. Çocukların iç kulak ile ağız arasındaki östaki borusu, normalden kısa olduğu için ağızdaki mikroplar sık sık orta kulağa geçer ve bir sürü soruna neden olur. Primatlarda bu sorun var mı; büyük bir olasılıkla yok.Ancak bir evrimsel biyoloji uzmanına sorarsanız, sosyal gelişmeleri öğrenebilmek için, kafası beklenilenden çok daha büyük olarak dünyaya gelmeye zorlanmış bir çocukta bu sorunun ortaya çıkması kaçınılmazdır. Acaba doğaüstü güç insanın sosyal yaşama geçişini bilemiyor muydu? Yoksa böyle bir ödüle karşı ceza mı uygulamaya kalkıştı? 3. Çocukların, özellikle kız çocuklarının idrar kesesini dışarıya bağlayan kanal erişkinlere göre kısa olması nedeniyle sık sık idrar yolları hastalıklarına tutulmaktadır. Ne olurdu bu boruyu biraz daha uzun olarak yaparak yaratsaydı?Ancak bir evrimsel biyoloji uzmanına sorarsanız, dört ayağının üstünde gezen bir canlı için bu kısalığın büyük bir sakıncası yoktu; ne zaman ki, yere inip de ilk olarak otura otura sonra iki ayağımız üzerinde gezmeye başladık; oturduğumuz yerdeki mikroplar çok daha kolay içlere kadar girebildiği için bu sorunlar ortaya çıktı. O zaman sormazlar mı, beni iki ayağım üzerine kaldırırken, bu boruyu niye bir iki santim uzatmadın?4. Penisteki sünnet derisi çoğunluk herhangi bir soruna neden olmadan doğum olmasına karşın, bir kısmında idrar yapamayacak derecede kapalı olduğu için önemli sorunlara neden olmaktadır. Bu derinin erişkin olmadan kesilmesi ise Musevi ve İslam inancına göre tanrının isteğidir. Bu derinin atılması sırasında, yine bu iki dinin de ortak olarak birleştiği inanca, yani çocukların suçsuz olarak doğduğu inancına karşın, milyonlarca çocuğun sünnet işlemi sırasında mikrop kapmasından dolayı ölmesini nasıl açıklayacaksınız? Günahsızların ceza çekmesi hiçbir öğretide hoş karşılanamaz. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu deri kapalı durarak idrar yollarının ve penis başının olası enfeksiyonları önlemek için meydana gelmiştir. Doğal ortamda er ya da geç normal işlevini görmeye başlar; ancak bezlere sarılmış kapalı ortamda yetiştirilen bir bireyde bu aksaklığın giderilmesi zor olur.5. Bugün hangi çocuk doktoruna giderseniz gidin, çocuğa bakmadan D vitamini de içeren bir ilaç yazıyor. Bunu muhakkak almalısınız diyor. Burada birisi yanılıyor, ya doktor ya da doğaüstü güç. Çünkü akıllı tasarım olsaydı, ana sütü ile birlikte bu maddeler de verilmiş olacaktı. Ancak bir evrimsel biyoloji uzmanına sorarsanız, insan, güneş ışığının çok yoğun olduğu Doğu Afrika’da evrimleştiğinden D vitamininin oluşması için ek bir kaynağa ihtiyaç duyulmamıştı. Ne zaman ki kuzeye yayıldı, eksiklik ortaya çıktı. Düzeltilebilir miydi? Çok basit birkaç önlemle bu eksiklik giderilebilirdi. Zaten canlıların hemen hepsi (bizden başka yer değiştiren iki memeli hariç) bulundukları yerde kaldıkları için gerekli D vitaminini sentezlemektedirler. Bunu yer değiştiren insan yapamadığı için, gittiği yerde özellikle güneş ışınlarının eksikliğinden dolayı bozukluk ortaya çıkmaktadır. Eğer akıllı tasarımcıların inandığı gibi insanoğlu orta kuşakta bulunan bir yerde dünyaya inmiş olsalardı, böyle bir eksikliği yaşamayacaklardı. Demek ki bir enlemden öbür enleme geçince akıllı tasarım akılsız tasarım haline dönüşmüş. Niye düzeltilmemiş? Doğa aklıyla değil, seçenekleri rastlantıyla seçtiği için her zaman doğru yolu bulamaz; bu nedenle de bu güne kadar jeolojik dönemlerde bağrında barındırdığı yaklaşık 20 milyon (belki 100 milyon) canlı türünü bu akılsız tasarıma kurban etmiştir. 6. Hemen hemen hiçbir işleve sahip olmayan 20 yaş dişlerimiz çoğumuzun korkulu rüyası olmuş; birçoğumuza kötü günler yaşatmıştır. Dogmatikler bunun için kem küm bir şeyler söyleseler de hiç kimse inandırıcı bir açıklamasını yapamamaktadır. İnançlara göre insan aynen yaratılmışsa, evrimleşmemişse, 20 yaş dişleri de insanın başına bela olarak verilmiştir. Ancak bir evrimsel biyoloji uzmanına sorarsanız, bu dişler otçul (daha çok ot yediğimiz) dönemde öğütme işinde kullanılıyordu; daha sonra omnivor (yani her şeyi yer hale geçince), özellikle de yiyeceklerimizi pişirerek daha yumuşak hale getirince gerek kalmadığı için doğal seçilim ile ortadan kaldırma sürecine sokulmuştur. Evrim, sabırlı ve sürekli bir işleyişin adı olduğu için de, hemen ortadan kaldırılamamış, zamana bırakılmıştır. 7. Osteoporaz (kemik erimesi). Bugün kırk yaşını geçmiş herkesin korkulu rüyasıdır ve geçici de olsa tedavisi için önemli harcamalar yapılmaktadır. Her şeyi bilen doğaüstü güç, ömrümüzün ortalarında neden bizi oluşturan iskeletin içini boşaltsın ve kırıklarla uğraştırsın. Bunların içine her besinimizde bolca bulabileceğimiz kalsiyumu yerleştirme güç mü olacaktı? Yoksa bu da mı takdiri ilahi hanesine yazılacak? Ancak bir evrimsel biyoloji uzmanına sorarsanız, kemikler işlev gördüğü sürece ve doğada güç kullandığı sürece sağlıklı kalır; sürekli kitap okuyan ve dua eden birinin, kemikler (bu bağlamda kaslar) üzerindeki tonus (basınç etkisi) azalacağı için içini boşaltması kaçınılmazdır. Evrim, gerçekler üzerinden işlev yapar, acımasızdır, tarafsızdır; duygular ve sevgiler üzerinden değil…8. Elli yaşını geçmiş her erkeğin aklı prostatındadır. Çoğunluk doğru dürüst işeyemez, olur olmaz yerde işemeye kalkışır; bu nedenle kana kana bir şey hatta su bile içemez. Tuvaletin başında dakikalarca bekler. Daha sonra eşeysel işlevleri aksadığı için karısından azar işitir; aşağılanır; semavi dinlerin üstün varlık olarak tanımladığı o erkek süklüm püklüm bir kediye (kedi bile denmez olsa olsa pisik demek gerekir) dönüşür ve daha da vahimi er ya da geç kanserleşmeye başlar. Doksan yaşına gelmiş bir insanın %90 prostat kanseri olma olasılığı vardır. Dogmatikler akıllarını kutsal kitaptaki bilgilerle bozdukları ve prostat da bu kitapların bulunduğu dönemde bilinmediği için birkaç yakın ayet ve hadisle belki geçiştirebilirler; ancak en iyisi bu konuya hiç değinmemektir… Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, prostat bezi, sahneye çıkarken ozmos, yani su geçişlerini düzenleme gibi bir görevi üstlenmek için ortaya çıkmıştı; ancak zamanla başka işlevleri de yüklenince, olması gerekenden fazla bir görevi daha üstlendi ve başarılı da olamadı. Eğer bir varlığı korkularından arındırmak için tasarım yapmış olsaydınız, iki paralık bir sifinkter (kapak) ile bu sorunu çözerdiniz. Ancak, evrim gelecek için plan kurmaz, o anda gereksinme duyulan şeyleri en iyi şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz.10. Menopoza girmiş her kadının rahim kanseri ve meme kanseri korkulu rüyasıdır. Çocuk yapma yetisini yitirmiş ve başka bir görevi kalmamış bir organın vücuttan kaldırılması çok zor biyolojik işlem değildir. Böyle bir korkuyu insanlara yaşatmanın ne anlamı var? Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, doğa bir canlının üreme gücünü yitirmiş bir bireyi barındırmak gibi bir lüksü olmadığı için uygun yöntemi geliştirme denemesine girişmemiştir. 11. Neredeyse her üç kişiden biri omurga rahatsızlığı çekmektedir. Diğer canlılara bakıyorsunuz beli kayan canlı yok gibi. Bu insana eziyet niye? Akıllı tasarımcılar “Tanrının verdiği organı korumak gerekir” diye bir yaklaşımla konuyu savsaklamaya kalkışırlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine yürüyen atalarımız, ağırlığı tüm omurgaya dağıttığı ve onu da dört noktadan toprağa verdiği için böyle bir sorunla karşılaşmadı. Ancak iki ayağı üzerine kalkınca, ağırlık merkezi 4-5. omurların arasına yoğunlaştı, burası da yeterince kasla desteklenemediği için ve evrim mekanizması deneme-yanılma yöntemi ile çalıştığı yani çok ağır işlediği için de bu kadar kısa süre içinde gerekli önlemi geliştiremedi. Böylece öne uzattığımız iki elimizle tutacağımız bir kiloluk bir yük, kaldıraç misali 4-5. omurlara 20 kiloluk bir baskı oluşturdu. 12. Hemen hiçbir hayvanda görülmeyen fıtık ve özellikle kasık fıtığı niye insanlarda görülüyor diye düşünebilirsiniz. Akıllı tasarımcılar ancak bir önceki yanıtı verebilirler. Ancak bir evrimsel biyoloji uzmanına sorarsanız, o size der ki, bir zamanlar dört ayak üzerine gezdiğimiz için iç organlar özellikle testislerin vücut dışına çıktığı kanala (ingunial kanala) basınç yapmıyordu; ne zaman ki iki ayak üzerine kalktık, iç organlar basınç yapınca, özellikle belirli bir yaştan sonra bağırsaklar bu kanaldan dışarıya sarkmaya başlar. Evrimsel gelişme bu aksaklığı niye düzeltmedi? Ya bir çıkar yol bulamadı ya da geliştirmek için yeterince zaman bulamadı. Akıllı bir tasarım olsaydı hem bu sorunu hem de yukarıdaki sorunu bir çırpıda çözecek çareyi yürürlüğe koyardı.13. Eskiye ait insan fosillerine bakıyoruz; çürük diş hemen hemen yok (biraz da erken öldüklerinden dolayı); ancak ne zaman ki besinlerini öğütüp, pişirmeye ve özellikle de tahılla beslenmeye başlıyorlar, o zaman diş çürükleri ortaya çıkıyor. Doğaüstü güç insanı vahşi bir hayvan gibi doğada dolaşsın diye mi tasarladı? Uygarlığa geçeceği ve geçişte yaşanacak sorunlar tahmin edilemez miydi? Akıllı tasarımcılara sormanıza gerek yok; çünkü onlar bulunan bunca insana ait fosili zaten insan neslinin atası olarak kabul etmiyorlar. İnsanın zembille gökten indiğine inanıyorlar. Ancak bir evrimsel biyoloji uzmanına sorarsanız, “diş çürümeleri neden oluyor?” diye, o size der ki, tahılla beslenme, mayalanmaya bağlı olarak ağızda asidik tepkimelerin ve aşınmaların meydana gelmesini tetiklediği için olmuştur diyecektir. Bu tasarım hatasını giderebilmek için de akşam-sabah macunlarla fırçalama yoluna gideriz. 14. Akşam sabah hamdolsun verdiğin nimetlere diye dua ediyoruz. Bu kadar çeşitli yiyecek verdiği için. Pekâlâ, yaklaşık 400.000 bitki olmasına karşın niye daha çok çeşitli meyve ve sebze sunmadığını bir türlü aklımıza getirmiyoruz. Çünkü olandan başkasını düşünemiyoruz. Düşünebilmeniz için evrim mantığına sahip olmanız gerekir; o da bizde yok. İnsan oluştuktan çok daha sonraki devirlere bakacak olursak, bugün nimet olarak tanımladığımız sebze ve meyvelerin ve keza hayvanların hiç birini göremeyiz. Doğa, elmayı, armudu, kirazı, kayısıyı, portakalı, şeftaliyi, mısırı, domatesi, salatalığı, kabağı, nohudu, şeker pancarını, karnabaharı, lahanayı, kıvırcığı, marulu, Çin marulunu, kırmızılâhanayı, Montofon ineğini, Holstein ineğini, Legorn tavuğunu ve bugün kullandığımız daha onlarca ürünü bugünkü haliyle evrimleştirmemiştir. Ama her devirde evrim mantığına sahip insanlar olduğu için “akıllı tasarım ürünü olarak belirtilen” verimsiz varlıkları insani tasarımla çok daha kullanılabilir ve verimli hale getirdiler. Siz, domatesi, şeftaliyi, elmayı, portakalı ve yukarıda yazılan bitki ve meyveleri doğaya bırakın belirli bir süre sonra asıllarına döneceklerdir, yani evrimsel tasarıma. Montofon ineğinin, Holstein ineğinin ve Legorn tavuğunun zaten doğada üreme şansı olmayacaktı. Kıvırcığı, marulu, karnabaharı, lahanayı, Çin marulunu, aysbergi, süs lahanalarını, brokoliyi, kırmızılâhanayı doğaya bırakın yıllar sonra yumruları sadece bir fındık bilemedin ceviz kadar kalmış Bürüksel lahanasına döndüğünü göreceksiniz. İnsan olmasaydı mısır bitkisi ise hiçbir zaman olmayacaktı. Doğa insanı düşünerek bunları evrimleştirmediği için, bizim amacımıza en uygun şekli vermedi. Akıllı bir tasarımda eşrefi mahlûka neden en iyisinin sunulmadığını merak etmiş olmalısınız. Nede olsa insan olmanın en önemli özelliği merak etmektir. Daha iyi bir tasarımın yapılma zevki insana mı bırakılmış dersiniz (böylece akıllı tasarımcılara zor zamanlarda kullanabilecekleri bir açıklama da vermiş oluyorum). Bütün bu değerli yiyeceklerimiz doğada bugünkü haliyle bulunmuyor. Doğal işletiminin hatalarla dolu olmasından dolayı, anormallikler, örneğin poliployidi dediğimiz kromozom çoğalmaları nedeniyle bugünkü sulu ve iri meyveler oluşuyor ya da doğaüstü gücün bizim için esirgediği kalıtsal kombinasyonları insanlar ıslah yoluyla kendisi yapıyor.15. Doğada birbiri için zararlı çok sayıda canlı vardır. Ancak bir canlıya zarar veren bir tür başka bir canlı için yararlı işler yapara; ya da tersi. Örneğin çoğumuzun irkildiği yılan, doğanın dengesinin sağlanması için en önemle canlı gruplarından biridir. Yılanlar olması kemiriciler doğadaki bütün dengeleri allak bullak eder. Dolayısıyla kimin yararlı kimin yararsız olduğuna doğanın işletim sistemi karar verir. Ancak bazı canlı türleri örneğin çiçek, veba, humma, sıtma ve benzer onlarcası, doğada başka hiçbir canlıya şu ya da bu şekilde yarar sağlamıyor. Biyolojik döngülerinin varsa ara kademelerinde de sağlamıyorlar. Bu canlılar sadece insanları hasta etmek için evrimleşmiştir (akıllı tasarımcılara göre yaratılmışlar). Bir doğaüstü güç bu kadar canlı türü içinde en çok değer verdiği ve eşrefi mahlûkat olarak kitaplarında tanımladığı bu türe bu kadar eziyeti, korkuyu ve ıstırabı neden reva görmüştür dersiniz? İnsanlık tarihinden bu yana milyarlarca insan (bunların içinde günahsız olarak bildiğimiz çocuklar) ömrünün baharını bile görmeden bu canlılarca öldürüldüler. Sizce böyle bir tasarım akıllı tasarım mıdır? Sus sus öyle söyleme –Tanrının işine karışılmaz- günahkâr olursun demeyle ne zamana kadar yorumlama yetinizi bastıracaksınız? Dünya tamamlanmamış bir tasarımdır-Van Gogh Bir anlamda dünya tamamlanmamış bir tasarım olduğu için evrim sürmektedir. Eğer her şey mükemmel tasarlanmış olsaydı, evrimleşmeye gerek duyulmayacaktı. Halbuki canlı daha iyi daha etkili daha uyumlu yapıyı kazanabilmek için 3.8 milyar yıldır daha yetkin olmayı aramaktadır, yani evrimleşme çabası içerisindedir. Bir zamanlar denizanalarının daha sonra balıkları daha sonra kurbağagillerin daha sonra sürüngenlerin daha sonra kuş ve memelilerin ortaya çıkışı bu tasarımı daha başarılı hale getirmedir. Tanrısal bir tasarımda ilk olarak basitini yapma, daha sonra kullana kullana daha etkilisini geliştirme gibi bir mantık olamaz. Bir taraftan Tanrının her şeye kadir olduğuna ve deneme yanılma yöntemiyle doğruyu bulma gibi bir savurganlığa gerek duymayacağına inanma, diğer taraftan da zaman içinde organizasyon bakımından gittikçe daha gelişmiş canlıların dünyada sırasıyla yer aldığını, organizasyon bakımından ilkel olanların zamanla ortadan kalkıp yerini daha gelişmiş organizmalar bıraktığını gözleyip de evrim fikrine inanmama, ancak akıllı tasarımcılara yakışır. Hemşerim ve yakın dostum olan ressam Prof. Dr. Zafer Gençaydın, bir gün bana biliyor musun Ali, Ortaçağda doğması ve Ortaçağ mantığında yaşaması gereken birçok insan, herhalde yanlış bir planlamadan dolayı ne yazık ki zamanımızda doğmuştur; doğmakla da kalmamış bir kısmı üniversitelerde hoca olmuşlar, dedi. Ah, Tanrı dünyayı yeniden yarataydı,Yaratırken de beni yanında tutaydı;Derdim: “Ya benim adımı sil defterinden,Ya da benim dilediğimce yarat dünyayı.” Ömer Hayyam Daha önce değindiğimiz gibi, evrim gelecek için plan kurmaz, tasarım yapmaz; o anda elde bulunan nesneleri ya da özellikleri yine o anda gereksinme duyulan şekilde seçmeye kalkışır. Bu nedenle de evrim her zaman mükemmeli bulamaz. İşte bu nedenle dünyada bu güne kadar yaşamış canlıların %96’sı yeni değişimlere çözüm yolu bulamadığı ya da daha önce başarılı bir şekilde geliştirdiği özellikleri ile devam edemediği için yaşam sahnesinden silinmiş, yerlerini daha başarılı olanlara bırakmışlardır. Burada dogmatikler ile evrimciler arasında düşünce bakımından çok derin bir fark vardır. Dogmatikler, bu cümleden dinciler, akıllı tasarımcılar ve benzerleri görüşte olanlar başarılının (güçlünün) tanımını farklı anlarlar. Bu nedenle de doğanın işletim sistemini bir türlü anlayamazlar. Hatta bir televizyon tartışmasında, bir biyoloji profesörü (o günlerde Biyologlar Derneğinin de başkanıydı), bana dönerek hoca hoca, ne diyorsun, bir bakteri bir filden daha güçlü mü ki daha başarılı diyorsun. Dogmatiklerin güçten kastı, kas gücü ile sınırlıdır. Esasında bu görüşleri sonlarını da hazırlamaktadır. Çünkü gücü, sosyal yaşamda silah, anarşi, terörizm, para ve kaba kuvvet olarak bilirler. Hâlbuki bir evrimci, kas ve kemik gücüne dayanmayan bilgi ve becerinin daha üstün olduğunu gözlemleri ile öğrenmiştir. Bir virüsün bir fili yok edeceğini bilir. Çünkü evrimsel seçilimde kaba güç değil (bu güç ancak aynı türün bireyleri arasında daha sağlıklıyı –erkek kavgaları gibi- seçme için kullanılan evrimsel bir yöntemdir), çevrenin koşullarını en iyi kullanan, kalıtsal materyalini gelecek kuşaklara en hızlı ve en çok aktaran (çoğalan) ve başka bir türü kullandığı ince yöntemlerle alt edenler ayakta kalır; yapamayanlar elenir. Akılsız tasarımın en akıllıca yönü, akılsız olmasıdır. Hiçbir zaman tasarlayarak bir şey oluşturmaz. Tek amacı vardır: Olabildiğince çok çeşit üretmek. Bunun için israftan kaçmaz, daha doğrusu onu israf olarak görmez. Bu nedenle bir balık özelliği birbirinden farklı bir milyon yumurta bırakır. Bir tanesinin ortama uyum yapması başarıdır. O seçmeyi doğaya bırakır; bu nedenle doğal seçilim diyoruz. Üç beş bireyin yaşayabileceği bir ortama milyonlarca yumurtanın bırakılmasının başka ne anlamı olabilirdi? Bu nedenle kural olarak doğada yavrularını eksiksiz ya da kayıpsız büyüten hiçbir canlı yoktur diyebiliriz. O zaman bugünkü koşullarda neredeyse insanların doğurdukları çocukların hepsi yaşıyor diyebilirsiniz. Tam bir Akıllı Tasarımcı mantığı. İyi de o çocukları yaşatmak için doğada hiç olmayan ilaçları ve aletleri kullanarak onları başarabiliyorsunuz. Yani Akıllı Tasarımcıların mantığıyla Tanrı tasarımına karşı gelerek, o tasarımın hatalarını ilaçlarla aletlerle düzelterek… Tasarım hatasına yer yoktur. Doğa mükemmel bir mühendis değildir; varsayılan bir doğaüstü güç gibi her şeyi bilen, planlayabilen ve geleceği gören bir işletim sistemi de değildir. Var olanı kullanarak o günkü koşullara en iyi uyumu yapacakları seçen bir sistemdir. Bu nedenle doğanın işletim sisteminde keşke şöyle olsaydı özlemini dile getiremeyiz. Çünkü istek, ancak akıllı bir varlık tarafından yerine getirilir; akılsız olan bir yapı tarafından değil. Doğanın aklı yoktur; onun aklı evrimin işleyiş tarzı ve yöntemidir. Bu nedenle, ancak doğaüstü güçlere dua ederiz. Geçmişte doğal güçlere de (güneşe, aya, yıldıza, fırtınaya, ateşe ve yüzlercesine) dua ettik; yararını görmediğimiz için hemen hemen büyük bir kısmımız bu yakarmayı bıraktık; bu sefer sekiz cihetten münezzeh (yani önde, arkada, sağda, solda, altta, üste, içte ve dışta bulunmayan) varlıklara yöneldik; dilerim bu sefer başarırız… Sesimizi ve yakarışlarımızı duyan olur… Doğadaki bazı mekanizmaları anlayabilmek için evrim kavramı ve bilgisi kaçınılmazdır (dogmatiklerin böyle bir bilgiye ihtiyaçları yoktur, olmayacaktır da) . Örneğin kendi kendinize sorabilirsiniz, niye bir balık bir milyon yumurta meydana getiriyor da ancak 3-5 tanesi erginliğe ulaşabiliyor. Bir insan doğal ortamda 10 çocuk doğuruyor da ancak 1-2 tanesi erginliğe ulaşabiliyor. Bu bir savurganlık, materyal, zaman ve imkân yitirilmesi değil midir? Akıllı tasarım en az malzeme ile en çok üretim yapmanın adıdır. Hâlbuki doğa bu bakımdan inanılmaz derecede savurgandır. İşte bunun neden böyle olması gerektiğini ancak evrim bilimi bize veriyor. Çünkü akıllı bir tasarımda, her şey önceden planlanır ve tasarlanır. Eğer Ay’a gidecekseniz ona göre bir uzay gemisi, Mars’a gidecekseniz ona göre “bir” uzay gemisi tasarlarsınız. Ne bir eksiği ne bir fazlası vardır ve bu yapılar akıllı tasarımlardır. Doğa bizim bildiğimiz akla sahip olmadığı için, sorunun altından kalkabilmek için (böyle bir ifade de doğru değildir; çünkü bu da bir aklı ifade eder; esasında öyle olduğu için bize akıllı gibi görünüyor) çeşit yaratma peşine düşmüştür. Bu nedenle bir canlı birbirinden özellikleri bakımından kademe kademe farklı olan çok sayıda döl üretme stratejisini geliştirmiştir. Bir milyon tohumdan biri ya da bir milyon yumurtadan sadece biri, daha önce hiç karşılaşılamayan bir ortamda başarılı özellikleri kombine etmiş ise, o ayakta kalır diğerleri elenir. Sadece insan için örnek verelim: Her çiftleşme sırasında 300 milyon sperm üretilir, kural olarak sadece biri döllenme işlevini yapar. Ancak bu spermlerin ve yumurtaların sayıca çokluğu aynı bir dişiden ve aynı bir erkekten özellikleri bakımından farklı 70 trilyon çocuğun meydana gelmesini sağlar. Bu incirde de böyledir, narda da böyledir, balıkta da öyledir. Bir önceki paragrafta verdiğimiz uzay gemisi örneğini buraya taşırsak, önceden amaçladığımız inilecek gök cismine göre gemi planlanmadığını, binlerce, milyonlarca gemi yapılıp uzaya gönderildiğini, bunlardan birinin ya da birkaçının bir rastlantı olarak bir gök cismine inmesi ve taşıdığı özellikleri açısından orada gelişebilecek durumda olması halinde, yeni bir uygarlığın, biyoloji açıdan yeni bir türün doğuşu gerçekleşir. Böyle bir çeşitlilik zorunluluktur; çünkü gelecekte neyle karşılaşacağını bilmeyen bir sistem, çıkış yolunu olasılıkları ve çeşidi artırma ile bulabilirdi. İşte doğanın bu savurganca görülen işletim sistemi, böyle bir nedenle korunmuştur. Ne kadar akıllı bir sistem olursa olsun, gelecekte ne olacağını tam kestiremez ve bu da yok olmayla sonlanabilir. Evrimcilerin düzensizlikler içindeki düzen dediği sistem; rastgele seçilim bu nedenle başarılı olmuştur. Bu, düşünemeyen bir sistem için mükemmel bir stratejidir. Akıllı tasarım olsaydı her ortama göre kalıtsal bir birleşim imal edilirdi. O zaman da niye bundan 600 milyon yıl önce balık, 500 milyon yıl önce sürüngen, 300 milyon yıl önce memeli, 50 milyon yıl önce insan dünyada bulunmuyordu diye sorarlar? Çünkü doğa rastgele, deneme-yanılma ile ancak bu kadarını başarabildi. Akıllı bir tasarım olmuş olsaydı, bu kadar zahmetli bir yolu aşmaya gerek olmayacaktı. Aksini doğada kanıtlayan tek bir örnek yoktur. En çok sevilen ya da değerli şey özene bezene tasarlanır ve dikkatle imal edilir. İnsan Tanrı gözünde en değerli varlık olmasına karşın en çok defekti (bozukluğu) olan tür gibi görünüyor. Şimdilik insan soyunda adı konmuş 9.000 çeşit kalıtsal hastalığın olduğu bilinmektedir. Bir fabrika düşünün ki, herkesi kapsayacak bir tasarım hatasından değil (onu daha sonra ele alacağız), sadece kişilere özgü tasarım ve imalat hatasından dolayı 9.000 çeşit bozukluğu olan ürün imal ediyorsunuz ve buna da akıllı tasarım diyorsunuz. Ya akıllılığı bilmiyorsunuz ya da tasarım ne demektir onu bilmiyorsunuz. Sıkıştığınızda takdiri ilahi diyorsunuz. Bunlara kullanıldığı zaman ortaya çıkan “yaşlanmaya bağlı hastalıklar” dâhil değildir. Bu hastalıkların sayısı büyük bir olasılıkla yeni tanımlarla birlikte on binlerin üzerindedir. En ilginç olanı da hekimlerin büyük bir kısmının akıllı tasarıma sıcak bakmalarıdır. Bu, kendi mesleklerini bile tanımıyorlar anlamına gelir. Doktorluk, kalıtsal ya da sonradan ortaya çıkan bir eksikliğin giderildiği meslektir. Çoğunluk da tasarım hatalarının düzeltilmeye çalışıldığı bir meslektir. Akıllı bir tasarımı, oransal olarak bir anlamda çok daha zayıf akıllı sayılabilecek birileri düzeltiyor. Ancak bütün bunları görebilmek belirli bir sezinlemeyi, bilgiyi ve en önemlisi sadece insana özgü olan yargılamayı gerektirir. İnsan doğası gereği ben merkezli (antroposentrik) olduğu için, her şeyi kendi çıkarı açısından değerlendirir. Ben yaşıyorsam ve özellikle de iyi yaşıyorsam, bu çok iyi kurulmuş tanrısal bir düzenin sonucunda olmaktadır. Ancak, henüz erginliğe ulaşmadan ölen kardeşlerim için böyle bir yargı geçerli değildir. Benim çocuklarımın eli yüzü düzgün ise, bu tanrısal akıllı bir tasarımın sonucudur; ancak komşunun bütün aileyi ömür boyu sıkıntıya sokan sakat doğmuş çocuğu “Tanrının benim halimden şükretmem için yapmış olduğu bir düzenlemedir”. Tanrısal tasarımda acaba bencillik ve narsistlik bir ön koşul mudur? Pekâlâ, bu kadar insan neden doğanın mükemmel bir düzen içinde işlediğine inanıyor ve her şeyin mükemmel olduğuna inanıyor? İlk olarak insanı insan yapan empati yoksunluğundan. Çünkü başkasının kusuru, eksikliği ve derdi onu ilgilendirmiyor. Bu kadar kusuru görmemezlikten geliyor. Ancak en önemlisi, normalin ve anormalin ne olduğunu tam bilmiyor, tanımlayamıyor. Örneğin diyor ki bak ne güzel yiyecekler verilmiş yememiz için. Şimdi ben soruyorum, ne verilseydi aynı şeyi söyleyecektiniz. Başkasını bilmiyorsun ki. Ne güzel renkleri görüyoruz diyorsunuz? Başka renkleri tanımıyorsunuz ki bu yargıya sarılıyorsunuz. Gördüğümüz renkler ışık bandının yüzde biri bile değil; akıllı bir tasarım olsaydı biz çok daha zengin renkleri görecektik. Ancak bir evrimci bizim sadece 3 rengi neden görebildiğimizi biliyor; bu nedenle daha fazlasını da talep etmiyor. Tanrısal bir tasarımda daha fazlasını talep edebilirdik. Ancak bir evrimci görme pigmentlerinin oluştuğu dönemde, güneş ışınlarının en yoğun mavi, yeşil, kırmızı bantlarda yeryüzüne ulaştığını bu nedenle böyle bir tasarımla yetindiğini biliyor. Eğer bu dönemde X, alfa, beta ışınlarıyla da karşılaşmış olsaydık, onları da tanıyacak sistemi geliştirebilirdik ve bugün çoğu ortamda ortaya çıkan radyasyonu önceden görebilirdik ya da onlara dayanıklı bir kalıtsal molekül geliştirebilirdik. Bu cümleden bir şeyi özellikle vurgulamak istiyorum: Her şeyi büyük bir tasarım olarak görenlerin, “bu da beklenen bir şeydir, şaşılacak nesi var ki” diyebilecekleri bir tasarımları var mıdır? Önünü ve arkasını, nedenini bilmediğiniz, nasıl oluştuğunu bilmediğiniz her şey, yani basitten karmaşıklığa doğru giden yolu yani evrimsel süreci tanımadığınız sürece, uca ulaşmış her şey sizin için mucizenin bir ürünü olarak görülecektir. Bu basit bir hesap makinesini bile anlayamayan birinin bilgisayarı anlamaya kalkışması kadar sığ bir yaklaşımdır. Akıllı tasarımcılar! Evrimde basitten karmaşıklığa giden yolu öğrenmediğiniz sürece sizin hiçbir şeyi anlama ve görme şansınız olamayacaktır. Ya öğrenin ya da yoldan çekilin. Eğer akıllı tasarımla yetinmeye kalkışsaydık ne uzaya gidebilirdik ne denizlerin dibine inebilirdik. Bizim tasarımımız, ancak dünyanın yüzeyinde ince bir katmanda yaşamaya izin veriyor. İnsanı değerli bir varlık olarak niteleyen yüce bir yaratıcı bizi evrensel bir karantinaya niye sokmuş dersiniz? Bütün bu ortamlarda yaşayabilecek bir donanım verebilirdi. Ancak insan bu dünyanın çocuğu olduğu için, evrimleşerek oluştuğu için ne bulduysa onunla yetinmiştir. Evrim geleceği tahmin edemez, göremez; ancak çeşidini artırarak olası bir uyumun gerçekleşmesini sağlayabilir. Bunu da her zaman başaramaz. Bazen de belirli bir dönem için başarır; ancak kazandırdığı özellikler değişen koşullar yüzünden o canlıyı çıkmaz sokağa sokarak ortadan kalkmasına neden olur. Ancak, en önemli yargı ve yanılgı, yine akıllı tasarımcılardan elde edilebilir. Çünkü akıllı tasarımcıların hemen hepsi bütün bu sistemin mükemmel olduğunu savunur ve dayandıkları inançlar ise insanı evrenin efendisi olarak kabul eder ve onları “Eşrefi Mahlûk”, yani mahlûkların efendisi olarak görür. Bu demektir ki, insan yapılabilinecek ve elde edilebilinecek her güzelliğe layıktır. Bu güzellikleri insandan esirgemek, eşrefi mahlûk dediğimiz varlığa kötülüktür. O zaman gelin sizinle bir biyolojik oyun oynayalım. İnsanı yeniden tasarlayalım. Sürekli kendini onarmayla ölümsüzlük olabilirdi; ancak o zaman dinsel öğretideki öbür dünya sorgulamasından kaçmak anlamına gelirdi ki, bu dinsel öğretilerin belini kırar. Çünkü dayandıkları en önemli dayanak öbür dünyadaki görülecek hesabın cezası ve ödülüdür. Bu güzel tasarımı tutucuların hiçbiri kabul etmeyeceği için rafa kaldıralım. Öyle bir tasarım yapalım ki, hem dini öğretiler zarar görmesin hem de herkesin işine yarasın. Bilindiği gibi zaman insan için en önemli değer olmuştur. Yapacağımız işi ne kadar hızlı ve doğru yaparsak o kadar başarılı olur, rahat ederiz. O zaman vücudumuza –bize inanılmaz katkılarda bulunacak- hiçbir zararı olmayacak yeni bir tasarım ekleyelim derim. Örneğin, doğada, en az 500 canlı türünde çok az enerji kullanarak (kullanılan enerjinin %99’u ışığa çevrilerek) ışık çıkarma mekanizması eşrefi mahlûk biz insanlara sorunsuz monte edilebilirdi. Keza doğada, örtülerle açılıp kapanabilen çok sayıda göz yapısı da bilinmektedir. O zaman bir insanın bir parmağının ucuna, açılıp kapanabilen, aynı zamanda bir ışık sistemiyle desteklenmiş, hatta büyültme ve küçültme yeteneği olan bir göz sistemi yerleştirilebilirdi. Bunun biyolojik olarak olmaması için hiçbir neden yoktur. Bugün sistemi yeniden tasarlama görevi en basit bilgisi olan bir biyologa verilse bile bunu rahatlıkla başarabilir. Böyle bir ek yapının insanoğluna kazandıracağı olanakları ve zamanı düşünebiliyor musunuz? Bir makineyi sökmeye gerek kalmadan inceleyebilirsiniz; bir doktor bu parmakla vücudun herhangi bir deliğinden girerek ışıklı ortamda dokuları ve yapıları inceleyebilir; bir mekâna girmeden anahtar deliğinden içeriyi inceleyebilirdiniz. Sayısız olanak kazandırır. İnsanoğlu bugünkünden çok daha rahat yaşardı, çok daha ilerlemiş olurdu. Nasıl oluyor da basit bir adam bu denli yararlı bir sistemi düşünebiliyor da, her şeyi bilen bir varlık, bu imkânları bizden esirgemiş oluyor? İnsan üzerinde buna benzer onlarca –yaşamı kolaylaştıran- düzeltme yapılabilir ve yeni tasarım monte edilebilir. Bence akıllı tasarımı savunanlar –onu bilgisiz, beceriksiz ve egoist duruma düşürerek- inandıkları Tanrıya hakaret etmiş oluyorlar. Kaş yapayım derken göz çıkarıyorlar. Eşrefi mahlûk ile sefil mahlûk arasındaki ince çizgiyi anlayamıyorlar. Bazen bu kadar kanıta karşın birilerinin hala akıllı tasarıma tutunmuş olmasını, doğrusu “yine de Tanrısal bir tasarım” olarak kabul etmeye mecbur kalıyorum; çünkü doğa bu kadar hasarlı düşünce sistemi olanları bu kadar uzun süre sahnede tutmazdı; tutamazdı; ancak doğaüstü bir gücün yardımı ile böyle bozuk bir sistem borusunu öttürmeye devam edebilirdi. ABD'de yaratılış düşüncesinin, 1987 yılında (Edwards-Aguillard davasında) Anayasa Mahkemesinin aldığı kararla devlet okullarında okutulması Anayasaya aykırı olduğu gerekçesiyle yasaklanmıştır. Bu dava sürecinde Nobel Ödülü kazanmış 72 bilim adamı, 17 eyalet bilim akademisi ve 7 bilimsel organizasyon yaratılışın dini dogmalardan ve inançlardan oluştuğunu ve bilimsel olmadığını belirten bir yazı yayınladılar. Yaratılış ve akıllı tasarım konusunda diretme özellikle Amerika’nın gericileri ve sömürge zihniyetinde olanlarca sürdürülüyor. Bizimkiler farkında mı dersiniz? Mütedein (kendi halinde inanç sahipleri) olanlar ilk bakışta “Yaratılış ve Akıllı Tasarım Yaklaşımları”na geleneksel görüşlerine ters düşmediği için karşı çıkmıyorlar. Ancak, Amerika’nın bu kirli amaçlı zihniyeti, bizim gibi ülkelerde, özellikle satılmış kişilerce organize ediliyor ve yaygınlaştırılıyor. Bu konuda Türkiye’de yapılan ve karşılıksız dağıtılan yayınların bedelinin 21 milyon TL (21 trilyon YTL) olduğu belirtiliyor. Kaynağı? Bilinmiyor… Emniyet araştırıyor mu? Haşaaa… Akıllı tasarım akımı, tarihin en cani ve kanlı katililerinden biri olarak tanımlayabileceğimiz Amerika Başkanı Bush’un müntesip olduğu (bağlı olduğu) Kalvinist Kilisenin öncülüğünde başlatılmıştır ve akıllı tasarım zırvası bizzat Bush tarafından defalarca telaffuz edilmiştir. Kilise, akıllı tasarımın ve yaratılışın okullarda okutulması için defalarca yüksek mahkemeye başvurmuştur. Diyelim ki böyle bir yaklaşımı kendi inançlarını güçlendirmek açısından bir amaç olarak görmüş olabilirler. Ancak aynı kilise (kiliseler birliği) Amerika Irak’a saldırırken şöyle bir karar aldı. İsa, hem Tanrıdır hem Tanrının oğludur ve hem de Mesih’tir. Bunu kabul etmeyenler, buna iman etmeyenler biidraktir (idrak ya da anlama yeteneği yoktur); biidrakler insani sayılmazlar ve biidraklar üzerinde operasyon (burada öldürme ya da belki tıbbi deney yapma bile olabilir) yapma insanlık suçu sayılmaz. Böylece Irak’taki katliam da meşru bir zemine oturtulmuş oluyordu. Ancak, bu yaklaşımdan “Akıllı-Akılsız Tasarım”la ilgili önemli bir sonuç da çıkarılabilir. Demek ki “Akıllı Tasarım”a inanmış Kalvinist Kilise, Tanrının kendi inançlarının dışındakileri (Müslümanlar, Budistler, Ateistler vd. hatta Hıristiyan olup da başka mezheplere mensup olanları bile) yani dünya nüfusunun yaklaşık beşte dördünün bozuk mal olarak çıkarıldığını kabul ediyor. Bir anlamda akılsız tasarımı, üretim bozukluğunu tescil ediyor. Böyle bir kabul, onların İsrail’deki, Gazze’deki, Irak’taki, Afganistan’daki, Vietnam’daki, Somali’deki katliamlara duyarsız kalmasını sağlıyor. Zaman zaman Müslüman ya da diğer bir dinden olup da bu Kalvinistlerin bu fikrine dört elle sarılanları gördüğümde, Kalvinist Kilisesinin “Biidrak” tespitine inanacağım geliyor… Akıllı tasarımın görünürde çok sinsi bir siyasi boyutu da var. Amerika’da ortaya çıkan bu eğilimin zaten tarihten gelen çok geçerli bir temeli vardı: Kadercilik. Kadercilik, geçici olarak insanları rahatlatmış; ancak uzun vadede çıkmaza sokmuş; ancak en önemlisi sömürü düzenine karşı çıkamayacak kadar gözlerini kör etmişti. Batının vahşi kapitalizminin sömürü düzeni kurabilmesi için, bu kadar köklü ve kapsamlı bir öğreti biçimi bulunamazdı. Son birkaç on yıl içerisinde sinsi organizatörler harekete geçti; ülkesindeki akıllı tasarımcılar “kurulu düzene karşı çıkmayan munis vatandaşlar olacak” sömürülecek ülkelerin vatandaşları da hem meşgul edilecek hem de kolayca güdülebilecekti. İşbirlikçiler dünden hazırdı. Bu ülkelerde dini inançları bugüne kadar sömürü aracı olarak kullanan sayısız insan vardı. Bunların, oynanan oyunu fark etmesi de mümkün değildi; çünkü kul kültürü ile yetişmişlerdi; söylenene tartışmadan iman etmeleri başından beri inandırılmıştı. Böylece dünyada ne olup bitiyordan haberi olmayan, aklını öbür dünya ile bozmuş, bilimsel gelişmeleri zındıklık olarak tanımlayan, lidere körü körüne bağlı bir kesim yaratıldı. Daha doğrusu böyle bir kesim vardı, sayıları artırıldı. Sömürü düzeni tarihtekinin aksine bu sefer kansız olarak kuruldu. Dönün bir dünyaya bakın, öbür dünya işlerine daha çok zaman ayıran ülkelerin hepsi açık ya da kapalı sömürgedir. Bir toplumun hepsinin aydın olması arzulanır; ancak bu şimdilik hayal gibi görünüyor. O zaman bilimi rehber yapmış, yaratıcı, kurulu düzeni tenkit edebilen, yeni seçenekler sunabilen, toplumu geleceği hazırlayabilen insanların öne geçirilmesi yavaş da olsa yine de bir gelişmenin lokomotifi olabilir. İşte bu lokomotiflerin de önünün kesilmesi hem ülke içerisinde inançları sömüren zümre için hem de ülke dışında yağmalamaya, sömürmeye ant içmiş ülkelerin geleceği için gerekir. Işığını ve yol göstericisini yitirmiş bir toplumun sindirilmesi, sömürülmesi ve yönlendirilmesi zor olmayacaktır. İşte bu nedenle Türkiye ve Türkiye gibi ülkelerde, evrim kavramını özümsemiş ve onu, topluma yolunu bulması için ışık gibi tutacak insanları saf dışına atmak gerekirdi; onu da yeni kuşak gericiler, yani Akıllı Tasarımcılar yapıyor. “Eğer Akıllı Tasarım” olsaydı, “Akıllı Tasarımcılar” olmayacaktı. Prof. Dr. Ali Demirsoy Hacettepe Üniversitesi Kaynak: www.biyologlar.org.tr

http://www.biyologlar.com/akilli-tasarim-evrimsel-tasarim

Halk Sağlığı Alanında Haşerelere Karşı İlaçlama Usul ve Esasları Hakkında Yönetmelik

YÖNETMELİK Sağlık Bakanlığından Halk Sağlığı Alanında Haşerelere Karşı İlaçlama Usul ve Esasları Hakkında Yönetmelik BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1- Bu Yönetmelik, halk sağlığını ve huzurunu bozan zararlılara karşı insektisit, rodentisit, mollusisit, gibi maddeler kullanarak mücadele etmek isteyen gerçek ve tüzel kişilere ait işyerlerinin çalışma usûl ve esasları ile resmi kurum ve kuruluşların ilaçlama usûl ve esaslarını belirlemek suretiyle halk sağlığının korunması amacıyla hazırlanmıştır. Kapsam Madde 2- Bu Yönetmelik, halk sağlığı alanında insektisit, rodentisit, mollusisit gibi maddeler kullanılarak zararlılar ile mücadele etmek isteyen gerçek, tüzel kişiler ve bunların işyerleri ile resmi kurum ve kuruluşların izin alma şekil ve şartlarını, çalışma usul ve esaslarını, denetimlerini ve çalışan personeli kapsar. Dayanak Madde 3- Bu Yönetmelik, 181 sayılı Sağlık Bakanlığı'nın Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararname'nin 43 üncü maddesine dayanılarak hazırlanmıştır. Tanımlar Madde 4- Bu Yönetmelikte geçen; Bakanlık: Sağlık Bakanlığını, Müdürlük: İl Sağlık Müdürlüğünü, Sağlık teşkilatı: Sağlık Bakanlığı merkez ve taşra hizmet birimlerini, Halk sağlığı alanı: Ev, otel, okul, hastane, işyeri, üretim yeri, fabrika benzeri; halkın yemesi, içmesi, eğlenmesi, spor yapması gibi insan yerleşim ve çalışma yerleri ve gündelik yaşamıyla ilgili fiziki mekanlar ve çevreyi, Zararlı organizma: İnsanlara, insan faaliyetlerine veya insanların kullandıkları veya ürettikleri ürünlere; hayvanlara yada çevreye yönelik istenmeyen veya zararlı etkileri olan her türlü organizmayı, Biyosidal ürün: Bir veya birden fazla aktif madde içeren, kullanıma hazır halde satışa sunulmuş, kimyasal veya biyolojik açıdan herhangi bir hedef organizma üzerinde kontrol edici etki gösteren veya hareketini kısıtlayan, zararsız kılan, yok eden aktif madde ve preparatları, İnsektisit: Haşere mücadelesinde kullanılan biyosidal ürünü, Rodentisit: Fare, sıçan ve diğer kemiricileri kontrol etmek için kullanılan biyosidal ürünleri, Mollusisit: Sümüklüböcek gibi yumuşakçaları kontrol etmek için kullanılan biyosidal ürünleri, Kaçırıcı (Repellent): Doğrudan veya dolaylı olarak insan yada hayvan hijyenine yönelik olanlarda dahil olmak üzere, pire gibi omurgasız yada kuş gibi omurgalı zararlı organizmaları ortamdan uzaklaştırmak için kullanılan biyosidal ürünleri, İlaçlama: Halk Sağlığı alanında kullanılan İnsektisit, rodentisit ve mollusisit gibi maddelerle yapılan zararlı mücadelesini, Alet ve cihaz: İlaçlamada kullanılan nakil araçları da dahil olmak üzere motorlu, motorsuz, sabit veya seyyar her çeşit alet, araç ve makine ile bunların çalıştırılması için gerekli malzemeleri, Gereç: İlaç hazırlama ve ilaçlamada kullanılan su kapları, içerisinde ilaç hazırlama kapları, ilaç nakil kapları, su tulumbaları, çadır, örtü, koruyucu elbiseler, maskeler, lastik veya kauçuk eldivenler, çizmeler, gözlük siperler gibi koruyucu malzemeyi, İzin: Zararlılara karşı insektisit, rodentisit, mollusisit ve benzeri maddeleri kullanarak mücadele etmek isteyenlere verilen belgeyi, ifade eder. İKİNCİ BÖLÜM İzin Alma ve Başvuru Şartları İzin alma zorunluluğu Madde 5- Bakanlık tarafından uzman nezaretinde kullanılması şartıyla izin verilen; insektisit, rodentisit veya mollusisit kullanarak zararlılar ile mücadele etmek isteyen gerçek ve tüzel kişilerin, 6 ncı maddede belirtilen bilgi ve belgelerle faaliyet gösterecekleri ilin müdürlüğüne müracaat ederek izin alması zorunludur. Başvuru için gereken belgeler Madde 6- Zararlılara karşı insektisit, rodentisit ve mollusisit kullanarak mücadele yapmak isteyen başvuru sahipleri bizzat veya mesul müdür vasıtasıyla müdürlüğe bir dilekçe ile başvurmaları gerekir. Dilekçe eki dosyada; a) Depolama yerine ait Gayri Sıhhi Müesseseler Yönetmenliğine göre alınacak, ikinci Sınıf Gayri Sıhhi Müessese Ruhsatı’nın bir örneği, b) Mesûl müdür sözleşmesi ve Bakanlıkça belirlenen eğitime katıldığına dair sertifika, c) Mesûl müdüre ait diplomanın noter onaylı örneği veya geçici mezuniyet belgesi, d) Sağlık veya yardımcı sağlık personeli sözleşmesinin ve diplomasının noter onaylı örneği veya geçici mezuniyet belgesi, e) Sağlık Bakanlığının tavsiye ve direktiflerine uyacağına ve Bakanlıkça ruhsat verilmiş insektisit, rodentisit, mollusisit ve benzeri haricinde kimyasal maddeleri kullanmayacağına ve tarım alanında kullanılan pestisitleri kullanmayacağına dair, mesul müdür veya işyeri sahibi tarafından verilecek taahhütname, f) Uygulanacak ilaçlama yöntemlerini gösterir belge, g) Kullanılacak ilaçların kimyasal grupları ve galenik şekilleri hakkında açıklama raporu, h) İlaçlamada kullanılacak alet, cihaz ve gereçlerin cins, sayı ve özelliklerini gösterir belge, ı) Ekip sayısı ve ekip elemanlarının nitelikleri hakkında belge, j) İlaç hazırlama ve ilaçlama anında alınacak koruyucu sağlık tedbirlerini açıklayan rapor, k) İlkyardım dolabı, ilkyardım çantaları ve içerikleri hakkında açıklama raporu, bulundurulur. Başvurunun değerlendirilmesi Madde 7- Bu Yönetmeliğin 6 ncı maddesine göre yapılan başvuru dosya üzerinde incelenir, başvuru dosyasının bu Yönetmeliğe uygun olması durumunda Müdürlük elemanları tarafından işyeri 10 iş günü içinde yerinde incelenerek sonuçlandırılır. İnceleme sonucunda bu Yönetmelik hükümlerine uygunluğu tespit edilen yerlere Ek-2’deki izin belgesi ve Ek-3’teki mesul müdürlük belgesinden ikişer nüsha düzenlenir. Düzenlenen bu belgeler ve başvuru dosyasının bir örneği Müdürlükte saklanır, diğer nüshaları mesûl müdüre imza karşılığında verilir ve işyerinin görünen bir yerine asılır. İzin verilen firma adı, adresi ve iletişim bilgileri yazılı olarak Bakanlığa bildirilir. Bu Yönetmelik kapsamındaki mevcut bir işyerine ait şube niteliğinde ikinci bir yer açılmak istenmesi veya faaliyet gösterdiği adresin değişmesi durumunda, 6 ncı maddede belirtilen evraklar ile başvuru aynen tekrarlanır. ÜÇÜNCÜ BÖLÜM Personel ve Fiziki Altyapı Standartları Mesûl müdür Madde 8- İşyeri faaliyette olduğu sürelerde bir mesûl müdür bulunması zorunludur. Mesûl müdür sadece bir işyerinde mesûl müdürlük görevini üstlenebilir. Mesûl müdürlük için Hekim, Veteriner Hekim, Eczacı, Tıbbi Teknolog, Ziraat Mühendisi, Biyolog unvanına sahip veya entomoloji, toksikoloji alanında yüksek lisans, çevre sağlığı ve toplum sağlığı bölümü en az önlisans diplomasına sahip olunması zorunludur. Bu diplomaya sahip kişiler Bakanlık tarafından belirlenecek eğitim programına katılarak sertifika almak zorundadırlar. Mesûl müdür, idari işlerden bizzat, diğer işlemlerden ise ekip sorumluları ile birlikte sorumludur. Mesûl müdürün idari işlerinden, işleyişten ve sunulan hizmetin gerektirdiği alt yapı olanaklarının sağlanmasından işyeri sahipleri de bizzat sorumludurlar. Mesûl müdürün görevleri şunlardır: a) Açılış ve işleyiş ile ilgili her türlü izin işlemlerini yürütmek, b) İşleyişte tanımlanmış alt yapı ve hizmet kalite standartlarının korunmasını ve sürdürülmesini sağlamak, c) Ekip sorumlularını eğitmek, İşyerinin işleyişinde alt yapı, personel, malzeme yapısında meydana gelen ve bu Yönetmelikte bildirimi zorunlu kılınan bütün değişiklikleri zamanında Müdürlüğe bildirmek, d) Görevine son verilen veya ayrılan personelin izin belgelerini en geç bir hafta içerisinde Müdürlüğe iade etmek, e) Çalışma saatleri içerisinde hizmetlerini düzenli ve sürekli olarak yürütmek ve yürütülmesini sağlamak, f) Tanımlanan düzenlemelerin ilgililer tarafından yerine getirilmesini sağlamak üzere gerekli iç denetimleri yürütmek, g) Denetim sırasında yetkililere gereken bilgi ve belgeleri sunmak ve denetime yardımcı olmak, h) Atıkların usulüne uygun olarak imha edilmesini sağlamak, i) İşyerinde bulundurulması zorunlu malzemeleri kontrol ve temin etmek, j) Çalışan personelin gerekli görülen tetkiklerini ve muayenelerini periyodik olarak yaptırmak, k) Sağlık mevzuatında belirtilen ve yetkililerce tanımlanacak diğer görevleri yerine getirmek. Mesûl müdür, işyerinin işleyişi ve denetimi ile ilgili her türlü işleminde Müdürlük ve Bakanlığın birinci derecede muhatabıdır. Mesûl müdür, işyerindeki görevini sona erdirmek istediğinde veya mesûl müdürün görevine son verilmek istendiğinde, bu durumun işyeri sahibi veya mesûl müdürü tarafından Müdürlüğe bir hafta öncesinden bildirilmesi şarttır. Ekip sorumluları Madde 9- İlaçlama faaliyetini yürütecek ekipte sorumlu olarak en az bir Tıbbi Teknolog, Sağlık Memuru (Çevre Sağlığı veya Toplum Sağlığı), Hemşire, kimya teknisyeni veya ziraat teknisyeni bulunması zorunludur. Ekip sorumlusu, ilaçlama faaliyeti için gerekli hazırlıkların yapılması ve her türlü güvenlik tedbirinin alınmasından, atıkların düzenli toplanmasından sorumludur. Yapılan her ilaçlama için Ek-1 deki formu tanzim ederek bir nüshasını ilaçlama yapılan yerin sahibi/yetkilisine verilmesinden sorumludur. İşleyişte görülen aksaklıkları ve uygulamada oluşabilecek kazaları, zehirlenmeleri mesûl müdüre ve en yakın sağlık kuruluşuna bildirmekten sorumludur. Diğer personel Madde 10- İlaçlama işlerinde çalıştırılacak diğer personel, bu Yönetmeliğin 17 nci maddesinde belirtilen hususlara aykırı olmayan ve 18 inci maddede belirtilen sağlık raporuna sahip kişilerden oluşur. Bu Yönetmelikte belirtilen kıyafet ve donanımı çalışan bütün personel iş esnasında amacına ve talimatlara uygun olarak kullanmak zorundadır. Bina durumu Madde 11- İşyeri, betonarme binalarda kurulur, ahşap ise müstakil bina olması zorunludur. İşyeri zemini düz, pürüzsüz, dezenfeksiyona uygun ve kolayca temizlenebilir/yıkanabilir özellikte döşenmiş olmalıdır. Odalar arasındaki bölümler tabandan tavana kadar beton, alçıpan, sunta-lam ve benzeri malzemelerle yapılmış olmalıdır. İşyeri binasında ilgili mevzuat uyarınca yangına karşı güvenlik önlemleri alınır. Mesken olarak kullanılan binaların bir bölümünde kurulmak istenmesi durumunda, ilgili mevzuat hükümlerindeki düzenlemelerin yerine getirilmesi sorumluluğu işyeri sahip ve mesûl müdürüne aittir. İşyerinin bürosu ayrı yerde olabilir. Bu durumda, büroda ilaç ve ilaçlama ile ilgili araç gereç ve malzeme bulundurulamaz. İşyerinde şebekeye bağlı akar su bulunur. İşyeri, en az atık bırakan yakıt kullanılarak, uygun bir sistemle ısıtılır, ancak kimyasalların bulunduğu oda ve depo ısıtılmaz. İşyerinde pis su tesisatı bulunmalı, zeminde kanalizasyona, fosseptiğe veya arıtım sistemine bağlı ızgaralı ve sifonlu yer süzgeci bulunur. İşyeri tabii olarak sürekli havalandırıla bilinmeli; pencereler zeminden yüksekte planlanmalı ve demir parmaklıkla korunmuş olmalı, tabii havalandırmanın mümkün olmadığı durumlarda mekanik havalandırma sistemi bulunur. İşyerinin tüm mekanları amacına uygun aydınlatılır. Bulundurulması zorunlu asgari birimler Madde 12- İşyerinde aşağıda belirtilen nitelikleri haiz bölümler bulunur. a) Büro, (ayrı yerde olabilir-aynı yerde ise ilaç hazırlama odasından uzakta olmalıdır.) b) İlaç ve malzeme deposu, c) Çalışanlar için soyunma odası, d) Yeterli sayıda tuvalet ve duş, e) Malzeme temizleme ve hazırlık odası. İzin belgesi alındıktan sonra binada yapılan esasa ilişkin değişiklikler Müdürlüğe bildirilir. Alet, cihaz ve gereçler Madde 13- İlaçlama izni verilebilmesi için, bir işyerinde Ek-4’de belirtilen alet, cihaz ve gereçlerin bulunması zorunludur. DÖRDÜNCÜ BÖLÜM Çalışma Usul ve Esasları Her ekip için ilkyardım çantası zorunluluğu Madde 14-Kaza ve zehirlenmelere karşı kullanılmak üzere her ekibe, ekibin kullandığı ilaçlara göre spesifik antidotları ile gerekli diğer ilkyardım malzemesi bulunan ilkyardım çantasını temin etmekten, kullanılan veya miadı dolanların ikmalini yapmaktan ve bu malzemelerin kullanımına ait detaylı talimatların hazırlanarak ekiplere dağıtımından mesul müdür ve işyeri sahibi ayrı ayrı sorumludur. Kaza ve zehirlenmelerde sorumluluk Madde 15-Her ekip göreve giderken, kaza ve zehirlenmelerde kullanılmak üzere ilkyardım çantasını beraberinde götürmek zorundadır. Kaza ve zehirlenmelere karşı gerekli tedbirlerin aldırılmasından herhangi bir kaza ve zehirlenme halinde ilkyardımın yaptırılmasından ve bir tedavi kuruluşuna sevkinden ekip sorumlusu, mesûl müdür ve işyeri sahibi ayrı ayrı sorumludur. Ruhsatlı ilaçların kullanılması Madde 16-Halk sağlığını ve huzurunu bozan zararlılara karşı kullanılacak ilaçların Bakanlıktan imal veya ithal izninin alınmış olması zorunludur. Her ne suretle olursa olsun izinsiz ürünler veya diğer kimyasal maddeler bu amaçla kullanılamaz. İlaçların muhafazasında ve taşınmasında beşeri ilaç veya zirai mücadele ilaçlarının kapları ve ambalajları kullanılamaz. Çalışma süresi ve şartları Madde 17- İlaç hazırlama ve ilaçlama işlerinde; hamile kadınlar, 18 yaşından küçük çocuklar, hasta ve hastalıklı olanlar ile alkolikler çalıştırılamaz. Fiilen ilaç hazırlama ve ilaçlama işlerinde çalışanlar günde devamlı olarak 3, toplam 6 saatten fazla çalıştırılamazlar. Çalışma esnasında iş kıyafetlerinin ve koruyucu malzemelerin amacına ve talimatına uygun olarak kullanılması zorunludur. İlaç hazırlama ve ilaçlama anında herhangi bir şey yenilmesi ve içilmesi yasaktır. Çalışanların sağlık kontrolleri Madde 18- İlaç hazırlama ve ilaçlama işlerinde fiilen çalışacak olanlar işe başlamadan önce bir sağlık raporu alırlar. Bu raporda; kronik solunum yolu rahatsızlıkları (astım gibi), alerjik rahatsızlıklar, cilt hastalıkları ve nörolojik rahatsızlıklarının bulunup bulunmadığı ile kanda cholinesteras enzim seviyesinin ölçülmesi ve sağlık kontrollerinin yapılarak bu işi yapmaya uygun olduklarının belirlenmesi zorunludur. İşçilerin bu işte çalışmaları süresince de 3 ayda bir genel sağlık kontrolünden geçirilerek nörolojik muayenelerinin yapılması ve kanlarında cholinesteras enzim seviyelerinin ölçülmesi gerekir. Yapılan muayene ve ölçümler sonucunda sağlığının bozuk olduğu tespit edilenler ile bozulma eğilimi gösterenler, gerekli tedavileri yapılıp sağlıklarına kavuşuncaya kadar ilaç hazırlama ve ilaçlama işlerinde çalıştırılamazlar. İşyerinde tutulacak kayıt ve raporlar Madde 19- İşyerinde, mesûl müdür, ekip sorumlusu ile ilaç hazırlama ve ilaçlama işlerinde çalışan işçiler için ayrı ayrı birer dosya tutulur. Bu dosyalarda sözleşmeli personel için sözleşme sureti ve unvanlarını gösterir belge ile dosya sahiplerinin fotoğraflı nüfus cüzdanı sureti, işçilerin göreve başlarken bu işte çalışmasında sakınca olmadığını gösterir sağlık raporu ve periyodik sağlık kontrollerine ait raporlar muhafaza edilecektir. Ayrıca ilaçlama yapılan yerler, ilaçlama tarihleri, kullanılan ilaçlar, ilaçlamayı yapanlar, varsa meydana gelen kaza ve zehirlenmeler ile ilgili Ek-1 de belirtilen formun doldurularak ayrı bir dosyada muhafaza edilir ve istenildiğinde denetim elemanlarının incelenmesine açık tutulur. İşi bırakanların durumu bildirmesi Madde 20-İlaçlama izni alıp da herhangi bir nedenle işi bırakan işyeri sahibi 15 gün içinde durumu Müdürlüğe bildirmekle yükümlüdür. Bu iş yerinin izni iptal edilir ve Bakanlığa bilgi verilir. Havadan ilaçlama Madde 21-Meskun mahallerin zararlılara karşı havadan ilaçlanması yasaktır. Ancak afet gibi gerekli durumlarda Bakanlıktan izin alınması kaydıyla havadan ilaçlama yapılabilir. BEŞİNCİ BÖLÜM Çeşitli Hükümler İznin geçerliliğini kaybetmesi Madde 22-Verilen izin belgesi; üzerinde yazılı işyeri, şahıs ve ilaçlama şekli için geçerlidir. Bunlardan herhangi birinin değişmesi halinde geçerliliğini kaybeder. Bu durumlarda; a) İşyerinin değişmesi halinde yeni işyeri için gayrı sıhhi müessese ruhsatının alınarak izin belgesinde gerekli düzeltmenin yaptırılması için müdürlüğe başvurulur. b) İzin belgesinde yazılı şahsın aynı yerde, aynı işi yapmak ve aynı personelle çalışmak üzere işi devretmesi halinde, işi devir alan şahıs devir işlemine ait belgeler ve taahhütname ile beraber Müdürlüğe müracaat ederek izin belgesinde gerekli düzeltmenin yapılmasını talep eder. c) İşçi ve işyerini devir alan kişi yeni bir ekiple faaliyetini sürdürmek isterse, devir işlemine ait belge ve taahhütnameye ilave olarak mesûl müdür sözleşmesi ile diplomasının veya yerine geçebilecek belgenin noter tasdikli birer örneği, sağlık veya yardımcı sağlık personeli sözleşmesi ile diplomasının veya yerine geçebilecek belgenin noter tasdikli birer örneği ile müdürlüğe başvurur. d) İlaçlama şeklinde değişiklik yapılmak istenmesi halinde ise tatbik edilecek ilaçlama yöntemleri, ilaçlamada kullanılacak alet, cihaz ve gereçlerin cins ve sayıları, ilaçlama anında alınacak önlemler kullanılacak ilaçlar konusunda bilgiler ve taahhütname ile müdürlüğe başvurulur. e) İşyerinin konumu, sahibi, yapılan iş ve kullanılan ilaçlama şeklinde bir değişiklik olmamakla birlikte, cadde veya sokak isminin veya bina numarasının değişmesi gibi nedenlerle adresinde bir değişiklik olması halinde değişikliklerle ilgili bilgi ve belgeler ile beraber, gerekli düzeltmeyi yaptırmak üzere müdürlüğe başvurulur. Değişiklik tarihinden itibaren en geç 15 gün içinde bu başvuruların dilekçe ile yapılması, değişikliklerle ilgili bilgi ve belgelerin 6’ncı maddeye uygun olması ve izin belgesinin aslının da dilekçeye eklenmesi gerekir. İzin belgesinin kaybolması veya tahrip olması Madde 23-İzin belgesinin herhangi bir nedenle kaybolması veya okunmayacak ve yanlış anlamalara neden olacak şekilde tahrip olması halinde yeniden izin belgesi alınması gerekir. Bunun için izin belgesinin kaybolması halinde kayıp ilanı verilmiş gazetenin, tahrip olması halinde ise bozulan izin belgesinin bir dilekçeye eklenerek müdürlüğe başvurulması gerekir. Bu durumda müdürlükçe yeniden, eski tarih ve sayısı ile, gerekli açıklama da yapılarak izin belgesi tanzim edilir. İznin iptal edilmesi Madde 24-Verilen iznin dışında faaliyet gösteren, bu Yönetmelik hükümlerine veya sağlık teşkilatının düzenleme ve yasaklarının aksine hareket edenler yazılı olarak ikaz edilir. İkaza rağmen durumunu düzeltmeyen veya direktiflere uymamakta ısrar edenlerin izinleri, müdürlük tarafından en az 6 ay olmak üzere geçici veya kesin olarak iptal edilir. Ayrıca sorumlular hakkında yasal işlem yapılır. İznin iptal edilmesi durumunda Bakanlığa bilgi verilir. İzinsiz olarak faaliyet gösterenler Madde 25-Bu Yönetmelik hükümlerine göre gerekli izni almadan faaliyet gösterenler veya 22 inci maddede belirtilen nedenlerle, iznin geçerliliğini kaybettiği halde süresi içinde müracaatlarını yaparak izin belgesinde gerekli düzeltmeyi yaptırmayanların işyerleri kapatılarak faaliyetleri durdurulur. Aynı zamanda sorumlular hakkında genel hükümlere göre yasal işlem yapılır. Denetim Madde 26- İlaçlama izni alanların işyerleri, ilaçlama ekipleri sağlık teşkilatının daimi denetimi altındadır. Sağlık teşkilatınca görevlendirilen ekipler işyerini, ekipleri, kullandıkları alet, cihaz ve gereçleri, ilaçlama işlemlerini denetleyebilir, gerekli gördüklerinde kullanılan ilaçlardan numune alabilirler. İş sahibi, mesûl müdür ve ekip sorumluları denetimlerde gerekli kolaylığı göstermek ve yapılan uyarılara uymak zorundadırlar. Yapılan denetimde, verilen izin dışında faaliyet gösterildiğinin veya usulüne uygun ilaçlama yapılmadığının tespiti veya yapılan uyarılara uyulmaması halinde görevli ekip ilaçlama faaliyetini anında ve en çok 48 saat süre ile durdurmaya yetkilidir. Ancak bu kararın en geç 48 saat içinde müdürlük tarafından onaylanması gerekmektedir. Müdürlüğün onayı ile faaliyeti durdurma süresi, eksikliklerin tamamlanıp halk sağlığına zararsız hale getirilinceye kadar uzatılabilir. İstisnalar Madde 27- Belediyeler dahil olmak üzere kamu kurum ve kuruluşları sadece kendi işyerlerinin ilaçlama faaliyetleri için bu Yönetmelikte öngörülen izin işlemlerinden müstesnadır. Ancak bu Yönetmelikte belirtilen diğer hükümlere uymak ve her ilaçlama işleminden önce kullanılacak ilaçların isimleri ve ilaçlama tarihlerini Müdürlüğe bildirmek zorundadırlar. Düzenleme yetkisi Madde 28- Bakanlık bu Yönetmelik hükümlerinin uygulamasına yönelik alt düzenlemeleri yapmaya yetkilidir. Bu Yönetmelik doğrultusunda; Uluslararası giriş çıkış yapan hava, kara ve deniz araçlarının gümrük alanlarında alınacak tedbirler ve işlemlerin usul ve esasları Hudut ve Sahiller Genel Müdürlüğünün çıkaracağı yönerge ile belirlenir. Cezai hükümler Madde 29-Bu Yönetmelik hükümlerine uymayanlar hakkında, Türk Ceza Kanunu’ nun ilgili hükümlerine göre işlem yapılır. ALTINCI BÖLÜM Geçici ve Son Hükümler Geçici Madde 1- Bu Yönetmeliğin yayımından önce faaliyete geçmiş ilaçlama işyerleri; 6 ay içinde işyerlerini bu Yönetmeliğe uygun hale getirmek zorundadırlar. Yürürlük Madde 30- Bu Yönetmelik Resmi Gazete’de yayımı tarihinde yürürlüğe girer. Yürütme Madde 31- Bu Yönetmelik hükümlerini Sağlık Bakanı yürütür. EK-1. HALK SAĞLIĞI ALANINDA HAŞERELERLE MÜCADELE İŞLEM FORMU İLAÇLAMAYI YAPANA AİT BİLGİLER -İlaçlamayı yapan firma adı : -Açık adresi : -Mesûl müdür : -Telefon/faks numarası : -Müdürlük izin tarih ve sayısı : -İlaçlama yapan ekip sorumlusu : KULLANILAN İLACA AİT BİLGİLER: -Kullanılan ilacın ticari adı : -İlacın temin edildiği yer : -İlacın uygulama şekli : -İlacın aktif maddesi : -İlacın antidotu : -İlaç ambalajının miktarı (kg/litre) : İLAÇLAMA YAPILAN YER HAKKINDA BİLGİLER -İlaçlama yapılan yerin açık adresi : -İlaçlama yapılan haşere türü/adı : -Uygulama tarihi ve saati : -Mesken/işyeri vb. : -İşyeri ise çalışan sayısı : -Mesken ise daire sayısı : -İlaçlama yapılan yerin alanı : Ekip Sorumlusu İlaçlama Yapılan Yerin İmza Sorumlusu/Yetkilisi-İmza Not: ZEHİRLENME DURUMLARINDA GEREKTİĞİNDE ZEHİR DANIŞMA MERKEZİNİN ÜCRETSİZ 0 800 314 79 00 NOLU TELEFONUNU ARAYINIZ. Bu form iki nüsha olarak hazırlanır ve bir nüshası ilaçlama yapılan yerin yetkililerine/sahibine verilmesi zorunludur. EK - 2 T.C. ................................... VALİLİĞİ İL SAĞLIK MÜDÜRLÜĞÜ Belge No: Tarih: HALK SAĞLIĞI ALANINDA HAŞERELERE KARŞI İLAÇ UYGULAMA İZİN BELGESİ İLAÇLAMA KURULUŞUNUN ADI : TÜRÜ : ADRESİ ve TEL : SAHİBİ (SAHİPLERİ) ADI ve SOYADI : ÇALIŞMA SAATLERİ : EKİP SAYISI : Yukarıda adı ve adresi belirtilen İlaçlama kuruluşunun Mesûl Müdür ...................................................... sorumluluğunda faaliyet göstermesi İl Sağlık Müdürlüğünce uygun görülmüştür. VALİ veya adına İL SAĞLIK MÜDÜRÜ EK - 3 T.C. ................................... VALİLİĞİ İL SAĞLIK MÜDÜRLÜĞÜ Belge No: Tarih: MESÛL MÜDÜRLÜK BELGESİ MESÛL MÜDÜRÜN ADI ve SOYADI : UNVANI : Foto BABA ADI : DOĞUM YERİ : DOĞUM TARİHİ : Mezun Olduğu Fakülte : Mezuniyet Tarihi : Diploma No : Uzmanlık Diploması No (var ise) : GÖREV YAPACAĞI KURULUŞUN ADI : ADRESİ : Yukarıda açık kimliği ve mesleği yazılı olan şahıs ..................................................... isimli ilaçlama kuruluşunda mesûl müdürlük görevini yürütmesi İl Sağlık Müdürlüğünce uygun görülmüştür. İL SAĞLIK MÜDÜRÜ EK - 4 İLAÇ UYGULAMA İŞYERLERİNDE BULUNDURULMASI ZORUNLU EKİPMAN LİSTESİ 1-İşyerinde Asgari Bulundurulması Gerekli Alet ve Cihaz a) Pulverizatör (sırt tipi) 2 adet b) ULV cihazı 1 adet c) FOG cihazı 1 adet d) Sıcak su sistemi (Banyo bölümüne bağlı) 1 adet e) Çamaşır makinası 1 adet f) Kilitli dolap 1 adet g) Telefon 1 adet 2-İşyerlerinde Asgari Bulundurulması Gerekli Malzeme a) Ecza dolabı komple b) İlk yardım çantası 1 adet c) Gaz maskesi 2 adet d) Yangın söndürücüsü 1 adet e) Antidotlar- Atropin f) Eldiven 3 çift g) Baret 2 adet h) Çizme 2 çift ı) Koruyucu gözlük 5 adet i) Terazi 1 adet j) Toz maskesi 2 çift k) El feneri 1 adet l) Mezür ölçülü silindir 2 adet m) Malzeme çantası 1 adet n) Kova 2 adet o) İşçi elbisesi 2 adet p) Süzgeç 1 adet r) Sıvı deterjan 5 lt. s) Dezenfektan 2 lt.      

http://www.biyologlar.com/halk-sagligi-alaninda-haserelere-karsi-ilaclama-usul-ve-esaslari-hakkinda-yonetmelik

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

Caretta caretta ( Deniz Kaplumbağaları)

Caretta caretta ( Deniz Kaplumbağaları)

Sistematiği Filum: Chordata Altfilum: Vertebrata Üst sınıf: Tetrapoda Sınıf: Reptilia Altsınıf: Anapsida Ordo: Testudines Altardo: Cryptodira Üst familia: Chelonioidae Familia: Cheloniidae Cins: Caretta Tür: Caretta Caretta Coğrafi Yayılışı Caretta Caretta Atlantik, Pasifik ve Hint Okyanusu’nun ılıman ve subtropikal sularındaki estuarin, lagün, koy ve denizlerin kıyıya yakın kesimlerinde dağılım gösterir. C.C.’lar Atlantik Okyanusu’nda Arjantin’den Nova Scotia’ya kadar bulunur. Kuzey Amerika’daki en büyük popülasyonu Kuzey Carolina’dan Florida kıyılarına kadar olan adalarda bulunur. Bu C.C.’ler kışları Bahama Adaları’na göç ederler. Kuzey Amerika’daki diğer küçük popülasyonlar ise Texas kıyılarında bulunur. Caretta Caretta ların en büyük yuvalama alanları Umman’ın Masirah Adası’dır. Akdeniz’deki önemli yuvalama alanları Yunanistan ve Türkiye sahillerindedir. Bunlara oranla çok daha düşük ancak önemli bir popülasyona ise Kıbrıs’ta rastlanmaktadır. Tunus’ta yuvalama çok nadir, İsrail’de ise daha da azdır. Zaman zaman Campedusa (İtalya), Sicilya ve hatta Sardunya’da da yuvalama olmaktadır. Mısır ve Libya için ise veriler yetersizdir. Türkiye’de ki yuvalama alanları; Ekincik, Dalyan, Dalaman, Fethiye, Patara, Kumluca, Belek, Kızılot, Demirtaş, Gazipaşa, Anamur ve Göksu Deltası’dır. Fiziksel Özellikleri Ergin bireylerde karapaks (sırt kabuğu) oval şekilli ve arkaya doğru daralmış 70–75 cm boyunda ve 50–55 cm genişliğindedir (Türkiye için). Boş oldukça büyük ve üçgenimsidir. Ancak bu büyük beyinleri olduğunu göstermez; aksine bu boşluk çeneleri kapsayan kaslar tarafından kullanılır. C.C.’ların iki alt–türü (sub–species) vardır. Bunlardan C.C. gigas Pasifik ve Hint Okyanusu’nda bulunur. Genel renklenme dorsalde kırmızımsı kahverengi, ventralde kremsi sarı şeklindedir. Diğer deniz kaplumbağalarından sağlam bir kabuk, gözleri ile burun delikleri arasında kalmış iki çift prefrontal plak (bazı bireylerde bu plakların ortasında beşinci bir plak olabilir), karapaksta beş çift kotsal plak, plastronda keropakla bağlantılı ve geniş üç çift inframarjinal plak, her bir üyede iki tırnak ve tipik olarak kahverengimsi–kırmızı renklenme gibi özelliklerle farklılaşır. Beslenme Alışkanlıkları Yavru ve genç Caretta caretta bireyleri, yüzeyde akıntı çizgilerinde toplanan makroplanktonik av üzerinde beslenir. Ergin bireyler özellikle yumuşakçalar üzerinden beslenen karnivorlardır. Etoburdurlar ve sünger, deniz anası, at nalı yengeçler ve istiridye yerler. Kurbanlarının sert kabuklarını kolayca parçalayabilmelerini sağlayan çok güçlü çeneleri vardır. Geniş bir kafa, oldukça gelişmiş çene kasları ve kuvvetli gaga, sert kabuklu avlarını parçalayabilmek için meydana gelmiş adaptasyonlardır. Biyo– Ekolojileri Caretta caretta’lar ayrı eşeylidir ve eşeysel dimorfizm erginlerde görülür. Eşeyler arasındaki büyüklük dimorfizmi hakkında çelişkili bilgiler mevcuttur. Ancak ergin erkekler dişilerden daha uzun kuyruğa ve geriye doğru kıvrılmış tırnaklara sahiptir. Yavru, genç ve ergin öncesi bireylerde eşey ayrımı yapılamaz. Caldwel (1962) ve Uchida (1967)’ya göre esaret altında yetiştirilen Caretta caretta ’nın eşeysel olgunluğa ulaşması 6–7 yıl olarak tahmin edilmektedir. Serbest olarak doğada yaşayan bireyler içinse eşeysel olgunluk yaşı; Mendonca (1981)’ya göre 10–15 yıl, Zug (1983)’e göre 14–19 yıl, Frazer (1983)’e göre 22 yıl, Frazer ve Ehrhart (1985)’a göre sırtındaki eğrilerden edinilen bilgilerle 12–30 yıl olarak tahmin edilmektedir. Üreme Caretta caretta’lar kabukları 50 cm’yi geçmeden cinsel olgunluğa erişirler. Diametre cinsinden 40–42 mm olan yumurtalar med zamanı bırakılır. Yumurtalar kirletilmemiş ve iyi süzülmüş kumullardaki ya da otlu bitki örtülerindeki yuvalara bırakılır. Dişi kıyıya gelir ve gelgitin oluşturduğu yükseltiye tırmanıp orada durur, daha sonra sığ bir çukur açmak için burnunu toprağa sürter. Çukur kazılıp yumurtalar çukura bırakılınca, kaplumbağa arka ayağının tırnaklarıyla yuvayı kumla örter. Kuluçkaya yatma 31–65 gün arası sürer. Genellikle yuva başına 120 yumurta vardır ve dişi 13 günlük aralarla kuluçkaya yatar. Dişi kıyıdaki yuvaya sadece bahar ve yazları geceleyin gelir. Dişi genellikle her yıl mevsim başına 3–4 kere yuva yapar. Yuvadaki yavrular genellikle bu zamanlarda yumurtadan çıkar ve yavrular yaşamlarındaki tek karasal yaşamı bırakıp hep birlikte çabucak denize giderler. Günlük Aktiviteleri Caretta caretta’ların olağan bir gününün beslenme ve dinlenme ile geçtiği bilinmektedir. Kuluçka sezonunda güneydoğu ABD’de yapılan araştırmalar Caretta caretta’ların yuva bulunan kumsal, kıyıdaki resifler ve diğer kayalıklarda düzenli davranışlar sergilediğini göstermiştir. Çiftleşme ve /veya beslenmenin bu bölgelerde gerleşleştirildiği tahmin edilmektedir. Kuluçka dönemi dışında, kaplumbağalar yüzlerce, hatta binlerce mil öteye göç edebilmektedir. Caretta caretta’lar derin sularda yüzeydeyken ya da kıyı yakınlarındaki sularda dipte uyuyabilmektedir. Birçok dalgıç kayalıklarda kaya altında uyuyan kaplumbağa görmüştür. Yumurtadan yeni çıkan kaplumbağaların ise tipik olarak yüzeyde süzülerek uyudukları ve bu sırada ön ayaklarının sırtlarının üstüne doğru kıvrıldığı kaydedilmiştir. Kur Yapma ve Çiftleşme Caretta caretta’ların çiftleşmesi yuvalama başlangıcından birkaç hafta önce yuvalama plajı yakınları veya özel toplanma alanlarında meydana gelebilir. Birbirlerine sıkıca sarılmış çiftler çoğunlukla yüzeyde görünmekle birlikte su altında birleşmeler de rapor edilmiştir. Caretta carettalar için kur yapma ve çiftleşme dişinin ilk yumurtlama döneminden önceki kısıtlı bir zamanda gerçekleştiğine inanılmaktadır. Daha sonra yalnızca dişiler kıyıya gelir, erkekler karayı terk edince bir daha asla geri dönmez çiftleşme mevsiminde erkekler bir dişinin kafasına burnunu sürterek ya da boynunun arkasını hafifçe ısırarak ve paletlerini dikerek kur yaparlar. Eğer dişi kaçmazsa, erkek ön paletlerindeki tırnakların yardımıyla dişinin kabuğunun üstüne çıkar. Daha sonra çiftleşmek için kuyruğunu dişinin kabuğunun altına sokar. Genellikle dişilerin çiftleşmesinin gerçekleştiği kumsalda kuluçkaya yattığı ve erkeğin asıldığı kabuğundaki tırnak izlerinin kanayabildiği gözlemlenmiştir. Çiftleşme su yüzeyi ya da altında gerçekleşebilir. Bazen erkeklerin aynı dişi için kavga ettiği gözlemlenebilmektedir. Caretta caretta’ların çiftleşmelerini gözlemleyenler hem erkeklerin, hem de dişilerin agresif bir tutum sergilediğini gözlemlemiştir. Dişi yumurtlama döneminden önce bir çok erkek ile birlikte olup birkaç ay için sperm biriktirebilir. Nihayetinde yumurtalarını bıraktığında bunlar bir çok erkek tarafından döllenmiş olur. Bu davranış popülasyonda genetik çeşitliliğin devamını sağlamaya yardımcı olur. Yuva Yapma, Kuluçkalama ve Dağılım Caretta caretta’ların neden bazı kumsallara yuva yapıp diğerlerine yapmadığı bilinmemektedir. Florida’da binlerce yuva varken, kuzeydeki tıpa tıp kumsallarda çok az kaplumbağa vardır. Bu yuva dağılımı yüzyıllar önce var olan ısı, kumsal görünümü ya da saldırının az olması gibi tercih nedenlerinin durumunu ortaya koyabilir. Bugün, insanlar Caretta carettaların yuva yaptığı yerlere etki etmektedir.sahilde dalma, deniz koyları, suni aydınlatma ve beslenmenin oluşturduğu kumsal erozyonu bir zamanların taze ve temiz kumsallarını etkilemektedir. Bu durumun gelecek yuvaları da etkileyeceği kesindir. Caretta carettaların nasıl, nerede ve ne zaman yuva yaptığını daha iyi anladıkça, yuva habitatları daha iyi korunmuş olacak. Kumsal Seçimi Çoğu dişi genellikle her seferinde daha önce yuva yaptıkları kumsala geri dönmektedir. Sadece aynı kumsalda görünmekle kalmayıp, daha önceki yuvalarının çok yakınlarına yuva yaparlar. Yuva Yapma Davranışları Sadece dişiler yuva yapar ve bunu genellikle geceleri yaparlar. Dişi okyanustan çıkar ve ara sıra duraksayarak yuva yapacağı yere doğru ilerler. Bazen okyanustan çıkacak, ancak bilinmeyen nedenlerle yuva yapmayacaktır. Buna “sahte çıkış” denir ve bu bazen doğal olarak, bazen ise kumsaldaki suni aydınlatma veya insanların varlığından kaynaklanmaktadır. Bazı türlerin bireylerinin sadece bir kere, bazılarının ondan daha fazla yapmasına rağmen çoğu dişi yuva yapma mevsiminde en az iki kere yuva yapar. Yuvayı İnşa Etmek Yuvalama sezonu genellikle Kuzey yarım kürede Mayıs–Ağustos, güney yarım kürede ise Ekim– Mart ayları arasındadır. Yumurtlama genellikle gece meydana gelir. Nadiren günüz yumurtlama da görülür. Yumurtlamak için kıyıya gelen dişi zaman zaman başını kaldırır ve kumsalı gözetler. Dişi bu dönemde dışarıdan gelecek uyarılara karşı çok hassastır ve rahatsız edildiğinde geri döner. Daha sonra kumsala doğru tırmanan dişi yumurtlayabileceği bir alan aramaya başlar. Bazı durumlarda yuvalamadan veya denize dönmeden önce önemli mesafeleri kat edebilir, karapakslarını gizleyebilecekleri sığ ve geri tarafta daha derin olan bir gövde çukuru açabilirler. Ön üyeler yuva açma olayında pek görev yapmazken arka üyeler karşılıklı iş görür. Yumurta Bırakma ve Gömme Yumurta oyuğu açılınca, dişi kaplumbağa yumurtaları bırakmaya başlar. Yumurta bırakma sırasında salgılanan mukusla birlikte aynı anda iki–üç yumurta bırakılır. Bu yuva yaklaşık 80–120 yuva alır. Caretta caretta yumurtaları genellikle küresel, beyaz, mukusla kaplı ve ping–pong topu büyüklüğündedir (yaklaşık 40 mm çapında ve 40 gr ağırlığında). Yumurtalar arasında küçük oval şekilli veya ikili yumurtalara da rastlanabilir. Caretta caretta yumurtaları esnektir ve deliğe düşerken kırılmazlar. Bu esneklik hem dişiye hem de yuvaya daha fazla yumurta sığmasını sağlar. Yuva yapan Caretta caretta’ların ağladıkları görülür, ancak bu sadece vücudun salgıladığı salgının atılmasıdır. Birçok insan yumurta bırakan kaplumbağanın transa geçtiniği ve rahatsız edilmemesi gerektiğini düşünür. Bu tamamen doğru değildir. Bir Caretta caretta’nın yumurta bırakırken yuvayı terk etmesi pek olası değildir, ancak bazıları rahatsız edilir ya da kendilerini tehlikede hissederlerse bunu etkileyebilir. Bu sebeple, bu işlem sırasında C.C.’lar rahatsız edilmemelidir. Yumurtaların hepsi bırakıldıktan sonra, dişi arka üyeleriyle ana çukuru kapatır ve yuvayı düzler. Kumu farklı taraflara da atarak yumurtaların avcılar tarafından bulunmasını engellemeye çalışır. Yuva kapandıktan sonra, kaplumbağa denize yönelir ve bir sonraki yuva yapma ya da göç zamanına kadar dinlenir. Dişi yuvayı bir kez terk etimi tekrar geri dönmez. Kuluçka Caretta caretta’ların kuluçkalama süresi yaklaşık 45–60 gündür. Ancak embriyoların gelişme hızını etkileyen kum sıcaklığı bunu kısaltabilir ya da uzatabilir. Serin kumların erkek, sıcak kumların dişi üretme eğilimi vardır. Yuvayı Terk Etme Yuvadan anneleri tarafından çıkarılan timsahların aksine, Caretta caretta’lar yuvadan kendi başına çıkmak zorundadır. Yumurtayı kırmak için yavrular, “caruncle” adı verilen geçici, sivri yumurta dişlerini kullanırlar. Bu diş yuvadan çıktıktan hemen sonra düşer. Yavrular, yumurta kabuklarını kırdıktan sonra karapakslarının düzelmesi için yuva içinde 26 saate kadar hareketsiz kalırlar, yuvayı terk etme ise yumurtadan çıktıktan 1–7 gün (ortalama 2,5 gün) sonra yavruların birbirlerine yardımıyla yüzeye doğru tırmanma şeklinde gerçekleşir. Yavrular yuvadan havanın serin olduğu geceleri ya da yağmur fırtınaları sırasında çıkmayı tercih ederler. Bunun nedeni bu havalarda kum sıcaklığının düşüklüğüdür. Yuvadaki bütün yavrular aynı zamanda yuvadan çıkmayabilir, bu durumda takip eden gecelerde gruplar halinde yavru çıkışı devam eder. Yuvadan çıkan yavrular ufuk aydınlığını kullanarak denize doğru yönelirler. Bu sırada kumsal gerisinde bulunan herhangi bir ışık kaynağı, yavruların yönlerini şaşırmalarına ve bu nedenle ölümlerine neden olabilir. Eğer hemen denize ulaşmazlarsa, güneşte kalmaktan, su kaybından, ya da yengeçler, tilkiler, köpekler, rakunlar yakın balıkları ve köpek balıkları gibi nedenlerle öleceklerdir. Denize ulaşan yavrular “yüzme çılgınlığı” denen ve yaklaşık 20 saat süren bir dönemde durmaksızın yüzerler. Ancak yavru Caretta caretta için o kadar çok tehlike vardır ki her 1000 yavrudan ancak biri gençliğe kadar hayatta kalabilir. Doğal ortam yaşayan Caretta carettalar için belgelenmiş ömür uzunluğu tahmini yoktur. Ancak ergin dişilerin üretimsel hayat süreleri 32 yıl, eşeysel olgunluğa ulaşma süresi 15–30 yıl olarak tahmin edilmiştir. Bu şartlarda maksimum ömür uzunluğunun 47–62 yıl olabileceği belirtilmiştir. Göç ve Yön Duyguları Göç: Deniz kaplumbağalarının beslenme alanından, yuva yaptıkları alana olan yüzlerce binlerce millik göçü hayvanlar aleminin en dikkate değer özelliklerindendir. Erişkin dişilerin kendi doğdukları bölgeye yuva yapmak için dönmeleri bu özelliği daha da çekici yapar. Deniz kaplumbağalarının nasıl ve nereye göç ettikleri onlarca yıldır bilim adamlarının odaklandığı bir noktadır. Elde edilecek bilgiler türlerin korunma stratejileri için çok büyük önem taşımaktadır. Bugün biliyoruz ki, deniz kaplumbağaları yaşamları boyu sürecek bu göçe yuvadan ilk çıkışlarıyla başlarlar. İlk kritik 48 saat içinde yavru kumsaldan okyanusa yürümek ve orada kendine avcılardan korunup yiyecek bulabileceği bir yer bulmalıdır. Atlantik ve Caribbean’da bir çok yavru körfez akıntılarına kapılır. Burada genç kaplumbağalar yeterli bir besin kaynağı ve az sayıda avcı bulurlar. Yıllarca Atlantik etrafında yüzüp durduktan sonra, bu genç kaplumbağalar kıyı kenarındaki sığ sulara dönecek kadar büyümüşlerdir. “Tüm Floride loggerheadlerinin birkaç yıllarını kıyı yakını habitatlarda beslenip büyüyerek geçirirler. Ergenliğe ve cinsel olgunluğa erişir erişmez, bir iki beslenme alanına göç ettikleri bilinir. Ergen kaplumbağaların üreme mevsimi hariç ömürleri boyunca kalacakları yer bu ilk beslenme alanıdır. Çiftleşme ve yuva yapma dönemine gelindiğinde hem dişi hem de erkek yuva yapılan kumsallara doğru göçe başlar. Bu olağan güç hayatları boyunca sürecektir. Yön: Açık okyanuslarda deniz kaplumbağaları güçü akıntılara maruz kalırlar, kısıtlı bir görüş açıları vardır; kafalarını suyun üstüne yalnızca birkaç santim çıkartabilir. Bu kısıtlamalara rağmen, deniz kaplumbağaları aynı yuva yapılan kumsalı bulmak için uzun mesafelere göç ederler. Bunu nasıl yaptıkları hayvanlar aleminin en gizemli sorularından biridir ve buna cevap bulabilmek bir çok araştırmacının odak noktası olmuştur. Umut verici yeni bir teori kaplumbağaların dünyanın manyetik alanının açı ve yoğunluğunu bulabildiğini iddia eder. Bu iki özelliği kullanarak kaplumbağa istediği yere gitmesini sağlayacak olan bulunduğu yerin enlem ve boylamını bulabilmektedir. Daha önceki araştırmalar da deniz kaplumbağalarının manyetik alanı belirleme yeteneğinin var olduğunu ispatlamıştır. Göç incelemeleri: Deniz kaplumbağalarının göçebe doğaları, onları anlama ve korumayı zorlaştırmaktadır. Özellikle kaplumbağaları kendi habitatları içinde korumak için, bu habitatların nerelerde olduğunu, kaplumbağaların orada nasıl davrandığını ve hangi yönlere doğru göç ettiğini bilmemiz gerekir. Bir çok araştırma yuva yerlerinde yapılmıştır ve bunun çok mantıklı sebepleri vardır. Araştırmacılar için bu bölgeler daha kolayca ulaşılabilirdir, ayrıca yeni deniz kaplumbağalarının üremesi soyun devamı için çok önemlidir. Koruma çalışmaları da en kolay yuva bulunan kumsallarda yönetilmektedir. Ancak, hayat döngüleri içinde deniz kaplumbağalarının gittiği bölgelerden, en az zaman harcananı yuva yapılan kumsallardır. Bir deniz kaplumbağasının hayatının % 90’ından fazlası suda–beslenerek, çiftleşerek, göç ederek ve kimse izlemediğinde deniz kaplumbağaları ne yaparsa onu yaparak geçer. Sonuç olarak, korumacılar için en büyük tehlikenin olduğu bölge en çok sorunla karşılaşılan okyanuslardır. Yaşamları boyunca onları tam olarak koruyabilmemiz için, kaplumbağaların göçebe motiflerinin ve sudaki davranışlarının tam olarak bilinmesi gerekir. Deniz kaplumbağalarının nereye gittiklerini belirlemek için bir çok metot uygulanır. Bunların en basitlerinden biri yuva yapmaya kumsala geldiğinde ayaklarından birine küçük, zararsız bir metal parçası takmaktır. Her parça kodlanmış bir numaraya sahiptir ve insanlara bulunduğu taktirde geri gönderilmesi için gerekli olan bir adres vardır. İnsanlar bu kimliği geri döndüklerinde, küçük bir ödül kazanırlar ve bu şekilde kaplumbağaların bulundukları, uğradıkları yerler bulunmuş olur. Populasyon: C. caretta’nın erkekleri hakkındaki bilgilerine azlığından dolayı populasyonlarının cinsiyet oranı tam olarak bilinmemektedir. Populasyonların yaş ve boyut kompozisyonları hakkında da kapsamlı bir bilgi yoktur. Ayrıca Henwood (1987), populasyonda kompozisyonların her sezonda değiştiğini ve böylece populasyonun büyüklüğü hakkında bilgi edinmenin karmaşık hale geldiğini belirtmiştir. Populasyon yapısı ve cinsiyet oranı hakkındaki eksik bilgiler ve deniz kaplumbağalarının yaşadığı biyolojik populasyonun sınırlarının tam olarak bilinmemesinden dolayı, populasyon bolluğu ve yoğunluğu hakkında tahmin yapabilmek zorlaşmaktadır. Bununla birlikte yuvalama kumsallarına gelen dişilerin direk sayımı veya yuva sayılarıyla ilgili bazı tahminler yapılmaktadır. C. caretta’nın üretkenlik organlarına etki eden faktörler bölgesel olarak değişkenlik göstermektedir ve populasyon içinde önemli oranlarda varyasyonlar söz konusudur. Bu varyasyonlar, belirli sahillerdeki üretkenlik durumunun belirlenmesini engeller. Aşırı yağmurlar, rüzgar erozyonu, dalga erozyonu ve sıcaklık gibi baskın genel çevresel faktörler üretkenliği etkiler. Yumurtlama sahillerindeki insanların varlığı, ziyaretçilerin olması ve çevredeki ışık kaynakları yuvalama yapmak için kumsala çıkmış dişileri rahatsız ederek denize dönmelerine neden olabilir. C. caretta yavruları, kum yengeçleri, köpek balıkları, predatör kemikli balıklar ile tilki, köpek, rukan gibi memelilere yem olmaktadır. Çeşitli kuşlar da gündüz saatlerinde yavruları avlarlar. Hastalık, şiddetli açlık ve soğuk sersemliği de ölümlere sebep olabilmektedir. Ancak belirli populasyonlar üzerindeki etkileri bilinmemektedir. Katran, yağ artığı ve plastik atıklarının yutulmasından ölümler meydana gelebilmektedir. Genç ergin öncesi ve ergin bireyler ise özellikle köpek balıkları tarafından avlanırlar. Ayrıca bu gruplar, katran veya plastik yutarak ölebilir veya yaralanabilirler. Ayrıca bot çarpmaları bilinçli avlanmalar ve çeşitli ağlara takılmalar da ölüme neden olan diğer faktörlerdir. C. caretta Avustralya, Güney Afrika ve ABD’de korunmaktadır. Balıkçılık endüstrisinin öncelikli avı olmasa da görüldükleri yerde avlanırlar. İnsanların çoğu iddia edilen beğenilmemiş tadından dolayı etini yemezler. Ancak Hindistan, Madagaskar ve Mozambik kıyılarında yaşayan insanlar tarafından hala tüketilmektedir. Her ne kadar C. caretta’nın eti, kabuğu ve derisi Cheloma mydas, Eretmochelys imbricata, Lepidchelys kempii ve Lepidochelys olivacea’ya göre değerli olmasa da yumurtaları dünyanın bir çok yerinde tüketilir. Mozambik, Madagaskar ve Umman kıyı şeritlerinde olduğu gibi C. caretta yumurtalarının protein amaçlı kullanılması, populasyonlarının gerilemesine neden olmuştur. Çoğunlukla ılık ve subtropikal bölgelerde yuvaladıklarından, C. caretta’nın üreme habitatları ve kışlama alanları arasında göç ettikleri sanılır, erkek göçleri hakkında ise çok az şey bilinmektedir. C.Caretta’nın grup göçü bilinmemektedir. Yıl boyunca açık deniz sularında kalabilirler. Florida’da bazı bireylerin, dipleri çamurlu kanallara girdikleri belirlenmiştir. Bazı populasyonlar ise yıl boyunca yuvalama kumsallarının yakınında yaşarlar ve yuvalama dönemleri arasında çatlak ve delikleri mesken edinebilirler. C. caretta’nın klasik anlamda “sürüler” oluşturduğuna dair herhangi bir gösterge yoktur. Bununla beraber, denizde ya da yuvalama kumsallarının yakınında lokal yoğunlaşmalar oluşturabilirler (Dodd, 1988). Koruma ve Yönetim C. caretta’nın da içinde bulunduğu deniz kaplumbağaları, bu türlerin durumları ve önemi kavrandıkça yakalanmalarını ve satışlarını yasaklayan, habitatlarının korunmasını da sağlayacak kanunlarla korunmaya çalışılmıştır. C. caretta, Uluslararası Tehlike Altındaki Türler Kongresinde (CITES) Ek 1’de listelenmiştir. Aralarında Türkiye’nin de bulunduğu bir çok ülke bu antlaşmayı imzalamıştır. Bu listede yar alan türlerin herhangi bir şekilde gelir amaçlı satışı yasaklanmıştır. Göç eden türler konferansı hazırlıklarında uluslararası korumanın şart olduğu Ek 2 listesinde yer almışlardır. Her ne kadar bazı düzenleyici kanunlarla koruma altına alınmış olsalar da bazı bölgelerdeki yetersiz veya isteksiz güvenlik güçleri ve ülkelerin ekonomik seviyelerindeki farklılıklar C. caretta ve diğer deniz kaplumbağalarının korunmasında yeterli olmamakta ve tedbirlerin uygulanmasını güçleştirmektedir. C. caretta’nın neslini devam ettirebilmesi için bütün önemli yuvalama, beslenme, göç ve kışlama habitatlarının üzerinde önemle durulması ve biyolojik verilere dayalı korumalarının uygulanması zorunlu olmuştur. Deniz kaplumbağalarının korunması için farklı bölgelerde, farklı koruma ve yönetim alternatifleri uygulanmaktadır. C. caretta’nın derisi ve kabuğu için fazla talep yoktur ve bu nedenle uluslararası ticareti de çok iyi değildir. Yumurta ve eti ise genellikle lokal olarak tüketilmektedir. CITES uygulamaları uluslararası ticareti engellemede başarılı olabilecektir. Uluslararası ticaret, yasalar tarafından değişik derecelerde başarıyla durdurulmuştur. Örneğin, ABD ve Avustralya’da yumurta tüketimi bu sayede durmuştur. Fakat kaçak avlanma devam etmektedir. Koruma kanunlarının olmadığı bölgelerde ise kanunların çıkarılması ve uygulanması türün devamlılığı için zorunlu görünmektedir. Dişilerin üretkenlikteki önemi ve yumurtlama anlarında çok hassas olmaları nedeniyle plaja gelen dişilerin rahatsız edilmemeleri gerekmektedir. Bu, yumurtlama mevsiminde insan aktivitesinin en aza indirilmesi ve yavruların yollarını bulabilmeleri için yapay ışıklandırmaların minimuma çekilmesiyle gerçekleşebilir. Yuvalar ve dişiler sahillere giren araçlardan korunmalıdır. Çünkü bunlar kumu sıkıştırabilir veya yavruların içinden çıkamayacakları izler bırakabilirler. Ayrıca bu araçların gece kullanılması da dişilerin bu sahillere gelmesini engelleyebilir. Plaj temizlemede kullanılan ağır mekanize temizleme araçları, yumurtlama mevsiminde yumurtlama plajlarında kullanılmamalı veya zarar vermeyecek boyutlarda işletilmelidir. Yumurtalar üzerindeki kaçak avcılığın, predosyonun ve erozyonun yüksek oldu bölgelerde yeni yapılanmış yuvalar, korunmuş kuluçkalıklara taşınabilir buralarda acilen yuvalara tekrar gömülür ya da nemli plaj kumu ile doldurulmuş kutularda inkübasyona bırakılabilir. Bu tip uygulamaların yaratacağı durumlarda, yöntemin taşıdığı bazı risklerden dolayı dikkatli planlama yapılması ve yürütülmesi zorunluluğu vardır. Deniz kaplumbağalarının korunmasında kullanılan bir başka metot da yavruları ilk dönemlerinde yüksek olan predasyonlardan korunabilecekleri büyüklüğe kadar ulaştırmaktadır. Konu ile ilgili araştırmacılar tarafından habitat korunmasından sonra bu metodun kullanılması gerektiği savunulmaktadır. Bu yöntem özellikle Chelonie mydas, Eretmochelys imbricata, Lepidochelys kempii populasyonlarını arttırmak için dünyanın değişik yerlerinde kullanılmıştır. Yavru kaplumbağaların korunması için, yavru kaplumbağalar üzerindeki predasyonun azaltılması, plaj ışıklandırmalarından kaynaklanan yanlış yönelmelerin önlenmesi, kirleticilerin ve besin olarak nitelendirebilecekleri plastiklerin denize ulaşmasının engellenmesi gerekmektedir. Balıkçılıkta kullanılan ağlarla rasgele yakalanmaların ve ölümlerin yüksek olduğu bölgelerde “Kaplumbağa Dışlayıcı Aygıt (TED)”ların kullanılması balıkçılıktan kaynaklanan ölümleri azaltacak bir yöndemdir. Bu yöntem özellikle ABD’de balıkçılıktan kaynaklanan ölümlerin yüksek olduğu bölgelerde kullanılmış, ergin ve ergin öncesi kaplumbağaların kurtulmasını sağlamıştır. Kaplumbağa yaşamını tehdit eden faktörler: Deniz kaplumbağaları yaşamlarının büyük bölümünü denizde geçirmekle birlikte, nesillerini devam ettirebilmek için üreme kumsallarına son derece bağımlı olan canlılardır. Bu tip kumsalların insan eliyle farklı amaçlar için işgal edilmesi ( turizm amaçlı faaliyetler, kum alımı, otlatma, tarım için kumsalların toprak ile örtülmesi vs. ) ve artık Türkiye , Yunanistan ve Kıbrıs gibi birkaç ülkede sınırlı kalması bu bölgelere yumurta bırakan kaplumbağaların nasıl yavaş yavaş yok olmaya mahkum edildiklerini ortaya koymaktadır. Ayrıca, deniz ortamında gerek ergin, gerekse yavrularını trol vb. ağlarla balıkçılar tarafından tesadüfi yakalanmaları da kaplumbağa yaşamını tehdit eden önemli bir sorundur. Çözüm ve Öneriler: Yüksek yuva yoğunluğuna sahip üreme kumsallarını olumsuz yönde etkileyecek yatırımlardan kaçınılmalıdır. Gerek turizm amaçlı gerekse bu amaç dışı yapılanmalarda, özellikle deniz kaplumbağası üreme mevsimi olan Mayıs-Ekim aylarında aydınlatma ve gürültü ile ilgili tedbirlere önem verilmelidir. ( Karayolları aydınlatması, çadır ve karavan kampingleri, otel, ev vb. ) Kumsallarda, doğal yapıyı bozucu her türlü kum ve çakıl alımı önlenmelidir. Üreme kumsallarına büfe, restoran vs. sabit tesisler kurulmamalıdır. Gece kumsallar insanlar tarafından kullanılmamalı, araba, motor, bisiklet vs. araçların üreme kumsallarına girmesi engellenmelidir. Plaj şemsiyeleri toprağa gömülmeyen türden olup yumurtlama bandının gerisinde kullanılmalıdır. Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar Ülkemizin taraf olduğu Uluslararası Sözleşmeler (Bern, Barselona Sözleşmeleri) çerçevesinde nesli tehlikede olan ve Türkiye sahillerini üreme alanı olarak kullanan deniz kaplumbağalarının korunması yönünde çalışmalar yapılmaktadır. Bu amaçla, Bakanlığımız koordinatörlüğünde ilgili Bakanlıklar, üniversiteler ve gönüllü kuruluşlardan oluşan “ Deniz Kaplumbağaları İzleme-Değerlendirme Komisyonu ” kurulmuştur. İzleme-Değerlendirme Komisyonu Akdeniz’ de önemli deniz kaplumbağası üreme alanı olarak belirlenmiş 17 alanda ( Ekincik, Dalyan, Fethiye-Çalış, Dalaman, Patara, Kale (Demre), Kumluca, Tekirova, Kızılot, Belek, Gazipaşa, Demirtaş, Göksu Deltası, Kazanlı, Anamur, Akyatan, Samandağ ) incelemelerde bulunarak, sorunları tespit etmekte ve bu sorunların giderilmesi yönünde çalışmalar gerçekleştirmektedir. KAYNAKÇA: 1- Sınıflandırma, coğrafi dağılışı, fiziksel özellikleri, beslenme alışkanlıkları, üreme, davranış özellikleri, habitatı: 2- Biyo-Ekolojileri, populasyonu: 3- Kaplumbağa yaşamını tehdit eden faktörler, Çözüm ve Öneriler, Deniz Kaplumbağalarının Korunması İçin Gerçekleştirilen Çalışmalar    

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari

Kurbağa Diseksiyonu

Bu laboratuvar çalışmamıza kadar incelediğimiz hayvan örnekleri omurgasız hayvanlar grubuna aittiler. Bu çalışmamızda ise Omurgalı hayvanlardan bir örnek inceleyeceğiz. Vertebrata'nın (omurgalılar) Amphibia (kurbağalar) klasisinin Anura (kuyruksuz kurbağalar) takımına mensup Rana ridibunda (su kurbağası) su içinde, su kenarlarında nemli yerlerde yaşar. Amfıbiler, suda yaşayan balıklar ile kara omurgalıları arasında orta bir yer işgal ederler. Tamamen karada ya da tamamen suda yaşayan formları olduğu gibi, hem karada hem de suda yaşayanları vardır. Bu ara durum ve kara hayatına geçiş ile ilgili organ sistemlerindeki değişiklikler kurbağada açıkça görülür. Kurbağanın vücudu baş ve gövde olmak üzere iki kısımdan meydana gelir. Başla gövde arasında bir sınır, farklılaşmış bir boyun bölgesi yoktur. Vücut pulsuz olup, çıplak, yumuşak ve kaygan bir deri ile örtülüdür. Deride mukus salan çok sayıda bez bulunur. Ergin hayvanda kuyruk tamamen kaybolmuştur. Gövdede iki çift ekstremite vardır. Başın önünde geniş bir ağız bulunur. Üst çenenin hemen ön tarafında bir çift dış burun deliği ve onların arkasında iki büyük göz vardır. Hareketli göz kapaklan üst, alt ve alt göz kapağının devamı gibi duran gözü yan yanya örten yan göz kapağından ibarettir. Ancak bu üçüncü göz kapağının kendi başına hareket yeteneği yoktur. Gözlerin arkasında orta kulağı örten 3-4 mm çapında yuvarlak iki kulak zan bulunur. Kurbağalarda dış kulak yoktur. Erkek kurbağalarda kulak zarının gerisinde ince bir zardan yapılmış bir çift dış ses kesesi bulunur. Erkek kurbağaların gövdeleri dişilere göre biraz daha ince uzundur. Dişilerde ise gelişmiş ovaryumlar nedeniyle gövdenin eni boyuna göre daha gelişmiştir. Bütün tetrapodlarda karada yürümeye elverişli (balıkların pektoral ve pelvik yüzgeçlerine karşılık) dört ekstremite vardır. Kurbağaların ön ekstremiteleri kısa olup, dört parmaklıdır. Birinci parmak körelmiştir. Erkek bireylerde ön ekstremitede çiftleşme mevsiminde ikinci parmağın yan tarafında büyük siyah bir şişkinlik (nasır) ortaya çıkar. Uzun olan arka ekstremiteler beş parmaklıdır. Birinci parmak en kısa, dördüncü ise en uzundur. Parmaklar arasında yüzme derisi gerilidir. Vücudun son ucunda iki arka ekstremite arasında kloak açıklığı vardır . Şekil 1. Bir erkek kurbağanın dış görünüşü 1. dış burun deli ği 2. ağız 3. ön ayak 4. nasır (a) 5. yüzme perdesi 6. arka ayak 7. dış ses kesesi (a) 8. orta kulak zarı 9. göz Ağız içinde üst çenede oldukça küçük, sivri ve çok sayıda diş bulunur. Ayrıca damakta vomer dişleri vardır. Ön tarafta bulunan oval iki açıklık iç burun delikleridir. Alt çenede göze ilk çarpan yapı dildir. Dil çeneye ön taraftan tespit edilmiş olup, serbest kalan ucu çatallıdır. Dilin uzama ve kasılma yeteneği çok fazladır. Alt çenede diş yoktur.Yutağa (farinks) östaki borusu açılır. Burada bulunan glottis (küçük dil), besinlerin akciğerlere girmesine engelolur (Şekil 2).  Şekil 2. Kurbağada ağızın iç yapısı ı. vomer dişleri 2. iç burun deliği 3. üst çene dişleri 4. göz çukurları 5. östaki borusu açıklıgı 6. farinks açıklıgı 7. ses kesesi açıklıgı (erkekte) 8. glottis (küçük dil) 9. dil 10. dil bağlantısı Kurbağada pleuroperitonal ( göğüs-kann ) boşlukları içinde ilk göze çarpan organ, kahve renkli ve yaprak şeklindeki loplardan yapılmış olan karaciğerlerdir. Karaciğer sağ, orta ve sol lop olmak üzere üç parçadan oluşmuştur. Orta lop sağ ve sol loptan birbirine bağlayan küçük bir parçadır ve bu yan loplar tarafından örtülmüştür. Orta lobun sol lop ile birleştiği yerde yeşil renkli yuvarlak bir safra kesesi vardır. Sol lobun altında da büyükçe bir mide yer alır. Midenin ön ucu çok kısa bir yemek borusu ile birleşir. Midenin sivri olan arka ucu ise bağırsağa açılır. Bu kısım midenin pilor bölgesidir. incebağırsak uzun ve kıvrıntılı bir boru halindedir. Mideden sonra gelen ilk kısım on iki parmak bağırsağı (duedenum) dır. İnce bağırsağın son kısmı sonbağırsak (rektum) dır. İncebağırsaktan daha geniş ve çok daha kısa olan bu kısım kloaka (dışkılık) açılır. Mide ile duedenum arasında pankreas yer alır. Kalp tam göğüs kemiğinin altındadır. Perikard boşluğu içine yerleşmiş durumdadır. Perikard boşluğu perikard zarı ile sınırlanır. Kalp iki kulakçık ve bir karıncıktan meydana gelir. Sağ kulakçığa anteriör ve posteriör vena cava (ön ve arka toplardamarlar)ların açıldığı sinüs venosus bağlanmıştır. Ventrikulustan ise truncus arteriosus 'tan ayrılan aort yaylan çıkar. Balıklara göre bu yaylarda bir azalma görülür. Yalnızca III. IV. ve VI. yaylar kalmış olup, III. den başa giden carotid 'ler, IV. den systemik yaylar (sağ ve sol aorta), VI.dan ise pulmonar arterler (akciğer atardamarları) meydana gelmiştir. Kirlenen kan pulmonar arterler ile temizlenmek üzere akciğerlere gider ve burada temizlendikten sonra tekrar kalbe döner. Böylece esas vücut dolaşımından başka bir de kalp ile akciğerler arasında küçük dolaşım meydana gelmiştir. Kurbağaların solunum organları gayet kısa bir soluk borusu ile bir çift akciğerden meydana gelir. Akciğerler gevşek bir dokudan yapılmıştır. Kirli kahve renkli iki kese şeklindedir. Sönük oldukları zaman ancak bir santimetre boyunda ve üçgen şeklindedirler. Kurbağalarda ayrıca kuvvetli bir deri solunumu vardır. Kurbağaların boşaltım organları böbrekleridir. Vücudun dorsal duvarına yakın, bir çift olarak bulunurlar. Koyu kırmızı renkli, uzunca oval yapılı, 1.5-2 cm uzunluğunda ve mezonefroz tipindedirIer. Bunların ventral yüzlerinde altın sarısı renginde ve şerit şeklinde böbrek üstü bezleri bulunur. Karın boşluğunun kuyruk ucunda ise beyaz renkli, ince duvarlı, büyük bir kese şeklinde idrar kesesi vardır. Bu kese kısa bir boyun bölgesi ile kloakın ventral duvarına açılır. Erkek kurbağalarda boşaltım organı ile üreme organları arasında sıkı bir ilişki vardır. Spermler ile boşaltım maddeleri müşterek bir kanaldan (üreter ya da wolf kanalı) dışarı atılırlar. Testisler san-beyaz renkli, yuvarlağımsı ve bir çift olarak böbreklere yakın bulunurlar. Dişilerde de bir çift ovaryum bulunur. Yumurta hücreleri ayrı bir kanalla (ovidukt) dışarı atılırlar. Bu yumurta kanalının kloaka açılan son kısım kısa bir şekilde genişlemiştir. Üreme mevsiminde içinde yumurta birikmiş durumdadır (Şekil 3).  Şekil 3. Diseksiyonu yapılmış bir kurbağada içorganların görünüşü 1. alt çene 2. dil sağ atrium 4. ventrikulus 5. testis 6. böbreküstü bezi 7. böbrek 8. idrar torbası 9. sonbağırsak 10. yüzme perdesi 11. mezenter 12. incebağırsak 13. pankreas 14. mide 15. dalak 16. karaciğer 17. safra kesesi 18. akciğer 19. glottis 20. yutak 21. üst çene Kurbağaların sinir sistemleri, merkezi sinir sistemi beyin ve omurilik ile çevre sinir sistemi sinirlerden meydana gelir. Kurbağada beyin, ön, orta ve arka olmak üzere üç kısımdan meydana gelir. Ön beyinde koku alma siniri (olfaktorius sinirler)nin çıktığı iki bulbus olfaktorius lobu, iki beyin yarım küresi (cerebrum) ile diencephalon bulunur. Diensefalonun üzerinde epifiz bezi yer alır. orta beyinde ise görme sinirlerinin çıktığı optik loplar yer alır. Arka beyinde de cerebellum ve medulla oblangata yer alır, bundan sonra da omurilik uzanır (Şekil 4).Şekil 4 . Kurbağada beyin yapısı ı. olfaktorius siniri 2. olfaktorius lobu 3. cerebrum 4. göz sİniri 5. optik lop 6. kranial sinirler 7. Cerebelluın 8. krania! sinirler 9. Medulla oblangata 10. omurilik İzlenecek Yol Ø Kurbağanın iç organlarını incelemeye geçmeden önce, içinde kloroform ya da etere batırılmış pamuk bulunan bayıltma kabında kurbağayı bayıltırız. Bayılmış ve hareketsiz duruma gelmiş kurbağayı küvet üzerine alarak dıştan inceleyiniz. Dıştan görünen organ ve yapıları çizerek gösteriniz. Ø Üst çenenin alt çene ile birleştiği yerden kasları hafifçe keserek ağzı açarız. İç burun deliklerinden bir iğne sokarak dış burun deliklerine kadar uzandıklarını tespit ediniz. Dili bir pensle kaldırarak tespit edildiği yeri görünüz. Dişler, göz şişkinlikleri, farinks, glottis ve östaki borusu açıklıklarını görerek ağzın içten görünüşünün şeklini çiziniz. Ø Beyin ve omurilik hariç, kurbağanın tüm sistemleri ventral taraftan disseke edilebilir. Bu sistemleri ortaya çıkarabilmek için kurbağanın vücut boşluğunun açılması gerekir. Deri ile vücut çeperi arasında geniş lenf boşlukları olduğundan bu açılış iki safhada yapılmalıdır. Birincisi derinin kesilmesi, ikincisi ise vücut çeperinin kesilmesidir. * Bu işlemi yapmak için kurbağayı küvet üzerine sırt üstü yatırınız. Dört bacağından da toplu iğne ile küvete tespit ediniz. Bu sırada kurbağada ayılma belirtileri görürseniz, kloroformlu ya da eterli pamuğu başının üzerine koyarak iyice bayılmasını sağlayınız. Ø Arka üyelerin birleştiği yerden başlayarak göğüs kemiği hizasına kadar sadece deriyi düz bir çizgi şeklinde kesiniz. Göğüs kemiği hizasında kesitinizi iki yan tarafa doğru uzatınız. Açtığınız deriyi iki yan tarafa yatırıp iğneleyiniz. Bu durumda ventral vücut duvarını yapan kaslar ortaya çıkar. Göğüs kemiği hizasından aşağıya kadar tam orta istikamette uzanan büyük bir kan daman ile bu damarın iki yan tarafında göğüs kemiği karşısından başlayarak aşağıya giden ve tekrar yukarıya dönerek deriye yayılan bir çift kan damarı göze çarpar. Ortadaki damar vena abdominalis (karın bölgesi toplardamarı), iki yan taraftakiler vena cutenea magna dır. Ø Vena abdominalisin sağ tarafından kas tabakasını göğüs kemiği hizasına kadar kesiniz. Bundan sonra göğüs kemiği kaidesinden sağ ve sol tarafa doğru vena cutenea magnaya kadar küçük birer kesim yapınız. Bu şekilde ayırdığınız kas tabakasını sağa ve sola yatırıp iğneleyiniz. Ø Bu şekilde açılan pleuroperitonal boşluk içinde ilk göze çarpan organ karaciğerdir. Karaciğerin loplarını ayırt ediniz. Orta lobu görmek için sağ ve sol lopları yukarı kaldırarak bu parçayı ortaya çıkarınız. Bunun sol lop ile birleştiği yerde yeşil renkli, yuvarlak safra kesesi vardır. Sol lobun ön dış parçasını da kaldırarak büyükçe olan mideyi ortaya çıkarınız. Yemek borusunu ancak bütün iç organların incelenmesi bittikten sonra görebilirsiniz. Sindirim sistemine ait diğer parçaları on iki parmak bağırsağı. İncebağırsak, pankreas ve rektumu bulup inceleyiniz. Ø Kalbi iyi görebilmek için göğüs kemiğini kesiniz. Kurbağa henüz ölmemişse kalbin hareketini görebilirsiniz. Kalp tam göğüs kemiğinin altındadır. Perikard zarını sıyırarak kalbi açığa çıkarınız. Alt tarafta üçgen şeklinde ve daha açık renkte görünen kısım ventrikulustur. Daha koyu renkli iki siyah çıkıntı ise sağ ve sol atriumdur. Ventrikulus ile sağ atriumun dış taraftan sınırladığı bölgede toplu iğne başı kadar bir şişkinlik vardır. Bullıus cordİs adını alan bu bölgeden kalın bir kan damarı truncus arterİosus çıkar. Yüreği küt uçlu bir pensle yukarı doğru kaldırıp ventral tarafına bakınız. Üçgen şeklinde, ince çeperli bir bölge sinüs venosus tur. Buraya ön taraftan büyük bir damar girer. Ø Akciğerler ilk bakışta karaciğer loplarının altında olduklarından görülmezler. Karaciğer loplarını kaldırıp akciğerleri meydana çıkararak sünger görünümündeki bu yapıları inceleyiniz. Ø İç organları vücut duvarına bağlayan mezenterleri inceleyiniz. Sindirim sistemi organlarını ortaya çıkararak görebildiğiniz tüm iç organları gösteren bir şekil çizip isimlendiriniz. Ø Sindirim sistemine ait organları karın boşluğunun dışına çıkarınız. Kurbağa dişi ise bağırsakları çıkarmadan önce onların yan taraflarına taşmış ovaryumlar böbrekleri görmeyi engeller. Bunun için bir tarafın ovaryum ve yumurta kanalını kesip çıkarınız. Yedinci ile sekizinci omur hizasından arkaya doğru uzanan böbrekler birbirine çok yakın olarak dururlar. Üzerlerinde böbreküstü bezleri görülür. Böbreklerden geniş, beyaz iki kanal (üreter) kloaka doğru uzanır. Bu kanallar boşaltım maddelerini, erkeklerde ise aynı zamanda spermleri taşırlar. Ø İdrar kesesini bulunuz. Bunun üreterden ayrı olarak kloaka açıldığını görünüz. İdrar kesesi bacakların birleştiği yerde, kloakın hemen önündedir. Eğer patlamamışsa kolayca farkedilir. Patlamış durumda ise aynı bölgede bir zar halinde görebilirsiniz. Ø İçorgan1arın incelenmesi bitince beyinin diseksiyonu için hayvanın başının dorsali size dönük olacak şekilde çeviriniz. Ø Başın dorsalini kaplayan deriyi bistüri ile yüzünüz. Bunun için hayvanın kafasını sol elin baş ve işaret parmakları arasında tutunuz. Sağ elin 3.4.5. parmaklarını kurbağanın sırtına yaslayıp, bistüri bıçağı hayvanın kafatasına teğet tutmaya çalışarak dikkatli bir şekilde kesim yapınız. Bu şekilde gevşettiğiniz cranİuın (kafatası)'un tavanını yukarı doğru kaldırınız. Kurbağada taze beyin dokusu çok yumuşaktır. Bu nedenle beyini zedelememek için bistürinin kesim sırasında devamlı olarak kafatasına teğet tutulması gerekir. Kranium açıldıktan sonra ilk göze çarpan kısım optik loplardır. Diseksiyon makasının bir ucunu kraniumun bir kenanndan içeri doğru sokarak makası her defasında çok az ileri iterek bir seri küçük kesimler yapınız. Bu şekilde kafatasının yan kenarlarını keserek kafatası tavanının geri kalan kısmını temizleyiniz. Bistüri yardımıyla bu açıklığı genişleterek beyinin dorsalinin tamamının ortaya çıkmasını sağlayınız. Beyinin son kısmı meddulla oblangatayı görebilmek için kafatasının hemen arkasındaki ilk bir kaç omuru her iki yandan neural yaylannı kesip, omurların dorsal kısımlarını uzaklaştırınız. Bu durumda beyinin tamamı ve omuriliğin başlangıcı ortaya çıkmış olur. Dorsalden beynin görüntüsünü kısımlarını belirterek çiziniz. Ø Omurilikten çıkan sinirleri incelemek için tüm iç organları çıkarılmış, alt çene ve ağzın ventral kısmı kesilmiş ve iyice temizlenmiş hayvanda, omurilikten çıkan parlak beyaz renkli 10 çift sinirin ventral uzantılarının omurlar arasından çıkışını görmek mümkündür.

http://www.biyologlar.com/kurbaga-diseksiyonu-2

İnsan Aklının Evrimi

4.5 milyon yil önceden sonra fosil kayitlari gelistiginde, australopithecinelerin Dogu Afrika’da ve muhtemelen bu kitanin baska herhangi bir yerinde yerlesmis olduklarini görürüz. A. aferensis, hem agaçlar üzerinde hem de karada sürdürülen yasam biçimine saglanan uyumu sergiler. 3.5 ile 2.5 milyon yil önceye ait fosiller, beyin boyutlari açisindan bu dönemin bir denge dönemi oldugunu gösterir. Devamli gelisen bir sosyal zekanin ve bunun sonucu büyüyen beyin yönündeki spiral baskinin sona ermesi, ya da en azindan bir duraklama geçirmesi niçin gereklidir? Bu sorunun muhtemel yaniti, evrimin simdi iki güçlü sinirlama ile karsi karsiya oldugudur: Daha büyük beyinlerin daha çok yakita gereksinimi vardir ve serin tutulmalari gerekir. Yakit açisindan beyinler son derece aç gözlüdürler. Dinlenme halindeyken, kas dokusunun gereksinim duydugunun 22 kati enerjiye gerek duyarlar. Isi açisindan ise, yalnizca 2 derecelek bir artis bile beynin çalismasinin zayiflamasina yol açar. Australopithecineler daha çok vejetaryen olmaliydilar ve muhtemelen agaçlikli ekvatoral savanalarda yasiyorlardi. Bu yasam biçimi beyne sunulabilecek enerji miktarini kisitliyor ve australopithecineleri sürekli olarak fazla isinma riskiyle karsi karsiya birakiyordu, Bu yüzden seçilime yönelik baskilar mevcut olsa bile beyin genislemesi gerçeklesmiyordu. Eger kosullar sasirtici sekilde bir araya gelmemis olsaydi, australopithecinelerin hâlâ Afrika’da yiyecek ariyor olmalari ve Homo soyunun evrimlesmesinin gerçeklesmemis olmasi mümkündü. Ama yaklasik 2 milyon yil önce çok hizli bir beyin büyüme dönemi baslamis ve bu olay Homo soyunun baslangicini isaretlemisti. Bunun gerçeklesmesi ancak beyin büyümesi ile ilgili kisitlamalar gevsetilirse ve kuskusuz, seçilime yönelik baskilar varsa mümkün olabilirdi. Bunun nasil oldugunu açiklamaya çalisirken, aklin, beyin ve vücudun evrimi arasindaki karsilikli iliskiler son derece önem kazanmisti. Bu dönemde iki çok önemli davranissal gelisme olmustu: Bipedalizm, yani iki ayak üzerinde yürüme ve et tüketimindeki artis. Iki ayakliligin nedenleri Ikiayakliligin evrimi 3.5 milyon yil önce baslamistir. Bununla ilgili kanitlar A. aferensisin aratomisinden ve daha etkin olarak da Tanzanya , Laetoli’de günümüze kadar korunabilmis olan australopithecine ayak izlerinden elde edilmistir. Bipedalizme neden olan en muhtemel seçilimci baski Dogu Afrika’nin agaçlikli savanalarinda yiyecek arayan australopithecinelerin sikintisini çektigi termal stres olabilirdi. Agaçlara tirmanan ve dallar arasinda sallanan atalariyla australopithecineler zaten dik durmaya yatkin bir vücut yapisina sahiptiler. Antropolog Peter Wheeler, australopithecinelerin ikiayakliliga uyum saglamakla, günes tepedeyken karsi karsiya kaldiklari radyasyon miktarini yüzde 60 eksiltmeyi basardiklarina dikkat çekmistir. Üstelik, bu sekilde, hareket için gerekli enerjji maliyetlerini de düsürmüs oluyorlardi. Bipedalizm, australopithecinelerin gida ve suya gereksinim duymadan daha uzun süreler yiyecek arayabilmelerini, daha az dogal gölgelige sahip yerlerde arastirmalarini sürdürebilmelerini, böylece dogal gölge ve su kaynaklarina daha bagimli olan diger yagmacilara açik olmayan yiyecek arama köselerinden yararlanmalarini sagliyordu. Giderek daha etkinlesen ikiayakliliga geçisin bir nedeni de, 2.8 milyon yil önce Afrika’da çevresel kosullarin daha kuru ve açik çevrelere dogru degismesi olabilirdi. Çünkü dik durus pozisyonunun benimsenmesiyle, günes radyasyonunun etkisinin azaltilmis olmasi daha çok deger kazanmis oluyordu. Ellerin özgürlesmesi, beynin büyümesi Denge ve hareket için gerekli kas kontrolünü saglayabilmek açisindan ikiayaklilik daha büyük bir beyin gerektiriyordu. Ama ikiayaklilik ve kara yasaminin, beyin büyümesiyle ilgili birçok baska sonuçlari da vardi. Bunlardan bazilari antropolog Dean Falk tarafindan incelenmistir. Falk, ikiayaklilikla birlikte, beyin için bir sogutma sistemi -ya da kendi deyisiyle bir radyatör- olusturmak üzere, beyni kaplayacak bir damar aginin da seçilmis olmasi gerektigini ileri sürer. Sogutma sistemi bir kez yerini bulunca, beynin daha fazla büyümesinin neden olacagi fazla isinma konusundaki baski rahatlamisti. Çünkü bu, üzzerinde kolayca degisiklik yapilabilir nitelikte bir radyatördü ve dolayisiyla beynin yeniden büyümesi olasiligi (gereksinimi degil) ortaya çikiyordu. Dean Falk, bipedalizmin, beyindeki nörolojik baglantilarin da yeniden düzenlenmesine yol açtigini ileri sürer: “Ayaklar bir kez, yürümek için agirlik tasiyicilar haline gelip (ikinci bir çift el gibi) yakalayici durumlarindan kurtulunca, daha önce ayak kontrolü için kullanilan korteks alanlari, korteksi baska fonksiyonlar için özgür birakarak küçülmüstü.” Kuskusuz bu durum, tasima ve alet yapma olanaklarinin zenginlesmesini ve ellerin “özgürlesmesini” de beraberinde getiriyordu. Dogal çevrenin algilanmasi açisindan da önemli degisiklikler yasanmis olabilirdi, çünkü simdiye kadar (beynin) tarama alanina giren uzaklik ve yönler de artmisti; yüz yüze iliskiler çogaldigi için sosyal çevrede de bir degisim yasanmis, yüz ifadeleri yoluyla iletisim kurabilme olanaklari zenginlesmisti. Bununla birlikte, belki de bipedalizmin en önemli sonucu les yiyicilige uygun köselerden yararlanmayi kolaylastirmis olmasiydi. Etçiller için bir gölgelik bulma gereksinimi duyulan günün belirli saatlerinde, ikiayaklilarin hayvan leslerinden yararlanabilmesini saglayan bir “firsat penceresi” açilmisti. Leslie Aiello ve Peter Wheeler'in ileri sürdükleri gibi, diyetlerde et miktarinin artmasi ile mide boyutlarinin daha da küçülmesi ve böylece beyin için daha fazla metabolik enerjinin özgür kalmasi, bu arada da sabit bir metabolizme hizinin korunmasi mümkündü. Bu sekilde, beynin büyümesiyle ilgili bir baska sinirlama daha ortadan kalkmis oluyordu. Steven Mithen

http://www.biyologlar.com/insan-aklinin-evrimi

MEMELİ HAYVANLAR

Memeliler ya da Mammalia, hayvanlar aleminin insanların da dahil olduğu, omurgalıların en evrimleşmiş grubudur. Dünya üzerinde yaklaşık 4500 memeli türü bulunur. Bunların 200 kadarı Avrupa’da görülebilir, Türkiye ise tek başına yaklaşık 170 memeli türü barındırmaktadır. Çift ve karmaşık dolaşım sistemine sahip, sabit vücut sıcaklıklı hayvanlardır. Vücutları genellikle kıllarla örtülüdür. Genç bireyler anne sütü ile beslenirler. Genellikle bacak şeklinde oluşmuş dört üyeleri vardır. Solunumda diyafram kullanırlar. Alt çeneleri bir çift kemikten oluşmuştur; orta kulaktaki kemikler üç parçalı olup kulak zarı ve iç kulakla bağıntılıdır. Hemen hepsinde yedi boyun omuru vardır. Memeliler, sıcak kanlı yaratıklardır. Yani vücut sıcaklıkları genel olarak çevre koşullarından bağımsızdır. Vücutları tüylerle kaplıdır ki, bu doku bazı türlerde dikenli bir hal alabilir (örneğin kirpi) ya da azalıp neredeyse pürüzsüz hale gelebilir; insan, yunus ve balinalarda olduğu gibi. Doğurarak çoğalırlar. Yavru memeliler, genel olarak belirli bir gelişim evresini tamamlayıncaya kadar annelerinin karnında taşınır. Doğum sırasında yavrunun gelişmişliği memeli türüne göre değişkenlik gösterir. Kör (ve genelde çıplak) doğan ve bazen yıllarca annesi tarafından yetiştirilen memeli türleri olduğu gibi, doğumun ardından kısa süre içinde koşmaya ya da yüzmeye başlayan memeli türleri de vardır. Ancak genel olarak memelilerde, yavruların belirli bir süre anne tarafından bakımı zorunludur. Dişi memeli, yavrusunu bebeğin gelişimi için gerekli bileşenleri içeren zengin içerikli sütü ile besler. Memelilerin vücut büyüklükleri değişkendir. En küçük memeli, bir böcekçil olan Cüce fare (Suncus etruscus - ortalama 6 cm, 2 gr); en büyük memeli ise Mavi balina'dır (Balaenoptera musculus - ortalama 35 m, 120 ton). Memeli vücudu, sıcak veya soğuk iklim koşulları ile mücadele için de farklı özelliklere sahiptir. Karasal memeliler için kalın bir kış kürkü, deniz memelileri için deri altında kalın bir yağ tabakası veya yağlanmış bir kürk bu mücadelenin silahlarıdır. Bazı memeliler de kış uykusuna yatarak, bu dönemi enerjiden tasarruf ederek geçirir. Yiyeceğin bol olduğu dönemde vücudunda depoladığı fazladan kalorileri, yiyeceğin kıt olduğu bu dönemde ‘uyku’ durumunda iken yakar. (Sincaplar, ayılar ve porsuklarda olduğu gibi.) Bu durum gerçek bir kış uykusu halini de alabilir (yediuyurlar ya da yarasalarda olduğu gibi) yani bu süre içinde canlılar, yaşamsal faaliyetlerini ve vücut sıcaklıklarını minimuma indirirler. Bazı memeli türleri insanlar tarafından evcilleştirilmiştir ve yabani türleri ortadan kalkmış ya da çok az kalmıştır. (İnek, at, koyun gibi.) Bilimsel sınıflandırma Alem: Animalia Hayvanlar Şube: Chordata Kordalılar Alt şube: Vertebrata (Omurgalılar) İnfa şube: Gnathostomata (Gerçekçeneliler) Üst sınıf: Tetrapoda Sınıf: Mammalia (Memeliler) Linnaeus, 1758 Yavrularını süt salgılayan göğüs bezleriyle beslediklerinden bu hayvanlara Mammalia adı verilmiştir. Bu hayvanlar Jura'da memeli benzeri sürüngenlerden (Synapsida alt sınıfının Therapsida takımından) ayrı bir dal şeklinde meydana gelmişlerdir. Bu gruptaki hayvanların temel özelliklerinden birisi de tümünün vücudunda az yada çok sayıda kılın bulunmasıdır. Memeliler üç ana gruba ayrılır. Bunların arasında tekdelikliler yada yumurtlayan memeliler olarak tanınan grup ornitorenk ve ekidnelerden oluşur. Bu ilginç hayvanların yavruları, kışlar gibi yumurtadan çıkar, ama sonra anne sütüyle beslenir. İkinci grupta keseliler yer alır. Keselilerin yavruları çok az gelişmiş olarak doğar. Yeni doğanların uzunluğu genellikle 6 santimetreyi aşmaz. Başlıca keseliler arasında opossum, tasmanyaşeytanı, bandikut, kuskus ve kangru sayılabilir. Eteneli memeliler en geniş memeliler grubunu oluşturur. Plasenta adıyla da tanınan etene, annenin içinde gelişen ve yavru ile anne arasında köprü kurarak doğana kadar yavruyu besleyen bir organdır. Eteneli memeliler başlıca 10 grup altına toplanabilir: Böcekçiller (Insectivora) en çok eski dünyada bulunmakla birlikte bir ölçüde Kuzey Amerika’ya da yayılmıştır. Köstebekler, kirpiler ve sivrifareler en bilinen üyeleridir. Yarasalar (Chiroptera), uçan memelileri kapsar. Hemen hemen bütün iri yarasalar meyveyle beslenirken, küçüklerinin çoğu böcekleri avlar. Primatlar (Primates) maymunlar ve insanlardan oluşur. Gelişmiş beyinleri ve el becerileriyle dikkat çekerler. Dişsizler (Edentata) ya dişten tümüyle yoksundurlar yada ağızlarında basit yapılı birkaç diş taşırlar. Armadillo, karıncayiyen ve tembelhayvan bu grubun üyeleridir. Kemiriciler (Rodentia) tür ve birey sayısı en çok olan memelilerdir. Tür sayısı 4000’i aşan memelilerin yarısından çoğunu kemiriciler oluşturur. Kobay, fare ve sıçanın yanı sıra oklukirpi, kunduz ve sincap da kemiriciler arasında yer alır. Etçiller (Carnivora) aslan, kaplan, pars, sırtlan, sansar, ayı, kedi, ve köpeği de içeren yırtıcı hayvanlardır. Denizde yaşamaya büyük bir uyum gösteren foklar ve morslar ise genellikle yüzgeçayaklılar (Pinnipedia) adıyla ayrı bir grupta toplanır. Balinalar (Cetaca) hemen hemen tümüyle kılsız, balık biçimdeki memelilerdir. Suyun dışında yaşayamazlar. Gerçek balinaların yanı sıra yunuslar ve musurlar da bu grupta yer alır. Mavi balina yaşayan en iri hayvandır. Filler (Proboscidea) günümüze yalnız iki türüyle ulaşabilmiş kara hayvanlardır. Tektoynaklılar (Perissodactyla) at, eşek, zebra, tapir ve gergedandan oluşurlar. Toynaklar, bu ve sonraki grubun ayak parmaklarını çevreleyen, kalınlaşarak başkalaşıma uğramış tırnaklarıdır. Çifttoynaklılar (Artiodactyla) deve, geyik, zürafa, sığır, antilop, keçi ve koyun gibi gevişgetirenlerin yanı sıra domuz, pekari ve suaygırı gibi gevişgetirme özelliği bulunmayan hayvanları da kapsar. KARAKTERİSTİK ÖZELLİKLERİ 1. Vücutları genel olarak belirli zaman aralıklarında dökülen kıllarla kaplıdır. Derilerinde ter, yağ, koku ve süt bezleri gibi çeşitli salgı bezleri bulunur. Bazı memelilerin vücut ve kuyruk kısımlarında sürüngenlerinkine benzeyen pullar vardır. 2. Balinalar (Cetacea) ve Deniz inekleri (Sirenia) gibi deniz memelileri dışında kalanlarda dört üye vardır. Bu deniz memelilerinde arka üyeler kaybolmuştur. Her bir üyede 5 veya daha az sayıda parmak bulunur. Gerek üyeler ve gerekse parmaklar çeşitli yaşam biçimlerine göre, örneğin, yürümek, koşmak, tırmanmak, yüzmek, uçmak ve kaçmak gibi görevleri yerine getirecek şekiller kazanmışlardır. Parmak uçlarında boynuz yapısında tırnak ve toynaklar, parmak altlarında ise etli yastıklar mevcuttur. 3. İskelet iyi bir şekilde kemikleşmiştir. Kafataslarında 2 oksipital kondil, boyunlarında 7 tane omur bulunur. Kuyrukları uzun ve hareketlidir. 4. Her iki çenede de mevcut olan dişlerin kök kısımları çukurluklar içerisine gömülüdür. Dişler beslenme durumlarına göre çeşitli şekiller gösterir. Bazılarında dişler bulunmaz. Dilleri çoğunlukla hareketlidir. Gözlerinde hareketli göz kapakları, kulaklarında etli bir dış kulak kısmı bulunur. 5. Kalpleri 2 kulakçık ve 2 karıncık olmak üzere 4 odacıklıdır. Kuşların tersine bunlarda yalnız sol aort kökü bulunmaktadır. alyuvarları yuvarlak ve çekirdeksizdir. 6. Solunumları yalnız akciğerlerle olur. Larinkste ses çıkarmaya yarayan ses telleri bulunur. Kalp ve akciğerlerin yer aldığı göğüs boşluğunu karın boşluğundan ayıran ve diyafram adı verilen kaslı bir bölme vardır. Böyle bir yapı memeliler dışında hiç bir hayvan grubunda görülmez (kuşlardaki bölme kaslı değildir). 7. Vücut sıcaklığı sabittir ve çevre koşularına bağlı olarak değişiklik göstermez (Homoiothermus). Vücut sıcaklığı metabolizma sonucunda sağlanır (endeterm). Vücut üzerinde bir kıl örtüsünün varlığı, deri altında vücudu saran bir yağ tabakasının bulunması ve kirli kan ile temiz kan dolaşımının birbirlerinden tümüyle ayrılmış olması, vücut sıcaklığının değişmezliğini sağlayan özelliklerinden bazılarıdır. 8. Sidik keseleri vardır ve boşaltım maddesi sıvı haldedir. 9. Beyinleri gelişmiş, cerebrum ve cerebellum kısımları oldukça büyüktür. Beyinden 12 çift sinir çıkar. 10. Erkeklerinde bir kopulasyon organı (penis) mevcuttur. Testisleri genellikle karın boşluğu dışında yer alan ve scrotum adı verilen torbalar içerisinde bulunur. Yumurtaları küçük ve kabuksuzdur. Yumurtanın gelişmesi yumurta kanalı (ovidukt)'nın değişmesiyle meydana gelen döl yatağında (uterus) tamamlanır. Amnion, korion ve allantois gibi embriyonik zarlar mevcuttur. Genellikle embriyoyu uterusa bağlayarak onun beslenmesini ve solunumunu sağlayan bir plasenta bulunmaktadır. yavrular doğumdan sonra dişi hayvanın süt bezlerinden salgılanan süt ile beslenir. - Memeliler sürüngenlerden meydana gelmiş olmalarına karşın onlardan bir çok yapısal farklılıklar gösterirler. Bu farklılıkların en önemlileri şunlardır: 11. Memelilerde vücut örtüsü olarak pullar yerine kıllar bulunur. Yalnız bazı memelilerin vücutlarında ve kuyruk bölgelerinde sürüngenlerden kalma bir özellik olarak hala pullar mevcuttur. 12. Memelilerin kafatasında iki oksipital kondil bulunur (sürüngenlerde bir tane) ve beyin kutusu daha büyüktür. 13. Memelilerde göğüs boşluğu ile karın boşluğunu birbirinden ayıran kaslı bir diyafram vardır 14. Memelilerde alt çene kemiği bir parça halindedir (sürüngenlerde çok sayıda). 15. Memelilerde alt çene kemiği doğrudan kafatası ile eklem yapmaktadır (sürüngenlerde quadratum ile eklem yapar). 16. Memelilerin orta kulağında incus, malleus ve stapes olmak üzere üçlü bir kemik zinciri vardır (sürüngenlerde yalnız stapes karşılığı olan Columella iç kulakta bulunur, diğer iki kemik çene ile birleşmiştir). 17. Memelilerde belirli zamanlarda dökülen dişler bulunur (sürüngenlerde dişler belirli zamanlarda değiştirilmez). 18. Memelilerde kalp dört odacıklıdır ve yalnız sol aort kökü mevcuttur. 19. Memelilerde ses kutusu çok iyi gelişmiştir (sürüngenlerde körelmiştir). 20. Memeliler yavrularını salgıladıkları süt ile beslerler. 21. Vücutlarında kılların bulunması, görme, işitme ve koku alma duyularının çok gelişmiş olması, beyinlerindeki cerebrum ve cerebellum kısımlarının gelişmişliğine bağlı olarak tüm faaliyetleri iyi bir şekilde koordine edebilmesi, öğrenme ve öğrenilen şeylerin hatırda tutulmasına yarayan bir bellek oluşumu ise memelilerin kuşlardan daha evrim geçirmiş olduklarını kanıtlayan özelliklerdir.

http://www.biyologlar.com/memeli-hayvanlar

Solucan Diseksiyonu

Lumbricus terrestris, Annelida (halkalı solucanlar) filumunun Oligochaeta klasisindendir. Bunlarda sölom arka arkaya sıralanmış birçok sölom keselerinden meydana gelmiştir. Bu keselerin meydana gelmesi vücutlarının dış taraftan da bölmelere (segment, metamer) ayrılmasına neden olmuştur. Toprak solucanlan nemli topraklarda yaşarlar. Yuvarlak ve ince silindiri andıran vücutlarının dorsal kısmı koyu, ventral kısmı ise nisbeten açık renklidir. Segment sayıları 100 den fazladır. Her segmentte karın tarafta önden arkaya dönük iki çift ve lateral de iki çift olmak üzere dört çift kıl bulunur. Toprak solucanlarının vücutları dıştan ince bir kütikula ile örtülüdür. Kütikula tek katlı epidermisin bir salgısıdır. Epidermis hücreleri arasında derinin nemli ve kaygan olmasını sağlayan birçok tek hücreli bez bulunur. Epidermisin altında kontraksiyon hareketi ile solucanın uzayıp kısalmasını sağlayan halka ve enine kaslar bulunur. Epiderrmsle birlikte bunlar kas deri kılıfını oluştururlar. Vücudun ön tarafında ve biraz ventralinde ağız, son segmentte de anüs bulunur. Baştan itibaren ventralde 14. segmentte dişi, 15. segmentte de erkek üreme organı açıklıkları vardır. Ancak bu açıklıklar gözle farkedilmezler. Bundan başka ergin solucanlarda şubat ve ağustos aylarında 32. ve 37. segmentler arasında kalan deri kısmı halka biçiminde kalınlaşır ve buradaki mukus bezleri gelişir. Bu yapıya klitellum denir. Klitellum kopulasyon (çiftleşme) sırasında çıkarılan salgı ile solucanların sıkıca sarılmalarını sağlayarak kopulasyonu kolaylaştırır. Aynca klitellum, yumurtaların çevresine jelatinimsi bir salgı çıkarır. Solucanlar karanlığı severler. Görme organları olmadığı halde ışığa karşı çok duyarlıdırlar. Bu duyarlılıkları epidermis hücreleri arasında bulunan pigmentsiz ve ışıktan etkilenen hücrelerden kaynaklanır. Toprak solucanının sırt tarafında ve her segmentinde ufacık delikler vardır. Eğer solucan kuruma tehlikesiyle karşılaşacak olursa vücut sıvısı bu deliklerden dışarı çıkarak hayvanı ölüm tehlikesinden korur. Vücut sıvısı ile vücut dışına çıkan lenf hücreleri solucan üzerindeki bakterileri yerler. Sindirim kanalı boru şeklindedir. Ağızdan sonra gelen kaslı bir farinks ile ince bir özefagus vardır. Özefagusu kısa bir kursak takip eder. Bundan sonra gelen katı ve orta bağırsaktır. Bağırsağın dorsal kısmı bağırsak yüzeyinin genişlemesine yarayan ve tiflosolis adı verilen bir çöküntü meydana getirir. Bağırsak, dorsal ve ventral mezenterlerle vücut boşluğuna asılı bir durumda bulunur. Bağırsağın üzeri chlorogogen denilen yeşilimsi- kahverengi hücrelerle örtülüdür. Bu hücreler içinde metabolizma sonucunda oluşan maddeler birikir. Bu hücreler daha sonra vücut boşluğuna düşerek boşaltım organları vasıtasıyla dışarı atılırlar. Sinir sistemi her segmentte sinir hücrelerinin bir araya gelmesiyle teşekkül etmiş olan bir çift gangliondan ibarettir. Bu ganglionlar sinir şeritleri aracılığı ile birleşmişlerdir. Ayrıca segmentteki ganglionları birbirine bağlayan sinir şeridine komissur, diğer segmentlerdeki ganglionları birleştiren sinir şeritlerine de konnektif denir. Ganglionlar bağırsağın altında, yani vücudun ventralindedir. Yalnız baş taraftaki serabral ganglionlar farinks üzerinde, yani dorsalde yer alırlar. İlk kez halkalı solucanlarda görülen bu sinir sistemine ip merdiven sinir sistemi denir. Annelidierin dolaşım sistemleri kapalıdır. Bu özellikleriyle omurgasız hayvanlar içinde istisna teşkil ederler. Solucanlarda esas olarak bağırsağın üst ve alt tarafında uzanan sırt ve karın damarları vardır. Bu damarlar her segment arasında bir çift lateral damar vasıtasıyla birbirleriyle birleşirler. Bu lateral damarlarda 7. ile ıı. segmentler arasında bulunan beş çift, kontraktil olduklarından kalp görevi yaparlar. Kanın akışı dorsalde arkadan öne, ventralde ise önden arkayadır. Kanın rengi kırmızıdır. Solunum deri ile yapılır. Boşaltım organları nefridiumlardır. Her segmentte bir çift nefridium bulunur. Her nefridiumun bir ucu nefrostom denilen kirpikli bir huni ile başlar. Kirpikli huninin uzantısı segmentler arasındaki dissepimentleri delerek kendinden sonraki segmentte boşaltım kanalını meydana getirir ve dışarı açılır. Toprak solucanları hermafrodittir. 10. ve 11. segmentlerde birer çift ufak testis vardır. Bunlar sperm kapsülleri içinde bulunduklarından görülmezler. Testislerin biraz gerisindeki kirpikli hunilerin kanalları vasdeferensi teşkil etmek üzere birleştikten sonra 15. segmentin ventralinden dışarı açılırlar. 13. segmentte bulunan ovaryumlar da çok küçük ve bir çifttirler. Kısa olan ovidukt (yumurta kanalı) 13. segmentte başlar ve 14. segmentten dışarı açılır. Toprak solucanlarında gelişme doğrudandır. Yani bir larva safhaları yoktur. Regenerasyon yetenekleri fazladır. Toprağa kanşmış organik maddelerle beslenirler. Toprak sindirilmeden dışarı atılır. Toprak solucanları protein bakımından zengin hayvanlardır. Bu nedenle hayvan yemlerine katılacak protein kaynağı olarak düşünülebilirler. Ayrıca deri salgılarından antibakteriyel maddeler elde edilmiştir. Araç ve Gereçler İri ve canlı toprak solucanları, % 10 luk alkol, ince uçlu makas, jilet, bistüri, toplu iğne, parafınli diseksiyon küveti, ince uçlu diseksiyon iğneleri, büyüteç ya da binoküler mikroskop. İzlenecek Yol Laboratuar çalışmasına gelmeden organik madde bakımından zengin, yumuşak ve nemli topraklardan kazarak solucan toplayınız. Diseksiyonun kolay olması bakımından iri olanlarını seçiniz. Nemli toprak içinde laboratuara getiriniz. Küvet üzerine aldığınız canlı bir solucanın hareketini, uzayıp kısalmasını gözleyiniz. Klitellum bölgesini ayırt ediniz.Solucanın ön ve arka ucunu tayin ediniz. Bu incelemeyi bitirdikten sonra solucanı % LO luk alkol içine atarak öldürünüz. Öldürdüğünüz solucanı tekrar küvet üzerine alarak, iç organları incelemek için diseksiyonunu yapmak üzere iki ucundan küvete toplu iğneler ile hafifçe gerdirerek tespit ediniz. Jilet ile solucanın ağız kısmından başlayarak sırttan arkaya doğru kesiniz. Bu işlem sırasında özen göstererek alttaki bağırsağı kesmemeye çalışınız. Bunun için kullandığınız kesici aracı fazla derine batırmayınız. Kesilen deriyi her iki yan tarafa doğru açarak iğneleyiniz. Bu durumda dissepimentleri biraz kestikten sonra iç organlar iyice ortaya çıkarlar. Bu açma işlemini solucanın yansına kadar devam ettiriniz. Açma işlemi tamamlanınca iç organlarını bir büyüteç altında inceleyiniz. . Başta, yutağın hemen üzerinde beyaz renkli ve iki parçalı görünen bir serabral ganglion vardır. Bu organı bulunuz. Sindirim sistemi ağızda başlayıp, yutak (ağıza bağlı şişkince bir kısım olarak görülür), yemek borusu (yutağın devalı olup üzerinde kalp görevi yapan damarlar ve bayaz renkli sperm keseleri vardır), kursak (hafif şişkin), katı (üzerindeki enine çizgilerden farkedilir) ve orta bağırsak olarak devam eder. Sırt ve karın damarlan bağırsağın yanına kaymış olabilirler. Yemek borusu üzerinde kalınlaşmış ve kalp görevi yapan lateral damarları görünüz. Bunlann kontraksiyonu devam ediyor olabilir. Kann ve sırt damarlarım birbirine bağlayan ince lateral damarlan da inceleyiniz. Yemek borusu üzerinde beyaz renkli sperm keseleri ve bunların iki yanındaki reseptekulum seminisleri görebilirsiniz. Bağırsağın yanlarında dissepimentler, nefridiumlar (bunları ancak binoküler ile inceleyerek görebilirsiniz) bulunur. Solucanın bu durumda açılmış şeklini, organların yerlerini de göstererek çiziniz. Çizim işleminiz bitince bağırsağı yana çekip, altında bulunan ip merdiven sinir sistemini açığa çıkararak inceleyiniz. [img size=500][/img]Şekil.1. Lumbricus terrestris'in anatomisi 1. serabral ganglion 2. farinks 3.kalp görevi yapan damarlar 4. özefagus 5. reseptekulum seminis 6. sperm keseleri 7. kursak 8. katı 9. sırt damarı 10. bagırsak 11. lateral damar 12. dissepimentler 13. nefrostom 14. nefridium kanalı 15. nefridium 16. segment 17. karın damarı 18. sinir

http://www.biyologlar.com/solucan-diseksiyonu

Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler

BOZKIRLAR (Step + Savan)

Stepler ya da savanlar, sert ve dayanıklı yeşil otlardan oluşan çayırlıklarla kaplanmış bölgelerdir. Diğer bir deyişle, Bozkırlar yani step ve savanlar otsu formlardan oluşmuştur. Bunlardan stepler özellikle kuraklığa uyum göstermiş buğdaygillerden, savanlar ise küçük çalımsı formlardan oluşur. Step ve savanlara birlikte bozkır adı verilir. Bu bölgelerde tek tük yüksek ağaçların ve geniş yeşil çayırlık alanların birlikte bulunması tipiktir. Bitki örtüsü için uygun sıcaklık, yeterli yağış miktarı ve derin tabansuyunun bir araya geldiği her yerde bu yapı oluşur. Bu da özellikle ekvatorun her iki yanındaki ılıman ve kurak subtropik bölgeleri oluşturur. Bu tip bozkır yapısındaki bölgelerde koşucu hayvanlar baskın olarak görülür. Gerçek step hayvanları olarak: toynaklılar (sığır, at, antilop, zürafa, deve), kemirgenler (tavşan, kobay, sıçan), yırtıcılar (aslan, leopar, kurt, sırtlan, çakal), sıçrayıcılar (sıçrayanfare, sıçrayantavşan, kanguru), kuşlardan: emu, devekuşu ve toykuşu gibi koşucu tipler örnek verilebilir. Leş yiyen akbabalar ve yüksekten uçan yakalayıcı kuşlar (kartal ve şahin) da yaygın hayvanlardır. Doğu Afrika'da zebra, devekuşları ve antilop gibi çok sayıda farklı tür bir araya gelerek karışık sürüler oluşturur. Böceklerden termitler yuvalarını çoğunlukla araziye uygun bir şekilde yaparlar. Hyleadakinin aksine, buralarda, ikinci biyosonötik kuraldan yani yaşama bölgesinin sınırlı koşullarından dolayı tür sayısı az, fakat aynı türe ait birey sayısının çok olduğu sürüler yaygındır. Başka hiçbir karasal ekosistemde bir tek türün milyonlarca bireyden oluşan sürüsü aynı alanda görülmez. Kuzey Amerika'nın bizonları ve göçmen güvercinleri, Afrika antilopları ile Yakın Doğu ve Afrika'daki çekirge sürüleri bu duruma örnek gösterilebilir. Bozkırlar, yangınlar ve tarımsal amaçlı sulamalarla yapılan tahribat bir tarafa bırakılırsa, iklim ve vejetasyon bölgesi olarak, insan müdahalesinden en az zarar gören bölgelerdir. Bozkırlardaki bozulmalara, kuru ormanlardaki yangınlar, şehirleşme, aşırı otlatma, anız yakma, tarım arazisi olarak yapısını bozma, yeşil alanların tahribi, spor alanı olarak kullanılması vs. neden olmaktadır. Diğer taraftan bozkırların asıl hayvanları birçok bölgede tamamen imha edilmiştir. Bu tahribatlarla ve avcılığın eklenmesiyle, özellikle bizonlar, yaban sığırları, kurtlar, yırtıcılar gibi birçok memeli hayvan ve keza birçok bozkır kuşu ortadan kalkmıştır. Bu yok olmayı önleyebilmek için, birçok yerde, doğal büyük alanların milli parklar biçiminde düzenlenmesi yönünde eğilimler artmaktadır. Böyle bir kurtarma girişimi Afrika Serengetin'de gerçekleştirilmiştir. Fakat Asya ve Avrupa'da yabanatları ve bizonlar (Bison bonasus) için şu anda çok geç kalınmıştır.

http://www.biyologlar.com/bozkirlar-step-savan

Ankylosaurus Dinazor

Ankylosaurus, (anlamı: sert zırhlı kertenkele), 70-65 milyon yıl önce yaşadığı düşünülen bir dinozor türüdür. Otobur beslenen bu tür 7-10 metre boyunda ve 4-7 ton ağırlığındadır. Dört bacağı üzerinde yürür. Ön bacakları arkadakilerden daha kısadır. Sırtı kemik ve plakalarla kaplıdır. Başının arkasından kuyruğuna kadar iki sıra diken bulunmaktadır. Kuyruğunun ucundaki taş gibi kemiği ile çok büyük kayaları bile parçalayabilirdi ve kendisine saldırıldığında saldıran dinozor zarar görürdü (Eğer saldıran dinozor çok güçlü değilse). Bu otobur dinozorun tek saldırısı kuyruğunu dikensiz bir topuz olarak kullanmaktır.

http://www.biyologlar.com/ankylosaurus-dinazor

AVRUPADA YAŞAYAN SÜRÜNGENLER

ADİ ENGEREK (Vipera berus) Avrupa'daki en yaygın yılanlardan biridir. 70. paralele kadar rastlanır. Uzunluğu 80 cm. olan bu yılan zehirlidir. Zehiri özellikle çocuklarda ölümlere yol açabilir. Ancak, oldukça ürkek bir yapıya sahiptir ve insanlardan kaçmayı tercih eder. Genellikle 3000 metre yüksekliklerde dolaşır. Özellikle soğuk günlerde daha alçaklara iner. Esas olarak geceleri avlanırlar ve fare yiyerek beslenirler. Bu nedenle çiftçiler bu yılana özellikle dokunmazlar. Ağustos ayında dişi marasso yılanı 6-20 yavru dünyaya getirir. Ekim ayında marasso yılanları kış uykusuna yatacakları elverişli bir yuva aramaya başlarlar. Kayalar arasındaki yuvalarından nisan ayında uyanarak çıkarlar. BOYNUZLU ENGEREK YILANI (Vipera ammodytes) Güney Avrupa'da yaşayan bu engerek yılanının uzunluğu yaklaşık 65-95 cm'dir. En tipik özelliği üçgen biçimindeki kafa yapısıdır. Kuyruğu ise oldukça kısadır. Sabahın erken saatlerinde ve öğleden sonra ava çıkar. Küçük memelilere ve sürüngenlere saldırır. Dişi ile erkek çiftleşmeden önce aşk kavgası yaparlar. Dişi engerek yılan yaz sonunda 9-18 yavru dünyaya getirir. GÖZLÜKLÜ SEMENDER (Salamandrina terdigitata) Bütün İtalya Yarımadası'nda yaşayan bu semenderin boyunun uzunluğu 7-11 cm'dir. Tatlı su kıyılarında yaşar. Kuyruğu, vücudundan daha uzundur ve ön ayaklarında 4 parmak vardır. Sırt kısmı siyah-kahverengi, karın kısmı beyazdır. Diliyle yakaladığı böcekleri, larvaları, kurtçukları yer. Genellikle gece avlanır. İlkbaharın başında çiftleşir ve dişi suya 30-80 yumurta bırakır. Hayvanın larva yaşamı iki ay sürer. İSPANYOL ENGEREĞİ (Vipera aspis) Kuzey İspanya, Fransa, Almanya ve İsviçre'de görülen bu yılanın boyunun uzunluğu 50-85 cm'dir. Büyük bir kafa yapısına sahiptir. Derisinin üst bölümündeki renkler çok değişkendir. Ormanlık bölgelerde, dağ eteklerinde, kayalık topraklarda yaşar. Soğuğa karşı çok duyarlı olan bu hayvan, kış aylarında adeta donup kalır, hareketsizleşir. Akşam ve geceleri avlanan bu yılan, fare, küçük memeli, sincap avlayarak beslenir. Zehiri çok güçlü değildir. Dişi her keresinde 2-12 yavru doğurur... KARETTA (Caretta caretta) Akdeniz, Karadeniz ve Atlantik Okyanusu'nda yaşayan bu kaplumbağanın kabuğunun uzunluğu 80-1.20 m. arasında değişir. Kafası, cüssesine oranla büyük, kuyruğu, cüssesine oranla çok küçüktür. Arka ayakları ön ayaklarından daha gelişmiştir. Yalnız yaşar, sadece çiftleşme döneminde eş bulur. Dişi, yumurtlamayı gece yapar. Yumurtalarını kuma gömer, 2-3 ay kuluçka dönemi vardır. Yavrular, 10-12 yaşında yetişkinliğe varırlar. Uluslararası örgütler tarafından korumaya alınan bu kaplumbağalar, ülkemiz sahillerine de yumurtlamaya gelirler. KÖR YILAN (Anguis fragilis) İzlanda ve İrlanda dışında tüm Avrupa'da yaşayan bu yılanın uzunluğu 50 cm. kadardır. Genellikle akşamüstleri ve sabahın erken saatlerinde avlanan bu hayvan, böcek, kurtçuk ve kırkayak ile beslenir. Dişi içinde geliştirdiği yumurtalardan çıkan yavrularını dışarıya atar. Her keresinde 5-26 yavru yapar. Kör yılan kasım ayında bütün kışı geçireceği bir yer arar ve daha sonra kış uykusuna yatar. Mart sonunda ya da nisan başında uyanır. Tehlikeli bir saldırı durumunda bu yılanlar tıpkı kertenkeleler gibi kuyruklarını düşmana bırakıp kaçarlar. SEMENDER (Salamandra salamandra) Bütün Avrupa'da görülen bu hayvana Ön Asya ve Suriye'de de rastlanır. Yetişkin bir erkeğin uzunluğu 15-32 cm'dir. Vücuduna oranla iri gözlere sahiptir. Sulak ve ağaçlık bölgelerde dolaşan bu hayvan, gündüzleri yerin altındaki yuvasında yaşar. Esas olarak böcek ile beslenir. Bu hayvan soğuktan nefret eder ve kış aylarında uykuya yatar. Çiftleşme dönemi sonbahardır ve oldukça uzun sürer. Dişi suya 70 larva bırakır. Bunlar 2-3 aylık bir metamorfoz döneminden sonra yavru semenderler haline gelirler, 4 yıl sonra da çiftleşebilirler.

http://www.biyologlar.com/avrupada-yasayan-surungenler

Balıkçılgiller (Ardeidae)

Bayağı balaban (Botaurus stellaris) Küçük balaban (Ixobrychus minutus) Gece balıkçılı (Nycticorax nycticorax) Alaca balıkçıl (Ardeola ralloides) Sığır balıkçılı (Bubulcus ibis) Küçük ak balıkçıl (Egretta garzetta) Büyük ak balıkçıl (Ardea alba) Gri balıkçıl veya Kül rengi balıkçıl (Ardea cinerea) Erguvani balıkçıl (Ardea purpurea) Yeşil sırtlı balıkçıl (Butorides striata)

http://www.biyologlar.com/balikcilgiller-ardeidae


TÜRKİYE'DE YAŞAYAN YILAN TÜRLERİ

TÜRKİYE'DE YAŞAYAN YILAN TÜRLERİ

1.Familya:Boidae Eryx jaculus: Mahmuzlu Yılan; Genel Özellikler: Boğa Yılanları ailesinden (en büyük yılan türleri ailesi) olan bu türün en büyük özelliği zehirsiz olmaları ve avlarını boğarak öldürmeleri. Benekli olan sırt bölgesinin rengi genel olarak kahverengi ve tonlarında olur. Beneklerinin rengiyse sarımsı beyaz. Karın bölgesi kirli beyaz, bazen küçük koyu benekler olabilir. Besinlerinin büyük bir kısmını fare gibi kemiriciler oluşturur. Bunun yanında küçük sürüngenleri, salyangozları da yiyebilirler. Kemiricilerle beslendikleri için fare sayısının artmasını engellerler. Bundan dolayı oldukça yararlıdırlar. Sabahleyin ve akşamüzeri aktiflik gösterirler. Dişiler bir defada 14 cm boylarında 18-20 kadar canlı yavru doğurur (Ağustos ve Eylül). Su ihtiyacını bitkilerin üzerindeki çiylerden karşılar. Rahatsız edilmedikleri sürece insanlara saldırmazlar. Boyları 1 metre kadar olabilir. Habitat: Kurak yerlerdeki kumlu, taşlı yerlerde yaşarlar. Aktif olmadıkları zaman taş altları ve kemirici yuvalarında saklanırlar. Kuma gömüldükleri de olur. Yüksekliği 1200 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya, Güney ve Batı Anadolu, Şanlıurfa civarı ve Doğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Türkiye'de iki tane alt türü bulunur; a- Eryx jaculus turcicus (Oliver, 1801) b- Eryx jaculus familiaris Eichwald, 1831 2.Familya:Colubridae Coronella austrica: Avusturya Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kırmızımsı kahverengiyle sarımsı kahverengi arasında değişir. Belirginliği az olan beneklerinin rengiyse siyah. Karın bölgesiyse grimsi kahverengiden kırmızımsı renge kadar değişir. Ayrıca burun bölgesinden başlayıp, gözün üzerinden geçen ve boyuna doru uzanan bir şerit bulunur (temporal bant). En çok yedikleri besin kertenkeleler. Bunların yanında kemiriciler, avlayabildikleri kuşlar, küçük yılanları da yerler.Tırmanıcı özellikleri var. Sabahları ve öğleden sonraları aktiftir. Öğle uykuları var. Az hareketli ve sakin bir türdür. Kış uykusuna da yatarlar. Bu hayvanlar üreme işlerini doğurarak yaparlar (ovovivipar). Ancak doğurma memelilerdeki gibi olmaz. Yavru anne karnında bir yumurta içinde gelişir (plasenta yok) ve dışarıya öyle bırakılır. Dişiler bir defada 4-13 yavru doğururlar. Ağustos ya da Eylül'de yumurtadan çıkan yavrular 3 (erkekler) ve 4 (dişiler) yılda erginleşir. Boyları 75 cm kadar olabilir. Habitat: Ormanlık yerlerin kenarlarındaki taşlıklarda, kumluklarda, çayırlıklarda, çalılık yerlerde yaşarlar. Ağaçlarda da görülürler. Yüksekliği 2350 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun kuzeyinde (Trakya dahil) daha çok olmak üzere, Orta ve Batı bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Dolichopis caspius (Coluber caspius): Hazer Yılanı, Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengimsi gri ve gri rengin diğer tonlarında olabilir. Sırtta ayrıca koyu renkli benekler bulunur. Ayrıca sırttaki pulların kenarları beyaz renkli olur. Beneksiz olan karın bölgesi sarımsı beyaz renkte. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 5-8 kadar yumurta bırakabilirler. Boyları 180 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 2000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Sinop'tan Mersin'e kadar olan hattın batısında kalan yerlerde habitatın uygun olduğu alanlarda yaşarlar. Dolichopis jugularis (Coluber jugularis): Kara Yılan; Genel Özellikler: Gençlerin sırt bölgesinin rengi genel olarak açık kahverenginin tonlarında olur. Sırttaki beneklerin rengi koyu kahverengi ya da siyah. Üzerindeki pulların kenarlarıysa siyah renkli. Karın bölgesi kirli beyaz ve kenarlara doğru küçük benekli. Erginlerin sırt kısmı parlak siyah. Başın üst tarafında kırmızımsı lekeler bulunur. sırttaki pulların ortasında kırmızımsı bir çizgi bulunur. Kırmızımsı olan karın bölgesinde küçük siyah benekler bulunur. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler.Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 7-11 kadar yumurta bırakabilirler. Boyları 200 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 2000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Akdeniz, Ege (İzmir'e kadar) ve Güneydoğu Anadolu Bölgesi'nde habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Hızlı hareket eden bu hayvan insandan genellikle kaçmaz ve korkutmak için "tıss" diye ses çıkarır. Zehirsiz olan bu tür kendini savunmak için saldırabilir ve insanı ısırdığında kolay kolay bırakmaz. Dolichopis schmidti(Coluber schmidti): Kırmızı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak genç bireylerde grimsi kahverengi ve uzunlamasına koyu kahverengi ya da siyah benekli. Gençler büyüdükçe benekler kaybolmaya başlar. İyice erginleştikten sonra parlak kırmızı ve beneksiz olurlar. Genç bireylerde karın bölgesi sarımsı beyaz, erginlerdeyse sarımsı beyaz ya da kırmızımsı olur. Gündüzleri aktiflik gösterirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 6-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Boyları 160 cm kadar olabilir. Habitat: Dere kenarlarında, ovalarda, tarlalarda, bahçelerde, dağ yamaçlarında, bataklık yerlerde, ağaçlık alanlarda yaşarlar. Ağaçlara tırmanabilirler. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 500-1700 metre arasında olan yerlerde bulunurlar. Türkiye'deki Dağılım: Doğu, Güneydoğu, ve İç Anadolu bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Hemorrhois nummifer (Coluber nummifer): Sikkeli Yılan; Genel Özellikler: Vücudun genel yapısına bakıldığında, boyun kısmının vücudun diğer bölgelerine oranla oldukça ince olduğu görülür. Sırt bölgesinin rengi genel olarak sütlü kahverengi ve kahverenginin diğer tonlarında olur. Sırtta ayrıca, kenarları siyahımsı olan koyu kahverengi, yuvarlağımsı ve ayrı ayrı iri benekler bulunur. Vücudun yan taraflarında, baştan kuyruğa doğru uzanan, sırttakilerden daha küçük olan benekler bulunur. Bunlar kuyruk bölgesinde birleşerek bir şerit oluşturur. Gözle ağzın arka kısmı arasında siyah bir şerit de var. Karın bölgesi çok az benekli olup kirli beyaz bir renkte olur. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kuş ve kuş yumurtalarıyla, kertenkelelerle (özellikle Gekolar) beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Oldukça hızlı hareket edebilirler. Gündüzleri aktiflik gösterirler. Temmuz ayında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 5-10 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 20 cm kadar olur. Boyları 130 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu, kurak yerlerdeki taşlık ve çalılık yerlerde, evlerin yakınında yaşarlar. Toprak evlerin çatılarında da görülürler. Yüksekliği 2300 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Marmara, Ege, Akdeniz bölgeleri, İç Anadolu'nun batısında habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Saldırgan bir yapıları var. Rahatsız edildiklerinde ya da savunma amaçlı saldırırlar. Hemorrhois ravergieri (Coluber ravergieri): Kocabaş Yılan; Genel Özellikler: Vücudun genel yapısına bakıldığında, boyun kısmının vücudun diğer bölgelerine oranla oldukça ince olduğu görülür. Sırt bölgesinin rengi genel olarak sütlü kahverengi ve kahverenginin diğer tonlarında olur. Sırtta ayrıca, kenarları siyahımsı olan koyu kahverengi, yuvarlak olmayan ve zikzak yapmış (şerit gibi) iri benekler bulunur. Vücudun yan taraflarında, baştan kuyruğa doğru uzanan, sırttakilerden daha küçük olan benekler bulunur. Bunlar kuyruk bölgesinde birleşerek bir şerit oluşturur. Gözle ağzın arka kısmı arasında siyah bir şerit de var. Karın bölgesi çok az benekli olup kirli beyaz bir renkte olur.Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kuş ve kuş yumurtalarıyla, kertenkelelerle (özellikle Gekolar) beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Oldukça hızlı hareket edebilirler. Gündüzleri aktiflik gösterirler. Temmuz ayında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 5-10 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 20 cm kadar olur. Boyları 130 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu, kurak yerlerdeki taşlık ve çalılık yerlerde, evlerin yakınında yaşarlar. Toprak evlerin çatılarında da görülürler. Yüksekliği 2300 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu ve Güneydoğu Anadolu bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Rahatsız edildiklerinde ya da kendilerini korumak için saldırabilirler. Platyceps collaris (Coluber rubriceps): Toros Yılanı; Genel Özellikler: Sırt bölgesinin rengi arka tarafları sarımsı kahverengi, baş taraflarıysa grimsi kahverengi olur. Başın üst kısmıysa kırmızımsı kahverengi. Vücudun ön yan taraflarında siyah ya da koyu kahverengi benekler bulunur. Bu benekler arkaya doğru gittikçe küçülür ve kaybolur. Boyun tarafındaki ilk iki benek genelde birleşir ve halka oluşturur. Gözün arka ve ön tarafları siyah renkli. Karın bölgesiyse sarımsı beyaz olup beneksizdir. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kertenkelelerle ve böceklerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Çok hızlı hareket edebilirler ve ağaçlara da tırmanabilirler. Gündüzleri aktiflik gösterirler. Ekim'le Nisan ayı arasında kış uykusuna yatarlar. Haziran ve Temmuz aylarında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 3-5 kadar yumurta bırakabilirler. Boyları 100 cm kadar olabilir. Habitat: Kuru yerlerde, çalılık ve taşlık alanlarda yaşarlar. Tarlalarda, bahçelerde ve ev yakınlarında da görülürler. Yüksekliği 1700 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Marmara, Ege ve Akdeniz Bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Platyceps najadum (Coluber najadum): İnce Yılan; Genel Özellikler: Vücut yapıları diğer yılanlara göre oldukça ince. Sırt bölgesinin rengi arka tarafta kırmızımsı kahverengi ve kahverenginin diğer tonları, ön taraftaysa grimsi. Vücudun ön tarafının yanlarında kenarları beyaz olan iri siyah benekler bulunur. Bu benekler kuyruğa doğru gittikçe küçülür. Baş taraftaki ilk iki benek bazen birleşik olabilir. Benek bulunmayan karın bölgesi, kirli beyaz ya da sarımsı olabilir. Genel olarak fare gibi kemiricilerle, küçük sürüngenlerle, kertenkelelerle ve böceklerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Çok hızlı hareket edebilirler ve ağaçlara da tırmanabilirler. Gündüzleri aktiflik gösterirler. Ekim'le Nisan ayı arasında kış uykusuna yatarlar. Haziran ve Temmuz aylarında yumurtlamaya başlayan bu hayvanların dişileri, bir defada 3-5 kadar yumurta bırakabilirler. Yavrular 2 ya da 3 yılda erginleşebilirler (sıcaklığa bağlı olarak). Boyları 140 cm kadar olabilir. Habitat: Kuru yerlerde, çalılık ve taşlık alanlarda yaşarlar. Tarlalarda, bahçelerde ve ev yakınlarında da bulunabilirler. Yüksekliği 1700 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun İzmir-Ağrı hattının güneyinde kalan kısımlarıyla, Trakya ve Doğu Karadeniz bölgesinde habitatın uygun olduğu alanlarda dağılım gösterirler. Platyceps ventromaculatus (Coluber ventromaculatus): Benekli Yılan; Genel Özellikler: Bu hayvana ilk bakıldığında göze çarpan koyu renkli (siyah ya da kahverengi) benekleri. Bu benekler kuyruğa doğru gittikçe küçülür. Sırtın zemin rengiyse grimsi kahverengi ve tonlarında olur. Karın bölgesi daha açık renkli olur. Gündüzleri aktiflik gösterirler. Genel olarak küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Daha çok sabahleyin avlanırlar. Çok hızlı hareket edebilirler. Kemiricilerle beslendikleri için yararlıdırlar. Dişiler bir defada 6-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Boyları 150 cm kadar olabilir. Habitat: Bitki örtüsünün az olduğu kurak, taşlık ve çalılık yerlerde yaşarlar. Dinlenme zamanlarını taş altlarında ve kemirici yuvalarında geçirirler. Yüksekliği 1000 metre kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Şanlıurfa'da Suriye sınırına yakın olan bölgelerde habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis aurolineatus: ??? Eirenis barani: Baran Cüce Yılanı; Genel Özellikleri: Dorsali sarımsı kahverengi, ventrali beyaza yakın ve lekesizdir. Bazı fertlerde dorsal taraf lekelidir. Ense kısmında bulunan siyah bant gençlerde daha barizdir. Yaş ilerledikçe kaybolur. Habitat: Az bitkili taşlık bölgelerde taş altlarında yaşar. Böceklerle beslenirler. Türkiye'deki Dağılımı: Anadolu Diyagonali, Niğde, K.Maraş, Bolkarlar, Adana, Hatay ve Suriye’de dağılış gösterir. Eirenis collaris: Yakalı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengi ve tonlarından zeytini yeşile kadar değişir. Ense kısmında büyük siyah bir benek vardır. Ortası açık renkli, kenarları siyah olan sırt pulları vardır. Beneksiz olan karın bölgesiyse sarımsı beyaz olur. kış uykuları vardır. Genel olarak böceklerle, örümceklerle, küçük kemiricilerle, seyrek olarak da kertenkelelerle beslenirler. Dişiler bir defada 4-8 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular 10 cm kadar olur ve 2-3 yılda erginliğe ulaşırlar. Boyları 40 cm kadar olur. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 1600 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Akdeniz bölgesinin doğusunda, Güneydoğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis coronella: Halkalı Yılan; Genel Özellikler: Oldukça küçük boyludurlar. Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında (sarımsı) olur. Boyun kısmında 1-2 tane halka halini almış büyük koyu kahverengi benekler bulunur. Bu benekler arka tarafa doğru, küçülerek ve belirginliği azalarak devam eder. Çok küçük noktalı olan karın bölgesi, sarımsı beyaz renkte olur. Genel olarak böcekler ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 35 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını taş altlarında geçirirler. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu'da habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis decemlineatus: Çizgili Yılan; Genel Özellikleri: Boyu yaklaşık 1 m kadar olup, dorsali gri kahverengi ve üzerinde 2 çift ince siyah boyuna çizgi bulunur. Yaşla birlikte bu çizgiler silikleşir. Başın üzeri lekesizdir. Ventral sarımsı renktedir. Habitat: Açık arazilerde, taşlık yerlerde yaşarlar. Türkiye'deki Dağılımı: Yurdumuzun Güneydoğu ve doğu kısımlarında (Adana, Van, Gaziantep ve Van) yaygındır. Eirenis eiselti: ??? Eirenis hakkariensis: Hakkari Cüce Yılanı; ??? Eirenis levantinus: Levant Cüce Yılanı; ??? Eirenis lineomaculatus: Bodur Yılan; Genel Özellikler: "Bodur Yılan" denmesinin nedeni kısa boylu ve kalın vücutlu oluşu. Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında olur. Sırta siyah ya da koyu kahverengi küçük benekler bulunur. Bu benekler vücudun yan taraflarında daha küçük olur. Ayrıca boynun sırt tarafında, halka şeklinde koyu bir benek bulunur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 35 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Akdeniz ve Güneydoğu Anadolu (Adana, Hatay, -Amik Ovası-) bölgelerinde, habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis modestus: Uysal Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak açık kahverengi ve tonlarında (özellikle sarımsı) olur. Genç bireylerde, boynun hemen arka kısmında büyük siyah ya da koyu kahverengi bir benek bulunur. Bu büyüdükçe belirginliğini yitirir ve yaşlılarda görülmez. Sırttaki pulların kenarları ortaya göre daha koyu renkli olur. Karın bölgesi sarımsı beyaz olur. Dişiler bir defada 3-8 kadar yumurta bırakabilir (taşlık yerlerdeki oyuklara). Genel olarak böcekler, örümcekler ve solucan gibi omurgasız hayvanlarla beslenirler. Boyları 70 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında, bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis punctatolineatus: Van Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverengi ve tonlarında olur. Sırtın ön taraflarında küçük siyah benekler bulunur. Bu benekler arka tarafta birleşerek ince bir şerit oluşturur. Beneksiz olan karın bölgesi sarımsı beyaz olur. Dişiler bir defada 6-8 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Yumurtadan çıkan yavrular iklime bağlı olarak 2-3 yıl içinde erginleşirler. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 50 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu'da Akdamar Adası (Van Gölü İçinde), Van ve Hakkari civarında habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis rothi: Kudüs Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ya da yeşilimsi kahverengi olur. Baş (ensede) bölgesinde siyah bir benek bulunur. Bu benek ensede bulunan halka şeklindeki benekten ince açık renkli bir halkayla ayrılır. Vücudun diğer kısımlarında başka benek bulunmaz. Karın bölgesiyse sarımsı beyaz olur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 40 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu bölgesinde (Şanlıurfa, Mardin, Siirt, Hakkari) habitatın uygun olduğu yerlerde dağılım gösterirler. Eirenis thospitis: ??? Elaphe dione: Step Yılanı; ??? Elaphe sauromates (Elaphe quatuorlineata sauromates): Sarı Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı gri ve tonlarında olur. Sırttaki bir ya da iki sıralı beneklerin rengi, koyu kahverengi ya da siyah olur. Şakak bölgesinde çizgi (temporal bant) bulunur. Gençken belirgin olan benekler ve temporal bant, yaşlandıkça belirginliğini kaybeder. Benekli olan (koyu kahverengi ya da siyah) karın bölgesi sarımsı beyaz renkte olur. Dişiler bir defada 6-16 kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını boğarak öldürürler. Akşam karanlığında ve çok sıcak olmayan günün tüm saatlerinde aktiftirler. Ağaçlara tırmanabilirler. Çok sakin hayvanlar olup ancak kendilerini güvende hissetmezlerse saldırırlar. Boyları 150 cm kadar olabilir. Habitat: Sık ormanlık olmayan yerlerdeki taşlık ve çalılıklarda, tarlalarda, bahçelerde yaşarlar. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Zamenis hohenackeri (Elaphe hohenackeri): Kafkas Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverenginin tonlarında olur (grimsi, sarımsı). Sırtın ortasında beyazımsı bir şerit ve bu şeridin her iki yanında, koyu kahverengi (sarımsıda olabilir) ya da siyah benekler bulunur. Bu beneklerin rengi kuyruğa doğru gittikçe açılmaya başlar. Ense kısmında U biçiminde büyük bir benek daha bulunur. Başın üst kısmında küçük siyah noktalardan çok bulunur. Şakak bölgesindeki çizgi oldukça belirgin. Kırmızımsı ya da portakal renginde benekler bulunan karın bölgesi grimsi siyah bir renkte olur. Dişiler bir defada 3-7 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Genel olarak fare gibi küçük kemiricilerle, kertenkelelerle ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 75 cm kadar olabilir. Habitat: Genel olarak açık araziler, ormanlık yerler, tarlalar, bahçeler yaşam alanları içinde. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Türkiye'de iki tane alttürü bulunuyor. a- Elaphe hohenackeri hohenackeri (Anadolu'nun Sinop Hatay hattının doğusunda kalan yerlerde, uygun habitatlarda ) b- Elaphe hohenackeri taurica (İç Anadolu'nun güneyiyle, Orta ve Doğu Akdeniz Bölgelerinde uygun habitatlarda) Zamenis longissimus (Elaphe longissima): Eskülap Yılanı, Küpeli Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak siyah ve tonlarında. Gençlerde sarımsı kahverengi ya da grimsi gibi daha açık renkli olur. Sırttaki beneklerin rengiyse beyaz. Başın ense kısmında hilal şeklinde sarımsı büyük bir benek bulunur. Şakak bölgesindeki çizgi (temporal bant) gençlerde oldukça belirgin. Karın bölgesi sarımsı olur. Dişiler bir defada 5-8 kadar yumurta bırakabilirler (kütük altlarına, gazeller içine, vs). Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, kertenkelelerle beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını boğarak öldürürler. Ağaçlara tırmanabilirler. Çok hızlı hareket edebilirler. İnsan kolay alışabilirler. Boyları 150 cm kadar olabilir. Habitat: En çok bulundukları yerler ormanlık ve çalılık yerlerdeki taşlık alanlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya ve Karadeniz (Giresun'dan batısı) bölgelerinde habitatın uygun olduğu yerlerde dağılım gösterirler. Zamenis situla (Elaphe situla): Ev Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak kahverenginin tonlarında (sarımsı, kırmızımsı, grimsi) olur. Sırt tarafta uzunlamasına çizgiler (baştan kuyruğa kadar) ya da benekler bulunur. Benekler yuvarlağımsı olup kenarları siyah, iç kısmı tuğla kırmızısı olur. bunlar bazen birleşip zikzak oluşturabilir. Vücudun yan taraflarında, küçük siyahımsı benekler bulunur. Şakak bölgesindeki çizgi (temporal bant) oldukça belirgin. Karın bölgesinin ön taraflarında küçük siyahımsı benekler bulunabilir ve karın sarımsı beyaz olur. Karın bölgesi bazen, koyu kahverengi ya da siyah olabilir. Dişiler bir defada 2-5 kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yumurtaları, çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Akşam karanlığında ve çok sıcak olmayan günün tüm saatlerinde aktiftirler. Tavanlara ve duvarlara tırmanabilirler. Saldırmaları ancak kendilerini güvende hissetmediklerinde olur. Boyları 90 cm kadar olabilir. Habitat: Çalılık yerler, taşlık alanlar, tarlalar, bahçeler başlıca yaşam alanları. Ayrıca evlerde de çok bulunurlar. Yüksekliği 1000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Anadolu'nun kuzeyinde ve batısında habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix natrix: Yarı Sucul Yılan, Küpeli Su Yılanı; Genel Özellikler: Sırt kısmının deseni oldukça farklılık gösterir. Genel olarak renk kahverengi, grimsi ve bu iki rengin tonlarında olur. Sırt kısmında iki tane boylamasına uzanan çizgi bulunur. Bu çizgilerin etrafında koyu renkli benekler bulunur. İnce kahverengi benekleri olan başın üst kısmının rengi, grimsi kahverengi. Ense kısmında belirgin bir biçimde bulunan yarım ay şeklinde olan sarı (bazen kırmızı) bir benek bulunur. Vücudun yan taraflarında küçük siyah benekler bulunur. Karın bölgesi genel olarak sarımsı beyaz. Ender olarak siyah üzerine sarımsı beyaz benekli görülebilir. En bilinen özelliği yarı sucul olmaları. Gündüzleri aktiflik gösterirler. Yakalandıklarında ısırmazlar ancak kötü kokan bir gaz salgılarlar. Kendilerini savunma amaçlı olarak ölü taklidi yapabilirler. Genel olarak (yarı sucul olduğundan) küçük balıklar, kurbağalar, semenderler ve çeşitli kemiricilerle beslenirler. Kış uykusuna birçoğu bir araya gelerek yatar (nehir kenarlarında). Dişiler bir defada 6-13 kadar yumurta bırakabilirler. 4-8 haftalık kuluçka döneminden sonra yumurtadan çıkan yavrular, iklim şartlarına göre 1-3 yıl içinde erginleşirler. Ortalama boyları 100 cm (en fazla 150 cm) kadar olur. Habitat: Genel olarak, nehir, akarsu, dere ve göl kenarlarında, bu yerlere yakın çayırlıklarda yaşarlar. Ayrıca suya da çok fazla girerler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix tesselata: Su Yılanı; Genel Özellikler: Biyolojik özellikleri N. natrix türüne çok benzer. Sırt kısmının deseni oldukça bu türde de farklılık gösterir. Genel olarak yeşil ve yeşilin tonlarıyla, grimsi ve sarımsı kahverengi renklerinde olur. Sırt kısmında koyu renkli benekler bulunur. Başın üst kısmında benek bulunmaz. Ense kısmında belirgin bir biçimde (ters "V") bulunan olan siyah bir benek bulunur. Başın arkasında N. natrix'te bulunan yarım ay şeklindeki benek bunlarda bulunmaz. Karnın ön tarafı küçük siyah benekli, genel olarak sarımsı ya da pembemsi beyaz. Arka tarafıysa siyahımsı olup benekleri pembemsi beyaz. Besleneme durumlarına baktığımızda N. natrix'le aynı. Küçük balıklar, kurbağalar, semenderler ve çeşitli kemiricilerle beslenirler. Ama ondan daha fazla balık tüketirler. Kış uykusuna birçoğu bir araya gelerek yatar (nehir kenarlarında). Dişiler bir defada 5-25 kadar yumurta bırakabilirler. Yumurtadan çıkan yavrular, iklim şartlarına göre 1-3 yıl içinde erginleşirler. Ortalama boyları 120 cm kadar olur. Habitat: Genel olarak, nehir, akarsu, dere ve göllerde su içinde ve kenarlarında yaşarlar. Yüksekliği 2500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Tüm yurtta habitatın uygun olduğu yerlerde dağılım gösterirler. Natrix megalocephala: Hemşin Yılanı; ??? Pseudocyclophis persicus: İran Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ya da yeşilimsi kahverengi olur. Baş (ensede) bölgesinde siyah bir benek bulunur. Bu benek ensede bulunan halka şeklindeki benekten ince açık renkli bir halkayla ayrılır. Vücudun diğer kısımlarında başka benek bulunmaz. Karın bölgesiyse sarımsı beyaz olur. Genel olarak böcekler, böcek larvaları ve çeşitli omurgasız hayvanlarla beslenirler. Boyları 40 cm kadar olabilir. Habitat: Bitki örtüsün seyrek olduğu taşlık, çalılık gibi açık arazilerde yaşarlar. Dinlenme zamanlarını ve kışı taş altlarında bahçelere yakın yerlerde geçirirler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu bölgesinde (Şanlıurfa, Mardin, Siirt, Hakkari) habitatın uygun olduğu yerlerde dağılım gösterirler. Rhynchocalamus melanocephalus: Toprak Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi, sarımsı kırmızı. Bazen de yeşil ve yeşilin tonlarında da görülür. Sırt bölgesinde benekler bulunmaz. Başın üst tarafında iki tane siyah benek bulunur. Ayrıca ensede de bir tane büyük benek bulunur. Bu beneğin baş kısma doğru olan bölümü V şeklinde olur. Karın bölgesinin rengiyse sarımsı beyaz. Bu hayvanın sayısı çok az olduğundan ve oldukça az rastlanıldığından dolayı biyolojileriyle ilgili araştırma yapılamamış. Genel olarak böcekler ve diğer küçük omurgasızlarla beslenirler. Küçük boylu ve kazıcı olan bu yılanların boyu 40 kadar olur. Habitat: Kurak bölgelerde, taşlık alanlarda yaşarlar. Yüksekliği 1200 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Cizre (Mardin), Adana ve Hatay civarında habitatın uygun olduğu yerlerde yaşarlar. Rhynchocalamus barani: Amanos Yılanı; ??? Spalerosophis diadema: Urfa Yılanı; Genel Özellikler: Sırt bölgesinin rengi genel olarak sarımsı kahverengi ve tonlarında olur. Bunun yanında yeşilimsi ve gri renkler de görülebilir. Sırtta koyu renkli büyük benekler bulunur. bu benekler baş ve ense kısmında da görülür. Karın bölgesi sarımsı beyaz olur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Yavruları böceklerle beslenir. Boyları 180 cm kadar olabilir. Habitat: Bitkisi az olan yerlerde, yarı-çöl özelliği gösteren bölgelerde, kumlu topraklarda ve bozkırlarda yaşarlar. Yüksekliği 500-1000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu'da (Birecik -Şanlıurfa- ve Ceylanpınar) habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Oldukça az rastlanırlar ve sayıları da oldukça azalmıştır. Malpolon monspessulanus: Çukurbaşlı Yılan; Genel Özellikler: Renklenme yaşlı bireylerle gençler arasında farklılık gösterir. Genel olarak gençlerde, baş bölgesi sarımsı kahverengi ve küçük siyah benekli. Sırt kısmı, grimsi ya da kahverenginin tonlarında, beneklerse siyahımsı. Beneklerin kenarlarında bazen beyaz çizgiler bulunabilir. Karın bölgesi beyazımsı siyah noktalı olur. Yaşlandıkça beneklerin tümü belirginliğini yitirmeye başlar ve soluklaşır. Zamanla sırt kısmı yeşilimsi gri kahverengi, karın kısmıysa, gri benekli sarımsı beyaz olur. Şakak bölgesindeki çizgi (temporal bant) oldukça belirgin. Dişiler bir defada 4-12 (en büyük bireyler 20) kadar yumurta bırakabilirler. Genel olarak fare gibi küçük kemiriciler, kuş ve kuş yavruları, küçük yılanlar ve çeşitli omurgasız hayvanlar besinlerini oluşturur. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 200 cm kadar olabilir. Habitat: Bitki örtüsünün seyrek olduğu taşlık alanlar, çalılık yerler, tarlalar başlıca yaşam alanları. Ayrıca bahçeler ve sulama kanallarının yanında da bulunurlar. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Karadeniz bölgesi dışında kalan tüm bölgelerde habitatın uygun olduğu yerlerde dağılım gösterirler. Telescopus fallax: Kedi Gözlü Yılan; Genel Özellikler: Sırt bölgesinin rengi genel olarak gri, kahverengi ve bu renklerin tonlarında olur. Sırtta koyu renkli büyük benekler bulunur. Beneklerin rengi kuyruğa doğru gittikçe açılır. Başın üst kısmı da koyu renkli olur. Karın bölgesi sarımsı beyaz noktalı olur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Sabahleyin erken ve akşam geç saatlerde avlanmaya çıkarlar. Oldukça dik yerlere rahatlıkla tırmanabilirler. Dişiler bir defada 3-7 kadar yumurta bırakabilirler (taşlık yerlerdeki oyuklara). Boyları en fazla 100 cm kadar olabilir. Habitat: Taşlık bölgeler, yamaçlar, güneş alan yerler, yol kenarları, eski evler ve harabeler başlıca yaşama alanları. Yayılış yüksekliğine baktığımızda 1600 metre yüksekliğe kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güney, Batı ve Güneydoğu Anadolu habitatın uygun olduğu yerlerde dağılım gösterirler. Not: Zehirli olan bu yılanlar insanlar için tehlikeli değil. Zehir dişleri ağzın arkasında olduğu için ısırsalar bile zehri boşaltamazlar. Zehri sadece avlarını bayıltmada kullanırlar. Telescopus nigriceps: Siyah Bantlı Kedi Gözlü Yılan; ??? 3.Familya: Leptotyphlopidae Leptotyphlops macrorhynchous: İpliksi Yılan; Genel Özellikler: Çok ince bir vücuda sahip olan yılan türü. Gözleri körelmiş olup üzeri deriyle kaplanmıştır. Bir çok özelliği Kör Yılan'a benzer. Sırt bölgesinin rengi genel olarak pembemsi kahverengi ya da sarımsı kahverengi olur. Karın bölgesiyse sarımsı. Birkaç tanesi bir arada bulunarak yaşarlar. Genelde toprak altında yaşayan bu hayvanlar akşam saatlerinde kısa bir süre dışarı çıkarlar. Yumuşak toprağın içinde sert olan başları sayesinde ilerleyebilirler. Kuyruklarının ucunda insan için zararlı olmayan küçük bir diken bulunur. Genel olarak böcek larvaları, solucanlar ve karıncalarla beslenirler. Üremeleri iyi bilinmemekle birlikte, dişilerin bir defada 4 tane yumurta bıraktıkları düşünülüyor. Ortalama boyları 20 cm (en fazla 25 cm) kadar olur. Habitat: Açık olan yerlerde, yumuşak ve nemli toprakların içinde taş altlarında yaşarlar. Yüksekliği 500 - 1000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Güneydoğu Anadolu Bölgesinde Birecik (Şanlıurfa) ve Kızıltepe (Mardin)'de habitatın uygun olduğu yerlerde yaşarlar. 4.Familya: Typhlopidae Typhlops vermicularis: Kör Yılan; Genel Özellikler: Solucana çok benzerler. Gözleri körelmiş olduğundan "kör yılan" denmekte. Sırt bölgesinin rengi genel olarak, sarımsı kahverengi, pembemsi kahverengi olur. toprak altlarında bulunduklarından saydamsı bir görünüşü var. Karın bölgesiyse sarımsı. Oldukça hızlı hareket edebilirler. Kuyruklarının ucunda insan için zararlı olmayan küçük bir diken bulunur. Genel olarak böcek larvaları, solucanlar ve karıncalarla beslenirler. Üremeleri iyi bilinmemekle birlikte, dişilerin bir defada 4-8 kadar yumurta bıraktıkları düşünülüyor. Ortalama boyları 25 cm (en fazla 35 cm) kadar olur. Habitat: Yumuşak toprakların içinde, taş altlarında bulunurlar. Nemli yerleri daha çok tercih ederler. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu bölgesi dışında olan bölgelerin hepsinde habitatın uygun olduğu yerlerde dağılım gösterirler. Rhinotyphlops episcopus: Sivriburun Yılan; ??? 5.Familya: Viperidae Macrovipera lebetina (Vipera lebetina): Koca Engerek; Genel Özellikler: Sırt bölgesinin rengi genel olarak grimsi kahverengi ve bu rengin tonlarında olur. Sırtta bazı yerlerde birleşik koyumsu benekler (bazen belirsiz) bulunur. Bunların yanında (sırtın ortalarında) kenarları koyu renkli, iç kısımları tuğla kırmızısı ya da sarı renkte beneklerde bulunur. Başın üst kısmında bazen küçük siyah benekler bulunabilir. Kuyruk ucu sarımsı. Beyazımsı ya da pembemsi olan karın bölgesinde nokta halinde siyah benekler bulunur. Genel olarak fare gibi küçük kemiriciler, kertenkeleler, kuşlar, yılanlar ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Avlarını sabahın erken saatlerinde ya da geceleyin avlarlar. Yemeden önce zehirleyerek öldürürler. Hareketleri oldukça ağır olan bu hayvanlar gündüzlerini daha çok dinlenerek geçirirler. Genel olarak canlı doğururlar (5-7 kadar). Bazı bölgelerde de yumurtlarlar (4-7 kadar). Yumurta 1 ay içinde açılır. Boyları 150 cm kadar olabilir. Habitat: Ovalarda, taşlık yerlerde, terk edilmiş evlerde, harabelerde, bahçelerde ve tarlalarda yaşarlar. Yüksekliği 1500 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu ve Güneydoğu Anadolu'da, Doğu Akdeniz bölgesinde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Türkiye'de yaşayan en uzun, kalın ve zehirli olan yılan türü. İnsanlara, sadece kendilerini korumak için saldırabilirler. Zehirleri insanlar için oldukça tehlikeli olabilir. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdiklerinden için soyları tehlike altındadır. Montivipera albizona (Vipera albizona): ??? Montivipera bulgardaghica(Vipera bulgardaghica): ??? Montivipera raddei (Vipera raddei): Ağrı Engereği; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar iç sarımsı ya da tuğla renginde olan büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Gündüzleri oyuklarda ve taş altlarında saklanan bu hayvanlar, avlanma işlerini gece yaparlar. Kendilerini koruma amaçlı saldırabilirler. Oldukça ağır hareket ederler ama saldırırken çok hızlı olabilirler. Boyları ortalama 70-80 cm (en fazla 100 cm) kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan, az bitkili yerlerde yaşarlar. Yüksekliği 1000-3000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Doğu Anadolu'da Kars, Ağrı, Iğdır, Hakkari ve Van civarında habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri etkili olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. Montivipera wagneri (Vipera wagneri): Vagner Engereği; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar iç sarımsı ya da tuğla renginde olan büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları ortalama 50-80 cm kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan, az bitkili yerlerde yaşarlar. Yüksekliği 1200-2000 metre arasında olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Kars'ta habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu tür çok dar bir alanda yayılış gösterdiği için soyları tehlike altındadır. Montivipera xanthina (Vipera xanthina): Şeritli Engerek; Genel Özellikler: Sırt bölgesi genel olarak kül renginde ya da grimsi kahverengi olur. Sırtta, baştan kuyruğa kadar uzanan siyah ya da koyu kahverengi büyük benekler bulunur. Bu benekler bazen birleşip baklava desenli, dalgalı ya da zikzaklı bir şerit oluşturur. Vücudun yan taraflarında da bir benek sırası bulunur. Başın üzerinde küçük siyah benekler ve arka kısmından yanlara doğru sarkan iki büyük siyah benek bulunur. Siyah renkli şakak bandı da açıkça görülür. Karın bölgesi sarımsı beyaz ve üzerinde küçük siyah noktalar bulunur. Genel olarak küçük kemiriciler, diğer yılanlar, kertenkeleler ve kuşlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Gündüzleri oyuklarda ve taş altlarında saklanan bu hayvanlar, avlanma işlerini gece yaparlar. Kendilerini koruma amaçlı saldırabilirler. Oldukça ağır hareket ederler ama saldırırken çok hızlı olabilirler. Boyları ortalama 70-80 cm (en fazla 100 cm) kadar olur. Habitat: Dağlarda, ormansız ve taşlık olan yerlerde yaşarlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Orta, Güney ve Batı Anadolu'da habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri etkili olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. Vipera ammodytes: Boynuzlu Engerek; Genel Özellikler: "Boynuzlu" denemesinin nedeni burun ucunun gergedan boynuzu gibi küçük ve yukarıya doğru olmasından. Sırt bölgesinin rengi genel olarak gri, sarı ve kahverengi renklerinin tonlarında olur. Sırtta ayrıca koyu kahverengi, baklava deseni benzeri zikzak desenler bulunur. beneklerin ortası kenarlara göre daha açık olur. Kuyruğun uç kısımları genç bireylerde sarımsı pembe renkli olur. Başın üst kısmında küçük ve belirgin benekler bulunur. Karın bölgesi sarımsı beyaz ve küçük benekli olur. Genel olarak küçük kemiriciler, avlayabildikleri kuşlar, diğer yılan türleri ve kertenkeleler başlıca besinlerini oluşturur. Kemiricileri ve kuşları zehirleyip öldürerek, diğerlerini canlı olarak yerler. Kemiricilerle beslendikleri için yararlıdırlar. Hareketleri oldukça yavaştır. Eylül-Ekim'den Mart-Nisan'a kadar kış uykusuna yatarlar. İlkbaharda çiftleşen dişiler, Ağustos ayında 5-14 kadar yavru doğururlar. Boyları genel olarak 50-60 cm (erkekler en fazla 90 cm) kadar olur. Habitat: Yunanca'da ammos kum, dytes gömülen anlamında. Bu hayvanın tür adına "ammodytes" denmesinin nedeni, yaşama alanı olarak kumlu bölgeleri tercih etmesi. Ama Türkiye'de kumlu yerlerden daha çok küçük boylu bitkilerin altlarında, orman açıklıklarında, çalılık ve taşlık yerlerde yaşarlar. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Trakya, Batı, Kuzeydoğu, Doğu ve Güneydoğu Anadolu Bölgesi'nde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirleri insanlar için tehlikeli olabilecek kadar kuvvetli. İlk ısırışta zehrin büyük bir bölümünü aktarır. İnsanla karşılaştığında ilk olarak kaçmaya çalışırlar. Eğer sıkıştırılırlarsa başlarını havaya kaldırarak tıslarlar ve kendilerini çok tehlikede hissederlerse saldırabilirler. Türkiye'de V. a. montandoni Boulenger 1904, V. a. meridionalis Boulenger 1904, V. a. transcacasica Boulenger 1904 olmak üzere üç tane alt türü bulunur. Vipera barani: Baran Engereği; Genel Özellikler: "Baran Engereği" denmesinin nedeni Prof. Dr. İbrahim Baran'dan (herpetolog) dolayı. Şimdiye kadar yapılan çalışmalar bu türün sadece Türkiye'de bulunduğunu gösteriyor. Bu nedenle endemik bir tür. Sırt bölgesinin rengi genel olarak siyah ya da grimsi kahverengi. Kuyruk ucu sarımsı. Bazen sırt biraz açık renkli olur. Bu halde benekler zikzaklı olur. Genel olarak küçük kemiriciler, kertenkeleler ve çeşitli omurgasız hayvanlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları 55 cm kadar olur. Habitat: Kısa boylu bitkilerin altında, taşlık yerlerde yaşarlar. Yüksekliği 400 metreye (bilinen) kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Sakarya'da, Torosların Silifke civarındaki yerlerde habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu tür çok fazla avlandığından ve dar bir alanda yayılış gösterdiklerinden için soyları tehlike altındadır. Vipera kaznakovi: Kafkas Engereği; Genel Özellikler: Sırt bölgesinin rengi genel olarak siyah, gri, sarı ve kırmızı renklerin tonlarında olur. Sırtın büyük bir bölümünü kaplayan ve baştan kuyruğa kadar uzanan zikzaklı bir şerit bulunur. Bu şerit bazen parçalı halde de olabilir. Vücudun yan tarafları küçük benekli ya da noktalı olur. Beyaz benekli olan karın bölgesinin rengi, siyah ve tonlarında olur. Genel olarak küçük kemiriciler, kertenkeleler ve çeşitli omurgasızlarla beslenirler. Kemiricilerle beslendikleri için yararlıdırlar. Boyları genel olarak 50-60 cm kadar olur. Habitat: Ormanlık yerlerin taşlık bölgelerinde yaşarlar. Rutubeti yüksek olan yerleri severler. Yüksekliği 2000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Ülkemizde sadece Hopa (Artvin) civarında habitatın uygun olduğu alanlarda yaşarlar. Not: Başlarının arka tarafları oldukça şişkin olduğundan zehir bezleri de büyüktür ve bundan dolayı zehirleri, insanlar için oldukça tehlikeli olabilir. İlk ısırışta zehrin büyük bir bölümünü aktarır. Ayrıca kaçak olarak yapılan ihraçtan dolayı soyları tehlike altında ve korunmaları gerekiyor. Vipera pontica: Çoruh Engereği; ??? Vipera anatolica (Vipera ursinii anatolica): Anadolu Küçük Engereği; Vipera eriwanensis (Vipera ursinii eriwanensis): Küçük Engerek; Genel Özellikler: Sırt bölgesinin rengi genel olarak soluk kahverengi, grimsi, sarımsı ya da açık yeşil. Sırtta baştan başlayıp kuyruğa kadar devam eden, zikzaklı ya da dalgalı koyu renkli bir şerit bulunur. bu şeridin kenarları iç taraflarına göre daha koyu renkli olur. Vücudun yan taraflarında da baştan kuyruğa kadar uzanan koyu benek sıraları bulunur. Baş kısmında iki tane büyük benek bulunur. karın bölgesin sarımsı beyaz ve bunun üzerinde küçük siyah noktalar bulunur. En çok yedikleri besin çekirge. Bunun yanında diğer böcekleri ve az olarak da kertenkeleleri ve küçük kemiricileri de besin olarak alırlar. Kaya ve taş altlarında, kemirici hayvanların yuvalarında kış uykusuna yatarlar. Dişiler yazın sonlarına doğru (bir defada 10 kadar olmak üzere) doğururlar. Yeni doğan yavrular 13-14 cm kadar olur. Boyları 40-50 cm kadar olur. Habitat: Genel olarak açık yerlerin, taşlık ve otluk bölgelerinde yaşarlar. Ormanlık ve ağaçlık yerlerde az da olsa bulunabilirler. Yüksekliği 3000 metreye kadar olan yerlerde bulunabilirler. Türkiye'deki Dağılım: Kuzeydoğu Anadolu'da ve Akdeniz Bölgesinde sadece Elmalı (Antalya) civarında habitatın uygun olduğu alanlarda dağılım gösterirler. Not: Zehirli olan bu türün, insanı ısırdığında ölümcül yaralar ya da tehlikeli zehirlenmeler yaptığı konusunda, yeterli bilgi henüz yoktur. Ayrıca avlandıklarından çok dar bir alanda yayılış gösterdikleri için soyları tehlike altındadır. 6.Familya:Elapidae Walterinnesia aegyptia: Çöl Kobrası; Genel Özellikler: Hayvanın tüm vücudu siyah renk ve tonlarında. Zehirli olan bu hayvanın zehir dişleri çenenin önünde. Zehirleri engerek yılanlardan (hematoksik zehir etkisi) farklı olarak nörotoksik (sinirler üzerine zehirleyici) bir etki yapar. En küçük yavrular bile zehirleyebilir. Genel olarak, küçük kemiriciler, kuşlar, diğer sürüngen türleri ve çeşitli omurgasızlarla beslenirler. Avlarını zehirleyip öldürdükten sonra yerler. Gece aktiflik gösterirler. Boyları en fazla 200 cm kadar olabilir. Habitat: Bitki örtünsün az olduğu yerlerde, çöl ve yarı çöl özelliği gösteren yerlerde, kum içinde yaşarlar. Türkiye'deki Dağılım: Şanlıurfa ve civarında habitatın uygun olduğu alanlarda yaşarlar. Not: Zehirli olan bu türün ülkemizde var olduğuna ilişkin ilk bilimsel kayıt Eylül 2000'de (Dr. İsmail H. Uğurtaş tarafından) verilmiştir.   Bilgiler; www.biltek.tubitak.gov.tr ve reptile.fisek.com.tr/ sitelerinden alıntıdır.

http://www.biyologlar.com/turkiyede-yasayan-yilan-turleri

DENİZ TAVŞANLARI ( Nudibranch )

DENİZ TAVŞANLARI ( Nudibranch )

Nudibranch kabuğu olmayan bir salyangoz türüdür. Bu salyangoz çok parlak renklere sahiptir ve son derece göz alıcıdır.

http://www.biyologlar.com/deniz-tavsanlari-nudibranch-


İKİLİME BAĞLI DAVRANIŞLAR

TÜRLERİN ÖNEMİ Hayvanlar aleminde en göze çarpıcı olayın hayvanların yer değiştirmesi olup, iki yönden tartışma konusu olabilir. Birinci şık, uygun klimatik koşulların kaybolmasıyla faunanın daha uygun yerlere göç etmesi. İkinci şık ise, iklime bağlı olarak besin kaynaklarının düzensiz olması ve bunu sonucunda göç olayının zorunluluğu. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.266) İlk olarak klimatik koşulların değişmesi türlerin ancak belirli klimatık koşullarda yaşayabileceğini gösterir ve özellikle soğuk kuşakta yaşayan kuşlarla bazı memeli hayvanlar mevsimlere bağlı olarak yer değiştirirler. Şiddetli kış koşullarının başlaması ile kuş sürüleri sıcak bölgelere doğru hareket ederler. Örneğin yaz mevsimini Doğu Kanada”da geçiren “arktik deniz kırlangıcı” güz sonunda batı avrupa yönünde Atlantik okyanusunu geçer ve kıyıyı izleyerek Afrikaya ulaşır. Yeniden Atlantik okyanusunu doğu-batı yönünde aşarak Brezilyaya varır ve güney Amerika kıyıları boyunca yoluna devam eder. Bu kuşun her yıl katettiği mesafe 40bin km.yi geçer. Türkiye’de çok iyi tanınan “leylek ve çaylak” lar her yıl Tropikal Afrika ile Orta Avrupa arasında gidip gelirler. Amerikan bizonları, geyik türleri, karibolar ile bunları izleyen kurtlarda her yaz sonu tundra sahasından güney bölgelere inerler, yaz başında ise yeniden eski yerlerine dönerler. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.266) Faunanın büyük çoğunluğu yer değiştirme yerine, daha çok aynı ortamda kalmak için bir çaba gösterdiği görülür. Bu çabayı gösteren hayvanlar toprağı kazarlar. Bu ilk bakışta yuva kurmak arzusunu açık bir belirtisi olarak yorumlanabilir. Ancak toprağı kazma şeklinde meydana getirilen dehlizler, tüneller, çukurlar vb. canlıların sadece iklim faktörlerini sert etkisinden korunmak için değil, aynı zamanda dinlenme, saklanma, üreme ve yokluk günleri için besin maddelerini depo etme gibi fonksiyonlarını da bir araya getirildiği için diğer çaba ve davranışlardan ayrı bir üstünlük olarak kabul edilebilir. Hayvanların toprağı kazması aşırı ısı koşulları şiddetli rüzgarlar, reliefin açıklığı gibi faktörlerdir. Toprak içinde yaşayan ve devamlı toprağı kazan cinslerin başında solucanlar, kırk ayaklar ve çıyanlar yer alır. Karıncalar yağmur ormanları bölgesinde yuvalarını ağaçların üzerlerine yaparlarken, iklimin daha şiddetli haller gösterdiği tropikal step ve çöller ile, ılıman kuşakta ise özellikle toprak içinde yaparlar. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.268) Ormandan yoksun bölgelerde sürüngenlerden birçoğu toprak kazma yeteneğine sahiptirler. Kaplumbağalar ve çeşitli kertenkele türleri en sert toprakları bile kazabilmektedirler. Kemiriciler en iyi toprak kazan takım olarak bilinirler. Bunlara ek olarak kuşların bir kısmının da yuvalarını toprak içinde yapmaları, bunlarında toprak kazma yeteneğinin olduğunu gösterir. Başta karıncalar ve termitler olmak üzere birçok hayvanın bu yerlere besin depo etmeleri toprak kazma adetini tek yönlü olmadığını gösterir. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.269) Kış uykusu daha çok yaz ve kış olaylarının şiddetlendiği Ilıman ve Soğuk kuşaklarda ceryav eder. Kışın solucanlar toprağın daha derinlerine inip orada hareketsiz olarak kışı geçirirler. Salyangozlar ise kendilerini bir tür örtü tabakasının altında veya dehlizlerde; kurbağa türleri, kuru toprağın altına saklanarak kışı geçirir. Yarasalar, dağ sıçanları ve bazı fare türleride kış uykusuna çekilirler. Bunların çoğunluğu kritik dönemi besin almadan fakat bünyelerindeki yağları harcamak suretiyle geçirirler. Bazı et yiyiciler yalancı kış uykusuna yatarlar. Ayılar ve kuzey Amerika sansarı buna örnektir. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.270) Yaz uykusu ise yaz aylarının çok şiddetli geçtiği bölgelerde olur. Uykuları birkaç yıl bile sürebilir. kurbağalar, salyangozlar, timsahlar, yılanlar yaz uykusuna yatarlar. Memelilerden ise; aardvaklar, Madagaskar adasındaki bazı böcek yiyiciler, lemurlar yaz uykusuna yatar. (Necdet Tunçdilek, 1997, Geoekolojininİlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.271) Vücut ısılarının aşağı yukarı hiç değişmeyen sıcakkanlı hayvanların pek çoğu kışı fal olarak geçirirler. Köstebek, fare, tavşan, tilki v.b.. bu karakterde olan hayvanlardır. Kışın inlerinden çıkıp yiyecek ararlar.bazı sıcak kanlı memeliler kışı herhangi bir barınağa ihtiyaç duymadan geçirebilirler. Geyik, kurt, vaşak, yabani domuz ile arktik tavşanı yer alır. Şiddetli kış koşullarını kısmen hafifletebilmek için kapalı sahalara doğru çekikleri görülür. Vücutlarını saran kalın yağ tabakası, kış koşullarının etkisini azaltır. Ayrıca bu yağlı derinin üzerinde kılarda vardır. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.272) Kuzey bölgelerdeki bazı hayvanlar kışı aynı sahada geçirirler. Sincap,mink, ermin, rakkon, sukunk ve çirçinella bu guruba örnektir. Hayvanların rengi iklim bölgelerine göre değişişklikgösterir. Tropikal bölgelerin kuşları, çok parlak ve frapan renktedir. Çöl bölgelerinde yaşayan hayvanların rengi ise mattır. Bundan sonra çölün donuk sarı kırmızımtırak renkleri birçok hayvanda yer almıştır. Yılanlarla kertenkelelerin büyük bir kısmı bir çok kuş türü ve bazı memeliler özellikle bu iki renge sahip bulunurlar. Kutup bölgelerinde yaşayan hayvanların kürklerinin çoğunlukla beyaz renkte olması kar rengine benzeyerek görünmekten kaçmak veya avını kendini belli etmeden yaklaşmak için faydalıdır. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.273) Üreme süreci ısı ve nem ikilisinin bütün yıl yüksekliğini devam ettirdiği bölgelerde bitkilerde olduğu gibi hayvanların yaşantısında da bir devamlılık hali mevcuttur. Ilıman kuşak ile soğuk kuşşakta döl alma sayısı çok azalır. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.274) Hayvanların yaşam koşulları, yaşam ortamları, üreme yetenekleri ve metabolizma faaliyetlerinin tüm iklim faktörlerinin uzak veya yakın etkisi altında olduğu kanısına varılır. Böylece faunanın da aynen bitkiler gibi klimatik faktörlerin kontrolü altında bulunduğu anlaşılmış olur. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.274) BESİN Nemli tropikal bölgelerde belirli ve şiddetli mevsim farklarının olmaması, yüksek ısı, bol yağışlar ve daimi nemlilik; bitkisel yaşamı optimum koşullara yaklaştırmıştır. Hatta besin bolluğu, Tropikal bölgelere fauna bakımından dünyanın en yoğun kuşağı haline getirmiştir. Besin bolluğunun geçerli olduğu sahalarda hayvanların uzak mesafeler içinde yer değiştirdikleri pek görülmez. Örneğin, yağmur ormanlarının kuşlarının uçuculuk yeteneklerini yitirmiş olmaları çok dikkat çekici bir olaydır. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.264) Et yiyici hayvanlar ile et/bitki yiyici hayvan türleri ise geçimlerini kendilerinden küçük yaratıkları avlamak şeklinde sürdürürler. Besin kaynaklarını bol olduğu Tropikal Bölgelerdeki hayvan türlerinin Ilıman ve Soğuk Kuşaklarda yaşayan hemcinslerine nazaran daha büyük ve daha ağır olması halidir. Tropikal bölgelerdeki salyangozlar, kurbağalar, timsahlar, kaplumbağalar, yılanlar bunlara örnek olarak verilebilirler. Tropikal bölgelerde, her cinsin tür sayısında önemli bir çoğalış göze çarpar(Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.265) POPULASYON DENETİMİ Avcı ve avlanan türler arasındaki denge; Avcı ve avlanan türler arasında bir denge vardır. Avını tamamen tüketen bir avcı yok olmaya mahkumdur. ABD’de Royal Milli Parkını ele alalım. “Elk” adı verilen kuşların sayısı 1200 civarındaydı. Bu kuşu yiyen kurt miktarı 20-25 arasındaydı. Kuşlar için populasyon çoktu. Kuşlar fazla besin bulamadığından, doyuma erişen populasyondafazla doğum olmuyor. Hava şartları kötüleşip kar yağışı başladı. Kuşlar kara saplanıp kurtlara yem oldular. Kuşların sayısı 600 inip kurtların sayısı 50’ye çıktı. Bu durumda besin fazlası olan kuşlarda doğum oranı arttı. (Fikret Berkez, 1986, Ekoloji ve Çevre Bilimi, Remzi Kitapevi, s.224) TÜRLER ARASI KAYNAK PAYLAŞIMI Çam ormanlarının yararlı kuşlarından “dendroica”lar çam kurtlarını yiyerek ormanın sağlığını korur. Beş tür dendroica vardır. Bunlar çamın değişik bölgelerindeki kurtları yerler. D.castaneo yalnız ağaç tepelerinden, D.corrotana ise ağaçların altındaki kurtları yer. (Fikret Berkez, 1986, Ekoloji ve Çevre Bilimi, Remzi Kitapevi, s.222) KITASAL BÖLGELER Kara faunası için 3 büyük kıtasal bölgeye ayırmak mümkündür. 1. Kuzey-Orta-Güney Amerika’nın meydana getirdiği kıtasal bölge 2. Avustralya-Okyanusya’nın meydana getirdiği kıtasal bölge 3. Afrika-Asya-Avrupa’nın meydana getirdiği kıtasal bölge Her kıta bloğu, ister kendi potası içinde, ister hariçten gelen göçlerle nüfuslanmış olsun, her kıtanın kendine özgü bir faunası olduğu kadar, kıtaları karakterize eden türlere de sahip bulunmaktadır. Avustralya’da: tek delikli memeliler ve keseli hayvanlar ile; Kuzey Amerika: bizon ve kariboları ile; Güney Amerika: puma, tabir, jaguarı ile; Afrika:zebra, antilop, fil, zürafa, aslan, gergedanı ile; Asya; at, kaplan, deve,eşek,koyun ve keçi ile...her biri kendine özgü faunal tertiplerle birbirinden bu yönde ayrılırlar. Bu özellikle her bir kıtayı bağımsız kıtasal bölge kavramı içine sokmuş olur. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.297) Afrika’nın karakteristik bir türü olan zürafanın Güney Afrika’daki türü Oranj ile Zambezi nehirlerinin arasında kalan sahada yaşar ve oranj nehrinin güneyini geçemezken; siyah gergedan ile zembrayaşam sahalarını daha genişleterek Kap’a kadar uzanan saha içinde bulunurlar. Zebra ve antiloplar ise, zürafalarla beraber Merkezi Afrika’nın savan ve stepler sahası üzerinde toplanırlar. Kaplan, Asyada Himaliyaormanlarında yaşadığı gibi, Güney çine kadar uzanan dağlık orman bölgelerinde yaşar. Örnekler çoğaltıldığı sürece her bir türün kendine özgü bir yaşam sahası bulunduğu, türlerin bu çemberi kırarak bunun dışına çıkmak arzusunda bulunmadıkları belirmiş olur. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.298) Denizler bu kıtalara ait hayvanların kıtasal-bölge sınırlarının dışına çıkmalarını kısıtlar. Her ne kadar kara hayvanları içerisinde en yüzücü sınıfı sürüngenler ve kurbağagiller meydana getirmektelersedebunların yüzücülükleri kıtalar arası mesafeleri aşacak kadar fazla değildir. Memeli hayvanların bir kısmı ise dar anlamda bu yeteneğe sahiptirler. Kuşlar için, denizi bir engel olarak tanımlamak mümkün olamaz. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.299) FAUNA BÖLGELERİNE ÖRNEKLER Karınca yiyen uno, tatu ile bazı kurbağalar, kara kurbağaları ve çok çeşitli kuşlarla baımemeli hayvanlar karıncalara bağlı olarak bu bölgede yaşarlar. Yılan ve kertenkele gibi türler özellikle iri kuşlar için yeni besin kaynağı olduklarından bu türleri yiyen kuşların (leylek , çaylak, kartalv.b.) bu bölgeye yerleşmiş oldukları görülür. Ufak memeli hayvanların büyük et yiyici memelilere av olması, et yiyici büyük hayvanları (kurt, vaşak, çakal, v.b. bu sahaya çeker. Böylece ot yiyen hayvanlar birlikte kurdukları ilişki oranında et yiyicilerde ot yiyicilerle aynı ilişkiyi korumuş olurlar. Görüldüğü gibi faunnanın birbirinin sırtından geçinmesi yani yaşamlarını karşılıklı varlık mücadelesi şeklinde devam ettirmekte olmaları faunaya, bitkilerde pek görülmeyen bazı özellikler kazandırmıştır. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.308) Türler arası yaşam mücadelesi büyük, küçük, kuvvetli, zayıf tanımadan kıyasıya devem eder. Burada esas su ile besin maddeleri sağlama meselesi üzerinde toplanır. Besin kaynaklarının bol ve su kaynaklarının bütün hayvanların ihtiyaçlarının karşılayacak kadar çok olduğu yerlerde benzer grupların birbirleriyle olan çatışması en alt düzeye iner. Besin kaynaklarının azalmaya ve su kaynaklarının kurumaya başladığı dönemlerde ot yiyici hayvanlar bir araya gelerek sürüler halinde yaşamaya başlarlar. Sosyal bir dayanışma meydana gelir. Özellikle bizon, antilop ve zebralar sürüler halinde su ve besin kaynaklarını aramak için yer değiştirmeleri , etkilerini et yiyici, fauna üzerinde gösterdiğinden; onlar da sürüler teşkil ederler. Özellikle çakallar, sırtlanlar ve aslanlar sürüler halinde ot yiyici hayvanları izler ve kendilerine has avcılık metotlarıyla avlarlar. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.314) Et yiyicilerle ot yiyiciler arasındaki varlık mücadelesi bu hayvanlara bir takım yetenekler kazandırmıştır. At, zebra, zürafa gibi ot yiyiciler su ve besin kaynaklarına çabuk ulaşmak ve düşmanlarından kurtulmak için hızlı koşucu olmuşlardır. Ancak bu yetenek avını yakalamak isteyen et yiyicilere de geçmiştir. Bu hayvanlarda sezme hassası görme hassasından daha da gelişmiştir. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.315) Aynı mücadele daha ufak hayvanlarda da mevcuttur. Karıncalar kütle halinde daha büyük hayvanlara hücum ederek onları yok etmesi çok karakteristik bir özelliktir. Akrep, örümcek, kırkayak ve yılanların kuvvetli zehirleri sayesinde düşmanlarına yem olmamak kadar, bu yolla besin sağlamaları da başka bir örnektir. Ayrıca her türün kendisini düşmanlarından saklanmak gibi bir çabaya girişirler. Kaplumbağa, kirpi gibi hayvanlar düşmanlarını gördükleri anda kapanırlar, bazıları ise renk değiştirerek korunurlar. (Necdet Tunçdilek, 1997, Geoekolojinin İlkeleri Doğal Bölgeler, İstanbul Ü. Yayınları, İstanbul, s.316) YABANIL YAŞAMIN DENETİMİ Çeşitli yaban hayvanlar, ekolojik sükseksiyonların değişik basamaklarına uyum gösterdiğinden korunmaları ve iyi kollanması gerekir. Amerika’nın iç kesimlerinde meydana gelen çiftlik artışı sonucu doğal orman ve çayırlıklar bozuldu. Bu habitata uyum sağlayan çayır tavukları ve kekliklerin sayısı azaldı. Avrupa’da ise çiftlik alanlarında yaşamaya alışık halkalı sülün ve macar kekliklerin getirilmesiyle denge sağlandı. (Claude A. VİLLE çev:M. Nihat Şişli, 1979, Genel Biyoloji, MEB, İstanbul,s.818) Av hayvanlarını korumak için şu maddeler uygulanabilir 1. Avlanmayı sınırlayıcı yasalar 2. Yapay av hayvanı üretimi 3. Habitatı geliştirme Koruyucu yasalar bir populasyonun aşırı büyüyüp, küçülmesinde kullanılabilir. Bir populasyonküçüldükçe avlanma azaltılmalı büyüdükçe arttırılmalıdır. (Claude A. VİLLE çev:M. Nihat Şişli, 1979, Genel Biyoloji, MEB, İstanbul,s.818) Bir alan yapay yoldan av hayvanı yetiştirmek, yeni bir bölgeye ya da daha önce avlanarak yok edilenlerin yerine konularak yapılır. Örneğin kunduzlar Pensilvanya’da yok edilmiş yerlerine yeni kunduzlar getirilmiştir. Bugün su içinde setler yapan 15-20 bin kunduz olduğu sanılmaktadır. Bir bölgeye yeni bir tür aşılama işi özenle yapılmalıdır. Aksi halde tür zararlı olacak şekilde çoğalabilir. Avustralya’da tavşanlar ve ABD’de serçelerde görüldüğü gibi(Claude A. VİLLE çev:M. Nihat Şişli, 1979, Genel Biyoloji, MEB, İstanbul,s.818) Bir göldeki balıklardan yararlanma; olta balıkçılığı ya da suyu boşaltarak besinleri toplamak olabilir. Olta balıkçılığının populasyona çok büyük bir zararı yoktur. Bir gölde avlanma yapılacaksa, balıkların çoğalması için uygun koşullarda sağlanmalıdır. Örneğin sudak avlamak istiyoruz. Şayet göle gümüş balığı aşılarsak üç yıl içinde sudak üretimi 7-10 kat artmaktadır (Claude A. VİLLE çev:M. Nihat Şişli, 1979, Genel Biyoloji, MEB, İstanbul,s.818) DOĞUŞTAN GELEN DAVRANIŞLAR Periyodik davranışlar: Özellikle ılıman bölgedeki canlılar tipik tarzda, mevsime bağlı ritmik davranışlarda bulunurlar. Mesela balık kuş ve memelilerden çoğu ilkbaharda, geyik ve koyunlar sonbaharda olmak üzere yılda bir defa üreme faaliyeti gösterirler. . (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.17) Yırtıcı (Predatör) Davranış: Etçil hayvanlar geçimlerini kendilerinden küçük yaratıkları avlayarak devam ettirirler. Mesela etoburlar arasında seri hareketlerle avını izleyenler, avını pusuda bekleyenler, avını savaşarak yakalayan formlar vardır. . (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.17) Antipredatör Davranış: Av, düşmanlarından kurtulmaya yönelik hünerler sergiler. Bu bazen kaçış, bazen gizlenme, bazen donup-kalma, bazen de direnme ve düşmana tehtid şeklinde olur. (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.18) Yönelme ve Göç: Hayvanların çoğu, duyu organlarından yararlanarak, kendilerini yaşadıkları bölgede belirli bir yere göre yöneltirler(İdrisUğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.19) Habitat Seçimi: Bir hayvanın kendisine uygun gelen bir yaşama ortamını arayıp bulması farklı habitat tipleriyle karşı karşıya kaldığında bunlardan birini tercih etmesine habitat seçimi denir. Bu hayvanın hayatta kalması ve çoğalmada başarılı olmasını sağlayacak bir yönde bir seçim olup doğuştan gelir. (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.21) Kur Yapma ve Çiftleşme: Nesillerin devamı için hayvanlarda karşı cinsiyetlerin bir araya gelmesi ve çiftleşmeleri gerekmektedir. Bu arada, karşı tarafın dikkatini çekmek ve birleşmeye razı etmek için çiftleşme öncesi kur yapma denilen davranışlar sergilerler. Sergilenen bu davranışlar: Bana bak, beni görüyor musun, bak ne kadar alımlıyım, ne kadar güçlüyüm, ben buradayım anlamına gelir. (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.21) Vakitli Üreme: Hayvanlarda üreme, yavruların yeterli gıda bulabilecekleri bir dönemde dünyaya gelmelerini sağlayacak şekilde düzenlenmiştir. (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.22) Yavru Bakımı: Yavrularıyla ilgilenme ve yavru bakımı davranışları gerçek anlamda sadece kuşlarda ve memelilerde görülür. Birçok kuş türünde yavru kuşlar, anneleri yaklaştığında ona doğru başını uzatarak ve ağızlarını açarak tepki gösterirler. Anakuş da buna yavrunun ağzına yiyecek koyarak cevap verir. (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.23) ÖĞRENİLEN DAVRANIŞLAR Hayvanlarda doğuştan gelen davranışların yanında sonradan öğrenme yoluyla kazanılan davranışlarda vardır. Uygun besin cinslerini tanıma ve sosyal ilişkiler, kısmen sonradan öğrenilen davranışlardır. Hayvanın tabi düşmanını tanıması ve bunlardan kaçış yollarını öğrenmesi zamanla olur. (İdris Uğurlu, 2001, Yaban Hayatı Ekolojisi, SDÜ yayınları, Isparta, s.24) BİYOLOJİK İLİŞKİLER Tür İçi İlişkiler Erkek-dişi ilişkileri: Aynı türden olan erkek dişi bireyler sadece çiftleşmek veya yavru vermek ve korumak amacıyla daima ilişki içindedir. Koloniler:Bazı türlerde bireylerin çoğu bir araya gelerek koloniler oluşturmakta ve aralarında iş bölümü yapmaktadırlar. Koloniler aseksüel üremeler sonucunda oluşan ve birbirlerinden ayrılmayan bireyler topluluğudur. Gruplar:Aynı türe ait bireyler bazen belli bir amaç için bir araya gelerek grupları oluştururlar. Kümeleşme: Bir ortamda aşırı derecede yerleşen hayvanları ifade eder. Sosyal Yaşantı:Hayvanlar kendilerine özgü bir yapıya ve çok karmaşık olan bir iş bölümüne sahiptir. (Ahmet Kocataş, 1999, Ekoloji Çevre Biyolojisi, Ege Üniversitesi Basımevi, İzmir, s.169-175) Türler Arası Etkileşimler: İki tür arasında etkileşim, türler için yararlı, zararlı yada etkisiz oluşuna göre sınıflandırılmıştır. Etkileşim Tipi A Türü B Türü Zorunluluk Rekabet - - + Predasyon + - + Parazitizm + - + Kommensalizm + 0 - Amensalizm 0 - - Mutailizm + + + Protooperasyon + + - nötralizm 0 0 - + : Populasyon gelişimini arttırır/ zorunluluk var. - : Populasyon gelişimini azaltır/ zorunluluk yok. 0 : Populasyon etkilenmez (Yüksel Keleş, 2001, Canlılar Bilimi, Mersin Üniversitesi Yayınları, Mersin, s. 172) Karınca ve Misafirleri Arasındaki İletişim Karıncalar birçok eklembacaklı türünü evlerinde barındırır ve besler. Karıncalar konuklarını şaşırtıcı bir dostlukla karşılar; işgalci türü yuvalarını kabul etmekle kalmaz, besler, bakar ve büyütürler. Bunlar arasında; kene, örümcek, kollembolanlar, sinek, arı ve birçok böceği yuvalarına alırlar. Bunun nedenini bu böceklerin salgıladıkları kimyasal sıvı olduğu düşünülmektedir. (James L. Gould çev.Feryal halatçı,1999, Olağan Dışı Yaşamlar, Kozan Of Set, Ankara, s.169) ÇEŞİTLİLİĞİN ÖNEMİ İnsanların aklına birçok soru gelebilir: Ekosistemde, fertlerin sayısı az olan neden bu kadar çok tür vardır? Tek tük rastlanan bu türlerin ne faydası vardır? Çevreye en iyi uyum sağlayan birkaç tanesi hariç hepsini yok etsek de insana en faydalı olan birkaç tanesini bıraksak ne olur? Bu gün genel olarak kabul edilen, fakat fazla bir ilmi delile dayanmayan bir husus, türlerin çeşitliliği sayesinde, toplumun hayatta kalma gücünün artmakta olmasıdır. Ne kadar çok tür bulunursa değişen şartlara adapte olabilme gücü de o kadar fazla olmaktadır. Yani gen havuzu ne kadar büyükse, adaptasyon potansiyeli de o kadar büyük olacaktır.

http://www.biyologlar.com/ikilime-bagli-davranislar

Omurgalı ve Omurgasız Hayvanlar

Omurgalı ve Omurgasız Hayvanlar

Omurgalılar, yerleştikleri bütün yaşama ortamlarında egemenlik kurmuştur. Ana özellikleri, sırtları boyunca uzanan omurgadır. Bunu dışındaki birçok özellikleriyle de diğer hayvanlardan ayrılırlar.

http://www.biyologlar.com/omurgali-ve-omurgasiz-hayvanlar-1

Amargasaurus Dinazor

Amargasaurus Güney Amerika'da ne Erken Kretase Dönemi (130-125 myö) dicraeosaurid sauropod adlı dinozor türünün bir cinsidir. 10 metre (33 feet) uzunluğunda ulaşan bir sauropod için küçük bir cinstir. Dicraeosaurus gibi, uzun bir boyun, düşük kafatası ile dört ayaklı bir otoburdur. Sırtında dikenler ve bu dikenlerin deri yelkenlerle destekli olduğu söylenmiştir. Ama bu hipotez 2000 yılında Gregory S. Paul tarafından reddedilmiştir. Yaklaşık 2.6 ton ağırlığının olduğu söylenmektedir. Amargasaurus un boyu, sauropod standartları için kısaydı.

http://www.biyologlar.com/amargasaurus-dinazor

Sultan Sazlığı Kayseri

Dağı'nın güneybatısındaki Develi Ovasının en alçak kesimlerinde yer almaktadır. Develi-Yahyalı -Yeşilhisar üçgeni içerisindedir. Kayseri'ye 70 km uzaklıkta bulunan Sultan Sazlığı, Uluslararası Ramsar Sözleşmesi ile koruma altına alınmıştır. Develi Ovası'nın alçak kesimlerinde Yay, Camız, Söbe ve çöl gölleri yer almaktadır Geniş anlamda bu göllerin tümüne, dar anlamda ise Develi'yi Niğde - Kayseri karayoluna bağlayan yolun güneyinde kalan, Yay Gölü dışındaki bölümüne Sultan Sazlığı adi verilir. Sultan Sazlığı'nı oluşturan göl ve bataklıklar, kurak mevsimlerde daralır, yağışIı mevsimlerde genişIer. Bu göller Ercjyes ve Orta Toroslar'dan inen sularla beslenir. 17.200 hektar alanı kapsayan Sultan Sazlığı, dünya çapında önem taşıyan bir ekosistem oluşturur. Sazlığın merkezlerine doğru görülmeyecek kadar yavaş yüzen saz adacıkları bulunmaktadır. 21 Nisan 1988'de doğayı koruma alanı olarak ayrılan bölgede tatlı ve tuzlu su ekosistemi bir arada bulunmaktadır. Barındırdığı 301 kuş türü ile Manyas Gölü'nden sonra Türkiye'nin ikinci önemli kuş cenneti olan Sultan Sazlığı'nda, buradaki kuşIarın göç yollarını ve yapma ortamlarını araştırmak amacıyla gözlem ve üretme istasyonu bulunmaktadır. Gerek bitki örtüsü gerekse üzerinde yaşayan canlılarla kuş göç yolları üzerinde yer alan Sultan Sazlığı, her geçen gün yapılan araştırmalar ve çalışmalarla turizme kazandırılmaya çalışıImaktadır. Konum Sultan Sazlığı, merkezi Anadolu Platosu'nun doğu kenarında,. Kayseri il sınırları içerisinde bulunmaktadır. Kayseri'nin güneyinde 70 km uzaklıktadır. Koordinatları: 38º 05" / 38º 40" kuzey 35º 00" / 35º 35" doğudur. Dörd bir yanı yüksek dağlarla çevriIi kapalı bir havzadır. Tamamen düz olan arazının meyili %2'dir, Kuzeyinde bölgenin en yüksek volkanik dağı Erciyes (3917 m.) bulunur. Doğuda Develidağı, Akpınar, Çiçekliyurt (2074 m, 2057 m) güneyde Toros Dağları, Aladağ (3373 m.) Elmalı (2235 m.) ve batıda Kartalkaya (1958 m.), Incildağı (1795 m.) bulunmaktadır. Alan Dağılım ve Özellikleri Alan cinsi Alan miktarı Göl alanı 3650 hektar Sazlık alanı 5200 hektar Otlık alanı 8350 hektar Toplam 17200 Sultan Sazlığı, 17.200 hektarlık bir alını kapsamaktadır. Alan dağılımı: Sultan Sazlığı genel olarak Yaygölü (tuzlu) ve Sazlıkları (tatlı) şeklinde 1ki ekosisteme ayılır. Sazlıklar içerisinde Eğrigöl, Sarpgöl ve Camızgölü adında irili ufaklı göl ve sazlıklarla kaplı adacıklar bulunmaktadır. Tarihçe Sultan Sazlığı ilk defa İsmet Özer tarafından yapılan bir araştırmada ortaya çıkarılmıştır. Sonra, Nihat Turan ve Ornitoloj Tansu Gürpınar tarafından yapılan çalışmalarda dünya çapında önemi olan bir sulak alan olduğu ortaya çıkmıştır. Sultan Sazlığı, 1971 yılında Kara Avcılığı kanunu'na dayanılarak, Tarım Orman ve Köy İşIeri Bakanlığınca Su Kuşları Koruma ve Üretme Sahası, 1988 yılında Tabiatı Koruma Alanı ve 1993 yılında da Kültür ve Tabiat Varlıklarını Koruma Yüksek Kurulunca Birinci Derece Doğal Sit Alanı olarak ilan edilmiş ve koruma altına alınmıştır. Sulak ve koruma alanı olarak önemi anlaşılan Sultan Sazlığı 15 Mart 1994 tarihli ve 5434 sayılı Bakanlar Kurulu kararı ile Uluslararası Ramsar Sözleşmesi'nin (özellikle Su Kuşları Yaşama Ortamı Olarak uluslararası öneme sahip sulak alanların korunması sözleşmesi) İkinci ve Üçüncü maddeleri uyarınca A SINIFI Sulak Alanlar Listesine alınmıştır. Jeoloji / İklim Develi Ovası en eski jeolojik formasyon olan devon'dur. Yahyalı'nın güneyinde orta devon'a ait (410.370 milyon yıl) mercan faunası bulunmuştur. Develi güneyinde bulunan Kırşehir masifi prekambryumda meydana gelmiş esas dağlardır. Develi havzasının kuzeybatı ve doğusunda neojen'e ait tüfler bulunur. Acıgöl yakınlarındaki Erciyes'e ait Nemrut Dağı yakın zamanlara kadar aktif olan bir volkandır. Göl sahası oluşumu miyosen devrinde başlamış pleistosen ve helosen devirlerinde erozyon malzemeleriyle dolmaya tabakalar teşekkül etmeye başlamıştır. Bu tabakalar kireçtaşı, bazalt, andesit ve tüften oluşmuştur. Develi havzasında Anadolu Platosu'nun tipik kara iklim yardır. Yazlar kurak ve sıcak, kışlar soğuk, gece gündüz yaz kış ısı farkı yüksektir. En sıcak aylar Temmuz - Auğustos aylardır (34.2ºC - 35.5ºC en düşük sıcaklık ise, -18.3ºC olarak ölçülmüştür). Son 30 yıl ölçümlerine göre yıllık ortalama yağış metrekareye 363 mm'dir. Kuş populasyonu daha ziyade ilkbahar ve sonbahar ayları üzerıne toplanmıştır. Şubat, Temmuz ve Auğustos en düşük seviyededir. Kışı burada geçiren kuşlar da bulunur. Yıllardan beri, gölün kıyısında kurulmuş olan Ovaçiftliği köyü sakinlerinin önemli geçim kaynaklarından biri olan saz ve kamış, kontrol altında ve düzenli bir şekilde gölden toplanmakta; hasırcılık, sepetçilik ve mobilyacılıkta değerlendirilmektedir. Ovaçiftliği köyünde de bir müze, araştırmacılar ve fotoğrafçılar için gözlem kuleleri, ayrıca idare binaları bulunmaktadır. Flora Civarda bulunan Aladağlar ve Erciyes flora bakımından, Yakın ve Ortadoğu'da en iyi araştırılmış yerlerdendir. Buna rağmen bulunan türler, mevcudun bir parçası olup araştırmalar devam etmelidir. Algler: Bacillariophyceae, Charophyceae, Chlorophyceae, Chrysophyceae, Dinophyceae, Eulenophyceae ile Rodophyceae olmak üzere 50 türden fazladır. Bitki türleri: Kasparek, Demirkuş ve Sümbül tarafından toplanmış ve Hacettepe Üniversitesi kolleksiyonunda mevcuttur. Family Gil Alismataceae suotugiller Aristolochiaceae Ascetepiadeaceae ipektohumugiller Boraginaceae hodangiller Caryophyllaceae karanfilgiller Chenopodiaceae ıspanakgiller Compositae bileşikgiller Convolvulaceae sarmaşıkgiller Cruciferae turpgiller Cuscutaceae küskütgiller Droseraceae etyiyengiller Euphorbiaceae sütleğengiller Gentianaceae kızılkantarongiller Labiatae ballıbabagiller Lauraceae defnegiller Leguminosae baklagiller Lenthivulariaceae bubapıgiller Lythraceae kınagiller Malvaceae ebegümecigiller Moraceae dutgiller Nymphaceae nilüfergiller Onagraceae küpeçiçeğigiller Papaveraceae gelincikgiller Plumbaginaceae dişotugiller Polygonaceae karabuğdaygiller Primulaceae çuhaçiçeğigiller Ranunculeae düğünçiçeğigiller Resedaceae sevgiçiçeğigiller Rosaceae gülgiller Rubiaceae kökboyagiller Scrophulariaceae aslanağzıgiller Solanaceae patlıcangiller Tamaricaceae ılgıngiller Umbelliferae maydanozgiller Valerianaceae kediotugiller Zygophyllaceae yabanikimyonugiller F. Spitzenberger tarafından toplanmış ve Viyana Tabiat Tarihi Müzesi'nde bulunmakta olan türlerdir. Memeliler porcupine kirpi miller's watershrew bataklık sivri faresi etruscan shrew etrüsk sivri faresi shrew sivri fareler bat yarasalar wolf kurt fox tilki veasel gelincik marbled polecat alaca sansar wild boar yaban domuzu brown hare tavşan lesser mole kör fare woodmouse orman sıçanı rats sıçan grey hamster cüce dağ sıçanı golden hamster dağ sıçanı desert rat koşarfare water vole su faresi common vole adi tarla faresi Sultan Sazlığın kuşları: (Çeşitli kuş isimleri ve diğer dillerin çevirileri için tabiat sözlüğüne bakabilirsiniz...) Kuşlar little grebe yumurta piçi great crested grebe tepeli dalgıç red necked grebe kırmızı boyunlu black necked grebe karagerdanlı cormorant karabatak pygmy cormorant cüce karabatak white pelican pelikan dalmatian pelican tepeli pelikan bittern balaban little bittern cüce balaban night heron gece balıkçıl squacco heron alaca balıkçıl cattle egret öküz balıkçıl little egret küçük beyaz balıkçıl great white heron beyaz balıkçıl gray heron gri balıkçıl purple heron erguvani balıkçıl black stork kara leylek white stork leylek glossy ibis çeltikçi spoonbill kaşıkçı great flamingo flamingo mute swan kuğu pink-footed goose gillik white-footed goose sakarca greylag goose boz kaz ruddy shelduck angıt shelduck suna wiegon fiyü gadwall boz ördek teal kırık mallard yeşilbaş pintail kılkuyruk garganey çıkrıkçı shoveler kaşıkgaga marbled duck yağ ördeği red crested pochard macar ördeği pochard pas baş tufted duck tepeli patka smew sütlabi honey buzzard arı şahini black kite kara çaylak egyptian vulture akbaba griffon vulture kızıl akbaba short toed eagle yılan kartalı marsh harrier saz delicesi hen harrier ekin delicesi pallid harrier step delicesi montagu's harrier çayır delicesi goshawk büyük atmaca sparrowhawk küçük atmaca buzzard şahin long-legged buzzard kızıl şahin lesser spotted eagle küçük bağırgan steppe eagle kartal yırtıcı kartal imperial eagle şah kartal golden eagle altın kartal booted eagle küçük kartal osprey balık kartal lesser kestrel küçük kerkenez kestrel kerkenez red-footed falcon kırmızıayaklı kerkenez merlin güvercin doğanı hobby delice doğan lanner falcon bıyıklı doğan seker falcon ulu doğan rock partridge kınalı keklik partridge çil quail bıldırcın water rail su tavuğu spotted crake benekli su tavuğu little crake cüce su tavuğu corncrake bıldırcın kılavuzu moorhen saz tavuğu purple gallinule saz horozu coot sakarmeki crane turna little bustard mezgerdek great bustard toy oystercatcher deniz saksağanı black-winged stilt uzunbacak avocet kılıçgaga stone curlew kocagöz collared pratincole bataklık kırlangıcı black winged pratincole siyah kanatlı bataklık kırlangıcı little ringed plover küçük halkalı ringed plover yağmurcun kentish plover yarım halkalı yağmurcun great sandplover büyük yağmurcun dotterel damgalı yağmurcun golden plover altın yağmurcun silver plover gümüşi yağmurcun spur winged plover mahmuzlu kışkuşu sociable plover step yağmurcun lapwing kiz kuşu sanderling çakıl kuşu little stint küçük çakılkuşu temminck's stint temmink kumkuşu curlew sandpiper kırmızı kumkuşu dunlin dağ kumkuşu ruff döğüşken kuş snipe su çuıluğu black-tailed godwit çamur kuşu whimbrel yağmur kervan çulluğu curlew kervan çulluğu spotted redshank pasrengi kızılbacak redshank kızılbacak greenshank bataklık düdükcünü green sandpiper yeşilbacak wood sandpiper orman düdükcün common sandpiper nehirkenarı koşucusu red-necked phalarope kırmızıboyunlu kumkuşu mediterranean gull akdeniz martısı little gull küçük martı black-headed gull karabaş martı slender-billed gull ince gagalı martı common gull küçük kara martı lesser black-backed gull büyük gümüşi martı herring gull kara martı gull-billed tern taneli deniz kırlangıcı sandwich tern deniz kırlangıcı common tern akalınlı deniz kırlangıcı little tern ak kanatlı deniz kırlangıcı whiskered tern beyaz bıyıklı deniz kırlangıcı black-bellied sandgrouse bağırtlak rock dove kayagüvercini collared dove kumru turtle dove üveyik great spotted cuckoo tepeli guguk cuckoo guguk scops owl cüce baykuş eagle owl puhu little owl kukumav tawny owl alaca baykuş long eared owl kulaklı orman baykuşu short eared owl bataklı baykuşu nightjar çobanaldatan swift karasağan alpine swift akkarınlısağan kingfisher yalı çapkını bee eater arı kuşu roller mavi kuzgun hoopoe çavuşkuşu wryneck döner boyun Syrian woodpecker suriye ağaçkakanı calandra lark oklağı toygarı bimacullated lark dağtoygarı field lark miyop toygar lesser short-toed lark küçük kısaparmaklı toygar woodlark orman toygarı crested lark tepeli toygar skylark tarla kuş shore lark kulaklı toygar sand martin kum kırlangıcı Swallow kırlangıç house martin ev kırlangıcı barn swallow kır kırlangıcı tawny pipit kır incir kuşu tree pipit ağaç incir kuşu meadow pipit çayır incir kuşu red-throated pipit kızıl gerdanlı incir kuşu water pipit su incir kuş rock pipit blue-headed wagtail kara enseli kuvruksallayan yellow wagtail sarı kuyruksallayan citrine wagtail white wagtail ak kuvruksallayan pied wagtail Wren çit kuşu hedgesparrow/dunnock çit serçesi rufous bush chat yelpaze kuyruklu bülbül robin nar bülbülü thrush nightingale çalı bülbülü nightingale bülbül Bluethroat buğdaycıl bülbül white throated robin iran bülbülü black redstart ev kızılkuyruğu redstart bahçe kızılkuyruğu whinchat çayır tarlakuşu stonechat taş kuşu wheatear kuyrukkakan black eared wheatear karakulaklı taşöpen Isabelline wheatear karabaşlı kuyrukkıran Finsch's wheatear rock thrush taş kızıl blackbird karatavuk fieldfare ardıçkuşu mistle thrush ökse ardıcı cettis warbler setti bülbülü river warbler ırmak ötleğeni grasshopper-warbler çekirge ötleğeni moustached warbler bıyıklı ırmakardıcı sedge warbler çif ardıcı marsh warbler bataklık ardıcı reed warbler küçük sazardıcı great reed warbler büyük sazardıcı olive tree warbler zeytin ardıcı olivaceous warbler beyaz ardıcı lesser whitethroat çif ötleğeni çalı ötleğeni garden warbler bahçe ötleğeni blackcap karabaş ötleğeni bonelli's warbler dağ söğüt ötleğeni wood warbler orman söğüt ötleğeni chiffchaff tiz sesli bülbülü willow warbler söğüt ötleğeni goldcrest çalıkuşu spotted flycatcher benekli sinekkapan collared flycatcher kolyeli sinekkapan European pied flycatcher kara sinekkapan bearded tit babbler bıyıklı baştankara long-tailed tit uzunkuyruklu baştankara blue tit mavi baştankara great tit büyük baştankara rock nuthatch kaya sıvacıkuşu penduline tit çulha kuşu golden oriole sarı asma red backed shrike kırmızı sırtlı örümcek kuşu lesser grey shrike kara alınlı boğan great grey shrike yırtıcı boğan masked shrike maskeli boğan woodchat shrike dokuz boğan magpie saksağan jackdaw küçük karga rook tohum kargası hooded crow leş kargası starling sığırcık rose coloured starling pembe sığırcık rock sparrow kaya serçesi house sparrow serçe Spanish sparrow söğüt serçesi tree sparrow dağ serçesi chaffinch ispinoz brambling dağ ispinozu serin küçük iskete greenfinch büyük iskete goldfinch saka siskin karabaşlı iskete linnet keten kuşu twite sarıgagalı ketenkuşu crimson winged finch pembe kanatlı ispinoz common rosefinch karmen renkli şakrakkuşu yellowhammer sarı kirazkuşu cinereous bunting gri kirazkuşu black headed bunting ortolan kirazkuşu bataklık kirazkuşu karabaşlı kirazkuşu corn bunting ekin kirazkuşu wood pigeon tahtalı güvercin barn owl peçeli baykuş great spotted woodpecker büyük alaca ağaçkakan alaca kuyrukkakan şarkıcı ardıç karabaş küçük ötleğen Anadolu mahsus baştankara cüce sinekkapan Other animals groups Diğer hayvan grupları Reptiles Sürüngenler swamp turtle bataklık kaplumbağa agemes (agama ruderatilis) hardun starred lizard little lizard cücecit kertenkelesi Cappadocian lizard (ophisops elegans) anadolu kertenkelesi caspian arrowsnake (coluber caspius) water snake (natrix tesellata) su yılanı Tailes Amphibians Kurbağagiller green toad yeşil karakurbağası tree toad ağaç kurbağası lake toad göl kurbağası Fish Balıklar Carps Sazangiller Cobies Taş yiyenler Sailton pupfish Dişli sazangiller Hymenoptera Zarkanatlılar Libellae Kızböcekleri Mollusks Yumuşakçalar Barınak / Gıda Kesif sazlarla kaplı, besin bakımından oldukça zengin, tatlı sulu küçük göller su kaşlarının yemlenmesi ve barınmaları için ideal bir alandır. Tatlı su göllerinde kurbağa ve semender lavraları ve küçük balıklar (Phoxinellus sp., Aphanius sp.) bol miktarda mevcuttur. Buralarda sazlar boylu ve sıktır. Pelikanlar, karabataklar, su tavukları, ördekler, kazlar, balıkçıllar, kaşıkçı kuşlar yuva yapacak yer ve malzemeyi kolayca bulurlar. Tuzlu su yaşama ortamı olan Yay Gölü ise, flamingoların, martıların, kılıçgagaların ve bazı çullukların kuluçka alanıdır. Yaşama ortamının geçiş bölgesinde alanlarda yağmurcunlar, turnalar ve pelikanlar kuluçka yapar. Endemik türlerini buradan: www.zilemiz.com/ssazligi.htm Sazlığın Fotoğraflarını buradan: wowturkey.com/forum/viewtopic.php?t=26897 Ekstra kaynak: 193.140.216.63/199511LEVENT%20TURAN.pdf Kaynak: Sultan Sazlığı müzesinin broşürü

http://www.biyologlar.com/sultan-sazligi-kayseri

Koruma Altındaki Alanlar ve Milli Parklar

Koruma Altındaki Alanlar Bilimsel ve eğitim bakımından önem taşıyan nadir, tehlikeye düşmüş veya kaybolmaya yüz tutmuş ekosistemler, türler ve tabii olayların meydana getirdiği seçkin örnekleri ihtiva eden ve mutlak korunması gerekli olup, sadece bilim ve eğitim amaçları ile kullanılmak üzere ayrılmış tabiat parçalarıdır. ·Hacıosman Ormanı Tabiatı Koruma Alanı (Samsun) ·Tekkoz-Kengerli Tabiatı Koruma Alanı (Hatay) ·Kasnak Meşesi Tabiatı Koruma Alanı (Bolu) ·Sütçüler Sığla Ormanı Tabiatı Koruma Alanı (Isparta) ·Sarıkum Tabiatı Koruma Alanı (Sinop) ·Beykoz-Göknarlık Tabiatı Koruma Alanı (İstanbul) ·Kavaklı Tabiatı Koruma Alanı (Karabük) ·Çİtdere Tabiatı Koruma Alanı (Karabük) ·Kökez Tabiatı Koruma Alanı (Bolu) ·Sülüklügöl Tabiatı Koruma Alanı (Bolu) ·Kasatura Körfezi Tabiatı Koruma Alanı (Kırklareli) ·Sultansazlığı Tabiatı Koruma Alanı (Kayseri) ·Sakagölü Longozu Tabiatı Koruma Alanı (Kırklareli) ·Vakıf Çamlığı Tabiatı Koruma Alanı (Kütahya) ·Kazdağı Göknarı Tabiatı Koruma Alanı (Balıkesir) ·Akdoğan ve Rüzgarlar Ebe Çamı Tabiatı Koruma Alanı (Bolu) ·Sırtlandağ Halep Çamı Tabiatı Koruma Alanı (Muğla) ·Kale-Bolu Fındığı Tabiatı Koruma Alanı (Bolu) ·Alacadağ Tabiatı Koruma Alanı (Antalya) ·Seyfe Gölü Tabiatı Koruma Alanı (Ankara) ·Kaşalıç Tabiatı Koruma Alanı (Kütahya) ·Çığlıkara Tabiatı Koruma Alanı (Antalya) ·Gala Gölü Tabiatı Koruma Alanı (Edirne) ·Körçoban Tabiatı Koruma Alanı (K.Maraş) ·Çamburnu Tabiatı Koruma Alanı (Rize) ·Dibek Tabiatı Koruma Alanı (Antalya) ·Habibi-neccar Tabiatı Koruma Alanı (Hatay) ·Demirciönü Tabiatı Koruma Alanı (Bolu) ·Yumurtalık Tabiatı Koruma Alanı (Adana) ·Dandindre Tabiatı Koruma Alanı (Eskişehir) ·Kartal Gölü Tabiatı Koruma Alanı (Denizli) ·Akgöl(Ereğli Sazlığı) Tabiatı Koruma Alanı (Karaman) Milli Parklar Bilimsel ve estetik açıdan ulusal ve uluslararası ender bulunan tabii ve kültürel kaynak değerlerini koruma, dinlenme ve turizm alanlarına sahip alanlardır. ·Yozgat Çamlığı Milli Parkı ( Yozgat) ·Karatepe Aslantaş Milli Parkı ( Adana) ·Soğuksu Patara Milli Parkı ( Ankara) ·Kuşcenneti Milli Parkı ( Balıkesir) ·Uludağ Milli Parkı ( Bursa) ·Yedigöller Milli Parkı ( Bolu) ·Dilek Yarımadası-Menderes Deltası Milli Parkı ( Aydın) ·Spil Dağı Milli Parkı (Manisa) ·Kızıldağ Milli Parkı (Isparta) ·Termessos Milli Parkı (Antalya) ·Kovada Gölü Milli Parkı (Isparta) ·Munzur Vadisi Milli Parkı (Tunceli) ·Beydağları Sahil Milli Parkı (Antalya) ·Gelibolu Yarımadası Tarihi Milli Parkı (Çanakkale) ·Köprülü Kanyon Milli Parkı (Antalya) ·Ilgaz Dağı Milli Parkı ( Kastamonu) ·Başkomutan Tarihi Milli Parkı (Afyon) ·Göreme Tarihi Milli Parkı (Nevşehir) ·Altındere Vadisi Milli Parkı (Trabzon) ·Boğazköy Alacahöyük Milli Parkı (Çorum) ·Nemrut Dağı Milli Parkı (Adıyaman) ·Beyşehir Gölü Milli Parkı (Konya) ·Kazdağı Milli Parkı (Balıkesir) ·Kaçkar Dağları Milli Parkı (Rize) ·Hatila Vadisi Milli Parkı (Artvin) ·Karagöl-Sahara Milli Parkı (Artvin) ·Altınbeşik Mağarası Milli Parkı (Antalya) ·Honaz Dağı Milli Parkı (Denizli) ·Aladağlar Milli Parkı (Niğde, Adana,Kayseri) ·Marmaris Milli Parkı (Muğla) ·Saklıkent Milli Parkı (Muğla) TABİAT PARKLARI Bitki örtüsü ve yaban hayatı özelliğine sahip manzara bütünlüğü içinde halkın dinlenme ve eğlenmesine uygun tabiat parçalarıdır. ·Ölüdeniz- Kıdrak Tabiat Parkı (Muğla) ·Çorum-Çatak Tabiat Parkı (Çorum) ·Abant Gölü Tabiat Parkı (Bolu) ·Yazılı Kanyon Tabiat Parkı (Isparta) ·Uzungöl Tabiat Parkı (Trabzon) ·Kurşunlu Şelalesi Tabiat Parkı (Antalya) ·Gölcük Tabiat Parkı (Isparta) ·Bafa Gölü Tabiat Parkı (Aydın) ·Polonezköy Tabiat Parkı (İstanbul) ·Ayvalık Adaları Tabiat Parkı (Balıkesir) ·Ballıkayalar Tabiat Parkı (Kocaeli) ·Hacıosman Ormanı Tabiat Parkı (Samsun) DOĞA KORUMA DAİRE BAŞKANLIĞI PROJELERi; bu projeyide incele 209.85.229.132/search?q=cache:o1sUWsNBvx...&hl=tr&ct=clnk&gl=tr

http://www.biyologlar.com/koruma-altindaki-alanlar-ve-milli-parklar


Bazı canlıların kromozom sayıları

Afrika kirpisi 90 Afrika vahşi köpeği 78 Ağaç sansarı 38 Alg 148 Altın çakal 74 Amerikan porsuğu 32 Amerikan sansarı 38 Amerikan vizonu 30 Antilop 60 Arpa 14 Asya porsuğu 44 At 64 Kızıl tilki 38 Atkuyruğu 216 Aulacantha (protozoa) 1600 Avrupa ağaç sansarı 38 Avrupa kokarcası 40 Avrupa vizonu 38 Avustralya vahşi köpeği(dingo) 78 Aynalı sazan 104 Balıkçıl (sansar türü bir hayvan) 38 Benekli kokarca 64 Bengal tilkisi 60 Bezelye 14 Buğday 42 Çakal 78 Çavdar 14 Çizgili kokarca 50 Çöl tilkisi 64 Deniz yıldızı 36 Domuz 38 Drosophila melanogaster(sirkesineği) 8 Echidna(Kirpiye benzer) 64 Eğreltiotu 1200 Eşek 62 Fare 40 Farekulağı 8 Fasulye 22 Fındık faresi 48 Fıravun faresi 36 Fossa (Madagaskar çakalı) 42 Gelincik 40 Gine domuzu 16 Goril 48 Gri Tilki 66 Güve 62 güvercin 60 hamster 44 Hindi 82 İnek 60 İnsan 46 İri fare 42 Kaba tilki 50 Kaba yonca 16 Kanguru 12 Kedi 38 Kızıl geyik 68 Koyun 54 Köpek 78 Kumru 16 Kurt 78 Kutup porsuğu 42 Lahana 18 Mısır 20 Orman tilkisi 88 Panda 52 Pirinç 24 Platypus(gagalı memeli) 52 Patates 48 Rakun 38 Ren geyiği 70 salyangoz 24 Samur 38 Sırtlan 40 Sivrisinek 6 Siyah ayı 74 Su samuru 38 Şempanze 48 Tavşan 44 Tavuk 78 Tibet tilkisi 36 Tilki 34 Toprak solucanı 36 Turp 18 tütün 48 Uzun kuyruklu kaya kangurusu 22 Vahşi köpek 78 Yabani Tavşan 46 Yeleli kurt 76 Yulaf 42

http://www.biyologlar.com/bazi-canlilarin-kromozom-sayilari

Amfibyum

Amfibyum kelimesi latincedeki amphi, her ikisi ve bios, yaşamın birleşiminden oluşmuştur ve 2 ayrı ortamda yaşayan anlamına gelir. Amfibyumlar amniosuz, alantoitsiz, embriyonlu, hiç değilse yaşamlarının başlangıcında solungaç solunumlu, bugünkü türlerinde fanersiz derili, 4 bacaklı omurgalılardır. Ayrıca evrimsel gelişmede balıklar ile sürüngenler arasındaki basamağı oluştururlar. Amfibyumların çoğu, önce su ortamında bir lavra (tetari yada iribaş) evresi yaşar, daha sonra başkalaşma geçirerek karada yaşayan erişkin biçimine dönüşür. Yaşayan amfibyumlar, aralarında önemli yapısal farklar olan 3 gruba ayrılır: Gymnophiona takımından ayaksız kertenkeleler; Urodela takımından sirenler ve çöreller: Anura takımından kurbağalar. Ayaksız kertenkeleler solucana benzer; bacakları ve kuyrukları yoktur; basit bir bağırsakları, ince ve pürüzsüz derilerinin içine gömülmüş olan küçük gözleri vardır. Sert ve yuvarlakça kafası, toprağı kazmasına yardımcı olur. Bölütlü gövdesi, yarıklarla birbirinden ayrılmış dairesel boğumlardan oluşur. Her 2 gözün yanındaki küçük çukurların içine gömülmüş 2 dokungaçları ve çenelerinin iç yanındaki çepeçevre kemiklerin üstüne dizilmiş birkaç sıra dişleri vardır. İkinci gruptan olan sirenler ile çöreller, özellikle ABD’nin güneyinde ve Meksika’da çok bol bulunur. Sirenler arka bacağı olmayan, ama ön bölümlerinde bir göğüs kemeri ile iki ön bacağı olan uzun gövdeli su hayvanlarıdır. Solungaçlarıyla solunum yapar ya da su yüzeyindeki hava kabarcıklarını yutarlar. Gözleri pürüzsüz derilerine gömülüdür, dişleri ise üst damakta sıralanır. Kuyruk yüzgeçleri suda ilerlemelerine yardımcı olur. Çörellerin hem ön, hem arka bacakları, kuyrukları, pürüzsüz derileri ve belirgin bir boyunları vardır. Dişler her 2 çenede ve üst damakta yer alır. Bazı çörel türleri, solungaçlı birer lavra olarak bütün yaşamlarını suda geçirirler. Kara ve su kurbağaları, amfibyumların en büyük grubunu oluşturur. Bu hayvanların en belirgin özelliği, arka bacaklarındaki 3 bilek kemiğinin uzayarak, hayvanın zıplamasına ve yüzmesine yardımcı olan birer bölüm oluşturmasıdır. Dişler genellikle altçenede bulunur. Salgı bezleriyle kaplı olan derileri genellikle pürüzsüz ve yumuşaktır; karada yaşayan bazı türlerin derisi pürüzlü ve kuru olabilir. Üreme açısından bakarsak: ayaksız kertenkelelerde ve çörellerde üreme genellikle iç döllenmeyle olur. Ayaksız kertenkelenin erkeği, sindirim borusunun alt ucundaki dışkılığın bir bölümünü dışarıya doğru uzatarak spermlerini dişinin içine boşaltır. Çörellerde ise, erkeğin jelatinden bir kese içine döktüğü spermleri, dişi kesesiyle birlikte dışkılığın içine çeker. Buna karşılık, kara ve su kurbağalarının çoğunda dış döllenme vardır; erkek, yumurtalarını döken dişiyi sıkıca kavrayarak spermlerinin yumurtaların üzerine serper. Amfibyumların yumurtaları genelde kabuksuz olduğundan genellikle suya yada nemli bir ortama, örneğin çamurların arasına yada dişinin sırtına bırakılır. Amfibyumlar yeryüzünün her yerine yayılmış olmakla birlikte en çok tropikal bölgelerde bulunur. Sulak yerlerde ve genelde yalnız yaşarlar.

http://www.biyologlar.com/amfibyum

Böceklerde Solunum Sistemi

Trake sistemi: Böceklerin çogunda havayi hücrelere kadar gönderen trake sistemi denen bu sistem solunumu saglar. Baska hayvanlarda solunum, deri veya akcigerlerle baglantili olan kan dolasiminin isidir. Böceklerden baska pek az arthropoda grubunda iyi gelismis trake sistemi vardir (Bunlar Arachnida, birkaç Crustacea ve chilopodanin çogu sayilabilir. Körelmis trake tüpleri Onychophora ve Diplopoda'da görülür). Trake sisteminde karmasik yapidaki borucuklar daha ince borucuklara ayrilir ve bunlarda sonunda küçük bir hücre grubuna ulasir. Böceklerde trakenin bu karisik dallanisi omurgali hayvanlardaki damar ve kilcal damarlara analogdur. Trake Sisteminin Esas Kisimlari Trakeler her segmentte belli gruplar olusturur ve havayi disardan segmental olarak siralanan stigma'lar araciligi ile alir. Stigma trake sisteminin distaki açikliklaridir. Vücudun lateralinde, genelliklede pleurada yer alir. Küçük bir alanda sinirlanmistir ve etrafi belirgin skleritlerle çevrilidir. Basit sekildeki stigma apterygotlarda bulunur ve stigma dogrudan trake içine açilir. Stigma, stigma açikligi ve atriumdan olusur. Bazi gruplarda elek seklinde bir yapi görülürken bazilarinda tüylerle kaplidir. Bu yapilar trake sistemine toz ve su gibi maddelerin girisini engeller. Bazi böcek gruplarinda stigmalar içten veya distan kapakli olabilir. Karasal böceklerin çogunda su kaybinin kontrolünde önemli olan kapatma mekanizmasina sahiptir. Stigmalar trake gövdesine açilir. l. thorax segmentinin stigmasi yoktur. Her segmentte trake gövdesinden doku ve organlara hava götürmek üzere çok sayida dal çiftleri ayrilir. Bu dallarin sayi ve konumlari çok degisik olmakla beraber, 1-Her segmentte kalbe ve dorsal kaslara hava götüren dorsal dal. 2. Sindirim ve üreme organlarina bacak ve kanatlara hava götüren lateral veya visceral dal 3. Ventral kaslara ve sinir seridine hava götüren ventral konumlu damar olmak üzere üç büyük dal ayrilir. Bas kismina vücudun lateralinde yer alan, lateral ana daldan ayrilan dalciklar oksijen götürür. Bu dalciklardan dorsalde yer alan anten, göz ve beyine ventraldeki ise agiz parçalarina ve onlari hareket ettiren kaslara oksijeni götürür. Ince trakelerin uçlari tekrar dallara ayrilmak sureti ile bir mikron veya daha küçük çaptaki küçük kapillar tüpler trakeolleri meydana getirir. Doku ve hücrelerin arasina dallanarak yayilan trakeoller hücrelere dogru oksijen diffizyonuna olanak sagladigi için sistemin fonksiyonel kismini olusturur. CO2 nin atilmasi bu yolun tersi ile olur ve 1/4 ü vücut yüzeyi ile atilir. Trakeler, ektodermin stigmanin bulundugu yerden içe gelismesi ile olustugundan genel de ektoderme benzer. Genel yapisi bir tabaka yassi epitel hücreleri ve onlarin salgiladiklari lining maddesidir ki buna intima denir (cuticula gibi bir yapi). Intima yüzeyi taenidia denen spiral flamentlerle sertlesmistir. Bu trakeye egilme veya baska halinde bile açik kalabilme sansini verir. Trakeler defalarca dallanip trakeolleri olusturur. Bunlar taenidiaya sahip fakat epitel hücre içermezler. Her trakeol toplulugu sonunda agimsi bir hücreye yani trakeol hücresine sahiptir (bu hücre çok ince ptotoplazmik uzantilar tasir ve trokeollerin ucundaki 2-5 mikron kalinliginda olan epikütiküla tamamen kaybolmus) Trakeollerin ucu organ dokusu içine girer ve buradan gaz alisverisi saglanir. Trakeol çeperi gaz alisverisine imkan veren ince yapidadir. Stigma ve trakeler sivilara geçirgen olmayip stigma içerisindeki spiral killar sivi geçisine engel olur. Trakeoller ise özellikle uçta siviya geçirgendir. Gaz degisimi: Uzun zamandan beri trakeollerin son kisminin hava ile degil, 0.2-0.3 µm çapindaki bir sivi sütunu ile dolu oldugu bilinmektedir. Kilcal kuvvetinden dolayi, trakeollerin son kismini çeviren dokulardan, sivilarin bu kilcal boru içerisine akma egilimi vardir. Bu nedenle trakeollerin iç çeperleri genellikle sivi (su) ile kaplidir. Siviyi doku içerisinde tutabilmek için de bir zit etkinin olmasi gereklidir. Büyük bir olasilikla bunu saglayan da trakenin kolloyidal sivi içerigidir. Trake kilcallarinin su tutma (eyleme) kuvveti, etrafini çeviren hemolenfin ozmotik basincina baglidir. Dokudaki oksijen azaldigi zaman yadimlama ürünlerinin artmasindan dolayi hemolenfin ozmotik basinci yükselir. Bunun sonucu olarak trakeollerin uç kismindaki su, dokular içine emilir ve bu arada temiz hava bosalan kilcallara dogru ilerler. Yeterince oksijen alindiktan sonra ozmotik basincin yükselmesine neden olan yadimlama son ürünlerinin oksitlenmesiyle ya da yikilarak ortadan kaldirilmasiyla, ozmotik basinç düser. Bunun sonucu su, dokulardan kilcal borular içine geçmeye baslar ve hava disariya dogru itilir. Sivinin kilcal borular içinde gidip gelmesiyle oksijen içeren hava ritmik olarak trakeoller içerisine pompalanir. Trake sisteminin genislemesi, vücudun seklini degistirmeksizin vücut içinde organlarin gelismesine, kanat ve vücudun düzlestirilmesi için basinç olusturarak da, deri degistirmeden sonra böceklerin genislemesine olanak saglar. Böylece deri degistirmenin baslangicinda trake sistemi vücut hacminin yaklasik % 42 sini olustururken, deri degistirmenin sonunda diger organlarin büyümesi sonucu bu oran sadece % 3.8 dir. Ayrica böceklerin özgül agirligini düsürerek, sucul böceklerde su yüzeyinde durabilmeyi saglar. Bazi Diptera larvalarinda trake, su yüzeyinde denge kurmayi saglayan hidrostatik organ seklindedir. Havanin genis lümenli trakelere ve hava keselerine pompalanmasinda baska etkenler rol oynar. Vücut duvarinin kaslar araciligiyla hacimce genisleyip daralmasi suretiyle hava içeriye ve disariya pompalanir. Bu durum birçok böcekte abdomenin sirt karin yönünde açilip kapamasiyla, ya da dürbün gibi segmentlerin boyuna birbirinin içerisine girmesiyle mümkün olmaktadir. Ayrica gögüs birçok böcekte aktif olarak havalandirmaya katilir. Gögüste meydana gelen hacim degismeleriyle hava, stigmalardan içeriye ve disariya pompalanir. Hava keseleri: Birçok böcek grubunda solunuma yardimci olan, hava depolamaya yarayan keseler bulunur. Bunlar genellikle trake gövdelerinin genislemesi ile meydana gelmistir. Ari ve kara sinek gibi hizli uçan böceklerde hava keseleri karin boslugunun önemli bir kismini doldurur. Vücut kaslari yardimi ile keseler sikistirilip açilarak bir körük gibi çalisir ve içe hava alinir. Stigma: Vücuda havanin girdigi hava deligidir. Trake sistemi ile dis ortam arasindaki açikliktir. Stigma bas kisminda bulunmaz. Oksijen toraxtan gelen trake ile saglanir. Stigmalar faal oldugu zaman yani açilip kapanabildiginde solunum üzerinde önemli bir kontrola sahiptir. Faal stigmalarda bir çesit kapatma aygiti vardir. Bu aygit ya stigmanin hemen disinda veya iç kisimda bulunur. Açik trake sistemi: Stigmalar açik ve isler durumda olan sisteme denir. Genel tipte meso ve metathorax ile ilk 8 abdomen segmentinde 1 er çift olmak üzere 10 çift stigma vardir. Bununla beraber genel tipten büyük ölçüde farklilasmalarda görülür. Kapali trake sistemi: Bazi böceklerde stigmalar ya faal degildir veya tamamen kaybolmustur. Bu haldeki trake sistemine kapali trake sistemi denir. Diger taraftan bu tipte trake gövdeleri ve iç dallar iyi gelismistir. Kapali sistemde genellikle trakeoller deri altinda veya solungaçlar içinde bir ag meydana getirir. Bu trake sekli Ephemeroptera, Plecoptera, Libellula nimfleri ve bazi Diptera larvalari gibi suda yasayan böcek nimf ve larvalarinda görülür. Bazi Odonat niflerinde oldugu gibi sucul böceklerde rektum, iç solungaçlar seklinde kivrimlara sahiptir. Ince trakeler bu katlari tamamen sarar. Nimf abdomenini periyodik olarak suya daldirir, içersine su çeker ve rektal solungaçlari islatip içindeki trakeleri havalandirdiktan sonra suyu disariya atar. Soluk alip verme Libellula migratorya için dakikada 50-55 defa. DERI SOLUNUMU Bazi gazlarin degisimi birçok böcegin kütikülasinda gerçeklestirilir, fakat bu toplam miktarin az bir kismini olusturur. Bunun yaninda Protura ve Collembola'larin çogunda trake sistemi yoktur, bundan dolayi bu böceklerde solunum deri solunumu seklindedir. Deri solunumu sucul ve endoparazit böceklerle, yumurtalarda önemlidir. ANAKSIBIYOZ Anaksibiyoz, yani oksijensiz yasama yetenegi ,farkli sekilde gelismistir. Parazit yasayanlarda bu yetenek en fazladir. Glikozun yikimi ile elde edilen enerjiyi kullanmak suretiyle bir süre yasamsal islevlerini sürdürebilirler. Fakat er yada geç laktik asidin oksidasyonu için oksijene gereksinim gösterdiklerinden, solunum hareketleri artar. Gasterophilus (Atsinegi) larvalari midede gelistigi için, oksijen yetersizligine çok dayaniklidir. Normalde yutulan havadaki oksijeni alirlar. Fakat yeterince oksijen bulamadigi zaman glikojeni yaga çevirmek suretiyle oksijen elde ederler.

http://www.biyologlar.com/boceklerde-solunum-sistemi


Balıklar ( Pisces)

Balık, tatlı ve tuzlu suda yaşayan, evrimleşme çizgileri farklı, soğukkanlı omurgalıların genel adıdır. Bu terim, bir sınıflandırmadan çok bir yaşam biçimini tanımlar. Bugün yaşayan balıklar genellikle 5 sınıf altında toplanır. Bu sınıflar, hava soluyan hayvanların 4 sınıfı olan amfibyumlar, sürüngenler, kuşlar ve memeliler kadar birbirinden farklıdır. Yaklaşık 450 milyon yıllık bir geçmişi olan balıklar, bu süre boyunca, hemen her çeşit su ortamına uyum sağlayacak biçimde gelişmiştir. Kara ortamına geçiş sürecinde büyük bir değişime uğrayarak 4 ayaklı kara omurgalılarına dönüştüklerinden, aslında kara omurgalılarının ilk ataları bu su canlılarıdır. Balık dendiğinde genellikle, yüzgeçleri olan, solungaçlarıyla solunum yapan, gövdesi kaygan ve suda hareket etmeye elverişli olan su hayvanı akla gelir. Ne var ki, bu tanıma uymayan balıkların sayısı, uyanlarından çok daha fazladır. Bazılarının gövdesi uzunlamasına genişlemiş, bazılarınınki kısa kalmış, özellikle dipte yaşayanlarda yassılaşmış, birçoğunda da yanlardan basılmıştır. Ağızlarının, gözlerinin, burun deliklerinin ve solungaçlarının konumu da türden türe büyük bir değişiklik gösterir. Balık vücudunun temel yapısı ve işlevi bütün öbür omurgalılarınkine benzer. Kara omurgalılarının vücudunu oluşturan 4 temel doku balıklarda da vardır: Dış yüzeyleri kaplayan epital doku, bağ ve destek doku (kemik, kıkırdak ve lifsi dokularla türevleri), sinir dokusu ve kas dokusu. Tipik balık vücudu, yüzmeye uyarlanmış aerodinamik profilli ve iğ biçimindedir: baş, gövde ve kuyruk bölümlerinden oluşur. Yaşamsal önemdeki organları içeren gövde boşluğu genellikle vücudun ön alt yanındadır. Bu boşluğun arka ucunda, anüs yüzgecinin tabanının hemen önünde, dışkıların boşaltıldığı anüs deliği bulunur. Omurilik ve omurga, kafa iskeletinin arka bölümünden başlayıp sırt, gövde boşluğu ve kuyruk bölgesinden geçerek kuyruk yüzgecinin tabanında sonlanır. Balıklarda çok değişik üreme biçimleri görülmekle birlikte, en yaygın olanı dişinin suya bıraktığı sayısız, küçük yumurtanın vücut dışında döllenmesine dayanır. Açık denizlerdeki yüzey balıklarının yumurtaları genellikle suya asılıymış gibi duru; kıyı ve tatlı su balıkları ise yumurtalarını deniz dibine yada bitkilerin arasına bırakır; hatta bazı türler bir salgıyla yumurtalarını kayalara yada bitkilere yapıştırır. Yumurtaları dölleyecek olan spermalar erkeklerin gövde boşluğundaki 2 (bazen 1) erbezi içinde üretilerek , süt kıvamındaki ve rengindeki bir sıvıyla suya boşaltılır. Kemikli balıklarda, erbezlerinin her birinden çıkan bir sperma kanalı, anüsün arkasındaki ürogenital deliğe, köpekbalıklarında ve vatozlarda ise dışkılığa açılır. Ayrıca bazı balıklarda, erkeğin spermalarını dişinin yumurta kanalına boşaltmasını (iç döllenme) sağlayan bir tür çiftleşme organı vardır. Balıklara duyu organları açısından bakarsak; koku duyuları, hemen hemen tüm balıklar için büyük önem taşır. Çok küçük gözlü bazı yılanbalıkları, besininin yerini bulabilmek için görmeden çok koku duyusuna güvenir. Tat duyusu da balıkların çoğunda çok gelişmiştir; yalnız ağız boşluğunda değil, başın ve vücudun bazı bölümlerinde de tat alma organları bulunur. Beslenme, tehlikelerden kaçınma ve üreyerek soyunu sürdürme açısından belki de en önemli organ gözdür. Balıkların gözü temel yapısı ve işleviyle bütün diğer omurgalılarınkine benzese de, çok değişik yaşam koşullarına uyarlanmış olduğundan değişik özellikler gösterirler. Karanlık ve loş ortamlarda yaşayan balıkların gözleri genellikle büyüktür. Ama başka bir duyusu aşırı gelişerek baskın duruma geçerse gözlerin işlevi azalır. Onlarda ses algılama ve denge, birbirleriyle çok yakın bağıntısı olan iki duyudur. Suyun içerisinde kolayca yayılan ses dalgaları, özellikle düşük frekanslı dalgalar, balıkların baş ve gövde içi sıvıları ile kemiklerine çarparak işitme organlarına iletilir. Balıklarca algılanabilen ses frekanslarının alanı insanlarınkinden çok değişiktir; bu da sesin sudaki yayılma hızından ileri gelir. Bir çok balığın, dişlerini birbirlerine sürterek yada başka yollarla birtakım sesler çıkarıp birbirleriyle iletişim kurdukları sanılmaktadır.

http://www.biyologlar.com/baliklar-pisces

YOZGAT ÇAMLIĞI MİLLİ PARKI

YOZGAT ÇAMLIĞI MİLLİ PARKI

İli : YOZGATAdı : YOZGAT ÇAMLIĞI MİLLİ PARKIKuruluşu : 1958Alanı : 264 ha.Konumu : Yozgat il merkezine 5 km. uzaklıktadır.Ulaşım : İç Anadolu Bölgesi’nde , Yozgat ilinin güneyinde uzanan tepeler üzerinde yer alan milli park, Yozgat’a 5 km uzaklıktadır.Kaynak Değerleri :     Milli park, İç Anadolu’da insan etkisi ile meydana gelen (antropojen) step içerisinde yer alan sayılı relikt (kalıntı) ormanlardan biridir. Ortalama yüksekliği 1350 m. olan sahadaki arazinin morfolojik özelliklerini tepeler, sırtar ve vadilerde parçalanmış dalgalı düzlükler meydana getirmektedir.     Tabiatın iklim, toprak-su dengesinin değişmesi ile ortaya çıkan kısıtlamalara, tabii kaynakların bugün tükeneceğini unutmuş görünen insanların yanlış ve aşırı arazi kullanımlarının da eklenmesi, milli park ve çevresinde geniş alanları kaplayan ormanlardan yoksun bozkır peyzajlarını meydana getirmiştir. Eski çağların bakir ormanlarından günümüze bu karaçam korusu ulaşabilmiştir.     Karaçam, meşe ve ardıç ağaç toplulukları milli parkın bitki örtüsünü meydana getirmektedir. Milli parkın tabii kaynak değerlerinin yanında, rekreasyon ihtiyacını karşılaması bakımından da büyük önemi bulunmaktadır. FLORA Alan üzerindeki bitki türlerinin sayısı 212 olarak tespit edilmiş olup, 43 familya 144 cins içerisinde toplanmış bulunmaktadır. Alan üzerinde Karaçam, meşe, ardıç, akkavak, titrekkavak, karakavak, söğüt, alıç, ahlat vb. bulunmaktadır FAUNA Çamlık Milli Parkında Tilki, tavşan, tarla faresi, sansar, sincap vb. memeliler, küçük atmaca, saksağan kumru, delice, tarla kuşu, sığırcık, sarı asma, dağ kargası, şahin, doğan vb. kuşlar ile kaplumbağa, kertenkele, yılan gibi sürüngenler bulunmaktadır. Çamlık Milli Parkında Amerika’ya has beyaz kartal bulunmakta olup, en son 1996 yılında iki adet görülmüştür. http://www.milliparklar.gov.tr

http://www.biyologlar.com/yozgat-camligi-milli-parki


Biyolojik Silah Nedir ve Nasıl Uygulanır ?

Biyolojik Silah Nedir ve Nasıl Uygulanır ?

Üzerinde sıklıkla durulan biyolojik silahlar, herhangi bir saldırıda kullanıldıklarında benzeri nadir görülen insan yapımı bir salgına neden olmaktadırlar;

http://www.biyologlar.com/biyolojik-silah-nedir-ve-nasil-uygulanir-

Solucanlar; Platyhelminthes ( Yassı ), Anelida (halkalı ), Aschelminthes (yuvarlak solucanlar)

Solucan sınıfı Platyhelminthes (yassı solucanlar), Anelida (halkalı solucanlar), Aschelminthes (yuvarlak solucanlar) ve Pogonophora (sakallı solucanlar) filumlarını kapsar. Bazen Aschelminthes grubunu oluşturan Nematoda (iplik solucanlar), Rotifera, Gastrotricha, Kinorhyncha ve Pripalida sınıfları filum düzeyine yükseltilerek sınıflandırılmaktadır. Yer solucanları, Oligochaeta sınıfından halkalı solucanların karada yaşayan en tanınmış üyeleridir. Solucanların gövdesi ince uzun, silindir biçiminde yada yassılaşmış ve genellikle uzantılardan yoksundur. Uzunlukları 1mm ‘nin altından başlayarak 15m’yi aşabilir. Denizlere, tatlı sulara ve karalara yayılmış olan bu hayvanların bir bölümü asalak, öbürleri serbest yaşar. İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın Halkalı solucanlar (Annelida) Polymera olarak da bilinir. Segmentleri dıştan belirgin olarak görülen bir omurgasız hayvanlar şubesidir. Deniz, tatlı su ve karalarda yaşarlar. Vücut uzun ve segmentlidir. Vücut segmentler septum adı verilen bölmelerle birbirlerinden ayrılmıştır. Baş bölgesine prostomium, posterior uca ise pigidium adı verilir. Prostomium ile pigidium birer segment değildirler. En yaşlı segment başın hemen arkasındaki segmenttir. Çeşitli organlar her segmentte tekrarlanır. Protostome grubuna dahillerdir. Gerçek sölom bulunur. Sölomları şizosöl (Schizocoelous) tiptir. Boşaltım organları segmental sıralanmış nefridium’lardır. Vücudun ön ve arka uçlarındaki birkaç segment hariç, her segmentte bir çift nefridium bulunur. Vücut yüzeyi ince esnek kutikula ile kaplıdır. Bazılarında kitinden kıllar bulunur. İp merdiven sinir sistemi gelişmiştir. Prostomiumun sırt tarafında iki loplu bir beyin gangliyonu vardır. Duyu organları kimyasal duyu organları ve gözlerden ibarettir. Kapalı dolaşım sistemi bulunur. Annelidler hermafrodit hayvanlardır. Gonadları gayet basit yapılıdır. Rejenerasyon özellikleri çok iyi gelişmiştir. 9 bin türü bulunur. Bir kısmı mikroskobiktir. Yuvarlak solucanlar (İpliksisolucanlar) ya da Nematodlar, yuvarlak yapıda, sayıca Dünya üzerinde en fazla bulunan omurgasız hayvan şubesidir. Hayvan ve bitkilerde önemli zararlara neden olan birçok türü vardır. Yalancısölomları bulunur. Vücutları uzamış, silindirik, bilateral simetrilidir. Dünya üzerinde çok değişik yaşam yerlerine uyum sağlamışlardır. Bazıları serbest, bazıları parazitik yaşar. Marin nematodları, hayvan parazitleri, insan parazitleri, karasal nematodlar olarak gruplandırılırlar. Yuvarlak solucanlar, anatomik ve morfolojik olarak basit yapılı canlılardır. Boyları 0,25 mm – 3 mm, çapları 1-20 µ arasında değişir. Yüksek yapılı hayvansal organizmaların sahip olduğu bazı sistemlere sahip değildirler. Ör. solunum, dolaşım ve iskelet sistemi yoktur. Sinir ve boşaltım sistemleri ise çok basit yapılı hücre gruplarından oluşmuştur. En gelişkin sistemleri sindirim ve üreme sistemidir. Üreme [eşeysiz) olmakla beraber birçok türde besin konukçu varlığı ve çevre şartlarının uygun olduğu zamanlarda üreme partenogenetik (döllemsiz) olarak dişinin dişi birey içeren yumurta bırakması şeklinde olur. Böylece kısa sürede populasyonları artar. Erkekler populasyon içinde çok düşük oranda bulunurlar ve çevre şartlarının iyileşmesiyle dayanıklı yumurtaların oluşmasını sağlarlar. Bitki parazitleri, bitkilerin kılcal köklerinde ve kök-büyüme konisi (uç kısmı)nde styletlerini doku içerisine batırarak buradan bitki öz suyunu emerler. Nematod türüne ve yoğunluğuna bağlı olarak bitkilerde gelişme geriliği, solgunluk ve verimde azalmaya neden olurlar. Endoparazit, yarı-endo parazit ve ektoparazit olarak beslenirler. En zararlı grup, kök sistemine en çok zarar veren endoparazitlerdir Örn. kök-ur nematodları.    

http://www.biyologlar.com/solucanlar-platyhelminthes-yassi-anelida-halkali-aschelminthes-yuvarlak-solucanlar


Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik. Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor. Klonlar Klon, tek hücreden üremiş hücreler topuluğudur. İlkel kardeşlerimiz bakteriler, sürekli klonlar oluştururlar. Bir bakteri hücresini bir tabak yiyeceğin üzerine koyarsak, hemen bölünüp iki hücre, bu iki hücre bölünüp dört hücre olur ve bu böyle sürüp gider, iki gün içinde bakteri kütlesi çıplak gözle görülebilir hale gelir. Bu kütle bir klondur; bir tek orijinal hücreden üremiş milyonlarca yavru hücreden oluşur. Bu klondan bir tek yeni hücre alıp yine bir tabak yiyeceğin üzerine yerleştirirsek, birincisinde olduğu gibi bir klon oluşana kadar bölünecektir. Klon oluşturmak bakteri için oldukça kolay bir iştir, çünkü bütün hücreler birbirinin aynıdır. Daha gelişmiş bir organizmadan klon yapmak çok daha karmaşıktır. Ama teorik olarak mümkündür. Yaratıkların her hücresinde aynı DNA her şeyiyle tam bir bireyi oluşturmak için gerekli bilgiyi taşıdığına göre, tamamen teorik planda; herhangi bir hayvandan bir hücre alıp onu bir kap besinin üzerine veya beslenebileceği başka bir ortama koysak ve tam bir hayvan organizmasını üretmesini sağlasak, aslının kusursuz bir kopyasını geliştirmek için gerekli bütün bilgi, o tek hücrenin DNA'sında vardır. Bu olasılık, özellikle de insanın klon yoluyla oluşturulabileceği düşüncesi, yani bir tek insan hücresinden geliştirilmiş her şeyi tamam bir insan yaratmak, popüler yazarların hayal gücünü harekete geçirdi. Böyle bir olasılık gerçekleşmekten son derece uzaktır. Diğer yandan bir tek hücrenin aslında tam bir bireyi ortaya çıkarabildiğini biliyoruz; döllenmiş yumurta, tam bir yetişkin varlık olduğu zaman bu gerçekleşiyor. Ama olan biten tek yönlü bir işleme benziyor. Canlı yaratıklar, kolay kolay hücrelerinden herhangi birinin döllenmiş yumurta gibi bölünmeye başlayıp kendi tıpkı kopyalarını oluşturmasını sağlayamazlar, Bizim hücrelerimiz kendi uzmanlaşmış durumları üzerine sıkı bir denetleme uygularlar. Örneğin deri hücreleri deri hücresi olarak kalırlar, tıpkısı tıpkısına ayrı bir birey olmak şöyle dursun, değişip kas hücresi olmaya bile yeltenmezler. Hücrelerimizin, çevrelerinin etkisiyle mi böyle değişmez oldukları tartışılabilir. Bir hücreyi komşularından ayırsak, belki beklenmeyen bir davranışa yönelecektir. Böyle bir deney kurbağa larvası hücreleriyle aşağıda anlattığımız gibi yapılmıştır: Önce, kurbağa yumurtalarındaki hücre çekirdekleri ve dolayısıyla DNA'ları tahrip edilmiş, sonra genç larvaların rasgele bazı hücrelerinden alınmış çekirdekler, DNA'sız kurbağa yumurtası hücrelerine yerleştirilmiştir. Kısa sürede yumurtalardan yeni larvalar, hatta bazen kurbağalar gelişmiştir. Yani larvalar bir tek larva hücresinden üremiş birer klondurlar. Benzer klon yapma deneyleri, fareler ve başka hayvanlar üzerinde de yapılmış, ama başarıya ulaşılamamıştır. Klon başarısızlık, hücre karakterindeki dengeliliğini ortaya çıkartıyor. Her hücrenin DNA'sında bulunan, başka bir hücre olabilme potansiyeline karşın, hücreler bu potansiyel avantajı kullanmazlar. Genlerinin çoğu durdurulmuştur. embriyogenezi derinliğine araştırabilmek için genlerin ifade edilip edilmemesini neyin belirlediğini öğrenmeliyiz. Genlerin Başlatma - Durdurma Mekanizmasının Özelliği Hücreleri farklılaştıran gen çalıştırma mekanizması, insanın aklına keskin bir soru getiren ilginç bir bilinmeyendir. Genler nasıl harekete geçirilip durdurulabilirler? Daha önce de söylediğimiz gibi en açık yanıtlar en basit sistemlerden gelir. Yine, o alelade bakterilerin davranışlarına bakalım. Bazı hücreleri taze bir büyüme solüsyonu içine atıp, şeker olarak örneğin glukoz ekleyelim. Hücreler bölünmeye başlarlar ve sayılan hızla yükselir. Bu, glukoz tüketilene kadar sürer. Sonra büyüme durur. Aynı gözlemi, yine benzer bir hücre grubuyla bu sefer değişik bir şekerle, diyelim galaktozla deneyelim. Hücrelerin sayılan artar, ama glukozla olduğundan daha yavaş artar ve galaktoz bitince büyüme durur. Glukozun, daha hızlı tüketildiği için galaktozdan daha iyi bir besin olduğu sonucuna varırız. Ama her iki şeker de bakteri tarafından kullanılmıştır. Hiçbirini ziyan etmiyor bakteriler. Şimdi deneyi hem glukoz hem galaktoz kullanarak yineleyelim, ilginç birşey olur, glukozun tümü tüketilene kadar nüfus hızla artar. Sonra yirmi dakika kadar artış durur. Ve bu sürenin sonunda yeniden başlayıp galaktoz tüketilene kadar sürer. Hücrelerin glukozu yeğledikleri açıkça görülüyor. Ancak, yirmi dakikalık bir aradan sonra galaktozu kullanabilme yeteneğini kazanıyorlar. Bunun genleri harekete geçirmek ve durdurmakla ne ilgisi var? Bu basit sistemin analizi, 1950'lerin sonuna doğru, Fransız bilim adamları François Jacob ve Jacques Monod'ya gen ifadesinin denetlenmesi üzerine parlak bir ilham verdi. Şimdi bakterilerde mekanizmanın nasıl çalıştırılabildiği kanıtlanmış durumda; bu bizim gibi daha karmaşık organizmalarda da geçerlidir belki ama burası henüz kesinlikle bilinmiyor. Bakteriler, alışık olmadıkları bol şekerle uğraşırken içlerinde ne olup bitiyordu? Bakteri hücrelerinin glukoz kullanacak makineleri olduğu açıkça görülüyor, çünkü bu şeker verilir verilmez yemeye başladılar. Bu makine iki proteinden oluşuyor: Şekerin hücreye girmesini sağlayan bir enzim ve içeri girince onu hazmedecek bir enzim. İki enzim; iki gen. Bu makinenin galaktoz kullanan karşılığı henüz hücrede yok; veya en azından iki şekerin bulunduğu solüsyonda büyüme başladığı zaman yoktu. Glukoz tükenince galaktozu kullanacak makine kuruluyor. Glukozun bulunmaması, galaktoz kullanan makinenin geliştirilmesi için tetiği çekiyor. Glukoz, galaktozu kullanmak için gerekli enzimleri denetleyen genlerin ifadesini önlüyordu ve bastırıyordu. Glukoz bitince baskının etkisi kayboldu ve böylece galaktoz genleri, mesajcı RNA'ları yapmaya başlayıp proteine çevirebildiler. Bütün bunların bakteri için anlamını düşünün. Eli altındaki en iyi besini yiyor ve besin, bakteri içinde enerjinin başka besini kullanmak için enzimler yapılarak ziyan edilmemesini de ayarlıyor, iyi besin tükenince el altında yalnızca daha zayıf besin kalıyor. O zaman bakteri işe girişip bu besini kullanabilmesi için gerekli enzimleri yapıyor. Bakteriler Kendilerine Verilen Şeyleri Üretmezler Bahçenizde kendi kullanımınız için sebze yetiştiriyor olsanız ve birileri size düzenli olarak bu sebzelerden vermeye başlasa, belki de kendiniz yetiştirmekten vazgeçerdiniz. Bakteriler de buna benzer bir şey yaparlar. Kendi gereksindikleri amino asitleri yapabilirler (protein zincirindeki yirmi temel halka). Amino asitler olmadan, doğal olarak protein yapamayacaklardı ve üremeleri duracaktı. Eğer bakterilere hazır yapılmış amino asitler verirsek, içinde yaşadıkları solüsyona amino asitler eklersek, bakteriler kendi amino asitlerini yapmayı durdururlar. Amino asit armağanımız hücrelerin kendilerininkini yaparak enerji harcamalarını gereksizleştirir. Burada bir hayli enerji söz konusudur. Yirmi amino asidin her birini yapmak birkaç enzim gerektirir. Her enzim yapılışında, bir gen harekete geçirilmeli, mesajcı RNA yapılmalı, enzim proteinlerin yapıldığı ribosomlara gönderilmelidir. Genin böylece durdurulması yapı enerjisinde önemli bir tasarruf demektir. Enerji korumak, bütün canlı hücrelerde olduğu gibi, bakterinin de yaşamını sürdürebilmesi için son derece önemlidir. Gen İfadesinin Denetlenmesi İçin Şema İşte bakteriler üzerine çalışmalardan elde edilmiş gen ifadesinin genel resmi; 1. Genler harekete geçirilip durdurulabilirler. Bu, represör denilen protein moleküller tarafından yapılır. 2. Represörler, kendilerini genlerin ucuna bağlarlar. Böylece geni mesajcı RNA'ya geçirecek olan enzimin işini yapmasını engellerler. 3. Bu, genin yapmakla yükümlü olduğu proteinin yapılmasının istenmediği anlamındadır. 4. Represörler iki nedenle DNA'dan serbest bırakılabilirler: a) Glukoz gibi bir şekerin yokluğuyla (demek ki glukoz gene bağlanması için represöre yardım ediyor.) b) Bir amino asidin yokluğuyla. Şimdi daha önce anlattığımız glukoz-galaktoz. deneyinin açıklamasını görebiliriz. Glukoz bakterilerin eli altında bulunduğu sürece, onu yiyecek ve bu da galaktoz genleri represörünün galaktozu kapalı tutmasına yardım edecektir. Glukoz bitince, galaktoz geni represörleri işlevlerini yerine getirmezler, böylece gerekli enzimler yapılabilir ve galaktoz kullanılabilir. Aynı şekilde, bakterilere amino asitler verildiği zaman bu amino asitler, bütün amino asit yapmaya yarayan genlerin represörlerine yardımcı olup, genleri kapattırabilirler. Bakteri içinde işleri düzenleyen bu güzel sistemin insanlar dahil daha yüksek canlı biçimlerinde de işlediği görülüyor. Bu sistem genlerin ifadesini denetlemek için önemli bir yoldur. Ama İnsanlar Bakteri Değildir Bakteri hücreleri ile bizim gibi organizmaları daha karmaşık ve uzmanlaşmış hücrelerin kullandıkları yöntemler arasında, belirgin bir fark vardır. Bakteri hücreleri; çabuk tepki veren, esnek, çevredeki ciddî değişikliklere hızla kendini uydurabilen bir yaşam sürenler. Bu biraz, vahşî ormanlarda savaşarak varlığını sürdürmeye benzer; bir bakteri kendi başının çaresine bakar. Diğer yandan uzmanlaşmış hücrelerin yaşam biçimleri kalıcı olarak belirlenmiştir. Ömür boyu; "deri hücresi" deri hücresi olarak, "kas hücresi" kas hücresi olarak, "beyin hücresi" de beyin hücresi olarak kalır. Her hücre çeşidinde deri mi, kas mı, yoksa beyin mi olduğunu belirleyen bir kaç gen işletilir ve diğer bütün genler (diyelim ciğer, kemik ya da böbrek olmak için) durdurulur ve hücre neyse sonuna kadar da o olarak kalır. Bakteriler, buna göre genleri hızla ve kolayca harekete geçirip durdurabilecek araçlar gereksinirler. Uzmanlaşmış hücrelerde çoğu genler sürekli durdurulmuş, birkaçı da sürekli işletilir durumdadır. Bakterinin bu kolay çalıştırma-durdurma mekanizması, uzmanlaşmış hücrelerde kullanılana benzemeyebilir. Ne var ki şu anda elimizde en iyi anladığımız model, bakteri sistemidir. Hiç olmazsa teorik olarak, temelli durdurmayı veya çalıştırmayı sağlamak için kullanılmasını düşünmek zor değil. Biçimin Oluşumu Embriyogenezde temel problem olarak gen ifadesine bakıyorduk. Oysa ilk göze çarpan yan, biçimin oluşumu; heykel dökme sürecindeki hüner, yumurtadan bebeğe dönüşümün akıl almaz mimarî başarısı. Örneğin, bizi oluşturan tüm özel doku ve organlar, bir iskelete asılmıştır. Kemik, bütün diğer yapının yanı sıra embriyoda gelişir. Sıradan görünüşlü hücrelerden başlayarak, içinde kalsiyumun sert bir yapı oluşturmak için biriktirildiği yeni bir doku belirir. Bu doku sert ve olağanüstü güçlüdür, bir organizmanın ağırlığını ömür boyu taşıyabilecek nitelikte yapılmıştır. Kırıldığı zaman da yeniden kendini onarabilir. Böylesine bir yapısal biçimlendirme süreci nasıl ortaya çıkıyor? Bu anlaşılması zor bir problem ve yine bir model sisteme başvurmamız gerek. Bakteriler, insanlar gibi virüs enfeksiyonuna karşı dirençsizdirler. Her bakteri virüsünün (buna bakteri yiyen anlamında bakteriofaj denir) kutu gibi içinde DNA'nın saklandığı bir kafası ve enjektör iğnesi gibi kullandığı bir kuyruğu bu kuyruğun ucunda da bakterinin yüzeyini yakalayan örümcek gibi bacakları vardır. Sonra virüs kendisi bir enjektörmüşçesine -ki aslında öyledir de- DNA'sını kuyruğundan bakteriye geçirir. Virüsün DNA'sı bakteriye girer girmez idareyi ele alır.Bakterinin protein yapan makinesine, bundan böyle bakteri proteini yapılmayacağını belirten bir sinyal gider. Ribosomlar ve transfer RNA makinesi, virüsün kendi DNA'sından üretilen mesajcı RNA'lar tarafından çabucak kendi yararına işleyecek hale dönüştürülür. Kısa bir süre sonra, bakteri fabrikası virüs proteini parçalan yapmaya başlar. Yeni kafalar, kuyruklar ve bacaklar yapılır. Her şey virüsün DNA'sı tarafından yönetilir. Bundan kısa bir süre sonra, bakterinin içinde virüs kafalarının biriktiği görülür, yeni yapılmış virüs DNA'ları bunların içine yerleştirilir ve tamamlanmış virüsler ortaya çıkar. Her bakteri hücresinin içinde, yüz kadar virüs onu sıkı sıkıya dolduracak biçimde birikir. Zamanı gelince, virüsler bakterinin zarını yarıp, onu. öldüren bir enzim salgılayarak kaçarlar. Bütün bu vahşî yıkım yarım saatten az bir zamanda gerçekleşir. Bu olguda biçimin oluşumunun basit bir modelini görebiliriz. Ele geçirilen fabrikada, virüsün değişik parçaları, kendi DNA'sının verdiği talimatlarla, ufak bir bina yapar gibi bir araya getirilir. Bunun dikkatle programlanmış bir zaman aralığında, ortaklaşa gerçekleştirilen bir işlem olduğu görülebiliyor. Öyle ki genler virüsün değişik parçalarının yapımına bir sırayı izleyerek başlanmasını denetliyorlar. Doğru parçalar doğru sırada yapılıyorsa, belirli biçimin kendiliğinden bir anda oluşması çok güçlü bir olasılık gibi görünüyor. Bu modelin çok daha karmaşık, gerçek embriyogenez olgusuna ne kadar ışık tutacağı belirsiz. Ama modelin yararlılığı, bakteriden çok daha basit bir organizma olan virüsün gen kompozisyonu üzerine oldukça tam bir bilgi sahibi olmamızda yatıyor. Ayrıca, olayların sırasını denetleyip isteğimize göre ayarlayabiliyoruz ve çok karmaşık olmayan üç boyutlu bir biçimin oluşumunu bir elektron mikroskobuyla kolayca izleyebiliyoruz. Hücre Bölünmesini Başlatmak ve Durdurmak Embriyo hızla bölünen bir hücre kütlesidir. Bu korkunç hızlı büyüme işi, doğumdan sonra çocukluk boyunca gittikçe yavaşlayarak yetişkinliğe erişene kadar sürer. Yetişkinlikte hücre bölünmesi durur. Bir organizmanın bütününde; her organın, her dokunun hücreleri, büyümenin tamamlanmasına çok titiz ve dikkatli bir işbirliğiyle katılırlar. Hücreler büyümeyi ne zaman durduracaklarını nereden biliyorlar? Oluşumuna katkıda bulundukları organların tam büyüklüğe eriştiğini onlara söyleyen ne? Bu olgu, normal hücrelerin bedenin dışındaki davranışında da gözlemlenebilir. Birkaç normal hücre, bir cam kabın ortasına bırakıldıklarında, hemen yanlarındaki komşu hücrelerle sürekli ilişkili olarak bölünmeye başlarlar ve en uçtaki hücreler kabın kenarlarına dokununcaya kadar, kabın yüzeyini tek hücre kalınlığında bir tabaka halinde örterler. Kenara ulaşılınca bütün hücreler bölünmeyi durdurur. Bölünmeyi durduran sinyalin özelliği nedir? Bunun cevabını bilmiyoruz, ama araştırmayı sürdürüyoruz. Bilmecenin en azından bir bölümüne cevap getirebilecek, iddialı bir model sistemimiz var. Bu modelin uygulanabilme kolaylığına hayranım, üzerine yıllar harcadığım için ona karşı özel bir düşkünlüğüm var. Regenerasyon: Yenilenme Bir kurbağa yavrusunun kuyruğunu kesip onu yeniden suya bıraksam, yara çabucak iyileşir ve ondan sonraki üç haftada gerçekten ilginç olaylar olur: Tam ve mükemmel bir kuyruk. Bir salamenderin de buna benzer biçimde ayağını koparsam yerine yenisini yapar. Deniz yıldızı ve ıstakoz da öyle. Bu olguya regenerasyon: yenilenme denir. Bunun kendi bedenimizde de örneği vardır. Kopunca kollarımızı, bacaklarımızı yerine getiremeyiz ama karaciğerimiz bir kazada zarar görse, bir parçasının ameliyatla alınması gerekse karaciğer bir iki gün içinde eski büyüklüğüne erişir. Bu özel durumun, laboratuvarda benzerini yapabiliriz. Ameliyatla bir farenin karaciğerinin üçte ikisini alabilirim. Fare anesteziden birkaç dakikada ayılır, bir iki saat içinde yemeye başlar ve üç gün sonra karaciğerinin eksik üçte ikisi, normal ve sağlıklı olarak yerine gelmiştir; bir karaciğerin yapması gereken her şeyi yapmaktadır. Bütün bu olaylarda iki dramatik nokta görülür: Birincisi; hayvanın bir parçasının ayrılması, eskiden her şeyin sakin olduğu bu bölgede çok hızlı bir hücre bölünmesine yol açar. İkincisi; bu parça yerine gelince hücre bölünmesi durur. Şaşırtıcı olan; bu bölgedeki hücrelerin bölünmeye gerek olduğunu iş bitince durmak gerektiğini bilmeleridir! Bu hücrelerin içinde, onlara bölünmeye başlamalarını ve eksik organı tamamlamak için yeterince bölündükleri zaman durmalarım söyleyen nedir? Bir zamanlar bunun cevabım bulmak için, kopan parçanın yerine yeni hücreler üreten bir karaciğerden parçalar alıp, bunları normal, bölünmeyen karaciğer hücrelerine karıştırıyordum. Kopanı yerine getirmek için üreyen hücrelere, daha çok hücre yapmalarını söyleyen bir kimyasal sinyal varsa bunun normal hücreleri de etkileyip, onların daha hızlı protein yapmalarını sağlayacağını düşünüyordum. Diğer yandan, eğer normal hücreler yenileme hücrelerini yavaşlatacak bir kimyasal mesajı içeriyorlarsa, bunu da anlayabilecektim. İyi bir fikir, iyi bir model ama deneyler sonuçsuz kaldı. Sistem henüz çok karmaşık. Olanları bir türlü kavrayamıyoruz. Yaşamın kanunlarını açığa çıkartmakta üst üste sağlanan başarılardan söz eden öykümüzde; bir deneysel başarısızlığın yeri yok gibi gelebilir. Bence tersine; bu öykümüzün gerçekçiliğini arttırır. Aslında, şimdiye kadar bilim adamlarını yaptıkları deneylerin çoğu başarısızlıkla sonuçlanmıştır. Başarısızlıklarımızdan ders alıp, bize sonunda iyi bir ilham sağlayacak daha iyi deneyler tasarlayabiliriz. Meslektaşım Dr. Nancy Bucher, yenilenme olayı üzerine bilgiye belki de diğer bilim adamlarından çok daha fazla katkıda bulunmuştur. Önemli çalışmalarından bazıları, farelerden yapışık ikizler yapmayı içeriyordu İki fareyi iyi bir ortak dolaşımları olacak biçimde birbirine dikiyordu; kan ikisinin arasında kolayca dolaşıyordu. Sonra, farelerden birinin karaciğerinin üçte ikisini alıyor ve bu ciğerin eksik kısmı yerine gelene kadar, diğer farenin karaciğerinin de büyüyüp büyümediğine bakıyordu. Büyüdü! Bu; yenilenme yapan karaciğerin, kan dolaşımına bir şey kattığı ve bunun diğer farenin karaciğerine ulaşınca, onun da büyümesine neden olduğu sonucunu gösterdi. Nancy Bucher ve bir çok başka bilim insanları, bu maddenin ne olabileceğini anlamaya çalıştılar; ama henüz bir başarı elde edilmiş değil. Embriyogenez Üzerine Bilinmeyenler Bilinenlerden Çoktur Yinelersek, embriyogenez konusunda bazı ilginç şeyler üzerinde durduk. Bir arada kalabilecek yapışkanlığı elde etmek için bölünen hücrelerin özel yeteneklerinden; bir organizma oluşturmak için gerekli olan uzmanlaşma konusundan; biçimin oluşumundan ve son olarak uzun embriyogenez, sürecine dur emri veren, çocukluk ve yetişkinliğe ulaşma işleminin bittiğini bildiren sinyalden söz ettik. Bunlar son derece karışık olguların yalnızca bir iki önemli noktası. Cahilliğimiz hâlâ bildiklerimizi kat kat geçiyor. Bu hiç de şaşırtıcı değil. embriyogenez, bütün yeteneklerimizi kullanmamızı gerektiren bir probleme benziyor ve biyoloji biliminin temelinde yatıyor. Biraz heyecanlı, biraz da kışkırtıcı bir konu; çünkü, ilk bakışta çözülemeyecek hiçbir zor yanı yokmuş gibi görünüyor. Kısa bir süre sonra, daha önceki bölümlerde anlattığımız yaşamın evrensel kanunlarını kavradığımız gibi, embriyogenezi de anlayabileceğimize inanıyorum. Embriyogenezin anlamadığımız yanları, kanserin anlamadığımız yanlarına çok benziyor. Gerçekte, bazı araştırmacılar, kanserin açıklamasının, embriyogenezin anlaşılmasını gerektirdiğini düşünüyorlar. Kanser, bazı bakımlardan insanın embriyogenezindeki o çok üstün denetleme yeteneğini yitirdiği zaman ortaya çıkıyor gibi görünüyor. Örneğin, kanser hücrelerinin başıbozuk davranışları, hücre yapışkanlığının yok olmasıyla ilgili olabilir. Şimdi bu konuyu daha yakından incelemeliyiz.

http://www.biyologlar.com/embriyogenez

 
3WTURK CMS v6.03WTURK CMS v6.0